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Kurzfassung der Dissertation

Diese Dissertation befasst sich mit einem neuen Ansatz für die Modellierung von Kreditri-
siken und einer Erweiterung des bekannten Theorems von Dybvig, Ingersoll und Ross in
der Zinstheorie. Im ersten Teil der Arbeit beschäftigen wir uns mit der Modellierung von
abhängigen Kreditratingübergängen. Kreditratings beschreiben die Kreditwürdigkeit von
Schuldnern und klassifizieren die Schuldner nach ihrer Wahrscheinlichkeit auszufallen. Da-
durch hängt der Wert eines Kreditportfolios von den einzelnen Kreditratings der Schuldner
ab, an die diese Kredite vergeben wurden. Ohne die Abhängigkeitsstruktur der Schuldner
mit einzubeziehen, unterschätzen wir in der Regel das Risiko von gemeinsamen Ausfällen,
die hohe Verluste in einem Kreditportfolio erzeugen.

Um diese Abhängigkeit zu modellieren, wollen wir den Effekt von Schocks auf zeitstetige
Kreditratings internalisieren. Manche Ereignisse verursachen eine gemeinsame Veränderung
der Kreditwürdigkeit von Schuldnern. Um diese Auswirkung zu modellieren, verwenden wir
einen markierten Punktprozess. Dieser modelliert die zufälligen Zeiten der Änderungen
und eine zufällige Marke gibt die möglichen Änderungen der Kreditratings an. In den
meisten Ansätzen, die bisher zur Modellierung von abhängigen, stetigen Kreditratings an-
gewandt werden, wird die Abhängigkeit nur dadurch eingeführt, dass die Intensität der
Ratingübergänge der einzelnen Schuldner von dem Gesamtzustand der Ökonomie abhängt.
Gleichzeitige Ratingänderungen von mehreren Schuldnern sind hier nicht möglich. Im Un-
terschied zu früheren Arbeiten erlauben wir in dieser Dissertation auch Ratingübergänge
von mehreren Schuldnern zu derselben Zeit.

Dazu studieren wir ein spezielles Modell in unserem allgemeinen Rahmen ausführlicher.
Die Ratingübergänge werden durch einen zeitlich homogenen Markovprozess beschrieben
und alle Schuldner mit demselben Rating dürfen nur zu derselben Klasse wechseln. Wir
nehmen an, dass es einen Poissonprozess mit Intensität λ > 0 gibt. Jedes Mal, wenn der
Poissonprozess springt, wählen wir eine Funktion s ∈ SS = {s : S → S}, wobei S die
Menge der Ratingklassen ist. Die Wahrscheinlichkeit die Funktion s zu wählen, wird durch
eine Verteilung P ∈ M1(SS) gegeben. Nun können alle Schuldner mit Rating 1 entweder
zum Rating s(1) wechseln, oder in Klasse 1 bleiben, alle Schuldner mit Rating 2 zu s(2)
wechseln, oder in 2 bleiben, usw. Ein Übergang eines Schuldners mit Rating x ∈ S findet
tatsächlich mit Wahrscheinlichkeit px ∈ [0, 1] statt, wobei jeder Schuldner unabhängig von
den anderen die Klasse wechselt.

In unserem allgemeinen Modell gibt es zwei Möglichkeiten, um Abhängigkeit einzuführen.
Einerseits dürfen alle Schuldner ihr Rating gleichzeitig ändern gemäß der Wahrscheinlich-
keitsverteilung P . Dadurch können die Übergänge so verknüpft werden, dass zum Beispiel
die Kreditwürdigkeit aller Schuldner gleichzeitig erhöht bzw. erniedrigt wird. Andererseits
werden die Schuldner in derselben Klasse durch den Abhängigkeitsvektor (px)x∈S gekop-
pelt. Durch diese Struktur kann man gleichzeitige Ausfälle erklären und verschiedene Wahr-
scheinlichkeitsverteilungen von Verlustfunktionen erzeugen.

Unser Modell besitzt die nützliche Eigenschaft, dass die einzelnen Schuldner die glei-
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chen Übergangsintensitäten für ihre Kreditratings haben. Dadurch ist es möglich, sich un-
abhängig bewegende Schuldner mit Schuldnern in unserem Modell zu vergleichen, zwi-
schen denen es Abhängigkeit gibt. In einem einfachen Beispiel zeigen wir, dass die Ko-
varianz der Ausfälle von zwei Schuldnern in unserem Modell höher ist, und wie sie sich
bei verschiedener Wahl der Verteilung P ändert. Die numerische Simulation eines Kre-
ditportfolios zeigt in einem realistischeren Rahmen, wie die Wahl von P die Verteilung
der Verlustfunktion eines Portfolios beeinflusst. Durch das Einführen von simultanen Ra-
tingänderungen hat unser Modell mehr Freiheitsgrade und wir können verschiedene Arten
von Abhängigkeitsstrukturen zwischen den Ratingklassen darstellen.

Im restlichen Kreditratingteil kalibrieren wir unser Modell an historische Ratingände-
rungen mithilfe des Maximum-Likelihood-Verfahrens. Für unser allgemeines Modell stellen
wir die Likelihood-Funktion auf. Da die Berechnung des Maximums im Allgemeinen keine
geschlossene analytische Form liefert, spezialisieren wir unser allgemeines Modell und be-
trachten die stark gekoppelte Irrfahrt, welche von Spitzer (1981) vorgestellt wurde. Wenn
der wahre Parameter px in dem Intervall (0, 1) liegt, dann ist der Maximum-Likelihood-
Schätzer in diesem Fall eindeutig und wird durch die Nullstelle eines Polynoms gegeben, des-
sen Grad höchstens der Anzahl der Schuldner entspricht. Um die Genauigkeit des Schätzers
zu beurteilen, zeigen wir, dass der Schätzer konsistent und asymptotisch normalverteilt ist.
Das bedeutet, dass mit wachsender Zahl an Beobachtungen der Schätzer gegen den wahren
Parameter konvergiert und der skalierte Fehler asymptotisch normalverteilt ist, was uns
asymptotische Konfidenzintervalle für unsere Schätzung liefert.

Der zweite Teil der Dissertation widmet sich dem Verhalten von langfristigen Inves-
titionsrenditen. Für das Bepreisen langfristiger Verträge modellieren Praktiker die Preise
von Nullkuponanleihen mit langen Fälligkeiten, um sinnvolle Diskontierungssätze zu fin-
den. Empirische Untersuchungen dieser Preise sind schwierig, da nur Nullkuponanleihen
mit einer Fälligkeit von bis zu 30 Jahren gehandelt werden, aber z. B. für eine Leibrente die
Zinssätze für Fälligkeiten von bis zu 100 Jahren benötigt werden. Um sinnvolle Modelle zu
konstruieren, müssen wir daher wissen, wie sich langfristige Zinsen verhalten.

Dybvig, Ingersoll und Ross (1996) zeigen, dass die langfristigen Investitionsrenditen
in einem arbitragefreien Marktmodell niemals fallen können. Falls also diese Renditen in
einem Modell fallen, erlaubt das Modell Arbitrage. Sie setzen dabei voraus, dass der Grenz-
wert der Investitionsrenditen existiert. Es ist allerdings auch in bekannten Zinsmodellen
wie dem Vaš́ıček-Modell, dem Cox-Ingersoll-Ross-Modell oder dem Heath-Jarrow-Morton-
Modell möglich, dass dieser Grenzwert nicht existiert, wie wir anhand von Beispielen in
Kapitel 9 zeigen. In diesem Fall können wir das Theorem von Dybvig, Ingersoll und Ross
nicht nutzen, um das Verhalten von langfristigen Investitionsrenditen zu erklären und zu
entscheiden, ob das Modell Arbitrage zulässt. Deshalb verallgemeinern wir in dieser Dok-
torarbeit das Theorem auf Modelle, in denen der Grenzwert nicht existiert. Wir zeigen, dass
der Limes superior der Investitionsrenditen und der Terminzinssätze niemals fällt, was wir
als asymptotische Monotonie bezeichnen. Aus Sicht eines Investors ist der Limes superior
die natürliche Erweiterung, da er langfristige Investitionen bevorzugt, deren Nullkuponan-
leihen einen hohen Ertrag liefern. Die Verallgemeinerung beweisen wir sowohl unter einer
etwas schwächeren Annahme, als der Existenz eines risikoneutralen Wahrscheinlichkeitsma-
ßes, als auch unter der Annahme, dass es keine Arbitragemöglichkeit mit verschwindendem
Risiko im Grenzwert gibt.

Neben dem Hauptsatz geben wir Bedingungen für asymptotische Minimalität des Limes
superiors der Investitionsrenditen an. Das bedeutet, dass der Limes superior der Investiti-
onsrenditen die größte Zufallsvariable ist, welche zu diesem Zeitpunkt bekannt ist und von
dem zukünftigen Limes superior der Invesititonsrenditen dominiert wird.
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Summary

This thesis addresses a new approach in the modeling of credit risk and an extension of
the well-known Dybvig–Ingersoll–Ross theorem in interest rate theory. In the first part
we deal with the modeling of dependent credit rating transitions. Credit ratings describe
the credit-worthiness of obligors and classify the obligors depending on their probability to
default. Therefore the value of credit portfolios depends on the rating of the underlying
obligors. Without incorporation of dependencies between the ratings of the obligors into
the modeling we underestimate in general the risk of joint defaults, which may induce high
losses in the portfolio.

For modeling these dependent credit rating transitions we want to internalize the effect
of shocks on the continuous-time rating. Some events can cause a simultaneous change of the
credit quality of different obligors. To model this effect we use a marked point process. This
process models random event times, and a random mark specifies the possible simultaneous
credit rating transitions. In most of the models, so far used for the modeling of continuous-
time credit rating transitions, the dependence is introduced via the dependence of the
individual intensities on the current ratings of all the obligors. In this case no simultaneous
up- or downgrades are possible. In contrast to the previous work, we allow the obligors to
change their credit ratings simultaneously.

In more detail we study a special model within the general framework, that is a Markov
jump process and all obligors with the same rating are only allowed to change to the same
rating class at the same time. In our general model we use a Poisson process with intensity
λ > 0. Each time, at which this process jumps, we choose a map s in SS = {s : S → S},
where S contains the credit rating classes. The probability for choosing the credit rating
function s ∈ SS is given by a probability distribution P ∈M1(SS). Then all obligors with
rating 1 either remain in this class or change their rating to s(1) with a certain probability,
all obligors with rating 2 remain in this class or change to s(2) and so on. More precisely,
we independently throw a coin for each obligor with probability px ∈ [0, 1] of heads, where
x ∈ S is the rating of the obligor. If the coin shows head, then the obligor changes the
rating to s(x), otherwise it remains in the rating class x.

Our general model provides two possibilities to introduce dependence. On the one hand,
all obligors may change simultaneously according to the distribution P on the credit rating
classes. For example, we can link the obligors such that either the credit quality of the
obligors is upgraded or downgraded. On the other hand, obligors within the same rating
class are coupled by the dependence vector (px)x∈S and may change their credit rating
simultaneously. In this framework clustering of defaults is possible and we can generate
different shapes of loss distributions.

The model has the useful property that the single obligors have the same individual
transition intensities for their credit rating. Therefore, we can compare the independent
case, where all obligors change their rating independently of each other, with our model,
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where we have dependence between the obligors. A toy example shows that the covariance
of the default of two obligors in our model is higher than in the independent case, and how
the choice of the distribution P influences the covariance. Simulation of a credit portfolio
illustrates the influence of the choice of P and p on the distribution of the losses for more
realistic behavior of the obligors. By introducing simultaneous rating transitions we have
more degrees of freedom in the modeling and are capable of reproducing different kind of
dependence structures between the rating classes of the obligors.

In the remaining of the credit rating part we calibrate our model to historical rating
transitions using maximum likelihood techniques. For the general model we state the
likelihood function but the computation of the maximum is not tractable in general. In
case of the extended strongly coupled random walk, which is a specialization of our general
model, we are able to give an analytic expression for the maximum likelihood estimator.
If the true dependence parameter px is in the interval (0, 1), then the maximum likelihood
estimator is unique and given by the root of a polynomial whose degree is bounded by
the number of obligors and the coefficients contain the number of historical rating changes
and the historical waiting times. To evaluate the accuracy of the estimators we also show
consistency and asymptotic normality. Therefore with increasing number of observations
the estimator converges to the true parameter. The scaled approximation errors converge in
distribution to a normal distribution, which provides confidence intervals for our estimation.

The second part of the thesis is devoted to the behavior of long-term zero-coupon
rates. To price long-term contracts, like life insurance policies, practitioners model zero-
coupon bond prices with long-term maturities to find reasonable discount factors. Empirical
investigations of these prices are difficult, since there are only zero-coupon bonds traded
with maturity of up to 30 years, and for a life annuity, for example, discount factors for
up to 100 years are needed. To construct reasonable models, we need to know how the
long-term zero-coupon rates behave.

Dybvig, Ingersoll and Ross (1996) showed that long-term zero-coupon rates can never
fall in an arbitrage-free market model under the assumption that the limit of the zero-
coupon rates exists. Therefore, if the rates in a model decrease, it is not arbitrage-free.
However, even in well-known interest rate models like the Vaš́ıček model, the Cox–Ingersoll–
Ross model or the Gaussian Heath–Jarrow–Morton model, it is possible that the limit of
the zero-coupon rates does not exist, as we show with examples in Chapter 9. In this case
we cannot use the Dybvig–Ingersoll–Ross theorem to explain the behavior of the long-term
zero-coupon rates and decide if the model admits arbitrage opportunities. To assess also
models where the limit does not exist we generalize the Dybvig–Ingersoll–Ross theorem
in this thesis. We prove that the limit superior of the zero-coupon rates and the forward
rates never fall, which is called asymptotic monotonicity. From the investor’s point of view,
the limit superior is the natural extension, because he prefers for long-term investments
those zero-coupon bonds which give a high investment return. We prove this generalization
either under a slightly weaker condition than assuming the existence of a forward risk
neutral probability measure, or the assumption that there is no arbitrage opportunity in
the limit with vanishing risk.

Besides the main theorem, we state conditions for asymptotic minimality of the limit
superior of the zero-coupon rates. That means, the limit superior of the zero-coupon rates
is the largest random variable, which is known at this time and dominated by the future
limit superior of the long-term zero-coupon rates.
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Chapter 1

Introduction

On 15. September 2008 the investment bank Lehmann Brothers failed, which was a shock
for the financial world. The bankruptcy caused huge losses for banks, which had invested
in Lehmann and immediately affected the credit quality of these banks. Simultaneous
changes of the credit quality can also be observed in other economical sectors. In Iceland,
e. g., the volcano Eyjafjallajökull erupted and on 15. April 2010 the volcanic ash forced
the aviation authorities to close most of the European airports. Most of the flights were
cancelled and the European airlines suffered huge losses. The unexpected eruption of the
volcano caused a joint deterioration of the credit quality of the airlines. These two examples
show that special events can influence the credit rating of firms immediately and cause a
simultaneous credit rating change. Without consideration of such joint changes in credit
quality, we underestimate the risk of a portfolio with such firms as underlyings.

In this part of the thesis we address such simultaneous changes of the credit quality. To
this end, we internalize shocks and given there is a shock, the credit ratings of the firms1

are simultaneously affected. We use a marked point process to model the credit ratings of
the firms. At each event time the credit ratings change according to a random mark. This
is a random function that maps the rating of each firm and an idiosyncratic component to
another rating class. Therefore all firms can change their rating simultaneously.

Credit rating transitions are already discussed in the literature. An overview of credit
rating models is given in the books of e. g. Bielecki and Rutkowski (2002), Duffie and
Singleton (2003), or Lando (2004). A usual assumption is that the credit ratings follow a
Markov process. Jarrow, Lando and Turnbull (1997) consider a time-homogeneous Markov
process for the credit rating of one firm and assume that the transitions of different firms
are independent. Since there is empirical evidence that the probability of credit rating
transitions varies over time, several authors suggest to model the credit rating of a single
firm by a time-inhomogeneous Markov process, e. g. Couderc and Renault (2005), Duffie and
Singleton (1999), Kavvathas (2000), Lando (1998), or Lando and Skødeberg (2002). The
basic assumption in these models is that the intensities of the credit rating transitions of one
firm are time-dependent and depend on macroeconomic factors, like e. g. the business cycle.
Therefore the credit rating process of different firms depends on the same macroeconomic
factors, but conditionally on these factors the credit ratings are independent.

Jarrow and Yu (2001) show that the dependence through macroeconomic factors is
apparently insufficient to explain the clustering of defaults during a recession. To capture
the microeconomic structure between two firms they add a counterparty specific jump

1In the following we tacitly assume that all obligors are firms. If the obligors are private persons or
states, we can use the same mathematical framework to model dependent credit rating transitions.
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Chapter 1. Introduction

term to the intensity of the credit ratings. Yu (2007) generalizes this idea and provides a
construction for the distribution of the dependent defaults of more than two firms, where
the intensities depend on the observed defaults and a common macroeconomic factor. In
the model of Jarrow et al. the contagion is based on a direct link between the different firms.
Another explanation for credit contagion are information effects, i. e., the default intensity
of the firms depends on unobservable macroeconomic variables (often called frailty), and the
default of one firm gives information on the default risk of the other firms (see e. g. Collin-
Dufresne et al. (2003), Duffie et al. (2006), or Schönbucher (2003)). Credit contagion in
the discrete-time setting is also considered by Davis and Lo (2001). They assume that
the default of a firm directly causes simultaneous defaults of further firms, similar to a
spread of an infection. Horst (2007) models a cascade effect of defaults with a mean-field
approach in which the rating transitions depend only on the average rating of the other
firms. After an economic shock some firms default immediately. This causes additional
downgrades through the deterioration of the average rating and triggers a chain reaction.
For description of the direct interaction between the firms, Egloff, Leippold and Vanini
(2007) use a directed graph representation. In the continuous-time setting the common
way to model contagion is that the individual credit rating intensity depends on the credit
rating of the other firms. In this case simultaneous credit rating transitions are not possible.
To model this effect, interacting particle systems have become popular because these models
provide a convenient description of the direct interaction between the firms. Giesecke and
Weber (2003, 2006) apply the voter model to construct the dependence structure between
the defaults. The voter model is a spin system, i. e., each coordinate has only two possible
states, interpreted as default of a special firm or not. The default of one firm increases
the default intensity of neighbors of the firm. Bielecki, Crèpey, Jeanblanc and Rutkowski
(2007) introduce a Markov model modulated by a Lévy process to define the credit rating
transitions. The dependence is introduced via the dependence of the individual intensities
on the current ratings of all other firms in the economy. Bielecki, Vidozzi and Vidozzi
(2006) calibrate this model at market data and price several credit derivatives. Frey and
Backhaus (2007) and Dai Pra, Runggaldier, Sartori and Tolotti (2009) use a mean-field
interaction model. Here, the firms are divided into several groups and only the number of
defaulted firms in the different groups influences the individual default intensities.

Another main approach to model dependence of the defaults are copula models. An ana-
lysis in this context is given, e. g., by Laurant and Gregory (2005), Li (2000), or Schönbucher
and Schubert (2001).

In contrast to the previous work, we want to model simultaneous credit rating transitions
in the continuous-time setting. Therefore it is not sufficient to model the intensities for
credit rating changes for the single firms, like in the contagion models, we have to model the
intensity of the credit rating changes of the whole economy. In the Markov setup; Avellaneda
and Wu (2001) model the credit ratings of the firms with a general Markov process without
specifying the dependence structure between the credit ratings. Therefore they estimate
the intensity matrix of the credit rating transitions for the whole system of firms. For an
economy with many firms this leads to an extremely complex calibration problem. We also
model the credit rating process of all firms but we specialize the dependence structure.

This part of the thesis is organized as follows. In Chapter 2 we provide a general
framework where we can embed other model classes by defining the parameters such that
the possible transitions are restricted. The credit ratings of the firms are specified by a
marked point process with random event times and random marks. The random marks
specify the possible rating class changes, which take place at the random event times. This
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modeling framework is versatile, e. g., the event times can be given by a renewal process
or the random marks can depend on each other. Especially, the process is not Markovian
in general. Since the calibration is too complex, we study a model within the general
framework in more detail, which is a Markov jump process and all firms with the same
rating are only allowed to change to the same rating class at the same time. In our general
model we use a Poisson process with intensity λ > 0. Each time, at which this process
jumps, we choose a map s in SS = {s : S → S}, where S contains the credit rating classes.
The probability for choosing the credit rating function s ∈ SS is given by the probability
distribution P ∈M1(SS). Then all firms with rating 1 either remain in this class or change
their rating to s(1) with a certain probability, all firms with rating 2 remain in this class or
change to s(2) and so on. More precisely, we independently throw a coin for each firm with
probability px ∈ [0, 1] of heads, where x ∈ S is the rating of the firm. If the coin shows
head, then the firm changes the rating to s(x), otherwise it remains in the rating class x.

Our general model provides two parameters to introduce dependence. On the one hand,
all firms may change simultaneously according to the distribution P on the credit rating
classes. For example, we can link the firms such that either the firms are all upgraded or all
firms are downgraded. On the other hand, firms within the same rating class are coupled
by the vector p = (px)x∈S and may change their credit rating simultaneously.

To illustrate the possible dependence structures of the general model we introduce two
possible credit rating processes by specifying the parameters of the general model, namely
the extended strongly coupled random walk process and the scheme model. In the so-
called strongly coupled random walk process, developed by Spitzer (1981) for an infinite
state space, there are no simultaneous rating transitions of firms in different credit rating
classes, only firms with the same rating may change their rating at the same rating. The
scheme model additionally allows that firms with different credit ratings change their rating
simultaneously. Chapter 3 illustrates the loss distribution of a simulated credit portfolio
where the firms follow these two processes. Stronger dependence between the firms increases
the probability of high losses. If we assume that the transition intensities of the individual
firms and p is the same in both models, then we observe that there are more joint defaults
in the scheme model than in the extended strongly coupled random walk because of the
additional dependence through the link between firms in different credit rating classes.

To calibrate our model to historical rating transitions, we consider the maximum like-
lihood function in Chapter 4. Maximizing this function gives the maximum likelihood
estimators, which we calculate for the extended strongly coupled random walk. If the true
parameter px in the interval (0, 1), then the estimator is unique and given by the root of
a polynomial whose degree is bounded by the number of firms and the coefficients con-
tain the number of historical rating changes and the historical waiting times. A detailed
derivation for the estimators is given in Section 4.2.3. In Chapter 5 we show consistency
and asymptotic normality of the estimators. That means with increasing number of ob-
servations the estimator converges to the true parameter. The scaled approximation errors
converge in distribution to a normal distribution, which provides confidence intervals for
our estimation.
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Chapter 2

The credit rating model

We call F = {1, . . . , n} the set of the firms and S = {1, . . . ,K} symbolizes the rating
classes, where rating K means that the firm is in default and 1 is the best rating class. In
the following we model the evolution of the credit ratings of the firms. We assume that the
transitions of the firms from one rating class to another are given by a process (Xt)t≥0 with
state space Sn, i. e., Xt is a vector with the rating of the firms at time t ≥ 0. In the following
we define a general framework where all firms may change the rating simultaneously. We
model with a marked point process the time of the transitions of the credit ratings and the
type of transition, which takes place.

2.1 The general framework

Let (Ω,F ,P) be a probability space and (I, I) be a measurable space. Define the set E of
functions by

E =
{
r : S × I → S

∣∣ r is
(
P(S)⊗ I

)
-P(S) measurable

}
, (2.1)

where P(S) is the power set of S. Let E be a σ-algebra on E.

Definition 2.2. Let (τi)i∈N be (0,∞]-valued random variables with τi < τi+1 on the set
{τi <∞} and τi = τi+1 =∞ on {τi =∞}. Let ρi be a random variable with ρi ∈ E on the
set {τi < ∞} and ρi := ρ∞ on the set {τi = ∞} for each i ∈ N, where ρ∞ is an external
point of E. Then we call

(
(τi, ρi)

)
i∈N a marked point process (see [41, Chapter 1]).

The time of the i-th credit rating transition is given by τi for i ∈ N and the random
function ρi specifies the possible rating transition. More precisely, ρi maps the current
rating of the firm and an idiosyncratic component to a rating class, namely the rating of
the firm after the transition. The idiosyncratic component is for each i ∈ N given by a
collection {Ui(j) : j ∈ F} of I-valued random variables. Altogether, the dynamics of the
rating transitions are determined by the collection {ρi, τi, Ui(j) : i ∈ N, j ∈ F} of random
variables. In reality we cannot observe these random variables directly. We are only able
to watch the rating class transitions of the firms, i. e., we observe the credit rating process
X = (Xt)t≥0 given by the following definition.

Definition 2.3. Let
(
(τi, ρi)

)
i∈N be a marked point process as in Definition 2.2. Let Ui(j) be

an I-valued random variable for each i ∈ N and j ∈ F . We say that the process X = (Xt)t≥0

with state space Sn follows the general framework, if X =
(
(Xt(1), . . . , Xt(n))

)
t≥0

satisfies
the following:

7
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(i) Xt = X0 for t ∈ [0, τ1),

(ii) For each i ∈ N and firm j ∈ F

Xt(j) = ρi
(
Xτi−(j), Ui(j)

)
for t ∈ [τi, τi+1).

In the next lemma we consider the probability of a rating transition from z ∈ Sn to
z̃ ∈ Sn at the i-th jump time τi. Assuming that the collection {Ui(j) : j ∈ F} is identically
distributed and independent, then each firm changes the credit rating according to a random
stochastic transition matrices M (i) conditional on the σ-algebra σ(ρi), generated by ρi, and
the jump time τi.

Lemma 2.4. Additionally to the assumption of Definition 2.3, suppose for each i ∈ N the
collection {Ui(j) : j ∈ F} is identically distributed and conditionally independent given ρi.
Define for each i ∈ N the random stochastic transition matrix M (i) = (M (i)

xy )x,y∈S by

M (i)
xy = P

[
ρi(x, Ui(j)) = y

∣∣σ(ρi)
]
, for any j ∈ F .

Then for each z, z̃ ∈ Sn with z =
(
z(j)

)
j∈F and z̃ =

(
z̃(j)

)
j∈F it follows that

P
[
z̃(j) = ρi(z(j), Ui(j)) for all j ∈ F

]
= E

[∏
j∈F

M
(i)
z(j),z̃(j)

]
.

Proof. Since for each i ∈ N the collection
(
ρi(x, Ui(j))

)
j∈F of random variables is condi-

tionally independent given σ(ρi), we obtain

P
[
z̃(j) = ρi(z(j), Ui(j)) for all j ∈ F

]
= E

[
P
[
z̃(j) = ρi(z(j), Ui(j)) for all j ∈ F

∣∣σ(ρi)
]]

= E
[∏
j∈F

P
[
z̃(j) = ρi(z(j), Ui(j))

∣∣σ(ρi)
]]

= E
[∏
j∈F

M
(i)
z(j),z̃(j)

]
.

Processes following the general framework are versatile. The jump times can be modelled
as the jump times of a renewal process, for example. Then all the transitions occur according
to i. i. d. waiting times but they do not have to be exponentially distributed.

2.1.1 Markov jump process in the general framework

A process within the general framework is not Markovian in general. To obtain a Markov
process, we define the time points of the transitions by the jump times of a Poisson process,
and assume that the random marks are independent for different transitions.

Definition 2.5. Assume X0 is a Sn-valued random variable. Let (Nt)t≥0 be a Poisson
process with intensity λ > 0, independent of X0. Define the random time τi for i ∈ N by

τi = inf
{
t ≥ 0 : Nt = i

}
.

Let (ρi)i∈N be an i. i. d. sequence of (E, E)-valued random variables, independent of the
Poisson process and X0. Let {Ui(j) : i ∈ N, j ∈ F} be an i. i. d. collection of I-valued
random variables, and assume the collection is independent of the Poisson process, the
random variable X0 and the sequence (ρi)i∈N. We call the process (Xt)t≥0 a Markov jump
process in the general framework, if Xt = X0 for t ∈ [0, τ1) and Xt(j) = ρi(Xτi−(j), Ui(j))
for j ∈ F and t ∈ [τi, τi+1).

8



2.1. The general framework

Remark 2.6. Additionally to the assumptions for a general process in our framework we
assume that the type of transitions and the individual components are independent for
different jump times, i. e., the random functions ρi that determine the type of the transition,
and the random collection {Ui(j) : j ∈ F} are independent for different i ∈ N. Furthermore
we suppose that the jump times are given by a Poisson process and the waiting times in
between are exponentially distributed.

The above defined credit rating process is indeed a Markov process, which is shown by
the following theorem.

Theorem 2.7. Let (Nt)t≥0 be a Poisson process with intensity λ > 0. Let the collection
{ρi, τi, Ui(j) : i ∈ N, j ∈ F} of random variables be defined as in Definition 2.5 and let
(Xt)t≥0 be the appropriate process given by Definition 2.5. Let ρ be an (E, E)-valued random
variable with the same distribution as the ρi. Furthermore assume U is an I-valued random
variable, independent of ρ, with the same distribution as Ui(j) for any i ∈ N and j ∈ F .
Define the random matrix M = (Mxy)x,y∈S by

Mxy = P
[
ρ(x, U) = y

∣∣σ(ρ)
]
. (2.8)

Then the process (Xt)t≥0 is a Markov process. Its transition probability pt(·, ·) : [0,∞)×
Sn × Sn → [0, 1] is given by

pt(z, z̃) = E
[
PNtY (z, z̃)

]
= e−λt

∞∑
i=0

λiti

i!
P iY (z, z̃),

where P iY is the i-th power of the stochastic transition matrix defined by

PY (z, z̃) = E
[∏
j∈F

Mz(j),z̃(j)

]
for z =

(
z(j)

)
j∈F and z̃ =

(
z̃(j)

)
j∈F in Sn.

Proof. Define the discrete-time process (Yi)i∈N0 with state space Sn by Y0 = X0 and for
i ≥ 1

Yi(j) = ρi
(
Yi−1(j), Ui(j)

)
, for each j ∈ F .

Let i ∈ N. Since ρi as well as
{
Ui(j) : j ∈ F

}
are independent of σ(Ym : m ≤ i − 1), we

obtain for k ∈ {0, i− 1}

P[Yi = zi |Yk = zk, Yk+1 = zk+1, . . . , Yi−1 = zi−1]
= P

[
ρi(Yi−1(j), Ui(j)) = zi(j) for all j ∈ F |Yk = zk, Yk+1 = zk+1, . . . , Yi−1 = zi−1

]
= P

[
ρi(zi−1(j), Ui(j)) = zi(j) for all j ∈ F

]
= E

[
P
[
ρ(zi−1(j), U(j)) = zi(j) for all j ∈ F

] ∣∣∣σ(ρ)
]

= E
[∏
j∈F

Mzi−1(j),zi(j)

]
= PY (zi, zi−1),

for all zk, . . . , zi ∈ Sn with P[Yk = zk, Yk+1 = zk+1, . . . , Yi−1 = zi−1] > 0. Hence, (Yi)i∈N0

is a Markov chain with transition probability matrix PY .
Since Xt = YNt for all t ≥ 0, the process (Xt)t≥0 is a Markov process (see [21, Chapter

4.2, p. 163]). For the transition probability matrix of X let z be in Sn and assume X0 = z.
Since (Yi)i∈N and (Nt)t≥0 are independent, we obtain for each z̃ ∈ Sn and t ≥ 0

P[Xt = z̃] = P
[
YNt = z̃

]
=
∞∑
i=0

P[Nt = i]P[Yi = z̃] =
∞∑
i=0

P[Nt = i]P iY (z, z̃),

which concludes the proof.

9



Chapter 2. The credit rating model

If we simulate the random collection {ρi, τi, Ui(j) : i ∈ N, j ∈ F} we can construct
the credit rating process X by Definition 2.5. Therefore the construction provides a nice
way to simulate the credit rating process. If the state space of a Markov process is finite,
we can identify the distribution of the process also by its corresponding Q-matrix. If we
are interested in properties of the distribution of the process we work with the Q-matrix
instead of the explicit construction of X. Below, we recall the definition of the Q-matrix
of a general Markov process with finite state space (see also [37, Chapter 17.3]). Then we
deduce the Q-matrix corresponding to the Markov jump process X given by Definition 2.5.

Definition 2.9. Let (Xt)t≥0 be a Markov process with finite state space Ψ and transition
probability matrix pt(z, z̃) for z, z̃ ∈ Ψ and t ≥ 0. For each z, z̃ ∈ Ψ with z 6= z̃ define

Q(z, z̃) = lim
t↓0

1
t
pt(z, z̃),

and assume this limit exists. For each z ∈ Ψ define

Q(z, z) = −
∑
z̃∈Ψ
z 6=z̃

Q(z, z̃). (2.10)

Then we call Q the Q-matrix of the Markov process X.

Theorem 2.11. Let Ψ be a finite space. Let Q : Ψ×Ψ→ R be a function with Q(z, z̃) ≥
0 for all z, z̃ ∈ Ψ with z 6= z̃ and Q(z, z) as in (2.10). Then Q is the Q-matrix of a
Markov process X, where Q and the initial distribution of X uniquely determine the finite
dimensional distributions of X.

Proof. See [37, Theorem 17.25] or [21, Chapter 4, Prop. 1.6 and Section 2].

Lemma 2.12. Assume X0 is a random variable on Sn. Let the collection {ρ, ρi, U, Ui(j), τi :
i ∈ N, j ∈ F} of random variables be as in Theorem 2.7. Define the random matrix M =
(Mxy)x,y∈S by (2.8). Define the matrix Qn : Sn × Sn → R by

Qn(z, z̃) =


λE
[ ∏
j∈F

Mz(j),z̃(j)

]
, if z 6= z̃,

−
∑

z′∈Sn\{z}
Qn(z, z′), if z = z̃,

where z =
(
z(j)

)
j∈F and z̃ =

(
z̃(j)

)
j∈F . Then Qn is the Q-matrix of the Markov process

X with transition probability matrix pt(z, z̃), defined in Theorem 2.7.

Proof. Let z, z̃ be in Sn with z 6= z̃, then

lim
t↓0

1
t
pt(z, z̃) = λPY (z, z̃) = Qn(z, z̃).

In our general framework the dynamics of the firms are not directly depending on each
other. The dependence is introduced by the random function ρ and the fact that all firms
change the rating simultaneously. Given ρ and the current rating, the transitions of the
individual firms are independent. Therefore if we consider a model with n ∈ N firms and
are interested in the distribution of the rating transitions of the first m < n firms, the
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distribution of the projected process is the same as if we consider the transitions in a model
with m firms. The dynamics do not depend on the number of rated firms. Especially, the
distribution of the transitions of a single firm is the same for all firms starting with the
same credit rating.

Theorem 2.13. Fix m,n ∈ N with m < n. Let Q-matrices Qm and Qn be defined as in
Lemma 2.12 for the state space Sm and Sn, respectively. Define the projection π : Sn → Sm

by π(z) = z|Sm. Suppose (Xt)t≥0 is a Markov jump process with state space Sn and Q-
matrix Qn. Then Yt = π(Xt) for t ≥ 0 is a Markov jump process with state space Sm,
generated by Qm.

Proof. The process X has the same distribution as the credit rating process defined as in
Definition 2.5 and the theorem follows immediately from the construction of that process.

Remark 2.14. If we do not have the construction of a Markov process generated by the Q-
matrix Qn, resp. Qm, then we can prove the theorem more generally by using the Q-matrices
directly. To this end see Lemma 6.3 in the appendix of this part.

The theorem implies, that the estimated parameters of a larger model have to be the
same as if we only consider a smaller number of firms. Furthermore, if we are only interested
in the behavior of a smaller number of firms, it is sufficient to simulate the model with less
firms.

The general framework includes many different processes. Since the structure is rather
general the calibration of this general framework is complex. That is the reason why we
restrict our further studies to the case where all firms with the same rating may change
only to the same rating class simultaneously. Other simplifications are also possible and
postponed for future research.

2.2 The general model

We say that the credit rating process X = (Xt)t≥0 follows the general model (as opposed to
‘framework’), if X is a time-homogeneous Markov jump process with state space Sn and if
X has the following dynamics. A Poisson process with intensity λ ∈ (0,∞) is given. Each
time, at which this process jumps, we choose a map s in

SS = {s : S → S}.

The probability for choosing the credit rating function s ∈ SS is given by the probability
distribution P ∈M1(SS). Then all firms with rating 1 either remain in this class or change
their rating to s(1) with a certain probability, all firms with rating 2 remain in this class or
change to s(2) and so on. More precisely, we independently throw a coin for each firm with
probability px ∈ [0, 1] of heads, where x ∈ S is the rating of the firm. If the coin shows
head, then the firm changes the rating to s(x), otherwise it remains in the rating class x.

This credit rating process is a special process within the general framework. All firms
with the same rating may only change to the same rating class. The following definition
formalizes this general model.

Definition 2.15. Let p = (px)x∈S be in [0, 1]S and P be a probability distribution on SS.
Let (E, E) be defined as in (2.1), where I = [0, 1] and I = B

(
[0, 1]

)
. Define for each s ∈ SS

11
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the function rs ∈ E by

rs(x, u) =
{
s(x), if u ∈ [0, px],
x, if u ∈ [px, 1].

(2.16)

Let the collection {ρi, τi, Ui(j) : i ∈ N, j ∈ F} of random variables be defined as in Definition
2.5, where τi are the jump times of a Poisson process with intensity λ > 0. Additionally
assume the distribution of every ρi for i ∈ N is given by P[ρi = rs] = P (s) for each s ∈ SS.
Furthermore suppose Ui(j) are uniformly distributed on [0, 1] for each i ∈ N and j ∈ F .

We say that the Markov jump process X = (Xt)t≥0 follows the general model with
parameters (λ, P, p), if Xt = X0 for t ∈ [0, τ1) and Xt(j) = ρi(Xτi−(j), Ui(j)) for j ∈ F
and t ∈ [τi, τi+1).

Since each transition has the special form rs ∈ E, at each jump time, the firms with the
same rating may either change all to the same rating class, or remain in their original rating
class. Whether the j-th firm actually changes the rating at the i-th transition, depends on
the idiosyncratic component Ui(j), which represents the coin.

Remark 2.17. The distribution of Markov jump processes in our general framework is
uniquely determined by the intensity λ of the Poisson process, the distribution of the
random variables ρi and Ui(j) and the initial distribution of the process, see Theorem 2.7.
In our general model Ui(j) are uniformly distributed and the distribution of ρi only de-
pends on the vector p = (px)x∈S ∈ [0, 1]S and the probability distribution P ∈ M1(SS).
Therefore the distribution of the Markov jump process X in the general model is uniquely
determined by the parameters (λ, P, p).

Example 2.18. Let S = {1, 2, 3} be the rating classes. Consider the Sn-valued credit
rating (Xt)t≥0 following our general model, given by Definition 2.15 above. Let px = 1 for
all x ∈ S. Then for each s ∈ SS the function rs, defined by (2.16), equals rs(x, u) = s(x) for
all x ∈ S and u ∈ [0, 1]. For i ∈ N and s ∈ SS consider the set A = {ω ∈ Ω : ρi(ω) = rs}.
Then P(A) = P (s) and for all ω ∈ A and j ∈ F

Xt(j)(ω) = ρi
(
Xτi−(j)(ω), Ui(j)(ω)

)
(ω) = s

(
Xτi−(j)(ω)

)
, for t ∈

[
τi(ω), τi+1(ω)

)
,

i. e., at each jump time i of the process all firms actually change their rating according to
some s ∈ SS , since the coin shows head with probability 1. Define three rating transition
functions s1, s2, s3 ∈ SS by

• s1(x) = 3 for all x ∈ S,

• s2(1) = 2, s2(2) = 3 and s2(3) = 3,

• s3(1) = 1, s3(2) = 1 and s3(3) = 3.

Define the probability distribution P ∈M1(SS) by P (sk) > 0 for k ∈ {1, 2, 3} and P (s) = 0
otherwise. Therefore at the i-th jump of the Poisson process the random function ρi ∈
{rs1 , rs2 , rs3} a. s., i. e., if ρi = rs1 , then all firms change the rating to 3, if ρi = rs2 , then all
firms with rating 1 are downgraded to 2 and all firms with rating 2 are downgraded to 3,
and if ρi = rs3 , then all firms with rating 2 are upgraded to rating 1. ♦

Q-matrix of the general model

We introduce some notation to carry out the computation of the Q-matrix given by Lemma
2.12 for a process X following the general model.
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Definition 2.19. For each x ∈ S and z =
(
z(j)

)
j∈F ∈ S

n denote by ax(z) the number of
firms in z with rating x, i. e., ax(z) = #{j ∈ F : z(j) = x}. Given another vector z̃ ∈ Sn
the number bx(z, z̃) of firms, that change their rating x ∈ S, is given by

bx(z, z̃) = #{j ∈ F : z(j) = x and z̃(j) 6= x}, for x ∈ S and z, z̃ ∈ Sn.

If firms with the same credit rating change to different credit ratings, then the proba-
bility for this transition is zero. Such a rating transition is not feasible for the process X
in an infinitesimally small time step.

Definition 2.20. We call a transition from z ∈ Sn to z̃ ∈ Sn weakly feasible, if z 6= z̃ and
for all j, k ∈ F with j 6= k, such that z(j) = z(k) and z̃(j) 6= z(j) 6= z̃(k), it follows that
z̃(j) = z̃(k), i. e., for each x ∈ S all firms with rating x may only change to the same rating
class.

Definition 2.21. For each weakly feasible transition from z ∈ Sn to z̃ ∈ Sn denote the set
of possible rating class changes by

Sc(z, z̃) :=
{
s ∈ SS : s(x) = z̃(j) for each x ∈ S s. t. there exists j ∈ F

with z(j) = x and z̃(j) 6= x
}
.

For each s ∈ Sc(z, z̃) the entry s(x) is determined, if there is a transition of a firm with
rating x ∈ S. Using the notation and the convention 00 = 1 we state the Q-matrix of the
process X in the next theorem.

Theorem 2.22. Let (px)x∈S be in [0, 1]S and P be a probability distribution on SS. Let
the collection {ρi, τi, Ui(j) : i ∈ N, j ∈ F} of random variables be defined as in Definition
2.15, where τi are the jump times of a Poisson process with intensity λ > 0. Define the
matrix Qg

n : Sn × Sn → R by

Qg
n(z, z̃) =



λ
∑

s∈Sc(z,z̃)

P (s)
∏
x∈S
s(x) 6=x

p
bx(z,z̃)
x (1− px)ax(z)−bx(z,z̃),

if the transition z → z̃ is weakly feasible,

−λ
∑
s∈SS
s 6=id

P (s)
(

1−
∏
x∈S
s(x) 6=x

(1− px)ax(z)

)
,

if z = z̃,
0, otherwise,

where id : S → S is the identity, i. e. id(x) = x for all x ∈ S.
Then Qg

n is the Q-matrix of the time-homogeneous Markov jump process X = (Xt)t≥0

following the general model with parameters (λ, P, p), given by Definition 2.15.

Proof. Let ρ be a random E-valued function with the same distribution as ρi for any i ∈ N.
Let U be a random variable uniformly distributed on [0, 1] independent of ρ. If X follows
the general model, X especially follows the general framework. Therefore the Q-matrix Qn
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of X is given by Lemma 2.12, i. e. for each z, z̃ ∈ Sn with z 6= z̃1

Qn(z, z̃) = λE
[∏
j∈F

P
[
ρ(z(j), U) = z̃(j)

∣∣σ(ρ)
]]

= λ
∑
s∈SS

P (s)
∏
j∈F

P
[
rs(z(j), U) = z̃(j)

]
= λ

∑
s∈SS

P (s)
∏
j∈F

(
P

[
s(z(j)) = z̃(j), U ≤ pz(j)]

]
+P

[
z(j) = z̃(j), U > pz(j)]

])
,

= λ
∑
s∈SS

P (s)
∏
j∈F

(
pz(j) 1{s(z(j))=z̃(j)} + (1− pz(j))1{z(j)=z̃(j)}

)
. (2.23)

It is sufficient to prove that Qn(z, z̃) = Qg
n(z, z̃) for all z, z̃ ∈ Sn.

If the transition from z to z̃ is not weakly feasible, then there exists i, j ∈ F such that
z(i) = z(j) but z̃(i) 6= z̃(j) and z̃(i), z̃(j) 6= z(i). It follows

1{s(z(i))=z̃(i)} 1{s(z(j))=z̃(j)} = 0 for all s ∈ SS .

By (2.23) we obtainQn(z, z̃) = 0. So, if the transition is not weakly feasible, thenQn(z, z̃) =
Qg
n(z, z̃).

Assume the transition from z to z̃ is weakly feasible. If the rating function s ∈ SS is
not in the set Sc(z, z̃) of possible rating class changes, then there exists j ∈ F such that
z(j) 6= z̃(j) and s(z(j)) 6= z̃(j). It follows

pz(j) 1{s(z(j))=z̃(j)} + (1− pz(j))1{z(j)=z̃(j)} = 0.

Therefore (2.23) simplifies to

Qn(z, z̃) = λ
∑

s∈Sc(z,z̃)

P (s)
∏
x∈S
s(x) 6=x

pbx(z,z̃)
x (1− px)ax(z)−bx(z,z̃) = Qg

n(z, z̃).

The diagonal entries of the Q-matrix Qn are the negative sum over the non-diagonal
entries of the same row, i. e. by (2.23)

Qn(z, z) = −
∑
z̃∈Sn
z 6=z̃

Qn(z, z̃)

= −λ
∑
s∈SS

P (s)
∑
z̃∈Sn
z 6=z̃

∏
j∈F

(
pz(j) 1{s(z(j))=z̃(j)} + (1− pz(j))1{z(j)=z̃(j)}

)
. (2.24)

For simplification of the last sum consider for all s ∈ SS∑
z̃∈Sn

∏
j∈F

(
pz(j) 1{s(z(j))=z̃(j)} + (1− pz(j))1{z(j)=z̃(j)}

)
=
∏
j∈F

∑
z̃(j)∈S

(
pz(j) 1{s(z(j))=z̃(j)} + (1− pz(j))1{z(j)=z̃(j)}

)
= 1. (2.25)

1The function 1{condition} = 1, if the condition is satisfied, and zero otherwise.
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Putting (2.25) into (2.24) we obtain

Qn(z, z) = −λ
∑
s∈SS

P (s)
(

1−
∏
j∈F

(
pz(j) 1{s(z(j))=z(j)} + (1− pz(j))1{z(j)=z(j)}

))
,

= −λ
∑
s∈SS

P (s)
(

1−
∏
j∈F

(
1− pz(j) 1{s(z(j)) 6=z(j)}

))
= −λ

∑
s∈SS
s 6=id

P (s)
(

1−
∏
x∈S
s(x)6=x

(1− px)ax(z)
)

= Qg
n(z, z).

Altogether Qg
n = Qn and Qg

n is the Q-matrix of X.

The Q-matrix Qg
n of the process X depends only on the parameters (λ, P, p) ∈ (0,∞)×

M1(SS) × [0, 1]S and therefore the distribution of the process X depends on these pa-
rameters and the initial distribution, see also Remark 2.17. For different parameters we
obtain in general different types of dependence. The parameter p is the probability that
a firm actually changes the rating class. The distribution P determines to which rating
classes the firms may change at the transitions. In the following we specify two possible
distributions P . First, only firms with the same credit rating may change at the same time,
which is the so-called strongly coupled random walk process. In this model there are no si-
multaneous rating transitions of firms with different credit ratings. The dependence in this
model is induced only by the vector p between firms with the same rating. Secondly, firms
with different ratings may change according to a specialized transition function. Here we
have higher dependence as in the strongly coupled random walk since there is additionally
dependence between the credit rating classes.

2.3 Extended strongly coupled random walk process

We embed the strongly coupled random walk process in the general model by specifying
the parameters appropriately. The strongly coupled random walk process was introduced
by Spitzer (1981) and has the following dynamics. For each credit rating class x ∈ S we
have an independent Poisson process with intensity λx ∈ (0,∞). When the Poisson process
jumps, then the firms may change to the rating class y ∈ S according to the stochastic
transition function P c : S × S → [0, 1], i. e.

∑
y∈S P

c(x, y) = 1 for all x ∈ S. The firms
actually change the rating independently of one another with probability px ∈ [0, 1].

The strongly coupled random walk allows simultaneous transitions only from exactly
one rating class to the same other rating class. The dynamics of the strongly coupled
random walk within our general model are given by the following definition.

Definition 2.26. Let λx ∈ (0,∞) for each x ∈ S and let P c : S×S → [0, 1] be a stochastic
transition function. Let p = (px)x∈S be a probability vector in [0, 1]S. Define λ =

∑
x∈S λx.

Define the rating class distribution P on SS by

P (s) =


λx
λ P

c(x, y), if there exist x, y ∈ S with x 6= y and
s(x) = y and s(u) = u for all u ∈ S \ {x},∑

x∈S

λx
λ P

c(x, x), if s(x) = x for all x ∈ S,

0, otherwise.

(2.27)

15



Chapter 2. The credit rating model

We say that the time-homogeneous Markov jump process X is a strongly coupled random
walk process with parameters

(
(λx)x∈S , P c, p

)
, if X follows the general model with param-

eters (λ, P, p), given by Definition 2.15.

Remark 2.28. The above defined P is obviously a distribution, since∑
s∈SS

P (s) =
∑
x,y∈S
x 6=y

λx
λ
P c(x, y) +

∑
x∈S

λx
λ
P c(x, x) =

∑
x∈S

λx
λ

(
1− P c(x, x) + P c(x, x)

)
= 1.

In the general model the firms with the same rating may only change to one other
rating class or remain in the original class. For the strongly coupled random walk, we have
additionally that changes are only possible from one rating class at the same time, since P
is only non-zero, if s(x) 6= x for exactly one x ∈ S. The probability that the firms actually
change is still given by p. So, in the strongly coupled random walk less transitions are
feasible and we now strengthen the definition of feasible.

Definition 2.29. We call a transition from z ∈ Sn to z̃ ∈ Sn strongly feasible, if z 6= z̃
and there exists exactly one pair (x, y) ∈ S2 with x 6= y such that for all j ∈ F with
z(j) 6= z̃(j) it follows that z(j) = x and z̃(j) = y, i. e., the firms may only change from x
to y. Obviously, strongly feasible implies weakly feasible.

For estimation we extend the strongly coupled random walk and reduce the number of
parameters. Instead of (λx)x∈S and P c we use the Q-matrix Qg

1 of the strongly coupled
random walk with one firm, which is defined by the following corollary of Theorem 2.22.

Corollary 2.30. Let λx ∈ (0,∞) for each x ∈ S and let P c : S×S → [0, 1] be a stochastic
transition function. Let p = (px)x∈S be a probability vector in [0, 1]S. Then the Q-matrix
Qg

1 : S × S → R of the strongly coupled random walk with state space S and parameters(
(λx)x∈S , P c, p

)
is given by

Qg
1(x, y) = λxP

c(x, y)px, for x, y ∈ S with x 6= y. (2.31)

Proof. Let X be a strongly coupled random walk with state space S and parameters
{(λx)x∈S , P c, p}. Then X follows the general model with parameters (λ, P, p), given by
Definition 2.26, and the Q-matrix Qg

1 of the credit rating process X is given by Theorem
2.22. Using (2.27) we obtain for each x, y ∈ S with x 6= y

Qg
1(x, y) = λ

∑
s∈Sc(x,y)

P (s)px = λxP
c(x, y)px,

since for each x, y ∈ S with x 6= y the set Sc(x, y) of possible rating class changes as in
Definition 2.21 equals Sc(x, y) = {s : S → S : s(x) = y}.

Remark 2.32. The embedding property in Theorem 2.13 implies that the intensity for the
transitions considering a single firm in a credit rating process with n firms, i. e. with state
space Sn, is the same as the intensities of the transitions in a credit rating process with
just one firm, i. e. with state space S, if we use the same parameters for both processes.
Therefore Qg

1 corresponds to the intensity of the transitions of each individual firm in the
strongly coupled random walk process with n firms.

Depending on the Q-matrix Qg
1 we state the Q-matrix of the strongly coupled random

walk process.
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2.3. Extended strongly coupled random walk process

Lemma 2.33. Let µ : S × S → R be a Q-matrix and let p = (pu)u∈S be a probability
vector in [0, 1]S. Let z, z̃ be in Sn. For each rating class u ∈ S define au(z) and bu(z, z̃) by
Definition 2.19. Let Sc(z, z̃) be as in Definition 2.21. For each strongly feasible transition
from z ∈ Sn to z̃ ∈ Sn define x, y ∈ S with x 6= y such that z(j) = x and z̃(j) = y for some
j ∈ F . Define the matrix Qc

n : Sn × Sn → R by

Qc
n(z, z̃) =


µxyp

bx(z,z̃)−1
x (1− px)ax(z)−bx(z,z̃), if z → z̃ is strongly feasible,

−
∑
u∈S

µu q
(
au(z), pu

)
, if z = z̃,

0, otherwise,

(2.34)

where the function q : N0 × [0, 1]→ [0,∞) is given by

q(k, p) =
k−1∑
j=0

(1− p)j =

{
1−(1−p)k

p , if p ∈ (0, 1],
k, if p = 0,

(2.35)

and for all u ∈ S
µu =

∑
v∈S\{u}

µuv. (2.36)

Then the following holds:

(i) The matrix Qc
n is a Q-matrix.

(ii) Let λu ∈ (0,∞) for each u ∈ S and let P c : S × S → [0, 1] be a stochastic transition
function. Assume µ = (µuv)u,v∈S is the Q-matrix Qg

1 of the strongly coupled random
walk with state space S and parameters

(
(λu)u∈S , P c, p

)
, given by Corollary 2.30.

Then Qc
n is the Q-matrix of the strongly coupled random walk process with state space

Sn and parameters
(
(λu)u∈S , P c, p

)
.

Proof. (i) Obviously the non-diagonal entries of Qc
n are non-negative. We parametrize the

strongly feasible transitions by x, y ∈ S with x 6= y and b ∈ {1, . . . , ax(z)}, where b firms
with rating x change their rating to y in the transition. Using this parametrization the sum
over the non-diagonal entries of Qc

n in row z ∈ Sn equals

∑
z̃∈Sn\{z}

Qc
n(z, z̃) =

∑
z̃∈Sn
z→z̃

str. feas.

Qc
n(z, z̃) =

∑
x,y∈S
x 6=y

ax(z)∑
b=1

(
ax(z)
b

)
µxyp

b−1
x (1− px)ax(z)−b (2.37)

=
∑
x∈S

(∑
y∈S
x 6=y

µxy

) ax(z)∑
b=1

(
ax(z)
b

)
pb−1
x (1− px)ax(z)−b. (2.38)

Since the binomial theorem says for p ∈ [0, 1] and k ∈ N0

k∑
j=0

(
k

j

)
pj(1− p)k−j =

(
p+ (1− p)

)k = 1, (2.39)

Equation (2.38) simplifies to∑
z̃∈Sn\{z}

Qc
n(z, z̃) =

∑
x∈S

µx

(
1− (1− px)ax(z)

px
1{px∈(0,1]} + ax(z)1{px=0}

)
=
∑
x∈S

µx q
(
ax(z), px

)
= Qc

n(z, z̃).
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Chapter 2. The credit rating model

Hereby the negative sum over the non-diagonal entries in row z is the corresponding diagonal
entry of Qc

n and it is therefore a Q-matrix by Theorem 2.11, since the state space is finite.
(ii) Let X be a strongly coupled random walk with state space Sn and parameters(

(λx)x∈S , P c, p
)
. Then X follows the general model with parameters (λ, P, p), given by

Definition 2.26, and the Q-matrix Qg
n of X is given by Theorem 2.22. To prove that Qc

n is
the Q-matrix of X, we show Qc

n(z, z̃) = Qg
n(z, z̃) for all z, z̃ ∈ Sn with z 6= z̃.

Let z = (z(j))j∈F , z̃ = (z̃(j))j∈F ∈ Sn with z 6= z̃. Assume the transition from z to z̃
is not strongly feasible. Then at least two firms with different credit rating change their
rating, i. e., there exist j, k ∈ F with z(j) 6= z(k), z(j) 6= z̃(j) and z(k) 6= z̃(k). Then
s(z(j)) 6= z(j) and s(z(k)) 6= z(k) for each s ∈ Sc(z, z̃) and P (s) = 0 by (2.27). Therefore
Qg
n(z, z̃) = 0 and Qc

n(z, z̃) = Qg
n(z, z̃) for z, z̃ ∈ Sn not strongly feasible.

Assume z to z̃ is a strongly feasible transition. Then there exist x, y ∈ S with x 6= y such
that for all j ∈ F with z(j) 6= z̃(j), it follows z(j) = x and z̃(j) = y. Therefore s(x) = y
for all s ∈ Sc(z, z̃). Define s̃ : S → S by s̃(x) = y and s̃(u) = u for all u 6= x. Using the
definition of the probability distribution P in (2.27) for the strongly coupled random walk,

P (s̃) =
λxP

c(x, y)
λ

, and P (s) = 0 for all s ∈ Sc(z, z̃) \ {s̃}.

Since µ is the Q-matrix of the strongly coupled random walk with state space S and
parameters

(
(λx)x∈S , P c, p

)
, Corollary 2.30 implies

µxy = λx P
c(x, y)px, for all x, y ∈ S with x 6= y.

Altogether we obtain

Qg
n(z, z̃) = λ

∑
s∈Sc(z,z̃)

P (s)
∏
x′∈S
s(x′)6=s

p
bx′ (z,z̃)
x′ (1− px′)ax′ (z)−bx′ (z,z̃)

= λP (s̃)pbx(z,z̃)
x (1− px)ax(z)−bx(z,z̃)

= µxy p
bx(z,z̃)−1
x (1− px)ax(z)−bx(z,z̃) = Qc

n(z, z̃),

which concludes the proof.

For all parameters λx ∈ (0,∞) for x ∈ S, all stochastic transition functions P c : S×S →
[0, 1] and all p = (px)x∈S ∈ [0, 1]S , the strongly coupled random walk has the Q-matrix
given by (2.34) for µ : S × S → R given by (2.31). Therefore all strongly coupled random
walks are in the class of Markov processes, where the Q-matrix is defined by (2.34) for
parameters µ and p. On the other hand, not all Markov processes within this class are
strongly coupled random walks. Consider p = (pu)u∈S with px = 0 for any x ∈ S and
the Q-matrix µ = (µuv)u,v∈S with µxy > 0 for any y ∈ S with x 6= y. Then there is no
λx ∈ (0,∞) and P c(x, y) ∈ [0, 1] such that µxy = λx P

c(x, y)px. Therefore the Markov
process with Q-matrix Qc

n with parameters µ and p is not a strongly coupled random walk.
In this case we obtain Qc

n(z, z̃) = µxy for px = 0, if there is only one single firm chang-
ing the credit rating class, i. e. bx(z, z̃) = 1. All other non-diagonal entries are zero. This
represents a Markov jump process where the firms with rating x change their credit rating
independently of the other firms according to Q-matrix µ. Therefore the broader class of
Markov processes with Q-matrix Qc

n includes independent transitions of the firms for px = 0
and with px > 0 we obtain dependence since the firms can change their rating simultane-
ously. In the following we consider strongly coupled walks extended by the independent
case.
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2.3. Extended strongly coupled random walk process

Definition 2.40. Let µ = (µxy)xy∈S be a Q-matrix and p = (px)x∈S be a vector in [0, 1]S.
We say the Markov process X = (Xt)t≥0 is an extended strongly coupled random walk
process (esc–process) with state space Sn and parameters (µ, p), if the Q-matrix of X is
given by Qc

n : Sn × Sn → R depending on µ and p, given by (2.34).

For each strongly coupled random walk the embedding property in Theorem 2.13 holds,
since the process follows the general framework. Since the class of extended strongly cou-
pled random walks is larger, we show that the embedding property still holds. Then the
parameter µ corresponds to the transition intensity of a single firm in the process, i. e., if X
is an esc–process with parameter (µ, p) and state space Sn, the embedding property implies
that the credit rating (Xt(j))t≥0 of the j-th firm is a Markov jump process with Q-matrix
Qc

1, where Qc
1 = µ by definition.

Lemma 2.41. Let µ = (µxy)xy∈S be a Q-matrix and p = (px)x∈S be a vector in [0, 1]S. Fix
m,n ∈ N with m < n. Define the Q-matrices Qc

m and Qc
n by (2.34) for the state space Sm

and Sn, respectively. Define the projection π : Sn → Sm by π(z) = z|Sm. Suppose (Xt)t≥0

is a Markov jump process with state space Sn and Q-matrix Qc
n. Then Yt = π(Xt) for t ≥ 0

is a Markov jump process with state space Sm, generated by Qc
m.

Proof. By Lemma 6.3 in the appendix it is sufficient to show for all zm, z̃m ∈ Sm

Qc
m(zm, z̃m) =

∑
z̃n∈π−1(z̃m)

Qc
n(zn, z̃n), for zn ∈ π−1(zm), (2.42)

since the projection π is surjective.
Assume zm =

(
zm(j)

)
j∈F ∈ Sm and z̃m =

(
z̃m(j)

)
j∈F ∈ Sm with zm 6= z̃m. If the

transition from zm to z̃m is not strongly feasible, in the sense of Definition 2.29, then there
exist i, j ∈ {1, . . . ,m} such that zm(i) 6= z̃m(i) and zm(j) 6= z̃m(j) but zm(i) 6= zm(j)
or z̃m(i) 6= z̃m(j). Therefore for each zn ∈ π−1(zm) and z̃n ∈ π−1(z̃m) the transition
from zn to z̃n is not strongly feasible as well. By definition of Qc

m and Qc
n we obtain

Qc
m(zm, z̃m) = 0 = Qc

n(zn, z̃n) and (2.42) holds. Assume that the transition from zm to
z̃m is strongly feasible, i. e., there exists a pair x, y ∈ S with x 6= y such that for all
j ∈ {1, . . . ,m} with zm(j) 6= z̃m(j) follows that zm(j) = x and z̃m(j) = y. Define the
number of firms with rating x in zm by

am = #
{
j ∈ {1, . . . ,m} : zm(j) = x

}
,

and the number of firms that change the rating x to y in the transition from zm to z̃m by

bm = #
{
j ∈ {1, . . . ,m} : zm(j) = x, z̃m(j) = y

}
.

Let zn ∈ π−1(zm). Define the number an of firms with rating x in zn by

an = #
{
j ∈ {1, . . . , n} : zn(j) = x

}
.

We parametrize the strongly feasible transitions from zn to z̃n ∈ π−1(z̃m) by the number
b ∈ {0, . . . , an − am} of firms in j ∈ {m+ 1, . . . , n} that change the rating from x to y. By
definition of Qc

n we obtain∑
z̃n∈π−1(z̃m)

Qc
n(zn, z̃n) =

an−am∑
b=0

(
an − am

b

)
µxy p

(bm+b)−1
x (1− px)an−(bm+b)

= µxy p
bm−1
x (1− px)am−bm

an−am∑
b=0

(
an − am

b

)
pbx(1− px)(an−am)−b

= µxy p
bm−1
x (1− px)am−bm = Qc

m(zm, z̃m),
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Chapter 2. The credit rating model

using the binomial theorem in (2.39). Therefore (2.42) holds for all zm, z̃m ∈ Sm with
zm 6= z̃m.

Since Qc
m and Qc

n are Q-matrices and (2.42) holds for all zm, z̃m ∈ Sm with zm 6= z̃m,
we obtain for zm ∈ Sm and zn ∈ π−1(zm)

Qc
m(zm, zm) = −

∑
z̃m∈Sm
zm 6=z̃m

Qc
m(zm, z̃m)

= −
∑

z̃m∈Sm
zm 6=z̃m

∑
z̃n∈π−1(z̃m)

Qc
n(zn, z̃n) =

∑
z̃n∈π−1(zm)

Qc
n(zn, z̃n).

The esc–process incorporates dependencies between firms with the same credit rating.
This process shows the influence of the vector p. Since the transitions of a single firm in
the model follows the Q-matrix Qc

1 = µ by the embedding property, we are able to compare
this model with a model, where all firms move independently of one another according to
the Q-matrix µ. The following example illustrates how the vector p couples firms with the
same rating and introduces dependence. Therefore with the esc–process we are capable to
reproduce different kinds of dependencies.

Example 2.43. Consider the rating classes S = {1, 2, 3} where 3 means default and is
an absorbing state. Assume there are n = 2 firms and the single firms change their credit
rating according to Q-matrix

µ =

 −0.5 0.25 0.25
0.5 −1 0.5

0 0 0

 . (2.44)

In the model where both firms change their rating (X(i)
t )t≥0 for i = 1, 2 independently

of each other, the probability that both firms default within one year is

P(1,2)

[
X

(1)
1 = 3, X(2)

1 = 3
]

= exp(µ)1,3 exp(µ)2,3 ≈ 0.086,

where X(1)
0 = 1 and X

(2)
0 = 2 almost surely.

Let (Xc
t )t≥0 be the credit rating process of two firms following the esc–process with

parameters µ and px = 1 for all x ∈ S. Then the probability that both firms default within
one year is

P(1,2)[X
c
1 = (3, 3)] = exp(Qc

2)(1,2),(3,3) ≈ 0.141,

where Xc
0 = (1, 2) almost surely. If we couple the firms with the same rating then the

probability increases that both firms default compared to the independent case. Once both
firms have the same credit rating, they change their rating always in the same way at the
same time, since px = 1 for all x ∈ S. This increases the probability that both firms default.

The probability of joint defaults also influences the loss in a portfolio of two credits
where (Xc

t )t≥0 is the credit rating process of the obligors with Xc
0 = (1, 2) a. s. Suppose the

maturity of the credits is T ≥ 0 and the credit amount is 1. Assuming that the recovery
rate and the default free interest rate are zero, the loss at time t ∈ (0, T ], induced by the
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credit of firm j ∈ {1, 2}, is given by L
(j)
t = 1{Xc

t (j)=K}. The covariance of the losses after
one year is

Cov
(
L

(1)
1 , L

(2)
1

)
= E[L(1)

1 L
(2)
1 ]− E[L(1)

1 ]E[L(2)
1 ]

= P(1,2)

[
Xc

1 = (3, 3)
]
− exp(µ̃)1,3 exp(µ̃)2,3 ≈ 0.055. (2.45)

The linear correlation coefficient equals

ρ
(
L

(1)
1 , L

(2)
1

)
=

Cov
(
L

(1)
1 , L

(2)
1

)√
Var
(
L

(1)
1

)√
Var
(
L

(2)
1

) ≈ 0.27.

There is positive correlation between the loss of the two credits and a portfolio with these
two credits has higher risk than a portfolio, where the credit rating of the firms is indepen-
dent.

♦

2.4 The scheme model

In the scheme model we specify the distribution P of the rating class functions s : S →
S in our general model, such that rating transitions of firms with different ratings have
positive probability. Thereby, we have dependence also between the credit rating classes
not only between firms with the same rating because firms with different ratings may change
simultaneously. The probability, that firms with rating x ∈ S actually change the rating
class to s(x), is still given by px ∈ [0, 1].

Let (pxy)x,y∈S ∈ [0, 1] be a stochastic transition function, i. e.
∑

y∈S pxy = 1 for each
x ∈ S. Furthermore let V be a random variable, uniformly distributed on the interval [0, 1].
Define the SS-valued random function s̃ by

s̃(x) = max
{
y ∈ S :

y−1∑
k=1

pxk ≤ V
}
, for x ∈ S. (2.46)

A graphical illustration of realizations of s̃ is given in Figure 2.1. For each rating class x ∈ S
the interval [0, 1] is divided into K subintervals with length pxy for the y-th subinterval.
The subinterval, where the random variable V lies in, represents the rating class, to which
the firm may change. In the figure the random variable V is represented by the black line
and for x = 1 it lies in the first subinterval, i. e. s(1) = 1, for x = 2 also in the first, i. e.
s(2) = 1, and so on.

Lemma 2.47. Let (pxy)x,y∈S ∈ [0, 1] be a stochastic transition function and V be a random
variable, uniformly distributed on [0, 1]. Define the SS-valued random function s̃ by (2.46).
Then the measure P s on the power set P(SS), given by

P s(s) = max

{
min
x∈S

s(x)∑
k=1

pxk −max
x∈S

s(x)−1∑
k=1

pxk, 0

}
, (2.48)

is the distribution of s̃.
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Figure 2.1: Schemes of rating class distributions. Left: Black line is value of V . Interval
length between dotted lines is the probability of s̃ = (1, 1, 2, 3). Right: Scheme of Example
2.59.

Proof. For each s ∈ SS we obtain

P
[
s̃(x) = s(x), for all x ∈ S

]
= P

[
max

{
y ∈ S :

y−1∑
k=1

pxk ≤ V
}

= s(x), for all x ∈ S
]

= P

[ s(x)−1∑
k=1

pxk ≤ V <

s(x)∑
k=1

pxk, for all x ∈ S
]

= P

[
max
x∈S

s(x)−1∑
k=1

pxk ≤ V < min
x∈S

s(x)∑
k=1

pxk

]
= P s(s).

In the scheme model we assume that our random rating class functions have the same
distribution as s̃, i. e. P = P s.

Definition 2.49. Let (pxy)x,y∈S ∈ [0, 1] be a stochastic transition function. Define the
probability distribution P s of the rating configurations s ∈ SS by (2.48). Let λ ∈ (0,∞) and
let p = (px)x∈S be a vector in [0, 1]S.

We say that the time-homogeneous Markov jump process (Xs
t )t≥0 follows the scheme

model with parameters
(
λ, (pxy)x,y∈S , p

)
, if X follows the general model with parameters

(λ, P s, p), given by Definition 2.15.

The scheme model allows simultaneous transitions of firms with different credit ratings.
By choosing an appropriate scheme (pxy)xy∈S we can link different credit rating classes
x, y ∈ S such that for each transition all firms with rating x and y are either all up- or
downgraded, i. e. for all i ∈ N

P

[
ρi ∈

{
rs ∈ E : s(x) ≤ x and s(y) ≤ y, or s(x) ≥ x and s(y) ≥ y

}]
= P s

({
s ∈ SS : s(x) ≤ x and s(y) ≤ y, or s(x) ≥ x and s(y) ≥ y

})
= 1,

where the random mark ρi and the possible rating class changes rs are as in Definition 2.15.
The next lemma shows the assumptions on the scheme such that this is satisfied.
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2.4. The scheme model

Lemma 2.50. Let (pxy)x,y∈S ∈ [0, 1] be a stochastic transition function. Define the proba-
bility distribution P s on SS by (2.48). If for x, y ∈ S with x 6= y

max
{ x−1∑
k=1

pxk,

y−1∑
k=1

pxy

}
≤ min

{ x∑
k=1

pxk,

y∑
k=1

pxy

}
, (2.51)

then
P s
({
s ∈ SS : s(x) ≤ x and s(y) ≤ y, or s(x) ≥ x and s(y) ≥ y

})
= 1.

Proof. Let V be a random variable, uniformly distributed on [0, 1], and define the SS-
valued random function s̃ by (2.46). Then s̃ has distribution P s by Lemma 2.47. Using the
Definition (2.46) of s̃ we obtain for each x, y ∈ S

P s
({
s ∈ SS : s(x) ≤ x and s(y) ≤ y, or s(x) ≥ x and s(y) ≥ y

})
= P

[{
s̃(x) ≤ x and s̃(y) ≤ y

}
∪
{
s̃(x) ≥ x and s̃(y) ≥ y

}]
= P

[{
V < min

{ x∑
k=1

pxk,

y∑
k=1

pyk

}}
∪
{

max
{ x−1∑
k=1

pxk,

y−1∑
k=1

pyk

}
≤ V

}]
.

This equals 1, if for x and y the equation (2.51) is satisfied.

To compare this model with the esc–process, we again use as parameters the vector
p = (px)x∈S and the Q-matrix Qg

1 of an individual moving firm, which is given by the next
Lemma for processes following the scheme model.

Lemma 2.52. Let λ ∈ (0,∞) and let (pxy)x,y∈S ∈ [0, 1] be a stochastic transition function.
Let p = (px)x∈S be a probability vector in [0, 1]S. Then the Q-matrix Qg

1 : S × S → R of
the scheme model with state space S and parameters

(
λ, (pxy)x,y∈S , p

)
is given by

Qg
1(x, y) = λpxypx, for x, y ∈ S with x 6= y. (2.53)

Proof. Let X follow the scheme model with state space S and parameters
(
λ, (pxy)x,y∈S , p

)
.

By definition, X follows the general model with parameters (λ, P s, p), where the distribution
P s is given by (2.48). Using Theorem 2.22 the Q-matrix Qg

1 of X is given by

Qg
1(x, y) = λ px

∑
s∈SS
s(x)=y

P s(s), for each x, y ∈ S with x 6= y. (2.54)

Let V be a random variable, uniformly distributed on [0, 1], and define the SS-valued
random function s̃ by (2.46). Then s̃ has distribution P s by Lemma 2.47. Therefore we
obtain ∑

s∈SS
s(x)=y

P s(s) = P[s̃(x) = y] = P

[ y−1∑
k=1

pxk < V ≤
y∑
k=1

pxk

]
= pxy.

Assuming px > 0 for all x ∈ S, we can parametrize the processes X following the scheme
model also by parameters (µ, p), where µ : S × S → R is the Q-matrix of the single firms
and p = (px)x∈S .
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Chapter 2. The credit rating model

Definition 2.55. Let µ : S × S → R be a Q-matrix and p = (px)x∈S be a vector in [0, 1]S,
where px > 0 for all x ∈ S. We say the time-homogeneous Markov jump process X follows
the scheme model with parameters (µ, p), if it follows the scheme model with parameters(
λ, (pxy)x,y∈S), p

)
, where

λ = max
x∈S

µx
px
, and pxy =

µxy
λpx

, for each x, y ∈ S with x 6= y. (2.56)

Lemma 2.57. Let µ : S × S → R be a Q-matrix and p = (px)x∈S be a vector in [0, 1]S,
where px > 0 for all x ∈ S. Let X follow the scheme model with state space Sn and
parameters (µ, p). Then µ corresponds to the transition intensity of each single firm in the
process X, i. e., for each firm j ∈ F the credit rating process

(
Xt(j)

)
t≥0

has Q-matrix µ.

Proof. By definition, X follows the scheme model with parameters
(
λ, (pxy)x,y∈S , p), where

λ and (pxy)x,y∈S are defined by (2.56). By Lemma 2.52 the Q-matrix Qg
1 of a Markov

process following the scheme model with state space S and parameters
(
λ, (pxy)x,y∈S , p) is

given by
Qg

1(x, y) = λpxypx, for each x, y ∈ S with x 6= y.

Since X follows the scheme model, it follows also the general model and the embedding
property in Theorem 2.13 holds. Therefore the process

(
Xt(j)

)
t≥0

has Q-matrix Qg
1, which

equals µ with (2.56).

The new parametrization by µ and p generates the same class of Markov processes as
the parametrization by (λ, (pxy)x,y∈S , p) assuming px > 0 for all x ∈ S. This is shown by
the following lemma.

Lemma 2.58. Let λ ∈ (0,∞), and let (pxy)x,y∈S ∈ [0, 1] be a stochastic transition function.
Let p = (px)x∈S be a probability vector in [0, 1]S, where px > 0 for all x ∈ S.

Then the Q-matrix Q of the scheme model X with parameters (λ, (pxy)x,y∈S , p) equals
the Q-matrix Q̃ of the process X̃ following the scheme model with parameters (µ, p), where
the Q-matrix µ : S × S → R is given by (2.53).

Proof. Define

λ̃ = max
x∈S

µx
px
, and p̃xy =

µxy

λ̃px
, for each x, y ∈ S with x 6= y.

By Definition 2.55 the process X̃ follows the scheme model with parameters (λ̃, (p̃xy)x,y∈S , p).
The processX, resp. X̃, follows the general model with parameters (λ, P s, p), resp. (λ̃, P̃ s, p),
by Definition 2.49 of the scheme model, where P s, resp. P̃ s, is defined by (2.48). Using
(2.53) for µ and the definition of p̃xy we obtain for each s ∈ SS

P s(s) = max

{
min
x∈S

s(x)∑
k=1

pxk −max
x∈S

s(x)−1∑
k=1

pxk, 0

}
= max

{
min
x∈S

s(x)∑
k=1

µxk
λpx
−max

x∈S

s(x)−1∑
k=1

µxk
λpx

, 0

}

= max

{
min
x∈S

s(x)∑
k=1

p̃xk
λ̃

λ
−max

x∈S

s(x)−1∑
k=1

p̃xk
λ̃

λ
, 0

}
=
λ̃

λ
P̃ s(s).

The definition of the Q-matrix in Theorem 2.22 for the general model implies Q = Q̃.
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2.4. The scheme model

Example 2.59 (Continuation of Example 2.43). Consider the rating classes S = {1, 2, 3},
where 3 means default. Let (Xs

t )t≥0 be the credit rating process of two firms following
the scheme model with parameters µ and px = 1 for all x ∈ S, where µ is defined by
(2.44). Then the intensity λ and the stochastic transition function pxy for x, y ∈ S are by
Definition 2.55

λ = max
x∈S

µx
px

= 1, (pxy)x,y∈S =

 0.5 0.25 0.25
0.5 0 0.5

0 0 1

 ,

see also the graph on the right-hand side in Figure 2.1. We obtain for the distribution on
the credit configurations s ∈ SS , given by (2.48),

P s(s1) = 0.25, P s(s2) = 0.25, P s(s3) = 0.5,

where s1(x) = 3 for each x ∈ S, s2(1) = 2, s2(2) = 3 = s2(3) and s3(1) = 1, s3(2) = 1 and
s3(3) = 3. The probability that both firms default within one year is

P(1,2)

[
Xs

1 = (3, 3)
]

= exp(Qs
2)(1,2),(3,3) ≈ 0.239,

where Xs
0 = (1, 2) almost surely, where Qs

2 is the Q-matrix of the process Xs, given by
Theorem 2.22. In the scheme model the dependence increases the probability that both
firms default compared to the esc–process in Example 2.43 since we additionally introduced
dependence between the credit rating classes. Here, it is possible that the firms with rating
1 and 2 default at the same time. Therefore the probability for the default of both firms is
higher in this model than in the extended strongly coupled random walk model.

In addition to the probability for a joint default we also consider the losses of two credits,
where the credit rating of the two obligors follows the credit rating process (Xs

t )t≥0 with
Xs

0 = (1, 2) a. s. Assume the maturity of the credits is T ≥ 0 and the credit amount is
1. Furthermore we suppose that the recovery rate and the default free interest rate are
zero. Then the loss at time t ∈ (0, T ], induced by the default of firm j ∈ {1, 2}, is given by
L

(j)
t = 1{Xs

t (j)=K}. The covariance of the losses after one year is

Cov
(
L

(1)
1 , L

(2)
1

)
= P(1,2)

[
X1 = (3, 3)

]
− exp(µ̃)1,3 exp(µ̃)2,3 ≈ 0.153. (2.60)

The linear correlation coefficient equals ρ
(
L

(1)
1 , L

(2)
1

)
≈ 0.75. The dependence between the

losses is stronger than in the extended strongly coupled random walk model. ♦

In the next chapter we simulate the esc–process and the scheme model for specialized
parameters p and µ and compare the losses in a portfolio of credits. We expect that there
is more dependence in the scheme model, since we have additional dependence between the
credit rating classes. Therefore extremal losses/gains should be more likely.
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Chapter 3

Simulation of the model

The following chapter illustrates how the dependence in our model influences the value
of a portfolio of credits. We assume that it is not possible for the bank to sell the risk
of the credits. This is reasonable for small clients/firms. If the firm defaults and cannot
meet its obligations, then the bank has a loss. If there exists positive correlation between
the defaults of the firms within a portfolio, then the probability of high losses increases
compared to the independent case.

3.1 Loss of a credit portfolio

Assume we have a portfolio of n ∈ N credits with credit amount Ca
i ∈ [0,∞) and maturity

Ti ∈ (0,∞) for the i-th credit. The obligors change their credit rating according to the
credit rating process X. The credit rating classes are given by S = {1, . . . ,K} and K is the
default state which we assume that is absorbing. A loss occurs if a firm defaults, i. e., the
firm is rated with K. Let (Ft)t≥0 be the natural filtration of X. Furthermore we assume
that there is no interest rate, and the recovery rate of the i-th credit is constant δi ∈ [0, 1]
for i ∈ {1, . . . , n}. Since K is an absorbing state, the loss L of the portfolio is given by

L(t) =
n∑
i=1

Ca
i (1− δi)1{Xt∧Ti (i)=K}, for all t ≥ 0.

In the following we consider the distribution of the loss assuming X is an esc–process
or follows the scheme model with parameters (µ, p), where µ = (µxy)x,y∈S ∈ RK×K is
the Q-matrix of the transitions of an individual firm and p = (px)x∈S is a probability
vector in [0, 1]S . Furthermore we suppose the process starts in X0 = z0 ∈ Sn. By Lemma
2.41, resp. Theorem 2.13, the embedding property holds for the process X. Therefore the
projected process (πi(Xt))t≥0, where πi : Sn → S is defined by πi(x1, . . . , xn) = xi for each
i ∈ {1, . . . , n}, is a Markov jump process with respect to (Ft)t≥0 generated by the Q-matrix
µ and starting in z0(i). Hence we obtain for all t ≥ 0

E[L(t)] =
n∑
i=1

Ca
i (1− δi)Pz0

[
Xt∧Ti(i) = K

]
=

n∑
i=1

Ca
i (1− δi) exp

{
µ(t ∧ Ti)

}
z0(i),K

.

The expected loss depends only on the Q-matrix µ of the transitions of an individual firm
and does not depend on the parameter p. The distribution of the loss, however, depends
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Chapter 3. Simulation of the model

also on p. Since we are interested in the probability that we loose more than certain values,
we consider the excess distribution of the loss at time t ≥ 0, i. e.

P[L(t) > x] = P

[ n∑
i=1

Ca
i (1− δi)1{Xt∧Ti (i)=K} > x

]
, for x ≥ 0.

Assuming the recovery rate δi = δ ∈ [0, 1], the credit amount Ca
i = Ca ∈ (0,∞) and the

maturity Ti = T ∈ (0,∞) for all i ∈ {1, . . . , n} we obtain for x ∈ [0, (1− δ)Can]

P[L(t) > x] =
n∑

j=
⌈

x
(1−δ)Ca

⌉P
[ n∑
i=1

1{Xt∧T (i)=K} = j

]
=

n∑
j=
⌈

x
(1−δ)Ca

⌉
∑
z∈Z

exp
{
Q(t ∧ T )

}
z0,z

,

where
Z :=

{
z ∈ Sn : #

{
i ∈ {1, . . . , n} : z(i) = K

}
= j
}
,

and Q : Sn×Sn → R is the Q-matrix of X, i. e. Q = Qc
n given by (2.34) for the esc–process,

resp. Q = Qg
n given by Theorem 2.22 for the scheme model. For example for K = 8 credit

rating classes and n = 100 firms the matrix Q has 4 · 10180 entries and the numerical
computation of the exact excess loss distribution is impossible. Therefore, we simulate the
credit rating process X and compute the loss for each simulation. To show the influence of
dependence we continue with a numerical example.

3.2 Numerical example of the loss of a credit portfolio

To model realistic behavior of transitions of an individual firm we estimate the Q-matrix
µ using the average one-year transition probability matrix PS from 1981 to 2006 in the
annual European corporate default report of Standard & Poor’s [56, Table 10]. In this case
we have K = 8 credit rating classes. To find a Q-matrix µ corresponding to PS , we apply
the method of Israel, Rosenthal and Wei (2001). If all diagonal entries of PS are greater
than 1/2, the series

µ̃ =
∞∑
k=1

(−1)k+1 (PS − I)k

k
,

converges, where I is the K ×K identity matrix, and PS = exp µ̃ (cf. [31]). Therefore, µ̃ is
a Q-matrix of PS , if all non-diagonal entries of µ̃ are non-negative.

Computing the series µ̃ for the transition matrix of Standard & Poor’s we obtain negative
non-diagonal entries. Hence, µ̃ is not a valid Q-matrix. To solve this problem, we set the
negative non-diagonal entries equal to zero and add the absolute value to the diagonal entry
in the same row (cf. [31]). Thus, it approximately holds PS ≈ exp(µ), where the Q-matrix

µ =



−0.106 0.103 0.002 0.002 0 0 0 0
0.003 −0.107 0.101 0.003 0 0 0 0

0 0.033 −0.088 0.054 0.001 0.001 0 0
0 0.002 0.056 −0.098 0.033 0.004 0.002 0.001
0 0 0 0.043 −0.171 0.122 0.003 0.004
0 0 0.003 0.004 0.098 −0.233 0.097 0.031
0 0 0 0 0 0.225 −1.008 0.783
0 0 0 0 0 0 0 0



28



3.2. Numerical example of the loss of a credit portfolio

is computed in the way described above.
We consider a portfolio of n = 100 credits maturing at T = 15 with credit amount

Ca = 1. Suppose the credit rating process X of the underlying firms follows either the
extended strongly coupled random walk model or the scheme model with the vector (px)x∈S
and the Q-matrix µ. The process starts with 16 firms in the best rating class 1 and 14 firms
in each of the classes 2 to 7. For simplification we choose the same dependence parameter
px = p for all rating classes x ∈ S. Assume δ = 0.4 is the recovery rate δi for all firms
i ∈ {1, . . . , 100}.

Figure 3.1 and 3.2 show the empirical distribution functions of the excess loss for the
esc–process and for the scheme model at times t = 1 and t = 5 for different parameters
p. The estimation is based on 5 000 simulations. We see an increase of the probability for
high losses, if we have a stronger coupling between the firms with the same rating, i. e.,
p is closer to one. For example, after five years the probability for a loss greater than 15
for p = 1 equals approximately 31.7%, for p = 0.5 only 13%, and for p = 0 only 0.1% in
the extended strongly coupled random walk model. Therefore the dependence within the
rating classes allows more possible shapes of loss distributions.

Simulation of both models leads to a similar shape of the excess loss distribution. The
influence of the coupling by p dominates the induced dependence between the credit rating
classes by P s of the scheme model. To illustrate the differences, Figure 3.3 shows the
histograms of the simulated losses for both models at time t = 5 for the parameter p = 0.5.
We simulate the paths of the processes 10 000 times. We observe that the number of high
losses is higher in the scheme model than in the extended strongly coupled random walk
model. Since the transition intensities of an individual firm are the same in both models this
indicates stronger positive correlation in the scheme model. In the esc–process each rating
class has an independent Poisson process. If this process jumps, then we choose another
rating class. Therefore, downgrades, resp. upgrades, of different credit rating classes are
independent. In the scheme model the downgrades of firms in different rating classes are
linked by the uniformly distributed random variable V . If V is close to one, resp. zero,
then all firms are simultaneously downgraded, resp. upgraded, or keep their credit rating.
The transitions of the firms with different ratings are correlated and the probability of high
losses increases compared to the esc–process.

Another remarkable observation is a peak at 8.4 in both histograms. This corresponds
to 14 defaults within 5 years. A firm with credit rating 7 defaults in average after 1.3 years.
Therefore if there is high dependence between the firms, then it is likely that all 14 firms
starting with rating 7 are defaulted after 5 years. On the other hand, firms in rating class
6 default in average after 12 years. Therefore the number of simulations, where more than
14 firms default, is significantly less than the number where 14 firms default. If we consider
the paths after a longer time period, then this effect is smoothing out.

To measure the riskiness of the credit portfolio we estimate the Value-at-Risk (VaR)
and the expected shortfall (ES) at the confidence level α = 0.95, resp. α = 0.99. In Table
3.1 the firms follow the esc–process and in Table 3.2 the scheme model. Varying p shows
that the risk increases with higher dependence. Underestimation of the dependence leads
to unexpected high losses, as our model shows. The incorporation of the dependence allows
more flexibility in the model. Furthermore, the risk of a credit portfolio following the
scheme model is higher than following the esc–process.
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Figure 3.1: Empirical excess loss distribution of the credit portfolio for the extended strongly
coupled random walk at times t = 1 and t = 5.
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Figure 3.2: Empirical excess loss distribution of the credit portfolio for the scheme model
at times t = 1 and t = 5.
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Figure 3.3: Histogram of the simulated losses for the extended strongly coupled random
walk (coupled) and the scheme model (scheme) where p = 0.5 and t = 5, based on 10 000
simulations.
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p = 0 p = 0.3 p = 0.5 p = 0.7 p = 1
t = 1 6.6 8.4 10.2 11.4 8.4
t = 2 9.0 11.4 13.2 14.4 16.8
t = 5 13.2 16.2 18.0 19.8 25.2
t = 10 16.8 19.8 22.2 24.0 25.2
t = 15 19.8 23.4 25.2 27.6 33.6

VaR0.95 of the credit portfolio for time points t and probability p.

p = 0 p = 0.3 p = 0.5 p = 0.7 p = 1
t = 1 7.43 10.14 11.88 13.43 16.50
t = 2 9.87 13.00 14.71 16.56 19.05
t = 5 13.61 17.37 19.69 22.16 26.52
t = 10 17.74 21.51 24.47 26.86 33.44
t = 15 20.69 24.91 27.77 31.20 39.91

ES0.95 of the credit portfolio for time points t and probability p.

p = 0 p = 0.3 p = 0.5 p = 0.7 p = 1
t = 1 7.8 10.8 13.2 14.4 16.8
t = 2 10.2 13.8 15.6 18.0 25.2
t = 5 13.8 18.0 21.0 23.4 25.2
t = 10 18.0 22.8 25.8 28.8 33.6
t = 15 21.0 25.8 29.4 33.6 43.2

VaR0.99 of the credit portfolio for time points t and probability p.

p = 0 p = 0.3 p = 0.5 p = 0.7 p = 1
t = 1 8.18 12.17 13.99 16.33 18.81
t = 2 10.63 14.86 17.33 20.17 25.87
t = 5 14.53 19.43 22.25 25.51 31.78
t = 10 18.88 23.81 28.06 32.14 40.70
t = 15 21.83 27.22 31.42 36.92 52.68

ES0.99 of the credit portfolio for time points t and probability p.

Table 3.1: Value-at-Risk (VaR) and expected shortfall (ES) of the credit portfolio with
100 firms and constant recovery of 40%. Firms follow the esc–process with probability
parameter p.
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p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 1
t = 1 7.8 9.6 10.8 12.6 16.8
t = 2 10.8 12.6 13.8 15.0 16.8
t = 5 15.0 17.4 19.8 21.6 25.2
t = 10 19.8 22.2 24.6 26.4 33.6
t = 15 22.8 26.4 28.8 30.0 33.6

VaR0.95 of the credit portfolio for time points t and probability p.

p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 1
t = 1 8.95 11.15 13.28 15.17 18.28
t = 2 11.86 14.55 17.11 18.97 21.24
t = 5 16.30 19.69 23.17 25.42 29.00
t = 10 21.04 25.11 28.60 31.18 36.28
t = 15 24.23 29.48 32.96 35.54 41.91

ES0.95 of the credit portfolio for time points t and probability p.

p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 1
t = 1 9.6 12.0 15.0 16.2 16.8
t = 2 12.6 16.2 19.2 21.0 25.2
t = 5 17.4 21.0 24.6 27.6 33.6
t = 10 22.2 27.0 31.2 34.8 42.0
t = 15 25.2 31.8 36.0 39.0 50.4

VaR0.99 of the credit portfolio for time points t and probability p.

p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 1
t = 1 10.76 13.69 17.56 20.76 24.19
t = 2 13.92 17.39 21.55 24.98 29.06
t = 5 18.41 22.86 28.15 31.76 36.98
t = 10 23.21 29.28 34.62 39.07 45.48
t = 15 26.42 33.96 38.58 43.85 54.82

ES0.99 of the credit portfolio for time points t and probability p.

Table 3.2: Value-at-Risk (VaR) and expected shortfall (ES) of the credit portfolio with
100 firms and constant recovery of 40%. Firms follow the scheme model with probability
parameter p.
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Chapter 4

Maximum likelihood estimation

In the following chapter we compute the maximum likelihood estimators for the parameters
in the general model and in the esc–process. Using these estimated parameters, we are able
to simulate the process X and predict the rating transitions of the firms. The observations
for the estimation are realizations of the sample paths of the Markov process. In reality the
credit rating of firms within different industry sectors may be independent of each other
and follow different credit rating processes. The number of firms in the process is given by
the size of the industry. Furthermore, the time length of the observations may depend on
the sector, since some industries have shorter rating history than others.

For the estimation we want to use the observations with different length of the paths
and different number of firms. We assume that each Markov process follows the general
model, resp. the esc–process, with the same parameters and constant number of firms. The
credit rating transitions of different Markov processes are independent of each other. By
this, we can use more observations for our estimation.

4.1 Likelihood function for the general model

The parameters in our general model are the intensity λ ∈ (0,∞) of the Poisson process,
the probability distribution P ∈M1(SS) of the rating configurations and the probabilities
px ∈ [0, 1] for each x ∈ S that the firms actually change the rating class, i. e., Θ =
(0,∞) ×M1(SS) × [0, 1]K is the set of the parameters. In the following we estimate the
true parameter θ0 ∈ Θ via the maximum likelihood technique.

For each parameter θ ∈ Θ and each number n ∈ N of firms let (Xt,n)t≥0 follow the
general model with state space Sn and parameter θ, given by Definition 2.15. We observe
independent sample paths of the processes (Xt,n)t≥0 with n ∈ N firms of length T ∈ (0,∞).
We assume that the probability that we observe a Markov process with n firms is given by
PN (n) ∈ [0, 1] and ξ is the probability distribution on B([(0,∞)) of the observed length of
the paths. If for some particular n ∈ N and T ∈ (0,∞) the probability PN (n) = 1 and
ξ(T ) = 1, then we always observe paths of the Markov process (Xt,n)t≥0 with length T .

The maximum likelihood estimator gives the parameter that maximizes the density of
the observed sample paths of the process. Therefore we start with the construction of the
space of the sample paths of (Xt,n)t≥0 for n ∈ N and the density of the sample paths in
the time interval [0, T ). This is inspired by the work of Albert (1962), where he describes
the density on the space of the sample paths, generated by a Markov jump process with a
finite state space and a given Q-matrix, in general.
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4.1.1 The space of the sample paths

Every (time-homogeneous) Markov jump process with finite state space has a modification,
where the sample paths are piecewise constant functions with a finite number of jumps
in the time interval [0, T ) with T > 0, see e. g. [21, Chapter 4.2]. We assume in the
following, that the sample paths ω of the process (Xt,n)t∈[0,T ) for all n ∈ N are of the
form ω = ((z0, t0), . . . , (zl−1, tl−1), zl), where l ∈ N0 is the number of jumps, zi ∈ Sn for
i = 0, . . . , l, zi 6= zi+1 and ti > 0 for i = 0, . . . , l − 1. The process starts in the state z0 and
remains there for the time t0. Then the process jumps to the state z1 and remains there for
the time t1 and so on. Finally it reaches zl and stays there until T.

So, for all T > 0 every sample path in a model with n ∈ N firms, which jumps l ∈ N
times in [0, T ), is an element of Sn,l = (Sn×R)l×Sn, and the path is in Sn,0 = Sn, if there
are no jumps. Therefore a sample path of (Xt,n)t∈[0,T ) with n firms is in

Sn =
∞⋃
l=0

Sn,l, for each n ∈ N.

Sample paths with an arbitrary number n ∈ N of firms lie in

S =
∞⋃
n=1

Sn . (4.1)

To define a measure on the space of the sample paths, we define C as the smallest
σ-algebra containing all subsets of S whose intersection with Sn,l is a Borel set for each
pair (n, l) ∈ N × N0. Furthermore we define for each n ∈ N the smallest σ-algebra Cn,
which contains all subsets of Sn whose intersection with Sn,l is a Borel set for each pair
(n, l) ∈ N×N0. Let V be the Lebesgue–Borel measure on R and Nn be the counting measure
on Sn. Define σn,l as the product measure on Sn,l by

σn,l = (Nn ⊗ V)⊗l ⊗Nn, for each n ∈ N and l ∈ N0,

and for the sets Cn ∈ Cn the measure

σn(Cn) =
∞∑
l=0

σn,l(Cn ∩ Sn,l), for each n ∈ N.

For each C ∈ C the intersection (C ∩ Sn) ∩ Sn,l = C ∩ Sn,l is a Borel set for each l ∈ N0.
Therefore (C ∩ Sn) ∈ Cn and we define the measure

σ(C) =
∞∑
n=1

σn(C ∩ Sn). (4.2)

Denote by O the space of the observations, given by

O = N× (0,∞)× S = N× (0,∞)×
∞⋃
n=1

Sn. (4.3)

The first entry is the number of firms in the observed path. The second entry is the
observation time, and the third are the credit ratings of the firms in the observed time.
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4.1. Likelihood function for the general model

4.1.2 Density of the sample paths

For the description of a density of the observed sample paths we need the definition of a
weakly feasible path. Since we later restrict the model to the extended strongly coupled
random walk, we also introduce the definition of a strongly feasible path.

Definition 4.4. Let (ω, T ) ∈ S × (0,∞) be a path until time T , where

ω =
(
(z0, t0), . . . , (zl−1, tl−1), zl

)
, with l ∈ N0, tj > 0 and zi ∈ Sn for n ∈ N.

(i) We call (ω, T ) a weakly feasible path until time T , if
∑l−1

j=0 tj < T and there are only
weakly feasible transitions, i. e., the transitions between zi to zi+1 are weakly feasible
for i = 0, . . . , l − 1 in the sense of Definition 2.20.

(ii) We call (ω, T ) a strongly feasible path until time T , if
∑l−1

j=0 tj < T and there are
only strongly feasible transitions in the sense of Definition 2.29.

Definition 4.5. Let (ω, T ) ∈ Sn × (0,∞) be a weakly feasible path until time T with

ω = ((z0, t0), . . . , (zl−1, tl−1), zl), with l ∈ N0, tj > 0 and zi ∈ Sn.

Let ā : S → N0 and b̄ : S → N0 be functions that map each rating class to a number of
firms. Define the total time that the path spends with ā(x) firms in the rating class x ∈ S
for all x ∈ S, by

T (ω, T, ā) =
l−1∑
j=0

tj
∏
x∈S

1{ā(x)=ax(zj)} +
(
T −

l−1∑
j=0

tj

)∏
x∈S

1{ā(x)=ax(zl)}, (4.6)

where ax(z) for x ∈ S and z ∈ Sn is given by Definition 2.19. Define the number of
transitions, where b̄(x) firms of ā(x) firms with rating x ∈ S change the rating class to s(x)
for all x ∈ S, according to any rating class function s ∈ Sc ⊆ SS, by

N(ω, Sc, ā, b̄) = #
{
j ∈ {0, . . . , l − 1} : Sc(zj , zj+1) = Sc,

ax(zj) = ā(x), bx(zj , zj+1) = b̄(x), for all x ∈ S
}
, (4.7)

where bx(z, z̃) for x ∈ S and z, z̃ ∈ Sn is given by Definition 2.19 and Sc by Definition
2.21.

Theorem 4.8. Let θ = (λ, P, p) ∈ Θ be a parameter, where p = (px)x∈S. For each
n ∈ N let the Markov jump process (Xt,n)t≥0 follow the general model with state space
Sn and parameter θ, given by Definition 2.15. Let νn be the distribution of the initial
state X0,n and assume it is the same for all θ ∈ Θ. For each n ∈ N define the function
fn : S × (0,∞)→ [0,∞) by

fn(ω, T ; θ) = νn
(
{z0}

)
exp
{
−λ

∑
ā∈NK0

T (ω, T, ā)
∑
s∈SS
s 6=id

P (s)
(
1−

∏
x∈S
s(x) 6=x

(1− px)āx
)}

×
∏

Sc⊆SS

∏
ā∈NK0

∏
b̄∈NK0
ā≥b̄

(
λ
∑
s∈Sc

P (s)
∏
x∈S
s(x) 6=x

pb̄xx (1− px)āx−b̄x
)N(ω,Sc,ā,b̄)

,

if ω ∈ Sn, where z0 ∈ Sn is the first entry of ω, and (ω, T ) is a weakly feasible path until
time T , or fn(ω, T ; θ) = 0 otherwise.

Then for each T > 0 and n ∈ N the function fn(·, T ) is a density of the sample paths of
the process (Xt,n)t≥0 until time T with respect to the measure σ, which is given by (4.2).
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Remark 4.9. The function fn is C ⊗ B((0,∞))-B(R) measurable, since fn is continuous on
the open set

{(ω, T ) ∈ Sn × (0,∞) : (ω, T ) is a weakly feasible path}.

Proof. Let n ∈ N and T ∈ (0,∞). Since X = (Xt,n)t≥0 follows the general model, the Q-
matrix Qg

n is given by Theorem 2.22. Albert proved that for each T > 0 a density g : Sn → R
of the paths of a finite-state Markov process (Xt,n)t∈[0,T ) following the Q-matrix Qg

n with
respect to σn is given by

g(ω) =



P(X0,n = z0)e−Q
g
n(z0)T , if ω = (z0),

P(X0,n = z0)e−Q
g
n(zl)T

l−1∏
j=0

Q′n(zj , zj+1)e−(Qg
n(zj)−Qg

n(zl))tj ,

if ω = ((z0, t0), . . . , (zl−1, tl−1), zl),

with l ≥ 1, zj ∈ Sn, tj > 0, and
l−1∑
j=0

tj < T,

0, otherwise,

(4.10)

where Qg
n(z) = −Qg

n(z, z) and for z, z̃ ∈ Sn

Q′n(z, z̃) =
{

0, if z = z̃,
Qg
n(z, z̃), otherwise.

If ω ∈ Sn has an infeasible transition zj to zj+1, it can easily be seen that the density
g(ω) = 0 for each T > 0, since Q′n(zj , zj+1) = 0. Therefore g(ω) = fn(ω, T ). Let (ω, T ) ∈
Sn × (0,∞) be a weakly feasible path until time T with

ω = ((z0, t0), . . . , (zl−1, tl−1), zl), with l ∈ N0, tj > 0 and zi ∈ Sn for n ∈ N.

Applying the definition of Qg
n in Theorem 2.22 to the density of Albert in (4.10) we obtain

for each T > 0

g(ω) = νn
(
{z0}

) l−1∏
j=0

λ

( ∑
s∈Sc(zj ,zj+1)

P (s)
∏
x∈S
s(x)6=x

p
bx(zj ,zj+1)
x (1− px)ax(zj)−bx(zj ,zj+1)

)

× exp
{
−λ

∑
s∈SS
s 6=id

P (s)
l−1∑
j=0

tj

(
1−

∏
x∈S
s(x)6=x

(1− px)ax(zj)
)}

× exp
{
−λ

∑
s∈SS
s 6=id

P (s)
(
T −

l−1∑
j=0

tj

)(
1−

∏
x∈S
s(x)6=x

(1− px)ax(zl)
)}

.

Using the definition of N(ω, Sc, ā, b̄) and T (ω, T, ā) we obtain g(ω) = fn(ω, T ) for all ω ∈ Sn.
Since fn(ω, T ) = 0 for ω 6∈ Sn we finally have for all C ∈ C

P
[
(Xt,n)t∈[0,T ) ∈ C

]
= P

[
(Xt,n)t∈[0,T ) ∈ C ∩ Sn

]
=
∫
C∩Sn

g(ω)σn(dω) =
∫
C
fn(ω, T )σ(dω).
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4.1. Likelihood function for the general model

The observed paths are sample paths of (Xt,n)t≥0 where the number n ∈ N of firms has
probability PN (n) and the time length of the paths has distribution ξ. The density of the
sample paths of (Xt,n)t≥0 until time T ∈ (0,∞) is the function fn(·, T ) for each n ∈ N.

Definition 4.11. Let O be the space of observations defined in (4.3). Let ξ be a probability
measure on the Borel σ-algebra B((0,∞)) and PN be a probability measure on the power
set P(N). For each parameter θ ∈ Θ define the function hθ : O → [0,∞) by

hθ(n, T, ω) = fn(ω, T ; θ), (4.12)

where fn(ω, T ; θ), given by Theorem 4.8, is a density of the sample path of (Xt,n)t∈[0,T )

until time T > 0 with respect to measure σ, given by (4.2).

(i) Define the stochastic kernel κ :
(
N× (0,∞)

)
× C → [0,∞] by

κ
(
(n, T ), C

)
=
∫
C
fn(ω, T )σ(dω).

By Theorem 4.8 for each n ∈ N and T > 0 the measure C 7→ κ((n, T ), C) is the
distribution of the sample path of (Xt,n)t∈[0,T ).

(ii) We call η a random observation in O of the general model, if the distribution of η
is the measure PN ⊗ ξ ⊗ κ on

(
O,P(N) ⊗ B((0,∞)) ⊗ C

)
, i. e. for each N ∈ P(N),

T ∈ B((0,∞)) and C ∈ C

P
[
η ∈ N × T × C

]
=
∑
n∈N

PN (n)
∫
T
κ((n, T ), C) ξ(dT )

=
∑
n∈N

PN (n)
∫
T

∫
C
hθ(n, T, ω)σ(dω)ξ(dT ).

Therefore hθ is a density of η with respect to the measure PN ⊗ ξ ⊗ σ.

Remark 4.13. If PN (n) = 1 for some particular n ∈ N and ξ(T ) = 1 for some particular
T ∈ (0,∞), then η has density fn(ω, T ) with respect to σ. The path has the distribution
of a random sample path of (Xt,n)t≥0 until time T .

Remark 4.14. The probability PN (n) is the probability that we observe Markov processes
with n firms. We assume that the economy consists of industry sectors with size n ∈ N
and the credit rating of these sectors follow general models with the same parameter θ.
However, the credit ratings of firms in different sectors are independent. The measure ξ is
the probability distribution of the observation time of the credit ratings. In different sectors
and different observations the rating history may vary. The length of the observed paths
are independent of the credit rating dynamics in the paths. We assume that the observed
firms in the different paths change their rating independently of firms in other paths.

4.1.3 Likelihood function for the general model

Let θ0 ∈ Θ be the true parameter. Let (nk, Tk, ωk) ∈ O for k ∈ {1, . . . ,m} with m ∈ N
be observed paths, i. e., (nk, Tk, ωk) are independent realizations of the paths η, where the
paths have density hθ0 , and assume hθ0(nk, Tk, ωk) > 0. In particular, (ωk, Tk) is weakly
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Chapter 4. Maximum likelihood estimation

feasible. To estimate the true parameter θ0 with the maximum likelihood technique, we
maximize the likelihood function L : Θ→ [0,∞), which is given by

L(θ) =
m∏
k=1

hθ(nk, Tk, ωk).

For the general model we cannot expect a tractable solution for the maximization problem.
However, in the case of the extended strongly coupled random walk we are able to deduce
the maxima.

4.2 Likelihood estimator for the esc–process

The parameters in the extended strongly coupled random walk model are the probabilities
px ∈ [0, 1] for each x ∈ S that the firms actually change the rating class and the Q-matrix
µ = (µxy)x,y∈S of an independently moving firm.

Definition 4.15. Let Θc =
(
[0,∞)K−1× [0, 1]

)K be the set of parameters. For the param-
eter θ ∈ Θc set θ = (θx)x∈S, where θx = (µx,1, . . . , µx,x−1, µx,x+1, . . . , µx,K , px). The vector
p = (px)x∈S is a probability vector and µ = (µxy)x,y∈S is the Q-matrix of the individually
moving firms, where µxx = −µx is given by (2.36).

4.2.1 Density of the sample paths

To obtain the density of the sample path we do the same steps as for the general model.
We start with the density for the paths of the Markov process (Xc

t,n)t≥0 w. r. t. the measure
σ until time T > 0 for each n ∈ N. If we weight the sample paths of the different Markov
processes by the probability measure PN , which is the probability to observe a path with
n firms, and the distribution of the length of the paths, then we obtain the density of our
observed sample paths.

Definition 4.16. Let (ω, T ) ∈ S × (0,∞) be a path until time T , where

ω =
(
(z0, t0), . . . , (zl−1, tl−1), zl

)
, with l ∈ N0, tj > 0 and zi ∈ Sn for n ∈ N.

Denote by ax(z) the number of firms in state z ∈ Sn with rating x ∈ S by

ax(z) = #
{
j ∈ {1, . . . , n} : z(j) = x

}
.

(i) For each x ∈ S and a ∈ N define the total time T (ω,T )
x,a that the path spends in rating

class x with a firms by

T (ω,T )
x,a =

l−1∑
i=0

ti1{ax(zi)=a} + (T −
l−1∑
i=0

ti)1{ax(zl)=a}, (4.17)

if (ω, T ) is strongly feasible and by T (ω,T )
x,a = 0 otherwise.

(ii) For each x, y ∈ S with x 6= y and a, b ∈ N with a ≥ b call N (ω)
x,y,a,b the number of

transitions from rating class x to y with a firms having class x before and a− b firms
are in class x after the rating change, i. e.

N
(ω)
x,y,a,b = #

{
i ∈ {0, . . . , l − 1} : ax(zi) = a,

b = #
{
j ∈ {1, . . . , n} : zi(j) = x, zi+1(j) = y

}}
, (4.18)
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4.2. Likelihood estimator for the esc–process

if ω has only strongly feasible transitions, and N (ω)
x,y,a,b = 0 otherwise.

For the likelihood function we need the density of the sample paths of (Xc
t,n)t≥0 with

respect to the measure σ.

Lemma 4.19. Let θ = (θx)x∈S ∈ Θc be a parameter, where

θx = (µx,1, . . . , µx,x−1, µx,x+1, . . . , µx,K , px), for each x ∈ S.

For each n ∈ N let (Xc
t,n)t≥0 be an esc–process with state space Sn and parameter θ, given

by Definition 2.40. Let νc
n be the distribution of the initial state Xc

0,n and assume it is the
same for all θ ∈ Θc. For each n ∈ N define the function f c

n : S × (0,∞)→ [0,∞) by

f c
n(ω, T ; θ) = νc

n

(
{z0(ω)}

)
exp

{
−
∑
x∈S

µx

n∑
a=1

T (ω,T )
x,a q(a, px)

}

×
∏
x,y∈S
x 6=y

n∏
a,b=1
a≥b

(
µxyp

b−1
x (1− px)a−b

)N(ω)
x,y,a,b

,

for a strongly feasible path (ω, T ) ∈ Sn × (0,∞), or f c
n(ω, T ; θ) = 0 otherwise, where z0(ω)

is the first component of ω and q is defined in (2.35), and µx in (2.36).
Then for each T > 0 the function f c

n(·, T ) is a density of the sample paths of the process
(Xc

t,n)t≥0 until time T with respect to the measure σ, which is given by (4.2).

Proof. For each T > 0 and n ∈ N the density of the sample paths of the process (Xc
t,n)t∈[0,T )

is given by g : Sn → [0,∞) defined by (4.10) for the Q-matrix Qc
n. If a transition from

z ∈ Sn to z̃ ∈ Sn is not strongly feasible, we obtain Qc
n(z, z̃) = 0. Therefore g(ω) = 0 for

(ω, T ) ∈ Sn × (0,∞) not strongly feasible.
Assume (ω, T ) ∈ Sn × (0,∞) is a strongly feasible path until time T given by

ω =
(
(z0, t0), . . . , (zl−1, tl−1), zl

)
, with l ∈ N0, tj > 0 and zi ∈ Sn.

For each i ∈ {0, . . . , l−1} define by xi ∈ S the original rating of firms which are changing the
rating to yi ∈ S in the transition zi to zi+1, i. e., for all j ∈ {1, . . . , n} with zi(j) 6= zi+1(j)
we have zi(j) = xi and zi+1(j) = yi, which is well-defined since zi to zi+1 is a strongly
feasible transition. Substituting Qc

n, given by Lemma 2.33, into the density in (4.10), we
obtain

g(ω) = νc
n

(
{z0(ω)}

) l−1∏
i=1

µxiyip
bxi (zi,zji−1)−1
xi (1− pxi)axi (zi)−bxi (zi,zi+1)

× exp
{
−
∑
x∈S

µx

[ l−1∑
i=0

ti q(ax(zi), px) +
(
T −

l−1∑
i=0

ti

)
q(ax(zl), px)

]}
.

The definition of N (ω)
x,y,a,b and T (ω,T )

x,a in (4.18) and (4.17) yield g(ω) = f c
n(ω, T ) for all ω ∈ Sn.

Since f c
n(ω, T ) = 0 for ω 6∈ Sn we finally have for all C ∈ C

P
[
(Xc

t,n)t∈[0,T ) ∈ C
]

= P
[
(Xc

t,n)t∈[0,T ) ∈ C ∩ Sn
]

=
∫
C∩Sn

g(ω)σn(dω) =
∫
C
f c
n(ω, T )σ(dω).
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Analogously to the definition of the observations in the general model we define the
density of observation of the esc–processes. Again, we use as observations sample paths
of different Markov processes, where the distribution of the paths conditional on the firm
number n ∈ N and the observation length T ∈ (0,∞) is given by the density f c

n(·, T ).

Definition 4.20. Let O be the space of observations defined in (4.3). Let ξ be a probability
measure on the Borel σ-algebra B((0,∞)) and PN be a probability measure on the power
set P(N). For each parameter θ ∈ Θ define the function hc

θ : O → [0,∞) by

hc
θ(n, T, ω) = f c

n(ω, T ; θ), (4.21)

where f c
n(ω, T ; θ), given by Lemma 4.19, is a density of the sample path of (Xc

t,n)t∈[0,T ) until
time T > 0 with respect to measure σ, given by (4.2).

(i) Define the stochastic kernel κc :
(
N× (0,∞)

)
× C → [0,∞] by

κc
(
(n, T ), C

)
=
∫
C
f c
n(ω, T )σ(dω).

By Lemma 4.19 for each n ∈ N and T > 0 the measure C 7→ κc((n, T ), C) is the
distribution of the sample path of (Xc

t,n)t∈[0,T ).

(ii) We call η a random observation in O of the esc–process, if the distribution of η is
the measure PN ⊗ ξ ⊗ κc on

(
O,P(N) ⊗ B((0,∞)) ⊗ C

)
, i. e. for each N ∈ P(N),

T ∈ B((0,∞)) and C ∈ C

P
[
η ∈ N × T × C

]
=
∑
n∈N

PN (n)
∫
T
κc((n, T ), C) ξ(dT )

=
∑
n∈N

PN (n)
∫
T

∫
C
hc
θ(n, T, ω)σ(dω)ξ(dT ).

Therefore hc
θ is a density of η with respect to the measure PN ⊗ ξ ⊗ σ.

4.2.2 Maximum likelihood estimators

With the density of the observations we can state the likelihood function. To reduce no-
tation we define the number of rating changes and the time, which the firms spend in the
configurations.

Definition 4.22. Suppose (ωk, Tk) ∈ S × (0,∞) are strongly feasible sample paths until
time Tk for k ∈ {1, . . . ,m} with m ∈ N in the sense of Definition 4.4. We define the
number of rating changes of b ∈ N firms from x ∈ S to y ∈ S, where a ≥ b firms had rating
x originally, by

Nx,y,a,b =
m∑
k=1

N
(ωk)
x,y,a,b, for x, y ∈ S with x 6= y and a, b ∈ N with a ≥ b, (4.23)

where N (ωk)
x,y,a,b is defined in (4.18). The total number of rating changes of b firms from x,

where a firms had originally rating x, is given by

Ñx,a,b =
∑

y∈S\{x}

Nx,y,a,b, for x ∈ S and a, b ∈ N with a ≥ b. (4.24)
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4.2. Likelihood estimator for the esc–process

Using T (ωk,Tk)
x,a in (4.17), we define the total time of a firms in x by

Tx,a =
m∑
k=1

T (ωk,Tk)
x,a , for x ∈ S and a ∈ N. (4.25)

Let θ0 ∈ Θc be the true parameter. Suppose (nk, Tk, ωk) ∈ O for k ∈ {1, . . . ,m} with
m ∈ N are observed paths until time Tk, i. e., (nk, Tk, ωk) are independent realizations
of the random path η of the esc–process, where the path has density hc

θ0
, and assume

hc
θ0

(nk, Tk, ωk) > 0. In particular, (ωk, Tk) is strongly feasible. Let n := maxk∈{1,...,m} nk be
the maximal number of firms in the paths. Applying the notation in 4.22 and the definition
of the density of the observed paths in 4.20, the likelihood function of the esc–process is
given by

Lc(θ) =
m∏
k=1

hc
θ(nk, Tk, ωk) =

( m∏
k=1

νc
nk

(
{z0(ωk)}

))
exp

{
−
∑
x∈S

µx

n∑
a=1

Tx,a q(a, px)
}

×
∏
x,y∈S
x 6=y

n∏
a,b=1
a≥b

(
µxyp

b−1
x (1− px)a−b

)Nx,y,a,b
, (4.26)

for each θ = (θx)x∈S ∈ Θc with θx = (µx,1, . . . , µx,x−1, µx,x+1, . . . , µx,K , px), where function
q is defined in (2.35) and µx in (2.36). The maximum θ̂ of the function Lc is a maximum
likelihood estimator for the true parameter θ0.

After preparation we state the likelihood estimators of the esc–process in the next
theorem and prove it in Section 4.2.3.

Theorem 4.27. Let (nk, Tk, ωk) ∈ N × (0,∞) × S for k ∈ {1, . . . ,m} with m ∈ N be
independent realizations of the observed paths in the esc–process, i. e., the paths have density
hc
θ0

with θ0 ∈ Θc, given by (4.20). Suppose hc
θ0

(nk, Tk, ωk) > 0 for each k ∈ {1, . . . ,m}. Let
n := maxk∈{1,...,m} nk be the maximal number of firms in the paths. Let F = {1, . . . , n} be
the set of observed firms. Furthermore, for every x ∈ S define the polynomial Px : [0, 1]→ R
with at most degree n by

Px(p) =
n∑
j=0

cj(x) pj , (4.28)

with the coefficients

c0(x) =
n∑

a,b=1
a≥b

(b− 1)Ñx,a,b

n∑
k=1

k Tx,k

and for j ∈ {1, . . . , n}

cj(x) = (−1)j
n∑

a,b=1
a≥b

Ñx,a,b

n∑
k=j

(
k

j

)(k − j
j + 1

b+ a− k
)
Tx,k.

Define the index lx ∈ {0, . . . , n} by

lx = max
{
j ∈ {0, . . . , n} : ci(x) = 0, for 0 ≤ i ≤ j − 1

}
.

Then the parameters in the set Θ̂ ⊂ Θc are exactly the maximum likelihood estimators,
where for θ̂ = (θ̂x)x∈S ∈ Θ̂ with θ̂x = (µ̂x,1, . . . , µ̂x,x−1, µ̂x,x+1, . . . , µ̂x,K , p̂x) holds:
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Chapter 4. Maximum likelihood estimation

(i) For each x ∈ S with Tx,a = 0 for all a ∈ F , the entry θ̂x ∈ [0,∞)K−1 × [0, 1].

(ii) For each x ∈ S the entry p̂x is the unique root in (0, 1) of the polynomial Px, if there
exists a, b ∈ F with a > b such that Ñx,a,b > 0 and either there exists a, b ∈ F with
a ≥ b ≥ 2 such that Ñx,a,b > 0 or clx(x) > 0.

(iii) For x ∈ S suppose Ñx,a,b = 0 for all a, b ∈ F with a ≥ b ≥ 2 and Nx,a,1 > 0 for any
a ∈ {2, . . . , n}. Furthermore assume clx(x) < 0. Then the entry p̂x = 0.

(iv) For x ∈ S assume Ñx,a,b = 0 for all a, b ∈ F with a > b. If there exists a ≥ 2 with
Ñx,a,a > 0 or Ñx,1,1 > 0 and Tx,a > 0 for any a ∈ {2, . . . , n}, then the maximum
likelihood entry p̂x = 1.

(v) The entry p̂x ∈ [0, 1] for each x ∈ S, where Ñx,a,b = 0 for all a, b ∈ F with a ≥ 2 and
either Ñx,1,1 = 0 or Tx,a = 0 for all a ∈ {2, . . . , n}.

(vi) For each x ∈ S, such that there exists a ∈ F with Tx,a > 0, the entries µ̂xy equal

µ̂xy =
n∑

a,b=1
a≥b

Nx,y,a,b

( n∑
k=1

Tx,k q(k, p̂x)
)−1

, for each y ∈ S with x 6= y, (4.29)

where the function q is defined in (2.35).

Remark 4.30. Suppose Ñx,a,b = 0 for all a, b ∈ F with a ≥ b ≥ 2 and Nx,a,1 > 0 for any
a ∈ {2, . . . , n} for x ∈ S. Then the polynomial Px is not constant zero or equivalently,
clx(x) 6= 0, which is proved in the next section.

Remark 4.31. The maximum likelihood estimator is unique, if each rating class is attained
by the observed paths, and if there is at least one rating change during the observation for
all rating classes. Additionally, if for one rating class this rating transition always takes
place, when just one firm has this credit rating, then it is necessary for a unique maximum
likelihood estimator, that at least two firms have this rating at the same time, anytime
during the observation.

Remark 4.32. If the maximal number of the observed firms is n = 1, then the number of
rating transitions Nx,y,a,b = 0 for all a ≥ 2 and b ∈ {1, . . . , a}. Therefore each p̂x ∈ [0, 1]
is a maximum likelihood estimator of px for all x ∈ S. We cannot estimate px uniquely,
since there is only one firm in the system and the transitions of the firm are according to
µ independently of p. Since q(1, p) = 1 for all p ∈ [0, 1], the estimator for µ is given by

µ̂xy =
Nx,y,1,1

Tx,1
, for all x, y ∈ S with x 6= y and Tx,1 > 0,

which is the usual maximum likelihood estimator for a Q-matrix, where the transitions of
the underlying process are according to µ.

4.2.3 Proof of the maximum likelihood estimators

Throughout this subsection (nk, Tk, ωk) ∈ N × (0,∞)× S are supposed to be independent
realizations of observed paths of the extended strongly coupled random walk process for
k ∈ {1, . . . ,m} with m ∈ N, where θ0 ∈ Θc =

(
[0,∞)K−1 × [0, 1]

)K is the true parameter,
and the paths have density hc

θ0
. Furthermore, we assume hc

θ0
(nk, Tk, ωk) > 0 for all k ∈
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4.2. Likelihood estimator for the esc–process

{1, . . . ,m}. In particular, all paths (ωk, Tk) are strongly feasible and for each k ∈ {1, . . . ,m}
the probability is strictly greater than zero, that the process (Xc

t,nk
)t≥0 starts in z0(ωk),

which is the first component of ωk, i. e. νc
nk

(
{z0(ωk)}

)
> 0.

Let n := maxj∈{1,...,m} nk be the maximal number of firms in the paths. Suppose
F = {1, . . . , n} is the set of observed firms. In sense of Definition 4.22 let Nx,y,a,b be the
number of rating changes, where a ∈ N firms have rating x ∈ S initially and b ≤ a firms
change the rating to the class y ∈ S, and let Ñx,a,b be the total number of rating changes.
Let Tx,a be the total time of a ∈ N firms with rating x ∈ S given by Definition 4.22.

To prove Theorem 4.27, we maximize the likelihood function Lc, which is given by
(4.26). Using the conventions log(0) = −∞ and 0 · (−∞) = 0, the log-likelihood function
logLc : Θc → R ∪ {−∞} is given by

logLc(θ) =
m∑
k=1

log νc
nk

(
{z0(ωk)}

)
+
∑
x∈S

Lx(θx), (4.33)

where θ = (θx)x∈S with θx = (µx,1, . . . , µx,x−1, µx,x+1, . . . , µx,K , px) and Lx : [0,∞)K−1 ×
[0, 1]→ R ∪ {−∞} is defined by

Lx(θx) =
∑
y∈S
x 6=y

n∑
a,b=1
a≥b

Nx,y,a,b

[
logµxy + (b− 1) log px + (a− b) log(1− px)

]

− µx
n∑
a=1

Tx,a q(a, px). (4.34)

Therefore we reduce the maximization problem to the maximization of Lx with respect
to θx for each x ∈ S separately and show that the maximum of Lx is finite.

Remark 4.35. To show asymptotic properties of the estimator in Chapter 5, we have to
solve an analogous maximization problem. Therefore we maximize here a more general
function Lx, where the variables Nx,y,a,b ∈ [0,∞) and Tx,a ∈ [0,∞) for all x, y ∈ S and
a, b ∈ N with a ≥ b. Furthermore, we assume, that if for x ∈ S and a ∈ N there exists b ∈ N
with a ≥ b, such that Ñx,a,b > 0, then Tx,a > 0 which holds in our case.

Suppose total time Tx,a = 0 for all a ∈ F . Then there is no rating change from x
observable in a strongly feasible path and Nx,y,a,b = 0 for all y ∈ S with x 6= y and a, b ∈ F
with a ≥ b. This implies that the function Lx(θx) = 0 for all θx ∈ [0,∞)K−1 × [0, 1] and
each θx maximizes the function Lx. Therefore, Part (i) of Theorem 4.27 holds. In the
following we assume for x ∈ S that there exists a ∈ F such that Tx,a > 0.

First, we maximize Lx with respect to µxy for all y ∈ S with x 6= y for constant
px = p ∈ [0, 1].

Lemma 4.36. For each x ∈ S with Tx,a > 0 for any a ∈ F and p ∈ [0, 1] the constrained
function Lx : [0,∞)K−1 × {p} → R ∪ {−∞}, defined by (4.34), is maximized at

θ̂x = (ϕx,1(p), . . . , ϕx,x−1(p), ϕx,x+1(p), . . . , ϕx,K , p),

where for each y ∈ S with x 6= y the function ϕxy : [0, 1]→ [0,∞) is given by

ϕxy(p) :=
n∑

a,b=1
a≥b

Nx,y,a,b

( n∑
k=1

Tx,k q(k, p)
)−1

, (4.37)
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and the function q is defined by (2.35). If Lx(θ̂x) > −∞, then the maximal point θ̂x of Lx
is unique.

Proof. Fix x ∈ S with Tx,a > 0 for any a ∈ F and p ∈ [0, 1]. The function Lx equals

Lx(θx) =
∑
y∈S
x 6=y

Lx,y(µxy) +
n∑

a,b=1
a≥b

Ñx,a,b

[
(b− 1) log p+ (a− b) log(1− p)

]
,

where for each y ∈ S with x 6= y the function Lx,y : [0,∞)→ R ∪ {−∞} is given by

Lx,y(µxy) =
n∑

a,b=1
a≥b

Nx,y,a,b logµxy − µxy
n∑
a=1

Tx,a q(a, p).

To find a maximal point of Lx it is sufficient to maximize Lx,y for each µxy with y ∈ S
with x 6= y separately. Fix y ∈ S with x 6= y. If Nx,y,a,b = 0 for all a, b ∈ F with a ≥ b,
then ϕxy(p) = 0. Furthermore µxy = 0 maximizes Lx,y since Lx,y is strictly decreasing with
respect to µxy. Assume that there exists a pair a, b ∈ F with a ≥ b with Nx,y,a,b > 0.
Setting the derivative of Lx,y equal to zero, we obtain the critical point

µxy =
n∑

a,b=1
a≥b

Nx,y,a,b

( n∑
k=1

Tx,k q(k, p)
)−1

,

which is well defined since q(k, p) ≥ 1 for all k ∈ {1, . . . , n} and there exist k ∈ F with
Tx,k > 0. Since the second derivative of Lx,y is negative, Lx,y has a unique maximum at
the critical point. Since Lx,y(ϕxy(p)) > −∞ for each y ∈ S with y 6= x, the maximal point
θ̂x of Lx is unique, if

n∑
a,b=1
a≥b

Ñx,a,b

[
(b− 1) log p+ (a− b) log(1− p)

]
> −∞,

i. e., the maximal point is unique, if Lx(θ̂x) > −∞.

Using Lemma 4.36 it is sufficient to maximize Lx with respect to p ∈ [0, 1] assuming
µxy = ϕxy(p) and to show that the maximum of Lx is finite. In the following we maximize
the function Φx : [0, 1]→ R ∪ {−∞} given by

Φx(p) : = Lx (ϕx,1(p), . . . , ϕx,x−1(p), ϕx,x+1(p), . . . , ϕx,K(p), p)

= Cx −
n∑

a,b=1
a≥b

Ñx,a,b log
( n∑
k=1

Tx,k q(k, p)
)

+
n∑

a,b=1
a≥b

Ñx,a,b

(
(b− 1) log p+ (a− b) log(1− p)

)
, (4.38)

where Cx equals

Cx =
∑
y∈S
x 6=y

n∑
a,b=1
a≥b

Nx,y,a,b

(
log
( n∑
j,k=1
j≥k

Nx,y,j,k

)
− 1
)
. (4.39)
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Lemma 4.40. Suppose x ∈ S with Tx,a > 0 for any a ∈ F . Then Φx is constant and
Φx > −∞, if and only if Ñx,a,b = 0 for all a, b ∈ F with a ≥ b or Ñx,a,b = 0 for all a, b ∈ F
with a ≥ 2 and Ñx,1,1 > 0 and Tx,k = 0 for all k ∈ {2, . . . , n}.

Proof. Assume Ñx,a,b = 0 for all a, b ∈ F with a ≥ b. Then Φx(p) = 0 for all p ∈ [0, 1]. If
Ñx,a,b = 0 for all a, b ∈ F with a ≥ 2 and Ñx,1,1 > 0 and Tx,k = 0 for all k ∈ {2, . . . , n},
then we obtain for all p ∈ [0, 1]

Φx(p) = −
∑

y∈S\{x}

Nx,y,1,1(1 + log Tx,1 − logNx,y,1,1) > −∞,

which is also constant.
Define the constant Cx by (4.39). Then |Cx| <∞. Evaluating Φx at zero yields

Φx(0) = Cx +
n∑

a,b=1
a≥b

Ñx,a,b

(
(b− 1) log(0)− log

( n∑
k=1

Tx,k k
))
.

If there exists a pair a, b ∈ {2, . . . , n} with a ≥ b such that Ñx,a,b > 0, then −∞ = Φx(0) <
Φx(1/2). Therefore Ñx,a,b = 0 for all a, b ∈ {2, . . . , n} with a ≥ b is necessary for constant
Φx and we assume that this holds in the following. Therefore, Φx simplifies to

Φx(p) = Cx +
n∑
a=1

Ñx,a,1

(
(a− 1) log(1− p)− log

( n∑
k=1

Tx,k q(k, p)
))
.

If there exists a ∈ {2, . . . , n} with Ñx,a,1 > 0, then −∞ = Φx(1) < Φx(1/2) and Φx is not
constant. Furthermore, if Ñx,1,1 > 0, it is necessary for Φx(0) = Φx(1), that Tx,k = 0 for
all k ∈ {2, . . . , n}.

For proving that all critical points of Φx are maxima in Lemma 4.42 below, we need the
following.

Lemma 4.41. For n ∈ N and constants a0, a1, . . . , an > 0 define the function g : [0,∞)→
(0,∞) by

g(x) =
n∑
j=0

aj x
j .

Then it holds

x
(
g′(x)

)2
< g(x)g′(x) + x g(x)g′′(x), for all x ∈ [0,∞).

Proof. We get for the left-hand side of the inequality

x
(
g′(x)

)2 =
n∑

i,j=0

ij aiaj x
i+j−1 <

n∑
i,j=0

i2 + j2

2
aiajx

i+j−1 =
n∑

i,j=0

i2aiajx
i+j−1,

which is a strict inequality, since a0a1 > 0, if aj > 0 for all j ∈ {0, . . . , n} and n ≥ 1. The
right-hand side equals

g(x)g′(x) + x g(x)g′′(x) =
n∑

i,j=0

i aiajx
i+j−1 +

n∑
i,j=0

i(i− 1)aiajxi+j−1.

Therefore the inequality holds.
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Lemma 4.42. The critical points of the function Φx, defined by (4.38), for x ∈ S with
Tx,a > 0 for any a ∈ F are the roots of the polynomial Px, defined in (4.28), that belong to
the interval (0, 1). Furthermore each critical point is a maximum.

Proof. The function Φx is continuous for p ∈ [0, 1] and differentiable for p ∈ (0, 1). The
first derivative of Φx equals for p ∈ (0, 1)

Φ′x(p) =
n∑

a,b=1
a≥b

Ñx,a,b

(
b− 1
p
− a− b

1− p
−
∑n

k=1 Tx,k
∂q
∂p(k, p)∑n

j=1 Tx,j q(j, p)

)
. (4.43)

Since q(k, p) = 1−(1−p)k
p for p > 0 and for all k ∈ {1, . . . , n}, we obtain

Φ′x(p) =
( n∑
k=1

Tx,k(1− (1− p)k)
)−1

[ n∑
a,b=1
a≥b

Ñx,a,b

n∑
k=1

Tx,k(1− (1− p)k)
(
b− ap
p(1− p)

− 1
p

)

−
n∑

a,b=1
a≥b

Ñx,a,b

n∑
k=1

Tx,k

(
k(1− p)k−1 − 1− (1− p)k

p

)]
.

Rearrangement leads to

Φ′x(p) =
(
p(1− p)

n∑
k=1

Tx,k(1− (1− p)k)
)−1

×
n∑

a,b=1
a≥b

Ñx,a,b

n∑
k=1

Tx,k

[
b− ap− b(1− p)k + ap(1− p)k − k p(1− p)k

]
.

Since the binomial theorem says for p ∈ (0, 1) and k ∈ N0

(1− p)k = 1 +
k∑
j=1

(
k

j

)
(−p)j ,

the derivative is

Φ′x(p) =
(
p(1− p)

n∑
k=1

Tx,k(1− (1− p)k)
)−1

×
n∑

a,b=1
a≥b

Ñx,a,b

n∑
k=1

Tx,k

(
− kp+ (ap− b− kp)

k∑
j=1

(
k

j

)
(−p)j

)
. (4.44)

Define the polynomial P̃ with at most degree n by

P̃ (p) :=
n∑

a,b=1
a≥b

Ñx,a,b

[
(b− 1)

n∑
k=1

k Tx,k

+
n∑
k=1

Tx,k

(
b
k−1∑
j=1

(
k

j + 1

)
(−p)j + (a− k)

k∑
j=1

(
k

j

)
(−p)j

)]
.
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Using (4.44) and the definition of P̃ , we get

Φ′x(p) =
(
p(1− p)

n∑
k=1

Tx,k q(k, p))
)−1

P̃ (p). (4.45)

So, all roots of polynomial P̃ in (0, 1) are the critical values of Φx. Using the fact(
k

j + 1

)
=
(
k

j

)
k − j
j + 1

,

and changing the order of summation, we obtain for the polynomial

P̃ (p) =
n∑

a,b=1
a≥b

Ñx,a,b

[
(b− 1)

n∑
k=1

k Tx,k

+ (−p)n Tx,n(a− n) +
n−1∑
j=1

p j(−1)j
n∑
k=j

Tx,k

(
k

j

)(
k − j
j + 1

b+ a− k
)]

.

Therefore the coefficients of P̃ equal the coefficients of Px in (4.28). Thus the critical values
of Φx are the roots of the polynomial Px, that belong to the interval (0, 1).

If Ñx,a,b = 0 for all a, b ∈ F with a ≥ b, or if only Ñx,1,1 > 0 and Tx,a = 0 for all
a ∈ {2, . . . , n}, then the function Φx is constant. In this case each point is critical and a
maximum. In the following, we assume the existence of a pair a, b ∈ F with a ≥ b, such
that Ñx,a,b > 0. If a ≥ 2 then there exists k ∈ {2, . . . , n}, such that Tx,k > 0. If a = 1, we
assume existence of such k, since otherwise Φ is constant. Next, we derive the second order
derivative of Φx for p ∈ (0, 1)

Φ′′x(p) = −
n∑

a,b=1
a≥b

Ñx,a,b

[
b− 1
p2

+
a− b

(1− p)2
+

n∑
k=1

Tx,k
∂2q

∂p2
(k, p)

( n∑
j=1

Tx,j q(j, p)
)−1

−
( n∑
k=1

Tx,k
∂q

∂p
(k, p)

)2( n∑
j=1

Tx,j q(j, p)
)−2

]
. (4.46)

To apply Lemma 4.41, define for j ∈ {0, . . . , n− 1} the sequence

aj :=
n∑

k=j+1

Tx,k.

It is obvious that a0 ≥ a1 ≥ a2 ≥ . . . ≥ an−1 ≥ 0. Since we assumed the existence of
k ∈ {2, . . . , n} with Tx,k > 0, we obtain a0a1 > 0. Hence

ñ = max
{
j ∈ {1, . . . , n− 1} : aj > 0

}
is well-defined and aj = 0 for all j ∈ {ñ+1, . . . , n−1}. Define the function g : [0, 1]→ (0,∞)
by

g(y) =
n∑
k=1

Tx,k

k−1∑
j=0

yj =
ñ∑
j=0

aj y
j . (4.47)
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Using the definition of the function q in (2.35), we obtain

g(1− p) =
n∑
k=1

Tx,k q(k, p). (4.48)

Therefore we get for the second order derivative in (4.46)

Φ′′x(p) = −
n∑

a,b=1
a≥b

Ñx,a,b

(b− 1
p2

+
a− b

(1− p)2
+
g′′(1− p)
g(1− p)

−
(g′(1− p)
g(1− p)

)2)
.

Using that the first order derivative of Φx in (4.43) equals zero at the critical points pc ∈
(0, 1), we obtain

Φ′′x(pc) = −
n∑

a,b=1
a≥b

Ñx,a,b

(b− 1
p2
c

+
b− 1

pc(1− pc)

)

−
n∑

a,b=1
a≥b

Ñx,a,b

(
1

1− pc
g′(1− pc)
g(1− pc)

+
g′′(1− pc)
g(1− pc)

−
(
g′(1− pc)
g(1− pc)

)2
)
. (4.49)

The first summand is smaller than zero, since Ñx,a,b ≥ 0 for all a, b ∈ F with a ≥ b.
Applying Lemma 4.41 and since we assumed that there exists a, b ∈ F with Ñx,a,b > 0, we
see that the second summand is strictly smaller than zero. Therefore each critical point is
a maximum of Φx.

If Φx has no critical point, the maximum is attained at the boundary. Depending on
the observed rating changes and the total time the next lemma shows, which p maximizes
the function Φx.

Lemma 4.50. Fix x ∈ S with Tx,a > 0 for any a ∈ F . Define the function Φx by (4.38)
and the polynomial Px with at most degree n with coefficients cj for j ∈ {1, . . . , n} by (4.28).
Suppose l ∈ {0, . . . , n} is given by l = max

{
j ∈ {0, . . . , n} : ci = 0 for all 0 ≤ i ≤ j − 1

}
.

Then the following holds:

(i) The root of Px in (0, 1) maximizes the function Φx uniquely, if there exists a, b ∈ F
with a > b such that Ñx,a,b > 0 and either there exists a, b ∈ F with a ≥ b ≥ 2 such
that Ñx,a,b > 0 or cl > 0.

(ii) Suppose Ñx,a,b = 0 for all a, b ∈ F with a ≥ b ≥ 2 and Nx,a,1 > 0 for any a ∈
{2, . . . , n}. Furthermore assume cl < 0. Then the unique maximum of Φx is attained
at p = 0.

(iii) Assume Ñx,a,b = 0 for all a, b ∈ F with a > b. If there exists a ≥ 2 with Ñx,a,a > 0
or Ñx,1,1 > 0 and Tx,a > 0 for any a ∈ {2, . . . , n}, then the unique maximum of Φx is
attained at p = 1.

Proof. (i) Assume there exists a, b ∈ F with a > b such that Ñx,a,b > 0. Lemma 4.40
implies Φx is not constant. Since each critical point is a maximum and Φx is not constant,
there can be at most one critical point. Therefore if a root of Px exists in (0, 1), then this
root is unique and it is the unique maximum of Φx with Lemma 4.42. Furthermore the
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4.2. Likelihood estimator for the esc–process

polynomial Px is not constant zero which means cl 6= 0. To show the existence of a root of
Px, we see

Px(1) =
n∑

a,b=1
a≥b

Ñx,a,b

n∑
k=1

Tx,k

[
b

(
k −

k−1∑
j=1

(−1)j+1

(
k

j + 1

))

+ a
k∑
j=1

(−1)j
(
k

j

)
− k − k

k∑
j=1

(−1)j
(
k

j

)]
.

Since the binomial theorem implies

k∑
j=0

(−1)j
(
k

j

)
= 0,

the polynomial, evaluated at one, simplifies to

Px(1) =
n∑

a,b=1
a≥b

(b− a)Ñx,a,b

n∑
k=1

Tx,k. (4.51)

Since there exists a pair a, b ∈ F with a > b, where Ñx,a,b > 0, it is Px(1) < 0. Furthermore,
the value of Px at zero is

Px(0) = c0 =
n∑

a,b=1
a≥b

(b− 1)Ñx,a,b

n∑
k=1

k Tx,k. (4.52)

If there exists a, b ∈ {2, . . . , n} with a ≥ b such that Ñx,a,b > 0, then this is strictly greater
than zero. The continuity of Px and the change of sign in (0, 1) imply that the polynomial
has a root in (0, 1).

If Ñx,a,b = 0 for all a, b ∈ {2, . . . , n}, then P
(j)
x (0) = j! cj = 0 for all j ∈ {0, . . . , l − 1},

where l ≥ 1, because c0 = 0. Using the Taylor formula it exists δ > 0, such that Px(ε) has
the same sign as P (l)

x (0) for all ε ∈ (0, δ). Therefore if cl > 0, then Px(ε) > 0. It follows,
Px has a root in (0, 1), since Px is continuous and Px(1) < 0.

(ii) Suppose Ñx,a,b = 0 for all a, b ∈ F with a ≥ b ≥ 2 and Ñx,a,1 > 0 for any a ≥ 2.
Then analogously to Part (i) we obtain Px(1) < 0, Px(0) = 0 and there exists δ > 0 such
that Px(ε) < 0 for all ε ∈ (0, δ). Assume there exists a root pc ∈ (0, 1) of Px. Then pc is
a maximal point of Φx with Lemma 4.42. Differentiation of Φ′x in (4.45) and evaluating at
pc yields

Φ′′x(pc) = P ′x(pc)
(
pc(1− pc)

n∑
k=1

Tx,kq(k, pc)
)−1

,

since Px(pc) = 0. Therefore P ′x(pc) < 0, since Φ′′x(pc) < 0. Thus there exists δ̃ > 0 such that
Px(pc− ε̃) > 0 for all ε̃ ∈ (0, δ̃). The sign of Px changes in (δ, pc− δ̃) and Px has another root
in (0, 1). This is a contradiction, since there is at most one root of the polynomial Px in
(0, 1). Hence, there is no root of the polynomial in (0, 1) and Φx is maximized for p ∈ {0, 1}.
The definition of Φx in (4.38) implies Φx(1) = −∞, but Φx(0) > −∞, if Ñx,a,b = 0 for all
a, b ∈ F with a ≥ b ≥ 2 and Ñx,a,1 > 0 for any a ≥ 2. Altogether Φx is maximized at zero.
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(iii) Suppose Ñx,a,b = 0 for all a, b ∈ F with a > b. Using (4.43), the derivative of Φx is
for all p ∈ (0, 1) given by

Φ′x(p) =
n∑
a=1

Ñx,a,a

(
a− 1
p
−
∑n

k=1 Tx,k
∂q
∂p(k, p)∑n

j=1 Tx,j q(j, p)

)
,

With definition of q in (2.35) we get

n∑
k=1

Tx,k
∂q

∂p
(k, p) = −

n∑
k=2

Tx,k

k−1∑
j=1

j(1− p)j−1 ≤ 0. (4.53)

If there exists a ≥ 2, such that Ñx,a,a > 0, then Φ′x(p) > 0 for p ∈ (0, 1) and p = 1
maximizes the continuous function Φx.

Suppose Ñx,a,b = 0 for all a, b ∈ F with a ≥ 2. Using (4.43) and (4.53) it follows for all
p ∈ (0, 1)

Φ′x(p) = −Ñx,1,1

∑n
k=1 Tx,k

∂q
∂p(k, p)∑n

j=1 Tx,j q(j, p)
> 0.

If there exists k ≥ 2 with Tx,k > 0 and Ñx,1,1 > 0, then p = 1 maximizes Φx.

Altogether, we sum up the results of this subsection to prove Theorem 4.27.

Proof of Theorem 4.27. The maximum likelihood estimators are the maxima of the function
logLc : Θc → R ∪ {−∞} given by

logLc(θ) =
m∑
k=1

log νc
nk

(
{z0(ωk)}

)
+
∑
x∈S

Lx(θx),

where θ = (θx)x∈S with θx = (µx,1, . . . , µx,x−1, µx,x+1, . . . , µx,K , px) and Lx : [0,∞)K−1 ×
[0, 1]→ R ∪ {−∞} is given by (4.34).

If Tx,a = 0 for all a ∈ F , then Nx,y,a,b = 0 for all y ∈ S \ {x} and a, b ∈ F with a ≥ b.
Therefore Lx ≡ 0 and each θx ∈ [0,∞)K−1 × [0, 1] maximizes Lx, that shows Part (i) of
Theorem 4.27.

Assume there exists a ∈ F such that Tx,a > 0. By Lemma (4.36) the maxima θ̂x of Lx
are in the set

θ̂x ∈
{(
ϕx,1(p), . . . , ϕx,x−1(p), ϕx,x+1(p), . . . , ϕx,K(p), p

)
: p ∈ [0, 1]

}
,

where ϕx,y is given by (4.37). Therefore it is sufficient to maximize the function Φx :
[0, 1]→ R ∪ {−∞} given by

Φx(p) : = Lx (ϕx,1(p), . . . , ϕx,x−1(p), ϕx,x+1(p), . . . , ϕx,K(p), p) ,

to find the maxima of Lx. By Lemma 4.40 and Lemma 4.50 the maxima of Φ are given by
Part (ii) - (v) of Theorem 4.27. Furthermore, for each x ∈ S the function Lx is finite, since
Φ is either uniquely maximized by Lemma 4.50, or constant by Lemma 4.40, but greater
than −∞. Therefore if θ̂ = (θ̂x)x∈S maximizes logLc, then θ̂x maximizes Lx for each x ∈ S,
which concludes the proof.
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Chapter 5

Asymptotic properties of the
estimator

In Chapter 4 we proved the maximum likelihood estimators for the extended strongly cou-
pled random walk process. In the following we show consistency and asymptotic normality
of the estimator. For proving consistency we maximize a function which is similar to the
log-likelihood function in (4.33). Hence, we state the maximization result in the following
theorem for slightly more general functions.

Theorem 5.1. Let n ∈ N be a natural number and define the set F = {1, . . . , n}. For
each a, b ∈ F with a ≥ b and x, y ∈ S with x 6= y define constants CN

x,y,a,b ∈ [0,∞) and
CT
x,a ∈ [0,∞). Suppose C̃N

x,a,b =
∑

y∈S\{x}C
N
x,y,a,b for each a, b ∈ F with a ≥ b and x ∈ S.

Furthermore we assume that if there exists b ∈ F with a ≥ b such that C̃N
x,a,b > 0, then

CT
x,a > 0 for a ∈ F and x ∈ S. For each x ∈ S we define the constants

c0(x) =
n∑

a,b=1
a≥b

(b− 1)C̃N
x,a,b

n∑
k=1

k CT
x,k

and for j ∈ {1, . . . , n}

cj(x) = (−1)j
n∑

a,b=1
a≥b

C̃N
x,a,b

n∑
k=j

(
k

j

)(k − j
j + 1

b+ a− k
)
CT
x,k.

Define the index lx ∈ {0, . . . , n} by lx = max
{
j ∈ {0, . . . , n} : ci(x) = 0, for 0 ≤ i ≤ j − 1

}
.

For each x ∈ S let gx : [0,∞)K−1 × [0, 1]→ R ∪ {−∞} be a function with

gx(θx) =
∑
y∈S
x 6=y

n∑
a,b=1
a≥b

CN
x,y,a,b

[
logµxy + (b− 1) log px + (a− b) log(1− px)

]

− µx
n∑
a=1

CT
x,a q(a, px),

where θx = (µx,1, . . . , µx,x−1, µx,x+1, . . . , µx,K , px). If there exists a ∈ F with CTx,a > 0, then
define the function θ̂x : [0, 1]→ [0,∞)K−1 × [0, 1] by

θ̂x(p) = (ϕx,1(p), . . . , ϕx,x−1(p), ϕx,x+1(p), . . . , ϕx,K(p), p),
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Chapter 5. Asymptotic properties of the estimator

where for each y ∈ S with x 6= y the function ϕxy : [0, 1]→ [0,∞) is given by

ϕxy(p) :=
n∑

a,b=1
a≥b

CN
x,y,a,b

( n∑
k=1

CT
x,k q(k, p)

)−1
.

Then the following holds:

(i) The function gx is finite at the maximal points.

(ii) Suppose there exists a, b ∈ F with a > b such that C̃N
x,a,b > 0 and a, b ∈ F with

a ≥ b ≥ 2 such that C̃N
x,a,b > 0. Then gx(θ̂x(·)) : [0, 1]→ R has a unique critical point

p̂ in (0, 1), which is the unique maximum. Furthermore θ̂x(p̂) maximizes the function
gx uniquely.

(iii) Suppose there exists a ∈ F with a ≥ 2 such that C̃N
x,a,1 > 0 and C̃N

x,a,b = 0 for all
a, b ∈ F with a ≥ b ≥ 2. Then gx is uniquely maximized at θ̂x(p̂) for p̂ ∈ [0, 1). If
clx < 0, then p̂ = 0.

(iv) Suppose there exists a ∈ F with a ≥ 2 such that C̃N
x,a,a > 0 and C̃N

x,a,b = 0 for all
a, b ∈ F with a > b. Then the unique maximum of gx is at θ̂x(1).

Proof. (i) Obviously. (ii)-(iv) Apply Remark 4.35, Lemma 4.42 and Lemma 4.50.

5.1 Consistency of the maximum likelihood estimator

In this section we show the consistency of the likelihood estimators. We assume that the
observed paths, given by Definition 4.20, follow a true distribution Pθ0 , which is unknown
and estimate the true parameter θ0 ∈ Θc =

(
[0,∞)K−1 × [0, 1]

)K . Then the estimated
parameters converge almost surely to θ0, if the number of observed sample paths increases.

For each θ ∈ Θc let η be a random observed path in the esc–process, where the space
of the sample path is given by O = N× (0,∞)× S, defined in (4.1), and density hc

θ, given
by Definition 4.20. For each n ∈ N and T ∈ (0,∞) let ωn,T be a random sample path in
Sn with density f c

n(·, T ). By Lemma 4.19 the random path ωn,T has the distribution of a
sample path of the Markov process (Xc

t,n)t≥0 until time T . Denote by Eθ[·] the expectation,
where the paths η, resp. ωn,T , have density hc

θ, resp. f c
n(·, T ; θ) for each n ∈ N and T > 0.

In this chapter we always assume the following.

Assumption 5.2. We assume the probability measure PN is concentrated on {1, . . . , Ñ}
with Ñ ∈ N, i. e. PN (n) = 0 for n > Ñ . Furthermore the probability measure ξ satisfies∫ ∞

0
T ξ(dT ) <∞. (5.3)

Remark 5.4. For real observations this assumption is a weak restriction. We assume that
the size of the industries is bounded by Ñ . Furthermore a random variable with distribution
ξ has a finite first moment.

Lemma 5.5. Let F : N× (0, T )× S → R be a P(N)⊗ B
(
(0,∞)

)
⊗ C-measurable function

and be non-negative or F (η) is integrable. Then for all θ ∈ Θc holds

Eθ
[
F (η)

]
=
∞∑
n=1

PN (n)
∫ ∞

0
Eθ
[
F (n, T, ωn,T )

]
ξ(dT ).
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Proof. Using Fubini’s Theorem and the definition of the density hc
θ in Definition 4.20 we

obtain

Eθ
[
F (η)

]
=
∞∑
n=1

PN (n)
∫ ∞

0

∫
S
F (n, T, ω)f c

n(ω, T ; θ)σ(dω) ξ(dT )

=
∞∑
n=1

PN (n)
∫ ∞

0

∫
Sn
F (n, T, ω)f c

n(ω, T ; θ)σn(dω) ξ(dT ).

Next, we show a connection between the expected number of transitions and the ex-
pected waiting time, and afterwards, the finiteness of these two.

Lemma 5.6. Let θ be in the parameter set Θc, n ∈ N be the number of firms and T > 0 be
the length of the path. Then for each x, y ∈ S with x 6= y and a, b ∈ N with a ≥ b

Eθ
[
N

(ωn,T )
x,y,a,b

]
=
(
a

b

)
µxyp

b−1
x (1− px)a−b Eθ

[
T

(ωn,T ,T )
x,a

]
. (5.7)

For each xi, yi ∈ S with xi 6= yi and ai, bi ∈ N with ai ≥ bi for i = 1, 2 define the function
Si : S × (0,∞)→ R by

Si(ω, T ) = N
(ω)
xi,yi,ai,bi

−
(
ai
bi

)
µxiyip

bi−1
xi (1− pxi)ai−bi T (ω,T )

xi,ai , (5.8)

for (ω, T ) strongly feasible, defined in 4.4, and Si(ω, T ) = 0 otherwise. Then we obtain

Eθ
[
S1(ωn,T , T )S2(ωn,T , T )

]
=


Eθ
[
N

(ωn,T )
x1,y1,a1,b1

]
, if x1 = x2, y1 = y2,

a1 = a2 and b1 = b2,
0, otherwise.

Proof. Suppose xi, yi ∈ S with xi 6= yi and ai, bi ∈ N with ai ≥ bi for i = 1, 2. Let

ω = ((z0, t0), . . . , (zl−1, tl−1), zl)

be an arbitrary path in Sn, where l ∈ N0, zi ∈ Sn for all i ∈ {0, . . . , l} and ti ∈ (0, T ) for
all i ∈ {0, . . . , l− 1}, such that (ω, T ) is strongly feasible. Define the number of transitions
Nzz̃(ω) from z ∈ Sn to z̃ ∈ Sn with z 6= z̃ by

Nzz̃(ω) = #{0 ≤ k ≤ l − 1 : zk = z, zk+1 = z̃}

and the total time Tz(ω, T ) of ω spending in z ∈ Sn until T by

Tz(ω, T ) =
l−1∑
k=0

tk1{zk=z} + (T −
l−1∑
k=0

tk)1{zl=z}. (5.9)

Albert shows in Theorem 5.1, that for the Markov jump process Xc
n with Q-matrix Qc,θ

n

and random sample path ωn,T

Eθ
[
Nzz̃(ωn,T )

]
= Qc,θ

n (z, z̃) Eθ
[
Tz(ωn,T , T )

]
, for each z, z̃ ∈ Sn with z 6= z̃. (5.10)
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Define the set Zi ⊂ Sn of states, where ai firms have rating xi, by

Zi = {z ∈ Sn : axi(z) = ai}, for i = 1, 2.

For each z ∈ Zi we define the set Z ′i, where bi firms change the rating from xi to yi, by

Z ′i(z) =
{
z̃ ∈ Sn : z → z̃ strongly feasible,

bi = #
{
j ∈ {1, . . . , n} : z(j) = xi, z̃(j) = yi

}}
, for i = 1, 2.

Using this definition and (5.10), we obtain

Eθ[N
(ωn,T )
x1,y1,a1,b1

] =
∑
z∈Z1

∑
z̃∈Z′1(z)

Eθ[Nzz̃(ωn,T )] =
∑
z∈Z1

∑
z̃∈Z′1(z)

Qc,θ
n (z, z̃)Eθ[Tz(ωn,T , T )]. (5.11)

The definition of Qc,θ
n in (2.34) implies

Eθ[N
(ωn,T )
x1,y1,a1,b1

] =
(
a1

b1

)
µx1y1p

b1−1
x1

(1− px1)a1−b1
∑
z∈Z1

Eθ[Tz(ωn,T , T )].

With the definition of T (ω,T )
x1,a1 in (4.17) for strongly feasible (ω, T ) ∈ S × (0,∞), it follows

T (ω,T )
x1,a1

=
∑
z∈Z1

Tz(ω, T ), (5.12)

which concludes the proof of (5.7).
To show the second equation, Theorem 5.1 of Albert says for each zi ∈ Zi and z̃i ∈ Z ′i(zi)

for i = 1, 2

Eθ
[(
Nz1z̃1(ωn,T )−Qc,θ

n (z1, z̃1)Tz1(ωn,T , T )
)(
Nz2z̃2(ωn,T )−Qc,θ

n (z2, z̃2)Tz2(ωn,T , T )
)]

=
{
Qc,θ
n (z1, z̃1)E[Tz1(ωn,T , T )], if z1 = z2, z̃1 = z̃2,

0, otherwise.
(5.13)

Therefore Eθ[S1S2] is only non-zero, if x1 = x2, y1 = y2, a1 = a2 and b1 = b2, since
otherwise z1 6= z2 or z̃1 6= z̃2 for all zi ∈ Zi and z̃i ∈ Z ′i(zi). Using (5.12) and (5.13), we
obtain

Eθ
[
S2

1(ωn,T , T )
]

=
∑
z1∈Z1

∑
z̃1∈Z′1(z1)

Eθ
[(
Nz1,z̃1(ωn,T )−Qc,θ

n (z1, z̃1)Tz1(ωn,T , T )
)2 ]

=
(
a1

b1

)
µx1y1p

b1−1
x1

(1− px1)a1−b1Eθ
[
T

(ωn,T ,T )
x1,a1

]
.

Corollary 5.14. Let θ be in the parameter set Θc. Then for each x, y ∈ S with x 6= y and
a, b ∈ N with a ≥ b

Eθ
[
N

(η)
x,y,a,b

]
=
(
a

b

)
µxyp

b−1
x (1− px)a−b Eθ

[
T (η)
x,a

]
. (5.15)
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For each xi, yi ∈ S with xi 6= yi and ai, bi ∈ N with ai ≥ bi for i = 1, 2 we obtain

Eθ
[
S1(η)S2(η)

]
=


Eθ
[
N

(η)
x1,y1,a1,b1

]
, if x1 = x2, y1 = y2,

a1 = a2 and b1 = b2,
0, otherwise,

(5.16)

where Si is defined in (5.8).

Proof. Apply Lemma 5.5 and 5.6.

Remark 5.17. We use e. g. Eθ
[
N

(η)
x,y,a,b

]
as abbreviation of Eθ

[
N
π(η)
x,y,a,b

]
, where

π : N× (0,∞)× S → S, with π(n, T, ω) = ω

is the projection in the third coordinate.

Lemma 5.18. Suppose the assumptions in 5.2 holds. Let θ0 be in the parameter set Θc.
Then we obtain for the random sample path η with density hc

θ0
the following.

(i) Eθ0
[
T

(η)
x,a

]
<∞, for all x ∈ S and a ∈ N,

(ii) Eθ0 [N (η)
x,y,a,b] <∞, for all x, y ∈ S with x 6= y and a, b ∈ N with a ≥ b.

(iii) Eθ0
[
|log hc

θ(η)|
]
<∞, for all θ ∈ Θc.

Proof. (i) The waiting time T
(ω,T )
x,a is for all (ω, T ) ∈ S × (0,∞) bounded by the total

observation time T . With Lemma 5.5 we see

Eθ0
[
T (η)
x,a

]
=
∞∑
n=1

PN (n)
∫ ∞

0
Eθ0
[
T

(ωn,T ,T )
x,a

]
ξ(dT ) ≤

∫ ∞
0

T ξ(dT ) <∞.

(ii) Apply Corollary 5.14 and Part (i).
(iii) Since the sets Sn are pairwise disjoint for n ∈ N, we estimate with the definition of

the density hc
θ in Definition 4.20 and the definition of f c

n in Lemma 4.19

Eθ0
[
|log hc

θ(η)|
]

=
Ñ∑
n=1

PN (n)
∫ ∞

0

∫
Sn
|log (f c

n(ω, T ; θ))| f c
n(ω, T ; θ0)σn(dω) ξ(dT )

≤
Ñ∑
n=1

PN (n)
∫ ∞

0

∫
Sn

∣∣log νc
n

(
{z0(ω)}

)∣∣ f c
n(ω, T ; θ0)σn(dω) ξ(dT )

+
∑
x∈S

µx

Ñ∑
a=1

q(a, px)Eθ0
[
T (η)
x,a

]
+
∑
x,y∈S
x 6=y

Ñ∑
a,b=1
a≥b

∣∣∣log
(
µxyp

b−1
x (1− px)a−b

)∣∣∣ Eθ0
[
N

(η)
x,y,a,b

]
.

The second and third summands are finite, since Eθ0 [T (η)
x,a ] and Eθ0 [N (η)

x,y,a,b] are finite. For
the first summand we show that the integrand is bounded. Define for each n ∈ N the set
S̃ := {z ∈ Sn : νc

n({z}) > 0}. Then for each ω ∈ Sn with f c
n(ω, T ; θ0) > 0, the first entry

z0(ω) of ω is in S̃. Therefore there exists a constant Cn ∈ [0,∞) for each n ∈ N, such that
for all T > 0 and ω ∈ Sn with f c

n(ω, T ; θ0) > 0∣∣ log νc
n({z0(ω)})

∣∣ ≤ max
z∈S̃

∣∣ log νc
n({z})

∣∣ =: Cn <∞.
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To show asymptotic consistency, we first show, which parameters θ ∈ Θc identify the
law of the sample paths.

Lemma 5.19. Suppose the assumption in 5.2 holds. Define the subset Θid ⊂ Θc of the
parameters by

Θid =
{
θ = (θx)x∈S ∈ Θc :

Ñ∑
a=2

Eθ[T (η)
x,a ] > 0, and µx =

∑
y∈S\{x}

µxy > 0, for all x ∈ S,

where θx = (µx,1, . . . , µx,x−1, µx,x+1, . . . , µx,K , px)
}
. (5.20)

Then the parameters in Θid are identifiable, i. e., if Pθ = Pθ̃ for θ, θ̃ ∈ Θid, then θ = θ̃,
where Pθ, resp. Pθ̃, is the distribution of the random sample path η with density hc

θ, resp.
hc
θ̃
.

Proof. Suppose θ = (θx)x∈S ∈ Θid with θx = (µx,1, . . . , µx,x−1, µx,x+1, . . . , µx,K , px) and
θ̃ = (θ̃x)x∈S ∈ Θid with θ̃x = (µ̃x,1, . . . , µ̃x,x−1, µ̃x,x+1, . . . , µ̃x,K , p̃x), such that Pθ = Pθ̃. Let
x be in S arbitrary. Since θ ∈ Θid and T (η)

x,a ≥ 0 for all a ∈ N, there exists an a ∈ {2, . . . , Ñ}
with Eθ[T

(η)
x,a ] > 0. Since Pθ = Pθ̃, we have

Eθ
[
T (η)
x,a

]
= Eθ̃

[
T (η)
x,a

]
and Eθ

[
N

(η)
x,y,a,b

]
= Eθ̃

[
N

(η)
x,y,a,b

]
,

for all y ∈ S with x 6= y and b ≤ a. These equations and Corollary 5.14 imply for b = 1

µxy(1− px)a−1 = µ̃xy(1− p̃x)a−1, for all y ∈ S with x 6= y, (5.21)

and for b = a
µxyp

a−1
x = µ̃xyp̃

a−1
x , for all y ∈ S with x 6= y. (5.22)

First, suppose px = 1. With (5.21) and using the fact µ̃x > 0, we obtain (1 − p̃x)a−1 = 0
and therefore p̃x = 1. It follows immediately µxy = µ̃xy for all y ∈ S using (5.22). Now,
suppose px ∈ [0, 1). Rearrangement of (5.21) yields

µxy = µ̃xy

(1− p̃x
1− px

)a−1
, for all y ∈ S with x 6= y.

Substituting this into equation (5.22), implies px = p̃x, since µ̃x > 0. With (5.21) it follows
µxy = µ̃xy for all y ∈ S.

Remark 5.23. If PN (1) = 1, then the identifiable set Θid is empty. Since there is almost
surely only a single firm observable, the law of the sample paths does not depend on the
choice of px for all x ∈ S. Therefore the estimator for px can arbitrarily be chosen and does
not converge to the true estimator, if we increase the number of sample path. In this case
consistency and asymptotic normality does not hold.

The parameter is identifiable, if the expected time is positive, that more than one firm
has rating x, for all x ∈ S. To ensure that, the following lemma shows an intuitive condition
on the parameters.

Definition 5.24. Let x and y be two rating classes in S. We call y accessible from x, if
there exist m ∈ N and x0, . . . , xm ∈ S with x0 = x and xm = y, such that

m∏
i=1

µxi−1,xi > 0.
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5.1. Consistency of the maximum likelihood estimator

Lemma 5.25. Let x be an arbitrary rating class in S. Assume θ = (θx)x∈S ∈ Θc with θx =
(µx,1, . . . , µx,x−1, µx,x+1, . . . , µx,K , px). Furthermore suppose PN (n) > 0 for n ∈ N. If there
exists z0 ∈ Sn with νc

n({z0}) > 0, such that there are two different firms j1, j2 ∈ {1, . . . , n},
where either z0(ji) = x or x is accessible from z0(ji) for i = 1, 2, then

∑∞
a=2 Eθ[T

(η)
x,a ] > 0.

Proof. Based on the assumptions there exists a sequence of rating classes y0, . . . , ym ∈ S
for m ≥ 0 with y0 = z0(j1) and ym = x, such that

m∏
i=1

µyi−1yi > 0.

Define zi ∈ Sn for i ∈ {1, . . . ,m} inductively. Set zi(j1) = yi and zi(k) = zi−1(k) for k 6= j1,
if pyi−1 ∈ [0, 1). Otherwise define zi(k) = yi for all k ∈ {1, . . . , n} with zi−1(k) = yi−1 and
zi(k) = zi−1(k) otherwise.

If zm(j2) = x, set m′ = m. Otherwise, there exist ym, . . . , ym′ ∈ S for m′ > m with
ym = zm(j2), yi 6= x for i ∈ {m+ 1, . . . ,m′ − 1} and ym′ = x, such that

m′∏
i=m+1

µyi−1yi > 0.

This is possible, since either zm(j2) = z0(j2) or zm(j2) = yi with i ∈ {1, . . . ,m}. Define
zi ∈ Sn for i ∈ {m + 1, . . . ,m′} inductively, as above. Then zm′(k) = x for at least two
k ∈ {1, . . . , n}, i. e. ax(zm′) ≥ 2.

For each T > 0 define the set C(T ) ⊂ Sn of paths by

C(T ) =
{
ω =

(
(z0, t0), . . . , (zm′−1, tm′−1), zm′

)
: ti ∈ (0, T ) and

m′−1∑
i=0

ti < T
}
.

Then the measure σn
(
C(T )

)
> 0 and the paths (ω, T ) with ω ∈ C(T ) are strongly feasible.

Let bi = byi(zi, zi+1) be the number of firms, which change the rating, in the transition zi
to zi+1, and ai = ayi(zi) the number of firms with rating yi in state zi for i ∈ {0, . . . ,m′}.
Then the density of the path ωn,T of the process (Xc

t,n)t∈[0,T ) equals for each ω ∈ C(T )

f c
n(ω, T ; θ) = νc

n({z0(ω)}) exp
{
−
∑
x̃∈S

µx̃

n∑
k=1

T
(ω,T )
x̃,k q(k, px̃)

}

×
m′−1∏
i=0

µyiyi+1p
bi−1
yi (1− pyi)ai−bi > 0,

since bi = 1, if pyi = 0, and bi = ai, if pyi = 1, for all i ∈ {0, . . . ,m′ − 1}. The construction
of the set C(T ) implies

T
(ω,T )
x,ax(zm′ )

≥ T −
m′−1∑
i=0

ti > 0, for all ω ∈ C(T ).

See Lemma 5.5 to conclude

Eθ[T
(η)
x,ax(zm′ )

] ≥ PN (n)
∫ ∞

0

∫
C(T )

T
(ω,T )
x,ax(zm′ )

f c
n(ω, T ; θ)σn(dω) ξ(dT ) > 0.
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Chapter 5. Asymptotic properties of the estimator

To show that the maximum likelihood estimators converge to the true parameter al-
most surely, we use a modification of [54, Chapter 5, Lemma 5.10], where we replace the
convergence in probability by almost sure convergence.

Lemma 5.26. Let (Ω,F ,P) be a probability space and I ⊂ R be a real interval. Let
ψn : I × Ω → R be measurable functions for each n ∈ N and ψ : I → R be a deterministic
function, such that ψn(x) converges almost surely to ψ(x) for n → ∞ for each x ∈ I.
Assume x 7→ ψn(x, ω) is almost surely continuous and has exactly one root at xn(ω) for
almost every ω ∈ Ω. Let x0 ∈ I be a point such that there exists δ > 0 with x0 − δ ∈ I and
x0 + δ ∈ I and ψ(x0 − ε) < 0 < ψ(x0 + ε) for all ε ∈ (0, δ ].

Then xn → x0 almost surely for n→∞.

Proof. Since x 7→ ψn(x, ω) is almost surely continuous and the root xn(ω) is unique, xn :
Ω → I is well-defined and measurable. Suppose ε ∈ (0, δ ] arbitrary. Since ψn converges
almost surely to ψ and ψ(x0− ε) < 0 < ψ(x0 + ε), there exists n0 ∈ N with ψn(x0− ε, ω) <
0 < ψn(x0 + ε, ω) for all n ≥ n0 and almost every ω ∈ Ω. Using the continuity of ψn(x, ω)
in x, it follows for the root xn that x0 − ε < xn(ω) < x0 + ε for almost every ω ∈ Ω.

Lemma 5.27. Let θ0 = (θ0
x)x∈S ∈ Θid with

θ0
x = (µ0

x,1, . . . , µ
0
x,x−1, µ

0
x,x+1, . . . , µ

0
x,K , p

0
x) for each x ∈ S,

be the true parameter. Suppose (nj , Tj , ωj) ∈ N × (0,∞) × S for j ∈ N are independent
realizations of the sample path η with density hc

θ0
and assume hc

θ0
(nj , Tj , ωj) > 0. Define

for each x ∈ S and a, b ∈ N with a ≥ b

M0(x, a, b) =
∑
y∈S
x 6=y

Eθ0
[
N

(η)
x,y,a,b

]
, and Mm(x, a, b) =

∑
y∈S
x 6=y

m∑
j=1

N
(ωj)
x,y,a,b.

Then the following holds:

(i) Suppose p0
x ∈ (0, 1) for x ∈ S. Then there exists a ∈ {2, . . . , Ñ} and m0 ∈ N such

that Mm(x, a, b) > 0 a. s. for all m ≥ m0 and M0(x, a, b) > 0 for all b ∈ {1, . . . , a}.

(ii) Suppose p0
x = 0 for x ∈ S. Then M0(x, a, b) = 0 and Mm(x, a, b) = 0 a. s. for all

a, b ∈ N with a ≥ b ≥ 2 and m ∈ N. Furthermore there exists a ∈ {2, . . . , Ñ} and
m0 ∈ N such that Mm(x, a, 1) > 0 a. s. for all m ≥ m0 and M0(x, a, 1) > 0.

(iii) Suppose p0
x = 1 for x ∈ S. Then M0(x, a, b) = 0 and Mm(x, a, b) = 0 a. s. for all

a, b ∈ N with a > b and m ∈ N. Furthermore there exists a ∈ {2, . . . , Ñ} and m0 ∈ N
such that Mm(x, a, a) > 0 a. s. for all m ≥ m0 and M0(x, a, a) > 0.

Proof. Using the connection between the expected number of rating transitions and the
waiting times in Corollary 5.14 we obtain for all x ∈ S and a, b ∈ N with a ≥ b

M0(x, a, b) =
(
a

b

)
µ0
x(p0

x)b−1(1− p0
x)a−bEθ0

[
T (η)
x,a

]
.

Suppose p0
x = 0. Therefore M0(x, a, b) = 0 and Mm(x, a, b) = 0 a. s. for all a, b ∈ N with

a ≥ b ≥ 2 and for all m ∈ N using the strong law of large numbers and the non-negativity
of N (ω)

x,y,a,b. Since θ0 ∈ Θid, there exists ã ∈ N with ã ≥ 2 such that Eθ0
[
T

(η)
x,ã

]
> 0. It follows

M0(x, ã, 1) > 0 and there exists m0 ∈ N such that Mm(x, ã, 1) > 0 a. s. for all m ≥ m0.
The remaining follows in an analogous way.
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5.1. Consistency of the maximum likelihood estimator

After the preparing lemmata we show the strong consistency of the maximum likelihood
estimators.

Theorem 5.28. Assume the assumption in 5.2 holds. Suppose the true parameter θ0 is in
the identifiable parameter set Θid, which is given by (5.20). Let (nj , Tj , ωj) ∈ N×(0,∞)×S
for j ∈ N, be independent realizations of the sample path η with density hc

θ0
, given by

Definition 4.20, and assume hc
θ0

(nj , Tj , ωj) > 0. For each m ∈ N let θm = (θmx )x∈S with

θmx = (µmx,1, . . . , µ
m
x,x−1, µ

m
x,x+1, . . . , µ

m
x,K , p

m
x ) for each x ∈ S,

be a maximum likelihood estimator for the paths (nj , Tj , ωj) for j ∈ {1, . . . ,m}, i. e., θmx
maximizes Lmx given by (4.34) for each x ∈ S.

Then the estimators θm are strongly asymptotically consistent, i. e.

θm → θ0, a. s. for m→∞.

Proof. Define the entries of θ0 = (θ0
x)x∈S by

θ0
x = (µ0

x,1, . . . , µ
0
x,x−1, µ

0
x,x+1, . . . , µ

0
x,K , p

0
x) for each x ∈ S.

Furthermore define M0(x, a, b) and Mm(x, a, b) for each x ∈ S, a, b ∈ N with a ≥ b and
m ∈ N as in Lemma 5.27. For asymptotical consistency, we show for each x, y ∈ S with
x 6= y, that µmxy converges a. s. to µ0

xy for m tending to infinity and pmx converges a. s. to p0
x.

Van der Vaart proves in [54, Chapter 5, Lemma 5.35], that the true parameter maximizes
the function L0 : Θid → R defined by

L0(θ) := Eθ0
[

log hc
θ(η)

]
, (5.29)

which is well-defined with Lemma 5.18. Analogously to the proof of Lemma 5.18, Part (iii),
we obtain for each θ = (θx)x∈S with θx = (µx,1, . . . , µx,x−1, µx,x+1, . . . , µx,K , px)

L0(θ) = C +
∑
x∈S

L0
x(θx),

where |C| <∞ is independent of θ and for each x ∈ S the function L0
x : [0,∞)K−1×[0, 1]→

R is given by

L0
x(θx) =

∑
y∈S\{x}

Ñ∑
a,b=1
a≥b

Eθ0
[
N

(η)
x,y,a,b

]
(logµxy + (b− 1) log px + (a− b) log(1− px))

− µx
Ñ∑
a=1

Eθ0
[
T (η)
x,a

]
q(a, px). (5.30)

If
∑

y∈S\{x} Eθ0 [N (η)
x,y,a,b] > 0 for a, b ∈ {1 . . . , Ñ} and x ∈ S, then Eθ[T

(η)
x,a ] > 0 by Corol-

lary 5.14. Theorem 5.1 implies L0
x is finite at the maximal points for each x ∈ S. Therefore

if L0
x is uniquely maximized, then the maximum is at θ0

x by [54, Lemma 5.35]. Analogous
argumentation yields that the maximum of Lmx is a. s. at θmx if the maximal point is unique.
In the following we show the almost sure convergence of the maximal points of Lmx to the
maximal points of L0

x for each x ∈ S.
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Chapter 5. Asymptotic properties of the estimator

Fix x ∈ S. Since θ0 ∈ Θid there exists aT ∈ N with aT ≥ 2 such that Eθ0
[
T

(η)

x,aT

]
> 0

and there exists m0 ∈ N such that
∑m

j=1 T
(ωj ,Tj)

x,aT
> 0 a. s. for all m ≥ m0. Define for each

x, y ∈ S with x 6= y the function ϕ0
xy : [0, 1]→ [0,∞) by

ϕ0
xy(p) =

( Ñ∑
a,b=1
a≥b

Eθ0
[
N

(η)
x,y,a,b

])( Ñ∑
a=1

Eθ0
[
T (η)
x,a

]
q(a, p)

)−1
, (5.31)

and the vector θ̂0
x(p) = (ϕ0

x,1(p), . . . , ϕ0
x,x−1(p), ϕ0

x,x+1(p), . . . , ϕ0
x,K(p), p). For each m ∈ N

and x, y ∈ S with x 6= y define

ϕmxy(p) =
( Ñ∑
a,b=1
a≥b

m∑
j=1

N
(ωj)
x,y,a,b

)( Ñ∑
a=1

m∑
j=1

T
(ωj ,Tj)
x,a q(a, p)

)−1
,

and the vector θ̂mx (p) = (ϕmx,1(p), . . . , ϕmx,x−1(p), ϕmx,x+1(p), . . . , ϕmx,K(p), p).
By Lemma 5.27 and Theorem 5.1 L0

x is uniquely maximized at θ̂0
x(p0

x) which is θ0
x.

Furthermore there exists m0 ∈ N such that Lmx is uniquely maximized at θ̂mx (pmx ) = θmx
a. s. for each m ≥ m0. If pmx converges to p0

x a. s., then µmxy = ϕmxy(p
m
x ) converges a. s. to

ϕ0
xy(p

0
x) = µ0

xy for m tending to infinity for each y ∈ S with x 6= y using the strong law of
large numbers.

Assume p0
x ∈ (0, 1). To show the almost sure convergence of pmx to p0

x, we verify the
assumptions of Lemma 5.26. Define the deterministic function Φ : [0, 1]→ R by

Φ(p) =
∂L0

x(θ̂0
x(p))

∂p
=

Ñ∑
a,b=1
a≥b

∑
x,y∈S
x 6=y

Eθ0
[
N

(η)
x,y,a,b

](b− 1
p
− a− b

1− p
−
∑Ñ

k=1 Eθ0
[
T

(η)
x,k

]
∂
∂pq(k, p)∑Ñ

j=1 Eθ0 [T (η)
x,j ]q(j, p)

)
.

Since p0
x ∈ (0, 1), the continuous differentiable function L0

x(θ̂x(p)) has a unique maximum
at p0

x by Lemma 5.27, Theorem 5.1 and [54, Lemma 5.35]. That implies for Φ, that there
exists δ > 0, such that

Φ(p0
x + ε) < 0 < Φ(p0

x − ε), for all ε ∈ (0, δ ].

Analogously define for each m ∈ N the stochastic function Φm : [0, 1]→ R by

Φm(p) =
∂Lmx (θ̂mx (p))

∂p

=
Ñ∑

a,b=1
a≥b

∑
x,y∈S
x 6=y

m∑
i=1

N
(ωi)
x,y,a,b

(b− 1
p
− a− b

1− p
−
∑Ñ

k=1

∑m
j=1 T

(ωj ,Tj)
x,k

∂
∂pq(k, p)∑Ñ

l=1

∑m
j=1 T

(ωj ,Tj)
x,l q(l, p)

)
.

It follows Φm(p)/m → Φ(p) a. s. for m → ∞ for each p ∈ (0, 1). Since p0
x ∈ (0, 1), there

exists m0 ∈ N such that Mm(x, aT , b) > 0 a. s. for each b ≤ aT and m ≥ m0 by Lemma
5.27. Using Theorem 5.1 the continuous differentiable function Lmx (θ̂mx (p)) has a unique
critical point which is the maximum. Therefore Φm has the unique root at pmx . Altogether
by Lemma 5.26, we obtain pmx → p0

x almost surely for m→∞.
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5.1. Consistency of the maximum likelihood estimator

Assume p0
x = 0. For each m ∈ N define the constant

cm0 =
Ñ∑

a,b=1
a≥b

(b− 1)
m∑
j=1

∑
y∈S
x 6=y

N
(ωj)
x,y,a,b

Ñ∑
k=1

k

m∑
l=1

T
(ωl,Tl)
x,k .

By Lemma 5.27 Mm(x, a, b) = 0 a. s for all a, b ∈ N with a ≥ b ≥ 2 and m ∈ N. Therefore
we obtain cm0 = 0 a. s. for all m ∈ N. For each m ∈ N define the constant

cm1 = −1
2

Ñ∑
a=1

m∑
j=1

∑
y∈S
x 6=y

N
(ωj)
x,y,a,1

Ñ∑
k=1

k(2a− k − 1)
m∑
l=1

T
(ωl,Tl)
x,k .

Using the strong law of large numbers we obtain

cm1
m2
→ 1

2

Ñ∑
a=1

∑
y∈S
x 6=y

Eθ0
[
N

(η)
x,y,a,1

] Ñ∑
k=1

k(2a− k − 1)Eθ0
[
T

(η)
x,k

]
=: c0

1, a. s. for m→∞.

By Corollary 5.14 we obtain∑
y∈S
x 6=y

Eθ0 [N (η)
x,y,a,1] = aµ0

x Eθ0 [T (η)
x,a ], for each a ∈ N.

Putting this into c0
1 we get

c0
1 = −µ

0
x

2

Ñ∑
a=1

Ñ∑
k=1

ak(2a− k − 1)Eθ0
[
T (η)
x,a

]
Eθ0
[
T

(η)
x,k

]
.

Now we split the second sum and change the order of summation, i. e.

c0
1 =− µ0

x

2

Ñ∑
a=2

2a−1∧Ñ∑
k=1

ak(2a− k − 1)Eθ0
[
T (η)
x,a

]
Eθ0
[
T

(η)
x,k

]

− µ0
x

2

Ñ∑
k=2

b k
2
c∑

a=1

ak(2a− k − 1)Eθ0
[
T (η)
x,a

]
Eθ0
[
T

(η)
x,k

]
.

Changing the summation index in the second sum and adding the first and the second sum
yields

c0
1 =− µ0

x

2

Ñ∑
a=2

ba
2
c∑

k=1

ak(a+ k − 2)Eθ0
[
T (η)
x,a

]
Eθ0
[
T

(η)
x,k

]
− µ0

x

2

Ñ∑
a=2

2a−1∧Ñ∑
k=ba

2
c+1

ak(2a− k − 1)Eθ0
[
T (η)
x,a

]
Eθ0
[
T

(η)
x,k

]
< 0.

Therefore there exists m0 ∈ N such that cm1 < 0 a. s. for all m ≥ m0. By Lemma 5.27 and
Theorem 5.1 there exists m1 ≥ m0 such that pmx = 0 a. s. for all m ≥ m1. Altogether pmx
converges a. s. to p0

x = 0.
Assume p0

x = 1. Lemma 5.27 and Theorem 5.1 imply the existence of m0 ∈ N such that
pmx = 1 a. s. for all m ≥ m0.
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Chapter 5. Asymptotic properties of the estimator

5.2 Asymptotical normality

Let Θid be the set of identifiable parameters, given by (5.20). For proving asymptotic
normality we assume that the true parameter is in the interior of Θid. Define the open set

Θ̇ =
{
θ = (θx)x∈S ∈ Θc : px ∈ (0, 1) and µxy ∈ (0,∞) for each x, y ∈ S with x 6= y,

where θx = (µx,1, . . . , µx,x−1, µx,x+1, . . . , px)
}
.

Lemma 5.32. Assume PN (1) < 1. Then Θ̇ is the interior of Θid.

Proof. For θ ∈ Θ̇ each rating class is accessible from all other rating classes. Therefore by
Lemma 5.25 we have Θ̇ ⊂ Θid since there exists n ∈ N with n ≥ 2 such that PN (n) > 0 and
each rating class is accessible from all other rating classes. Furthermore each parameter
θ ∈ Θid, which is not contained in Θ̇, is a boundary point of Θid.

Definition 5.33. Define the set

Sfeas :=
{

(n, T, ω) ∈ N× (0,∞)× S : hc
θ(n, T, ω) > 0, for any θ ∈ Θ̇

}
.

The definition of hc
θ in Definition 4.20 implies for each path (n, T, ω) ∈ Sfeas, that

hc
θ(n, T, ω) > 0 for all θ ∈ Θ̇. Furthermore (ω, T ) is strongly feasible in the sense of

Definition 4.4 and
νc
n

(
{z0(ω)}

)
> 0,

where z0(ω) is the first component of ω.
For asymptotic normality we prove some properties of the derivatives of log hc

θ first.

Lemma 5.34. Let θ0 ∈ Θc be the true parameter. Suppose η ∈ O is a random sample
path with density hc

θ0
given by Definition 4.20. Then for all (n, T, ω) ∈ Sfeas the function

Θ̇ 3 θ 7→ log hc
θ(n, T, ω) is three times continuously differentiable and the first, second and

third order partial derivatives with respect to θ ∈ Θ̇ of log hc
θ(η) have finite expectation.

Proof. Let (n, T, ω) be in Sfeas. For every θ = (θx)x∈S ∈ Θc with

θx = (µx,1, . . . , µx,x−1, µx,x+1, . . . , µx,K , px) for x ∈ S,

we obtain

log hc
θ(n, T, ω) = log νc

n

(
{z0(ω)}

)
−
∑
x∈S

µx

n∑
a=1

T (ω,T )
x,a q(a, px)

+
∑
x,y∈S
x 6=y

n∑
a,b=1
a≥b

N
(ω)
x,y,a,b

(
logµxy + (b− 1) log px + (a− b) log(1− px)

)
.

Because (n, T, ω) ∈ Sfeas, it follows | log νc
n

(
{z0(ω)}

)
| <∞. For θ ∈ Θ̇ the parameter entries

µxy > 0 and px ∈ (0, 1) for all x, y ∈ S. So, log hc
θ(n, T, ω) is three times continuously

differentiable in Θ̇.
The first order partial derivative of log hc

θ(n, T, ω) with respect to µxy for each x, y ∈ S
with x 6= y is equivalent to

∂

∂µxy
log hc

θ(n, T, ω) =
n∑

a,b=1
a≥b

N
(ω)
x,y,a,b

µxy
−

n∑
a=1

T (ω,T )
x,a q(a, px), for every (n, T, ω) ∈ Sfeas.
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Using the integrability of N (η)
x,y,a,b and T

(η)
x,a in Lemma 5.18 it follows

Eθ0
[∣∣∣ ∂

∂µxy
log hc

θ(η)
∣∣∣] =

Ñ∑
a,b=1
a≥b

Eθ0
[
N

(η)
x,y,a,b

]
µxy

+
Ñ∑
a=1

Eθ0
[
T (η)
x,a

]
q(a, px) <∞.

Differentiation with respect to px yields also an integrable function and analogous argu-
mentation shows finite expectation of the second and third order partial derivatives.

Lemma 5.35. Let θ ∈ Θ̇ be an arbitrary parameter. Then we obtain for the random sample
path η ∈ O with density hc

θ, given by Definition 4.20, for each i, j ∈ {1, . . . ,K2}

Eθ
[ ∂

∂θi
log hc

θ(η)
∂

∂θj
log hc

θ(η)
]

= −Eθ
[ ∂2

∂θi∂θj
log hc

θ(η)
]
. (5.36)

Proof. Using the binomial theorem we obtain for each k ∈ N and p ∈ (0, 1]

k∑
j=1

(
k

j

)
pj−1(1− p)k−j =

1
p

k∑
j=1

(
k

j

)
pj(1− p)k−j =

1− (1− p)k

p
= q(k, p),

by definition of the function q in (2.35). For p = 0 we obtain for each k ∈ N

k∑
j=1

(
k

j

)
pj−1(1− p)k−j = k = q(k, 0),

by definition of q. It follows for each k ∈ N and p ∈ [0, 1]

q(k, p) =
k∑
j=1

(
k

j

)
pj−1(1− p)k−j . (5.37)

The derivative of q equals

∂

∂p
q(k, p) =

k∑
j=1

(
k

j

)
pj−1(1− p)k−j

(j − 1
p
− k − j

1− p

)
. (5.38)

By Lemma 5.34 the function Θ̇ 3 θ 7→ log hc
θ(n, T, ω) is twice continuously differentiable for

(n, T, ω) ∈ Sfeas. Fix (n, T, ω) ∈ Sfeas. Using (5.37) the first derivative of log hc
θ(n, T, ω)

with respect to µxy with x, y ∈ S, x 6= y, equals

∂

∂µxy
log hc

θ(n, T, ω) =
n∑

a,b=1
a≥b

(N (ω)
x,y,a,b

µxy
−
(
a

b

)
pb−1
x (1− px)a−bT (ω,T )

x,a

)
, (5.39)

where θ = (θx)x∈S ∈ Θ̇ with θx = (µx,1, . . . , µx,x−1, µx,x+1, . . . , µx,k, px). The first derivative
with respect to px for x ∈ S is given by

∂

∂px
log hc

θ(n, T, ω) =
n∑

a,b=1
a≥b

∑
y∈S
x 6=y

(b− 1
px
− a− b

1− px

)

×
(
N

(ω)
x,y,a,b − µxy

(
a

b

)
pb−1
x (1− px)a−bT (ω,T )

x,a

)
. (5.40)
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Define Si(ω, T ) as in (5.8) for xi, yi ∈ S with xi 6= yi and ai, bi ∈ N with ai ≥ bi for
i = 1, 2. Hence, we obtain

Eθ
[ ∂

∂µx1,y1

log hc
θ(η)

∂

∂px2

log hc
θ(η)

]
=

Ñ∑
a1,b1=1
a1≥b1

Ñ∑
a2,b2=1
a2≥b2

∑
y2∈S
x2 6=y2

1
µx1,y1

(b2 − 1
px2

− a2 − b2
1− px2

)
Eθ[S1(η)S2(η)].

If x1 6= x2, then this equals zero by (5.16). Differentiation of the first derivative with
respect to px2 in (5.40) with respect to µx1,y1 is also zero. If x1 = x = x2, then the equation
simplifies to

Eθ
[ ∂

∂µxy
log hc

θ(η)
∂

∂px
log hc

θ(η)
]

=
Ñ∑

a,b=1
a≥b

1
µxy

(b− 1
px
− a− b

1− px

)
µxy

(
a

b

)
pb−1
x (1− px)a−bEθ

[
T (η)
x,a

]
,

using (5.15) and (5.16). Since the derivative of q with respect to px is given by (5.38), this
is equivalent to

Eθ
[ ∂

∂µxy
log hc

θ(η)
∂

∂px
log hc

θ(η)
]

=
Ñ∑
a=1

∂

∂px
q(a, px) Eθ

[
T (η)
x,a

]
= −Eθ

[ ∂2

∂µxy∂px
log hc

θ(η)
]
,

which is obtained by differentiating the derivative in (5.40) with respect to µxy. Analogous
argumentation yields the result for the other second derivatives.

Lemma 5.41. Suppose PN (1) < 1 and θ ∈ Θ̇. Let I(θ) = (I(θ)ij)i,j∈{1,...,K2} be the Fisher
matrix for the density hc

θ, i. e.

I(θ)ij = −Eθ
[ ∂2

∂θi∂θj
log hc

θ(η)
]

for each i, j ∈ {1, . . . ,K2}. (5.42)

Then the entries of the Fisher matrix are finite and the Fisher matrix is positive definite.

Proof. Finiteness of the entries of the Fisher matrix follows from Lemma 5.34. Define the
entries of θ = (θx)x∈S by θx = (µx,1, . . . , µx,x−1, µx,x+1, . . . , µx,K , px). Computation of the
second derivatives of log hc

θ yields the following structure of the Fisher matrix

I(θ) =



I(1) 0 . . . . . . . 0

0 I(2) . . .
...

...
. . . I(3) . . .

...
...

. . . . . . 0
0 . . . . . . . . 0 I(K)
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with the block matrices I(x) = (I(x)
ij )i,j∈{1,...,K} for x ∈ S defined by

I(x) =



Dµ
x1 0 . . . . . . . . . . . . . . . . . . . . . 0 Dµ,p

x

0 Dµ
x2

. . .
...

...
...

. . . . . . . . .
...

...
...

. . . Dµ
x,x−1

. . .
...

...
...

. . . Dµ
x,x+1

. . .
...

...
...

. . . . . . 0
...

0 . . . . . . . . . . . . . . . . . . . . . . 0 Dµ
xK Dµ,p

x

Dµ,p
x . . . . . . . . . . . . . . . . . . . . . . . . . . Dµ,p

x Dp
x


,

where the function Dµ is defined by

Dµ
xy = −Eθ

[∂2 log hc
θ(η)

∂µ2
xy

]
=

Ñ∑
a,b=1
a≥b

Eθ
[
N

(η)
x,y,a,b

]
µ2
xy

, for each x, y ∈ S, with x 6= y.

Furthermore Dµ,p
x is given by

Dµ,p
x = −Eθ

[∂2 log hc
θ(η)

∂px∂µxy

]
=

Ñ∑
a=1

∂

∂px
q(a, px)Eθ

[
T (η)
x,a

]
, for x, y ∈ S, with x 6= y,

where q is defined in (2.35). The function Dp
x equals for each x ∈ S

Dp
x = −Eθ

[∂2 log hc
θ(η)

∂p2
x

]
=

Ñ∑
a,b=1
a≥b

∑
y∈S
x6=y

Eθ
[
N

(η)
x,y,a,b

](b− 1
p2
x

+
a− b

(1− px)2

)
+ µx

Ñ∑
a=1

∂2

∂p2
x

q(a, px)Eθ
[
T (η)
x,a

]
.

The Fisher matrix I(θ) is positive definite, if all principal minors are positive, i. e., for
each x ∈ S the determinant of the matrix I

(x)
m = (I(x)

ij )i,j=1,...,m is positive for each m ∈
{1, . . . ,K}. Since PN (1) < 1, the set Θ̇ ⊂ Θid by Lemma 5.32. Using the definition of the
identifiable set Θid in (5.20) and Corollary 5.14 there exists some a ∈ {2, . . . , Ñ} for each
x ∈ S, such that

Eθ
[
N

(η)
x,y,a,b

]
> 0 for each b ∈ {1, . . . , a} and each y ∈ S with x 6= y. (5.43)

Therefore Dµ
xy > 0 and the determinant of I(x)

m is strictly positive for m ∈ {1, . . . ,K − 1}
and all x ∈ S. By adding an appropriate factor of the k-th column to the last column for
all k ∈ {1, . . . ,K − 1}, we transform I

(x)
K in triangular form. Then the determinant of I(x)

K

equals

det(I(x)
K ) = det(I(x)

K−1)
(
Dp
x −

∑
y∈S\{x}

(Dµ,p
x )2

Dµ
xy

)
.
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Define the function g : [0, 1]→ (0,∞) by

g(1− p) =
Ñ∑
k=1

k−1∑
j=0

Eθ
[
T

(η)
x,k

]
(1− p)j =

Ñ−1∑
j=0

Ñ∑
k=j+1

Eθ
[
T

(η)
x,k

]
(1− p)j .

Lemma 4.41 says for all p ∈ [0, 1]

(1− p)g′(1− p)2 < g(1− p)g′(1− p) + (1− p)g(1− p)g′′(1− p). (5.44)

Corollary 5.14 and the definition of q in (5.37) imply for each x, y ∈ S with x 6= y

µxy =
Ñ∑

a,b=1
a≥b

Eθ
[
N

(η)
x,y,a,b

]( Ñ∑
k=1

q(k, p)Eθ
[
T

(η)
x,k

])−1
=

Ñ∑
a,b=1
a≥b

Eθ
[
N

(η)
x,y,a,b

](
g(1− px)

)−1
.

Substituting that into Dµ
xy, D

µ,p
x and Dp

x yields

Dp
x −

∑
y∈S
x 6=y

(Dµ,p
x )2

Dµ
xy

=
Ñ∑

a,b=1
a≥b

∑
y∈S
x6=y

Eθ
[
N

(η)
x,y,a,b

](b− 1
p2
x

+
a− b

(1− px)2
+ g′′(1− px)(g(1− px))−1

− (g′(1− px))2(g(1− px))−2
)
. (5.45)

Since Eθ[(∂/∂px) log hc
θ(η)] = 0 by (5.40) and Corollary 5.14, we obtain

Ñ∑
a,b=1
a≥b

Eθ
[
Ñ

(η)
x,a,b

] a− b
(1− px)2

=
Ñ∑

a,b=1
a≥b

∑
y∈S
x 6=y

Eθ
[
N

(η)
x,y,a,b

]( b− 1
px(1− px)

+
g′(1− px)

(1− px)g(1− px)

)
.

Substituting this into (5.45), and using (5.43) and inequality (5.44), we proved the positive
definiteness of I(θ).

Lemma 5.46. Let θ0 ∈ Θ̇ be the true parameter. Suppose η is a random sample path with
density hc

θ0
given by Definition 4.20. Furthermore, let Br(θ0) be a closed ball with center

θ0 and radius r > 0, such that Br(θ0) ⊂ Θ̇. Then there exists a function Mikl : O → [0,∞)
for each i, k, l ∈ {1, . . . ,K2}, such that Eθ0 [Mikl(η)] <∞ and for each (n, T, ω) ∈ Sfeas∣∣∣∣ ∂3

∂θi∂θk∂θj
log hc

θ(n, T, ω)
∣∣∣∣ ≤Mikl(n, T, ω), for all θ ∈ Br(θ0),

where Sfeas is given by Definition 5.33.

Proof. Since Br(θ0) is closed, there exists µuxy <∞ for each x, y ∈ S with x 6= y, such that

0 < µxy ≤ µuxy, for all θ = (θx)x∈S ∈ Br(θ0),

where θx = (µx,1, . . . , µx,x−1, µx,x+1, . . . , µx,K , px). Furthermore there exist plx ∈ (0, 1) and
pux ∈ (0, 1) for each x ∈ S, such that

plx ≤ px ≤ pux, for all θ ∈ Br(θ0).
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For each x ∈ S define the function MxK,xK,xK : O → [0,∞) by

MxK,xK,xK(n, T, ω) = µux

Ñ∑
a=1

T (ω,T )
x,a

a−1∑
j=3

j3 + 2
∑
y∈S
x 6=y

Ñ∑
a,b=1
a≥b

N
(ω)
x,y,a,b

( b− 1
(plx)3

+
a− b

(1− pux)3

)
,

for (n, T, ω) ∈ Sfeas and set MxK,xK,xK(n, T, ω) = 0 otherwise. For each (n, T, ω) ∈ Sfeas
we have ∣∣∣∣ ∂3

∂p3
x

log hc
θ(n, T, ω)

∣∣∣∣ ≤MxK,xK,xK(n, T, ω),

for all θ ∈ Br(θ0). Furthermore, using Lemma 5.18

Eθ0 [MxK,xK,xK(η)] = 2
∑
y∈S
x 6=y

Ñ∑
a,b=1
a≥b

Eθ0 [N (η)
x,y,a,b]

( b− 1
(plx)3

+
a− b

(1− pux)3

)

+ µux

Ñ∑
a=1

Eθ0 [T (η)
x,a ]

a−1∑
j=3

j3 <∞.

The bounds for the remaining partial derivatives can be obtained in an analogous way.

After the preparing lemmata we prove asymptotic normality.

Theorem 5.47. Suppose the assumption in 5.2 holds and additionally PN (1) < 1. Let
the true parameter θ0 be in the open set Θ̇. Let (nj , Tj , ωj) ∈ O for j ∈ N be independent
realizations of the random sample path η with density hc

θ0
, given by Definition 4.20. Assume

hc
θ0

(nj , Tj , ωj) > 0 for all j ∈ N. For each m ∈ N let θm be a maximum likelihood estimator
for the paths (nj , Tj , ωj) for j ∈ {1, . . . ,m}, i. e., θm maximizes the log-likelihood function
logLc

m, given by

logLc
m(θ) =

m∑
j=1

log hc
θ(nj , Tj , ωj).

Then
√
m (θm−θ0) is asymptotically normal with mean zero and covariance matrix I(θ0)−1,

which is the inverse Fisher matrix given by (5.42).

Proof. The proof is based on the proof of Lehmann and Casella in [43, Chapter 6, Theorem
5.1]. Let r > 0 be a radius, such that the closed ball Br(θ0) ⊂ Θ̇. Since PN (1) < 1, the true
parameter θ0 ∈ Θid by Lemma 5.32. By Theorem 5.28 the estimator θm converges a. s. to
θ0 and there exists m0 ∈ N, such that θm ∈ Br(θ0) a. s. for all m ≥ m0. By Lemma 5.34 the
function logLc

m admits all third derivatives with respect to θ ∈ Θ̇. For each i ∈ {1, . . . ,K2}
and m ≥ m0 a second-order Taylor series expansion of ∂/∂θi logLc

m(θm) about θ0 yields

∂

∂θi
logLc

m(θm) =
∂

∂θi
logLc

m(θ0) +
K2∑
k=1

(θmk − θ0k)
∂2

∂θi∂θk
logLc

m(θ0)

+
1
2

K2∑
k,l=1

(θmk − θ0k)(θml − θ0l)
∂3

∂θi∂θk∂θl
logLc

m(θ̃m), (5.48)
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where θ̃m = t θm+(1−t)θ0 for t ∈ [0, 1] and therefore θ̃m ∈ Br(θ0) for all m ≥ m0 a. s. Since
θm is the maximum of the log-likelihood function, the first partial derivatives of logLc

m are
zero at θm. Hence, the left-hand side of (5.48) is zero.

For each m ≥ m0 define the vector ym = (ym1 , . . . , y
m
K2) ∈ RK2

by

ymk =
√
m(θmk − θ0k), for k ∈ {1, . . . ,K2}.

Furthermore define the matrix Am = (Amik)i,k∈{1,...,K2} by

Amik =
1
m

∂2

∂θi∂θk
logLc

m(θ0) +
1

2m

K2∑
l=1

(θml − θ0l)
∂3

∂θi∂θk∂θl
logLc

m(θ̃m),

and the vector bm ∈ RK2
by

bmi = − 1√
m

∂

∂θi
logLc

m(θ0), for i ∈ {1, . . . ,K2}.

Then equation (5.48) is equivalent to Amym = bm. If Amik converges to −I(θ0)ik in prob-
ability for m tending to infinity for each i, k ∈ {1, . . . ,K2} and bm converges weakly to a
normally distributed random vector b with mean zero and covariance matrix I(θ0), then
the solutions ym tend in probability to the solution y of the linear equation

I(θ0)y = b,

see [43, Chapter 6, Lemma 5.2]. Due to the positive definiteness of I(θ0), proved in Lemma
5.41, the vector y is normally distributed with mean zero and covariance matrix I(θ0)−1

and ym is asymptotically normal.
The strong law of large numbers and the definition of the Fisher matrix in Lemma 5.41

implies for each i, k ∈ {1, . . . ,K2}

1
m

∂2

∂θi∂θk
logLc

m(θ0) =
1
m

m∑
j=1

∂2

∂θi∂θk
log hc

θ0(nj , Tj , ωj)

→ Eθ0
[ ∂2

∂θi∂θk
log hc

θ0(η)
]

= −I(θ0)ik, a. s. for m→∞.

Since θ̃m ∈ Br(θ0) for all m ≥ m0, we obtain by Lemma 5.46 for each i, k, l ∈ {1, . . . ,K2}

1
m

m∑
j=1

∂3

∂θi∂θk∂θl
log hc

θ̃m
(nj , Tj , ωj) ≤

1
m

m∑
j=1

Mi,k,l(nj , Tj , ωj), for all m ≥ m0.

Using the strong law of large numbers and Lemma 5.46, we see

1
m

m∑
j=1

Mi,k,l(nj , Tj , ωj)→ Eθ0 [Mi,k,l(η)] <∞, a. s. for m→∞.

Due to the strong consistency of θm, the difference (θml − θ0l) tends almost surely to zero
for m tending to infinity for each l ∈ {1, . . . ,K2} and altogether Amik tends a. s. to −I(θ0)ik
for each i, k ∈ {1, . . . ,K2}.

The first partial derivatives of log hc
θ in (5.39) and (5.40), together by Corollary 5.14

yield
Eθ0 [∂/∂θi log hc

θ0(η)] = 0, for all i ∈ {1, . . . ,K2}.
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Furthermore Lemma 5.35 shows for each i, k ∈ {1, . . . ,K2}

Eθ0
[ ∂
∂θi

log hc
θ0(η)

∂

∂θk
log hc

θ0(η)
]

= I(θ0)ik.

Applying the central limit theorem the vector bm tends weakly to a normally distributed
random vector b with mean zero and covariance matrix I(θ0) for m tending to infinity.
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Chapter 6

Appendix

In the appendix we show, for which kind of functions f and Q-matrices, in general, f(X)
is again a Markov jump process if X is a Markov process with countable state space. The
following definition is in the way as [58, Chapter 2.3].

Definition 6.1. Let Ψ be a countable state space. We call a Borel measurable function
Q : [0,∞)×Ψ2 → R a time-dependent Q-matrix, if Q is bounded and Qt(z, z′) ≥ 0 for all
z, z′ ∈ Ψ with z 6= z′ and t ≥ 0 and

Qt(z, z) = −
∑

z′∈Ψ\{z}

Qt(z, z′), for all z ∈ Ψ and t ≥ 0.

Furthermore we define for the time-dependent Q-matrix the generator Q for each bounded,
Borel measurable function f : Ψ→ R and t ≥ 0 by

Q(t)f(z) =
∑
z′∈Ψ

Qt(z, z′)f(z′). (6.2)

Ethier and Kurtz prove in [21, Chapter 4, Lemma 7.2] that Q generates a unique
transition function for a Markov jump process and that there is a one-to-one correspondence
between the generator and the Markov jump process.

Lemma 6.3. Let S1 and S2 be countable state spaces and Φ : S1 → S2 be a Borel measurable
function. Let Q : [0,∞)×S2

1 → R be a time-dependent Q-matrix , where for each η, η′ ∈ S2

and t ≥ 0 ∑
z′∈Φ−1(η′)

Qt(z1, z
′) =

∑
z′∈Φ−1(η′)

Qt(z2, z
′), for all z1, z2 ∈ Φ−1(η). (6.4)

Define the generator Q for the time-dependent Q-matrix Q by (6.2) and suppose (Xt)t≥0 is
the Markov jump process with respect to the filtration (Ft)t≥0, generated by Q, with state
space S1. We define the function Q̃ : [0,∞)× S2

2 → R by

Q̃t(η, η′) =
∑

z′∈Φ−1(η′)

Qt(z, z′), for z ∈ Φ−1(η), (6.5)

if Φ−1(η) 6= ∅, and by Q̃t(η, η′) = 0 otherwise.
Then the function Q̃ is well defined and a time-dependent Q-matrix. Furthermore

(Φ(Xt))t≥0 is a Markov jump process with respect to (Ft)t≥0 with state space S2, corre-
sponding to the time-dependent Q-matrix Q̃.
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Proof. The Borel measurability of Q̃ follows from (6.5) and the measurability of Q. Since
the non-diagonal entries of Q̃ are the sum over non-diagonal entries of Q or zero, they are
non-negative. The definition of Q̃ in (6.5) implies for all η ∈ S2 with Φ−1(η) 6= ∅ and t ≥ 0

Q̃t(η, η) =
∑

z′∈Φ−1(η)

Qt(z, z′) = −
∑

η′∈S2\{η}

∑
z′∈Φ−1(η′)

Qt(z, z′) = −
∑

η′∈S2\{η}

Q̃t(η, η′),

where z ∈ Φ−1(η) arbitrary. For η ∈ S2 with Φ−1(η) = ∅ this equation is obviously true.
Since Q is bounded, there exists a constant C ≥ 0 such that |Qt(z, z′)| ≤ C for all z, z′ ∈ S1

and t ≥ 0. This implies for each η, η′ ∈ S2 with Φ−1(η) 6= ∅ and t ≥ 0

|Q̃t(η, η′)| =
∣∣∣∣ ∑
z′∈Φ−1(η′)

Qt(z, z′)
∣∣∣∣ ≤ |Qt(z, z)| ≤ C,

and therefore Q̃ is bounded as well. Altogether Q̃ is a time-dependent Q-matrix. Define
the bounded generator Q̃ for the time-dependent Q-matrix Q̃ by (6.2). Let f be a Borel
measurable, bounded, real-valued function. Then for each t ≥ 0

Q̃(t)f(Φ(Xt)) =
∑
η∈S2

Q̃t(Φ(Xt), η)f(η) =
∑
η∈S2

∑
z′∈Φ−1(η)

Qt(Xt, z
′)f(Φ(z′))

=
∑
z′∈S1

Qt(Xt, z
′)f(Φ(z′)) = Q(t)(f ◦ Φ)(Xt),

since the preimages of all η ∈ S2 under Φ divide S1 in disjoint subsets. Hence, we obtain

f(Φ(Xt))−
∫ t

0
Q̃(s)f(Φ(Xs)) ds = f ◦ Φ(Xt)−

∫ t

0
Q(s)(f ◦ Φ)(Xs) ds.

Since the Markov jump process X is generated by Q and f ◦ Φ is bounded, this is an
Ft–martingale, see [21, Chapter 4, Proposition 1.7].

Furthermore, the finite-dimensional distributions of Φ(X) are uniquely determined and
the process Φ(X) is a Markov process with respect to (Ft)t≥0 generated by Q̃, see [21,
Chapter 4, Theorem 7.3 and Theorem 4.2].
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Chapter 7

Introduction

To price long-term contracts, like life insurance policies, practitioners model zero-coupon
bond prices with long-term maturities to find reasonable discount factors. Empirical inves-
tigations of these prices are difficult, since there are only zero-coupon bonds traded with
maturity of up to 30 years, and for a life annuity, for example, discount factors for up to
100 years are needed, see e. g. Carriere (1999). To construct reasonable models, we need to
know how the long-term zero-coupon rates behave.

Dybvig, Ingersoll and Ross (1996) showed that long-term zero-coupon rates can never
fall in an arbitrage-free market under the assumption that the limit of the zero-coupon
rates exists. Therefore, if the rates in a model decrease, it is not arbitrage-free. This
fundamental theorem is part of textbooks, see e. g. Cairns (2004), and can be used to
constrain the parameters of factor models to avoid arbitrage. Yao (1999) and El Karoui,
Frachot and Geman (1998) discussed the long-term rates for several well-known models and
used the theorem in this context.

Even in well-known interest rate models like the Vaš́ıček model, the Cox–Ingersoll–Ross
model or the Gaussian Heath–Jarrow–Morton model, it is possible that the limit of the
zero-coupon rates does not exist, as we show with examples in Chapter 9. In this case we
cannot use the Dybvig–Ingersoll–Ross theorem to explain the behavior of the long-term
zero-coupon rates and decide if the model admits arbitrage opportunities. To assess also
models where the limit does not exist we generalize the Dybvig–Ingersoll–Ross theorem
in this part of the thesis. We prove that the limit superior of the zero-coupon rates and
the forward rates never fall, which is called asymptotic monotonicity. From the investor’s
point of view, the limit superior is the natural extension, because he prefers for long-term
investments those zero-coupon bonds which give a high investment return.

In the literature there are two approaches to prove the Dybvig–Ingersoll–Ross theorem.
The first approach constructs an arbitrage strategy, if long-term rates fall. Dybvig et al.
provide an arbitrage strategy for a general infinite state space in the appendix of their paper.
In the case of finitely many states they construct a second arbitrage strategy, which was
made rigorous by McCulloch (2000). Recently, Schulze (2007) showed a further arbitrage
strategy using another definition of arbitrage than Dybvig et al. The second approach
to prove the Dybvig–Ingersoll–Ross theorem is to assume the existence of an equivalent
martingale measure. Hubalek, Klein and Teichmann (2002) give a general proof in this
setting. We also prove the generalization for the limit superior of the zero-coupon rates
and forward rates in these two different ways. For the first approach, we assume a slightly
weaker condition than assuming the existence of an equivalent martingale measure. This
proof is inspired by the proof of Hubalek et al. For the second approach, we assume that
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there is no arbitrage opportunity in the limit with vanishing risk, and show again that
asymptotic monotonicity holds.

Besides the main theorem, Dybvig et al. showed that the long-term zero-coupon rate
equals its minimum future value, if the state space is finite. Using a stricter definition of no-
arbitrage, Schulze extended this result to infinite state spaces. Again, the authors assume
the existence of the long-term limit. Here we state conditions for asymptotic minimality
of the limit superior of the zero-coupon rates. That means, the limit superior of the long-
term limit of the zero-coupon rates is the largest random variable, which is known at
this time and dominated by the future limit superior of the long-term limit. Examples
in Chapter 9 show, that either no arbitrage opportunity in the limit nor the existence
of an equivalent martingale measure are sufficient for asymptotic minimality. In both
cases we state additional conditions, such that asymptotic minimality holds. No arbitrage
opportunity in the limit or the existence of an equivalent martingale measure are not even
necessary which is also shown in Chapter 9.

Kardaras and Platen also show the Dybvig–Ingersoll–Ross theorem without assuming
the existence of the long-term limit. In contrast to this thesis they use another definition
for the limit superior and concentrate on the maximal order that long-term rates at earlier
dates can dominate long-term rates at later dates.

The outline of this part is the following. In Chapter 8 we give the general notation,
state the main theorem about asymptotic monotonicity, and justify the use of the limit su-
perior from the investor’s point of view. Furthermore, we specify conditions for asymptotic
minimality and define two notions of an arbitrage opportunity in the limit. In Chapter 9,
we provide several interest rate models, where the long-term limit of the zero-coupon rates
does not exist, to show that our generalization of asymptotic monotonicity is useful. Fur-
ther examples illustrate the conditions for asymptotic minimality. Chapter 10 contains
the proofs of our results. After proving two auxiliary lemmas in Section 10.1, we give in
Section 10.2 the proof for asymptotic monotonicity and minimality using an equivalent
martingale measure. The proofs using arbitrage arguments are given in Section 10.3.
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Chapter 8

Statement of the generalized
Dybvig–Ingersoll–Ross theorem

Let (Ω,F ,P) be a probability space and F = {Ft}t≥0 a filtration of F with a discrete-time
parameter t ∈ N0 or a continuous-time parameter t ∈ [0,∞). For every maturity T ∈ N or
T ∈ (0,∞), respectively, we assume that the corresponding zero-coupon bond price process
P (t, T ) with t ∈ {0, 1, . . . , T} or t ∈ [0, T ], respectively, is strictly positive and F-adapted
with normalization P (T, T ) = 1.

Define the zero-coupon rate for maturity T > 0 in the discrete-time case by

R(t, T ) := P (t, T )−1/(T−t) − 1, t ∈ {0, 1, . . . , T − 1}, (8.1)

and in the continuous-time case by

R(t, T ) := − logP (t, T )
T − t

, t ∈ [0, T ). (8.2)

The arbitrage-free forward rate F (s, t, T ) for a loan over the future time period [t, T ],
contracted at time s, is in the discrete-time case defined by

F (s, t, T ) :=
(
P (s, t)
P (s, T )

)1/(T−t)
− 1, s, t ∈ {0, 1, . . . , T − 1}, s ≤ t, (8.3)

and in the continuous-time case by

F (s, t, T ) :=
1

T − t
log

P (s, t)
P (s, T )

, s, t ∈ [0, T ), s ≤ t. (8.4)

For both time scales we define the long-term spot rate process by

l(t) := lim sup
T→∞

R(t, T ) = lim
n→∞

ess sup
T>n∨t

R(t, T ), t ≥ 0, (8.5)

and the long-term forward rate process by

lF (s, t) := lim sup
T→∞

F (s, t, T ) = lim
n→∞

ess sup
T>n∨t

F (s, t, T ), 0 ≤ s ≤ t, (8.6)

Remark 8.7. For clarity we want to point out that for each t ≥ 0 the limit superior l(t)
of the zero-coupon rates is the pointwise infimum of {R∗n(t)}n∈N, where each R∗n(t) de-
notes the essential supremum of {R(t, T )}T>n∨t. The essential supremum is the smallest
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Ft-measurable upper bound. That means, R∗n(t) is an Ft-measurable random variable,
P(R∗n(t) ≥ R(t, T )) = 1 for all T > n ∨ t, and every other random variable X dominating
a. s. these zero-coupon rates satisfies P(X ≥ R∗n(t)) = 1. In particular, the essential supre-
mum is uniquely determined up to a set of P-measure zero. The existence of the essential
supremum for a collection of random variables is proved, for example, in [22, Appendix A.5].
Note that P(R∗m(t) ≥ R∗n(t)) = 1 for all m ≤ n, hence the infimum of {R∗n(t)}n∈N is P-
almost surely equal to the almost surely existing pointwise limit. The limit superior of the
forward rates is to be understood in an analogue manner.

In comparison to Dybvig et al. and Hubalek et al., we do not assume that the long-
term limits of the zero-coupon rates or the forward rates exist. In Section 9.1 we present
(extensions of) popular interest rate models, which need this generalization.

From the investor’s point of view, the limit superior of the zero-coupon rates is the
natural definition, because he/she prefers for the long-term investment those zero-coupon
bonds, which give a high investment return based on the information at time t. The
following lemmas (proved in Section 10.1) show that the long-term spot rate l(t) can indeed
be approximated by investing in a zero-coupon bond with a suitable maturity, which is
chosen based on the information available at time t. Furthermore, l(t) agrees with the
long-term forward rates, so it suffices to investigate the behaviour of the long-term spot
rates.

Lemma 8.8. Given t ≥ 0, there exists a sequence of Ft-measurable random maturities1

Tn: Ω→ (n ∨ t,∞), each one taking only a finite number of values, such that

l(t) a.s.= lim
n→∞

R(t, Tn).

Lemma 8.9. The long-term forward and spot rates are almost surely equal, meaning that
lF (s, t) a.s.= l(s) for all 0 ≤ s ≤ t.

8.1 Results using the existence of a forward risk neutral
probability measure

Part of our main results, namely asymptotic monotonicity in Theorem 8.17 and asymptotic
minimality in Theorem 8.21 are based on the following two conditions:

Condition 8.10. We say that this condition holds for times s and t with 0 ≤ s < t, if
there exist a probability measure Qs,t on (Ω,Ft), which is equivalent to P|Ft, and a T0 > t
such that, for all T ≥ T0,

P (s, T ) ≥ P (s, t) EQs,t[P (t, T )|Fs] a. s. (8.11)

This condition is sufficient for asymptotic monotonicity. For asymptotic minimality in
Theorem 8.21 we need the stronger condition:

Condition 8.12 (Existence of forward (time s) risk neutral probability measure). We say
that this condition holds for times s and t with 0 ≤ s < t, if there exists a probability
measure Qs,t on (Ω,Ft), which is equivalent to P|Ft such that, for all T > t,

P (s, T ) a.s.= P (s, t) EQs,t[P (t, T ) |Fs] . (8.13)

1In the discrete-time setting, the random maturities have to be integer-valued. This also applies to
Remark 8.27, Definition 8.29, Theorem 8.34 and its corollaries. Since Tn attains only a finite number of
values, R(t, Tn) is Ft-measurable.
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We call Qs,t the forward (time s) risk neutral probability measure for maturity t.

Condition 8.12 says that, simultaneously for all maturities T > t, the arbitrage-free
forward price P (s, T )/P (s, t), contracted at time s for the T -maturity zero-coupon bond
at time t, can be expressed as the Fs-conditional expectation of the price P (t, T ) at time t
with respect to the measure Qs,t.

Remark 8.14. Suppose a money market account Bt with t ∈ N0 or t ∈ [0,∞) is given by
a strictly positive and F-adapted process. Then the following construction yields a model,
where a forward risk neutral probability measure Qs,t exists simultaneously for all times s
and t with 0 ≤ s < t. If Q is a probability measure such that B0/BT is Q-integrable for
every T > 0, then we can define zero-coupon bond prices by

P (t, T ) = EQ

[ Bt
BT

∣∣∣Ft] =
Bt
B0

EQ

[B0

BT

∣∣∣Ft], t ∈ [0, T ], (8.15)

and the forward (time s) risk neutral probability measure Qs,t on (Ω,Ft) by

dQs,t

dQ
=

Bs
P (s, t)Bt

for every s ∈ [0, t). Since

EQ

[ Bs
P (s, t)Bt

∣∣∣Fs] a.s.= 1,

it follows by using Bayes’ formula and the tower property, that

EQs,t[P (t, T )|Fs]
a.s.= EQ

[
Bs

P (s, t)Bt
EQ

[ Bt
BT

∣∣∣Ft]∣∣∣∣Fs] a.s.=
P (s, T )
P (s, t)

,

hence Condition 8.12 holds for all times s and t with 0 ≤ s < t. We will use this construction
for the examples in Chapter 9.

Example 8.16. In the discrete-time case, let {rt}t∈N be an interest rate process, which is
F-adapted and (−1,∞)-valued. We define the money market account by

Bt = B0

t∏
i=1

(1 + ri), t ∈ N0,

where B0 is strictly positive and F0-measurable. For a probability measure Q such that
B0/BT is Q-integrable for every T ∈ N, we define the corresponding zero-coupon bond
prices by (8.15), which means

P (t, T ) = EQ

[ T∏
i=t+1

1
1 + ri

∣∣∣∣Ft], t ∈ {0, 1, . . . , T}.

By Remark 8.14, a forward risk neutral probability measure exists in this model simulta-
neously for all times s, t ∈ N0 with s < t.

The following result, which we prove in Section 10.2, states that the long-term spot
and forward rates, given by (8.5) and (8.6), respectively, almost surely never fall. This
is also called asymptotic monotonicity. Under the assumption, that the long-term limits
of the spot and forward rates exist, this is the so-called Dybvig–Ingersoll–Ross theorem.
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Economically, from time s to a later time t, the available information increases, so a more
informed decision concerning the best zero-coupon bonds for long-term investments can be
made. However, to take advantage of this additional information, the gains during [s, t] on
zero-coupon bonds with a large maturity T should be negligible compared to the total gains
until T , at least in the limit T →∞, see Example 8.18 for a counterexample. Therefore, in
a reasonable economic environment as specified by Condition 8.10, the long-term spot rate
at time t should be greater than the long-term spot rate at time s.

Theorem 8.17. If Condition 8.10 holds for times s and t with 0 ≤ s < t, then

(i) l(s) ≤ l(t) a. s. and

(ii) lF (s, s′) ≤ lF (t, t′) a. s. for all s′ ≥ s and t′ ≥ t.

Examples 9.16, 9.20 and 9.22 show that the inequalities can be strict everywhere on Ω.

Example 8.18. Given 0 ≤ s < t, the deterministic, continuous-time example with P (s, T ) =
e−(T−s) for all T ≥ s and P (t, T ) = 1 for all T ≥ t shows, that l(s) = 1 > l(t) = 0 can
happen, if there is arbitrage by investing in the zero-coupon bonds with maturity T > t.
To exploit the arbitrage in this example, sell at time s one t-maturity bond and buy eT−t

zero-coupon bonds of maturity T with T > t.

Asymptotic monotonicity raises the question, whether l(s) is the largest Fs-measurable
random variable, which is almost surely dominated by l(t). To discuss this question, we
need the following definition.

Definition 8.19. Let (Ω,F ,P) be a probability space and G a sub-σ-algebra of F . For an
R-valued random variable X, we define the upper G-measurable envelope XG as the essential
infimum of all R-valued, G-measurable random variables Z with Z ≥ X a. s. Similarly, we
define the lower G-measurable envelope XG as the essential supremum of all R-valued, G-
measurable Z with Z ≤ X a. s.

Observe that XG ≤ X ≤ XG a. s., and asymptotic monotonicity implies l(s) ≤ l(t)Fs a. s.
Note that even in case of convergence of the zero-coupon rates R(t, T ) to l(t) as T → ∞,
the existence of a forward risk neutral probability measure does not imply asymptotic
minimality in the sense that l(s) a.s.= l(t)Fs , as Example 9.22 shows. In this example of a
stochastic interest rate model, the long-term spot rate l jumps up from 0 to 1 at time t = 1
with probability 1. The following, purely analytical condition is a convenient additional
assumption for proving asymptotic minimality in Theorem 8.21 below.

Definition 8.20. Let (Ω,F ,P) be a probability space and G a sub-σ-algebra of F . An R-
valued random variable X is said to dominate the random variables {Xt}t>0 in the (G,P)-
superexponential sense along a G-measurable subsequence, if2

lim inf
t→∞

1
t

log E
[
(max{Xt −X, 0})t |G

] a.s.= −∞.

Theorem 8.21 (Asymptotic minimality). Let Condition 8.12 be satisfied for times s and
t with 0 ≤ s < t. Assume in addition that the upper Fs-measurable envelope V Fst of the

2We use here the convention log 0 = −∞. Analogously to (8.5) and (8.6), the limit inferior is the limit
as n→∞ of the essential infima over all t > n.
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limiting annual discount factor at time t given by3

Vt =

{
1/(l(t) + 1) in the discrete-time case,
exp(−l(t)) in the continuous-time case,

(8.22)

dominates {P (t, t+u)1/u}u>0 in the (Fs,Q)-superexponential sense along an Fs-measurable
subsequence, which means that

lim inf
T→∞

(
EQ
[
max{P (t, T )− (V Fst )T−t, 0}

∣∣Fs])1/(T−t) a.s.= 0. (8.23)

Then l(s) a.s.= l(t)Fs and lF (s, s′) = lF (t, t′)Fs a. s. for all s′ ≥ s and t′ ≥ t.

Remark 8.24. For asymptotic minimality we cannot weaken the requirements for the proba-
bility measure, because we use the probability measure in Condition 8.10 to show asymptotic
monotonicity, but we need also the reversed inequality

P (s, T ) ≤ P (s, t) EQs,t[P (t, T ) |Fs] a. s.,

for the estimate in (10.15) in the proof of Theorem 8.21.

Remark 8.25. Note that V Fst
a.s.= 1/(l(t)Fs + 1) and V Fst

a.s.= exp(−l(t)Fs), respectively, and
since

Vt
a.s.=

{
lim infT→∞ 1

R(t,T )+1 in the discrete-time case,

lim infT→∞ exp(−R(t, T )) in the continuous-time case,

we obtain
Vt

a.s.= lim inf
T→∞

P (t, T )1/(T−t). (8.26)

Remark 8.27. If there exists a sequence {Tn}n∈N of Fs-measurable random times, taking
at most countable many values in (t,∞) and tending to infinity as n → ∞, such that for
every ε > 0 there exists nε ∈ N satisfying

P (t, Tn)1/(Tn−t) ≤ V Fst + ε a. s. (8.28)

for all n ≥ nε, then (8.23) holds. Due to (8.26) and Vt ≤ V Fst , this uniformity certainly
holds for all s ∈ [0, t] simultaneously when Ft is finite and the limit inferior in (8.26) is
attained along a deterministic sequence {Tn}n∈N. The latter condition in turn is satisfied
when l(t) = limn→∞R(t, Tn) a. s.

8.2 Results using different notions for absence of arbitrage

In the last section we assumed the existence of a forward risk neutral probability measure,
resp. that Condition 8.10 holds. The second approach uses no-arbitrage arguments to show
asymptotic monotonicity and minimality. The next definition gives two different notions of
arbitrage and applies to discrete as well as continuous time. It is inspired by the definition
of arbitrage in the limit, which is used by Schulze, and the definition of arbitrage used in
Dybvig et al.

3We use here the conventions 1/0 =∞, 1/∞ = 0, exp(∞) =∞, and exp(−∞) = 0.
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Definition 8.29. Given times 0 ≤ s < t, the zero-coupon bonds with maturity T ≥ t
provide an arbitrage opportunity in the limit for times s and t, if there exist a sequence
{(ϕn, ψn)}n∈N of Fs-measurable, R2-valued portfolio compositions and a sequence {Tn}n∈N
of Fs-measurable random maturities Tn: Ω → (n ∨ t,∞), each one taking only a finite
number of values, such that

(i) Vn(s) := ϕnP (s, Tn) + ψnP (s, t) a.s.= 0 for all n ∈ N,

(ii) P(lim infn→∞ Vn(t) > 0) > 0, where Vn(t) := ϕnP (t, Tn) + ψn, and

(iii) lim infn→∞ Vn(t) ≥ 0 a. s.

We say that the zero-coupon bonds provide an arbitrage opportunity in the limit with
vanishing risk for times s and t, if (iii) is replaced by

(iv) for every ε > 0 there exists nε ∈ N such that Vn(t) ≥ −ε a. s. for all n ≥ nε.

Remark 8.30. Part (i) in Definition 8.29 always holds if ψn := −ϕnP (s, Tn)/P (s, t) for all
n ∈ N.

Remark 8.31. Since (iv) implies (iii), the assumption of no arbitrage opportunity in the limit
is stronger than no arbitrage opportunity in the limit with vanishing risk. If Ft is finite,
then pointwise implies uniform convergence, hence (iii) implies (iv) and both notions of
arbitrage are equivalent. Example 9.26 below shows that even the stronger assumption of
no arbitrage opportunity in the limit does not imply the existence of a forward risk neutral
probability measure in Condition 8.12. Even the weaker Condition 8.10 does not hold in
this example.

Lemma 8.32 below shows that Condition 8.12 implies the weaker no-arbitrage condition,
which by Theorem 8.33 is sufficient for asymptotic monotonicity. Actually, the no-arbitrage
condition can be further weakened by excluding only arbitrage due to a positive investment
in the long-term zero-coupon bonds. The lemma and the following theorems are proved in
Section 10.3.

Lemma 8.32. If there exists a forward time s risk neutral probability measure for maturity
t as in Condition 8.12 with 0 ≤ s < t, then there is no arbitrage opportunity in the limit
with vanishing risk for times s and t.

Theorem 8.33. Consider times 0 ≤ s < t. Assume that there is no arbitrage opportunity
in the limit with vanishing risk for times s and t in the sense of Definition 8.29 by investing
in the long-term zero-coupon bonds (with ϕn ≥ 0 for all n ∈ N). Then l(s) ≤ l(t) a. s. and
lF (s, s′) ≤ lF (t, t′) a. s. for all s′ ≥ s and t′ ≥ t.

For the remaining results, we need the stronger assumption of no arbitrage opportunity in
the limit, however, for Theorem 8.34 below we only have to exclude this limiting arbitrage by
short-selling of the long-term zero-coupon bonds. The heuristic justification of the following
theorem is as follows: If, with strictly positive probability, the worst long-term spot rate,
which we will incur by placing our investment orders for time t already at an earlier time s
based on the information available at s, is strictly larger than the best long-term spot rate
we can earn by investing already at time s, then the prices of the long-term zero-coupon
bonds must fall substantially during [s, t], offering an arbitrage possibility in the limit by
short-selling these bonds.
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Theorem 8.34. Consider times 0 ≤ s < t. Assume that there is no arbitrage opportunity
in the limit for times s and t in the sense of Definition 8.29 by short-selling the long-term
zero-coupon bonds (with ϕn ≤ 0 for all n ∈ N). Then for every sequence {Tn}n∈N of
Fs-measurable random maturities Tn: Ω → (n ∨ t,∞), each one taking only finitely many
values, (

lim inf
n→∞

R(t, Tn)
)
Fs
≤ l(s) a. s. (8.35)

Examples 9.3 and 9.20 show that, for certain sequences of random (or even deterministic)
maturities, the inequality in (8.35) can be strict everywhere on Ω. In these models, the limit
of R(t, Tn) as n → ∞ does not exist. Note that the deterministic model of Example 8.18,
which admits an arbitrage possibility by investing in the zero-coupon bonds with maturity
T > t, satisfies the assumptions of Theorem 8.34.

Using the definition of the long-term zero-coupon rate l(t) from (8.5), the Fs-measur-
ability of l(s) and the definition of the lower Fs-measurable envelope in Definition 8.19, we
obtain from Theorems 8.33 and 8.34:

Corollary 8.36 (Asymptotic minimality). Consider 0 ≤ s < t. If there is no arbitrage
opportunity in the limit for s and t in the sense of Definition 8.29, then(

lim inf
T→∞

R(t, T )
)
Fs
≤ l(s) ≤

(
lim sup
T→∞

R(t, T )
)
Fs

a. s. (8.37)

In particular, if limT→∞R(t, T ) exists a. s., then l(s) a.s.= l(t)Fs.

If the limit of R(t, T ) as T → ∞ does not exist a. s., we might still get asymptotic
minimality. Using asymptotic monotonicity and Theorem 8.34, each sequence {Tn}n∈N of
Fs-measurable random maturities, each one taking only finitely many values, satisfies(

lim inf
n→∞

R(t, Tn)
)
Fs
≤ l(s) ≤ l(t)Fs , a. s.,

if there is no arbitrage opportunity in the limit. If a special sequence of maturities satisfies
additionally the reversed inequality, we have asymptotic minimality. Note that the sequence
from Lemma 8.8 cannot be used in general, because these maturities are only Ft-measurable.

Corollary 8.38 (Asymptotic minimality). Consider 0 ≤ s < t. If there is no arbitrage
opportunity in the limit for times s and t in the sense of Definition 8.29 and if there exists
a sequence {Tn}n∈N of Fs-measurable random maturities Tn: Ω → (n ∨ t,∞), each one
taking only finitely many values, such that

l(t)Fs ≤ lim inf
n→∞

R(t, Tn) a. s., (8.39)

then l(s) a.s.= l(t)Fs.

Remark 8.40. In Corollaries 8.36 and 8.38, it is actually sufficient to assume that there is
no arbitrage opportunity in the limit with vanishing risk for times s and t by investing in
the long-term zero-coupon bonds (with ϕn ≥ 0 for all n ∈ N) and that there is no arbitrage
opportunity in the limit by short-selling the long-term zero-coupon bonds (with ϕn ≤ 0 for
all n ∈ N).

Remark 8.41. Using the almost sure equivalence of the long-term spot and forward rates in
Lemma 8.9, we can also transfer Theorem 8.34 and its corollaries to the long-term forward
rates. We refrain from spelling out the details.
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Remark 8.42. We could relax Definition 8.29(iv) to

(v) there exists n0 ∈ N, such that the negative parts V −n (t) := max{0,−Vn(t)} for all
n ≥ n0 are uniformly integrable and lim infn→∞ Vn(t) ≥ 0 a. s.

and get more limiting arbitrage opportunities in this way. This would strengthen the
no-arbitrage assumption. However, using a more general version of Fatou’s lemma for
conditional expectations4, the proof of Lemma 8.32 carries over, where the existence of a
forward risk neutral probability measure for times s and t in Condition 8.12 implies no
arbitrage in the limit with vanishing risk. Hence this Condition is still stronger. Therefore,
this stronger no-arbitrage assumption would not be strong enough to imply asymptotic
minimality, as Example 9.22 illustrates. In particular, the limiting arbitrage strategies
given there cannot satisfy (v).

Remark 8.43. The proofs of the above theorems, corollaries and lemmas do not use path
properties of the processes {P (t, T )}0≤t≤T (like being càdlàg or a semimartingale), and
we also do not need a bank account process or additional assumptions on the filtration F
(like containing all null sets of F or being right-continuous). Furthermore, we allow for
P(P (t, T ) > 1) > 0, which can happen for models with negative interest rates like the
Vaš́ıček model or the Heath–Jarrow–Morton model.

4See Fatou’s lemma at en.wikipedia.org/wiki/, version of October 11, 2008.

84



Chapter 9

Examples

In this chapter we show with illustrative examples first, that the long-term zero-coupon rates
do not always exist and our generalization of the Dybvig–Ingersoll–Ross theorem is therefore
useful. In these examples asymptotic monotonicity holds for the limit superior of the zero-
coupon rates, resp. the forward rates. Four further examples illustrate the asymptotic
minimality conditions as explained in Chapter 8. In Example 9.20 we describe a very simple
stochastic interest rate model with Ω = {0, 1}. Although this model provides no arbitrage
opportunity in the limit and a forward risk neutral probability measure exists, asymptotic
minimality does not hold. There does not exist a deterministic sequence {Tn}n∈N with
Tn → ∞ such that (8.39) holds. Therefore, the absence of arbitrage opportunities in the
limit for times s and t with 0 ≤ s < t or the existence of a forward risk neutral probability
measure is not sufficient for asymptotic minimality in the sense of l(s) a.s.= l(t)Fs . These
conditions are not even necessary, see Example 9.23. Example 9.24 shows that asymptotic
minimality is not an interval property, meaning that for times 0 < s < t < u the property
l(s) a.s.= l(u)Fs does not imply l(t) a.s.= l(u)Ft . Furthermore, the example shows that even if
there is no arbitrage opportunity in the limit for times s and u, it is possible to have an
arbitrage opportunity for times t and u.

All these examples are continuous-time short-rate models, and there exists a forward
risk neutral probability measure for all times defined in Condition 8.12 by construction
as pointed out in Remark 8.14. Hence by Lemma 8.32, these models do not provide an
arbitrage opportunity in the limit with vanishing risk. For a model not satisfying Condition
8.12, see Example 9.26.

The general set-up of these models (with the exception of the last one) is given as follows.
For a given F-progressive interest rate intensity process {rt}t≥0 with locally integrable paths,
we define the money market account by

Bt = exp
(∫ t

0
ru du

)
, t ∈ [0,∞).

Assume that 1/Bt is Q-integrable for every t > 0. Using (8.15), the zero-coupon bond
prices are given by

P (t, T ) = EQ

[
exp
(
−
∫ T

t
ru du

)∣∣∣∣Ft], 0 ≤ t ≤ T. (9.1)

Therefore, the definition of R(t, T ) in (8.2) implies

R(t, T ) = − 1
T − t

log EQ

[
exp
(
−
∫ T

t
ru du

)∣∣∣∣Ft], 0 ≤ t < T. (9.2)
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9.1 Models where the limits of the zero-coupon rates do not
exist

In the following examples we discuss models, where the limits of the zero-coupon rates
R(t, T ) for T → ∞ do not exist. The idea is to vary the behaviour of the short rate on
longer and longer time periods to get oscillating means. We illustrate this with a simple
deterministic model and then with two short-rate models having an (exponentially) affine
term structure. More specifically, we consider a variant of the familiar Vaš́ıček model with
time-dependent coefficients, which was proposed by Vaš́ıček (1977) and Hull and White
(1990). Secondly, we study the behaviour of the long-term spot rate in the model of Cox,
Ingersoll and Ross (1985) with time-dependent coefficients (but constant dimension).

In both examples the mean level or the volatility of the short rate changes cyclically but
decelerates over time. An economical justification for this behaviour can be the dependence
on the business cycles, which become longer and longer. So, if the lengths of the business
cycles increase exponentially, then the limits of the zero-coupon rates might not exist, as
our examples show.

In our last example, we use the well-known Heath–Jarrow–Morton framework, proposed
in [27], and choose an oscillating but decaying volatility function for the forward rates such
that the limits of the zero-coupon rates do not exist, see Example 9.16 below. Since we
specialize to a deterministic volatility function in product form, this example is related to
the extended Vaš́ıček model, cf. [46, Section 10.2].

Example 9.3 (Deterministic model). Define the set

A =
[

1
3 , 1
)
∪
∞⋃
k=0

[
22k+1, 22k+2

)
, (9.4)

the càdlàg interest rate intensity rt = 1A(t) for t ≥ 0, and the continuous function

RA(t, T ) =
1

T − t

∫ T

t
1A(u) du =

λ(A ∩ [t, T ])
T − t

, 0 ≤ t < T, (9.5)

where λ denotes the Lebesgue measure. Since {rt}t≥0 is deterministic, (9.2) impliesR(t, T ) =
RA(t, T ) for all 0 ≤ t < T . Note that T ≥ 1 is a local minimum of RA(0, ·) if and only if
there exists n ∈ N0 with T = 22n+1. Since

λ(A ∩ [0, 22n+1]) =
2
3

+
n−1∑
k=0

22k+1 =
2
3

+ 2
4n − 1

3
=

22n+1

3
, n ∈ N0,

we have RA(0, 22n+1) = 1/3. Furthermore, T ≥ 2 is a local maximum of RA(0, ·) if and only
if there exists n ∈ N0 with T = 22n+2. Since λ(A∩ [0, 22n+2]) = λ(A∩ [0, 22n+1]) + 22n+1 =
22n+3/3, we get RA(0, 22n+2) = 2/3. Hence, we have RA(0, T ) ∈ [1/3, 2/3] for all T ≥ 1,
and the interval [1/3, 2/3] is also the set of all accumulation points of {RA(0, T )}T>0. Since
|RA(t, T ) − RA(0, T )| ≤ 2t/T for 0 ≤ t < T , the latter is also true for {RA(t, T )}T>t, in
particular the limit of R(t, T ) as T →∞ does not exist. Since l(t) = lim supT→∞RA(t, T ) =
2/3 for all t ∈ [0,∞), asymptotic minimality holds. This can also be shown by verifying
the assumptions of Corollary 8.38. For t ∈ [0,∞) and Tn := 22n+2 with n ∈ N0 such that
Tn > t,

|RA(t, Tn)− l(t)| = |RA(t, Tn)−RA(0, Tn)| ≤ 2t
22n+2

n→∞−→ 0,
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hence (8.39) is satisfied. Since the model is deterministic, the σ-algebra Ft is finite. Remark
8.31 implies that no arbitrage opportunity in the limit is equivalent to no arbitrage opportu-
nity in the limit with vanishing risk. Furthermore, the example illustrates that the inequal-
ity (8.35) in Theorem 8.34 can be strict, because l(0) = 2/3 but lim infn→∞R(0, Tn) = 1/3
for Tn := 22n+1 with n ∈ N. Note that this example can be generalized to an interest
intensity process rt = a+ b1A(t) for t ≥ 0, where a, b ∈ R and b 6= 0.

A broad class of interest rate models have an (exponentially) affine term structure, i. e.,
the price process of a zero-coupon bond with maturity T > 0 admits the representation

P (t, T ) = exp
(
A(t, T ) +B(t, T )rt

)
, t ∈ [0, T ),

with deterministic real-valued functions A and B, cf. [8, Chapter 22.3]. Hence, the zero-
coupon rate process for T > 0 is given by

R(t, T ) = − A(t, T ) +B(t, T )rt
T − t

, t ∈ [0, T ). (9.6)

Therefore, if for t ≥ 0 the short rate rt is not deterministic, then the limit of {R(t, T )}T>t
exists a. s. if and only if the limits of A(t, T )/T and B(t, T )/T for T → ∞ exist. In
the following we consider generalizations of the familiar Vaš́ıček and Cox–Ingersoll–Ross
models, which both belong to the (exponentially) affine term structure models. In these
generalized models we show that, with appropriate choices of time-dependent coefficients,
the limit of A(t, T )/T as T →∞ does not exist.

Example 9.7 (Vaš́ıček model with time-dependent coefficients). Let α > 0 be a parameter
for the mean reverting strength. Suppose the mean level µ: [0,∞)→ R is a locally integrable
function and the volatility σ: [0,∞) → R is a locally square-integrable function. Let
{Wt}t≥0 be a standard Brownian motion under Q, and let the initial value r0 be normally
distributed (possibly with zero variance) and independent of the Brownian motion. Define
the interest rate intensity process by

rt = e−αt
(
r0 + α

∫ t

0
eαsµs ds+

∫ t

0
eαsσs dWs

)
, t ≥ 0. (9.8)

Using Itô’s formula, it follows that {rt}t≥0 is a strong solution of the stochastic differential
equation

drt = α(µt − rt) dt+ σt dWt , t ≥ 0,

with initial value r0. Note that {rt}t≥0 is a Gaussian process with continuous paths, see
e. g. [2, Chapter 8]. It follows from (9.8) that

ru = e−α(u−t)rt + α

∫ u

t
e−α(u−s)µs ds+

∫ u

t
e−α(u−s)σs dWs, 0 ≤ t ≤ u,

hence the conditional distribution of the integral It,T =
∫ T
t ru du given rt is a normal one.

In particular, the process {rt}t≥0 is Markovian and (9.2) simplifies to

R(t, T ) = − 1
T − t

log EQ
[
exp
(
−It,T

)∣∣rt], 0 ≤ t < T. (9.9)
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Using the stochastic Fubini theorem, see e. g. Protter (2004), we obtain

It,T − rt
∫ T

t
e−α(u−t) du− α

∫ T

t
µs

∫ T

s
e−α(u−s) du ds

=
∫ T

t
σs

∫ T

s
e−α(u−s) du︸ ︷︷ ︸

= (1−e−α(T−s))/α

dWs, 0 ≤ t ≤ T.

Since the stochastic integral on the right-hand side is independent of rt with zero expecta-
tion, it follows that

EQ
[
It,T

∣∣rt] = rt
1− e−α(T−t)

α
+
∫ T

t

(
1− e−α(T−s))µs ds, 0 ≤ t ≤ T,

and, using the Itô isometry,

VarQ(It,T |rt) =
1
α2

∫ T

t

(
1− e−α(T−s))2σ2

s ds, 0 ≤ t ≤ T.

If X has a normal distribution, then log E
[
e−X

]
= −E[X] + 1

2 Var(X). Applying these
results to (9.9) leads to

R(t, T ) = rt
1− e−α(T−t)

α(T − t)
+

1
T − t

∫ T

t

(
1− e−α(T−s))µs ds

− 1
2α2(T − t)

∫ T

t

(
1− e−α(T−s))2σ2

s ds, 0 ≤ t < T. (9.10)

Given t ≥ 0, the limit of the zero-coupon rates {R(t, T )}T>t exists in R if and only if the
limit of the difference of the last two terms in (9.10) exists in R as T → ∞. It remains to
choose suitable time-dependent functions for the mean level µ or the volatility σ such that
this is not the case. Let us discuss three specific choices.

If µ is bounded and lims→∞ σ
2
s = ∞, then, for every n ∈ N, there exists Tn ≥ t such

that σ2
s ≥ n for all s ≥ Tn. Since 1 − e−α(T−s) ≥ 1/2 for s ≤ T − 1/α, we get for all

T ≥ Tn + 1/α,

4
T − t

∫ T

t

(
1− e−α(T−s))2σ2

s ds ≥
1

T − t

∫ T−1/α

Tn

σ2
s ds ≥ n

T − Tn − 1/α
T − t

T→∞−→ n.

Hence l(t) = lim supT→∞R(t, T ) = −∞ by (9.10) and, in particular, asymptotic minimality
holds. Note, that (8.39) is satisfied. A similar argumentation shows that l(t) = ±∞ if σ is
bounded and lims→∞ µs = ±∞, respectively.

We now discuss cases where the mean level µ and the volatility σ remain bounded. Note
that, for every a > 0 and bounded measurable function g: [0,∞)→ R,∣∣∣∣∫ T

t
e−a(T−s)g(s) ds

∣∣∣∣ ≤ 1− e−a(T−t)

a
‖g‖∞ ≤

‖g‖∞
a

, 0 ≤ t ≤ T.

Therefore, if follows from (9.10) that, for every t ≥ 0,

R(t, T ) =
1

T − t

∫ T

t
µs ds−

1
2α2(T − t)

∫ T

t
σ2
s ds+O

( 1
T

)
(9.11)
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as T > t tends to infinity.
We first consider a constant volatility σ ∈ R and a time-dependent mean level µs :=

a + b1A(s) for s ≥ 0 with A given by (9.4), a ∈ R and b > 0. Using (9.11) we obtain, for
every t ≥ 0,

R(t, T ) = a+ bRA(t, T )− σ2

2α2
+O

( 1
T

)
as T →∞,

with RA(t, T ) given by (9.5). It is shown in Example 9.3 that the limit of RA(t, T ) as
T → ∞ does not exist, hence the limit of {R(t, T )}T>t does not exist either. Since
lim supT→∞RA(t, T ) = 2/3 by the results from Example 9.3, we see that

l(t) = lim sup
T→∞

R(t, T ) = a+
2b
3
− σ2

2α2
, t ≥ 0,

hence asymptotic minimality holds for all 0 ≤ s < t. A similar result can be obtained, if
we choose a constant mean level µ ∈ R and a time-dependent volatility σs := a + b1A(s)
with a, b ∈ R satisfying 2ab+ b2 6= 0.

To illustrate explicitly that a bounded, continuously varying volatility function σ can
also lead to oscillating zero-coupon rates, we consider a constant mean level µ ∈ R and a
volatility function of the form

σt =
√
a+ b sin(log(t+ 1)) + b cos(log(t+ 1)), t ≥ 0,

with a, b ∈ (0,∞) satisfying a ≥
√

2 b. Then 0 ≤ σt ≤
√

2a for all t ≥ 0. Furthermore, for
all T > 0 and t ∈ [0, T ),

1
T − t

∫ T

t
σ2
s ds = a+ b

(T + 1) sin(log(T + 1))− (t+ 1) sin(log(t+ 1))
T − t

. (9.12)

Together with (9.11) we obtain for the long-term spot rate process

l(t) = lim sup
T→∞

R(t, T ) = µ− a− b
2α2

, t ≥ 0, (9.13)

but for the limes inferior of the zero coupon rates

lim inf
T→∞

R(t, T ) = µ− a+ b

2α2
, t ≥ 0.

Hence, the limit of {R(t, T )}T>t as T → ∞ does not exist. Since the long-term spot-rate
process given by (9.13) is a deterministic constant, asymptotic minimality holds for all
times 0 ≤ s < t.

Example 9.14 (Cox–Ingersoll–Ross model with time-dependent coefficients).
Let α: [0,∞) → (0,∞) and β: [0,∞) → (−∞, 0) be two continuously differentiable func-
tions and let {Wt}t≥0 be a standard Brownian motion under Q. Analogously to [46, Sections
10.3.2 and 10.3.3], by considering a squared Bessel process of dimension δ ∈ (0,∞) with
respect to some probability measure P, applying a suitable measure change to Q using
Girsanov’s theorem, and rescaling the state space by the function α, we can construct an
interest rate intensity process {rt}t≥0 which solves the stochastic differential equation

drt =
(
δα(t) +

(
2β(t) +

α′(t)
α(t)

)
rt

)
dt+ 2

√
α(t)rt dWt, t ≥ 0,
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with deterministic initial value r0 ≥ 0. If for given 0 ≤ t < T there is a solution FT :
[t, T ]→ R to the Riccati equation

F 2
T (u) + F ′T (u) = 2α(u) + β2(u) + β′(u), u ∈ [t, T ],

with the terminal condition FT (T ) = β(T ), then it follows as in [46, Sections 10.3.3 and
10.3.4] that the corresponding zero-coupon rate is given by

R(t, T ) = − 1
2(T − t)

(
FT (t)− β(t)

α(t)
rt + δ

∫ T

t

(
FT (u)− β(u)

)
du

)
,

which corresponds to (9.6) resulting from an (exponentially) affine term structure.
We now make specific choices for α and β. For b > 0 and a >

√
2b define the function

β(t) = −a+ b sin(log(t+ 1)) + b cos(log(t+ 1)), t ≥ 0.

Note that β is continuously differentiable and that −a −
√

2b ≤ β(t) < 0 for all t ≥ 0.
Furthermore, for c > 0 with c2 > (a+

√
2b)2 +

√
2b, define the function

α(t) =
1
2
(
c2 − β2(t)− β′(t)

)
, t ≥ 0.

Since β2(t) ≤ (a+
√

2b)2 and β′(t) ≤
√

2b, it follows that α(t) > 0 for all t ≥ 0. For these
functions α and β, the Riccati equation simplifies, for each T > 0, to

F 2
T (u) + F ′T (u) = c2, u ∈ [0, T ].

The solution for the terminal condition FT (T ) = β(T ) is

FT (u) = c tanh(cu+ gT ), u ∈ [0, T ],

where gT := artanh(β(T )/c) − cT . Since |β(T )| ≤ a +
√

2b < |c| for all T > 0, the area
tangents hyperbolicus of β(T )/c is well-defined and bounded with respect to T . Note that
d
dx log(cosh(cx+ gT )) = c tanh(cx+ gT ) for all x ∈ R. Therefore,

∫ T

t
FT (u) du = log

cosh
(
artanh β(T )

c

)
cosh

(
artanh

(β(T )
c

)
− c(T − t)

) , 0 ≤ t ≤ T.

Using coshx = (ex + e−x)/2 for x ∈ R and the boundedness of artanh(β(T )/c), it follows
that

lim
T→∞

1
T − t

∫ T

t
FT (u) du = −c, t ≥ 0.

Finally, integration of β, cf. (9.12), yields

l(t) = lim sup
T→∞

R(t, T ) =
δ

2
(c− a+ b), t ≥ 0 (9.15)

but
lim inf
T→∞

R(t, T ) =
δ

2
(c− a− b), t ≥ 0.

Since l in (9.15) is a deterministic constant, asymptotic minimality holds.
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Our next example is the well-known Gaussian Heath–Jarrow–Morton model, cf. [46,
Chapter 11], with deterministic but time-dependent volatility of the forward rates. For this
volatility we choose a non-negative function, which fluctuates over time but converges to
zero when the maturities tend to infinity. Again, we assume, that the volatility varies with
the business cycles of exponentially increasing lengths.

Example 9.16 (Gaussian Heath–Jarrow–Morton model). Let σ1, σ2: [0,∞) → R denote
bounded measurable functions. Define the volatility σ: [0,∞)2 → R of the forward rates
by σ(u, v) = σ1(u)σ2(v) for all u, v ≥ 0. Suppose that the deterministic forward rate curve
f(0, ·): [0,∞)→ R at time zero is locally integrable. We set up the model directly using the
spot martingale measure Q, under which zero-coupon bond prices, discounted by the bank
account process, are martingales. Therefore, let {Wt}t≥0 be a standard Brownian motion
under Q and let the forward rates satisfy

f(t, T ) = f(0, T ) +
∫ t

0
σ(u, T )σ∗(u, T ) du+

∫ t

0
σ(u, T ) dWu, 0 ≤ t ≤ T,

with integrated volatility σ∗(u, T ) :=
∫ T
u σ(u, v) dv so that they obey the Heath–Jarrow–

Morton drift condition. The short-term interest rate intensity process is given by rt = f(t, t)
for t ≥ 0. Then, for each maturity T > 0 and time t ∈ [0, T ), the zero-coupon rate is given
by

R(t, T ) =
1

T − t

(∫ T

0
f(0, u) du−

∫ t

0

(
ru −

1
2

(σ∗(u, T ))2
)
du+

∫ t

0
σ∗(u, T ) dWu

)
,

see e. g. [46, Chapter 11, pp. 388–389].
Given t ≥ 0, the limit of the zero-coupon rates {R(t, T )}T>t as T →∞ might not exist,

if the averages of the initial forward rates {f(0, u)}u∈[t,T ] do not converge, see Examples
9.3 and 9.7 for such functions. In the following, we therefore assume the existence of the
limit of these averages so that we can define

f∗ = lim
T→∞

1
T

∫ T

0
f(0, u) du.

To further discuss the limiting behaviour of the zero-coupon rates, we first consider their
stochastic component. Substituting the stochastic integral from the short-rate rv into the
formula for R(t, T ) and using the stochastic Fubini theorem, we obtain

1
T − t

(∫ t

0
σ∗(u, T ) dWu −

∫ t

0

∫ v

0
σ(u, v) dWu dv

)
=

1
T − t

∫ T

t
σ2(v) dv

∫ t

0
σ1(u) dWu, 0 ≤ t < T,

(9.17)

which converges to zero as T → ∞ whenever the averages of {σ2(v)}v∈[t,T ] do. To obtain
the oscillating behaviour of the zero-coupon rates, define

σ2(v) =
1

2
√
v + 1

(
a+ sin(b log(v + 1)) + 2b cos(b log(v + 1))

)
, v ≥ 0,

with parameters1 a, b ∈ R. Then limv→∞ σ2(v) = 0, hence the stochastic part given in
(9.17) tends to zero as T →∞. For all T > 0 and u ∈ [0, T ],∫ T

u
σ2(v) dv =

√
T + 1

(
a+ sin(b log(T + 1))

)
−
√
u+ 1

(
a+ sin(b log(u+ 1))

)
.

1If we choose a ≥
√

1b 6=0 + 4b2, then σ2(v) ≥ 0 for all v ≥ 0.
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Hence, using the above expression for R(t, T ), the long-term spot rate is given by

l(t) = lim sup
T→∞

R(t, T )

= f∗ + lim sup
T→∞

1
2(T − t)

∫ t

0
σ2

1(u)
(∫ T

u
σ2(v) dv

)2
du

= f∗ +
1
2

lim sup
T→∞

(
a+ sin(b log(T + 1))

)2 ∫ t

0
σ2

1(u) du

= f∗ +
1
2

(|a|+ 1b6=0)2

∫ t

0
σ2

1(u) du, t ≥ 0,

(9.18)

where 1b 6=0 equals 1 if b 6= 0 and 0 otherwise. In particular, if a and b are not both zero,
then, for all times 0 ≤ s < t with

∫ t
s σ

2
1(u) du > 0, asymptotic monotonicity in the sense

l(s) = l(t)Fs does not hold. The same reasoning as above yields

lim inf
T→∞

R(t, T ) = f∗ +
1
2
(
max{|a| − 1b6=0, 0}

)2 ∫ t

0
σ2

1(u) du, t ≥ 0, (9.19)

hence, for t ≥ 0, the limit of the zero-coupon rates does not exist if
∫ t

0 σ
2
1(u) du > 0 and

b 6= 0. Furthermore, if |a| > 1b6=0 and σ1 is not the zero function, then this model provides
arbitrage opportunities in the limit for all times 0 ≤ s < t satisfying

(|a|+ 1b 6=0)2

∫ s

0
σ2

1(u) du < (|a| − 1b 6=0)2

∫ t

0
σ2

1(u) du

by short-selling the long-term zero-coupon bonds: For every deterministic sequence {Tn}n∈N
tending to infinity, we have l(s) < lim infn→∞R(t, Tn) by (9.18) and (9.19), hence the
assumptions of Theorem 8.34 have to be violated.

9.2 Models violating the asymptotic minimality

We now present four short-rate models in continuous time, which illustrate the link between
asymptotic minimality and the existence of a forward risk neutral probability measure in
Condition 8.12, no arbitrage in the limit and convergence of the spot rate.

Example 9.20. On Ω = {0, 1} consider X(ω) = ω for ω ∈ Ω, let Q denote the uniform
distribution, Ft = {∅,Ω} for t ∈ [0, 1/3) and Ft equal to the power set of Ω for t ≥ 1/3.
With A given by (9.4), define the interest rate intensity process by

rt = X1A(t) + (1−X)1Ac∩[1/3,∞)(t), t ∈ [0,∞).

Note that {rt}t≥0 is adapted and càdlàg. Using (9.2) and Jensen’s inequality, we get for all
t ∈ [0, 1/3) and T > 1/3,

R(t, T ) = − 1
T − t

log
exp(−λ(A ∩ [t, T ])) + exp(−λ(Ac ∩ [1/3, T ]))

2

≤ λ(A ∩ [t, T ]) + λ(Ac ∩ [1/3, T ])
2(T − t)

=
T − 1/3
2(T − t)

≤ 1
2
,

hence l(t) ≤ 1/2. For t ≥ 1/3, X is Ft-measurable and we get from (9.2)

R(t, T ) =
Xλ(A ∩ [t, T ]) + (1−X)λ(Ac ∩ [t, T ])

T − t
= XRA(t, T ) + (1−X)(1−RA(t, T )), T > t,
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9.2. Models violating the asymptotic minimality

with RA(t, T ) given by (9.5). Therefore, l(t) = lim supT→∞R(t, T ) = 2/3 for all t ≥ 1/3,
because the points in [1/3, 2/3] are the accumulation points of RA(t, T ) as T → ∞, see
Example 9.3.

In this example asymptotic minimality fails for all times s ∈ [0, 1/3) and t ≥ 1/3. By
construction there exists a forward risk neutral probability measure, which implies with
Lemma 8.32, that there is no arbitrage opportunity in the limit with vanishing risk. Since
Ft is finite for each t ≥ 0, the model provides also no arbitrage opportunity in the limit
by Remark 8.31. Therefore Condition 8.12, resp. the weaker Condition 8.10, and the two
different notions of no-arbitrage are not sufficient for asymptotic minimality. Furthermore,
for s ∈ [0, 1/3) and t ≥ 1/3 the inequality l(s) ≤ l(t) for asymptotic minimality is strict on
Ω.

Indeed, the inequality (8.39) fails, which is sufficient for asymptotic minimality in com-
bination with no arbitrage opportunity in the limit. Consider an arbitrary deterministic
sequence {Tn}n∈N tending to infinity. Then

lim inf
n→∞

R(t, Tn) = X lim inf
n→∞

RA(t, Tn) + (1−X)
(

1− lim sup
n→∞

RA(t, Tn)
)
. (9.21)

Assume (8.39) holds for ω = 1, then lim infn→∞RA(t, Tn) ≥ l(t)Fs = 2/3. Therefore,
lim supn→∞RA(t, Tn) ≥ 2/3. By (9.21) follows that the inequality (8.39) fails for ω = 0.

Finally, suppose Tn := 2n for n ∈ N. We have seen in Example 9.3, that

lim inf
n→∞

RA(t, Tn) = 1/3, and lim sup
n→∞

RA(t, Tn) = 2/3 for all t ≥ 0.

Hence, for 1/3 ≤ s ≤ t the inequality (8.35) is strict on Ω, i. e.

lim inf
n→∞

R(t, Tn) = 1/3 < 2/3 = l(s).

Even, if the limit of the zero-coupon bonds and a forward risk neutral probability mea-
sure exist, this is not sufficient for asymptotic minimality, which is shown by the following
example.

Example 9.22. Consider Ω = (0, 1] with Lebesgue measure Q, define Ft = {∅,Ω} for
t ∈ [0, 1) and let Ft denote the Borel σ-algebra of (0, 1] for t ≥ 1. Let τ(ω) = 1/ω for
ω ∈ Ω denote the random time, when the interest rate intensity jumps to 1, i. e., we define
the interest rate intensity process by rt = 1[τ,∞)(t) for t ≥ 0. Then τ is F1-measurable and
(9.2) implies for T > 1

R(1, T ) =
1

T − 1

∫ T

1
ru du =

T − (T ∧ τ)
T − 1

T→∞−→ 1

everywhere on Ω, hence l(1) = 1. For t ∈ [0, 1) and T ≥ 1, (9.2) implies that

R(t, T ) = − 1
T − t

log EQ

[
exp
(
−
∫ T

1
ru du

)
︸ ︷︷ ︸

≥ 1{τ≥T}

]
≤ − 1

T − t
log

1
T

T→∞−→ 0,

hence l(t) = 0 due to non-negative interest rates. Therefore, asymptotic minimality does
not hold. This does not contradict Corollary 8.36, because this model provides an arbitrage
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opportunity in the limit for the times s ∈ [0, 1) and t = 1 by short-selling long-term zero-
coupon bonds. Choose a (1,∞)-valued deterministic sequence {Tn}n∈N tending to infinity,
define ϕn = − exp((Tn − 1)/2) for each n ∈ N and fix {ψn}n∈N according to Remark 8.30
so that Definition 8.29(i) holds. Then

Vn(1) = − exp
(

(Tn − 1)
(1

2
−R(1, Tn)

))
+

exp
(

1
2(Tn − 1)−R(s, Tn)(Tn − s)

)
P (s, 1)

,

hence lim infn→∞ Vn(1) a.s.= ∞ and parts (ii) and (iii) of Definition 8.29 hold.

The existence of a forward risk neutral probability measure or the absence of arbitrage
opportunities in the limit, is not even necessary for asymptotic minimality.

Example 9.23. Consider Ω = (0, 1] with Lebesgue measure Q, define Ft = {∅,Ω} for
t ∈ [0, 1) and let Ft denote the Borel σ-algebra of (0, 1] for t ≥ 1. Let τ(ω) = 1/ω for
ω ∈ Ω be a random time. Define the interest rate intensity process2 by rt = 1 − 1

t 1[1,τ)(t)
for t ≥ 0. With (9.1) the zero-coupon bond price for maturity T ≥ 1 is given by

P (t, T ) = e−(T−t) EQ[τ ∧ T ] = e−(T−t)(1 + log T ), t ∈ [0, 1).

Using the definition of the zero-coupon rates in (8.2), we obtain for every t ∈ [0, 1) and
T ≥ 1

R(t, T ) = 1− log(1 + log T )
T − t

T→∞−→ 1.

For t = 1 the zero-coupon prices for T ≥ 1 are given by P (1, T ) = e−(T−1)(τ ∧ T ) and
therefore the zero-coupon rates equal

R(1, T ) = 1− log(τ ∧ T )
T − 1

T→∞−→ 1.

Hence asymptotic minimality holds.
On the other hand, we can construct an arbitrage opportunity in the limit for the times

s = 0 and t = 1 according to Definition 8.29 by short-selling long-term zero-coupon bonds.
For this define Tn = n+ 1,

ϕn = − 1
eP (0, Tn)

= − eTn−1

1 + log Tn
,

and ψn = 1 for all n ∈ N. Then Vn(0) = 0 for all n ∈ N and

Vn(1) = − (τ ∧ Tn)
1 + log Tn

+ 1 n→∞−→ 1 on Ω.

Example 9.24. Consider Ω = N, define the filtration

Ft =


{∅,Ω} for t ∈ [0, 1),
{∅, {1},Ω \ {1},Ω} for t ∈ [1, 2),
P(Ω) for t ∈ [2,∞),

where P(Ω) denotes the power set, and the probability measure Q on (Ω,P(Ω)) by Q({ω}) =
1/ω − 1/(ω + 1) for all ω ∈ Ω. Let τ(ω) = ω for ω ∈ Ω denote the random time, when the

2This example can be slightly simplified if we omit the 1 and allow negative interest rates.
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9.3. No arbitrage in the limit not sufficient for a forward risk neutral measure

interest rate intensity jumps to 1 − 1/ω, i. e., we define the interest rate intensity process
by rt = (1− 1/τ)1[τ,∞)(t) for t ≥ 0. Then τ is F2-measurable and (9.2) implies for T > 2

R(2, T ) =
1

T − 2

∫ T

2
ru du =

(
1− 1

τ

)T − (T ∧ (τ ∨ 2))
T − 2

T→∞−→ 1− 1
τ

(9.25)

everywhere on Ω, hence l(2) = 1− 1/τ . Therefore l(2)F0 = 0 and l(2)F1 = 1
21Ω\{1}.

For T > 0, we always have that R(0, T ) ≥ 0 and (9.2) implies that

R(0, T ) = − 1
T

log EQ

[
exp
(
−
∫ T

0
ru du

)
︸ ︷︷ ︸

≥ 1{τ≥dTe}

]
≤ − 1

T
log

1
dT e

T→∞−→ 0,

hence l(0) = 0 and asymptotic minimality holds for times 0 and 2.
For T > 1, (9.2) implies as in (9.25) that l(1) = 0 on {1} and that on the complement

Ω \ {1}

R(1, T ) = − 1
T − 1

log EQ

[
exp
(
−
∫ T

1
ru du

)
︸ ︷︷ ︸

≥ 1{τ≥dTe}

∣∣∣∣τ ≥ 2
]
≤ − 1

T − 1
log

2
dT e

T→∞−→ 0,

hence l(1) = 0 on Ω and asymptotic minimality does not hold for times 1 and 2. To construct
an arbitrage opportunity in the limit for times 1 and 2 according to Definition 8.29 by short-
selling the long-term zero-coupon bonds, define for each n ∈ N the deterministic maturity
Tn = n+ 2 and the strategy by

ϕn = −1Ω\{1} exp
(
(Tn − 1)R(1, Tn)−R(1, 2)

)
and ψn = 1Ω\{1}. Then (ϕn, ψn) is F1-measurable and Vn(1) = 0 for all n ∈ N. Furthermore,
we obtain for all n ∈ N

ϕnP (2, Tn) = −1Ω\{1} exp
(
(Tn − 2)(R(1, Tn)−R(2, Tn)) +R(1, Tn)−R(1, 2)

)
.

Since l(1) = limn→∞R(1, Tn) = 0 on Ω as well as l(2) = limn→∞R(2, Tn) = 1−1/τ ≥ 1/2 on
Ω\{1} by (9.25), we get lim infn→∞ ϕnP (2, Tn) = 0. Therefore, lim infn→∞ Vn(2) = ψn ≥ 0
and with probability Q(Ω \ {1}) = 1/2 the limes inferior is strictly greater than zero.

9.3 A model without forward risk neutral probability mea-
sure and without limiting arbitrage opportunities

The following example is inspired by the infinite-horizon model considered in Example 7.2
in Pliska (1997). It shows that in general for a model, which does not provide an arbitrage
opportunity in the limit, there must not exist a forward risk neutral probability measure.
The other implication is also not true, see Example 9.22.

Example 9.26. Define Ω = N, F0 = {∅,N} and F1 = P(N), the set of all subsets of N.
Let P be any probability measure on F1 with P({ω}) > 0 for all ω ∈ Ω. Define zero-coupon
bond prices by P (0, n) = 1 for all n ∈ N and

P (1, n)(ω) =


1 if ω ≤ n− 2,
(n2 + 1)/2 if ω = n− 1,
1/2 if ω ≥ n,
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for all ω ∈ Ω and integers n ≥ 2. By (8.1) and (8.5), it follows that l(0) = l(1) = 0, hence
asymptotic monotonicity and minimality hold for times s = 0 and t = 1.

To verify that there is no arbitrage opportunity in the limit for times s = 0 and t = 1,
consider an F0-measurable, hence deterministic sequence {Tn}n∈N of maturities with Tn > n
for all n ∈ N and deterministic portfolios (ϕn, ψn) with ϕn = −ψn for all n ∈ N so that
Definition 8.29(i) is satisfied. Then Vn(1)(ω) = 0 for all ω ∈ {1, 2, . . . , n − 2}, hence
lim infn→∞ Vn(1) = 0 on Ω. Therefore, part (iii) of Definition 8.29 is satisfied, but part (ii)
does not hold.

To show that Condition 8.10 for times s = 0 and t = 1 is not satisfied (and there does
not exist a forward risk neutral measure for times s = 0 and t = 1 like in Condition 8.12),
we argue by contradiction. Assume that there exists an equivalent probability measure
Q = Q0,1 such that P (0, n) ≥ EQ[P (1, n)] for all integers n ≥ n0 ≥ 2. This implies

Q({n− 1, n, . . . }) ≥ n2 + 1
2

Q({n− 1}) +
1
2

Q({n, n+ 1, . . . }),

hence n2Q({n − 1}) ≤ Q({n − 1, n, . . . }) for all integers n ≥ n0. Define the constant
c = (n0 − 1) Q({n0 − 1, n0, . . . })/n0 > 0. Then we get by induction

Q({n− 1, n, . . . }) ≥ cn

n− 1
(9.27)

for all integers n ≥ n0, because

Q({n, n+ 1, . . . }) = Q({n− 1, n, . . . })−Q({n− 1})

≥
(

1− 1
n2

)
Q({n− 1, n, . . . }) ≥

(
1− 1

n2

) cn

n− 1
= c

n+ 1
n

for all integers n ≥ n0 + 1. However, (9.27) for n → ∞ implies Q(∅) = c > 0, which is
impossible for a probability measure.
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Chapter 10

Proofs for asymptotic
monotonicity and minimality

10.1 Proofs of auxiliary results

Proof of Lemma 8.8. Consider a finite non-empty set I ⊂ (n ∨ t,∞) of zero-coupon bond
maturities, which is required to be also a subset of N in the discrete-time case. Let MI :=
maxu∈I R(t, u) denote the maximal available zero-coupon rate. Define the random maturity
TI : Ω→ I as the first one realizing this maximal rate, i. e.

TI =
∑
u∈I

u 1{R(t,u)=MI ,R(t,v)<MI for all v∈I,v<u}.

Note that TI is Ft-measurable and that R(t, TI) = MI . By [22, Theorem A.32(b)], there
exists, for every n ∈ N, an increasing sequence {Ik,n}k∈N of finite subsets of (n ∨ t,∞),
which are also subsets of N in the discrete-time case, such that

Sn := ess sup
T>n∨t

R(t, T ) = lim
k→∞

R(t, TIk,n) a. s.

Hence, for every n ∈ N, there exists kn ∈ N such that the essential supremum is nearly
reached with high probability, e. g. with the abbreviation Tn := TIkn,n ,

P
(
min{Sn, n} − 2−n ≤ R(t, Tn) ≤ Sn) ≥ 1− 2−n.

The a. s. limit of {Sn}n∈N exists due to the monotonicity of the essential suprema. Hence,
using the first Borel–Cantelli lemma, the a. s. limit of {R(t, Tn)}n∈N exists and agrees with
the one of {Sn}n∈N.

Proof of Lemma 8.9. Fix 0 ≤ s ≤ t. In the continuous-time case, using the definition of
the arbitrage-free forward rate in (8.4) and the zero-coupon rate in (8.2),

F (s, t, T ) =
logP (s, t)
T − t

+
T − s
T − t

R(s, T ), T ∈ (t,∞).

Since the first summand tends to zero almost surely as T →∞, it follows that

lF (s, t) = lim sup
T→∞

F (s, t, T ) = lim sup
T→∞

T − s
T − t

R(s, T ) = l(s) a. s.,
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Chapter 10. Proofs for asymptotic monotonicity and minimality

by the definition of the long-term forward rate in (8.6) and the long-term zero-coupon rate
in (8.5). In the discrete-time case, using the definition (8.3) of the arbitrage-free forward
rate and the definition (8.1) of the zero-coupon rate, we see that it is enough to prove

lim sup
T→∞

log
(
P (s, t)
P (s, T )

)1/(T−t)
a.s.= lim sup

T→∞
logP (s, T )−1/(T−s).

However, that is what we just verified for the continuous-time case.

10.2 Proofs assuming existence of a forward risk neutral
probability measure

The key observation for our generalization is the following lemma, which uses notation
introduced in Definition 8.19.

Lemma 10.1. Let (Ω,F ,P) be a probability space and G a sub-σ-algebra of F .

(i) For every non-negative random variable X on (Ω,F ,P), the function (0,∞) 3 t 7→
E
[
Xt |G

]1/t is non-decreasing a. s. and

X ≤ lim
t→∞

E
[
Xt |G

]1/t = XG a. s. (10.2)

(ii) Let {Xt}t>0 be a collection of non-negative random variables on (Ω,F ,P). For each
n ∈ N let Yn denote the essential infimum of {Xt}t>n. Then

X := lim inf
t→∞

Xt ≤ lim
n→∞

E[Y n
n |G ]1/n = XG ≤ lim inf

t→∞
E[Xt

t |G]1/t a. s. (10.3)

(iii) If in (ii) the random variable XG dominates {Xt}t>0 in the (G,P)-superexponential
sense along a subsequence according to Definition 8.20, then the last inequality in
(10.3) is an a. s. equality.

Remark 10.4. For the trivial case G = {∅,Ω}, Lemma 10.1(i) implies the well-known result
limp→∞ ‖X‖Lp = ‖X‖L∞ .

Remark 10.5. For a non-negative random variable Z with E[Z] = ∞, we define E[Z |G ] =
supn∈N E[min{Z, n}|G ]. For a σ-integrable random variable with respect to G, the gener-
alization of the conditional expectation is given in [26, Chapter 4].

Remark 10.6. Part (ii) of Lemma 10.1 was introduced by Hubalek et al. (2002) with the
additional assumption that the sequence {Xt}t>0 converges. A further application of the
lemma is to prove that the long volatilities, implied by the Black–Scholes formula, cannot
fall, which was done by Rogers and Tehranchi (2006).

Example 10.7. Note that X < XG is possible in (10.2), even for a bounded X. As an
example, consider Ω = (0, 1) with Lebesgue measure and Borel σ-algebra, G = {∅,Ω} and
X(ω) = ω for ω ∈ Ω. Then E[Xn |G ]1/n = (n+ 1)−1/n and XG = 1.

Example 10.8. Note that the last inequality in (10.3) can be strict for a bounded sequence
{Xn}n∈N which converges everywhere in a monotone way. In the setting of Example 10.7,
consider Xn = 1(0,1/n) for n ∈ N with pointwise limit X = 0, hence XG = 0. However,
E[Xn

n |G]1/n = n−1/n → 1 as n→∞.
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Proof of Lemma 10.1. (i) Consider 0 < s < t < ∞. Jensen’s inequality for conditional
expectations, applied to the convex function ϕ(x) = xt/s implies

E[Xs |G ]1/s =
(
ϕ(E[Xs |G ])

)1/t ≤ E[ϕ(Xs) |G ]1/t = E
[
Xt |G

]1/t a. s.,

hence the almost sure limit C := limn→∞ E
[
Xtn |G

]1/tn exists along every sequence tn ↗∞
and every other sequence gives a. s. the same limit. Note that C is G-measurable. If Z is
a G-measurable random variable with P(X ≤ Z) = 1, then E

[
Xt |G

]1/t ≤ E
[
Zt |G

]1/t = Z
a. s. for all t > 0.

It remains to show that X ≤ C a. s., which we do by contradiction. We assume for
the set A := {X > C} that P(A) > 0. Since A ⊂ {C < ∞} there exist k ∈ N with
P(A ∩ {C ≤ k}) > 0. Furthermore, there exists l ∈ N such that P(B) > 0 for B := {X ≥
C + 1/l, C ≤ k}. We obtain

E[X1B] ≥ E[C1B] +P(B)/l > E[C1B] , (10.9)

because P(B) > 0 and E[C1B] ≤ kP(B) <∞. In the remaining part of the proof, we use
the convention ∞ · 0 = 0 for products. Using the conditional Hölder inequality1 and the
fact that N 3 n 7→ x1−1/n is non-increasing for every x ∈ [0, 1], it follows for all m,n ∈ N
with m ≤ n that

E[X1B |G ] ≤ E[Xn |G]1/n E[1B |G]1−1/n

≤ E[Xn |G]1/n E[1B |G]1−1/m ≤ C E[1B |G]1−1/m a. s.

Passing to the limit m→∞ and using the G-measurability of C,

E[X1B |G ] ≤ C E[1B |G] = E[C1B |G] a. s.

Taking expectations gives E[X1B] ≤ E[C1B], which is a contradiction to (10.9).
(ii) Since Ym ≤ Yn ≤ supk∈N Yk = X for all m,n ∈ N with m ≤ n, we obtain

E[Y n
m |G ]1/n ≤ E[Y n

n |G ]1/n ≤ E[Xn |G ]1/n ≤ XG a. s.,

using part (i) for the last inequality. Hence, by part (i), for every m ∈ N,

Ym ≤ Y Gm = lim
n→∞

E[Y n
m |G ]1/n ≤ sup

n∈N
E[Y n

n |G ]1/n

≤ lim
n→∞

E[Xn |G ]1/n = XG a. s.

Therefore,
X = sup

m∈N
Ym ≤ sup

m∈N
Y Gm ≤ lim

n→∞
E[Y n

n |G ]1/n ≤ XG a. s.

Since supm∈N Y
G
m is G-measurable and dominates X a. s., it also dominates XG a. s., hence

the last two inequalities are a. s. equalities.
For all t > n we have Yn ≤ Xt a. s. Using Jensen’s inequality for conditional expectations

E[Y n
n |G ]1/n ≤ E

[
Y t
n |G

]1/t ≤ E
[
Xt
t |G
]1/t a. s.,

hence
E[Y n

n |G ]1/n ≤ lim inf
t→∞

E
[
Xt
t |G
]1/t a. s.

1For a proof, cf. Hölder’s inequality at en.wikipedia.org/wiki/, version of April 6, 2008.
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Passing to the limit n→∞ gives the last inequality in (10.3).
(iii) Since Xt ≤ XG+max{Xt−XG , 0} for all t > 0, the conditional Minkowski inequality

and the G-measurability of XG imply for all t ≥ 1 that

E
[
Xt
t |G
]1/t ≤ XG + E

[
(max{Xt −XG , 0})t |G

]1/t
a. s.

By the assumption and Definition 8.20, the limit inferior of the last term is zero.

With this lemma we show that the long-term spot rates never fall without the assump-
tion that the spot rates converge.

Proof of Theorem 8.17. (i) In the discrete- and continuous-time case, it is sufficient to show
that

lim inf
T→∞

P (t, T )
1

T−t ≤ lim inf
T→∞

P (s, T )
1

T−s a. s. (10.10)

by definition of the zero-coupon rate in (8.1) and (8.2), respectively. Note that

lim
T→∞

P (s, t)1/(T−t) = 1. (10.11)

Using (10.3) from Lemma 10.1 (with Xu = P (t, t + u)1/u for u > 0 and G = Fs) and
afterwards (10.11), it follows that

lim inf
T→∞

P (t, T )
1

T−t ≤ lim inf
T→∞

(
EQs,t

[
P (t, T )

∣∣Fs]) 1
T−t

= lim inf
T→∞

(
P (s, t) EQs,t

[
P (t, T )

∣∣Fs]) 1
T−t a. s.

(10.12)

For ε > 0 define fε: [0,∞]→ [0,∞] by

fε(x) =

{
x for x ∈ [0, 1],
x1+ε for x > 1.

Then x1+δ ≤ fε(x) for all x ∈ [0,∞), uniformly in δ ∈ [0, ε]. Using the property in
Condition 8.10 and this estimate, we obtain for all T ≥ t+ (t− s)/ε

(
P (s, t) EQs,t

[
P (t, T )

∣∣Fs]) 1
T−t ≤ P (s, T )

1
T−s (1+ t−s

T−t )

≤ fε
(
P (s, T )

1
T−s
)

a. s.
(10.13)

Since fε is continuous and monotone increasing, we obtain with (10.12) that

lim inf
T→∞

P (t, T )
1

T−t ≤ fε
(

lim inf
T→∞

P (s, T )
1

T−s
)

a. s.

for all ε > 0, which implies (10.10).
(ii) This follows from part (i) and the equivalence of the long-term forward and spot

rates in Lemma 8.9.

The following proof combines the ideas from the proofs of Lemma 10.1(iii) and Theorem
8.17.
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10.3. Proofs assuming absence of arbitrage in the limit

Proof of Theorem 8.21. Since l(s) is Fs-measurable by definition (8.5), Theorem 8.17 im-
plies that l(s) ≤ l(t)Fs a. s., hence it remains to show that l(s) ≥ l(t)Fs a. s. According to
the definition (8.22) of the limiting annual discount factor Vt and Remark 8.25, it suffices
to show that

lim inf
T→∞

P (s, T )1/(T−s) ≤ V Fst a. s. (10.14)

For ε ∈ (0, 1) define gε: [0,∞]→ [0,∞] by

gε(x) =

{
x1−ε for x ∈ [0, 1],
x, for x > 1.

The x1−δ ≤ gε(x) for all x ∈ [0,∞), uniformly in δ ∈ [0, ε]. Using the property in (8.11)
and this estimate for T ≥ s+ (t− s)/ε, we obtain

P (s, T )
1

T−s = P (s, t)
1

T−s
(
EQs,t

[
P (t, T )

∣∣Fs]) 1
T−s

≤ P (s, t)
1

T−s gε

((
EQs,t

[
P (t, T )

∣∣Fs]) 1
T−t
)

a. s.
(10.15)

Using (10.11), Lemma 10.1(iii) (with Xu = P (t, t+u)1/u for u > 0 and G = Fs) and (8.26),
it follows that

lim inf
T→∞

P (s, T )1/(T−s) ≤ gε
(
V Fst

)
a. s.

for every ε ∈ (0, 1), which implies (10.14). Using Lemma 8.9, the result for the long-term
forward rates follows.

10.3 Proofs assuming absence of arbitrage in the limit

Proof of Lemma 8.32. Let {ϕn}n∈N be a real-valued Fs-measurable sequence, and {Tn}n∈N
be a sequence of Fs-measurable random maturities Tn : Ω → (n ∨ t,∞), each one taking
only a finite number of values. Define the sequence {ψn}n∈N as in Remark 8.30 to ensure
part (i) of Definition 8.29. Then Condition 8.12 implies

EQs,t[Vn(t) |Fs]
a.s.= Vn(s)/P (s, t) a.s.= 0, n ∈ N. (10.16)

Assume part (iv) of Definition 8.29, in particular lim infn→∞ Vn(t) ≥ 0 a. s. In addition,
there exists n1 ∈ N such that Vn(t) ≥ −1 a. s. for all n ≥ n1. Using Fatou’s lemma for
conditional expectations and (10.16), we obtain

EQs,t

[
lim inf
n→∞

Vn(t)
∣∣∣Fs] ≤ lim inf

n→∞
EQs,t[Vn(t) |Fs] = 0 a. s.

So we must have lim infn→∞ Vn(t) a.s.= 0, hence part (ii) of Definition 8.29 fails. Hence, there
is no arbitrage opportunity in the limit with vanishing risk.

Proof of Theorem 8.33. We prove asymptotic monotonicity, i. e. l(s) ≤ l(t) a. s. It suffices
to prove l(s) ≤ l(t)Fs a. s., which we do by contradiction. Assume for the event A :=
{l(s) > l(t)Fs} that P(A) > 0. Since A ⊂ {l(s) > −∞, l(t)Fs < ∞}, there exists k ∈ N
such that B := {X > l(t)Fs} with X := min{k, l(s) − 2/k} satisfies P(B) > 0. Note that
X is a real-valued, Fs-measurable random variable and that B ∈ Fs. Let {T̃n}n∈N denote
an Fs-measurable sequence satisfying Lemma 8.8, in particular

l(s) a.s.= lim
n→∞

R(s, T̃n).
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Chapter 10. Proofs for asymptotic monotonicity and minimality

Without loss of generality we assume that T̃n > t for all n ∈ N. Since l(s) > X + 1/k by
the definition of X, there exists m ∈ N such that

C := B ∩
∞⋂
n=m

{
R(s, T̃n) ≥ X +

1
k

}
(10.17)

satisfies P(C) > 0. Note that C ∈ Fs. Define D = {X > l(t)} ∩ C. If P(D) = 0, then
X ≤ l(t) a. s. on C, hence X ≤ l(t)Fs a. s. on C by the Fs-measurability of C and X. This
contradicts the strict inequality in the definition of B, which contains C, hence P(D) > 0.

In the continuous-time case define

ϕn = 1C exp((T̃n − s)X)P (s, t) and ψn = −1C exp((T̃n − s)X)P (s, T̃n),

in the discrete-time case, noting that X > l(t)Fs ≥ −1 on C, define

ϕn = 1C(X + 1)T̃n−sP (s, t) and ψn = −1C(X + 1)T̃n−sP (s, T̃n)

for all n ∈ N. Then every (ϕn, ψn) is Fs-measurable, the corresponding portfolio value
Vn(s) := ϕnP (s, T̃n) + ψnP (s, t) is zero, and Vn(t) = ϕnP (t, T̃n) + ψn. In the continuous-
time case, using the definition of the zero-coupon rates in (8.2) these summands equal

ϕnP (t, T̃n) = 1C exp
(
(T̃n − t)(X −R(t, T̃n)) + (t− s)(X −R(s, t))

)
,

ψn = −1C exp
(
(T̃n − s)(X −R(s, T̃n))

)
for all n ∈ N. Using the definition of C in (10.17) and T̃n > n from Lemma 8.8,

1C exp
(
(T̃n − s)(X −R(s, T̃n))

)
≤ exp

(
−n− s

k

)
for all n ≥ m.

Since ϕn ≥ 0 for all n ∈ N, part (iv) of Definition 8.29 holds. Since X > l(t) on D and
l(t) ≥ lim supn→∞R(t, T̃n) a. s. by the definition of the long-term zero-coupon rate in (8.5),
we obtain that

lim inf
n→∞

1C exp
(
(T̃n − t)(X −R(t, T̃n))

) a.s.= ∞ on D.

Therefore, we have an arbitrage opportunity in the limit with vanishing risk for times s
and t, which is the desired contradiction. In the discrete-time case, we proceed in a similar
way. The result for the long-term forward rates follows by using Lemma 8.9.

The following proof has some similarities with the preceding one, however, the stronger
no-arbitrage assumption from Definition 8.29 is needed, because the downside risk of the
constructed portfolios might be unbounded.

Proof of Theorem 8.34. We want to show that the set, where (8.35) is violated, is a P-null
set. For this purpose, define the event

C = {Y > l(s)}, where Y :=
(

lim inf
n→∞

R(t, Tn)
)
Fs
, (10.18)

and the portfolio compositions

ϕn = −1C
P (s, t)
P (s, Tn)

and ψn = 1C ,
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10.3. Proofs assuming absence of arbitrage in the limit

for all n ∈ N. Then every (ϕn, ψn) is Fs-measurable, the corresponding portfolio value
Vn(s) := ϕnP (s, Tn) + ψnP (s, t) is zero, and Vn(t) = ϕnP (t, Tn) + ψn. In the continuous-
time case, the first summand can be rewritten using (8.2) as

ϕnP (t, Tn) = −1C exp
(
(Tn − t)(R(s, Tn)−R(t, Tn)) + (t− s)(R(s, Tn)−R(s, t))

)
,

for all n ∈ N. Since lim supn→∞R(s, Tn) ≤ l(s) <∞ a. s. on C and

lim sup
n→∞

(
R(s, Tn)−R(t, Tn)

)
≤ l(s)− lim inf

n→∞
R(t, Tn) ≤ l(s)− Y < 0 a. s. on C,

we get lim infn→∞ ϕnP (t, Tn) a.s.= 0. Since ψn = 1C ≥ 0 for all n ∈ N, this implies part (iii)
of Definition 8.29. Since an arbitrage opportunity in the limit for times s and t is excluded
by assumption, Definition 8.29(ii) implies P(C) = 0. In the discrete-time case, using the
representation

ϕnP (t, Tn) = −1C

(
1 +R(s, Tn)
1 +R(t, Tn)

)Tn−t(1 +R(s, Tn)
1 +R(s, t)

)t−s
,

we conclude in a similar way that P(C) = 0.
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