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Abstract

This thesis consists of two parts, the first one deals with the optimal consumption and
investment problem, whereas the second part focuses on the Pareto optimal allocation of a
risky position between two agents.
In the first part we start by considering the deterministic optimal consumption problem as
a motivation for the stochastic problem. The optimal consumption process is calculated
assuming a special form of the utility function. We see that the choice of the utility function
plays a major role in the form of the consumption process. Not only do we consider the
problem of optimal consumption, but also the problem of optimal terminal wealth, since
both of them are linked closely and it is of economical importance to consider both of them
at the same time, since it is not always optimal to finance the consumption by a big loan,
which leaves us broke at the final time.
Subsequently we turn to the stochastic model and consider the problem of maximizing
the utility of consumption and terminal wealth in a geometric Ornstein-Uhlenbeck market,
after a quick detour over to the Black-Merton-Scholes model. We calculate the optimal
consumption and wealth processes for power, logarithmic and exponential utility as well
as their behavior depending e.g. on subjective discounting or the time horizon. We also
use a specific example to show the identity of the solutions calculated by the primal and
the dual method. In the stochastic case we show explicit results for the optimal processes,
which are illustrated by numerical simulations and their limiting behavior depending on
the time horizon or the weight on consumption and respectively on the terminal wealth.
This first part was inspired by the paper of Walter Schachermayer and Hans Föllmer titled
”Asymptotic Arbitrage and Large Deviations”.
The second part is joint work with Michael Kupper from the Humbolt University in Berlin
and Ranja Reda from the Technical University of Vienna. We consider the utility of a
risky position and remember that a utility function always implies a risk measure. The
innovation of this work lies in the fact that we do not consider classical utility functions as
in the first part of the thesis, but we relax our assumptions on a utility function, so instead
of concavity we use quasi-concavity. Using this utility we want to find a Pareto optimal
allocation. An allocation is called Pareto optimal if it is impossible to make someone better
off without making someone else worse off. When all agents have reached a Pareto optimal
distribution, then there would not be any more changes, since at least one of the agents
would object.
We prove that Pareto optimal allocations do exist and we can give a characterization of
them. We show that this position is closely linked to the optimal distribution of risk in a
sense that the sum of the utilities is maximized in such as allocation.
Finally we present some examples of quasiconcave risk measures, which are not concave in
order to motivate the relaxation of the definition of utility functions.
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Zusammenfassung

Diese Dissertation besteht aus zwei Teilen. Der erste Teil beschäftigt sich mit dem optimalen
Konsumproblem. Zu Beginn diskutieren wir den optimalen Konsum und das optimale End-
vermögen in einem deterministischen Modell. Diese Fragestellungen kann man nicht von
einander trennen, da unser Konsum nicht durch unendlich hohe Schulden zum Endzeitpunkt
finanziert werden soll. Nach diesen Vorbereitungen betrachten wir kurz den optimalen
Konsum im Black-Merton-Scholes Markt und widmen uns anschließend dem wichtigsten
Abschnitt des ersten Teiles, dem optimalen Konsum im geometrischen Ornstein-Uhlenbeck
Markt.
Wir zeigen in diesem stochastischen Modell die optimalen Konsumstrategien für unter-
schiedliche Nutzenfunktionen, betrachten das Verhalten dieser Strategien abhängig von
unterschiedlichen Parametern und illustrieren die Ergebnisse anhand von Simulationen.
Schließlich vergleichen wir die primale und die duale Lösungsmethode anhand eines Beispiels.
Den Anstoß für diesen ersten Teil gab das paper ”Asymptotic Arbitrage and Large Devia-
tions” von Walter Schachermayer und Hans Föllmer.
Der zweite Teil beschäftigt sich mit Pareto optimalen Allocationen einer risikobehafteten
Position und ist in Zusammenarbeit mit Michael Kupper von der Humboldt Universität zu
Berlin und Ranja Reda von der Technischen Universität Wien entstanden. Wir betrachten
den Nutzen einer risikobehafteten Position und versuchen diesen zwischen zwei Agenten
optimal zu verteilen. Als Pareto optimal bezeichnen wir eine Position dann, wenn es keine
Veränderung gibt, die einen Agenten echt besser stellt, die nicht mindestens einen anderen
Agenten schlechter stellt. Im Gegensatz zu den Analysen im ersten Teil der Dissertation
betrachten wir hier nicht klassische Nutzenfunktionen, sondern betrachten eine größere
Klasse, nämlich die Klasse aller quasiconcaven Nutzenfunktionen. Wir zeigen, dass es eine
Pareto optimale Alllocation gibt, und beschreiben diese Allocation.
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Part I

Optimal Consumption
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Chapter 1

Introduction

The first part of the thesis deals with the optimal consumption problem, which is in turn
an optimal investment problem, since we need to invest optimally to ensure optimal con-
sumption.
As a motivation we start by considering the deterministic optimal consumption problem
and solve it for the exponential utility, while in the geometric Ornstein-Uhlenbeck market
we will also consider power and logarithmic utility. The logarithmic utility represents a
limiting case of the power utility, and also the exponential utility presents a different limit
of the power utility. Without going into detail, the main difference is that power and loga-
rithmic utility on the one hand and exponential utility on the other hand is that the first
two will not allow for negative consumption, but the exponential utility is not restricted
to positive consumption and wealth. Both choices have economical sound interpretations
depending on the availability of credits. Because of the possibility of negative consumption
we take a close look at the exponential utility.
We make the connection with the traditional Black-Merton-Scholes model, but then we turn
quickly to the problem of maximizing the utility of consumption and terminal wealth in a
geometric Ornstein-Uhlenbeck market, which is the main topic of this part. We calculate
the optimal consumption and wealth processes for power, logarithmic and exponential util-
ity as well as their behavior depending e.g. on subjective discounting or the time horizon.
Again the exponential utility plays a very important role for us. In the stochastic case we
consider two methods for solving this problem. The main emphasis lies on the dual method
which corresponds to the Lagrange method presented in the non stochastic part. We also
consider the primal approach which goes back to Merton in the 1960s. Finally we use a
specific example to show the identity of the solutions calculated by the primal and the dual
method and illustrate our findings by some numerical simulations.
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Chapter 1. Introduction
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Chapter 2

Duality Theory in the
Deterministic and
Black-Merton-Scholes Setting

Since the 1960s the problem of optimal consumption has been studied in great detail. The
finite horizon problem of optimal consumption and terminal wealth in the time period (0, T )
consists in maximizing

E
[ ∫ T

0
e−ρtU1(C(t))dt+ U2(X(T ), T )

]
, (2.1)

where (X(t))0≤t≤T is the wealth and (C(t))0≤t≤T the consumption process and ρ is the
constant discounting factor. The function U1 measures the utility of consumption and the
function U2 the utility of the terminal wealth. In Merton’s wording [Merton 1969] U2 is
called ”bequest valuation function”.
We also consider the infinite horizon problem

E
[ ∫ ∞

0
e−ρtU1(C(t))dt

]
(2.2)

under a suitable transversality condition at t =∞.
The problem was first presented and solved in ”Lifetime Portfolio Selection under Uncer-
tainty: The Continuous-Time Case” [Merton 1969]. In this paper Merton employs the
primal approach to solve this problem for a finite time horizon T . The idea of dynamic
programming is that if we have a strategy which is optimal on (0, t1) and 0 ≤ t1 ≤ T and we
follow an optimal strategy after t1 until T then the (combined) strategy is globally optimal.
Since then this and similar problems have been treated under additional constraints, as for
example under transaction costs in [Øksendal, Sulem].
Besides using the primal approach there is also the dual approach which uses the Lagrangian
method. This method involves deriving the first order condition and calculating the La-
grange multiplier, in order to get the optimal consumption process. This approach has also
been used in various other settings for example in [Cuoco]. In [Cox, Huang] the problem
has been solved for a general market model.
As utility of consumption we consider the exponential utility as done in [Merton 1969]

U1(C) = −e
−ηC

η
C ∈ R. (2.3)
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Chapter 2. Duality Theory in the Deterministic and BMS Setting

Using the exponential utility function to measure utility of consumption and terminal wealth
needs careful consideration, since it also assigns a finite utility to negative values of wealth
or consumption. For notational convenience, we assume η = 1, which we may assume
w.l.o.g. by choosing the unit by which we measure consumption appropriately. By Ĉ(t)
and X̂(t) we denote the optimal consumption and wealth processes. The initial wealth is
denoted by x.
Section 2.1 deals with the problem in the case that there is only a bond and no risky asset,
in section 2.2 the problem with infinite time horizon is analyzed and finally in section 2.3
we introduce a risky asset and recall the solution in the Black-Merton-Scholes model.

2.1 The deterministic model for finite time horizon

We assume that there is only a bond yielding interest r, and there will be no risky asset.
In Merton’s notation [Merton 1969], this corresponds to α = r and σ = 0, which gives

dSt = rStdt. (2.4)

We fix the finite horizon T > 0, and choose as utility of terminal wealth

U2(X,T ) =

{
0 if X ≥ 0
−∞ if X < 0

. (2.5)

This form of the bequest valuation requires that at time T the wealth X(T ) has to be
non-negative, in which case the bequest valuation function yields a contribution zero to the
target functional (2.1). This is reasonable from an economic point of view and corresponds
to the limiting case ε = 0 in Merton’s analysis (p.251).
Now we are left with the following deterministic optimization problem: Given ρ > 0 we
search for the deterministic, R-valued function (C(t))0≤t≤T optimizing

max
C(t)

[
−
∫ T

0
e−ρte−C(t)dt

]
(2.6)

under the constraint ∫ T

0
e−rtC(t)dt ≤ x (2.7)

for a given initial wealth x ∈ R. The budget constraint (2.7) ensures that X(T ) ≥ 0 and
the wealth process (X(t))0≤t≤T satisfies the deterministic ODE

X ′(t) = rX(t)− C(t).

To solve (2.6), we take a closer look at the first order condition

e−ρte−C(t) = λe−rt

which has to be satisfied for 0 ≤ t ≤ T for some Lagrange multiplier λ > 0. Writing λ = e−a

we get

−ρt− C(t) = −a− rt or

Ĉ(t) = a+ (r − ρ)t

12



2.1. The deterministic model for finite time horizon

for some a ∈ R which is determined by the budget constraint. Inserting the optimal
consumption process into (2.7) and calculating a gives for a and (Ĉ(t))0≤t≤T

a =
rx+ (r − ρ)[Te−rT − 1

r (1− e−rT )]

1− e−rT
, (2.8)

Ĉ(t) =
rx+ (r − ρ)[Te−rT − 1

r (1− e−rT )]

1− e−rT
+ (r − ρ)t. (2.9)

We can also calculate the resulting wealth process X̂(t) from

X̂(t)e−rt = x−
∫ t

0
e−rsĈ(s)ds

X̂(t) = ert
[
− a

r
(1− e−rt)− r − ρ

r

[
− te−rt − 1

r
(e−rt − 1)

]
+ x)

]
. (2.10)

It follows that at time t = T the wealth is zero, which is no surprise.

Lemma 1. The wealth process is concave for r > ρT
x+T and convex for r < ρT

x+T .

Proof. To prove this we take a look at the second derivative and verify that it is positive
when r > ρT

x+T and negative otherwise. For later usage we will write down a simplified
version of the wealth process and its first derivative as well.

X(t) = x
(
ert +

1− ert

1− e−rT
)

+
r − ρ
r

( 1− ert

1− e−rT
Te−rT + t

)
X ′(t) = −xr er(t−T )

1− e−rT
+
r − ρ
r

(
1− rTer(t−T )

1− e−rT
)

(2.11)

X ′′(t) =
er(t−T )

1− e−rT
(−r2x− (r − ρ)rT )

The first factor of the second derivative is clearly always positive, but the sign of the second
factor will depend on the choice of ρ and r. It follows that

−r2x− (r − ρ)rT < 0

r >
ρT

x+ T
,

which proves the assumption.

Lemma 2. The minimum of the wealth process is attained at T for r > ρT
x+T and for

r < ρT
x+T it is attained at tm = 1

r log
(
(1−e−rT )(r−ρ)
(rx+(r−ρ)T )r

)
+ T .

Proof. Inserting T in the process X(T ) gives zero, therefore for r > ρT
x+T it follows by

concavity that the minimal wealth is attained at zero.
But for r < ρT

x+T we take a look at the first derivative of the wealth process given by equation
2.11 and set it equal to zero. Thus we get the equation

0 = −xr er(t−T )

1− e−rT
+
r − ρ
r

(
1− rTer(t−T )

1− e−rT
)

r − ρ
r

= xr
er(t−T )

1− e−rT
+

(r − ρ)Ter(t−T )

1− e−rT

which is solved by tm = 1
r log

(
(1−e−rT )(r−ρ)
(rx+(r−ρ)T )r

)
+ T .

13



Chapter 2. Duality Theory in the Deterministic and BMS Setting

Lemma 3. Under the assumption r < ρT
x+T and T big enough the following two inequalities

can be derived:

(a) 0 ≤ (1−e−rT )(r−ρ)
(rx+(r−ρ)T )r ≤ 1

(b) 0 ≤ tm

Proof. We start by proving the first inequality in (a) 0 ≤ (1−e−rT )(r−ρ)
(rx+(r−ρ)T )r . This follows from

the fact that r − ρ is negative under the assumption in eq.(2.12) as well as rx+ (r − ρ)T ,
thus the ratio is positive.

The second inequality in (a) (1−e−rT )(r−ρ)
(rx+(r−ρ)T )r ≤ 1 can be transformed to

1− e−rT < r2x

r − ρ
+ rT.

The limit of the left hand side is 1 for T → ∞ and the corresponding limit for the left

hand side is infinity. Since both functions are monotone, at least for T1 >
1
r

(
1− r2x

r−ρ

)
this

inequality is fulfilled.
Finally for (b) we can rewrite 0 ≤ tm in the form

0 ≤ 1

r
log
((1− e−rT )(r − ρ)

(rx+ (r − ρ)T )r

)
+ T

e−rT (rx+ (r − ρ)T )r ≥ (1− e−rT )(r − ρ) (2.12)

Since the left hand side is converging to zero for T → ∞ and the right hand side is
monotonically decreasing to 1/(ρ − r), which is negative, we see that for T bigger than
some constant T2 this inequality is fulfilled. Thus for T bigger than max(T1, T2) both
inequalities (a) and (b) are fulfilled.

Lemma 4. The wealth process is negative at tm for r < ρT
x+T and T big enough.

Proof. We start by inserting tm into the wealth process.

X(tm) =
x

1− e−rT
(

1− (1− e−rT )(r − ρ)

(rx+ (r − ρ)T )r

)
+

r − ρ
r

(Te−rT − (1−e−rT )(r−ρ)T
(rx+(r−ρ)T )r

1− e−rT
+

1

r
log
((1− e−rT )(r − ρ)

(rx+ (r − ρ)T )r

)
+ T

)
The inequality X(tm) ≤ 0 corresponds to

x

1− e−rT
(

1− (1− e−rT )(r − ρ)

(rx+ (r − ρ)T )r

)
− (r − ρ)2T

(rx+ (r − ρ)T )r2

≤ −r − ρ
r

(
Te−rT +

1

r
log
((1− e−rT )(r − ρ)

(rx+ (r − ρ)T )r

)
+ T

)
(2.13)

Taking the limit of the left hand side for T → ∞ we get x − (r − ρ)/r2 whereas the right
hand side of eq.(2.13) converges to infinity. Since both sides are monotone for big T it
follows that for T big enough this inequality will be fulfilled.
Indeed T has to be chosen in such a way that it is bigger than max(T1, T2), and that the
inequality (2.13) is fulfilled.

14



2.2. The deterministic problem for infinite time horizon

(a) The Wealth Processes (b) The Consumption Processes

Figure 2.1: In (a) we see six examples of wealth processes for different values of ρ. The
initial capital is 100 and the interest rate r = 1. We optimize over the time interval (0, 30).
Note that only for ρ = 5 the inequality r < ρT

x+T is fulfilled and we get negative wealth.
In (b) we see the corresponding consumption processes. Only for ρ = 5 negative consump-
tion is realized.

Remark 1. The above Lemmas prove that the wealth process can become negative for
r < ρT

x+T and big T . Indeed in Fig. 1 we see different realizations of the wealth process for
the same time interval (0, T ) but different choices of ρ for fixed interest rate r = 1.

In this section we solved the optimal consumption problem in a deterministic market for
exponential utility with a finite time horizon. We employed the dual method and noticed
that for r < ρT

x+T and T big enough the wealth process as well as the consumption process
will become negative at some point in time. Nevertheless, the wealth process will be exactly
zero at final time T , even if it was negative before.

2.2 The deterministic problem for infinite time horizon

We consider the limit T →∞: In this case the above formula for consumption simplifies to

Ĉ(t) = rx+ (r − ρ)
(
t− 1

r

)
. (2.14)

Simplifying even further, for x = 0 we obtain

Ĉ(t) = (r − ρ)t− (r − ρ)

r
. (2.15)

Assuming r > ρ we get the following situation: At time t = 0 we start with negative
consumption until at time t = 1/r we have consumption zero and from then on the con-
sumption process is positive.

15



Chapter 2. Duality Theory in the Deterministic and BMS Setting

For ρ > r on the other hand we start with positive consumption and after time t = 1
r we

have negative consumption.
Turning again to (2.14) we see that the influence of x only consists in a constant shift of
this consumption pattern by rx.
The formula for the wealth becomes

X̂(t) = x+
r − ρ
r

t, (2.16)

hence one becomes infinitely rich at time t = ∞ (under the assumption r > ρ). However,
discounted to time zero, the wealth X̂(t)e−rt clearly tends to zero.
If we recall our results from the section above, we can notice that the limit of r < ρT

x+T ,
which corresponds to the change between convex and concave wealth processes, is r < ρ.
Thus for the infinite time horizon case we have negative wealth at infinity for any r < ρ.
In any finite time problem the wealth process will eventually return to zero, in the infinite
time horizon case though the wealth will no longer return to zero.

Remark 2. From the previous considerations we argue that the good transversality con-
dition for t→∞ should be the weaker requirement

lim
t→∞

e−rtX(t) ≥ 0. (2.17)

We also calculate the indirect utility function J(X)

J(W ) = −
∫ ∞
0

e−ρte−a−(r−ρ)tdt,

= −1

r
e−rx+(r−ρ)/r (2.18)

which is exactly the same as in Merton (63).
Finally we can express Ĉ(t) in terms of X̂(t)

Ĉ(t) = rX̂(t) +
r − ρ
r

(2.19)

which is again in line with Merton (64).
We find the same results as in Merton, but there is negative consumption present in some
cases which is in contradiction to p.249 of [Merton 1969]. This can be avoided by imposing
the constraint C(t) ≥ 0.
The problem of negative consumption in the exponential utility case has been discussed
in [Cox, Huang] for the more general stochastic case. Suppose one can find an optimal
solution without the nonnegativity constraint, then the optimal constrained policy would
be to buy an insurance package which insures us against the negative consumption, and to
invest the rest of the initial capital into the unconstrained policy.

2.3 Exponential utility of consumption in the Black-Merton-
Scholes model

In this section we turn back to the general setting where we also have a risky asset charac-
terized by a and σ.

16



2.3. Exponential utility of consumption in the Black-Merton-Scholes model

We consider a slight variant of Merton’s (”primal”) method. We define the value function

I(X, t) = max
C(s)

E
[ ∫ T

t
e−ρsU(C(s))ds+B(X(T ), T )

]
. (2.20)

Our Ansatz for the value function is I(X, t) = De−ρte−rX(t), where D is a constant. We
choose I(X, t) of this form due to two reasons.
First the factor e−ρt is a reasonable choice since the utility of consumption (and bequest)
are discounted by that rate.
The second argument deals with the term e−rX(t). Suppose we have initial wealth x +
h instead of x, then we can finance an additional consumption of rh during the entire
period. So Ĉ(t) would be replaced by Ĉ(t) + rh. Now for h ↘ 0, this should be an
optimal investment,which leads to an increase of utility from U(Ĉ(t)) to U(Ĉ(t) + rh) ≈
U(Ĉ(t))e−rh, hence the scaling in wealth with e−rX(t).
Now we calculate the constant D. Therefore we calculate the optimal investment in the
exponential case. We have

IXX(X, t)

IX(X, t)
= r ∀ X ∈ R, t ≥ 0, (2.21)

hence by the basic arguments of Merton the Euro amount of investment in the stock is a−r
σ2r

,
in accordance with (65).
To calculateD, we plug our Ansatz into the corresponding HJB equation (17”) in [Merton 1969]
with η = 1 as assumed in the beginning

0 = −JX(X)− ρJ(X) + JX(X)rX + JX(X) log(JX(X))− (a− r)2

2σ2
JX(X)2

JXX(X)
,

where J(X) = eρtI(X, t) = De−rX and get

I(X, t) = −1

r
e−ρt−rX(t)+

r−ρ−(a−r)2/2σ2
r (2.22)

in accordance with eq. 61 in [Merton 1969].
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Chapter 3

Optimal Consumption and
Investment in a Geometric
Ornstein-Uhlenbeck Market1

3.1 Introduction

The problem of optimal consumption and investment in a stock market has been studied in
great detail since the 1960s. In [Merton 1969] one can find a collection of seminal articles
using the primal approach to solve this problem. Though most of the work is concentrated
on solving this problem in the Black-Merton-Scholes market model, one can apply the same
methods in other specific market settings.
The primal (or dynamic programming) approach involves calculating and solving the Hamilton-
Jacobi-Bellman equation to find the optimal consumption and investment processes.
In [Cox, Huang], [Delbaen, Schachermayer] and [Karatzas, Zitkovic], one can review the
dual approach to solve this problem. Using this approach we do not need to solve the HJB
equation, but instead the density of the martingale measure is used to calculate the optimal
consumption process and the optimal terminal wealth.
In [Karatzas, Lehoczky, Shreve, Xu] the dual approach is used for maximizing utility of ter-
minal wealth in an incomplete market. In [He, Pearson] the consumption is optimized under
short-sale constraints in a discrete-time, discrete-state-space securities market which is in-
complete. This is extended in [Girotto, Ortu]. Also [Elliott, Kopp] and [Karatzas, Shreve]
provide a good insight into the dual method.
The Ornstein-Uhlenbeck process was first presented in [Uhlenbeck, Ornstein]. The prob-
lem of optimizing the terminal wealth in an Ornstein-Uhlenbeck market when the horizon
tends to infinity has been considered in great detail in [Föllmer, Schachermayer]. Here
we present an extension of the terminal wealth problem, since we want to optimize the
utility of consumption and terminal wealth. In [Bormetti, Cazzola, Montagna, Nicrosini],
[Florens-Landais, Pham] and [Barndorff-Nielsen, Shephard] the importance of the Ornstein-
Uhlenbeck process for financial modeling is shown.
We consider an exponential Ornstein-Uhlenbeck market with one stock (St)0≤t≤T and one

1This chapter is an extended version of the corresponding paper, which is submitted but not yet published.
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bond (Bt)0≤t≤T governed by

St = exp(Yt),

dYt = −βYtdt+ σdWt,

dBt = rBtdt,

with β, σ and r constants and (Wt)0≤t≤T is a standard Brownian Motion, which is complete.
Using Itô’s formula we can also write down the SDE for the stock price St

dSt = Stσ
[
dWt −

1

σ

(
βYt −

σ2

2

)
dt
]
. (3.1)

We want to optimize the finite time problem

V (x) = sup
C,w

EP
[ ∫ T

0
U1(t, Ct)dt+ U2(T,XT )

]
,

where x = X0 is the initial wealth, (Xt)0≤t≤T is the wealth process, w = (wt)0≤t≤T is the
investment process and C = (Ct)0≤t≤T is the consumption process. The function V (x)
is called the value function and the functions U1(.) and U2(.) are utility functions. For a
utility function we use definition 4.1 from [Karatzas, Shreve], which we repeat here briefly.

Definition 1 (Utility function). A utility function is a concave, nondecreasing, upper
semicontinuous function U : R → [−∞,∞) where dom(U) = {x ∈ R | U(x) > −∞} is
a nonempty subset of [0,∞) and U ′ is continuous, positive and strictly decreasing on the
interior of dom(U) with U ′(∞) = 0.

Remark 3. The following results can also be applied for a more general model

St = exp(Yt + µt) with µ constant. (3.2)

This will only result in a change of constants (see [Föllmer, Schachermayer]), so without
loss of generality we may assume µ = 0.

In the next sections we do not only solve the optimal consumption and terminal wealth
problem under a subjective discounting rate ρ for power, logarithmic and exponential utility,
but we also review the limiting behavior of the value function, as well as the dependence
on the discounting rate ρ. A positive rate ρ means that we would prefer to consume sooner
rather than later, whereas a negative rate will encourage us to save some money for later
consumption.
Section 3.3 is dedicated to the comparison of the primal and the dual approach.
In the last section of the first part we present numerical results and compare the results of
simulated processes with the analytical solution of the value function.

3.2 Optimal Consumption

In the market described in the introduction of this chapter which is defined on the filtered
probability space (Ω,F , (Ft)0≤t≤T , P ) we consider the finite horizon problem

V (x) = sup
C,w

EP
[ ∫ T

0
exp(−ρt)θU1(Ct)dt+ exp(−ρT )(1− θ)U2(XT )

]
. (3.3)
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3.2. Optimal Consumption

The factor ρ is our subjective discounting factor, θ and respectively 1 − θ are the weights
of the utility of consumption and terminal wealth, and θ ∈ [0, 1]. Choosing θ equal to zero
corresponds to the optimal terminal wealth problem.
We will use the dual approach described in [Cox, Huang] to write down the general form
of the solution of this problem.
Clearly a positive ρ means that we concentrate on the here and now, so we would consume
rather sooner than later. A negative ρ on the other hand represents an individual who
is willing to consume less today for the possibility to consume more tomorrow, thus he is
focused on the future.
To solve this optimization problem we need the inverse functions I1 and I2 of the first
derivatives of U1 and U2. Then the optimal consumption process C∗ = (C∗t )0≤t≤T and the
optimal terminal wealth X∗T are given by

C∗t = I1

(λ
θ
Hte

ρt
)

for 0 ≤ t ≤ T and

X∗T = I2

( λ

1− θ
HT e

ρT
)
,

which was shown in [Cox, Huang] Theorem 2.1. Since we are in a geometric Ornstein-
Uhlenbeck market, we have a unique martingale measure, under which the discounted stock
price is a martingale. Here HT defines the equivalent martingale measure Q via dQ/dP =
HT e

rT , and (Ht)0≤t≤T is sometimes called state price density process [Karatzas, Shreve]:

Ht = exp
(
−
∫ t

0
φsdWs −

1

2

∫ t

0
φ2sds− rt

)
for 0 ≤ t ≤ T .

The density function Ht is defined using the market price of risk φt (Sharpe ratio, see
[Sharpe]), which is in this model given by

φt =
σ2 − 2r

2σ
− β

σ
Yt.

Finally the Lagrange multiplier λ is defined by the budget constraint

x = EP
[ ∫ T

0
HtI1

(λ
θ
Ht exp(ρt)

)
dt+HT I2

( λ

1− θ
HT exp(ρT )

)]
. (3.4)

In order to calculate the investment process (wt)0≤t≤T , which represents the number of
shares of stock we hold at time t, we use the first main result of [Cox, Huang] which is
given by Theorem 2.1, and provides the solution of the optimal consumption and investment
problem. Analogous to [Cox, Huang] we define

F ((λHt)
−1, St, t) = (λHt)

−1EP
[ ∫ T

t
(λHs)I1

(λ
θ
Hse

ρs
)
ds+ (λHT )I2

( λ

1− θ
HT e

ρT
)∣∣∣Ft]

for 0 ≤ t ≤ T and Theorem 2.1 then allows us to write

wt = FS((λHt)
−1, St, t) +

φ

σλHtSt
F(λHt)−1((λHt)

−1, St, t) for 0 ≤ t ≤ T ,

using the notation of our particular market setting. The development of the wealth process
is given by X∗t = F ((λHt)

−1, St, t) for t ∈ [0, T ] as stated in [Cox, Huang]. By No-Arbitrage
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Chapter 3. Optimal Consumption in a Geometric Ornstein-Uhlenbeck Market

arguments it is clear that for any utility function as in Definition 1, the consumption and
the wealth process will always be nonnegative.

To prevent us from negative terminal wealth or consumption in the exponential utility
case we can use the method described in [Cox, Huang]. We do not invest all of our initial
capital in our strategy but only the part X̃0, and the rest x−X̃0 is used to buy insurance in
case we have negative wealth or consumption during [0, T ]. This corresponds to a change
of the Lagrange multiplier and thus to a shift of the constant in the consumption and the
terminal wealth process.
This insurance against negative consumption and wealth can be represented by European
Put options, this continuum of put options on consumption and the put option on the ter-
minal wealth cost x− X̃0. We consume the positive part of the unconstrained consumption
process calculated with the initial capital X̃0.
in the following subsections we calculate the optimal consumption strategies for Power,
Logarithmic and Exponential Utility.

3.2.1 Power Utility

We assume that U1 and U2 are of the form

U1(x) = U2(x) =
xα

α
,

with α a given constant in (−∞, 1) \ {0} and thus the functions I1 and I2 take the form

I1(x) = I2(x) = x
1

α−1 .

The consumption process and the terminal wealth are given by

C∗t =
(λ
θ

) 1
α−1

H
1

α−1

t e
ρ

α−1
t, t ∈ [0, T ] (3.5)

X∗T =
( λ

1− θ

) 1
α−1

H
1

α−1

T e
ρ

α−1
T . (3.6)

Since the last two terms in either process are exponential functions, they are positive for
sure. It remains to show the positivity of the Lagrange multiplier λ to prove that the optimal
consumption process (C∗t )0≤t≤T and the optimal terminal wealth X∗T are well defined. Thus
we take a closer look at the definition of the Lagrange multiplier λ.

x = EP
[ ∫ T

0

(λ
θ

) 1
α−1

H
α
α−1

t e
ρ

α−1
tdt+

( λ

1− θ

) 1
α−1

H
α
α−1

T e
ρ

α−1
T
]

λ
1

α−1 = x
[
EP
[ ∫ T

0
H

α
α−1

t θ−
1

α−1 e
ρ

α−1
tdt+H

α
α−1

T (1− θ)−
1

α−1 e
ρ

α−1
T
]]−1

= x
[ ∫ T

0
EP
[
H

α
α−1

t

]
θ−

1
α−1 e

ρ
α−1

tdt+ EP
[
H

α
α−1

T

]
(1− θ)−

1
α−1 e

ρ
α−1

T
]−1

All terms inside the expectation are positive as well as the initial capital x so λ is well-
defined. Also, λ is finite since the sum of the expectation of terminal wealth and consump-
tion is not equal to zero. All terms, with exception of θ and (1 − θ), are of exponential
form, therefore both summands are strictly positive.
Finally we can write down the wealth process (X∗t )0≤t≤T

X∗t = (λHt)
−1EP

[ ∫ T

t

(λ
θ

) α
α−1

H
α
α−1
s e

αρs
α−1ds+

( λ

1− θ

) α
α−1

H
α
α−1

T e
αρT
α−1

∣∣∣Ft], t ∈ [0, T ]
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3.2. Optimal Consumption

which can be used to write down the optimal investment process (wt)0≤t≤T as stated in the
beginning of section 2.
If we assume θ → 0, we see that the solution of the optimal consumption and terminal
wealth problem converges to the solution of the optimal terminal wealth problem. Indeed
for θ = 0 we have zero consumption and for r = ρ = 0 we get the same optimal terminal
wealth as in [Föllmer, Schachermayer].

Proposition 1. The expected utility of consumption for power utility at time t ∈ [0, T ] is
given by upowt = EP [ 1αC

α
t ] and it is of the form

EP
[ 1

α
Cαt

]
=

1

α

(λ
θ

) α
α−1

(1−A2(t))
−1/2 exp

(
A1(t) + (1−A2(t))

−1A3(t) +
α(ρ− r)
α− 1

t
)
,(3.7)

for t ∈ [0, T ] where

A1(t) =
σ2 − 2r

2σ2
α

α− 1
Y0 −

(σ2 − 2r)2

8σ2
α

α− 1
t− β

2σ2
((α− 1)−1 + (1− α)−1/2)(Y 2

0 + σ2)t,

A2(t) = −α− 1

4β
(1− e−2β(1−α)−1/2t)2((α− 1)−1 + (1− α)−1/2),

A3(t) =
β

2σ2
((α− 1)−1 + (1− α)−1/2)e−2β(1−α)

−1/2t − σ2 − 2r

2σ2
α

α− 1
e−2β(1−α)

−1/2t

− (σ2 − 2r)2

32β

α2

α− 1
(1− e−2β(1−α)−1/2t)2.

Proof. We can write

EP
[ 1

α
Cαt

]
=

1

α

(λ
θ

) α
α−1

e
αρ
α−1

tEP
[
H

α
α−1

t

]
t ∈ [0, T ].

Therefore it remains to calculate EP [H
α
α−1

t ]. To achieve this we employ the same procedure
as in [Föllmer, Schachermayer]. We define the measure P δ by

φδt = exp
(∫ t

0

β − δ
σ

YsdWs −
1

2

∫ t

0

(β − δ)2

σ2
Y 2
s ds

)
= exp

(∫ t

0

β − δ
σ

YsdYs +
1

2

∫ t

0

β2 − δ2

σ2
Y 2
s ds

)
which is constructed in such a way as to eliminate the term

∫ t
0 Y

2
s ds if we set δ = β

√
1− α

α−1 .

So we can write

EP [H
α
α−1

t ] = EP
δ
[H

α
α−1

t (φδ)−1]

= e−
αr
α−1

tEP
δ
[

exp
(
− σ2 − 2r

2σ2
α

α− 1
(Yt − Y0)−

(σ2 − 2r)2

8σ2
α

α− 1
t

+
β

2σ2
((α− 1)−1 + (1− α)−1/2)(Y 2

t − Y 2
0 − σ2)t

)]
.

Since Yt is under P δ Gaussian with mean m = e−δt and variance v2 = (1− e−δt)σ2/(2δ) we
can use

EP [exp(ξY 2 + ζY )] = (1− 2ξv2)−1/2 exp
(

(1− 2ξv2)−1
(
ξm2 + ζm+

1

2
ζ2v2

))
and thus get the result stated in eq.(3.7).
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3.2.2 Logarithmic Utility

Remark 4. The problem of optimizing logarithmic utility has been studied in great detail
in various market settings. In [Merton 1969] it is shown that different assumptions on the
price behavior lead to the same optimal consumption process, if one uses logarithmic utility.

Nevertheless we give here the solution of the optimal consumption problem, but then
turn immediately to the analysis of the value function itself. We assume that U1 and U2

are of the form

U1(x) = U2(x) = lnx,

and thus the functions I1 and I2 take the form

I1(x) = I2(x) =
1

x
.

The consumption process and the terminal wealth are given by

C∗t =
θ

λ
H−1t e−ρt, t ∈ [0, T ] (3.8)

X∗T =
1− θ
λ

H−1T e−ρT . (3.9)

In this case the calculation of λ leads to a very nice result, since the Ht terms cancel. We
get two different solutions: one for ρ equal to zero and one for ρ 6= 0

λ =

{
θ(T−1)+1

x for ρ = 0,

x−1
[
θ
ρ + e−ρT

(
1− θ − θ

ρ

)]
else.

There are no problems for the logarithmic utility in any case. We can write down the
optimal invested wealth as well as the optimal investment process for t ∈ [0, T ]

X∗t =

{
θ(T−1)+1

λHt
for ρ = 0

1
λHt

( θρe
−ρt − (1− θ − θ

ρ)e−ρT ) else
,

w∗t =

{
φ

λσStHt
(θ(T − 1) + 1) for ρ = 0

φ
λσρStHt

(θe−ρt + (ρ− 2θ)e−ρT ) else
.

Proposition 2 (Behavior of the Value Function under Logarithmic Utility). For the loga-
rithmic utility function the following limits can be calculated:

lim
ρ→∞

V ln(x) = 0

lim
ρ→−∞

V ln(x) = ∞ if ln(x) > 0 and(βY 2
0

4σ2
− 1

8

)(
e−2βT + 1

)
− (σ2 − 2r)θY0

2σ2

(
e−βT + 1

)
> −(σ2 + 2r)2 + 2βσ2

8σ2

lim
T→∞

V ln(x) =
θ

ρ

(
ln(xρ)− 9

8
+
βY 2

0

4σ2
− (σ2 − 2r)Y0

2σ2
+

(σ2 + 2r)2 + 2βσ2

8σ2ρ

)
(3.10)

− θ

ρ+ 2β

(βY 2
0

4σ2
− 1

8

)
+

(σ2 − 2r)θY0
2σ2(ρ+ β)

if ρ > 0.
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Proof. The value function under logarithmic utility is given by

V ln(x) = EP
[ ∫ T

0
θe−ρt ln

( xθ

Hteρt(
θ
ρ + e−ρT (1− θ − θ

ρ))

)
dt

+ (1− θ)e−ρT ln
( x(1− θ)
HT eρT ( θρ + e−ρT (1− θ − θ

ρ))

)]
,

and by interchanging integration and expectation and integrating the deterministic elements
of the value function it can be rewritten as

V ln(x) =
θ

ρ
(1− e−ρT )(ln(θx)− ln

(θ
ρ

+ e−ρT
(

1− θ − θ

ρ

))
− 1) + θTe−ρT

+ (1− θ)e−ρT (ln((1− θ)x)− ln
(
eρT

θ

ρ
+ 1− θ − θ

ρ

)
− θ

∫ T

0
e−ρtEP [lnHt]dt− (1− θ)EP [lnHT ]).

We now consider Ht in detail. Since Ht is of exponential form, we can write

ln(Ht) = −
∫ t

0

(σ2 − 2r

2σ
− β

σ
Ys

)
dWs +

∫ t

0

β(σ2 − 2r)

2σ2
Ysds

−
∫ t

0

β2

2σ2
Y 2
s ds−

(σ2 + 2r)2

8σ2
t

=
1

σ

∫ t

0

(β
σ
Ys −

σ2 − 2r

2σ

)(
dYs + βYsds

)
+

∫ t

0

β(σ2 − 2r)

2σ2
Ysds

−
∫ t

0

β2

2σ2
Y 2
s ds−

(σ2 + 2r)2

8σ2
t

=
1

σ

∫ t

0

(β
σ
Ys −

σ2 − 2r

2σ

)
dYs +

∫ t

0

β2

2σ2
Y 2
s ds−

(σ2 + 2r)2

8σ2
t

=
σ2 − 2r

2σ2
(Y0 − Yt)−

β

2σ2
(Y 2
t − Y 2

0 − σ2t) +
β2

2σ2

∫ t

0
Y 2
s ds−

(σ2 + 2r)2

8σ2
t

=
σ2 − 2r

2σ2
(Y0 − Yt) +

β

4σ2
(Y 2
t − Y 2

0 ) +
β

2σ

∫ t

0
YsdWs

− (σ2 + 2r)2 + 2βσ2

8σ2
t.

The fact that the squared Ornstein-Uhlenbeck process Y 2
t is a Cox-Ingersoll-Ross process

(see [Cox, Ingersoll, Ross]) can be used to calculate the expectation of Y 2
t using

Yt = Y0 −
∫ t

0
βYsds+

∫ t

0
σdWs and

Y 2
t = Y 2

0 +

∫ t

0
(σ2 − 2βY 2

s )ds+

∫ t

0
2σYsdWs.

Thus we get

EP [Yt] = Y0e
−βt and

EP [Y 2
t ] = Y 2

0 e
−2βt +

σ2

2β
(1− e−2βt),
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and we can calculate

EP [ln(Ht)] = −(σ2 + 2r)2 + 2βσ2

8σ2
t+

(σ2 − 2r)Y0
2σ2

(1− e−βt)

+
(βY 2

0

4σ2
− 1

8

)
e−2βt +

1

8
− βY 2

0

4σ2
. (3.11)

Plugging in our results and integrating yields

V ln(x) =
θ(1− e−ρT )

ρ

(
ln(θx)− ln

(θ
ρ

+ e−ρT
(

1− θ − θ

ρ

))
− 9

8
+
βY 2

0

4σ2
− (σ2 − 2r)Y0

2σ2

+
(σ2 + 2r)2 + 2βσ2

8σ2ρ

)
+ e−ρT

(
Tθ
(

1− (σ2 + 2r)2 + 2βσ2

8σ2ρ

)
+

(σ2 − 2r)θY0
2σ2

(
1− θ − θ

(ρ+ β)

)
e−βT + (1− θ)

(
ln((1− θ)x)− ln

(θ
ρ
eρT + 1− θ − θ

ρ

))
+
( θ

ρ+ 2β
− 1 + θ

)(βY 2
0

4σ2
− 1

8

)
e−2βT − (1− θ)

((σ2 − 2r)Y0
2σ2

+
1

8
− βY 2

0

4σ2

− (σ2 + 2r)2 + 2βσ2

8σ2
T
))
− θ

ρ+ 2β

(βY 2
0

4σ2
− 1

8

)
+

(σ2 − 2r)θY0
2σ2(ρ+ β)

.

Using this representation we can deduce the limits stated in eq.(3.10). The limit T →∞ is a
straightforward calculation, whereas for the limit ρ→∞ we have to employ l’Hôpital’s rule

several times to calculate (1−e−ρT ) ln
(
θ
ρ +e−ρT

(
1−θ− θ

ρ

))
and e−ρT ln

(
θ
ρe
ρT +1−θ− θ

ρ

)
which are both equal to zero in the limit.
For the limit ρ→ −∞ we see that the value function consists of a sum of terms which each
converge to infinity under the conditions stated in the theorem.

Once we let ρ tend to minus infinity, that implies that we would prefer later consumption.
Letting ρ tend to plus infinity we model the need for sooner consumption.
If we emphasize the present more than the future, we are eager to consume sooner rather
than later. Therefore we will consume most of our capital in the beginning and there is not
much money left for investment.
On the other hand, if we value the future more than the present, we can now trade profitable.
We can increase our wealth and thus the overall utility of consumption, if we do not feel
compelled to consume early due to a high (subjective) discounting rate.

Proposition 3. The expected utility of consumption for logarithmic utility at time t ∈
[0, T ] is given by ulnt = EP [ln(Ct)] and it takes the form

ulnt = ln
θ

λ
−
(
ρ− (σ2 + 2r)2 + 2βσ2

8σ2

)
t− (σ2 − 2r)Y0

2σ2
(1− e−βt)

−
(βY 2

0

4σ2
− 1

8

)
e−2βt − 1

8
+
βY 2

0

4σ2
.

Proof. We calculate

EP [ln(Ct)] = EP [ln
( θ
λ
H−1t e−ρt

)
] = ln

θ

λ
− EP [ln(Hte

ρt)]

= ln
θ

λ
−
(
ρ− (σ2 + 2r)2 + 2βσ2

8σ2

)
t− (σ2 − 2r)Y0

2σ2
(1− e−βt)

−
(βY 2

0

4σ2
− 1

8

)
e−2βt − 1

8
+
βY 2

0

4σ2
.
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Remark 5. If we set θ = 0 in this problem, we will have zero utility of consumption and
thus have the optimal terminal wealth problem as considered in [Föllmer, Schachermayer].
Since the form of the consumption process is very similar to the wealth process we can
immediately write down the growth rate of terminal wealth using the same calculations as
in the preceding proposition which is

lim
T↗∞

EP [ln(XT )]

T
=

(σ2 + 2r)2 + 2βσ2

8σ2

for ρ = 0 and exactly the same as in proposition 5.1 in [Föllmer, Schachermayer] for r = 0.

Proposition 4. Let ρ > 0 and T →∞, then the limt→∞ EP [lnCt] is approximately linear

with drift (σ2+2r)2+2βσ2

8σ2 − ρ.

Proof. Letting T → ∞ the Lagrange multiplier converges to θ
xρ for ρ > 0. Now we can

deduce

lim
t→∞

EP [lnCt] = lim
t→∞

EP [lnxρ− lnHt − ρt]

= lnxρ−
(
ρ− (σ2 + 2r)2 + 2βσ2

8σ2

)
t− (σ2 − 2r)Y0

2σ2
(1− e−βt)

−
(βY 2

0

4σ2
− 1

8

)
e−2βt − 1

8
+
βY 2

0

4σ2
,

which concludes the proof.

3.2.3 Exponential Utility

Finally we assume that U1 and U2 are of the form

U1(x) = U2(x) = −exp(−ηx)

η
,

with η > 0 constant, thus the functions I1 and I2 take the form

I1(x) = I2(x) = − lnx

η
.

The consumption process and the terminal wealth are given by

C∗t =
ln θ

η
− lnλ

η
− ln(Hte

ρt)

η
, t ∈ [0, T ] (3.12)

X∗T =
ln(1− θ)

η
− lnλ

η
− ln(HT e

ρT )

η
, (3.13)

and the optimal invested wealth for t ∈ [0, T ] is given by

X∗t = − 1

ηHt
EP
[ ∫ T

t
Hs(ln

(λ
θ

)
+ lnHs + ρs)ds+HT (ln

( λ

1− θ

)
+ lnHT + ρT )

∣∣∣Ft].
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The Lagrange multiplier λ is well defined by

λ = exp
(
− ηx+ E1

e−rT (1− 1
r ) + 1

r

)
, where

E1 = EP
[ ∫ T

0
Ht(lnHt + ρt− ln θ)dt+HT (lnHT + ρT − ln(1− θ))

]
.

We want to calculate the Lagrange multiplier more precisely. To do that we take a closer
look at E1 and get by interchanging the expectation and integration, and changing the
measure from P to Q

E1 =

∫ T

0
(EQ(lnHt) + ρt− ln θ)e−rtdt+ (EQ(lnHT ) + ρT − ln(1− θ))e−rT .

We see that it remains to calculate EQ[lnHt] and respectively EQ[lnHT ]. To do this we
rewrite lnHt in such a way as to get rid of the Brownian Motion Wt under the measure P
and replace it with WQ

t which is a Brownian Motion under Q. We get for t ∈ [0, T ]

lnHt =
1

2

∫ t

0

(σ2 − 2r

2σ
− β

σ
Ys

)2
ds− rt−

∫ t

0

(σ2 − 2r

2σ
− β

σ
Ys

)
dWQ

s .

Since we know that

EQ[Yt] = Y0 −
σ2

2
t,

EQ[Y 2
t ] = σ2t+ Y 2

0 − σ2Y0t+
σ4

4
t2,

we finally get

EQ lnHt =
(1

2

(β
σ
Y0 −

σ2 − 2r

2σ

)2
− r
)
t+

(β2
4

(1− Y0) +
β

8
(σ2 − 2r)

)
t2 +

β2σ2

24
t3.

Integrating with respect to t and collecting similar terms we get

E1 =
(1

2

(β
σ
Y0 −

σ2 − 2r

2σ

)2
− r + ρ

)(
e−rT

(
1− T

r
− 1

r2

)
+

1

r2

)
+
(β2

4
(1− Y0) +

β

8
(σ2 − 2r)

)(
e−rT

(
1− T 2

r
− T

r2
− 2

r3

)
+

2

r3

)
+
β2σ2

24

(
e−rT

(
1− T 3

r
− 3T 2

r2
− 6T

r3
− 6

r4

)
+

6

r4

)
+

ln θ

r
(e−rT − 1)− ln(1− θ)e−rT .

Unlike the power and logarithmic utility the solution of the exponential utility consumption
and terminal wealth problem does not coincide with the solution of the pure terminal wealth
problem if we consider the limit θ → 0. This is due to the fact that we consider the uncon-
strained problem, and thus the possibility to consume gives us (by negative consumption)
the possibility to increase the terminal wealth.

Proposition 5 (Behavior of the Value Function under Exponential Utility). In the case of
exponential utility of consumption and terminal wealth we see that the value function is of
the form

V exp(x) = −λ
η

(
e−rt

(
1− 1

r

)
+

1

r

)
.
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For ρ → −∞ we have V exp(x) → −∞ and for ρ → ∞ we have V exp(x) → 0. Furthermore
the value function is monotone in ρ.

Proof. The value function for the exponential utility can be calculated by inserting the
optimal consumption process (C∗t )0≤t≤T and the optimal terminal wealth X∗T into eq.(3.3),
as well as the explicit form of I1(.) and I2(.). By using Fubini’s theorem we get:

V exp(x) = −EP
[ ∫ T

0

θ

η
exp(−ρt) exp

(
− η
( ln θ

η
− lnλ

η
− ln(Hte

ρt)

η

))
dt

+
1− θ
η

exp(−ρT ) exp
(
− η
( ln(1− θ)

η
− lnλ

η
− ln(HT e

ρT )

η

))]
= −EP

[ ∫ T

0

θ

η
exp

(
ln
λHt

θ
+ ρt− ρt

)
dt+

1− θ
η

exp
(

ln
λHt

1− θ
+ ρT − ρT

)]
= −λ

η
EP
[ ∫ T

0
Htdt+HT

]
= −λ

η

(
e−rT

(
1− 1

r

)
+

1

r

)
.

As we can see, all terms depending directly on ρ cancel. It remains to look at λ, which still
depends on ρ. Since λ depends on ρ only through E1 which is linear in ρ, this proves that
the limits of the value function are −∞ for ρ → −∞ and zero for ρ → ∞, as well as the
monotonicity.

We see that if ρ tends to minus infinity the value function tends to minus infinity, and
for ρ→∞ the value function tends to zero. We also see that by increasing our subjective
discounting rate, we will cause the value function to increase as well.
Because of the fact that in this model the benefit of consumption in the present is so
high, the utility gained when consuming early on can never be made up for, even though
profitable investments would be realized later on.
Assuming that the conditions in Proposition 2 for limρ→−∞ V

ln(x) =∞ are fulfilled, these
two models present two very different individuals due to several reasons. The individual
with logarithmic utility has for ρ → ∞ a utility of zero, which is neither the best nor the
worst outcome. Whereas the individual with the exponential utility has for ρ → ∞ the
utility of zero, which represents the optimum for him.
Since the exponential utility is always negative it is optimal to multiply with a small number
in order to increase the supremum. Therefore one would choose a high positive ρ. The
logarithmic utility on the other hand can be positive and negative. For ρ → −∞ the
optimal value of the logarithmic utility is attained for the exponential utility on the other
hand this gives the worst outcome.

Proposition 6. The expected utility of consumption for exponential utility at time t ∈
[0, T ] is given by uexpt = EP [− 1

η exp(−ηCt)] and it takes the form −λ
η e

(ρ−r)t.

Proof. We calculate

EP
[
− 1

η
exp(−ηCt)

]
= −λ

η
EP [Hte

ρt] = −λ
η
e(ρ−r)t.
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Lemma 5. In the problem given by eq.(3.3) for exponential utility and ρ < r, the con-
sumption process is a submartingale.

Proof. According to the previous calculations we have

Ct =
ln θ

η
− lnλ

η
− ln(Hte

ρt)

η
, t ∈ [0, T ].

We assume s < t and prove the submartingale property using Jensen’s inequality and the
martingale property of Hte

rt.

EP [Ct|Fs] =
ln θ

η
− lnλ

η
− EP

[ ln(Hte
ρt)

η

]
≥ ln θ

η
− lnλ

η
− ln(EP [Hte

ρt])

η

=
ln θ

η
− lnλ

η
− ln(Hse

ρt−r(t−s))

η

=
ln θ

η
− lnλ

η
− ln(Hse

ρs)

η
− ln(eρ(t−s)−r(t−s))

η

= Cs −
(ρ− r)(t− s)

η
≥ Cs.

In the case of the exponential utility there is always the risk of encountering negative
consumption and ending up with liabilities at final time T . This depends largely on the
initial capital we are endowed with. The main contribution of this Lemma is that it shows
that depending on ρ ≷ r there is either an upward or downward drift of the consumption
process.
The critical rate of consumption is exactly the interest rate of the bond which is not very
surprising. Assuming that we discount higher than what we can get in return by investing
profitably we would rather consume much in the beginning than wait until consumption is
not very satisfying for oneself anymore.
We can relate this result to the deterministic model in section 2.1 and 2.2 where we have
increasing and decreasing consumption processes depending on ρ ≷ r as well, reflecting the
relation between the deterministic and the stochastic model.

3.3 Comparison of the Primal and Dual Approach

3.3.1 The Primal Approach

In [Merton 1969] one can find the primal solution for consumption under exponential utility.
We want to optimize the infinite time problem

V (x) = sup
C,w

EP
[
−
∫ ∞
0

exp(−ηCt)
η

dt
]
,

where η is the scaling parameter of the utility function, which has been studied in [Merton 1969]
to illustrate the equality of the primal and the dual approach. The constants D1, D2 and
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D3 (which will be used later on) are given by

D1 =
β

σ2r

[σ2
2

+
βσ2

2r
− r − β

]
,

D2 =
β2

2r2
− 1 +

1

rσ2

(1

2
+
β

r
+
β2

r2

)(σ2
2
− r
)2

and

D3 =
β2

r2

(σ2
2
− r
)
.

For a detailed description of the stochastic control approach see for example [Øksendal].
We define

J(X,Y, t) = sup
C,w

EP
[
−
∫ ∞
t

exp(−ηCs)
η

ds
]
,

and by Jt we denote the derivative with respect to time, and analogous the other derivatives.
Using Theorem 11.2.1 in [Øksendal] we obtain the HJB equation

0 = −exp(−ηC∗)
η

+ Jt + JX

(
w∗X

[σ2
2
− βY − r

]
+ rX − C∗

)
+

1

2
JXX(w∗X)2σ2 − JY βY +

1

2
JY Y σ

2 + JY Xw
∗Xσ2 (3.14)

which coincides with [Merton 1969]. Employing the definitions from above we find the
solution of the HJB equation

J(X,Y, t) = − 1

ηr
exp

(
− ηrXt −

β2

2σ2r
Y 2
t +D1Yt −D2

)
,

and the corresponding optimal consumption process (C∗t )0≤t≤T and investment process
(w∗t )0≤t≤T are given by the first order conditions

C∗t = − ln(JX)

η
,

w∗tXt = −
JX(σ

2

2 − βY − r)
JXXσ2

− JXY
JXX

.

Inserting the solution of the HJB equation we get the explicit form

C∗t = rXt +
β2

2σ2ηr
Y 2
t −

1

η
D1Yt +

1

η
D2 and

w∗tXt =
1

ηrσ2

[(
1 +

β

r

)(σ2
2
− βYt − r

)
+D3

]
for t ∈ [0, T ] as shown in [Merton 1969]. We now calculate the limit of the wealth process
Xt for t → ∞ to show whether our optimal strategy implies amassing infinite debts at
infinity.

Xt = x+

∫ t

0
wtXt

dSt
St

+

∫ t

0
(1− wt)Xt

dBt
Bt
−
∫ t

0
C∗sds

Xt = x−
∫ t

0

1

ηrσ2

[(
1 +

β

r

)(σ2
2
− βYs − r

)
+D3

](
βYs −

σ2

2
+ r
)
ds (3.15)

−
∫ t

0

β2

2σ2ηr
Y 2
s −

D1Ys
η

+
D2

η
ds+

∫ t

0

1

ηrσ

[(
1 +

β

r

)(σ2
2
− βYs − r

)
+D3

]
dWs.
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We insert the expressions we stated in Proposition 2 concerning EP [Yt] and EP [Y 2
t ] into

eq.(3.15) and apply Fubini’s theorem to get

EP [Xt] = x+
β2

ηrσ2

∫ t

0

(1

2
+
β

r

)
EP [Y 2

s ]ds

− β

ηrσ2

∫ t

0

(σ4
2
− 2σ2r + 2r2 +

β2σ2

2r2
− β2

r
− σ2

2
+
βσ2

2r2
− r − β

)
EP [Ys]ds

+
1

ηrσ2

∫ t

0

(σ4
8
− 3σ2r

2
+
r2

2
+
βσ2

2r

)
ds.

It remains to substitute the formulas for the expectation of Ys and Y 2
s and to integrate

with respect to t. Most terms of Xt are either constant or tend to zero with exception of
some linear terms. To determine the behavior of the wealth process, we take a closer look
at these terms and see that

EP [Xt] ≈
1

ηrσ2

[1

2
(r2 − 3σ2r) +

βσ2

4
+
β2σ2

r
+
σ2

8

]
t for t→∞.

The discounted wealth process Xte
−rt on the other hand tends to zero for t → ∞. Con-

cluding, we can say that this problem and its solution are well-defined and especially the
limit of the terminal wealth does not tend to minus infinity for reasonable choices for the
constants r, σ and β.
Since the wealth process increases at a slower (linear) rate than the discounting factor,
which is exponential, we see that in the future our wealth will not be worth as much as
now. This reflects the importance of the near future to the investor.
Another question is for which value of Yt the consumption is the smallest. To calculate
this, we complete the terms in C∗t to a total square and thus write

C∗t = rXt +
( β

σ
√

2ηr
Yt −

σ
√
r√

2ηβ
D1

)2
+

1

η
D2 −

σ2rD2
1

2ηβ2
.

We see that the consumption depends linearly on the current wealth Xt and in a quadratic
way on the logarithm of the stock price. From this form we see that for a given wealth Xt

the consumption C∗t is minimal if

Yt =
1

β

[σ2
2

+
βσ2

2r
− r − β

]
= Ỹ .

So we consume much if the stock price, and thus its logarithm, is either very big, or very
small. This can be explained by the fact that in these cases we can expect the price to
return to its original level. This additional knowledge gives us the possibility to consume
more. Moreover, we can ask if the consumption process is positive or not. To answer this
question we consider the consumption for the worst case of Yt. Inserting Ỹ and simplifying
gives

C∗t |Yt=Ỹ = rXt +
1

η

[β2
2r

( σ2
4r2

+
1

σ2

)
− 1
]
. (3.16)

Thus we see that even if we have to consume as little as possible, we will still have positive
consumption if our current wealth is big enough, where big enough depends on the choice
of the constants.
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3.3.2 The Dual Approach

We can solve the problem given by eq.(3.14) also using the dual method. In [Cox, Huang]
and [Karatzas, Zitkovic] the dual procedure for solving this problem can be found. Given
the utility U1 we can calculate the first derivative U ′1 and the inverse functions of the first
derivative I1. We get as before in the exponential utility case I1(z) = − ln z

η .
Then the optimal consumption process C∗t is given by

C∗t = I1(λHt) for t ∈ [0,∞] where λ is given by

λ = exp
(
− ηrx− r

∫ ∞
0

e−rtEQ[lnHt]dt
)

and Ht is the same as in section 2. The Lagrange multiplier λ is given by the budget
constraint. Thus by inserting the optimal consumption process as well as the optimal
terminal wealth into the budget constraint we can calculate λ.
Finally we get the optimal consumption process

C∗t = −rx− r

η

∫ ∞
0

e−rtEQ[lnHt]dt−
lnHt

η
for 0 ≤ t ≤ T . (3.17)

Lemma 6. The expectation of the consumption process EP [Ct] grows approximately linear
in t at the rate

EP [Ct]

t
≈ σ4 + 6σ2r + r2 + 2βσ2

8σ2η
. (3.18)

Since we assume the positivity of β, r, ρ and η it follows that the drift is positive and so
the expected consumption is increasing in t.

Proof. We can use the calculations from Example 2 and thus we can follow that

EP [ln(Ht)] = −σ
4 + 6σ2r + r2 + 2βσ2

8σ2
t+

(σ2 − r)Y0
2σ2

(1− e−βt)

+
(βY0

4σ2
− 1

8

)
e−2βt +

1

8
− βY 2

0

4σ2
.

Since C∗t is given by a constant minus 1
η lnHt, this proves the assumption.

Remark 6. This is in line with Lemma 2, since in this case we have ρ = 0 and a positive
r, thus the inequality ρ < r is fulfilled.

Finally, we turn to the calculation of the Lagrange multiplier λ. Using once again the
expressions we have for EQ[Yt] and EQ[Y 2

t ], we can calculate EQ[lnHt] and thus we calculate

lnλ = ηrx+
1

r3

(
r2
(1

2

(β
σ
Y0 −

σ2 − 2r

2σ

)2
− 1
)

+ 2r
(β2

4
(1− Y0) +

β

8
(σ2 − 2r)

)
+
β2σ2

4

)
for the logarithm of the Lagrange multiplier.
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3.3.3 Comparison of the two Approaches

We show that the consumption process we calculated using the primal approach is indeed
the same as the consumption process calculated by the dual method. This can be done by
inserting the following expressions for the wealth Xt and the logarithm of the stock price
Yt into the primal solution of the consumption problem.

Xt = x−
∫ t

0

1

ηrσ2

[(
1 +

β

r

)(σ2
2
− βYs − r

)
+D3

](
βYs −

σ2

2
+ r
)
ds

−
∫ t

0

( β2

2σ2ηr
Y 2
s −

D1Ys
η

+
D2

η

)
ds+

∫ t

0

1

ηrσ

[(
1 +

β

r

)(σ2
2
− βYs − r

)
+D3

]
dWs

Yt = Y0 −
∫ t

0
βYsds+

∫ t

0
σdWs

Y 2
t = Y 2

0 +

∫ t

0
(σ2 − 2βY 2

s )ds+

∫ t

0
2σYsdWs

Collecting the integrals with respect to s and those with respect to Ws, we get in both
approaches∫ t

0

(β2Y 2
s

2ησ2
+
βrYs
ησ2

− βYs
2η

+
r

2η
+

r2

2ησ2
+
σ2

8η

)
ds and

∫ t

0

(
− r

ησ
+

σ

2η
− βYs

ησ

)
dWs,

proving the equal behavior of the two processes.

3.4 Simulation

To illustrate the results of section 3.2 we want to present some simulated processes and
the corresponding optimal consumption strategy. We concentrate on the dependence of
the consumption process on the weight θ and the time horizon T . Also we discuss the
economical interpretation of our findings. Furthermore we compare the simulated with the
analytical results.
For the simulation we used the program R. We considered the time interval [0, 1] and sim-
ulated a Brownian motion with stepsize 500. Using this Brownian motion we calculated
the processes (Yt)0≤t≤T , (St)0≤t≤T , (Ht)0≤t≤T and (Ct)0≤t≤T . The analytical computations
and graphical representations were computed using Wolfram Mathematica 6.0.

Several papers are concerned with the calibration of the parameters in an Ornstein-
Uhlenbeck model. Depending on whether they want to model interest rates, commodities
or stock prices, not only the value but also the order of magnitude between the constants
vary. Also these models are often combined with other influences. We present here the
results for two very different choices of parameters. Models related to the one we consider
here can be found for example in [Schwartz, Smith].

In Table 3.1 we see different realizations of the optimal consumption and terminal wealth
problem for different price processes and utility functions. We see that the parameter η in
the exponential utility case has a huge influence on the magnitude of the value function.
Moreover we see that the simulated results are quite accurate compared to the analytical
solution.

34



3.4. Simulation

β = 0.03, σ = 0.2, β = 1.5, σ = 0.3,
ρ = 1, r = 0, T = 1 ρ = 1, r = 0, T = 1

V log 3.9739 6.9176
Sim AM: 3.9752 V: 0.0011 AM: 7.0080 V: 2.7607

V exp
η=0.1 −0.0635 −9.2422 · 10−6

Sim AM: −0.0633 V: 6.3739 · 10−6 AM: −8.5648 · 10−6 V: 1.1332 · 10−8

V exp
η=1 −1.820 · 10−22 −2.6456 · 10−26

Sim AM: −1.817 · 10−22 V: 6.831 · 10−47 AM: −2.5328 · 10−26 V: 2.9832 · 10−50

Table 3.1: Value function for logarithmic and exponential utility: These simulations were
made with stepsize n = 500. We compare the arithmetic mean (AM) and variance (V) over
100 simulations with the analytical solution of the problem.

ρ = −10 ρ = −1 ρ = 1 ρ = 10

V log 199834 33.0909 6.91756 0.681379

V exp −1.01264 · 10−22 −1.18568 · 10−25 −2.6456 · 10−26 −3.09768 · 10−29

Table 3.2: The result of the value function under optimal consumption and investment for
different values of ρ. The market is given by β = 1.5, σ = 0.3, and T = 1. The parameter
for the exponential utility is given by η = 1 and the interest rate r = 0.

Furthermore we consider the behavior of the value function under logarithmic and ex-
ponential utility for different values of ρ. The results are presented in Table 3.2. We see
that these analytic results are in accordance with our theoretical results.

Finally Table 3.3 represents the dependence of the value function on θ. For θ equal to
zero this solution corresponds to the pure terminal wealth problem and the consumption
process is equal to zero. We see that the dependence of the value function on θ is itself
depending on ρ since for small ρ the value function decreases in θ, and for big ρ the value
function increases in θ. This relation between ρ and θ is presented in Figure 3.1.

Also the impact of θ depends on the choice of ρ. A small change in θ will result in a
small change of V ln(x) for ρ = 2, but for ρ = −2 on the other hand, even a small change in
θ might cause a big change in V ln(x).

In Figure 3.2 (a) we see an example of two stock price processes governed by a geo-
metric Ornstein-Uhlenbeck process. On the right hand side we see three different optimal

V log θ = 0.1 θ = 0.35 θ = 0.65 θ = 0.9

ρ = 0.1 11.9769 11.1898 10.6069 10.4179

ρ = 1.5 3.16772 3.61914 4.29961 4.95703

Table 3.3: The result of the value function under optimal consumption and investment for
different values of θ. The market is given by β = 1.5, σ = 0.2, r = 0.02 and T = 1. The
initial capital x is 100.
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Figure 3.1: The value function for logarithmic utility for different values of ρ and θ, under
the assumptions β = 3.5, σ = 0.2, r = 0.02 and T = 1. The initial capital x is 100.

(a) The Stock Price Processes (b) The Consumption Processes

Figure 3.2: In (a) we see two examples of different stock price processes. Stock A and B
are governed by σ = 0.2 and β = 0.1.
In (b) we see the corresponding consumption processes for the stock A in (a) for exponential
utility under three different assumptions on ρ. We set r = 0 and consider the cases ρ equal
to −1, 0 and 1.

consumption strategies for different values of ρ for the exponential utility function. All three
processes correspond to stock A. As we would expect from the economical interpretation of
ρ we see that the consumption process is increasing in average for negative ρ and decreasing
for positive ρ. For ρ equal to zero we see that the consumption process is approximately
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constant over time. Of course the actual behavior of the consumption processes depends
crucially on the stock price itself.
This graphic is also a good example for the submartingale property of the consumption for
ρ < r as stated in Lemma 5.
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Chapter 4

Introduction1

Mainly motivated by insurance problems, optimal risk sharing between multiple agents
transferring risks from one to another has been studied extensively, see [15] and references
therein. Throughout this part, we consider two economic agents with initial risky endow-
ments (or loss exposures) searching for an optimal re-allocation of their risks. The agents
assess their risk using utility functions.

Optimal Risk sharing is closely linked to Pareto optimality (also referred to as Pareto
efficiency). The term is named after Vilfredo Pareto, an Italian economist who used the
concept in his studies of economic efficiency and income distribution [20]. The risk sharing
problem consists in finding an optimal allocation namely an allocation such that it is Pareto
optimal. Pareto optimality implies that no agent can be made strictly better off without
another agent being made strictly worse off. An additional constraint on Pareto optimal
allocations is that the allocation satisfies a rationality constraint, that is, all agents are at
least as well off under the new allocation as under the initial exposures [18]. The latter
rationality constraint is motivated by the assumption that only an irrational agent would
enter into a contract that made the agent (strictly) worse off.
Note, however, that Pareto optimality does not necessarily result in a socially desirable dis-
tribution of resources. Pareto optimality makes no statement about either equality or the
overall well-being of a society. It follows from the above interpretation of Pareto optimality,
that if an economic allocation in any system is not Pareto optimal, there is potential for
a Pareto improvement or equivalently for an increase in Pareto efficiency. In this case, by
reallocating risk, goods or services, one can improve at least one participant’s well-being
without reducing any other participant’s well-being.

Utility is a measure of the relative satisfaction from, or desirability of, consumption
of various goods and services. Economists analyze increasing and decreasing utility, and
explain economic behavior in terms of attempts to increase one’s utility. Preference re-
lations can often be represented by utility functions satisfying useful properties such as,
e.g., monotonicity. In recent years, research focused on risk preferences given in terms of
monetary utility functions and risk measures. See [9] for a brief introduction to the history
and recent developments of utility functions and risk measures, respectively. Up to the
sign, convex risk measures are identical to monetary utility functions. As in [9], in the
present paper we concentrate on optimal risk sharing in the context of quasiconcave utility

1This and the following chapters are based on joint work with Michael Kupper and Ranja Reda.
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functions. The quasiconcavity of the utility function has profound implications in decision
making processes: it represents the idea that diversification should not decrease utility.
Cash sub-additivity corresponds to the fact that adding a certain amount of cash to your
risky position increases your utility by at most the amount of cash added in the first place.
We refer to [4] and [16] for a motivation for the usage of quasiconvex risk measures and to
[8] and [9] for more details on quasiconvex risk measures.

In [15] Jouini et al. consider the problem of optimal risk sharing of some given total
risk between two economic agents characterized by law-invariant monetary utility functions
or equivalently, law-invariant risk measures. They prove existence of an optimal risk shar-
ing allocation which is in addition increasing in terms of the total risk. Ludkovski and
Rüschendorf [18] further show that Pareto optimal allocations are comonotone if the risk
measures preserve the convex order. They establish various extensions of the comonotone
improvement result of Landsberger and Meilijson [17] which are of interest for the risk
sharing problem.

The presented work was inspired by [15] and is a generalization of [11] to quasiconcave
utility functions. The main contribution is the result on the existence of a Pareto optimal
allocation of a given risk between two agents who assess their risk using quasiconcave and
strictly cash sub-additive utility functions. Furthermore we show that the Pareto optimal
allocation can be characterized using the sup-convolution of the corresponding utility func-
tions.

This part is structured as follows: Section 5.1 introduces the necessary preliminaries
and definitions as well as some examples. Section 5.2 presents the first main result, the
characterization of the Pareto optimal allocation. In section 5.3 we prepare for the existence
theorem, which is formulated and proved in section 5.4.
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Chapter 5

Pareto Optimal Risk Sharing

5.1 Preliminaries

The setup throughout this part is defined as follows: Let (Ω,F ,P) be an atomless proba-
bility space and L∞ := L∞(Ω,F ,P) be the space of bounded random variables. Its topo-
logical dual (L∞)∗ := L∞(Ω,F ,P)∗ is isometrically isomorphic to the space of all bounded
finitely additive set functions on F that are absolutely continuous with respect to P. By
M1,f := M1,f (Ω,F ,P) we denote the positive unit ball of (L∞)∗, it coincides with the
set of finitely additive probabilities that are absolutely continuous with respect to P. In
particular,M1 :=M1(Ω,F ,P) is the subset ofM1,f consisting of all its countably additive
elements.

We first give the definitions of utility functions, the corresponding acceptance sets and
minimal penalty functions. Subsequently, we consider two agents and define both aggre-
gated acceptance sets and attainable allocations.

Definition 2 (Utility Function). A mapping U : L∞ → R is a utility function if it is
L∞-monotone in the sense that

U(X) ≥ U(Y ) ⇔ P(X ≥ Y ) = 1 (5.1)

for any X,Y ∈ L∞. Furthermore, a utility function is quasiconcave if it satisfies

U (λX + (1− λ)Y ) ≥ min (U(X), U(Y )) (5.2)

for any X,Y ∈ L∞ and λ ∈ (0, 1). A utility function is cash sub-additive if it satisfies1

U(X −m) ≥ U(X)−m (5.3)

for all X ∈ L∞ and m ∈ R+. We call a utility function strictly cash sub-additive, if it
satisfies

lim sup
m→∞

U(m)

m
< 1 and (5.4)

lim inf
m→∞

U(−m)

m
= −1. (5.5)

1We use the notation of [4] but this definition coincides with [16], since U(X) = U(X + m − m) ≥
U(X + m) − m. Note that for risk measures, with ρ(X) = −U(X), cash sub-additivity is equivalent to
ρ(X −m) ≤ ρ(X) +m.
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In other words, a function f(x) is quasiconcave if it is a function whose negative is
quasiconvex. A function f(x) is quasiconvex if its lower contour sets are convex sets. That
is, if the set {x : f(x) ≤ K} is a convex set for any constant K.
The definition of strict cash sub-additivity represents the fact that the agent values the
asymptotic decrease in his asset more drastic than the asymptotic increase. This definition
is of particular interest for the existence of a Pareto optimal allocation. Indeed it could be
relaxed in such a way, that no agent is valuing an asymptotic increase with a rate higher
than the rate of an other agent for asymptotic decrease, since such a situation would lead
to the outcome that one agent would consume an infinite amount leaving the other with
infinite liabilities.

Example 1 (A quasiconcave, cash sub-additive utility function, which is neither concave
nor cash additive). We use example 2 in [4] to construct a utility function which is neither
concave nor cash additive. As a basis we use the entropic risk measure with some positive
parameter η and apply the arctan to transform it into a quasiconvex risk measure. Taking
the negative we have constructed a utility function. We define

U(X) = − arctan
(1

η
lnE[e−ηX ]

)
.

This utility function is quasiconcave but not concave. An immediate result of this definition
is that the utility of any position is now assessed by a number in the interval [−π, π]. In
terms of risk measures, an economical interpretation of this risk assessment is that once a
risk is higher than a certain threshold, any risk even higher has virtually the same impact
on the agent. The same holds for very high returns.

The following definitions 3-6 hold for general utility functions and can be found for
example in [13] and in [15], respectively.

Definition 3. A utility function U induces the class

A := {X ∈ L∞ : U(X) ≥ 0}

of positions which are acceptable. The set Am := {X ∈ L∞ : U(X) ≥ m}, m ∈ R,
denotes the acceptance set for the level m. Consequently, for an agent i with utility Ui, the
acceptance set Aim of level m is defined by

Aim = {X ∈ L∞ : Ui(X) ≥ m}.

Definition 4. We consider the minimal penalty function

αmin(Q,m) = inf
X∈Am

EQ[X], (5.6)

where Am is the acceptance set of level m and Q ∈ M1. The right continuous version of
αmin is denoted by α+

min and defined by

α+
min(Q,m) = inf

X∈A−m
EQ[X] where A−m =

⋃
m′>m

Am′

= inf
m′>m

αmin(Q,m′).
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For U continuous from above, we can rewrite the utility function U , using this penalty
function, analogous to the robust representation of risk measures in [8]

U(X) = inf
Q∈M1,f

sup
m
{m |EQ[X] ≥ αmin(Q,m)}

= sup
m
{m |EQ[X] ≥ αmin(Q,m) ∀Q ∈M1,f} .

For this representation we can use any αmin(Q,m) in the interval
[α−min(Q,m), α+

min(Q,m)], where α−min(Q,m) is the left continuous version defined analo-
gously to the right continuous version. All of these penalty functions will give the same
utility to any position X.

On one hand, this representation is motivated by the robust representation of risk
measures (see for example [8]). On the other hand, one can find a similar representation in
[21], which links this representation to the biconjugate. This gives a different motivation,
outside the context of risk measures.

Example 2 (Certainty Equivalent). In general, the amount of payoff (e.g. money or utility)
that an agent would have to receive to be indifferent between that payoff and a given gamble
is called that gamble’s certainty equivalent. We refer to [23] for a detailed discussion of the
certainty equivalent in the framework of macroeconomic theory. For a risk averse agent the
certainty equivalent is less than the expected value of the gamble because the agent prefers
to reduce uncertainty. We have the following definition for U and the minimal penalty
function αmin

U(X) = f−1E[f(X)] and

αmin(Q,m) = inf
X∈Am

EQ[X].

In [2] (Theorem 5.1) one can find that the certainty equivalent defines a concave utility
function if and only if 1/r(s) is a concave function, where r(s) is the Arrow-Pratt index of
risk aversion given by

r(s) = −f
′′(s)

f ′(s)
.

The cash additivity and cash super-additivity, respectively, for the discrete case is discussed
in [14] (Proposition B) based on a result by [19]. The certainty equivalent is cash additive
for f(s) = −e−s. Choosing f(s) = −e−s this utility would introduce the entropic risk
measure by ρ = −U , and as utility we get

U(X) = − lnE[e−X ].

Also for other functions, e.g. f(s) = ln(s) or f(s) = sα/α, for α ∈ (−∞, 1)\{0}, the
Certainty Equivalent is a concave utility function.

Definition 5. We consider two agents i = 1, 2. Agent 1 has the utility U1 and thus the
acceptance set A1

m of level m ∈ R and agent 2 has A2
m respectively. Their aggregated

acceptance set is given by

A1,2
m = {X ∈ L∞ : ∃X1 ∈ A1

m1
,∃X2 ∈ A2

m2
, X1 +X2 = X,m1 +m2 ≥ m},

and the set of attainable allocations is given by

A(X) = {(X1, X2) ∈ L∞ × L∞ : X1 +X2 = X}.
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In the following paragraph we discuss properties of the aggregate acceptance set A1,2
m

defined by two quasiconcave utility functions U1 and U2.

Remark 7. The aggregated acceptance set A1,2
m is defined by two quasiconcave utility

functions U1 and U2 has the following properties:

1. Monotone: We have that A1,2
m ⊆ A1,2

n for m ≤ n. Also if X ∈ A1,2
m and P(Y ≥ X) = 1

then Y ∈ A1,2
m .

2. Right Continuous: For any m ∈ R we have that A1,2
m =

⋃
n>mA

1,2
n .

All of these properties follow directly from the definition of A1,2
m .

Since every risk measure introduces a utility function by ρ(X) = −U(X) and vice versa we
now present here an example for a risk measure without turning it artificially into a utility
function.

Example 3 (Economic Index of Riskiness). The economic index of riskiness is defined by2

ρ(X) =

{
1/λ(X) if E[X] ≥ssd 0,
+∞ else,

X ∈ L∞.

where for fixed c0 ∈ R and l a loss function

λ(X) = sup{λ > 0|E[l(−λX)] ≤ c0} for E[X] ≥ 0.

As stated in [8] the economic index of riskiness measures whether gambles are rejected
depending on the level of wealth. The acceptance set3 for one and two agents and m ∈ R−
is given by

Aim = {X ∈ L∞|λ(X) ≥ −1/m}
A1,2
m = {X ∈ L∞ : ∃(X1, X1) ∈ L∞ × L∞, X1 +X2 = X,

λi(Xi) ≥ −1/mi,m1 +m2 ≥ m}.

For more details we refer to [8] (Example 1.11).

5.2 Optimal Risk Sharing

This section discusses Pareto optimal risk sharing between two agents. As discussed in the
introduction, informally speaking, Pareto optimal situations are those in which any change
that makes one person better off must necessarily make someone else worse off. Consider a
set of alternative allocations, e.g. payoff functions for a set of individuals. A change from
one allocation to another that can make at least one individual better off without making
any other individual worse off is referred to as a Pareto improvement. Consequently, an
allocation is defined as Pareto optimal when no further Pareto improvements can be made.

We start with the definition of the sup-convolution and the set of extrema.

2For the definition of ≥ssd see definition 12 in section 5.3.
3In our understanding, which is up to the sign the same as in [8].
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Definition 6 (Sup-Convolution). We define the sup-convolution of utility functions

�ni=1Ui(X) = sup
(Xi)

n
i=1∈L∞∑n

i=1Xi=X

n∑
i=1

Ui(Xi), X ∈ L∞ (5.7)

and α�min(Q,m) = infm1+m2≥m(α1
min(Q,m1) + α2

min(Q,m2)).

Remark 8. The definition of α�min(Q,m) follows from

α�min(Q,m) = inf
X∈A1,2

m

EQ[X]

= inf
m1+m2≥m

inf
X1∈A1

m1

EQ[X1] + inf
X2∈A2

m2

EQ[X2]

= inf
m1+m2≥m

(
α1
min(Q,m1) + α2

min(Q,m2)
)
.

For the characterization of the Pareto optimal allocation we will make use of the set of
extrema.

Definition 7 (Set of Extrema). We say that Q lies in the set of extrema ∂U(X), and, X
lies in the set of extrema ∂α+

min(Q, .), respectively, if

EQ[X] = α+
min (Q,U(X)) .

Definition 8. Let (Z1, Z2) be an attainable allocation, then it is Pareto optimal if for any
other attainable allocation (Y1, Y2) it holds that U1(Y1) ≥ U1(Z1) and U2(Y2) ≥ U2(Z2)
implies U1(Y1) = U1(Z1) and U2(Y2) = U2(Z2).

Theorem 1. Assume two agents 1 and 2 with quasiconcave utility functions U1 and U2

which are normalized4 by U(m) = m for all m in R. For an aggregate risk X ∈ L∞ and risk
sharing given by the attainable position (X1, X2), the following statements are equivalent:

(i) (X1, X2) is a Pareto optimal allocation.

(ii) U1�U2(X) = U1(X1) + U2(X2).

If the convolution is again quasiconcave, then the above are equivalent to

iii) There exists a Q ∈M1,f such that Xi ∈ ∂α+
min(Q, .) for i=1,2, and Q ∈ ∂U(X).

Proof. ii) =⇒ i) follows directly from the definition of Pareto optimality.
i) =⇒ ii): The first part of this proof is completely in line with [15], we repeat it here
for completeness. Let (X1, X2) be the Pareto optimal allocation. Consider the sets B̃ =
{(U1(Y1), U2(Y2)) : Y1 + Y2 = X}, B = B̃ − R2 and C = {(U1(X1), U2(X2))} + R2

+ \ {0}.
The sets B and C are convex subsets of R2 which are non-empty with non-empty interior
and B ∩ C = ∅ by the Pareto optimality. By Hahn-Banach separation Theorem, there
exists a λ ∈ R2 such that λy ≤ λz for all (y, z) ∈ B × C. Since (U1(X1), U2(X2)) ∈ B and
(U1(X1) + 1, U2(X2)) ∈ C and (U1(X1), U2(X2) + 1) ∈ C we see that λ1, λ2 ≥ 0. It follows

4Instead of this normalization we can also use that U(m) is linear for m ∈ R, but not constant.
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from the separation inequality, that (U1(X1), U2(X2)) is a maximizer of λ1U1(Y1)+λ2U2(Y2).
Since (U1(X1), U2(X2)) is the maximizer, we can write the following inequality

sup
X1,X2∈L∞
X1+X2=X

λ1U1(X1) + λ2U2(X2) ≥ λ1U1(X + c) + λ2U2(−c)

≥ λ1U1(−‖X‖∞ + c) + λ2U2(−c) ∀c ∈ R
= λ1(−‖X‖∞ + c)− λ2c
= −λ1 ‖X‖∞ + (λ1 − λ2)c.

For c→∞ the RHS grows to (plus or minus) infinity, and thus λ2 = λ1 is the only way to
ensure that the inequality holds for all c ∈ R. Thus, it follows that (X1, X2) is the optimizer
of the sup-convolution.
i) =⇒ iii) First we show that a Q ∈ M1,f exists which is in the set of extrema ∂U(X).
We use the fact that M1,f is compact in the σ(ba(P),L∞)-sense. Then for all m ∈ R, the
mapping Q→ α+

min(Q,m) is σ(ba(P),L∞) upper semi-continuous. Here ba(P ) denotes the
bounded finitely additive signed measures on F absolutely continuous with respect to P.
We use the representation

U(X) = sup
m
{m |EQ[X] ≥ α+

min(Q,m)∀Q ∈M1,f}.

From this representation we get the following two inequalities:

∀m′ > U(X) : ∃Q ∈M1,f EQ[X] < α+
min(Q,m′),

∀m′ < U(X) : ∀Q ∈M1,f EQ[X] ≥ α+
min(Q,m′).

We consider a sequence (mk)k≥0 ↓ m = U(X) and a corresponding sequence of measures
(Qk)k≥0 → Q∗. By right continuity and upper semi-continuity of α+

min it follows that

E∗Q[X] ≤ α+
min(Q∗,m′)

E∗Q[X] ≥ α+
min(Q∗,m′),

which implies equality.
From the existence of such a Q it follows that EQ[X] = α+

min(Q,U(X)) and by the Pareto

optimality the RHS is smaller than α1,+
min(Q,U1(X1)) + α2,+

min(Q,U2(X2)). By the definition

of Ui we have that EQ[Xi] ≥ αi,+min(Q,Ui(Xi)) for i = 1, 2 and for all Q ∈ M1,f . Thus it
follows that Xi ∈ ∂α+

min(Q, .) for i=1,2.
iii) =⇒ i): Statement iii) translates into
EQ[X] = α+

min(Q,U(X)) and EQ[Xi] = α+
min(Q,U(Xi)) for i = 1, 2. This translates into

α�,+min(Q,U(X)) = α1,+
min(Q,U(X1)) + α2,+

min(Q,U(X2)) and therefore U(X) = U1(X1) +
U2(X2).

Remark 9. Any monetary utility function introduces a risk measure by ρ = −U .
The statements above are equivalent to ρ1�ρ2(X) = ρ1(X1) + ρ2(X2), where the inf-
convolution of the risk is defined analogously to the sup-convolution of utility.

5.3 On Comonotonicity, Concave Order and Second Order
Stochastic Dominance

The study of Pareto optimal risk allocations is closely linked to the comonotonicity property,
which is defined as follows (see [17, 18] for definition and discussion).
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Dominance

Definition 9 (Comonotonicity). Two random variables Y and Z ∈ L0(P) are said to be
comonotone if

(Y (ω1)− Y (ω2)) (Z(ω1)− Z(ω2)) ≥ 0, (5.8)

P(dω1)× P(dω2)-almost surely. In other words, Y and Z move together.

Intuitively, comonotonicity is a very strong positive dependency structure. For diffuse
random variables Y and Z this is equivalent to the following: Y increases with Z, and we
denote Y ↗Z, if Y = f(Z) for some non-decreasing map f .

Definition 10 (Comonotone Allocation). An allocation (Y1, Y2) ∈ A(X) is called comono-
tone if Y1, Y2 are comonotone.

If (Y1, Y2) is a comonotone allocation then Yi and X are comonotone for i = 1, 2 [15].
Equivalently, an allocation (Y1, Y2) of X ∈ L∞ is called comonotone if there exist increasing
functions f1, f2 : R→ R such that f1 + f2 = idR and Yi = fi(X) for i = 1, 2.

Lemma 7. Let f1 and f2 be nondecreasing with f1 + f2 = idR, then fi is Lipschitz
continuous with Lipschitz constant 1.

Proof. We assume m ≥ 0, then we get

f1(x+m)− f1(x) = x+m− f2(x+m)− f1(x)

≤ x+m− f2(x)− f1(x) = m,

and the same holds for f2.

Especially in actuarial science and finance, comonotonicity plays an important role.
Dhaene et al. [7] discuss the following example. Consider an insurance contract, i.e. an
agreement between a person that faces a certain risk (the insured), and an insurer that
promises to cover part of the claim amount. Let X be a non-negative random variable
denoting the risk the insured faces during the insurance period, and denote by Ψ(X) the
amount the insurer promises to pay in case the claim amount equals X. The amount
X − Ψ(X) is then retained by the insured. As discussed in [7], it is reasonable to require
that both Ψ(x) and x−Ψ(x) are non-decreasing functions on the set of all possible outcomes
of X. Equivalently, one can require that both risk sharing partners have to bear more (or
at least as much) if the actual claim x increases. One finds that the risk sharing scheme
(Ψ(X), X −Ψ(X)) is indeed comonotone.

We next recall the concepts of concave order and second-order stochastic dominance.

Definition 11 (Concave Order). A random variable Y ∈ L∞ is said to precede (or be
preferred to) Z ∈ L∞ in concave order if E[f(Y )] ≥ E[f(Z)] for all concave functions f
for which the expectation exists. We write Y ≥c Z. A function U is concave monotone
increasing if Y ≥c Z implies U(Y ) ≥ U(Z).

The concept of second-order stochastic dominance is widely used in economics.

Definition 12 (Second-Order Stochastic Dominance). Given two real-valued bounded ran-
dom variables Y and Z, i.e. Y,Z ∈ L∞, Y is said to dominate Z for second-order stochastic
dominance (notation Y ≥ssd Z) whenever E[g(Y )] ≥ E[g(Z)] for every concave and nonde-
creasing function g : R→ R. A function U is ssd monotone increasing if Y ≥ssd Z implies
U(Y ) ≥ U(Z).
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Note that concave order is equivalent to ordering with respect to second stochastic
dominance with equal means, see [22] and [24]. Since idR and id−R are concave functions,
Y ≥c Z implies E[Y ] = E[Z]. Therefore, Y ≥c Z if and only if Y ≥ssd Z and E[Y ] = E[Z]
[3]. Consequently, concave order ≥c implies ordering with respect to second order stochastic
dominance ≥ssd. On the other hand, if a function is ssd monotone, then it is also concave
monotone.

Moreover, one can find that

X ≥c Y ⇔ E[X] = E[Y ] and E
[
(X − c)+

]
≤ E

[
(Y − c)+

]
∀c ∈ R. (5.9)

For proof and discussion of (5.9) we refer to Corollary 2.62 in [13] and [11], respectively.

It is well known that if an allocation (Y1, Y2, ..., Yn) of a random endowment X among n
agents with prespecified nondecreasing and concave utility functions is Pareto optimal, then
this allocation is comonotone. Indeed, each Yi is a nondecreasing function of X =

∑n
i=1 Yi

[1, 25]. The link between Pareto optimal allocations and the comonotonicity property
was originally obtained in [17], who developed an algorithm to construct a concave order
improvement of any non-comonotone allocation. However, [17] only proved this result for
random variables X supported by a finite set. For sake of completeness, [11] give the
full proof and state that every allocation is dominated in concave order by a comonotone
allocation. Furthermore, [11] establish that any lower semi-continuous law-invariant concave
function is concave monotone. It follows that a Pareto optimal risk allocation is necessarily
comonotone.

Remark 10. If X ≥ssd Y then X +m ≥ssd Y +m for all m ∈ R.

We proceed with a proof for the existence of an optimal risk sharing allocation.

5.4 Existence of Pareto Optimal Allocations

In [15], Jouini et al. discuss the problem of optimal risk sharing of some given total risk
between two economic agents characterized by law-invariant monetary (concave, monotone,
cash additive and normalized) utility functions. There, a proof for the existence of an op-
timal risk sharing allocation, which is in addition increasing in terms of the total risk, is
given. Furthermore, [11] provide the complete solution to the existence and characterization
problem of optimal capital and risk allocations for not necessarily monotone, law-invariant
concave utility functions on Lp, p ∈ [1,∞]. Discussing agents, or business units, who re-
distribute the aggregate risk among themselves in order to maximize total and individual
utility, they state the following: As often the case in practice, this redistribution procedure
may be subject to frictions (e.g. limited fungibility of capital) in the sense that not every
allocation of X is admissible. This can be formalized by restricting the utility functions Ui
accordingly, see, e.g. [10]. As the restricted Ui are typically not monotone, contrary to [15],
monotonicity is not required in [11].
We adapt the work of [15] and [11] and develop a proof for the existence of Pareto opti-
mal risk allocations for L∞-monotone, L∞-continuous, quasiconcave, law-invariant, strictly
cash sub-additive utility functions.
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Let A↗ (X) := {(X1, X2) ∈ A(X) : X1↗X and X2↗X} be the subset of admissible
allocations which increase with the corresponding aggregate risk. Here, Xi↗X denotes
that Xi increases with the aggregate risk X, where i = 1, 2.

By Denneberg’s lemma [6], we observe that A↗(X) is the subset of A(X) consisting of
all comonotone allocations. Then, (X1, X2) ∈ A↗(X) if and only if there are nondecreas-
ing functions fi : [a, b]→ R, with a = ess inf X and b = ess supX, with f1 + f2 = idR such
that Xi = fi(X) for i = 1, 2. Then, the functions fi are all 1-Lipschitz, and the allocations
in A↗(X) are 1-Lipschitz functions of X [3, 15].

Theorem 2. Let (Ω,F ,P) be an atomless probability space and let U1 and U2 be two L∞-
monotone, L∞-continuous, quasiconcave, law-invariant, strictly cash sub-additive utility
functions. Then for every bounded X ∈ L∞,

U1�U2(X) = sup
(X1,X2)∈A↗(X)

U1(X1) + U2(X2), (5.10)

and the set of Pareto optimal allocations in A↗(X) is non empty.

Example 4. Before we start with the proof we present an example which shows that
without the strict cash sub-additivity the supremum can be infinity. Consider two agents
one with utility EP [X] and the other with 1

2EP [X]. For simplicity we set X = 0 and
consider only allocations of the form X1 = m1 and X2 = m2 with m1 +m2 = 0. Then

U1�U2(0) ≥ sup
m1∈R

(
m1 +

1

2
(−m1)

)
=∞.

First, we prove that the maximization problem in the definition of the sup-convolution
U1�U2 can be restricted to pairs (X1, X2) ∈ A↗ (X). Then, we prove that this set is non
empty.

Lemma 8. Let (Ω,F ,P) be an atomless probability space and let U1 and U2 be two law-
invariant quasiconcave utility functions5. Then

U1�U2(X) = sup
(X1,X2)∈A↗(X)

U1(X1) + U2(X2). (5.11)

Proof. For the first step of the proof, we recall that in the concave case, any attain-
able allocation (X1, X2) ∈ A(X) is dominated by some comonotone attainable allocation
(X̂1, X̂2) ∈ L∞ in the sense of second order stochastic dominance. This result was proved
by [17] in the context of a finite probability space, and further extended to L∞ allocations
in a general probability space by [5]. As discussed in the previous section, according to [11],
every allocation is dominated in concave order by a comonotone allocation.
It was shown in [4] that for any quasiconcave continuous from above utility function U , law
invariance of U is equivalent to preserving second-order stochastic dominance. The corre-
sponding proof is based on the theory of rearrangement invariant Banach spaces. Any qua-
siconcave continuous from above law-invariant utility function U is second-order stochastic
dominance monotone. This provides

Ui(X̂i) ≥ Ui(Xi). (5.12)

5As given in definition 1.
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Hence, the maximization problem in the definition of U1�U2 can be restricted to a subset
of A(X) consisting of comonotone pairs (X1, X2). We conclude that this subset is precisely
A↗(X).

The following Lemma is essential to show that the supremum is actually attained with-
out letting either Xi tend to infinity.

Lemma 9. For every c ∈ R+ and X ∈ L∞ for a L∞-monotone, strictly cash sub-additive
utility function U the following holds

lim sup
m→∞

sup
X:‖X‖∞≤c

U(X +m)

m
< 1 and (5.13)

lim inf
m→∞

sup
X:‖X‖∞≤c

U(X −m)

m
= −1. (5.14)

Proof. Due to the L∞-monotonicity of U we have that

sup
X:‖X‖∞≤c

U(X +m)

m
=

U(c+m)

m
(5.15)

and therefore

lim sup
m→∞

sup
X:‖X‖∞≤c

U(X +m)

m
= lim sup

m→∞

U(c+m)

m
= lim sup

m̃→∞

U(m̃)

m̃

m̃

m̃− c
< 1

for m̃ = m + c, which proves the inequality in Eq.(5.13). Again we can use the L∞-
monotonicity, see Eq.(5.15). Let m̃ = m− c,

lim inf
m→∞

sup
X:‖X‖∞≤c

U(X −m)

m
= lim inf

m→∞

U(c−m)

m
= lim inf

m̃→∞

U(−m̃)

m̃

m̃

m̃+ c
= −1.

which proves Eq.(5.14).

We are now ready for the

Proof of Theorem 2. By Lemma 8 we know that the supremum is attained in the set of
comonotone allocations, therefore we can write

U1�U2(X) = sup
m∈R

sup
f1,f2↗
f1+f2=idR
fi(0)=0

U1(f1(X) +m) + U2(f2(X)−m).

We know that for m → ∞ the term U1(f1(X) + m) increases with rate smaller than one
to infinity and at the same time U2(f2(X)−m) decreases with rate one to minus infinity,
therefore there exists an m2 ∈ R such that U1(f1(X) + m) + U2(f2(X) −m) is decreasing
in m for all m bigger than m2 for every pair (f1, f2).
On the other hand m→ −∞ implies that U1(f1(X) +m) decreases with rate one to minus
infinity and U2(f2(X)−m) increases with a smaller rate. Therefore we also have an m1 ∈ R
such that U1(f1(X) +m) + U2(f2(X)−m) is decreasing in −m for all m smaller than m1

for every pair (f1, f2). Thus we can restrict the first supremum to

U1�U2(X) = sup
m∈[m1,m2]

sup
f1,f2↗
f1+f2=idR
fi(0)=0

U1(f1(X) +m) + U2(f2(X)−m).
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We may now apply the Ascoli Theorem, which states the following: Consider a sequence
of real-valued continuous functions (fn), n ∈ N, defined on a closed and bounded interval
[a, b] of the real line. If this sequence is uniformly bounded and equicontinuous, then there
exists a subsequence (fnk) that converges uniformly.
Let (Xi

1, X
i
2) be a sequence maximizing Eq.(5.10), then for every i there exist functions

f̃ i1 and f̃ i2 such that (Xi
1, X

i
2) is dominated by (f̃ i1(X), f̃ i2(X)). Since X is bounded these

functions are defined on the closed and bounded interval given by [−‖X‖∞, ‖X‖∞]. By
shifting these functions to zero by m we get the functions f i1 and f i2 and since f i1(0) =
f i2(0) = 0 they are bounded due to the Lipschitz continuity.
The Lipschitz continuity of f ij for j = 1, 2 and i ∈ N with common Lipschitz constant one
is sufficient for the equicontinuity of the functions fj . Therefore, there exist subsequences

f ik1 and f ik2 such that these subsequences converge uniformly to f∞1 and f∞2 . By the L∞-
continuity of U1 and U2 we have that

U1�U2(X) = sup
m∈[m1,m2]

U1 (f∞1 (X) +m) + U2 (f∞2 (X)−m)

and have thus found the required maximizer, which is not necessarily unique. This maxi-
mizer represents a Pareto optimal allocation due to the definition of Pareto optimality.
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Appendix

In [12], Filipovic et al. state the following: Let f : Lp → [−∞,∞] be a closed convex func-
tion. Then, law-invariance of f and concave monotonicity of f are equivalent. Motivated
by this, we prove the following result.
We will make use of the definition

Definition 13. We say that U satisfies the Fatou property, if

U(X) ≥ lim sup
n→∞

U(Xn)

whenever supn ‖Xn‖∞ < ∞ and Xn
P→ X where Xn

P→ X denotes convergence in proba-
bility.

Lemma 10. Let U : L∞ → R be a quasiconcave utility function, which is continuous from
above and has the Fatou property. If U is law-invariant, then U is also concave monotone
increasing.

Proof. Let X ≤c Y . We can write

U(X) = sup
m
{m |EQ[X] ≥ αmin(Q,m) ∀Q ∈M1,f}.

Denote U(X) = m∗, then we know that for all Q

EQ[X] ≤ αmin(Q,m∗) (A.1)

holds. The above inequality holds for any X̃ which has the same law as X due to the
law-invariance, and thus also for the supremum over all these X̃. The left hand side of
Eq.(A.1) therefore can be rewritten using Lem 4.55 in [13] and fact 3, p.14, of [12].

sup
X̃∼X

E[X̃ϕQ] =

∫ 1

0
qX(t)qϕQ(t)dt

≥
∫ 1

0
qY (t)qϕQ(t)dt since X ≤c Y .

= sup
Ỹ∼Y

E[Ỹ ϕQ],

where ϕQ denotes the Radon-Nikodym derivative. Since the inequality holds for m∗ and
the supremum over all m is at least m∗, we have that U(Y ) ≥ U(X).
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Having proved that any attainable allocation (X1, X2) ∈ A(X) is dominated by some
comonotone attainable allocation (X̂1, X̂2) ∈ L∞ in the sense of second order stochastic
dominance we can give an upper bound to E[|X̂i −Xi|].
The following alternative representation from [13] will be useful. We find that if X ≥ssd Y
is equivalent to

E[(c−X)+] ≤ E[(c− Y )+] ∀c ∈ R.

Lemma 11. Let (X1, X2) and (X̂1, X̂2) be different allocations of X with X̂i ≥ssd Xi for
i = 1, 2, then E[|X̂i −Xi|] ≤ E[|X1|] + E[|X2|].

Proof. We prove the result for i = 1, the same holds for i = 2 and start by rewriting the
absolute value.

E[|X1 − X̂1|] = E[(X1 − X̂1)+]︸ ︷︷ ︸
A

−E[(X1 − X̂1)−]︸ ︷︷ ︸
B

We consider the two terms A and B in detail, starting with A

A = E[(X1 − X̂1)+] ≤ E[(X1)+ + (−X̂1)+]

≤ E[(X1)+ + (−X1)+] = E[|X1|]

and also for B

B = E[−(X1 − X̂1)−] = E[(X̂1 −X1)+] = E[(X2 − X̂2)+]

≤ E[|X2|]

which concludes the proof.
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