

Design and Implementation

of TinySpaces
The .NET Micro Framework based

Implementation of XVSM for Embedded

Systems

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur/in

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Alexander Marek
Matrikelnummer 0726166

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr. eva Kühn

Wien, 08.02.2010 _______________________ _______________________

 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

 Technische Universität Wien

A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43/(0)1/58801-0 ▪ http://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

http://www.tuwien.ac.at/

Page 2 of 108

Erklärung zur Verfassung der Arbeit

„Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich

die verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass

ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –,

die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach

entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung

kenntlich gemacht habe.“

Ort, Datum, Unterschrift

Page 3 of 108

Abstract

Until today developing software for embedded devices has been a tedious task with the main problem

that those applications interface directly with the hardware they are run on. This causes a strong

coupling between hardware and software, thus making it hard to impossible to reuse code.

Furthermore there is a continuously growing number of networked embedded devices which need to

collaborate with each other using different communication protocols like TCP/IP, ZigBee, Bluetooth et

cetera.

For that reason the need for a common middleware to connect those devices increases, but the tight

software-hardware coupling makes it hard to write such a system for different devices. There already

exist some middlewares like emORB [1], which is based on CORBA (Common Object Request Broker

Architecture). However CORBA does not allow for P2P (Peer-to-Peer) communication and is thus

limited for the usage in mobile networked embedded systems.

Back in 2001 Microsoft started the Smart Personal Object Technology (SPOT) initiative and the .NET

Micro Framework was born, which made it possible to write managed, hardware-independent code for

embedded devices. Even though this framework is only supported on 32 bit devices, it supports a wide

range of those and allows for developing a platform independent prototype of a slimmed XVSM

middleware.

This thesis focuses on the implementation of TinySpaces, a middleware based on the XVSM

(eXtensible Virtual Shared Memory) principle. As TinySpaces is specialized for resource constrained

devices several compromises need to be made, which are explained in this document. Nevertheless it

is shown that TinySpaces is a compatible subset of other XVSM implementations, as it complies with

the XVSM standard although several functionalities needed to be slimmed or omitted to make

TinySpaces lightweight enough for embedded devices.

To prove that TinySpaces perform well, benchmarks are made concerning memory utilization and

CPU usage of TinySpaces, as well as code-size, performance, and byte usage of three implemented

serialization mechanisms.

Page 4 of 108

Kurzfassung

Bis heute stellt das Entwickeln von Software für Embedded Devices eine Herausforderung dar.

Besonders problematisch ist, dass jene Applikationen direkt auf die Hardware des Gerätes, auf dem

sie ausgeführt werden, zugreifen. Dadurch entsteht eine starke Bindung zwischen Software und

Hardware, durch welche es schwer bis unmöglich ist, Code wiederzuverwenden.

Zusätzlich steigt die Anzahl an Embedded Devices, welche über ein Netzwerk mittels verschiedenster

Kommunikationsprotokolle wie TCP/IP, ZigBee, Bluetooth, etc. miteinander kollaborieren müssen,

kontinuierlich.

Aus diesem Grund wird der Bedarf einer einheitlichen Middlware, mit welcher diese Geräte verbunden

werden können, immer stärker, doch die starke Bindung zwirschen Hardware und Software macht

dieses Unterfangen sehr aufwendig. Es existieren bereits Middlewares für Embedded Systems. Diese

basieren größtenteils auf CORBA wie auch beispielsweise emORB [1]. Allerdings unterstützt CORBA

keine P2P Kommunikation und ist aufgrund dessen nur bedingt geeignet für mobile Networked

Embedded Devices.

Im Jahr 2001 startete Microsoft die Smart Personal Object Technology (SPOT) Initiative und das .NET

Micro Framework wurde geboren, welches es möglich machte gemanagten und Hardware-

unabhängigen Code für Embedded Devices zu verwenden. Dieses Framework kann allerdings

ledigligh auf 32 bit Geräten ausgeführt werden, dafür wird bis dato bereits eine Vielzahl dieser

unterstützt. Aus diesem Grund ist dieses Framework gut geeignet für die Entwicklung eines Plattform-

unabhängigen Prototyps einer reduzierten XVSM Middleware für Embedded Devices.

Der Schwerpunkt dieser Diplomarbeit liegt auf der Implementierung von TinySpaces, einer

Middleware, die auf dem XVSM (eXtensible Virtual Shared Memory) Prinzip basiert. Da diese auf

Geräte mit eingeschrängten Ressourcen spezialisiert ist, müssen mehrere Kompromisse eingegangen

werden, die in dieser Arbeit erläutert werden. Es kann gezeigt werden, dass TinySpaces mit einer

Untermenge der vollen XVSM Spezifikation kompatibel ist, da einige Funktionalitäten reduziert

und/oder ausgespart werden mussten, damit diese Middleware leichtgewichtig genug für Embedded

Devices bleibt.

Um zu zeigen, dass TinySpaces auf Embedded Devices performant läuft, werden Tests in Hinblick auf

CPU- und Arbeitsspeicherauslastung von TinySpaces, sowie die Code-Size, Performanz und den Byte

Verbrauch von drei implementierten Serialisierungsmechanismen, durchgeführt.

Page 5 of 108

Acknowledgements

The accomplishment of this had not been possible without the support of several persons.

First of all I want to thank my supervisor eva Kühn for relying on me. Although she had been involved

in numerous research projects and had multiple graduands to conduct, she always found time for

giving me feedback and support.

I also want to thank the members of the XVSM Technical Board, which is a periodical meeting on

every Thursday forenoon, for their insights into XVSM, their criticism and discussion on contributed

ideas, for delivering ideas and the motivation that arouse in me and remained because of that.

Next special thanks goes to Stefan Craß, a colleague and also member of the technical board, as he

worked hard on a formal specification on XVSM and delivered great insight to me, and also for the

many discussions we had which always led to useful ideas on both sides.

I also want to thank my parents for giving me the chance to study and supporting me whenever time,

money or motivation went short and my sister for being such a great model for me.

Last but not least I want to thank my beloved girlfriend for her patience in those many evenings she

had to spend alone, as I was working on this thesis.

Page 6 of 108

Contents

Erklärung zur Verfassung der Arbeit ... 2

Abstract .. 3

Kurzfassung ... 4

Acknowledgements ... 5

Contents .. 6

1 Introduction ... 9

2 Objectives and Overview.. 11

3 Space Based Computing Middleware .. 12

1.1 Excursion: Remote Procedure Calls (RPC) .. 12

1.2 Excursion: Message passing ... 12

1.3 Excursion: Message Queuing .. 13

1.4 JavaSpaces ... 14

1.5 XVSM ... 15

1.6 Layered Architecture of XVSM .. 17

1.6.1 Algebraic Data Structures .. 17

1.6.2 CAPI-1: Basic Operations .. 17

1.6.3 CAPI-2: Transactions... 18

1.6.4 CAPI-3: Coordination ... 19

1.6.5 CAPI-4: Aspects .. 21

1.6.6 CAPI-5: XVSM Runtime (with Timeouts) ... 22

1.6.7 XVSM Protocol .. 24

1.6.8 Language Binding (API) .. 24

2 Embedded Development and the .NET Micro Framework .. 24

2.1 Embedded Systems .. 24

2.1.1 Application Areas of Networked Embedded Systems ... 26

2.2 The .NET Micro Framework .. 27

2.2.1 The Layered Architecture of the .NET Micro Framework .. 28

2.2.2 Alternatives to the .NET Micro Framework .. 29

2.2.3 Other Microsoft embedded platforms .. 30

Page 7 of 108

3 Related Work .. 31

4 TinySpaces Design .. 34

4.1 Contract First Design in TinySpaces ... 34

4.2 CAPI-1: Basic Operations .. 35

4.2.1 Contracts ... 35

4.2.2 Implementation .. 39

4.3 CAPI-2: Transactions .. 42

4.3.1 Contracts ... 42

4.3.2 Implementation .. 45

4.4 CAPI-3: Coordination ... 53

4.4.1 Contracts ... 54

4.4.2 Implementation .. 59

4.5 CAPI-4: Aspects .. 64

4.5.1 Contracts ... 64

4.5.2 Implementation .. 69

4.5.3 Notifications ... 70

4.6 CAPI-5: Runtime .. 75

4.6.1 Contracts ... 75

4.6.2 Implementation .. 75

4.6.3 TimeoutHandler ... 82

4.7 CAPI-5b: Communication .. 83

4.7.1 Contracts ... 85

4.7.2 Implementation .. 87

5 Benchmark ... 88

5.1 Performance Benchmark ... 88

5.2 Memory Utilization ... 91

5.3 Power Consumption .. 92

5.4 Serialization Performance ... 92

6 Future Work and Ideas ... 96

7 Conclusion .. 98

Page 8 of 108

Abbreviations ... 99

Table of Figures ... 101

References .. 104

Page 9 of 108

1 Introduction

Until today, developing software for embedded systems is a challenging task. Embedded developers

are used to programming them with C++, C or even assembly language and in addition, the code

always interfaces with the hardware directly. As every board has different interrupt controllers, buses

and I/O interfaces, etc., developing software which can be ported to any other device is hard to

impossible. [2]

Additionally the biggest factor influencing the choice of a processor today is neither its speed, nor its

price, but the available software, which eases the development of software for embedded systems. [3]

Another problem is that these devices often need to collaborate with other ones in some networked

environment. There already exist several middlewares for embedded devices, but as they are all

based on CORBA, their support for P2P communication is very limited. However, this style of

communication is important for scenarios where such devices are mobile, like cooperating robotic

vacuum cleaners, just to give an example.

This leads to the need of a middleware capable of P2P for interconnecting those devices, but as

software is not independent from the underlying hardware, this is a tedious task.

Back in 2001 Microsoft started the Smart Personal Object Technology (SPOT) initiative, “aimed at

improving the function of everyday objects through the injection of software.” [4]

“Smart Personal Objects are everyday objects, such as clocks, pens, key-chains and billfolds that are

made smarter, more personalized and more useful through the use of special software.” [4]

The first outcome of this initiative was an ECMA-compliant (European Computer Manufacturers

Association) subset of the CLR (Common Language Runtime) which is called TinyCLR. Based on that

technology, the .Net Micro Framework 1.0 was presented at the 2006 MEDC (Mobile and Embedded

Developers Conference).

This framework neither does rely on an operating system, nor is it one. It is a lightweight bootable

runtime for embedded development. The main advantage of it is its hardware independence. As

opposed to other embedded development frameworks, the code of software developed using the .Net

Micro Framework does not interface with the hardware directly. That way, software written for this

framework can be run on any other device that runs the TinyCLR with the drawback that only 32 bit

systems are supported yet.

As can be seen in Figure 1, which gives an overview over the architecture of that framework, a

“Runtime Component Layer” exists which abstracts the “Hardware Layer”. A porting kit was released

which contains the code of this hardware abstraction layer. This way, hardware vendors can easily

adapt that code and port the .Net Micro Framework to their devices. [5]

Page 10 of 108

Figure 1 - Architecture of the .Net Micro Framework [6]

Though network communication has become easier with the class library provided by .Net Micro

Framework there is still no built-in functionality which would allow for P2P communication. Developers

need to use sockets or a vendor specific web service framework of Microsoft to transfer data between

devices in a networked environment.

Back in 2008, four students of the Technical University of Vienna developed two reference

implementations of a Space Based Computing Middleware for Java and the full .Net Framework which

followed the XVSM (eXtensible Virtual Shared Memory) principle. [7] [8] [9] [10]

Page 11 of 108

2 Objectives and Overview

The aim of this thesis is to develop a middleware for resource constrained devices based on the .Net

Micro Framework which complies with a subset of the XVSM model on the one hand and suits the

needs of embedded devices on the other hand. In the following it will be called “TinySpaces”.

The middleware shall follow the Extensible Virtual Shared Memory paradigm to remain compatible

with other implementations of this kind, although providing less functionality.

The reason for this is that a peer-to-peer communication is very suitable for embedded devices, as

their resource constraints often make it impossible to run as dedicated servers for several devices.

Especially in scenarios where those devices are mobile and thus a centralized communication

mechanism is hard to impossible to achieve, P2P communication, which is eased by the XVSM

approach, is very useful.

It is also important for the middleware to follow the new formal model of an XVSM based middleware

which was developed by eva Kühn et al [11]. The reason for the development was the observation,

that the two reference implementations of XVSM (MozartSpaces and XcoSpaces) were not 100

percent compatible, although they were implemented at the same time and although the two

development teams had a permanent interexchange.

Another reason for this formal model was the fact, that the two reference implementations were

extensible by providing a possibility to add aspects, but their inner logic was not split into separate

layers, which made it impossible to exchange a layer with some other implementation if needed. To

achieve this modularity, a layered architecture was specified in the formal model.

This approach is very important for TinySpaces, as it makes it possible for developers to remove a

layer that is not needed and would only stress processor and memory.

The first part of this thesis will provide an overview of the layered architecture of XVSM to give the

reader the background information needed to understand the architecture of TinySpaces.

Next there is an introduction to the .NET Micro Framework along with its advantages and

disadvantages to give an understanding why this technology was chosen to develop TinySpaces.

Furthermore networked embedded devices along with their common properties are presented and

their requirements, which need to be met by TinySpaces, are explained.

The main part of this document puts an emphasis on the implementation of TinySpaces and explains

which compromises need to be made to comply with the XVSM standard, or at least a subset, and

also meet the requirements of resource constrained devices. In order to understand this thesis it is

recommended to read the thesis of Stefan Craß [12].

Page 12 of 108

Finally benchmarks on the performance and memory utilization of TinySpaces, and on the

performance, packet-size and code-size of its three serialization mechanisms are made to determine

whether the requirements of networked embedded devices are met.

3 Space Based Computing Middleware

 “Space based computing (SBC) is an innovative and powerful concept for the coordination of

autonomous processes. It is based on the notion of a common, abstract space connecting distributed

processing entities over a network. Instead of explicitly exchanging messages between individual

processes or performing remote procedure calls, processes communicate and coordinate themselves

by simply reading and writing distributed data structures in a shared space.” [12]

To understand this definition, the terms “remote procedure call” and “exchanging messages” need to

be explained in more detail.

1.1 Excursion: Remote Procedure Calls (RPC)

When using remote procedure calls to communicate over a network, a remote method of some service

object is mapped to a local interface implemented by a proxy object. This object is then used locally to

call the remote object [13].

One disadvantage of using RPC calls is that no location transparency is given as all communicating

parties always need to know the physical addresses of each other. Another is that this communication

always follows a client-server model.

Additionally RPC calls are often synchronous, meaning the calling client is blocked while the server

processes the request.

Figure 2 - RPC Communication

1.2 Excursion: Message passing

Using message passing for remote communication, a message containing all required information for

a call (function invocation, data packets, security token etc.) is sent to the remote system. A very

Page 13 of 108

prominent protocol based on this approach is SOAP (Simple Object Access Protocol), which is still

widespread.

Figure 3 - Message Passing

The main difference between the two mentioned communication styles and space based computing is

the fact, that space based communication is always stateful whereas remote procedure calls and

message passing are stateless.

A modern stateful communication paradigm is message queuing.

1.3 Excursion: Message Queuing

Message queuing can be seen as the stateful approach of message passing. Before any

communication can happen, message queues need to be installed which serve as intermediate

stations. An advantage of this approach is that asynchronous communication can be achieved. This

means that two communicating parties do not need to be running at the same time to exchange

messages. The drawback however is that they are dependent on the message queues.

Additionally one-to-many communication can be achieved, but each receiving party needs its own

message queue, as reading from a queue is always consuming the message. Therefore this approach

is not very flexible and becomes cumbersome once multiple parties need to interact with each other.

Figure 4 - Message Queuing

Communication with space-based technology is, as already denoted, always stateful, which means

that data written into the space is not necessarily immediately removed. There may be several

communication parties reading this data before one of them might finally remove it. Some of the

readers might have also connected after the data had already been written into the space.

Page 14 of 108

Figure 5 - Communication using a space

“Processes interact in a data driven way supporting event-driven architecture concepts. This leads to a

decoupling of all participants concerning time, space and reference.” [12]

What this means is that many space-based middleware systems support some kind of publish-

subscribe pattern which enable participators of the space to subscribe to certain events, for example

for an entry written into the space that matches a specific pattern, and in the following get notified by

the space if such an occasion happens.

A simpler approach would be to try to read from the space, and as the requested entry is not present

at that time, the operation blocks until this condition changes.

An example for such a space-based computing middleware would be JavaSpaces [14] from Sun, but a

lot more exist. For a survey of space-based systems we refer to the master thesis of Thomas Scheller

where many of these middlewares are compared to each other. [7]

1.4 JavaSpaces

JavaSpaces is a well known space-based middleware implementation and based on the Linda model.

Therefore all data that is written to the space has the form of a tuple, which is simply an ordered list of

arbitrary elements (i.e.: <[“xyz”], [125], [1.5]>). Therefore, to read this tuple x from the space, only

Linda tuple matching can be used. This means that an incomplete tuple y is sent to the space, which

specifies what you are searching for. (i.e. <[“xyz”], [], []> – the empty brackets resemble wildcards)

The JavaSpaces runtime now searches for a tuple which matches all the defined parts of the sent

fragment, except the parts that contain a wildcard, which are simply ignored.

This approach is simple and can be used to cover lots of scenarios, but it can become cumbersome in

others. For example to realize a producer/observer scenario (writing and reading tuples in a “First In –

First Out” manner) for publishing simple messages, an extra “count tuple” would have to be written into

the space, which contains the current count of tuples belonging to the producer/observer scenario.

This tuple is updated by each producer when it adds another message, and by each consumer when it

removes one. The tuples that contain the actual messages additionally need to be numbered and

Page 15 of 108

contain a fragment specifying which tuples belong to that “FIFO group” (here “po” for “producer-

observer”). A scenario with three produced tuples containing simple messages is depicted in Figure 6.

Figure 6 – Producer/observer implementation with JavaSpaces

If a producer needs to add another message, it first has to read the “count tuple” to determine the

number (or index) of the message which should be added, which is four in this case. Then the “count

tuple” is updated with the value of four, and the tuple containing that message is written with that

value.

An observer needs to read the “count tuple” first, to determine how many tuples containing messages

it has to retrieve. In the current example it would be four messages. Then it could make a read request

separately for each message, or use a wildcard for the index value of the messages to retrieve all of

them in one step. However, in the latter case they could be unsorted.

For more information on that topic we refer to the lecture of eva Kühn [15]. For a detailed comparison

of space based computing middleware and message queuing see [16].

1.5 XVSM

XVSM builds on top of the space-based computing paradigm, but offers additional coordination

concepts and thereby goes beyond Linda tuple matching by introducing coordinators, containers and

entries.

Entries are simply the data structures containing the actual user data. They are stored in containers,

so never directly in the space itself. This allows a logically grouping of data and therefore reduces the

risk of erroneously manipulating data. Additionally, an entry can store a reference to another container.

Therefore even a hierarchical structure can be created. The last piece in this puzzle is the coordinator.

A coordinator specifies at runtime how entries are read from and written to a container. A FIFO-

Coordinator, for example, assures that the entry that has been written to a container first is also read

first.

Therefore only container with a FIFO-Coordinator has to be created to realize a producer/observer

scenario. The following figure (Figure 7) depicts how entries are written to and read from such a

container.

Page 16 of 108

Figure 7 – Producer/observer implementation with XVSM

Using this approach a producer just has to write a message into this particular container and therefore

does not have to manage the messages’ indexes. An observer only needs to make a read request,

which targets that container, to retrieve one or more messages in the correct order, as this is handled

by the FIFO-Coordinator. For a more detailed description of coordinators in XVSM we refer to [10].

These building blocks show very well, how XVSM sets itself apart of other space-based computing

middleware systems. Furthermore, it was shown in [17] that separating a space into logical containers

and using custom coordinators suited for a specific scenario can also lead to significant performance

improvements. This is another reason why XVSM was chosen, among other space based computing

middleware specifications, to implement TinySpaces.

Page 17 of 108

1.6 Layered Architecture of XVSM

To give the reader a basic understanding of the design of TinySpaces, this section provides a short

overview of the layered architecture of XVSM. For a detailed description we refer to the master thesis

of Stefan Craß [18] and [11].

Figure 8 - Layered Architecture of XVSM

1.6.1 Algebraic Data Structures

XVSM defines several algebraic data structures to store information. Properties are formally name-

value pairs that form the attributes of an object. Metadata is stored in properties, which are marked

using special labels. Examples for metadata are the current count of entries within a container, the

information whether an entry is locked by a transaction and which transaction holds the lock, et cetera.

Entries formally consist of properties and are used to store user specific information in the space.

Furthermore, one or more containers may exist in a space. They are used to store entries, therefore

entries are not written directly into the space itself. This makes it possible to separate them into logical

groups and even to create a hierarchy of containers. This approach reduces the risk of erroneously

manipulating entries which do not belong to a logical group.

1.6.2 CAPI-1: Basic Operations

1.6.2.1 Atomic Operations

As the name implies, this layer consists of a “…set of synchronous operations on the XVSM algebraic

data structures … which either succeed or fail immediately.” [11 S. 3]

These operations are

 Read, which is used to retrieve an entry/entries from a container without removing it/them,

 Take, which is used to read and remove an entry/entries from a container in one step,

 Write, which is used to insert an entry into a container.

Page 18 of 108

These operations are called synchronously as they never block but either fail or succeed immediately.

This is important as it eliminates the risk of race conditions. While only the operations Read and Take

may return entries, all three of them deliver a status code to provide information about their outcome.

These defined codes in CAPI-1 are

 OK … operation finished successfully

 NOTOK … an unexpected error occurred

 DELAYABLE … the operation did not finish successfully, but can be retried anytime. An

example for this would be that a READ operation was called on an empty container.

This status code is delivered through all layers up to CAPI-5 where the corresponding request is

eventually further processed.

1.6.2.2 Query Language

Additionally the built-in XVSM Query Language is defined within this layer. It provides additional

expressiveness over selectors which are contained in CAPI-3. The standard queries, which are

defined in [11], are:

 sortup(l)

… sorts the list of entries ascending depending on the value of the property with label “l”.

 sortdown(l)

… sorts the list of entries descending depending on the value of the property with label “l”.

 cnt(n)

… returns first n entries.

 distinct(l)

… returns a list of entries which are unique according to their value for the property with label

“l”.

 x range

… returns a list of entries, whose property lies within the specified range.

 x range

… returns a list of entries, whose property does not lie within the specified range.

Queries can be piped to aggregate their logic and additionally extended by the user, by defining

custom queries.

1.6.3 CAPI-2: Transactions

A transaction encloses a set of operations and allows for either completing all of them successfully, or

none of them. The exact behavior is defined by the term “ACID” which, according to [19], stands for

 Atomicity .

This means that a transaction needs to either commit or rollback all of its corresponding

operations in one single unit of work.

 Consistency

Page 19 of 108

This means that after committing or rolling back an operation, the environment is always in a

consistent state.

 Isolation

This “refers to the degree to which individual transactions interact with each other.” (Richards,

2006, S. 5) “Isolation is a function of consistency and concurrency. As the level of isolation

increases, consistency increases and concurrency decreases.” [19]

 Durability

This refers to the fact that when an operation is committed, it is guaranteed that these

changes are permanent.

CAPI-2 consists of the operations Read, Write and Take. These have basically the same syntax as the

operations listed in CAPI-1, but require a running local transaction as additional parameter.

Furthermore, they are non-blocking as well, but additionally introduce locking. This provides the

possibility to get exclusive access to any XVSM algebraic data structure.

The CAPI-2 operations return the following status codes:

 OK … the same as explained in section 1.6.2.1

 NOTOK … the same as explained in section 1.6.2.1

 DELAYABLE … the same as explained in section 1.6.2.1

 LOCKED … this code is introduced in this layer and is returned if an algebraic data

structures required for the CAPI-2 operation could not be locked, as another transaction

already has a lock on it.

In XVSM basically two types of transactions exist.

User transactions are created, committed and rolled back explicitly by a client application using the

API of XVSM.

Sub transactions are used internally to encapsulate a single operation. Thereby all operations need

to be encapsulated by a transaction. If for example a user makes a request without specifying a

transaction, the runtime layer implicitly creates one for that request. Furthermore, sub-transactions are

used by the coordination layer to encapsulate a single CAPI-3 operation.

1.6.4 CAPI-3: Coordination

This layer contains the coordination logic which consists of coordinators and selectors.

1.6.4.1 Coordinator

A container may have one or more coordinators which are specified at container creation time. These

coordinators are responsible for defining, how entries are written to and read from the corresponding

container. For example when reading from a container using a FIFO-Coordinator the entry returned

will be the one written into this container first.

Page 20 of 108

Additionally, the coordinator specifies its own type of selector which is used to offer additional

information about which entries should be read or destroyed, or how entries should be written into the

container.

For example a Key-Coordinator works similar to a hash table, using unique keys to identify the entry

that has to be read. When writing an entry with a Key-Coordinator, it needs to get the key that has to

be used to identify this entry. This is achieved by adding a Key-Selector to the entry which contains

the key value.

When an entry is written into a container the coordinators need to get informed about the actions

taken to keep their accountant data in a consistent state. Therefore each coordinator specifies an

accountant function which is called whenever an entry is read, written or taken.

For example, when an entry is being removed using another coordinator, the Key-Coordinator needs

to be informed about that event to be able to remove the corresponding key.

Figure 9 - Destroying an entry from a container with multiple coordinators assigned

1.6.4.2 Selector

A selector contains all the required information needed by a coordinator to succeed in reading or

writing an entry/ entries. Each coordinator has its own type of selector.

For example a FIFO-Coordinator has a corresponding FIFO-Selector which can be used to specify the

number of entries that should be read or removed from a container.

Figure 10 – FIFO-Selector

A LINDA-Coordinator on the other hand might specify the pattern that shall be used to identify a viable

entry. The following figure drafts a LINDA-Selector which searches for a tuple with anything as first

part (null is a wildcard), an integer with the value 12 as second part, and the string “vienna” as third

part.

Page 21 of 108

Figure 11 – LINDA-Selector

1.6.5 CAPI-4: Aspects

The modularity achieved by separating the building blocks of XVSM into separate layers already

allows for adapting and/or extending it. An example could be replacing the transaction layer that

provides locking at entry level with another one that only allows for container level locking. That way

concurrency would be reduced, but performance improvements could be achieved depending on the

scenario the space is used in. However a lot of knowledge is needed to achieve this task.

Aspects in contrast allow for extending an existing space without having to re-implement a whole

layer. In fact they are engaged to specified points in a space which are called insertion points or

ipoints for short.

An example would be a security aspect, which assures that only authorized users can access the data

in its space. [7 S. 98 ff.]

Currently XVSM has no complete formal definition of aspects although they have already been

implemented in XcoSpaces and MozartSpaces. Therefore the description of aspects in [7] is used as a

source here.

The ipoints where aspects can be added are:

 Pre-ipoint

Aspects engaged in this ipoint will be called before the corresponding operation is called. In the

following those aspects will also be referred to as pre-aspects

 Post-ipoint

Aspects engaged in this ipoint will be called after the corresponding operation was called. In the

following those aspects will also be referred to as post-aspects.

Additionally, more than one aspect can be added to a specific ipoint and in that case, the aspects are

called sequentially. They can also affect the execution of following aspects and even the runtime

behavior by returning one of the following status codes:

 OK

The aspect call was successful and the next aspect can be executed.

 SKIP

If this code is returned, all succeeding aspects for the current pre- or post-ipoint are not going to

be called. Additionally, if SKIP was returned by a pre-aspect, the operation itself is skipped too.

This can be used to replace a whole operation with an aspect.

 RESCHEDULE

Page 22 of 108

When this code is returned, all succeeding operations and pre- or post-aspects are canceled and

the request that caused this operation to be executed is rescheduled.

 ERROR

This status code indicates that the aspect does not want any succeeding aspects or the operation

itself (if the code was returned by a pre-aspect) to be called - for example an aspect does not

allow the current user to access a specific container - or that an unexpected error occurred within

the aspect itself. The error is thereupon returned to the user.

Furthermore, there exist two types of aspects in XVSM:

Space aspects, as the name implies, space aspects work at space level, so they are global aspects.

Examples for ipoints are:

 Pre-/Post-CreateContainer

 Pre-/Post-CreateTransaction

 Pre-/Post-CommitTransaction

 Etc.

Container aspects only affect a single container and therefore are local aspects. Examples for ipoints

are:

 Pre-/Post-Write

 Pre-/Post-Read

 Etc.

1.6.6 CAPI-5: XVSM Runtime (with Timeouts)

CAPI-5 contains the logic to schedule incoming and outgoing requests and responses. The current

architecture, as introduced in [7], looks as follows:

Page 23 of 108

Figure 12 - XVSM Runtime

Requests, whether local or remote, are added into the request container, which is used by multiple

core processors that take one request after the other and process them.

 If the operation belonging to that request succeeds (all operations return status code OK) or

fails completely (NOTOK is returned), a response is created, written to the response container

and an event is created and put into the event container.

 If the operation fails with the status DELAYABLE or LOCKED, the request is put into the wait

container and needs to be rescheduled by the event processor as soon as any suitable event

arrives.

The event processor waits for events fired by the core processor and uses their provided information

to wake up waiting requests from the wait container. These requests are then again put into the

request container.

A very important part of the runtime is the timeout handler. Each request provides a timeout value,

which points out when the request expires. Whenever this happens the timeout handler removes the

request from the wait container and reschedules it. The core processor which processes the expired

request will notice that and create an error response, which is then written into the response container.

This currently is the only way to resolve deadlocks.

Page 24 of 108

1.6.7 XVSM Protocol

Currently the new formal model of XVSM does not define an XVSM protocol, as its development is still

in progress.

Its task is to define how two heterogeneous implementations of XVSM communicate with each other.

However, XcoSpaces and MozartSpaces already provided a protocol based on an XSD Schema

allowing them to collaborate, although they were based on different technologies (.NET and Java). At

first, only primitive data types could be send from one space implementation to another, but in 2008

the TupleConverter module was implemented, which made it possible to send arbitrary objects (i.e.:

classes) from XcoSpaces (.NET) to MozartSpaces (Java) and vice versa by simply decorating them

with Attributes (.NET) or Annotations (Java). For more information on the original implementation of

the protocol see [8 S. 61ff.] and [10 S. 73 ff.]. For more information about the TupleConverter see [20].

1.6.8 Language Binding (API)

The language binding acts as a facade to the client application which in turn uses the API to leverage

the functionality of XVSM and never directly interfaces with any of the underlying layers. This is very

important, as layers could easily be replaced without having to recompile or even adapt the client

application.

Currently it is not defined how the API should exactly look like and there are multiple ways to

implement them. For example, the current implementations of XVSM (XcoSpaces and MozartSpaces)

provide a synchronous API (except of the part for notifications), but an asynchronous will also be

implemented in future XVSM versions.

2 Embedded Development and the .NET Micro

Framework

As already denoted in the introduction, the .NET Micro Framework was chosen to implement a XVSM

based middleware for embedded devices. This section provides detailed information about the

framework as well as about embedded systems to help the reader to understand this decision.

2.1 Embedded Systems

“Embedded systems are information processing systems that are embedded into a larger product and

that are normally not directly visible to the user.” [21 S. 1]

Page 25 of 108

Figure 13 - USBizi by GHI Electronics
1
Error! Hyperlink reference not valid.

These systems consist of one or more embedded devices and generally share common

characteristics as denoted in [22]:

 They are usually connected to their physical environment using

o Sensors to collect information about it (i.e.: a temperature or humidity sensor)

o Actuators to control it (i.e.: a servo which closes a valve)

 They frequently are safety-critical and therefore need to provide dependability.

Dependability encompasses the following aspects:

o reliability

o maintainability

o availability

o safety

o security

 As embedded systems usually consist of resource constrained devices, they need to be

efficient. Metrics to measure efficiency are:

o Energy consumption

 This is important as many systems are mobile and use batteries as power

supply.

o Code-size

 All code to be run on a device has to be stored, but there are typically no hard

discs available which would offer large amount of storage space.

 Code-size also affects energy consumption as can be seen in [22].

o Run-time efficiency

 This means that the software should use the minimum amount of resources

such as CPU and memory.

o Cost

 For high-volume systems it is important that the separate hardware modules

are cheap.

 These systems are dedicated to one specific application and will never run any other

software at the same time like personal computers.

1
 http://www.ghielectronics.com/images/extras/USBizi-SIZ-large.JPG

Page 26 of 108

 They are often hybrid systems meaning they consist of digital and analog parts.

 Embedded systems typically are reactive systems meaning that they wait for a specific input,

perform a computation and generate a new output. [23]

 Typically must meet real-time constraints. This means that not computing the results within

a given time frame would cause in a serious loss of quality.

o A time-constraint is called hard if the corresponding system would completely fail its

task if it is not met, according to [24], which could result in a catastrophe. For example

the antilocking break system could cause a catastrophe if it would not react to a

ciritcal break maneuver of the driver.

o Otherwise it is a soft constraint.

2.1.1 Application Areas of Networked Embedded Systems

Over the time there has been an increasing count of application areas of embedded systems. This

section puts an emphasis on the application areas of networked embedded systems. The information

provided is taken from [22].

Networked embedded systems (NES) usually consist of multiple distributed embedded devices

collaborating via field area networks. The benefits are numerous, including increased flexibility,

scalability, maintainability and extensibility. Usually field area networks tend to have low data rates a

small size of packets, but data rates above 10 Mbit/sec are becoming more common. Additionally,

these networks often require real-time capabilities.

Such systems again are used in different application domains where different functional and non-

functional requirements are imposed.

The area of industrial automation is the origin of field area networks and started in the end of the

1960s in the nuclear instrumentation domain. Examples are systems which control a nuclear power

plant or are used in avionics applications. As these systems often are safety-critical they require real-

time capabilities.

In building automation NES are used to control the internal as well as the immediate external

environment of buildings like office buildings, or shopping complexes and are also emerging into the

area of industrial buildings. Their main services typically include control of climate, heating, artificial

lights, power, gas, water supply, et cetera. As opposed to systems in the industrial automation domain

these systems hardly ever require hard real-time communication.

Nowadays automotive NES gain importance as more and more collaborating embedded devices are

built into automobiles to replace mechanical components in order to increase security. They have

already become an intrinsic part of this domain. Examples for vehicle functions controlled by these

devices are electronic engine control, active suspension or antilocking break systems. These systems

always enforce hard real-time communication.

Sensor networks typically are self-organizing and consist of devices, which are for example

embedded in the ecosystem, and communicate using wireless media. In addition, they usually have to

Page 27 of 108

be highly available, provide low and predictable delay of data transfer and support a high number of

sensors and actuators as well as low power consumption.

2.2 The .NET Micro Framework

As already denoted, the .NET Micro Framework is a bootable runtime environment for resource

constrained devices.

Its main aim is to ease the development process in the area of embedded devices and thereby

radically reducing costs and fasten time to market by providing the following features, which set it

apart from other traditional embedded platforms:

 Introduces managed code to embedded devices

This means that the generated code is executed in a virtual machine which “manages” the

execution. One resulting benefit is that resources need not to be freed manually when they are not

used anymore as this is done by a garbage collector.

 Supports the modern programming language Visual C#

Visual C# offers a high level of abstraction and therefore is very easy to use. It is syntactically

similar to Java.

 Allows for developing platform independent and fully reusable code

As the developer, when using the .NET Micro Framework, writes code which is executed by a

virtual machine, this code is absolutely independent from any hardware and can therefore be

easily reused.

 Managed Drivers

The framework treats hardware components as objects by abstracting hardware access. This

makes it possible to program hardware components by setting the properties of the corresponding

object instead of dealing with hardware details like setting bitmasks to configure a component.

Therefore even this code is independent from the underlying hardware.

 Supports the development and use of hardware emulators

The ability of the framework to abstract from the underlying hardware allows for running the

environment within an operating system like Windows Vista. This makes it possible to develop

emulators for embedded devices which can be used to develop software for that device that is not

physically present. The framework even provides reusable types which can be used to easily

implement a new emulator.

 Includes Visual Studio support

Page 28 of 108

Visual Studio is a widespread integrated development environment for .NET platforms. It can be

used to develop applications using the .NET Micro Framework and even to debug applications

while they are running on an embedded device or within the emulator.

 Provides a base class library

The base class library contains a collection of reusable types which reduce the amount of code

which has to be implemented for an application by providing out of the box functionalities. As most

part of this library is a subset of the full .NET Framework and therefore compatible, it is possible to

share classes developed for the .NET Micro Framework with all other .NET platforms.

One major drawback of the .NET Micro Framework is, however, that it cannot be used in environments

where real-time capabilities are required.

Since the launch of the .NET Micro Framework version 4 on Nov 16
th
, 2009, the framework became

open source together with the full porting kit. Almost all of its components are published under the

Apache 2.0 license. [25] More information can be found in [26].

These features turn the .NET Micro Framework into a highly productive platform which has already

been proven by several surveys. The home control manufacturer Leviton Manufacturing for example

was able to reduce the time to market of a product to only three months while additionally reducing

hardware and licensing costs. [27]

As opposed to this, according to what Colin Miller, program manager of the .NET Micro Framework,

mentioned in an interview, the average time to market in the embedded sector is about eighteen

months. [28]

Another vendor which achieved better productivity using this framework is Inthinc as Corey Catten,

CTO of Inthinc, stated in an interview: “When creating solutions that work to save human lives, quality

is the prime directive. The .NET Micro Framework helped to reduce hardware costs, streamline the

development and add a new level of flexibility to the entire process” [29]

The following section describes how the .NET Micro Framework achieves this level of abstraction

using a layered architecture.

2.2.1 The Layered Architecture of the .NET Micro Framework

As the figure below shows, the .NET Micro Framework is separated into the following layers.

Page 29 of 108

Figure 14 - Layered Architecture of .NET Micro Framework [6]

The Hardware Layer contains the hardware of the used platform. Currently the framework is

supported by several processors which are based on the architectures of ARM7, ARM9, Cortex,

XScale, ARC, and ADI Blackfin.

As can be seen in Figure 14, the lowest sub-layer of the Runtime Component Layer is subdivided

into two layers:

The HAL (hardware abstraction layer) is used to interface the hardware layer directly and

therefore contains C++ driver functions.

The OS layer (operating system) on the other hand can be used to run the .NET Micro

Framework within an operating system. This is a great benefit, as emulators can be written and

therefore devices can be developed and tested without even using any hardware.

The PAL (platform abstraction layer) is similar to the HAL with the only difference being that the driver

functions of the PAL are independent from the underlying hardware.

The CLR (Common Language Runtime) of the .NET Micro Framework is slimmed version of the .NET

Framework CLR and therefore is often referred to as Tiny CLR. It is responsible for executing the IL

(intermediate language) code which is generated by the C# compiler.

The Class Library Layer contains a collection of reusable object-oriented types and can be seen as a

subset of the class library provided by the full .NET Framework as for example only a very limited

amount of data structures exists and most of the components provide reduced functionality. As can be

seen in the figure above, this layer contains both, managed and native code. The reason for this is

that time critical functionality is implemented using native code, as it is executing much faster.

2.2.2 Alternatives to the .NET Micro Framework

Although the main advantage of the .NET Micro Framework is its hardware independence, this ability

is also a disadvantage in other cases. The reason for this is that code written to run on the .NET Micro

Page 30 of 108

Framework needs to be interpreted at runtime by the Tiny CLR to achieve this independence and this

in turn costs a considerable amount of performance.

Therefore for some application areas with hard real-time constraints, using native code is still the only

choice. Hence, the programmer needs to use several different C dialects (depending on the platform),

C++ or even assembly language.

As portability of the developed code became highly important in the last years MD(S)E (model driven

(software) engineering) and MDA (model driven architecture) [30] has become a wide-spread

approach. However, the corresponding tools are often modified to suite a specific scenario and do not

generate the full source code, but only support partial- or skeleton generation, also because the

modeling languages like UML (Unified Modeling Language) are not expressive enough. Thus the

developers still have to write code manually after the actual code generation. However research is

done on tools capable of generating the full source code by adding script languages to model the

details the modeling language does not support as described in [31] just to give an example. In [32] a

step further is taken by introducing a model-integrated approach. However, those tools are still under

development and subject to research and are therefore not completely mature.

Additionally, several other platforms of Microsoft exist. The .NET Micro Framework differs from them

as it “… is a bootable runtime module that brings the advantages of .NET programming to devices too

resource-constrained to run other Microsoft embedded platforms.” [5 p. 1]

To give an in depth understanding, the following section explains where the .Net Micro Framework fits.

2.2.3 Other Microsoft embedded platforms

Microsoft already provides a variety of embedded platforms and each one fits into a specific

environment. The following table lists those environments, enumerates examples for each and

indicates which XVSM implementation (TinySpaces or XcoSpaces) could be leveraged with them.

TinySpaces XcoSpaces XcoSpaces

.Net Micro Framework
(managed code only)

Windows Embedded CE
(managed code with the .NET Compact

Framework)

Windows XP Embedded
(managed code with the full .NET

Framework)

 Auxiliary Displays

 Sensor Nodes

 Health Monitoring

 Remote Controls

 Robotics

 Wearable Devices

 Dataloggers

 Home Automation

 Industry Control

 Vending Machines

 …

 GPS Handhelds

 Automotive

 PDAs

 Smart Phones

 Dataloggers

 Set Top Boxes

 Portable Media players

 Gateways

 VoIP Phones

 …

 Retail Point-of-Sale

 Windows-based
Terminals

 Medical devices

 Entertainment devices

 Kiosks

 …

Increasing functionality

Table 1 - Where the .NET Micro Framework fits. [2 S. 5]

Page 31 of 108

3 Related Work

There are many publications on embedded systems middleware. An important aspect of these

middlewares is their real-time capability, which is needed in many areas of embedded systems and is

especially hard to achieve in networked environments. A standard for end-to-end QoS (Quality of

Service) of CORBA was introduced in [33], which makes it possible to testify when certain requests

are processed in the worst case, et cetera. Currently, there are many middlewares which are based on

CORBA like for example TAO [34] and emORB [1] which targets mobile embedded devices and OCP

[35], [36] which is an open middleware specification and has already been used to control UAVs

(unmanned aerial vehicles) and UACVs (unmanned combat air vehicles).

An area where XVSM is very well suited is the area of Industrial Automation. As can be seen in [17]

XVSM can be used to efficiently coordinate multiagent systems in the production automation domain.

This is an area where TinySpaces could be used to reduce hardware costs and energy consumption

depending on the required features and workloads. Another application area is the one of Intelligent

Transport Systems as is described in [37]. However, as the current XVSM specification does not

provide real-time capabilities, many aspects of ITS (Intelligent Transport Systems) like accident- and

traffic jam warning, just to give an example, cannot be provided at the moment. While the former

publication concentrated on the communication between a central administration and moving vehicles,

the EMMA (Embedded Middleware in Mobility Applications), which is introduced in [38], additionally

aims to facilitate vehicle-to-vehicle communication and introduces wireless sensor networks to the

automotive domain. While creating an XVSM based middleware capable of competing against EMMA

would go out of scope of this thesis, it is thinkable that a space-based approach could be more

suitable for sharing information between moving vehicles and thus should be subject to future

research.

Currently a lot of research is done in the area of sensor networks. Sensor motes, which are sensor

devices participating in a sensor network, need to be as efficient as possible as they are battery

powered most of the time and need to provide the highest lifetime possible to reduce maintenance

cost. For this reason TinyOS [39], which is a slimmed operating system for sensor networks, has been

developed along with a specialized programming language for networked embedded systems which is

called “nesC” [40]. There also exists a framework called TinyGALS which makes it easy to generate a

slimmed and specialized operating system for that area to reduce code-size and lower energy

consumption even more [41]. Furthermore, a query processing framework for such networks called

TinyDB was created which can be used to retrieve sensor information using simple SQL-like (Standard

Query Language) queries [42].

Due to this specialization, a much lower code-size and higher run-time efficiency can be reached. For

example motes with a 5 MHz CPU and several kilobytes of ram exist. As the smallest .NET Micro

Page 32 of 108

Framework device has a 55 MHz CPU (32 bit), it is clear that those devices are not suitable for sensor

networks and therefore this thesis does not aim at providing a XVSM based solution for this area.

However, the combination of that technology with a space-based approach in the ITS area could be

used to provide sensor information about the environment to approaching vehicles and a central

administration, but that would be out of the scope of this thesis as well.

In the sector of building automation a middleware was introduced in [43], which is based on UPnP.

However its aim is to interconnect and orchestrate heterogeneous domotic services to ease everyday

life and not to coordinate multiple mobile agents, for example.

Energy aware programming is very important for developing networked embedded systems which is

also shown in [42]. In general, those devices need to be reactive and not use busy waiting. This is a

very important aspect for notifications, where as little network bandwidth as possible is to be used.

Therefore it might be useful for some scenarios to enhance the current profile of notifications, which

only supports topic-based notifications as described in 4.5.3, to also support content-based

notifications which is described in [44].

The following figure depicts how the related work is structured.

Page 33 of 108

Figure 15 - Related Work Graph

Page 34 of 108

4 TinySpaces Design

As the previous chapters aimed to provide background information about embedded development as

well as the XVSM paradigm, this chapter explains how all this information was put together to develop

TinySpaces. At first some general decisions are explicated followed by a precise explanation of each

of the layers of TinySpaces from bottom up.

Note that some of the decisions were made by the XVSM Technical Board (abbreviated TB). This is a

periodical meeting of colleagues, which are researching the XVSM technology. Therefore the writer of

this thesis will refer to the TB whenever appropriate.

Additionally, the differences to XcoSpaces and the formal model of XVSM are pointed out whenever

appropriate. XcoSpaces where preferred to MozartSpaces because the former is, as well as

TinySpaces, based on a .NET platform and is therefore more adequate for a comparison.

4.1 Contract First Design in TinySpaces

A very important requirement for TinySpaces is to provide a level of modularity which allows for

replacing whole layers if needed. Therefore a contract first approach was chosen.

From the view of contract first design software consists of components, which can be seen as logical

units. Usually these components are separated in one or more assemblies, grouped by similar

functionality.

In traditional software development client components directly depend on one or many other server

component(s). This however makes it impossible to replace a component if needed without rebuilding

the whole software.

Figure 16 - Direct dependency between components

To overcome this issue contract first design introduces contracts which define how the corresponding

components can be interfaced. Therefore the former client component is no more directly dependent

on the server component(s) but only on the contract.

Page 35 of 108

Figure 17 - Component interfacing contract

This allows for replacing the corresponding server component(s) without having to recompile the

software. The new component only has to comply with the contract.

Figure 18 - Replacing a component using Contract First Design

In modern software development dependency injection frameworks like SPRING [45] exist which can

be leveraged to wire up components at runtime, but this approach is far too costly for embedded

devices as the resulting dependency graphs can become very complex [46]. In many cases

dependency injection is configured using XML-based configuration files to provide configurability.

XcoSpaces for example use that approach [7 S. 75 ff.]. For embedded devices this is not applicable as

they typically do not provide any hard drive where this information could be stored on. Therefore this is

often done at compile time.

For that reason TinySpaces requires a configuration object to be provided at startup, which contains

the instances of the facades of CAPI-1 to 5.

4.2 CAPI-1: Basic Operations

In this first chapter about the implementation of TinySpaces, an overview of CAPI-1 layer is given. At

first the corresponding contracts are explained followed by additional information about the current

implementation.

4.2.1 Contracts

The following figure shows the main contracts needed to be complied with by any implementation of

this layer.

Page 36 of 108

Figure 19 - Contracts of CAPI-1

4.2.1.1 ContainerReference

The ContainerReference class contains the information needed to access one specific container

instance in the XVSM universe.

From the view of the formal model, a ContainerReference is a simple string. In XcoSpaces it is a

combination of an identifier, represented by a UID, and an address represented by a simple string.

For TinySpaces a slightly different approach was chosen: At first, the identifier is a 32 bit unsigned

integer. While a UID has the advantage that its value is always absolutely unique, generating those

values is costly and the values require considerable more memory and bandwidth: While a UID is

binary represented by 16 bytes, a 32 bit integer only uses 4 bytes. The drawback of using an integer

value as identifier is that this value is only unique within the space that has generated it. For this

reason the address value has to be taken into account to fully identify a container.

Moreover, the address is represented by a separate object, which provides the information about the

transport protocol to use and the address value. This decision was made as parsing a string to get the

protocol and address information, as it is done in XcoSpaces, is too resource intensive for embedded

systems.

ContainerReference

Address Gets/Sets the address of the space this container resides in.

Id Gets/Sets the locally unique ID of the container.

Table 2 - CAPI-1: ContainerReference

Page 37 of 108

4.2.1.2 IContainerFacade

The IContainerFacade interface defines the methods needed to create, destroy and access a

container in the local space.

IContainerFacade

CreateContainer Creates an unnamed container with a locally unique ID

CreateNamedContainer Creates a named container with a locally unique ID

DestroyContainer Destroys the container identified by the ContainerReference
given.

GetContainer Returns the container identified by the ContainerReference.
Throws a ContainerNotFoundException if no container was
found.

Table 3 – CAPI-1: IContainerFacade members

4.2.1.3 IContainer

In contrast to the IContainerFacade interface, IContainer specifies how entries are written to- and read

from a container.

IContainer

CoordinationTypes Contains the coordinators assigned to this container.

Count Returns the current entry count.

CRef Returns the corresponding ContainerReference.

MaxCount Returns the maximum entry count allowed.

Name Returns the name of this container.

Read Takes an array of IXQuery objects as parameter and uses
them to select the appropriate entries which are then returned.

Take Takes an array of IXQuery objects as parameter and uses
them to select the appropriate entries which are then returned
and removed from the container.

Write Adds an IEntry to the container.

Table 4 – CAPI-1: IContainer members

As can be seen there is no “Destroy” method defined according to the formal model of XVSM. A good

reason for this is that “Destroy” and “Take” differ only in the fact that “Take” returns the entries which

are removed from the container, whereas “Destroy” does not.

However the entries removed from the container need to be propagated to the transaction layer

(CAPI-2) as they are used as meta-information. For example a transaction that is committed gathers,

among others, all entries that were removed and provides this information to the runtime layer (CAPI-

5). The way this information is then consumed is explained in 4.6.2.4.

Furthermore, the IContainer interface directly provides access to its meta-information (Count,

MaxCount, Name and CoordinationTypes). The drawback of this approach is that these pieces of

Page 38 of 108

information cannot be locked and accessed exclusively and therefore cannot be retrieved by a user

application using the XVSM API. Therefore it is not formally correct.

In XcoSpaces all metadata is stored in a separate container with a key coordinator. This satisfies the

formal model, but would be too resource intensive for embedded devices.

4.2.1.4 IEntry

The IEntry interface is implemented by any class which is written into a container. It consists of two

properties only. Any data the user application wants to write into the space is stored in the value

property. Additionally, the entry contains an array of selectors as the single metadata. These are used

by the coordination layer as some coordinators, as for example the Key-Coordinator, need additional

information to read/write/take entries. The role of selectors is further described in 4.4.1.3.

IEntry

Value Gets/Sets the value of the entry. (can be any arbitrary object)

Selectors Gets/Sets the selectors belonging to the entry.

Table 5 – CAPI-1: IEntry members

4.2.1.5 ILockable

The ILockable interface is implemented by both, the IContainer and the IEntry interface, and provides

a single property which can be used by the transaction layer (CAPI-2) to store arbitrary locking

information for that entry or container. It therefore complies with the formal model described in [18],

which specifies that meta-information can also be stored at container- and entry level.

ILockable

LockInfo Gets/Sets an arbitrary object and is used by the transaction
layer to get exclusive access to an entry or container.

Table 6 – CAPI-1: ILockable members

The way the current implementation of the transaction layer of TinySpaces uses this property is

described in 4.3.2.1.

4.2.1.6 IXQuery

The final interface in this layer is the IXQuery interface. It defines how any query used to access this

layer has to look like.

IXQuery

Name Returns the name of the query.

Select Takes a list of entries and returns another which contains
selection of those.

Table 7 – CAPI-1: IXQuery members

Although .NET in general provides the use of Delegates [47], which are a kind of managed function

pointers, the decision was made to use objects inheriting from IXQuery as queries instead. The reason

Page 39 of 108

for this is that a lot of queries need to store context information and thus are stateful. For example a

Cnt query (see 4.2.2.2.1) needs to remember the number of results it has to return and queries

created by the coordination layer (CAPI-3) need to have access to their coordinator’s accountant

information to perform their task. However, this would not be possible using delegates as they are

stateless.

4.2.2 Implementation

In this chapter further information about the implementation of CAPI-1 is given.

4.2.2.1 Container

The current implementation of the IContainer contract in TinySpaces provides access to the contained

entries in an atomic manner thus complying with the formal model. This means that only one operation

(read/take/write) may execute at a time, thus reducing concurrency. But this approach also brings a

major benefit:

Consider several execution threads which invoke those operations and try to take the same entries.

The take-operation o1, which executes first, needs to execute several queries (like a Cnt query and a

query generated by a Key-Coordinator) to get the final result set of entries. If o1 was not executed in

an atomic manner, a second take-operation o2 could execute at the same time on a different thread.

Supposed o2 has only one simple query (like a Cnt qery) to be run it could finish before o1, thereby

taking entries o1 is also going to take. However, entries can only be taken once and therefore this

behavior would not be valid. This conflict is depicted in Figure 20.

Moreover, this would mean that the more queries an operation has to perform, the higher is the risk

that it will fail. Accordingly, those operations would be disadvantaged.

Figure 20 - CAPI-1: Concurrent operations

Page 40 of 108

Another task of the container is to handle errors occurring in queries. Whenever any of the queries

does not get enough entries to succeed for example, it throws a DelayableException. This exception is

then caught by the container which in turn returns the status “DELAYABLE” and no entries to the

upper layer (CAPI-2). Additionally, exceptions can be thrown by custom queries which have been

erroneously implemented. In that case the container returns the status “NOTOK”.

4.2.2.2 Queries

As already denoted there are six queries predefined by the XVSM model. However, only the Cnt query

could be implemented using the .NET Micro Framework. This is because that query is the only one

which does require labels or even “label paths” to be specified, which identify the property of the entry

or its inner “XTrees” that has to be taken into account like for example the queries “sortup” and

“sortdown”. The only viable approach to implement these other queries would be to parse the provided

label/label path (e.g.: “Value.Temperature” where “Value” and “Temperature” are two distinct

properties concatenated to a label path) and use Reflection [48] to navigate through the type hierarchy

and access the values of those properties. However, Reflection in .NET Micro Framework (version

4.0) does not allow for accessing properties of objects dynamically at runtime. [48] Additionally, this

would cause too high computational costs.

In the following the two queries which are provided by TinySpaces out of the box are described.

4.2.2.2.1 Query: Cnt

The Cnt (which stands for “Count”) query takes a list of entries and returns another which contains the

first n entries of the input list.

For example using this query with the value 1, only the first element of the list of entries provided by

the foregoing query is returned.

If not enough entries are supplied, the query throws a DelayableException which is then handled by

the container as already denoted (see 4.2.1.3).

4.2.2.2.2 Query: Reverse

This query is not defined by the XVSM model. However, it turned out to be very handy in some cases.

The Reverse query takes a list of entries and returns a new one, which contains the same entries in

reverse order. In contrast to the Cnt query it never throws a DelayableException. It just returns an

empty list, if no entries are supplied.

4.2.2.3 Performance Improvements

Unfortunately, the .NET Micro Framework does not support generics (see [49] for generics in .NET

and [50] for generics in Java) and therefore type-safe data structures would need to be implemented

manually in managed code (using C#). As TinySpaces were implemented with the performance

constraints in mind, the decision was made to use the built-in “ArrayLists” instead of self implemented

typed data structures like a list or a hash table. One reason for this is that the self implemented data

structures need additional storage and thus raise code-size. Another reason is that they will be

Page 41 of 108

outperformed by the built-in “ArrayLists” in the coming version 4.0 of .NET Micro Framework, as those

are going to be re-implemented in native code (using C++). To achieve type safety, type-safe wrapper

classes where created, which encapsulate those “ArrayLists”.

The performance will decrease linearly as the number of containers rises, because in order to find one

specific container, for example, all containers needed to be iterated through in the worst case.

Therefore the current implementation of the IContainerFacade introduces the ExContainerReference

(which stands for “Extended-ContainerReference”).

4.2.2.3.1 ExContainerReference

The ExContainerReference inherits from ContainerReference and adds an additional property that

stores the container object which it belongs to. Whenever a container is created or looked up, CAPI-1

returns an ExContainerReference containing the container instance, which is, however, not visible to

any other layers. If this reference is reused to modify this container, CAPI-1 finds the container in the

reference itself and therefore does not have to search for it. However, this obviously only works when

accessing the local space as the container instance will not be serialized over the network. As a

ContainerReference is passed frequently between the layers to access meta-information of a

container – for example CAPI-3 uses it to retrieve the coordinators and CAPI-2 validates the current

entry count of bounded containers - during one single read-/write-/take-/destroy- operation and to

complete the operation itself, this approach obviously leads to significant performance improvements

and better scalability, especially with an increasing number of containers within a space.

Page 42 of 108

4.3 CAPI-2: Transactions

This chapter gives an in depth overview of the contracts as well as the implementation of CAPI-2 of

TinySpaces.

4.3.1 Contracts

The following figure shows all necessary contracts.

Figure 21- Contracts of CAPI-2

4.3.1.1 TransactionReference

Just like the ContainerReference class, the TransactionReference contains two properties.

TransactionReference

Address Gets/Sets the address of the space this transaction belongs to.

Id Gets/Sets the locally unique ID of the transaction.

Table 8 – CAPI-2: TransactionReference

Again the Id-property contains a 32 bit unsigned integer and acts as a locally unique ID for the

transaction. Therefore a TransactionReference only gets globally unique if its address is taken into

account.

Page 43 of 108

4.3.1.2 ITransactionFacade

The ITransactionFacade contains methods to handle transactions in general.

ITransactionFacade

CreateTransaction Creates a new transaction with a locally unique ID. If a
transaction reference is provided, a sub-transaction for the
given transaction is created.

Commit/RollbackTransaction Takes a TransactionReference, commits/rolls back the
corresponding transaction along with all its sub-transactions
and removes them. Returns an ITransactionCommitInfo object
which will be described later in this chapter. If a sub-
transaction is specified, it is furthermore removed from its
parent transaction whereby the latter is not committed or rolled
back.

GetTransaction Searches for a transaction and returns it. If no transaction is
found a TransactionNotFoundException is thrown.

CreateContainer Creates a new container (whether named or not) using the
implementation of IContainerFacade.

LookupContainer Looks up a container using the implementation of
IContainerFacade.

DestroyContainer Destroys a container using the implementation of
IContainerFacade.

GetCoordinators Takes a ContainerReference as parameter and returns the
corresponding ICoordinator objects.

Table 9 - CAPI-2: ITransactionFacade members

As can be seen ITransactionFacade contains methods to create, lookup and destroy containers as

well as the ITransaction interface. The reason for this is that the coordination layer (CAPI-3) is not

responsible for handling containers in any way. On the other hand the aspect layer (CAPI-4) needs to

access this functionality provided by CAPI-2. In order not to propagate ITransaction objects throughout

the layers the decision was made to add these method definitions to the ITransactionFacade interface.

Furthermore, the façade contains the method “GetCoordinators” as the coordination layer (CAPI-3)

cannot access the container directly if the layered architecture is not to be violated. In another valid

approach the coordinators could be stored along with a ContainerReference as identifier within CAPI-

3, but that way they would be unnecessarily stored in two places. Besides this would decrease

performance as CAPI-3 had to search through its own data structure additionally to find the

appropriate coordinators.

4.3.1.3 ITransaction

The ITransaction interface defines methods responsible for handling the transaction itself and methods

responsible for accessing a container and its contained entries in an ACID way.

ITransaction

RootTx If it is a sub-transaction the root-transaction is returned.
Otherwise the transaction returns itself.

Page 44 of 108

TRef Returns the corresponding TransactionReference.

Commit/Rollback Commits/Rolls back the transaction along with all sub-
transactions. If this is called on a sub-transaction, it is
furthermore removed from its parent transaction which is not
affected any further.

AddLog Adds an ITransactionLog object to the transaction.

CreateContainer Takes several parameters (coordination types, maximum size,
etc.) and returns a status flag indicating whether the operation
has been successful.

LookupContainer Takes a name as parameter and returns the
ContainerReference of the corresponding container of the local
space along with a status flag. If that operation is called from a
remote space, the address of the ContainerReference is
injected by the CommunicationCore at the runtime layer. (See
Error! Reference source not found.)

DestroyContainer Takes a ContainerReference as parameter and returns a
status flag indicating whether the operation succeeded.

Write Takes a ContainerReference and an IEntry as parameters and
writes this entry into the corresponding container. Returns a
status flag indicating whether the operation has been
successful.

Read Takes a ContainerReference and IXQuery objects as
parameters and returns the list of read entries along with a
status flag indicating whether the operation has been
successful.

Take Takes a ContainerReference and IXQuery objects as
parameters and returns the list of taken entries along with a
status flag indicating whether the operation has been
successful.

Destroy Takes a ContainerReference and IXQuery objects as
parameters and returns the list of destroyed entries along with
a status flag indicating whether the operation has been
successful.

Table 10 - CAPI-2: ITransaction members

4.3.1.4 ITransactionLog

The ITransactionLog interface specifies which methods need to be implemented to implement do/undo

functionality a transaction can use when it is committed or rolled back.

ITransactionLog

Commit This method will be called by the corresponding transaction
when it commits.

Rollback This method will be called by the corresponding transaction
when it rolls back.

Table 11 - CAPI-2: ITransactionLog members

4.3.1.5 ITransactionRollbackInfo

Whenever a transaction rolls back, it needs to gather specific information about that action and provide

it to the upper layers. For example the runtime layer can use that information to determine which

Page 45 of 108

waiting requests need to be rescheduled. The required information on a rollback is defined by

ITransactionRollbackInfo.

ITransactionRollbackInfo

TRef Returns the TransactionReference of the transaction which has
been rolled back.

ContainerModifications Contains a list of IContainerModificationInfo objects which
describe changes made to a specific container which have
been undone.

Table 12- CAPI-2: ITransactionRollbackInfo

4.3.1.6 ITransactionCommitInfo

This interface inherits from ITransactionRollbackInfo and therefore provides the same information and

adds additional.

ITransactionCommitInfo

CreatedContainers Contains the ContainerReference of each container which has
been created within the transaction.

DestroyedContainers Contains the ContainerReference of each container which has
been destroyed within the transaction.

Table 13 - ITransactionCommitInfo

4.3.1.7 IContainerModificationInfo

This interface defines information which needs to be collected when a transaction is committed or

rolled back.

IContainerModificationInfo

CRef Returns the ContainerReference of the container which has
been modified.

DestroyedEntries Contains the entries that have been destroyed within the
transaction.

ReadEntries Contains the entries that have been read within the
transaction.

TakenEntries Contains the entries that have been taken within the
transaction.

WrittenEntries Contains the entries that have been written within the
transaction.

Table 14 - CAPI-2: IcontainerModificationInfo

4.3.2 Implementation

Although the contracts define exactly how the transaction layer needs to look like on the surface, there

are many different ways it could be implemented.

First of all, the transactions could use different locking strategies:

Page 46 of 108

 Pessimistic locking

In this strategy the entries and containers which are accessed within a transaction are locked

exclusively whereby no other transaction can access them. That way the transaction can commit

without the risk of running into a conflict with another transaction. A drawback is the risk of

deadlocks which can occur when two or more transactions try to acquire locks for the same set of

resources in a different sequence concurrently. However, pessimistic locking is an excellent

strategy for environments where data is changed frequently by concurrent operations..

 Optimistic locking

If a transaction uses optimistic locking the entries and containers which are modified or read are

not locked. This increases concurrency as all other transactions still have access to them. The

drawback of this approach is that upon a commit a transaction needs to validate that all modified

entities are still in the original state and therefore have not been modified by another transaction.

Because of this additional validation process, committing is more costly than it would be using

pessimistic locking. That is why this strategy is suited for environments where it is assumed that

transactions can most of the time complete without affecting each other. Examples for this locking

strategy are modern database systems.

In an XVSM space multiple transactions usually access a container using its predefined coordinators.

Furthermore, the sets of entries which are accessed and modified by different user applications

typically overlap. (For example when a FIFO-Coordinator is used) Therefore there is obviously a high

risk, that two transactions could access the same entries. This led to the decision to use pessimistic

locking.

The second decision concerns the isolation level that is to be used. The following list describes the

common isolation levels from the lowest to the highest according to [51].

 Read Uncommitted

In this level changes made by a transaction are instantaneously visible to all other transactions,

even if this transaction has not yet committed them at that time.

 Read Committed

With read committed changes made by a transaction are revealed once if it successfully

committed.

 Repeatable Read

While read uncommitted allows transactions to interleave each other, repeatable read keeps them

totally isolated from each other although they are executed concurrently. It ensures that during the

lifetime of a transaction the same query will always return the same results, even if another

transaction has committed changes which would satisfy that query.

Page 47 of 108

 Serializable

This is the highest isolation level. Interleaving transactions are, from a logical view, executed

sequentially, thus allowing only one transaction at a time to access the data. This isolation level

provides the highest consistency but on the other hand the least concurrency.

As high concurrency is a very important property for a coordination space the isolation level

Serializable was never up for discussion as it offers the least amount of concurrency.

Read Uncommitted would provide high concurrency but also the least consistency. Consider for

example two transactions t1 and t2. t1 writes an entry into a container c1 which in turn is instantly

visible to t2. Next t2 reads this entry from c1. As we are using pessimistic locking, a read-lock is added

to this entry. When t1 now wants to roll back, it cannot access the entry as t2 has a read lock on it.

Also Repeatable Read was discarded because of the performance costs – a transaction either would

need to take a snapshot of the current state of the accessed containers to be able to always return the

same results or use a stricter locking mechanism thus reducing concurrency - as well as the higher

implementation effort.

Therefore the TB made the decision to use read committed as isolation level because it suited the

application area best, as it allows for high concurrency and an acceptable amount of consistency.

4.3.2.1 Transaction

The Transaction class implements the ITransaction interface and provides access to containers and

entries with the isolation level Read Committed and pessimistic locking for CAPI-3.

To store locking information for a container and/or entry, a LockInfo object is created and set in their

LockInfo property, which they inherit from the ILockable interface as can be seen in Figure 22- Using

ILockable in CAPI-2. This is done when the container is created and/or the entry is written into a

container. When the container or entry is destroyed, the LockInfo object is also removed. This

LockInfo object is used by CAPI-2 to keep track of which transaction has a lock on the corresponding

resource (container or entry).

For this purpose it provides methods to add and remove read-, write-, and delete-locks, which return a

Boolean flag indicating whether the lock could be added or removed successfully. It accepts multiple

read-locks and a single write- or destroy-lock on an ILockable whereas only one kind of lock can exist

at the same time. This means that there can never be a read- and a write-lock on the same ILockable

instance, just to give an example. However, a transaction can update its locks. For example a read-

lock can be upgraded to a destroy-lock.

Page 48 of 108

Figure 22- Using ILockable in CAPI-2

To understand how CAPI-2 uses this object, consider a transaction t1 which wants to write an entry e1

into the container c1. To make sure that the c1 is not destroyed by another transaction, t1 tries to add

a read lock to the container by calling “AddReadLock” on the container’s LockInfo object. If it succeeds

the transaction uses the entry’s LockInfo to add a write-lock to it and uses the methods provided by c1

(IContainer) to write the entry into c1. This iterative strategy along with a lot of other rules was

conceived by Stefan Craß and can be found in [52] and [18].

Furthermore, the LockInfo is also used to assure that the isolation level of Read Committed is

complied with by providing the method “IsVisibleForTransaction”. Before a transaction accesses a

container, it uses this method to validate that the container is visible for it. This would for example not

be the case if the container was created within another transaction, which has not committed at that

time. The same action needs to be taken for entries, but the only way to specify which entries should

be returned is to use an IXQuery object. Therefore the transaction layer (CAPI-2) provides its own

“read committed query” which is always executed ahead of all other queries coming from the upper

layers. This query then filters out all invisible entries. The formal specification of XVSM is fully

complied with by that approach.

The following figure (Figure 23) shows an example where entries are successfully read from a

container using a single atomic read operation.

Page 49 of 108

Figure 23 - Reading from a container with a transaction

As can be seen a read-operation is requested by the client application which is eventually received by

a transaction object (ITransaction). This transaction first retrieves the container (IContainer object)

from the container manager (CAPI-1) and next adds a read-lock to the LockInfo object that is attached

to the container. Next the transaction inserts its “ReadCommittedQuery” at the first position of the

query-list provided by the upper layers, which filters out any entries that shall not be visible for the

current transaction according to the isolation level. Next the transaction provides the list of queries to

the container to retrieve the intended set of entries. If any entries are returned it adds a read-lock to

each of their attached LockInfo objects. Finally these entries are forwarded to the upper layers and

eventually reach the user application.

This sequence of actions needs to be atomic from the client application’s point of view. Therefore the

transaction has to undo any changes if anything goes wrong. For example if the third entry returned

from the container cannot be locked - maybe because another transaction has a delete-lock on it - the

transaction must unlock all entries that have already been locked successfully as well as the container

itself.

4.3.2.2 Transaction Logs

The last example showed the sequence of activities a transaction has to perform for a single read

operation. However, more than one operation (Read, Write, Take, Destroy, Create-/Destroy-/Lookup

Page 50 of 108

Container) can be called within a transaction. Therefore a transaction keeps track of changes made in

these operations by storing a dedicated ITransactionLog object for each action. These objects

encapsulate the information needed to do/undo an action, like adding a read-lock to an entry, and

provide methods to commit/rollback their corresponding action. This approach is also used by

XcoSpaces and conforms to the formal model.

Considering the previous example (Figure 23 - Reading from a container with a transaction), t1 would

add a log entry for removing the read lock from the container as well as log entries for removing the

read lock from each read entry.

When the transaction eventually commits, it simply calls all “Commit” methods of the log entries it has

gathered. As pessimistic locking is used, there is no risk that any of the log entries could fail to commit

its changes, as it is guaranteed that the transaction has exclusive access to all necessary resources

(containers and entries). With optimistic locking on the other hand the transaction would now have to

validate its changes.

Although the use of pessimistic locking eases the process of committing there is one remaining

important point: The logs need to be classified into two distinct groups, which also specified in the

formal model [18].

 Lock-Log Entries (formally logs of type “LOCK-INSERTED”)

These are the logs which are used to remove any kind of lock from an entity or container.

 Normal Log Entries (formally logs of type “PROP-INSERTED” and/or “PROP-DELETED”)

This group contains all remaining types of log entries like one for removing a written entry if a

transaction is rolled back, just to give an example.

To understand the necessity for this distinction, consider the following example. Within a transaction t1

an entry e1 is taken from a container c1. Therefore a lock-log for removing the destroy lock from e1 on

commit is stored as well as a take-log which will finally remove e1 on commit. When t1 now commits it

iterates through its gathered logs and calls their “Commit” method. Therefore t1 would remove the

destroy-lock from e1 before e1 is physically removed from the container. During these two actions

another transaction t2 could add a lock on e1 and thus would expect to have exclusive access to it. On

the other hand t1 would also expect to have exclusive access and removes e1. This would lead to an

inconsistent state. The most important part of this example, which is the removal of the delete-lock by

t1 followed by the insertion of a read-lock by t2, is depicted in the following figure. (Figure 24)

Page 51 of 108

Figure 24 - Transaction in inconsistent state

To avoid that a transaction keeps track of those two types of logs separately and when it eventually

commits, it executes the normal logs first and the lock-logs second.

4.3.2.3 Performance Considerations

The last part of the chapter about CAPI-1 describes considerations made to improve runtime

performance and reduce code-size or in general: To better meet the requirements of embedded

devices.

4.3.2.3.1 Gathering Meta-Information of a Commit or Rollback

As already described in previous chapters a transaction needs to provide meta-information about a

commit or rollback to the higher layers as for example which containers were created or destroyed

during the transaction or which entries were read/taken from or written to a container. This information,

however, is spread across all its transaction log entries. Furthermore, not all logs contain information

which is required by the upper layers. For example, information of coordinators’ log entries, which are

used to do/undo the insertion or deletion of accountant information, are ignored.

The transaction logs which need to provide information for a commit or rollback need to implement the

following two interfaces:

Figure 25 – Commit/Rollback Information Provider Interfaces

The ITransactionCommitInfoProvider defines the method “ProvideInfos” which takes an

ITransactionCommitInfo object as parameter. It is assumed that the transaction log, which implements

Page 52 of 108

this interface, adds all viable information to this object. For example a take-log adds the corresponding

entry to the “TakenEntries” collection.

The ITransactionRollbackInfoProvider works similar to this but takes an ITransactionRollbackInfo

object as parameter.

This approach reduces code-size and raises runtime performance since no conditional statements are

needed to differentiate between the log entries, which would be the case if the transaction object had

to gather the information itself. In that case it would need to use conditional statements to determine

the nature of a particular log entry and the information that can be extracted from it, which would result

in many lines of code. Using the current approach, the log entry only has to be casted to an interface

(ITransactionRollbackInfoProvider or ITransactionCommitInfoProvider) and the “ProvideInfos” method

needs to be invoked. Therefore no expressions need to be evaluated (for conditional statements) as

the log entries know exactly which information they have to provide.

4.3.2.3.2 General Use of Transactions

To guarantee transactional integrity any operations affecting containers and entries always need to

run within a transaction. However a client application might also call an operation without explicitly

specifying a transaction which will be explained in future chapters about the runtime and the API. In

that case a transaction needs to be created and committed implicitly for that single operation. This

behavior is intrinsic and therefore defined in the formal model and also implemented by XcoSpaces

and MozartSpaces.

Unfortunately when implicit transactions are used for a request, three operations have to be performed

instead of just one: First the runtime layer has to create a transaction, then the requested operation

(e.g.: a write operation) is performed and as the third and final step the transaction has to be

committed or rolled back by the runtime layer. This obviously leads to higher computational costs.

Moreover the runtime does not obtain a direct reference to the transaction object, because this would

violate the layered architecture. It only gets the TransactionReference identifying it. Consequently that

transaction object needs to be searched by CAPI-2 twice to perform these three operations, namely

when the actual operation is performed using that transaction, and when the transaction is eventually

committed implicitly by the runtime layer.

This may result in poor performance, especially if many transactions exist at the same time. Therefore

the transaction layer provides an extended version of the TransactionReference: The

ExTransactionReference (which stands for “Extended TransactionReference”). As the

ExContainerReference, which has been introduced in 4.2.2.3.1, this object contains a direct reference

to the ITransaction object and allows CAPI-2 for skipping the search.

To understand how the use of ExTransactionReference improves runtime performance of TinySpaces,

consider a read operation executed without any transaction specified by a user application. The

runtime detects this and implicitly makes a call to create a new transaction. Next the transaction layer

processes this call and returns an ExTransactionReference which already contains the direct

reference to the new transaction t1.

Page 53 of 108

Next the runtime executes the read-operation within t1. Therefore, the corresponding read-operation of

CAPI-2 is called with the ExTransactionReference object as argument. The transaction layer,

however, does not need to search for that instance as it is already provided by the reference itself and

therefore can just return it.

Finally the runtime commits the transaction. For that reason it calls the commit operation of CAPI-2

with the ExTransactionReference object as argument. Again the transaction layer does not have to

search for the instance of the transaction anymore and just returns the one provided by the

ExTransactionReference.

The following figure (Figure 26) shows this process. Please note that the layers between the runtime-

and the transaction layer have been omitted for brevity.

Figure 26 - Implicit transactions and performance

It is obvious that this approach greatly improves performance in case of implicit transactions, but still

conforms to the layered architecture of XVSM.

4.4 CAPI-3: Coordination

This chapter gives an in depth overview of the contracts as well as the implementation of CAPI-3 of

TinySpaces.

Page 54 of 108

4.4.1 Contracts

Figure 27 - CAPI-3 Contracts

4.4.1.1 ICoordinationFacade

The ICoordinationFacade interface provides the methods which are used by the higher layers

(especially CAPI-4) to access this layer.

ICoordinationFacade

Take/Destroy Takes a ContainerReference along with a list of IQuery objects
and returns the successfully destroyed entries and a status flag
indicating whether the operation has been successful.

Read Takes a ContainerReference along with a list of IQuery objects
and returns the successfully read entries together with a status
flag indicating whether the operation has been successful.

Write Takes a ContainerReference along with an entry (IEntry) as
parameter and returns a status flag indicating whether the
operation has been successful.

Table 15 - CAPI-3: ICoordinationFacade

As can be seen methods for creating, looking up and destroying containers are missing. This is

because the scope of this layer is restricted to coordinating access to the contents (the entries) of

containers. Therefore, these three operations are not really needed within CAPI-3. The drawback of

this approach is that the clean layered architecture of XVSM is violated because CAPI-4 directly

accesses CAPI-2 for modifying containers as can be seen in Figure 28 - CAPI-3: Violating the layered

Architecture.

Page 55 of 108

Figure 28 - CAPI-3: Violating the layered Architecture

However it also brings two advantages: The first is that not complying with the layered architecture

leads to a slightly better performance as a call from CAPI-4 does not need to be routed through CAPI-

3.

The second and major advantage is that extensibility is enhanced as a developer implementing a new

coordination layer does not need to take care of modifying containers, but can concentrate on the real

scope of this layer.

4.4.1.2 ICoordinator

The ICoordinator interface plays an important role as a major benefit of XVSM is the ability to extend

coordination functionality by implementing custom coordinators. Therefore, it is assumed that this

interface specifies a central extensibility point which will be used frequently and even by developers

who are not specialists for XVSM. For example, a scenario where a custom coordinator needed to be

implemented is described in [17]. This leads to the following definition of ICoordinator:

ICoordinator

SelectorFits Takes a Selector and returns true if the selector can
be used by the current coordinator. (e.g.: A Key-
Coordinator will return true only if a Key-Selector is
specified)

GetCoordinationQuery Takes a selector and returns an IXQuery object that
expresses which entries the coordinator wants to get
based on the information of the selector.

OnWriting/OnReading/OnDestroying Take an entry and return an array of log entries
(implementing ITransactionLog) thus giving the
coordinator the chance to perform certain actions in
case the current transaction is committed or rolled
back. For example, when an entry was written to a
container using a transaction and that transaction is
rolled back, the corresponding accountant information
needs to be removed from the coordinator.

Table 16 - CAPI-3: ICoordinator members

As can be seen, the ICoordinator is absolutely passive, meaning that the methods defined are only

used by the coordination layer to inform a coordinator about any actions made, thus giving it a chance

to react but not to act.

Page 56 of 108

This approach has an advantage and a disadvantage: On the one hand a developer implementing a

coordinator has not much freedom in developing it. For example there is no possibility for a

coordinator to use a transaction for accessing its accountant information, as the

OnWriting/OnReading/OnDestroying methods do not take a transaction instance as parameter.

This, on the other hand, greatly reduces the risk of an erroneous implementation, as most functionality

is already built into the coordination layer itself and does not have to be re-implemented by the

developer.

4.4.1.3 Selector

The Selector contract plays another important role as it is used to provide additional information for

coordinators when entries are written to and read/taken from the container.

Selector

CountAll Specifies whether all entries of a container, which are visible
for the current transaction, should be returned. Entries with a
write-lock attached are filtered out. However, if an entry has a
destroy-lock assigned, the operation (read/take/destroy) will
result in LOCKED.

CountMax Specifies whether the maximum count of available entries
should be returned. The difference to CountAll is that entries
with a destroy-lock assigned are simply filtered out and the
operation (read/take/destroy) succeeds.

Table 17 - CAPI-3: Selector

The interface only specifies two Boolean properties which are used to indicate how many entries

should be read and thus need to be implemented by the coordination query of each coordinator.

In XcoSpaces a Selector also contains a “Count” property specifying the expected number of entries

returned. This integer value is further used to indicate “CountMax” (which is called “CountAll” in [7]) by

assigning the value of “-1”. The semantic of “CountAll”, as it is defined in the formal model, is not

implemented in XcoSpaces yet.

This approach was not used for TinySpaces as a 32 bit signed integer is needed to store the negative

values for “CountMax” and “CountAll”. This would be a waste of memory and bandwidth as a 16 bit

unsigned integer along with two additional bits for “CountMax” and “CountAll” (therefore 18 bit) would

be absolutely sufficient.

A selector is always tightly coupled to a coordinator and vice versa. When a new coordinator is

implemented, a specialized selector for it also has to be developed to provide additional query

information alongside the two mentioned properties. For example a FIFO-Selector contains a number

indicating the exact amount of entries required whereas a Key-Selector contains keys identifying the

required entries.

As already mentioned, selectors play an important role. On the one hand, they provide the information

needed by the corresponding coordinator to create a query specifying the entries, which should be

read, taken or destroyed. On the other hand they also provide information about how entries need to

Page 57 of 108

be written. For this reason the IEntry interface (see 4.2.1.4) contains a property holding a list of

selectors, which are called “write selectors” in that case.

Consider for example a Key-Coordinator which identifies an entry by its corresponding key. When an

entry is written to a container coordinated by a Key-Coordinator, a key which shall be used to identify

that entry needs to be propagated to the coordinator. Therefore selectors (or “write selectors”

according to the formal model) can be attached to an entry. When the coordination layer eventually

calls the “OnWriting” method of the Key-Coordinator, the coordinator searches through the attached

write selectors of that entry for a Key-Selector, which specifies the key that shall be used as an

identifier for that entry. However, it could happen that a required selector is missing thus causing an

error which needs to be handled by the coordination layer. This will be described in 4.4.2.2.

4.4.1.3.1 The Relation of Selector and IXQuery

CAPI-2 and CAPI-1 have no knowledge of selectors and coordinators according to the layered

architecture specified in the formal model. Therefore, the coordination layer has to generate queries to

tell CAPI-1 and CAPI-2 which entries shall be read, taken or destroyed. To achieve this, the selectors

given for the current operation (read/take/destroy) are forwarded to their corresponding coordinators.

These use the information provided by the selectors to generate the appropriate queries (IXQuery

objects) which are gathered by the coordination layer and forwarded to CAPI-1 and CAPI-2.

Moreover, it shall be possible to specify a mixture of queries and selectors for read-, take-, and

destroy-operations (IXQuery objects) at the API layer (for example a Cnt query as described in

4.2.2.2.1) to achieve the maximum amount of expressiveness. A client application may make a read-

operation specifying a Cnt query along with a FIFO- and a Key-Selector in any order, just to give an

example.

In the formal model and the current implementation of XcoSpaces, queries are represented by

selectors at API level and generated by a Query-Coordinator in CAPI-3. As that coordinator does not

gather any accountant information about the entries of a container, it cannot provide any useful

information for a query. Therefore, such a coordinator was omitted in the implementation of

TinySpaces and the queries are directly created by the user application and/or CAPI-3 and CAPI-2.

However, the Selector and IXQuery contracts need to be related to each other and in turn derive from

a common contract (IQuery), which is shown in the following figure.

Page 58 of 108

Figure 29 - CAPI-3: Relation of IXQuery and Selector

There is an important reason for this solution:

A selector cannot derive from IXQuery directly as it is not a query itself, but can be used by a

coordinator to create a query. If a selector would implement this interface, it would mean that a

selector is some sort of specialized IXQuery and thus it would be assumed that the “Select” method

could be called to get a viable list of results, which is not the case. A selector (in the context of a read-,

take-, or destroy-operation) is only a piece of context information, which is completed by the context

information a coordinator gathers about the entries of a container to in turn create a query.

In contrast to this, a simple query object like a Cnt query can only get context information from the

client application and thus does not have the benefit of having access to the accountant information

kept by coordinators of a container.

To get a better understanding of this consider a FIFO-Selector. As a Cnt query this selector can store

a number specifying the amount of entries required. However the query generated by the FIFO-

Coordinator can return different results than the Cnt query:

Consider that a read operation is called with a Key-Selector containing the keys k1 and k2 and a Cnt

query with a count of 1. First the Key-Coordinator creates a query which selects all entries identified by

the keys k1 and k2 as specified by the selector. These entries are then handed over to the Cnt query

which returns the first of the two entries (k1) in the order they are provided.

If this Cnt query was replaced by a FIFO-Selector with the same value for “count”, a query would be

generated which could return a different entry. This is because the resulting query would not return the

first of the two entries in the order they were provided, but the very entry that has been written to the

container first. If the entry e2 identified by k2 had been written to the container before the one

identified by k1, e2 would be returned.

The following figure shows the difference.

Page 59 of 108

Figure 30 - FIFO-query versus Cnt-query

Moreover, a selector (or “write selector”) is used to carry additional information for a coordinator, when

an entry is written to a container. Remember that a Key-Coordinator requires the written entry to

contain a Key-Selector specifying a key which shall be used to identify that entry. Therefore an

IXQuery cannot be seen as a specialized form of Selector as this would make it possible to specify a

Cnt query within an entry although it does not keep any viable information for any coordinator.

4.4.2 Implementation

This chapter provides an overview of the current implementation of CAPI-3 in TinySpaces.

4.4.2.1 Provided Coordinators

The current implementations of XSVM (MozartSpaces and XcoSpaces) provide a wide variety of

coordinators out of the box. However, as TinySpaces targets embedded devices, its code-size has to

be minimal. For that reason it had to be decided which ones of the coordinators defined in the formal

model of XVSM are absolutely necessary and therefore have to be built-in. The following list provides

a brief overview over the existing coordinators to offer the reader enough knowledge to understand

that decision. For more detailed information about those coordinators we refer to [18] and [10].

FIFO-Coordinator (First-In First-Out): This coordinator has already been introduced in previous

chapters. It keeps track of the time the entries were written to a container and returns the entries in

that order. Therefore it acts like a kind of queue.

LIFO-Coordinator (Last-In First-Out): The LIFO-Coordinator is the counterpart of the FIFO-

Coordinator as it also keeps track of the insertion time of the entries, but first returns those entries that

have been written most recently. Therefore it resembles a stack.

Key-Coordinator: As already mentioned in previous chapters, this coordinator uses unique keys to

identify the coordinated entries. Therefore it resembles a dictionary.

LABEL-Coordinator: This coordinator works similar to the Key-Coordinator as it uses keys to identify

entries within a container. However unlike the Key-Coordinator it does not require these keys to be

Page 60 of 108

unique wherefore they are named “labels”. For this reason several equal labels can exist and therefore

multiple entries could be returned even if only one label was specified in a selector.

LINDA-Coordinator: The LINDA-Coordinator provides the coordination pattern implemented in

JavaSpaces. It uses template matching to specify which entries shall be returned.

List-Coordinator (or Vector-Coordinator): A List-Coordinator behaves similar to a linked list. It uses

index values, which have to be unique of course, to identify the entries of a container. The difference

to a Key-Coordinator is that a key assigned to an entry never changes, whereas an index value

assigned to an entry can change. For example, when an entry at index 2 is removed the successive

indexes (3 to maximum index) are adjusted. (3 changed to 2, 4 changed to 3, etc.)

RANDOM-Coordinator: This is another coordinator known from previous implementations. Rather

than providing the ability to directly select entries from a container, this coordinator returns entries in a

random manner.

The decision was made that only two of these coordination types are absolutely necessary for

TinySpaces.

The FIFO-Coordinator was chosen, as there is a variety of scenarios where a producer consumer

pattern is required. Consider for example a temperature sensor which periodically writes its

measurement data into a container. Using a FIFO-Coordinator a consumer receives those entries in

the correct order. Furthermore this coordination type is required for the implementation of notifications

which will be described in 4.5.3.

The second required coordinator is the Key-Coordinator as applications frequently have the need to

store entries identified by a unique key. A good example for this would be a meta-container which

contains entries that are identified by well known keys or lookup containers. Another scenario where

this coordination type would be helpful is a space with containers which form a hierarchy. For this, a

Key-Container may store ContainerReferences pointing at the sub-containers of that hierarchy.

This could also have been achieved using a LABEL-Coordinator, however while it is simple to replace

this kind of coordinator with a Key-Coordinator by adding a list of values to an entry instead of just

one, it is impossible the other way around.

Also the LINDA-Coordinator was discarded as template matching can cost a lot of performance and is

therefore not that applicable for resource-constrained devices.

4.4.2.2 The CoordinationFacade - Handling Multiple Coordinators

The coordination layer needs to handle read-, write-, and take-operations which have multiple

selectors assigned and could also be mixed with simple IXQuery objects. Take for example a read

operation which specifies a FIFO-Selector followed by a Cnt query and a Key-Selector.

Therefore it first needs to get the coordinators assigned to the destination container using CAPI-2.

Then the IQuery objects (consisting of IXQuery- and Selector objects) provided by the read-operation

Page 61 of 108

are searched for selectors, which are in turn handed over to their corresponding coordinators. The

coordinators use these selectors to create a query (IXQuery object). As already denoted, this needs to

be done as the lower layers (CAPI-2 and CAPI-1) have no knowledge of selectors. Next, the created

(coordination) queries are collected and assembled to a list along with the (normal) queries that have

been handed over by the upper layer of the operation, keeping the original order. Then that list is

handed over to the transaction layer to perform the requested operation (Read, Write or Take). This

process is shown in Figure 31.

Figure 31 - CAPI-3: Creating queries

Additionally, as a container can have multiple coordinators assigned, the coordination layer needs to

synchronize them whenever an entry is added or removed.

Consider for example that a container has a Key- and a FIFO-Coordinator assigned. When an entry is

written to the container, the coordination layer needs to make sure that both coordinators are informed

about that event so they can keep their accountant data up-to-date.

Unfortunately a lot of errors can occur during this step. Consider that a write-operation is performed on

a container which has a Key-Coordinator assigned. For that reason a write selector specifying a key

has to be attached to that entry. If this is not the case, the Key-Coordinator cannot proceed and will

throw an error. Furthermore, a custom coordinator could be erroneous and throw an exception.

As multiple coordinators can be assigned to a container, it is possible that an error does not happen

with the first coordinator, but one of its successors. Therefore the coordinators, which have already

Page 62 of 108

been informed successfully, are in an inconsistent state as the operation is not valid anymore and

changes made to their internal accountant information need to be rolled back.

To be able to handle this incidence, the coordination layer needs to make use of transactions for each

single operation. However, it is important that a user transaction handed over by the runtime is not

directly used for this purpose, because many other operations may have already been performed with

it. Therefore, if an error occurs within CAPI-3 and hence the transaction is rolled back, all other valid

changes made within this transaction are lost too.

To solve this, the coordination layer creates a new transaction for each read-, write-, take-, and

destroy-operation and adds it as sub-transaction to the user transaction. This way all changes made

by one single operation are treated separately by the corresponding sub-transaction and therefore can

be easily undone without affecting the parent transaction. When the parent transaction eventually

commits or rolls back, it does the same with all its sub-transactions. This has been defined in [52 S. 3].

This process is shown in Figure 32.

Figure 32 - CAPI-3: Synchronization of Coordinators

4.4.2.3 Isolation Level of CAPI-3

As already mentioned, the coordinators of the current CAPI-3 implementation of TinySpaces do not

use transactions to add and/or remove accountant information although this is specified in the formal

model. This violates the isolation level of Read Committed, because a coordinator has access to all

Page 63 of 108

accountant information even if it was added by a transaction which has not committed yet. Therefore,

the isolation level used for accountant information is Read Uncommitted and not Read Committed.

As using transactions to modify a coordinator’s accountant information would cost additional

performance, this approach was discarded for TinySpaces as it targets resource-constrained devices.

The major drawback of the approach used in TinySpaces is, that accountant information cannot be

accessed by a user application using the XVSM API. This is not acceptable for the enterprise versions

of XVSM. However the current implementation of XcoSpaces follows the same approach and needs to

be adapted to comply with the formal model.

The usage of isolation level Read Uncommitted brings another benefit for TinySpaces: Consider two

transactions t1 and t2 trying to write entries for the same key k into a container coordinated by a Key-

Coordinator. If those keys are added to the accountant information using an isolation level of Read

Committed the following happens: The coordinator uses t1 to add the key k to its accountant

information which is therefore still invisible to other transactions. For this reason t2 also succeeds to

add the key k. When those transactions eventually commit, both keys become visible which would

cause the second committing transaction to fail during commit, causing it to be in an inconsistent state.

For that reason the formal model defines, that a Key-Coordinator needs to prevent concurrent write

access. [18 p. 48] However as the isolation level is Read Uncommitted in TinySpaces, the coordinator

instantly detects that this key has already been added and throws a DelayableException causing the

sub-transaction to be rolled back and the operation to be delayed.

The approach used in TinySpaces can furthermore not lead to a violation of the lower layers isolation

levels. For example it cannot cause entries to be returned which still have to be invisible for the

transaction which encloses the current operation (read/take/destroy) as they were written by a different

one which has not committed at that time. The reason for this is that CAPI-2 filters out invisible entries

before the queries provided by CAPI-3 are executed: Consider for example two transactions t1 and t2.

t1 wrote an entry e1 with the key k1 into a container and has not committed yet. Therefore the entry is

not visible at this time as the isolation level for CAPI-1 and CAPI-2 is Read Committed. In contrast to

that the corresponding key is visible for any other transaction as the isolation level of accountant

information of CAPI-3 is Read Uncommitted. If t2 now wants to read the entry with key k1, the

coordination layer uses the Key-Coordinator to generate the necessary query and adds it to a list

which is handed over to CAPI-2. That in turn inserts its “read committed query”, which is used to filter

out any invisible entries (according to Read Committed) at index 0 of the list provided by CAPI-3 and

hands the queries over to CAPI-1. Accordingly, when CAPI-1 executes those queries, the entry e1 is

filtered out by the “read committed query” of CAPI-2 and not provided for the coordination query of

CAPI-3. For that reason the coordination query throws a DelayableException and the read-operation

will be rescheduled by the runtime. As a result t2 fails to retrieve the entry at that time, which satisfies

the isolation level Read Committed.

The only case where this approach could cause problems is when the client application read all keys

from the Key-Coordinator to verify that a specific key exists, in order to read that entry only if this is the

case. Using Read Uncommitted a key could be returned which still had to be invisible. Therefore the

Page 64 of 108

client application could erroneously assume that an entry with this key can be read and make a read-

operation. If the transaction which added that entry along with the key would be rolled back, this read-

operation eventually times out. However if that timeout was infinite, the client application could get

stuck forever. (Timeout handling will be described in 4.6.3) Fortunately that scenario can be realized in

TinySpaces using a read operation with “timeout 0”, which means that it will fail immediately, if the

required key does not exist. For more information about “timeout 0” semantics, we refer to [18].

4.5 CAPI-4: Aspects

SoC (separation of concerns) is an intrinsic concept of object-oriented programming [53]. It demands

that software is separated into distinct modules containing functionally linked building blocks. The

architecture of XVSM complies with SoC as it is separated into several layers. For example all

functionality concerning transactions in XVSM is encapsulated in CAPI-2.

An aspect however is a part which cross-cuts the core concerns of a program and thus violates its

separation of concerns. Typically this is a feature which does not belong to the core functionality of the

corresponding software system, like for example logging, persistence, security, and so on.

The task of the aspect layer (CAPI-4) is to provide and manage well defined points in TinySpaces

where aspects can be added. This allows for adding functionality like persistence and security without

modifying the existing layers.

This chapter will give an overview of how this is achieved by introducing the contracts of CAPI-4 and

their current implementation in TinySpaces.

Page 65 of 108

4.5.1 Contracts

Figure 33 - CAPI-4: Contracts

As most of the contracts for aspects of XcoSpaces, the .NET reference implementation of XVSM,

comply with the new layered architecture of XVSM, these contracts have been borrowed and will thus

not be described in detail in this chapter. For further information about those we refer to [7].

4.5.1.1 AspectReference

The AspectReference is similar to the ContainerReference and the TransactionReference as it

provides a space address and the local ID of the corresponding aspect to identify it.

AspectReference

Address Gets/Sets the address of the space this aspect is located in to.

Id Gets/Sets the locally unique ID of the transaction.

Table 18- CAPI-4: AspectReference members

Page 66 of 108

4.5.1.2 IAspectFacade

This is the facade used by the runtime layer (CAPI-5) to access the entire functionality of the lower

layers. Therefore, the implementation of the façade can use these methods as insertion points for its

pre- and post-aspects.

IAspectFacade

OperationContext Contains an OperationContext object storing key-value pairs
which can be used by the aspects to cache state information.

Create-/Lookup-
/DestroyContainer

Provide access to CAPI-1 operations.

Create-/Commit-
/RollbackTransaction

Provide access to CAPI-2 operations.

Read/Write/Take/Destroy Provide access to CAPI-3 operations.

SpaceShutDown Is called before the local space is shut down.

RegisterSpaceAspect
/UnregisterSpaceAspect

Takes an ISpaceAspectFactory object along with a name
identifying the type of aspect the factory creates.

InstallSpaceAspect
/UninstallSpaceAspect

Takes a name identifying the type of the aspect and returns an
AspectReference identifying the created instance.

RegisterContainerAspect
/UnregisterContainerAspect

Takes an IContainerAspectFactory object along with a name
identifying the type of aspect the factory creates.

InstallContainerAspect

/UninstallContainerAspect

Takes a name identifying the type of the aspect and returns an
AspectReference identifying the created instance.

Table 19 - CAPI-4: IAspectFacade members

One method which seems to be misplaced in this contract is “SpaceShutDown”. This is because the

aspect layer cannot shutdown the space, as it would need to access the runtime layer. However that is

not allowed as this is a higher layer (CAPI-5). On the other hand an insertion point is needed which is

called before the space shuts down. For example a log-aspect could need to close the log file as soon

as the space shuts down. Additionally “SpaceShutDown” is the only insertion point which does not

support post-aspects as they would obviously never be called as soon as the space is not running

anymore. Shutdown behavior will be further described in 0.

This contract also provides two new groups of methods which are used to manage aspects. One

group handles so called space aspects whereas the other handles container aspects. The difference

between these types of aspects is that space aspects are added to insertion points at space level.

Container aspects, as the name implies, are added to single containers. For example a space aspect

can react to the creation of a container and a container can react to a read-, write-, destroy-, or take-

operation.

To install a new aspect in XcoSpaces and also according to the formal model of XVSM, the client

application has to create an instance of that aspect and hand it over to the space along with the

information to which insertion points it should be added to. Therefore only one single call is needed.

However this approach has a major drawback: As the client application creates the instance of the

aspect, it can only be added to its local space. Originally it was assumed that adding aspects to a

Page 67 of 108

remote space was not necessary. Unfortunately the implementation of notifications proved the

opposite. That caused the XVSMP to contain platform dependent information, which will be described

in 4.5.3.

To overcome that issue CAPI-4 of TinySpaces demands that all aspects in the space are registered

locally first before they can be installed by the local or a remote space. Consequently two operations

have to be performed in order to add an aspect:

 First a factory has to be registered which is used to create instances of the corresponding

aspect along with a name to identify it. (e.g.: “Notification1” for the factory of notification

aspects) This has to be done locally.

 Then the aspect can be installed. This means that the aspect layer creates an instance of the

requested aspect using the corresponding factory and adds it to the specified insertion

point(s).

4.5.1.3 ISpaceAspect

This interface needs to be implemented by a space aspect. It is borrowed from the implementation of

XcoSpaces and is introduced in [7]. The methods take different parameters depending on the

operation and return an AspectResult object which can be used to affect the execution. For more

information about how aspects can affect runtime behavior, we refer to [18].

Additionally, another insertion point has been added, which does not exist in XcoSpaces but is defined

in the formal model: LookupContainer (see 37). It can be used to add additional logic to the process of

looking up the ContainerReference of a named container.

One property which seems to be misplaced is the “Space” property as it stores a reference to the

synchronous API of the space in which the aspect resides. That is because some types of aspects

may need to modify the contents of the owning- or a remote space in order to achieve their task. A

notification aspect (see 70) and aspects which add replication functionality to a space are examples

for that type.

Unfortunately this approach breaks the layered architecture as it allows aspects to access higher

layers as shown in Figure 34. The formal model therefore specifies, that aspects may only access the

runtime layer and have to handle the creation of request messages, which is otherwise done by the

API, themselves. However providing the XVSM API to aspects eases their implementation for

developers and reduces the code-size as code is reused. Therefore this solution was chosen for

TinySpaces. XcoSpaces follows the same approach as the layered architecture of XVSM had not

been specified at the time it was implemented.

Page 68 of 108

Figure 34 - Aspects accessing the API

4.5.1.4 SpaceIPoint

This is an enumeration of space level insertion points. The names of its items have been borrowed

from XcoSpaces. It is used as parameter for the method “InstallSpaceAspect” to specify the points

where a space aspect shall be added.

In XcoSpaces the underlying type of the SpaceIPoint enumeration is a 32 bit integer value.

Consequently each item of the enumeration is represented by its own 32 bit integer. Therefore if an

aspect (for example a logging aspect) shall be added to all 15 defined space level insertion points,

which is the worst case, 15*32 (=480) bits are needed to express this. As this wastes a lot of memory

and network bandwidth it is especially not suitable for resource-constrained devices.

Thus, the enumeration was converted to a flag enumeration for the use in TinySpaces. Consequently

each of its items is identified by a single bit which specifies if the assigned item is set (true or false).

Therefore a single 32 bit integer can be used to express 32 different insertion points. However only 15

insertion points are defined at space level wherefore a 16 bit integer is absolutely sufficient.

Figure 35 - Using a 16 bit flag enumeration for SpaceIPoint

Considering the former example this approach saves (480-16) 464 bits!

4.5.1.5 ISpaceAspectFactory

The ISpaceAspectFactory needs to be implemented by factory objects which are used to create an

instance of one specific type of space aspect.

ISpaceAspectFactory

CreateInstance Takes an array of arbitrary objects as parameter. Returns a
new instance of the corresponding space aspect.

Table 20 - CAPI-4: ISpaceAspectFactory

Page 69 of 108

„CreateInstance” can take an array of arbitrary objects as parameter, because some aspects might

need some initial information provided when they are created. For example the notification aspect

needs a ContainerReference as argument. This is explained in 4.5.3.

4.5.1.6 IContainerAspect

As the contract for space aspects, IContainerAspect is also borrowed from XcoSpaces and is thus not

further described here. For more information we refer to [7].

4.5.1.7 ContainerIPoint

This is an enumeration of insertion points at container level which is used as parameter for the method

“InstallContainerAspect” to specify the points a container aspect should be added to.

As the SpaceIPoint enumeration the values are borrowed from XcoSpaces, but it has been converted

from an enumeration of 32 bit integer values to a 16 bit flag enumeration to save memory and network

bandwidth.

4.5.1.8 IContainerAspectFactory

The IContainerAspectFactory contract is implemented by factories which are used to create instances

of container aspects.

IContainerAspectFactory

CreateInstance Takes an array of arbitrary objects as parameter. Returns a
new instance of the corresponding container aspect.

Table 21 - CAPI-4: IContainerAspectFactory

4.5.1.9 OperationContext

The OperationContext can be used to carry additional information for all aspects, like for example the

login information of the current user. As this is another contract borrowed from XcoSpaces, it will not

be further described here.

4.5.1.10 AspectResult

This contract is also borrowed from XcoSpaces. It is returned by all methods defined in ISpaceAspect

and IContainerAspect and can be used by the aspects to affect the runtime behavior:

 If OK is returned the current operation is continued without any changes.

 If SKIP is returned the following aspects need to be skipped, and in case a pre-aspect

returned this value, the operation itself is also skipped. Therefore a complete operation could

be replaced by a pre-aspect.

 If RESCHEDULE is returned the current operation needs to be delayed by the runtime and

later re-run.

Page 70 of 108

As opposed to the formal model of XVSM, there is no return value of “NOTOK” which specifies that an

error has occurred within the aspect. In fact the aspect layer of TinySpaces catches any exceptions

thrown by aspects and creates a “NOTOK” response itself in that case.

4.5.2 Implementation

This chapter will give an overview of the current implementation of CAPI-4 for TinySpaces.

4.5.2.1 AspectFacade

Although container aspects are defined in the formal model and provided by XcoSpaces and

MozartSpaces they were omitted in the implementation of TinySpaces, which solely supports space

aspects for now. The reason for this is that container aspects are more complicated to implement than

space aspects, because the aspect layer needs to separate them into groups belonging to a single

container. Moreover the operations of the space which will be used most are Read, Write, Take and

Destroy. Therefore they need to be as fast as possible and supporting container aspects would slow

them down as, each time one of these operations is called, the aspect layer has to search for

container aspects that have to be called before or afterwards (pre- and post-aspects).

The aspect layer offers the runtime (CAPI-5) access to the lower layers by wrapping their functionality.

Whenever a method is called, it searches for pre-aspects for the particular operation. If there are any,

they are executed and afterwards the operation itself is called. Finally the corresponding post-aspects

are searched and called if present.

4.5.2.1.1 Performance Considerations

Basically the aspect layer has to perform two searches for each XVSM operation (CreateContainer,

Read, Take, etc.), in case the execution of each aspect and the XVSM operation itself results to “OK”:

The first search has to be done to get the pre-aspects and the second to get the post-aspects. These

search operations need to be optimized.

In XcoSpaces, the space aspects are grouped into lists by their insertion point. These lists are stored

in an array using the integer values of the insertion points as indexes.

As TinySpaces use flag enumerations, this approach is not applicable. Furthermore it was denoted in

4.2.2.3.1 that the decision was made to use “ArrayLists” as Microsoft is going to re-implemented them

in native code in the next release of the .NET Micro Framework. Consequently searching in large lists

may result in poor performance, as each item of the list has to be visited to determine if it meets the

search criteria. Therefore a registry for space aspects was implemented which minimizes the search

effort by keeping a separate list of aspects for each insertion point in a separate property. This way the

AspectFacade simply has to read the property value of the corresponding ipoint to obtain the aspects.

Page 71 of 108

Figure 36 - Space Aspect Registry

A drawback of this approach is that code-size is raised slightly, as fifteen properties containing lists are

implemented in the registry.

4.5.3 Notifications

Embedded devices are typically reactive. This is why TinySpaces support of notifications is intrinsic.

Basically notifications are used to advise a client application about changes made to a container. As

written in [7 S. 102] notifications can be implemented in different ways:

 A notification can inform about a change without providing the entries concerned. For example it

solely carries the information that entries have been read from a container. Therefore the client

application needs to get the entries itself, but on the other hand can also ignore that event. If those

events are ignored frequently, this approach can save bandwidth. For this reason the approach

could be applicable for TinySpaces. However, it brings a big disadvantage: In some cases it may

be impossible for the client application to retrieve only those entries that caused the event, as a

container might be coordinated by a FIFO-Coordinator for example. Moreover another application

could already have removed those entries from the container.

 In the second approach the notification returns the concerned entries thereby providing any

information needed by the observer and making additional calls unnecessary.

Concerning all the pros and contras, the decision was made to use the second approach.

Notifications in TinySpaces are implemented using aspects as in XcoSpaces and MozartSpaces. The

main reason for this is that they can easily be omitted in scenarios where they are not used thereby

reducing code-size.

The principle of the implementation is similar to the one which can be found XcoSpaces (see [7 S.

102]). Once the client application uses the API to create a notification, three steps are taken:

 First, a notification container, coordinated by a FIFO-Coordinator, is created in the space of

the observed container.

 Second, an aspect is installed in that space and depending on its configuration, it notices

when entries are read, written, taken or destroyed. This information is then written to the

notification container. Additionally, the aspect needs to notice when the observed container is

destroyed in order to also destroy the notification container as it is not needed anymore.

Page 72 of 108

 Third, a Notification object is created. It starts a thread which periodically makes a blocking

take on the notification container to retrieve the changes sighted by the aspect. This object is

then returned to the client application and acts as an interface providing methods to pause

and continue the notification process.

The way notifications work is simplified illustrated in the following figure.

Figure 37 - Notification process

In XcoSpaces a container aspect is used to provide this functionality. This aspect implements the post

ipoints of Write, Shift, Read, Take and Destroy. Thus whenever a transaction modifies the contents of

the observed container, the aspect writes those changes to the notification container using the same

transaction. That guarantees that those entries are only visible if the transaction eventually commits

and removed if it is rolled back.

However, this approach seems to be inappropriate for resource-constrained devices, because

container aspects would be needed which would decrease performance. This also imposes a lot of

round trips through the runtime. (See Figure 34)

Consider for example that a client application wants to be notified about any changes (Read,

Write, Take, Destroy) made on a container c1. When a transaction t1 writes four entries into c1 one by

one, and also takes six entries individually, this affects that the notification aspect makes ten single

write-operations on the notification container and in turn causes ten round trips through the runtime.

For the reasons mentioned above, another approach was used for implementing notifications in

TinySpaces.

Page 73 of 108

Figure 38 - Notification implementation of TinySpaces

In contrast to XcoSpaces, the notification aspect is based on a space aspect and makes use of the

meta-information provided by a committed transaction. Thus it only implements the post-ipoint of

“TransactionCommit”. To use this aspect, its factory, the NotificationAspectFactory, has to be

registered with a name (e.g. “XVSM.Nofitication1”).

Then the operation “InstallSpaceAspect” is called by the client application, passing a reference to the

targeted container, a reference to the notification container and an “ObservationType” object as

parameters. The latter specifies which operation(s) shall be observed by the notification aspect. For

the reasons mentioned in 4.5.1.4 this is a flag enumeration with byte as base type. Therefore only

eight bits are used. The aspect layer then creates an instance of the aspect using the

NotificationAspectFactory, handing over the three arguments.

Whenever a transaction commits, the notification aspect scans the ITransactionCommitInfo object,

which is provided as a parameter for the aspects method, for modifications made on the observed

container depending on its configuration (written-, read-, taken-, destroyed entries). If it finds relevant

changes, it writes them to the notification container with a single write-operation for each distinct

observation type (Read/Write/Take/Destroy) using a single transaction. Moreover, it checks whether

the transaction that committed destroyed the observed container. In that case the aspect also destroys

the notification container.

The notification feature is not included in the API of TinySpaces. Therefore, if the client application

wants to create a notification, it has to create a new “Notification” object and call its “Start” method.

The constructor of this class requests a NotificationHandler, which is a delegate (a kind of managed

function pointer). This handler is called whenever a result is received from the notification container.

Once the notification is eventually not needed anymore, the client application solely has to call the

“Stop” method, in order to remove the notification aspect and the notification container.

This new approach reduces the amount of write-operations and the resulting round trips through the

runtime layer as only one operation is needed per transaction and per “ObservationType”. Thereby it

Page 74 of 108

reduces the amount of created transaction logs, which unloads the heap as well as the garbage

collector thus raising runtime-performance.

However, the approach has a major drawback. Whenever a transaction commits each notification

aspect is called and in turn searches for suitable changes made on container, even if the container it is

watching has never been touched by that particular transaction. For that reason, the approach is not

applicable for the enterprise versions of XVSM, namely XcoSpaces and MozartSpaces.

4.5.3.1 Technology Dependence of Aspects in MozartSpaces and XcoSpaces

As already denoted, the formal model of XVSM specifies, that aspects are added to an insertion point

in a single step. The problem that emerges from that fact is that the type of the notification aspect has

to be sent over the network, if it should be added to a remote space. This in turn has to create an

instance of that aspect and add it to the specified insertion point(s). Once an XML-based technology

independent protocol was developed to provide interoperability between XcoSpaces and

MozartSpaces, this was a serious problem as type information is always tightly coupled to a specific

technology and should therefore not be present in that protocol.

Consider for example that a client running XcoSpaces (.NET) wants to get notified about changes of a

container which resides in an instance of MozartSpaces (Java). To accomplish this, the technology

independent protocol is used and the client space needs to know which technology the space, which it

wants to add an aspect to, is based on and send the appropriate type information. The XML-based

message looked similar to the following figure. (Figure 39)

<addAspect type="java" containerReference="TcpXML://localhost:9876/containers/2">

 <value>com\mindprod\mypackage\NotificationAspect.java</value>

 <ipoints>...</ipoints>

 <properties>...</properties>

 </addAspect>
Figure 39 - Adding an aspect implemented in JAVA using XVSMP

As can be seen, the full class path of the notification aspects implementation class needs to be

contained and the “type” attributes value is “java” to specify that the aspect is implemented using that

technology.

If, on the other hand, an aspect shall be added to XcoSpaces using XVSMP, the message would look

differently as shown in the following figure. (Figure 40)

<addAspect type="dotNet" containerReference="TcpXML://localhost:9876/containers/2">

 <value>XcoSpaces.Aspects.Implementation.NotificationAspect, XcoSpaces.Aspects</value>

 <ipoints>...</ipoints>

 <properties>...</properties>

</addAspect>

Figure 40 - Adding an aspect implemented in Microsoft .NET using XVSMP

This time the “type” attribute contains “dotNet” specifying that the aspect is implemented using the

.NET Framework. The value now contains the full name of the implementation type along with the

assembly name in a format specific to .NET.

Page 75 of 108

This is obviously no clean approach as it requires all existing space implementations to be adjusted

along with the protocol as soon as a new implementation of a space, based on another technology,

needs to be supported. For example: TinySpaces.

Therefore, the registration step has been introduced (see 4.5.1.2). With this solution, each space

simply registers its implementation of the notification aspect under a well known name. This name is

then used as the only information sent over the network along with the insertion points, thus making it

unnecessary to send type information in order to install an aspect as the following figure shows.

(Figure 41)

<addAspect containerReference="TcpXML://localhost:9876/containers/2">

 <value>NotifiationAspect</value>

 <ipoints>...</ipoints>

 <properties>...</properties>

</addAspect>

Figure 41 - Adding an aspect in general using the technology independent approach

An in depth look at the current definition of XVSMP in MozartSpaces can be found in [8 S. 61-70].

Page 76 of 108

4.6 CAPI-5: Runtime

This chapter provides an in dept look at the contracts of the runtime layer as well as its current

implementation in TinySpaces.

4.6.1 Contracts

Figure 42 - CAPI-5: Contracts

4.6.1.1 IRuntimeFacade

This interface is used by the API to communicate with the lower layers.

IRuntimeFacade

Process Takes a request (e.g.: a “WriteRequest”) as parameter.

ResponseReceived This event is fired whenever a response is received from the
local space or a remote one. The handler is of type
ResponseReceivedHandler.

4.6.1.2 ResponseReceivedHandler

This delegate takes a response as parameter and is used by the API to subscribe to the

“ResponseReceived” event of the runtime façade.

4.6.2 Implementation

As can be seen, there are no contracts for the building blocks of the runtime like the one handling

timeouts or the one handling the rescheduling of requests. The reason for this is that the runtime can

have various forms. For example, a runtime for extremely resource constrained devices can be

developed which, for that reason, is single threaded and thus has a much simpler logic for

rescheduling requests. In that case the original contracts do not match anymore, but as the inner

building blocks are never visible to the enclosing layers using the current layered approach, those

contracts are not necessary for TinySpaces.

The runtime of XcoSpaces (see 1.6.6) is optimized for concurrency. As thread synchronization

mechanisms are costly, the number of these synchronization points is minimized in TinySpaces and

the trade-off (reduced concurrency) is accepted. Consequently only the CoreProcessor is

Page 77 of 108

multithreaded and its worker threads perform all tasks required for an operation sequentially

(Read/Take/Write/CreateContainer/…), including updating the TimeoutHandler and the WaitHandler.

Moreover requests targeting a remote space are sent via the Communication Core using the user

applications thread.

Although using multiple threads within the CoreProcessor requires additional computation power as

multithreading is only simulated by the Tiny CLR, it is required for aspects though. Consider the

notification aspect introduced in 4.5.3 as an example. Whenever a transaction is committed, which

modified the container that is observed, the aspect writes the corresponding entries to the notification

container. To achieve this it uses the synchronous API, which blocks the calling thread until a result is

returned. As the aspect itself is executed by a thread of the CoreProcessor, it would be blocked and

therefore the call of the aspect would need to be processed by another thread. If only one single

worker thread was used by the CoreProcessor, this would obviously cause a deadlock as shown in the

following figure. (Figure 43)

Figure 43 - Deadlock caused by aspect with single-threaded CoreProcessor

The components of TinySpaces’ runtime and how the API is involved is depicted in Figure 44.

Figure 44 - TinySpace Runtime

Page 78 of 108

Whenever a request is received from the API or the CommunicationCore, it first is handled by the

RequestHandler, which can determine whether the request targets the local or a remote space. In

case the local space is targeted, it forwards the request to the CoreProcessor. Otherwise the request

is sent to the CommunicationCore which transmits it to the targeted space.

If the CoreProcessor gets the request, it processes it and informs the Scheduler about the results of

the requests operation. The Scheduler’s task is to synchronize the Timeout- and the WaitHandler and

to forward their results to the CoreProcessor.

The TimeoutHandler determines the expiration time of requests and fires an event at such an

occasion, which is further processed by the CoreProcessor.

The WaitHandler, on the other hand, stores delayed requests and reschedules them, whenever an

appropriate event is received from the CoreProcessor.

Once the CoreProcessor has processed a request, it generates a response containing the desired

result, or an error, which occurred during processing. It then forwards this response to the

ResponseHandler which in turn is able to determine, whether it has to be sent using the

CommunicationCore, or can be forwarded to the local API.

4.6.2.1 CoreProcessor

The CoreProcessor contains a nested class called XPTask. This contains the complete logic for

processing an incoming request. Its purpose is to store the required information and process the

request in a separate thread. Therefore the CoreProcessor creates a new XPTask for each request,

and enqueues this task in the CommonThreadPool, which uses lazy thread creation: When a task is

enqueued, the thread pool determines if there is any idle thread and

wakes it up. Otherwise it starts a new thread, but only if the maximum

thread count specified is not reached.

4.6.2.1.1 Implicit Transactions

When a thread runs the “Execute” method of the XPTask, it determines

if the request to process requires a transaction in order to succeed. If

that is the case and no TransactionReference is contained in the

request, the AspectFacade is used to implicitly create a new one, which

is then attached to the request.

Then the request itself is worked off. An important point here is that the

runtime does not know how the requests have to be processed. They

contain the logic to execute themselves. Therefore the XPTask solely

calls their “Execute” method providing the façade of CAPI-4 as

parameter (IAspectFacade). This is further explained in 4.6.2.2.

Thereafter, it is determined whether an implicit transaction has been

used for this request, and in this case that transaction is committed Figure 45 - CoreProcessor

Page 79 of 108

immediately in case the operation succeeded. After each of these three operations, their results are

forwarded to the Scheduler to update the Wait- and the TimeoutHandler.

Finally a response is created which is again performed by the request objects themselves. The

XPTask solely calls their “CreateResponseContent” method and hands over the results of their

“Execute” method.

The only request the runtime handles itself is the shutdown request as it is the only one that targets

the runtime and not any lower layer (CAPI-4 to CAPI-1). When a shutdown request is received, the

XPTask executes it as the other requests providing the façade to CAPI-4 to give the aspect layer the

chance to execute pre-aspects attached to this insertion point. Thereafter, the XPTask starts the

shutdown process of the runtime.

4.6.2.2 RequestMessageContent

This contract needs to be implemented by the content of each

request that has to be handled by the runtime. The properties

hold several timestamps which are used by the runtime:

 The “ExpireTime” is used by the TimeoutHandler. It is

calculated by adding the value of the “TimeOut” property

to the value of the “FirstExecutionTime” property and

specifies the point in time the request invalidates.

 The “FirstExecutionTime” is only set once by the CoreProcessor and specifies when the

request was processed for the first time.

 The “TimeOut” property contains a value indicating the period of time this request is valid.

 The “LastExecutionTime” property is set every time this request is processed by the

CoreProcessor. It is used by the WaitHandler which will be explained in 4.6.2.4.

Furthermore, the contract defines two methods:

 The abstract “Execute” method takes an instance of IAspectFacade and is called by the

CoreProcessor. It encapsulates the logic bound to one particular type of request. For example

the implementation of that method in a “CreateTransactionRequest” will call the method

“CreateTransaction” of the IAspectFacade object and provide all parameters the request

contains. Then it will return the complete result provided by CAPI-4.

 The “CreateResponseContent” is used by the CoreProcessor to perform the second step:

When the response of the “Execute” method has the status “OK” or “NOTOK”, this method is

called and causes a response message to be created that can be handed over to the

CommunicationCore.

As this logic is not implemented within the runtime layer itself, no conditional statements (as in

XcoSpaces) are needed and therefore the code-size is reduced. Additionally, further requests can be

developed without the need of modifying the runtime itself.

Figure 46 - RequestMessageContent

Page 80 of 108

4.6.2.3 Scheduler

The task of the Scheduler is to synchronize the WaitHandler and the TimeoutHandler. Whenever an

XVSM operation has been executed by the CoreProcessor the results along with the corresponding

request are forwarded to those two handlers.

In case a request times out, the Scheduler removes it from the WaitHandler and forwards this event to

the CoreProcessor.

If in contrast the WaitHandler fires an abort-event - this might be the case if a container, another

request wants to read from, is destroyed - that request is removed from the TimeoutHandler first and

thereafter forwarded to the CoreProcessor.

4.6.2.4 WaitHandler

The WaitHandler solves a complex task: It stores requests that

need to be delayed and reschedules them when an appropriate

event is received from the CoreProcessor.

A request is delayed in two cases depending on the result

received from CAPI-4 and the lower layers.

 The status flag “LOCKED” is returned meaning that one

or more containers or entries could not be accessed as

another transaction has locked them.

 The status flag “DELAYABLE” is returned. This means

that either a write-operation was made on a bounded

container which was already full, or a read-, take- or

destroy-operation on an empty container.

Therefore, the WaitHandler does not keep track of any kind of

request but only of operations concerning containers

(CreateContainer, LookupContainer, DestroyContainer) and

operations concerning entries (Read, Write, Take, Destroy).

Then it waits for a commit or a rollback of a transaction to

reschedule any of the waiting requests. The reason for this is

that when a transaction commits the following happens:

 Any locks it acquired are removed.

For that reason requests that returned with the status “LOCKED” can be rescheduled.

 The changes made by the transaction to the contents of a container, like added and removed

entries, become visible to all other transactions.

Accordingly, requests which did not succeed and returned with the status “DELAYABLE” can be

woken up. However a distinction has to be made:

Figure 47 - WaitHandler

Page 81 of 108

If a transaction added entries, only read-, take- and destroy-requests need to be rescheduled as they

are waiting for entries to be added. On the other hand, a write-request only needs to be rescheduled if

an entry was removed by the transaction.

The implementation of the WaitHandler was slimmed as no distinction is made between “short-term

locks” and “long-term locks”. It therefore does not comply with the formal model of XVSM. This

distinction is, however, not needed in TinySpaces, as the general meta-information of containers as

well as the accountant information of coordinators is not modified using transactions and as a result

cannot be locked. Consequently code-size and computational costs are reduced.

The WaitHandler separates incoming requests by the container they need to access using a

ContainerWaitStructure object. The original idea was to create that object once a container is created,

but this wastes memory and CPU time, as some containers might never be accessed concurrently by

multiple transactions. For that reason, this object is created once the first request targeting that

particular container is delayed.

This ContainerWaitStructure contains the ContainerReference of the corresponding container as well

as three properties containing a ContextWaitStructure object for each wait category.

 The category “Insert” contains consuming requests which are waiting for entries to be written

into the container. (Read-, take- and destroy-requests)

 The requests filed under “Remove” are, on the contrary, producing requests, waiting for

entries to be removed. (Write-requests)

 The final category named “Unlock” contains entries, which wait for locks to be released from

the container itself or any of its entries. Such requests are for example a read-request as well

as the request for destroying the container.

The ContextWaitStructure contains the requests along with a timestamp: the “LastCommittedTime”.

This timestamp specifies when the last transaction, that modified the particular container, was

committed or rolled back. This is important as the runtime is multithreaded. Consider the following

example which is depicted in Figure 48: Two requests r1 and r2 with their corresponding transactions

t1 and t2 are running on two separate threads. t1 is executed first and locks entry e1 in container c1.

Thereafter t2 also tries to lock e1, but fails as it is already locked by t1. Next the execution of t1 is

continued and the transaction commits successfully. Finally, the execution of t1 is also continued and

its request is delayed and consequently handed over to the WaitHandler. The problem that arises now

is that the WaitHandler receives the event caused by the commit of t1 before the delayed request r2 is

received. Therefore r2 will never be woken up by that event and could eventually expire erroneously.

Page 82 of 108

Figure 48 - Request expires erroneously

For this reason, the “LastCommittedTime” is stored and when r2 is received by the WaitHandler, it is

compared to the timestamp of r2, which specifies the last time it was processed by the CoreProcessor.

If r2 was processed before the last commit happened, it is possible that the corresponding transaction

contained information, which would have caused r2 to be rescheduled. Therefore r2 is rescheduled

immediately.

As already denoted the WaitHandler reschedules waiting requests whenever a transaction commits or

rolls back and consequently has to determine which of the waiting requests shall be rescheduled. To

achieve this it uses the meta-information that is provided by CAPI-2 upon a commit: The

ITransactionCommitInfo. First it iterates through all the contained IContainerModificationInfo objects

which contain the ContainerReference of the modified container. Consequently the WaitHandler can

use that reference to it to find the corresponding ContainerWaitStructure.

If the IContainerModificationInfo contains any written entries and the ContainerWaitStructure contains

requests in the “Insert” category, those requests are rescheduled. The same happens for the requests

stored in the “Remove” category, if entries were destroyed or taken within the transaction. Finally, all

requests filed under the “Unlock” category are rescheduled as locks have obviously been removed

from entries and the container. As a final step, the WaitHandler determines whether any containers

have been destroyed within the committed transaction and removes the corresponding

ContainerWaitStructures in that case.

Page 83 of 108

4.6.3 TimeoutHandler

The TimeoutHandler is responsible for invalidating requests and transactions that expire. Therefore it

tracks their expiration times and notifies the CoreProcessor in that case. Whenever a transaction

expires it has to be rolled back and all of its remaining requests need to be canceled. If, on the other

hand, a single request of a transaction expires, the same steps need to be taken.

To keep track of the expiration times of requests and transactions the TimeoutHandler manages two

lists:

The first one contains all requests, which are sorted by their expiration times in an ascending order.

This is because a timer is used internally, which wakes up when the next request expires. It then

removes the request from that list and uses the new first item to determine the duration to sleep.

The second one stores items which contain a TransactionReference and the requests belonging to the

corresponding transaction. Once a request or the transaction itself expires, the TimeoutHandler uses

that list to determine the remaining requests of a transaction, in order to remove them from the list of

requests and also to inform the CoreProcessor that those requests have also become invalid.

Furthermore there could be requests, belonging to a particular transaction, which have a timeout value

of “0” and are therefore not stored within the list of requests, as they actually have no expiration time.

For more information about “timeout 0” we refer to [18].

4.6.3.1 TimeoutHandler and Deadlocks

One reason why the TimeoutHandler is so important is that XVSM currently does not define a

deadlock detection mechanism. Therefore using timeouts is the only way to overcome deadlocks in

TinySpaces. Consider for example two transactions t1 and t2 trying to read two entries from a

container c1 concurrently using different coordinators:

 t1 wants to take two entries from container c1 using two successive take operations with a

FIFO-Coordinator (First-In First-Out).

 At the same time t2 also tries to take two entries from that container, but uses a LIFO-

Coordinator (Last-In First-Out).

Additionally, the container c1 only contains two entries. What could happen now is that t1 succeeds

taking the first entry, but fails to lock the second one, as it is already locked by t2 which, in contrast to

that, cannot lock the other entry, as it has already been locked by t1. This can occur as the entries are

still in the container, because none of the transactions has committed at that time. As these two

transactions are blocking each other, a deadlock occurs. This process is depicted in Figure 49.

Page 84 of 108

Figure 49 - Deadlock with transactions

Therefore, they would get stuck forever if there was no timeout handling. Let us assume that the

second request of t2 eventually expires. In that case the timeout handler notifies the CoreProcessor

which in turn rolls back t2 and sends an error message to the client application. This rollback is noticed

by the WaitHandler which consequently wakes up the waiting request of t1, which will therefore

succeed its task and return the second entry to the user application.

The only way that a deadlock can occur now, is when both transactions specify a timeout value of

“infinite” and the requests use “timeout 0”. For this reason, applying an infinite timeout to a request or

transaction is dangerous and should only be done when it is absolutely necessary. One case where

an infinite timeout is required for example is the implementation of notifications. If the blocking takes

on the notification container had a lower timeout specified, the observing application had to restart this

operation periodically. This would lead to unnecessary computational costs, network traffic and power

consumption and is therefore not feasible, especially for mobile embedded devices.

4.7 CAPI-5b: Communication

The communication module is completely separated from the runtime. The main reason for this

approach is configurability. For example, TinySpaces could be used to coordinate mobile agents and

therefore a communication module might be needed, which is capable of connecting to remote spaces

automatically as soon as they come within range. Moreover, a different specialized runtime could be

Page 85 of 108

developed (e.g.: a single-threaded one) for one particular device. In that case the communication

module could be reused.

In contrast to XcoSpaces, TinySpaces support several transport protocols along with several

serialization mechanisms at the same time. The following example, which is depicted in Figure 50,

demonstrates why this feature is absolutely necessary for TinySpaces: Three embedded devices (A, B

and C) are communicating with each other via ZigBee. [54] This is a wireless technology which allows

for data rates of up to 250 Kbit/s. Therefore the data sent needs to be as compact as possible

wherefore the .NET Micro Framework binary serialization is used. Additionally device C is

communicating with device D, which is a personal computer and therefore runs a full operating system

(and not the .NET Micro Framework). Consequently it does not support that binary serialization format.

For this reason an interoperable format, like an XML-based one, needs to be used. Furthermore

personal computers generally do not provide a ZigBee module and therefore device C and D

communicate over Ethernet (TCP/IP).

Figure 50 - Example scenario with multiple transport protocols

Due to the layered architecture of XVSM, CAPI-1, -2 and -4 cannot set the address of entity

references (ContainerReference, TransactionReference and AspectReference) they create. For

example, if a new container is created, CAPI-1 solely assigns the locally unique ID to the

ContainerReference that it returns. This is because CAPI-1 cannot know where the created

ContainerReference is sent to: It could be used by a local client program, but also sent to a remote

space using one of the communication services the communication module provides and the address

of an entity reference depends on the communication service used to send it.

It is therefore the communication modules responsibility to set the address of all entity references

which are sent to another space:

 When a response is sent using a service, the local address of that service is used as the

address of each entity reference contained in that response.

 If a request is received on the other hand, the address is removed from the entity reference if

it matches the local address of the receiving service. This is important as the lower layers

(CAPI-1, -2 and -4) also take the address property into account to identify an entity. If a local

entity is to be referenced, the address property needs to be empty.

Page 86 of 108

This chapter focuses on the contracts and the implementation of the communication module.

4.7.1 Contracts

Figure 51 - CAPI-5b: Contracts

4.7.1.1 ICommunicationCore

This interface is used by the runtime to communicate with other spaces. The CommunicationCore is

responsible for handling multiple communication services along with their serializers and for adapting

the address property of outgoing and incoming entity references.

ICommunicationCore

DefaultSerializer Gets/Sets the serializer which shall be used if the
communication services do not provide one.

Services Returns all communication services which are currently
managed by the communication module.

AddService Adds a communication service.

RemoveSercvice Removes a communication service.

IsLocalAddress Takes an IAddress object as parameter and returns true if it is
the local address of one of the communication services.

Send Takes a Message object as parameter and sends it to its
destination.

RequestReceived This event is fired whenever a Request object is received by a
communication service. The method signature is defined by
the “RequestReceivedHandler” contract.

ResponseReceived This event is fired whenever a Response object is received by
a communication service. The method signature is defined by
the “ResponseReceivedHandler” contract.

Table 22- CAPI-5b: ICommunicationCore

Page 87 of 108

4.7.1.2 ICommunicationService

This contract needs to be complied with by an implementation of a communication service.

ICommunicationService

IsDefault Specifies whether this is the default service of the
communication module.

IsRunning Specifies whether the service is currently active.

LocalAddress Returns an IAddress object specifying the local address of that
service.

Serializer Returns the ISerializer object that shall be used to (de)serialize
messages for that service.

CanSendTo Takes an IAddress object as parameter and returns true if the
service is able to send data to that address.

Send Takes a byte array along with an IAddress object as parameter
and sends it.

StartUp Starts the service.

ShutDown Stops the service.

ExceptionOccurred Is fired whenever an exception occurs within the service or one
of its worker threads.

Table 23 - CAPI-5b: ICommunicationService

4.7.1.3 IAddress

The IAddress contract is used to distinguish between the different addressing schemes used by

transport protocols. As already denoted (4.2.1.1) in TinySpaces addresses are, in contrast to

XcoSpaces and the formal model, not expressed with strings but with address objects.

IAddress

Address This property contains an arbitrary address object depending
on the transport protocol. For example if TCP/IP is used this
could be an URL, and if ZigBee was used, it could be a 16 bit
integer.

ProtocolType This property contains an identifier for the
protocol/communication service that shall be used to send the
message.

Table 24 - CAPI-5b: IAddress

4.7.1.4 ISerializer

This contract is used by all serializers, like XML or Binary just to give some examples.

ISerializer

Serialize Takes an arbitrary object along with the object’s type as
parameter and returns a byte array.

Deserialize Takes a byte array along with the object’s type as parameter
and returns the de-serialized instance.

Table 25 - CAPI-5b: ISerializer

Page 88 of 108

4.7.2 Implementation

4.7.2.1 Built-in Communication Services

Currently only one communication service for TinySpaces is implemented, which makes use of

sockets to send data using the TCP/IP protocol. The way it works is trivial and is omitted for this

reason.

4.7.2.2 Built-in Serialization Mechanisms

Three different serialization modules were implemented for TinySpaces.

4.7.2.2.1 .NET Micro Framework Binary Serialization (abbreviated Binary)

This serialization module uses the built in support of the .NET Micro Framework for binary

serialization. As this feature is implemented in native code, this module is by far the fastest one and

has the least code-size. Additionally it produces the smallest data packets. However, the drawback is

that this serialization mechanism is not compatible with any other platform. Consequently it can only

be used to send data to devices which run the .NET Micro Framework. More information along with a

comparison is provided in 5.4.

4.7.2.2.2 .NET Binary Interoperable Serialization (abbreviated Binary Interop)

This serialization mechanism creates a binary format which can be used to send data to spaces that

run the full .NET Framework and/or the .NET Compact Framework. To achieve this, type information

has to be included in the messages, and therefore they are larger than those of the first mentioned

serialization mechanism. As this is a custom implementation in managed code, its code-size is also

larger. Additionally it is heavily relying on Reflection which makes this mechanism slower than Binary.

More information along with a comparison is provided in 5.4.

4.7.2.2.3 XML Serialization (abbreviated XML)

The format this XML serialization mechanism uses is not compatible to the current XVSMP. The main

reason for this is that this protocol is outdated, as it does not apply to the layered architecture of XVSM

anymore.

One reason for this is that each response is returned using a write operation whose entry contains the

response message. Therefore, the receiving communication core needs to search through the entries

of each received write request to determine whether it is indeed a simple write request or a response

from a remote space. This indirection raises the message size unnecessarily as in most of the current

applications a virtual answer container is specified. Furthermore, this protocol neither supports the

creation of named containers nor looking up a well known named container. Also the two step

approach concerning aspects (refer to 4.5.1.2) is currently not supported. Therefore, a different XML

format was chosen which will not be described here as that would go beyond the scope of this thesis.

The big advantage of the XML serialization is that is completely platform independent. However, it

creates comparatively large messages. Additionally, as Reflection of the .NET Micro Framework does

Page 89 of 108

not support the manipulation of getting and setting properties of objects at runtime, it has to be

implemented completely manual and for each class separately. For this reason, this serialization

mechanism has by far the largest code-size. More information along with a comparison is provided in

5.4.

5 Benchmark

To determine how TinySpaces perform on the targeted devices, measurements concerning

performance, memory usage and energy consumption have been conducted. The results are offered

and explained in this chapter. Unfortunately no comparable middlewares exist for the .NET Micro

Framework which could be used as a reference, wherefore the results can only be used to argue

whether TinySpaces scale well, to determine possible bottlenecks concerning the performance, and to

get an idea which dimensions of entries and containers TinySpaces can handle.

For these tests version 3 of the .NET Micro Framework has been used; Version 4.0 has been released

in November 2009, but is not supported by any devices yet.

The device used for these tests is the ChipworkX Development System V1.2 by GHI Electronics, LLC

[55] as it offers TCP/IP communication out of the box and is one of the most modern devices available.

A development system is a board which already provides most of the interfaces the embedded module

supports. That module is the ChipworkX Module which provides a 200 Mhz 32-bit ARM 9 Processor

along with 64MB SDRAM.

Figure 52 - ChipworkX Development Sastem V1.2
2
 (left) and ChipworkX Module

3
 (right)

5.1 Performance Benchmark

The most frequently used operations of a space are write-, read-, take- and destroy-operations. As the

take-operation is very similar to the destroy- and read-operation, but is the most expensive one, only

write- and take-operations are benchmarked. For each coordinator (FIFO and Key) twelve tests are

2
 http://www.ghielectronics.com/images/products/GHI-00125-large.jpg

3
 http://www.ghielectronics.com/images/extras/ChipworkX-SIZ-large.JPG

http://www.ghielectronics.com/images/products/GHI-00125-large.jpg
http://www.ghielectronics.com/images/extras/ChipworkX-SIZ-large.JPG

Page 90 of 108

performed, in which 10, 100 and 500 entries are written to a single container, either using a separate

implicit transaction for each operation or one single explicit (user) transaction, and are executed on a

single thread at API level. The results show the average measurements resulting from ten test-runs

and are depicted in the following figure. (Figure 53) The y-axis contains the average duration of each

test measured in seconds. The x-axis contains the six test groups, whereby the name of each one is a

combination of the coordinators name and the number of entries written. (e.g.: “FIFO 10” is the name

of the test run where ten entries are written using a FIFO-Coordinator) The blue bars depict the results

achieved using implicit transactions and the red bars those achieved using one explicit user

transaction.

Figure 53 - Write benchmark

As can be seen the FIFO-Coordinator performs better than the Key-Coordinator in general. This is

because it does not rely on a hash table like the Key-Coordinator, which has been implemented in

managed code (C#) and causes higher computational costs for inserting and removing items.

Furthermore, the blue bars are generally higher than the red ones. This shows that operations running

within one single transaction (explicitly) perform better than those relying on implicitly created

transactions. That is because implicit transactions are created and committed by the runtime for each

single write-operation separately. Therefore, two additional operations have to be performed and that

effect higher computational costs.

The results show that the FIFO-Coordinator scales linearly, while the Key-Coordinator does not. This

can be traced back to the performance of the hash table used by the Key-Coordinator internally.

0,28

2,77

14,00

0,31

3,83

36,90

0,15
1,27

6,21

0,17

2,33

29,20

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

FIFO 10 FIFO 100 FIFO 500 KEY 10 KEY 100 KEY 500

d
u

ra
ti

o
n

 in
 s

e
co

n
d

s

Implicit

Explicit

Page 91 of 108

The tests to benchmark take-operations were performed in a similar fashion: Again a container

coordinated by either a FIFO- or Key-Coordinator was utilized, using either one explicit transaction for

all operations, or implicit transactions for each separate operation. Moreover, three tests differing in

the number of entries that is taken separately from that container were performed per coordinator. The

following figure (Figure 54) shows the results. Again the y-axis shows the average duration of each

test in seconds, and the x-axis contains the six test groups named using the name of the utilized

coordinator and the number of entries taken. The blue bars stand for the tests performed using implicit

transactions and the red ones for those performed using one single explicit transaction for the whole

test run.

Figure 54 - Take benchmark

When a small amount of entries (about ten) is contained, take operations perform similar to write-

operations. However, as opposed to the write-operations, take-operations scale much worse. One

important reason for this is that at least two queries have to be performed as opposed to the write

operation: The query of the transaction layer which filters all invisible items and the query of the

corresponding coordinator. To overcome that issue it might be possible to enhance the coordination

queries, so the transaction layer can ask them to propose entries instead of running through all entries

in a container, filtering out the invisible ones and passing the result set to the coordination query.

However, that approach is still under development.

0,32
4,05

39,84

0,32
5,36

68,69

0,10

12,42

0,00 0,26
4,86

85,77

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

FIFO 10 FIFO 100 FIFO 500 KEY 10 KEY 100 KEY 500

d
u

ra
ti

o
n

 in
 s

e
co

n
d

s

Implicit

Explicit

Page 92 of 108

The results show that, as opposed to write-operations, using one single explicit user transaction for all

take-operations results in worse performance than when the runtime creates and commits an implicit

transaction for each operation separately. The reason is the following: Implicit transactions are

committed immediately after a take-operation succeeds. Consequently the taken entry is physically

removed from the container. Thus the number of entries drops with each executed take-operation and

the two queries (the read committed query of CAPI-2 and the coordination query of CAPI-3) need to

filter a smaller set of entries for subsequent operations. Using one single explicit user transaction, all

entries remain in the container until that transaction is committed at the end of the test run and

therefore, the number of entries to filter remains the same.

5.2 Memory Utilization

To measure memory utilization a method provided by the .NET Micro Framework is used that forces

its garbage collector to run and show the results in the output window.

First the memory utilization was measured before the space was created and used as a basis to

calculate the bytes used by the space only. Thereafter, three measurements with a different count of

containers and entries have been performed. The entries contain no value, like for example an integer,

so only the memory usage of the “infrastructure components” of TinySpaces (entries, containers,

selectors, etc.) is measured. Therefore, two write selectors (a FIFO-Selector and Key-Selector) are

attached to each entry additionally. The following figure shows the average results of ten test-runs.

Figure 55 - Memory usage of TinySpaces

0 145.824,00

1.216.476,00

5.926.212,00

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

no space 10 Containers *
10 Entries

10 Containers *
100 Entries

100 Containers *
100 Entries

b
yt

e
s

u
se

d

Memory Usage of TinySpaces
(containers and entries)

memory usage

Page 93 of 108

The highest amount of entries and containers tested (100 by 100) uses nearly six megabytes of

memory. As the smallest device which runs the .NET Micro Framework, which is the Digi Connect ME,

has eight megabytes memory available, it could run TinySpaces with a maximum amount of

approximately 100 containers with 100 entries each. Therefore at least a space with a dimension of

“100 by 100” is managable by any available .NET Micro Framework device.

Figure 56 - Digi Connect ME
4

5.3 Power Consumption

Unfortunately the ChipworkX development system does not lower power consumption when its CPU is

idle. According to a support administrator of the GHI Electronics Forum, this feature may be added in

the next firmware release which includes .NET Micro Framework 4.0 support and is planned for Q1

2010 [56]. As that firmware has not been released yet, this test cannot be performed.

5.4 Serialization Performance

As a fourth test, the three serialization mechanisms provided by the current implementation of

TinySpaces (see 4.7.2.2) were benchmarked for performance, code-size and byte usage. For these

tests three message types were chosen: “CreateContainerRequest”, “EmptyResponse”, which is used

as a kind of “void” response, and “EntryResponse”, which is used as response for read-, and take-

operations. The “EntryResponse” was filled with three entries which a 32 bit integer as value. This

configuration was used for the following three benchmarks: Serialization performance, deserialization

performance and byte usage.

 Figure 57 shows the results of the serialization performance benchmark.

4
 http://www.digi.com/images/products/prd_em_digiconnectme_lg.jpg

Page 94 of 108

Figure 57 - Serialization performance

As can be seen the built in serialization mechanism of the .NET Micro Framework (Binary) totally

outperforms the other ones. This was expected as it is implemented in native code (C++) in contrast to

the two other ones, which are custom implementations using managed code (C#). Additionally Binary

Interop is slower than XML. That is because Binary Interop makes heavy use of Reflection which is

performance costly while XML requires custom serialization interceptors to be developed for each

class that shall be serialized. That, however, affects that XML has a bigger code-size than its

competitors as will be shown in a subsequent benchmark.

The following figure (Figure 58) shows the deserialization performance of those three mechanisms.

Figure 58 – Deserialization performance

Again the built in serialization mechanism outperforms the other ones as expected. What is interesting

here is that Binary Interop is now faster than XML, which is caused by the fact that the latter needs to

parse a comparatively large string in order to de-serialize a message. Thereby, the read values need

1

60

48

1

30
27

1

39

27

0

10

20

30

40

50

60

70

Binary Binary
Interop

XML

d
u

ar
ti

o
n

 in
 m

ill
is

e
co

n
d

s

CreateContainerRequest

EmptyResponse

EntryResponse

1

65

120

1

32

49

0

39
49

0

20

40

60

80

100

120

140

Binary Binary
Interop

XML

d
u

ra
ti

o
n

 in
 m

ill
is

e
co

n
d

s

CreateContainerRequest

EmptyResponse

EntryResponse

Page 95 of 108

to be converted into the appropriate .NET type, like for example the string representation of an integer

needs to be converted into a 32 bit integer. Binary Interop does not have to do that conversion.

Next the amount of bytes the serialization mechanisms need to store the three message objects has

been measured. The results are shown in Figure 59.

Figure 59 - Message sizes

It does not surprise that Binary again outperforms the other formats. What is interesting is that Binary

Interop, though it is a binary format, creates larger byte arrays than XML. The simple reason for this is

that the former needs to propagate the type information along with the data. Therefore, the full name

of a type which is serialized is stored as a string and thus requires a lot more size than a simple

element name with a short prefix as used in XML.

Finally Figure 60 shows the code-size of those different serialization mechanisms.

Figure 60 - Code-size

It is clear that the built-in serialization mechanism Binary has the smallest code-size, as its logic is built

into the .NET Micro Framework itself. The interesting point here is, however, that Binary Interop has a

112

564

504

51

349

207

57

425

207

0

100

200

300

400

500

600

Binary Binary
Interop

XML

m
e

ss
ag

e
 s

iz
e

 in
 b

yt
e

s

CreateContainerRequest

EmptyResponse

EntryResponse

5

17

44,5

0

5

10

15

20

25

30

35

40

45

50

Binary Binary Interop XML

co
d

e
-s

iz
e

 in
 K

B

code-size

Page 96 of 108

far smaller code-size than XML. Moreover the big advantage of Binary Interop over XML is that it

already supports all arbitrary objects which are serializable. In contrast to that XML requires an

interceptor to be implemented for each class that needs to be serialized, which is then used to

serialize and deserialize that object. Therefore, the code-size of XML increases with the number of

different types that shall be serialized.

As a result each of the serialization mechanisms has its advantages and disadvantages and is

applicable for a different scenario:

While BINARY offers the best results in all performed benchmarks, it is dependent on the .NET Micro

Framework and can only be used to transmit messages between devices which support that platform.

Binary Interop has the worst serialization performance and creates the biggest messages. However, it

is capable of exchanging every custom serializable type with all other .NET platforms and does not

require custom code to be developed for that purpose. For that reason code-size does not increase

with the number of types which have to be serialized.

In contrast to that, XML does require a special serialization- and deserialization interceptor to be

developed for each custom type that shall be serialized. Thus, code-size increases with the amount of

serializable types. However, as it generates XML-messages, this mechanism can be used to

communicate with all devices, no matter what platform they are based on.

Page 97 of 108

6 Future Work and Ideas

TinySpaces are the first minimized XVSM implementation for resource constrained devices and there

are still many features which can be added and improved.

 A new XVSMP (Extensible Virtual Shared Memory Protocol) needs to be developed which

suits to the new layered architecture of XVSM and the new features like queries, named

containers et cetera.

 Also the new two step approach concerning aspects needs to be reviewed by the XVSM

Technical Board and either rejected or accepted. In the latter case it would need to be built

into the new XVSMP.

 Several different communication services could be implemented to leverage Bluetooth,

ZigBee, Z-Wave, GSM and other protocols.

 Although a lot of performance improvements have already been made, there is still the need

to make TinySpaces faster. During the tests it became clear that a lot of performance is lost

within the runtime layer (about 40%) as the logic of the wait handler and the timeout handler is

complex. Therefore, this would be good place to start.

 TinySpaces need to be ported to the new .NET Micro Framework as soon as the appropriate

firmware is available for the embedded devices. Then the tests need to be re-run, because the

main emphasis of the new version of .NET Micro Framework has been put on runtime

performance. Consequently the test-results might turn out much better than in this thesis.

Additionally, several additionally research subjects have emerged.

 To target even more resource constrained devices, a native implementation in C or C++ may

be appropriate. However, this would be a tedious task if it was done manually. For this reason

a model driven approach described in [31] should be concerned. All the XVSM layers could be

modeled and then converted into any language. It could then also be used to develop the

XVSM implementations for enterprise systems using Java or .NET with the main advantage

that all changes to the model would immediately be reflected in the different technology

dependent implementations. This however has to be done with the fact in mind, that the

enterprise versions of XVSM and those for embedded devices, etc. all have different

requirements to satisfy. Therefore, it should be possible to compose a specialized XVSM

implementation for a specific scenario.

 If TinySpaces would be ported to other platforms, there might be the need for a binary

protocol: XVSMP-Binary. The reason for this is that the mediums those devices use to

communicate might have too low data rates to use an XML-based protocol. Furthermore

generating and parsing XML files is not efficient.

 As hard real-time constraints are given in many scenarios for embedded systems, research

needs to be done to enhance XVSM with that functionality. How a middleware can be

enhanced to support this is explained in [33]. However, this will unfortunately never be

supported by TinySpaces as the .NET Micro Framework along with its Tiny CLR is not hard

Page 98 of 108

real-time compatible itself and therefore a native implementation would be required.

Additionally, a deal-lock resolving mechanism would be needed as the only way to do this

right now is to wait until a request and/or transaction expires, which is obviously insufficient for

scenarios with real-time constraints.

 Research has to be done to prove that XVSM is also suitable for coordinating autonomous

agents like for example UAVs and UCAVs. However, real-time capabilities are inevitable for

this task as can be seen in [35].

 It was shown in [37] that XVSM could be used in ITS. This scenario touches the domain of

sensor networks which could be utilized to measure road temperature and humidity and

consume that information to send glace warnings to approaching vehicles, just to give an

example. Therefore, a combination of XVSM with TinyDB could be thinkable. However, to be

able to send this information in a predicable time to the vehicles, real-time capabilities are a

must have. This is another scenario which claims this feature.

 As EMMA, which is introduced in [38], can be used to share sensor information between

moving vehicles, it is thinkable, that a space-based approach could be more applicable to

achieve this task as those vehicles resemble mobile agents. For that reason TinySpaces need

to be ported to a platform which provides better performance and additionally real-time

capabilities should be added. It is also thinkable that EMMA and XVSM could be combined to

manage coordination of vehicles in ITS.

Page 99 of 108

7 Conclusion

The main focus of this thesis was to show how the model of XVSM can be mapped to an

implementation, which satisfies the needs of embedded devices:

 Low code-size

 Low power consumption

 High runtime performance (CPU and memory usage)

It was shown how the different layers of the layered architecture of XVSM where implemented to build

TinySpaces. Today it is the first object-oriented implementation of XVSM which follows the layered

architecture defined in the formal model.

Moreover it became clear, that some parts of the formal model of XVSM needed to be omitted, like

CAPI-3 support of the isolation level Read Committed for the coordinator’s accountant information,

and some rules had to be violated, like the fact that aspects obtain a reference to the XVSM API, to

obtain a version of XVSM which is applicable for resource-constrained devices.

A special emphasis has been put on networked embedded devices. Thus different serialization

mechanisms have been introduced and compared to each other in terms of speed, code-size, platform

independence and bandwidth usage. Each suits best in a particular scenario.

Different benchmarks have been made to determine how TinySpaces perform on embedded devices.

Although no comparable middleware exits, which could be taken as reference, the results give an idea

of the capabilities and the limits of TinySpaces. Power consumption could not be measured as the

device used for these tests did not support this feature at that time.

The conclusion is, that it is possible to develop a hardware independent XVSM based middleware for

embedded devices using the .NET Micro Framework, which mostly complies with the XVSM

specification and still offers adequate runtime performance and code-size to be used in small

scenarios and even on the smallest existing device, which is the Digi Connect ME with a 55 Mhz CPU

and 8 megabytes memory. As the current implementation of TinySpaces can be used to rapidly

prototype solutions and test scenarios, it needs to be implemented in native code in order to increase

its overall performance and make it applicable for scenarios where a higher throughput of requests is

required.

Page 100 of 108

Abbreviations

ACID Atomicity-Consistency-Isolation-Durability

API Application Programming Interface

CAPI Core Application Programming Interface

CORBA Common Object Request Broker Architecture

ECMA European Computer Manufacturers Association

EMMA Embedded Middleware in Mobility Applications

FIFO First-In First-Out

HAL Hardware Abstraction Layer

IL Intermediate Language

LIFO Last-In First-Out

MDA Model Driven Architecture

MDD Model Driven Development

MEDC Mobile and Embedded Developers Conference

OS Operating System

PAL Platform Abstraction Layer

P2P Peer-to-Peer

QoS Quality of Service

RPC Remote Procedure Calls

SoC Separation of Concerns

SPOT Smart Personal Object Technology

SQL Standard Query Language

TB XVSM Technical Board

UACV Unmanned Combat Air Vehicles

UAV Unmanned Air Vehicles

Page 101 of 108

UID Unique Identifier

UML Unified Modeling Language

XVSM eXtensible Virtual Shared Memory

XVSMP eXtensible Virtual Shared Memory Protocol

Page 102 of 108

Table of Figures

Figure 1 - Architecture of the .Net Micro Framework [6] ... 10

Figure 2 - RPC Communication... 12

Figure 3 - Message Passing .. 13

Figure 4 - Message Queuing ... 13

Figure 5 - Communication using a space [7 S. 11] ... 14

Figure 6 – Producer/observer implementation with JavaSpaces .. 15

Figure 7 – Producer/observer implementation with XVSM ... 16

Figure 8 - Layered Architecture of XVSM .. 17

Figure 9 - Destroying an entry from a container with multiple coordinators assigned 20

Figure 10 – FIFO-Selector ... 20

Figure 11 – LINDA-Selector .. 21

Figure 12 - XVSM Runtime .. 23

Figure 13 - USBizi by GHI ElectronicsError! Hyperlink reference not valid. ... 25

Figure 14 - Layered Architecture of .NET Micro Framework [6] .. 29

Figure 15 - Related Work Graph ... 33

Figure 17 - Direct dependency between components ... 34

Figure 18 - Component interfacing contract .. 35

Figure 19 - Replacing a component using Contract First Design .. 35

Figure 20 - Contracts of CAPI-1 .. 36

Figure 21 - CAPI-1: Concurrent operations ... 39

Figure 22- Contracts of CAPI-2 ... 42

Figure 23- Using ILockable in CAPI-2 ... 48

Figure 24 - Reading from a container with a transaction .. 49

Figure 25 - Transaction in inconsistent state ... 51

Figure 26 – Commit/Rollback Information Provider Interfaces .. 51

Figure 27 - Implicit transactions and performance .. 53

Figure 28 - CAPI-3 Contracts .. 54

Figure 29 - CAPI-3: Violating the layered Architecture ... 54

file:///C:/Studium/TinySpaces_src/DA-Marek-Alexander-08022010-FINAL.docx%23_Toc253345642

Page 103 of 108

Figure 30 - CAPI-3: Relation of IXQuery and Selector .. 57

Figure 31 - FIFO-query versus Cnt-query ... 58

Figure 32 - CAPI-3: Creating queries .. 61

Figure 33 - CAPI-3: Synchronization of Coordinators ... 62

Figure 34 - CAPI-4: Contracts ... 64

Figure 35 - Aspects accessing the API ... 67

Figure 36 - Using a 16 bit flag enumeration for SpaceIPoint .. 67

Figure 37 - Space Aspect Registry .. 70

Figure 38 - Notification process ... 71

Figure 39 - Notification implementation of TinySpaces ... 72

Figure 40 - Adding an aspect implemented in JAVA using XVSMP ... 73

Figure 41 - Adding an aspect implemented in Microsoft .NET using XVSMP 73

Figure 42 - Adding an aspect in general using the technology independent approach 74

Figure 43 - CAPI-5: Contracts ... 75

Figure 44 - Deadlock caused by aspect with single-threaded CoreProcessor 76

Figure 45 - TinySpace Runtime ... 76

Figure 46 - CoreProcessor .. 77

Figure 47 - RequestMessageContent ... 78

Figure 48 - WaitHandler .. 79

Figure 49 - Request expires erroneously .. 81

Figure 50 - Deadlock with transactions ... 83

Figure 51 - Example scenario with multiple transport protocols .. 84

Figure 52 - CAPI-5b: Contracts ... 85

Figure 53 - ChipworkX Development Sastem V1.2 (left) and ChipworkX Module (right)...................... 88

Figure 54 - Write benchmark ... 89

Figure 55 - Take benchmark ... 90

Figure 56 - Memory usage of TinySpaces .. 91

Figure 57 - Digi Connect ME ... 92

Figure 58 - Serialization performance ... 93

Figure 59 – Deserialization performance .. 93

file:///C:/Studium/TinySpaces_src/DA-Marek-Alexander-08022010-FINAL.docx%23_Toc253345672
file:///C:/Studium/TinySpaces_src/DA-Marek-Alexander-08022010-FINAL.docx%23_Toc253345673
file:///C:/Studium/TinySpaces_src/DA-Marek-Alexander-08022010-FINAL.docx%23_Toc253345674

Page 104 of 108

Figure 60 - Message sizes .. 94

Figure 61 - Code-size .. 94

Page 105 of 108

References

1. Peng, J. and Liao, J. Design and Performance Evaluation of emORB for Pervasive Computing.

Pervasive Computing and Applications. 2008, Vol. 1, pp. 185-189.

2. Kühner, Jens. Expert .Net Micro Framework. s.l. : Apress, 2008.

3. Noergaard, Tammy. Embedded Systems Middleware: Understanding File Systems, Databases,

Virtual Machines, Networking and More! s.l. : Butterworth Heinemann, 2008.

4. Microsoft Launches Smart Personal Object Technology Initiative. Microsoft PressPass. [Online]

November 17, 2002. [Cited: December 7, 2009.]

http://www.microsoft.com/presspass/features/2002/nov02/11-17SPOT.mspx.

5. Thompson, Donald and Miller, Colin. .Net Micro Framework White Paper. s.l. : Microsoft, 2007.

pp. 1-23.

6. Microsoft. Understanding the .NET Micro Framework Architecture. .NET Micro Framework Porting

Kit Help. s.l. : Microsoft, 2009.

7. Scheller, Thomas. Design and Implementation of XcoSpaces, the .Net Reference Implementation

of XVSM - Core Architecture and Aspects. Vienna : Master Thesis, Insutute of Computer Languages,

2008.

8. Schreiber, Christian. Design and Implementation of MozartSpaces, the Java Reference

Implementation of XVSM - Custom Coordinators, Transactions and the XVSM protocol. Vienna :

Master Thesis, Insutute of Computer Languages, 2008.

9. Pröstler, Michael. Design and Implementation of MozartSpaces, the Java Reference

Implementation of XVSM - Timeout Handling, Notifications and Aspects. Vienna : Master Thesis,

Insutute of Computer Languages, 2008.

10. Karolus, M. Design and Implementation of XcoSpaces, the .Net Reference Implementation of

XVSM - Coordination, Transactions and Communication. Vienna : Master Thesis, Insutute of

Computer Languages, 2010.

11. Kühn, eva, Craß, Stefan and Salzer, Gernot. Algebraic Foundation of a Data Model for an

Extensible Space-Based Collaboration Protocol. Vienna : s.n., 2009.

12. Craß, Stefan. A Formal Model of the Extensible Virtual Shared Memory (XVSM) and its

Implementation in Haskell. Vienna : Master Thesis, Insutute of Computer Languages, 2010.

13. SpaceBasedComputing - Home. SpaceBasedComputing. [Online] 2007. [Cited: December 07,

2009.] http://www.spacebasedcomputing.org/home.html.

14. White, James. RFC# 707 - A High-Level Framework for Network-Based Resource Sharing. 1976.

Page 106 of 108

15. Mamoud, Q. H. Sun Developer Network (SDN). Getting Started With JavaSpaces Technology:

Beyond Conventional Distributed Programming Paradigms. [Online] Sun, 07 12, 2005. [Cited: 02 03,

2010.] http://java.sun.com/developer/technicalArticles/tools/JavaSpaces/.

16. Tuwis++. Verteiltes Programmieren mit Space Based Computing Middleware. [Online] Vienna

University of Technology, Insutute of Computer Languages, 2010. [Cited: 02 04, 2010.]

http://tuwis.tuwien.ac.at/zope/_ZopeId/04743907A4Pio5uL78w/tpp/lv/lva_html?num=185226&sem=20

10S.

17. Fensel, D., et al. Queues Are Spaces - Yet Still Both Are Not The Same? s.l. : Technical report,

2007. url: http://www.spacebasedcomputing.org/fileadmin/files/SBC-

QueuesAreSpaces_20070511.pdf.

18. Introducing the concept of customizable structured spaces for agent coordination in the production

automation domain. Kühn, E., et al. Vienna : International Foundation for Autonomous Agents and

Multiagent Systems Richland, SC, 2009. Proceedings of The 8th International Conference on

Autonomous Agents and Multiagent Systems. pp. 625-632. 978-0-9817381-6-1.

19. Richards, Mark. Java Transaction Design Strategies. s.l. : C4Media, 2006.

20. Marek, Alexander. Profile for XcoSpaces: AdvancedPersistency and TupleConverter, Praktikum.

Vienna, Vienna, Austria : Vienna University of Technology, Institute of Computer Languages, E185/1 :

Space Based Computing Group, 7 2008.

21. Marwedel, Peter. Embedded System Design. 1st. Berlin : Springer, 2003.

22. Zurawski, Richard. Embedded Systems Handbook. s.l. : CRC Press, 2006.

23. J.-M. Bergé, O. Levia, J. Rouillard. High-Level System Modeling. s.l. : Kluwer Academc

Publishers, 1995.

24. Kopetz, H. Real-Time Systems - Design Principles for Distributed Embedded Applications. s.l. :

Kluwer Academic Publishers, 1997.

25. Microsoft. MICROSOFT .NET MICRO FRAMEWORK VERSION 4.0. s.l. : Microsoft, 2009.

26. MSDN. Garbage Collection. [Online] Microsoft, 11 2007. [Cited: 02 03, 2010.]

http://msdn.microsoft.com/de-de/library/0xy59wtx.aspx.

27. Microsoft. Home Controls Manufacturer Uses .NET Micro Framework to Create Product Quickly.

Microsoft Case Studies. [Online] 8 5, 2008. [Cited: 12 16, 2009.]

http://www.microsoft.com/casestudies/Case_Study_Detail.aspx?CaseStudyID=201472.

28. Hanselman, Scott and Miller, Colin. Hanselminutes on 9 - The .NET Micro Framework with Colin

Miller. channel9. [Online] [Cited: 12 16, 2009.]

http://channel9.msdn.com/posts/Glucose/Hanselminutes-on-9-The-NET-Micro-Framework-with-Colin-

Miller/.

Page 107 of 108

29. Driver Safety Device Uses .NET Micro Framework. .NET Micro Framework. [Online] 2009. [Cited:

12 16, 2009.] http://download.microsoft.com/download/4/C/6/4C66CF39-348D-4B4A-AC30-

0B70B0D2B863/inthinc%20Waysmart%20Case%20Study.pdf.

30. OMG. OMG Model Driven Architecture. [Online] OMG, 08 12, 2009. [Cited: 02 03, 2010.]

http://www.omg.org/mda/.

31. A model-driven design environment for embedded systems. Riccobene, E., et al. New York, NY,

USA : ACM, 2006. Proceedings of the 43rd annual Design Automation Conference. pp. 915 - 918. 1-

59593-381-6.

32. Model-integrated development of embedded software. Karsai, G., et al. Nashville, TN, USA :

IEEE, 2003. Proceedings of the IEEE. Vol. 91, pp. 145- 164.

33. An Overview of the Real-time CORBA Specification. Schmidt, D. C. and Kuhns, F. Specual Issue

on Object-Oriented Real-time Distributed Computing, s.l. : IEEE Conputer, 2000, Vol. 33, pp. 56-63. 6.

34. Schmidt, D. C., et al. A High-Performance Endsystem Architecture for Real-time CORBA. IEEE

Communications Magazine. 2, 1997, Vol. 14, Distributed Object Computing.

35. The OCP - An Open Middleware Solution for Embedded Systems. Paunicka, J., Mendel, B. and

Corman, D. Arlington : s.n., 2001. Proceedings of the American Control Conference. pp. 3345-3350.

36. Analysis on Open Control Platform. Yin, Y., Wang, Y. and Wang, Y. X. 2007. IEEE International

Conference on Mechatronics and Automation. pp. 3371 – 3376.

37. Kühn, E., et al. Aspect-Oriented Space Containers for Efficient Publish/Subscribe Scenarios in

Intelligent Transportation Systems. Lecture Notes in Computer Science. 2009, Vol. 5870/2009, pp.

432-448.

38. Katramados, I., et al. Heterogeneous sensor integration for intelligent transport systems. Road

Transport Information and Control - RTIC 2008. May 20-22, 2008, pp. 1-8.

39. Levis, P., et al. TinyOS: An Operating System for Sensor Networks. Ambient Intelligence. s.l. :

Springer, 2004.

40. The nesC Language: A Holistic Approach to Networked Embedded Systems. Gay, D., et al. New

York, NY, USA : ACM, 2003. Programming Language Design and Implementation (PLDI). 1-58113-

662-5.

41. TinyGALS: A Programming model for event-driven embedded systems. Cheong, E., et al. New

York, NY, USA : ACM, 2003. 2003 ACM Symposium on Applied Computing. pp. 698 - 704. 1-58113-

624-2.

42. TinyDB: an acquisitional query processing system for sensor networks. Madden, S.R., Franklin,

M.J. and Hellerstein, J.M. New York, NY, USA : ACM, 2005. Vol. 30, pp. 122-173. 0362-5915.

43. An Embedded Middleware Platform for Pervasive and Immersive Environments for-All. Baldoni,

R., et al. s.l. : IEEE, 2009. Sensor, Mesh and Ad Hoc Communications and Networks Workshops,

2009. SECON Workshops apos;09. 6th Annual IEEE Communications Society Conference. pp. 1-3.

Page 108 of 108

44. The many faces of publish/subscribe. Eugster, P. Th., et al. ACM Computing Surveys (CSUR),

New York, NY, USA : ACM, 2003, Vol. 35, pp. 114 - 131.

45. SpringSource.org. SPRING source. [Online] 2010. [Cited: 02 04, 2010.]

http://www.springsource.org/.

46. Component-based approach for embedded systems. Crnkovic, I. Oslo, Norway : s.n., 2004. 9th

International Workshop on Component-Oriented Programming.

47. MSDN. Delegates. [Online] Microsoft, 11 2007. [Cited: 02 03, 2010.] http://msdn.microsoft.com/de-

de/library/system.delegate.aspx.

48. MSDN. System.Reflection Namespace. [Online] Microsoft. [Cited: 02 03, 2010.]

http://msdn.microsoft.com/en-us/library/cc544889.aspx.

49. MSDN. Generics in the .NET Framework. [Online] Microsoft. [Cited: 02 03, 2010.]

http://msdn.microsoft.com/en-us/library/ms172192.aspx.

50. Bracha, G. Java Sun. Generics Tutorial. [Online] 07 05, 2004. [Cited: 02 03, 2010.]

http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf.

51. ISO. ISO/IEC 9075:1992, Database Language SQL. s.l. : International Organization for

Standardization, 1992.

52. Craß, Stefan. Notes on XVSM Transactions. Vienna : Vienna University of Technology, Insutute of

Computer Languages, 2009.

53. MSDN. Object-Oriented Programming (C# and Visual Basic). [Online] Microsoft. [Cited: 02 03,

2010.] http://msdn.microsoft.com/en-us/library/dd460654(VS.100).aspx.

54. ZigBee Alliance. ZigBee. [Online] ZigBee Alliance. [Cited: 02 03, 2010.] http://www.zigbee.org/.

55. GHI Electronics. ChipworkX Development System. [Online] GHI Electronics. [Cited: 02 03, 2010.]

http://www.ghielectronics.com/product/125.

56. GHI Electronics Forum. Measure cpu & ram usagg and power consumption. [Online] 01 01, 2010.

[Cited: 01 02, 2010.] http://www.ghielectronics.com/forum/index.php/topic,2704.0.html.

