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Abstract

Detecting Busy Waiting
by Means of

Static Control Flow Analysis

by Georg Kienesberger

Busy waiting occurs whenever a process repeatedly checks a condition until it

becomes true without influencing that condition itself, thereby effectively wasting

system resources and introducing the risk of system failure due to race conditions.

Hence, busy waiting is considered bad programming practice and can be avoided

by the use of higher communication facilities.

In the development of critical systems, for which correctness and robustness

are of vital importance, software quality assurance is of great value. However, it

is difficult and impractical to manually discover busy waiting in existing program

code, which is why a static analysis tool is needed for that purpose.

Based on an existing algorithm that targets the detection of busy waiting using

methods of static control flow analysis, I developed such software and further

improved the analysis methods to increase efficiency and sharpen the results.

Since the Ada programming language is often used for critical applications I

selected it as target language for my analysis and also used it for the implemen-

tation of the analysis software itself.

The main results of my work are a static analysis tool for detecting busy wait-

ing in Ada programs and a framework providing a powerful CFG-based represen-

tation of Ada source code facilitating comprehensive static control flow analysis

in general.



Kurzfassung

Detecting Busy Waiting
by Means of

Static Control Flow Analysis

von Georg Kienesberger

Ein Prozess, in dem Busy Waiting verwendet wird, überprüft wiederholt eine

Bedingung, bis sie erfüllt ist, ohne die Bedingung selbst zu beeinflussen, wes-

halb hierbei Systemresourcen verschwendet werden und sogar Systemversagen auf

Grund von Race Conditions möglich ist. Deshalb wird Busy Waiting als schlechte

Programmierpraxis angesehen, kann es doch auch durch die Verwendung höherer

Interprozesskommunikationsmethoden vermieden werden.

Gerade im Bereich der kritischen Anwendungen, für die Korrektheit und Aus-

fallsicherheit von entscheidender Bedeutung sind, spielt Softwarequalitätssiche-

rung eine wichtige Rolle. Allerdings ist es diffizil und mühsam, Busy Waiting in

bestehendem Quelltext per Hand aufzuspüren, weshalb für diesen Zweck ein Tool

zur statischen Analyse unerlässlich ist.

Basierend auf einem existierenden Algorithmus zur Identifizierung von Busy

Waiting durch Methoden der statischen Kontrollflussanalyse habe ich eine solche

Analysesoftware entwickelt und parallel dazu das Analyseverfahren hinsichtlich

Genauigkeit und Effizienz weiterentwickelt.

Nachdem gerade die Programmiersprache Ada häufig für kritische Anwen-

dungen eingesetzt wird, entschied ich, nicht nur Ada-Programme als Ziel meiner

Analyse zu wählen, sondern auch die Analysesoftware in dieser Sprache zu ent-

wickeln.

Die wichtigsten Resultate meiner Arbeit sind ein Tool zur statischen Analyse

von Ada-Programmen in Hinblick auf Busy Waiting und ein Framework, welches

eine mächtige kontrollflussbasierte Darstellung von Ada-Quelltext generiert und

so generell umfassende statische Kontrollflussanalyse ermöglicht.
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Chapter 1

INTRODUCTION

A computer program can be represented in various forms where source and

machine code are of course the most important ones. The widespread field of

control flow and data flow analysis [4, 21, 14, 8, 5, 23], however, relies on the

representation in form of a control flow graph (CFG) [3]. The goals of analysing a

control flow graph are manifold and range from program optimisation to the de-

tection of specific properties or characteristics of a given program to serve varying

purposes.

The Ada programming language, in its different versions, was designed from

the beginning to suit the development of large, critical systems for which correct-

ness and robustness are of vital importance. This is also reflected by its current

field of application which ranges from aviation and space flight over military tech-

nology to medical and financial systems [17].

Clearly, program analysis plays an important role when it comes to ensuring

safety and quality of Ada programs. A few years ago, Blieberger et al. [9] invented

a static control flow analysis algorithm that detects busy waiting.

To employ busy waiting is generally considered as bad programming practice,

as it not only leads to a waste of system resources but may also lead to program

failure. It is therefore a threat to the security, robustness and quality of software.

Unfortunately, busy waiting is hard to detect without employing a static analysis

tool that is capable of locating busy waiting in existing program code.

The goal of my work was to develop such a tool, based on the algorithm

proposed by Blieberger et al. [9] and to further improve this algorithm to sharpen

the analysis and increase efficiency.

Evidently, being able to transform an arbitrary Ada program into its control

flow based representation is the most essential prerequisite for this kind of analysis.

However, since no tool that in some way accomplishes this task existed prior to

this work, the development of such software was a crucial and extensive part of

this project.
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As a result, I developed, together with a colleague, the Ast2Cfg framework

which is capable of generating powerful CFG-based data structures for an arbi-

trary Ada program that hold comprehensive information on the original source,

such as visibility, package structure, type definitions, etc. and provides means for

interprocedural analysis [16, 15].

Upon that framework, I then developed the Busy Wait Analyser for Ada

(BWAA), a static, CFG-based analysis tool for the detection of busy waiting

in Ada programs.

An extensive description of the analysis algorithm with my modifications and

the implementation and inner workings of the aforementioned software follows this

introduction. The software itself is free software as defined by the Free Software

Foundation [25] and I published it under the terms of the GNU General Public

License.
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Chapter 2

PROBLEM STATEMENT

2.1 Definition of Terms

A control flow graph (CFG) is a directed graph [3] with node set N and edge set

E ⊆ N × N . The nodes n ∈ N represent basic blocks, which comprise a linear

sequence of consecutive statements. There is an edge (u, v) ∈ E from u to v if v

can follow u in some execution sequence. Then, u is called the predecessor of v

and v is the successor of u. Every CFG has a unique start node called root node.

A path from node u1 to node un is a finite list < u1, . . . , un > of nodes in which

successive nodes are connected by an edge [22], so there is an edge (ui, ui+1) for

every i < n. If there is a path from u to v, u is an ancestor of v and v is a

descendant of u [11]. A cycle is a path where no node is repeated except for the

first and last node that are the same. A graph that contains no cycles when the

directions of its edges are ignored is called a tree [13], and a set of disconnected

trees is called a forest.

A graph can be represented by an adjacency list which consists of an array of

lists, one for each node in the graph [11]. So for each node u there is a list which

contains all the nodes v such that an edge (u, v) ∈ E exists.

A depth first search (DFS) is a traversal of a graph as it is shown in Listing 2.1.

A DFS imposes an ordering [3] on the nodes of a graph as it assigns every node a

unique number. An edge (u, v) is called a retreating edge iff the DFS-number of

u is greater than the DFS-Number of v.

1 procedure DFS (N: Node) is
2 begin
3 if N.Visited = True then
4 return;
5 end if;
6
7 N.Visited := True;
8 N.Number := I;
9 I := I + 1;

10
11 for each successor S of N loop
12 DFS(S);
13 end loop;
14 end DFS;

Listing 2.1: The depth first search algorithm (pseudocode).
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A node u dominates [3] node v if every possible path from the root node to v

includes u. A tree in which the root of the tree equals the root of the CFG, and

each node dominates only its descendants in the tree is called dominator tree. An

edge (u, v) is called a backedge if v dominates u.

A control flow graph is reducible [3] iff its edges can be partitioned into two

disjoint sets: A set of forward edges that constitute a graph without cycles in

which every node can be reached from the root node and a set of backedges. In a

reducible control flow graph the set of backedges is equal to the set of retreating

edges.

2.2 Busy Waiting

Busy waiting is often defined as a technique used for synchronisation of concurrent

processes. For instance G. R. Andrews defines it as

“... a form of synchronisation in which a process repeatedly checks a con-

dition until it becomes true ...” [6].

That is, a process that wants to enter a so-called critical section, which only

one process at a time may enter, has to periodically check whether he is allowed

to do so, effectively being unable to perform any useful work but nevertheless

consuming processor time [24].

However, in general it can be said that busy waiting occurs whenever a loop

exit condition is not influenced from within the loop and therefore the loop is

only exited in case the value of a variable is changed from outside [16]. This

does not limit busy waiting to a synchronisation technique but for instance also

includes processes that loop until a specified time is reached while checking the

clock periodically or a process that repeatedly checks whether the user entered

some input, etc.

Busy waiting can in general be considered as a bad programming practice or

an indication for poor program design. Although, there are a few special cases

where busy waiting can be tolerated, like for instance in operating system kernels

for reasons of efficiency, the drawbacks of busy waiting make it impossible to

justify its use in general.

The most noticeable disadvantage is of course the waste of processor time,

however, when used for synchronisation busy waiting may, depending on the

implementation, also cause race conditions which in fact could result in program
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failure. Therefore, higher communication facilities like semaphores, monitors,

rendezvous, etc. [18, 24, 7] should be used instead.

As a first example for busy waiting consider Dekker’s algorithm for the mu-

tual exclusion of two processes as described by Dijkstra [12]. In Listing 2.2 an

implementation in Ada using tasks is shown, and 2.1 depicts the accompanying

CFG.

1 procedure Dekker is
2
3 Turn: Integer range 1 .. 2 := 1;
4 T1,T2: Boolean := False;
5 task Task1;
6 task Task2;
7
8 task body Task1 is
9 begin

10 T1 := True;
11 while T2 loop
12 if Turn = 2 then
13 T1 := False;
14 end if;
15 while Turn = 2 loop
16 null;
17 end loop;
18 T1 := True;
19 end loop;
20
21 -- critical section
22
23 Turn := 2;
24 T1 := False;
25
26 end Task1;
27
28 ...

Listing 2.2: Dekker’s mutual exclusion algorithm.

Listing 2.2 only shows the code for one of the two tasks, since the second task

body is programmed analogously. First, a task sets its flag, T1 or T2 respectively,

and then checks the other task’s flag. In case it is not set, it may enter the critical

section immediately. If the second task’s flag is set, it next tests whether it is

its own turn to insist on entering the critical section or whether it should allow

the other task to proceed. In either case, it has to wait until the other task’s

flag is unset. When leaving the critical section the flag and the Turn variable are

adjusted accordingly.

Each task has two loops, also highlighted in Figure 2.1 using dotted lines and

dashed lines respectively. It can easily be seen, that the exit conditions of both

loops, T2 and Turn = 2 are not influenced from within the corresponding loop.

This is because neither T2 nor Turn are defined inside the loops. Hence, the

loops are only exited upon an external event and therefore both loops are busy

wait loops.
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Assignment Node 1.4.3:

Idents: T1
T1 := True;

Finite Loop Node 1.4.7:

Idents: T2
while T2 loop

Node 1.4.8:

if/case

Node 1.4.33:

Loop End

Node 1.4.11:

Idents: =
if Turn = 2 then

Node 1.4.10:

end if/case

Assignment Node 1.4.18:

Idents: T1
T1 := False;

Finite Loop Node 1.4.22:

Idents: =
while Turn = 2 loop

Node 1.4.26:

null;

Node 1.4.28:

Loop End

Assignment Node 1.4.31:

Idents: T1
T1 := True;

Assignment Node 1.4.36:

Idents: Turn
Turn := 2;

Assignment Node 1.4.40:

Idents: T1
T1 := False;

Figure 2.1: The CFG of Dekker’s mutual exclusion algorithm.
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Employing for example Ada’s protected objects this use of busy waiting could

have been easily avoided while retaining the same result. However, to manually

find busy waiting in existing program code in order to replace it with a proper

solution is a very tedious and for projects other than very small ones nearly

impossible task.

Therefore, a static analysis tool that automatically finds and reports busy

waiting is the only way to ensure that a given program does not contain busy

waiting and adheres to state-of-the-art programming style.

To develop such a tool and therefore facilitate software quality assurance of

Ada programs is the goal of this thesis.
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Chapter 3

ALGORITHM

3.1 Overview

This section gives an overview of the busy wait detection algorithm presented by

Blieberger et al. [9] and my modifications to it. The algorithm operates on the

CFG of a given program and uses control flow properties and semantic properties

of statements to decide whether busy wait is employed in a specific loop.

Since CFGs generated from Ada programs are reducible, the backedges can

be used to define the loops of a CFG. So Blieberger et al. define the set of nodes

that constitute a loop L(m,n) of a backedge (m,n) as

L(m,n) = {u | ∃π =< u, . . . ,m >: n /∈ π} ∪ {n}.

Therefore every node from that m, the source of the backedge, may be reached

without going through n is said to be part of he loop body. Node n is called the

loop header because it is part of every path to a node in the loop body and thus

dominates every node in the body.

Note, however, that although the target of a backedge is a single loop header,

multiple backedges may point to the same header i.e. a single loop may have

more than one backedge.

In order to find the loops in a CFG Blieberger et al. suggest to first compute

the dominator tree in order to find the backedges. Remember that a backedge

is defined as an edge where its source is dominated by its destination. However,

I found out that the backedges may be computed much more efficiently. This is

because in a reducible CFG, like the ones for Ada programs are, every retreating

edge is a backedge. Therefore a simple variant of a DFS is sufficient to compute

the set of backedges (see Section 3.2).

Next, a simple work-list algorithm to compute L(m,n) is presented and it is

suggested to compute the loop forest in order to be able to start the analysis with

the innermost loops. As it turned out, the algorithm I use to compute the loop

nesting forest (see Section 3.3) already allows to build L(m,n) along the way, so

executing the work-list algorithm is unnecessary.
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After that, the statements that affect the termination of a loop have to be

found. A termination statement is a statement inside the loop that has at least

one successor outside the loop. Hence it decides whether to stay in the loop or not

and therefore needs to have a branch predicate. The program variables in such a

branch predicate may cause busy waiting. If higher communication facilities are

not employed and such a variable is only read and not defined within the loop, it

is called a wait variable [9].

Now, for each of the busy wait candidates it has to be checked whether it might

cause the loop to loop forever in case there is no interaction from the outside.

Therefore, Blieberger et al. introduce a predicate definedvar(π) which holds if

variable var is defined on path π, that is, if var is assigned a value in a node of the

path. This is then used to define the busy-var -predicate busy-var(L(m,n),var)

which holds if var is a wait variable:

busy-var(L(m,n),var) =defs ∃π =< n, . . . , n >∈ L(m,n) : ¬definedvar(π)

So in case there is a path that starts and ends in the loop header n where the

busy wait candidate is not defined, the loop is called a busy wait loop and the

candidate is in fact a wait variable.

However, as described in Section 3.7, I decided to change this predicate in

order to avoid a class of false alarms, and the predicate becomes

busy-var(L(m,n),var) =defs ∃π =< t, . . . , t >∈ L(m,n) : ¬definedvar(π),

where t is the termination statement where var was found.

Hence, if one variable in a termination statement of some loop does not change

and therefore is found to be a wait variable, busy wait is reported. This, however,

is the cause for a large class of false alarms because, for example, variables that

serve as boundaries in the branch predicate normally do not change, without

being responsible for busy wait. So I decided to implement an optional scanning

mode that only reports busy wait if all candidates of a termination statement are

wait variables.

In order to find a path where the busy wait candidate is not written, Blieberger

et al. suggest to construct a subgraph of the loop which is composed only of those

nodes that do not define the candidate. Then, a simple reachability check reveals

if there is a path π for which ¬definedvar(π) holds. However, for the sake of

efficiency, I implemented the reachability check right on the full graph which
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implies only a few additional checks to make sure that only non-writing paths are

considered and that the loop is not left.

Finally, Blieberger et al. present a refinement of their algorithm which im-

proves the analysis in a way that more busy wait loops are detected. The refined

algorithm also considers variables as busy wait candidates that are used to define

existing candidates. So for every candidate all variables that are on the right

hand side of an assignment are added to the candidates. This is done until all

candidates (and therefore also the new ones) have been handled.

3.2 Finding the Backedges

As already stated, the dominators of a CFG are not needed in order to compute

the backedges. This is because every retreating edge in a reducible CFG is a

backedge. Retreating edges can be found quite easily using a slightly modified

DFS which uses two different marks.

1 procedure Find Backedges (Cur: Node; Last: Node) is
2 begin
3 if Cur.Mark = 2 then
4 return;
5 elsif Cur.Mark = 1 then
6 -- (Last, Cur) is a backedge
7 return;
8 end if;
9

10 Cur.Mark := 1;
11 Cur.Number := I;
12 I := I + 1;
13
14 for each successor S of Cur loop
15 Find Backedges(S, Cur);
16 end loop;
17
18 Cur.Mark := 2;
19 end Find Backedges;

Listing 3.1: The algorithm used to find the backedges (pseudocode).

When the algorithm shown in Listing 3.1 first encounters a node it marks it

with 1 and recurses for its successors. After all descendants that were unmarked

so far have been handled, the node is marked with 2. So when a node marked

with 1 is encountered, one of its descendants apparently links to it and since the

DFS-number of a descendant is greater, a backedge has been found.
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3.3 Identifying Loops

In order to identify the loops, i.e. to find the nodes that constitute the loop bodies

and also to build the loop-nesting forest, I use Tarjan’s classical algorithm [27]

for reducible CFGs as it is also presented by Ramalingam [20].

This algorithm for constructing a loop-nesting forest basically takes a CFG as

input, and builds up an array (called Loop Parent in Listing 3.2) which maps

the corresponding loop header to every node. It also employs a union find data

structure as described in Section 3.4 to keep track of the changes to the CFG

which itself is not modified.

First the loop parent array is initialised, and every node is placed in a set by

itself. Then the algorithm visits every node of the CFG in reverse-DFS-order and

checks whether it is the target of a backedge. If so, a loop header was found,

and the CFG is traversed backwards until the the header is reached again, adding

every node encountered on the way to the loop body. Since in a reducible CFG

the loop header dominates the nodes of the body it is guaranteed that the loop is

not left during this traversal and the reverse-DFS-order ensures that inner loops

are identified first.

After the header and the body have been identified the loop parent array is

updated and the nodes of the body are collapsed into the header. By collapsing

a node w into a node v, w and all its incident edges are deleted, adding an edge

(v, x) for each deleted edge (w, x) with x 6= v and (v, x) not already an edge,

and adding an edge (x, v) for each deleted edge (x,w) with x 6= v and (x, v) not

already an edge [27]. Remember that these changes are reflected by the union

find data structure, and so, in order to collapse a node into the header the union

operation is used. However, since it is important that the canonical element of

such a union find set stays the same all the time, so that the find operation always

returns the loop header, in contrast to what is stated by Ramalingam [20], union

by rank cannot be implemented.

Now it is easy to build the loop forest either from the loop parent information

or by adding custom code to the procedure which is responsible for collapsing.

As an example consider the CFG depicted in Figure 3.1. It has two nested

loops which are identified by the backedges (5, 2) and (6, 1). Figure 3.2(a) shows

the union find data structure (on the left hand side) and the loop parent array

(on the right hand side) right after the initialisation in lines 30–33 of Listing 3.2.

The situation after the first loop was found and the body was collapsed into the

header is shown in Figure 3.2(b).
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1 procedure Collapse (Loop Body, Loop Header)
2 begin
3 for every z ∈ Loop Body loop
4 Loop Parent(z) := Loop Header;
5 UF.Union(z, Loop Header);
6 end loop;
7 end Collapse;
8
9 procedure Findloop (Potential Header)

10 begin
11 Loop Body := {};
12 Worklist := { UF.Find(y) | y → Potential Header is a backedge } −
13 − {Potential Header};
14 while Worklist is not empty loop
15 remove an arbitrary element y from Worklist;
16 add y to Loop Body;
17 for every predecessor z of y such that z → y is not a backedge loop
18 if (UF.Find(z) /∈ (Loop Body ∪ {Potential Header} ∪ Worklist)) then
19 add UF.Find(z) to Worklist;
20 end if;
21 end loop;
22 end loop;
23 if Loop Body is not empty then
24 Collapse (Loop Body, Potential Header);
25 end if;
26 end Findloop;
27
28 procedure Tarjans Algorithm (G)
29 begin
30 for every vertex x of G loop
31 Loop Parent(x) := null;
32 UF.Makeset(x);
33 end loop;
34 for every vertex x of G in reverse-DFS-order loop
35 Findloop(x);
36 end loop;
37 end Tarjans Algorithm;

Listing 3.2: Pseudocode for Tarjan’s algorithm for constructing the loop-nesting

forest as presented by Ramalingam [20].
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Finally Figure 3.2(c) illustrates the situation after the algorithm has finished

and both loops were found. Note that as far as the loop parent array is concerned

the outer loop only has two nodes: 2 and 6. This is because of the collapsing,

and has to be taken care of when using the loop parent array.

1

5

6

2

4

3 7

Figure 3.1: A CFG with two loops.

3.4 The Set Union Algorithm

The set union or union find algorithm as presented by Tarjan [28] maintains a

group of disjoint sets under the operation of union. Each set has a unique identifier

which is an arbitrary element of the set and is called the canonical element. The

sets are represented by a tree, where the nodes are the elements of the set and

the canonical element is the root. Each node has a pointer to its parent, except

for the root node which points to itself.

Tarjan defines three operations on these sets: makeset, find and link. Makeset

creates a new set containing only the element given as an argument. The operation

find(x) returns the canonical element for the set containing x and link(x,y) creates

a new set containing the elements of the sets represented by x and y. The old sets

are destroyed and the new canonical element is chosen arbitrarily out of x and y.

Cormen et al. [11] in addition introduce a function union(x,y) which works like

link(x,y) except that x and y may be elements other than the canonical elements.

When makeset is executed, a node with the given element is created and the

pointer is set on itself. A call of find starts at the node containing the argument,
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(a)
1 2 3 4 5 6 71 62 3 4 5 7

(b)
21 6

3 4 5 7
1 2 3 4 5 6 7

2 2 2 2

(c)

1

6

3 4 5 7

2 1 2 3 4 5 6 7

2 2 2 21 1

Figure 3.2: The union find data structure and the loop parent array during the

algorithm.

and follows the pointers until an element which is its own parent (the root node)

is reached. To carry out link(x,y) the pointer to the parent of x is simply set on

y. In Figure 3.3(a) the subgraph containing only node a is the result of calling

makeset(a), find(g) returns d and Figure 3.3(b) shows the result of link(b,d).

(a) (b)

a b

c e

d

f

g h

a d

b

c e

f

g h

Figure 3.3: A union find data structure before (a) and after (b) link(b,d).

The execution time of the find operation of the algorithm presented so far is

in O(n) with n being the total number of elements, which is why two heuristics

to improve the efficiency are proposed in [28]. Path compression is carried out

during a find operation and sets, after the root node has been found, the parent

pointers of all nodes encountered during the search directly to the root node (see
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Figure 3.4). This does not improve the performance of the current call to find

but those of consecutive calls. The second technique is called union by rank, and

keeps the depth of the trees small. It stores a value rank for each node, which is

initially 0. When link(x,y) is called the rank of x and y is compared. If the rank

of x is smaller than that of y, the pointer of x is set to y. In case the rank of y

is greater, then x is the new parent of y. Finally, if the rank is equal x will point

to y and the rank of y is increased by one. Now the worst-case bound for the

running time of some sequence of the set operations is in Θ(mα(m,n))), where m

is the number of operations, n is the number of elements and α is the functional

inverse of the Ackerman function which, for practical reasons, can be treated as

a constant of four [28].

(a)

b

c

e a

d

(b)

b

a

ced

Figure 3.4: A union find data structure before (a) and after (b) find(d) with path

compression.

3.5 Finding the Termination Statements

A termination statement exits a loop, and therefore has at least one immediate

successor outside the loop. Blieberger et al. [9] define the statements that influence

the termination of the loop as the following set of edges:

T(m,n) = {(u, v) ∈ E |u ∈ L(m,n) ∧ v /∈ L(m,n)}

So the set T of termination statements is the set of all edges (u, v) where u is part

of the loop but v is not. Therefore, a node representing such a statement needs to

have at least two successors, one inside the loop and one outside. However, this
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means that it has to be a branching node with a branch predicate that decides

whether to stay in the loop or to exit [9].

As an example consider the loops in Figure 3.5 which was generated (without

parameter trees) from the source code in Listing 3.3 using Cfg2Dot (introduced in

Section 4.2.1). There are two loops, the inner one consisting of nodes 1.1.9, 1.1.15

and 1.1.22, and the outer one additionally containing 1.1.5 and 1.1.26. Note that

I added the nodes of the inner loop to the outer one too.

The inner loop with header 1.1.9 has two termination statements, namely

1.1.9 and 1.1.22. 1.1.9 is one because its successor 1.1.26 is not part of the (inner)

loop, and 1.1.22 because of node 1.1.27. The outer loop also has two termination

statements, 1.1.5 and 1.1.22 since successor node 1.1.27 is not part of the loop.

Note that both loops share the termination statement 1.1.22. This is because

the exit statement refers to the loop named OUTER and therefore exits the outer

and inner loop simultaneously. This is the reason why the nodes of an inner

loop also have to be added to the loop body of the outer one during the loop

identification phase. Otherwise the outer loop in this example would only have

1.1.5 as a termination statement.

1 OUTER:
2 for I in 1 .. 10 loop
3 while X < 20 loop
4 X := X + 1;
5 exit OUTER when X > 10;
6 end loop;
7 end loop OUTER;
8 X := 0;

Listing 3.3: Code snippet, Figure 3.5 was generated from.

3.6 Busy Wait Candidates

Blieberger et al. [9] define the set V(m,n) of variables that are candidates for wait

variables in the loop defined by backedge (m,n) as

V(m,n) = {var ∈ bp(u) | (u, v) ∈ T(m,n)}

where bp(u) gives the branch predicate of branching node u. So for every termi-

nation statement of a loop the branch predicate is determined and the variables

contained therein are added to the set of busy wait candidates for that loop.

However, since I decided to implement a slightly modified version of the busy-

var-predicate as described in Section 3.7 it is not sufficient to save all candidates
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Finite Loop Node 1.1.5:

Name: OUTER
--DECLS--

I: 
OUTER:

Finite Loop Node 1.1.9:

Idents: <
while X < 20 loop

Node 1.1.27:

Loop End

Assignment Node 1.1.15:

Idents: X,+
X := X + 1;

Node 1.1.26:

Loop End

Exit Jump Node 1.1.22:
Target: OUTER

Idents: OUTER,>
exit OUTER when X > 10;

Assignment Node 1.1.30:

Idents: X
X := 0;

Figure 3.5: Two loops with termination statements.
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of a loop in a single set. In fact I need a set of candidates for every termination

statement.

3.7 Busy Wait Variables

As already stated in Section 3.1, Blieberger et al. introduce the predicate

busy-var(L(m,n),var) =defs ∃π =< n, . . . , n >∈ L(m,n) : ¬definedvar(π)

which is used to determine whether a loop is a busy wait loop and var a wait

variable. This predicate holds whenever there is at least one path from the loop

header back to itself where var is not defined.

However, the code in Listing 3.4 and the accompanying CFGs in Figure 3.6

are an example for a class of false positives when using the loop header as start

and end node. The dashed lines together with the dotted ones in Figure 3.6(a)

represent the paths that are taken into account when searching for a definition

of variable Y. In addition, the dashed lines outline a path where Y is not defined,

which means that the predicate holds and the variable is incorrectly identified as

a wait variable.

The problem is that this path does not contain the termination statement in

node 1.1.26 and therefore should not be taken into account. Hence, I modified

the busy-var-predicate so that the termination statement t serves as start and

end node of the paths that are searched for definitions:

busy-var(L(m,n),var) =defs ∃π =< t, . . . , t >∈ L(m,n) : ¬definedvar(π),

Figure 3.6(b) shows the result: Only the path outlined with dashed edges is

considered and since Y is defined right before the termination statement no busy

waiting will be reported.

3.8 Indirect Busy Wait Variables

Consider the example in Listing 3.5. X is the only busy wait candidate and, since

there is no relevant path in the loop that does not write it, the algorithm does not

mark it as a wait variable. However, the assignment in line 5 does not change the

value of X since Y itself is not changed throughout the loop. Therefore Y should

also be considered as a candidate for a wait variable. Then the algorithm would

correctly identify Y as an indirect busy wait variable and the loop as a busy wait

loop.
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1 procedure Foo is
2 X: Integer := 0;
3 Y: Integer := 0;
4 begin
5
6 loop
7 if X >= 1 then
8 Y := Y + 1;
9 exit when Y > 10;

10 else
11 X := X + 1;
12 end if;
13 end loop;
14
15 end Foo;

Listing 3.4: Source code illustrating the need for the modified busy-var-predicate.

Infinite Loop Node 1.1.7:

loop

Branch Node 1.1.10:

if/case

Node 1.1.12:

Idents: >=
if X >= 1 then

Node 1.1.30:

else

Assignment Node 1.1.19:

Idents: Y,+
Y := Y + 1;

C-Exit Jump Node 1.1.26:

Idents: >
exit when Y > 10;

Node 1.1.11:

end if/case

Node 1.1.39:

Loop End

Node 1.1.40:

CFG END

Assignment Node 1.1.34:

Idents: X,+
X := X + 1;

(a)

Infinite Loop Node 1.1.7:

loop

Branch Node 1.1.10:

if/case

Node 1.1.12:

Idents: >=
if X >= 1 then

Node 1.1.30:

else

Assignment Node 1.1.19:

Idents: Y,+
Y := Y + 1;

C-Exit Jump Node 1.1.26:

Idents: >
exit when Y > 10;

Node 1.1.11:

end if/case

Node 1.1.39:

Loop End

Node 1.1.40:

CFG END

Assignment Node 1.1.34:

Idents: X,+
X := X + 1;

(b)

Figure 3.6: Searched paths for (a) the original busy-var-predicate and (b) the

modified one.



20

1 declare
2 X,Y: Boolean := False;
3 begin
4 while not X loop
5 X := Y;
6 end loop;
7 end;

Listing 3.5: Example for an indirect busy wait variable.

Hence Blieberger et al. [9] adapt the definition of V(m,n) as follows:

V 0
(m,n) = {var ∈ bp(u) | (u, v) ∈ T(m,n)}

V k+1
(m,n) = {var ∈ rhs of assignments in L(m,n) to var ∈ V k

(m,n)}

V(m,n) =
⋃
k≥0

V k
(m,n)

First the set of busy wait candidates as it was previously defined is composed.

Then for every variable in the resulting set the nodes of the loop are searched for

assignments to that variable. If one is found, every variable on the right hand side

of the assignment is added to the set. After all statements in a loop have been

considered, the search continues for the next variable in the set until all variables

have been handled and no new candidates are found.

However, this refinement not only leads to the detection of more busy wait

loops but may also increase the number of false alarms. For example variable X

in Listing 3.6 is incremented by one in every iteration of the loop. Nevertheless

the loop is wrongly reported to be a busy wait loop, since Y does not change

throughout the loop.

1 declare
2 X,Y: Integer := 0;
3 begin
4 while X < 10 loop
5 X := X + Y + 1;
6 end loop;
7 end;

Listing 3.6: Example for an indirect busy wait variable.

In any case, as far as reducing the false alarms is concerned, Blieberger et al.

refer to symbolic methods as introduced in [10] which will certainly improve the

analysis but unfortunately are beyond the scope of this thesis.
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3.9 Aliasing

A problem that arose during the implementation of the analysis algorithm was

that in Ada the same variable or package may be referenced using different names,

which I refer to as aliases, depending on package structure and renaming defini-

tions. This implies that simply testing the strings of the variable names for

equality is not sufficient.

In the remainder of this chapter I will outline what types of aliases have to be

taken into account when dealing with Ada 2005 programs. Moreover, in Section

5.6 I will describe the implementation details and data structures I used.

3.9.1 Paths and Simple Visibility

The most basic form of variable aliases emerges from the fact that, depending

on the location of the variable declaration within the nesting of packages and

subprograms also addressed in Section 4.3.1 and the location where the variable

is referenced, it may be optional or mandatory to add names of enclosing units to

the plain variable name. These package or subprogram names separated by a dot

constitute a path to the declaration of the variable. A full name or absolute path

contains the root of the Pkg/CFG tree in which the variable declaration resides.

As an example consider variable Y declared in line 5 of Listing 3.7 which, in

procedure Proc2 may be referenced with the names Y, Bar.Y and Foo.Bar.Y.

In procedure Proc1 the same variable may be referenced only using Bar.Y and

Foo.Bar.Y because it is not directly visible there.

This example also shows that visibility has to be taken into account. In pro-

cedure Proc1 variable X declared in line 2 has the names Foo.X and X, however,

in Proc2 it may only be referenced using Foo.X because of the locally declared

variable with the same name.

1 package Foo is
2 X: Integer;
3
4 package Bar is
5 X,Y: Integer;
6
7 procedure Proc2;
8 end Bar;
9

10 procedure Proc1;
11 end Foo;

Listing 3.7: Two variables that may be referenced using different names at differ-

ent locations.
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3.9.2 Variable Renamings

In the Ada 2005 Reference Manual [26] a renaming is defined as follows:

“A renaming declaration is a declaration that does not define a new entity,

but instead defines a view of an existing entity.”

Therefore, a renaming of a variable just defines another name for this variable.

In the context of this project, such a name has to be considered an alias exactly

the same way as the full name of a variable (cf. Section 3.9.1).

In Listing 3.8 two variables are declared in a package and its subpackage.

Furthermore, there are two renamings, one renaming a variable directly (X2), and

one renaming the renaming of a variable (X3). In Table 3.1 the aliases for each

variable at the two subprograms of the example are listed.

1 package Foo is
2 X: Integer;
3
4 package Bar is
5 X2: Integer renames X;
6 X: Integer;
7 procedure Proc2;
8 end Bar;
9

10 procedure Proc1;
11 end Foo;
12
13 package body Foo is
14
15 package body Bar is
16 procedure Proc2 is
17 begin
18 null;
19 end Proc2;
20 end Bar;
21
22 procedure Proc1 is
23 X3: Integer renames Bar.X2;
24 begin
25 null;
26 end Proc1;
27
28 end Foo;

Listing 3.8: Two variables and two variable renamings.

It is important to note, that a variable that is declared after a subpackage, is

not visible in the subpackage’s specification, even when the full name is used as

shown in Listing 3.9.

3.9.3 Package Renamings

A package may be renamed just like a variable, however, the impact is higher

because a package renaming also affects the package structure and therefore other

package and variable renamings too.
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Proc1 Proc2

Foo.X (line 2) X

Foo.X

Bar.X2

Foo.Bar.X2

X3

Proc1.X3

Foo.Proc1.X3

Foo.X

X2

Bar.X2

Foo.Bar.X2

Foo.Bar.X (line 6) Bar.X

Foo.Bar.X

X

Bar.X

Foo.Bar.X

Table 3.1: Aliases for the variables in Listing 3.8.

1 package Foo is
2
3 package Bar is
4 X2: Integer renames X; -- illegal because X is undefined here
5 X3: Integer renames Foo.X; -- illegal too, for the same reason
6 end Bar;
7
8 X: Integer;
9 end Foo;

Listing 3.9: Illegal renaming declarations because of visibility issues.

As an example consider Listing 3.10. Since package Quuux in line 15 renames

Foo.Bar.Baz, Foo.Bar.Baz.X is also available using for instance Foo.Quuux.X,

effectively eliminating one level of the path and providing a shortcut. On the other

hand, package Qux leads to a series of aliases for Foo.Baz.X that add one level.

Moreover, visibility also has to be considered, the renaming in line 8 clearly

renames Foo.Baz and not Foo.Bar.Baz.

Finally, note the circular renaming in line 9 where Quux renames Bar although

itself resides inside Bar. This would lead to an infinite set of aliases, which is why

I had to introduce a limitation described in Section 5.6.9 and indicated by the

finite nature of Table 3.2 which lists all aliases that I consider for the two variables

of the example.
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1 package Foo is
2
3 package Baz is
4 X: Integer;
5 end Baz;
6
7 package Bar is
8 package Qux renames Baz;
9 package Quux renames Bar;

10 package Baz is
11 X: Integer;
12 end Baz;
13 end Bar;
14
15 package Quuux renames Bar.Baz;
16
17 procedure Proc;
18 end Foo;

Listing 3.10: An example with a few package renamings.

Proc

Foo.Baz.X (line 4) Foo.Baz.X

Baz.X

Foo.Bar.Qux.X

Bar.Qux.X

Bar.Quux.Qux.X

Foo.Bar.Quux.Qux.X

Foo.Bar.Baz.X (line 11) Foo.Bar.Baz.X

Bar.Baz.X

Foo.Quuux.X

Quuux.X

Foo.Bar.Quux.Baz.X

Bar.Quux.Baz.X

Table 3.2: Aliases for the variables in Listing 3.10.



25

Chapter 4

THE AST2CFG FRAMEWORK

As most control flow and also data flow analysis methods the algorithms I

present in this thesis rely heavily on the representation of a program in form of

a control flow graph. Evidently being able to transform arbitrary Ada programs

into a control flow graph was a crucial point in this project.

Since for Ada a tool, that in some way generates the control flow graph for

a program was inexistent, I started, together with a colleague, to develop such a

software: the Ast2Cfg framework.

First we needed to find a way to handle the input of arbitrary Ada programs.

Apart from parsing the source of the input programs, modifying GNAT, the GNU

Ada compiler, would have been the most obvious option. However, while parsing

the source code would have meant to reinvent the wheel, inserting code into

GNAT implies the constant adaption to newer versions, which is a considerable

effort especially since at that time GNAT was under heavy development because

of the upcoming Ada 2005 standard.

Finally, we decided to use ASIS-for-GNAT (see Section 4.1), a library that

provides the input program in form of an abstract syntax tree (see Section 4.1.1).

Ast2Cfg then traverses the resulting abstract syntax tree and at the same time

builds up a control flow graph.

However, extensive control flow based analysis requires considerably more in-

formation than a simple CFG, for example in form of an adjacency matrix. This

is why, in fact, we developed a whole framework which provides comprehensive

information on the original Ada source, including, for instance, visibility informa-

tion, package structure and type definitions. Furthermore it provides means for

interprocedural control flow analysis.

In this chapter, which is based on my previous work as a co-author of [15, 16],

I will give an overview of the design and inner workings of Ast2Cfg and the related

software, but also include the many features I added more recently.
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4.1 ASIS

ASIS, the Ada Semantic Interface Specification is a standard for an interface be-

tween an Ada 95 environment and any tool requiring information from it. The

standard is independent of the underlying Ada environment implementations.

The ASIS interface consists of a set of types, subtypes, and subprograms which

provide a capability to query the Ada compilation environment for statically de-

terminable syntactic and semantic information. The base object in ASIS is the

Asis.Element, which is an abstraction of entities within a logical Ada syntax

tree. So the elements correspond to nodes of a tree representation of an Ada

program and therefore represent Ada language constructs. [19]

The usual way of interacting with an ASIS implementation is to traverse this

syntax tree and query for information on the visited elements. The ASIS imple-

mentation used in this project is ASIS-for-GNAT, which is the implementation

for use with the GNU Ada compiler GNAT. Although the current ASIS standard

targets Ada 95, after the release of the new Ada 2005 standard eventually more

and more features of Ada 2005 got implemented in GNAT and ASIS-for-GNAT.

4.1.1 Abstract Syntax Tree

An abstract syntax tree (AST) is defined [3] as a tree in which each node represents

an operator, and the children of the node represent its operands. As an example

consider the AST shown in Figure 4.1 which was generated with Ast2Dot (see

Section 4.2) using the source code in Listing 4.1.

1 with Ada.Integer Text IO; use Ada.Integer Text IO;
2
3 procedure Example is
4 X: Integer := 0;
5 begin
6 X := X + 1;
7 Put(X);
8 end Example;

Listing 4.1: Source code for the ASIS AST examples in Figure 4.1

For reasons of presentation I had to shorten the annotation of some ASIS

types and leave out the subtrees for the with and use clauses, which is why the

lowest node identifier is N9. To complete the missing information, Node N12 is of

type A Defining Name and subtype A Defining Identifier, node N15 is an

expression with subtype An Integer Literal, N25 is an identifier and the most

specific type of node N26 is A Parameter Association.
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N9: A_Declaration SubType: A_Procedure_Body_Declaration

procedure Example is
X: Integer := 0;

begin
X := X + 1;

Put(X);
end Example;

N10: A_Defining_Name SubType: A_Defining_Identifier

Example

N11: A_Declaration SubType: A_Variable_Declaration

X: Integer := 0;

N16: A_Statement SubType: An_Assignment_Statement

X := X + 1;

N24: A_Statement SubType: A_Procedure_Call_Statement

Put(X);

N12: ...

X

N13: A_Definition SubType: A_Subtype_Indication

Integer

N14: An_Expression SubType: An_Identifier

Integer

N17: An_Expression SubType: An_Identifier

X

N18: An_Expression SubType: A_Function_Call

X + 1

N19: An_Expression SubType: An_Operator_Symbol

+

N20: An_Association SubType: A_Parameter_Association

X

N22: An_Association SubType: A_Parameter_Association

1

N21: An_Expression SubType: An_Identifier

X

N23: An_Expression SubType: An_Integer_Literal

1

N25: An_Expression SubType: ...

Put

N27: An_Expression SubType: An_Identifier

X

N26: ...

X

N15: ...

0

Figure 4.1: The ASIS AST for the example source code in Listing 4.1.

While the gist of the above definition is still valid as far as ASIS ASTs are

concerned, there are quite a few additions to that concept that can be seen in

Figure 4.1. The assignment statement X := X + 1; in node N16 has two child

nodes, one for the left hand side of the assignment, X, and one for the expression

on the right hand side, X + 1. On the next level of the tree this expression,

which is treated like a function call, is then decomposed into the two operands or

parameters, X and 1, but also the operator symbol, +. So, in general, the first,

i.e. leftmost child node of a function call is the name of the function (in this case

+) and the parameters to the function follow on the same level and in order of

their appearance in the function call statement.

ASIS ASTs represent whole subprograms, not only single expressions. Obvi-

ously the sequence of the statements also has to be represented in the AST. The

root node, node N9 in the example, contains the whole subprogram which is then

decomposed in the following tree levels. The first child node, node N10, contains

the name of the subprogram and is, at the same level, followed by the declarations

(N11) and finally each individual statement (N16 and N24).
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4.2 Software Overview

From a developer’s point of view Ast2Cfg is a library that uses ASIS to get the

information that is needed to build the CFG for a given Ada program. When the

input has been processed, which is triggered by a library function, the application

using Ast2Cfg may access a comprehensive CFG-based representation of the input

program. Figure 4.2 depicts the basic structure of the transformation process that

is performed by Ast2Cfg.

AST
Structure

.adt
File

T
ra

ve
rs

al

Pre Op

CFG
Post Op

Child Has Finished

T
ra

n
sf

or
m

at
io

n
P
os

t

Figure 4.2: The basic structure of the transformation process.

First GNAT has to be used to generate the so-called tree files for the given

program, which serve as input for Ast2Cfg. This is done using GNAT’s −gnatt

and −gnatc options. A tree file contains a snapshot of the compiler’s internal data

structures at the end of the successful compilation of the corresponding source

code [2].

Thereafter Ast2Cfg uses the ASIS-for-GNAT library to extract the AST struc-

ture out of the tree files which is then traversed using the ASIS application tem-

plate provided with a typical ASIS installation. This template traverses the ASTs

of a given program using a depth first search algorithm. The user of the tem-

plate has to provide two procedures: one that is executed when a node is visited

for the first time (Pre Op), and one that is executed when a node is visited on

the way back (Post Op). Additionally, Ast2Cfg introduces a procedure that is

called whenever the processing of a successor of some node has finished, that is,

Post Op has been executed for this child. These three procedures are the core of

the transformation which builds the CFG for the input program.

At this point, a raw version of the CFG-based data structure has already

been built. However, it still needs some refinement, which is done during the post

transformation phase, covered in detail in Section 4.5. Mainly this is because some

parts of the transformation can only be accomplished conveniently when a raw

CFG already exists. For example consider the situation when a goto statement

with a target that has not already been processed is reached during the traversal.
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Listing 4.2 shows a simple program that uses Ast2Cfg in order to output the

names of all top-level packages that are declared in the context of the tree files

foo.adt and bar.adt.

1 with Ada.Text IO; use Ada.Text IO; with Ast2Cfg.Pkgs; use Ast2Cfg.Pkgs;
2 with Ast2Cfg.Control; with Ast2Cfg.Flow World; with Ast2Cfg.Output;
3
4 procedure Run is
5 World: Ast2Cfg.Flow World.World Object Ptr;
6 Pkgs: Pkg Class Ptr List.Object;
7 Pkg: Pkg Class Ptr := null;
8 begin
9 -- Initialisations

10 Ast2Cfg.Output.Set Level(Ast2Cfg.Output.Warning);
11 Ast2Cfg.Control.Init("−CN foo.adt bar.adt");
12
13 -- Fill the World with flow data
14 World := Ast2Cfg.Control.Generate;
15
16 -- Output the name of all top-level packages
17 Pkgs := Ast2Cfg.Flow World.Get Pkgs(World.all);
18 Pkg Class Ptr List.Reset(Pkgs);
19 while Pkg Class Ptr List.Has Next(Pkgs) loop
20 Pkg Class Ptr List.Get Next(Pkgs, Pkg);
21 Put Line(Get Name(Pkg.all));
22 end loop;
23
24 -- Finalisation
25 Ast2Cfg.Control.Final;
26 end Run;

Listing 4.2: A small application using Ast2Cfg.

Every program that uses Ast2Cfg will have to import Ast2Cfg.Control and

Ast2Cfg.Flow World. Ast2Cfg.Control is needed for initialisation, finalisa-

tion and for generating the World Object. Therefore also Ast2Cfg.Flow World

is needed, so that a pointer for the World Object may be declared.

By default Ast2Cfg does not output anything, even in case of an error. How-

ever, this behaviour can be changed with Ast2Cfg.Output.Set Level which

takes an argument of type Level Type. This can be one of None, Error,

Warning, Verbose, Debug and Max, where Warning is recommended for most

applications. Of course all output produced by Ast2Cfg is sent to standard error.

Ast2Cfg.Control allows to control the transformation in a convenient way.

First Init, which optionally takes a Wide String with the ASIS context pa-

rameters, has to be called. The ASIS context parameters determine which tree

files are used as input where the default action is to include every tree file in the

current directory. For example with the −CN option every tree file whose name is

in the list given as the next parameter is considered as input [1].

To start the actual transformation process Ast2Cfg.Control.Generate has

to be called, which also returns an access to the resulting world object (see Section

4.3). After the program has completed its own analysis of the transformation
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results, Ast2Cfg.Control.Final has to be called in order to free the memory

reserved by the Ast2Cfg structures (including the world object) and to finalise

ASIS.

4.2.1 Download and Additional Resources

During the development of Ast2Cfg, there was the need to visualise ASTs and

CFGs for testing purposes which is why two small but very useful tools were

implemented alongside.

Cfg2Dot is a simple utility that makes use of Ast2Cfg without performing an

analysis, but to output a graphical representation of the Control Flow Graphs

within a program. This is done using the dot format which can be converted

to various other graphics formats, including for instance postscript and png, us-

ing the dot program, which is part of the graphviz package in most GNU/Linux

distributions and is also available for other operating systems.

Similarly Ast2Dot allows to study the syntax trees provided by ASIS via

transformation and output of the ASTs into dot files.

Ast2Cfg, Cfg2Dot and Ast2Dot are available under terms of the GNU General

Public License and may be downloaded at the project website: http://cfg.w3x.

org.

4.3 The Flow World

All data gathered during the transformation phase is saved into a single object,

the flow world of type World Object. The flow world basically holds a list of

the top-level packages of the input programs. In Ast2Cfg every package of the

transformed program is represented by a Pkg Object. Note that control flow

information that is not part of a package is contained within an artificial default

package.

Pkg Object is derived from the abstract Flow Object. The same applies

to CFG Object and Node Object. CFG Object is used to resemble the control

flow of various entities in Ada, such as subprograms, blocks or even initialisation

sequences of packages. In order to reflect such control flow, a CFG Object uses

objects of type Node Object.

As described in detail below, each of these types has a series of subclasses in

order to allow for a more fine-grained classification. In Figure 4.3 the complete

class hierarchy originating from Flow Object is depicted.
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Abort Object

Block Object

Entry Object

Except Object

Func Object

Init Object

Proc Object

Task Object

Generic Object

Task Type Object

Single Task Object

Call Node Object

Accept Node Object

Entry Call Node Object

Abort Node Object

Param Call Node Object

Def Object

Simple Body Object

Prot Object

Simple Spec Object

Gen Object

Single Prot Object

Prot Type Object

Node Object

Goto Jump Node Object

Return Node Object

Terminate Node Object

Param Node Object

Param Alloc Node Object

Assign Node Object

Finite Loop Node Object

Infinite Loop Node Object

Branch Node Object

Body Object

CFG Object

Spec Object

Flow Object

Jump Node Object

Loop Node Object

Body Object

Pkg Object

Spec Object

Trivial Exit Jump Node Object

Complex Exit Jump Node Object

concrete

abstract

Exit Jump Node Object

Figure 4.3: Class hierarchy of the flow types.



32

4.3.1 Pkg/CFG Tree

In Ada subprograms and packages may be declared within each other, which leads

to nesting relationships that have to be recorded. Every flow object has a list of

predecessors and a list of successors. While node objects use those lists to build

up a CFG, in package and CFG objects predecessor and successor links are used

to represent the nesting structure. In this context, if B is declared within A, B is

a successor of A and A is a predecessor of B. This relation between package and

CFG objects imposes a tree structure on the flow world, the Pkg/CFG tree.

In practice, there are multiple Pkg/CFG trees in the flow world, because

usually there is more than one top-level package in a program.

Figure 4.4 was generated using Cfg2Dot and shows the Pkg/CFG tree for the

program in Listing 4.3. Packages are depicted as rectangles and subprograms as

circles.

1 procedure Proc1 is
2
3 package Pkg1 is
4 procedure Proc2;
5 package Pkg2 is
6 end Pkg2;
7 end Pkg1;
8
9 package body Pkg1 is

10 procedure Proc2 is
11 begin
12 null;
13 end Proc2;
14 end Pkg1;
15
16 procedure Proc3 is
17 begin
18 null;
19 end Proc3;
20 begin
21 null;
22 end Proc1;

Listing 4.3: The code from which Figure 4.4 was generated.

4.3.2 Parameter Tree

The parameter tree, which is generated whenever an expression is encountered,

holds information on the used variables, functions, etc. and their nesting. There-

fore, a parameter tree is a complete hierarchical representation of an expression,

which allows for comprehensive static analysis. A parameter tree is saved directly

in the flow object that contains the expression.

As can be seen in Figure 4.5, Cfg2Dot connects a parameter tree directly to the

CFG node containing the expression it originates from, highlighting its nodes with
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Default_PKG
(body)

Proc1
(body)

Pkg1
(spec)

Pkg1
(body)

Proc3
(body)

Pkg2
(spec)

Proc2
(body)

Figure 4.4: The Pkg/CFG tree generated from Listing 4.3.

dashed lines. The depicted CFG, which results from the source code in Listing

4.4, only has a single node, that represents the assignment statement on line

number 16. This node has two parameter trees, one for the part to the left of the

assignment operator and one for the right hand side. Every level in the parameter

tree corresponds to a nesting level, thus a child node contains a parameter to its

predecessor. As a consequence, a subtree represents a subexpression and the leaf

nodes contain either an indivisible expression or nothing in case of a constant

value.

1 procedure Test is
2 function Outer (I: Integer; J: Integer) return Integer is
3 begin
4 return 0;
5 end;
6
7 function Inner (I: Integer) return Integer is
8 begin
9 return 0;

10 end;
11
12 A,B: Integer := 0;
13 C: array (1..10) of Integer := (others => 0);
14 begin
15
16 C(1) := Outer(A, Inner(X => B));
17
18 end Test;

Listing 4.4: The code from which Figure 4.5 was generated.
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Assignment Node 1.3.14:
Idents: C,Outer,Inner

C(1) := Outer(A, Inner(X => B));

Parameter Node 1.3.13:
ASSIGN/LHS

Parameter Node 1.3.16:
ASSIGN/RHS

Parameter Node 1.3.15:
Variable: C
IDX/COMP

Parameter Call Node 1.3.17:
Dest: Outer

FUNC/PARAM/ROOT

Parameter Node 1.3.18:
Variable: A

PARAM/NODE

Parameter Call Node 1.3.20:
Dest: Inner

FUNC/PARAM/ROOT

Parameter Node 1.3.21:
Variable: B
Name: X

PARAM/NODE

Figure 4.5: A node with two parameter trees.

4.3.3 Flow Object

Every flow object has a unique id which may be sorted and tested for equality.

An id basically consists of three numbers: one for the package, one for the CFG

and one for the node. Note that such a number is zero in case it is not needed.

So for example 1.2.0 is the id of the second CFG in the first package and 1.2.3

is the id of the third node in the second CFG of the first package.

In addition, flow objects have a name. For node objects, however, the name

is empty in most cases. This is because nodes, apart from parameter nodes (see

Section 4.3.6), only get a name in case the corresponding source line has a label.

As stated previously, every flow object has a list of predecessors and successors,

that are used to resemble control flow, or form a Pkg/CFG tree.

Sometimes, there is no other, more adequate place to save a parameter tree,

so there is a member variable in the flow object for the special extra parameter

tree. One example for such an extra parameter tree would be an expression

following when in an entry body of a protected object. Nevertheless, parameter
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trees are usually saved in the node object which corresponds to the expression

the parameter tree represents.

Furthermore, a flow object contains lists of variable declarations, generic for-

mal parameters, renamings and references such as with, use or use type clauses.

4.3.4 Package Types

The Pkg Object is declared abstract, and all subtypes are derived either from

Body Object or Spec Object (see Figure 4.3). The primary function of package

objects is to facilitate building the Pkg/CFG tree, consequently the successor and

predecessor lists are the most important components. In order to get the contents

of a package the subtrees starting at the elements of the successor list have to be

traversed. A list of the variables declared within a package can be found in every

Pkg Object, except for the Prot Object and the Def Object. Moreover, some

package objects convey additional information.

The Def Object is an artificial default package, that contains CFGs that do

not have an enclosing package, such as library level procedures. The body of a

protected object or type is represented by a Prot Object, which may contain

subprograms or entries (see Section 4.3.5). The specification that belongs to

such a Prot Object is mapped to a Prot Type Object in case of a protected

type declaration or a Single Prot Object otherwise. In contrast to the body

of a generic package, the corresponding specification requires special handling

and therefore is transformed into a Gen Object, which also contains the generic

formal parameters.

Finally, ordinary packages, that have not been mentioned above, are mapped

to a Simple Spec Object and, in case there is an accompanying body, a

Simple Body Object.

4.3.5 CFG Types

CFG objects represent the control flow information of different Ada entities like

subprograms, blocks, initialisation sequences, etc. by using node objects. Every

CFG object contains a reference to root and end node, the total number of nodes

(excluding those in parameter trees), and, since many CFG objects represent

subprograms, a list of parameters.

As previously stated, every flow object has a member variable that may hold a

name. However, as will be described in detail below, it is not possible to give every

CFG object a name that is derived from the original Ada source. For instance,
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a block within some subprogram does not need to have a name. In this case, in

connection with call nodes (see Section 4.3.6), a name is generated. To reflect the

fact, that such a name is not related to the Ada source, it is saved in an additional

string, while the actual name remains null.

As can be seen in Figure 4.3, CFG Object itself is declared abstract, which is

why all CFG objects have to be of more specific, concrete subtypes. Some of them

represent data gained from Ada bodies, while others contain information on Ada

specifications, which is reflected through derivation from either Body Object or

Spec Object.

In the most basic case, a subprogram has to be represented, which is done

by either creating Proc Object for a procedure or, in case of a function, a

Func Object. Both types hold a list of the variables declared in the subpro-

gram and its parameters.

For a block statement, which is located within some other CFG object, first

a separate Block Object is created. Next, a call node (see Section 4.3.6), which

represents a subprogram call, is inserted at the position where the block used

to be within the enclosing CFG. So, in fact, a block statement is handled like a

parameterless procedure, called at the position the block is declared. Of course a

list of variables declared in a block statement is available.

An initialisation sequence of a package body is transformed into a so-called

Init Object, while an Except Object is created for every exception handler.

For every task body a Task Object is created, where an accept statement

is transformed separately into an Entry Object. As it was the case with simple

blocks, the Entry Object is then linked to its enclosing task body using a call

node. Of course, the declared variables are available as usual. Moreover the

protected entries of a protected object are also mapped to entry objects.

An Abort Object represents the abortable part of an select − then abort

statement and is, again, linked into the control flow of the select statement like a

parameterless procedure call.

In addition there are three CFG objects, derived from Spec Object, that

do not contain any actual control flow information. The main reason why those

objects exist is, that by their position in the Pkg/CFG tree, it is possible to

track where they are defined, so that visibility information may be gained later

on. For a task type declaration a Task Type Object is created, while a simple

task specification (without the type keyword) results in a Single Task Object.

The discriminants of a task type declaration are handled like parameters of a
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subprogram. Finally, a Generic Object is created for every generic procedure

or function specification that is encountered. A list of generic formal parameters is

available, and the actual parameters of the subprogram may be acquired as usual.

Note that the body of a generic subprogram is handled like a normal subprogram

body.

4.3.6 Node Types

In contrast to CFG or package objects, Node Object is not declared abstract, so

every node of the CFG that has no special properties as described below simply

is of type Node Object.

Every node has a reference to the CFG it is part of and in case a statement

has a label, then this string is the name of the node representing the statement.

Furthermore, a string that holds at least part of the code the node stands for

is stored in the Node Object. In addition, all nodes have a handle to a pa-

rameter tree, the right hand side parameter tree, which resembles the expression

contained in the node. It is called that way, because for Assign Node Objects,

which are used to represent assignment statements, there also exists the left hand

side parameter tree for the part to the left of the assignment operator. Finally,

every node contains the Asis.Element that was the source of this node. The

Asis.Element can be seen as a link back into the ASIS AST. Hence, additional

information may be gained directly from ASIS by analysing the AST starting

at the Asis.Element of an arbitrary node. For several reasons the transfor-

mation adds nodes that do not correspond to an Asis.Element. In that case

Asis.Nil Element is used as a placeholder.

As already mentioned, a Call Node Object is not only used for representing

a subprogram call, but also in several situations that are treated alike. Obviously,

the most important component of a Call Node Object is the link to the destina-

tion CFG. As depicted in Figure 4.3, there are four subtypes of Call Node Object

which convey additional information on the type of the call. An

Accept Node Object, for example, is used to link an Entry Object to its en-

closing task body (see Section 4.3.5), while an Entry Call Node Object is used

to represent the call of such an entry. Likewise, an Abort Node Object links

the abortable part of a select - then abort statement into the control flow

of the select statement. Finally, the subtype Param Call Node Object is used

exclusively within parameter trees to represent a function call.

Whenever a goto statement is encountered, a Goto Jump Node Object is
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used to point to the destination of the goto. Furthermore, one of the two subtypes

of Exit Jump Node Object is used for every exit statement within a loop: A

Trivial Exit Jump Node Object contains no exit condition, however, it may

exit a loop using a label. In contrast, a Complex Exit Jump Node Object does

always conditionally exit a loop. It should be noted that the target of an exit

jump node is empty in case it exits the innermost enclosing loop.

Of course a return statement is also transformed to a special node object,

namely the Return Node Object while a terminate statement is represented

by a Terminate Node Object.

The header of a loop is indicated by a Loop Node Object, and the two con-

crete subtypes enable the distinction between a while or for loop, mapped to a

Finite Loop Node Object, and a simple loop statement which is represented

by an Infinite Loop Node Object.

It is important, however, to note that the naming of these two types just

reflects, that an Infinite Loop Node Object contains no loop exit condition by

itself. So, in fact, an Infinite Loop Node Object may stand for a finite loop,

because for instance there exists an exit statement within the loop. Likewise,

a Finite Loop Node Object may represent an infinite loop, because the loop

condition always holds.

A parameter tree, as presented in Section 4.3.2, is built using nodes of type

Param Node Object, Param Alloc Node Object and the already mentioned

Param Call Node Objects. A Param Node Object stores the name of the vari-

able that was supplied as a parameter and the name of the parameter itself, in case

it is known. In case the variable name is empty a constant was given. A dynamic

allocation using the new keyword is mapped to a Param Alloc Node Object,

and the name of the instantiated type is recorded.

Whenever an if or case statement is encountered, first a special and oth-

erwise empty header node of type Branch Node Object is created to mark the

position where the branching actually happens. Hence, the successors of such a

branching node contain the condition for each branch in case there is one (e.g.

an else branch does not have a condition). Next, the subgraphs for the actual

branches follow, until control flow is united again in an end if node. Obviously,

in case of an if statement without an else branch there is a direct link from the

header node to the end if node.
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4.3.7 Declaration Id

The visibility of a declared entity is an important information for numerous ap-

plications. To determine whether an entity is declared before or after another one

is a common task, which is made possible by the Declaration Id package.

When the declaration of an entity like a package, subprogram, variable or

a renaming is encountered, the object created in the flow world immediately is

assigned a declaration id.

On that account and because the operators <, >, = and /= are defined for

a Declaration Id.Object, it is, for instance, possible to determine whether a

variable X is declared before a package Bar (cf. Listing 3.9) and therefore is visible

in Bar.

4.4 Transformation

As already stated in previous sections, control flow data is generated from the AST

input using a complex algorithm consisting of two phases. During the first phase,

the transformation phase, the information provided by the AST is extracted and

the raw flow structure is built. The second part, the post transformation phase

(see Section 4.5), further refines this raw structure.

The basic transformation algorithm is constructed upon the inorder traversal

skeleton provided by a typical ASIS installation. The AST is traversed one node

at a time, generating three types of events:

1. A preop event is triggered when the traversal reaches a node for the first

time, before any other processing is done.

2. A postop event takes place immediately after the traversal has left a node,

as soon as all processing involving it has finished.

3. A child-has-finished event, which occurs whenever the processing of a node’s

child has finished. In contrast to the previous events, however, the child-has-

finished event is context-sensitive, bearing information on a node’s relatives.

This event-based traversal imposes a state-machine-like architecture on the

transformation mechanism. While stacks are used to hold the current traversal

state, three callback functions, one for each event named above are employed

to handle the individual nodes of the AST. Since each method must be able to

handle any of the ASIS node types, all three have a symmetrical structure.



40

One of the strengths of the ASIS abstract syntax trees is that they employ

a relatively small set of node types, to describe any program, regardless of its

complexity. To achieve this goal, ASIS combines the available types to ample

configurations, creating specialised subtrees.

The Ada syntactical constructs can be divided into classes, with the members

of each class sharing a common syntax subtree configuration. Usually, each ASIS

type has its own case branch in the callback functions, but often it is possible

take advantage of the tree similarities, by merging the corresponding branches.

As an example consider the variable declarations, the component declarations

of the aggregate types and the subprogram parameter specifications. A typical

subtree for one of these declarations holds the name of the new entity, its type

and, if existent, its initialisation expression. The only node that differs between

those subtree classes is the root node, which holds the type.

In most cases, the control flow data can be added to the flow world immediately

upon reaching an AST node. The ASIS procedure call statement, for instance,

represents a procedure call in the original source code and the subtree rooted

in this node describes the statement, comprising possible labels, the name of

the called subprogram and its parameters. The standard preop handling is to

immediately add a new call node to the current CFG. Later on, upon processing

the subtree, a child-has-finished event will be encountered with a procedure call

parent and an identifier child, in which case it is clear that the traversal has

reached the the name of the called subprogram. This information will then also

be saved in the call node which was created earlier. In other cases, however, mainly

due to the context-free nature of the transformation, an immediate update of the

flow world is not possible.

The Ada language is extremely powerful and versatile, while at the same

time facilitating correctness, reliability and good software engineering practices.

This, however, results in an ample language set and complex AST structures,

which is why the algorithms employed during the transformation phase are rather

elaborate as they have to deal with numerous complex details.

Anyhow, since in the context of this thesis the implementation details of the

transformation phase are of less interest, the gentle reader is directed to previous

publications [15, 16].
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4.5 Post Transformation

In this section the different stages of the post transformation phase, that refines

the raw CFG-structure generated during the transformation phase will be pre-

sented.

4.5.1 Loop Refinement

After the main transformation phase is completed, while and for loops without

exit or return statements are already represented correctly in the resulting

control flow based data structures (see Figure 4.6).

Finite Loop Node 1.1.5:

Idents: <=
while I <= 3 loop

Assignment Node 1.1.11:

Idents: I,+
I := I + 1;

Node 1.1.16:

Loop End

Figure 4.6: A while loop.

However, simple loops and loops that contain exit or return statements need

to be refined in order to achieve a correct representation. For example consider

the simple loop with an exit statement in Figure 4.7. Since there is no condition

in the loop header (Node 1.1.5), there should be no edge from the header to the

loop end (Node 1.1.19). Furthermore, there should be an edge from the node

containing the exit statement (Node 1.1.8) to the loop end. Figure 4.8 shows the

same loop after the refinement, this time correctly resembling the original control

flow.

As already stated, the loop refinement takes place after the main transforma-

tion phase, hence, a preliminary CFG already exists. Anyhow, at this point, there

does not exist any information about loops and their components. Indeed ASIS

only provides information on the loop headers, but not their bodies. In addition,

due to the considerable complexity of the traversal itself, it is easier to construct

a raw version of the graph without extensive control flow semantics at first, and

compute this information in the post transformation phase.
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Infinite Loop Node 1.1.5:

loop

Node 1.1.8:

Idents: >
exit when I > 3;

Node 1.1.19:

Loop End

Assignment Node 1.1.14:

Idents: I,+
I := I + 1;

Figure 4.7: A simple loop before the loop refinement.

Infinite Loop Node 1.1.5:

loop

Node 1.1.8:

Idents: >
exit when I > 3;

Assignment Node 1.1.14:

Idents: I,+
I := I + 1;

Node 1.1.19:

Loop End

Figure 4.8: A simple loop after the loop refinement.
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Consequently, the first task is to find the loops, which is done using Tarjan’s

algorithm for constructing the loop-nesting forest as introduced in Section 3.3.

After the backedges have been located with the algorithm outlined in Section

3.2, a modified version of Tarjan’s algorithm for constructing a loop-nesting forest

is used to find the loops and perform the refinement.

Actually, the refinement takes place in the Collapse procedure of the algo-

rithm. It is called for every discovered loop, with the loop header and body as

parameters, and subsequently collapses every node of the body on its header.

Thereafter, the exit jump nodes with an empty target, thus the ones that exit the

current loop, and those for outer loops are collected separately in two different

lists.

Next, the edge from the loop header to the first statement after the loop is

identified. This is, since the loop body is already known, accomplished easily by

testing whether a successor of the loop header node is not within the body. Note,

that in any case, there has to be exactly one such edge.

A trivial exit node, that is a node representing an exit statement without a

condition such as exit or exit LABEL must not have an edge pointing to the

unreachable statement right after it. Hence, for every exit node in one of the two

aforementioned lists, that happens to be a Trivial Exit Jump Node Object

the edge pointing to the node for the unreachable statement is added to the list

of edges that will be removed at the end of the algorithm.

Now, every exit jump node without a label is connected to the first statement

after the loop. In case the current loop has a label, also the list of labelled exit

jump nodes is searched for matching nodes, which then are connected likewise.

At this time the list with the unlabelled loop exits is empty, while the list for loop

exits with targets may still contain exit nodes for outer loops. Consequently, this

list needs to be preserved between different calls of Collapse. Note that with

Tarjan’s algorithm inner loops are always found first, so that in any case an exit

node is found before the target loop.

Finally, in case the current loop is a simple loop statement, without a condition

in the header, the edge from the loop header to the loop end is scheduled for

removal.

After all loops have been processed that way, the edges that were collected

for deletion are actually removed from the CFG. However, for example if a loop

does not contain an exit statement, and therefore is an endless loop, it is possible

that some nodes, representing the unreachable statements right after the loop,
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are not accessible any more by following only successor links. Likewise, state-

ments following an exit without a condition may cause a similar problem. Apart

from the problem of memory leakage, they still may be reached by traversing the

CFG backwards, using predecessor links, which would lead to an unacceptable

inconsistency. Hence, proper deallocation of those dangling nodes is necessary.

Therefore, whenever an edge is removed, its target node is recorded and handled

at the end of the loop refinement (see Section 4.5.4).

4.5.2 Connecting Gotos

During the transformation phase labels of statements and targets of a goto were

saved as a string, separated by commas. However, an appropriate edge from

the goto to the target node was not added. Instead, the node representing the

goto was connected to the node for the statement right after it. During the post

transformation phase, that edge is replaced by one representing the jump to the

target correctly.

During a simple DFS, two lists are built: a list of sources containing all found

goto jump node objects and a list holding all nodes with at least one label, that

is all targets. Note that a goto statement also may have a label, and therefore

could be on both lists simultaneously.

Thereafter, for each item in the list of sources the list of targets is searched

for the corresponding label. When the target node was found, it is connected to

its source, the node representing the goto statement. However, before this edge

can be added, all existing edges of the source node have to be deleted first. This

is to remove the auxiliary edge that connected the goto jump node to the node

for the statement right after it. Until now, that auxiliary edge was needed in

order to keep the CFG connected. As with endless loops, or return statements

(cf. Section 4.5.1) there may be unreachable statements following a goto, which

is why the target of the auxiliary edge is stored so that the nodes representing

these statements may be removed and deallocated correctly at the end of this

algorithm (see Section 4.5.4).

4.5.3 Connecting Returns

Return statements can be treated similar to goto statements since, seen from

a control flow perspective, they are basically like a goto that has the end of

the CFG as a target. Every CFG in the flow world is traversed using a simple

DFS. Whenever a Return Node Object is encountered, the existing edge to the
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successor, the node representing the statement right after the return statement,

is scheduled for removal, and the return node is connected to the end node of the

CFG.

This was at first the main reason for the inclusion of an artificial end node

in every CFG object, since it simplifies the task of connecting the return nodes

significantly. However, at this point, it is not guaranteed that there is an end

node, because it may have been removed together with unreachable nodes in

a prior step, when the link from the return still was missing. So, in case the

reference of a CFG to its end node is null, a new one is allocated.

As with other steps in the post transformation phase, at the end nodes that

got unreachable are removed (see Section 4.5.4).

4.5.4 Removing Dangling Nodes

As stated previously, subgraphs that are no longer reachable by only following

successor links, that is subgraphs representing unreachable statements, are re-

moved after some of the steps in the post transformation phase. Apart from the

waste of memory this is an important issue because those nodes would still be

misleadingly reachable by a backwards traversal using predecessor links, which

numerous algorithms rely on.

The subprogram that is responsible for removing those dangling nodes takes

a list of possible root nodes of unreachable subgraphs as an argument. This list is

easily built by the calling subprogram, because it just needs to add every target

node of an edge that is removed.

First all nodes reachable through a DFS starting at the root node of the

CFG are added to a set using the the Hashed Sets implementation in the new

container classes of Ada 2005. Subsequently, a DFS is started at every root

node of a possibly unreachable subgraph and the encountered nodes are added to

another set. Note that such an unreachable subgraph may still by connected to

the enclosing CFG somewhere else.

Finally the set containing the nodes of the ordinary DFS is subtracted from

the set containing the nodes of all unreachable subgraphs so that only those nodes

that are not reachable through a DFS starting at the root node remain. These

nodes are then disconnected from the CFG and deallocated properly.

As an example consider Figure 4.9, where solid edges represent successor links,

while dotted lines correspond to predecessor links. Figure 4.9(a) shows a CFG

before the goto node with the number 1 is connected to its target. Figure 4.9(b)
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depicts the CFG after the goto was connected to its target (Node 7), with a

subgraph, rooted at Node 2, that is only reachable by following the predecessor

link (7, 6). In Figure 4.9(c) one can see the the two sets that are computed: the

one surrounded by a solid edge containing the nodes reachable through a DFS

starting at the root node, and the set of nodes reachable from the root of the

unreachable subgraph which is enclosed by a dashed line. The difference leads to

nodes 2-6, which are then removed as shown in Figure 4.9(d).

(a)

2

3

4 5

6

7

8

target

1 goto

(b)

2

3

4 5

6

7

8

target

1 goto

(c)

2

3

4 5

6

7

8

1

(d)

7

8

target

1 goto

Figure 4.9: Dangling nodes being removed from the CFG.

4.5.5 Link Call Nodes

When a call node object (see Section 4.3.6) is first created during the transfor-

mation phase, normally it is not immediately linked to the CFG of the called

entity since it may not yet exist at that point of time. Of course, statements that

are on the one hand treated like parameterless procedure calls but on the other

hand are created right after the artificial call node is inserted, like for instance

block statements or accept statements (cf. Section 4.3.5), are an exception to this

rule and the link is established right away. However, in the more common case

of an ordinary call the ASIS element of the called entity is retrieved via an ASIS

function and saved in the call node.
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In the post transformation phase, the whole flow world is traversed in search

for call nodes and parameter call nodes. This includes not only searching the

individual nodes of a CFG but also the lists of variable declarations, formal dec-

larations, renamings etc. that may occur in package and CFG objects. When a call

node or parameter call node in the parameter tree of another node is encountered,

the ASIS element of the called entity that was saved during the transformation

phase is retrieved and every CFG object in the flow world is inspected for an

equal ASIS element. In case the corresponding CFG object was found, the call

node is linked to it, i.e., an access to the CFG object is saved in the call node.

4.5.6 Compress Parameter Trees

In the static context of this work it does not make sense to keep track of constant

values, which is why parameter tree nodes are sometimes left empty rather that

saving a constant value in them. At the end of the transformation phase, it can

be feasible to compress parameter trees i.e. to remove unwanted empty nodes,

subtrees or parameter trees that consist only of an empty root node without even

a name.

However, due to the fact, that at higher compression levels information on

the number and position of constant values gets lost, only the most basic one is

implemented which is the removal of empty single node parameter trees.

Obviously the main task here is to traverse the whole flow world to examine

every parameter tree at the various possible locations, because the removal of an

unwanted parameter tree is trivial once it was found.

4.5.7 Computing Prefixes

Every node in the Pkg/CFG tree has a name, i.e. the name of the package or

subprogram, and a full name which also contains, separated by dots, all names on

the path to the node, starting at the root, but ignoring a possibly existent default

package. The prefix is the full name without the name of the node itself. For

instance, package Baz in Figure 4.10 has the prefix Foo.Bar and the full name

Foo.Bar.Baz.

It is, again, most efficient to compute the prefixes in the post transformation

phase. For each root package a procedure is called that saves an ordered list of the

names previously encountered on the path in the current node, adds the current

name to a copy of the list and then subsequently calls itself for every successor,

passing the copy.
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Default_PKG
(body)

Foo
(body)

Bar
(spec)
 in Foo

Quux
(spec)
 in Foo

Baz
(spec)

 in Foo.Bar

Figure 4.10: A Pkg/CFG tree with packages, subprograms and their prefixes.

As a result, the name, prefix and full name of a flow object may be constructed

easily upon request by the application using Ast2Cfg.
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Chapter 5

IMPLEMENTATION

5.1 Data Structures

This section describes some of the most important data structures used through-

out the implementation of the Busy Wait Analyser for Ada (BWAA).

Although object orientation is supported since Ada 95 through tagged types,

I decided to use simple record types in most cases. Since all the analysis algo-

rithms are tightly coupled with a small set of data structures they operate on,

encapsulation would have either led to a few huge objects or to loads of primitive

get and set methods, which also would have led to bad design.

5.1.1 The Cfg Type

The Cfg type in Bwaa.Graph holds all information related to a CFG. While the

Cfg Object of Ast2Cfg (cf. Section 4.3.5) represents the flow of control by node

objects which have pointers to their successors and predecessors, the Cfg type

used in BWAA has two adjacency lists with DFS numbers: one for the successors

and one for the predecessors. This representation using fixed size arrays instead of

dynamic structures with pointers simply is more efficient as far as the algorithms

used by BWAA are concerned, since information on a node with some DFS number

can always be retrieved in constant time without the need to traverse the CFG.

As can be seen in Listing 5.1 the adjacency list actually is of type

Adjacency Array, which is an array of pointers to a type called Vertex Array

where a vertex array simply is an array of DFS numbers. The use of pointers is

necessary here because the number of successors or predecessors is not known in

advance.

However, sometimes it is necessary to get hold of a Node Object as it is

provided by Ast2Cfg. Therefore the array Dfs Sorted saves pointers to the node

objects sorted in DFS order. Both, the Dfs Sorted array and the adjacency lists

are built during initialisation of a Cfg variable with a CFG Object.

During this initial DFS also the backedges are identified and saved as a

Vertex Map (see Section 5.1.3). Since there can be more that one backedge
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1 type Cfg (Node Count: Ast2Cfg.Long Long Natural) is limited
2 record
3 Dfs Sorted: Node Array(1 .. Node Count) := (others => null);
4 Succs : Adjacency Array(1 .. Node Count) := (others => null);
5 Preds : Adjacency Array(1 .. Node Count) := (others => null);
6 Id Dfs : Id To Dfs Num.Map;
7 Backedges : Vertex Map.Map;
8 Headers : Vertex Set.Set;
9 L Forest : Loop Forest Ptr;

10 end record;

Listing 5.1: The Cfg type

per loop, the key used for the vertex map is the source node of the backedge and

the loop headers of a CFG are also saved as a Vertex Set to allow for convenient

access. In fact, because Ast2Cfg inserts end if and end case nodes after every if

or case statement, which then link to the loop header with a single backedge,

the only case where multiple backedges may point to a single loop header occurs

when goto statements are employed like shown in Listing 5.2 and Figure 5.1.

1 procedure Backedges is
2 X: Integer := 0;
3 begin
4
5 <<START>>
6 X := X + 1;
7 if X < 10 then
8 goto START;
9 elsif X < 15 then

10 goto START;
11 end if;
12
13 end Backedges;

Listing 5.2: A loop with two backedges.

Another information gathered during the initial DFS is the mapping of id

objects as provided by Ast2Cfg (see Section 4.3.3) to DFS numbers using a hashed

map as described in Section 5.1.3. Finally, to create a variable of type Cfg the

number of nodes has to be known, which is why I implemented a node counter in

the Ast2Cfg project.

During a later phase of the analysis the loop forest is built and attached to

the corresponding Cfg.

5.1.2 The Loop Forest Type

Before a type for the loop forest can be declared in Bwaa.Graph, there has to be

some representation for a single loop. Therefore I designed the type L00p, which

has two zeroes in its name to avoid a conflict with the Ada keyword Loop.



51

Assignment Node 1.1.5:

Name: START
Idents: X,+

<<START>>

Branch Node 1.1.12:

if/case

Node 1.1.14:

Idents: <
if X < 10 then

Node 1.1.22:

Idents: <
elsif X < 15 then

Node 1.1.13:

end if/case

Goto Jump Node 1.1.21:
Target: START
Idents: START
goto START;

Goto Jump Node 1.1.29:
Target: START
Idents: START
goto START;

Node 1.1.30:

CFG END

Figure 5.1: A loop with two backedges.

For every L00p the DFS number of the header and a set of vertices which

constitute the loop body is saved. Furthermore, a L00p contains a reference to

an array of variable size which contains the termination statements. The size does

not really vary during execution, however, a pointer has to be used since the size

is not known in advance. Finally, for every termination statement a hashed set

with the busy wait candidate variables is saved. The Variable type contains the

name of the variable, the name of the direct candidate if applicable and a boolean

value indicating whether this variable is a wait variable.

A Loop Forest has an array of L00p variables, so that the index uniquely

identifies a loop. Note that since the innermost loops are found first they are

saved in reverse topological order. In addition, there is an array called Preds

which records the nesting relation between the loops. If a loop is contained

within another one, Preds holds the number of that loop, otherwise the value 0

is stored.

In order to instantiate a variable of type Loop Forest the number of loops

has to be known. However, this is no problem since the backedges are known

before the loop forest is built and therefore also the number of loop headers, the

targets of backedges, is known.
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1 type L00p is
2 record
3 Header: Ast2Cfg.Long Long Natural;
4 B0dy: Vertex Set.Set;
5 Terms: Vertex Array Ptr := null;
6 Candidates: Variable Set Array Ptr := null;
7 end record;
8
9 type L00p Array is array (Ast2Cfg.Long Long Natural range <>) of L00p;

10
11 type Loop Forest (Loop Count: Ast2Cfg.Long Long Natural) is
12 record
13 Preds: Vertex Array(1 .. Loop Count);
14 Loops: L00p Array(1 .. Loop Count);
15 end record;

Listing 5.3: The L00p and Loop Forest type

5.1.3 Auxiliary Data Structures

In various packages I declared some auxiliary, more general data structures.

Id To Dfs Num is a generic instantiation of the Hashed Maps package from the

Ada 2005 container library. It is used to map an id of a node object as pro-

vided by Ast2Cfg back to the DFS number of the node. In order to minimise the

lookup time I used the hashed version of the map container, and implemented

Ast2Cfg.Id.Hash, which simply calls the predefined Ada.Strings.Hash on a

string representation of the id.

A Vertex Map maps the DFS number of a node to another one while a

Vertex Set simply is a set of DFS numbers. Both packages are used in many

places throughout the BWAA project and use the hash function Hash (see Listing

5.4) which is implemented similarly to that for the Ast2Cfg.Id.

Finally, I declared a hashed set with unbounded strings as elements, where the

hash function calls Ada.Strings.Unbounded.Hash. Throughout the project, I

used this set mainly for storing variable names.

5.2 Initialisation

When a Bwaa.Graph.Cfg is initialised, first a DFS is performed on the corre-

sponding CFG Object from Ast2Cfg. Basically I implemented the DFS variant

for finding the backedges as shown in Section 3.2. The implementation can be

found in the Bwaa.Traversal package.

Throughout the DFS the array Cfg.Dfs Sorted is filled with pointers to the

node objects of the CFG as provided by Ast2Cfg. The position in the array is

the DFS-number of the node. In order to be able to retrieve the DFS-number for

a given node id, Cfg.Id Dfs, a hashed map, is also constructed along the way.
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1 package Id To Dfs Num is new Hashed Maps (Key Type => Ast2Cfg.Id.Pointer,
2 Element Type => Long Long Natural,
3 Hash => Ast2Cfg.Id.Hash,
4 Equivalent Keys => Ast2Cfg.Id."=");
5
6 function Hash (X: in Ast2Cfg.Long Long Natural) return Ada.Containers.Hash Type;
7
8 package Vertex Map is new Hashed Maps (Key Type => Long Long Natural,
9 Element Type => Long Long Natural,

10 Hash => Hash,
11 Equivalent Keys => "=");
12
13 package Vertex Set is new Hashed Sets (Element Type => Long Long Natural,
14 Hash => Hash,
15 Equivalent Elements => "=");
16
17 function Hash (X: in Unbounded String) return Ada.Containers.Hash Type;
18
19 package Unbounded String Set is new Hashed Sets (Element Type => Unbounded String,
20 Hash => Hash,
21 Equivalent Elements => "=");

Listing 5.4: Auxiliary data structures from various packages.

After the initial DFS has finished, the Cfg.Preds and the Cfg.Succs ar-

ray is filled, retrieving the predecessors and successors of every node in the

Cfg.Dfs Sorted array, using Cfg.Id Dfs to get the corresponding DFS-numbers.

5.3 Constructing the Loop Forest

5.3.1 Tarjan’s Algorithm

I implemented Tarjan’s algorithm for constructing the loop forest (see Section

3.3) as a generic package called Bwaa.Tarjan . However, the only parameter

that has to be supplied at instantiation is the size of the CFG. The size has to

be known so that the Union Find package (see Section 5.3.2) can be instantiated

in the private part of the specification (see Listing 5.5). Therefore implementing

Bwaa.Tarjan as a generic package is mainly a trick which allows the Union Find

package to be used conveniently.

Bwaa.Tarjan contains three procedures: Build Loop Forest, which is the

only public subprogram, Findloop and Collapse.

One difference between my implementation and the algorithm, as it is pre-

sented in Section 3.3, is that since I did not need information provided by the

loop parent array, I simply decided to skip its implementation. So when the

procedure Build Loop Forest is called with a parameter of type Cfg (see Sec-

tion 5.1.1), only the union find and loop forest data structure is initialised before

Findloop is executed for every node in reverse-DFS-order. Note that the number

of loops, which is needed to instantiate a Loop Forest, is already known at this
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1 generic
2 Size: in Ast2Cfg.Long Long Natural;
3 package Bwaa.Tarjan is
4
5 procedure Build Loop Forest (Cfg: in out Graph.Cfg);
6
7 private
8
9 package Uf is new Union Find(Ast2Cfg.Long Long Natural, 1, Size);

10
11 Uf Sets: Uf.Sets;
12 Loop Count: Ast2Cfg.Long Long Natural := 0;
13 Header To Loop: Vertex Map.Map;
14
15 end Bwaa.Tarjan;

Listing 5.5: The specification of Bwaa.Tarjan

point because it is equal to the number of backedges in the CFG. However, to

program in a defensive manner, I decided to raise an exception in the impossible

case that the number of backedges differs from the number of loops.

Findloop first checks whether the potential header that was given as a pa-

rameter is contained within the vertex map that contains the backedges. If so,

the potential header is target of a backedge and in fact is a real header which has

to be handled. Next, the canonical element of the set containing the node where

the backedge originates is added to the worklist. I implemented the worklist and

the loop body as vertex sets. Now elements are picked from the worklist until it

is empty. Every element is first added to the loop body and then its predecessors

are considered. If such a predecessor is not the origin of a backedge the canonical

element of the set containing the predecessor is added to the worklist in case it is

not already in the loop body and is different from the header.

In case the loop body is not empty, Collapse is called with the Cfg, the

loop body, and the potential header as arguments. Collapse, which differs

mostly from the collapse subprogram of the standard algorithm, first increases

the Loop Count which also serves as an id for the current loop. Then it adds the

current loop to the loop forest and updates Header To Loop which is a vertex

map that maps a loop header to the id of its loop.

Next, it iterates over the nodes in the loop body. After it collapses the current

node on the header using the union find data structure, it checks whether this node

is the header of a nested loop by testing if it is contained in the Header To Loop

map. If so, the Pred array of the loop forest is updated to reflect this nesting

relation.



55

The next action is an important addition because in Ada it is possible to exit

an outer loop from within an inner loop. The nodes of the nested loop body are

therefore also added to the outer loop body, so that the termination statements

of a loop may be found correctly (see Sections 3.5 and 5.4).

5.3.2 The Set Union Algorithm

I implemented the union find algorithm presented in Section 3.4 as a generic

package that allows the elements to be of any discrete type. This is because I

used a simple array to hold the parent information, so that the value of the array

at the position of a given element denotes its parent. In addition to the type of

the elements the first and the last element have to be supplied at instantiation.

If a parameter given to some subprogram is not within this range the program

raises the Out Of Range exception.

In addition to the mandatory operations makeset, find and link I also im-

plemented union and a procedure called Init Sets, which performs makeset on

every element. So after a call to Init Sets every element is in a set on its own.

An important difference to the standard algorithm is the fact that the canon-

ical element of a set must not change unexpectedly. This is because I used union

find to implement Tarjan’s algorithm for constructing the loop-nesting forest,

where the canonical element always has to be the loop header. As a consequence,

I was unable to implement union by rank, where the new canonical element, after

a link or union operation, is chosen based on the rank. However, the worst-case

bound of Θ(mα(m,n))) is not affected by this change, since it also holds if only

path compression is implemented [28].

Listing 5.6 shows the full specification for the union find package.

5.4 Termination Statements and Busy Wait Candidates

I implemented the search for termination statements as a single procedure in the

Bwaa.Analysis package. The procedure iterates over all loops in the forest and

checks for every header and node of the loop body whether one of the successors

is not part of the loop. If this is the case it adds the current node to the vertex set

that contains the termination statements for the current loop. Finally a vertex

array of appropriate size is allocated and the nodes are copied into it. This is

because I also save the busy wait candidates in an array, and need to access them

with the same index as the corresponding termination node.
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1 generic
2
3 type Element is (<>);
4 First: in Element;
5 Last: in Element;
6
7 package Bwaa.Union Find is
8
9 type Sets is private;

10
11 Out Of Range: exception;
12
13 procedure Makeset (S: in out Sets; X: in Element);
14 procedure Init Sets (S: in out Sets);
15 procedure Find (S: in out Sets;
16 X: in Element;
17 Canonical: out Element);
18 procedure Link (S: in out Sets; X: in Element; Y: in Element);
19 procedure Union (S: in out Sets; X: in Element; Y: in Element);
20
21 private
22
23 type Sets is array (First .. Last) of Element;
24
25 end Bwaa.Union Find;

Listing 5.6: The specification of the union find implementation.

The candidates for wait variables are collected by another procedure in

Bwaa.Analysis. For each termination statement in a loop, it basically retrieves

the right hand side parameter tree of the termination node and collects the vari-

ables, which are contained within the leaf nodes, by performing a DFS.

Note that the header node of a for loop (which is also one of the termination

statements) never has a parameter tree, since the loop parameter and the compo-

nents of the range expression are saved in a Ast2Cfg.Flow Types.Declaration.

This, however, is perfectly fine because a for loop cannot be a busy wait loop

anyway, so the variables of a for loop statement need not be considered at all.

Another special case are loops that consist of goto statements in combination

with branching statements such as if or case. In the current implementation of

Bwaa and Ast2Cfg, the branch predicate does not need to be in the branching

node itself. Consider the CFG in Figure 5.2 which was generated by Cfg2Dot

(without parameter trees) from the code in Listing 5.7. The termination state-

ment is in node 1.1.12 which is a branching node but contains no branching pred-

icate. Instead there are multiple branching predicates which are already outside

the loop: one in node 1.1.14 and one in node 1.1.22.

To solve this problem, the procedure which is responsible for finding the busy

wait candidates first tests whether the termination node is of type

Branch Node Object. If this is the case, it uses Get Idents to check if there are

any saved identifiers in this node. If there are identifiers, we can be sure that a
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1 <<START>>
2 X := X + 1;
3 if X > 10 then
4 goto ENDLOOP;
5 elsif Y > 1 then
6 goto ENDLOOP;
7 else
8 null;
9 end if;

10 goto START;
11 <<ENDLOOP>>
12 null;

Listing 5.7: Code snippet, Figure 5.2 was generated from.

Assignment Node 1.1.5:

Name: START
Idents: X,+

<<START>>

Branch Node 1.1.12:

if/case

Node 1.1.14:

Idents: >
if X > 10 then

Node 1.1.22:

Idents: >
elsif Y > 1 then

Node 1.1.30:

else

Goto Jump Node 1.1.21:
Target: ENDLOOP
Idents: ENDLOOP
goto ENDLOOP;

Node 1.1.37:

Name: ENDLOOP
<<ENDLOOP>>

Goto Jump Node 1.1.29:
Target: ENDLOOP
Idents: ENDLOOP
goto ENDLOOP;

Node 1.1.32:

null;

Node 1.1.13:

end if/case

Goto Jump Node 1.1.36:
Target: START
Idents: START
goto START;

Figure 5.2: A loop where the branching predicate is not in the branching node.
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case statement has been encountered because a branch node of an if statement

is completely artificial and never has identifiers. Next the branch node is tested

for a parameter tree, which, in case there is one, is searched for variables which

can be added to the set of busy wait candidates. If there is no parameter tree,

which can happen if only a single variable is used in the case statement, we can

be sure that it has been added to the identifier list, so this time the identifiers

of the node and not the parameter tree is used as a source for candidates. Note

that the when branches of a case statement only contain constants which is why

they are ignored.

If there are no identifiers in the branch node, there are two possible cases: First

we may have encountered a case statement with a constant expression. Second we

may have come across an if statement. While in the first case nothing special has

to be done, in the second case every successor outside the loop has to be checked

for candidate variables. So as candidate variables in the example in Figure 5.2

we get X and Y.

5.5 Indirect Busy Wait Candidates

In the Bwaa.Analysis package, I implemented the search for indirect busy wait

candidates which is executed right after the procedure that is responsible for

finding the ordinary candidate variables.

For every termination statement of a loop, first it initialises a worklist, which

is implemented as a String Set, with the direct candidates. While the worklist

is not empty, it removes an element and checks every node in the loop, that is in

the class wide type of an Assign Node Object, for indirect candidates induced

by that element. For this purpose it first retrieves the left hand side parameter

tree and collects its variables using the same procedure as described in Section

5.4. Since on the left hand side of an assignment statement there must be at most

one variable, an exception is raised in case more than one are found. If the found

variable is equal to the current element from the worklist, the variables from the

right hand side parameter tree are collected. First the variables from the right

hand side that are not already in the set of candidates or on the worklist (and

therefore have not already been handled) are added to the worklist. Then the

new variables are added to the set of candidates.
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5.6 Aliasing

5.6.1 Specification Map

Although not directly related to the aliasing problem, it is, during the algorithms

described in this section, of vital importance to be able to obtain the Spec Object

for a given Body Object.

As can be seen in Figure 5.3, specifications and bodies declared in different

enclosing units do not reside within the same Pkg/CFG tree. The bodies of

the packages Foo and Bar declared in the file foo.ads shown in Listing 5.8 are

specified in foo.adb, which is why they reside in the Pkg/CFG tree in Figure 5.3(b)

and not together with their specifications in Figure 5.3(a). In contrast, since

package Baz is completely specified within the declarative region of procedure

Qux, specification and body are nodes of the Pkg/CFG tree in Figure 5.3(b).

1 package Foo is
2
3 package Bar is
4 procedure Qux;
5 end Bar;
6
7 end Foo;

Listing 5.8: Contents of the file foo.ads used for Figure 5.3

1 package body Foo is
2
3 package body Bar is
4
5 procedure Qux is
6 package Baz is
7 end Baz;
8 package body Baz is
9 end Baz;

10 begin
11 null;
12 end;
13 end Bar;
14
15 end Foo;

Listing 5.9: Contents of the file foo.adb used for Figure 5.3

This is why I declared the Specification Map, instantiated from the generic

Hashed Maps package of the Ada 2005 container library with an unbounded string

as key and a flow class pointer as element type.
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Foo
(spec)

Bar
(spec)

(a)

Foo
(body)

Bar
(body)

Qux
(body)

Baz
(spec)

Baz
(body)

(b)

Figure 5.3: Specifications for a Body Object can also be found in different

Pkg/CFG trees.

Consequently, before the actual busy wait analysis starts, all Pkg/CFG trees

are traversed recursively using a simple DFS, that whenever a package specifica-

tion is encountered stores the flow class pointer in the Specification Map using

the full name of the Spec Object as a key.

5.6.2 Visibility Map

The private type Bwaa.Visibility.Declaration holds the name of a declared

object, its prefix and the declaration id object generated by Ast2Cfg. I defined

several operators and subprograms, like for instance =, <, >, that allow for conve-

nient analysis of the declaration order, not only limited to Declaration variables.

Note that two variables of type Declaration are equal when their names are

equal, regardless of their prefix and declaration id. This simply is the behaviour

I need most during the analysis.

Since for every flow object a set of visible declarations has to be saved, I

declared Visible Set, a hashed set with Declaration as element type. In

order to map a Visible Set to its flow object I then make use use of a hashed

map, Visibility Map, with an unbounded string which holds the name of the

flow object as key. Throughout the analysis four visibility maps are needed:

two to record the visibility information for variables, divided into those declared

in specifications and those declared in bodies and another two to save visibility
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information for packages in exactly the same way. To ensure convenient parameter

passing, I embraced these four visibility maps in a single record, which I will refer

to as visibility info.

Consequently, after the specification map is built and before the actual busy

wait analysis, the visibility info data structure is populated. As a basis I once

again used a DFS, however, when it comes to handling the corresponding specifi-

cation of a flow object I had to deviate significantly from the usual DFS traversal

order.

Starting at each root package, the visible variables and packages are collected

in separate sets, recursively for each node in the Pkg/CFG tree. The declarations

that should be visible in a node’s successor are passed on as inherited variables

and packages.

When the traversal reaches a specific flow object the first thing to do after

checking whether this flow object has already been handled is to test whether

it is a body or a spec object. In case of a body object the visibility info is

searched for a spec object with the same name. When such a spec object is found,

that is, when the body has a specification and it already has been visited, the

declarations visible in the specification are added to the set of inherited variables

and packages, respectively. Note that names from the specification may overwrite

names inherited from the directly preceding flow object, which is why a set of

inherited visible names after handling the specification Inew is the union of the

names from the specification S and the difference of the directly inherited visible

set Iold and S: Inew = S ∪ (Iold \ S). In this context it is important to remember

that two Declaration variables are equal when they have equal names, so the

elements of S added during the union may in fact be different from the ones

removed from Iold right before, when all components are taken into account.

In case there is no visible set for the corresponding specification in the visibility

info but a matching spec object is in the specification map, this means that the

body has been reached by the traversal before the specification. Hence, normal

DFS has to be interrupted and the visible set for the specification must be built.

Figure 5.4 depicts the traversal of the Pkg/CFG trees from the example in Section

5.6.1 (omitting the retrieval of the visible set for the specification of Foo). The

main traversal is outlined by the thick, dashed lines, starting at the body of Foo.

When the body of Bar is reached, the flow class pointer to its spec object is

retrieved from the specification map. Since it is not known at this point whether

the preceding nodes that might affect the visible set of Bar (spec) have already
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been handled, the root node of the tree is determined by iteratively following the

predecessor links. When the root node is reached, recursive traversal is started

there, using the same subprogram that was called for the main traversal. Since

already handled nodes are detected, this does not mean an additional effort but

only that the processing of another Pkg/CFG tree is brought forward. When the

traversal of the Pkg/CFG tree containing the desired spec object has finished, the

visibility set of the specification is available and the inherited sets are adjusted

as I just described above.

Foo
(spec)

Bar
(spec)

Foo
(body)

Bar
(body)

Qux
(body)

Baz
(spec)

Baz
(body)

Figure 5.4: Creating the visible set for the body of Bar.

Finally, in the last possible case the current body object simply does not have

a corresponding spec object, which is impossible for a package body but common

among subprogram bodies.

Next, two sets are filled with variables, packages, etc. that are declared locally.

In the case of subprogram parameters, variables and renamings I simply add a

Declaration for each suitable element of the lists provided by the flow object

to the appropriate set. Note that at this point only the new name of a renaming

declaration is saved, because the visibility map is not responsible for recording

aliases. Subsequently I also add a Declaration for every package declared within

the current flow object, i.e. the successors that are of type Pkg Object, and the

current flow object itself in case it is a package.

At this point it is time to save the visible sets for the current flow object in the

appropriate visibility maps of the visibility info. However, right before I ensure
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that the locally declared entities overwrite inherited ones by building a visible set

V from inherited visible names I and local ones L according to V = L ∪ (I \ L),

utilising the special behaviour of the equality operator for the Declaration type.

Finally, every successor of the current flow object is handled recursively. Ob-

viously, only those entities declared before the declaration of a successor can be

visible there or overwrite others. So for every successor every Declaration vari-

able in the local set is examined and added to the set of variables to be inherited

only in case it is declared before the successor. Of course, also the elements of

the visible sets inherited by the current flow object itself are passed on, after the

elements overwritten by the local declarations are dismissed.

For an example illustrating the issue of declaration order and inheritance

of visible variables see Listing 5.10. Variable C does rename Foo.Bar.A since

Foo.Bar.A is declared before Baz and therefore overwrites Foo.A. In contrast D

renames Foo.B, because Foo.Bar.B is declared after Baz and therefore does not

overwrite Foo.B.

1 package Foo is
2
3 A: Integer;
4 B: Integer;
5
6 package Bar is
7 A: Integer;
8
9 package Baz is

10 C: Integer renames A;
11 D: Integer renames B;
12 end Baz;
13
14 B: Integer;
15 end Bar;
16
17 end Foo;

Listing 5.10: Three packages to demonstrate the effect of the order of declarations.

5.6.3 Hashed Union Find

Obviously, for each variable a set of names, i.e. aliases, has to be maintained. The

by far most used operation on these sets is to determine whether two names reside

within the same set. For that purpose simple lists would be rather inefficient, since

the alias lists for all variables would have to be searched with two comparisons

per element and, in the worst case, with the first match being in the last set.

Another frequently used operation is the union of two sets, which occurs when-

ever a new pair of equal names is found, but both names were already added



64

earlier. Therefore, I decided to use a special union find (see Section 3.4) imple-

mentation based on hashed maps and employing path compression and union by

rank.

In order to find out whether two elements are within the same set, two find

operations have to be performed and the returned canonical elements have to

be tested for equality. The path compression, however, guarantees that after a

sufficient number of find operations this can be done in constant time.

Since I specifically designed this union find implementation to handle elements

of string types and the number of elements is not known in advance, this time

a simple array for storing the parent information was not sufficient. A hashed

map, as provided by Ada.Containers.Hashed Maps in the Ada 2005 container

library, however, not only solves the problem of the dynamic number of elements

but also provides an efficient way to access a specific element. In order to keep

track of the rank of an element, I use a second hashed map.

Listing 5.11 shows the public part of the Hashed Union Find specification.

As generic formal parameters not only the type of the elements, a hash function,

and a function for testing equality have to be provided, but also a Null Element.

This null element must not be in the set of possible element values during normal

operation and is used for implementation of the cursor type that iterates over

elements of the same set described below. For example, in case of a string type

used to represent variable names, the empty string would qualify as the null

element, since a variable name must at least contain one character.

Apart from the classic operations of the set union algorithm such as Makeset,

Find, Link and Union, I implemented a series of new features. The most notice-

able ones make it possible to iterate over all elements of all sets, or just over the

elements of a specific set using a similar cursor based approach as the Ada 2005

container library.

Iterating over all elements regardless of the set they belong to is only needed

for debugging purposes and introduces no runtime issues. In contrast, iteration

over all elements of a specific set in a union find based structure is much more

inefficient in comparison to an approach based on lists, since it is in Θ(n) where

n is the number of all elements in all sets, regardless how many elements are in

the set that should be iterated on. Anyhow, I use this feature very seldom and

the considerable advantages of the union find approach concerning find and union

operations are by far more important.

When the function First is called with a variable of type Sets as the only
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parameter, a cursor that iterates over all elements in all sets is returned. In case

the procedure First is called with a Sets variable, an element and a cursor, the

cursor is set to the first element in the same set as the given element and stays

within that set.

The functionality of the subprograms Next, Has Element and Element is

quite obvious and corresponds to how their counterparts in the Ada 2005 container

library work. The function Parent returns the parent of the current element in

the union find tree and is intended for debugging purposes only.

The use of the subprograms Length, Contains and Clear is self-evident too,

however, note that they operate on the elements of all sets.

1 generic
2
3 type Element Type is private;
4 Null Element: in Element Type;
5 with function Hash (Elem: Element Type) return Ada.Containers.Hash Type;
6 with function "=" (Left, Right : Element Type) return Boolean is <>;
7
8 package Bwaa.Hashed Union Find is
9

10 type Sets is private;
11 type Cursor is private;
12
13 No Element: constant Cursor;
14
15 Hashed Union Find Exception: exception;
16 Not In Any Set Exception: exception;
17
18 procedure Makeset (S: in out Sets; X: in Element Type);
19 procedure Find (S: in out Sets; X: in Element Type; Canonical: out Element Type);
20 procedure Link (S: in out Sets; X: in Element Type; Y: in Element Type);
21 procedure Union (S: in out Sets; X: in Element Type; Y: in Element Type);
22
23 procedure First (S: in out Sets; X: in Element Type; Cur: out Cursor);
24 function First (S: in Sets) return Cursor;
25 function Next (Position: in Cursor) return Cursor;
26 procedure Next (Position: in out Cursor);
27 procedure Next (S: in out Sets; Position: in out Cursor);
28 function Has Element (Position: Cursor) return Boolean;
29 function Element (Position: in Cursor) return Element Type;
30 function Parent (Position: in Cursor) return Element Type;
31
32 function Length (S: in Sets) return Ada.Containers.Count Type;
33 function Contains (S: in Sets; X: in Element Type) return Boolean;
34 procedure Clear (S: in out Sets);
35
36 private
37 · · ·

Listing 5.11: The public part of the specification of the hashed union find package.

5.6.4 Alias Collection Overview

The alias info data structure holds information on names that refer to the same

variable or package and is built for every CFG during the analysis phase. It

enables convenient and efficient aliases lookups during the rest of the analysis.
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The Alias Info type is a record containing two Alias Sets.Sets, one for

variable aliases and one for package aliases. Alias Sets is an instantiation of

the generic Hashed Union Find package introduced in Section 5.6.3, using an

Unbounded String, the Null Unbounded String and the accompanying hash

function as generic formal parameters.

The collection of aliases for the currently analysed CFG is done right before

aliasing information is needed the first time, i.e. before the search for busy wait

candidates and after the termination statements have been determined. The alias

collection starts at the analysed CFG and basically continues upward until the

root of the Pkg/CFG tree is reached. In case a flow object has a specification,

aliases also are collected there.

The aliases of a flow object are collected in the following order:

1. parameter declarations of the current flow object (in case it is a subprogram)

2. variable declarations of the current flow object

3. package declarations of the current flow object

4. declarations/renamings of the packages contained in this flow

5. declarations/renamings of the packages included by a with clause

6. renamings of the current flow object

Adding a declaration (Steps 1–3) is, apart from the source of the declarations,

similar in all three cases. It is done by first adding a prefixed series to the alias sets

which I describe in detail in Section 5.6.5. In short, a prefixed series is composed

of the name preceded by all possible prefixes. For instance, a variable X with

the full name Foo.Bar.Baz.X might have the prefixed series Foo.Bar.Baz.X,

Bar.Baz.X, Baz.X. Next, a new set for each name is created using the Makeset

operation, and finally the sets with the name and the full name, that was added

with the prefixed series, are united. The order of these operations is important

and as a result, sets of names for this parameter that were added earlier are also

united.

Next, the aliases from packages contained within the current flow are col-

lected. This is necessary since, although not directly visible, variables, packages,

or renamings from a lower level in the Pkg/CFG tree may be referenced using an

appropriate prefix. In the simple example in Listing 5.12 variable X in package

Bar may be referenced from within procedure Proc using the aliases Bar.X and

Foo.Bar.X.

In order to collect such aliases, another recursive DFS traversal is started at

every package in the list of successors. The example in Figure 5.5 and Listing
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1 package Foo is
2 package Bar is
3 X: Integer;
4 end Bar;
5
6 procedure Proc;
7 end Foo;

Listing 5.12: Simple example for a visible variable in a subpackage.

5.13 shows such a traversal starting at the specification of Bar which contains Baz

and Qux. The thick, dashed lines illustrate the main aliasing collection starting

at Proc going upward until the root package is reached. The dotted lines mark

deviations like the handling of specifications and subpackages.

1 procedure Foo is
2
3 X: Integer;
4
5 package Bar is
6
7 package Baz is
8 Y: Integer renames X;
9

10 package Qux is
11 Z: Integer renames Y;
12 end Qux;
13 end Baz;
14
15 package Quux is
16 procedure Proc;
17 end Quux;
18
19 end Bar;
20
21 package body Bar is
22
23 package body Quux is
24 procedure Proc is
25 begin
26 null;
27 end;
28 end Quux;
29
30 end Bar;
31
32 begin
33 null;
34 end Foo;

Listing 5.13: The source code used for Figure 5.5.

When a node is reached during this traversal, first the variable and package

declarations are collected, however, since they are not directly visible, this time

only a prefixed series is added. Furthermore, this prefixed series must not contain

names starting with a package below the root of the subtree. For instance, the

prefixed series added for Y contains Foo.Bar.Baz.Y and Bar.Baz.Y but not

Baz.Y or Y.
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Default_PKG
(body)

Foo
(body)

--VARS--
X: Integer

Bar
(spec)

Bar
(body)

Baz
(spec)

--RENAMINGS--
X -> Y

Quux
(spec)

Qux
(spec)

--RENAMINGS--
Y -> Z

Quux
(body)

Proc
(body)

Figure 5.5: Collecting aliases from a subtree.
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After the variable and package declarations, the renamings are collected. For

each element in the list of renamings of the current flow object it is tested whether

it is a variable or package renaming. First, the old name of a renaming i.e. the

name of the renamed entity is examined and the full name is retrieved. In case the

old name does not contain a prefix, the full name is constructed using the method

I outline in Section 5.6.6 based in the visibility info. Otherwise the potentially

partial prefix is completed by searching the respective entity in the Pkg/CFG tree

as I will explain in Section 5.6.7.

Once the full name of the renamed entity is found, it is, together with the new

name added to the alias info using the Makeset operation and uniting the two

resulting sets. In case a set containing one of the names already existed previously,

no new set is created but the Union operation nevertheless merges both sets

to reflect the renaming, possibly merging two sets already containing numerous

aliases. Thereafter, an aliased series for the new name is added, following the

restrictions concerning the first prefix element as described above.

However, in case of a package alias already collected aliases may be affected as

they might have the renamed package name contained in their prefix. Therefore,

variable and package aliases collected until this point have to be updated as I will

outline in Section 5.6.8.

Finally, before the next node in the subtree is visited recursively, the packages

included by with clauses are identified using the specification map and a collection

is started there following the exact same algorithm as the collection from packages

contained within a flow object. That is, a package included by a with clause is

handled exactly the same way as when it was declared in the flow object the with

clause is associated to.

When the collection of aliases of all packages contained within a flow object is

done, it is time to collect aliases from the packages included by with clauses and

finally collect the renamings.

After the full old name of each renaming has been found the same way I

explained previously in this section, the aliases induced by the renaming are

added to the alias info. The only difference in the algorithm between variable

and package renamings is, that after adding a package alias, already existing

aliases need to be updated.
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First, it is tested whether the new name is already contained in the alias

info. If this is the case, an alias for the full old name and the new name must

not be added, since apparently another variable with the same name has been

encountered on a lower level in the Pkg/CFG tree and overwrites the currently

found new name.

As an example consider variable Foo.C and Foo.Proc.C in Listing 5.14 when

procedure Proc is analysed. When the traversal has left Proc for Foo a set

containing Foo.Proc.C, Proc.C and C already exists. Adding an alias mapping

Foo.A to C would wrongly establish equality between Foo.A and Foo.Proc.C.

Otherwise, an alias for the full old name and the new name is added. For instance

the renaming in line 6 causes a set containing Foo.B and D to be created.

Next, it is tested whether the old name is not already present in the alias info

(B in line 11) or was just added at the same level (E in line 12). If so, an alias for

old and new name is added, for instance (E, B).

In any case, the full old name is mapped to the full new name, and a prefixed

series is added for the new name. To conclude the current example, Table 5.1

reflects the alias info data structure for the analysis of Proc during traversal of

the two levels of the Pkg/CFG tree.

5.6.5 Adding a Prefixed Series

As stated above, a prefixed series is a series of names for a variable or package

composed using different variations of a prefix. When adding such a series the

position of the name to be prefixed within the Pkg/CFG tree has to be taken into

account in order to correctly reflect the visibility.

Furthermore it is important to keep track which of the segments separated

by a dot belong to the prefix, and which to the base name. A component X of

a record Rec with the full name Foo.Bar.Rec.X, for instance, has, assuming

direct visibility, the prefixed series Rec.X, Bar.Rec.X, Foo.Bar.Rec.X where X

must not be included.

Another problem that has to be taken care of when adding a prefixed series

is caused by existing package aliases. Consider for instance Listing 5.15. The

package alias mapping Foo.Bar to Foo.Bar.Baz has already been added when

the renaming of Foo.X in line 7 is encountered.

Hence, whenever a new prefix is composed, the package alias set containing

this prefix is determined and for every element within that set another alias is

added after verifying that it is not a circular alias (see Section 5.6.9).
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1 procedure Foo is
2 A: Integer;
3 B: Integer;
4 C: Integer renames A;
5 D: Integer renames B;
6
7 procedure Proc is
8 A: Integer;
9 C: Integer;

10 E: Integer renames B;
11 F: Integer renames E;
12 begin
13 null;
14 end;
15
16 begin
17 null;
18 end Foo;

Listing 5.14: Example illustrating visibility issues when adding a simple renaming.

Variable After Proc After Foo

Foo.A (line 3) - Foo.A

Foo.C

Foo.B (line 4) B

E

F

Foo.B

Proc.E

Proc.F

Foo.Proc.E

Foo.Proc.F

B

D

E

F

Foo.B

Foo.D

Proc.E

Proc.F

Foo.Proc.E

Foo.Proc.F

Foo.Proc.A (line 9) A

Proc.A

Foo.Proc.A

A

Proc.A

Foo.Proc.A

Foo.Proc.C (line 10) C

Proc.C

Foo.Proc.C

C

Proc.C

Foo.Proc.C

Table 5.1: Aliases for the variables in Listing 5.14 after the collection is finished

for Proc and for Foo.
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1 package Foo is
2
3 X: Integer;
4
5 package Bar is
6 package Baz renames Bar;
7 Y: Integer renames Foo.X;
8 end Bar;
9

10 procedure Proc;
11
12 end Foo;

Listing 5.15: Package renamings have to be taken into account when adding a

prefixed series.

In the current example, the prefixed series Bar.Y, Foo.Bar.Y is therefore

augmented with Bar.Baz.Y and Foo.Bar.Baz.Y while avoiding circular aliases

like Bar.Baz.Baz.Y, Bar.Baz.Baz.Baz.Y and so forth.

When a prefixed series for a package alias is added, the existing aliases may

be affected, which is why after adding every element of the series variable and

package aliases are updated.

5.6.6 Discovering the Full Name Using Visibility Info

When a renaming does not specify a prefix for a variable or package to rename,

the full name has to be constructed using visibility information. This is straight-

forward in most cases since the visibility info data structure already contains only

those entities that are visible in each flow object and therefore not only helps to

find the full name but also to distinguish between multiple entities with the same

name but different visibility. So in the most basic case the visible set of the flow

object containing the renaming is searched until a Declaration with a smaller

declaration id than the renaming is found.

However, there is one special case that has to be taken into account for which

Listing 5.16 shows an example. The declaration of Foo.Bar.X in line 7 overwrites

variable Foo.X declared in line 3 for the renaming in line 8, but does not affect

the renaming in line 6. So in fact variable Foo.X is renamed to Foo.Bar.Y and

variable Foo.Bar.X to Foo.Bar.Z.

When there is one set for each flow object that holds all visible declarations

it is clearly impossible to reflect visibility at each single point in the flow object.

So when the visible set for Foo.Bar is constructed Foo.X is deleted from the

set in favour of Foo.Bar.X. Hence, when there is no variable named X found

that has a smaller declaration id than the renaming in line 6, the predecessor and
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1 package Foo is
2
3 X: Integer;
4
5 package Bar is
6 Y: Integer renames X;
7 X: Integer;
8 Z: Integer renames X;
9 end Bar;

10
11 procedure Proc;
12
13 end Foo;

Listing 5.16: Special case where the enclosing flow object has to be searched.

the specification of the predecessor are searched for the appropriate X. Note that

this also works when the variable that is being searched for is not declared in the

directly enclosing flow object but at a higher level in the Pkg/CFG tree, because

it is inherited in all visible sets below the original point of declaration unless not

overwritten.

5.6.7 Discovering the Full Name Using a Partial Prefix

When a entity is referenced using a prefix while being renamed, the prefix might

have to be completed in order to obtain the full name. This is done starting at

the flow object containing the renaming and then traversing the Pkg/CFG tree

recursively upwards.

At each level, first the head of the prefix i.e. the segment before the first dot is

compared to the name of the current flow, the names of the successors including

the successors of its corresponding specification that are packages and the new

names of package renamings contained within this flow. In case the strings match,

the correct flow object has been found and the prefix is completed using the name

or prefix of the flow object.

As an example for these three cases consider Listing 5.17. Bar.A (line 7) is

completed to Foo.Bar.A because, when reaching Foo.Bar in the Pkg/CFG tree,

Bar matches the name of the current flow. Baz.B (line 10) and Baz (line 12)

are completed to Foo.Bar.Baz.B and Foo.Bar.Baz respectively, because Baz

equals the name of a successor of Foo.Bar. Finally, Qux.B (line 14) is completed

to Foo.Bar.Qux.B, because Qux is found in the list of package renamings in

Foo.Bar.
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1 package Foo is
2
3 package Bar is
4 A: Integer;
5
6 package Baz is
7 B: Integer renames Bar.A;
8 end Baz;
9

10 C: Integer renames Baz.B;
11
12 package Qux renames Baz;
13
14 D: Integer renames Qux.B;
15
16 end Bar;
17
18 procedure Proc;
19
20 end Foo;

Listing 5.17: Different situations for completing a prefix.

5.6.8 Updating Aliases

At various positions in the main aliasing algorithm it is necessary to update

existing aliases, mainly when a new package alias is introduced. I basically use

the same algorithm to update package and variable aliases. The only difference

is that for variable aliases the prefix has to be separated from the name before

the update is done. This has to be done in a way that ensures that component

names are handled correctly.

Essentially, it is tested whether the old name of the newly added alias can be

found at the beginning of the old name of an already existing alias, while taking

correct prefix structure into account. Whenever such an alias is found, a new

name is created where the part of the old name of the existing alias is substituted

by the new name of the new alias. Next, a new alias mapping the old name of the

existing alias to the newly constructed name is added, in case it is not circular

(see Section 5.6.9).

Listing 5.18 shows a simple example where the renaming of package Bar in line

7 causes two updates to the existing aliases. When the alias mapping Foo.Bar

to Baz is added, the variable aliases are updated by adding a mapping between

Foo.Bar.X and Baz.X. Adding the alias that maps Foo.Bar to Foo.Baz results

in the new name Foo.Baz.X for Foo.Bar.X. Note, that in this simple example

the updates to the package aliases have no effect, since the package alias added

in the first place already contains all names that have to be added because there

is no other package that contains Bar in its prefix.
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1 package Foo is
2
3 package Bar is
4 X: Integer;
5 end Bar;
6
7 package Baz renames Bar;
8
9 procedure Proc;

10
11 end Foo;

Listing 5.18: A simple example to illustrate alias updating.

5.6.9 Circular Package Renamings

In Ada it is possible to rename a package wherever that package is visible, includ-

ing the subtree of the Pkg/CFG tree that is rooted in the package that is actually

renamed. This introduces circular dependencies between elements of a prefix for

every entity declared within that package and leads to an infinite amount of aliases

for that entity.

In Listing 5.19 the most elementary way to declare a circular package renaming

is shown. B is located within A but in fact is just an alias for A. This leads to

1 package A is
2 X: Integer;
3
4 package B renames A;
5
6 procedure Proc;
7 end A;

Listing 5.19: A simple circular package renaming.

the infinite set of aliases for variable A.X described by the regular expression

(A.)?(B.)∗X, that is, the set containing the following names:

X

A.X

B.X

B.B.X

B.B.B.X

. . .

A.B.X

A.B.B.X

A.B.B.B.X

. . .
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Of course this is just a very simple example which reveals only a small part of

the complexity of circular renamings. Consider for instance renamings of pack-

ages that are circular renamings themselves, circular renamings spanning multiple

levels in the Pkg/CFG tree and so on.

Implementing an algorithm and data structures that allow for a complete

handling of such circular renamings turned out to be not feasible for this project.

First of all, the usage of such renamings in real world software can be expected

to be very infrequent and would definitely be very bad programming practice

since clarity not confusion should be the goal of every programmer regarding

style. Furthermore, a missing alias leads to false positives and never to false

negatives as far as the busy wait detection algorithm is concerned. Hence, the

most reasonable decision was to detect circular renamings using the old and new

name of an alias that should be added and the existing alias info data structure,

add at the least the first alias of the infinite series to the alias info and ignore the

others to prevent endless loops.

For the example in Listing 5.19 this means, that the following five aliases are

added, three of them involving the package from the circular renaming:

X

A.X

B.X

A.B.X

B.B.X
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Chapter 6

EXAMPLES

Finally, I present two simple examples for busy waiting and outline how the

analysis algorithm reacts in these cases before I conclude each example with the

corresponding output of BWAA.

6.1 Dekker’s Mutual Exclusion Algorithm

Figure 6.1 shows the annotated CFG of Dekker’s mutual exclusion algorithm as

presented in Section 2.2. First, the two backedges are identified and the loop

forest is built. In this case there are only two loops with loop 1 being contained

in loop 2. Remember that inner loops are found first and that the nodes of a

contained loop are added to its enclosing loop too.

Termination statements have at least one edge pointing to a node outside

the loop, which is easy to see for nodes 1.4.22 and 1.4.7 in this example. The

variables of these termination statements are then added to the busy wait candi-

date variables for each termination statement: Turn is a candidate in termination

statement 1 and T2 for termination statement 2.

Neither Turn nor T2 are defined on a path in the corresponding loop that

starts and ends at the termination statement. Hence, indirect candidates do not

exist, aliasing has no effect, and both variables are wait variables. Listing 6.1

shows the verbose output of BWAA for Task1.

6.2 Advanced Example

I created the example in this section for demonstration purposes only. It shows a

few, more advanced concepts of the busy wait analysis than Dekker’s algorithm

in the previous section.

The task Counter in Listing 6.2 iteratively increments a variable and prints

its value until a maximum value is reached. The main task, procedure Example

itself, waits until the count has reached the maximum value and also outputs a

line whenever the counter has reached a multiple of ten.

In this case, two CFGs have to be analysed: the CFG for procedure Example
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Assignment Node 1.4.3:

Idents: T1
T1 := True;

Finite Loop Node 1.4.7:

Idents: T2
while T2 loop

Node 1.4.8:

if/case

Node 1.4.33:

Loop End

Node 1.4.11:

Idents: =
if Turn = 2 then

Node 1.4.10:

end if/case

Assignment Node 1.4.18:

Idents: T1
T1 := False;

Finite Loop Node 1.4.22:

Idents: =
while Turn = 2 loop

Node 1.4.26:

null;

Node 1.4.28:

Loop End

Assignment Node 1.4.31:

Idents: T1
T1 := True;

Assignment Node 1.4.36:

Idents: Turn
Turn := 2;

Assignment Node 1.4.40:

Idents: T1
T1 := False;

Backedge 1

Backedge 2

Termination
Statement 1

Termination
Statement 2

Loop 1
Loop 2

Figure 6.1: Backedges, loops and termination statements in the CFG of Dekker’s

mutual exclusion algorithm.
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[Bwaa] Potential busy waiting with variable Turn in line 17 in loop starting at
line 17 in Dekker in /path/to/dekker.adb

13: while T2 loop
14: if Turn = 2 then
15: T1 := False;
16: end if;
17: while Turn = 2 loop
18: null;
19: end loop;
20: T1 := True;
21: end loop;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[Bwaa] Potential busy waiting with variable T2 in line 13 in loop starting at
line 13 in Dekker in /path/to/dekker.adb

10: task body Task1 is
11: begin
12: T1 := True;
13: while T2 loop
14: if Turn = 2 then
15: T1 := False;
16: end if;
17: while Turn = 2 loop
18: null;
19: end loop;

Listing 6.1: Output of BWAA for Task1 of the example implementation of

Dekker’s algorithm.

in Figure 6.3 and the one for task Counter depicted in Figure 6.2. Counter has

only one loop with a single backedge and termination statement. Direct busy wait

candidates are Counting.Max and Counter.I, however, thanks to the aliasing

data structures, the assignment in line 23 of Listing 6.2 correctly adds C.Gap as

an indirect busy wait candidate. Since G in line 22 is an alias for C.Gap, this

variable definition is also taken into account. For this reason there is no path in

the loop starting and ending at the termination statement that does not define

C.Gap and Counter.I, which is why they are no wait variables.

Anyhow, Counting.Max is not defined and therefore reported as a wait vari-

able, as can be seen in the BWAA output for this example in Listing 6.3. To

avoid false positives like this, there is a command line option that only reports

busy waiting when not a single candidate variable in a termination statement

is properly defined. Note, however, with this option false negatives might be

introduced.

The CFG for procedure Example can be found in Figure 6.3. It contains two

loops that share the termination statement in node 2.2.49. For termination state-

ment 1 there is only one busy wait candidate, Cur, and for termination statement

2 Cur and C.Max are candidates. Without processing of indirect candidates, the

assignment in line 36 of Listing 6.2 would prevent Cur from being recognised as a
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wait variable. With indirect candidate processing enabled, however, C.Current

is added as a candidate and Cur is reported as a wait variable for both termi-

nation statements. Of course, C.Max is a wait variable too and is therefore also

reported in the BWAA output in Listing 6.3.

Note, that both loops in procedure Example are busy wait loops and the fact

that they share a termination statement is also reflected in the BWAA output.

1 with Ada.Text IO; use Ada.Text IO;
2
3 procedure Example is
4
5 package Counting is
6 Current: Natural := 0;
7 Gap: Natural := 1;
8 Max: Natural := 30;
9 end Counting;

10
11 task Counter;
12
13 package C renames Counting;
14
15 task body Counter is
16 I: Natural renames C.Current;
17 N: Natural renames C.Max;
18 G: Natural renames C.Gap;
19 begin
20 while I <= Counting.Max loop
21 Put Line(Natural’Image(Counting.Current));
22 G := I + 1;
23 Counting.Current := C.Gap + 1;
24 delay 1.0;
25 end loop;
26 end Counter;
27
28 Cur: Natural := C.Current;
29
30 begin
31
32 OUTER:
33 loop
34
35 loop
36 Cur := C.Current;
37 exit OUTER when Cur > C.Max;
38 exit when Cur mod 10 = 0;
39 end loop;
40
41 Put Line("Counter reached " & Natural’Image(Cur));
42 delay 1.0;
43
44 end loop OUTER;
45
46 Put Line("Counting stopped at " & Natural’Image(Cur));
47 end Example;

Listing 6.2: An advanced example for busy waiting.
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Finite Loop Node 2.2.6:

Idents: <=
while I <= Counting.Max loop

Call Node 2.2.12:
Dest: Put_Line

Dest_Ptr_Name: null

Idents: Put_Line,Natural
Put_Line(Natural'Image(Counting.Current));

Node 2.2.33:

Loop End

Assignment Node 2.2.19:

Idents: G,+
G := I + 1;

Assignment Node 2.2.26:

Idents: Counting.Current,+
Counting.Current := C.Gap + 1;

Node 2.2.31:

delay 1.0;

Node 2.2.34:

CFG END

Backedge

Termination
Statement

Figure 6.2: The CFG for task Counter in Listing 6.2.

[Bwaa] Potential busy waiting with variable C.Max in line 37 in loop starting at
line 35 in Example in /path/to/example.adb
[Bwaa] Potential indirect busy waiting with variable C.Current, direct candidate
Cur in line 37 in loop starting at line 35 in Example in /path/to/example.adb
[Bwaa] Potential indirect busy waiting with variable C.Current, direct candidate
Cur in line 38 in loop starting at line 35 in Example in /path/to/example.adb
[Bwaa] Potential busy waiting with variable C.Max in line 37 in loop starting at
line 32 in Example in /path/to/example.adb
[Bwaa] Potential indirect busy waiting with variable C.Current, direct candidate
Cur in line 37 in loop starting at line 32 in Example in /path/to/example.adb
[Bwaa] Potential busy waiting with variable Counting.Max in line 20 in loop
starting at line 20 in Example in /path/to/example.adb

Listing 6.3: Output of BWAA for the example in Listing 6.2
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Infinite Loop Node 2.2.39:

Name: OUTER
OUTER:

Infinite Loop Node 2.2.42:

loop

Assignment Node 2.2.45:

Idents: Cur,C.Current
Cur := C.Current;

C-Exit Jump Node 2.2.49:
Target: OUTER

Idents: OUTER,>
exit OUTER when Cur > C.Max;

C-Exit Jump Node 2.2.55:

Idents: =,mod
exit when Cur mod 10 = 0;

Node 2.2.75:

Loop End

Node 2.2.62:

Loop End

Call Node 2.2.65:
Dest: Put_Line

Dest_Ptr_Name: null

Idents: Put_Line,&,Natural
Put_Line("Counter reached " & Natural'Image(Cur));

Node 2.2.73:

delay 1.0;

Call Node 2.2.78:
Dest: Put_Line

Dest_Ptr_Name: null

Idents: Put_Line,&,Natural
Put_Line("Counting stopped at " & Natural'Image(Cur));

Node 2.2.86:

CFG END

Loop 1
Loop 2

Termination
Statement 1

Backedge 1

Backedge 2

Termination
Statement 2

Figure 6.3: The CFG for procedure Example in Listing 6.2.
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Chapter 7

SUMMARY

Busy waiting in general is a bad programming practice, that is a threat to

quality, correctness and stability of a program. To eliminate occurrences of busy

waiting in existing program code or to ensure its absence, a static analysis tool is

needed.

I presented the busy wait detection algorithm introduced by Blieberger et

al. [9] and improved it in terms of efficiency and accuracy. Next, I applied the

analysis algorithm to the Ada 2005 programming language, where software quality

assurance is of great importance, and developed various methods to handle the

complex but powerful nature of this language.

The analysis methods I employed are located in the field of static control flow

analysis, which is why I needed a control flow graph representation of the input

programs for the analysis. Since for the Ada programming language a tool for

generating such a representation was inexistent, I had to develop this software,

together with a colleague.

This resulted in the development of a powerful framework for comprehensive

general-purpose static control flow analysis, Ast2Cfg, and accompanying tools like

Cfg2Dot and Ast2Dot.

Next, I implemented the busy wait detection algorithm as a separate applica-

tion, named BWAA, using the comprehensive CFG-based data structures of the

Ast2Cfg framework.

With the BWAA analysis software, it is possible to detect the usage of busy

waiting within an arbitrary Ada input program. Although false alarms may occur,

the output of BWAA, including line numbers and code snippets, is an excellent

starting point for further manual investigation, enabling efficient discovery of busy

waiting and therefore facilitating the quality assurance of Ada programs.

I published the software that was developed during this work, including the

source code, under the terms of the GNU General Public License, and it currently

is available for download at http://cfg.w3x.org.

The results of this work, however, are also a wonderful starting point for

future work. On the one hand the busy wait analysis methods could be further
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improved using for instance the mentioned symbolic methods [10]. On the other

hand, having a static control flow analysis framework like Ast2Cfg allows for the

development of countless new analysis methods.
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