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Abstract

In den letzten Jahren sind Glasfaser-basierte Netzwerke für einzelne Haushalte leist-

bar geworden. Materialien und Konstruktionsarbeiten, um ein �ächendeckendes Netzwerk

aufzubauen, bringen hohe Kosten mit sich. Daher wäre ein exakter Algorithmus zur Lö-

sung des Problems der Berechnung von optimalen Kabelrouten wünschenswert. Aufgrund

der hohen komputationalen Komplexität des Problems können in vielen Fällen nicht inner-

halb eines akzeptablen Zeitrahmens berechnet werden. Heuristiken und Meta-Heuristiken

stellen in diesem Fall Methoden zur Erstellung approximativer Lösungen dar, die oft

als Ausgangspunkt für zeitintensivere Methoden dienen können oder direkt für praktis-

che Zwecke ausreichend sind. Diese Arbeit beschreibt eine formale Betrachtungsweise der

mit der Anbindung von Kunden an ein bestehendes Netzwerk verbundenen Probleme, die

das beschriebene Problem in die Konstruktion und Augmentierung eines Steinerbaumes

aufspaltet. Es wird ein Überblick über den derzeitigen Stand der Forschung auf diesen

Gebieten, sowie dem Gebiet der Gesamtlösung eines solchen Problems gegeben, der sowohl

exakte als auch approximative, heuristische und meta-heuristische Methoden miteinbezieht.

Einige mögliche Konstruktionsheuristiken zur Lösung dieser Probleme, sowie mögliche Op-

timierungsalgorithmen zur Verbesserung solcher Lösungen werden im Detail dargestellt.

Weiters werden Move-Operatoren und Nachbarschaften beschrieben. Meta-heuristische

Methoden wie lokale Suche, Simulated Annealing, Variable Neighborhood Descent und

Variable Neighborhood Search werden unter deren Nutzung untersucht, sowie einige hy-

bride Methoden, die eine Menge an heuristisch konstruierten Lösungen als Basis nutzen,

um ein Problem, das kleiner als das Gesamtproblem ist, zu de�nieren, das dann von ex-

akten oder anderen, zeitintensiveren Methoden gelöst werden kann. Eine Beispielimple-

mentierung, die auch im Zuge von Experimenten genutzt wurde, sowie die durchgeführten

Experimente und verwendeten Probleminstanzen werden beschrieben. Abschliessend wer-

den die Resultate dieser Experimente den Resultaten einander gegenübergestellt und ihre

E�ektivität anhand von Vergleichen mit exakten Verfahren gemessen.

During the last years �ber-optic based communication networks have become a�ordable

for individual households. Due to the costly nature of the materials and infrastructure that

have to be deployed to distribute such a network over a large area, exact algorithms for cal-

culating a provably optimal cable routing are desirable. However, due to the computational

complexity of the problem, such algorithms are not always able to determine an optimal

solution within acceptable time. Heuristics and metaheuristics can provide techniques to

calculate approximate solutions that are often su�cient as a starting point for certain, more

time-consuming approaches, or even su�cient for practical purposes. This thesis de�nes

a formal way to view the problems that are posed by connecting a set of customers to an

existing infrastructure, and will split up the described problem into the construction and

augmentation of a Steiner tree. An overview of some state-of-the-art approaches for the

solution of the problem at hand, as well as for the solution of the sub-problems on which

our heuristics are based, is given. Several construction heuristics are suggested, as well as

local improvement procedures based on di�erent neighborhood structures. Local Search,

Simulated Annealing, Variable Neighborhood Descent and Variable Neighborhood Search

are furthermore studied in detail. Also, hybrid methods using di�erent heuristics to con-

struct a diverse set of candidate solutions which are then used to de�ne a problem smaller

than the original problem to be solved by exact or other, more time-demanding methods,

is proposed. An implementation of these methods is described, and conducted experiments

are documented. Experimental results of the various described methods will be compared,

and their e�ectiveness will be measured by comparison to existing exact methods.



Acknowledgments

First of all, I would like to thank the two persons who made this master's thesis possible:

Daniel Wagner and Günther Raidl at the department for algorithms and data structures.

Their continuous support and patience and resources made developing, researching and

writing this paper just that much easier. Secondly, I'd like to thank my parents, Anna

and Stefan Bucsics for their support. A lot of thanks also go to the people at ANECON,

who gave me the possibility of working part-time to �nish my studies, and for not wanting

me to abandon those studies, even when the demand for our services was high. Last,

but not least, I want to thank my signi�cant other, Sabine, for supporting me lovingly

during this time, and enduring the annoyances of having a partner who at times was lost

in his work.



Contents

1 Introduction and Background 7

1.1 Designing the Last Mile in Fiber Optics Networks . . . . . . . . . . . . . . 7

1.2 NETQUEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Overview of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 De�nitions and Notations 7

2.1 De�nition of Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 De�nition of Meta-Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Basic Graph-Related De�nitions and Notations . . . . . . . . . . . . . . . 8

2.4 De�nition of the OPT-problem . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Technical Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 The Steiner Tree Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7 Key-Nodes and Key-Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.8 The Vertex Biconnectivity Augmentation Problem . . . . . . . . . . . . . 10

2.9 Symbols Used in Figures of Graphs . . . . . . . . . . . . . . . . . . . . . . 11

3 Related Work 12

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Related Exact and Approximative Approaches . . . . . . . . . . . . . . . . 12

3.2.1 Linear Programming Approaches for the Steiner Tree Problem . . 12

3.2.2 Cutset-Based Approximation for the Minimum-Cost Vertex-Connectivity

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.3 Multi-Commodity Flow Approaches for the OPT-Problem . . . . . 13

3.3 Related Heuristic Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1 Shortest Path Based Heuristics for the Steiner Problem . . . . . . 14

3.3.2 Minimum Spanning Tree Based Heuristics for the Steiner Problem 14

3.4 Related Meta-Heuristic Approaches . . . . . . . . . . . . . . . . . . . . . . 14

3.4.1 Hybrid Local Search for the Steiner Problem in Graphs . . . . . . 14

3.4.2 Hybrid GRASP with Perturbations for the Steiner Problem in Graphs 15

3.4.3 Ant Colony Algorithms for Steiner Trees . . . . . . . . . . . . . . . 16

3.4.4 Memetic Algorithms for the Vertex Biconnectivity Augmentation

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Solution Construction and Improvement Heuristics 19

4.1 Solution Construction Overview . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Handling of a Non-Crossing constraint . . . . . . . . . . . . . . . . . . . . 20

4.3 Heuristics for Steiner Tree Construction . . . . . . . . . . . . . . . . . . . 21

4.3.1 Single Source Shortest Path Heuristic . . . . . . . . . . . . . . . . 21

4.3.2 Minimum Spanning Tree Heuristic . . . . . . . . . . . . . . . . . . 23

4.3.3 Minimum Spanning Tree using All-Pairs-Shortest Path Meta-Edges 23

4.4 Heuristic Steiner Tree Augmentation . . . . . . . . . . . . . . . . . . . . . 25

4.4.1 Augmentation by Shortest Path (AugSP) . . . . . . . . . . . . . . 25

4.4.2 Augmentation by Shortest Path with Pseudo-Infrastructure Exten-

sion (AugSPe) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



4.5 Solution Checking and Puri�cation . . . . . . . . . . . . . . . . . . . . . . 28

4.5.1 Redundancy-Search Solution Validity Check . . . . . . . . . . . . . 28

4.5.2 Path-Node Removal Solution Validity Check . . . . . . . . . . . . . 30

4.5.3 Solution Puri�cation . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.6 Heuristic Solution Improvement Methods . . . . . . . . . . . . . . . . . . 32

4.6.1 Key-path Replacement . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.6.2 Terminal-Node Reconnection . . . . . . . . . . . . . . . . . . . . . 34

5 Meta-Heuristic Approaches 35

5.1 Local Search and Simulated Annealing . . . . . . . . . . . . . . . . . . . . 35

5.1.1 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.2 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.3 Neighborhoods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Variable Neighborhood Descent and Variable Neighborhood Search . . . . 38

5.2.1 Variable Neighborhood Descent . . . . . . . . . . . . . . . . . . . . 38

5.2.2 Variable Neighborhood Search . . . . . . . . . . . . . . . . . . . . . 39

5.2.3 Key-Node-Move Neighborhood . . . . . . . . . . . . . . . . . . . . 39

5.3 Solution Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.1 Merging Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3.2 Extracting a Child Solution Using Puri�cation . . . . . . . . . . . 41

5.3.3 Extracting a Child Solution Using Exact Methods . . . . . . . . . 41

5.3.4 Obtaining Various Solution Sub-Graphs for Merging . . . . . . . . 41

6 Implementation 43

6.1 Frameworks and Used Components . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3 Class Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.4 Use of Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.5 De�nable Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Experimental Results 51

7.1 Overview of Conducted Experiments . . . . . . . . . . . . . . . . . . . . . 51

7.1.1 Tested Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.1.2 Measured Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.1.3 Used Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.1.4 Experiments using Heuristic Approaches . . . . . . . . . . . . . . . 52

7.1.5 Experiments using Local Search and Simulated Annealing . . . . . 53

7.1.6 Experiments using Variable Neighborhood Descent and Variable

Neighborhood Search . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.1.7 Experiments using Solution Merging . . . . . . . . . . . . . . . . . 54

7.2 Evaluation of Experimental Results . . . . . . . . . . . . . . . . . . . . . . 55

7.2.1 Ability of Heuristics to Generate Valid Solutions . . . . . . . . . . 55

7.2.2 Cost of Solutions Provided by Construction Heuristics . . . . . . . 56

7.2.3 Heuristic Construction Algorithm Running Times . . . . . . . . . . 60

7.2.4 Puri�cation and Improvement Heuristics . . . . . . . . . . . . . . . 62

5



7.2.5 Meta-Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2.6 Solution Cost vs. Running Time . . . . . . . . . . . . . . . . . . . 71

7.3 Comparison of Results to Exact Approaches . . . . . . . . . . . . . . . . . 71

8 Summary 73

9 Conclusion 74



1 Introduction and Background

1.1 Designing the Last Mile in Fiber Optics Networks

Fiber-optic based networks have become more and more common during the last few

years, and have reached households. The materials and infrastructure that have to be

deployed to distribute such a network over a large area (mainly cable laying) are expen-

sive, so algorithms for calculating e�cient cable routes are needed. Since the problem

this poses is a rather complex one, such algorithms are often not able to determine an

optimal solution within an acceptable period of time. For this reason we decided to

explore heuristic and meta-heuristic approaches in this �eld.

1.2 NETQUEST

The NETQUEST project was started at the Carinthia University of Applied Sciences

in 2005. It is supported by the FHplus program which was founded by the Austrian

Research Promotion Agency. It focuses on the development of decision supporting tools

for network carriers for simulation and optimization of cable laying routes or network

augmentation projects. The project is supported by a consortium consisting of various

academic and commercial partners, including the Institute for Computer Graphics and

Algorithms of the Vienna University of Technology.[17] This thesis and the corresponding

implementation are meant to be part of that project.

1.3 Overview of this Thesis

First, we will introduce some concepts, notations and de�nitions related to the problem

treated in this document. Then we will give an overview of existing approaches for the

problems we described, including exact, heuristic and approximative approaches. We will

introduce our own solution construction and improvement heuristics, and then present

various meta-heuristic and hybrid approaches employing these heuristics. Following this,

we will give an overview of an implementation of the described heuristic and meta-

heuristic approaches, and show tests methods and results. Finally, we will compare

and evaluate the experimental results, and present some thoughts on possible future

approaches based upon the results of this thesis.

2 De�nitions and Notations

2.1 De�nition of Heuristic

There are many hard optimization problems in Computer Science. Usually, one aims to

�nd algorithms to solve them with provably good run times and provably good solution

quality. Heuristics, often described as �rule of thumb� algorithms, give up one of these

two goals, in our case the goal related to solution quality. The solutions provided by

the algorithms described in this thesis will not have a proved approximation quality, and

will, in some cases, not even be able to determine any valid solution for a given problem,

even if one exists. They are, however, designed to have a polynomial running time, and
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give a valid solution for most real-world instances we considered. One of the �rst uses of

heuristic construction methods can be found in [13].

2.2 De�nition of Meta-Heuristic

The term �meta-heuristic� was �rst introduced in [14]. Meta-Heuristics are heuristic

methods for solving complex computational problems with the property of employing

other heuristic or approximative methods, usually in a fashion such that the meta-

heuristic method needs little or no information about the heuristic methods it uses

besides of how to access it. This has the advantage of being able to use a variety of

heuristics with one and the same meta-heuristic algorithm.

2.3 Basic Graph-Related De�nitions and Notations

For the purpose of this thesis we will refer to networks simply as graphs and only consider

connected, undirected graphs.

A graph consisting of a set of nodes or vertices V and a set of edges or E, with each

edge e connecting two nodes (v, w) ∈ V , and a cost function c(e), denoting the cost of an
edge e ∈ E, will be denoted as G = (V,E, c). Sub-graphs of such a graph G = (V,E, c)
will be denoted as GX = (VX , EX) or X = (VX , EX), with X identifying the sub-graph,

VX ⊆ V and EX ⊆ E.

If an edge e ∈ E connects two nodes v ∈ V and w ∈ V, e will be called incident to v

and w, and v and w will be called adjacent to each other.

We will use the term degree of a node v to denote the number of incident edges a

speci�c node v has within a graph or sub-graph. We will use the terms weight and cost

of an edge e ∈ E interchangeably to denote c(e).
The term path will denote a sequence of nodes, such that from each connected node

there exists an edge to the next node in the sequence. The term cycle denotes a path

whose �rst node is also the last node of the sequence. For the purpose of this thesis, we

will usually refer to cycles that do not contain any nodes more than once, except for the

starting node. We shall refer to this as a cycle without repeated vertices.

2.4 De�nition of the OPT-problem

One possibility for a formal view for the basic problem we consider would be to use

a weighted, connected, undirected graph G = (V,E, c) with nodes V , a set of edges

E representing straight segments of potential cable routes, and a cost function c(e)
assigning a cost to each edge e ∈ E to model potential cable routes. A set of vertices

J ⊆ I ⊆ V describes all the nodes already within an existing infrastructure that allow the

connection of additional cable routes. A further set of vertices C ⊆ V describes customer

nodes that have to be connected to the infrastructure. Two disjunct subsets C1 ⊆ C and

C2 ⊆ C with C1 ∩ C2 = ∅ describe customers that require a single connection to the

infrastructure (denoted C1) and customers that require a node-redundant connection to

the infrastructure (denoted C2). Our goal is to satisfy all the connection requirements

posed by the nodes C1 and C2 using a set of edges from the edge set E of minimum total

weight. This problem will be referred to as the OPT-problem [3].
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2.5 Technical Conditions

The OPT problem can also be seen as a set of constraints, under which a solution sub-

graph of the problem graph has to be found, with its set of edges having minimal total

weight [3].

• The Junction constraint: All the customer nodes C have to be connected to the

existing infrastructure. New connections can only be attached to junction nodes

J ⊆ VI .

• The Biconnectivity constraint: Customer nodes contained in C2 have to be con-

nected to the existing infrastructure in a vertex redundant way, meaning that at

least two node-disjoint paths from the infrastructure to each node in C2 have to be

included within the solution.

• The Non-crossing constraint: Connections may not cross each other in a geomet-

ric sense. This constraint will not be considered by some of the meta-heuristic

approaches described in this paper.

2.6 The Steiner Tree Problem

Given an undirected, weighted graph G = (V,E, c, ) and a subset T ⊆ V representing

so-called terminal nodes, a tree on G represented by a sub-graph GT = (VT , ET ) that
contains all the nodes in T is called a Steiner tree. Any non-terminal node s /∈ T, s ∈ VT

is called a Steiner node. The problem of �nding a Steiner tree with minimum weight is

one form of the Steiner tree problem, and thus NP complete, which means it is compu-

tationally hard and not solvable in polynomial time (unless P = NP 1) [12][18].

The Steiner tree problem is considered to be especially relevant to the areas of routing

in computer networks, VLSI layout and phylogeny (the study of the evolution of life

forms) [24].

For our purposes, the term terminal node will usually apply to all nodes v ∈ (C ∪J).
1P (Polynomial) and NP (Non-Polynomial) are complexity classes, P denoting problems that can

be solved in polynomial time, and NP is the class of problems that can be solved in polynomial time
by non-deterministic Turing-machines. This complexity class was �rst described in [7], even though the
term �NP� or �NP-complete� was not used in this publication. The question of whether or not P = NP
is unsolved at the time of writing of this thesis.
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ClgSExtra−15.ist with 377 edges (23 in solution) and 190 nodes (Solution)

Edges
Infrastructure

Solution
Junction Nodes

Customers (r==1)
Customers (r==2)

Figure 1: Example of a Steiner tree on a real-world problem instance ClgSmall-I1-15

2.7 Key-Nodes and Key-Paths

A key-node k ∈ K is a non-terminal-node in a Steiner tree T (or an OPT-solution sub-

graph GS = (VS , ES)) for a problem instance graph G = (V,E), if that k has a degree

of at least 3 within T (or GS), with K being the set of all key-nodes within T (or GS).

A key-path is a path that has either a terminal node or a key-node at each end, and

whose intermediate nodes (if any exist) are all Steiner nodes with a degree of 2 within T .

2.8 The Vertex Biconnectivity Augmentation Problem

A connected, undirected graphG = (V,E) has a vertex-connectivity degree of CV (G), CV (G) ≥
1 if at least CV (G) nodes and their incident edges have to be removed from G in order

to make G no longer connected. An alternative formulation would be to de�ne G as

being vertex c-connected if c nodes and their incident edges can be removed from G

without G becoming disconnected after this operation. Proof of the equality of these two

formulations can be found in [5].

The process of turning a sub-graph GS = (VS,ES) of an undirected, weighted graph

G = (V,E, c) into a sub-graph with CV (GS) ≥ 2 by adding a set of edges AUG ⊆ E from

G is called vertex biconnectivity augmentation (this thesis will from now on use the term

augmentation to denote this). The problem of �nding such a set AUG having minimum

total weight in G is called the vertex biconnectivity augmentation problem, and is also

NP complete [12][1].

For our purposes, biconnectivity needs only to be established between an infrastruc-

ture node and a node in C2, and not on the whole graph.
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2.9 Symbols Used in Figures of Graphs

We will use some �gures to give examples of problem graphs and the e�ect of various

algorithms on them.

Nodes will be denoted using the following notation:

• J will denote an infrastructure junction node j ∈ J .

• S will denote a possible Steiner node s ∈ S.

• C will denote a terminal node c ∈ C.

• C1will denote a node c1 ∈ C1 requiring a single connection to a junction node.

• C2 will denote a node c2 ∈ C2 requiring a redundant connection to the infrastruc-

ture sub-graph.

• A node of the form XY will indicate a node of type X with a special mark Y , in

order to make an reference to that speci�c node possible.

Edges will be depicted after the following fashion:

• A connection from one node to another of the form � � will denote an edge

in the graph or sub-graph referenced in the title of the graph.

• A connection of the form � ___ � in a sub-graph illustration will denote an edge

in the original problem graph that is not contained in the sub-graph.

• A connection of the form � // � in a sub-graph illustration will denote an edge

that has been added to the shown sub-graph by the step of the algorithm that is

to be illustrated by the illustration. If the arrow points toward a node, and the set

of newly included edges seems to generally point away from this node (such as, for

example, a junction node), then it is usually to indicate that this edge was included

to satisfy the redundancy constraint.

• A connection of the form � � in a sub-graph illustration will denote an edge

that has been removed from the sub-graph by the algorithm or step of an algorithm

that is to be illustrated by the graph.

• A number above or below any connection between two nodes (for example � x �

or �
x ___ �) will denote x as the cost of that edge within the problem graph.
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Original Problem graph:

J
2

___

3 A
A

A
A

A C2

2
�
�
� 1

___ S

1
�
�
�

2 ?
?

?
? 3

___ C1

C1 5
___ S

3

�
�

�
�

4
___ S

2
___ C1

Steiner tree with customer nodes as terminal nodes:
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Augmented Steiner tree:
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J : junction node, C1: customer node requiring a single connection, C2: customer node
requiring a redundant connection, S: possible Steiner node

Figure 2: Example of the construction of a heuristic solution by Steiner tree construction
and augmentation

3 Related Work

3.1 Overview

A great deal of work can be found on topics related to the OPT-problem, especially on

Steiner trees and connectivity augmentation. In the following, we do not claim to cover

all of the related work in this �eld, but will just highlight a few methods to illustrate

what kind of approaches exist for the problems we have described.

3.2 Related Exact and Approximative Approaches

3.2.1 Linear Programming Approaches for the Steiner Tree Problem

Many exact approaches for the Steiner tree problem have been designed. An overview

of some fundamental examples can be found in [24]. They are generally based on mixed

or integer Linear Programming, which is an approach using a transformation of the un-

derlying problem into an optimization problem. Linear programs are usually represented

using a matrix A with dimensions m× n , an m-vector b and an n-vector c. The goal is

to �nd a vector x with n elements such that n maximizes an objective function
∑n

i=1 cixi

while respecting the m constraints de�ned by Ax ≤ b. Many problems in operations re-

search can be formulated this way, and many approaches as well as implementations for

solving such problems exist for Linear Programming problems. Similarly, minimization

problems can be formulated [8].

Some of the more common formulation types (which we will not describe in detail,

since this would require exact formulation of the respective constraints) for the Steiner

tree problem summarized in [24] are:
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• Cut-Formulations minimize the total solution cost while using so-called Steiner cut

constraints to guarantee that in any arc-set representing a solution there is a path

from a terminal to any other terminal

• Flow-Formulations minimize total solution cost under the constraint of a �ow of

one unit of a commodity from a terminal node to every other terminal node.

• Tree-Formulations are tree-based formulations using linear relaxations and mini-

mizing total solution cost.

3.2.2 Cutset-Based Approximation for the Minimum-Cost Vertex-Connectivity

Problem

This approach, described in [25], is based on the concept of vertex neighborhoods and

cut sets. The vertex neighborhood V n
sub of a sub-graph Gsub = (Vsub, Esub) of a graph

G = (V,E) is the set of all nodes v ∈ (V \ Vsub)|(v, w) ∈ E with w being any node ∈ Vsub).

A cut-set C is a set of nodes from a graph G = (V,E) that, when all nodes within the set,
and all incident edges are removed from G, causes G to have less connected components.

The approach described in [25] uses a number of phases equivalent to the desired

vertex-connectivity k. In the kth phase, the graph becomes k-connected. It does this by

using an augmentation function that, in turn, uses a function h(S) (with S ⊆ V ) that,

in phase p, returns 1 if S ⊆ VS (with VS = (V,ES) being the current solution sub-graph

of G) is a cut set of size p − 1 and is the smaller of two parts of G when the vertex

neighborhood of GR(with GR being the sub-graph of G de�ned by the nodes in S and all

incident edges) is removed. The augmentation function returns a set of edges F∪E which

increases the vertex neighborhood for GR. The sub-graph G′
S = (V,ES ∪ F ) becomes

the new solution graph GS for the next phase. [25] shows that S becomes k-connected

in phase k.

This approach can be shown to have a guaranteed quality of 3 for the case of 0, 1, 2-
connectivity (which is similar to the problem which is treated in this thesis) and a general

quality for k-connectivity of 2H(k) with H(n) = 1 + 1
2 + ... + + 1

n).

3.2.3 Multi-Commodity Flow Approaches for the OPT-Problem

One such approach is described in [29]. It is based on the concept of sending commodities

from a root node representing the infrastructure to each customer node. For customers

requiring a redundant connection to the infrastructure, two commodities are sent, which

may not share any edges or have any other nodes other than the root node or the target

customer node in common.

An Integer Linear Programming formulation for the problem is given, which is for-

mulated using, among others, the same constraints that we described earlier, and uses

total solution sub-graph cost as objective function.

Experiments showed that this approach is able to solve smaller or rather sparse prob-

lem instances to optimality within reasonable time.
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3.3 Related Heuristic Approaches

3.3.1 Shortest Path Based Heuristics for the Steiner Problem

A Shortest Path Heuristic by Takahashi and Matsuyama This approach is a

shortest-path heuristic (denoted by the authors with the abbreviation SPH ) to construct

a solution GS = (VS , ES) on a given problem graph G=(V,E,c) with a set of terminal

nodes T ⊆ V . It �rst calculates a shortest path tree represented by the sub-graph

ST = (VT , ET ) on the problem graph G, starting from a given root node r ∈ T . It

then adds each terminal node t ∈ T to GS by its shortest path, by iteratively adding

all predecessor nodes of t, as well as the edges in T that connect one predecessor to the

next, from the shortest path tree ST to GS until r is reached. The order of addition of

the nodes is by ascending distance to the root tree [28].

3.3.2 Minimum Spanning Tree Based Heuristics for the Steiner Problem

Shortest-Path Minimum Spanning Tree This heuristic resembles Kruskal's min-

imum spanning tree algorithm, which is described, among many others, in [8]. It was

presented among others in [26].

It �rst splits the problem graph instance G = (V,E, c) with a set of terminal nodes

T ⊆ V into a set of connected components. Initially, there are |T | such components. In

each iteration, the shortest path in G for joining two such connected components is found,

and the two components and this path are joined into a new, bigger component. This is

repeated until all components have been merged into a single component, containing all

the nodes in T [26].

Pruned Minimum Spanning Tree This heuristic was presented in [26]. It �rst

constructs a minimum spanning tree ST = (VT , ET ) on a given problem graph G =
(V,E, c) with a given set of terminal nodes T ⊆ V . If all leaves of ST are terminal nodes,

ST is returned. If not, nodes with a degree of one within ST are removed, and a new

minimum spanning tree S′
T is computed on the graph induced by the nodes of ST . This

procedure is repeated until all leaves of the most recent minimum spanning tree S′′
T are

terminal nodes [26].

3.4 Related Meta-Heuristic Approaches

Many meta-heuristic approaches for the Steiner tree problem and other related problems

have been evaluated, and we will only describe a few which we selected as examples for

a much larger set of existing approaches.

3.4.1 Hybrid Local Search for the Steiner Problem in Graphs

One approach using hybrid Local Search is described in [9].

An initial solution is created using the shortest path heuristic algorithm SPH we

described earlier.

The local search algorithm itself is based upon this construction heuristic and on the

concept of key-nodes. The algorithm either tries to introduce or remove key-nodes from
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the current solution GS . The set of key-nodes within the solution GS will be denoted,

as de�ned earlier, by K.

• In the �rst case, a non-terminal, non-key node v ∈ (GS \T )\K is selected from the

solution sub-graph. A new set of terminal nodes T ′ = {v} ∪K ∪ T is de�ned, and

a new solution G′
S is calculated using these terminal nodes and the construction

heuristic described earlier, with a random terminal node r ∈ T ′ as root.

• In the second case, a new set T ′ of terminal nodes is de�ned, but this time with

T ′ = (K \ {v}) ∪ T . As before, the construction heuristic we already described

constructs a new solution G′
S with T ′ as the set of terminal nodes, starting from a

random root r ∈ T ′. Now nodes of degree one within G′
S are iteratively removed.

In both cases, if G′
S has a lower total edge cost than the current solution GS , G

′
S becomes

the new current solution GS .

The results provided by this algorithm are considered to be competitive with other

approaches [9].

3.4.2 Hybrid GRASP with Perturbations for the Steiner Problem in Graphs

Similar to the previously described approach of a hybrid local search, a second, more

advanced approach for solving the Steiner problem on a weighted problem Graph G =
(V,E, c) with a given set of terminal nodes T ⊆ V was proposed in [26]. This approach is

based on the concept of a Greedy Randomized Adaptive Search Procedure (GRASP, �rst

presented in [11]), which is an iterative meta-heuristic approach based on a two-phase

algorithm: construction and local search, over multiple iterations, with the best solution

that was encountered being returned.

In this case, a multi-start approach is described, in which the construction phase of a

GRASP algorithm is replaced by the combination of several construction heuristics with

a weight perturbation strategy.

Initially, a valid solution is generated using a randomized greedy algorithm, which is

then used as a starting point for a local search. Candidate algorithms are the heuristics

SPH, Shortest-Path Minimum Spanning Tree and Pruned Minimum Spanning Tree which

were all described earlier in the section about heuristic and approximate approaches.

For local search the key-node based approach we described earlier is used, or a key-

path based neighborhood. This neighborhood is found by removal of key-paths, with

subsequent reconnection of the two components that the original solution is split into by

this action. The created solution becomes the new candidate solution if the new solution

is better than the previous candidate solution, or if it is equal but contains more terminal

nodes as extremities.

At each iteration, weight perturbations are applied to the problem graph to introduce

some noise into the original weights. The weight perturbation strategy incorporates

learning mechanisms associated with intensi�cation and diversi�cation strategies that

have their origin in the �eld of tabu search.

After the maximum number of iterations is reached, an improving strategy based on

path-relinking is applied to the best solution that was encountered. First, a pool of a
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number of di�erent elite solutions that was found during the search is retained from the

set of generated solutions. Then path-relinking is applied to this pool, thus generating a

new generation of candidate solutions. This is repeated until no further progress can be

made. Three strategies for path-relinking are described in [26]:

• Path-relinking by complementary moves uses symmetric di�erences of two candidate

solutions to determine a move that is to be applied to the initial solution.

• Path-relinking by weight penalization applies a weight perturbation on a pair of elite

solutions, and then applies the shortest-path-heuristic to the perturbed instance.

The local search procedure is then applied to the resulting solution.

• Adaptive hybrid path-relinking applies both schemes for combining every solution

in the pool with the best solution in the pool, and then applies the path-relinking

scheme with the lowest average computation time to all other pairs of solutions in

the pool, or path-relinking by weight penalization if computation times are equal.

3.4.3 Ant Colony Algorithms for Steiner Trees

Ant colony optimization algorithms are a class of algorithms that try to mimic the

complex cooperative patterns of social interaction present in real ant colonies. Ants

can communicate through pheromones, among other methods. This activity leads to an

emergent phenomenon known as swarm intelligence. Ant colony optimization algorithms

were originally introduced as a meta-heuristic for the traveling salesperson problem which

is known to be NP complete and path-based. They are considered to be e�ective methods

for various other combinatorial optimization problems, and to be easy to implement in

decentralized environments [27].

An approach to �nd Steiner trees on a given problem graph G = (V,E, c) with a set

of terminal nodes T ⊆ V is presented in [27]: Several ants cooperatively generate a tree,

with each separate branch being de�ned by the paths traveled by each ant. Initially, an

ant is placed at each terminal node. The ants move along an edge e ∈ E in each iteration.

e is determined using a stochastic method that is biased to draw the ant towards paths

traced out by any ant. Each ant keeps a tabu list of already visited nodes in order to

avoid cycles. When ants collide with each other or with the path of any other ant, they

are merged, and the two paths taken by the two ants form a sub-tree. As soon as all

ants become merged into a single entity, they form a Steiner tree.

On their test instances (which consisted of randomly generated graphs with costs from

one to ten, a number of nodes between �fty and one hundred, and up to two hundred

edges, all taken from [4]) using empirically �ne-tuned parameters with a maximum of

two thousand trials, their algorithm was able to reach the global best solution within ten

sample runs at least once for twelve of fourteen selected problem instances. This is taken

as an indication of the e�ectiveness of this approach [27].

16



3.4.4 Memetic Algorithms for the Vertex Biconnectivity Augmentation Prob-

lem

Memetic algorithms were introduced in [23] and are based on the concept of evolution,

represented by the retaining of a fairly large population of di�erent solutions, which is

then iteratively modi�ed and possibly improved using recombination (the extracting of

a child solution from two or more parent solutions), as they are in genetic algorithms.

Additionally, a Local Search meta heuristic is used for local improvements.

One approach for a memetic algorithm for solving the vertex biconnectivity problem

is described in [21].

This approach is based on the concept of block-cut graphs, �rst described in [1]. A

block is a maximal sub-graph of a problem instance graph G = (V,E) that is already

vertex biconnected. Two blocks have at most one node in common. These nodes shall be

called cut-points or cut-nodes. A block-cut-tree is a tree T = (VT , ET ) representing the

relations of blocks and cut-points within G. A block-node represents a block excluding

its cut-points. �Empty� block-nodes (blocks without nodes that are not cut-points) are

discarded and replaced by an edge connecting the two cut-points (this is di�erent from

the de�nition in [1]).

This tree can be augmented, and the resulting graph can be superimposed and back-

mapped on the original problem graph. A solution graph GAB = (VT , ET A) for aug-

mentation of the block-cut tree is constructed while respecting a few safe reductions:

self-loops in the augmentation edge set, edges connecting the same nodes in T and aug-

mentation edges connecting two cut-nodes adjacent to the same block-node are discarded,

and of multiple augmentation edges connecting the same nodes from the block-cut tree

only the edge with minimum weight is included. Then GAB is back-mapped onto the

original problem graph G.

Also relevant is the concept of covered block-cut tree edges. These are de�ned as a

block-cut tree's edge that are within a path represented by an augmentation edge.

A few additional reductions are introduced: augmentation edges containing only

edges covered by another augmentation edge are discarded, and augmentation edges

presenting the only possibility of connecting two block-cut-nodes of di�erent blocks are

�xed by moving them from EA to ET . The resulting cycles are transformed into new

block-nodes.

Initially, a solution for the initial population is created by starting with an empty

edge-set and iteratively adding random, non-redundant edges until all cut-nodes are

covered. The random selection is biased towards cheaper edges. Local improvement (in

this case being very similar to and having the same e�ect as puri�cation) is applied.

For recombination, an operator with high heritability was chosen. Edges common in

both parents are always adopted, and edges from the parents are added until all cut-nodes

are covered.

For mutation, an edge of a candidate solution is removed, and the two resulting

components are reconnected using edges di�erent from the removed one. Again, local

improvement is applied.

For testing, random instances created with a program called Zhu's generator2 as well

2Available at www.ads.tuwien.ac.at/research/NetworkDesign/Augmentation.
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as modi�ed graphs from TSPLib (which will be described later) were used. Empirical

results show that this approach scales well and is competitive with compared similar

approaches used for comparison.
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4 Solution Construction and Improvement Heuristics

This section makes heavy use of Dijkstra's shortest path algorithm and Kruskal's min-

imum spanning tree algorithm (both described [8]). Dijkstra's shortest path algorithm

was �rst presented in [10] and Kruskal's minimum spanning tree algorithm was �rst

presented in [20].

4.1 Solution Construction Overview

We see that the junction constraint can be satis�ed by �nding a Steiner tree in a graph

G = (V,E, c), with the set of junction nodes J and the set of customer nodes C (in other

words, all nodes except S) being terminal nodes.

Given a Steiner tree that is represented by the sub-graph T = (VT , ET ), we will, for
each sub-graph in G that describes the nodes of a path from a node c ∈ C2 to the �rst

junction node j ∈ J that is encountered, �nd a set of edges AUGc that turns this sub-

graph into a vertex biconnected sub-graph, provided that such a set exists. Actually, we

only need vertex biconnectivity between the �rst and last nodes of that path, but this is

necessarily given if all the nodes of the path are vertex biconnected. The heuristics we will

describe later will make use of that fact. We will call this process augmentation of that

path. If we then take the set of all the edges found in this way AUGedges =
⋃

i∈C2
AUGi

and the set of nodes AUGnodes containing all the nodes incident to an edge contained

in AUGedges to construct a sub-graph GS = (VT ∪ AUGnodes, ET ∪ AUGedges), GS

will obviously comply with both the junction and biconnectivity constraint. Since the

infrastructure is a connected sub-graph, requiring the nodes in C2 to be connected to the

same junction node in a vertex biconnected manner does not interfere with the generality

of this approach.

Algorithm 1 High-level overview of how solutions can be generated using Steiner trees
and augmentation

1: solution_graph := determine_steiner_tree(G, C, j ∈ J) #Create a Steiner tree with
a source node in the infrastructure#

2: for all sub-graphs Gsub = (V sub, Esub) representing paths in steiner_tree from j to
a node c2 ∈ C2, including c2 and j do

3: solution_graph := solution_graph ∪ determine_augmentation_graph(GSsub, G)
#add the nodes needed for augmentation to the solution.#

4: end for
5: return solution_graph
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ClgSExtra−15.ist with 377 edges (34 in solution) and 190 nodes (Solution)

Edges
Infrastructure

Solution
Junction Nodes

Customers (r==1)
Customers (r==2)

Figure 3: Example of a Steiner tree where all customer nodes requiring a redundant
connection have been augmented ClgSmall-I1-15

If we can construct a Steiner tree without using any geometrically crossing edges,

and then augment it as described without using any edges that cross either each other

or edges used in the initial Steiner tree sub-graph, we have constructed a sub-graph that

complies with all three constraints. This is one way of obtaining a valid solution for a

given problem instance, and it is the way the construction heuristics we will describe

later are designed to work.

It has to be noted that even if we use a Steiner tree using a set of edges with minimum

total weight and then augment the connections between the infrastructure and nodes in

C2 using a set of edges with minimum weight, this does not mean we have solved the

problem as a whole with a set of edges with minimum total weight. For certain problem

instances, this method might not �nd a solution, even though solutions may exist.

If both phases terminate successfully, however, the result is a valid solution sub-

graph GS on the problem graph G. However, the use of multiple heuristics might lead

to redundant edges in GS where they are not needed. Therefore, a process called puri�-

cation can be applied to the solution sub-graph GS . Also, a few other heuristic solution

improvement methods are available.

4.2 Handling of a Non-Crossing constraint

Dijkstra's shortest path algorithm and Kruskal's minimum spanning tree algorithm can

be modi�ed in order to be able to respect the non-crossing constraint. We will consider

the following four possibilities for doing this:

1. Cheapest edge: If two edges cross, only the cheaper edge is available for inclusion

in the solution sub-graph.

2. Most expensive edge: If two edges cross, only the more expensive edge is available
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for inclusion in the solution sub-graph.

3. Random edge: If two edges cross, a random edge of these two is made available for

inclusion in the solution sub-graph.

4. First edge: When an edge is added to a solution sub-graph, all edges crossed by

it are made unavailable for selection. In case all other edges that caused an edge

to become unavailable are removed from the solution, that edge becomes available

again for inclusion in the solution sub-graph.

The fourth modi�cation type ��rst edge� causes the e�ect of some algorithms we will

describe later to become dependent on the order in which certain elements are treated (for

example, the order in which nodes requiring a redundant connection to the infrastructure

are augmented).

4.3 Heuristics for Steiner Tree Construction

As described earlier, the heuristic construction algorithms used here work by �rst creating

a Steiner tree using the infrastructure nodes de�ned in VI and customer nodes de�ned

in C as terminal nodes, and then augmenting the nodes in C2, using heuristic methods

for either purpose.

4.3.1 Single Source Shortest Path Heuristic

This heuristic (which we shall call �single source shortest path� or �SSSP�) constructs a

tree T = (VT , ET ) representing the shortest paths from an infrastructure junction node

j ∈ J to all other nodes within the problem graph G = (V,E). During a purging phase
for each node c ∈ C the path in T connecting the source to c is taken, and added to a

solution graph GS , having all the properties of a Steiner tree on the original graph G

with all nodes in C as terminal nodes.
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Original problem graph:
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J : junction node, C: customer node, S: possible Steiner node

Figure 4: Example for the single source shortest path and minimum spanning tree heuris-
tics: The initial problem graph, the shortest path / minimum spanning tree and the
resulting Steiner tree

This Steiner tree heuristic relies on the use of Dijkstra's shortest path algorithm,

and is very similar to the shortest-path-heuristic approach presented in [28], except for

the fact that in our case the terminal nodes are connected to the root in no particular

(possibly even random) order, and the root node is always a junction node.

ClgSExtra−15.ist with 377 edges (26 in solution) and 190 nodes (Solution)

Edges
Infrastructure

Solution
Junction Nodes

Customers (r==1)
Customers (r==2)

Figure 5: Example of the e�ect of the SSSP Steiner tree heuristic on real-world instance
ClgSmall-I1-15
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4.3.2 Minimum Spanning Tree Heuristic

This very greedy Steiner tree heuristic (which we shall refer to as �minimum spanning

tree� or �MST�) is based on Kruskal's minimum spanning tree algorithm as described in

[8]. It works very in a very similar way to the single source shortest path tree heuristic.

The major di�erence is that in this heuristic, the minimum spanning tree is used instead

of the shortest path tree, and that the set of edges provided by Kruskal's algorithm has to

be converted to a tree with an infrastructure junction node at its source. This is done by

depth-�rst search over the problem graph, traversing only edges present in the minimum

spanning tree edge set. The purging phase works exactly like it does in the single source

shortest path heuristic.

ClgSExtra−15.ist with 377 edges (39 in solution) and 190 nodes (Solution)

Edges
Infrastructure

Solution
Junction Nodes

Customers (r==1)
Customers (r==2)

Figure 6: Example of the e�ect of the MST Steiner tree heuristic on real-world instance
ClgSmall04

It is obvious that during construction of the minimum spanning tree a lot of nodes

might have to be connected that will no longer be in the solution after purging. One

approach for handling this e�ect is presented in [26]. However, in our case this heuristic

serves more as a method to diversify the set of solutions we can produce, so we focused

on other construction heuristics instead.

4.3.3 Minimum Spanning Tree using All-Pairs-Shortest Path Meta-Edges

Another heuristic algorithm for generating Steiner trees is using the shortest paths be-

tween two nodes. This can be done using the Floyd-Warshall algorithm (as described,

for example, in [8]), but since in most real-world instances the ratio of terminal nodes to

possible Steiner nodes is rather low, and we really only need the shortest paths between

terminal nodes for the construction of a Steiner tree, we decided to use Dijkstra's algo-

rithm starting from each terminal node. Thus, access to the shortest paths between each

pair of terminal nodes is possible.
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We will describe three variants of algorithms that make use of this set of shortest

paths between terminal nodes:

All-Pairs-Shortest-Path (APSP) This example of such an algorithm sorts the dis-

tances between terminal nodes given by the shortest paths. It then calculates the

minimum spanning tree (using Kruskal's algorithm) on these distances, and returns

the edges from all paths corresponding to the entries that were selected by the min-

imum spanning tree algorithm. This edge set is then converted to a tree with a

junction node as the root, and thus a Steiner tree is constructed.

All-Pairs-Shortest-Path-extended (APSPe) This algorithm is another example for

the use of a minimum spanning tree over a set of edges acquired using an all-pairs-

shortest-path algorithm. It uses the set of edges that are contained by any of the

paths determined by the all-pairs-shortest-path phase, and uses that set of edges

to determine a minimum spanning tree on the problem graph.

All-Pairs-Shortest-Path-adapting (APSPx) This third example of such an algorithm

is very similar to the variant we described �rst (APSP). It is identical except for

the fact that it takes into account that some of the shortest paths might share

edges. When a path P is added to the minimum spanning tree, each other path R

in the queue is checked whether or not it shares any edges with P , and the distance

value for R is reduced accordingly. This algorithm can also be said to be an

implementation of the shortest path minimum spanning tree algorithm presented,

for example, in [26].

ClgSExtra−15.ist with 377 edges (23 in solution) and 190 nodes (Solution)

Edges
Infrastructure

Solution
Junction Nodes

Customers (r==1)
Customers (r==2)

Figure 7: Example of the e�ect of the APSPx Steiner tree heuristic on real-world instance
ClgSmall-I1-15
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Algorithm 2 Outline of the APSPx algorithm for heuristic Steiner tree construction

1: solution_graph GS = (VS , ES)
2: solution_graph := (∅, ∅)
3: determine shortest path tree on problem graph G = (V,E) for each terminal node

and a infrastructure junction node
4: sort shortest pairs of nodes according to distance into queue Q
5: while (Q 6= ∅) do
6: g := get_and_delete_pair_with_least_distance(Q)
7: P := get_shortest_pair_path(g)
8: if P contains a terminal node that was not yet added with another path then
9: add P to the solution graph GS

10: for all pairs h still in the queue do
11: R := get_shortest_pair_path(h)
12: for all edges e ∈ P ∩R that have not yet been marked do
13: set_distance(h, get_distance(h) - get_cost(e)) # Adapt the cost of the

path. #
14: mark e
15: end for
16: end for
17: end if
18: end while
19: return the solution graph

4.4 Heuristic Steiner Tree Augmentation

Once we have determined a (possibly non-crossing) solution-sub-graph GS = (VS , ES),
currently containing a Steiner tree T = (VT , ET ) on the given problem graph G =
(V,E, c), we still need to establish redundancy on the connections to all customer nodes

c2 ∈ C2 that require a redundant connection. We shall now present two approaches, both

based on augmentation by shortest path.

4.4.1 Augmentation by Shortest Path (AugSP)

A simple method (we shall call it AugSP , abbreviating �Augmentation by Shortest Path�)

to do this is to search for the shortest path from any infrastructure junction node j ∈ J

to c2 for each c2 ∈ C2, using Dijkstra's algorithm, respecting non-crossing constraints if

needed, and ignoring all nodes n ∈ VP \ {j, c2} (where P = (VP , EP ) is the sub-graph
that represents the current path in T that connects c2 to the infrastructure) in order to

obtain a path to c2 that is node-disjunct in respect to the current connection, if such a

path exists. These paths are then added to the solution graph GS .

However, this approach ignores the fact that T already contains edges beside the

ones contained in P that can be used for a redundant connection to c2. The use of such

edges does not cause any additional cost to the solution, and might provide a shorter

redundant path from j to c2.
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4.4.2 Augmentation by Shortest Path with Pseudo-Infrastructure Extension

(AugSPe)

A variation of the AugSP algorithm of this algorithm (we shall call it AugSPe, short for

�Augmentation by Shortest Path extended�), for each node c2 ∈ C2, introduces a new

set of edges EA that connects all nodes in VS \ V P ∪ Vindirect to j, and sets the weight

of each edge eA ∈ EA to zero, where Vindirect denotes all nodes that are connected to

the infrastructure via a path in T containing a node in VP . The nodes in Vindirect must

not be connected with such a �free� edge because of the fact that these edges would lead

the algorithm into building a redundant connection that really passes the same node

twice. The algorithm then, as before, uses Dijkstra's algorithm to �nd a new, possibly

non-crossing, redundant path to c2, and adds the resulting path to the solution graph

GS .
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J : junction node, C1: customer node requiring a single connection, C2: customer node
requiring a redundant connection, S: possible Steiner node

Figure 8: Example of a misleading direct connection during AugSPe augmentation
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ClgSExtra−15.ist with 377 edges (35 in solution) and 190 nodes (Solution)

Edges
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Solution
Junction Nodes
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Customers (r==2)

Figure 9: Example of an AugSP augmented Steiner tree (constructed using APSPx) on
the real-world instance ClgSmall-I1-15

For both variants, the order in which nodes from the set C2 are chosen might be

critical for �nding a solution if the non-crossing constraint is active and the fourth option

��rst edge� for modi�cation of Dijkstra's algorithm is used. When dealing with more than

two nodes in C2 and a non-crossing constraint respected using ��rst edge�, more and

more edges become crossed and thus unavailable with each added augmentation path.

The addition of an augmentation path for a node ca ∈ C2 might make the augmentation

of another node cb ∈ C2 impossible at some point. In some cases, we can overcome this

problem by permuting the order in which the nodes are augmented. Therefore, these

algorithms might take account trying permutations of the elements of C2, in these cases,

before deeming a node or solution unaugmentable.
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Algorithm 3 Heuristic Steiner Tree Augmentation using the AugSPe Algorithm

1: GS = (VS , ES) := T (VT , ET )
2: for all nodes c2 ∈ C2 do
3: P = (VP , EP )
4: P := get_path(c2, J , T ) #Get the current path from c2 to the infrastruc-

ture#
5: j := infrastructure_node(P )
6: for all nodes vs ∈ (VS \ (VP ∪ Vindirect)) do
7: EA := EA∪(j, vS , 0) #Add a �free� edge from j to vS#
8: end for
9: GS := GS ∪ �nd_shortest_path(c2, j, (G∪EA)\ (P \{c2, j})) #�nd the new path

using also the edges from EA, ignoring the nodes from the current path, possibly
non-crossing#

10: if augmentation of c2 was not possible due to an active and violated non-crossing
constraint then

11: if not all possible permutations have been tried then
12: start anew, using a di�erent permutation
13: else
14: mark augmentation as failed
15: end if
16: end if
17: end for

ClgSExtra−15.ist with 377 edges (35 in solution) and 190 nodes (Solution)

Edges
Infrastructure

Solution
Junction Nodes

Customers (r==1)
Customers (r==2)

Figure 10: Example of an AugSPe augmented Steiner tree (constructed using APSPx)
on the real-world instance ClgSmall-I1-15

4.5 Solution Checking and Puri�cation

4.5.1 Redundancy-Search Solution Validity Check

One possibility for a solution validity checking algorithm we will describe is validity

checking by �nding all paths in a solution sub-graph GS = (VS , ES) that connects the
infrastructure I = (VI , EI) of a problem graph G = (V,E) with itself, following a modi�ed
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depth-�rst-search algorithm. First, if the non-crossing-constraint is active, the solution

is tested for crossing edges. If the given solution passes this test, any node c2 ∈ C2

encountered on a cycle without repeated vertices within the solution graph GS connect-

ing the infrastructure with itself is marked as being redundantly connected, and also,

during the same search sweep, any node c ∈ C encountered as being connected to the

infrastructure by solution edges is marked as being connected. After the sweep, if all

the nodes c ∈ C are marked as connected, and all nodes c2 ∈ C2 are marked as being

redundantly connected, the solution represented by the solution graph is deemed valid.

Finding a cycle without repeated vertices in the solution graph GS that leads from

an infrastructure junction node to an infrastructure junction node shows that all nodes

on this cycle are either infrastructure nodes or vertex redundantly connected to the

infrastructure. We can show this easily by following the cycle from one of the junction

nodes it connects, up to the node v ∈ V \ VI in question. This proves one path P

exists to the infrastructure within GS , and thus that v is connected to it. Because of

the de�nition of a cycle without repeated vertices, if we continue following it, we will

reach an infrastructure junction node, without ever visiting any node vp ∈ P again. This

shows that a second path to the infrastructure must exist from v, and it thus complies

with the vertex redundancy constraint.

Algorithm 4 Redundancy-Search-Based Solution Validity Check Algorithm

1: if (crossing_edges_considered ∧ �nd_crossing_edges(ES)) #Check if the non-
crossing constraint is met# then

2: return false
3: end
4: end if
5: connected_nodes := ∅
6: redundantly_connected_nodes := ∅
7: mark_nodes(any j ∈ J , ∅) #Perform the actual redundancy-search#
8: if ((C ⊆ connected_nodes ) ∧ ( C2 ⊆ redundantly_connected_nodes))

#Check if the constraints are met for all customer nodes# then
9: return true
10: else
11: return false
12: end if

redundantly_connected_nodes and connected_nodes are to be considered
global variables
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Algorithm 5 Redundancy-Search Algorithm

1: procedure mark_nodes(v ∈ V , path_nodes)

2: path_nodes = path_nodes ∪{v}
3: connected_nodes := connected_nodes ∪ {v} #We reached this node, it is

connected to the infrastructure#
4: return
5: for all nodes w incident to v in GS with w /∈ path_nodes do
6: if w ∈ J #We found a path from the infrastructure to itself ... # then
7: redundantly_connected_nodes := redun-

dantly_connected_nodes ∪ path_nodes # ... mark all nodes on it
as redundantly connected#

8: else
9: mark_nodes(w, path_nodes) # ... so use it to continue searching#
10: end if
11: end for
12: path_nodes := path_nodes\{v} #This node might be contained in another path,

remove it from the list#

redundantly_connected_nodes and connected_nodes are to be considered
global variables

4.5.2 Path-Node Removal Solution Validity Check

An alternative solution validity check variant is a path-node removal based validity check.

It makes use of the fact that the vertex biconnectivity constraint can be shown to be

equivalent to an alternative formulation:

A graph G = (V,E) has vertex biconnectivity if for any node v ∈ V , the graph G′

representing the original graph G \ {v} representing G with v and all its incident edges

removed, is connected. This is a formulation that directly results from using the vertex

version of Menger's theorem (as stated in 1928) using a vertex connectivity requirement

of 2. Menger's theorem in the vertex version states that if there exists no set of k − 1
nodes within a graph which, when removed, causes two nodes to be disconnected, then

the graph has k-connectivity. A proof for Menger's theorem can be found in [5].

This variant �rst checks if the non-crossing constraint is active, and if so, if it is

met. If the solution graph passes this preliminary test, a depth-�rst-search within the

solution graph is performed, and all encountered nodes are marked as connected. Also,

the resulting depth-�rst-search tree T is recorded. If all nodes c ∈ C are marked as

connected, the solution is checked for compliance with the redundancy criterion by the

following step:

For each node c2 ∈ C2, the path within the depth-�rst-search tree connecting c2 to the

infrastructure is examined by checking each graph G′
S (where G′

S represents GS with one

node is removed from the path in the depth-�rst-search tree T between the infrastructure

and c2) for an existing alternate connection between the infrastructure and c2.

If we �nd such an alternate connection for each node c2 ∈ C2, we have shown that

they are all redundantly connected: the �rst path P = (VP , EP ) that connects c2 to

the infrastructure (excluding c2 itself and the junction node j ∈ J it connects to) is the

one which we found using the depth-�rst-search tree T . Its existence shows that we can

remove all nodes vr ∈ S \VP ) and all edges incident to them from the solution graph GS
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(resulting in a graph G′
S), and still have a connection from c2 to a junction node: the

original path P , which is, of course, still completely included in G′
S , and connects c2 to

j.

So what remains to be shown in order to prove that c2 is connected to the infrastruc-

ture in a vertex redundant way, is that we can remove each single node from VP from GS

and still have a connection to the infrastructure. The algorithm does this by temporarily

removing each node vp ∈ VP and all incident edges from GS , and searching the remaining

solution graph G′′
S for a connection from c2 to a node j ∈ J . If such a connection exists

in G′′
S , then c2 must have a vertex redundant connection to the infrastructure, and the

vertex redundancy constraint is met for that node.

Algorithm 6 Path-Node-Removal Validity Check

1: if (crossing_edges_considered ∧ �nd_crossing_edges(ES)) #Check if the non-
crossing constraint is met# then

2: return false
3: end
4: end if
5: DFS_tree = (VT , ET )
6: DFS_tree := depth-�rst-search(j ∈ J , GS) # Get a depth-�rst-search tree starting

from the infrastructure. #
7: if (¬(C ⊆ VT )) # Check if all the terminal nodes are within the solution. # then
8: return false
9: end
10: end if
11: for all paths P = (VP , EP ) in DFS_tree that lead to a node c2 ∈ C2 do
12: for all nodes v ∈ VP except for c2 and j do
13: if (¬connection_exists(c2, v, GS \ {v})) # No alternative connection, the so-

lution is invalid. # then
14: return false
15: end
16: end if
17: end for
18: end for
19: return true # If we reach this, we know all constraints are met and the solution is

valid. #

4.5.3 Solution Puri�cation

Since the heuristic vertex redundancy augmentation might use a di�erent base algorithm

(for example, constructing a Steiner tree using a minimum spanning tree algorithm and

then augmenting it using a shortest path algorithm), redundancy might be introduced

where it is not required. Purifying is the process of �nding such unneeded redundancy

and removing it to the point where the removal of one further element of the solution

graph makes the solution invalid.
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ClgSExtra−15.ist with 377 edges (34 in solution) and 190 nodes (Solution)

Edges
Infrastructure

Solution
Junction Nodes

Customers (r==1)
Customers (r==2)

Figure 11: Example of a puri�ed AugSPe augmented Steiner tree (constructed using
APSPx) on the real-world instance ClgSmall-I1-15

For our purposes, this was done using validity checking algorithms. For a solution sub-

graph GS = (VS , ES) of a problem graph G = (V,E, c), each edge is removed if its removal
does not cause the solution to no longer comply with one of the given problem constraints.

The order in which the edges are attempted to be removed is usually descending cost

order, but other strategies might also be useful.

Algorithm 7 Typical purifying algorithm

1: queue := ES

2: queue = order_by_descending_cost(queue) #Sort the edges by cost#
3: while (queue 6= ∅) do
4: e := get_and_delete_max_cost_edge(queue) #Get the most expensive edge in

the queue...#
5: remove_edge_from_solution(e, S) #...and remove it#
6: if (¬check_solution_validity(S)) #If the solution is no longer valid...# then
7: add_edge_to_solution(e, S) #...put the edge back in the solution#
8: end if
9: end while

4.6 Heuristic Solution Improvement Methods

Puri�cation can remove some unnecessary edges, and thus cost from a solution, but

the various algorithms and the nature of the two-phase construction process can lead to

situations where a better solution can be found without requiring too much computational

e�ort. Therefore, two algorithms to improve solution cost in such cases will be presented.

4.6.1 Key-path Replacement

In some cases our heuristics might end up with a solution on a weighted problem graph

G = (V,E, c) that contains unneeded cost in key-paths (as we already de�ned, these are
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paths between key-nodes that cross only Steiner nodes of degree two in the solution graph

GS = (VS , ES)). If we were using, for example, the MST or APSPe heuristics during

Steiner tree construction, nodes that never made it into the solution might have been

included during building of a minimum spanning tree, and thus the selection of edges

might have been made in order to be able to connect these nodes, introducing additional

cost to our solution. This additional cost can often not be removed during purifying,

since the edges in question might be necessary for the validity of the solution.
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Figure 12: Example of an improvement by key-path Replacement

This additional cost can be removed by �nding each such key-path P = (VP , EP ) be-
tween solution nodes va ∈ VS and vb ∈ VS within the solution and replacing the key-path

with the shortest possible path while ignoring solution nodes in order to avoid breaking

redundancy. Puri�ed solutions consist entirely of key-paths within GS , so replacing only

these paths is su�cient to cover the whole solution sub-graph GS .

Algorithm 8 Key-Path Replacement Algorithm

1: boundary_nodes := C ∪ {vS ∈ VS |degree(vS) > 2}∪ any j ∈ (J ∩GS)
2: for all nodes v ∈ boundary_nodes do
3: for all unmarked nodes w ∈ boundary_nodes that are directly connected in GS

via path P (VP , EP ) do
4: remove nodes in VP \ {w, v} and all incident edges from GS

5: GS = GS∪ �nd_shortest_path(w, v,G \ (VS \ {w, v})
6: end for
7: mark v
8: end for
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4.6.2 Terminal-Node Reconnection

In many real-life problem instances good solutions can be constructed by creating cycles

that include many of the nodes requiring redundant connections and a junction node.

Since these cycles can contain a lot of edges and also a junction node, connecting terminal

nodes that do not require a redundant connection to a node of such a cycle instead of

directly to a junction node might reduce the total solution cost.

The construction heuristics described here are not aimed at creating such cycles, and

initially connect all terminal nodes by creating a Steiner tree, and then augment that tree

to provide redundancy, so the possibility of exploiting augmentation edges for cheaper

connection of nodes c1 ∈ C1 is never explored during construction.

Terminal-Node-Reconnection tries to do this by reconnecting nodes in C1. The �rst

step is iteratively removing all connections from a node within the solution with a degree

higher than two within the solution graph GS = (VS , ES), to nodes in C1 with a degree

of one within GS . Then direct edges EA from a junction node j ∈ J with zero cost are

introduced to all solution nodes except for the nodes in C1. Finally a shortest path tree

is calculated using Dijkstra's algorithm, and j as the source, and the paths to all nodes

in C1 are added to the solution.
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Figure 13: Example of an improvement by Terminal-Node Reconnection
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5 Meta-Heuristic Approaches

5.1 Local Search and Simulated Annealing

5.1.1 Local Search

Local search has been applied as an incomplete algorithm to many computationally hard

problems. It generally involves iteratively moving from one solution to a neighborhood,

in order to �nd a better solution, starting from an initial candidate solution. [2]

In our case, a solution is generated on the problem graph G = (V,E, c) using the

heuristic approaches we described earlier, and uses one of three move-operators that will

be speci�ed later. One of the three operators is chosen at random, and applied to the

candidate solution. As soon as a better solution is found, this new solution becomes the

candidate solution.

Algorithm 9 Basic Overview of a Local Search Algorithm

1: GS = (VS , ES)
2: GS := heuristic_solution_construction(G)
3: candidate_solution := G
4: while the maximum number of generations is not reached (or some other end con-

dition is not met) do
5: new_solution := move_with_a_random_operator(candidate_solution)
6: if (cost(new_solution) < cost(candidate_solution)) then
7: candidate_solution := new_solution
8: end if
9: end while

5.1.2 Simulated Annealing

Simulated Annealing was �rst introduced by [19] and, independently, two years later by

[6]. It mimics annealing in metallurgy, a process involving a controlled cooling process

of heated metals which leads to better development of crystals inside the material and

thus increasing its quality.

Simulated Annealing generally, and also in our speci�c case, is very similar to local

search, but has one crucial di�erence:

Instead of only accepting better solutions as the new candidate solution, it also accepts

worse solutions with a certain probability, called the temperature T . This feature has

been introduced in order to overcome local minima. As the iterations progresses, T

decreases.

5.1.3 Neighborhoods

For Local Search and Simulated Annealing we need some way to randomly modify our

solution without making it invalid. For this purpose, we will describe three algorithms:

• Single Migration Move (SMMove)

• Single Degree Move (SDGMove)

• Single Connecting Move (SCMove)
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Each of these algorithms takes a valid solution graph GS = (VS , ES) on a given problem

graph G = (V,E, c) and transforms it into a similar, but randomly modi�ed solution.

They are designed to complement each other, with one of these algorithms being chosen

randomly during each Local Search or Simulated Annealing iteration. Since they are all

based on Dijkstra's algorithm, they can attempt to create solutions complying with a

non-crossing constraint using one of the four modi�cations described earlier. It has to be

noted, though, that in this case the order in which the nodes a�ected by these algorithms

are chosen plays an important part in determining the outcome if the fourth modi�cation

referred to as ��rst edge� is to be used.

SMMove This move-operator searches for a key-path P = (VP , EP ) (in other words,

a path where all the nodes except the endpoints have a degree equal to two within the

solution graph) from a random node within the solution graph GS , and replaces it by the

shortest path (ignoring all solution nodes except for the endpoints of P ) using Dijkstra's

algorithm. This operator serves to improve key-paths within the solution, but does not

in�uence the degree within GS of nodes with an initial degree larger than two.

SDGMove This move-operator takes a random key-node v ∈ (C1∪{vS ∈ VS |degree(vS) >

2}), looks for all direct neighbors N (nodes that are connected to v by a key-path), with

n /∈ C2 and n /∈ J . It determines a depth-�rst search-tree, starting at n and not searching

beyond any node j ∈ J , and marks all nodes R ⊆ V that are in the predecessor path to

a C2 node. Then it removes all key-paths to nodes n ∈ (N \R) originating from v, and

attaches n to a random node w ∈ GS with w /∈ I and w /∈ C2 and connected to v by a

key-path within GS using the shortest possible path and ignoring nodes already in the

solution. The restriction regarding R is important for conserving redundant paths for

nodes in C2: one path to each node in C2 is conserved, the other one modi�ed. Finally,

if v ∈ C or not all connections could be moved (for example, because a direct neighbor

was a node in C2), v is itself attached to w by the algorithm (to preserve redundant

connections, if present). This operator serves to move the �junction� nodes within GS

around.

SCMove This move-operator is very similar to SDGMove. It also takes a node v ∈
(C1 ∪ {vS ∈ VS |degree(vS) > 2}), marks all depth-�rst predecessors R of nodes in C2,

searches for all key-paths to a node n, with n /∈ C2,n /∈ J , n /∈ R and originating from v,

and removes them. However, it then attaches the direct neighbors to a neighboring node

w ∈ G with w /∈ I with the new key-node w /∈ GS , meaning it is chosen from outside

of the original solution. Again, the algorithm will also attach v to w if necessary. This

operator serves to also explore the possibility of including nodes that were not in the

original solution in such a way that their degree within GS is larger than 2.
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Original solution graph:
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Figure 14: Illustration of each of the three move-operators SMMove, SDGMove and
SCMove

SCMove and SDGMove have a similar intention (of diversifying solutions by modify-

ing the set of key-nodes within the solution) as the Local Search approach described in [9].

However, our approach does not employ construction heuristics for the entire problem,

and instead operates directly on a given solution sub-graph GS . The reason for choosing

this approach is that we are not trying to solve only the Steiner tree problem, but also

trying to augment and purify our solution-sub-graphs, thus resulting in a more complex

problem with our heuristic construction algorithms having a longer running time than

just the time needed for building a minimum spanning tree.

The intuition in our approach is not the one of adding or removing key-nodes but

of moving the key-nodes around. They are, however, still able to add and remove key-

nodes: When a key-node is moved by one of these two operators, it is possible that the

key-paths attached to it are moved to another node which is already a key-node. Thus,

the resulting solution contains one less key node than the original solution. An additional

key-node can be created when the operator is not able to reconnect all key-paths of a

target key-node, since some of the original key-paths remain connected to the original

key-node, and some are transferred to the new key-node.

These move-operators have each have very speci�c e�ects, which is why we have also

considered using more than one of these operators at a time, which we call multi−move.
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Instead of just applying one of these operators, a random representative of these operators

is applied until a better or equal solution is found, or a de�nable number of operator

applications is reached.

5.2 Variable Neighborhood Descent and Variable Neighborhood Search

5.2.1 Variable Neighborhood Descent

Variable Neighborhood Descent is a method that searches various neighborhoods for an

improvement of an initial candidate solution. In our case, an initial candidate solution

GS = (VS , ES) is created on a problem graph G = (V,E, c) using the heuristic algorithms
described earlier. A �rst neighborhood of GS is then explored, and each solution that

improves upon the candidate solution becomes, in turn, the new candidate solution. Once

the search through this neighborhood yields no improvements, other neighborhoods are

explored, one after the other. As soon as an improvement upon the candidate solution

is found, the �rst neighborhood is, explored again, until no neighborhood includes any

solution better than the current candidate solution. Optionally, the algorithm �nds the

best neighbor in the neighborhood of the current candidate solution, or any neighbor

better than the current candidate solution in the neighborhood.

In our case, the neighborhoods used are:

1. Junction-Move Neighborhood (described later)

2. Direct-Path Replacement

3. Terminal-Node Reconnection

It has to be noted that the last two neighborhoods actually only contain at most one

neighbor for each solution.

Algorithm 10 Basic Overview over a Variable Neighborhood Descent Algorithm

1: GS = (VS , ES)
2: GS := get_heuristic_solution(G = (V,E))
3: while the number of maximum iterations is not reached do
4: repeat
5: get_move_junction_neighborhood_improvement(GS) # Gets a better/the

best solution from the Junction-Move neighborhood #
6: until the Junction-Move neighborhood contains no solution that is better than

the current candidate solution
7: G′

S := direct_path_replacement(GS) # Try key-path replacement #
8: if (¬(G′

S < GS)) # If this doesn't improve our solution... # then
9: GS ' := terminal_node_reconnection(GS) # ...try terminal node reconnection.

#
10: if (¬(G′

S < GS)) # If this doesn't help either... # then
11: break # ...we stop. #
12: end if
13: end if
14: := G′

S# # We found a better solution, use it as a candidate solution from now on.
#

15: end while
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5.2.2 Variable Neighborhood Search

Variable Neighborhood Search is a meta-heuristic method that uses neighborhood-changes

systematically within a Local Search. [22]

In our case, variable neighborhood search uses Variable Neighborhood Descent, as

described in the last section, within a local search. An initial candidate solution GS =
(VS , ES) on a problem graph G = (V,E, c) is created using the heuristic methods de-

scribed earlier. Variable Neighborhood Descent is then applied to this solution sub-graph,

possibly resulting in an improvement in GS . Once it no longer yields any improvement,

GS is randomly modi�ed using one of the three move-operators we described earlier or

a multi-move. This action is generally called shaking. Variable Neighborhood Descent

then is applied again. This process of shaking GS and applying Variable Neighborhood

Descent to it is repeated, with the di�erence that the amount of times GS is shaken each

time (in other words, how often a random move-operator is applied to it sequentially)

is steadily increased, up to a maximum. When the maximum is reached, the number of

shakes to apply to GS is set to one again, and the process starts anew. This cycle is

performed until a maximum number of iterations is reached.

Algorithm 11 An Overview over a Basic Variable Neighborhood Search Algorithm

1: GS = (VS , ES)
2: GS = get_heuristic_solution(G(V,E))
3: num_shakes = 1
4: while the maximum number of iterations is not reached do
5: GS = variable_neighborhood_descent(GS)
6: shake(GS , num_shakes)
7: num_shakes = (num_shakes) mod (max_num_shakes) + 1
8: end while

5.2.3 Key-Node-Move Neighborhood

This neighborhood algorithm (which we shall call MNOpt) explores a neighborhood of

a solution sub-graph GS = (VS , ES) on a given problem graph G = (V,E, c). This

neighborhood is de�ned by moving connections from one node within the solution to

another node, similar to the approach in the move-operators SDGMove and SCMove,

but with the di�erence that the possible moves are explored systematically.

Each node v within the solution sub-graph GS , v ∈ C1 ∪ {vS ∈ VS |degree(vS) > 2},
is examined for key-path neighbors n (nodes that are connected to v by a key-path),

with n /∈ C2, n /∈ R (R being the set of all neighbors that are predecessors of C2 nodes

in a depth-�rst search tree starting from v and not searching beyond any node j ∈ J)

and n /∈ J . The restriction regarding R is, as with SCMove and SDGMove, important to

conserve vertex-redundant connections to nodes in C2. Then the algorithm removes all

key-paths originating from v, and systematically tries to attach n to all nodes w ∈ GS

with w /∈ I and w /∈ C2 and with w contained in a key-path to v within GS , and all

nodes u ∈ V \ VS connected to v by an edge e ∈ E. It uses the shortest possible path

and ignores nodes already in the solution. Finally, as with SDGMove and SCMove, if

v ∈ C or not all connections could be moved (for example, because a direct neighbor was

a node in C2), v is itself attached to w by the algorithm in order to preserve redundant
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connections.

The algorithm can be set to return any solution encountered during this process that

is better than the original solution, or it can be set to try all possible moves and in the

end return the best solution.

For this neighborhood, the order in which the direct neighbors are reattached plays

an important role if a non-crossing constraint is present and the fourth algorithm modi-

�cation ��rst edge� for supporting a non-crossing constraint is to be used.

5.3 Solution Merging

In order to �nd a good solution for a given problem graph G = (V,E), it might be helpful
to not only apply one heuristic to G, which might be limited to one �view� or �focus� of

the problem because of the algorithms used in it (for example, minimum spanning tree

or shortest path), but to try various heuristics and then use the best features of each to

construct a solution that is signi�cantly better than any single original solution.

We will describe a method of merging a set of solutions into one sub-graph GM , and

then extracting a valid solution sub-graph GS = (VS , ES) for the problem graph G with

VS ⊆ VM and ES ⊆ EM .
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J : junction node, C1: customer node requiring a single connection, C2: customer node
requiring a redundant connection, S: possible Steiner node

Edge weights have been omitted to increase legibility.

Figure 15: Illustration of the merging of two solutions and the extraction of a child
solution
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5.3.1 Merging Solutions

For purposes of the approaches described in this thesis, it is su�cient to think of a solution

as a set of edges (and subsequently, the nodes that are covered by these edges). Merging

two solution sub-graphs of a problem instance G(V,E, c), or a solution sub-graph with

any sub-graph on G to obtain a third sub-graph is, for our purposes, simply a matter of

joining the edge and node sets of the two sub-graphs.

To avoid con�icts with a non-crossing constraint, when two sub-graphsGA = (VA, EA)and
GB = (VB, EB) are merged, any edge e ∈ EA that crosses an edge f ∈ EB causes the

removal of f , making one sub-graph �dominant� over the other, and thus the order of

addition of sub-graphs relevant.

5.3.2 Extracting a Child Solution Using Puri�cation

A sub-graph GM = (VM , EM ) consisting of merged solution sub-graphs of a problem

graph G = (V,E, c), already is a valid solution sub-graph since each of the underlying

sub-graphs is, in itself a valid solution, and at least one of them dominated and is therefore

fully included in GM . However, if the solution sub-graphs were not all exactly the same,

there might be unneeded edges in GM . This is a problem that we have faced before,

during heuristic solution construction, and it can be solved by purifying. A purifying

algorithm is applied to GM , and the resulting solution is returned.

5.3.3 Extracting a Child Solution Using Exact Methods

Another possibility to view the generation of a child solution from a sub-graph GM =
(VM , EM ) consisting of merged solution sub-graphs of a problem graph G = (V,E, c) is
to look at GM as a problem instance by itself, using the cost function c from G. Applying

one of the heuristic methods used during the construction of a solution sub-graph that

was included in GM would obviously not amount to much. However, since GM is itself a

sub-graph of the original problem, and might be smaller than G in terms of the number of

edges, using an exact approach on GM might terminate sooner than using the same exact

approach on G itself. We obviously don't solve the original problem in an exact way,

because edges that might be included in an exact solution for G might not be included in

GM , but we will get a cost-minimal solution using only edges in EM , and thus originating

from our original heuristic solution sub-graphs. A further possibility to further reduce

the computation e�ort for the exact solver would be to force it to include edges that are

contained in every solution in the merged set.

5.3.4 Obtaining Various Solution Sub-Graphs for Merging

Many variants of obtaining candidate solutions for merging come to mind. Of these, we

have selected three, which we have also implemented and experimented with (as will be

described later):

• Using di�erent combinations of heuristics to construct various solutions on the same

problem graph
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• Collecting solutions at di�erent stages of an iterative or generational meta-heuristic

approach

• Generating solutions for multiple problem graphs that are all derived from the

original problem graph G by randomly modifying c.
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6 Implementation

An implementation of the algorithms listed in this thesis was written in C++, on and

for a Linux-based environment.

6.1 Frameworks and Used Components

The algorithms described earlier were implemented using a series of external resources

and frameworks, namely LEDA, EALib and some of Daniel Wagner's NQCC components,

which in turn make use of CPLEX and LEDA.

LEDA LEDA is a commercial C++ class library for e�cient data types and algorithms

by Algorithmic Solutions Software G.m.b.H. [15]

It is used as the main library for graph-related data structures in the implementation

of the employed exact algorithms and problem instance classes, and also in the implemen-

tation of the algorithms listed in this thesis. Especially important are the data structures

for hash-arrays, sets, ordered lists, priority queues as well as, of course, the constructs

for graphs, graph nodes and graph edges.

EALib EALib 2.0 is a class library designed at the department for Algorithms and

Computer Graphics. It provides base classes and algorithm implementations for meta-

heuristic approaches [30]. It is used in the implementations of all meta-heuristics except

for solution sub-graph merging with exact solution extraction. The components related

to Local Search, Simulated Annealing, Variable Neighborhood Descend and Variable

Neighborhood Search are used (that includes algorithm classes as well as chromosome

classes).

NQCC Components NQCC is the suite for solving the OPT problem and related

heuristic and meta-heuristic approaches into which the implementation of the algorithms

described in this thesis are integrated. The framework we used is the same that was

used in [29]. The algorithms make use of some existing components of that framework,

speci�cally the following:

• nqProblem is a class for containing and pre-processing problem instances, and is

used as such. Especially frequently used are the features for loading a problem

instance, reducing the infrastructure to a single infrastructure junction node, de-

termining crossing edge pairs and writing a solution sub-graph to a GNUplot �le.

• nqLogging is used for text output in all components. This includes debugging

output, main text output and output of warnings and error messages.

• MCFRedSolver is an exact, multi-commodity-�ow Integer Linear Programming

based solver for the simpli�ed redundant OPT problem as de�ned earlier. It uses

an algorithm from the CPLEX optimizer suite as a base and Integer Linear Pro-

gramming solver, and is used for extracting solutions from a merged set of solution

sub-graphs on the same problem instance graph. This is not actually accomplished
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by creating a new problem instance, but by adding constraints to exclude certain

edges from being included in the solution or to force them into the solution.

CPLEX CPLEX by ILOG Inc. is a commercial suite of optimizers targeted at solving

large, real-world optimization problems. It provides optimal solutions and can, depending

on use, also return approximate solutions after a certain running time (of which we made

use during our experiments). It is used by Daniel Wagner's MCFRedSolver (which is

described in [29]) which, in turn, was used by the implementation of an exact algorithm

for extracting a child solution from a merged set of solution sub-graphs on the same

problem graph [16].

6.2 Class Diagram

chromosome

nqParams

nqLogging

nqSolution

nqProblem

nqsChrom VNSProvider VNDProvider

nqVNSChrom

nqSMerger

nqVNSMerger nqMCFRedSolver

nqMNOpt nqC1Opt

nqPOpt

nqSMMove

nqSDGMove

nqSCMove

nqHeuristics nqMethods

ea_pop ea_advbase

nqSteinerBase

nqMST nqSSSP

nqAPSP

nqAPSPe nqAPSPx

nqAugmentationBase

nqAugSP

nqAugSPe

nqPurifierBase

nqSPurify

nqQPurify

Figure 16: Class Overview Diagram
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6.3 Class Descriptions

nqSolution A class for containing a solution sub-graph of a problem instance graph. It

also provides access to basic information about the contents of the solution sub-

graph, such as cost of the solution or the degree of a node within the solution graph.

It also contains features to determine the set of edges crossed by the contained

solution, and for basic solution cleaning (in other words, iteratively removing non-

terminal nodes of degree zero or one within the solution sub-graph).

nqHelpers A class implementing various base algorithms: Dijkstra's shortest path algo-

rithm, Kruskal's minimum spanning tree algorithm and modi�ed versions of these

algorithms to enable them to ignore or force nodes, and to respect a non-crossing

constraint.

nqSteinerBase An abstract base class for minimum Steiner tree heuristics.

nqSSSP A class implementing the Single Source Shortest Path minimum Steiner tree

heuristic described earlier. It uses Dijkstra's algorithm for determining a shortest

path tree.

nqMST A class implementing the Minimum Spanning Tree heuristic for the Steiner

problem we described earlier. It uses Kruskal's algorithm for determining a mini-

mum spanning tree.

nqAPSP A class implementing the All-Pairs-Shortest-Path minimum Steiner tree heuris-

tic described earlier (APSP). It uses multiple runs of Dijkstra's algorithm for de-

termining the shortest paths between all pairs of terminal nodes and Kruskal's

algorithm for determining a minimum spanning tree on the resulting set of paths.

nqAPSPe A class implementing the All-Pairs-Shortest-Path minimum Steiner tree heuris-

tic described earlier (APSPe). It uses multiple runs of Dijkstra's algorithm for

determining the shortest paths between all pairs of terminal nodes and Kruskal's

algorithm for determining a minimum spanning tree on the resulting edge set.

nqAPSPx A class implementing the All-Pairs-Shortest-Path minimum Steiner tree heuris-

tic described earlier (APSPx) It uses multiple runs of Dijkstra's algorithm for de-

termining the shortest paths between all pairs of terminal nodes and Kruskal's

algorithm (modi�ed to accommodate an adapting queue) for determining a mini-

mum spanning tree on the resulting set of paths.

nqAugmentationBase An abstract base class for Steiner tree augmentation algorithms.

nqAugSP A class implementing the AugSP augmentation algorithm described earlier.

It uses a modi�ed version Dijkstra's algorithm to �nd an alternate path to nodes

requiring redundant connections to the infrastructure.

nqAugSPe A class implementing the AugSPe augmentation algorithm described earlier.

It uses a modi�ed version Dijkstra's algorithm to �nd an alternate path to nodes

requiring redundant connections to the infrastructure and temporarily adds direct

edges with zero weight to lower the solution cost by reusing nodes already in the
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solution. This implementation temporarily modi�es the nqProblem instance it is

working on, so caution is advised when using it in a multi-threaded environment.

nqPuri�erBase An abstract base class for purifying and solution checking algorithms.

nqSPuri�er A class implementing a puri�er and solution checker using the Redundancy-

Search Validity Check algorithm.

nqQPuri�er A class implementing a puri�er and solution checker using the Path-Node

Removal Solution Validity Check algorithm.

nqPOpt A class implementing the key-path Replacement optimizing algorithm.

nqC1Opt A class implementing the Terminal-Node Reconnection optimizing algorithm.

This implementation temporarily modi�es the nqProblem instance it is working on,

so caution is advised when using it in a multi-threaded environment.

nqSMMove A class implementing the SMMove move-operator described earlier.

nqSDGMove A class implementing the SDGMove move-operator described earlier.

nqSCMove A class implementing the SCMove move-operator described earlier.

nqHeuristics A class for easier access to heuristic construction algorithms, puri�ers,

optimizers and move-operators.

nqsChrom A class derived from the EALib chromosome class, used for Local Search and

Simulated Annealing and makes use of the construction heuristics implementations

and move-operators.

nqsMerger A class for containing merged solutions, and solving them using Daniel

Wagner's MCFRedSolver. It is not able to respect the non-crossing constraint. It

does not actually create a new problem instance out of the merged solution, but

�xes nodes and edges of the problem graph that are not contained in any of the

solutions not to be considered as candidates by the solver in order to speed up

the exact algorithm. It can, if so con�gured, also force nodes and edges that are

contained in all the solutions to be taken into the solution by the solver, in order

to further speed up the exact algorithm.

nqVNSMerger A class derived from nqsMerger to merge intermediate solutions during

a Variable Neighborhood Descent or Variable Neighborhood Search.

nqsMNOpt A class implementing a search through the MNOpt neighborhood described

earlier. It is not able to respect a non-crossing constraint.

nqVNSChrom A class derived from nqsChrom with additional functionality needed

for Variable Neighborhood Descent (a method to �nd a better/the best neighbor)

and Variable Neighborhood Search (a method to shake the solution). Also noti�es

an instance of VNSMerger when the candidate solution is modi�ed.

nqMethods A class for easier access to heuristic and meta-heuristic algorithms.
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6.4 Use of Components

nqHeuristics This is a class that can be used for easy access to everything related to

heuristic solution construction and modi�cation. This means it is able to control Steiner

tree heuristics, augmentations, solution checkers, puri�ers, move-operators, optimizers

and neighborhood operators. It provides means to safely move a solution (meaning the

move is only applied if the solution is not destroyed), which was used in the experiments

during Local Search, Simulated Annealing and for Variable Neighborhood Search shaking.

An object of this class can be created, with an nqProblem instance, an nqSolution

instance and a nqLogging instance. Non-crossing constraints and move-operator-ratios

can also be set, if needed. The object is able to perform the actions listed above on the

given solution object using the given problem instance and outputs all logging information

to the given logger object.

Whenever needed, the solution object can be extracted and the sets of nodes and

edges can be set as the solution for the given nqProblem.

nqMethods This class is meant to facilitate access to the heuristic and meta heuristic

methods provided by the implementation. This includes construction heuristics, Local

Search, Simulated Annealing, Variable Neighborhood Descent, Variable Neighborhood

Search and various Merging and Solving variants. It takes a nqProblem instance and a

nqLogging instance, and creates its own solution object. Then all construction heuristics

(as contained in a nqHeuristics object) and meta-heuristic approaches contained within

the implementation can be used by calling them as a method of this object.

Again, whenever needed, the solution object can be extracted and the sets of nodes

and edges can be set as the solution for the given nqProblem.

6.5 De�nable Parameters

The list of de�nable parameters for the implementation of the algorithms described in

this thesis are de�ned in a set of �les called nqParams. The implementations of the

algorithms use the parameter group ”mheur” to avoid complications with other solvers

and implementations.

The following parameters are related to these implementations:

augmaxperms The maximum number of permutations the augmentation algorithm

will try until it �nds a valid order of customer nodes that require a redundant

connection to the infrastructure.

augmentation This determines augmentation algorithm to be used. 0 for none, 1 for

AugSP and 2 for AugSPe.

c1opt Determines whether the terminal-reconnection-optimizer will be used.

c1opt_iterrem Determines whether or not the terminal-reconnection-optimizer will

remove customer nodes without a redundancy requirement all at once, or one after

the other before connecting them again.
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c1opt_iteradd Determines whether or not the terminal-reconnection-optimizer will re-

connect customer nodes without a redundancy requirement all at once, or one after

the other.

cplextilim The maximum time the CPLEX-based exact solver will run before returning

the best solution that was encountered.

conn The desired connectedness. For the OPT-problem, this should always be 2, but

can be set to 1 for the use of just the Steiner tree problem heuristics.

i�le The input �le. This is the name of the �le containing the problem graph instance.

itype The input �le-type of which the input �le is an instance (IST, SteinLib, PCSTP,

TSPLIB)

initial_heuristic This parameter determines the initial Steiner tree problem heuristic

that is used for meta-heuristic algorithms. In the case of just applying heuristic

methods, this determines the Steiner tree problem heuristic that is used for creating

a Steiner tree. 0 for none, 1 for MST, 2 for SSSP, 3 for APSP, 4 for APSPe, 5 for

APSPx.

maxi Determines whether the chosen meta-heuristic maximize or minimize the target

function. Should be set to 0 for the purposes of our algorithms, since the OPT-

problem is a minimization problem.

merge_apsp Add a solution constructed with APSP to the merged solution set if merg-

ing was chosen as the method to apply.

merge_apspe Add a solution constructed with APSPe to the merged solution set if

merging was chosen as the method to apply.

merge_apspx Add a solution constructed with APSPx to the merged solution set if

merging was chosen as the method to apply.

merge_force Forces edges that are present in all of the solutions that have been merged

to be in the extracted solution as well if merging or a Variable Neighborhood meta-

heuristic was chosen as the method to apply.

merge_modi�er The amount of perturbation applied to the problem instance before

each merging pass if merging was chosen as the method to apply.

merge_mst Add a solution constructed with MST to the merged solution set if merging

was chosen as the method to apply.

merge_passes The number of times a solution is constructed using the set heuristic

methods and added to the set of merged solutions, when merging is the active

meta-heuristic method.

merge_sssp Add a solution constructed with SSSP to the merged solution set if merg-

ing was chosen as the method to apply.
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method The desired heuristic or meta-heuristic method to employ. Can be set to 0 for

none (does nothing), to 1 for just using the heuristic methods, 2 for enabling merg-

ing, 4 for Local Search, 5 for Simulated Annealing, 6 for Variable Neighborhood

Descent and 7 for Variable Neighborhood Search.

mnopt Determines whether the best key-node-move neighbor in the solution will be

used to optimize the solution.

mnopt_inside Determines whether the key-node-move neighborhood will look outside

the solution for new possible key-nodes.

mnopt_outside Determines whether the key-node-move neighborhood will look inside

the solution for new possible key-nodes.

moveop0prob This parameter is relevant for Local Search, Simulated Annealing and

Variable Neighborhood Search. It determines the relative probability with which

no move-operator will be used for mutation or shaking.

moveop1prob This parameter is relevant for Local Search, Simulated Annealing and

Variable Neighborhood Search. It determines the relative probability with which

SMMove will be used for mutation or shaking.

moveop2prob This parameter is relevant for Local Search, Simulated Annealing and

Variable Neighborhood Search. It determines the relative probability with which

SDGMove will be used for mutation or shaking.

moveop3prob This parameter is relevant for Local Search, Simulated Annealing and

Variable Neighborhood Search. It determines the relative probability with which

SCMove will be used for mutation or shaking.

multi_move This parameter sets the maximum number of times the solution is moved

when a multiple move is applied to a solution. Local Search, Simulated Annealing,

Variable Neighborhood Search and Variable Neighborhood Descent all use multiple

moves, although the default value for it is 1, which is equivalent to a regular move.

noncross Determines whether a non-crossing constraint is active in for the problem

graph or not.

noncross_method The method with which the minimum spanning tree and shortest

path algorithms will be modi�ed to accommodate a non-crossing constraint, if

present. Can be set to 0 for none, 1 for cheapest edge, 2 for most expensive edge,

3 for random edge and 4 for �rst edge.

os�le The name of the �le to which the solution is to be written.

pfy_order The order in which the puri�er tries to eliminate solution edges. Can be set

to 0 for random order, or to 1 for cost decreasing order.

popt Determines whether the key-path-optimizer will be used.
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puri�er This determines the solution checking algorithm to be used for purifying. Can

be set to 0 for none, 1 for Redundancy-Search Solution Validity Check (nqSPuri�er)

and 2 for Path-Node Removal Solution Validity Check (nqQPuri�er).

saca The slope for geometric cooling in Simulated Annealing.

sacint The interval between cooling steps in Simulated Annealing.

satemp The initial temperature for Simulated Annealing.

sub.eamod Relevant for Variable Neighborhood Search. For our purposes, it should be

set to either 4 (Local Search), 5 (Simulated Annealing), or 10 (Variable Neighbor-

hood Descent) when using Variable Neighborhood Search.

test_puri�er This determines the solution checking algorithm used for a �nal check

of the output solution. Set to 0 for none, 1 for Redundancy-Search Solution Va-

lidity Check (nqSPuri�er) and 2 for Path-Node Removal Solution Validity Check

(nqQPuri�er).

tgen The number of generations/iterations to be performed by generational meta heuris-

tic approaches.

vnd_mergeinterval Variable Neighborhood Descent (also when used as a sub-algorithm

during Variable Neighborhood Search) will add each nth solution it encounters to

a merged solution set, if it di�ers at least by an absolute amount of d from the last

solution in terms of cost. This parameter sets n. Set to 0 for no merging during

Variable Neighborhood Descent or Variable Neighborhood Search.

vnd_mergemincostdi� Variable Neighborhood Descent (also when used as a sub-

algorithm during Variable Neighborhood Search) will add each nth solution it en-

counters to a merged solution set, if it di�ers at least by an absolute amount of d

from the last solution in terms of cost. This parameter sets d.

vns_max_neigh This parameter sets the maximum neighborhood distance that is

traversed by the solution when shaking during Variable Neighborhood Search.

50



7 Experimental Results

In this section we will show the results acquired using the implementation and methods

described in the last sections. We will �rst give an overview about the details and

con�gurations we tested, and then evaluate the results acquired by applying them to a

set of problem instances.

7.1 Overview of Conducted Experiments

We tested various types of instances, and applied our methods using the described im-

plementation using several con�gurations and combinations, which we will describe in

detail.

7.1.1 Tested Instances

We performed our experiments on three types of instances. For two of these, we had

subsets of instances, with each subset having a di�erent infrastructure sub-graph. Our

experiments were conducted using the following four large sets of problem graph in-

stances:

GridGraph100/400 A collection of randomly generated weighted graphs, arranged in

a grid consisting of connected graphs with four nodes each. Edge costs are also

randomly assigned. Each graph contains a hundred/four hundred vertices. Three

sets of instances containing 100 nodes and (after preprocessing by the nqProblem

class) 342 edges were tested, two of which contained 15 instances, and one contain-

ing 20 instances. Also, two sets of instances containing 400 nodes were tested, each

containing �fteen instances, of which each (again, after nqProblem preprocessing)

contained 1482 edges. Of the nodes, at most 10 were customer nodes, and around

50% of these required a redundant connection to the infrastructure. Each instance

contained from 10 to 20 junction nodes. Exact results for these instances were

obtained using a multi-commodity �ow approach described in [29], and all have

gaps below 10%, with optimal solutions for most instances.

ClgSmall/Medium Extracted from parts of the spatial topology of the city of Cologne,

Germany and processed for the NETQUEST project, these instances describe parts

of the possible cable routes through the city. The �Extra�-Instances of these sets

were tested. The ClgSmall set contains three subsets, with the �rst subset con-

taining twenty-�ve, and the second and third subset containing �fteen instances.

After nqProblem preprocessing, each of these instances contained 377 edges. The

ClgMedium set consists of two subsets, with the �rst subset containing twenty-�ve

and the second subset containing �fteen instances. Each instance contains, after

nqProblem preprocessing, 3877 edges. At most 10 nodes were set a customer nodes,

and around 50% of these required a redundancy in their connection to the infras-

tructure, and instances contained between 10 to 20 junction nodes. Exact results

for these instances were obtained using a multi-commodity �ow approach described

in [29], and all have gaps below 10%, with optimal solutions for most instances.
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TSPLib These instances were acquired by applying a transformation to various in-

stances intended for testing of approaches for solving the Travelling Salesperson

Problem. This transformation converted each instance into a connected graph by

triangulation, using geometric distance to derive costs for each resulting edges.

Graph sizes vary from 29 to 226 nodes, and from 77 to 586 edges. One node was

chosen as root node to represent an existing infrastructure. 33% of nodes were

declared customer nodes, and 25% as customer nodes requiring a redundant con-

nection to a given infrastructure. Exact results for these instances were obtained

using a multi-commodity �ow approach described in [29] with a time limit of 900

seconds for algorithm execution, and have an average gap of 19% when compared

to the best target function value that was encountered during the process, with

optimal solutions for the smaller instances.

Most experiments were performed on real-world and grid-graph based instances without a

non-crossing constraint. Result analyses and interpretations contained in the evaluation

do not apply to TSPLib instances unless explicitly stated.

7.1.2 Measured Values

All experiments measured the cost of the cheapest solution obtained during a heuristic or

meta-heuristic run. Additionally, we measured total running time (excluding only prepro-

cessing done by the nqProblem class) in seconds, to the second decimal point. Therefore

running times, for example in the case of purifying, also include the measurements of

Steiner tree construction and augmentation.

For experiments using approaches involving solution merging, we also recorded how

many edges were forced into the solution, and how many edges were excluded from being

in the solution.

7.1.3 Used Hardware

The experiments were conducted on a machine provided by the Institute for Computer

Graphics and Algorithms of the Vienna University of Technology. It uses a 2.8 Gigahertz

processor and 2 Gigabytes of RAM with 512k L2 cache.

7.1.4 Experiments using Heuristic Approaches

Heuristic Steiner Tree Construction Algorithms The whole test-set of problem

instances was entered into each of the implemented Steiner tree heuristics. The resulting

Steiner trees were then augmented by the AugSPe heuristic, but not puri�ed or improved.

These approaches were tested on all instances without a non-crossing constraint, and on

the smaller instances of the real-world and grid-graph based sets with a non-crossing

constraint.

Heuristic Augmentation Algorithms Steiner trees were constructed on all the test

problem instances using the APSPx heuristic, and then augmented using each of the two

augmentation heuristics AugSP and AugSPe. The algorithms were set to try maximally

10 permutations of customer nodes requiring redundant connections to the infrastructure.
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We also used these algorithms for constructing solutions with an active non-crossing

constraint for our smaller test instances. These approaches were tested on all instances

without a non-crossing constraint, and on the smaller instances of the real-world and

grid-graph based sets with a non-crossing constraint.

Purifying Algorithms Solutions were generated for all test problem instances using

the APSPx Steiner tree heuristic and the AugSPe augmentation heuristic. The valid

results were then puri�ed using each of the two purifying algorithms. Solutions for

instances that were not valid have been taken out of the comparisons details and statistics,

but are included in the tables in the Appendix. We also puri�ed solutions for instances

with a non-crossing constraint. These approaches were tested on all instances without

a non-crossing constraint, and on the smaller instances of the real-world and grid-graph

based sets with a non-crossing constraint.

Heuristic Improvement Algorithms The improvements strategies were applied with

standard settings, using a puri�ed solution constructed using APSPx and AugSP. C1Opt

was used with iterative addition and non-iterative removal of C1-Nodes with a degree of

1 within the solution sub-graph. These approaches were tested using all instances of the

real-world and grid-graph based sets without a non-crossing constraint.

7.1.5 Experiments using Local Search and Simulated Annealing

These approaches were tested using all instances of the real-world and grid-graph based

sets without a non-crossing constraint.

Local Search The experiments using Local Search used the three move-operators (SM-

Move, SDGMove, SCMove) in a 1:1:1 ratio, over 3000 iterations, using APSPx for con-

structing a Steiner tree and AugSPe for augmentation.

For the multi-move variant (with multi-move set to move the solution a maximum

number of 10 times), 700 iterations were performed, with the initial solution being con-

structed in the same way.

The number of iterations was chosen using results from preliminary tests.

Simulated Annealing The experiments using Simulated Annealing used the three

move-operators (SMMove, SDGMove, SCMove) in a 1:1:1 ratio, over 3000 iterations,

using APSPx for constructing a Steiner tree and AugSPe for augmentation.

As with Local search, for the multi-move variant (with multi-move set to move the

solution a maximum number of 10 times), 700 iterations were performed. Again, APSPx

and AugSPe were used for constructing the initial solution.

As with Local Search, the number of iterations was chosen using results from prelim-

inary tests.
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7.1.6 Experiments using Variable Neighborhood Descent and Variable Neigh-

borhood Search

These approaches were tested using InstClgSmall, InstClgMedium, G0100 and G0400

instances without a non-crossing constraint.

Variable Neighborhood Descent The experiments involving Variable Neighborhood

Descent were conducted on all instances, using MNOpt, POpt and C1Opt as a neigh-

borhood operator. We con�gured the neighborhood operator to return the next best

result encountered. If MNOpt returned no better result, POpt was used. If POpt did

not return a better result, C1Opt was applied to the best solution so far encountered.

Variable Neighborhood Search For the experiments using Variable Neighborhood

Search, Variable Neighborhood Descent, as described in the previous paragraph, was used

as sub-heuristic. Between runs of Variable Neighborhood Descents, SMMove, SDGMove

and SCMove were used for shaking, starting from a shaking neighborhood-distance of size

1 upwards to a neighborhood-distance of size 15. The algorithm was performed for 100

iterations. This termination condition was selected because of the results of preliminary

tests.

7.1.7 Experiments using Solution Merging

Since these experiments involved an exact solver, and running times would be unac-

ceptably high for larger instances, running times for the exact solver were capped at 15

minutes and the best result encountered by the solver was used. The option of forcing

edges to the solver was not used for the purpose of these experiments, since its use would

increase solution cost and the set cap time was more than enough for all instances to be

solved in time without this further speed-up. These approaches were tested on all in-

stances without a non-crossing constraint, and on the smaller instances of the real-world

and grid-graph based sets with a non-crossing constraint.

Merging of Various Heuristic Solutions For the experiments, one solution was

created using each Steiner tree heuristic with AugSPe augmentation and no puri�cation.

The solutions were merged using the SMerger method, and the sub-graph constructed

using the merged set of solutions was entered into a multi-commodity �ow solver. The

extracted solution was then checked for validity. We also used this approach to solve the

smaller instances of our test-set with an active non-crossing constraint.

Merging of Various Heuristic Solutions Built Using Modi�ed Edge Weights

This was conducted for all test problem instances. For each instance, three randomized

instances were generated by randomly modifying the weights by a maximum amount of

20% for each edge. The original and the three derived instances were each entered into

each Steiner tree heuristic and augmented using the AugSPe augmentation heuristic. For

each problem instance, the twenty resulting solution sub-graphs (one of each Steiner tree

heuristic augmented with AugSPe, and three constructed the same way using modi�ed

edge weights) were merged and entered into a multi-commodity �ow solver. The extracted
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solution was checked for validity. We also applied this approach to the smaller instances

of our test-set using an active non-crossing constraint.

7.2 Evaluation of Experimental Results

In this section we will list the results acquired using the methods, implementations and

con�gurations we described earlier. Gaps are measured in percent against the best known

solution (see the appendix for a complete listing) using the following formula:

Gap% = 100 ·
(cbest_known − cheuristic)

cbest_known

Percentages are calculated against the larger value, averages and standard deviations

are calculated on percentage values if they are used to describe general properties of a

series of percentages, and are given in brackets next to the average value.

7.2.1 Ability of Heuristics to Generate Valid Solutions

Augmented Steiner Tree Heuristics Since the Steiner tree heuristics are augmented

by searching for the shortest path to the customer nodes that require redundancy that

does not share any nodes with the path in the Steiner tree itself, it can happen that

the path in the Steiner tree was chosen in a manner that makes augmentation of certain

nodes impossible. Another possible case is that a path added during augmentation itself

now blocks another path from becoming augmented by a non-crossing constraint.

When we look at the ability to generate valid solutions when using various Steiner

Tree heuristics and the AugSPe augmentation, it is obvious that the SSSP algorithm

performed best on our test instances with no non-crossing constraint, since it was the

only heuristic that was able to provide a valid solution on all of the 175 test instances. It

is closely followed by the APSPx heuristic, which was able to provide 173 valid solutions

(98.86% success rate), and the APSP heuristic, which managed to generate valid solutions

for 172 instances (98.29% success rate). The algorithms employing Kruskal's minimum

spanning tree algorithm directly on edges were only able to generate valid solutions for

161 (APSPe, 92% success rate) and 160 (MST, 91,42% success rate) instances.

On the TSPLib instances we found that SSSP returned the most valid solutions, with

a success rate of 97%, followed by APSPx with 79% success rate. The edge-MST-based

heuristics were only able to provide valid results for 60%-64% of instances.
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Instance set MST SSSP APSP APSPe APSPx

ClgSmall-I1 80 100 100 84 100

ClgSmall-I2 73.33 100 93.33 73.33 93.33

ClgSmall-I3 73.33 100 100 73.33 100

ClgMedium-I1 100 100 100 100 100

ClgMedium-I2 93.33 100 93.33 93.33 93.33

G0100-I1 100 100 100 93.33 100

G0100-I2 100 100 93.33 100 93.33

G0100-I3 100 100 95 100 100

G0400-I1 93.33 100 100 93.33 93.33

G0400-I2 100 100 100 100 100

All above 91.43 100 98.29 92 98.86

TSPLib instances 60.61 96.97 72.73 63.64 78.79

Table 1: Percentage of valid solutions acquired with various augmented Steiner tree
heuristics

Instance set MST SSSP APSP APSPe APSPx

ClgSmall-I1 80 100 100 88 100

ClgSmall-I2 73.33 100 80 73.33 80

ClgSmall-I3 73.33 100 100 73.33 100

G0100-I1 93.33 100 100 93.33 100

G0100-I2 93.33 93.33 93.33 93.33 93.33

G0100-I3 65 100 95 100 100

All above 79.04 99.05 95.23 87.61 96.19

Table 2: Percentage of valid solutions acquired with various augmented Steiner tree
heuristics and an active non-crossing constraint

Augmentation Heuristics As expected, both heuristics performed the same (using

APSPx as a Steiner tree heuristic) in terms of solution augmentation validity, because

both heuristics only fail in the case that no path to the augmentation target can be found

that is node disjunct to the path within the Steiner tree. It terminated with 173 out of

175 tested instances being augmented successfully (98.86% success rate).

For tested TSPLib instances, AugSPe was by far more reliable, providing valid results

for 79% of the instances, while AugSP was only able to augment 30% of the instances

successfully.

Also in the case of having a non-crossing constraint, both heuristics performed the

equally and were able to augment 96.19% of our small instance sets.

7.2.2 Cost of Solutions Provided by Construction Heuristics

Augmented Steiner Tree Heuristics We shall now compare the Steiner tree heuris-

tics in terms of cost (again, the Steiner trees were augmented using the AugSPe heuristic

algorithm).

The MST Steiner tree heuristic proved to be the worst one in terms of cost, with

only returning the cheapest result in 2 cases, both of which were invalid solutions. This

is, however, acceptable since this heuristic was not designed with competitivity in mind,
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but with the concept of diversifying the set of solutions we can generate using greedy

Steiner tree heuristics.

The Steiner tree heuristic APSPe was the second worst, with 5 results being the

cheapest on an instance. Of out of these solutions, 1 proved to be invalid.

The SSSP Steiner tree heuristic proved to be a lot better for our test instances. It

provided the best solution in 45 cases, of which none were invalid.

The heuristic APSPx is ranked number two when comparing solution cost, with the

cheapest solution in 58 cases. Of these, 1 was invalid.

APSP was the Steiner tree heuristic that returned the cheapest result in 65 cases. Of

these solutions, 1 proved to be invalid.

In total, the cheapest result was valid in 169 of 175 cases (96.57% success rate).

For TSPLib instances, APSPx was the heuristic that provided the cheapest results,

with an average gap of 20% to the exact solution. Since the exact method was capped

during the runs for TSPLib instances, and thus gaps exist for many instances, optimality

of solutions can not be concluded in any case. In four cases, it yielded results that were

better than those provided by the exact method. In SSSP solutions had the highest gap,

with an average of 51%.

Instance set MST SSSP APSP APSPe APSPx

ClgSmall-I1 59.78 (39.11) 8.99 (13.01) 9.08 (15.02) 54.91 (40.56) 8.60 (15.11)

ClgSmall-I2 48.84 (23.09) 24.62 (12.67) 15.60 (10.19) 46.18 (22.62) 15.56 (10.25)

ClgSmall-I3 33.06 (20.38) 12.90 (9.74) 10.04 (9.04) 31.29 (18.83) 13.77 (11.79)

ClgMedium-I1 66.37 (28.33) 17.52 (11.45) 14.16 (8.50) 54.92 (20.36) 12.55 (8.39)

ClgMedium-I2 63.43 (35.44) 22.31 (13.72) 11.43 (9.36) 57.30 (26.97) 10.67 (9.61)

G0100-I1 45.77 (13.13) 32.89 (8.27) 32.48 (11.25) 40.50 (11.10) 31.53 (12.51)

G0100-I2 50.83 (21.99) 30.50 (10.49) 25.87 (11.54) 45.30 (19.08) 24.60 (9.10)

G0100-I3 18.26 (11.96) 12.31 (12.31) 11.12 (11.34) 15.66 (9.81) 12.49 (11.45)

G0400-I1 43.63 (11.61) 24.29 (7.95) 19.58 (6.76) 43.23 (11.76) 17.17 (6.06)

G0400-I2 63.38 (7.87) 35.12 (6.16) 30.41 (8.45) 61.60 (7.02) 29.89 (9.17)

TSPLib 43.43 (19.48) 50.59 (25.10) 22.29 (17.31) 42.84 (19.05) 20.42 (15.02)

Table 3: Average gap percentages of solution costs acquired with various augmented
Steiner tree heuristics

Instance set Tot. MST SSSP APSP APSPe APSPx

ClgSmall-I1 25 0 0 1 0 1

ClgSmall-I2 15 0 0 0 0 0

ClgSmall-I3 15 0 0 0 0 0

ClgMedium-I1 25 0 0 0 0 0

ClgMedium-I2 15 0 0 0 0 0

G0100-I1 15 0 0 0 0 0

G0100-I2 15 0 0 0 0 0

G0100-I3 20 0 1 3 0 3

G0400-I1 15 0 0 0 0 0

G0400-I2 15 0 0 0 0 0

Total 175 0 1 4 0 4

Table 4: Number of optimal solutions for the OPT-problem found using various aug-
mented Steiner tree heuristics
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Instance set MST SSSP APSP APSPe APSPx

ClgSmall-I1 64.43 (42.37) 22.91 (21.34) 19.52 (18.73) 58.18 (42.58) 16.12 (16.21)

ClgSmall-I2 44.20 (23.34) 29.30 (12.46) 20.72 (11.69) 51.28 (21.96) 19.54 (10.68)

ClgSmall-I3 33.61 (20.07) 25.97 (16.56) 21.24 (15.54) 29.29 (19.07) 22.83 (15.81)

G0100-I1 46.01 (16.36) 41.76 (11.64) 37.20 (15.24) 46.37 (16.88) 37.89 (17.90)

G0100-I2 49.43 (21.76) 39.40 (16.51) 26.42 (10.67) 43.55 (14.74) 27.66 (12.26)

G0100-I3 17.98 (16.67) 18.26 (12.33) 16.38 (14.15) 21.81 (14.54) 17.74 (13.73)

Table 5: Average gap percentages of solution costs acquired with various augmented
Steiner tree heuristics using an active non-crossing constraint

Instance set Tot. MST SSSP APSP APSPe APSPx

ClgSmall-I1 25 0 0 0 0 0

ClgSmall-I2 15 0 0 0 0 0

ClgSmall-I3 15 0 0 0 0 0

G0100-I1 15 0 0 0 0 0

G0100-I2 15 0 0 0 0 0

G0100-I3 20 0 0 2 0 2

Total 105 0 0 2 0 2

Table 6: Number of optimal solutions OPT-problem found using various augmented
Steiner tree heuristics with a non-crossing constraint

From the average results on the classes, it can be said that APSPx seemed to yield

the best results for all larger instance classes (ClgMedium and G0400), while APSP

and SSSP found cheaper results on some of the smaller classes. With a non-crossing

constraint, on average, APSPx yielded the best results on all large instance sets and

APSP on the smaller instance sets. In some cases, augmented SSSP, APSP and APSPx

solutions had costs equal to or better than the cost of the best known solution. This also

occurred in some cases when a non-crossing constraint was present.

Augmentation Heuristics AugSPe proved to be the heuristic acquiring better re-

sults. It provided the cheaper solution in 105 cases (exactly 60%) . In 58 cases (33.14%),

the results returned by AugSPe and AugSP were equal. The average di�erence between

the results of the two approaches was 2.80% of the results provided by the AugSP heuris-

tic, in favor of the AugSPe augmentation heuristic, showing a standard deviation of

5.52.
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Instance set AugSP AugSPe

ClgSmall-I1 9.48 (15.51) 8.60 (15.11)

ClgSmall-I2 18.12 (13.24) 15.56 (10.25)

ClgSmall-I3 15.56 (13.09) 13.77 (11.79)

ClgMedium-I1 13.68 (8.11) 12.56 (8.39)

ClgMedium-I2 17.46 (17.55) 10.68 (9.62)

G0100-I1 35.47 (15.60) 31.53 (12.51)

G0100-I2 30.81 (11.18) 24.60 (9.10)

G0100-I3 14.43 (11.57) 12.49 (11.45)

G0400-I1 26.14 (10.56) 17.17 (6.07)

G0400-I2 38.57 (10.02) 29.89 (9.17)

TSPLib 14.79 (32.07) 20.42 (15.82)

Table 7: Average gap percentages of solution costs acquired with various augmentation
heuristics

Instance set Tot. AugSP AugSPe

ClgSmall-I1 25 1 1

ClgSmall-I2 15 0 0

ClgSmall-I3 15 0 0

ClgMedium-I1 25 0 0

ClgMedium-I2 15 0 0

G0100-I1 15 0 0

G0100-I2 15 0 0

G0100-I3 20 1 3

G0400-I1 15 0 0

G0400-I2 15 0 0

Total 175 2 4

Table 8: Number of optimal solutions found using various augmentation heuristics

AugSPe, on average, was better for every problem class except for the TSPLib in-

stances, which indicates that including information about parts that are already covered

by the solution in a heuristic does indeed yield an advantage. Using AugSP, an optimal

solution was found in less cases than using AugSPe. for TSPLib instances, AugSP pro-

vided a valid solution in very little cases, but when it did, the solution was often one

that was better than the one provided by exact methods. Optimality of solutions can

not be determined, as in the last section, due to gaps in the solutions provided by exact

methods.

Instance set AugSP AugSPe

ClgSmall-I1 17.68 (16.30) 16.12 (16.21)

ClgSmall-I2 25.48 (13.21) 19.54 (10.68)

ClgSmall-I3 35.98 (21.90) 22.83 (15.81)

G0100-I1 44.25 (14.75) 37.89 (17.90)

G0100-I2 35.39 (10.91) 27.66 (12.26)

G0100-I3 20.08 (12.98) 17.74 (13.73)

Table 9: Average gap percentages of solution costs acquired with various augmentation
heuristics with an active non-crossing constraint
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Instance set Tot. AugSP AugSPe

ClgSmall-I1 25 0 0

ClgSmall-I2 15 0 0

ClgSmall-I3 15 0 0

G0100-I1 15 0 0

G0100-I2 15 0 0

G0400-I2 15 0 2

Total 105 0 2

Table 10: Number of optimal solutions found using various augmentation heuristics with
a non-crossing constraint

When the non-crossing constraint was enabled, the di�erences between the two ap-

proaches were similar, with AugSPe outperforming AugSP on average in every tested

problem class.

7.2.3 Heuristic Construction Algorithm Running Times

Augmented Steiner Tree Heuristics When considering all Steiner tree construction

heuristics, SSSP was clearly the fastest, with having the shortest solution construction

time in 168 cases (exactly 96%). MST was the second fastest, with having the same or

better running times in 41 cases (23.43%). Both were faster than the all-pairs-shortest-

path-based heuristics in all cases. Of these, APSP was clearly the fastest, with reaching

the best running time in 167 cases (95.43%). APSPe shared that time or had a better

running time in 49 cases (28%), and APSPx was the fastest or shared the �rst place in

32 cases (18.29%).

Average running times showed some interesting results: the minimum-spanning-tree-

based construction heuristics that operated directly on edges had strongly varying times

on the instances. This was especially true for MST, with an average of 2.28 seconds and

a standard deviation of 19.60. APSPe had an average running time of 0.76 seconds with

a standard deviation of 4.16. This can be explained by two things: the fact that the MST

implementation used provides an edge-set as solution, which then has to be converted to

a rooted tree, and the fact that the base MST algorithm, as noted earlier, tends to include

edges for reaching nodes that are not in included in the resulting solution. This has an

e�ect on augmentation path lengths as well as on solution checking, and on puri�cation

(since this does solution checking and checks the solution once for each solution edge).

APSPx had an average running time of 0.24 seconds with a standard deviation of 0.30,

and APSP had an average running time of 0.20 seconds with a standard deviation of 0.27.

Clearly fastest was SSSP with an average running time of 0.04 seconds and a standard

deviation of 0.06.

For TSPLib instances, APSPx proved to be the fastest method, with an average

running time of 6.80 seconds and a standard deviation of 24.87. This can be attributed

to the fact that the Steiner tree phase of SSSP generally tends to include more nodes

than a minimum spanning tree on the shortest paths, which can lead to a high number of

permutations being attempted during augmentation phase due to blocked paths. MST

was slowest on TSPLib instances, with an average running time of 97.42 seconds and a

standard deviation of 430.49.
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Instance set MST SSSP APSP APSPe APSPx

ClgSmall-I1 0.02 (0.005) 0.09 (0.003) 0.02 (0.002) 0.03 (0.003) 0.02 (0.004)

ClgSmall-I2 0.04 (0.02) 0.02 (0.01) 0.04 (0.007) 0.06 (0.01) 0.07 (0.012)

ClgSmall-I3 0.02 (0.005) 0.01 (0.003) 0.03 (0.005) 0.04 (0.006) 0.04 (0.01)

ClgMedium-I1 15.09 (49.95) 0.10 (0.03) 0.72 (0.04) 3.99 (10.38) 0.76 (0.06)

ClgMedium-I2 0.65 (0.10) 0.11 (0.06) 0.06 (0.04) 1.12 (0.16) 0.78 7(0.11)

G0100-I1 0.03 (0.01) 0.02 (0.006) 0.04 (0.01) 0.04 (0.01) 0.07 (0.02)

G0100-I2 0.02 (0.01) 0.02 (0.006) 0.03 (0.004) 0.03 (0.01) 0.04 (0.01)

G0100-I3 0.01 (0.004) 0.007 (0.004) 0.02 (0.004) 0.03 (0.004) 0.02 (0.005)

G0400-I1 0.10 (0.04) 0.043 (0.02) 0.11 (0.01) 0.17 (0.05) 0.14 (0.03)

G0400-I2 0.05 (0.77) 0.09 (0.10) 0.19 (0.06) 0.66 (0.79) 0.26 (0.09)

TSPLib 97.42 (430.49) 17.17 (59.43) 8.84 (29.44) 95.65 (429.22) 6.80 (24.87)

Table 11: Average running times of solution construction using various Steiner tree heuris-
tics in seconds (std. deviation in brackets)

Instance set MST SSSP APSP APSPe APSPx

ClgSmall-I1 0.02 (0.005) 0.008 (0.003) 0.02 (0.005) 0.03 (0.003) 0.03 (0.005)

ClgSmall-I2 0.03 (0.01) 0.02 (0.008) 0.05 (0.01) 0.06 (0.02) 0.08 (0.02)

ClgSmall-I3 0.02 (0.005) 0.01 (0.005) 0.04 (0.006) 0.04 (0.007) 0.05 (0.01)

G0100-I1 0.02 (0.009) 0.02 (0.006) 0.05 (0.01) 0.05 (0.01) 0.08 (0.02)

G0100-I2 0.02 (0.004) 0.01 (0.005) 0.03 (0.006) 0.03 (0.005) 0.04 (0.01)

G0100-I3 0.01 (0.003) 0.008 (0.004) 0.02 (0.03) 0.02 (0.004) 0.03 (0.01)

Table 12: Average running times of solution construction using various Steiner tree heuris-
tics in seconds using a non-crossing constraint

Augmentation Heuristics AugSP was clearly faster than AugSPe. In 81 cases

(46.29%) it returned a solution quicker than AugSPe, which was faster in only 16 cases

(9.14%). In 78 cases (44.57%) running times were equal.

On average, a solution obtained using AugSP could be constructed 4.68% faster than

with AugSPe, with a standard deviation of 16.13.

For TSPLib instances AugSPe proved to be faster, with an average running time of

15.82 seconds (std. dev. 6.80) versus an average running time of AugSP of 32.07 seconds

(std. dev. 7.91).

Instance set AugSP AugSPe

ClgSmall-I1 0.02 (0.0032) 0.024 (0.005)

ClgSmall-I2 0.07 (0.02) 0.071 (0.02)

ClgSmall-I3 0.04 (0.01) 0.04 (0.01)

ClgMedium-I1 0.76 (0.05) 0.77 (0.06)

ClgMedium-I2 0.77 (0.11) 0.78 7(0.11)

G0100-I1 0.07 (0.02) 0.07 (0.02)

G0100-I2 0.04 (0.01) 0.04 (0.009)

G0100-I3 0.02 (0.004) 0.02 (0.005)

G0400-I1 0.13 (0.03) 0.14 (0.03)

G0400-I2 0.025 (0.08) 0.26 (0.09)

TSPLib 32.07 (7.91) 15.82 (6.80)

Table 13: Average running times of solution construction various augmentation heuristics
in seconds (std. deviation in brackets)
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Instance set AugSP AugSPe

ClgSmall-I1 0.02 (0.003) 0.03 (0.005)

ClgSmall-I2 0.07 (0.02) 0.08 (0.02)

ClgSmall-I3 0.04 (0.01) 0.05 (0.01)

G0100-I1 0.07 (0.02) 0.08 (0.02)

G0100-I2 0.04 (0.01) 0.04 (0.01)

G0100-I3 0.02 (0.004) 0.03 (0.01)

Table 14: Average running times of solution construction various augmentation heuristics
with a non-crossing constraint in seconds

More or less the same di�erences between the two heuristic augmentation algorithms

can be seen when a non-crossing constraint is set, with AugSP being generally faster

than AugSPe.

7.2.4 Puri�cation and Improvement Heuristics

Puri�cation As expected, both puri�cation algorithms had the same e�ect on all

solutions they were applied to. Puri�cation yielded an improvement in 152 of 173 cases

(86.86%). The puri�ed solution was, on average 6.59% cheaper than the original solution,

with a standard deviation of 7.01. An optimal solution was found in more cases than

using only construction heuristics. For TSPLib instances, average solution improvement

was 17.49%, with a standard deviation of 5.26.

For the two instances for which APSPx in combination with AugSPe did not provide

a valid solution, obviously no improvement was found.

Running times were similar in many cases, but showed some di�erences. The SPuri�er

implementation clearly showed and advantage, with shorter running times in 118 of 173

cases (68.20%). In 37 cases (21.39) measured total running times were equal to the 2nd

decimal point, and in 18 cases (10.40%), all of which were in the ClgMedium instance set,

QPuri�er showed a shorter running time. On average, SPuri�er outperformed QPuri�er

by 29.64% of its running time (in terms of total running time), with a standard deviation

of 51.27. For TSPLib instances, QPurify had the shorter running time, on average.

Instance set % impr.

ClgSmall-I1 2.03 (3.14)

ClgSmall-I2 5.99 (6.73)

ClgSmall-I3 7.94 (7.77)

ClgMedium-I1 1.31 (2.13)

ClgMedium-I2 4.43 (6.87)

G0100-I1 16.73 (6.55)

G0100-I2 9.20 (5.57)

G0100-I3 5.03 (6.03)

G0400-I1 6.39 (4.49)

G0400-I2 13.04 (4.84)

All above 6.59 (7.02)

TSPLib 17.49 (5.26)

Table 15: Average cost improvements using puri�cation
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Instance set Tot. Puri�er

ClgSmall-I1 25 1

ClgSmall-I2 15 0

ClgSmall-I3 15 0

ClgMedium-I1 25 0

ClgMedium-I2 15 1

G0100-I1 15 0

G0100-I2 15 0

G0100-I3 20 6

G0400-I1 15 0

G0400-I2 15 0

Total 175 8

Table 16: Number of optimal solutions found using APSPx, AugSPe and Puri�cation

Instance set % impr.

ClgSmall-I1 3.58 (4.45)

ClgSmall-I2 6.67 (6.97)

ClgSmall-I3 7.44 (7.41)

G0100-I1 17.49 (5.78)

G0100-I2 13.21 (8.64)

G0100-I3 7.54 (4.98)

All Instances 7.85 (7.23)

Table 17: Average cost improvements using puri�cation with an active non-crossing
constraint

Instance set Tot. Puri�er

ClgSmall-I1 25 0

ClgSmall-I2 15 0

ClgSmall-I3 15 0

G0100-I1 15 2

G0100-I2 15 2

G0400-I2 15 6

Total 105 10

Table 18: Number of optimal solutions found using APSPx, AugSPe and Puri�cation
with a non-crossing constraint

On average, with an active non-crossing constraint, puri�cation manages to reduce

the cost of our solutions provided by AugSPe and APSPx even more. Puri�cation time

is a bit higher in this case, since the solution is also checked for a violation of the non-

crossing constraint.
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Instance set SPurify QPurify

ClgSmall-I1 0.03 (0.007) 0.03 (0.07)

ClgSmall-I2 0.10 (0.03) 0.14 (0.06)

ClgSmall-I3 0.06 (0.01) 0.08 (0.25)

ClgMedium-I1 2.15 (0.93) 2.296 (1.81)

ClgMedium-I2 1.25 (0.25) 1.82 (0.61)

G0100-I1 0.10 (0.04) 0.16 (0.07)

G0100-I2 0.06 (0.01) 0.08 (0.04)

G0100-I3 0.03 (0.007) 0.03 (0.008)

G0400-I1 0.25 (0.11) 0.35 (0.21)

G0400-I2 0.50 (0.27) 1.02 (0.61)

TSPLib 30.25 (83.77) 17.37 (50.29)

Table 19: Average running times of construction and puri�cation using various puri�ca-
tion algorithms in seconds

Instance set SPurify QPurify

ClgSmall-I1 0.03 (0.007) 0.04 (0.01)

ClgSmall-I2 0.04 (0.14) 0.14 (0.07)

ClgSmall-I3 0.02 (0.08) 0.08 (0.02)

G0100-I1 0.03 (0.15) 0.15 (0.05)

G0100-I2 0.02 (0.07) 0.07 (0.03)

G0100-I3 0.006 (0.03) 0.03 (0.008)

Table 20: Average running times of construction and puri�cation using various puri�ca-
tion algorithms with a non-crossing constraint in seconds

Improvement Heuristics Both improvement algorithms on their own had little e�ect

on the quality of most solutions, since they are also based on shortest paths and use the

existing solution as a pseudo-infrastructure. They are, however, quite e�ective when

applied to solutions generated using the two Steiner tree construction heuristics that

are minimum-spanning-tree based and apply Kruskal's minimum spanning tree directly

to instance edges and not shortest-path meta-edges, since they tend to �straighten out�

meandering key-paths that were constructed while trying to include additional nodes.

However, to preserve comparability, we chose to re�ect only the e�ects on already puri�ed

solutions constructed with the APSPx Steiner tree construction heuristic. For the two

instances that a Steiner tree constructed with APSPx did not return a valid solution for

when augmented with AugSPe, no valid solution was found, as expected.

POpt was able to cheapen puri�ed solutions by 0.52% on average with a standard

deviation of 2.51, while C1Opt was able to reduce the cost of the given puri�ed solution

by 0.95% on average with a standard deviation of 2.62.

Total running times (including construction and puri�cation) were 0.65 seconds for

POpt, with a standard deviation of 1.08 and 0.65 seconds for C1Opt, with a standard

deviation of 1.07.

On some instances, both optimizers even worsened the solution by introducing un-

needed redundant edges, thus canceling the e�ects of puri�cation.

64



ClgSmall-I1 % Impr. POpt % Impr. C1Opt

ClgSmall-I2 0.02 (0.09) 0.10 (0.34)

ClgSmall-I3 0.00 (0.00) 0.80 (0.90)

ClgMedium-I1 0.00 (0.00) 0.41 (0.74)

ClgMedium-I2 0.00 (0.00) 0.37 (0.70)

G0100-I1 0.06 (0.16) 0.12 (0.20)

G0100-I2 2.84 (3.75) 3.08 (3.78)

G0100-I3 1.59 (3.62) 2.42 (3.69)

G0400-I1 1.09 (5.27) 1.16 (5.29)

G0400-I2 0.09 (0.25) 0.77 (1.12)

G0400-I2 0.03 (0.10) 1.12 (1.16)

All above 0.52 (2.51) 0.95 (2.62)

Table 21: Average cost improvements using various improvement heuristics algorithms
of puri�ed solutions in percent

Instance set POpt C1Opt

ClgSmall-I1 0.0364 (0.0074) 0.0364 (0.0069)

ClgSmall-I2 0.1373 (0.0593) 0.1407 (0.0580)

ClgSmall-I3 0.0827 (0.0252) 0.0840 (0.0263)

ClgMedium-I1 2.2880 (1.6562) 2.2696 (1.6403)

ClgMedium-I2 1.2507 (1.3591) 1.8227 (0.5790)

G0100-I1 0.1547 (0.0638) 0.1600 (0.0632)

G0100-I2 0.0873 (0.0406) 0.0873 (0.0364)

G0100-I3 0.0310 (0.0089) 0.0340 (0.0073)

G0400-I1 0.3627 (0.2075) 0.3627 (0.2075)

G0400-I2 1.0307 (0.6029) 1.0327 (0.6053)

Table 22: Average running times of construction, puri�cation and heuristic improvement
using various improvement heuristics in seconds

7.2.5 Meta-Heuristics

Local Search As expected, this approach returned invalid solutions for only two in-

stances, which were the instances for which augmentation with AugSPe of a Steiner tree

constructed using APSPx did not provide a valid initial solution. They were ignored

during evaluation. The variant without multi-moves showed little improvement over the

initial construction heuristics. This might be due to the move-operators having too little

e�ect on the overall structure of the solution. In cases where an improvement was found

(27% of the tested initial solutions), the new solution was 3.46% better than the initial

solution, on average. Average running time was 52.42 seconds, and average improvement

when considering all instances was 0.95% with a standard deviation of 2.94. However,

additional experiments have shown that the e�ect is larger when using initial solutions

with a larger gap.
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Instance set % Gap Run time % Improvement

ClgSmall-I1 5.97 (13.86) 8.26 (1.68) 0.24 (1.08)

ClgSmall-I2 7.03 (5.80) 16.56 (3.14) 0.97 (1.72)

ClgSmall-I3 3.81 (3.57) 12.69 (2.96) 0.06 (0.19)

ClgMedium-I1 10.99 (8.34) 161.70 (42.97) 0.06 (0.28)

ClgMedium-I2 4.98 (5.92) 150.27 (40.85) 0.26 (0.96)

G0100-I1 5.24 (5.71) 14.88 (4.26) 3.25 (3.63)

G0100-I2 9.49 (7.84) 12.50 (3.49) 2.94 (3.96)

G0100-I3 5.02 (9.91) 6.12 (1.19) 1.27 (5.29)

G0400-I1 9.10 (6.05) 45.56 (10.17) 0.43 (1.21)

G0400-I2 11.55 (6.10) 67.66 (17.02) 0.97 (1.93)

All above 7.38 (8.77) 52.42 (63.42) 0.95 (2.78)

Table 23: Average details using Local Search without multi-moves with APSPx and
AugSPe as construction heuristics

The variant with multi-moves gained better results, but not by much, indicating that

stronger modi�cation does indeed yield better results, but that the neighborhood opera-

tors did not change the solution enough to search through the solution space successfully.

Both variants seem to yield a lot more improvement on the small, randomly generated

instances of G0100. Improvement was still rather small, but roughly 29% better than

using the variant without multi-move at comparable run-times due to the smaller amount

of generations that had to be performed.

Instance set % Gap Run time % Improvement

ClgSmall-I1 5.65 (12.53) 5.88 (2.16) 0.43 (1.40)

ClgSmall-I2 7.03 (5.80) 11.12 (5.96) 0.97 (1.72)

ClgSmall-I3 3.81 (3.57) 9.88 (5.39) 0.06 (0.19)

ClgMedium-I1 10.97 (8.53) 190 (80.55) 0.08 (0.29)

ClgMedium-I2 4.75 (6.00) 158.58 (58.68) 0.47 (1.10)

G0100-I1 4.59 (5.43) 11.55 (6.09) 3.83 (3.79)

G0100-I2 8.93 (8.01) 8.40 (4.02) 3.45 (4.17)

G0100-I3 3.91 (8.34) 3.67 (1.48) 2.13 (6.32)

G0400-I1 8.32 (6.11) 54.43 (22.29) 1.12 (2.09)

G0400-I2 11.49 (6.09) 61.48 (15.58) 1.01 (1.93)

All above 7.01 (8.33) 55.45 (78.49) 1.25 (3.43)

Table 24: Average details using Local Search with multi-moves with APSPx and AugSPe
as construction heuristics

Simulated Annealing Using Simulated annealing without multi-move, the results

were identical to Local Search, except for a slightly higher running time. This indicates,

again, that the move operators had little e�ect on the structure of the solution, since

they did not overcome local minima. As with Local Search, two instances could not be

tested successfully because APSPx with AugSPe augmentation was not able to deliver a

valid initial solution.
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Instance set % Gap Run time % Improvement

ClgSmall-I1 5.97 (13.86) 9.12 (1.69) 0.24 (1.08)

ClgSmall-I2 7.03 (5.80) 17.63 (3.14) 0.97 (1.72)

ClgSmall-I3 3.81 (3.57) 13.63 (2.65) 0.06 (0.19)

ClgMedium-I1 10.99 (8.34) 177.41 (43.17) 0.06 (0.28)

ClgMedium-I2 4.98 (5.92) 160.37 (41.06) 0.26 (0.96)

G0100-I1 5.24 (5.71) 15.63 (4.22) 3.25 (3.63)

G0100-I2 9.49 (7.84) 13.32 (3.45) 2.94 (3.96)

G0100-I3 5.02 (9.91) 6.86 (1.16) 1.27 (5.29)

G0400-I1 9.10 (6.05) 48.78 (10.18) 0.43 (1.21)

G0400-I2 11.55 (6.10) 70.47 (17.29) 0.97 (1.93)

All above 7.38 (8.77) 65.50 (68.39) 0.95 (2.78)

Table 25: Average details using Simulated Annealing without multi-moves with APSPx
and AugSPe as construction heuristics

With multi-move, better solutions could be found for many problem instances. On

average, the improvement percentage was, albeit still rather small, 27% larger than with

using the variant without multi-moves. As with Local Search, run times were comparable

and even shorter than in the variant without multi-moves on smaller instances.

Instance set % Gap Run time % Improvement

ClgSmall-I1 5.60 (12.54) 6.17 (2.22) 0.47 (1.60)

ClgSmall-I2 7.03 (5.80) 11.51 (5.98) 0.97 (1.72)

ClgSmall-I3 5.15 (3.81) 9.90 (5.15) 0.06 (0.19)

ClgMedium-I1 10.94 (8.36) 192.41 (86.19) 0.10 (0.29)

ClgMedium-I2 4.66 (6.04) 159.35 (60.59) 0.57 (1.18)

G0100-I1 5.72 (4.63) 11.17 (5.72) 3.81 (3.54)

G0100-I2 3.68 (9.09) 8.39 (3.68) 3.31 (4.24)

G0100-I3 1.54 (3.97) 3.84 (1.53) 2.08 (6.31)

G0400-I1 8.65 (6.00) 54.49 (8.65) 0.83 (1.34)

G0400-I2 11.36 (6.22) 15.44 (11.36) 1.14 (1.98)

All above 7.03 (8.37) 56.02 (80.04) 1.24 (3.38)

Table 26: Average details using Simulated Annealing with multi-moves with APSPx and
AugSPe as construction heuristics

Variable Neighborhood Descent We can see that the improvement on the cost of

the initial solution is rather small, and, similarly to Local Search and Simulated Anneal-

ing, larger in the areas of the randomly constructed instance set of rather small problem

graphs G0100. However, in contrast to Local Search and Simulated Annealing, it ter-

minated a lot faster. This is a direct consequence of the absence of a �xed number of

generations and due to the fact that this algorithm stops when none of the neighbor-

hoods yield any improvements. As with Local Search and Simulated Annealing, no valid

solutions for two instances were found, since their initial solutions were already invalid.

A similar experiment letting the neighborhood operator return the best neighbor yielded

exactly the same results with a slightly higher running time.
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Instance set % Gap Run time % Improvement

ClgSmall-I1 6.10 (13.90) 0.06 (0.02) 0.13 (0.34)

ClgSmall-I2 7.12 (5.04) 0.20 (0.06) 0.86 (1.03)

ClgSmall-I3 3.42 (3.17) 0.12 (0.03) 0.42 (0.74)

ClgMedium-I1 10.62 (8.23) 3.03 (1.75) 0.38 (0.70)

ClgMedium-I2 5.03 (5.83) 2.65 (0.71) 0.20 (0.25)

G0100-I1 5.42 (5.67) 0.24 (0.09) 3.08 (3.78)

G0100-I2 9.93 (7.65) 0.15 (0.07) 2.55 (3.71)

G0100-I3 5.14 (9.92) 0.049 (0.01) 1.16 (5.29)

G0400-I1 8.62 (5.91) 0.74 (0.33) 0.86 (1.14)

G0400-I2 11.33 (5.90) 1.48 (0.69) 1.16 (1.20)

All above 7.33 (8.64) 0.93 (1.35) 0.99 (2.80)

Table 27: Average details using Variable Neighborhood Descent

Variable Neighborhood Search Here we can see that the process of shaking the

solution multiple times seem to have had a large e�ect on results. This approach yielded

almost 60% more solution improvement, on average, and reduced the gap to the best

known solution even more. However, running times were signi�cantly higher because

of the �xed number of iterations that was used during the experiments. As with the

previous optimization approaches, for two instances no valid solutions could be found,

since the initial solutions were already invalid. A similar series of experiments, with the

di�erence being that the neighborhood operator returns the best neighbor instead of the

next better neighbor it encounters, yielded slightly more expensive solutions (on average,

results using this method were 0.02% more expensive than with the version presented

here), suggesting that the algorithm got trapped in local minima more often.

Instance set % Gap Run time % Improvement

ClgSmall-I1 5.40 (12,53) 3.66 (1.86) 0.66 (1.67)

ClgSmall-I2 6.42 (5.62) 10.36 (3.20) 1.52 (1.27)

ClgSmall-I3 3.21 (3.27) 7.13 (3.66) 0.62 (0.84)

ClgMedium-I1 10.56 (8.28) 130.11 (47.71) 0.44 (0.75)

ClgMedium-I2 4.60 (5.84) 141.57 (37.14) 0.61 (1.00)

G0100-I1 4.81 (5.56) 13.35 (6.89) 3.63 (3.81)

G0100-I2 8.06 (7.87) 9.24 (5.57) 4.22 (3.96)

G0100-I3 3.91 (8.36) 2.98 (1.54) 2.14 (6.32)

G0400-I1 8.08 (5.96) 86.30 (30.23) 1.35 (1.42)

G0400-I2 10.67 (5.96) 74.20 (30.94) 1.74 (1.55)

All above 6.65 (8.21) 48.78 (59.32) 1.57 (3.50)

Table 28: Average details using Variable Neighborhood Search

Merging Using Multiple Augmented Steiner Trees Since a valid solution was

included for each instance, this approach, as expected, returned only valid solutions.

This approach had the best results so far. While the exact solver with the same settings

had run times that were longer than our maximum running time of 900 seconds for most

instances, this approach terminated well in time for all tested instances (according to a

separate series of experiments which we will not describe here). On average, 62.60% of

the edges were excluded by this algorithm, with an average running time of 30.17 seconds.
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The average gap was 3.36% to the best known solution. Additional experiments show

that, as expected, activation of the option to force edges which are present in all solutions

that are entered into the nqSMerger class reduced running times, but also increased the

gap. We got the same result as the exact solver for 26.43% of the tested instances, most

of these from the smaller sets and one instance from the set G0400-I1.

For TSPLib instances a valid solution could not be determined for one instance. For

the other instances, this approach was able to return a better solution than the exact

method alone (with similar time constraints) in 68% of the tested cases. The solution was

better by 10.19% (std. dev. 12.40) on average, when calculated over all the results on

tested TSPLib instances. on average, 53.57% (std. dev 5.38) of the edges in the problem

were excluded by the merge-preprocessing. Running times were a bit higher than for

the exact methods, since one solution for each Steiner tree construction heuristic was

created, additionally.

Instance set % Gap Cost ≤ Best known Run time % edges excluded

ClgSmall-I1 2.96 (11.03) 12/25 0.49 (0.11) 52.55 (2.53)

ClgSmall-I2 1.61 (2.18) 6/15 2.73 (0.78) 49.05 (3.52)

ClgSmall-I3 2.34 (3.10) 6/15 1.13 (0.32) 55.07 (1.98)

ClgMedium-I1 7.67 (7.74) 0/25 93.89 (60.02) 82.82 (1.74)

ClgMedium-I2 1.27 (2.21) 1/15 131.52 (31.20) 63.57 (1.19)

G0100-I1 2.29 (2.18) 4/15 2.45 (1.08) 61.66 (1.91)

G0100-I2 1.92 (3.74) 5/15 1.21 (0.25) 64.23 (2.05)

G0100-I3 5.79 (9.03) 11/20 0.37 (0.69) 43.98 (1.05)

G0400-I1 1.77 (2.57) 0/15 16.84 (3.82) 76.86 (1.60)

G0400-I2 2.38 (1.93) 0/15 36.26 (15.20) 71.53 (1.51)

All above 3.36 (2.80) 46/175 30.17 (51.14) 62.60 (12.76)

TSPLib -10.19 (12.40) 22/32 693 (1137) 53.57 (5.38)

Table 29: Details using merging of heuristic solutions constructed with AugSPe and all
�ve Steiner heuristics

When a non-crossing constraint was active, no valid solution could be found for the

problem instance (G0100-I2-08). We found the same solutions as the exact solver itself

for 18.09% of the tested instances. We can also see that, on average, less edges were

included than in the variant with crossing allowed. The gap, on average is the double of

that of the variant without such a constraint.

Instance set % Gap Cost ≤ Best known Run time % edges excluded

ClgSmall-I1 5.54 (11.91) 6/25 0.49 (0.12) 51.76 (2.46)

ClgSmall-I2 4.61 (4.61) 1/15 3.43 (1.44) 46.45 (3.30)

ClgSmall-I3 15.35 (10.25) 1/15 1.28 (0.51) 52.94 (3.70)

G0100-I1 6.20 (4.23) 0/15 2.57 (1.15) 58.15 (2.09)

G0100-I2 11.95 (23.19) 0/15 1.26 (0.36) 62.90 (2.46)

G0100-I3 10.24 (12.69) 5/20 0.37 (0.07) 40.85 (1.25)

All above 6.40 (11.95) 13/105 1.41 (1.32) 51.60 (7.56)

Table 30: Details using merging of heuristic solutions constructed with AugSPe and all
�ve Steiner heuristics and a non-crossing constraint
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Merging Using Random Weight Modi�cation As with merging using only the

heuristically constructed solutions without modifying edge weights, this method returned

only valid solutions. What we could immediately see is that, as expected, this method

produces results at least as good as the ones produced without using random weights,

since it does not exclude any edges that the other method would exclude. In these

experiments, it even reduced the gap by about 28%. It is also obvious that this method

excludes less edges, which is also clearly re�ected in the data. Running times are usually

higher, since more solutions have to be generated (20 instead of 5) and as a direct

consequence of less edges being excluded. Increasing the maximum weight modi�cation

and using more passes improves results, but also increases running times of the algorithm.

For 32% of the instances, we even got the same result as the exact solver, mostly on small

instances and instances from the set G0400-I1.

For TSPLib instances, this approach returned valid solutions for all instances. Be-

cause of 20 solutions being constructed using various Steiner tree heuristics, running time

was substantially higher than that of the time-capped exact method in some cases. It

was able to provide better or equal solutions as the exact method in 82% of the tested

cases, and on average, the solution provided by this approach was 10.12% (std. dev.

12.00) better than the one provided by the exact method.

Instance set % Gap Cost ≤ Best known Run time % edges excluded

ClgSmall-I1 2.55 (11.00) 15/25 0.78 (0.17) 49.35 (2.91)

ClgSmall-I2 0.81 (1.32) 8/15 3.75 (0.85) 45.50 (4.25)

ClgSmall-I3 2.18 (1.32) 7/15 1.65 (0.45) 51.09 (2.78)

ClgMedium-I1 6.02 (6.47) 0/25 141.00 (81.43) 80.29 (2.06)

ClgMedium-I2 0.86 (2.20) 0/15 175.57 (65.38) 56.82 (15.17)

G0100-I1 1.54 (1.71) 5/15 3.93 (2.73) 58.44 (2.48)

G0100-I2 1.10 (1.98) 6/15 1.74 (0.35) 61.60 (2.52)

G0100-I3 4.09 (7.14) 11/20 0.56 (0.09) 42.91 (1.48)

G0400-I1 1.11 (1.96) 3/15 20.26 (5.00) 75.20 (2.00)

G0400-I2 0.95 (0.97) 1/15 50.46 (24.03) 69.64 (1.91)

All above 2.42 (2.54) 56/175 42.38 (72.86) 59.66 (12.60)

TSPLib -10.12 (12.00) 27/33 1125 (2037) 47.63 (6.40)

Table 31: Details using merging of heuristic solutions constructed with AugSPe and all
�ve Steiner heuristics, with weight modi�cation and 4 construction passes

When the non-crossing constraint was enabled, we got the same results as an exact

solver for 24.76% of the instances. As with the variant without random weight modi�-

cation, we could not �nd a valid solution for one instance (G0100-I2-08).
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Instance set % Gap Cost ≤ Best Known Run time % edges excluded

ClgSmall-I1 4.13 (11.68) 10/25 0.78 (0.90) 48.32 (3.02)

ClgSmall-I2 3.68 (4.56) 2/15 3.75 (2.13) 43.77 (3.20)

ClgSmall-I3 13.89 (10.15) 1/15 1.65 (1.33) 50.22 (4.02)

G0100-I1 5.22 (3.90) 0/15 3.93 (2.07) 55.77 (3.05)

G0100-I2 19.47 (55.52) 0/15 1-74 (1.40) 59.79 (3.08)

G0100-I3 8.73 (9.75) 5/20 0.55 (0.77) 39.87 (1.91)

All above 6.35 (21.95) 18/105 2.10 (1.90) 49.03 (7.25)

Table 32: Details using merging of heuristic solutions constructed with AugSPe and all
�ve Steiner heuristics with a non crossing constraint and weight modi�cation with 4
construction passes

7.2.6 Solution Cost vs. Running Time

This essential tradeo� in computation is also represented in our experiments. The better

heuristics generally yielded results with a gap between 10% and 30%, usually within a lot

less than a second in the case of smaller instances to a few seconds in the larger instances

we tested. This gap could be reduced using puri�cation and heuristic local improvement

algorithms, as well as using generational and non-generational meta-heuristic approaches.

The generational approaches, in our case, yielded little improvement, while the non-

generational approaches terminated a lot faster and yielded comparable results. Solution

merging, for the tested instances, proved to be the most obvious choice if a best approach

was to be chosen and a low gap was essential, since it yielded the best results of all

approaches we tested within a reasonable time frame.

7.3 Comparison of Results to Exact Approaches

As previously mentioned, our construction heuristics show a gap of 10% to 30% for most

tested instances. Improvement and puri�cation decreased that gap by a certain amount,

with puri�cation having the largest impact by far, leading to gaps usually between 7%

and 15%. For instances with a non-crossing constraint, these gaps were usually higher.

Construction and puri�cation is, however, of course very fast when compared to exact

approaches, with calculation times being around 0.05 seconds for smaller, and around

0.2 to 1.5 seconds for the larger tested instances on the tested hardware. For TSPLib

instances, running times were higher (around 17 seconds on average), but still only

required a only very little computation time when compared to the exact approach used

for comparison. The tested TSPLib instances, modi�ed using triangulation to �t the

problem treated in this thesis, proved to be the hardest instances for both heuristic

approaches, hybrid and exact methods when compared to randomly generated grid-based

graphs or real-time instances.

The neighborhood-based approaches we described did little to improve solution qual-

ity, even with allowing the generational approaches to perform several thousand genera-

tions.

The smallest gap to the exact (and approximative) solutions was found in the solu-

tions provided by the approach involving merging and solving of a set of heuristically

constructed solutions. This, in some cases, encountered the optimal solution. The aver-
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age gap of the experimental results (using several sets of solutions based on a problem

graph, with each set having randomly modi�ed edges), was roughly 3.4% on the tested

instances without a non-crossing constraint, and about 6.4% when a non-crossing con-

straint was active. Running time was signi�cantly lower than the running times of the

same algorithm on the same computer, since they all were well below the maximum run-

ning time we allowed, which the exact solver alone usually exceeded for the medium and

larger experimental instances.

For TSPLib instances, the exact solutions were a�icted with a rather large gap, due

to the limited run-time the exact algorithm was allowed to use, which could be improved

by over 10% using the merge-and-solve based approaches. The construction heuristics

were usually a lot faster than the maximum running time of the exact algorithm, and

were in many cases able to produce results with gaps around 15%, or in some cases

even better solutions than the exact method was able to determine during its allowed

run-time.
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8 Summary

Increasing distribution of �ber-optic networks, and its fairly high cost of installation

makes good planning of cable routes essential for maintaining a�ordability. One way

this problem can be formalized is reducing it to two sub-problems: construction and

augmentation of a Steiner tree.

A lot of work has been done in the �eld of the approximative, exact, heuristic and

meta-heuristic construction of Steiner trees, vertex connectivity augmentation, the vertex

biconnectivity problem and the SDNP-{0,1,2} problem. In this thesis, we �rst give an

overview over previous work in these areas. We also present various algorithms for Steiner

tree construction, augmentation of customer nodes requiring redundant connections to

an infrastructure, algorithms for removing unnecessary redundant edges and a few other

algorithms for decreasing solution cost in detail. These approaches are heavily based on

previous work in both areas, especially our construction and augmentation heuristics.

On some cases, these heuristics were able to determine an optimal solution.

We also present a series of neighborhood-based, meta-heuristic approaches. The

neighborhoods we de�ne are also based on previous work, but are modi�ed in order not

to destroy the validity of a solution that they are applied to, resulting in neighborhoods

where the neighbors of a solution are very similar to the initial solution.

A further approach is presented which involves merging of multiple heuristic solutions

into one set of edges, with the resulting sub-graph induced by that set of edges having

considerably less edges than the original problem graph. This sub-graph was then fed

into an exact solver.

The algorithms were implemented using C++, LEDA for data structures, CPLEX

for a linear programming solving and EALib2 for meta-heuristic approaches. As an exact

solver, a multi-commodity-�ow based approach from [29] was used.

Experimental results using this set of implementations show that the heuristic meth-

ods described in this thesis are able to construct valid solutions for all instances without

a non-crossing constraint, and for most instances with a non-crossing constraint. Some-

times the constructed solution was almost a third more expensive than an optimal so-

lution determined using exact methods. However, for some of the smaller instances we

could �nd an optimal solution using only our construction heuristics. This number could

be increased using heuristic improvement and puri�cation heuristics, which also yielded

a signi�cant improvement for many test instances.

Experiments involving the presented neighborhoods show these neighborhoods seem

to have a signi�cantly reduced degree of diversity when compared to the neighborhoods

for Steiner tree construction that their intuitive concepts were based on. This seems

to have considerable impact on their improvement capabilities. The experiments also

show that the approaches involving the merging of multiple heuristic solutions into a

new problem sub-graph lowered computation times by a large factor, and kept the gap

to the best known solutions rather small.
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9 Conclusion

Since our heuristic approaches were able to determine valid solutions for almost every

instance we considered, and in some cases even an optimal solution, approaches involving

the construction of a Steiner tree using multiple applications of minimum spanning tree

algorithms could be evaluated and used to extend the set of construction heuristics with

heuristics that are not shortest-path-based. These construction heuristics could then be

coupled with the other improvement, optimization and merge-and-extract approaches

presented in this thesis.

Since the neighborhoods we chose for Local Search and Simulated Annealing showed

only small improvements of the original solution, an neighborhood similar to the ones

described in [9] and [26] might be interesting. In contrast to the neighborhoods we chose,

they construct an entirely new solution based on the removal or addition of key-nodes,

leading to a solution with a possibly completely di�erent structure. This would be pos-

sible by generating a modi�ed problem instance and applying the heuristic solution con-

struction algorithms provided here. Moreover, approaches based on genetic algorithms

might prove successful. Since Variable Neighborhood Search and Variable Neighborhood

Descent showed slightly better results in our experiments, further exploration into more

radical neighborhoods might be fruitful, maybe using construction of an entirely new

solution as well.

The experiments involving the approximative or exact solution of a merged set of

heuristically generated solutions show that, on the instances we tested, the problem

instance size could be decreased by half using heuristic methods, speeding up the solving

process. The gap to the best known solutions was the smallest we encountered during the

experiments described in this thesis. This causes us to consider this approach the most

e�ective one we described in this thesis when applied to the instances we used for testing.

More experiments of that kind could include, for example stronger weight modi�cation or

more passes. Also, using di�erent weight modi�cation strategies (for example involving

penalization of edges that are already within the set of merged solutions) or di�erent

sources for solutions to merge (new construction heuristics etc.) might lead to further

improvement of this technique.

Another feasible approach involving the exact solution of a sub-graph would be to

destruct parts of a heuristically created solution, and then rebuild the destroyed area

using exact methods. Developing e�ective strategies for selecting areas of the solution

that are to be destructed are crucial for the success of such an approach.
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