

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

Optimization of an integrity
constraints generator

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Andreas Redlein, BSc.
Matrikelnummer 0326016

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Dr. Karl M. Göschka
Mitwirkung: Dr. Lorenz Froihofer

Wien, 18.04.2010

 (Unterschrift Verfasser) (Unterschrift Betreuer)

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

i

Erklärung zur Verfassung der Arbeit

Andreas Redlein
Musilplatz 5
1160 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich
die verwendeten Quellen und Hilfsmittel vollständig angegeben habe und
dass ich die Stellen der Arbeit - einschlielich Tabellen, Karten und Abbil-
dungen -, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn
nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung
kenntlich gemacht habe.

Wien, 18. April 2010

ii

Acknowledgements

First of all, I want to thank Lorenz Froihofer for his excellent guidance and
support of my thesis. Additional thanks go to Karl M. Göschka for giving
me the possibility to write this thesis.

Furthermore, I’m especially thankful to my parents and Lisi, Peter and Fredi
for supporting my studies in a unique way.

Thanks also go to all my friends and all other people that supported me
troughout my studies and that are not explicitly stated here.

Finally, I want to thank the R.I.C.S. EDV-GmbH for the support of my
studies by offering very flexible working times.

iii

Abstract

This thesis addresses the optimization of a Java code generator in the fields of
Model-Driven Architecture (MDA) and dependable distributed systems. The
generated Java code represents integrity constraint validation code, which is
generated from OCL constraints that are defined on a UML model.

This Java code generator does not always produce the most efficient code
with respect to its run-time performance, because of deep nested loops. For
this purpose, a OCL to SQL transformer was implemented that generates
SQL code validating constraints on the database layer.

Furthermore, this work introduces a transformation algorithm that allows
to split OCL constraints into their incoherent parts and to transform these
parts separately. Hence, it is possible to validate one constraint using Java
and SQL.

Finally, an evaluation of the run-time performance of the generated Java
constraint validation code shows that the performance is considerably in-
creased.

Zusammenfassung

Diese Diplomarbeit befasst sich mit der Optimierung eines Java Code Gener-
ators in den Bereichen Model-Driven Architecture (MDA) und verlässlichen
verteilten Systemen. Der generierte Java Code stellt Constraint-Validierungs
Code dar, der von OCL Constraints generiert wird. Diese OCL Constraints
werden innerhalb eines UML Modelles definiert.

Dieser Java Code-Generator generiert nicht immer den effizientesten Code in
Bezug auf die Validierungs-Performanz wegen tiefer Verschachtelungen von
Schleifen. Zu diesem Zweck wurde ein OCL to SQL Transformator implemen-
tiert, der SQL Code generiert, welcher Contraints auf Datenbankebene prüft.

Weiters präsentiert diese Arbeit einen Transformationsalgorithmus der es er-
laubt OCL Constraints in deren unzusammenhängende Teile zu splitten und
diese Teile getrennt voneinander zu transformieren. Dadurch kann ein Con-
straint mittels Java und SQL geprüft werden.

Zum Abschluss zeigt eine Evaluierung der Laufzeit-Performanz des gener-
ierten Java Codes, dass die Performanz erheblich verbessert wurde.

Contents

1 Introduction 1
1.1 Motivation and problem definition 2
1.2 Organization of this thesis . 5

2 State of the art 6
2.1 Theoretical baseline . 6

2.1.1 Model-driven architecture 6
2.1.2 Object constraint language 8
2.1.3 DeDiSys middleware 10

2.2 Technical baseline . 13
2.2.1 Dresden OCL toolkit 13
2.2.2 AndroMda . 14
2.2.3 StringTemplate . 15
2.2.4 ArgoUml . 16

2.3 Related work . 18
2.3.1 Constraint tuning & management for web applications 18
2.3.2 Transformation techniques for OCL constraints 19
2.3.3 Generating Query Language Code from OCL Invariants 22

3 Realization 25
3.1 Architecture . 25

3.1.1 Architecure overview 25
3.1.2 Legacy prototype . 28
3.1.3 Implemented prototype 29

3.2 Core parts . 29
3.2.1 Code generator . 30
3.2.2 Constraint normalizer 37
3.2.3 Constraint classifier . 37
3.2.4 Constraint analyzer . 40
3.2.5 Constraint transformer 40

3.3 OCL transformation . 41

v

3.3.1 OCL to Java transformation 42
3.3.2 OCL to SQL transformation 44

3.4 Sample transformation . 46
3.4.1 Constraint transformation 46
3.4.2 Generated output . 49

3.5 Design and development decisions 53

4 Evaluation and future work 55
4.1 Prototype evaluation . 55

4.1.1 Flightbooking application 56
4.1.2 Aeronautical Information Exchange Model 59
4.1.3 OCL constraints of selected papers 60

4.2 Constraint performance evaluation 62
4.2.1 Testing environment 62
4.2.2 Performance evaluation 62

4.3 Future work . 66

5 Summary and conclusion 69

A Prototype details 71
A.1 Requirements & configuration 71

A.1.1 System requirements 71
A.1.2 Build configuration . 72

Bibliography 75

Glossary 77

Index 80

List of Figures

2.1 MDA development life-cycle [KWB03] 7

2.2 DeDiSys trade-off [Ded] . 11

2.3 Graphical user interface of ArgoUML [Arg] 17

2.4 Sample UML model to illustrate the transformation techniques 20

3.1 Architectures of both prototypes 26

3.2 Sequence diagram of the code generator 31

3.3 Integration of the Dresden OCL2 Toolkit 32

3.4 Transformation process handled by the code generator 35

3.5 Sample UML model to illustrate the constraint classification . 37

3.6 Present allInstances workaround 43

3.7 The GUI of the implemented prototype 48

3.8 Sample UML model for illustrating introduced conventions . . 53

4.1 Class diagram of the flight-booking application 56

4.2 Performance results of the evaluated Intra-instance constraint 63

4.3 Performance results of the second evaluated Inter-instance con-
straint . 65

4.4 Performance results of the first evaluated Type-level constraint 66

List of Tables

2.1 Examples of equivalences between OCL expressions 20

4.1 AIXM rule structures . 60

4.2 Testing environment . 62

A.1 System requirements . 71

Listings

1.1 Example of a simple constraint 2

1.2 Java transformation of the simple constraint 3

1.3 Example of a complex constraint 3

1.4 Java transformation of the complex constraint 4

2.1 Structure of an OCL constraint 9

2.2 Example of an OCL constraint 9

2.3 Example of the StringTemplate ”Constraint.tpl” 15

2.4 Example of Java code using the StringTemplate ”Constraint.tpl” 15

2.5 Transformation result of the StringTemplate ”Constraint.tpl” . 16

2.6 Sample OCL constraint to show equivalences 21

2.7 Optimized OCL constraint showing equivalences 21

2.8 Sample OCL constraint to show a context change 22

2.9 Optimized OCL constraint showing a context change 22

3.1 Definition of the OCL constraints in external text-file 33

3.2 Example of an Intra-instance constraint 38

3.3 Example of an Inter-instance constraint 38

3.4 Example of a Type-level constraint 39

3.5 Base class of implemented transformers 41

3.6 OCL constraint querying a relation 42

3.7 Example of a constraint checking uniqueness 44

3.8 Size restricting OCL constraint 44

3.9 SQL code of a size restricting OCL constraint 44

ix

3.10 Java code of a size restricting OCL constraint 45

3.11 Value restricting OCL constraint 45

3.12 SQL code of a value restricting OCL constraint 46

3.13 Java code of a value restricting OCL constraint 46

3.14 Sample of a constraint definition file 50

3.15 Base OCL constraint for a sample transformation 51

3.16 Sample of a Java constraint validation class 51

4.1 Evaluated OCL constraint types of a flight-booking application 57

4.2 Removing OCL’s iterate and if expression 58

4.3 Evaluated Intra-instance constraint 63

4.4 Second evaluated Inter-instance constraint 64

4.5 First evaluated Type-level constraint 65

Chapter 1

Introduction

The development of software using a model-driven approach becomes more
interesting the more complex a software module is with respect to maintain-
ability. This thesis addresses the tuning and optimization of a Java code
generator in the fields of Model-Driven Architecture (MDA) and Dependable
Distributed Systems.

The main entry point to this thesis is the J2EE constraint consistency frame-
work Dependable Distributed Systems (DeDiSys) middleware running within
a JBoss application server. This middleware has its main focus on trading
the availability of applications against constraint consistency in order to im-
prove the availability of these applications. For this purpose, this middleware
allows for registering application-specific constraint validation code and ad-
ditional constraint meta-data. This constraint meta-data is necessary to -
amongst others - define if a constraint may never be violated or if it can be
temporarily relaxed to improve the availability.

As mentioned before, there previously existed a basic implementation of a
Java code generator, which is referred to as Legacy Prototype. This proto-
type is responsible for generating these constraint validation classes and the
constraint meta-data using a model-driven approach. For this purpose, the
applications using the DeDiSys middleware are modeled as UML models and
their corresponding constraints are specified directly on these models using
the Object Constraint Language (OCL).

This legacy prototype does not always produce the most efficient Java code
to check a constraint with respect to its run-time performance, but rather
produces unacceptable results in some cases. For this reason, it is necessary
to take a deeper look at this prototype and therefore, this thesis has its main

Chapter 1. Introduction 2

focus on optimizing this prototype in order to generate faster Java code again
with respect to its run-time performance.

1.1 Motivation and problem definition

As handcrafting of these Java constraint validation classes is a tedious and
error prone task, this process should be improved using a model-driven ap-
proach. The idea was to model the application using a UML model, to specify
the application-specific constraints using the OCL and to generate the neces-
sary constraint validation classes as well as the constraint meta-data from it.
For this purpose, the legacy prototype implemented within a prior project
transforms every OCL constraint to its corresponding Java constraint vali-
dation code validating the constraint completely on the object layer. For the
reason that OCL constraints themselves can become complex in a sense that
often tens of thousands and more numbers of records have to be examined
or deep loops have to be gone through, this transformation often generates
unacceptable Java code with respect to its run-time performance.

From the implementations point of view, the DeDiSys middleware needs the
applications to specify their Java constraint validation code as separate Java
classes, whereas one class validates exactly one constraint. These classes need
to extend the frameworks AbstractConstraint class and the validation code
has to be placed into the inherited validate method. Moreover, additional
constraint meta-data has to be specified for every constraint in order to
improve the availability by temporarily relaxing constraints. Examples for
constraint meta-data are if constraints can temporarily relaxed or if they have
to hold every time. Finally, by deploying these applications to the application
server, the Java constraint validation classes are registered to the DeDiSys
framework using the constraint meta-data. For more information about the
DeDiSys framework, please refer to [FOG07], [FGO07] and [Hor06].

For a better understanding, the problem is illustrated using two OCL con-
straints. First of all consider the simple OCL constraint validBooking illus-
trated in listing 1.1, which is an example for an OCL constraint that can be
validated on the object layer in an efficient way.

context Fl i gh t inv val idBooking :
s e l f . bookedSeats <= s e l f . maxSeats

Listing 1.1: Example of a simple constraint

Chapter 1. Introduction 3

The OCL constraint given in listing 1.1 validates the amount of booked seats
not to be greater than the maximum available seats for each flight. The
aforementioned legacy prototype transforms this OCL constraint to the Java
constraint validation code shown in listing 1.2.

public boolean v a l i d a t e (IConst ra intVa l idat ionContext ctx)
throws Constra intUncheckableExcept ion {

boolean r e s u l t = fa l se ;

try {
FlightBeanImpl f l i g h t = (FlightBeanImpl) ctx .

getContextObject () ;
r e s u l t = f l i g h t . getBookedSeats () <= f l i g h t . getMaxSeats () ;

}
catch (Exception e) {

throw new Constra intUncheckableExcept ion (e) ;
}

return r e s u l t ;
}

Listing 1.2: Java transformation of the simple constraint

The resulting Java code generated by the legacy prototype shown in listing
1.2 is an example for efficient Java constraint validation code validating the
constraint on the object layer. In contrast, due to the eventually increasing
complexity of OCL constraints, this validation of constraints on the object
layer can become inefficient with respect to its run-time performance.

As second constraint to illustrate the problem, consider the OCL constraint
uniqueFlightNr provided in listing 1.3, which is an example of a more complex
OCL constraint. In contrast to the previous OCL constraint validBooking,
the transformation of this OCL constraint returns unacceptable Java con-
straint validation code regarding its run-time performance.

context Fl i gh t inv uniqueFl ightNr :
F l i gh t : : a l l I n s t a n c e s−>f o r A l l (

f1 , f 2 : F l i gh t | f 1 <> f 2 implies f 1 . f l i g h t N r <> f 2 . f l i g h t N r
)

Listing 1.3: Example of a complex constraint

The OCL constraint given in listing 1.3, which by the way makes use of
OCL’s allInstances operator, validates the uniqueness of the flight num-

Chapter 1. Introduction 4

ber within all flights. The legacy prototype transforms this OCL constraint
to the Java constraint validation code shown in listing 1.4.

public boolean v a l i d a t e (IConst ra intVa l idat ionContext ctx)
throws Constra intUncheckableExcept ion {

boolean r e s u l t = fa l se ;

try {
FlightBeanImpl f l i g h t = (FlightBeanImpl) ctx .

getContextObject () ;
C o l l e c t i o n l e f t 0 = fl ightHome . f i n d A l l () ;
I t e r a t o r i t f 2 = l e f t 0 . i t e r a t o r () ;
e jb . F l i gh tLoca l f 2 = null ;
e jb . F l i gh tLoca l f 1 = null ;

r e s u l t = true ;
while (r e s u l t && i t f 2 . hasNext ()) {

f 2 = (F l i gh tLoca l) i t f 2 . next () ;
I t e r a t o r i t f 1 = l e f t 0 . i t e r a t o r () ;
while (r e s u l t && i t f 1 . hasNext ()) {

f 1 = (e jb . F l i gh tLoca l) i t f 1 . next () ;
i f (f 1 . equa l s (f 2)) {

r e s u l t = true ;
}
else {

r e s u l t = ! (f 1 . getFlightNumber () . equa l s (f 2 .
getFlightNumber ())) ;

}
}

}
}
catch (Exception e) {

throw new Constra intUncheckableExcept ion (e) ;
}

return r e s u l t ;
}

Listing 1.4: Java transformation of the complex constraint

The resulting Java code of the legacy prototype shown in 1.4 is an example
for Java constraint validation code where the validation of constraints on the
object layer is inefficient. For every flight, this resulting Java code iterates
over all flights and compares the flight numbers, which is unacceptable in
terms of the run-time performance of the constraint validation process.

Chapter 1. Introduction 5

Hence, the main focus of this thesis is to find a way to generate more efficient
Java constraint validation code, regarding the run-time performance of the
constraints, when they are going to be validated.

1.2 Organization of this thesis

After the brief introduction provided in the previous section, the following
chapter 2 covers the state of the art that is related to this work. This chapter
is divided into the three fields Theoretical base that takes a deeper look at
the fundamentals of this thesis, Related work that introduces three major
projects, having their focus on similar topics and Technical base, which gives
an overview of third party tools and libraries used within this thesis.

Afterwards, chapter 3 provides a detailed description of the prototype. As
the prototype is built upon a previously existing implementation of an OCL
to Java transformer, a description of this implementation is incorporated.
The major sections of this chapter are the Architectures of both prototypes,
the Core parts implemented within the prototype of this thesis and a sample
transformation of OCL constraints.

The implemented prototype is evaluated in chapter 4. This evaluation is di-
vided into a Prototype evaluation that illustrates the ability of the prototype
to transform OCL constraints of different areas, a Constraint performance
evaluation, which shows the benefit of the implemented prototype compared
to the legacy prototype and moreover Future work, provides an outlook about
further challenges and future prospects.

Finally, chapter 5 summarizes this thesis and draws the conclusion.

Chapter 2

State of the art

This chapter provides detailed information about the fundamentals to this
thesis and therefore, is split into the three different categories Theoretical
base, Technical base and Related work.

2.1 Theoretical baseline

For the purpose of a better understanding of this thesis throughout the fol-
lowing chapters, this section covers the necessary theoretical background.

2.1.1 Model-driven architecture

Model-Driven Architecture (MDA), which was formally specified by the Ob-
ject Management Group (OMG) in the year 2000 is all about modeling an
application in a platform-independent way. A more exact definition of MDA
is given by the OMG as follows:

OMG’s Model Driven Architecture (MDA) provides an open, vendor-neutral
approach to the challenge of business and technology change. Based on
OMG’s established standards, the MDA separates business and application
logic from underlying platform technology. [OMG]

[KWB03] distinguish in their work between three different models that build
the core of MDA and furthermore the MDA development life-cycle. These
model are:

1. Platform independent model (PIM): The first model is a high-

Chapter 2. State of the art 7

level abstraction of a software system describing some business and
thus, it is independent of any implementation technology.

2. Platform specific model (PSM): The PSM is the second model,
which is obtained from a PIM to PST transformation. There does
not exist exactly one PST for each PIM, but rather there can be sev-
eral PST’s within each PIM. A PST is a platform specific model that
includes keywords of the particular implementation technology (e.g.
HomeInterface and RemoteInterface within an EJB PSM).

3. Code: In the final step, each PST is transformed to its corresponding
code, which can be considered as a straightforward task.

Figure 2.1 taken from [KWB03], illustrates the aforementioned relationships
between these models.

Figure 2.1: MDA development life-cycle [KWB03]

The major benefits of developing software using an MDA approach identified
by [KWB03] are:

• Productivity: The main focus of the majority of the software devel-
opers will be shifted to the development of PIM’s, whereby these de-
velopers do no longer need to struggle so much with platform-specific
tasks, as a large amount of this code is already generated using the

Chapter 2. State of the art 8

PIM to PST transformation. Furthermore, the end users can get bet-
ter code in less time, because of the moved focus of the developers and
therefore, they concentrate on solving the business problems.

• Portability: The portability of PIM’s can be derived from the fact
that these models are completely platform-independent. Furthermore,
portability can also be achieved for PST’s, in case of using popular
implementation techniques and therefore, existing PIM to PST trans-
formations can be used.

• Interoperability: By using MDA, it is possible that different PST’s
talk to each other. To this end, MDA introduces the concept of bridges
that can be generated for the PSM and the Code level.

• Maintenance and Documentation: The maintenance of applica-
tions is much easier, because they can be made within the PIM. After-
wards, the corresponding PST’s can be regenerated easily. Moreover,
as the PIM is a high-level abstraction of the software system, it ful-
fills the function of a high-level documentation that is needed for each
software system. Nevertheless, it is necessary to write down additional
documentation that can not be captured within the model.

Within this thesis the MDA approach is used to create applications that
make use of the DeDiSys framework (see section 2.1.3). In the first step,
these applications are created as UML models using the UML modeling tool
ArgoUML. In the next step it is enriched by OCL constraint and further con-
straint data, before finally the Java constraint validation code is generated
from the UML model.

For more information about MDA please refer to [OMG], [KWB03] and
[WK03].

2.1.2 Object constraint language

Standard UML models can almost never cover all necessary information to
describe an application. For the purpose to fill this gap, the Object Man-
agement Group (OMG) introduced a specification for the so called Object
Constraint Language (OCL) that enriches the UML standard by integrity
constraints that can be defined directly on UML models. With the use of
these OCL constraints it is possible to provide an application with additional
information and thus, to express more sophisticated needs of this application.

Chapter 2. State of the art 9

The general structure of an OCL constraint is illustrated in listing 2.1.

package {package}
context { c l a s s } { type} {name } : {body}

endpackage

Listing 2.1: Structure of an OCL constraint

Phrases embraced by brackets are specific for each constraint and there-
fore have to be replaced with content corresponding to a certain constraint.
Moreover, it is possible to specify more than one constraint within a pack-
age definition. All other words (words that are not denoted in brackets) are
reserved words. The aforementioned constraint specific parts are:

• package: Defines the package that this constraint should be assigned
to.

• class: The constraint context in which the OCL constraint is going
to be evaluated. This context is the name of one class within the UML
model that relates this constraint to this class.

• type: The constraint type, defining weather it is an precondition, a
postcondition or an invariant. This value has to be one out of the
following enumeration: pre, post or inv.

• name: The name of the OCL constraint. This name has to be unique
throughout within a UML model.

• body: The constraint body that is the OCL expression that has to
hold for each instance.

An example of a specific OCL constraint within a typical flight booking ap-
plication is given in listing 2.2.

context Fl i gh t inv FlightFromBarcelonaToViennaExists :
F l i gh t : : a l l I n s t a n c e s ()−>s e l e c t (

f | f . f romAirport = ’BAR’ AND f . toAi rpor t = ’VIE ’
)−>s i z e () > 0

Listing 2.2: Example of an OCL constraint

The constraint provided in listing 2.2 shows an invariant that is evaluated in
the context of the class Flight and ensures that there always exists at least

Chapter 2. State of the art 10

one flight from Barcelona (BAR) to Vienna (VIE). An expression like this
would not be possible to express within the UML standard.

For further information about the Object Constraint Language (OCL), es-
pecially regarding the constraint body, please refer to the [OMG].

2.1.3 DeDiSys middleware

The DeDiSys middleware is a middleware to support dependability of dis-
tributed systems and was developed by the Distributed Systems Group of
the Information Systems Institute of the Vienna University of Technology.
A short description of the project context provided by the authors is given
as follows:

The major focus of DeDiSys is on optimized dependability by adaptively bal-
ancing (trading) availability and constraint consistency. System entities (ob-
jects, services) are constraint consistent if constraints (typically predicates
stemming from requirements) put on them are satisfied. [Ded]

In order to trade availability and constraint consistency, two different types
of applications have to be taken into account. The first one includes applica-
tions, in which consistency has to be ensured all the time, like it is in banking
applications. The positive effect of these applications is that the system is
always in a constraint consistent state, but also has the negative implication
that the system becomes unavailable if not all constraints can be satisfied,
e.g. due to node and link failures, which is referred to as degraded mode.
The second type includes applications, in which availability is the ultimate
ambition. The focus of these applications is the opposite of the focus of the
previous type. That is to say, the application can be available even if it
operates in degraded mode, but in return for this behavior it is possible to
introduce constraint inconsistencies. [Ded]

The aim of DeDiSys is to investigate the optimum between the two extremes:
Can some of the data and service constraints be adaptively negotiated and
(temporarily) relaxed to improve the availability of the distributed system?
[Ded]

The intention of figure 2.2 is to illustrates the previously described trade-off
within the DeDiSys middleware.

From the implementation’s point of view, the DeDiSys middleware is built
upon the JBoss Application Server as its environment. For more information

Chapter 2. State of the art 11

Figure 2.2: DeDiSys trade-off [Ded]

about the interaction of DeDiSys and JBoss, please refer to [Hor06], as this
is out of the focus of this thesis.

Every application using the DeDiSys middleware, needs to provide specific
information to it. A detailed description about this information is covered
in the upcoming sections.

Constraint validation code

Every application needs to provide a separate Java class for each constraint
identified within the application. This class, which must extend DeDiSys’
AbstractConstraint class, provides the Java code responsible for validating
the constraint. For this purpose, it simply needs to return true in case of
satisfaction of the constraint and false otherwise. For an example of a class
validating a sample constraint, please see listing 3.16 on page 51.

Constraint definition file

Furthermore, every application needs to provide a constraint definition file
(ccDefinitions.xml) that is needed by the DeDiSys middleware to register the
constraints and that covers additional information for each constraint. This
file has to be specified in the XML format and amongst others, it has to
provide the following properties for each constraint:

• Context object: The name of the class this constraint is validated in.

• Type: The type of the constraint, whether it is a precondition, a
postcondition or an invariant.

• Minimum satisfaction degree: The lower boundary of the satisfac-
tion degree that defines if constraint can be relaxed throughout the
validation process.

Chapter 2. State of the art 12

• Affected methods: Every call to one of these methods trigger the
validation of this constraint.

For a sample constraint definition file, please see listing 3.14 on page 50.

Within this thesis, a prototype was implemented to generate exactly this data
(Java constraint validation classes and DeDiSys constraint definition file) in
an automated way by using a model-driven approach. In more detail, this is
done by a UML model of the application with corresponding constraint data
defined on it and from which this information is being generated.

An example of an application using the DeDiSys middleware could be a flight
booking system. A constraint within this context could validate that each
flight must not be overbooked. In other words, this constraint could be spec-
ified in a way that the number of booked seats must not be greater than the
number of the maximum available seats for each flight.

This section only covers the absolute minimum information about the DeDiSys
middleware that is necessary to understand how it is related to this thesis.
Further information about how it works in detail is not within the focus
of this thesis and can be obtained from [Ded] and from the bibliography
provided in the following section.

Further reading

• [FGO07] Lorenz Froihofer, Karl M. Goeschka, and Johannes Osrael.
Middleware support for adaptive dependability. In Middleware ’07:
Proceedings of the ACM/IFIP/USENIX 2007 International Conference
on Middleware, pages 308–327, New York, NY, USA, 2007. Springer-
Verlag New York, Inc

• [FOG07] Lorenz Froihofer, Johannes Osrael, and Karl M. Goeschka.
Decoupling Constraint Validation from Business Activities to Improve
Dependability in Distributed Object Systems. In ARES ’07: Proceed-
ings of the The Second International Conference on Availability, Relia-
bility and Security, pages 443–450, Washington, DC, USA, 2007. IEEE
Computer Society

• [Hor06] Markus Horehled. Integration of an EJB Constraint Consis-
tency Management Framework into the JBoss Application Server. Mas-
ter’s thesis, Technikum Vienna, May 2006

Chapter 2. State of the art 13

• [Fuc06] Klaus Fuchshofer. Negotiation and reconciliation of consistency
threats for Enterprise JavaBeans applications. Master’s thesis, Tech-
nikum Vienna, May 2006

• [Ert07] Dominik Ertl. Evaluation of Partitionable Replication Proto-
col Improvements in an Enterprise JavaBeans Environment. Master’s
thesis, Technikum Vienna, October 2007

• [Bau06] Markus Baumgartner. Adaptive Constraint-Validierung in einer
verteilten Enterprise JavaBeans Umgebung. Master’s thesis, Tech-
nikum Vienna, September 2006

• [Rie07] Bernhard Rieder. Balancierung von Integrität und Verfügbarkeit
in verteilten Web-basierten Enterprise JavaBeans Anwendungen. Mas-
ter’s thesis, Technikum Vienna, April 2007

2.2 Technical baseline

The practical part of this thesis is built upon some third party tools and
libraries. In order to understand the upcoming parts of this thesis, these
tools are covered in this section.

2.2.1 Dresden OCL toolkit

The Dresden OCL Toolkit is all about the Object Constraint Language (OCL).
OCL is part of the well-known Unified Modeling Language (UML). It extends
the UML’s graphical notation with the possibility of adding more formally
defined textual constraints on method invocations and on class structures as
a whole. [Dre]

This toolkit was developed at the Software Technology Group of the Dresden
University of Technology starting in 1999 and work on it is still ongoing by
students and other scientific staff. It should not be considered as a stand-
alone tool, but rather as a library that can be integrated into other projects
to process UML models and OCL constraints, whereas there exist some tools
within this toolkit that can be used as stand-alone tools like an OCL to SQL
transformer. [Dre]

Currently, there exist the following three different version of this toolkit:

Chapter 2. State of the art 14

1. Dresden OCL Toolkit: This is the first version of this toolkit that is
based on the OCL 1.1 Standard and by now is out of date and therefore
should not be used anymore. Furthermore, this version of the toolkit
is no longer documented on their website. [Dre]

2. Dresden OCL2 Toolkit: This is the second release of this toolkit
that is based on the OCL 2.0 Standard and furthermore based on the
NetBeans Meta-Data Repository (MDR) to store all models and meta-
models. [Dre]

3. Dresden OCL2 Toolkit for Eclipse: This is the third and most re-
cent version of this toolkit and based on the Eclipse SDK. Furthermore
this version is based on a pivot model as exchange format for models
and meta models that allows to connect to any repository and meta
model. [Dre]

This thesis makes use of the second release of this toolkit (Dresden OCL2
Toolkit) for the reasons that it

• is based on the OCL 2.0 standard,

• provides all the functionality needed within this thesis,

• is not build upon the Eclipse SDK and therefore reduces dependabilities
with the benefit of an easier integration of the toolkit into the prototype
implemented within this thesis and

• is used within the legacy prototype that needs to be optimized and the
implemented prototype is based on.

Within the Dresden OCL2 Toolkit many additional tools have been devel-
oped, which are not mentioned here. For further information about these
tools or more detailed information about this toolkit in general, please refer
to [Dre].

2.2.2 AndroMda

Developed by a core team of 15 persons spread all over the world, An-
droMDA is a well-established tool and is all about transforming UML mod-
els to their corresponding deployable components for different platforms like

Chapter 2. State of the art 15

J2EE, Spring or even .NET. There are many ready-to-use cartridges avail-
able within AndroMDA that focus on many common development toolkits
like Axis, jBPM, Struts and many others. Another feature within AndroMDA
is that it is possible to create own cartridges or customize existing ones, to
build custom code generators. [And]

Within this thesis, AndroMDA is used to create the EJB’s from the classes de-
fined within the UML model of the particular application using the DeDiSys
middleware. For this purpose, the implemented prototype uses the EJB2
cartridge shipped along with AndroMDA.

2.2.3 StringTemplate

StringTemplate is a basic template engine for Java, which allows to create
data from template files. A template file in this case is a file that contains any
text and is refined by specific placeholders. Later on, these placeholders are
replaced with data assigned to the template at the time the template is re-
quested to be transformed. A sample template file is illustrated in listing 2.3.

int i = $var i ab l e1$;
S t r ing r e s u l t = ” $va r i ab l e2$ ” ;

$ i f (v a r i a b l e 3) $
System . out . p r i n t l n (r e s u l t + ” = ” + i) ;
$ end i f $

Listing 2.3: Example of the StringTemplate ”Constraint.tpl”

Within the template file provided in listing 2.3, all strings, which are en-
closed by dollar signs represent placeholders. These placeholders can either
be placeholders for strings assigned to the template by a corresponding Java
code or placeholders for simple control structures like if expressions. An
example of basic Java code using StringTemplate and corresponding to the
template given in listing 2.3 is illustrated in listing 2.4.

StringTemplateGroup s tg = new StringTemplateGroup (” myConstraints
” , ” . / ”) ;

Str ingTemplate s t = stg . get Ins tanceOf (” Constra int ”) ;
s t . s e t A t t r i b u t e (” v a r i a b l e 1 ” , 10) ;
s t . s e t A t t r i b u t e (” v a r i a b l e 2 ” , ” Result ”) ;
s t . s e t A t t r i b u t e (” v a r i a b l e 3 ” , true) ;
System . out . p r i n t l n (s t . t oS t r i ng ()) ;

Chapter 2. State of the art 16

Listing 2.4: Example of Java code using the StringTemplate ”Constraint.tpl”

The sample Java code illustrated in listing 2.4 initializes a StringTemplateGroup
named myConstraints and has the template directory set to ./ as the root
of all template files. Within this directory, the template file Constraint.tpl
is requested using the getInstanceOf method of the StringTemplateGroup

class. After this initialization process of the template, arbitrary values can be
assigned to template by calling the method setAttribute of the previously
created instance of the StringTemplate class, whereas for every assigned
value a placeholder has to be defined within the template file. At the point
in time, where all necessary values are assigned, the template can be trans-
formed by calling the toString of the StringTempate class that replaces all
placeholders by their corresponding assigned values and returns the trans-
formation result as string.

The resulting file, after applying StringTemplate’s transformation process is
shown in listing 2.5.

int i = 10 ;
S t r ing r e s u l t = ” Result ” ;

System . out . p r i n t l n (r e s u l t + ” = ” + i) ;

Listing 2.5: Transformation result of the StringTemplate ”Constraint.tpl”

Within this thesis, StringTemplate is used to support the implemented Code
Generator (see section 3.2.1) and moreover, to support the creation of the
constraint configuration file (ccDefinitions.xml) necessary to deploy the
constraint to the DeDiSys middleware. To this end, it is providing the core
structure of the Java constraint validation classes and the XML definition file
as template files. Furthermore, by making such a separation of the file cre-
ation and the Code Generator, the source code of the implemented prototype
becomes much more readable and maintainable.

For further information regarding StringTemplate, please refer to [Str].

2.2.4 ArgoUml

ArgoUML is a platform independent and open source UML modeling tool
developed in Java. The current version of ArgoUML is 0.28 and it is available
in ten different languages. It supports all UML 1.4 diagrams and therefore, it

Chapter 2. State of the art 17

provides the core functionality to model applications, including the possibility
to export these models as their corresponding XMI representation. [Arg]

Hence, these models are also usable beyond ArgoUML and therefore, can be
processed within the implemented prototype.

Furthermore, within this tool, there exist several interesting sub-projects like
an AndroMDA (see section 2.2.2) plug-in or a database modeling tool. Fig-
ure 2.3 shows the graphical user interface of ArgoUML, including a sample
flight booking application that was further developed in the practical part of
this thesis.

Figure 2.3: Graphical user interface of ArgoUML [Arg]

Within this thesis, ArgoUML is used to create the UML models of the ap-
plications that make use of the DeDiSys middleware (see section 2.1.3) and
furthermore to define all OCL constraints with their corresponding constraint
data, like type and degree of satisfiability of each constraint. For more infor-
mation about ArgoUML, including a detailed feature list and the aforemen-
tioned sub-projects, please refer to [Arg].

Chapter 2. State of the art 18

2.3 Related work

This section introduces three major projects that have their focus on simi-
lar issues. The first project is about an OCL to SQL transformer that was
carried out at the Dresden University of Technology. The second one focuses
on the tuning and management of integrity constraints within web applica-
tions. Finally, a project regarding the transformation of OCL expressions to
semantically equivalent but less complex ones builds the third and last part
of this section.

2.3.1 Constraint tuning & management for web appli-
cations

[BC06] published a project in a similar area at the ICWE’06. This project
titled Constraint Tuning and Management for Web Applications, has its main
focus on the optimization of Integrity Constraints (IC) that are defined on
the information base of web applications. A more exact definition of their
work and provided by them is given as follows:

The main goal of this paper is to present a general framework to facilitate
the integration of efficient integrity checking methods in web applications.
This framework can be parameterized with the characteristics of a specific
web application, at the purpose of offering the optimal set of techniques for
implementing the verification of the imposed IC’s. [BC06]

Within their implemented framework and similar to this work, they also start
with a conceptual schema of the application and the IC’s defined on this
schema. Furthermore, they identify structural events, which can be mapped
to affected methods within the DeDiSys middleware.

A structural event is an elementary change in the population of an entity type
(i.e. a class) or relationship type (i.e. an association) such as: create object,
update attribute, create relationship link, etc. Structural events are a way
to define the effect of the operations appearing in the conceptual schemas.
[BC06]

Moreover, within their work, they also state that many web applications
offer only a small amount of data-management possibilities and therefore,
not all kinds of structural events can be applied over the information base
(e.g. relational database). This reduces the amount of necessary IC’s within
an application significantly, as the definition of IC’s for data that cannot
be transfered to an inconsistent state, is not necessary. Therefore, their

Chapter 2. State of the art 19

framework is divided into the following three steps:

1. Given the set of IC’s, the framework analyses each IC to determine
which kind of changes (structural event) to the information base may
violate the IC.

2. Remove all potentially-violating structural events related to events that
are not appearing in the model.

3. Considering the requirements and necessities of the web application, the
framework recommends an implementation technique for each IC. For
more information about these implementation techniques that make
use of views and triggers, please refer to [BC06].

However, different to this thesis is that their framework transforms an IC
as a whole to a corresponding SQL representation, which could be an SQL
view, an SQL trigger or a construct that combines the two previously men-
tioned representations. In contrast, this thesis allows to split the IC and to
transform the resulting parts independently to an SQL, to a Java or to a
combined construct. At the end, these independent constructs are combined
again. For more information about the splitting algorithm, please refer to
section 3.

Furthermore, they do not provide an implementation of an IC to SQL trans-
former, but rather they only mention that the corresponding SQL represen-
tation of an IC can be obtained using already existing transformers like the
like Dresden OCL22SQL Transformer and do not provide more information
about this crucial part.

2.3.2 Transformation techniques for OCL constraints

[CT07] developed a tool to apply transformation techniques to OCL con-
straints as a means of reducing the complexity of these constraints. This
means that these OCL constraints are transformed to semantically equiv-
alent, but simpler ones. Moreover, the kind of how an OCL constraint is
expressed is not unique, but rather an OCL constraint can be expressed in
different ways, without changing the semantic of it.

The work of [CT07] is divided into two major parts, whereas the first part
transforms the OCL expression into an equivalent, but simpler OCL expres-
sion and the second part tries to change the context of the OCL constraint as

Chapter 2. State of the art 20

a whole. Both of these parts are described in more detail in the following sec-
tions. These descriptions rely on a typical flight to passenger (on-to-many)
relation, which is shown in figure 2.4.

Figure 2.4: Sample UML model to illustrate the transformation techniques

Equivalences between OCL expressions

This first step of their work introduces several basic equivalences between
OCL expressions, which are more efficient with respect to performance, when
it comes to the validation of the constraint at run-time. These equivalences
are categorized into equivalences for boolean expressions, collection expres-
sions and iterator expressions. For a better understanding of this optimiza-
tion step, table 2.1 provides one example of an equivalence for each category,
whereas X and Y represent arbitrary OCL expressions.

Category Equivalence
Boolean notX ≤ Y ⇐⇒ X > Y
Collection X → isEmpty()⇐⇒ X → size() = 0
Iterator X → exists(Y)⇐⇒ X → select(Y)→ size() > 0

Table 2.1: Examples of equivalences between OCL expressions

Besides these basic equivalences, this first part also tries to get rid of the
use of OCL’s allInstances operator that can occur within the body of the
constraint. This is a major improvement to the performance of an OCL
constraint when it is going to be validated at run-time. Furthermore, they
apply rules to transform an OCL constraint to its corresponding conjunctive
normal form, which completes the work done in this part. The following
listing 2.6 illustrates an OCL constraint related to the UML model given in
figure 2.4, which ensures that there always exists a flight from Barcelona to
Vienna as long as flights are existing within the database.

Chapter 2. State of the art 21

context Fl i gh t inv FlightFromBarcelonaToViennaExists :
F l i gh t : : a l l I n s t a n c e s ()−>s i z e () > 0
implies
Fl i gh t : : a l l I n s t a n c e s ()−>e x i s t s (

f | f . f romAirport = ’BAR’ and f . toAi rpor t = ’VIE ’
)

Listing 2.6: Sample OCL constraint to show equivalences

Although the constraint of listing 2.6 does not look complex, there is still
space left for optimization. For this purpose, listing 2.7 shows an optimized
version of this OCL constraint, after applying the rules introduced within
the first part of their work.

context Fl i gh t inv FlightFromBarcelonaToViennaExists ’ :
F l i gh t : : a l l I n s t a n c e s ()−>s i z e () <= 0
or
F l i gh t : : a l l I n s t a n c e s ()−>s e l e c t (

f : F l i gh t | f . f romAirport = ’BAR’ and f . toAi rpor t = ’VIE ’
)−>s i z e () > 0

Listing 2.7: Optimized OCL constraint showing equivalences

The outcome of this optimization is that both constraints have exactly the
same semantic, but different performance when they are validated.

Changing the context type of an OCL constraint

The second and even more challenging part of their work examines the con-
text in which a constraint is defined and how this context can be changed to
another one in order to gain a better validation performance of the constraint.

As stated within their work, trying to change the context of an OCL con-
straint only makes sense for constraints that are defined using a single in-
stance of the context type via the use of OCL’s self variable. On the
other side, it does not make sense for constraints that make use of OCL’s
allInstances operator, because in this case the body will stay the same
independent of the chosen context type [CT07].

To better understand this optimization, listing 2.8 shows an OCL constraint
also related to the UML given in figure 2.4.

Chapter 2. State of the art 22

context Fl i gh t inv minAge :
s e l f . passengers−>f o r A l l (

p | p . age > 10
)

Listing 2.8: Sample OCL constraint to show a context change

The OCL constraint illustrated in listing 2.8 ensures that every passenger is
at least ten years old. This constraint can also be specified in the context of
the Passenger class as shown in listing 2.9.

context Passenger inv minAge ’ :
s e l f . age > 10

Listing 2.9: Optimized OCL constraint showing a context change

Within this thesis, these transformation techniques are applied to all OCL
constraints defined on the UML model, to support and ease the OCL transfor-
mation that was implemented within the prototype. Hence, it also improves
the quality of the code that is resulting from the OCL transformer, with
respect to performance.

The information provided in this section only gives an overview of their work,
because this thesis does not focus on these transformation techniques. For
detailed information about the different steps introduced within this work,
please refer to [CT07]. Additional information regarding OCL constraint nor-
malization and optimization algorithms can be found in [LLC05], [MLC06]
and [LCG06].

2.3.3 Generating Query Language Code from OCL In-
variants

[HWD08] published a work titled A Framework for Generating Query Lan-
guage Code from OCL Invariants that is closely related to this thesis. Within
their work they address the issue that most current approaches in Model-
Driven Software Development (MDSD) only focus on transforming structural
descriptions of software systems. For the reason, that these descriptions do
not tackle all aspects of software systems, a plethora of other specification
and modeling techniques exists. The OCL provides means to enrich models
with detailed semantics in a formal way, which are unfortunately not pre-
served in current multi-staged transformation approaches. Therefore, they
are lost during PIM to PSM transformation.

Chapter 2. State of the art 23

The Query Code Generation Framework addresses this issue by providing
a general framework for mapping OCL invariants to declarative query lan-
guages and thereby enables Model-Driven Integrity Engineering. We focus
on query languages, because data in business systems is mostly managed by
systems that are accessible through query languages (e.g. database systems).
[HWD08]

The architecture of their framework is divided into the following three mod-
ules:

• AST model generation: This module is responsible for reading the
UML model enriched with OCL constraints and generating the corre-
sponding AST model. Further information can be found in [LO04] and
[DHK05]

• Model transformation framework: This module performs the trans-
formation of the UML model to the target data schema. Within the
Query Code Generation Framework, models appear on several abstrac-
tion levels. This can be UML models describing domain concepts plat-
form independently, Common Warehouse Meta-model (CWM) describ-
ing data schemas or Schema Facade models providing a generic interface
to these data. For this purpose, there are arbitrary model transforma-
tion necessary to mediate these levels of abstraction.

• OCL transformation framework: This module maps OCL invari-
ants to equivalent sentences in declarative query languages to preserve
the semantic constraints across the different abstraction levels. These
expressions are used to ensure integrity rules in the platform specific
data schema.

Furthermore, within their framework they present two examples namely the
OCL2SQL and OCL2XQuery where they apply their introduced concepts
to UML models that are enriched by OCL constraints. The UML models
are mapped to platform-specific data schemas while the OCL constraints are
transformed to their corresponding query language representation.

However, different to this thesis is that their Query Code Generation Frame-
work also generates the database table structure of the UML model not
needed within this thesis for the reason that an Object-Relational-Mapping
library already provides this task. Furthermore, this framework creates its
own primary key fields, while creating the database table structure and ig-
nores primary key fields that are already defined within the UML model of

Chapter 2. State of the art 24

the application. Finally, it also creates one SQL view per OCL constraint,
whereas this view is built upon the generated SQL code. Within this thesis
an OCL constraint is not transformed as a whole to SQL, but rather it is
possible to transform parts of the constraint (referred to as OCL expressions)
to Java and other expressions to SQL.

Chapter 3

Realization

This chapter provides a detailed description of the practical part of this
thesis. The first part deals with an architectural comparison of the legacy
prototype and the implemented prototype. Afterwards, a deeper look at the
core parts of the implemented prototype is taken. A sample application of
the transformation process builds the third major part of this chapter.

3.1 Architecture

This section covers a detailed description and comparison of the architec-
ture of the legacy prototype and the architecture of the prototype imple-
mented within this thesis. Therefore, the first part of this section provides
an overview of both architectures and shows their similarities, whereas after-
wards each architecture is described itself.

3.1.1 Architecure overview

As aforementioned, the prototype implemented within this thesis is built
upon a legacy prototype. The main focus of the legacy prototype is on the
transformation of OCL constraints to their corresponding Java constraint
validation code and furthermore, to create a specific constraint definition file
named ccDefinitions.xml necessary to register the Java constraint classes
at the DeDiSys middleware (see section 2.1.3).

The implemented prototype has the same focus as the legacy prototype with
the extension of optimizing the code generation step to generate more efficient

Chapter 3. Realization 26

Java constraint validation code with respect to the run-time performance of
the constraints. Thus, these two prototype share a base structure of their
architecture.

Figure 3.1 shows both architectures, whereas the architecture given in sub-
figure 3.1(a) is related to the legacy prototype and the architecture provided
in sub-figure 3.1(b) belongs to the implemented prototype.

(a) Legacy prototype (b) Implemented prototype

Figure 3.1: Architectures of both prototypes

Both of the architectures given in figure 3.1 consist of different colored ele-
ments, whose meaning is as follows:

• White: These elements represent modules that are implemented within

Chapter 3. Realization 27

the particular prototype.

• Light grey: These elements depict external/third-party modules that
are integrated into the particular prototype.

• Dark grey: These elements only exist within the architecture of the
implemented prototype and show the improvements made in contrast
to the architecture of the legacy prototype or respectively show where
improvements have been made.

Furthermore, on top of both provided architectures there is the UML model
that can be considered as the entry point to the architecture. An example for
such a UML model could be a flight booking system, with its necessary classes
Flight, Passenger, Booking and others. This model that is created using
ArgoUML, is enriched by OCL constraints and additional constraint meta-
data that is specified directly within the UML model1. Constraint meta-
data in this context are for example the type of the constraint, regarding
precondition, postcondition and invariant, or the satisfaction degree of the
constraint, defining if the constraint can be relaxed throughout degraded
mode or if it has to hold at every point of time. This constraint meta-data
is described in detail in section 2.1.3.

To be able to process and use the UML model in further steps, it is necessary
to export this model to its corresponding XMI representation. This XMI
model holds the complete UML model using the XML format that make is
possible to traverse through the model in the code generation part of the
prototype. The functionality to export a UML model to its corresponding
XMI representation is provided within every professional UML tool.

At this point of time, there are the following two different paths to follow in
each architecture:

• Path 1: The OCL constraint transformation that is drawn on the left
hand of each architecture

• Path 2: The EJB generation that is drawn on the right hand side of
each architecture

1This is the optimal place to specify the OCL constraints. Within the new architecture,
the OCL constraints have to be defined in a separate text file due to restrictions within
ArgoUML.

Chapter 3. Realization 28

3.1.2 Legacy prototype

The upcoming explanations are based on the architecture shown in sub-figure
3.1(a) of figure 3.1.

OCL constraint transformation

This first part within this architecture transforms the OCL constraints de-
fined within the UML model to their corresponding Java constraint val-
idation code and generates the necessary constraint definition file called
ccDefinitions.xml

For this purpose, the XMI representation is taken and the the OCL con-
straints are extracted from it and saved to an simple text file, because the
Dresden OCL Toolkit needs these constraints in a separate file. Afterwards
these files (XMI and constraint file) are handed over to the Dresden OCL
Toolkit (see section 2.2.1), which performs the following tasks for each OCL
constraint:

• Parse the OCL constraint and

• generate the AST from the CST of the OCL constraint

After the previous steps are passed successfully, which means that no syntax
error has occurred while parsing the OCL constraints and the AST represen-
tation of each constraint could have been generated without an error being
raised, the code generator is responsible to generate the necessary Java con-
straint validation code and the constraint definition file.

Generation of the Enterprise Java Beans

The second part within this architecture generates the Enterprise Java Beans
(EJB’s) for the classes defined within the UML model using the open source
library AndroMDA (see section 2.2.2). For this purpose, the EJB2 cartridge
of AndromMDA is used to generate the necessary interfaces and moreover,
the Bean implementations.

Chapter 3. Realization 29

3.1.3 Implemented prototype

The upcoming explanations are based on the architecture shown in sub-figure
3.1(b) of figure 3.1.

OCL constraint transformation

This first part within this architecture has the same focus as it has within the
legacy prototype. That is, to transform the OCL constraints defined within
the UML model to their corresponding Java constraint validation code and to
generate the necessary constraint definition file named ccDefinitions.xml.

In contrast to the architecture of the legacy prototype, the OCL constraints
are no longer extracted from the XMI representation of the UML model. This
is because they can not be specified within the UML model any longer for
the reason that ArgoUML does not support OCL’s allInstances operator,
which is essential for this thesis.

Furthermore, this architecture includes many improvements in comparison
to the architecture of the legacy prototype that are related to the code gen-
erator. The simple code generator of the legacy prototype was extended by
additional modules like the constraint normalizer and the constraint clas-
sifier aimed to generate more efficient Java constraint validation code with
respect to the run-time performance.

Detailed information about each module/step of this transformation process
is provided in section 3.2.

Generation of the Enterprise Java Beans

The second part within this architecture has the same responsibilities as in
the legacy prototype and thus, for more information please refer to section
3.1.2.

3.2 Core parts

Within this section, the core parts responsible for transforming an OCL
constraint to its Java class code are described in detail. Furthermore, this
section provides detailed information about the interaction between these
core parts.

Chapter 3. Realization 30

3.2.1 Code generator

The first part of the implemented prototype that needs to be mentioned is the
code generator. This generator, as the name already indicates, is responsible
to generate a Java class for each OCL constraint defined within the UML
model that validates this OCL constraint within the DeDiSys middleware
(see section 2.1.3). For this purpose, it is supported by a separate transformer
that transforms the OCL constraints to their corresponding Java code.

Furthermore, this code generator within the prototype is used as a controller
class. This means that it is the base class of the prototype that provides
functionality to invoke all tasks necessary to complete the whole transforma-
tion process. This starts at loading the UML model and ends up with the
generation of the Java constraint classes.

For a better understanding of the tasks invoked in the code generator, figure
3.2 provides a sequence diagram that describes the work performed in more
detail. Please note that within this sequence diagram a constraint can be
classified into the three different categories Intra-instance, Inter-instance and
Type-level, whereas the first category forces the OCL to Java transformation
and the other two categories force the OCL to SQL transformation. For a
detailed description about this classification, please refer to section 3.2.3.

As illustrated in figure 3.2 the code generator handles the tasks described in
the following sections.

Initialize the transformation process

At the beginning of the transformation, the following two major configuration
elements need to be initialized:

• The path to the file covering the XMI representation of the the UML
model.

• The path to the file covering the OCL constraints.

This is all that needs to be defined before starting the generation process.

Load the UML model

As mentioned earlier, the UML model needs to be exported as its corre-
sponding XMI representation that is handed over to the code generator in

Chapter 3. Realization 31

Figure 3.2: Sequence diagram of the code generator

Chapter 3. Realization 32

the previous initialization step. This can be done with almost every UML
modeling tool and so it is also possible with ArgoUML that is used within
this thesis. Afterwards, the following three tasks are performed with the help
of the Dresden OCL toolkit :

1. Load the model into the internal NetBeans meta-data repository (MDR).

2. Generate the abstract syntax tree (AST) representation from the con-
crete syntax tree (CST) representation of each OCL constraint.

3. Query the loaded UML model to feed application specific needs. The
application specific need for this thesis are, to generate the Java con-
straint validation code based on the result of querying the UML model.

This process is illustrated in figure 3.3.

Figure 3.3: Integration of the Dresden OCL2 Toolkit

Import of OCL constraints

Normally, the OCL constraints related to a UML model are defined directly
within the model, which means that they are specified within the used mod-
eling tool, as it was done within the legacy prototype.

Within this thesis, it is not possible anymore to follow this scenario for the
reason that the modeling tool ArgoUML is used, which has a lack of support

Chapter 3. Realization 33

for OCL’s allInstances operator. As this operator is essential for this
thesis, the OCL constraints are no longer specified within the modeling tool,
but rather are provided to the implemented prototype in a separate text file.

Listing 3.1 illustrates a sample file of defined constraints. Please note that
every constraint needs to be surrounded by its package definition, even if
they are all related to the same package.

Constra int check ing f o r v a l i d pas s enger s
package c o n s t r a i n t s context Passenger inv Val idPassenger : s e l f .

f i r s tname <> ’ ’ and s e l f . lastname <> ’ ’ endpackage

Constra int check ing f o r v a l i d bookings
package c o n s t r a i n t s context Fl i gh t inv ValidBookings : s e l f .

maxSeats >= s e l f . passengers−>s i z e () endpackage

Constra int check ing f o r v a l i d f l i g h t s
package c o n s t r a i n t s context Order inv Va l idF l i gh t s : F l i gh t : :

a l l I n s t a n c e s ()−>f o r A l l (f1 , f 2 : F l i gh t | (f 1 . f l i g h t I D <> f 2 .
f l i g h t I D) implies (f 1 . f l ightNumber <> f 2 . f l ightNumber))
endpackage

Listing 3.1: Definition of the OCL constraints in external text-file

Furthermore, the extraction routine allows to specify empty lines in this file
as well as comments. Lines that should be interpreted as comments need
to be preceded by a hash, whereas this hash needs to be the first character
in this line. Hence, it is also possible to exclude OCL constraints from the
transformation process, if they should not be taken into account while gen-
erating the Java constraint validation classes.

Within the legacy prototype, it was possible to declare the OCL constraint
within ArgoUML, because it does not make use of OCL’s allInstances op-
erator. In contrast, it uses a dummy relation as a workaround that emulates
this operator (see section 3.3.1).

Load the OCL constraints

After the OCL constraints are extracted from the text-file, they are inte-
grated into the already loaded UML model, using the Dresden OCL Toolkit.
Therefore, every OCL constraint needs to go through the following steps:

• Parse the OCL constraint to check it against the syntax of the OCL.

Chapter 3. Realization 34

• Generate the AST representation from the CST representation of the
OCL constraint.

• Integrate the OCL constraint to the loaded UML model, to be able to
traverse trough it in the transformation step.

Normalize the OCL constraints

In this step, the loaded OCL constraints are transformed to a common form
like a normal form. For this purpose, the implemented prototype makes use
of an external library developed by [BC06]. An introduction to this library
is given in section 2.3.2 on page 19.

Hence, the complexity of the handcrafted OCL constraints is reduced, which
has a direct impact on the upcoming transformation process.

Transform the OCL constraints

After the previous steps are passed successfully, the code generator iterates
over the OCL constraints and tries to transform each of them separately.
These constraints are either transformed to their corresponding Java code
or SQL query, depending on the constraint body. Therefore, the constraints
need to be classified into a specific category before being transformed. For
the moment, it is enough to distinguish between a simple OCL constraint
that is transformed to its Java pendant and a complex OCL constraint that
is transformed to its SQL representation.

The detailed description of the classification algorithm, which is not necessary
to understand the transformation algorithm, is provided in following subsec-
tion 3.2.3. The transformation algorithm is illustrated using the flowchart
given in figure 3.4.

Please note that the transformation algorithm illustrated in figure 3.4 does
not make a distinction between an OCL constraint and an OCL expression.
The term OCL expression is used in this figure, because the algorithm does
not only transform the whole OCL constraints, but also parts of the OCL
constraints, referred to as OCL expressions. Furthermore, within this algo-
rithm it is assumed that every OCL expression can be transformed to its
corresponding Java code, whereas it is not possible transform each OCL ex-
pression to its corresponding SQL query.

In case of that a complex OCL constraint cannot be transformed to SQL at

Chapter 3. Realization 35

Figure 3.4: Transformation process handled by the code generator

Chapter 3. Realization 36

least partly, the transformation to Java is used as the default fall-back and
moreover, a warning is created. This warning states that the OCL constraint
should be transformed to a semantically equivalent one if possible, to be able
to transform it using the implemented OCL to SQL transformer.

The transformation algorithm starts by taking the next available OCL con-
straint and classifying it. In case of a simple OCL expression, this expression
is transformed to its Java pendant. In case of a complex OCL expression,
the code generator tries to transform this expression to the corresponding
SQL pendant. If it is not possible to transform this expression to SQL as a
whole 2, the algorithm tries to split this expression into two parts. Splitting
of the OCL expression is allowed by the transformation algorithm if the top
level operator is and, or or implies, and therefore this expression consists
of two inner expression that can be transformed independently. Afterwards,
it applies the previous steps recursively to both expression parts separately,
starting at the classification of the OCL expression. After this separate trans-
formation of the split OCL expressions, they have to be merged again at the
end of the previous iteration, using the operator, the split was based on.

Using this transformation algorithm, it is possible to generate a Java class
that validates parts of the OCL constraint on the object layer using procedu-
ral Java code and other parts on the database layer by setting up direct SQL
queries to the database. As mentioned before, the results of these separate
validation steps need to be combined again to get the result if the whole
constraint has been satisfied or violated.

Generate the constraint definition file

At the end of the transformation process implemented within the prototype,
the constraint definition file named ccDefinitions.xml is created that is
necessary to deploy the generated Java constraint validation classes to the
DeDiSys middleware, which itself runs within the JBoss application server.

The information the constraint definition file is built upon is gathered from
the UML model. Therefore, every OCL constraint needs to have a corre-
sponding entry within the UML model, providing this constraint specific
information.

For an example of a constraint definition file, please see listing 3.14 on page
50.

2The OCL to SQL transformer is not yet able to transform OCL’s iterate and if ex-
pressions. Furthermore, it is not able to handle complex relationships.

Chapter 3. Realization 37

3.2.2 Constraint normalizer

Another major part within the transformation process is the OCL constraint
normalizer. The main goal of it is to reduce the complexity of OCL con-
straints in order to generate faster Java constraint validation code with
respect to performance. For this purpose, the OCL constraint normalizer
transforms the OCL constraints into semantically equivalent, but simpler
ones. Hence, the OCL to Java or OCL to SQL transformation benefits from
this normalization for the reason that simple OCL constraints can be mapped
to more efficient Java code.

Within the implemented prototype, an external tool that fulfills this nor-
malization task was integrated. The tool itself was introduced by [BC06] in
their paper called Transformation techniques for OCL constraints. A brief
description of their work is given in section 2.3.2.

3.2.3 Constraint classifier

In order to decide in an automatic way, whether an OCL constraint should
be transformed to its corresponding Java code or SQL query, it is necessary
to classify the OCL constraint into a predefined category. This is done by
an OCL constraint classifier that analyzes the body of each OCL constraint
separately and classifies it into different categories. The algorithm for the
classification of an OCL constraint introduced by [BC06] and implemented
within this prototype, distinguishes between the three different categories
Intra-instance, Inter-instance and Type-level. These categories are described
in more detail in the following paragraphs.

For a better understanding of the classification algorithm the description of
every category includes an example of an OCL constraint that is related to
it. These OCL constraints are based upon the sample class diagram provided
in figure 3.5.

Figure 3.5: Sample UML model to illustrate the constraint classification

Chapter 3. Realization 38

Category Intra-instance

OCL constraints that are restricting the values of attributes of a single object
instance build this category. These constraints do not check the consistency
of the whole database, but rather validate the consistency of the underlying
data based on the changes made by the provided context object. Thus, these
constraints are referred to as Limited consistency check (LCC) constraints.
An example of an OCL constraint representing this category is illustrated in
listing 3.2.

context Passenger inv Val idPassenger :
s e l f . f i r stName <> ’ ’ and s e l f . lastName <> ’ ’

Listing 3.2: Example of an Intra-instance constraint

To programmatically classify a constraint into this category, the following
rule has to be applied: OCL constraints defined using OCL’s self variable
and not referencing any relationship type are considered to be related to the
category Intra-instance [BC06].

Category Inter-instance

This category contains all OCL constraints restricting the relationships be-
tween an entity and other entities, which means object instances of different
entity types. As for the category Intra-instance, these constraints also do
not check the consistency of the whole database, but rather validate the
consistency of the underlying data based on the changes made by the pro-
vided context object. Hence, also these constraints are referred to as LCC
constraints. An example of an OCL constraint representing this category is
shown in listing 3.3.

context Fl i gh t inv ValidBookings :
s e l f . passengers−>s i z e () <= s e l f . maxSeats

Listing 3.3: Example of an Inter-instance constraint

To programmatically classify a constraint into this category, the following
rule has to be applied: Integrity constraints defined using OCL’s self vari-
able and not satisfying the rule defined in the Intra-instance category are con-
sidered to be related to the category Inter-instance [BC06]. This rule was re-
fined by stating that constraints of this category are not allowed to use OCL’s

Chapter 3. Realization 39

allInstances operator, because the construct self.allInstances() is valid
within the Dresden OCL Toolkit. This construct conflicts with the definition
of this category and further more, constraints using this construct are no
long LCC constraints.

Category Type-level

OCL constraints that are restricting a set of objects of the same entity type
build this category. Constraints of this category using OCL’s self variable
are checking the consistency of the underlying data like within the previous
categories based on the changes made by the provided context object. In
contrast, constraints defined without OCL’s self are validating the consis-
tency of the whole database. Thus, these constraints are referred to as Full
consistency check (FCC) constraints. An example of an OCL constraint rep-
resenting this category is provided in listing 3.4.

context Fl i gh t inv FlightFromBarcelonaToViennaExists :
F l i gh t : : a l l I n s t a n c e s ()−>s e l e c t (

f | f . f romAirport = ’BAR’ AND f . toAi rpor t = ’VIE ’
)−>s i z e () > 0

Listing 3.4: Example of a Type-level constraint

To programmatically classify a constraint into this category, the following
rule has to be applied: Integrity constraints not satisfying the rules defined
in the Inter-instance and Intra-instance category are considered to be re-
lated to the Type-level category. These integrity constraints require the use
of OCL’s allInstances operator [BC06].

Within the implemented prototype, OCL constraints or OCL expressions
classified into the Intra-instance category are transformed to their corre-
sponding Java constraint validation code, because in that case the validation
of the constraint can be done in an efficient way on the object layer, with
respect to the run-time performance. All other OCL expressions are handed
over to the OCL to SQL transformer, which tries to generate the correspond-
ing SQL representation of the OCL expression.

This transformation process is described in more detail in the following sec-
tions 3.2.5 and 3.3.

Chapter 3. Realization 40

3.2.4 Constraint analyzer

The purpose of the OCL constraint analyzer, as another major part of the
implemented prototype is to analyze whole OCL constraints, as well as parts
of the OCL constraints, referred to as OCL expressions. To this end, it
traverses through the XMI representation of the UML Model of a specific
application in order to extract the necessary information from it.

Examples for such information that need to be extracted are:

• Determine type of SQL query: If an OCL constraint should be
transformed to its corresponding SQL representation, the analyzer gath-
ers the information whether it is a size restricting constraint or a value
restricting constraint. A size restricting constraint restricts the num-
ber of rows it returns. In contrast, a value restricting constraint is
not interested in a specific number of rows fulfilling the constraint, but
rather states that the constraint needs to hold for all rows. For further
information about these constraint types, please refer to the OCL to
SQL transformer that is described in detail in section 3.3.2.

• Determine top level operator: In order to split an OCL expression
into two parts, to later on transform these parts independently, using
the implemented OCL transformers, it is necessary to determine the
top level operator, because the implemented code generator can split
OCL expressions only if the top level expression is and, or or implies.

3.2.5 Constraint transformer

Another major part within the implemented prototype is the OCL trans-
former that transforms the defined OCL constraints to their corresponding
Java constraint validation classes. For this purpose, two different OCL trans-
formers have been implemented, whereas one transforms OCL constraints to
their Java pendant and another one transforms OCL constraints to their
corresponding SQL representation.

These OCL transformation is described in detail in the following section 3.3.

Chapter 3. Realization 41

3.3 OCL transformation

This section covers the transformation of a single OCL constraint to its target
language. At the moment, there are two target languages to which an OCL
constraint can be transformed, namely Java and SQL. Both of these trans-
formers inherit from a common abstract base class, which consists of methods
that are needed in both transformers. This implementation is structured in a
way that new transformers implementing support for other target languages
can be integrated easily, by just extending the aforementioned base class and
implement all abstract methods, defined within it. An excerpt of this base
class covering the methods that need to be implemented, is illustrated in
listing 3.5.

public abstract class ATransformer {
. . .
public abstract CodeContainer trans form (OclExpress ion

expres s ion , S t r ing resultVariableName) throws MdaException ;
protected abstract CodeContainer codeOperationCallExp (

OperationCallExp expres s ion , boolean a s s i gnResu l t) throws
MdaException ;

protected abstract CodeContainer codeIteratorExp (I teratorExp
expr e s s i on) throws MdaException ;

protected abstract CodeContainer codeAttr ibuteCal lExp (
Attr ibuteCal lExp expr e s s i on) throws MdaException ;

protected abstract CodeContainer codeI fThenElse (IfExp
expr e s s i on) throws MdaException ;

protected abstract CodeContainer codeVariableExp (VariableExp
expr e s s i on) throws MdaException ;

protected abstract CodeContainer codeAssociat ionEndCal lExp (
AssociationEndCallExp expres s ion , boolean a s s i gnResu l t)
throws MdaException ;

protected abstract CodeContainer codeIterateExp (IterateExp
expr e s s i on) throws MdaException ;

}

Listing 3.5: Base class of implemented transformers

The following sections describing the implemented transformers make no
distinction between the term OCL constraint and OCL expression, because
- as mentioned earlier - OCL constraints are eventually split into parts that
are transformed separately. These parts are referred to as OCL expressions.

Chapter 3. Realization 42

3.3.1 OCL to Java transformation

The first transformer that was integrated into the prototype, is an OCL to
Java transformer, which validates the OCL constraints on the object layer.
As there already was a version of this transformer implemented within the
legacy prototype, it was not necessary to implement this transformer from
scratch. In contrast, it was possible to take this transformer as base by
continuously extending it.

This transformer generates the corresponding Java constraint validation code
to an OCL expression. In order to achieve this, it traverses through the AST
representation of the OCL expression and maps these expressions to their
Java pendant. For a sample transformation, please refer to section 3.4.

Enhancements to this transformer

This OCL to Java transformer was enhanced by some essential parts that
are described in more detail in the following paragraphs.

Support for relations Within the legacy prototype, it was not possible
to transform OCL expressions that query over relations for the reason that
this prototype had a slightly different focus as the implemented prototype.
The legacy prototype was meant to give a proof of concept of an MDA ap-
proach to generate the Java constraint classes. In contrast, the implemented
prototype is based on this proof of concept and focuses completely on the
optimization of the run-time performance of the generated Java constraints
validation code. An example for an OCL constraint that uses relations de-
fined within the UML model is illustrated in listing 3.6.

context Fl i gh t inv JohnDoeExists :
s e l f . passengers−>s e l e c t (

p | p . f i rstName = ’ John ’ and p . lastname = ’Doe ’
)−>s i z e > 0

Listing 3.6: OCL constraint querying a relation

The constraint specified in listing 3.6 expresses that each Flight must have at
least one Passenger named John Doe. For this purpose, this OCL expression
starts from the a Flight context and queries its corresponding Passengers

using the defined relation between these two elements.

Chapter 3. Realization 43

Hence, support for this type of OCL constraints was implemented within the
OCL to Java transformer.

Support for OCL’s allInstances operator OCL’ allInstances oper-
ator was not fully supported within the legacy prototype due to a lacking
support of ArgoUML for this operator. To use this operator, it was necessary
to define a dummy many-to-many relation for each table that was pointing
to itself. Thus, it was possible to retrieve all records of a certain table. A
sample table with this relation is illustrated in figure 3.6.

Figure 3.6: Present allInstances workaround

With this in mind, a deeper look was taken at this lacking support for the
allInstances operator. This issue was resolved by the trade-off, to use an
external file for specifying the OCL constraints, but therefore having full
support for this operator. Moreover, the dummy many-to many relation
could be removed, as it is no longer needed.

Support for OCL’s oclIsKindOf operator Another operator that was
not supported within the legacy prototype, is OCL’s oclIsKindOf operator
that checks, if specific instances within an OCL expression are from a specific
type. Hence, support for this operator was implemented.

Optimization of constraints checking uniqueness Additionally, an
optimization was introduced, which examines if an OCL constraint is check-
ing the uniqueness of specific data within the database. For this type of con-
straints an handcrafted Java validation code template was created, which is
parameterized with the field names that should be validated against unique-
ness. An example for such a constraint that is referred to as uniqueness
constraint is provided in listing 3.7.

Chapter 3. Realization 44

context Fl i gh t inv f l i g h t T e s t F o r A l l 1 :
F l i gh t : : a l l I n s t a n c e s ()−>f o r A l l (f1 , f 2 : F l i gh t |

f 1 . f l i g h t I D <> f 2 . f l i g h t I D implies
f 1 . f l ightNumber <> f 2 . f l ightNumber

)

Listing 3.7: Example of a constraint checking uniqueness

This constraint assures that the flightNumber of the class Flight is unique
within the database. For this purpose, this constraint states that whenever
the flightID is unique then also the flightNumber has to be unique.

3.3.2 OCL to SQL transformation

The second transformer integrated into the prototype is an OCL to SQL
transformer, validating the OCL constraint at the database layer. This trans-
former was implemented from scratch and is able to transform simple OCL
expressions to their corresponding SQL queries, whereas two different types
of OCL constraints have to be distinguished. These types that have to be
handled in different ways are described in the following paragraphs.

Size restricting OCL constraints

OCL constraints related to the first type restrict the number of rows returned
by a specific OCL constraint. This means that the top level operator of it is
OCL’s size operator. An example for such an OCL constraint is illustrated
in listing 3.8.

context Fl i gh t inv FlightConf irmed :
s e l f . passengers−>s i z e () > 0

Listing 3.8: Size restricting OCL constraint

An OCL constraint like the one provided in listing 3.8 results in the SQL
query given in listing 3.9.

select count (p . passengerID) as t o t a l
from Fl i gh t f
inner join Passenger p on (f . f l i g h t I D = p . f l i g h t I D)
group by f . f l i g h t I D ;

Listing 3.9: SQL code of a size restricting OCL constraint

Chapter 3. Realization 45

This resulting SQL query performs the necessary joins of the related tables
and counts the found rows regarding to the performed grouping within the
group by clause. As this query only returns the number of rows found for
each group, additionally each row count needs to be compared against the
provided value. This is done by the Java code illustrated in listing 3.10 that
sets up the query to the database.

boolean r e s u l t ;
try {

PreparedStatement stmt = con . prepareStatement (query) ;
Resu l tSet r s = stmt . executeQuery () ;

r e s u l t = true ;
while (r s . next ()) {

i f (! (r s . g e t In t (” t o t a l ”) > 0)) {
r e s u l t = fa l se ;
break ;

}
}

}
catch (Exception e) {

throw new Constra intUncheckableExcept ion (e) ;
}

Listing 3.10: Java code of a size restricting OCL constraint

Value restricting OCL constraints

The second type of OCL constraints that have to be distinguished, are value
restricting OCL constraints that are not interested in a specific number of
rows fulfilling the constraint, but rather state that the constraint needs to
hold for all rows. An example for such an OCL constraint is illustrated in
listing 3.11.

context Fl i gh t inv minAge :
s e l f . passengers−>f o r A l l (

p | p . age > 10
)

Listing 3.11: Value restricting OCL constraint

An OCL constraint like the one provided in listing 3.11 results in the SQL
query given in listing 3.12.

Chapter 3. Realization 46

select 1
from Fl i gh t f
inner join Passenger p on (f . f l i g h t I D = p . f l i g h t I D)
where not (p . age > 10) ;

Listing 3.12: SQL code of a value restricting OCL constraint

Also this resulting SQL query performs the necessary joins of the related ta-
bles, but in contrast to size restricting OCL constraints, it is not necessary to
count the found rows, because as aforementioned, the OCL constraint needs
to hold for all rows. Thus, this query returns all rows that do not fulfill the
query. This is achieved by using a where not clause meaning that the where

clause is followed by the unary operator not. In that way, the only thing
left to do for the corresponding Java code is to check, if the number of found
rows is greater than zero. This is performed by the Java code illustrated in
listing 3.10.

boolean r e s u l t = fa l se ;
try {

PreparedStatement stmt = con . prepareStatement (query) ;
Resu l tSet r s = stmt . executeQuery () ;
r e s u l t = ! r s . next () ;

}
f ina l ly {

con . c l o s e () ;
}

Listing 3.13: Java code of a value restricting OCL constraint

3.4 Sample transformation

This section illustrates a sample transformation of OCL constraints to their
corresponding Java constraint validation classes using the implemented pro-
totype. Therefore, a distinction is made between a description of the GUI and
the console version. Finally, this section shows the output that is generated
as a result by the prototype.

3.4.1 Constraint transformation

After all requirements are fulfilled and the build process was configured (see
appendix A), the transformation process can be started by changing the

Chapter 3. Realization 47

current directory to the prototypes root directory and setting up the following
commands:

ant clean

ant run.codegen

or simply:

ant

Run-level GUI

Having set the run-level configuration option (mda.runlevel) in the build
properties file to gui, the prototype will show its graphical user interface
that is illustrated in figure 3.7.

In the first step of the GUI provided in figure of figure 3.7 the XMI repre-
sentation of the UML model, as well as the file holding the OCL constraints
can be specified. Afterwards, the OCL constraints can be loaded from the
specified file by a click on the button Load OCL constraints. Loading in this
case means that a few new buttons appear on the GUI and additionally, a
text-area holding the OCL constraints denoted in the specified OCL con-
straint file is shown. These constraints now can be freely edited within this
text-area and furthermore, can be saved back to the OCL constraint file by
a click on the button Save constraints.

As the next step, the OCL constraints have to be normalized by a click on the
button Normalize constraints. If the normalization process was successful it
appears again a new button and furthermore, a text-area holding each OCL
constraint in its normalized form. If an error occurred while normalizing the
OCL constraints, then the syntax of the OCL constraints should be checked
and the normalization process should be started again.

Finally, the normalized OCL constraints can be transformed to their corre-
sponding Java constraint validation classes, whereas one out of the following
two different transformation options can be chosen:

• OCL to Java: This option tells the code generator to solely use the im-
plemented OCL to Java transformer to transform the OCL constraints.

• OCL to SQL and Java: This option tells the code generator to use
both implemented transformers, as described in the previous sections.

In both cases, Java constraint validation classes are generated. Hence, these

Chapter 3. Realization 48

Figure 3.7: The GUI of the implemented prototype

options only define which transformer should be used to transform the OCL
constraints to their corresponding Java constraint validation code. By choos-
ing the first option, the OCL constraints are transformed solely using the
OCL to Java transformer. By choosing the second option, the OCL con-
straints are transformed using the OCL to Java and the OCL to SQL trans-
former, as illustrated in figure 3.4.

The last element of figure 3.7 is the log message console at the bottom of the
GUI, which protocols every action that was performed. Moreover, it prints
out a state to each action whether it was successful or not.

Chapter 3. Realization 49

Run-level console

In case of run-level console is set using the configuration option mda.runlevel

within the build properties file, exactly the same steps as described in the
previous paragraph are performed. The only restrictions are that the values,
which can be set using the GUI have to be set within the properties file
mda.properties and therefore, additional but unnecessary functionality like
loading, editing and saving of OCL constraints before they are going to be
transformed is not available.

For a detailed description about the requirements and the configuration of
the build process, please refer to appendix A.

3.4.2 Generated output

This section illustrates some sample files for a better understanding of how
the prototype works.

DeDiSys constraint definition file

Every OCL constraint that is transformed by the implemented prototype,
needs to be added to a DeDiSys specific constraint definition file, holding
additional information for each constraint. This definition file is needed to
register the constraints at the constraint repository of the DeDiSys middle-
ware. A sample file is provided in listing 3.14.

Chapter 3. Realization 50

< !DOCTYPE c c D e f i n i t i o n s SYSTEM ” c c d e f 1 . 0 . dtd”>
<c c D e f i n i t i o n s>

<p e r s i s t e r c l a s s=” org . ded i sy s . ccmgmt . p e r s i s t e n c e .
CCMgrDefaultThreatPersister ” />

<d e f a u l t c o n s t r a i n t r e c o n c i l i a t i o n h a n d l e r c l a s s=” e jb .
F l i gh tbook ingCons t ra in tReconc i l i a t i onHand l e r ” />

<minSystemSat i s fact ionDegree value=”POSSIBLY SATISFIED” />

<c o n s t r a i n t name=” Test1 ” type=”HARD” p r i o r i t y=”RELAXABLE”
n e g o t i a t i o n=”IMMEDIATE” contextObject=”Y”
minSat i s f a c t i onDegree=”SATISFIED”
la t e s tAcceptedSat i s f i edThrea tRemoves Ident i ca lThrea t s=”Y”
int ra−ob j e c t=” f a l s e ”>

<c l a s s>c o n s t r a i n t s . Test1</ c l a s s>
<context−c l a s s>e jb . Fl ightBeanImpl</ context−c l a s s>
<exp r e s s i on></ exp r e s s i on>
<a f f e c t e d−methods>

<a f f e c t e d−method>
<context−preparat ion>

<preparat ion−c l a s s>org . ded i sy s . ccmgmt .
Cal l edObject I sContextObject</ preparat ion−c l a s s>

</ context−preparat ion>
<objectMethod name=” setToAirport ”>

<o b j e c t C l a s s>e jb . Fl ightBeanImpl</ o b j e c t C l a s s>
<arguments>

<argument>java . lang . S t r ing</argument>
</arguments>

</ objectMethod>
</ a f f e c t e d−method>
<a f f e c t e d−method>

<context−preparat ion>
<preparat ion−c l a s s>org . ded i sy s . ccmgmt .

Cal l edObject I sContextObject</ preparat ion−c l a s s>
</ context−preparat ion>
<objectMethod name=” setFromAirport ”>

<o b j e c t C l a s s>e jb . Fl ightBeanImpl</ o b j e c t C l a s s>
<arguments>

<argument>java . lang . S t r ing</argument>
</arguments>

</ objectMethod>
</ a f f e c t e d−method>

</ a f f e c t e d−methods>
</ c o n s t r a i n t>

<c o n s t r a i n t . . .> . . .</ c o n s t r a i n t>
</ c c D e f i n i t i o n s>

Listing 3.14: Sample of a constraint definition file

Chapter 3. Realization 51

For a detailed description of the elements occurring in the DeDiSys constraint
definition file provided in listing 3.14, please refer to [Hor06].

Java constraint validation class

The explanations of the Java constraint validation class within this section
are based on the OCL constraint given in listing 3.15.

context Fl i gh t inv a v a i l a b l e F l i g h t s :
F l i gh t : : a l l I n s t a n c e s ()−>s i z e () > 4
implies
Fl i gh t : : a l l I n s t a n c e s ()−> i t e r a t e (

f ; i : Integer = 0 |
i f (f . bookedSeatsEC < f . maxSeatsEC) then

i + 1
else

i
endif

) >= 4

Listing 3.15: Base OCL constraint for a sample transformation

Listing 3.16 shows the corresponding Java constraint validation class to the
OCL constraint given in listing 3.15 that was generated by the implemented
prototype.

In this case the OCL constraint is partially transformed to Java and SQL,
which means that the OCL to SQL transformer was not able to transform
the whole constraint and therefore, the OCL constraint was split by the top
level operator implies. The reason why the OCL to SQL transformer is not
able transform the whole constraint is that this transformer cannot handle
OCL’s if expression (see section 4.1.1).

In the next step, the part left from the OCL’s implies operator is trans-
formed by the OCL to SQL transformer and the right part, regarding the
OCL’s implies operator is transformed by the OCL to Java transformer.

public class F l i g h t T e s t I t e r a t e extends AbstractConstra int {
private stat ic Log log = LogFactory . getLog (F l i g h t T e s t I t e r a t e .

class) ;

public boolean v a l i d a t e (IConst ra intVa l idat ionContext ctx)
throws Constra intUncheckableExcept ion {

boolean r e s u l t = fa l se ;

Chapter 3. Realization 52

try {
// I n i t i a l i z e i n i t i a l con t ex t
I n i t i a l C o n t e x t i c = new I n i t i a l C o n t e x t () ;

// I n i t i a l i z e con t ex t o b j e c t
FlightBeanImpl f l i g h t = (FlightBeanImpl) ctx .

getContextObject () ;

// I n i t i a l i z e necessary o b j e c t s f o r v a l i d a t i o n on the
o b j e c t l a y e r

FlightLocalHome fl ightHome = (FlightLocalHome) i c . lookup (”
e jb / FlightBean ”) ;

// I n i t i a l i z e necessary o b j e c t s f o r v a l i d a t i o n on the
database l a y e r

Connection con = ((DataSource) i c . lookup (” java : /
FlightbookingDS ”)) . getConnect ion () ;

// Va l ida t e c on s t r a i n t us ing the f o l l ow i n g t rans format ion
code

boolean r e s u l t 2 ;
try {

PreparedStatement stmt = con . prepareStatement (”SELECT
COUNT(∗) AS t o t a l FROM Fl i gh t f ”) ;

Resu l tSet r s = stmt . executeQuery () ;

r e s u l t 2 = true ;
while (r s . next ()) {

i f (! (r s . g e t In t (” t o t a l ”) >= 4)) {
r e s u l t 2 = fa l se ;
break ;

}
}

}
catch (Exception e) {

throw new Constra intUncheckableExcept ion (e) ;
}

boolean r e s u l t 3 = true ;
java . lang . I n t e g e r acc = 0 ;
C o l l e c t i o n f l i g h t 0 = fl ightHome . f i n d A l l () ;
I t e r a t o r i t v = f l i g h t 0 . i t e r a t o r () ;
e jb . F l i gh tLoca l v = null ;
while (i t v . hasNext ()) {

v = (e jb . F l i gh tLoca l) i t v . next () ;
i f (v . getBookedSeatsEC () < v . getMaxSeatsEC ()) {

acc = acc + 1 ;
}

Chapter 3. Realization 53

}
r e s u l t 3 = acc >= 4 ;

r e s u l t = ! r e s u l t 2 | | r e s u l t 3 ;
}
catch (Exception e) {

l og . e r r o r (” Constra int could not be checked ” , e) ;
throw new Constra intUncheckableExcept ion (e) ;

}

return r e s u l t ;
}

}

Listing 3.16: Sample of a Java constraint validation class

3.5 Design and development decisions

In order to use this prototype in arbitrary scenarios, it was necessary to
introduce some conventions regarding the UML model. These assumptions
that are explained in the following sections, are based on the sample UML
model, illustrated in figure 3.8.

Figure 3.8: Sample UML model for illustrating introduced conventions

Primary and foreign key names

This convention is related to the OCL to SQL transformer and defines how
primary key fields and foreign key fields have to be named. The primary
key field name and the foreign key field names of each class are constructed
by the string ID that is preceded by its corresponding class name in lower
case. For example, the primary key of the class Flight results in the string
flightID.

Chapter 3. Realization 54

Hence, this convention guarantees that the OCL to SQL transformer is able
to generate the table joins needed within the resulting SQL queries.

OCL constraint definition

As aforementioned, it is not possible to specify the constraints of an applica-
tion directly on the UML model, due to restrictions within the UML modeling
tool ArgoUML. Therefore, the constraint definition has to be divided into the
following two parts:

• Internal definition: The additional constraint data (e.g. type, pri-
ority, minimum satisfaction degree, etc.) that is necessary to register
the constraints within the DeDiSys middleware is specified within Ar-
goUML.

• External definition: The OCL constraints themselves have to be
specified in an external text file, due to ArgoUML’s lack of support for
OCL’s allInstances operator.

Chapter 4

Evaluation and future work

This section provides an evaluation of the prototype implemented within
this thesis. To this end, it investigates the usability of the prototype within
three separate scenarios and provides information regarding its ability to
handle the OCL constraints of each area. Moreover, it investigates the run-
time performance of the generated Java constraint validation code within
the DeDiSys middleware and compares it to the legacy prototype, to see the
benefit of this work.

Finally, this chapter provides information about some further challenges that
are not covered within this thesis, but which could be interesting to be in-
vestigated and implemented in some future works.

4.1 Prototype evaluation

This section covers the aforementioned evaluation of the prototype in three
different areas and provides information about the ability of the implemented
prototype to transform OCL constraints of these areas. These areas are
a flight booking scenario including some sample OCL constraints created
by the author of this thesis, another scenario dealing with an Aeronautical
Information Exchange Model (AIXM) with real-life constraints and a third
scenario regarding OCL constraints of three different research papers.

Chapter 4. Evaluation and future work 56

4.1.1 Flightbooking application

The first area in which the implemented prototype was evaluated is a flight-
booking application that already existed for the DeDiSys middleware. This
application was developed in a work prior to this thesis and was used for
the purpose of testing the DeDiSys middleware. The major objects of this
application are given in the class diagram illustrated in figure 4.1.

Figure 4.1: Class diagram of the flight-booking application

The major elements of the class diagram provided in 4.1 are Flight holding
all available flights, Passenger containing all passengers of flights, Invoice
representing the invoice data of a booking of a flight by a passenger and
Booking relating an invoice to a passenger.

In order to evaluate the prototype in this area, different types of OCL con-
straints have been considered. In the first step an OCL constraints of the

Chapter 4. Evaluation and future work 57

categories Intra-instance have been evaluated. Afterwards, Inter-instance
constraints have been examined. In the last step, more sophisticated OCL
constraints of category Type-level have been evaluated. An excerpt of the
evaluated OCL constraints is provided in listing 4.1.

Intra−i n s t anc e c o n s t r a i n t
context Passenger inv Val idPassenger :
s e l f . f i r stName <> ’ ’ and s e l f . lastName <> ’ ’

Inter−i n s t anc e c o n s t r a i n t
context Fl i gh t inv ValidBookings :
s e l f . passengers−>s i z e () <= s e l f . maxSeats

F i r s t Type−l e v e l c o n s t r a i n t
context Fl i gh t inv FlightFromBarcelonaToViennaExists :
F l i gh t : : a l l I n s t a n c e s ()−>s e l e c t (

f | f . f romAirport = ’BAR’ AND f . toAi rpor t = ’VIE ’
)−>s i z e () > 0

Second Type−l e v e l c o n s t r a i n t
context Fl i gh t inv OneBookingID :
F l i gh t : : a l l I n s t a n c e s ()−>f o r A l l (

f | f . passengers−>f o r A l l (
p | p . booking . bookingID = ’ ID1 ’

)
)

Third Type l e v e l c o n s t r a i n t
context Fl i gh t inv a v a i l a b l e F l i g h t s :
F l i gh t : : a l l I n s t a n c e s ()−>s i z e () >= 4
implies
Fl i gh t : : a l l I n s t a n c e s ()−> i t e r a t e (

v : F l i gh t ; acc : Integer = 0 |
i f (v . bookedSeatsEC < v . maxSeatsEC) then acc + 1
else acc
endif

) >= 4

Listing 4.1: Evaluated OCL constraint types of a flight-booking application

The evaluation of the implemented prototype within this scenario showed
that the prototype is able to transform the OCL constraints of all types
to their corresponding Java pendant using the implemented OCL to Java
transformer that generates code validation the constraints on the object layer.

In contrast, the OCL to SQL transformer is not able to handle all types of
OCL constraints, due to restrictions within the transformer. These problems

Chapter 4. Evaluation and future work 58

arise, when specific OCL expressions occur within the OCL constraint. One
solution to these problems is to restructure the OCL constraint to a semanti-
cally equivalent one, but without using the unsupported OCL expressions. If
it is not possible to find a semantically equivalent OCL expression, the OCL
to Java transformer acts as the default fall-back and therefore, transforms the
OCL expression to its corresponding Java representation. The unsupported
types of OCL expressions are discussed in the following sections.

Complex relationships

These relationships describe OCL expressions, where it is not possible to map
the OCL expression to its corresponding SQL representation in a generic and
straightforward way, because of necessary SQL joins that are not yet possible
to generate using the implemented OCL to SQL transformer. The problem
arises especially in case of that one table should be joined more than once.
Support for such OCL expressions could be implemented as future work to
this thesis.

Iterate expressions

The OCL to SQL transformer is not yet able to handle OCL’s iterate expres-
sion. In order to be able to transform such OCL expressions using the OCL
to SQL transformer, it is necessary, as aforementioned, to transform these
expressions to semantically equivalent expressions that do not make use of
OCL’s iterate construct. Listing 4.2 provides an example for such an OCL
constraint and additionally shows a restructured, but semantically equivalent
OCL constraint that is transformable by the OCL to SQL transformer.

context Fl i gh t inv a v a i l a b l e F l i g h t s U s i n g I f :
F l i gh t : : a l l I n s t a n c e s ()−> i t e r a t e (f ; i : Integer = 0 |

i f (f . bookedSeatsEC < f . maxSeatsEC) then i + 1
else i
endif

) >= 4

context Fl i gh t inv a v a i l a b l e F l i g h t s W i t h o u t I f :
F l i gh t : : a l l I n s t a n c e s ()−>s e l e c t (

f | f . bookedSeatsEC < f . maxSeatsEC
)−>s i z e () >= 4

Listing 4.2: Removing OCL’s iterate and if expression

Chapter 4. Evaluation and future work 59

Support for such OCL expressions could be implemented as future work to
this thesis.

If expressions

With the use of OCL’s if expression it is possible to denote more sophis-
ticated OCL expressions. As the OCL to SQL transformer is not able to
handle such expressions, the OCL constraint needs to be restructured to a
simpler and for the OCL to SQL transformer transformable constraint, as
mentioned earlier. An example for an OCL constraint using an if expression,
as well as a semantically equivalent and furthermore transformable OCL ex-
pression is provided in listing 4.2. Support for such OCL expressions could
be implemented as future work to this thesis.

A possible solution to the unsupported OCL expressions consisting of Com-
plex relationships, Iterate expressions and If expressions could be, to extend
the implemented OCL to SQL transformer in a way, to be able to generate
code for stored procedures.

4.1.2 Aeronautical Information Exchange Model

The second area in which the implemented prototype was evaluated, is the
specification of the Aeronautical Information Exchange Model (AIXM) with
corresponding rules defined on it. This model was developed by the US Fed-
eral Aviation Administration (FAA) and the European Organization for the
Safety of Air Navigation (EUROCONTROL) with support from the interna-
tional community [AIX].

The Aeronautical Information Exchange Model (AIXM) is designed to enable
the management and distribution of Aeronautical Information Services (AIS)
data in digital format. [AIX]

The rules provided within the AIXM are denoted in verbal form and there-
fore, they can be interpreted as constraints on the model. Hence, it was
necessary to transform the rules to their corresponding OCL expressions to
be able to evaluate them using the implemented prototype. The evaluation
of these constraints pointed out that most of the constraints are simple and
straightforward to transform with the OCL to Java as well as with the OCL
to SQL transformer.

Table 4.1 classifies the basic structures of the rules denoted within the AIXM,

Chapter 4. Evaluation and future work 60

whereas T denotes a table, A denotes an attribute, R denotes a related table
of a table and sizeof counts the number of entries in a related table. For
example the construct T1.R1.A1 means attribute A1 of the related table R1
of table T1.

Nr Structure
1 T1.A1 is specified =⇒ T1.A2 is mandatory
2 T1.A1 is specified =⇒ T1.A2 = ’abc’
3 T1.A1 is specified =⇒ T1.R1.A1 = ’abc’
4 T1.A1 = ’abc’ =⇒ T1.A2 = ’def’
5 T1.A1 = ’abc’ =⇒ T1.R1.A1 = ’def’
6 T1.A1 = ’abc’ =⇒ sizeof(T1.R1) = X
7 T1.A1 = ’abc’ =⇒ sizeof(T1.R1.R2) = X
8 sizeof(T1.R1) > 0
9 sizeof(T1.R1) > 0 =⇒ T1.A1 = ’abc’
10 sizeof(T1.R1) > 0 =⇒ T1.R2.A1 = ’abc’

Table 4.1: AIXM rule structures

All of these constraints can be transformed using the implemented trans-
former, whereas not every constraint can be transformed solely by the use
of the OCL to SQL transformer, but at least the OCL to Java transformer
as default fall-back is able to transform them. Furthermore, as the imple-
mented code generator can split a constraint into smaller parts, it is possible
to transform these constraints using both transformers.

4.1.3 OCL constraints of selected papers

This third area in which the implemented prototype was evaluated is about
OCL expressions taken from the three different research papers [ZS06], [ZHD07]
and [ZA08]. In more detail, these papers contain OCL expressions that are
much more complex than the OCL constraints considered so far.

First selected paper

Firstly, the OCL constraints corresponding to the work of [ZS06] were eval-
uated. The main goal of this paper is given by the authors as follows:

We especially aim to model a specific subset of the dynamic composition
features that can be found in dynamic object-oriented programming environ-

Chapter 4. Evaluation and future work 61

ments: changes to structural object-oriented features of classes or compo-
nents, and the behavior changes that result from them. [ZS06]

The evaluation of this paper pointed out that the OCL constraints are built
upon OCL’s oclIsKindOf operator. As this operator is supported by the
implemented prototype, OCL constraints like the ones in [ZS06] are possible
to transform. In detail this means that it is possible to transform OCL’s
oclIsKindOf operator using the OCL to Java transformer, whereas it is not
possible by the use of the OCL to SQL transformer.

Second selected paper

In the next step, the OCL constraints corresponding to the work of [ZHD07]
were evaluated. A definition of the target of this paper is given by the authors
as follows:

The main goal of the work presented in this paper is to develop and validate
a novel approach to model process-driven SOAs independently of these imple-
mentation details, but in a way that allows our models to be precisely mapped
to the details of particular implementations and implementation technologies.
[ZHD07]

This evaluation turned out that these OCL constraints do not cover unsup-
ported operations. This means that these types of OCL constraints can be
transformed using the implemented prototype. How the transformations of
these constraints look in detail, whether its is solely transformed by the OCL
to Java or OCL to SQL transformer, or it needs to be split into smaller parts,
depends on the specific OCL constraint.

Third selected paper

Finally, the OCL constraints according to the work of [ZA08] were evaluated.
The main goal of this paper is given by them as follows:

We propose to remedy the problem of modeling architectural patterns through
identifying and representing a number of ’architectural primitives’ that can
act as the participants in the solution that patterns convey. [ZA08]

This paper introduces OCL constraints that are based on an extension of the
UML 2.0 meta-classes using the UML extension mechanism. These OCL con-
straints are out of the focus of this thesis and are therefore not yet supported
by the implemented prototype. Support for this type of OCL constraints
could be an interesting challenge to solve in the future. Hence, for more

Chapter 4. Evaluation and future work 62

information about these types of OCL constraints, please refer to section
4.3.

4.2 Constraint performance evaluation

This section evaluates the benefit of the prototype implemented within this
thesis. For this purpose, the legacy prototype is compared with the imple-
mented prototype, with respect to the run-time performance of the generated
Java constraint validation code.

4.2.1 Testing environment

The performance evaluation has been carried out on a standalone worksta-
tion, whereas table 4.2 provides detailed information about the hardware
and the software of the testing environment that was used while evaluating
and comparing the performance of the generated Java constraint validation
classes.

Hardware Description
CPU Intel Core2 Duo CPU E6750 @ 2.66GHz
Memory 2 GB
Software Description
OS Ubuntu 9.10 (karmic), Kernel Linux 2.6.31-16-generic
JRE Sun Java(TM) Runtime Environment (JRE) 5.0
JDK Sun Java(TM) Development Kit (JDK) 5.0
IDE NetBeans IDE 6.5.1
Build Tool Apache Ant 1.7.1
Database Server MySQL 5.1.41
Application Server JBoss 5.0.1.GA

Table 4.2: Testing environment

4.2.2 Performance evaluation

In order to measure the run-time performance of the generated Java vali-
dation classes, one constraint of each of the categories Intra-instance, Inter-
instance and Type-level has been evaluated. Furthermore, the run-time per-

Chapter 4. Evaluation and future work 63

formance of each constraint was measured five times for the purpose of getting
an average performance value.

Intra-instance constraint

The first evaluated OCL constraint is an LCC constraint related to the Intra-
instance category. This OCL constraint is illustrated in listing 4.3. In order
to get meaningful performance results for this OCL constraint, the database
table corresponding to the Flight class was populated with 100, 1.000 and
10.000 dummy records. Furthermore, the OCL constraint was evaluated for
each of these populations.

context Fl i gh t inv ValidBookings :
s e l f . bookedSeatsBC <= s e l f . maxSeatsBC

Listing 4.3: Evaluated Intra-instance constraint

The constraint provided in listing 4.3 assures that the number of booked
seats is at most as high as the number of available seats. The evaluation of
this OCL constraint was only performed using the implemented prototype for
the reason that for Intra-instance constraints the legacy prototype and the
implemented prototype generate identical code. The results of the run-time
performance evaluation of this OCL constraint are shown in figure 4.2.

Figure 4.2: Performance results of the evaluated Intra-instance constraint

Chapter 4. Evaluation and future work 64

The performance results given in figure 4.2 show that the validation of Intra-
instance constraints can be performed in an efficient way. Furthermore, these
results do not significantly change for the different populations. This is an
expected behavior as the validation does not directly depend on the database
population.

Inter-instance constraint

The second evaluated OCL constraint is an LCC constraint related to the
Inter-instance category. This OCL constraint is illustrated in listing 4.4.
In order to get meaningful run-time performance results for this OCL con-
straint, the database table corresponding Flight class was populated with
one record and the database table corresponding to the Passenger class was
populated with 100, 1.000 and 10.000 related dummy records. Furthermore,
the OCL constraint was evaluated for each of these populations.

context Fl i gh t inv Val idPassengers :
s e l f . passengers−>f o r A l l (p |

p . f i rstName <> ’ ’ and p . lastName <> ’ ’
)

Listing 4.4: Second evaluated Inter-instance constraint

The constraint provided in listing 4.4 assures that every passenger of a flight
has a valid name. This means that the name must not be empty. The
evaluation of this OCL constraint was only performed using the implemented
prototype for the reason that the legacy prototype is not able to handle
OCL constraints using relations. The results of the run-time performance
evaluation of the OCL constraint given in 4.4 are shown in figure 4.3.

The performance results given in figure 4.3 show that the validation of Inter-
instance constraints generated using the implemented prototype can also be
performed in an efficient way. This can be seen in figure 4.3 as the run-time
performance is growing slow regarding the examined populations.

Type-level constraint

The third evaluated OCL constraint is a FCC constraint related to the Type-
level category. This OCL constraint is illustrated in listing 4.5. In order
to get meaningful performance results for this OCL constraint, the database
table corresponding to the Flight class was populated with 100, 1.000 and

Chapter 4. Evaluation and future work 65

Figure 4.3: Performance results of the second evaluated Inter-instance con-
straint

10.000 dummy records. Furthermore, the OCL constraint was evaluated for
each of these populations.

context Fl i gh t inv FlightFromBarcelonaToViennaExists :
F l i gh t : : a l l I n s t a n c e s ()−>s i z e () > 0
implies
Fl i gh t : : a l l I n s t a n c e s ()−>e x i s t s (

f | f . f romAirport = ’BAR’ and f . toAi rpor t = ’VIE ’
)

Listing 4.5: First evaluated Type-level constraint

The constraint provided in listing 4.4 assures that whenever there exist flight
within the database, then there also must exist a flight from Barcelona to
Vienna. The results of the run-time performance evaluation of the OCL
constraint given in 4.5 are shown in figure 4.4.

The performance results provided in figure 4.4 show that regarding 100
records, the constraint validation time using the code generated by the imple-
mented prototype is approximately 15 times faster than the code generated
using the legacy prototype. Regarding 1.000 records, the constraint valida-
tion time is approximately 80 times faster and regarding 10.000 records, the
constraints validation time is about 530 times faster. Hence, this leads to a
huge run-time performance gain of the constraint validation process.

Chapter 4. Evaluation and future work 66

Figure 4.4: Performance results of the first evaluated Type-level constraint

Regarding the presented performance results it has to be stated that the Java
constraint validation classes generated using the implemented prototype have
a massive positive impact. This is especially true for for FCC constraints as
these result can be compared directly to the results of the legacy prototype.
Moreover, the results of the evaluation of the presented LCC constraints
shows that the validation of the constraints using the code generated using
the implemented prototype is also efficient. For these reasons, this work
introduced a huge performance gain and therefore it was worth its effort.

4.3 Future work

Additionally to the features implemented within the prototype of this thesis,
there exist a few further challenges that would be interesting to be investi-
gated and implemented in some further works. These challenges are described
in the following sections.

Tool-based restructuring of OCL constraints

The first and currently existing version of the implemented OCL to SQL
transformer is, as already mentioned in previous sections, not able to trans-

Chapter 4. Evaluation and future work 67

form all possible OCL expressions to their corresponding SQL representa-
tions. In many cases it is possible to change the definition of not trans-
formable OCL expressions in a way that they are transformable again.

The current implementation is able to state that specific OCL constraints
should be denoted in a semantically equivalent but different way, to be able
to transform them with the current OCL to SQL transformer. This could
be enhanced in a future work to this thesis. A possible enhancement is, to
provide a tool-based restructuring of not transformable OCL expressions in
a way that the designer is free in the specification of the OCL constraints.
Hence, the designer does not need to manually restructure his OCL expres-
sions in case they are not transformable by the OCL to SQL transformer.

Change of the UML modeling tool

As aforementioned, a UML modeling tool is necessary within this work, to
design the model of an application that wants to make use of the DeDiSys
middleware. For this purpose, this thesis uses ArgoUML, which introduces
restrictions regarding the OCL. For example, it is not possible to define OCL
constraints within ArgoUML using OCL’s allInstances operator. As this
operator is essential for this thesis, the definition of the OCL constraints of
a corresponding UML model have been divided into two parts. This means
that the OCL constraints have to be specified in an external text file and the
additional and DeDiSys specific constraint meta-data (e.g. type, priority or
minimum satisfaction degree) have to be specified within the UML model.

Hence, it is necessary to evaluate some other UML modeling tools in order to
use a UML modeling tool that satisfies the requirements of this work. Thus,
it would be possible to define every information of the application directly
within the UML model, without the need of external files holding additional
information.

Enhancements of the OCL to SQL transformer

Up to now, the OCL to SQL transformer is not able to transform all possible
OCL expressions. This is particularly true for OCL’s iterate and if expres-
sion and furthermore this is true for complex OCL expressions as mentioned
before.

Hence, the implemented OCL to SQL transformer could be enhanced with
functionality that is providing support this expressions. A possible enhance-

Chapter 4. Evaluation and future work 68

ment could be, to extend the implemented OCL to SQL transformer in a
way, to be able to generate code for stored procedures.

Chapter 5

Summary and conclusion

This thesis had its main focus on the optimization of an OCL to run-time
constraint generator for the DeDiSys middleware as its J2EE constraint con-
sistency framework. The main goal of this optimization was to generate
faster Java constraint validation code with respect to the run-time perfor-
mance, when the constraint are going to be validated within the DeDiSys
middleware.

In order to achieve a better run-time performance of the constraint vali-
dation process, several optimizations have been applied to the previously
existing implementation of the OCL to run-time constraint generator. These
optimizations include a better support for UML models created with UML
modeling tools, whereas it is no longer necessary to define a specific dummy
relation for each table pointing to itself, in order to be able to use OCL’s
allInstances operator. Thus, this operator now can be freely used through-
out the OCL constraint definition.

Furthermore, and build upon the previously mentioned optimization, the
existing OCL to Java transformer was extended by supporting the essential
allInstances operator of the OCL and furthermore, now is able to handle
relations that can be queried by OCL constraints.

An OCL to SQL transformer builds another major improvement to the exist-
ing run-time constraint generator that transforms OCL expressions to their
corresponding SQL representations. In more detail, these SQL representa-
tions are SQL queries that are directly set up to the database to increase the
run-time performance of the constraint validation process.

Moreover, a transformation algorithm was implemented that allows to split
an OCL constraint into several parts. This is a major improvement as now it

Chapter 5. Summary and conclusion 70

is possible to transform parts of the OCL constraint to their Java pendant and
other parts to their SQL representation. At the end of the transformation,
these parts are combined again.

Finally, an evaluation of the run-time performance of the Java constraint val-
idation classes generated by the implemented prototype has been performed.
After comparing these performance results to the performance results of the
Java code generated by the legacy prototype it turned out that the intro-
duced optimizations were worth their effort and hence, are increasing the
overall performance of the DeDiSys middleware.

Appendix A

Prototype details

This chapter provides additional information to the implemented prototype,
regarding the requirements and configuration properties.

A.1 Requirements & configuration

This section deals with the information how to setup the computer in order
to run the implemented prototype. Furthermore, this chapter provides in-
formation about the Ant build process regarding the available Ant tasks, as
well as the available configuration options that can be specified in a separate
build configuration file.

A.1.1 System requirements

In order to run the implemented prototype, there are a few requirements that
need to be fulfilled in prior. These requirements are denoted in table A.1.

Third-party tool Version
Java Standard Development Kit (SDK) 1.5.0
Java Runtime Environment (JRE) 1.5.0
JBoss Application Server 5.0.1
Apache Ant 1.7.1
MySQL 5.1.41

Table A.1: System requirements

Appendix A. Prototype details 72

The version numbers of the tools given in table A.1 do not necessarily need
to be as stated here, because also other version may work, but these versions
have been used throughout the development of this prototype and thus, they
are known to be working.

A.1.2 Build configuration

The implemented prototype can be launched using the provided Ant build
file build.xml that is located in the root folder of project. The purpose of
the following list is to describe the available Ant targets, defined within this
build file.

• clean: Cleans the workspace by removing all generated files.

• compile.codegen: Compiles all Java classes of the prototype.

• jar.codegen: Packs the class files created by the previous target and
some property files into a JAR file.

• run.codegen: Runs the prototype using the JAR file created by the
previous target.

• run.andromda: Generates the EJB’s of the defined UML classes using
AndroMDA.

• comile.app: Compiles the application including all generated files.

• xdoclet.app: Generates necessary files to deploy the application to
the JBoss application server.

• overwrite.xdoclet: Overwrites some configuration files that have
been generated by the previous target with files from the flighbooking
EJB module.

• jar.app: Builds a the deployable JAR file of the application.

• deploy: Deploys the JAR file to the dedisys server profile within the
JBoss application server.

• all.app: Runs all previously described tasks in the given order.

Appendix A. Prototype details 73

Beside the Ant tasks provided in the previous list, the Ant process itself can
be configured by specifiying some properties in the file ./src/mda.properties
relative to the root folder of the protoype. The available configuration op-
tions together with their corresponding default values are mentioned in the
upcomming list.

• mda.dir.out.constraints: The directory, to which the generated
Java constraint classes are saved.
Default value: ./out/src/constraints/

• mda.dir.out.conf: The directory, to which the generated DeDiSys
constraint definition file (ccDefinitions.xml) is saved.
Default value: ./out/src/conf/

• mda.dir.templates: The directory, where the StringTemplate tem-
plates reside.
Default value: ./src/org/dedisys/mda/templates/

• mda.file.xmi: The name of the file that holds the XMI representation
of the UML model.
Default value: ./model/demomodel.xmi

• mda.file.ocl.original: The name of the file that constains the OCL
constraints.
Default value: ./model/demomodel.ocl

• mda.file.ocl.normalized: The name of the file that holds the nor-
malized OCL constraints.
Default value: ./model/demomodel normalized.ocl

• mda.file.cc.def: The name of the file that holds the DeDiSys con-
straint definitions.
Default value: ./out/src/conf/ccDefinitions.xml

• mda.sql.datasource: The JBoss datasource that should be used within
the generated Java constraint validation classes to connect to the database,
in case of validation on the database layer is peformed.
Default value: FlightbookingDS

• mda.transformation.type: The type of transformation that should
be performed. Possible option are 1 to use only the OCL to Java trans-
former or 2 to use both transformers to transform the OCL constraints.
Default value: 2

Appendix A. Prototype details 74

• mda.runlevel: Defines whether to launch the GUI of the prototype by
setting the value of the property to gui or to run the console version of
the prototoype by setting the value of the property to console. In case
of runlevel gui, some of the previous mentioned configuration options
can also be specified within the GUI.
Default value: gui

Bibliography

[AIX] Aeronautical Information Exchange Model (AIXM) - A model
to enable the management and distribution of Aeronautical
Information Services (AIS) data in digital format. Website.
http://www.aixm.aero.

[And] AndroMDA - An extensible generator framework that adheres
to the Model Driven Architecture (MDA) paradigm. Website.
http://www.andromda.org/.

[Arg] ArgoUML - A Java based and open source UML modeling
tool supporting all standard UML 1.4 diagrams. Website.
http://argouml.tigris.org/.

[Bau06] Markus Baumgartner. Adaptive Constraint-Validierung in einer
verteilten Enterprise JavaBeans Umgebung. Master’s thesis, Tech-
nikum Vienna, September 2006.

[BC06] Marco Brambilla and Jordi Cabot. Constraint tuning and man-
agement for web applications. In ICWE ’06: Proceedings of the
6th international conference on Web engineering, pages 345–352,
New York, NY, USA, 2006. ACM.

[CT07] J. Cabot and E. Teniente. Transformation techniques for OCL
constraints. Sci. Comput. Program., 68(3):152–168, 2007.

[Ded] Dependable Distributed Systems Middleware (DeDiSys) - A
middleware for optimized dependability by adaptively balanc-
ing (trading) availability and constraint consistency. Website.
http://www.dedisys.org/.

[DHK05] Birgit Demuth, Heinrich Hussmann, and Ansgar Konermann.
Generation of an OCL 2.0 parser. In Thomas Baar, editor, Proceed-
ings of the MoDELS’05 Conference Workshop on Tool Support for

Bibliography 76

OCL and Related Formalisms - Needs and Trends, Montego Bay,
Jamaica, October 4, 2005, Technical Report LGL-REPORT-2005-
001, pages 38–52. EPFL, 2005.

[Dre] Dresden OCL Toolkit - A software platform for OCL tool support
providing tools for specification and evaluation of OCL constraints.
Website. http://dresden-ocl.sourceforge.net/.

[Ert07] Dominik Ertl. Evaluation of Partitionable Replication Protocol
Improvements in an Enterprise JavaBeans Environment. Master’s
thesis, Technikum Vienna, October 2007.

[FGO07] Lorenz Froihofer, Karl M. Goeschka, and Johannes Osrael. Mid-
dleware support for adaptive dependability. In Middleware ’07:
Proceedings of the ACM/IFIP/USENIX 2007 International Con-
ference on Middleware, pages 308–327, New York, NY, USA, 2007.
Springer-Verlag New York, Inc.

[FOG07] Lorenz Froihofer, Johannes Osrael, and Karl M. Goeschka. De-
coupling Constraint Validation from Business Activities to Im-
prove Dependability in Distributed Object Systems. In ARES
’07: Proceedings of the The Second International Conference on
Availability, Reliability and Security, pages 443–450, Washington,
DC, USA, 2007. IEEE Computer Society.

[Fuc06] Klaus Fuchshofer. Negotiation and reconciliation of consistency
threats for Enterprise JavaBeans applications. Master’s thesis,
Technikum Vienna, May 2006.

[Hor06] Markus Horehled. Integration of an EJB Constraint Consistency
Management Framework into the JBoss Application Server. Mas-
ter’s thesis, Technikum Vienna, May 2006.

[HWD08] Florian Heidenreich, Christian Wende, and Birgit Demuth. A
Framework for Generating Query Language Code from OCL In-
variants. ECEASST, 9, 2008.

[KWB03] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained:
The Model Driven Architecture: Practice and Promise. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[LCG06] Tihamér Levendovszky, Hassan Charaf, and Gergely Mezei. Op-
timization Algorithms for OCL Constraint Evaluation in Visual
Models, 2006.

GLOSSARY 77

[LLC05] László Lengyel, Tihamér Levendovszky, and Hassan Charaf. Nor-
malizing OCL Constraints in UML Class Diagram-Based Meta-
models - AND/OR Clauses. In EUROCON 2005 International
Conference on “Computer as a tool”, Proceedings of the IEEE,
pages 579–582, Belgrade, Serbia and Montenegro, November 2005.

[LO04] Sten Loecher and Stefan Ocke. A metamodel-based ocl-compiler
for uml and mof. Electr. Notes Theor. Comput. Sci., 102:43–61,
2004.

[MLC06] Gergely Mezei, Tihamer Levendovszky, and Hassan Charaf. Re-
strictions for OCL Constraint Optimization Algorithms. ECE-
ASST, 5, 2006.

[OMG] Object Management Group - International, open member-
ship, not-for-profit computer industry consortium. Website.
http://www.omg.org/.

[Rie07] Bernhard Rieder. Balancierung von Integrität und Verfügbarkeit
in verteilten Web-basierten Enterprise JavaBeans Anwendungen.
Master’s thesis, Technikum Vienna, April 2007.

[Str] StringTemplate - Java template engine for generating source code,
web pages, email or any other formatted text output. Website.
http://www.stringtemplate.org/.

[WK03] Jos Warmer and Anneke Kleppe. The Object Constraint Language:
Getting Your Models Ready for MDA. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2003.

[ZA08] Uwe Zdun and Paris Avgeriou. A catalog of architectural prim-
itives for modeling architectural patterns. Inf. Softw. Technol.,
50(9-10):1003–1034, 2008.

[ZHD07] Uwe Zdun, Carsten Hentrich, and Schahram Dustdar. Modeling
process-driven and service-oriented architectures using patterns
and pattern primitives. ACM Trans. Web, 1(3):14, 2007.

[ZS06] Uwe Zdun and Mark Strembeck. Modeling Composition in Dy-
namic Programming Environments with Model Transformations.
In Software Composition, pages 178–193, 2006.

Glossary

AIS Aeronautical Information Services
AIXM Aeronautical Information Exchange Model
API Application Programming Interface
AST Abstract Syntax Tree

CCM Constraint Consistency Management
CORBA Common Object Request Broker Architecture
CST Concrete Syntax Tree

DeDiSys Dependable Distributed System

EJB Enterprise Java Bean

FCC Full Consistency Check

GUI Graphical User Interface

IC Integrity Constraint

J2EE Java 2 Plattform, Enterprise Edition
JAR Java Archive
JMI Java Metadata Interface

LCC Limited Consistency Check

MDA Model Driven Architecture
MDR MetaData Repository
MDSD Model-Driven Software Development

OCL Object Constraint Language

Glossary 79

OMG Object Management Group

PIM Platform Independent model
PST Platform specific model

UML Unified Modeling Language

XMI XML Metadata Interface
XML EXtensible Markup Language

Index

AIXM, 59
AndroMda, 14
Appendix, 71
Architecture, 25
Architecture overview, 25
ArgoUml, 16

Build configuration, 72

Code generator, 30
Conclusion, 69
Constraint analyzer, 40
Constraint classifier, 37
Constraint normalizer, 37
Constraint performance evaluation, 62
Constraint transformation, 46
Constraint transformer, 40
Constraint tuning & management for

web applications, 18
Core parts, 29

DeDiSys middleware, 10
Design and development decisions, 53
Dresden OCL toolkit, 13

Employed libraries, 6
Evaluation, 55

Flightbooking application, 56
Future work, 66

Generated files, 49
Generating Query Language Code from

OCL Invariants, 22

Implemented prototype, 29

Introduction, 1

Legacy prototype, 28

Model-driven architecture, 6
Motivation and problem definition, 2

Object constraint language, 8
OCL constraints of selected papers,

60
OCL to Java transformer, 42
OCL to SQL transformer, 44
OCL transformation, 41
Organization, 5

Performance evaluation, 62
prototype details, 71
Prototype evaluation, 55

Realization, 25
Related work, 18
Requirements & configuration, 71

Sample transformation, 46
StringTemplate, 15
System requirements, 71

Technical baseline, 13
Testing environment, 62
Theoretical baseline, 6
Transformation techniques for OCL

constraints, 19

