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1 Introduction

One might wonder about the title of this thesis, since it is always possible to
estimate the population covariance matrix from samples of multivariate data
with the sample covariance matrix

Q =
1

n− 1

n∑
i=1

(Xi − X̄)(Xi − X̄)T , (1.1)

where we assume that we observe X1, . . . ,Xn, i.i.d. p-variate random vari-
ables with mean 0 and population covariance matrix Σp.
If we assume Xi = (Xi1, . . . , Xip) to be multivariate normal, the maximum
likelihood estimator of Σp is

Σ̂p = Q
n− 1

n
.

If p is fixed, the MLE of Σp behaves asymptotically optimally, converging

to Σp at rate n−
1
2 . In recent years data with a high dimension relative to

the sample size, i.e. p much larger than n, have emerged from many fields
of application, such as gene expression arrays, fMRI (functional magnetic
resonance imaging) data, numerical weather forecasting and in portfolio op-
timization via Markowitz’s rule for portfolio selection. In the seminal paper
[20] written by Marcenko and Pastur in 1967 the authors showed that for
a sample of size n from a p-variate Gaussian distribution with population
covariance matrix Σp = I (the identity matrix) the empirical distribution

of the eigenvalues of the sample covariance matrix Σ̂p is supported on the
interval ((1 −

√
c)2, (1 +

√
c)2) for p/n → c > 0. They studied the limiting

distribution of the empirical distribution of the eigenvalues of random uni-
tary and hermitian operators. The behaviour is observed as n → ∞, while
p = p(n) with p/n→ c > 0 and under the notion of empirical distribution of
eigenvalues they mean a function ν(λ;Bn(p)) giving the ratio of the number
of eigenvalues of a specific self-adjoint operator Bn(p) lying to the left of λ
to the dimension of the space. This specific operator is of the form

Bn(p) = An +

p∑
i=1

τiq
(i)(·, q(i)), (1.2)

where An is a nonrandom self-adjoint operator, the τi are independent, identi-
cally distributed real random variables and the q(i) are mutually independent
random vectors in a n-dimensional unitary space Hn, independent also of the
τi (see [20]). Here a unitary space U is a complex vector space equipped with
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a positive definite Hermitian form (·, ·) : U ×U → C, which serves as the in-
ner product on U . They showed that ν(λ;Bn(p)) converges to a nonrandom
function ν(λ; c) under some assumptions. This thesis is built on the results
presented in Bickel, Levina [2]. Its purpose is to generalize and illuminate
some results of that article. The work of Bickel, Levina should have a fairly
strong influence in many application fields where it is of significant impor-
tance to have a reliable estimator of the population covariance matrix for
both p and n large enough, especially in the field of portfolio optimization.
There are some published works in the last mentioned field. Ledoit and Wolf
([17], [18]) considered a shrinkage estimator of the population covariance ma-
trix (the notion of shrinkage was first introduced by C. Stein in 1955). They
compared a convex, linear combination δF + (1− δ)S (where 0 < δ < 1) of
the sample covariance matrix S and a highly structured estimator F with
the sample covariance matrix (highly structured means that it involves only
a small number of free parameters), another shrinkage estimator with a con-
stant correlation model as the shrinkage target F and a multi-factor model
based on statistical factors. Their highly structured estimator is the single-
factor matrix of Sharpe. After having read [17] and [18] nobody should use
the sample covariance matrix for the purpose of portfolio optimization any-
more, they concluded. That inference is based on the results they obtained
by comparing the out-of-sample performance of the mentioned estimators.
The shrinkage estimator tends to pull the most extreme coefficients towards
more central values and thus reduces estimation error where it matters most.
The shrinkage estimator with a constant correlation model yields in all sce-
narios the highest (average) information ratio, the lowest (average) standard
deviation of excess return and yields in most scenarios (different scenarios
match with different number of stocks considered) the highest (average) mean
excess return. The regularized estimator in [2] may be used in their model as
the shrinkage target and/or may be compared solely with the best performer
of [17] and [18]. This is a topic for further research. My contribution to the
topic is on the one hand to identify some flaws of [2] and on the other to give
an indication how the results of [2] could eventually be generalized to sta-
tionary processes instead of only assuming an identically and independently
distributed Gaussian process. In the last chapter of this thesis I will present
some theorems with different assumptions which all allow to use a bound
for large deviations for the standardized sum of non independent random
variables if the cumulants of that standardized sum can be appropriately
bounded. This bound is presented in the Lemma 4.2.
Before we introduce the model and come to the main results that can be
deducted from our assumptions, we will need to deal with an important con-
cept in statistics, important especially when it is about proving a limiting
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distribution for certain random variables or vectors. It is the concept of cu-
mulants which is a modification of the moment problem or to more precisely,
a modification of a theorem that allows us to prove convergence in distri-
bution of a sequence of distribution functions from the convergence of the
corresponding sequence of moments (under certain conditions).

2 Cumulants

The characteristic and moment generating function of a random variable
is familiar, but we will mention it again for the purpose of displaying the
analogy to cumulants. This section uses the notation of the book of Saulis
and Statulevicius [24], furthermore we will cite some results from the book
that are essential to this thesis. The characteristic function of a random
variable (r.v.) ξ is given by

fξ(t) = Eeitξ =

∫
Ω

eitxdFξ(x). (2.1)

If ξ has absolute moments up to order k, then its characteristic function has
k-th order derivatives and

αν =
1

iν
dν

dtν
fξ(t)

∣∣
t=0

(2.2)

and

fξ(t) =
k∑
ν=0

iναν
ν!

tν + o(|t|k). (2.3)

Remark It is actually not necessary to distinguish between absolute and
simple moments. For later theorems we will need the existence of absolute
moments, because of the effort to find upper bounds for expressions of cen-
tered moments, among others. In the book of Bisgaard and Sasvari, [3], they
proof a theorem where it is enough to assume existence of the moment of a
r.v. for some k ≥ 1 to obtain the k times differentiability of the characteristic
functions and to obtain the boundedness and uniform continuity of f (k) as
well as the identity f (k)(0) = ikαk.

Remark But the existence of the k-th derivative of f does not imply the
existence of the moment αk in general. However, it can be shown that if
for some integer k the real part of the characteristic function fξ is 2k times
differentiable at 0, then the moment α2k of ξ exists.
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If there exists an l such that the l-th absolute moment βl = E
∣∣ξl∣∣ exists,

then for sufficiently small t, log fξ(t) can be written as

log fξ(t) =
l∑

k=1

1

k!
γk(it)

k + o(|t|l), (2.4)

γk =
1

ik
dk

dtk
(log fξ(t))

∣∣
t=0
. (2.5)

The γk is called the k-th cumulant of the random variable ξ. The existence
of βk implies the existence of γk. This follows from the fact that∣∣γk∣∣ =

∣∣ 1

ik
dk

dtk
(log fξ(t))

∣∣
t=0

∣∣ =
∣∣ dk
dtk

log

∫
Ω

eitxdFξ(x)
∣∣ ≤?

Now we use the well-known Taylor-series expansion of log(1 + z) for |z| < 1:

log(1 + z) =
∞∑
s=1

(−1)s+1

s
zs for |z| < 1, (2.6)

to obtain the formal equality

log fξ(t) = log

(
1 +

∞∑
ν=1

iναν
ν!

tν

)
=
∞∑
s=1

(−1)s+1

s

(
∞∑
ν=1

iναν
ν!

tν

)s

. (2.7)

Using (2.4) we can write log fξ(t) formally as

log fξ(t) =
∞∑
k=1

1

k!
γk(it)

k. (2.8)

By equating the terms in sums in (2.7) and (2.8) we obtain identities where
the cumulants γk are expressed via the moments αi:

γk =
k∑
ν=1

(−1)ν−1

ν

∑
k1+k2+···+kν=k

k!

k1! · · · kν !
αk1 · · ·αkν , (2.9)

where under the summation k1 + k2 + · · · + kν = k we mean all possible
partitions of k in ν summands, where the order also matters. From (2.9) we
obtain the first few identities between cumulants and moments:

γ1 = α1, γ2 = α2 − α2
1,

γ3 = α3 − 3α1α2 + 2α3
1,
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γ4 = α4 − 4α3α1 − 3α2
2 + 12α2α

2
1 − 6α4

1

...

Let us from now on denote the k-th cumulant γk of the random variable ξ
by Γk(ξ). The concept of cumulants reveals its first advantage when dealing
with independent random variables ξ1, ξ2, . . . , ξn. Let Sn := ξ1 + · · · + ξn,
then for the k-th cumulant of Sn

Γk(Sn) =
n∑
j=1

Γj(ξj)

holds. Thus, the k-th cumulant of the sum of n independent random variables
conveniently becomes the sum of the k-th cumulant of the separate random
variables. This can be seen from the fact that the characteristic function of
Sn, fSn in the case of independent random variables ξi can be represented by
the product of separate characteristic functions:

fSn(t) =
n∏
j=1

fξj(t),

The last relation, in turn, is easily seen just from the fact that the distribution
function of a sum of independent random variables is the convolution of
the marginal distribution functions. Namely, let ξ and η be independent
random variables with the distribution functions Fξ and Fη. Then the joint
distribution function is calculated as follows:

Fξ+η(x) =

∫
R
Fξ(x− y) dFη(y) =

∫
R
Fη(x− y) dFξ(y),

where (Ω,A,P) is an appropriate probability space. The last equation can
be written in short Fξ+η = Fξ ∗ Fη. Here we emphasize two important facts;
first, the Fourier transform (and also the inverse Fourier transform) of the
convolution of two functions is the multiplication of the Fourier transforms
(inverse Fourier transforms) of the separate functions and second, the char-
acteristic function of a random variable ξ is the inverse Fourier transform
of the density function of ξ (if the density function exists, if not, it is the
generalized inverse Fourier transform of Fξ).
The second advantage of the cumulant concept is displayed when dealing
with random variables for which we want to show convergence to a normal
distribution for all points of continuity of the distribution function. Let η be
a N(µ, σ2) distributed random variable, then as it is can be easily computed
and as it is well known, the characteristic function of η is

fη(t) = exp(−iµt− 1

2
σ2t2),
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so the central moments are equal to

µ2k+1 = 0, ∀k ≥ 0,

µ2k = 1 · 3 · . . . · (2k − 1)σ2k ∀k ≥ 1.

The cumulants of η are

Γ1(η) = µ, Γ2(η) = σ2,

Γk(η) = 0, ∀k ≥ 3.

Here we see the advantage of the cumulants over the moments when you are
about to show convergence to a normal distribution. It is much easier to
show that a sequence converges to zero than converging to certain constants.
Here for a normal distributed r.v. the cumulants of higher order than k are
equal to zero, as is easily seen from the form of the characteristic function of
η.

2.1 The moment problem

The following theorem formulates precisely the idea that was mentioned in
the end of the introduction. The theorem lets us sense how the concept of
cumulants can be used in the way we have described in the previous section.
We omit the proof, as though it can be found in many books on advanced
probability theory.

Theorem 2.1 Suppose there is distribution function F , uniquely determined
by its moments {mn}∞n=1 and let {Fk}k be a sequence of distribution functions
each of which has all its moments finite:

m(k)
n =

∫
Ω

xn dFk <∞ ∀n ≥ 1.

Further suppose that ∀n ≥ 1

lim
k→∞

m(k)
n = mn.

Then Fk
d−→ F , i.e. limk→∞ Fk(x) = F (x) for all continuity points x of F .

In the vast probability and statistics literature it is also said that Fk converges
in distribution to F . Note that since cumulants of a r.v. can be expressed
through moments, as we have seen above, theorem 2.1 can be modified to

7



Corollary 2.2 Let a r.v. ξk depend on a parameter k and there exist all
absolute moments of ξk E |ξnk | <∞ for all n ≥ 1. If

lim
k→∞

Γn(ξk) = Γn(ξ)

for every n, where ξ is a random variable whose distribution function is
uniquely determined, then

ξk
d−→ ξ as k →∞,

i.e. the r.v. ξk converges to the r.v. ξ in distribution.

Remark The cumulants are also called semi-invariants in the literature on
probability theory, as in [22].

Remark In order for a probability distribution F to be uniquely determined
by its moments, as it is required by the preceding theorem, the Carleman’s
condition is sufficient, namely

∞∑
n=1

(α2n)−
1
2n =∞.

In other words, it is sufficient that the sum of the even moments has an
appropriate decay.

Remark Otherwise there are some known conditions under which a distri-
bution is definitely not determined by its moments. Among those conditions
one of them is: If F satisfies the condition∫

Ω

log(F ′(x))

1 + x2
dx > −∞,

where F ′ is the Radon-Nikodym derivative of F .

2.2 Mixed cumulants of the random vector X

In the investigation of random processes we shall make use of finite-dimensional
distributions of a process, i.e. the distribution of a random vector X =
(Xt1 , . . . , Xtk), (t1, . . . , tk) ∈ T ⊂ Rk. If E|Xm

t | < ∞, t ∈ T , then for all
k ≤ m the functions

mX(t1 . . . , tk) := EXt1 . . . Xtk
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are well defined. The function mX(t1 . . . , tk) is called the k−th moment
function or the simple moment of the k-th order of the random process Xt.
Let

fX(u1, . . . , uk) := E exp{i〈u,X〉}
be the characteristic function of the random vector X, where 〈·, ·〉 denotes
the euclidean scalar product of two vectors from Rk. Analogously to the one-
dimensional case, if E|Xm

t | < ∞, then for all k and ν = (ν1, . . . , νk), where
νi ≥ 0, k|ν| ≤ m and |ν| := |ν1| + · · · + |νk|, there exist mixed cumulants of
the random vector X

Γν(X) :=
1

|ν|
∂ν1+···+νk

∂uν11 . . . ∂uνkk

(
ln fX(u1, . . . , uk)

)∣∣∣
u1=0,...,uk=0

.

Sometimes we write shortly Γν(X) instead of Γν(Xt1 , . . . , Xtk).
If ν = (1, . . . , 1), then the corresponding cumulant Γν(Xt1 , . . . , Xtk) will be
denoted by Γ(X) or Γ(Xt1 , . . . , Xtk). When we deal with Sn =

∑n
t=1 Xt, then

it follows from the definition that

Γk(Sn) =
∑

1≤t1,...,tk≤n

Γ(Xt1 , . . . , Xtk).

We will make use of the following notation: if ν = (ν1, . . . , νk) is an integer
nonnegative vector and a = (a1, . . . , ak) is a real vector, then

aν := aν11 . . . aνkk , ν! := ν1! . . . νk!, |ν| := ν1 + · · ·+ νk.

Furthermore, denote
Eν(X) = EXν1

t1 . . . X
νk
tk
.

If E|Xm
t | < ∞, t = (t1, . . . , tk), for some integers m ≥ 1, then the function

fX(u) can be expanded into a Taylor series as follows

fX(u) =
∑
|ν|≤m

i|ν|

ν!
Eν(X)uν + o(|u|m),

where
∑
|ν|≤m is taken over all nonnegative collections of (ν1, . . . , νk) such

that |ν| ≤ m. Similarly, as we have obtained in the one-dimensional case, we
have

log fX(u) =
∑
|ν|≤m

i|ν|

ν!
Γν(X)uν + o(|u|m)

in the neighbourhood |u| < δ, δ > 0. It is possible to derive formulas,
connecting Eν(X) and Γν(X), analogously to the one-dimensional case:

Eν(X) =
∑

λ(1)+···+λ(q)=ν

1

q!

ν!

λ(1)! . . . λ(q)!

q∏
p=1

Γλ(p)(X),
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Γν(X) =
∑

λ(1)+···+λ(q)=ν

(−1)q−1

q

ν!

λ(1)! . . . λ(q)!

q∏
p=1

Eλ(p)(X),

where
∑

λ(1)+···+λ(q)=ν is shortly denoted for the summation over all ordered

collections of integer nonnegative vectors λ(p), |λ(p)| > 0, which equal ν in
sum.
Let I = {t1, . . . , tk} be a set of indices of vector X. An unordered collection
of disjoint nonempty sets Ip, such that

⋃
p Ip = I, is called a partition of I.

In this notation the last two expressions can be rewritten as

EXt1 . . . Xtk =
∑
q
∪
p=1

Ip=I

(q − 1)!

q∏
p=1

Γ(XIp),

Γ(Xt1 . . . Xtk) =
∑
ν
∪
p=1

Ip=I

(−1)q−1(q − 1)!

q∏
p=1

E(XIp).

The last four formulas were first introduced and proved by A.N. Shiryaev
and V.P. Leonov, [19].
Let the letter ”c” as subscript of a random variable ξ denote the centered
random variable:

ξc := ξ − Eξ.
In the investigation and estimation of cumulants Γk(Sn), where Sn is the
sum of n random variables ξi, it will be more convenient for us to express
Γ(Xt1 , . . . , Xtk) through centered moments.

Ec(XI) := E
{
Xt1(Xt2 . . . (Xtm−1(Xtm)c)c)c

}
,

where XI := (Xt1 , . . . , Xtm) for (t1, . . . , tm) is a partition of I.
Sometimes the notation Ec(XI) will be replaced by EcXt1 . . . Xtm .
Γ(Xt1 , . . . , Xtk) does not change after any kind of permutation of t1, . . . , tk,
we can w.l.o.g. assume t1 ≤ t2 ≤ . . . ≤ tk in EcXt1 . . . Xtk . The next formula
gives a relationship between the centered moments and the moments of a
random process:

EcXt1 . . . Xtk =
k∑
ν=1

(−1)ν−1
∑∗

ν
∪
p=1

Ip=I

ν∏
p=1

E(XIp),

where E(XIp) = EX
t
(p)
1
. . . X

t
(p)
kp

and the summation
∑∗

ν
∪
p=1

Ip=I
is taken over

partitionings {I1, . . . , Iν} of the set I such that max Ip ≤ min Ip+1, 1 ≤ p ≤
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ν − 1.
Note that in the case of independent r.v. Xt1 , . . . , Xtk , EcXt1 . . . Xtk does not
vanish only if t1 = t2 = . . . = tk. The same is true for Γ(Xt1 , . . . , Xtk).
The following lemma will be presented without a proof, since its proof would
exceed the scope of this thesis. It is given in the Appendix of [24].

Lemma 2.3 The representation

Γ(Xt1 , . . . , Xtk) =
k∑
ν=1

(−1)ν−1
∑
ν
∪
p=1

Ip=I

Nν(I1, . . . , Iν)
ν∏
p=1

EcXIp (2.10)

holds. The sum
∑

ν
∪
p=1

Ip=I
denotes the summation over all ν-block parti-

tionings {I1, . . . , Ik} of the set I. The integers Nν(I1, . . . , Iν) depend on
{I1, . . . , Iν} only, and if Nν(I1, . . . , Iν) > 0, then

ν∑
p=1

max
ti,tj∈Ip

(tj − ti) ≥ max
1≤i,j≤k

(tj − ti). (2.11)

Furthermore,
0 ≤ Nν(I1, . . . , Iν) ≤ (ν − 1)! (2.12)

is valid.

The structure of Nν(I1, . . . , Iν) will be explained in more details in chapter
5.2, to be more precisely, in the proof of Theorem 5.7. Another explicit
expression of it, which requires lots of time to get through it, is given in the
Appendix of [24]. Let us give some of the first mixed cumulants using the
above lemma:

Γ(Xt) = EcXt = EXt, Γ(Xs, Xt) = EcXsXt,

Γ(Xt1 , Xt2 , Xt3) = EcXt1Xt2Xt3 − EcXt2EcXt1Xt3 ,

Γ(Xt1 , Xt2 , Xt3 , Xt4) = EcXt1Xt2Xt3Xt4 − EXt2EcXt1Xt3Xt4−
− EXt3EcXt1Xt2Xt4 − EcXt1Xt3EcXt2Xt4−
− EcXt1Xt4EcXt2Xt3 + EXt2EXt3EcXt1Xt4 , . . . .

3 The statistical model and regularized esti-

mates

As before, we assume that we observe X1, . . . ,Xn identical and independent
distributed p-variate random variables with mean 0 and population covari-
ance matrix Σp. Let Xi denote the vector (Xi1, . . . , Xip) and let X denote a
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p×n matrix of n observations on a system of p random variables. If Xi have
mean vector µ 6= 0, then it is clearly seen why the sample covariance matrix
is singular for p > n, even if the population covariance matrix is regular: the
sample mean vector is given by

µ̂ =
1

n
X1,

where 1 denotes a n× 1 vector, where every component is 1 and the sample
covariance matrix by

Q =
1

n− 1
X︸︷︷︸
p×n

(
I − 1

n
11T

)
︸ ︷︷ ︸

n×n

XT︸︷︷︸
n×p

.

Whether the scaling factor is 1
n

or 1
n−1

does not is irrelevant for the fact that
Q is singular for p > n. Indeed, the matrix Q can have at most the rank of
the matrix

(
I − 1

n
11T

)
, yet this matrix is idempotent, i.e.(

I − 1

n
11T

)(
I − 1

n
11T

)
=

(
I − 1

n
11T

)
.

It can easily be shown that for idempotent matrices the rank equals the trace.
Thus,

tr

(
I − 1

n
11T

)
=

n∑
i=1

1−
n∑
i=1

1

n
= n− 1.

Therefore when the dimension p exceeds n−1, the sample covariance matrix
is singular, independently whether the true covariance matrix is regular or
not. The same is valid also for a zero mean random vector, but can not be
seen from decomposition from above. This time it can be concluded from the
fact that for p > n the last p− n eigenvalues of Q (and also of Σ̂p) are zero.
This is seen as follows: the matrix XT : Rp → Rn has rank at most equal to
n, due to basic linear algebra. After applying another map onto XT , namely
X the rank can not increase. Thus, rank( 1

n
XXT ) ≤ n. Bickel and Levina

suggest two types of regularization to avoid the above discussed flaws of the
sample covariance matrix in [2].

3.1 Banding the sample covariance matrix

Define the banding operator for any matrix M = [mij]p×p and any 0 ≤ k < p
as follows:

Bk(M) =
[
mij1[|i−j|≤k]

]
. (3.1)

12



We apply this operator to the sample covariance matrix and denote it Σ̂k,p :=

Σ̂k := Bk(Σ̂p). This kind of regularization is ideal when you regularize a
sample covariance matrix of an finite inhomogeneous moving average process
Yt =

∑k
j=1 aj,t−jεj and εj are IID(0, σ2), where for the true covariance matrix

|i− j| > k ⇒ σij = 0 holds. The covariance matrix has two essential features
that make it easier to handle than arbitrary matrices, namely it is symmetric
and positive definite. Symmetry will clearly be preserved by the banding
operator, but as one’s intuition may tell very quickly, the positive definiteness
will not. Consider the following symmetric and positive definite matrix Σ3

(thus, there exist a unique stochastic process for which Σ3 is a covariance
matrix), where the 3 represents the dimension:

Σ3 =

 10.8 −3.1 −2.3
−3.1 1.4 2
−2.3 2 4.2

 .

The main minors of Σ3 are H1 = 10.8, H2 = 5.51 and H3 = 1.056, therefore
Σ3 is positive definite. Let us apply the banding operator on Σ3 with k = 1:

Σ1,3 =

 10.8 −3.1 0
−3.1 1.4 2

0 2 4.2

 .

This matrix is not positive definite anymore (H1 and H2 stay the same, but
H3 = −20.058). The inverse of the banded matrix Σ1,3 is not banded:

Σ−1
1,3 =

 −0.094 −0.649 0.309
−0.649 −2.261 1.077

0.309 1.077 −0.275

 .

3.2 Banding the inverse

There is an estimator for the inverse of the covariance matrix suggested
by Wu and Pourahmadi [28] and Huang et al. [13]. It is based on the
Cholesky decomposition of the inverse and we will show its construction in
what follows. Consider a probability space (Ω,A,P) and the collection C of
all random variables Xi defined on Ω with finite variance. Introduce an inner
product on this vector space (that C is a vector space is easily checked) by
defining for any two elements X, Y ∈ C

(X, Y ) = E (XY ) .

Since from (X,X) = 0 it does not follow X(ω) = 0 for all ω, but only that
P(X = 0) = 1, we need to consider the equivalence classes of C by saying that
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X and Y are equivalent if P(X = Y ) = 1. The collection of these equivalence
classes of C is the space L2(Ω,A,P). In the sequel X̂j denotes the L2(Ω,A,P)
projection of Xj on the linear span of X1, . . . , Xj−1, if not otherwise specified.
Let us suppose that we have X = (X1, . . . , Xp)

T a random vector distributed
N(0,Σp) and denote Σp = [σij]. We can model every Xj as

Xj =

j−1∑
t=1

ajtXt + εj,

where εj is the error term independent and identically distributed with mean
zero and variance σ2, also independent of the preceding Xt for 0 < t ≤ j− 1.
Then we can conduct a regression of Xj on Xt for all t > 0 up to j − 1. Let
Zj := (X1, . . . , Xj−1)T and aj = (aj1, . . . , aj,j−1)T , then we can write

X̂j =

j−1∑
t=1

ajtXt = ZT
j aj. (3.2)

For j = 1 let X̂1 = 0. Every aTj can be computed as

aj = (V(Zj))
−1 C (Xj,Zj) . (3.3)

Now construct a lower triangular matrix A with zeros on the diagonal con-
taining the coefficients of aj arranged in rows and let εj = Xj−X̂j, d

2
j = V(εj)

and D = diag(d2
1, . . . , d

2
p). According to regression theory, the residuals εj

are independent. Let us now apply the covariance operator to the identity
ε = X − AX = (I − A)X

C(ε) = (I − A)C(X)(I − A)T ,

which can also be written as

⇔ D = (I − A)Σp(I − A)T .

Thus, we obtain the modified Cholesky decomposition

Σp = (I − A)−1D[(I − A)−1]T , (3.4)

Σ−1
p = (I − A)TD−1(I − A). (3.5)

Note that (I−A) indeed is invertible, since it is lower triangular with 1 as the
entry on every diagonal element (A itself has zeros on the diagonal). In order
to apply the banding operator, equation (3.2) suggests itself to approximate

Σp by taking Z
(k)
j =

(
Xmax(j−k,1), . . . , Xj−1

)
, thus, obtaining Ak and Dk for

14



k < p and by taking Ak and Dk and inserting them into (3.4) and (3.5) for

A and D, where Ak are k-banded lower triangular matrices containing a
(k)
j

and Dk = diag(d2
j,k) are diagonal matrices with the new residual variances.

In other words, we regress each Xj on its closest k predecessors only. The

next step would be to replace Zj by Z
(k)
j and thus, obtain a

(k)
j instead of aj.

For a given sample X1, . . . ,Xn, the estimates of Ak and Dk are obvious.
Equation (3.3) becomes the ordinary least squares estimate of aj:

âj = ((Z
(k)
j )TZj)

−1(Z
(k)
j )TXj

and Dk become the corresponding residual variances. Let us denote these
sample estimates with Ãk = [ã

(k)
jt ] and D̃k = diag(d̃2

j,k). By inserting them
into (3.4) and (3.5) we obtain the estimates for Σ−1

p and Σp and we denote

them by Σ̃−1
k,p and Σ̃k,p respectively. Since Ãk is a k-banded lower triangular

matrix, Σ̃−1
k,p is k-banded and non-negative definite. Its inverse Σ̃k is in gen-

eral not banded as we have indicated above with the counterexample and is
different from Σ̂. Note also that Σ̃−1

k is not the same as Bk(Σ̂
−1), which is

not well-defined for p > n.

4 The main theorems

Now we examine the asymptotic behaviour (asymptotic in the sense when
both p and n tend to infinity and the ratio p/n tends to c ∈ (0, 1)) of the
banded sample covariance matrix and we will introduce another concept of
estimating the population covariance matrix, which is a generalization of
banding and which preserves the positive definiteness, namely the concept of
tapering a matrix. The following results show convergence of estimators in
the matrix L2 norm, ‖M‖ := sup {‖Mx‖ : ‖x‖ = 1} = λ

1/2
max

(
MTM

)
, which

for symmetric matrices reduces to ‖M‖ = maxi |λi(M)|, see [12]. It will
be shown that the convergence of certain estimators is uniform on sets of
covariance matrices which we introduce in the sequel.
We define a set of covariance matrices, Σp, which we will refer to as well-
conditioned covariance matrices, as follows:

{Σp : 0 < ε ≤ λmin (Σp) ≤ λmax (Σp) ≤ 1/ε <∞} ,

where λmin (Σp), λmax (Σp) are the minimum and maximum eigenvalues of Σp

and ε is independent of p. Why are we interested in especially such covari-
ance matrices? For numerical computations that are of essential importance
in fields like portfolio optimization or other fields, we already mentioned in
the introduction, the condition of such large matrices are important for not
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obtaining misleading estimates of the desired parameters. For the numerical
condition of a matrix the norm and the norm of the inverse play an indis-
pensable role. Let us introduce a subset U of the set of well-conditioned
matrices, where σij denote the elements of Σ.

U (ε0, α, C) :=
{

Σ : max
j

∑
i

{|σij| : |i− j| > k} ≤ Ck−α ∀k > 0,

and 0 < ε0 ≤ λmin (Σp) ≤ λmax (Σp) ≤ 1/ε0

}
. (4.1)

In U (ε0, α, C) contained are only well conditioned covariance matrices such
that the maximum of the row sums of those elements which would disappear
after applying the banding operator with parameter k on it can be bounded
by a multiple of a certain power of k.

4.1 Banding

For (deterministic) sequences {kn}n and {an}n we write

kn � an, if lim
n→∞

kn
an

= 1.

Let us yet recapitulate the oP and OP notation. Suppose {Xn : n = 1, 2, . . .}
is a sequence of random variables all defined on the same probability space
with probability measure P. We denote (according to [5])

Xn := oP (1), if ∀ε > 0 lim
n→∞

P (|Xn| > ε) = 0.

Xn := oP (an), if ∀ε > 0 lim
n→∞

P
(
|a−1
n Xn| > ε

)
= 0.

Xn := OP (1), if ∀ ε > 0 ∃ δ(ε) ∈ (0,∞) : P (|Xn| > δ(ε)) < ε ∀n ≥ 1.

Xn := OP (an), if ∀ ε > 0 ∃ δ(ε) ∈ (0,∞) : P
(
|a−1
n Xn| > δ(ε)

)
< ε ∀n ≥ 1.

The relation between these two concepts, namely OP and oP , is clarified
by the following equivalent characterization of convergence in probability to
zero, that is to say Xn = oP if and only if for every ε there exists a sequence
δn(ε) converging to 0 such that

P (|Xn| > δ(ε)) < ε ∀n ≥ 1.

The first theorem, taken from [2], determines rates of convergence for the
banded covariance estimator. It shows that in the case of a Gaussian stochas-
tic process with a covariance matrix from our mentioned set U the difference
between the banded estimator and the covariance matrix can be bounded in
probability by log p/n. Its proof requires some results from [24], which we
will present after stating the theorem.
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Theorem 4.1 Suppose that X is a Gaussian stochastic process, i.e. Xi is
i.i.d. N(µ,Σp) with mean vector µ and population covariance matrix Σp ∈
U (ε0, α, C). If we also assume kn � ( log p

n
)−1/2(α+1), then

‖Σ̂kn,p − Σp‖ = OP

((
log p

n

) α
2(α+1)

)
= ‖Σ̂−1

kn,p
− Σ−1

p ‖ (4.2)

uniformly on U (ε0, α, C).

Note that the optimal kn in general depends also (additionally to p and n)
on the dependence structure of the model, expressed by α.

4.1.1 Some results for large deviations

The main ingredient for the proof of theorem 4.1 is a lemma from [2], namely
Lemma 4.4, whose proof relies on results for large deviations derived by Saulis
and Statulevicius in [24]. The next lemma and its proof are taken from [24].

Lemma 4.2 (Bentkus, Rudzkis [1]). Let for an arbitrary r.v. ξ with Eξ = 0
there exist γ ≥ 0, H > 0 and ∆̄ > 0 such that

|Γk(ξ)| ≤
(
k!

2

)1+γ
H

∆̄k−2
, k = 2, 3, . . . . (4.3)

Then for all x ≥ 0

P(±ξ ≥ x) ≤ exp

{
x2

2(H + (x/∆̄1/(1+2γ)))(1+2γ)/(1+γ)

}
. (4.4)

Proof. Let us introduce a function gm(x) for a nonnegative integer m and
a real-valued function g(x), x ∈ R with existing m derivatives at x = 0 as
follows:

gm(x) =
m∑
k=0

1

k!
g(k)(0)xk, x ∈ R.

In particular

expm(x) =
m∑
k=0

1

k!
xk, x ∈ R, m = 0, 1, . . . .

Now we claim that ∀n ≥ 0 exp2n(x) > 0 holds. For x ≥ 0 this is easily seen.
Now set

ak =
x2k−1

(2k − 1)!
+

x2k

(2k)!
, k ∈ N
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and examine ak for x < 0:

ak ≥ 0⇔ x2k−1(2k + x) ≥ 0

If x ≤ −2n, then ak ≥ 0 ∀k ≥ 1 and therefore

exp2n(x) = 1 +
n∑
k=1

ak > 0.

For −2n < x < 0 ak < 0, but now let k = n+ 1, n+ 2, . . . . Since

ex = exp2n(x) +
∞∑

k=n+1

ak > 0,

it follows that exp2n(x) > 0 ∀x ∈ R. Now we can apply Chebyshev’s in-
equality as follows, since exp2n(x) is nonnegative on R and monotonically
increasing in the interval [0,∞). For all h ≥ 0 and x ≥ 0

P(ξ ≥ x) ≤ P(exp2n (hξ) ≥ exp2n (hx)) ≤ (exp2n (hx))−1
2n∑
k=0

1

k!
mkh

k. (4.5)

The second inequality is due to Chebyshev’s inequality and the first in-
equality follows due to the monotonically increase of the function exp2n(x),
since every ω of the set {ω ∈ Ω : ξ(ω) ≥ x} is also an element of the set
{ω ∈ Ω : exp2n (hξ(ω)) ≥ exp2n (hx)}. Thus, we have

P(ξ ≥ x) ≤ inf
h≥0

{
(exp2n (hx))−1

2n∑
k=0

1

k!
mkh

k

}
. (4.6)

Denote

g(x) = expn

(
2n∑
r=2

1

r!
γkx

r

)
, x ∈ R. (4.7)

From the previous discussion on cumulants, we have the relation between
moments and cumulants

mk =
∑

r1+···+rq=k

1

q!

k!

r1! · · · rq!
γr1 · · · γrq ,

for any k ∈ N, where the summation is taken over all ordered partitions
r1 + · · · + rq = k, rj ≥ 1 and q = 1, 2, . . . , k. Under the condition Eξ = 0
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(which implies γ1 = 0) and (4.7) we obtain

mk =
k∑
q=1

1

q!

∑
r1+···+rq=k,

rj≥2

k!

r1! · · · rq!
γr1 · · · γrq =

=
k∑
q=1

1

q!

dk

dxk

(
2n∑
r=2

1

r!
γkx

r

)q ∣∣∣∣∣
x=0

=
dk

dxk
g(x)

∣∣∣
x=0

,

for any k ∈ {2, 3, . . . , 2n}. Now we can write

2n∑
k=0

1

k!
mkh

k = g2n(h).

For h ≥ 0

g2n(h) ≤ expn

(
2n∑
r=2

1

r!
|γr|hr

)
(4.8)

holds. Substituting (4.8) into (4.6) we have for any x ≥ 0

P(ξ ≥ x) ≤ inf
h≥0

{
(exp2n (hx))−1 expn

(
2n∑
k=2

1

k!
|γk|hk

)}
. (4.9)

Furthermore we need the inequality

expn (x) / exp2n (2x) ≤ e−x (4.10)

valid for 0 ≤ x ≤ 0.6 if n = 1, 0 ≤ x ≤ 1.4 if n = 2 and 0 ≤ x ≤ 0.8n if
n = 3, 4, . . ..
Denote ε = x/n and

∆n(ε) = e−2εn

2n∑
k=0

1

k!
(2εn)k − e−εn

n∑
k=0

1

k!
(εn)k.

Equation (4.10) is equivalent to the inequality ∆n(ε) ≥ 0 for all 0 ≤ ε ≤ 0.6
if n = 1, for all 0 ≤ ε ≤ 0.7 if n = 2 and for all 0 ≤ ε ≤ 0.8 if n = 3, 4, . . ..
Let us now examine the derivative of ∆n(ε)

d

dε
∆n(ε) = e−εn

(εn)n

(n− 1)!

(
1− 22n+1n!

(2n)!
(εn)ne−εn

)
.

Applying Stirling’s formula
√

2πnnne−n+ 1
12n+1 < n! <

√
2πnnne−n+ 1

12n ,
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we conclude
22n+1n!

(2n)!
≤ n−nen

√
2 exp

{
12n+ 1

12n(24n+ 1)

}
.

Thus, for all ε ≥ 0 and n = 1, 2, . . .

d∆n(ε)

dε
≥ e−εn

(εn)n

(n− 1)!

(
1− (εe1−ε)n

√
2 exp

{
12n+ 1

12n(24n+ 1)

})
(4.11)

The function f(ε) = εe1−ε is strictly increasing in the interval [0, 1] (due to
f ′(ε) = (1−ε)e1−ε) and f(0) = 0, f(1) = 1. Thus, for fixed n the right-hand
side of (4.11) depend on ε ∈ [0, 1] as follows: it is positive in the interval

(0, ε0), where ε0 ∈ [0, 1] is the unique zero of d∆n(ε)
dε

and it is negative for
ε ∈ (ε0, 1). From these facts we can conclude that for every n ≥ 1 the
function ∆n has the following property:
if 0 < ε < 1 and ∆n(ε) ≥ 0, then ∆n(ε′) for all 0 < ε′ < ε. To prove (4.10),
it suffices to show that ∆1(0.6) ≥ 0, ∆2(0.7) ≥ 0 and ∆n(0.8) ≥ 0 for n ≥ 3.
In the case where n < 17, ∆n(0.8) ≥ 0 can be verified to be valid by direct
calculations and if n ≥ 17, then the right-hand side of (4.11) is positive for
all ε ∈ (0, 0.8].
It suffices to consider the case H = 1, since if H 6= 1 we can introduce the
random variable ξ̃ = ξ/H for which condition (4.3) is fulfilled with H̃ = 1
and ∆̃ = ∆̄

√
H. The bound for P(ξ > x) can be obtained from the bound

for P(ξ̃ > x̃), by substituting x/
√
H and ∆̄

√
H for x̃ and ∆̃, respectively.

Using (4.9) and the condition of the lemma, namely (4.3), we obtain that for
all x ≥ 0

P(ξ ≥ x) ≤ inf
h≥0,
n∈N

expn

(
1
2
h2
∑2n

k=2

(
h
∆̄

)k−2 (k!
2

)γ)
exp2n (hx)

. (4.12)

On the other hand, applying Chebyshev’s inequality, for all x ≥ 0 we have

P(ξ ≥ x) ≤ P((1 + ξx)2 ≥ (1 + x2)2) ≤ 1 + 2xEξ + x2Eξ2

(1 + x2)2
≤ 1

1 + x2
, (4.13)

where the last equality is due to the fact that Eξ = 0 and Eξ2 ≤ H = 1.
The first inequality follows in the same way we obtained the first inequality
in (4.5) from the fact that (1 + y2)2 is an increasing function for y ≥ 0. Set

h :=
x
(
x∆̄
)1/(1+γ)

x2 +
(
x∆̄
)1/(1+γ)

= x

(
x∆̄
)1/(1+γ)

x2 +
(
x∆̄
)1/(1+γ)︸ ︷︷ ︸

<1

< x
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and choose n so that the condition 0.8(n− 1) < hx/2 ≤ 0.8n is fulfilled. Let
us first consider the case hx > 6.4, i.e. n ≥ 5. We claim that in this case

k!

2
≤ (hx)k−2, k = 2, 3, . . . , 2n. (4.14)

To this conclusion we came by observing that (4.14) follows from the easily
verifiable inequality (2n)!/2 ≤ (1.6(n− 1))2n−2 for n ≥ 5, since hx > 1.6(n−
1). Using (4.14) and the chosen values of h and n we obtain

1

2

2n∑
k=2

(
h

∆̄

)k−2(
k!

2

)γ
≤ 1

2

2n∑
k=2

(
h

∆̄
(hx)γ

)k−2

≤ h2

2

1

1− q
=
hx

2
, (4.15)

since

q =

(
h

∆̄
(hx)γ

)1/(1+γ)

=
x2

x2 + (x∆̄)1/(1+γ)
< 1.

We prove (4.4) by substituting (4.15) into (4.12) and using (4.10), but only
for hx > 6.4. Let us now consider the case 0 < hx ≤ 6.4. We will split this
case into two subcases: 1) when the condition

1

1 + x2
≤ exp

{
−hx

2

}
(4.16)

is fulfilled and 2) it is not fulfilled. In the first case (4.4) follows from (4.13).
If the condition is not satisfied, then

exp

{
hx

2

}
> 1 + x2 > 1 + hx, (4.17)

since x > h, as we have seen before. From (4.17) it follows that hx > 2.5.
Thus, it remains to consider the case 2.5 < hx ≤ 6.4 under the condition
(4.17). In this case (4.4) is obtained from (4.12) by putting n = 4. Set f(t) =
(1/t)− (et/2 − 1)−1, t > 0. According to (4.17) we have x2 < exphx/2− 1.
Therefore,

h

∆̄
= q

(
1

hx
− 1

x2

)γ
< q (f(h(x)))γ

holds. Since et/2 − 1 < t(t+ 1)/2 holds in the interval 2.5 < t ≤ 6.4, we can
bound f(t) for all 2.5 < t ≤ 6.4 as follows:

f(t) <
t− 1

t(t+ 1)
<

t− 1

t(t+ 1)

∣∣∣∣∣
t=2.5

≤ 0.172.
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Consequently, (h/∆̄) ≤ q(0.172)γ. Thus, we conclude that

1

2
h2

2n∑
k=2

(
h

∆̄

)k−2(
k!

2

)γ
≤ 1

2
h2

2n∑
k=2

qk−2

(
0.172k−2k!

2

)γ
≤ h2

2(1− q)
=
hx

2
,

(4.18)
since 0.172k−2(k!/2) < 1 for all k = 2, 3, . . . , 8. Finally we can substitute
(4.18) into (4.12) and obtain the assertion of the lemma using (4.4).

Before we state the next important theorem, we need to focus on notation.
For n ≥ 1 let ξ1, ξ2, . . . , ξn be independent random variables with Eξj = 0
and σ2

j = Vξj > 0, j = 1, 2, . . .. Set

Sn =
n∑
j=1

ξj, B2
n =

n∑
j=1

σ2
j , Zn = Sn/Bn. (4.19)

We say that a random variable ξj (j ∈ N) satisfy condition (P), if there exist
positive constants A,C, c1, c2, . . . , such that∣∣∣ ln E(exp zξj)

z2

∣∣∣ ≤ c2
j , |z| < A (j ∈ N) (P)

and

lim sup
n→∞

1

B2
n

n∑
j=1

c2
j ≤ C. (4.20)

Now we can state the theorem:

Theorem 4.3 Let a random variable ξj with Eξj = 0 and σ2
j = Vξj > 0

satisfy condition (P). Then

|Γk(Zn)| ≤ k! C

(ABn)k−2
, ∀k ≥ 3,

and for the r.v. ξ = Zn the relation of large deviations (4.4) holds with

γ = 0, H = 2C and ∆̄ = ABn.

Proof. Using the fact that

Γk(ξj) =
dk

dzk
= ln E(exp(zξj))

∣∣∣
z=0

,

and using condition (P) and the Cauchy inequality for derivatives of analyt-
ical functions we obtain

|Γk(ξj)| ≤ k!c2
j/A

k−2, ∀k ≥ 3.
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As ξj, j = 1, 2, . . . are independent we can use the nice features of cumulants
explained previously and we find

|Γk(Sn)| ≤ k!
n∑
j=1

c2
j/A

k−2, ∀k ≥ 3,

and from (4.20) it follows that

|Γk(Zn)| ≤ k!C/(ABn)k−2, ∀k ≥ 3,

holds. Now, by using Lemma 4.2, we obtain the assertion of the theorem.

4.1.2 Proof of theorem concerning convergence of the banded ma-
trix

To prove the next lemma we needed the previous results on limit theorems
for large deviations. The next lemma is, as already mentioned, the main
ingredient for proving Theorem 4.1

Lemma 4.4 Let Zi be i.i.d. N(0,Σp) and λmax (Σp) ≤ ε−1
0 < ∞. Let σab

denote the individual entries of Σp. Then

P

[∣∣∣∣∣
n∑
i=1

(ZijZik − σjk)

∣∣∣∣∣ ≥ nν

]
≤ C1 exp(−C2nν

2) for |ν| < δ, (4.21)

where C1, C2 and δ only depend on ε0.

Proof. It holds that

P

[∣∣∣∣∣
n∑
i=1

(ZijZik − σjk)

∣∣∣∣∣ ≥ nν

]

= P

[∣∣∣∣∣
n∑
i=1

(Z∗ijZ
∗
ik − ρjk)

∣∣∣∣∣ ≥ nν

(σjjσkk)1/2

]
,

(4.22)

where ρjk = σjk(σjjσkk)
1/2 and (Z∗ij, Z

∗
ik) ∼ N2(0, 0, 1, 1, ρjk). Let us now

apply an easy trick to simplify the sum in (4.22):

n∑
i=1

(Z∗ijZ
∗
ik − ρjk) =

=
1

4

[
n∑
i=1

[(Z∗ij + Z∗ik)
2 − 2(1 + ρjk)]−

n∑
i=1

[(Z∗ij − Z∗ik)2 − 2(1− ρjk)]

]
,
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so we can write

P

[
1

4

∣∣∣∣∣
n∑
i=1

{
[(Z∗ij + Z∗ik)

2 − 2(1 + ρjk)]

− [(Z∗ij − Z∗ik)2 − 2(1− ρjk)]
}∣∣∣∣∣ ≥ nν

(σjjσkk)1/2

]
≤

≤ P

[
1

4

∣∣∣∣∣
n∑
i=1

{
[(Z∗ij + Z∗ik)

2 − 2(1 + ρjk)]

∣∣∣∣∣ ≥ nν

(σjjσkk)1/2

]
+

+ P

[
1

4

∣∣∣∣∣
n∑
i=1

[(Z∗ij − Z∗ik)2 − 2(1− ρjk)]

∣∣∣∣∣ ≥ nν

(σjjσkk)1/2

]
=

= P

[
1

4

∣∣∣∣∣
n∑
i=1

(
(Z∗ij + Z∗ik)

2

2(1 + ρjk)
− 1

) ∣∣∣∣∣ ≥ nν

2(1 + ρjk)(σjjσkk)1/2

]
+

+ P

[
1

4

∣∣∣∣∣
n∑
i=1

(
(Z∗ij − Z∗ik)2

2(1− ρjk)
− 1

) ∣∣∣∣∣ ≥ nν

2(1− ρjk)(σjjσkk)1/2

]

Now we need only to find an upper bound for the following term, where
Vi ∼ N(0, 1) i.i.d. and thus V 2

i ∼ χ2
1:

P

[
1

4

∣∣∣∣∣
n∑
i=1

(
V 2
i − 1

) ∣∣∣∣∣ ≥ nν

2(1− ρjk)(σjjσkk)1/2

]
.

The cause for the simplification is going to become evident. Recall the fact
that for a linear transformation of a random vector X (with p components)
which is normally distributed with mean vector µ and covariance matrix Σ,
the distribution of Y = CX is N(Cµ,CΣCT ). In our case

X =

(
Z∗ij
Z∗ik

)
, C =

(
1 1
1 −1

)
and Σ =

(
1 ρjk
ρjk 1

)
.

Σ is of this form, because, as we have mentioned, (Z∗ij, Z
∗
ik) ∼ N2(0, 0, 1, 1, ρjk)

holds, so σjj and σkk are equal to 1. Thus,

Y =

(
Z∗ij + Z∗ik
Z∗ik − Z∗ik

)
∼ N

((
0
0

)
,

(
2(1 + ρjk) 0

0 2(1− ρjk)

))
,

from where we conclude that

(Z∗ij + Z∗ik)
2

2(1 + ρjk)
∼ χ2

1,
(Z∗ij − Z∗ik)2

2(1− ρjk)
∼ χ2

1.
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To be able to apply the result for large deviations we need to verify whether
the random variable V 2

i −1 ∼ χ2
1−1 satisfies condition (P). The lemma would

then follow using theorem 4.3 and (4.4). Thus, we calculate the characteristic
function of X := V 2

i :

fX(t) =
1√

2Γ(1
2
)

∫ ∞
0

eitxe−
x
2

(x
2

)− 1
2
dx =

1√
2Γ(1

2
)

∫ ∞
0

e−
x
2

(1−2it)
(x

2

)− 1
2
dx.

To find a primitive for the last integral, we introduce a substitution of vari-
ables, namely −x

2
(1 − 2it) =: −y

2
, from where we conclude that dx = dy

1−2it
.

We now get

fX(t) =
1√

2Γ(1
2
)

∫ ∞
0

e−
y
2

(
y

2(1− 2it)

)− 1
2 dy

1− 2it
=

= (1− 2it)−
1
2

∫ ∞
0

e−
y
2

(
y
2

)− 1
2

√
2Γ(1

2
)︸ ︷︷ ︸

=1

,

implying fX(t) = (1 − 2it)−
1
2 . The above integral equals to 1, because it

represents the probability density of a χ2
1 distributed random variable. Note

that the characteristic function of a χ2
n distributed r.v. is (1 − 2it)−

n
2 . Let

us now determine the cumulants of V 2
i .

log fX(t) = −1

2
log(1− 2it),

Substituting the Mercator series for log(1− 2it) with x = −2it, we obtain

∞∑
k=0

1

k!
γk(it)

k =
1

2

∞∑
k=1

(2it)k

k
,

where for the left hand side we used the Taylor expansion for the logarithm
of the characteristic function of r.v. X for a sufficiently small annulus region
|t| < 1

2
, since the right-hand side converges for |t| < 1

2
. Comparing the

coefficients of tj on both sides, we have that for the cumulants of V 2
i ∼ χ2

1

γk =
1

2

k!

k
2k = 2k−1(k − 1)!

holds. For a χ2
n distributed r.v. the cumulants equal to

γk = n · 2k−1(k − 1)!.
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For the random variables V 2
i , i = 1, 2, . . . , n to satisfy condition (P), we need

to show that there exist positive constants A,C, c1 such that∣∣∣ ln E(exp zξ)

z2

∣∣∣ ≤ c2 for |z| < A

and

lim sup
n→∞

1

B2
n

n∑
j=1

c2
1 ≤ C,

where ξ ∼ χ2
1 − 1. In our case, this reduces to∣∣∣ 1

z2

1

2
(1− ln(1− 2z))

∣∣∣ < c2
1 for |z| < A

and

lim sup
n→∞

1

2n
n · c2

1 ≤ C,

since Vξ = 2 and thus B2
n =

∑n
j=1 σ

2 = 2n. The function ln(1− 2z) can be

expanded into a Maclaurin series for |z| < 1
2

and we obtain:

− 1

2z2
(ln(1−2z)−1) = − 1

2z2

(
−1−

∞∑
k=1

(2z)k

k

)
=

1 + 2z

z2
+2+

8

3
z+a1z

2+. . . ,

where ai, i ≥ 1 are finite constants, whose exact values are not important
for further inference. The complex valued function 1+2z

z2
+ 2 + 8

3
z+ a1z

2 + . . .
has a double pole at z = 0 (it explodes to ∞ for z near 0), thus, it can not
be bounded in |z| < A. You would have to remove a small circle around
zero. Here at this place the authors of [2] make a mistake by saying that
condition (P) is fulfilled by the mentioned random variable. For an annulus
a < |z| < A,

∣∣ − 1
2z2

(1 − ln(1 − 2z))
∣∣ is bounded by a positive constant C.

Since the cumulants of a chi-squared distributed r.v. are γk = 2k−1(k − 1)!,
we compare the found expression for γk with (4.3) to find that

γ = 0, H = 4n, ∆̄ =
1

2
.

Set
x =

nν

2(1− ρjk)(σjjσkk)1/2

and plug it together with H, γ and ∆̄ into (4.4), in consideration of

(σjjσkk)
1/2|1−ρjk| = |(σjjσkk)1/2−(σjjσkk)

1/2ρjk| ≤ (σjjσkk)
1/2+|σjk| ≤ 2ε−1

0 .
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The last inequality holds due to the symmetry and positive definiteness of Σp,
since in that case the spectral theorem can be applied, implying that there
exists an orthonormal basis {vi}i consisting of eigenvectors of the matrix.
Now every x ∈ Rp can be written as x =

∑p
i=1 αivi. The expression xTΣpx

(which is always positive, since Σp is positive definite) then equals to

xTΣpx =
( p∑
i=1

αivi
)T

Σp

p∑
i=1

αivi =
( p∑
i=1

αivi
)T p∑

i=1

αiΣpvi =

( p∑
i=1

αivi
)T p∑

i=1

αiλivi =

p∑
i=1

α2
iλiv

Tv ≤ max
i
|λi|‖x‖.

Thus, all diagonal elements of Σp are bounded by the maximum eigenvalue,
since every diagonal element is obtainable from xTΣpx by setting x equal to a
vector with one entry equal to 1 and all the others equal to 0. Using the fact
that all principal minors are bigger than zero and applying an appropriate
permutation of the columns, it can be shown that the biggest element (by
absolute value) of the matrix lies on the main diagonal.
After simple algebraic transformations, we obtain

P(±ξ ≥ x) ≤ exp

{
− nν2

8(1− ρjk)(σjjσkk)1/2 [4(1− ρjk)(σjjσkk)1/2 + ν]

}
≤ exp

{
− nν2

16
ε0

( 8
ε0

+ ν)

}
= exp

{
− ε2

0nν
2

16(8 + ε0ν)

}
= exp(−C2nν

2) for |ν| ≤ δ,

since 16(8 + ε0ν) < 16(8 + ε0δ) and therefore

exp

{
− ε2

0nν
2

16(8 + ε0ν)

}
≤ exp

{
− ε2

0nν
2

16(8 + ε0δ)

}
.

Note that C2, δ depend on ε0 only. In the proof above we used the fact that
|σjk| ≤ ε−1

0 for all j, k ∈ {1, . . . , p}, where Σp is of dimension p× p.

In addition to the operator norm ‖M‖ from l2 to l2 we have already defined,
there are some other matrix norms, too, which we will present in what follows.
For a vector x = (x1, . . . , xp)

T , let

‖x‖1 =

p∑
j=1

|xj|, ‖x‖∞ = max
j=1
|xj|.
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For a matrix M , the corresponding matrix norms induced from the vector
norms from l1 to l1 and from l∞ to l∞ are, respectively,

‖M‖(1,1) := sup {‖Mx‖1 : ‖x‖1} = max
j

∑
i

|mij|,

‖M‖(∞,∞) := sup {‖Mx‖∞ : ‖x‖∞} = max
j

∑
i

|mij|.

In addition to the mentioned norms we will use ‖M‖∞ := maxi,j |mij|. The
l1 to l1 norm arises naturally through the inequality

‖M‖ ≤
[
‖M‖(1,1)‖M‖(∞,∞)

]1/2
= ‖M‖(1,1) for M symmetric, (4.23)

since ‖M‖(1,1) = ‖M‖(∞,∞) for symmetric matrices M .

Proof of Theorem 4.1. The preceding equations concerning matrix norms
imply

‖Bk(Σ̂p)−Bk(Σp)‖ ≤ ‖Bk(Σ̂p)−Bk(Σp)‖(1,1) (4.24)

The right-hand side equals to

max
j

∑
i

∣∣σ̂ij · 1[|i−j|≤k] − σij
∣∣ ≤ (2k + 1)‖Bk(Σ̂p)−Bk(Σp)‖∞,

where the last inequality is implied by the fact that the banded matrix Bk(Σ̂p)
contains at most 2k + 1 elements different from zero, since the banding op-
erator preserves k elements from each diagonal plus the diagonal element.
Thus, we can write

‖Bk(Σ̂p)−Bk(Σp)‖ = OP

(
k‖Bk(Σ̂p)−Bk(Σp)‖∞

)
. (4.25)

Let Σ̂0 := 1
n

∑n
i=1 XiX

T
i and w.l.o.g. EXi = 0 for all i ∈ {1, . . . , n}. Fur-

thermore denote Xi = (xi1, . . . , xip) and denote I the set of all indices (m, j)
such that |m− j| ≤ k.

P
[
‖Bk(Σ̂p)−Bk(Σp)‖∞ ≥ t

]
= P

[
max
m,j

∣∣∣ n∑
i=1

xijxim − nσjm
∣∣∣ ≥ t

]

= P
[⋃⋃∣∣∣ n∑

i=1

xijxim − σjm
∣∣∣ ≥ nt

]
≤
∑∑

P
[∣∣∣ n∑

i=1

xijxim − σjm
∣∣∣ ≥ nt

]
≤ (2k + 1)p · P

[∣∣∣ n∑
i=1

xijxim − σjm
∣∣∣ ≥ nt

]
,
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where the we take the double union and the sum over I. The second inequal-
ity was obtained by applying the union sum inequality for a measure function
(in this case, the probability measure, of course) over non disjoint sets. The
last inequality follows due to the fact that the index set I contains at most
(2k+ 1)p elements different from zero. Now Lemma 4.4 can be applied upon
Xi (EXi = 0) to obtain

P
[
‖Bk(Σ̂p)−Bk(Σp)‖∞ ≥ t

]
≤ (2k + 1)p exp{−nt2γ(ε0, λ)} (4.26)

for |t| ≤ λ ≡ λ(ε0). By choosing t = M( log(pk)
n

)1/2 for an arbitrary M, we
conclude that, uniformly on U ,

‖Bk(Σ̂p)−Bk(Σp)‖∞ = OP

((
log(pk)

n

) 1
2

)
= OP

((
log p

n

) 1
2

)
,

since k < p (log(pk) = log p+ log k < 2 log p). On the other hand, by (4.1)

‖Bk(Σ̂p)− Σp‖∞ ≤ Ck−α

for Σp ∈ U (ε0, α, C).
Combining the last two inequalities, we can bound the desired expression as
follows:

‖Bk(Σ̂
0
p)− Σp‖∞ ≤ ‖Bk(Σ̂

0
p)−Bk(Σp)‖∞ + ‖Bk(Σp)− Σp‖

= OP

(
min

{(
log p

n

)1/2

, k−α

})

= OP

(
min

{(
log p

n

)1/2

,

(
log p

n

)α/2(α+1)
})

= OP

((
log p

n

)α/2(α+1)
)

Thus, the assertion of Theorem 4.1 follows for Bk(Σ
0). Let us yet generalize

the results for stochastic processes which mean is non zero. Denote X̄ =
(X̄1, . . . , X̄p)

T ,

‖Bk(Σ̂
0
p)−Bk(Σ̂)p‖ =

∥∥∥Bk

(
1

n

n∑
i=1

XiX̄
T + X̄XT

i − X̄X̄T

)∥∥∥
= ‖Bk

(
X̄X̄T

)
‖ ≤ (2k + 1) max

1≤j≤p
|X̄j|2

= OP

(
k

√
log p

n

)
= OP

((
log p

n

)α/2(α+1)
)
,
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where we have used the well-known fact that X̄ = OP (1/
√
n). Since

‖[Bkn(Σ̂p)]
−1 − Σ−1

p ‖ = ΩP (‖Bkn(Σ̂p)− Σp‖),

uniformly on U (ε0, α, C) the result follows.

4.1.3 Choice of the banding parameter

The previous results give us the rate of k = kn that guarantees convergence
of the banded estimator Σ̂k, but they do not tell us much about how to chose
a value for k, if we have given a sample, i.e. a dataset. The obvious choice
for k would be to minimize the risk

R(k) = E‖Σk,p − Σp‖(1,1) (4.27)

and then to obtain the optimal k (called the ”oracle” k) with

k0 = arg min
k
R(k), (4.28)

where under the (1, 1)-norm for a matrix M = [mij] we mean ‖M‖(1,1) :=
sup {‖Mx‖1 : ‖x‖1 = 1} = maxj

∑
i |mij|. The choice of the matrix norm

in (4.27) is somehow arbitrary. Bickel and Levina ([2]) found out that the
choice of k is not sensitive to the choice of the matrix norm. Further they
found out that the l1 matrix norm performed slightly better than other in
simulations and was also easier to compute. To estimate the risk and thus
k0 they proposed a resampling scheme as follows: divide the original sample
into two samples at random and use the sample covariance matrix of one
sample as the ”target” to choose the best k for the other sample. Let n1,
n2 = n− n1 be the two sample sizes for the random split, and let Σ̂

(ν)
1 , Σ̂

(ν)
2

be the two sample covariance matrices from the ν-th split, for ν = 1, . . . , N .
Then the risk can be estimated by

R̂(k) =
1

N

N∑
ν=1

‖Bk

(
Σ̂

(ν)
1

)
− Σ̂

(ν)
2 ‖(1,1) (4.29)

and k is selected by
k̂ = arg min

k
R̂(k)

Little sensitivity was found to the choice of n1 and n2, so they used n1 = n/3
throughout the paper.
The oracle k0 provides the best choice in terms of expected loss, whereas k̂
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tries to adapt to the data at hand. Another comparison is that of k̂ to the
best band choice for the sample in question:

k1 = arg min
k
‖Σ̂k,p − Σp‖1,1.

Here k1 is a random quantity, and its loss is always smaller than that of k0.
Numerical simulations show that k̂ generally agrees very well with both k0

and k1, which are quite close for normal data. For heavier-tailed data, one
would expect more variability; in that case, the agreement between k̂ and k1

is more important than that between k̂ and k0. Since in (4.29) Σ̂2 is known
to be a very noisy estimate of Σp, it may be surprising that Σ̂2 as the target
works at all. Nevertheless, it is an unbiased estimate and numerical results
showed that (4.29) tend to overestimate the actual value of the risk, but
even though, it gives very good results for choosing k, see [2] (page 212-217).
Criterion (4.29) can be used to select k for the Cholesky-based Σ̃k,p as well.

One has to keep in mind that while Σ̂k,p is always well-defined, Σ̃k,p in only
well-defined for k < n, since otherwise regressions become singular. Thus, if
p > n, k can only be chosen from the range 0, . . . , n− 1, not 0, . . . , p− 1.

4.2 General tapering of the covariance matrix

As we have noted before in Chapter 3.1, one problem with simple banding
of the covariance matrix is the eventual loss of positive definiteness. Furrer
and Bengtsson [11] examine the estimation of high-dimensional prior and
posterior covariance matrices in Kalman filter variants, namely the ensemble
Kalman filter and the ensemble square-root Kalman filter. We will explain
these variants in more details. The best known filtering (data assimilation)
algorithm is in the context of Gaussian distributions and linear system dy-
namics, where the prior and posterior probability density functions are de-
scribed by the Kalman filter recursion [16]. To address the heavy computa-
tional expense of the Kalman filter recursions in very large-scale problems,
Evensen [10] proposes the ensemble Kalman filter. Conceptually, the ensem-
ble Kalman filter implements Bayes theorem by perturbing a (Gaussian) fore-
cast sample to produce a posterior sample with the correct first two moment
structures. The ensemble Kalman filter is optimal only in Gaussian settings,
but because it samples using the empirical forecast distribution the method is
known to have excellent non-Gaussian properties in various settings. In par-
ticularly, they apply their methods to an important application area where
the employed sample sizes are several orders of magnitude smaller than the
system dimension, that is to say in numerical weather prediction. To reduce
necessary ensemble size requirements and to address rank-deficient sample co-
variances, covariance-shrinking (tapering) based on the Schur product of the
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prior sample covariance and a positive definite function is demonstrated to be
a simple, computationally feasible, and very effective technique. The positive
definiteness can be preserved by tapering the sample covariance matrix, that
is, replacing Σ̂p with Σ̂p ∗R, where ∗ denotes Schur (coordinate-wise) matrix
multiplication and where R = [rij] is a positive definite, symmetric matrix.
The Schur product of positive definite matrices is again positive definite. An
elegant proof of this claim in a probabilistic context is as follows: if X and
Y are independent, mean 0 random vectors with C(X) = A and C(Y ) = B,
then

C(X ∗ Y ) = A ∗B.

Schur proved this fact in a general setting of bounded bilinear forms with in-
finitely many variables, see [25]. Now we will show how this positive definite
and symmetric matrix R can be obtained. Let A be a countable set of labels
of cardinality |A|. Let ρ : A × A → R+, ρ(a, a) = 0 for all a, be a function
that can be interpreted as a distance function of the point (a, b) from the
diagonal. One example of ρ is obvious, namely ρ(a, b) = |a− b|, where a and
b are identified with points in R+ and | · | is a norm in R+.
Let R = [rab]a,b∈A be a symmetric, positive definite matrix with rab =
g(ρ(a, b)), g : R+ → R+. We assume further g(0) = 1 and g is decreasing to
0. Then R ∗M is a regularization of M . The familiar banding operator is
obtained by ρ(i, j) = |i− j|, g(t) = 1[t≤k] (which is not negative definite).
In general, let Rσ = [rσ(a, b)], where

rσ(a, b) = g

(
ρ(a, b)

σ

)
, σ ≥ 0.

In preparation of the next theorem, we will need an assumption on the men-
tioned function g.

Assumption A. g is continuous, g(0) = 1, g is nonincreasing and

lim
x→∞

g(x) = 0.

One example of such Rσ is

rσ(i, j) =

(
1− |i− j|

σ

)
+

,

and another one would be

rσ(i, j) = e−|i−j|/σ.
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Now define
Rσ(M) := [mabrσ(a, b)]

with R0(M) = M . Note that

lim
σ→∞

Rσ(M) = M.

Furthermore, denote the range of gσ(ρ(a, b)) by {gσ(ρ1), . . . , gσ(ρL)} where
{0 < ρ1 < · · · < ρL} is the range of ρ(a, b), a, b ∈ A. Note that L depends
on |A| = p.

Theorem 4.5 Let ∆(σ) =
∑L

l=1 gσ(ρl). Note that ∆ depends on |A| = p
and the range of ρ. Suppose Assumption A holds. Then if

∆ � (n−1 log p)−1/2(α+1),

the conclusion of Theorem 4.1 holds for Rσ(Σ̂p), namely

‖Rσ(Σ̂p)− Σp‖ = OP

((
log p

n

) α
2(α+1)

)
= ‖[Rσ(Σ̂p)]

−1 − Σ−1
p ‖.

Proof. The proof of this theorem is closely related to the proof of Theorem
4.1. There is only one modification, namely the following lemma substitutes
for (4.25)

4.3 Banding the Cholesky factor of the inverse

Theorem 4.1 gives the rate of convergence of the banded sample covariance
matrix to the population covariance matrix. The next theorem proposes that
very similar results can be obtained by banding the Cholesky factor of the
inverse. Let us firstly define an appropriate space for covariance matrices
analogously to U (ε0, α, C): For Σ−1 = T (Σ)TD−1(Σ)T (Σ) with T (Σ) lower
triangular and T (Σ) ≡ [tij(Σ)], let

U−1 (ε0, α, C) :=

{
Σ : 0 < ε0 ≤ λmin (Σp) ≤ λmax (Σp) ≤ ε−1

0 ,

max
i

∑
j<i−k

|tij(Σ)| ≤ Ck−α ∀k ≤ p− 1

}
. (4.30)
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Theorem 4.6 Suppose X is a Gaussian stochastic process which population
covariance matrix Σp is an element of U−1 (ε0, α, C). If kn � ( log p

n
)−1/2(α+1)

and n−1 log p = o(1), then

‖Σ̃−1
kn,p
− Σ−1

p ‖ = OP

((
log p

n

) α
2(α+1)

)
= ‖Σ̃kn,p − Σp‖, (4.31)

uniformly for Σ ∈ U−1.

To prove Theorem 4.6 we will need an additional lemma. The reason that
the argument of Theorem 4.1 cannot be applied simply to this theorem is
that, as we have already mentioned, Σ̃−1 is not the same as Bk(Σ̂

−1), which
is not well defined if p > n.

Lemma 4.7 Under the conditions of Theorem 4.6, the following assertions
hold uniformly on U :

max
{
‖ã(k)

j − a
(k)
j ‖∞ : 1 ≤ j ≤ p

}
= OP (n−1/2 log1/2 p), (4.32)

max
{
|d̃2
j,k − d2

j,k| : 1 ≤ j ≤ p
}

= OP ((n−1 log p)α/(2(α+1))), (4.33)

and
‖Ak‖ = ‖D−1

k ‖ = O(1), (4.34)

where ã
(k)
j = (ã

(k)
j1 , . . . , ã

(k)
j,j−1) are, as we noted before, the empirical estimates

of the vectors a
(k)
j = (a

(k)
j1 , . . . , a

(k)
j,j−1) and d̃2

j,k are the empirical estimates of
the d2

j,k for 1 ≤ j ≤ p.

Proof. The first claim needed to prove Lemma 4.7 can be showed by using
our crucial lemma, namely Lemma 4.4. To see that

‖VX− V̂X‖∞ = OP (n−1/2 log1/2 p), (4.35)

note that the entries of V̂X− VX can be bounded by

1

n

∣∣ n∑
i=1

XiaXib − σab
∣∣+

1

n2

∣∣ n∑
i=1

Xia

∣∣∣∣ n∑
i=1

Xib

∣∣,
since V̂X = 1

n

∑n
i=1(XiaXib−XiaX̄b−X̄a+X̄bX̄a), where w.l.o.g. we assumed

EX = 0. Lemma 4.4 ensures that

P

[
1

n

∣∣∣∣∣
n∑
i=1

XiaXib − σab

∣∣∣∣∣ ≥ ν

]
≤ C1 exp(−C2nν

2)
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for |ν| < δ. The last inequality implies

P

[
max
a,b

1

n

∣∣∣∣∣
n∑
i=1

XiaXib − σab

∣∣∣∣∣ ≥ ν

]
≤ C1p

2 exp(−C2nν
2)

for |ν| < δ. Now choose ν = M( log p2

nC2
)1/2 for M arbitrary. Thus, it follows

that

P

[
‖VX− V̂X‖∞ ≥M

√
2 log p

nC2

]
≤ C1p

2 exp(−M2 log p2)

holds. And the last inequality is equivalent to

P

(√ log p

n

)−1

‖VX− V̂X‖∞ ≥M

√
2

C2

 ≤ C1p
2 exp(−M2 log p2)

= C1p
2p−2M2

.

Since M can be chosen arbitrarily, (4.35) follows. Analogously, we conclude

max
j
‖V−1Z

(k)
j − V̂−1Z

(k)
j ‖∞ = OP (n−1/2 log1/2 p).

Claim (4.32) and ‖Ak‖ = OP (1) follow from (3.3), (4.35) and the last equa-
tion. For proving (4.33), we firstly note that

d2
jk = Vεj = V(Xj − X̂j) = VXj − V

(
j−1∑
t=j−k

a
(k)
jt Xt

)
,

since Xj is orthogonal onto X̂j according to standard regression theory. Thus,
analogously

d̃2
jk = V̂Xj − V̂

(
j−1∑
t=j−k

ã
(k)
jt Xt

)
,

and since the covariance operator is linear, we conclude

|d̃2
jk − d2

jk| ≤|VXj − V̂Xj|

+

∣∣∣∣∣V̂
j−1∑
t=j−k

(
ã

(k)
jt − a

(k)
jt

)
Xt

∣∣∣∣∣
+

∣∣∣∣∣V̂
j−1∑
t=j−k

a
(k)
jt Xt − V

j−1∑
t=j−k

a
(k)
jt Xt

∣∣∣∣∣.
(4.36)
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By the sum
∑j−1

t=j−k we mean
∑j−1

t=max(1,j−k) and we omitted the longer nota-
tion due to its cumbersomeness. Let us now examine the limiting behaviour
of these three terms in the last inequality. For the first term we have already
showed that it is of the form OP (n−1/2 log1/2 p) in the first part of this lemma.
The second one can be written as∣∣∣∑{(

ã
(k)
js − a

(k)
js

)(
ã

(k)
jt − a

(k)
jt

)
C(Xs, Xt) : j − k ≤ s, t ≤ j − 1

}∣∣∣
≤

(
j−1∑
t=j−k

∣∣ã(k)
jt − a

(k)
jt

∣∣V̂1/2(Xt)

)2

≤ k2 max
t

(ã
(k)
jt − a

(k)
jt )2 max

t
V̂(Xt)

= OP (k2n−1(log p)2) = OP

(
(n−1 log p)α/2(α+1)

)
.

(4.37)

The first inequality follows from the Cauchy-Schwartz inequality in L2(Ω,A,P),
namely C(Xs, Xt) ≤ (V(Xs)V(Xt)), whereas the last equality follows from
(4.32) and the fact that ‖Σp‖ ≤ ε−1

0 and from the assumption n−1 log p = o(1)
that we required in Theorem 4.6 only to avoid a cumbersome rate of con-
vergence. The third term in (4.37) is similarly bounded, since for a series of
random variables Yi,

V̂

(
n∑
i=1

Yi

)
=

n∑
i=1

V̂(Yi) +
n∑
i=1

n∑
j=1
i 6=j

Ĉ(Yi, Yj)

holds. Thus, (4.33) follows. After observing that

d2
jk = V

(
Xj −

∑{
a

(k)
jt Xt : max(1, j − k) ≤ t ≤ j − 1

})
≥ ε0

(
1 +

∑(
a

(k)
jt

)2
)
≥ ε0

holds, (4.34) follows and thus the lemma is completely proved.

Proof of Theorem 4.6 The proof of this theorem is in some points identi-
cal to the proof of Theorem 4.1. As before we need only to show that

‖Σ̃−1
k,p − Σ−1

k,p‖ = OP (n−1/2 log1/2 p) (4.38)

and
‖Σ−1

k,p − Σ−1
p ‖ = O(k−α). (4.39)

By definition, see section 3.2,

Σ̃−1
k,p − Σ−1

k,p = (I − Ãk)D̃−1
k (I − Ãk)T − (I − Ak)D−1

k (I − Ak)T , (4.40)
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where Ãk and D̃k are the empirical versions of Ak and Dk. Now we apply a
standard inequality, which can be easily verified, but whose verification we
will omit, since it is elementary, namely

‖A(1)A(2)A(3) −B(1)B(2)B(3)‖

≤
3∑
j=1

‖A(j) −B(j)‖
∏
k 6=j

‖B(k)‖

+
3∑
j=1

‖B(j)‖
∏
k 6=j

‖A(k) −B(k)‖+
3∏
j=1

‖A(j) −B(j)‖.

Take A(1) = [A(3)]T = I − Ãk, B
(1) = [B(3)]T = I − Ak, A

(2) = D̃−1
k and

B(2) = D−1
k , substitute them into the last inequality and (4.38) will follow

after applying Lemma 4.7. To show (4.39), we need to use the fact that for
an arbitrary matrix M ,

‖MMT −Bk(M)Bk(M
T )‖

= ‖ −
(
2MBk(M)− 2MMT +Bk(M)Bk(M

T )− 2MBk(M) +MMT
)
‖

≤ 2‖M‖‖Bk(M)−M‖+ ‖Bk(M)−M‖2

holds. This fact can now be applied as follows. Since Σ−1
p = T (Σ)TD−1(Σ)T (Σ)

and since, the entries of the diagonal matrix D are all positive, thus, there
exist a diagonal matrix D1/2 such that D = DD1/2 = DD1/2T . The same is
valid for D−1. Now set M = T (Σ)TD−1/2. The expression ‖Bk(M)−M‖ is
bounded by Ck−α according to the assumption Σ ∈ U−1, since it contains
only elements on entries (i, j) of the matrix for which k < i− j.

5 Theorems of large deviations for sums of

dependent random variables

Theorem 4.3 states in which case for a sum of independent, not necessarily
identical distributed, random variables expressions can be obtained for large
deviations in the form of (4.4). In this chapter we will give some theorems
of large deviations for sums of dependent random variables. Therefore, we
again need to focus on notation.
Let Xt be a random process on a probability space (Ω,F ,P) and let

{
F ts, 1 ≤

s ≤ t <∞
}

be a family of σ-algebras such that

1) F ts ⊂ F , ∀s ≤ t;
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2) F t1s1 ⊂ F
t2
s2
, ∀[s1, t1] ⊂ [s2, t2];

3) F ts ⊃ σ
{
Xu : s ≤ u ≤ t

}
.

Now we introduce the concepts of α−, ϕ− and ψ−mixing that are used to
establish upper bounds for mixed cumulants and/or moments. These con-
cepts go back to Andrey Nikolayevich Kolmogorov who contributed to many
areas of pure and applied mathematical research, especially to the fields of
probability theory and topology. In addition to his work on the foundations
of probability, he contributed profound papers on stochastic processes, es-
pecially Markov processes. The above mentioned concepts are defined as
follows:

α(s, t) = sup
A∈Fs1 ,B∈F∞t

|P(AB)− P(A)P(B)|

(Rosenblatt, 1956, [23]),

ϕ(s, t) = sup
A∈Fs1 ,B∈F∞t

∣∣∣∣P(AB)− P(A)P(B)

P(A)

∣∣∣∣
(Ibragimov, 1959, [14]),

ψ(s, t) = sup
A∈Fs1 ,B∈F∞t

∣∣∣∣P(AB)− P(A)P(B)

P(A)P(B)

∣∣∣∣
(Blum, Hanson, Koopmans, 1963, [4]). The idea of this concept is after
bounding a random variable with one of the mixing functions, by assuming
that the underlying r.v. is e.g. α-mixing, you obtain that the bounded
expression tends to zero for |t− s| → ∞, since α(s, t) → 0 for |t− s| → ∞.
Recall that the letter ”c” as subscript of a random variable ξ denotes the
centered r.v.:

ξc := ξ − Eξ.
In the investigation and estimation of cumulants Γk(Sn), where Sn is the
sum of n random variables ξi, it will be more convenient for us to express
Γ(Xt1 , . . . , Xtk) through centered moments.

Ec(XI) := E
{
Xt1(Xt2 . . . (Xtm−1(Xtm)c)c)c

}
,

where XI := (Xt1 , . . . , Xtm) for (t1, . . . , tm) is a partition of I. Sometimes
the notation Ec(XI) will be replaced by EcXt1 . . . Xtm . We have

EcXt = EXt, EcXsXt = EXsXt − EXsEXt,

EcXt1Xt2Xt3 = EXt1Xt2Xt3 − EXt1EXt2Xt3

− EXt1Xt2EXt3 + EXt1EXt2EXt3 .
(5.1)
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5.1 Bounds of the k-th order centered moments of ran-
dom processes with mixing

The upper bounds of EcXsXt = EXsXt − EXsEXt, expressed through α, ϕ
or ψ, are very important in limit theorems for sums

Sn =
n∑
t=1

Xt

of dependent random variables under different mixing conditions. Two basic
ones are

|EcXsXt| ≤ 4C2α(s, t), (A)

if |Xs| ≤ C and |Xt| ≤ C with probability 1 (Volkonskii, Rozanov, [27]);

|EcXsXt| ≤ 6α1− 1
u
− 1
v (s, t)E

1
u |Xs|uE

1
v |Xt|v

for any u ≥ 1, v ≥ 1 1/u+1/v ≤ 1, if E|Xs|u and E|Xt|v are finite (Davydov,
[6]). There are similar upper bounds expressed through ϕ and ψ which we
will omit. One should note that the inequalities

α(s, t) ≤ ϕ(s, t) ≤ ψ(s, t)

make possible the transition from bounds in terms of α(s, t) to ϕ(s, t) and
from ϕ(s, t) to ψ(s, t) by means of direct change of mixing functions (see
Iosifescu, [15]). Let us now generalize these bounds for EcXt1 . . . Xtk .

Theorem 5.1 If |Xtj | ≤ C with probability 1, j = 1, . . . , k, k ≥ 2, then for
all i = 1, . . . , k − 1

|EcXt1 . . . Xtk | ≤ 2kCkα(ti, ti+1).

Proof. The upper bound for the centered moments will be proved after in-
troducing new random variables, which will make the notation of the proof
easier.
Associate random variables Yt1 , . . . , Ytk with the random variablesXt1 , . . . , Xtk

by the relations

Ytj = Xtj(Ytj+1
)c, 1 ≤ j < k,

Ytk = Xtk ,
(5.2)

where the symbol ”c” as subscript of a random variable denotes the operation
of centering of a random variable by its mean, as we have already used it.
Obviously, for all i, j, 1 ≤ j ≤ i < k,

Ytj = Xtj(Xtj+1
. . . (Xti(Yti+1

)c)c)c. (5.3)
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In particular,
Ytj = Xtj(Xtj+1

. . . (Xtk−1
(Xtk)c)c)c, (5.4)

EYt1 = EcXt1 . . . Xtk . (5.5)

Due to measurability of Xtj , . . . , Xti with respect to F ti1 we obtain from (5.3)

E(Ytj |F
ti
1 ) = Xtj(Xtj+1

. . . (Xtk−1
(E(Yti+1

|F ti1 ))c)c)c,

EYt1 = EXt1(Xt2 . . . (Xti(E(Yti+1
|F ti1 ))c)c)c. (5.6)

A method for finding upper bounds for the centered moments is based on
successive application of the Hölder and Minkowski inequalities to equality
(5.6) as well as on relation (5.5). We will illustrate this with an example of
three random variables. The first identity in the sequel comes from (5.1).

|EcX1X2X3|
= |EX1X2X3 − EX1EX2X3 − EX1X2EX3 + EX1EX2EX3|
≤ 4|EX1X2X3| ≤ 4E1/u1|X1|u1E1/v1|X2X3|v1

≤ 4E1/u1 |X1|u1E1/v1u2|X2|v1u2E1/v1v2|X3|v1v2 ,

where the first inequality is due to Minkowski, and the last two due to
Hölder’s inequality

‖fg‖1 ≤ ‖f‖p‖g‖g
for 1 ≤ p, q ≤ ∞ and 1/p+ 1/q = 1. The p-norm is defined in L2(Ω,F ,P) as
follows

‖f‖p :=

(∫
Ω

|f |pdP
) 1

p

= E
1
p |f |p.

Since we have

|(Xti(EYti+1
|F ti1 )c)c| = |Xti(EYti+1

|F ti1 )c − E[Xti(EYti+1
|F ti1 )c]|

≤ 2|Xti(EYti+1
|F ti1 )c|,

which follows from Jensen’s inequality, we can conclude

|EcXt1 . . . Xtk | ≤ 2i−1E1/u1|Xt1 |u1E1/(v1u2)|Xt2 |v1u2·
· E1/(v1···vi−2ui−1)|Xti−1

|v1···vi−2ui−1Ev1···vi−2vi−1 |Xti(E[Yti+1
|F ti1 ])c|v1···vi−2vi−1 ,

(5.7)

where 1/uj + 1/vj = 1, uj, vj ≥ 1, j = 1, . . . , i, i = 1, . . . , k − 1. Since the
r.v. Xt, t = t1, . . . , tk are bounded by C with probability 1, we obtain

|EcXt1 . . . Xtk | ≤ 2i−1Ci−1|Xti(E[Yti+1
|F ti1 ]− EYti+1

)|,
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where we have used the tower property of the conditional expectation to ob-
tain E[E[Yti+1

|F ti1 ]|F0] = EYti+1
, where F0 = {{∅},Ω}.

From (5.4) we conclude, under the assumption of the theorem, that |Yti+1
| ≤

2k−i−1Ck−1 with probability 1. The proof is completed by applying the in-
equality (A).

The assumption in the last theorem is quite a stringent one, not even
a Gaussian stochastic process fulfills this restriction. Above we also cited
another upper bound found by Davydov, which does not use this strong
assumption that |Xtj | ≤ C with probability 1. Now we will present another
theorem which gives us an upper bound for the k-th order centered moment
of a random process with mixing. It only requires the existence of the pj-th
absolute moment for some collection pj ≥ 1 such that the sum of the inverses
of the pj is less or equal to one. The following theorem and its proof is also
from [24].

Theorem 5.2 If for some collection pj ≥ 1, j = 1, . . . , k, such that

k∑
j=1

1

pj
≤ 1, k = 2, 3, . . . ,

there exist E|Xtj |pj , j = 1, . . . , k, then for all i = 1, . . . , k − 1

|EcXt1 . . . Xtk | ≤ 3 · 2k−1α
1−
∑k
j=1

1
pj (ti, ti+1)

k∏
j=1

E
1
pj |Xtj |pj .

For the last theorem there exist also upper bounds expressed through ϕ and
ψ with a slight modification.

Proof. To prove this theorem we will cite a lemma from [21] without proof.

Lemma 5.3 If a r.v. Y is F∞t -measurable, then for any u and v, 1 ≤ u ≤ v,

E1/u|E (Y |F s1 )− EY |u ≤ 2(1 + 21/u)(α(s, t))1/u−1/vE1/v|Y |v (5.8)

and
E1/u|E (Y |F s1 )− EY |u ≤ 2(ϕ(s, t))1−1/vE1/v|Y |v (5.9)

hold.
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After applying (5.8) to the inequality (5.7), we obtain

|EcXt1 . . . Xtk | ≤ 2i−1E1/u1 |Xt1|u1E1/(v1u2)|Xt2|v1u2·
· E1/(v1···vi−1ui)|Xti |v1···vi−1ui · 2(1 + 21/(v1···vi))·
· α1/(v1···vi)−1/(v1···vi(1+ε))(ti, ti+1)·
· E1/((1+ε)v1···viui+1)|Xti+1

|(1+ε)v1···viui+1 · · ·
· E1/((1+ε)v1···vk−2uk−1)|Xtk−1

|(1+ε)v1···vk−2uk−1 ·
· E1/((1+ε)v1···vk−1)|Xtk |(1+ε)v1···vk−1 ,

(5.10)

where uj, vj ≥ 1 and (1/uj) + (1/vj) = 1 for j = 1, . . . , k− 1 and ε ≥ 0. Now
put

p1 = u1,

p2 = v1u2,

. . .

pi = v1 · · · vi−1ui,

. . .

pk−1 = (1 + ε)v1 · · · vk−2uk−1,

pk = (1 + ε)v1 · · · vk−1.

Since we now have
1

v1 · · · vi
= 1−

i∑
j=1

1

pj
,

and
1

(1 + ε)v1 · · · vi
=

k∑
j=i+1

1

pj
,

we conclude
1

v1 · · · vi
− 1

(1 + ε)v1 · · · vi
= 1−

k∑
j=1

1

pj

and thus the validity of the theorem.

Let us consider a case when the variables Xt are related to a Markov chain
ξt. We call a random variable Xt related to a Markov chain if Xt can be
written as Xt = gt(ξt), where gt(x) is a measurable function for each t. This
concept a random variable being related to a Markov chain is also called a
Hidden Markov Model (HMM). The reason for this nomenclature is somehow
obvious. The Hidden Markov Model is a finite set of states, each of which
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is associated with a (generally multidimensional) probability distribution.
Transitions among the states are governed by a set of probabilities called
transition probabilities. In a particular state an outcome or observation
can be generated, according to the associated probability distribution. It is
only the outcome, not the state visible to an external observer and therefore
states are “hidden” to the outside; hence the name Hidden Markov Model.
The Markov property says that

Pt+1,t(x,A) = P(ξt+1 ∈ A
∣∣ξt = x), Pt(A) = P(ξt ∈ A)

must hold. In other words, the outcome of the random variable ξt+1 depends
only on its value (state) at the time point t, i.e.

P(ξt+1 ∈ A|F t1) = P(ξt+1 ∈ A|F tt ),

where F ts = σ{ξu, s ≤ u ≤ t}. Then

ϕ(s, t) = sup
x,A∈Fts

|Ps,t(x,A)− Pt(A)| ≤ 1− αs,t,

where αs,t is the ergodicity coefficient

αs,t = 1− sup
x,y,A∈Fts

|Ps,t(x,A)− Ps,t(y, A)|

(see Dobrushin [7],[8]) Let α(n) = min1≤s<n αs,s+1 be the ergodicity coefficient
of the chain. It is known that 1 − αs,t ≤ (1 − α(n))t−s ≤ exp{−α(n)(t − s)}
for all 1 ≤ s ≤ t ≤ n.
The next theorems and corollaries concerning a stochastic process Xt related
to a Markov chain ξt will be stated without proof due to their length and
since they do not contain any new ideas. The proofs are presented in [24],
chapter 4. We introduce time indices lj, j = 1, . . . , r, where r ≤ k, as being
those ti in the sequence of time indices t1 ≤ t2 ≤ · · · ≤ tk for which the strict
inequality holds. They bound the centered moment of Xt1 , . . . , Xtk with the
mixing functions depending only on those tj that differ from tj+1 and tj−1.

Theorem 5.4 Let Xt be related to a Markov chain ξt. If |Xlj | ≤ C with
probability 1, j = 1, . . . , r, r = 2, 3, . . . , then

1)

|EcXt1 · · ·Xtk | ≤ 2k−1 Ck

r−1∏
j=1

ϕ(lj, lj+1),
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2)

|EcXt1 · · ·Xtk | ≤ 2k−1 Ck

r−1∏
j=1

ψ(lj, lj+1).

Theorem 5.5 Let Xt be related to a Markov chain ξt. If for some collection
qj ≥ 1, j = 1, . . . , r, r = 2, 3, . . . . such that

∑r
j=1

1
qj

= 1, and if there exist

E|Xlj |mjqj , j = 1, . . . , r, then

|EcXt1 · · ·Xtk | ≤ 2k−1

r−1∏
j=1

ϕ
∑j
i=1

1
qj (lj, lj+1)

r∏
j=1

E
1
qj |Xlj |mjqj .

Corollary 5.6 Let Xt be related to a Markov chain ξt. If for some γ1 ≥ 0,
H1 > 0

E|Xlj |k ≤ (k!)1+γ1Hk
1 , j = 1, . . . , r, r = 2, 3, . . . , k = 2, 3, . . . ,

then for any δ ≥ 0

|EcXt1 , . . . , Xtk | ≤ 2k−1(k!)1+γ1(1̂ + δ)(1+γ1)kHk
1

r−1∏
j=1

ϕ
δ

1+δ (lj, lj+1),

where û = min{v ≥ u|v is integer}. Analogously a similar result can be
obtained for ψ(lj, lj+1).

5.2 Bounds of mixed cumulants of random processes
with mixing

After being able to bound EcXt1 . . . Xtk from above and having available
Lemma 2.3 as well as taking into account the behaviour of Nν(I1, . . . , Iν), we
obtain the bounds for the mixed cumulants Γ(Xt1 , . . . , Xtk).

Theorem 5.7 If |Xtj | ≤ C a.s., j = 1, . . . , k, k = 2, 3, . . . , then for all
i = 1, 2, . . . , k − 1

1)
|Γ(Xt1 , . . . , Xtk)| ≤ (k − 1)! 2k Ck α(ti, ti+1),

2)
|Γ(Xt1 , . . . , Xtk)| ≤ (k − 1)! 2k−1Ckϕ(ti, ti+1),

3)
|Γ(Xt1 , . . . , Xtk)| ≤ (k − 1)! 2k−2Ckψ(ti, ti+1).
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As we have already mentioned, the knowledge of the structure ofNν(I1, . . . , Iν)
will be needed. In the proof of this theorem we will need the results of Lemma
2.3, namely (2.10), (2.11) and the inequality 0 ≤ Nν(I1, . . . , Iν) ≤ (ν − 1)!.
Let us define the operation [A]I for an arbitrary A and the set I:

[A] := [A]I = {t ∈ I|a1 ≤ t ≤ as} = [a1, as] ∩ I.

Now let {A1, . . . ,Aµ} be a system of subsets of the set I. We say that the
system {A1, . . . ,Aµ} essentially covers the point t ∈ I, if

{q|t ∈ [Aq\{t}], 1 ≤ q ≤ µ} 6= ∅.

In other words, there must exist Ap ∈ {A1, . . . ,Aµ} such that t ∈ [Ap\{t}].
This is the right place to bring an example to clarify what we mean. Let µ = 8
and {A1, . . . ,Aµ} be the partition {I1, . . . , I8} of the set {t1, . . . , t14} with
I1 = {t1, t5}, I2 = {t2, t9}, I3 = {t3, t6}, I4 = {t4}, I5 = {t7}, I6 = {t8, t13},
I7 = {t10, t14} and I8 = {t11, t12}. If we choose t = t11, then

{q|t ∈ [Iq\{t}], 1 ≤ q ≤ 8} = {6, 7},

since
t11 ∈ [I6\{t11}] = {t8, t9, t10, t11, t12, t13},

t11 ∈ [I7\{t11}] = {t10, t11, t12, t13, t14},

but not in I8, since [I8\{t11}] = [t12] = {t12}.
The number

nt(A1, . . . ,Aµ) = |{q|t ∈ [Aq\{t}], 1 ≤ q ≤ µ}| (5.11)

will be called the number of maximal covering of a point t ∈ I by the system
{A1, . . . ,Aµ}. In our example

nt11(I1, . . . , I8) = |{6, 7}| = 2.

It turns out the numbers Nν(I1, . . . , Iν) emerging in formula (2.10) can be
expressed by

N1(I) = 1,

Nν(I1, . . . , Iν) =
ν∏
j=2

n
t
(p)
1

(I1, . . . , Iν),
(5.12)

where for a partition {I1, . . . , Iν} of a set I of cardinality k, Ip = {t(p)1 , . . . , t
(p)
kp
}

is the set of the p-th partition with t
(p)
1 ≤ . . . ≤ t

(p)
kp

, 1 ≤ p ≤ ν and
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k1 + · · · + kν = k. The last expression (5.12) is not yet legible enough.
Thus, we will illustrate the structure of the numbers Nν(I1, . . . , Iν) by the
means of graph theory. Therefore, we will use the above mentioned exam-
ple. I1, . . . , I8 were deliberately arranged according to the increasing of the
first (leftmost) elements. Assign two graphs G

(1)
{I1,...,Iν} and G

(2)
{I1,...,Iν} to each

partition {I1, . . . , Iν}.
Graph G

(1)
{I1,...,Iν} is constructed as follows: its vertices are the points of the

set I, arranged according to increase, i.e. vertex 1 of the graph correspond
to the point t1, vertex 2 to the point t2, etc. The vertices in some block
of the partition are connected in pairs by arcs (oriented edges) according to
increase of their numbers. If in a certain block there is only one point, then
the vertex, corresponding to it, is connected by loop.
Graph G

(2)
{I1,...,Iν} consists of the vertices, corresponding to the blocks of par-

tition and numbered in order of increase of the leftmost points.The vertices
of the graph i and j, for which [Ii]∩ [Ij] 6= ∅, are connected by links (nonori-
ented edges). Thus, we have n

t
(2)
1

= n
t
(5)
1

= n
t
(6)
1

= n
t
(7)
1

= 1, n
t
(3)
1

= n
t
(8)
1

= 2

and n
t
(3)
1

= 3. Obviously

n
t
(p)
1

(I1, . . . , Iν) ≤ p− 1, 2 ≤ p ≤ ν,

due to construction. The expression (2.12), namely

0 ≤ Nν(I1, . . . , Iν) ≤ (ν − 1)!

is a simple consequence of the last inequality, bearing in mind that (5.12)
holds. Even a stronger inequality holds, namely

Nν(I1, . . . , Iν) ≤ min{(ν − 1)!, bk/2c!},

which can be seen from the structure of graph G
(1)
{I1,...,Iν}. Recall that k

denotes the cardinality of I. Concerning G
(2)
{I1,...,Iν}, it turns out that the

numbers Nν(I1, . . . , Iν) are zero on those partitions (I1, . . . , Iν) of the set I for

which G
(2)
{I1,...,Iν} is disconnected. Conversely, for the partitions corresponding

to the connected graph G
(2)
{I1,...,Iν}, the numbers Nν are strictly positive.

To prove Theorem 5.7 we will yet need some lemmas which use the notion of
the Stirling number of the second kind, which we will also introduce before
stating the subsequent lemmas.
Again,

∑
ν
∪
p=1

Ip=I
will denote the sum over all ν− block partitions {I1, . . . , Iν}

of the set I. Any finite sequence of positive integers k1, . . . , kν will be called
a decomposition of a positive integer k, if

∑ν
p=1 kp = k.
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By c(k, ν) we denote the number of all such decompositions of the number k
in ν components and by

∑
k1+...+kν=k the sum over all such decompositions.

Then

c(k, ν) =

(
k − 1

ν − 1

)
=

(k − 1)!

(ν − 1)!(k − ν)!
,

c(k, ν) =
∑

k1+...+kν=k

1.

To see the first equation, simply think of k unnumbered balls arranged on a
line. Every ball represents the number one. Now you have ν − 1 bars to set
somewhere between the balls to obtain a partition of ν blocks. Since, there
is no need to set a bar before the first nor after the last ball, you can choose
between k − 1 positions. Thus, you have

(
k−1
ν−1

)
possibilities to do so.

The number s(k, ν) of ways of partitioning a k-element set into ν nonempty
subsets is called the Stirling number of the second kind. They can be repre-
sented in various kinds:

s(k, ν) = |{I1, . . . , Iν}|,

s(k, ν) =
∑
ν
∪
p=1

Ip=I

1,

s(k, ν) =
∑

k1+...+kν=k

k!

k1! . . . kν !ν!
.

There is a connection between the Stirling numbers of the second kind s(k, ν)
and the coefficients in the expansion of xk in the basis (x)1, (x)2, . . . , (x)k,
where (x)k = x(x− 1) · · · (x− k + 1), namely they are the same, i.e.

xk =
k∑
ν=0

s(k, ν)(x)ν .

Now we can state the lemma.

Lemma 5.8∑
ν
∪
p=1

Ip=I

Nν(I1, . . . , Iν) =
ν−1∑
j=0

(−1)j
(
k − ν + j

k − ν

)
(ν − j − 1)! s(k, ν − j)

(5.13)

Proof. The proof is elementary, since it uses only basic methods of combi-
natorics, see [24].
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Denote
N(k, ν) =

∑
ν
∪
p=1

Ip=I

Nν(I1, . . . , Iν).

In [26] Statulevicius and Jakimavicius proved that from (5.13) it follows that

k∑
ν=1

N(k, ν) = (k − 1)!. (5.14)

Besides, (5.14) expresses also the well-known fact that the cardinality of the
set of permutations of the set {1, . . . , k− 1} is (k− 1)! After stating the next
lemma, the assertion of Theorem 5.7 should be clear.

Lemma 5.9

|Γ(Xt1 , . . . , Xtk)| ≤ (k − 1)! max
1≤ν≤k

ν∏
p=1

|EcXIp|. (5.15)

Proof. The first inequality in the sequel is simply the triangle inequality
applied upon (2.10).

|Γ(Xt1 , . . . , Xtk)| ≤
k∑
ν=1

∑
ν
∪
p=1

Ip=I

Nν(I1, . . . , Iν)
ν∏
p=1

|EcXIp | ≤

≤ max
1≤ν≤k

ν∏
p=1

|EcXIp |
k∑
ν=1

∑
ν
∪
p=1

Ip=I

Nν(I1, . . . , Iν) ≤ (k − 1)! max
1≤ν≤k

ν∏
p=1

|EcXIp |.

Proof of Theorem 5.7 The proof of Theorem 5.7 follows directly from
Theorem 5.1 and Lemma 5.9.

5.3 Bounds of cumulants of sums of dependent random
variables

As before, Sn =
∑n

t=1 Xt and Γk(Sn) denote the k-th order cumulant of the
sum Sn and

Λn(f, u) := max{1, max
1≤s≤n

n∑
t=s

f 1/u(s, t)},

where f(s, t) is one of the mixing functions α, ϕ or ψ and u > 0. We need the
next theorems for proving the theorems and inequalities of large deviations
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for sums of dependent random variables. We omit the proofs due to the
length of their proofs and due to the lack of new ideas, which again can be
found in [24]. Thus, the proofs are essentially based on the ideas that we
have already presented in this chapter.

Theorem 5.10 If |Xt| ≤ C with probability 1, t = 1, 2, . . . , n, then for all
k ≥ 3, β > 0, δ > 0

1)
|Γk(Sn)| ≤ 2k! 8k−1 CkΛk−1

n (α, (k − 1)n),

2)

|Γk(Sn)| ≤ k! 8k−1 Ck−2Λk−2
n (ϕ, (1 + β)(1 + 1/δ)(k − 2))·

·
∑

1≤s≤t≤n

ϕ
βδ

(1+β)(1+δ) (s, t)E
δ

1+δ |Xs|1+ 1
δE

1
1+δ |Xt|1+δ.

Theorem 5.11 If for some k ∈ {2, 3, . . .} and δ > 0 there exist E|Xt|(1+δ)k,
t = 1, 2, . . . , n, then for all β > 0

1)

|Γk(Sn)| ≤ 2k! 12k−1Λk−1
n (α, (1 + 1/δ)(k − 1)) max

1≤t≤n
E

1
1+δ |Xt|(1+δ)k · n,

2)

|Γk(Sn)| ≤ k! 8k−1Λk−2
n (ϕ, (1 + β)(1 + 1/δ)(k − 2)) max

1≤t≤n
E

k−2
(1+δ)k |Xt|(1+δ)k·

·
∑

1≤s≤t≤n

ϕ
βδ

(1+β)(1+δ) (s, t)E
1

(1+δ)k |Xs|(1+δ)kE
1

(1+δ)k |Xt|(1+δ)k.

Theorem 5.12 If for some γ2 ≥ 0, H2 > 0

|E(Xk
t |F t−1

1 )| ≤ (k!)1+γ2Hk
2 with probability 1

for t = 1, . . . , n and k ≥ 2 , then

|Γk(Sn)| ≤ 2 (k!)1+γ216k−1Hk
2 Λk−1

n (α, k − 1) · n.

Theorem 5.13 Let Xt be related to a Markov chain ξt. If |Xt| ≤ C with
probability 1, t = 1, . . . , n, then for all k = 2, 3, . . ., δ > 0
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1)
|Γk(Sn)| ≤ k! 8k−1 CkΛk−1

n (ϕ, 1)n,

2)

|Γk(Sn)| ≤ k! 8k−1Λk−2
n (ϕ, 1 + 1/δ)·

·
∑

1≤s≤t≤n

ϕ
δ

(1+δ) (s, t)E
δ

1+δ |Xs|1+ 1
δE

1
(1+δ) |Xt|1+δ.

Theorem 5.14 Let Xt be related to a Markov chain ξt. If for some k ∈
{2, 3, . . .} and δ > 0 there exist E|Xt|(1+δ)k, t = 1, 2, . . . , n, then

1)

|Γk(Sn)| ≤ k! 8k−1Λk−1
n (ϕ, 1 + 1/δ) max

1≤t≤n
E

1
1+δ |Xt|(1+δ)k · n,

2)

|Γk(Sn)| ≤ k! 8k−1Λk−2
n (ϕ, 1 + 1/δ) max

1≤t≤n
E

k−2
(1+δ)k |Xt|(1+δ)k·

·
∑

1≤s≤t≤n

ϕ
δ

(1+δ) (s, t)E
1

(1+δ)k |Xs|(1+δ)kE
1

(1+δ)k |Xt|(1+δ)k.

Theorem 5.15 Let Xt be related to a Markov chain ξt. If for some γ2 ≥ 0,
H2 > 0

|E(Xk
t |F t−1

1 )| ≤ (k!)1+γ2Hk
2 with probability 1

for t = 1, . . . , n and k ≥ 2 , then

|Γk(Sn)| ≤ 2 (k!)1+γ216k−1Hk
2 Λk−1

n (ϕ, 1)n.

5.4 Theorems and inequalities of large deviations for
sums of dependent random variables

The bounds, we stated in chapter 5.3 and the Lemma 4.2 opens us the way
to state theorems and inequalities of large deviations for the distribution
P(Zn ≥ x) of the normed sum Zn = Sn/Bn, B2

n = ES2
n (everywhere EXt =

0, t = 1, . . . , n). The theorems in the sequel will be stated only in the case
of a stationary process Xt, t = 1, 2, . . . out of practical reasons, namely to
avoid cumbersome expressions in the proofs. In the case of a general non
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stationary sequence in theorems in chapter 5.3 it is better to bound the k-th
cumulant of the sum Sn with the help of Λk−2

n Lk,n, instead of

Λk−2
n max

1≤t≤n
E|Xt|k/Bk

n,

where

Lk,n =
n∑
t=1

E|Xt|k/Bk
n.

Before stating the theorems we will introduce the notion of m-dependence,
which will be needed in the last two theorems. The definition of m-dependent
strictly stationary processes is taken from [5], chapter six on asymptotic
theory.

m-Dependence: A strictly stationary sequence (Xt) is said to be m-de-
pendent (where m is a non-negative integer) if for each t the random vectors
(Xj, j ≤ t) and (Xj, j ≥ t+m+ 1) are independent.

Remark Since for a strictly stationary process (Xt, t = 0,±1,±2, . . .) the
two infinite random vectors (Xj, j ≤ 0) and (Xj, j ≥ m+ 1) have the same
joint distribution as the random vectors (Xj, j ≤ t) and (Xj, j ≥ t+m+ 1).
In checking for m-independence, it is sufficient, thus, to check the indepen-
dence of the former two.

Remark The property of m-dependence generalizes the notion of indepen-
dence in a natural way. Observations of an m- dependent process are in-
dependent, if there is enough distance in time, namely more than m time
units. For the special case of m = 0 m-dependence reduces to independence.
MA(q) processes are m-dependent with m = q.

In the following theorems we consider a stationary process Xt with EX1 = 0,
EX2

1 = 1and let there exist a σ0 > 0 such that B2
n = ES2

n ≥ σ2
0n. The last

condition requires that the variance of Sn grows at least with n.

Theorem 5.16 If |X1| ≤ C with probability 1 and if

α(s, t) ≤ K1 exp{−b1(t− s)}, K1 > 0, b1 > 0,

then

|Γk(Zn)| ≤ (k!)2B1

(
8Ce

b1Bn

)k−2

,

k ≥ 2, B1 = 8C2K exp{1 + b1}/(b1σ
2
0), K = max{1, K1}, and for ξ = Zn the

relation of large deviations (4.4) holds with

γ = 1, ∆̄ =
b1Bn

8eC
and H = 4B1.
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Theorem 5.17 If for some γ2 ≥ 0, H2 > 0

|E(Xk
t |F t−1

1 )| ≤ (k!)1+γ2Hk
2 with probability 1

for t = 1, . . . , n and k ≥ 2, and if α(s, t) ≤ K1 exp{−b1(t − s)}, for K1 > 0
and b1 > 0, then

|Γk(Zn)| ≤ (k!)2+γ2B2

(
16H2e

b1Bn

)k−2

,

k ≥ 2, B2 = 16H2
2K exp{1 + b1}/(b1σ

2
0) and for ξ = Zn the relation of large

deviations (4.4) holds with

γ = 1 + γ2, ∆̄ =
b1Bn

16eH2

and H = 22+γ2B2.

Theorem 5.18 Let random variables Xt be related to a Markov chain ξt. If
|X1| ≤ C with probability 1, and if ϕ(s, t) ≤ exp{−b2(t− s)} for b2 > 0, then

|Γk(Zn)| ≤ k! B3

(
8(1 + b2)C

b2Bn

)k−2

,

k ≥ 2, B3 = 8C2(1+b2)/(b2σ
2
0) and for ξ = Zn the relation of large deviations

(4.4) holds with

γ = 0, ∆̄ =
b2Bn

8(1 + b2)C
and H = 2B3.

Theorem 5.19 Let random variables Xt be related to a Markov chain ξt. If
for some γ2 ≥ 0, H2 > 0

|E(Xk
t |F t−1

1 )| ≤ (k!)1+γ2Hk
2 with probability 1

for t = 1, . . . , n and k ≥ 2, and if ϕ(s, t) ≤ exp{−b2(t− s)}, for K1 > 0 and
b1 > 0, then

|Γk(Zn)| ≤ (k!)1+γ2B4

(
16(1 + b2)H2

b2Bn

)k−2

,

k ≥ 2, B4 = 16H2
2 (1 + b2)/(b2σ

2
0) and for ξ = Zn the relation of large

deviations (4.4) holds with

γ = γ2, ∆̄ =
b2Bn

16(1 + b2)H2

and H = 21+γ2B4.
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Theorem 5.20 Let random variables Xt be m-dependent. If |X1| ≤ C with
probability 1, then

|Γk(Zn)| ≤ k! B5

(
8(1 +m)C

Bn

)k−2

, k ≥ 2,

B5 = 16C2(1 + m)/σ2
0 and for ξ = Zn the relation of large deviations (4.4)

is valid with

γ = 0, ∆̄ =
Bn

8(1 +m)C
and H = 2B5.

Theorem 5.21 Let random variables Xt be m-dependent. If for some γ2 ≥
0, H2 > 0

|E(Xk
t |F t−1

1 )| ≤ (k!)1+γ2Hk
2 with probability 1

for t = 1, . . . , n and k ≥ 2, and if ϕ(s, t) ≤ exp{−b2(t− s)}, for K1 > 0 and
b1 > 0, then

|Γk(Zn)| ≤ (k!)1+γ2B6

(
16(1 +m)H2

Bn

)k−2

, k ≥ 2,

B6 = 32H2
2 (1 + m)/σ2

0 and for ξ = Zn the relation of large deviations (4.4)
is valid with

γ = γ2, ∆̄ =
Bn

16(1 +m)2γ2H2

and H = 21+γ2B6.

Proof of Theorems 5.16-5.21 Theorems 5.16-5.21 are proved by direct
calculating γ, ∆̄ and H and applying, as we have already mentioned, the
results of Theorems 5.10-5.15 in Lemma 4.2. Let us notice some important
consequences of the assumption f(s, t) ≤ K exp{−b2(t − s)} for K ≥ 1,
namely

Λn(f, 1) ≤ (1 + exp{−b}+ · · ·+ exp{−b(t− s)}) ≤
≤ K/(1− exp{−b}) = K(1 + 1/(exp{b} − 1)) ≤ K(1 + 1/b),

Λn(f, k − 1) ≤ K
1

k−1 (1 + (k − 1)/b),

Λn(f, 1 + 1/δ) ≤ K
δ

1+δ (1 + (1 + δ)/bδ), δ > 0,

Λn(f, (1 + 1/δ)(k − 1)) ≤ K
δ

(1+δ)(k−1) (1 + (1 + δ)(k − 1)/bδ), δ > 0.
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Applying the inequality kk ≤ k! exp{k} to the last three inequalities and to
the condition k ≥ 2, we obtain

Λk−1
n (f,k − 1) ≤ K(1 + (k − 1)/b)k−1 =

= K((k − 1)/b)k−1(1 + b/(k − 1))k−1 ≤ K(e/b)k−1(k − 1)! eb ≤
≤ k! (K/2b) exp{1 + b}(e/b)k−2,

Λk−1
n (f, (1 + 1/δ)(k − 1)) ≤ K

δ
(1+δ) (1 + (1 + δ)(k − 1)/bδ)k−1 =

= K
δ

(1+δ) ((1 + δ)(k − 1)/bδ)k−1
(

1 + bδ/
(
(1 + δ)(k − 1)

))k−1

≤

≤ K
δ

(1+δ) ((1 + δ)(k − 1)/bδ)k−1 exp{bδ/(1 + δ)} ≤

≤ k! K
δ

(1+δ) ((1 + δ)/2bδ) exp{1 + bδ/(1 + δ)}((1 + δ)e/bδ)k−2.

For Theorems 5.20 and 5.21 we have to note that in the case of m-dependent
random variables the inequality

Λn

(
m̄, (1 + 1/δ)(k − 1)

)
≤ m+ 1, δ > 0,

holds, where m̄(s, t) is the function of m-dependence.

5.5 A questionable generalization of Theorem 4.1

The theorems 5.16-5.21 are the fundamentals to develop further Theorem
4.1 and generalize it for stationary stochastic processes. I haven’t succeeded
in this task, and thus this question will stay open. The problem is to find
the cumulants for the sum of random variables V 2

i − 1, but where the Vi are
dependent and not necessarily chi-squared distributed. This is a topic for
further research.
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6 Conclusion

The book [24] written by L. Saulis and V.A. Statulevicius was published in
1991, whereupon the fundamentals for limit theorems for large deviations
were set even much earlier in works like [26]. Though it appears that the
general theory of large deviations has become an important part of probabil-
ity theory, especially in the field of finance and insurance mathematics (see
[9]), where they are used to model extremal events. To mention a concrete
example: they find immediate applications for the valuation of certain quan-
tities which are closely related to reinsurance problems, see [9].
We have successfully used the theory of large deviations to show how reg-
ularized estimator of large covariance matrices converge to the population
covariance matrix of multivariate normal i.i.d. stochastic processes, if the
matrices are well-conditioned as long as long as log p

n
→ 0. Based on the arti-

cle of Bickel and Levina, [2], we have not managed to establish a convergence
result using theorems for large deviations from [24] for stationary processes
and we leave this question unanswered in the hope to be solved in the future
by someone. The flaws of the sample covariance matrix in case when the
dimension of the random vector is bigger than the sample size are well doc-
umented in the literature and we have also illustrated the drawbacks of it.
Since, we have showed that the banded estimator converges to the popula-
tion covariance matrix and the Cholesky factor converges to the inverse of the
population covariance matrix under certain conditions, no one should use the
sample covariance matrix anymore in the case of p > n. The just mentioned
results can bring a significant improvement in the finance industry, where it
is necessary to have a reliable estimator of the population covariance matrix,
especially in the field of portfolio optimization, where most often the number
of assets is much larger than the number of observations. This assertion is
also amplified by the numerical results conducted on simulations and real life
data by Bickel and Levina in [2].
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