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Abstract

Aiming to understand the most fundamental principles of nature one has to approach the high-
est possible energy scales corresponding to the smallest possible distances – the Planck scale.
Historically, three different theoretical fields have been developed to treat the problems appear-
ing in this endeavor: string theory, quantum gravity, and non-commutative (NC) quantum field
theory (QFT). The latter was originally motivated by the conjecture that the introduction of
uncertainty relations between space-time coordinates introduces a natural energy cutoff, which
should render the resulting computations well defined and finite. Despite failing to fulfill this
expectation, NC physics is a challenging field of research, which has proved to be a fruitful
source for new ideas and methods. Mathematically, non-commutativity is implemented by the
so called Weyl quantization, giving rise to a modified product — the Groenewold-Moyal product.
It realizes an operator ordering, and allows to work within the well established framework of
QFT on non-commutative spaces.
The main obstacle of NCQFT is the appearance of singularities being shifted from high to low
energies. This effect, being referred to as ‘UV/IR mixing’, is a direct consequence of the de-
formation of the product, and inhibits or complicates the direct application of well approved
renormalization schemes. In order to remedy this problem, several approaches have been worked
out during the past decade which, unfortunately, all have shortcomings such as the breaking of
translation invariance or an inappropriate alternation of degrees of freedom. Thence, the re-
sulting theories are either being rendered ‘unphysical’, or considered a priori to be toy models.
Nonetheless, these efforts have helped to analyze the mechanisms leading to UV/IR mixing and
finally led to the insight that renormalizability can only be achieved by respecting the inherent
connection of long and short distances (scales) of NCQFT in the construction of models
Attaching at these considerations, the present work aims to investigate and enhance a rather
new ansatz, originally proposed by Gurau et al.. This model combines all positive features
of recent approaches, as it is translation invariant and renormalizable. Starting at a simple
scalar implementation the core achievement, being a damping mechanism which implements
the demanded symmetry of scales, and thereby restricts the occurrence of UV/IR mixing, is
analyzed. In a further step the theory is generalized to gauge models of the Yang-Mills type,
where new problems appear, from which the need for additional modifications arises. A detailed
investigation of the obstacles hindering a fully viable proof of renormalization is presented, and
possible ways to overcome the current problems are identified. In a final step the insights, which
have been gained, are utilized to construct a promising new gauge model — the BRSW model.
Renormalizability is demonstrated by explicit computations at the one loop level. A general
proof, however, will require a substantial effort in order to establish the required mathematical
methods in the non-commutative regime prior to their application – a topic which unfortunately
cannot be addressed within the framework of this thesis.



Kurzfassung

In dem Vorhaben, die grundlegenden Zusammenhänge der Natur zu verstehen, sind wir ge-
zwungen zu den größtmöglichen Energien, und entsprechend zu den kleinstmöglichsten Di-
stanzen – der Planck-Skala – vorzudringen. Historisch gesehen, entstanden in diesem Zusam-
menhang drei unabhängige theoretische Gebiete, welche sich der dabei auftretenden Proble-
me widmen: Stringtheorie, Quatengravitation und nichtkommutative (NC) Quantenfeldtheorie
(QFT). Letztere wurde ursprünglich unter der Annahme eingeführt, dass das Auftreten von
Unschärferelationen zwischen Raumzeit-Koordinaten eine natürliche Schranke für die Energie
bedinge, deren Existenz wiederum bekanntlich zu wohldefinierten Integralen führt. Obwohl die-
se Hoffnung nicht erfüllt wurde, konnte sich NCQFT als eigenständiges und interessantes For-
schungsgebiet etablieren, welches die Entwicklung neuer mathematischer Methoden zur Folge
hatte, die in weiten Bereichen Anwendung finden. Mathematisch wird die Nichtkommutativität
durch die sogenannte Weyl-Quantisierung verwirklicht, welche zu einem veränderten Produkt —
dem Groenewold-Moyal Produkt fürhrt. Dieses ermöglicht es, im Rahmen der bekannten QFT
auf deformierten Räumen zu arbeiten.
Das grundsätzliche Problem in NC Theorien stellt die Verschiebung bestimmter Divergenzen
von hohen zu niedrigen Energiebereichen dar. Dieser Effekt, welcher allgemein als “UV/IR-
Mischung” bezeichnet wird, ist eine direkte Konsequenz der Deformation des Produkts und
verursacht Unsicherheiten bei der Anwendung, teilweise sogar die Unanwendbarkeit, vieler an-
erkannter Renormalisierungsschemata. Das vergangene Jahrzehnt brachte einige vielverspre-
chende Ansätze zur Behebung dieses Problems, welche jedoch allesamt nicht vollkommen sind.
Die resultierenden Modelle brechen die Translationsinvarianz oder führen zu unzulässigen Be-
schränkungen von Freiheitsgraden, weshalb die physikalische Aussagekraft stark eingeschränkt
ist. Schlussendlich trugen diese Arbeiten jedoch zu einem tieferen Verständnis der Mechanismen,
welche der UV/IR-Mischung zugrundeliegen, bei. Schließlich stellte sich heraus, dass der Weg
zu renormierbaren, physikalischen Theorien nur über die Berücksichtigung der immanenten Ver-
bindung von kurzen und langen Distanzen als Symmetrie in der Konstruktion entsprechender
Modelle führt.
Ausgehend von diesen Entwicklungen analysiert und erweitert diese Arbeit den unlängst vor-
geschlagenen Ansatz von Gurau et al., welcher die positiven Eigenschaften der Translationsin-
varianz und Renormierbarkeit in einem Modell vereint. Zunächst wird das Dämpfungsverhalten
des Propagators, welches eine Schlüsselrolle in der Unterdrückung der UV/IR-Mischung, und
der Verwirklichung der Symmetrie zwischen kurzen und langen Distanzen einnimmt, anhand
einer einfachen skalaren Implementierung untersucht. Anschließend wird die Verallgemeinerung
zu Yang-Mills Eichtheorien behandelt. Die dabei auftretenden Probleme erfordern weitreichen-
de Modifikationen, welche anhand zweier Eichmodelle diskutiert werden. In einer Analyse zeigt
sich, dass allgemeine Renormierungsbeweise unter der Berücksichtigung von Symmetrie und
Nichtkommutativität nicht wohldefiniert sind und weiterer mathematischer Grundlagenarbeit
bedürfen. In einem weiteren Schritt werden die gewonnenen Erkenntnisse angewendet, um ein
verbessertes Eichmodell zu konstruieren, welches die bekannten grundsätzlichen Probleme um-
geht. Renormierbarkeit wird explizit auf Einschleifenniveau gezeigt. Ein allgemeingültiger Be-
weis kann jedoch auf Grund des Umfanges und der fehlenden Verallgemeinerung mathematischer
Beweise auf das Nichtkommutative, nicht im Rahmen dieser Arbeit gebracht werden.
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Chapter 1

Introduction

Our current understanding of the fundamentals governing the processes in the universe as we
experience them today is based on two elementary ideas applying to distinct asymptotic regimes.
At large distance scales, well exceeding those of our everyday world, physics is governed by the
gravitational force manifesting itself in curvature of spacetime. In this regime we confidently
apply the geometrically motivated equations of General Relativity [1]. It is also this limit which
is accessible to a far extent to the experiment. From measurements of the cosmic background
radiation [2] we are able to estimate the age of the universe to about 13.7 billion years, defin-
ing an upper bound for the (currently) largest distance of 4.4 × 1026 m. The other end of the
scale is set by the Planck length λP =

√
~G/c3 ≈ 1.6 × 10−35 m (with the usual nomenclature)

being a result of the second fundamental theory, quantum theory [3]. Due to the uncertainty
principle [4], ∆x∆p ≥ ~/2, the localization of a wavefunction to a space interval ∆x can only
be achieved if the respective wavelength does not exceed this length, and hence, the assigned
momentum obeys the relation ∆p ≥ ~/2∆x. As a direct consequence, a natural limit to the
localization arises if the corresponding energy rises above the critical limit to generate a black
hole with an event horizon λP . Curiously, this limit cannot be deduced from quantum mechanics
alone, as the space curvature generating the hole is again described by General Relativity. In
any case, we may only speculate about physics at such small distances, as our experimental
capabilities allow us to investigate the structure of matter down to 10−19 m, leaving some kind
of terra incognita [5] of 16 orders of magnitude down to the Planck length. However, there is
no hope that this situation will improve in the near future but we may benefit from the mea-
surements of cosmic gamma ray bursts, being rare occurrences but exhibiting the highest known
accessible energies in our current universe.
Leaving aside any concerns about accessibility and experimental verification we may try to set
up fundamental theories for the physics beyond the current limits. In principle, the presumption
of a smallest possible length implies that space itself is somehow discretized or ‘grainy’. These
ideas range back to the early days of quantum mechanics [6, 7] when Schrödinger and Heisenberg
questioned the suitability of a continuous description of space at the smallest distances. However,
the discussion remained rather philosophical. A consistent mathematical description, including
commutator relations between coordinates was developed almost a decade later by Snyder [8, 9]
but motivation was only given from the idea to implement a cutoff for renormalization of quan-
tum field theory. The advent of non-commutative physics came half a century later with the
work by Doplicher, Fredenhagen and Roberts [10], who finally realized non-commutativity of
spacetime as a natural consequence of the uncertainty principle and General Relativity at the
Planck scale. From the requirement that a measurement process shall not trigger black holes
uncertainty relations are followed, and the respective coordinates are promoted to Hermitean
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operators. Independent of these achievements the mathematical notion of ‘deformation’ [11–13]
led to the development of fuzzy physics [14, 15] and matrix algebras [16] which have become
widely applied tools in non-commutative physics [17–19] (see also [15] for a good review). Also,
it has been shown that Euclidean non-commutative QFT (NCQFT) can be obtained as an ef-
fective theory from closed D-brane strings [20–22], and even may be deduced from quantum
gravity [23], which gave rise to additional motivation. However, the probably biggest contri-
bution on the mathematical side has been given by A. Connes [24, 25] who elaborated on the
differential calculus, represented by spectral triples on deformed spaces. His work is considered
as the mathematical foundation of non-commutative physics.
The practical implementation of non-commutativity in field theoretical models is significantly
simplified by quantization with Weyl operators [26]. This leads in a natural way to a deformed
non-local product — the Groenewold Moyal star product [27, 28], allowing to work with ordi-
nary fields and functions instead of operator-valued quantities. Unfortunately, the initial hope
to cure the problem of ultraviolet divergences in QFT was not fulfilled. Instead it was discovered
that the deformed product gives rise to a splitting of contributions to quantum corrections into
a part showing exactly the same behavior as the respective commuting counterpart, and a part
equipped with a regularizing phase factor being parametrized by external momenta. At low
energies, the oscillating phases vanish, and the original divergences reappear but are mapped to
the infrared which inspired the problem to be referred to as UV/IR mixing [29–31]. This effect
stated a severe obstacle for the renormalization program since it was not known how to treat the
new type of singularities. Finally, Grosse and Wulkenhaar (GW) found the way out of the maze
when they realized that one needs to respect the symmetry between UV and IR regions which is
imposed by the mixing phenomenon. For scalar φ?44 theory they added an oscillator term to the
Lagrangian [32], thereby implementing a symmetry called Langmann Szabo duality [33]. Proofs
for renormalizability have been achieved in the matrix base [32, 34] (which can be considered as
an alternative to the Moyal-Weyl approach), by using the rather challenging Polchinsky renor-
malization group approach [35], and by multiscale analysis [36]. Another unique feature is the
vanishing of the β function to all orders [37–39]. However, renormalizability was achieved for the
price of abandoning translation invariance. Also, the classical limit with respect to deformation
(θ → 0 limit) is singular.
Another proposal for a renormalizable QFT was given by Gurau et al. [40, 41], replacing the
oscillator term of GW by an inverse squared derivative, which is why we shall refer to it as
the non-commutative 1/p2 model. Such a term brings the advantage of maintaining translation
invariance, but is non-local, and may eventually give rise to a violation of unitarity but this has
not been proven yet. However, the model has been shown to be renormalizable up to all orders,
allows for the limit θ → 0 [42], and there are indications that the β-function is proportional to
its commutative counterpart [41]. For a review see [43].
The construction of gauge models on deformed spaces is much more involved than the scalar case
due to two reasons. First, due to the non-commutativity, any symmetry becomes non-Abelian.
Secondly, all of the established methods of ordinary quantum gauge field theory to prove renor-
malizability are based on locality which is inherently broken. Nevertheless many attempts in
the direction of non-commutative gauge field theory (NCGFT) have been made. Early contri-
butions in this respect neglected the UV/IR mixing, and focused on the planar contributions
[44–46]. Different approaches have been proposed, such as the inclusion of a Slavnov term [47–
50], leading to an over-reduction of the number of physical degrees of freedom, generalizations
of QED [51–54], or the ‘induced gauge theory’ [55–58] being generated by minimally coupling of
the non-commutative scalar theory to an exterior gauge potential. Direct generalizations of the
successful GW model to gauge theories have also been attempted [59], but the complex form of
the Mehler kernel represents a real obstacle in explicit calculations. Renormalizability has been
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achieved (in four dimensions) so far only in the Seiberg Witten map [60] (and for the induced
gauge case). The rather simple form of the non-commutative 1/p2 model raises the hope that
this approach is more amenable to a successful generalization to gauge theory. Starting at an
initial approach [61] a series of papers marks the evolutionary steps in this endeavour[62–66],
pushed by the group around Blaschke, Rofner, Schweda, Sedmik and Wohlgenannt. It is the
aim of this thesis to summarize and extend these efforts in the search for a translation invariant
renormalizable deformed U(1) gauge theory.

This work is organized as follows: After some definitions and a more detailed introduction into
the subject in Sections 1.1–1.4 a thorough analysis of the scalar Gurau model including an
explicit renormalization step at at the one loop order follows in Chapter 2. At the end of this
chapter the functionality of the damping mechanism leading to renormalizability is revealed
by an explicit analysis of the behaviour at higher loop levels. The knowledge gained to that
point is applied to discuss the principal requirements for a generalization to gauge models in
Section 2.2. Two successive models obtained by ‘localization’ are presented in Chapter 3, which
is terminated by an extensive discussion of the lessons learned, and the unexpected subtleties
arising in these first implementations of gauge symmetry. After an excursion to the theory of
renormalization in Chapter 4 the apex of this work is set in Chapter 5 with the construction
and analysis of the BRSW model which gives strong indications of being renormalizable. The
proof of this conjecture, however, is another story which will require a substancial effort to be
made in the future.

1.1 General Notation

Definitions are indicated by the notation a := b (or b = : a) if the variable a is defined to
symbolize the expression b. In contrast, the relation b ≡ b is used to emphasize equivalence of
the symbols or expressions a and b. Regarding the nomenclature, ambiguities are principally
resolved by explanation in the text. More generally, capital size symbols are operators in the
widest sense while lower case symbols indicate variables. Momenta are denoted by k, l, p, q and
may be indexed by numbers or Greek letters.
Similar properties P (E) and P ′(E) for several arguments Ei (which are variables or physical
quantities) are given in the compact form P ({E1, E2, . . .}) = P ′({E1, E2, . . .}) where the lists
{Ei} are considered to be in an ordered form, i.e. to resolve to the one to one correspondence
P (E1) = P ′(E1), P (E2) = P ′(E2), . . . .
Throughout this work the Euclidean metric

ηµν = ηµν =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (1.1)

in dimension D = 4 is premised. Since with this definition vµ ≡ vµ for any vector v ∈ R4, η will
not be written explicitly. For the sake of compactness the products

aθb := aµΘµ
νb
ν , ãµ := Θµ

νa
ν , (1.2)

of vectors with the antisymmetric tensor Θµν are abbreviated1. Meaning will be given to these
definitions subsequently in Section 1.3.3. Fourier transformed functions and operators are gener-
ally (with the exception of Section 1.3.4 where the tilde symbol is used) not decorated, but under-
stood from the context of momentum space. Principally, we work in natural units ~ = c = G = 1

1For the sake of completeness, we shall define Θ01 = −Θ10 = Θ23 = −Θ32 = 1, and all other elements vanish.
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but there are exceptions in which remarks are given. The mass dimension of any quantity x is
given by dm(x).

1.2 Motivation for Non-Commutativity

As already mentioned in the introduction above, the original motivation for non-commutativity
has been to implement, in a natural way, an UV cutoff in momentum integrals [8]. The hope
had been to avoid the appearence of singularities in the theory, and to find a solution for
the renormalization problem of QFT. Although this initial motivation has been dimmished by
the discovery of the UV/IR mixing problem (see Section 1.3.7), non-commutativity appears in
many places in nature. From this arises the motivation to study the consequences arising from
deformation in physics.

The simplest example in this respect is the non-commutative Landau problem [67] on Euclidean
space where the introduction of a static external magnetic field Bi = (0, 0, Bz) in the z(= x3)
direction leads via the Lorentz gauge (∂µAµ) = 0 to a cyclotron movement of charged particles
in the orthogonal (x, y) plane. Let us briefly review this in a little more detail. The classical
Lagrangian for a particle with mass m and an external vector potential Ai(x) = −εijxj B2 is
given (in SI units) as [68]

Lclass =
1
2
m(∂0xi)2 −

e

c
(∂0xi)Ai .

Performing the Legendre transformation Hclass = pi(∂0xi)−Lclass with the conjugate momentum
pi = ∂L/∂(∂0xi) yields,

Hclass =
1

2m

(
pi −

eBz
2c

εijxj

)2

,

which motivates the definition p′i = pi − eBz
2 εijxj . Now, promoting xi and pj to Hermitean

operators x̂i and p̂j respectively, and noting that [x̂i(t), p̂j(t)] = iδij , we immediately obtain[
p̂′i(B), p̂′j(B)

]
= −ieBzεij ,

which implies a non-commutative structure. In the case m → 0 the first term in the above
Lagrangian vanishes and the equal time commutation relations yield2

[x̂i(t), p̂j(t)]
∣∣∣
m→0

=
eBz
2c

εij [x̂j , x̂k] = −iδik ⇒ [x̂i, x̂j ] = 2i
c

eBz
εij .

Hence, from the introduction of an external magnetic field follows the non-commutativity of
coordinates in the resulting system.
Another similar example is the Quantum Hall Effect [69, 70] (for a comprehensive review see
[71]). The intimate relation between theories on deformed space time, and the non-commutative
effects described above could serve to find upper bounds for the value of θ, the constant of
deformation [72–74].

However, the strongest motivation still comes from the simple argument given in the introduc-
tion, that the structure of space-time should become grainy at the Planck scale since localization
below λP is definitely not possible. In Ref. [10] it has been shown that uncertainty relations
between coordinates directly follow from the physical demand that spacetime should have an
operational meaning, wich cannot be maintained in case of the gravitational collapse caused by

2It should be remarked that the following can be achieved by moving the coordinate origin out of the rotation
axis of the Bz field, as the resulting shifted coordinates x̂′

i do not commute.
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preparing a very sharply localized state. However, it is also shown that the same relations can
be followed from the elements of the center (i.e. commutatior relations) of a C∗ algebra. Hence,
mathematically, the demand for a minimal length may be expressed by imposing non-vanishing
commutator relations on the coordinates.

1.3 Basics of NC QFT

This section is intended to give the necessary definitions required for computations in non-
commutative space in a brief but concise way. Furthermore the principal problems appearing in
respective theories are discussed.

1.3.1 Definitions from QFT

In order to render this work (almost) self-contained some definitions from standard QFT shall
be given at this point. Since sign conventions are rather confusing throughout the literature, an
attempt is made at this point to give a consistent unified description. For this purpose a double
notation

{
ek
mk

}
will be introduced, combining factors ek for Euclidean, and mk for Minkowski

signatures3.

The generating functional of all Green functions in a theory, being described by the Lagrange
function L of quantized fields φ1 . . . φn, being coupled to external classical sources (i.e. not quan-
tized) Ja1 . . . Jan with generic quantum configurations (indices) a1 . . . an, and the time ordering
symbol T is given by

Z[φ1, ..φn] = 〈0|
{

1
T

}
e

n−
i

o

R

dDxL[φ]+
n−

i

o

R

dDx
n

P

i=1
Jiφi

|0〉

=
∞∑
i=0

{
(−1)n

in

}
n!

∫  i∏
j=1

dDxj Jaj (xj)

Ga1...ai(x1, ..xi) . (1.3)

A general n-point Green function Ga1...an(x1, ..xn) is obtained from Z by functional derivation
with respect to the sources J ,

Ga1...an(x1, ..xn) =
{

(−1)n

(−i)n

} δnZ[J ]
δJa1(x1)δJa2(x2) . . . Jan(xn)

∣∣∣∣
Ji=0∀i

. (1.4)

The generating functional Zc of connected Green functions Gc, is related to Z via

Zc =
{−
−i

}
lnZ , (1.5)

and likewise, the connected n-point Green functions are

Gca1...an
(x1, ..xn) =

{
(−1)n−1

(−i)n−1

} δnZc

δJa1(x1)δJa2(x2) . . . Jan(xn)

∣∣∣∣
Ji=0 ∀i

. (1.6)

3The respective factors depend to a high degree on conventions but, of course, have to be consistent in order
to generate the right results in loop calculations. For the inquest of the respective factors in this section the
notations of several references have been analyzed. Minkowski: [75, 76], Euclidean: [76–79]. Most intriguing is the
(Euclidean) sign of Eqn. (1.7) which has been derived by consistency checks (transversality of one-loop vacuum
polarization, as discussed in Section 2.1.1).
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Furthermore, one has the n-point vertex functions depending upon the classical fields φcl.(x)
(with statistic s = 0 for bosons and s = 1 for fermions),

Γa1...an(x1, ..xn) =
{−1

1

} δnΓ[φcl.]
δφcl.

a1
(x1)δφcl.

a2
(x2) . . . φcl.

an
(xn)

∣∣∣∣
Ji=Ji[φcl.]∀i

= 〈0|
{

1
T

}
φa1(x1) . . . φan(xn)|0〉1PI,

(1.7)

with

φcl.
a [J ](x) =

δZc[J ]
δJa(x)

, and Ja[φ] = −(−)s
δΓ[φcl.[J ]]
δφcl.

, (1.8)

derived from the vertex functional Γ[φcl.], itself being related to the generating functional Zc[J ]
via a Legendre transformation4

Γ[φcl.] = Zc[J ] −
∫

dDxJa(x)φcl.
a (x)

∣∣
Ja=Ja[φ]

. (1.9)

Note also that the vertex Green function Γa1..an relates to the one particle irreducible (1PI)
graphs, being characterized by the fact that they stay connected upon the removal of any single
internal line, as indicated in Eqn. (1.7). In this respect it has to be noted that the two-point
vertex functionals represent the inverse of the two-point connected Green functions in the sense
that (for bosonic statistic)∫

dDy Γab(x, y)Gcbc(y, z) = {1
i}
∫

dDy
δ2Γ[φcl.]

δφa(x)δφb(y)
δ2Zc[J ]

δJb(y)δJc(z)

=
{−1
−i

}∫
dDy

δJa(x)
δφb(y)

δφb(y)
δJc(z)

=
{−1
−i

}
δac δ

D(x− z) . (1.10)

Physically, the local part of the vertex functional, Γloc[φ], equals the so called effective action
which is constructed from the tree level action S0[φcl] =

∫
dD L[φcl] and the sum of local quantum

corrections Γ(i) to all orders in ~,

Γloc[φ] ≡ Γeff [φcl.] = S(0) +
∞∑
i=1

~iΓ(i)
loc . (1.11)

The full vertex functional may also contain non-local quantum corrections, i.e. Γ[φ] = Γloc[φ] +
Γnloc[φ], a fact which will be picked up again at a later point. However, the tree level action
S(0) equals the zero order vertex functional Γ(0).

Of special interest is the explicit computation of the two-point functions (propagators) and the
vertex functions. With

Gcab[φ1(x), φ2(y)] =
{−1
−i

} δ2Zc

δJa(x)δJb(y)

∣∣∣∣
Ja=Jb=0

Eqn. (1.8)
=

{−1
−i

} δφcl.
b [Jb](y)
δJa(x)

, (1.12)

∆F,ab(x− y) := {1
i}G

c
ab[φ1(x), φ2(y)] , (1.13)

4Note that,

δΓ[φ]

δφ(y)
=

Z

dDx
δZc[J ]

δJ(x)

δJ(x)

δφ(y)
+

Z

dDx δD(x − y)J(x) +

Z

dDx φ(x)
δJ(x)

δφ(y)
= −J(y) +

Z

dDx

„

δZc[J ]

δJ(x)
− φ(x)

«

δJ(x)

δφ(y)
,

and the expression in brackets vanishes due to the first definition in Eqn. (1.8).
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the procedure is clear. First the equations of motion Eqn. (1.8) are computed from the tree level
action Γ(0) = S(0) and solved for the fields φb. The propagators are then obtained by variation
with respect to the sources Ja. Tree level n-point vertex functions can readily be derived from
Eqn. (1.7) with Γ[φ] set to S(0)5.

It is generally reasonable to estimate the divergence behavior of a theory for a general (1PI)
graph.

Definition 1. The UV superficial degree of divergence dγ ≡ d(J) of a 1PI graph γ with L

internal loops, giving rise to the momentum space integral J(p) =
(∫ L∏

l=1

dDkl

)
I(p, k1..kL), is

defined by the limit
lim
p→∞

J(p) ∼ pdγ .

More explicitly, for a general 1PI graph with V vertices vi and Eφ external lines of type φ it
takes the form[78, 79],

dγ = D +
V∑
i=1

(dm(vi) −D) −
∑
φ

Eφdm ,

where the vi symbolize vertex Green functions.

For more detailed introductions to QFT please refer to the literature [75–77, 80–83].

1.3.2 Symmetry Factors

The topic of the explicit determination of symmetry factors for Feynman graphs is treated quite
novercally in most text books and monographs. For this reason it seems worth it to spend some
space in order to describe a generally applicable procedure to eliminate any ambiguity.

The origin of symmetry factors is twofold. For the first, a given interaction term of the action
corresponds not only to a single diagram but to multiple graphs, depending on the number of
possible Wick contractions.6. As an example, one may consider the artificial term ABBA which
allows for arbitrary fields A and B the contractions

ABBA , and ABBA ,

giving rise to two different graphs. The result is a so called multiplicity factor M . Secondly, the
actual symmetry factor can be ascribed to the structure of the graph:

Definition 2. The symmetry factor S of a given graph is equal to the number of operations
which exchange specific lines or vertices, leaving the amplitude of the graph invariant.

More specifically, this definition leads to the following rules of thumb[85] for contributions to S.

B Factor 2 for tadpole lines without orientation that start and end at the same vertex.

B Factor n! for n lines of the same field type (and direction, if a charge is involved) having
a common starting and ending vertex.

B Factor v! for v internal vertices (i.e. vertices without external legs) being exchangeable.

Finally, the actual factor which is multiplicatively added to the graph’s amplitude is M/S.
5Note that we could define ∆F,ab(x − y) with the opposite sign if the vertex functions in Eqn. (1.7) change

their sign too.
6A nice explanation of this fact can be found in Ref. [84]
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The above definitions may lead to ambiguities in some cases, and shall therefore be cast into a
different form to give a cooking recipe applicable to any theory. The following scheme is based
on the rules given by Veltman [86].

1. Draw the external lines without connections or internal vertices, and align them such as
they appear in the desired graph

2. Draw the vertices at their correct places relative to each other but shifted below or above
the external lines. The result is now a so called ‘pregraph’.

3. Start with one of the vertices considered to be connected to a(n) external line(s) and
count the possibilities how to do this. The resulting number is the starting point for M .
Repeat this step for all vertices considered to be connected to external lines and count the
possibilities. Note that the count will always be reduced by the external or internal lines
already connected in previous steps.

4. Now connect the internal lines to form the complete graph. Account for all possibilities as
done for the external connections in the previous step.

5. All multiplicities collected in steps 3 and 4 have now to be multiplied to give the final M

6. The first ingredient for the symmetry factor is the product of all internal symmetry factors
of the vertices (i.e. a factor n! for n legs of the same field type).

7. If there are v identical vertices (same number and type of fields) then S gains a factor v!

8. The final result is M/S.

For the purpose of demonstration this rather lengthy set of rules shall now be applied step by
step to the graph in Fig. 1.1, which appears in the gauge models described in this work.

−→

e1 e2

vx vy

ℓ1 ℓ2

ℓ3

ℓ1

ℓ3
ℓ2

Figure 1.1: Splitting of a graph into a pregraph

1&2) See the pregraph in Fig. 1.1

3a) Options to connect internal vertex vx to e1 or e2: 4 (by `1(vx) and `2(vx))

3b) Options to connect vy to the remaining e2 (or e1, respectively): 2 (by `1(vx) and `3(vx))

4) Options to connect the remaining internal vertices in order to get the correct graph: 1

5) Collect the factors up to now to give M = 4 · 2 · 1.

6) Internal symmetry factor for each BAA vertex: 2!, two vertices vx and vy.

7) vx and vy are both of the same type (BAA) and, thus, can be interchanged ⇒ factor 2!

8) Total factor = M
S = 4·2·1

2!·2!·2! = 1

In practice, this procedure is amenable to the theories discussed in this thesis.
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In order to automize the computation, a more general concept has been worked out and im-
plemented as a package named SymmetryFactor in Wolfram Mathematica® 6. The general
principle is to fix the vertices of a given diagram, and count the number of possible connec-
tions of vertex legs which are invariant with respect to symmetry operations as described in
Ref. [85]. The result is then divided by the internal symmetry factors of the vertices. A detailed
description of the algorithm as well as the source code is given in Appendix G.1.

1.3.3 Θ-Deformation

The so called Θ-deformation defines an associative but non-commutative C∗-algebra with gen-
erators x̂†µ = x̂µ according to the relation

[x̂µ, x̂ν ] ≡ iΘµν with µ, ν ∈ {1..D} , (1.14)

and the corresponding D-dimensional deformed space7 shall be denoted by RD
θ (which is already

a specialization to Euclidean space, since Eqn. (1.14) allows for an arbitrary metric). The choice
of the totally antisymmetric tensor Θµν ∈ Mn is not unique but can be classified with respect to
its mass dimension dm and contraction structure. Three options are generally found throughout
the literature:

B Θµν = θµν = const., dm(θ) = −2, constant case,

B Θµν = Cρµν x̂ρ, dm(C) = −1, Lie group case,

B Θµν = Cρσµν x̂ρx̂σ, dm(C) = −0, Quantum group case.

As most existing theories are constructed on flat Euclidean space, it seems reasonable to consider
the simplest case of a constant, global Θ. In the framework of this thesis the special form

(θµν) = θ


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , with θ ∈ R . (1.15)

will be presumed, which obeys the following practical relations

θµρθρν = −θ2δµν , k̃2 = θ2k2 . (1.16)

This definition will be kept for Chapters 1–4. In Chapter 5 a slightly modified version with sep-
aration of θµν into a dimensionful parameter ε and the pure tensor structure Θµν is introduced.

1.3.4 The Groenewold-Moyal-Weyl Star Product

In the point of view of physics it is convenient to require all (wave) functions f(x̂) on RD
θ to be

of the Schwartz class S, i.e. that

f(x̂) ∈ S ⇔ sup
x̂

(
1 + |x̂|2

)i+k1+...kD
∣∣∣∂k11 · · · ∂kD

D f(x̂)
∣∣∣2 <∞ ∀ {i, kj} ∈ Z+

0 , (1.17)

7Note that, in some sense, the properties and rules of computation in RD
θ are well known from Matn (C(M)),

i.e. the space of (eventually complex) n × n matrices.
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i.e. that all functions and their derivatives vanish (faster than every polynomial) at infinity. For
the latter definition to be complete a derivative ∂µ has to be defined according to

[∂µ, x̂ν ] = δµν , [∂µ, ∂ν ] = 0 , (1.18)

and the Leibnitz rule

∂i (f(x̂)g(x̂)) = (∂if(x̂)) g(x̂) + f(x̂)∂ig(x̂) . (1.19)

Now it is rectified that every function f can be written in terms of its Fourier transformation8.
In this respect, the Weyl operator [26] W[f ] shall be introduced.

f̃(k) =
1

(2π)D

∫
dDx e−ikxf(x)

= W−1[f ](k) :=
1

(2π)D

∫
dDx̂ e−ikx̂f(x̂)

f(x̂) = W[f ](x̂) :=
1

(2π)D

∫
dDk eikx̂f̃(k) . (1.20)

Hence, W[f̂ ] defines a map f(x) ∈ RD W[f ]7−→ RD
θ 3 f(x̂) from fields (functions) to operators.

Now, the product in RD
θ is (when considering plane waves, for example)

eikx̂eik′x̂ = ei(k+k′)x̂+ i
2
θµνkµk′ν (1.21)

according to the Baker-Campbell-Hausdorff formula. Note that the exponent is indeed complete
since all further terms vanish due to the property [x̂ν , θρσ] = 0. Utilizing the definition (1.20)
the notion of a star product can be introduced [26–28]

W[f ]W[g] = : W[f ? g] . (1.22)

There are several explicit representations which are equivalent, if the definitions (1.14), (1.18),
Eqn. (1.20), and (1.21) are applied. For the sake of completeness, the three most common forms
which are direct consequences of the Weyl ordering [22] shall be stated at this place.

(f ? g)(x) = e
i
2
∂xθ∂y

f(x)g(y)|x=y

=
∫∫

dDk
(2π)D

dDk′

(2π)D
f̃(k)g̃(k)ei(kµ+k′µ)xµe

i
2
kθk′

=
∫

dDk
(2π)D

∫
dDy f

(
x+ θ

2k
)
g(x+ y)eiky , (1.23)

with the extension

f1(x1) ? · · · ? fn(xn) =
∏
i<j

e
i
2
θµν∂

xi
µ ∂

xj
ν f1(x1) . . . fn(xn) . (1.24)

The latter equation shows (without proof) a remarkable property of the non-commutative prod-
uct (1.21), namely that a multiplication by a plane wave leads to a translation x̂µ → x̂µ− θµνkν
[22],

eikx̂f(x̂)e−ikx̂ (1.21)
= e−θijkj∂if(x̂) = f(x̂µ − θµνkν) . (1.25)

8Fourier transformed quantities are indicated explicitly by a tilde (as in φ̃) during this discussion. In subse-
quent sections this decoration will be omitted, and all functions on momentum space are assumed to be Fourier
transformed quantities.



Chapter 1 – Introduction 11

This can be interpreted as a manifestation of the inherent non-locality introduced by assuming a
non-commutative product. By virtue of the star product it is possible to conduct computations
on RD

θ while working with ordinary (wave-)functions being defined on commuting RD. As will
be explained later on in more detail all effects of non-commutativity are covered entirely by the
exponential phase factors in (1.24). Note also the following practical properties following from
invariance under cyclic permutations under an integral,∫

dDx f1(x) ? · · · ? fn(x) =
∫

dDx fn(x) ? f1(x) ? · · · ? fn−1(x) , (1.26a)∫
dDx f1(x) ? f2(x) =

∫
dDx f1(x)f2(x) , (1.26b)

and validity of the intuitive rule for functional variation

δ

δf1(z)

∫
dDx f1(x) ? f2(x) ? · · · ? fn(x) = f2(z) ? · · · ? fn(z) . (1.27)

It should also be mentioned that Eqn. (1.14) can now be expressed entirely by commuting
coordinates, as

[xµ, xν ] = iθµν .

The star product has been investigated at a broad basis in the literature [87] and is, besides the
matrix basis, the main mathematical tool for efficient work on non-commutative spaces.

1.3.5 A Näıve Model

The implications of non-commutativity can readily be analyzed when considering the simplest
possible model, non-commutative scalar φ4 theory in R4

θ.

S[φ] =
∫

d4x

[
1
2
∂µφ ? ∂µφ+

m2

2
φ?2 +

λ

4!
φ?4
]
. (1.28)

This action represents a natural generalization of the well known commutative case with the
usual product replaced by the star product. Due to the property (1.26b) the bilinear part
(and, hence, the two point function) remains unaffected by deformation, (for details on the
computation of two-point Green functions see Section 1.3.1 or the more explicit calculations in
Appendix A.1,) and the propagator is

k

= G(k) =
1

k2 +m2
. (1.29)

The situation is different for the interaction part Sint[φ] =
∫

d4x λ
4!φ

?4 where the star products
give rise to phase factors. The derivation is intuitive and shall be given in more detail at this
point. First, Sint[φ] can be rewritten as,

Sint[φ] =
λ

4!

∫
d4x

∫ [ 4∏
i=1

d4ki
(2π)4

eikixφ̃(ki)

]
e

i
2
(k1θk2+k1θk3+k1θk4+k2θk3+k2θk4+k3θk4)

=
λ

4!(2π)12

∫ [ 4∏
i=1

dkiφ̃(ki)

]
δ4 (k1 + k2 + k3 + k4) e

i
2
(k1θk2+k3θk4)︸ ︷︷ ︸
phase factor

. (1.30)

In the latter equality the delta function has been exploited in order to rewrite the exponential
in a short form. Obviously, the only difference to the corresponding expression in ordinary
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commutative QFT is the phase factor which does not depend upon the fields. Aiming to derive
the vertex expression one varies Eqn. (1.30) with respect to the fields9

V 4φ(p1, p2, p3, p4) = − δ

δφ(−p4)
δ

δφ(−p3)
δ

δφ(−p2)
δ

δφ(−p1)
Sint[φ]

= − λ

4!(2π)12

∫ [ 4∏
i=1

dkiφ̃(ki)

]
δ4 (k1 + k2 + k3 + k4)

× (2π)16
∑

i{1..4}=π(1,2,3,4)

δ4(ki1 + p1)δ4(ki2 + p2)δ4(ki3 + p3)δ4(ki4 + p4)

= −(2π)4
λ

3

[
cos
(
p1θp2

2

)
cos
(
p3θp4

2

)
+ cos

(
p1θp3

2

)
cos
(
p2θp4

2

)
+ cos

(
p1θp4

2

)
cos
(
p2θp3

2

) ]
, (1.31)

where the sum in the third line is taken over all possible permutations π(. . .) which, in this case,
results in 4! terms. In the limit |θ| → 0 one reobtains the vertex known from the commutative
scalar φ4 model. However, the additional factor gives rise to several new effects unique to non-
commutative theories. These will be discussed further in Section 1.3.7 after an excursion to
graph topology.

1.3.6 Graph Topology

The cyclic property (1.26a) of the star product is well known from matrix models and it is
convenient for the following discussion to introduce the same ribbon band graphical notation
(for a more detailed introduction see for example the review [5]). Propagators are drawn as
double lines with antipodally oriented momenta as shown in Fig. 1.2a. Ordering at vertices
is automatically implemented by the alignment of lines. For instance, the factor associated
with Fig. 1.2b is (as in Eqn. (1.30)) exp

[
i
2 (k1θk2 + k3θk4)

]
. The main advantage of the ribbon

k

= G(k)

(a) Propagator

k2

k1

k4

k3

= V (k1, k2, k3, k4)

(b) Vertex

Figure 1.2: Generic parts of graphs in ribbon notation.

notation is that it eases the identification of the topological properties of the graph. The basics
for classification are yielded by the Euler Characteristic

χ = V − E + F (1.32)

with V being the number of vertices, E is the number of edges (i.e. propagators), and F counts
the faces. A face is a closed edge where the ends of external ribbons are considered to be
connected. For instance, the (amputated) graph in Fig. 1.3b has V = 1, E = 1, and F = 2
(as the grey and black lines each form a face), yielding χ = 2. The same is true for Fig. 1.3a.
However, these two graphs are distinguished by another property which is the number of faces

9A more detailed version of this is given in Appendix A.1.
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broken by external lines B. One can visualize this when considering Fig. 1.3a where the grey
edge is closed by itself while the black one requires additional virtual connections between the
two lines of each external ribbon (edge). Hence, only one face (the black one) is broken by
external lines, i.e. B = 1 in Fig. 1.3a while for Fig. 1.3b B = 2 since both, the black and the
grey lines, require external closures. Graphs with a single broken face are called regular, while
such with B > 1 are irregular. Another important topological quantity is the genus g defined

pp

k

(a) Planar tadpole

pp

k

(b) Non-planar tadpole

Figure 1.3: Two examples to visualize planarity.

by χ = 2 − 2g. If g ≥ 1 a graph is called non-planar. Although both graphs in Fig. 1.3 feature
g = 0 the left one is called the planar tadpole and the right one is generally referred to as the
non-planar tadpole. The a priori misleading naming convention becomes clear if higher loop
insertions are considered as in Fig. 1.4 where for the addition of the planar tadpole in Fig. 1.4a
results in g = 0 while for the non-planar tadpole in Fig. 1.4b the total genus becomes g = 1.
The notion of planarity is heavily used in non-commutative field theory where it provides a way

(a) Planar graph (V = 3,
E = 4, F = 3, g = 0)

(b) Non-planar graph (V =
3, E = 4, F = 1, g = 1)

Figure 1.4: Different insertions of the tadpoles in Fig. 1.3 into a sunrise graph

to distinguish between IR and UV divergences. In addition to the above considerations, from
the Euler characteristic follows a very useful relation

L = I − V + 1 , (1.33)

for the number of loops L in a graph.

1.3.7 UV/IR mixing

Attempting to compute a scattering amplitude in the näıve model (1.28) for the tadpole graph
in Fig. 1.3 one obtains the expression

Π(p) = Πp + Πnp =
λ

6

∫
R4

d4k

(2π)4
2 + cos kθp
k2 +m2

, (1.34)
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where the relation (F.18) has been used and the splitting in planar (pl) and non-planar (npl)
parts corresponds to the contributions of the respective graphs in Figs. (1.3a) and (1.3b). Note
that a symmetry factor 1

2 has already been included. The integral Πpl yields a quadratic UV
divergence10 in the cutoff Λ which can be expected from näıve power counting, similar to the
commutative theory,

Πp = −λ
6

∫
R4

d4k

(2π)4
1

k2 +m2

= −λ
6

∫
R4

d4k

(2π)4

∞∫
0

dα e−α(k
2+m2)

= − lim
Λ→∞

λ

6(2π)4

∞∫
0

dα
π2

α2
e−αm

2− 1
Λ2α

= − lim
Λ→∞

λ

54π2

√
Λ2m2 K1

(
2

√
m2

Λ2

)

= − lim
Λ→∞

λ

54π2

[
Λ2

2
+m2

(
γE − 1

2
+ ln

√
m2

Λ2

)
+ O

(
1
Λ2

)]
. (1.35)

Note that the second line has been obtained by Schwinger parametrization and in the last step
the approximation (see also Eqn. (F.24))

1
z

K1(z) =
1
z2

+
1
2

ln z +
1
2

(
γE − ln 2 − 1

2

)
+
z2

16

(
ln z + γE − ln 2 − 5

4

)
+ O(z4) , (1.36)

for the Bessel function K1 with the Euler-Mascheroni constant γE ≈ 0.577216 has been applied.
In contrast, Πnp is expected to be regularized by the oscillating cosine function.

Πnp = − λ

12

∑
η=±1

∫
R4

d4k

(2π)4
eiηkθp

k2 +m2

= − λ

12

∑
η=±1

∫
R4

d4k

(2π)4

∞∫
0

dα e−α
“

kµ−iη
θµνpν

2α

”

− (ηθp)2

4α
−αm2

= − λ

6(2π)4

∞∫
0

dα
π2

α2
e−αm

2− (ηθp)2

4α

= − λ

54π2

√
4m2

(θp)2
K1

√
(θp)2m2

= − λ

54π2

[
2

(θp)2
+m2

(
γE − 1

2
+ ln

1
2

√
(θp)2m2

)
+ O

(
p2
)]

. (1.37)

The important fact to note at this place is that the phase factor introduced by non-commutativity
indeed regularizes the UV region but gives rise to an IR singularity for vanishing external
momentum p. Hence, nothing is won. Since the splitting into planar and non-planar parts is a
general principle one always obtains both types of divergence for a single graph.

10Note also the logarithmic divergence in the mass m which may be problematic in gauge theories.



Chapter 1 – Introduction 15

Mathematically the phase factors are regulating a priori ill-defined integrals by oscillation for
high momenta. The involved exponential functions are parametrized with θ (which is intuitively
clear, as in the commutative limit the phase has to vanish), and the external momentum, p.
Hence it is not surprising that for vanishing regulator, i.e. p → 0 or p̃ → 0, the divergences
reappear. Therefore, in a more physical sense, they are nothing else but UV divergences being
mapped to the infrared. This effect is commonly referred to as UV/IR mixing [29]. The picture
of divergences being cast to the opposite energy limit is supported by the notion of an effective
cutoff [29, 30] Λeff ,

Λ2
eff =

1
p̃2 + 1

Λ2

, (1.38)

which, in the limit p̃2 → 0, shows UV divergent behavior.

Another point which shall be mentioned is the inherent non-locality bound to the star product
(1.22), and more general, to the assumption of a deformation (1.14). The latter relates different
space-time points in a way which is not restricted to timelike or lightlike distances. Therefore,
interaction outside the light cone is a priori allowed by definition. In the light of the star product
non-locality manifests in the infrared divergences, as the ubiquitous p̃−2 divergence in momen-
tum space translates to 1/x2 in x-space. From this it is clear that the entire space contributes
to results of loop calculations.
In commutative physics, locality is a basic requirement for physical relevance and renormaliz-
ability of theories. Therefore, it appears odd that this topic has not received much attention
up to now [64]. It has to be remarked that, since the value of θ is assumed to be of the order
of the Planck length λP , the non-locality imposed by Eqn. (1.14) is indeed restricted to very
small distances. Unfortunately, despite almost a decade of research, up to now there is no satis-
factory interpretation of non-locality introduced by deformation. The most promising ansatz is
to replace the notion of (and general demand for) locality by the rather pragmatic approach to
consider almost localyity [5] ,also called Moyality, i.e. to consider locality in dependence of the
energy scale. See also Section 4.1.2, page 65.

1.4 Renormalizable non-commutative Models – An Overview

So far only a few models on deformed space have shown to be non-trivially renormalizable (i.e.
models which are not super renormalizable in commuting space, or are studied only at a specific
parameter configuration). In this respect one should mention the Grosse Wulkenhaar model [32]
featuring the action

S[φ] =
∫

d4x

[
1
2

(∂µφ)?2 +
Ω2

2
(x̃µφ)?2 +

m2

2
φ?2 +

λ

4!
φ?4
]

(1.39)

in Euclidean space, with x̃ = 2|θ|−1x, and Ω ∈ [0, 1] being a parameter. This model features
a modified propagator, generally referred to as the Mehler kernel [88] which takes the form (in
direct space)

GM(x, y) =
Ω2

θ2π2

∞∫
0

dt
sinh2 2Ω̃t

e−
Ω̃
2 [(x−y)2 coth(2Ω̃t)−(x+y)2 tanh(2Ω̃t)]−m2t (1.40)

This propagator softly violates momentum conservation, which is the reason why the Fourier
transformed version depends on two different momenta, GM(k, k′). It has been shown that the
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renormalizability of the model (1.39) is intimately connected to a symmetry in the asymptotic
scales (Langmann Szabo duality [33]), which can be written as,

S
[
φ;m,λ,Ω

]
7→ Ω2S

[
φ;
m

Ω
,
λ

Ω2
,
1
Ω
]
. (1.41)

The point Ω = 1 is called self-duality at which the symmetry (1.41) becomes trivial. Generally,
in order to obtain renormalizability it seems to be necessary to pay tribute to the connection
between short and long distances being introduced by the star product, and in consequence, the
UV/IR mixing.
However, there is another model featuring a similar symmetry, the non-commutative 1/p2 model
by Gurau et al. [40] being discussed extensively in the sequel of this thesis.

For the sake of completeness we should mention that there are several other approaches leading
to renormalizable theories on non-commutative spaces. For example the φ?3 model in six [89] and
four [90] dimensions which is trivially finite (superrenormalizable) but is likely to be unstable,
or the LSZ model [91] featuring an oscillator-like term similar to the GW model. In addition,
there are a number of non-commutative supersymmetric models, and the superrenormalizable
φ?42 model [92].
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Chapter 2

The Non-local 1/p2 Model

This chapter is devoted to the 1
p2

model which, besides the Grosse-Wulkenhaar approach, rep-
resents the second of the two main contributions for the construction of renormalizable non-
commutative field models. The main idea is the insertion of a non-local counter term featuring
the inverse of a second order derivative into the action. This leads to a damping behavior in the
low momentum limit in all relevant propagators. Proofs for renormalizability, so far, have only
been found for the simple φ4

? version by Gurau et al. [40]. Starting with their original scalar
action in Section 2.1 the main features of the model are discussed. The stony road to a suitable
gauge theory is entered in Section 2.2 where the problems of early approaches are discussed.
More advanced implementations including BRST symmetry are addressed in Chapter 3. Exem-
plary computations and supplementary content to this chapter are collected in Appendix A.

2.1 Nonlocal Damping - A Scalar Model

The success of the Grosse-Wulkenhaar model with its oscillator term drew a lot of attention
from the community but problems, such as the explicit breaking of translation invariance, where
not solved. An alternative approach to tackle the problem of UV/IR mixing was proposed by
Gurau et al. [40]. The main idea is to add a non-local term

Snloc[φ] = −
∫

d4xφ(x) ?
a2

θ2
x�

? φ(x) , (2.1)

to the action (1.28), where a is a dimensionless constant. A priori the physical interpretation
of the operator 1

� is difficult – especially in x-space one faces the inverse of a derivative which
appears to be odd. In momentum space the situation becomes more intuitive since the inverse
of the scalar function k2 is well known1. More concisely,∫

d4xφ(x)
1

�x
φ(x)

p.i.
=
∫

d4x

∫
d4k

(2π)4

∫
d4k′

(2π)4
φ(k)eik′xφ(k′)

1
�x

eik′x︸ ︷︷ ︸
−k′2eik′x

= −
∫

d4k

(2π)4
φ(−k) 1

k2
φ(k) , (2.2)

1Note that the four-dimensional Laplacian � ≡ ∂µ∂µ transforms to −k2 in Euclidean space
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and

�x
1

�′
x

∝ δ4(x− x′) . (2.3)

Hence, the new operator �−1 is to be interpreted as the ‘Green operator’ of � ≡ ∂µ∂µ.

The action including the non-local insertion reads

S[φ] =

+∞∫
−∞

d4k

(2π)4

[
1
2

(
kµφ(−k)µφ(k) +m2φ2 +

a2

2
φ(−k) 1

k̃2
φ(k)

)
+
λ

4!
φ?4
]
. (2.4)

Note that the ? in the interaction part of Eqn. (2.4) does not make sense in momentum space,
and shall represent the phase factor (see Appendix A.1) at this point. Variation of the bilinear

part Sbil[φ] =
+∞∫
−∞

d4k
(2π)4

1
2

(
k2 +m2 + a2

k̃2

)
φ2 of the action with respect to φ immediately leads to

the propagator
k

= G(k) =
1

k2 +m2 + a2

k̃2

. (2.5)

This Green function is the core achievement of the approach by Gurau et al. since it features a
damping behavior in the IR while not affecting the UV region, i.e.

lim
k→0

G(k) = lim
k→∞

G(k) = 0, ∀m, ∀a 6= 0. (2.6)

In contrast, the vertex functional

k1

k2

k3

k4 = V (k1, k2, k3, k4)

= −λ
3
(2π)4δ4 (k1 + k2 + k3 + k4)

[
cos
(
k1θk2

2

)
cos
(
k3θk4

2

)
+ cos

(
k1θk3

2

)
cos
(
k2θk4

2

)
+ cos

(
k1θk4

2

)
cos
(
k2θk3

2

)]
, (2.7)

is not altered in comparison to the näıve model of Section 1.3.5. In the following it will be
convenient to introduce a modified constant a′ := a/θ of mass dimension 2.

2.1.1 One Loop Computations

Corrections to the Two-Point Function

The modified propagator (2.5) is expected to damp in the IR region. In order to study this,
we consider the simple graph in Fig. 2.1. (The following discussion focuses on the main results;
detailed computations are given in Appendix A.2.) It corresponds to the expression

Π(p) =

+∞∫
−∞

d4k

(2π)4
G(k)V (p,−k, k,−p)

= −λ
6

∫
R4

d4k

(2π)4
2 + cos(kp̃)
k2 +m2 + a′2

k2

≡ Πp(p) + Πnp(p) . (2.8)
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p

k

(a) planar

p k

(b) non-planar

Figure 2.1: One loop corrections to the photon propagator.

Here, Πp and Πnp denote the planar and non-planar parts, (in correspondence with the different
views in Figs. 2.1a, 2.1b, see Section 1.3.6 for a discussion of planarity) respectively. Facing the
task to compute the integral in Eqn. (2.8) we have to cast the expression into a form amenable
for Gaussian integration. We note that

1
k2 +m2 + a′2

k2

=
k2(

k2 + m2

2

)2
−M4

=
1
2

∑
ζ=±1

1 + ζ m2

2M2

k2 + m2

2 + ζM2
, (2.9)

where M2 ≡
√

m4

4 − a′2 (which may be real or purely imaginary depending on the value of a′).
Taking into account Eqns. (2.9) and (F.21), the non-planar part can be evaluated straightfor-
wardly by using Schwinger parametrization (see Appendix F):

Πnp(p) = − λ

24

+∞∫
−∞

d4k

(2π)4
∑

η,ζ=±1

1 + ζ m2

2M2

k2 + m2

2 + ζM2
eiηkp̃

= − λ

48π2

∑
ζ=±1

(
1 + ζ m2

2M2

) √ m2

2 + ζM2

p̃ 2
K1

(√
p̃ 2
(
m2

2 + ζM2
))

, (2.10)

where K1 is the modified Bessel function. The result is finite for p̃ 2 6= 0, i.e. if θ 6= 0 and p 6= 0.

In the following, we will focus on the IR behavior of the model, i.e. the limit p̃ 2 → 0. For
small z, the function 1

zK1(z) admits the expansion (1.36), as in the previous chapter (see also
Eqn. (F.24) in Appendix F). Thus, for p̃ 2 � 1, the expression (2.10) behaves like

Πnp(p) =
−λ

6(4π)2

[
4
p̃ 2

+m2 ln
(
p̃ 2
√

m4

4 −M4

)

+
(
M2 + m4

4M2

)
ln

√√√√ m2

2 +M2

m2

2 −M2

]
+ O(1) . (2.11)

The latter expression involves a quadratic IR divergence (and a subleading logarithmic IR di-
vergence). Moreover, for a′ → 0 (i.e. M2 → m2

2 ) this result reduces to the one which is given
in the literature for a′ = 0 [29, 93], i.e. for the näıve model. From this result, we may conclude
that the damping mechanism surprisingly does not act on the one loop level. This topic will be
continued at a later point in Section 2.1.2 where higher order computations are discussed.

The integral defining the planar part does not contain a phase factor eikθp, and is therefore UV
divergent. It can be regularized by introducing a cutoff Λ, and subsequently taking the limit
p̃ 2 → 0, as explained in Appendix A.2.1. The final result can be expanded for large values of Λ,
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yielding

(Πp)regul. (Λ) =
−λ

3(4π)2

[
4Λ2 +m2 ln

(
1

Λ2

√
m4

4 −M4

)

+
(
M2 + m4

4M2

)
ln

√√√√ m2

2 +M2

m2

2 −M2

]
+ O(1). (2.12)

As expected, a quadratic and a subleading logarithmic divergence in the cutoff Λ are obtained.

Corrections to the Four Point Function

The basic one loop correction to the vertex is given by the three connected graphs that can be
constructed with four external legs [81, 93, 94]:

V1-loop(p1, p2, p3, p4) = 1
6

[ p1

p2

p4

p3

k

+
p1 p3

p2 p4

k +
p1 p4

p2 p3

k

]
. (2.13)

This expression can be evaluated by proceeding along the lines of Ref. [93]. By applying the
Feynman rules (2.5) and (2.7), and by taking advantage of the identity (2.9) we find that2 (2.13)
reads

λ2

27

∑
ζ,χ=±1

+∞∫
−∞

d4k

(2π)4

(
1 + ζ m2

2M2

)(
1 + χ m2

2M2

)
k2 + m2

2 + ζM2

[(
1 + 1

4

4∑
i=2

eik(p̃1+p̃i) + 1
2

4∑
i=1

eikp̃i

)

×
(

1

(p1+p2−k)2+m2

2
+χM2

+ 1

(p1+p3−k)2+ m2

2
+χM2

+ 1

(p1+p4−k)2+m2

2
+χM2

)
+ 3

4

(
eik(p̃1+p̃2)

(p1+p2−k)2+ m2

2
+χM2

+ eik(p̃1+p̃3)

(p1+p3−k)2+m2

2
+χM2

+ eik(p̃1+p̃4)

(p1+p4−k)2+m2

2
+χM2

)]
. (2.14)

Thus, we again have an expression involving planar and non-planar parts (the latter involving
a phase factor of the form eikθq). The generic integral for the non-planar part is given by

I(p, q) ≡
∑

ζ,χ=±1

+∞∫
−∞

d4k

(2π)4

(
1 + ζ m2

2M2

)(
1 + χ m2

2M2

)
eikθ(p+q)(

k2 + m2

2 + ζM2
) [

(p− k)2 + m2

2 + χM2
]

=
∑
ζ,χ

(
1 + ζ m2

2M2

)(
1 + χ m2

2M2

) 1∫
0

dξ
ei(1−ξ)pθq

8π2

×K0

(√
(p̃+ q̃)2

[
ξ(1 − ξ)p2 +

m2

2
+ (χ+ ξ(ζ − χ))M2

])
. (2.15)

Here, p denotes the total incoming momentum, and q represents one of the variables pi (see
Appendix A.2.2 for calculational details). For small arguments the modified Bessel function K0

can be expanded according to (see Eqn. (F.24) in Appendix F)

K0(z) = − ln z + ln 2 − γE + O
(
z2
)
, (2.16)

2For details on the computations see Appendix A.2.2.
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from which we can derive the following estimation for small external momenta p and q:

I(p, q) ≈ 1
(2π)2

{
ln
(

(p̃+ q̃)2

4

√
m4

4 −M4

)
+ 2γE − 1

2

(
1 − m4

4M4

)
+
(
3 − m4

4M4

)
m2

4M2 ln

√
m2 + 2M2

m2 − 2M2

}
. (2.17)

The planar part of expression (2.14) can again be evaluated by introducing a cut-off Λ (as is
discussed for the propagator in Appendix A.2.1): the final result directly follows from (2.15) and
(2.17) by replacing (p̃ + q̃)2 with 1/Λ2. Note that the latter expression develops no divergence
for a→ 0 (corresponding to the limit of the näıve model) as stated in [95], and can be checked
by explicit computation.

2.1.2 Two and Higher Loop Orders

It turned out in Section 2.1.1 that the IR damping behavior of the modified propagator (2.5)
does not alter the (divergent) result of one loop computations with respect to the näıve model.
However, the regularizing effect becomes obvious when considering higher loop insertions, such
as the non-planar tadpole graph with non-planar insertions (see Fig. 2.2a for one insertion, and
Fig. 2.2b for several insertions, where external legs are considered to be amputated). Since we

p p

q

k

(a) with 1 insertion

p p

k

q1

q2

q3

(b) with 3 (symbolizing n) insertions

Figure 2.2: Non-planar 2 loop and 4 (resp. n) loop graphs.

are only concerned about the IR divergences, we limit ourselves to the first (i.e. most singular)
term in the expansion (1.36) of Πn-pl, hence [29] we consider the approximation Πn-pl(k) ∝ 1/k̃2.
Within this approximation, a graph with n non-planar insertions is described by the expression

Πn np-ins.(p) ≡ λ2
∑
η=±1

+∞∫
−∞

d4k

(2π)4
eiηkθp(

k̃2
)n [

k2 +m2 + a′2

k2

]n+1 . (2.18)
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For the näıve model (where a = 0), the integral of Eqn. (2.18) involves an IR divergence for
n ≥ 2, because the integrand behaves like (k2)−n for k2 → 0. In contrast, for the model under
consideration (where a 6= 0), the integrand behaves like

1(
k̃2
)n [

a′2

k2

]n+1 =
k̃2

(a′2)n+1 . (2.19)

Thus, the propagator (2.5) ‘damps’ the IR-dangerous insertions, and therefore cures potential
IR problems in the integral (2.18). This is a nice demonstration of the mechanism leading to
the renormalizability of the 1/p2 model by Gurau et al.. In this respect it should be noted that
its renormalizability has been proven up to all orders in reference [96] using multiscale analysis
(see also Section 2.1.4).

Note that, in principle, the computation of an n loop graph requires to conduct the full renor-
malization programme up to order n − 1. The above estimation (2.19) is based upon the tree
level propagator (2.5) without any quantum corrections. Since, as will be shown in Section 2.1.3
explicitly for one loop, the corrections leave the form of the propagator invariant, this approxi-
mation is valid qualitatively.

In the following, a more detailed mathematical analysis of the IR behavior of the graph with
n non-planar insertions will be given. The aim is to find out if the 1/k2 divergence of the one
loop result (2.11) states a problem when being integrated over, upon insertion into higher loop
graphs. The simplest test case is the snowman graph depicted in Fig. 2.2a (see Appendix A.3.1),
which corresponds to the case n = 1 in Eqn. (2.18). One finds for the non-planar part

Π1 np-ins.(p) ≈ −λ2

3(4π)4θ2M6

{
m2

[√
m2

+

p̃ 2
K1

(√
m2

+p̃
2

)
−

√
m2

−
p̃ 2

K1

(√
m2

−p̃
2

)]

+M2

[
m2

+K0

(√
m2

+p̃
2

)
+m2

−K0

(√
m2

−p̃
2

)]}
, (2.20)

where m2
± := m2

2 ±M2. Application of the expansion (F.24) for the Bessel functions reveals
that all IR divergences in p cancel and the result is indeed finite for small momenta. This
unambiguously shows that the insertion of the one loop 1/k2 divergence can be integrated out
on two loop level and no additional divergences3 appear.
Now let us consider the corresponding expression in the näıve model where we omit any numerical
prefactors for simplicity

Π1 np-ins. näıve ∝
+∞∫

−∞

d4k

(2π)4
1
k2

eikθp

(k2 +m2)2

=
1

m4(4π)2

[
4
p̃2

− 2m2 K2

√
µ2p̃2

]
, (2.21)

and again, all IR divergences cancel. This indicates, that the two loop level is not representative
in the light of the investigation of possible divergences due to non-planar insertions into higher
loop graphs. Indeed, from the estimation (2.18) and the discussion thereafter, it is clear that ill-
defined integrals will not appear before the 2 loop level. Let us fortify this general argumentation

3It has to be noted that the 1
p̃2 divergence reappears order by order, but the occurrence of higher order poles

is avoided.
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by some explicit calculations. A detailed computation of the graph in Fig. 2.2b (with the help
of Mathematica), shows the following

Πn np-ins. näıve ∝
+∞∫

−∞

d4k

(2π)4
1

(k̃2)n
eikθp

(k2 +m2)n+1

=
2

(4π)2

∞∫
0

dλ

1∫
0

dξ λ2n−2 ξ
n(1 − ξ)n−1

Γ(n)Γ(n+ 1)
e−

p̃2

4λ
−λξm2−µ2λ , for n > 1 , (2.22)

where a mass µ → 0 had to be introduced in order to regularize the integrals. This yields the
following types of divergences4 in p̃→ 0 and µ→ 0, for the given number n of insertions

n = 2 ln
√
p̃2µ2, ln

√
p̃2

n = 3
1
µ2
, ln

√
p̃2µ2, ln

√
p̃2

n = 4
1
p̃2
,
p̃2

µ2
ln
√
p̃2µ2, ln

√
p̃2 (2.23)

From the latter results it is clear that in the näıve model without damping we obtain ill-defined
integrals from the third loop level on (i.e. more than one insertion of the type of Fig. 2.2b).

In the model by Gurau et al., incorporating the additional damping term, the situation is
different as divergences are suppressed. Due to the splitting (see Eqn. (2.9)) of the propagator
the respective integrals become more involved. For generic n, the graph in Fig. 2.2b evaluates to
Πn np-ins.(p) = λ2Jn(p) with Jn(p) being given by the integral (A.35) in Appendix A.3.2 (where
some details of the computation can be found). By expanding the results for n = 1..4 insertions
for small external momentum p̃ 2, and introducing the abbreviation m± :=

(
m2

2 ±M2
)
, we

obtain

Π1 np-ins.(p) = − λ2

16π2θ2M6

[ (
m4 − 4M4

)
ln

√
m2

+

m2
−
− 4M2m2

2

]
+ O(p̃ 2) ,

Π2 np-ins.(p) = − λ2

28π2θ4M10

[(
3m4 − 4M4

)
ln

√
m2

+

m2
−
− 12m2M2

]
+ O(p̃ 2) ,

Π3 np-ins.(p) = − λ2

2113π2θ6M14

[
3
(
m2 − 2M2

)(
m4 − 4M4

)
ln

√
m2

+

m2
−

− 4m2M2
(
15m4 − 52M4

) ]
+ O(p̃ 2) ,

Π4 np-ins.(p) =
λ2

2179π2θ8M18

[
15
(
32M4 − 56m4

)
ln

√
m2

+

m2
−

− 32M2m2 105m8 − 750m4M4 + 1296M8

(m4 − 4M4)2

]
+ O(p̃ 2) . (2.24)

In the limit a→ 0 (which eliminates the damping) all but the result for n = 1 diverge. This fact
again illustrates that the propagator (2.5) regularizes graphs which diverge in the näıve model.

4Note that any numeric (even dimensionful) parameters are omitted.
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In the limit m→ 0 (i.e. for a massless field), the expressions (2.24) reduce to finite quantities

Π1 np-ins.(p)
∣∣∣
m=0

=
λ2

26π|θa|
+ O(p̃ 2) ,

Π2 np-ins.(p)
∣∣∣
m=0

=
λ2

28πθ4|a3|
+ O(p̃ 2) ,

Π3 np-ins.(p)
∣∣∣
m=0

=
λ2

29πθ6|a5|
+ O(p̃ 2) ,

Π4 np-ins.(p)
∣∣∣
m=0

=
λ2

2109πθ8|a7|
+ O(p̃ 2) . (2.25)

Henceforth, in contrast to the näıve model (e.g. see reference [93]), the higher loop graphs in
Fig. 2.2b do not diverge for m → 0. In other words, the IR divergent insertion 1/k̃2 does not
cause any harm in these higher loop graphs, even for a massless field. This is an important feature
when bearing in mind a later generalization of the damping concept to gauge field theories.

2.1.3 An Attempt for IR Renormalization

Having at hand the explicit results of Eqns. (2.11), (2.12), and (2.17) we are in the position to
start a renormalization procedure in order to achieve a one loop effective action S(1)

eff . Applying a
simple subtraction scheme ( as it is discussed in the standard literature on QFT, see for example
[75, 84]), the dressed propagator at one loop level is given by5

p
:= ∆′(p) =

1
A

+
1
A

Σ(Λ, p)
1
A
, (2.26)

where

A := p2 +m2 +
a2

p̃2
,

Σ(Λ, p) := (Πp)regul. (Λ) + Πn-pl(p) .

For A 6= 0, ∃ A−1, A+B 6= 0, and ∃ (A+B)−1 we can apply the formula

1
A+B

=
1
A

− 1
A
B

1
A+B

=
1
A

− 1
A
B

1
A

+ O(B2) , (2.27)

which allows to rewrite expression (2.26) to order Σ (i.e. to order λ) as

∆′(p) =
1

p2 +m2 + a2

p̃2
− Σ(Λ, p)

. (2.28)

Note that the contribution Πn-pl(p) to Σ(Λ, p) is finite except for vanishing external momentum
p. The expansion for small values of p̃ 2, as given in Eqn. (2.11), reveals a quadratic and a
logarithmic IR divergence6 at p̃ 2 = 0. The quadratically divergent term obviously has the same
structure as the term a2

p̃2
appearing in the bare propagator (2.5). In fact, this has been the actual

5Remember the notation a′2 := a2/θ2, resulting in a′2/p2 ≡ a2/p̃2.
6In this respect, we should emphasize that these IR divergences are fundamentally different from the ones

encountered in quantum field theories on commutative space since they are tied to the UV divergences and only
appear in non-planar diagrams which are not present in usual QFT [22]. Thus, these divergences cannot be
regularized by introducing an infrared regulator (like an additional mass parameter).
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motivation for the introduction of the non-local term in the 1/p2 model by Gurau et al., as it
allows to absorb the typical quadratic IR divergence of non-commutative scalar theories by a
finite renormalization of the parameter a′2.

From the expansions (2.11) and (2.12) it follows that, to order λ, we have

∆′(p) =
Z

p2 +m2
r + a2

r
p2

+ f(p2)
, (2.29)

where

Z := 1 + λαθ2 , (α ∈ R) ,

m2
r := m2 +

λ

3(4π)2

[
4Λ2 +m2 ln

(
1

Λ2

√
m4

4 −M4

)]
+ regular for Λ → ∞ ,

a2
r := a2 + λ

[
2

3(4πθ)2
+ αa2θ2

]
,

f(p2) :=
λ

6(4π)2
[
m2 ln

(
θ2p2

)
+ O((θp)4)

]
. (2.30)

The quantities mr and ar represent the renormalized mass and a-parameter to one loop order,
and the function f(p2) is analytic for θ 6= 0 and p2 > 0. The expression Z amounts to a finite
wave function renormalization7. It has to be noted at this point that it is a priori not clear how
to handle the logarithmic singularity of f(p2). In the literature, [96] this problem is treated by
stating that for vanishing external momentum p the logarithm represents a ‘mild divergence’
which is unproblematic when computing physical amplitudes. This point can intuitively be
understood since, in the denominator of Eqn. (2.29),

f(p)
!
<

[
p2 +m2

r +
a2
r

p2

]
p→{0,∞}

,

but there is no rigorous interpretation by any means in the literature. The constant α appearing
in Z and in ar is determined by the numerical factor that occurs in the expansion of Σ(Λ, p) at
order p̃ 2 (see Eqns. (F.24) and (2.11)). We have

αθ2 =
2

3(16π)2

(
ln 2 +

5
4
− γE

)(
m4 − a2

)
, (2.31)

which is positive for m4 > a2. However, even in the case where α < 0, the one loop renormalized
parameter a2

r is positive, provided

a2 <
1

2θ2

(
B

λA
+ θ2m4

)
+

1
θ2

√
1
4

(
B

λA
+ θ2m4

)2

+B ,

where A :=
2

3(4π)2
, B :=

16
ln 2 + 5

4 − γE
> 0 . (2.32)

Since θ is necessarily quite small on physical grounds, the dominating factor in the previous
inequality is 1/λ. Hence, even for m = 0, the parameter a2

r is positive for small values of the
coupling constant λ (more precisely for a2 . 103/

(
λθ2
)
).

7For the φ4-theory on commutative space, there is no wave function renormalization at one loop order, but
this is a peculiarity of this theory [81].
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The renormalized coupling constant λr at one loop order is obtained by considering the planar
part8 of Eqn. (2.14). One finds an expression which is similar to the one in the commuta-
tive theory. The non-planar part of Eqn. (2.14) again involves a logarithmic singularity (see
Eqn. (2.17)). Further treatment of the one loop vertex correction, and a computation of the β
function of the scalar 1/p2 model can be found in Ref. [41].

For any renormalizable model the stability of the action can be expressed in the form of
(re)normalization conditions. For the current model we can express the 1PI vertex function
for the free bilinear part of the action (2.4) by

Γ(0)
2 (k) = k2 +m2 +

a′2

k2
. (2.33)

This expression leads to the following renormalization conditions (at the point9 k2 = 0), where
mphys. denotes the applicable renormalized mass (see Section 4.1.2):

k2Γ(0)
2 (k)

∣∣∣
k2=0

= a′2 ,(
Γ(0)

2 (k) − a′2

k2

) ∣∣∣
k2=0

= m2
phys. ,

d
dk2

(
Γ(0)

2 (k) − a′2

k2

) ∣∣∣
k2=0

= 1 . (2.34)

In fact, the tree level action (2.4) as well as the respective one loop renormalized expression
including the corrections of Eqn. (2.30) are compatible with these. Although no proof will be
given in this work, we may conjecture that the conditions (2.34) hold up to all orders, and
therefore guarantee stability of the action under quantum corrections.

2.1.4 General Proof of Renormalizability

The general proof of renormalizability has been given in a complete and concise way by Gurau
et al. [40] using the technique of Multiscale Analysis (MA). It is the intent of this section to shed
light on the idea of the procedure, not to present any rigorous derivation.

The main idea of Multiscale Analysis relies on the concept of scales. It is well known that an
arbitrarily complex Feynman graph cannot simply be renormalized by just integrating over all
internal momenta, and subtracting the resulting divergences. Instead, as was realized first by
Bogoliubov [97] and Zimmermann [98], one has to iteratively subtract divergences of non-trivial
subparts (‘forests’) of the graph (see Appendix D) for a short review of these techniques). These
represent the contribution of a specific energy scale, i.e. a physical subprocess. The general
topic how to select and handle scales has many facettes and approaches which can roughly be
collected under the name Renormalization Group (RG). MA is a more general scheme to derive
bounds for contributions of graphs, relying on the same ideas as RG. The basic concepts are
the so called ‘slicing’ of propagators, and the approximation and bounding of graph amplitudes
by application of a mean value theorem. The most complete description of the procedure and
proofs can be found in the book by Rivasseau [99]. Now let us briefly sketch how MA works.

8In this case only the planar part is taken, since the logarithmic result is finite for any non-vanishing combi-
nation of external momenta p̃ + q̃.

9Note that, in principle, the point at which these conditions are expressed, as well as the renormalization point
for Eqn. (2.29) are arbitrary. A different choice is being discussed for instance in Ref. [41].
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Any propagator G(k) in k-space10 can be ‘sliced’ with respect to the energy scales i as

Gρ(k) = lim
ρ→∞

ρ∑
i=0

Gi(k) , (2.35)

where ρ is a UV cutoff. In the 1/p2 model, the slices explicitely read (see Appendix A.4)

Gi(k) =

M−2(i−1)∫
M−2i

dα e−α
“

k2+m2+a′2
k2

”

, i ≥ 1 , (2.36)

G0(k) =

∞∫
1

dα e−α
“

k2+m2+ a′2
k2

”

. (2.37)

Hence, the large convergent IR part11 on α ∈ [1,∞) is separated off, and the UV region [M−2ρ, 1]
is covered by slices which all are finite by themselves. Note that the divergence at α → 0
(corresponding to the UV divergence in the momentum) is only reached in the limit ρ→ ∞; i.e.
if the finite sum is extended to an infinite one. A key argument is the following

Theorem 1. Every integral in (2.36) is bounded by

Gi(k) ≤ Ke−cM
−2i

“

k2+m2+a′2
k2

”

, with K > 1∈R+, and c∈R+ , (2.38)

and similarily

G0(k) ≤ K ′e−c
′p2 , with K ′ > 1∈R+, and c′ ∈ R+ . (2.39)

A proof is given in Appendix A.4. The amplitude A(γ) of an arbitrary N point Feynman graph
γ can be expressed as

A(γ, {p1..pN}) = δ
( N∑
i=1

pi

)
e

i
2

N
P

m<n
pmθpn

∫ [ L∏
j=1

d4kj G(kj)

×
∏
v 6=vr

δ (qv,1+ qv,2+ qv,3+ qv,4) e
i
2

4
P

a,b=1
Iabqv,aθqv,b

]
, (2.40)

where the prefactor comes from the star products in the respective (φ?4) term in the action,
the second factor is the contribution of the propagators in L loop integrations, and the last
factor comes from momentum conservation (referenced to the external vertex vr) and phases
of the internal (and external) vertices v. The insertion of the bound (2.38) into Eqn. (2.40)
gives (after a rather long computation) a global bound for the amplitudes. Since the general
expression (2.40) is valid for any graph, a bound for A(γ, {p1..pN}) indeed shows finiteness up to
all orders. In the case of the scalar 1/p2 model the bound is (for graphs γ with genus 0, viewed
at scale i, having connected components (subgraphs) γρi depending on the scale attribution ρ
(see Section 4.1.2 and Refs. [5, 99]).

Aρ(γ, {p1, ..pN}) ≤
∏
i∈ρ,k

M−[N(γi
k)−4] , with M ∈ R+ , (2.41)

10All of the concepts described here can also be translated to direct space.
11Note that the (Schwinger) parameter α corresponds to an inverse momentum k−2, hence the limit α → ∞

relates to k → 0



2.2 The Way to a U?(1) Gauge Model – Early Approaches 28

from which follows that only two and four point graphs γ, (with N(γ) = 2 and N(γ) = 4, resp.)
give divergent contributions.

The final ingredient is the idea of RG steps, yielding an iterative procedure starting, in contrast
to the ‘classical’ renormalization schemes (see the discussion in Chapter 4) from the highest
energies (corresponding to ρ → ∞), and ends at the completely renormalized effective action
S0. Assume, we have found a bound for a specific ρ, then we can define the field φρ at this
scale to be composed from a background φρ−1 and a fluctuating field ϕρ representing the actual
effects on the current scale, i.e. φρ = φρ−1 + ϕρ. Applying this notation we define a generating
functional

Zρ−1[φρ−1] =
∫

Dφρ e−Sρ[φρ−1+ϕρ] ,

from which, in turn, we gain the renormalized action at the next lower scale

Sρ−1[φρ−1] = − ln (Zρ−1[φρ−1]) .

The iterative procedure terminates at S0 being the effective renormalized action. In practice,
however, one will of course not explicitely compute the generating functional at each scale, but
instead derive a rigorous power counting with the help of bounds for the amplitudes (see [40]).
For the case of the non-commutative 1/p2 model this counting finally reads12,

d(γ) =

{
4 − Eφ for g(γ) = 0 , ( i.e. planar graphs)
−4 − Eφ for g(γ) > 0 , ( i.e. non-planar graphs)

, (2.42)

where g(γ) is the genus of the respective graph γ (see Section 1.3.6) and Eφ ≡ N is the number
of external legs. Explicitely, the counting (2.42) only tells us what types of graphs give diver-
gent expressions (in this case the two and four point functions). The explicit renormalization
contributions are then derived from approximations of Eqn. (2.40). For more details please refer
to the monographs [5, 99], or [40] and references therein. The topic of renormalization and
multiscale analysis will be picked up once again in Chapter 4.

2.2 The Way to a U?(1) Gauge Model – Early Approaches

Being motivated by the successful proofs of renormalizability for the scalar models, the aim is
now to generalize the concept of damping to gauge theories. As always, one starts with the
simplest possible model, a free photon field, described by a U(1) symmetry. As for the scalar
case, there exists a näıve approach which is defined by the action

Snäıve
YM =

∫
d4xFµν ? Fµν , (2.43)

with the definitions

Fµν = ∂µAν − ∂νAµ − ig [Aµ ?, Aν ] ,
Dµφ = ∂µφ− ig [Aµ ?, φ] , ∀ φ , (2.44)

for a field strength and covariant derivative respectively. Note that, due to the implicit x-
dependence of the fields Aµ(x) the commutators do not vanish, as it is the case in commutative
U(1), i.e. QED or YM. Therefore, despite assuming an Abelian symmetry, the theory is rendered

12Note that in Ref. [40] ω(γ) = [d(γ)]−1.
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non-Abelian by the Groenewold-Moyal star product Eqn. (1.22). In fact, the symmetry group
is altered13, and cannot be considered a U(1) any more. Instead, the symmetry shall be named
U?(1) to indicate the deformation. More explicitly, one has

[Aµ(x) ?, Aν(y)] =
[
Aaµ(x)Ta ?, A

b
ν(x)Tb

]
=

1
2

( [
Aaµ(x) ?, A

b
ν(y)

]
{Ta, Tb} +

{
Aaµ(x) ?, A

b
ν(y)

}
[Ta, Tb]

)
=

1
2

[
Aaµ(x) ?, A

b
ν(y)

]
{Ta, Tb}

=
[
Aaµ

?, Aaν
]
6= 0 , (2.45)

where [Ta, Tb] = 0, and {Ta, Tb} = 2δab has been applied for generators Ta ∈ R1 of U(1).

Aiming to construct a physical theory, the following BRST transformations14 are imposed

sAµ = Dµc , sc = ic ? c ,
sc̄ = b , sb = 0 ,

s2φ = 0 ,∀φ ∈ {A, b, c, c̄} . (2.46)

From these the properties

sF = ig [c ?, F ] , sD2F = ig
[
c ?, D2F

]
, s

1
D2

F = ig
[
c ?,

1
D2

F

]
, (2.47)

follow, which are proven in Appendix B.3, Theorems 4 and 5.

The model of Eqn. (2.43) has been discussed in great detail in Refs. [105, 106]. For the bosonic
vacuum polarization at one loop order the result

Πµν ∝ p̃µp̃ν
(p̃2)2

, (2.48)

is obtained, which again represents a quadratic infrared divergence. It can easily be seen from
the antisymmetry of the star product that Πµν is transversal with respect to external momenta
pµ, as pµθµνpν = −pνθνµpµ = 0, as is physically required for a photon. Another notable point
is that the quadratic divergence appears independently of the choice for the gauge parameter
or Fadeev-Popov ghost terms [107–109]. Finally, the tensor structure of Eqn. (2.48) is of a
type not appearing in commutative theory. This has to be accounted for in the renormalization
programme, as is discussed further in Section 4.
From these considerations it is clear that the generalization from scalar to gauge models will
not be straight forward in the non-commutative domain. In the literature, early contributions
in this respect did not consider the modified IR behavior but solely took into account the UV
divergent part for renormalization [44–46]. Research was also extended to more general topics,
such as anomalies [110], restrictions on the representation of the algebra [104], and alternative

13It has been shown [100–104] that only enveloping algebras, such as U(N) or O(N) and USp(2N), survive
the introduction of a deformed product (in the sense that commutators of algebra elements are again algebra
elements), while e.g. SU(N) does not.

14In non-commutative theory the well known principle applies that a gauge boson propagator only exists if the
gauge is explicitely broken by a fixing term. As can be found in many text books on the subject [75, 78, 79] the
fixing requires the additional introduction of Grassmann-valued (Faddeev-Popov) ghost fields in order to leave
invariant the functional integral. As has been recognized by Becchi, Rouet, Stora and Tyutin the resulting action
remains invariant with respect to a nilpotent supersymmetric nonlinear transformation, represented by the BRST
operator s with s2 = 0.
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deformations [111] but renormalizability was achieved so far only for U(N) in the Seiberg Witten
map [60, 112] (although in the same approximation other symmetries, such as the U(1)×SU(2)
of QED do not share this feature [54]). More references and reviews can be found in Ref. [113].
For the sake of completeness it has to be mentioned that the non-commutative counterpart of
QED including fermions has been treated in Refs. [51–53]. However, the effect of UV/IR mixing
is not discussed there.

In the sequel the focus will lie on the construction of an extension to the non-commutative YM
model (2.44) in order to implement the damping behavior of the 1/p2 model of Section 2.1.

2.2.1 The Search for Covariant Insertions

The aim of this section is to find an insertion to the non-commutative YM action similar to the
non-local term in Eqn. (2.1). This new term, in addition to dimensional requirements, has to
be invariant under gauge and BRST transformations.

From the form of the divergence appearing in the vacuum polarization Eqn. (2.48) one is led
intuitively to the insertion

S1st try
nloc [A] =

∫
d4xAµ(x) ?

∂̃µ∂̃ν

�̃2
? Aν(x) .

In fact, S1st try
nloc is invariant under infinitesimal Abelian gauge variations Aµ→A′

µ = Aµ + δAµ,
with δAµ = ∂µΛ, and Λ being a local scalar parameter [114, 115], as can be seen by explicit
computation. However, it is not invariant under the BRST transformations (2.46).
Noting that ∫

d4xAµ(x) ?
∂̃µ∂̃ν

�̃2
? Aν(x) = −

∫
d4x ∂̃µAµ(x) ?

∂̃ν

�̃2
? Aν(x) ,

and ∂̃µAµ = θµρ∂ρAµ =
1
2
θµρ (∂µAρ − ∂ρAµ)

bilin.≈ 1
2
F̃ ,

the next proposal is the insertion

S2nd try
nloc [A] =

∫
d4x F̃ (x)

1

�̃2
F̃ (x) .

Again, gauge invariance is fulfilled but the 1
e�2

operator is not compatible with the BRST
transformations (2.46). The only way to remedy this problem seems to be the replacement
�̃ → D̃2 = D̃µD̃µ = θ2D2. Hence,

S3rd try
nloc [A] =

+∞∫
−∞

d4k

(2π)4
F̃ (k)

1(
D̃2
)2 F̃ (−k) . (2.49)

This insertion is completely invariant under all demanded symmetries, and features the right
dimension. However, as being discussed in Refs. [61, 114], the resulting gauge propagator shows
a quadratically IR divergent overall factor, i.e. GAA ∝ 1

k2Pµν , where Pµν denotes the tensor
structure which is not specified here. Hence, the term (2.49) cannot be utilized to implement
the desired damping behavior (which would require an overall factor

(
k2 + const.

k̃2

)−1).

Finally, the solution is

Sfinal
nloc [A] =

∫
d4xFµν(x)

1

D2D̃2
Fµν(x) . (2.50)
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The full tree-level action in position space then takes the form,

S(0) = Sinv + Sgf ,

Sinv =
∫

d4x

[
1
4
Fµν ? Fµν +

1
4
Fµν

1

D2D̃2
Fµν

]
,

Sgf = s

∫
d4x c̄ ?

[(
1 +

1

��̃

)
∂µAµ −

α

2
b

]
=
∫

d4x

[
b ?

(
1 +

1

��̃

)
∂µAµ −

α

2
b ? b− c̄ ?

(
1 +

1

��̃

)
∂µDµc

]
, (2.51)

where the parameter α and the unphysical Lagrange multiplier field b have been introduced
in order to fix the gauge. The insertion of the operators

(
1 + 1

�e�
)−1 (which are of the same

type as in Sinv) in the gauge sector is motivated by the expectation of a damping for the ghost
propagator Gc̄c.

2.2.2 The Non-local Invariant Operator 1/D2

Having (with Eqn. (2.50)) found a gauge-compatible term to implement the damping behavior
of the 1/p2 model the question arises how to interpret the new operator 1

D2 . In contrast to
the scalar version 1

� = 1
∂µ∂µ

, the covariant derivative includes the gauge field according to the
definition (2.44). Since the inverse of a field cannot be defined in a reasonable way, an alternative
representation for the new operator has to be found. Such is given [61] by the redefinition

F̃ = D2 1
D2

F̃ = : D2Y

= ∂µ∂µY − ig∂µ [Aµ ?, Y] − ig [Aµ ?, ∂µY] − g2 [Aµ ?, [Aµ ?, Y]] .

Applying �−1 from the left and partially resolving for Y yields the relation,

Y =
1
� F̃ + ig

∂µ
� [Aµ ?, Y] + ig

1
� [Aµ ?, ∂µY] + g2 1

� {Aµ ?, {Aµ ?, Y}} , (2.52)

which can be expanded according to the number of recursive insertions,

Y(0) =
1
� F̃ + O (Y) ,

Y(1) =
1
� F̃ + ig

∂µ
�

[
Aµ ?,

1
�

]
+ ig

1
�

[
Aµ ?, ∂µ

1
�

]
+ g2 1

�

[
Aµ ?,

[
Aµ ?,

1
�

]]
+ O (Y) ,

. . . (2.53)

Since 1
� can be defined as in Eqn. (2.2) (see also Ref. [61]), the latter expression is defined

as well. However, in terms of physics, the recursive procedure gives rise to an infinite number
of gauge boson vertices. These, in turn are associated with an infinite number of parameters,
therefore corresponding per definition to a power-counting non-renormalizable theory. It should
also be remarked that any expression, involving Y(i), for i < ∞, will not be gauge invariant
since only the complete expression features this property.
For convenience, the following generally accepted definitions shall be given.

Definition 3. A theory is called power counting renormalizable if the number of divergent graphs
being generated from it is bounded and only a finite number of counterterms are generated.
This premises a finite number of vertices at tree level, each being bounded in its dimension on
the upper side by the space-time dimension of the theory, and on the lower side by 1 (since
dimensionless operators may be inserted to arbitrary powers).
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Definition 4. A theory is called power counting non-renormalizable if the number of divergent
graphs being generated from it increases infinitely with the order. Generally this is caused by
vertices v with dm(v) > d. A power counting non-renormalizable theory does not have any
physical significance (but can only be interpreted as an effective theory which is valid up to a
certain loop level).

From the discussion above it is clear that the model (2.51) will not be capable of giving any
physical predictions since it is definitely of the power counting non-renormalizable category.
Hence, no further computations will be presented for this approach. Instead, additional measures
will be applied in order to obtain a physical, renormalizable model; a topic which is addressed
in Chapter 3 below.

2.3 Summary

The translation invariant non-commutative 1/p2 model by Gurau et al. represents a modification
of the näıve implementation of φ?44 . It features an additional non-local quadratic term in the
action which alters the propagator such that it vanishes in the UV as well as in the IR limit.
In this way, a symmetry between high and low energies is implemented which, similar as in the
successful oscillator Grosse Wulkenhaar model, seems to remedy the problem of UV/IR mixing.

We have analyzed the model via explicit one loop calculations in Section 2.1.1 giving corrections
to the two and four point functions. The most important fact is, that the UV/IR mixing is not
killed completely, as the infamous quadratic IR divergence still appears. An extended analysis
in Section 2.1.2 revealed that the damping mechanism of the propagator becomes effective at
the three loop level. Actually, an enhanced behavior is already achieved at two loops but the
respective result for the näıve model in this case converges too. Hence, the effect is covered.
Finally, in Section 2.1.3 we have utilized explicit one loop results to conduct a renormalization
step. It appears that the quadratic IR divergences can be absorbed in the parameter of the
new non-local term in the action, and the subleading logarithmic (UV) divergence enters a
renormalized mass. Finally, one is left with a so called ‘mild logarithmic divergence’. An
interpretation of the latter cannot be found in the literature but it has been stressed that the
respective term in the renormalized propagator is only a finite contribution for non-vanishing
momenta and can be neglected in comparison with the squared terms for asymptotic values.

The great simplicity and structure of the scalar 1/p2 model have motivated the search for a
suitable gauge generalization. Section 2.2 contains the discussion leading to an invariant term
which is suspected to be capable of implementing the desired damping behavior of the propagator
in a gauge invariant manner. However, the solution turned out to be problematic since it contains
the inverse of covariant derivatives, and hence the inverse of fields. The latter is not well defined,
and a reasonable interpretation can only (at first sight) be given in terms of an infinite series
which gives rise to an (as well) infinite number of gauge boson vertices. The resolution of these
problems will be subjected in the next chapter.
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Chapter 3

Localized Gauge Models

Despite the inherent non-locality of the Groenewold-Moyal product it has been shown that
renormalizability of non-commutative theory can be achieved in the scalar case by adding ap-
propriate (counter)terms to the tree level action. These, in different ways, implement a damping
mechanism which suppresses the UV/IR mixing and renders the theory finite. In the gauge case
several constraints regarding symmetries and the tensorial structure have to be fullfilled by
counterterms and insertions. As was discussed in Section 2.2, in the 1/p2 model one is forced to
introduce the inverse of covariant derivatives which can only be interpreted in form of an infinite
series, thereby inevitably leading to a power counting non-renormalizable theory. However, it
turns out that there are alternative representations which ‘localize’ the problematic terms by
coupling them to unphysical auxiliary fields. There are several ways to implement this, resulting
in models with different properties, and even a modified physical content. In this respect we
are led to the insight that only minimal couplings and the consequent construction of BRST
doublet structures for all auxiliary fields result in a stable theory (even at tree level). Moreover,
the consistent implementation of the damping behavior of the 1/p2 model requires the inser-
tion of a so called ‘soft breaking’ term into the action; a method which is well known from the
Gribov-Zwanziger approach to QCD (see Refs. [116–118] and Chapter 4).
This chapter describes basically two implementations being developed in order to localize the
operator (D2D̃2)−1 discussed in Section 2.2 above. The aim is to construct a physical power-
counting renormalizable model, based on non-commutative YM theory with gauge group U?(1),
and implementing the damping of the 1/p2 model. In Section 3.1 the first approach of localiza-
tion with one real-valued auxiliary field is presented, which turns out to change physics in an
unintended way. A more advanced version avoiding these problems is discussed in Section 3.2,
where all auxiliary fields are rendered unphysical by the utilization of BRST doublet structures.
Section 3.3 then contains a critical discussion of the lessons learned from the models analyzed
up to that point. Based on these findings, after an excursion to the problem of renormalization
in the presence of deformation in Section 4, the currently most advanced (BRSW) model will
be constructed in Chapter 5.

3.1 Localization with a Real Auxiliary Field

The first ansatz in the construction of a renormalizable U?(1) gauge version of the 1/p2 scalar
model was the localization with a real-valued auxiliary field [61]. The following discussion will
start from the non-local action (2.51) in Section 2.2.1. The methodology is clear. First, a
localized action is constructed and analyzed in Section 3.1.1. A discussion of the UV power
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counting follows in Section 3.1.2, and the results of one loop calculations regarding the vacuum
polarization, and the appearance of unphysical degrees of freedom are presented in Sections 3.1.3
and 3.1.4 respectively.

3.1.1 Construction of the Action

The idea is to localize the operator
(
D2D̃2

)−1 (in the action (2.51), being denoted here by Snloc
inv )

by the introduction of an auxiliary real-valued antisymmetric field Bµν of mass dimension two.
This is achieved by replacing

Snloc
inv → Sloc

inv∫
d4x

[
1
4
Fµν?Fµν+

1
4
Fµν?

a2

D2D̃2
?Fµν

]
→
∫

d4x

[
1
4
Fµν?Fµν+ aBµν?Fµν−Bµν?D

2D̃2?Bµν

]
,

(3.1)

in the action, where a is a dimensionless operator motivated by the fact that a similar parameter
was renormalized in the scalar 1/p2 model in Section 2.1.3. Regarding the notation, we will
consequently omit the stars for the remainder of Section 3.1, and all products of fields can be
considered to be of the form (1.24). Equivalence of the terms of the left and right hand side in
Eqn. (3.1) can immediately be seen in the functional formalism [75, 77] by integrating out the
new Bµν field∫

DADB exp
{
−
∫

d4x

[
1
4
FµνFµν + aBµνFµν −BµνD

2D̃2Bµν

]}
=
∫

DADB exp
{
−
∫

d4x

[
1
4
FµνFµν

−
(
Bµν −

a

2
1

D2D̃2
Fµν

)
D2D̃2

(
Bµν −

a

2
1

D2D̃2
Fµν

)
+
a2

4
Fµν

1

D2D̃2
Fµν

]}
=
∫

DA
(
detD2D̃2

)−2
exp

{
−
∫

d4x
1
4
Fµν

(
1 +

a2

D2D̃2

)
Fµν

}
. (3.2)

The inverse determinant depends on A and is therefore nontrivial. Its meaning, however, will
be discussed later in Section 3.2.2. As an alternative approach for showing the equivalence of
local and non-local action, the equation of motion for the Bµν field yields

δSloc
inv

δBρσ
= aFρσ − 2D̃2D2 ? Bρσ = 0

⇒ Bρσ =
a

2
1

D2D̃2
Fρσ , (3.3)

which may be reinserted into Sloc
inv, leading back to the original version Snloc

inv .

The new Bµν field transforms BRST covariantly. For the sake of completeness the entire set of
transformation rules is given at this point:

sAµ = Dµc , sc = icc ,
sc̄ = b , sb = 0 ,

sFµν = ig [c, Fµν ] , sBµν = ig [c,Bµν ] , (3.4)

s2φ = 0 ,∀φ ∈ {A, b,B, c, c̄} .
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Finally, the action of this model takes the form

Γ(0) = Sloc
inv + Sgf ,

Sloc
inv =

∫
d4x

[
1
4
FµνFµν + aBµνFµν −BµνD

2D̃2Bµν

]
,

Sgf = s

∫
d4x c̄

[(
1 +

a2

��̃

)
∂µAµ −

α

2
b

]

=
∫

d4x

[
b

(
1 +

a2

��̃

)
∂µAµ −

α

2
bb− c̄

(
1 +

a2

��̃

)
∂µDµc

]
. (3.5)

The equations of motion and a sketch of the derivation of the propagators are given in Ap-
pendix B.1. Results for the latter are collected in Eqns. (3.6a)–(3.6b) below.

k
νµ

= GAAµ,ν = −δAµ
δjνA

=
1

k2 + a2

k̃2

(
−δµν +

kµkν
k2

− α
kµkν

k2 + a
k̃2

)
, (3.6a)

k

= Gcc = − δc

δjc
=

−1
k2 + a2

k̃2

, (3.6b)

k
ρσµ

= GABµ,ρσ = − δAµ

δjρσB
=

−ia

2k2k̃2
(
k2 + a2

k̃2

) (kσδρµ − kρδσµ) , (3.6c)

k
νρσ

= GBAρσ,ν = −δB
ρσ

δjνA
=

ia

2k2k̃2
(
k2 + a2

k̃2

) (kσδρν − kρδσν) , (3.6d)

k
ρσµν

= GBBµν,ρσ = −δBµν
δjρσB

=
a

4k2k̃2

[
δµρδνσ − δµσδνρ

+ a
kµkσδνρ + kνkρδµσ − kµkρδνσ − kνkσδµρ

k2k̃2
(
k2 + a2

k̃2

) ]
. (3.6e)

The last three are antisymmetric in the index pairs corresponding to the Bµν fields, i.e.

GABρ,στ (k) = −GABρ,τσ(k) = −GBAστ,ρ(k) ,
GBBρσ,τε(k) = −GBBσρ,τε(k) = −GBBρσ,ετ (k) . (3.7)

Notice furthermore the relations

2k2k̃2GABρ,µν(k) = iakµGAAρν (k) − iakνGAAρµ (k) ,

2k2k̃2GBBµν,ρσ(k) =
1
2

(δµρδνσ − δµσδνρ) + iakµGBAρσ,ν(k) − iakνGBAρσ,µ(k) , (3.8)

which indicate that it is not possible to completely reduce the two point functions containing
Bµν to expressions containing solely GAA (due to the antisymmetric unit 1

2 (δµρδνσ − δµσδνρ)
in the second line of (3.8)). Obviously, the gauge propagator (3.6a), and the ghost propagator
(3.6b) both feature the desired damping behavior which led to renormalizability in the scalar
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1/p2 model. The situation is different for all propagators involving B fields. In the IR limit the
mixed functionals GAB and GBA diverge linearly, and GBB even exhibits a quadratic singularity.

lim
k→0

GAB(k) = − lim
k→0

GBA(k) ∝ 1
|k|

, lim
k→0

GBB(k) ∝ 1
k2k̃2

.

These divergences will be discussed in more detail for another model in Section 3.2.5.

From the interactions in Eqn. (3.5) follow the tree level vertex functions by direct variation with
respect to the fields. Due to the rather lengthy form of these expressions they are only listed
in Appendix B.1.3. We may note at this place that there exist, besides the vertices V 3A, V c̄Ac,
and V 4A known from näıve implementations of YM theory in non-commutative space [105, 106],
the couplings V BAA, V BBA, V 2B2A, V 2B3A, and V 2B4A. These give rise to a large number of
graphs even at the lowest orders in the perturbative expansion. Hence, being interested only
in divergent contributions, it is important to be able to preselect graphs according to their
expected behavior, i.e. to assess the degree of divergence without the need for the evaluation of
loop integrals. Such a tool is given by a power counting formula which will be derived next.

3.1.2 UV Power Counting

In order to estimate the divergence behavior prior to explicit loop calculations we shall derive
an expression for the superficial degree of divergence, as being defined in Section 1.3.1, for an
arbitrary process in the model (3.5). For a general n-point 1PI graph γ with N vertices, L
internal loops, Iφ internal lines of type φ (i.e. one of the two-point functions (3.6a)–Eqn. (3.6e)),
and Eφ external lines of type φ ∈ {A,B, c, c̄}, we take into account the powers of internal
momenta k each Feynman rule R contributes, i.e. d (R(k)). In addition, each loop integral d4k
increases dγ by four. Hence,

dγ = 4L−
∑
R
d (R(k))

= 4L− 2IAA − 2Ic̄c − 5IAB − 4IBB + Vc̄Ac + V3A + 3VBBA + 2V2B2A + V2B3A . (3.9)

From (1.33) follows

L = IAA + Ic̄c + IAB + IBB−
− (Vc̄Ac + V3A + V4A + VBAA + VBBA + V2B2A + V2B3A + V2B4A − 1) .

Next, the connectedness implies that the number of free ‘legs’ for each field type φ has to sum
up to zero for any Feynman graph. In this respect external lines always contribute only a
single leg with the outer end being fixed1. All remaining internal elements (n-point functions)
are accounted according to the number of legs they provide for each field type. Regarding the
signs, external and internal lines are attributed positive, while vertex legs are considered to
be negative. For the last two lines in (3.10) below the sign corresponds to the power of the
respective parameter a Feynman rule contributes. This procedure yields,

Ec̄ + Ec + 2Ic̄c = 2Vc̄Ac ,
EA + 2IAA + IAB = Vc̄Ac + 3V3A + 4V4A + 2VBAA + VBBA + 2V2B2A + 3V2B3A + 4V2B4A ,

EB + 2IBB + IAB = VBAA + 2VBBA + 2V2B2A + 2V2B3A + 2V2B4A ,

Eθ = 2IAB + 2IBB − 2VBBA − 2V2B2A − 2V2B3A − 2V2B4A ,

Ea = IAB + VBAA . (3.10)

1The scheme of counting and connecting legs is the same as used for the pregraphs discussed for the symmetry
factors in Section 1.3.2, i.e. every internal or external leg has to be connected to one another.
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Note that the Ec, Ec̄, EA, and EB denote the number of external lines of the respective fields
whereas Eθ and Ea count the total negative powers of θ and positive powers of a in a graph,
respectively. The above set of equations can be resolved for dγ . The last three lines of Eqn. (3.10)
yield the relation EB +Eθ = Ea which allows to write two alternative expressions for the power
counting, reading

dγ = 4 − EA − Ec/c̄ − 2EB − 2Eθ , (3.11a)

dγ = 4 − EA − Ec/c̄ − 2Ea . (3.11b)

As expected from existing commuting theories, dγ is reduced by the number of external legs
weighted by the dimension of the respective fields (and parameters). In the first version (3.11a)
the overall power of θ plays a role, indicating the effect of non-commutativity. However, since
Eθ is not strictly positive, the form (3.11b) may be more intuitive, in practice.

3.1.3 One Loop Computations

As the form of the propagators in the gauge model (3.5) is in general more complicated than in
the scalar model of Section 2.1.1 a few technical remarks regarding the details of computations
are in order. First of all, the splitting of the propagator (c.f. Eqn. (2.9)) has to be modified due
to the missing mass. A solution is given by,

1
k2 + 1

k̃2

=
k2(

k2 + i
θ

) (
k2 − i

θ

) =
1
2

[
1(

k2 + i
θ

) +
1(

k2 − i
θ

)] . (3.12)

The appearance of the imaginary terms gives rise to slightly more involved parameter integrals.
For example consider the simplest possible expression

∑
η=±1

+∞∫
−∞

d4k

(2π)4
eηikp̃

k2 + 1
k̃2

=
1
2

∑
η,ξ=±1

+∞∫
−∞

d4k

(2π)4

∞∫
0

dα exp
[
−α

(
k2 +

iξ
θ

)
+ iηkp̃

]

=
∑
ξ=±1

∞∫
0

dα
π2

α2
exp

[
−α

(
iξ
θ

)
− p̃2

4α

]

= 2π2

∞∫
0

dα
cos
(
α
θ

)
α2

e−
p̃2

4α

Eqn. (F.13b)
= 4π2 1√

θp̃2

[
eiπ/4K−1

(
eiπ/4

√
p̃2

θ

)
+ e−iπ/4K−1

(
e−iπ/4

√
p̃2

θ

)]
Eqn. (F.24)

=
8π2

p̃2
− π3

θ
+ O(p̃2) , (3.13)

where in the last step the Bessel functions have been expanded for small argument according
to Eqn. (F.24) (which is implied for the limit of small external momenta p̃ � 1). However,
computations involving the decomposition (3.12) will result in rather lengthy expressions, even
at the one loop level. In fact, there exists a further option for simplification. Recall the discussion
of UV/IR mixing in Section 1.3.7, which led to the insight that the IR divergences of loop
calculations originate from the UV limit of the integrands. Since the high energy behavior is
not affected by the damping term of the 1/p2 model, the following approximation for integrands
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I is suggesting itself

+∞∫
−∞

d4k

(2π)4
I(p, k) ∝

+∞∫
−∞

d4k

(2π)4
ϕ(p, k)

(
k2 +

a2

k̃2

)−n
≈

+∞∫
−∞

d4k

(2π)4
ϕ(p, k)

1(
k2
)n , (3.14)

where ϕ(p, k) is a generic placeholder for constants, tensor structures, and phase factors; n is a
positive integer-valued exponent. The validity of Eqn. (3.14) becomes obvious from an explicit
recalculation of the example presented above,

∑
η=±1

+∞∫
−∞

d4k

(2π)4
eηikp̃

k2 + 1
k̃2

≈
∑
η=±1

+∞∫
−∞

d4k

(2π)4
eηikp̃

k2

= 2

∞∫
0

dα
π2

α2
e−

p̃2

4α

Eqn. (F.12)
=

8π2

p̃2
. (3.15)

In fact, the omission of the IR damping in the approximation only leads to an error in the
finite contributions. The leading divergences, however, are exactly the same as in the (more)
accurate result (3.13). It has to be mentioned that this simplification may be applied for any
one loop graph but care has to be taken at two and higher loop orders since there the damping
behavior of the propagators is essential in order to regularize the IR divergent insertions of one
loop results2.
Further technical issues are discussed for the vacuum polarization in Section 3.1.3. Detailed
results and sketches of the relevant computations can be found in Appendix B.2.

Vanishing of Tadpole Graphs

The Feynman rules (3.6a)–(3.6e) and (B.6)–(B.16) give rise to four possible one loop tadpole
graphs with external gauge boson lines being depicted in Figure 3.1. Each one of these graphs
incorporates a phase factor sin

(kp̃
2

)
with p and k being the external and internal momenta,

respectively. Momentum conservation at the vertices implies k− k+ p = 0, resulting in a phase
sin 0 = 0 . Hence, all four graphs vanish identically.

a)

d)c)

b)

Figure 3.1: One-loop tadpole graphs

2Compare the discussion of the damping effect at higher loop orders for the scalar 1/p2 model in Section 2.1.2.
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One Loop Vacuum Polarization

From the Feynman rules we can construct twelve 1PI one loop graphs with two external photon
lines depicted in Fig. 3.2. The first three processes are known from commutative gauge theories
with non-Abelian gauge groups, as for example pure YM or QCD [84], but also from non-
commutative QED [51]. All remaining graphs are new and unique to this model. In contrast to

h)

j)

i)

l)

c)

d) f)

a)

e)

g)

k)

b)

Figure 3.2: Processes contributing to the one loop boson vacuum polarization

the respective one loop amplitude (2.8) of scalar model in Section 2.1 the integrals corresponding
to the processes in Fig. 3.2 are complicated functions of internal and external momenta k and
p, and cannot be evaluated in a straight forward way. The general form of these expressions is

Πµν =

+∞∫
−∞

d4k

(2π)4
Iµν(k, p) sin2

(
kp̃

2

)
. (3.16)

Since we are interested mainly in the IR behavior of the theory the single-graph results are
expanded for small external momenta p according to

Πµν =

+∞∫
−∞

d4k

(2π)4
Iµν(p, k) sin2

(
kp̃
2

)

≈
+∞∫

−∞

d4k

(2π)4
sin2

(
kp̃
2

)[
Iµν(0, k)+ pρ

[
∂pρIµν(p, k)

]
p→0

+ pρpσ

2

[
∂pρ∂pσIµν(p, k)

]
p→0

+ O
(
p3
)]
.

(3.17)

The phase factors are not expanded at this point in order not to lose the regularizing effects in the
non-planar parts due to rapid oscillations for large k. In the integrands (see also Appendix B.2
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Table 3.1: Symmetry factors for the graphs in Fig. 3.2

sa=1
2 sb=1

2 sc=1

sd=1
2 se=1

2 sf=1

sg=1 sh=1 si=1

sj=1
2 sk=1 sl=1

for the full expressions) the external momenta mostly appear in summations, together with k.
Therefore, the above expansion is actually valid for the assumption |p| � |k|. Since k is being
integrated over, there exists a small domain |k| < ε � 1 where this premise is not fulfilled.
However, as has been discussed in Section 1.3.7, the IR divergences, which we are interested in
here, originate from the UV sector of k where the above assumption applies, and everything is
well defined. Hence, in the results being discussed subsequently, the error which is introduced
by the approximation (3.17) may only be a finite contribution which is neglected with respect
to divergent terms in p.

From the expansion (3.17) it can be expected that the highest divergences appear in the results
obtained from the lowest order terms3. Explicit calculation reveals that only five (a – e) of the
graphs depicted in Fig. 3.2, show singular behavior for p̃→ 0. These read (after approximation
for large k)

Π(a),0
µν ≈ sa

8g2

(2π)4

+∞∫
−∞

d4k

(2π)4
sin2

(
kp̃
2

)
(
k2 + a2

k̃2

)2

6kµkν + αk2

(
k2δµν − kµkν

)(
k2 + a2

k̃2

)
 , (3.18a)

Π(b),0
µν ≈ −sb

8g2

(2π)4

+∞∫
−∞

d4k

(2π)4
sin2

(
kp̃
2

)
k2 + a2

k̃2

2δµν +
kµkν
k2

+ α
(k2δµν − kµkν)(

k2 + a2

k̃2

)
 , (3.18b)

Π(c),0
µν ≈ −sc

4g2

(2π)4

+∞∫
−∞

d4k

(2π)4
sin2

(
kp̃

2

)
kµkν
k4

, (3.18c)

Π(d),0
µν ≈ sd

192g2

(2π)4

+∞∫
−∞

d4k

(2π)4
sin2

(
kp̃

2

)
kµkν
k4

2 +
a2
(
a2

k̃2
− 2
)

k̃2
(
k2 + a2

k̃2

)
 , (3.18d)

Π(e),0
µν ≈ −se

24g2

(2π)4

∫
d4k

sin2(kp̃2 )
k4

[4kµkν + 2k2δµν ]

2 − a2

k̃2
(
k2 + a2

k̃2

)
 , (3.18e)

where the symmetry factors si, i ∈ {a,b, c,d, e} are listed in Table 3.1. The remaining graphs
(f)–(l) of Fig. 3.2 are found to be finite. This observation is consistent with the power counting
formula (3.11b), as EA = 2 for all graphs (a)–(l). In addition, the processes (g)–(l) come with
two overall powers of a, i.e. Ea = 2, and graph (f) even has 4 powers of a, i.e. Ea = 4.

The final expression for the (leading order in the expansion (3.17) of the) vacuum polarization

3We can indeed expect to catch the most significant divergences in the lowest orders of the expansion since
the point of approximation, actually, is the IR pole of the integrand. Mathematically, in order to stay within the
borders of legality, we have to keep p̃ 6= 0 for the time being, and analyze the limit p̃ → 0 not before the very end
of our calculation. Otherwise the radius of convergence would vanish, and the expansion was not defined.
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is obtained by summing up all (divergent) contributions of Eqns. (3.18a)–(3.18e), yielding

Πtotal,0
µν =

∑
j={a,b,c,d,e}

Π(j),0
µν

=
4g2

(2π)4

+∞∫
−∞

d4k

(2π)4
sin2

(
kp̃

2

)[
−1(

k2 + a2

k̃2

)
2δµν +

kµkν
k2

+ α
(k2δµν − kµkν)(

k2 + a2

k̃2

)
− kµkν

(k2)2

+
1(

k2 + a2

k̃2

)2

6kµkν + αk2 (k2δµν − kµkν)(
k2 + a2

k̃2

)


+
12
k2

(
2
kµkν
k2

− δµν

)]

= 14
g2

π2

p̃µp̃ν
(p̃2)2

+ finite terms. (3.19)

This result shows a quadratic IR divergence in leading order, as does the one loop result of the
scalar models (c.f. Section 2.1.1, Eqn. (2.11)). The pole is independent of the gauge parameter
α and transversal with respect to pµ (i.e. pµΠ

total,0
µν = 0), as would be required for a physical

photon4. It has to be noted that the tensor structure p̃µp̃ν is of a completely different nature
than the operator (p2gµν − pµpν) appearing in commuting gauge theories. However, the new
structure does not replace the ‘classical’ one but represents an additional option to implement
transversality. In fact, the hidden finite terms in Eqn. (3.19) contain either type as can (partly)
be seen from the more detailed results in Appendix B.2.

It should also be mentioned that in the calculation of the integrals of Eqns. (3.18a)–(3.18e) the
limit a → 0 has been taken prior to the integration. This is motivated mainly by the fact that
in this way any dependence on the gauge parameter α is eliminated, as is clear from the first
two lines of Eqn. (3.19) where the α-dependent terms indeed cancel for a→ 0. In addition, the
divergences originate from the UV limit in k, but the a-dependent (sub-)terms only affect the
IR region via the damping mechanism5. Therefore,

+∞∫
−∞

d4k

(2π)4
1(

k2 + a2

k̃2

) ≈
+∞∫

−∞

d4k

(2π)4
1
k2
,

and it is not surprising that the result for the quadratic IR divergence in Eqn. (3.19) neither
depends on a nor on α. Interestingly, the sum of the contributions from graphs (a), (b), and (c)
in Fig. 3.2, which correspond to the processes known from commuting theories is transversal by
itself (as is the contribution from the other two graphs).

Finally, it should be stressed that the zero order result Eqn. (3.19) does not contain any loga-
rithmic IR divergences. These are obtained only in the second order result6 (where α has been
set to 0, corresponding to Landau gauge)

Πtotal,(2)
µν (p) =

pρpσ
2

+∞∫
−∞

d4k

(2π)4

[
∂2

∂pρ∂pσ

( ∑
i∈{a,c,d,e}

I(i),(2)
µν (k, p)

)]
p=0

4In case, the theory indeed describes the dynamics of electromagnetic waves in vacuum.
5The procedure of taking the limit a → 0 equals the approximation for large k being discussed above on page

38 at the beginning of Section 3.1.3.
6Some details of the computation are given in Appendix B.2. Note that the first order identically vanishes due

to a symmetric integration over an odd power of k in the integrand.
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=
g2

24π2

(
pµpν − p2δµν

) (
ln
(
Λ2p̃2

)
+ finite terms

)
, (3.20)

where again only divergent contributions have been considered, and the notion ‘finite’ refers to
the limit p̃ → 0 as well as the respective limits of any cutoff or regulator appearing in hidden
terms. The only logarithmic divergence is in the UV cutoff Λ coming from the planar parts.
Hence, the result (3.20) is well-behaved for p→ 0, i.e. there is no logarithmic infrared divergence
in the external momentum. However, the conditions of transversality with respect to pµ, and
independence of the gauge parameter α are fulfilled for the divergent part.

In conclusion, the one loop vacuum polarization in the model (3.5) reveals the quadratic diver-
gence in the external momentum for p̃→ 0, as expected from the discussion of the UV/IR mixing
in Section 1.3.7, and the results for the näıve non-commutative U?(1) theory in Section 2.2. The
transversal tensor structure p̃µp̃ν bound to this IR singularity is of a type unknown in com-
muting theories (since it contains contractions with θµν). Since this structure does not appear
in the tree level gauge propagator (3.6a) of this model problems in the renormalization can be
expected. The planar parts of the integrals involved in the computation of the vacuum polar-
ization contribute a logarithmic (UV) divergence in the cutoff Λ → ∞, similar to the respective
result in commuting YM theory. Hence, the one loop corrections for the photon propagator
basically showed expected results.

At this point we could proceed, and start the renormalization process to obtain the one loop
effective action. However, the above discussion has left one topic untouched which shall be
discussed prior to any further calculation: the interpretation of the multiplier field Bµν which
has been introduced for the purpose of localization in Section 3.1.1. This point is discussed
subsequently in Section 3.1.4.

3.1.4 Additional Degrees of Freedom

Regarding the interpretation of the new field Bµν several points have to be considered. First,
the original non-local term (2.50) in the action is parametrized by a. Hence, imposing the
limit a → 0 should lead back to the näıve non-commutative model in all relevant expressions.
Contrary to this expectation, after localization according to Eqn. (3.1) the equation of motion
for Bµν (c.f. Eqn. (3.3)) is non-vanishing for a→ 0, and allows for non-trivial solutions. Another
point is that the one loop corrections to the (physical) photon propagator, which are based on
the results of the vacuum polarization (3.19) and (3.20), do contain contributions of the graphs
(d) and (e) in Fig. 3.2 featuring loops of (intentionally unphysical) Bµν fields. Finally, as has
been indicated in the discussion of the Ward identities relating the propagators GAA, GAB, and
GBB (see page 35), the two point functions involving Bµν cannot entirely be rewritten in terms
of the photon propagator.

From these facts it is clear that the new field is more than a mere multiplier. It changes the
physics expressed by the model, and is a dynamical quantum field. We may speculate about
an interpretation as a new particle, but this was definitely not the intention at the time of
its introduction. Bearing in mind the original target which was to find a non-commutative
representation for YM U?(1) theory, we will have to abandon this approach, and go back to the
start.
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3.1.5 Summary

We have seen in Section 3.1 that the problematic ill-defined non-local operator (D2D̃2)−1 (see
Section 2.2) can be localized by the introduction of a real valued auxiliary tensorial field Bµν .
Indeed, this allows to construct the action (3.5) which, apart from the deformed product, respects
locality, and allows for explicit loop calculations as exercised in Section 3.1.3. However, the
implementation in Eqn. (3.1) led to a new problem, namely the introduction of additional degrees
of freedom. The origin of these is the missing coupling to a respective ghost field, leading to
an additional factor in the path integral upon integrating out Bµν . There are numerous other
indications for a non-equivalence between localized and non-local versions of the action which
have been discussed in Section 3.1.4. In essence, the conclusion has to be that the implementation
of the coupling with the auxiliary field is not physically equivalent to the orignial model, and
therefore has to be abandoned.

3.2 Localization with BRST-Doublets

An alternative localization procedure has been suggested by Vilar et al. [119]. The main
idea is to replace the real valued auxiliary field introduced in the model of Section 3.1 by a
complex conjugated pair of fields, and respective ghosts, in such a way that BRST doublet
structures are formed. Thereby, the localization of the problematic 1/D2 term in the action
(c.f. Section 2.2) can be performed without introducing new degrees of freedom. In addition,
the doublet structures give rise to a high degree of symmetry, being compatible7 with the
Quantum Action Principle (QAP) known from commutative theory (see Section 4.1.2, page
63, for an introduction to this subject). The hope is to apply the Algebraic Renormalization
(AR) procedure in order to prove the renormalizability of the model. However, it will turn out
that there are serious obstacles in non-commutative theory hindering a successful application
of these techniques. Apart from this, the model by Vilar et al. is quite complicated due to a
high number of Feynman graphs, even at the lowest order in perturmation theory. Hence, an
enhanced version with a slightly modified localization, and a reduced number of auxiliary fields
has been worked out [63]. It is the aim of this section to discuss the latter approach.

3.2.1 The Vilar Model

In Ref. [119] Vilar et al. proposed to rewrite the critical term Snloc (see Eqn. (2.50)) by intro-
ducing two pairs of auxiliary complex conjugated antisymmetric tensorial fields (Bµν , B̄µν), and
(χµν , χ̄µν) of mass dimension one,

Snloc → Sloc = Sloc,0 + Sbreak

=
∫

d4x
(
χ̄µν ? D

2Bµν + B̄µν ? D
2χµν + γ2χ̄µν ? χµν

)
+ i

γ

2

∫
d4x

(
B̄µν −Bµν

)
? Fµν , (3.21)

with γ being a parameter of mass dimension one. The term Snloc is now split into a BRST
invariant part Sloc,0, and a breaking term Sbreak as can be seen by explicit calculation with the
definitions in Ref. [119]. The additional degrees of freedom are eliminated by following the ideas
of Zwanziger [117] (see [120] for a more comprehensive review of the topic) to add a ghost for

7This statement remains questionable since it has been postulated but not proven by the authors of Ref. [119].
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each auxiliary field in such a way that BRST doublet structures are formed. This results in a
trivial BRST cohomology for Sloc,0 from which follows [121] that

sSloc,0 = 0 ⇒ Sloc,0 = sŜloc,0 , (3.22)

i.e. the part of the action depending on the auxiliary fields and their associated ghosts can be
written as an exact expression with respect to the nilpotent BRST operator s.
Contrary to that, the breaking term Sbreak does not join this nice property due to a non-trivial
cohomology (i.e. sSbreak 6= 0). However, it is constructed such that the mass dimension of its
field dependent part is smaller than D = 4, the dimension of the underlying Euclidean space R4

θ.
Such a breaking is referred to as ‘soft’ (c.f. Ref. [121]), and does not spoil renormalizability [118].
This latter fact becomes intuitively clear if we consider that a theory with vertices v having a
canonical dimension dv < D is known to be superrenormalizable. Since the breaking term also
features this dimensional property, it seems reasonable that it does not influence higher order
quantum corrections corresponding to the high energy limit. Additionally, Sbreak is the actual
origin of the suppression of UV/IR mixing featured by this theory, as it alters the IR sector
while not affecting the UV part. The mechanism of soft breaking in combination with UV
renormalization will be discussed in the subsequent sections below. Another important aspect
of the model by Vilar et al. is the splitting of the operator D2D̃2 from Section 2.2 into two
separate parts, and an overall constant factor carrying the mass dimension of the parameter θ,
i.e. D2D̃2 → θ2(D2)2. Such a splitting, however, is only possible in Euclidean space8 if θµν has
full rank, as has the special form of θµν being defined in Section 1.3.3, and allows for D̃2 ≡ θ2D2.
Therefore, the proposed solution (3.21) will only exist in special cases, and cannot be considered
as a general solution to the localization problem discussed in Section 2.2.

3.2.2 Construction of the Action

The starting point is the gauge invariant part Sloc of the action (3.5) which has originally been
introduced to localize the term containing 1/D2 (c.f. Eqn. (2.50)), which in turn was motivated
to implement the damping behavior of the 1/p2 model. As has been discussed in Section 3.1.4
(see also Ref. [62]) the real auxiliary field9 Bµν appears to have its own dynamic properties,
hence representing additional degrees of freedom. Following the ideas of Vilar et al. we shall
now turn Bµν into a complex conjugated pair (Bµν , B̄µν) of fields and associate an additional
pair of ghost and antighost fields ψµν and ψ̄µν to them. The localization corresponds to the
following replacement

Snloc −→ Sloc∫
d4xFµν

1

D2D̃2
Fµν −→

∫
d4x

[
λ

2
(
Bµν + B̄µν

)
Fµν − µ2B̄µνD

2D̃2Bµν + µ2ψ̄µνD
2D̃2ψµν

]
,

(3.23)

where (as in the remainder of this section) all field products are considered to be star products.
The parameters λ and µ both have mass dimension dm = 1 and replace the former dimensionless
parameter a of Section 3.1.

8In Minkowski space non-commutativity with time leads to difficulties in the interpretation of time ordering
and unitarity, and hence to rather new types of Feynman rules (see Refs. [122, 123] and references therein).
Generally, the trend is therefore to restrict non-vanishing components of θ to the spacial part of the metric.

9Regarding the notation, from this point on, in order to avoid confusion, the real valued auxiliary field Bµν of
Section 3.1 shall be denoted by Bµν .
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We can immediately show the equivalence of this localized action and the original non-local
version by employing the path integral formalism:

Z =
∫

D[ψ̄ψB̄BA] exp
{
−
(∫

d4x
1
4
FµνF

µν + Sloc

)}
=
∫

D[B̄BA] det4
(
µ2D2D̃2

)
exp

{
−
∫

d4x

[
1
4
FµνF

µν +
λ

2
(
Bµν + B̄µν

)
Fµν

− µ2B̄µνD
2D̃2Bµν

]}
=
∫

D[B̄BA] det4
(
µ2D2D̃2

)
exp

{
−
∫

d4x

[
1
4
FµνF

µν +
λ2

4µ2
Fµν

1

D̃2D2
Fµν−

−
(
B̄µν −

λ

2µ2

1

D̃2D2
Fµν

)
µ2D2D̃2

(
Bµν − λ

2µ2

1

D̃2D2
Fµν

)]}
=
∫

DAdet4
(
D2D̃2

)
det−4

(
D2D̃2

)
exp

{
−
∫

d4x

[
1
4
Fµν

(
1 +

λ2

4µ2

1

D̃2D2
Fµν

)]}
. (3.24)

Note that the prefactors generated by the determinant of the operator D2D̃2 cancel each other
due to the fact that in D dimensions the functional integration yields∫

D[ψ̄ψ] eψ̄Oψ = [det (O)]D , and
∫

D[B̄B] eB̄OB = [det (O)]−D ,

for (ψ̄, ψ) and (B̄, B) being sets of fermionic and bosonic fields, respectively, and O being a
bosonic operator. In this respect, strictly speaking, the equivalence between localized and non-
local actions is not fullfilled in the model with a real auxiliary field since the compensating
determinant factor is missing in Eqn. (3.2). This is again an indication that the localization
applied in Section 3.1 is not physically correct, i.e. alters the physical content of the model.

Coming back to the current action with localization (3.23) the implementation of a Landau
gauge fixing, i.e.

Sφπ =
∫

d4x (b∂µAµ − c̄∂µDµc) , (3.25)

leads to the BRST transformation laws for the fields:

sAµ = Dµc , sc = igcc ,
sc̄ = b , sb = 0 ,
sFµν = ig [c, Fµν ] , (3.26)

and furthermore

sψ̄µν = B̄µν + ig
{
c, ψ̄µν

}
, sB̄µν = ig

[
c, B̄µν

]
,

sBµν = ψµν + ig [c,Bµν ] , sψµν = ig {c, ψµν} . (3.27)

Exploiting the BRST doublet structure of Eqn. (3.27) we can write

Sloc =
∫

d4x

[
s

(
λ

2
ψ̄µνF

µν − µ2ψ̄µνD
2D̃2Bµν

)
+
λ

2
BµνF

µν

]
, (3.28)

where the last term gives rise to a breaking of BRST invariance, as

sSbreak =
∫

d4x
λ

2
ψµνF

µν , with Sbreak =
∫

d4x
λ

2
BµνF

µν . (3.29)
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As in the model by Vilar et al. sketched in Section 3.2.1 the mass dimension dm of the field
dependent part of Sbreak fulfills the condition dm (ψµνFµν) = 3 < D = 4, and thus can be
considered as an implementation of soft breaking. However, in order to restore BRST invariance
in the UV region (as is a prerequisite for an eventual future application of AR) an additional
set of sources

sQ̄µναβ = J̄µναβ + ig
{
c, Q̄µναβ

}
, sJ̄µναβ = ig

[
c, J̄µναβ

]
,

sQµναβ = Jµναβ + ig {c,Qµναβ} , sJµναβ = ig [c, Jµναβ ] , (3.30)

has to be coupled to the breaking term which then takes the form

Sbreak =
∫

d4x s
(
Q̄µναβB

µνFαβ
)

=
∫

d4x
(
J̄µναβB

µνFαβ − Q̄µναβψ
µνFαβ

)
. (3.31)

The original term Eqn. (3.29) is reobtained if the sources Q̄ and J̄ are assigned to their “physical
values”

Q̄µναβ
∣∣
phys

= 0 , J̄µναβ
∣∣
phys

=
λ

4
(δµαδνβ − δµβδνα) ,

Qµναβ
∣∣
phys

= 0 , Jµναβ
∣∣
phys

=
λ

4
(δµαδνβ − δµβδνα) . (3.32)

Note that the Hermitian conjugate of the counterterm Sbreak in Eqn. (3.23), (i.e. the term∫
d4x B̄µνF

µν) may also be coupled to external sources which is not required for BRST invariance
but restores Hermiticity of the action.

λ

2

∫
d4x B̄µνF

µν −→
∫

d4x s
(
Jµναβψ̄

µνFαβ
)

=
∫

d4x JµναβB̄
µνFαβ . (3.33)

Including external sources Ωφ, φ ∈ {A, c,B, B̄, ψ, ψ̄, J, J̄ , Q, Q̄} for the non-linear BRST trans-
formations the complete action with Landau gauge ∂µAµ = 0 and general Q/Q̄ and J/J̄ reads:

S = Sinv + Sφπ + Snew + Sbreak + Sext , (3.34)

with

Sinv =
∫

d4x
1
4
FµνF

µν ,

Sφπ =
∫

d4x s (c̄ ∂µAµ) =
∫

d4x (b ∂µAµ − c̄ ∂µDµc) ,

Snew =
∫

d4x s
(
Jµναβψ̄

µνFαβ − µ2ψ̄µνD
2D̃2Bµν

)
=
∫

d4x
(
JµναβB̄

µνFαβ − µ2B̄µνD
2D̃2Bµν + µ2ψ̄µνD

2D̃2ψµν
)
,

Sbreak =
∫

d4x s
(
Q̄µναβB

µνFαβ
)

=
∫

d4x
(
J̄µναβB

µνFαβ − Q̄µναβψ
µνFαβ

)
,

Sext =
∫

d4x
(
ΩA
µD

µc+ igΩccc+ ΩB
µν (ψµν + ig [c,Bµν ]) + igΩB̄

µν

[
c, B̄µν

]
+igΩψ

µν {c, ψµν} + Ωψ̄
µν

(
B̄µν + ig

{
c, ψ̄µν

})
+ ΩQ

µναβ

(
Jµναβ + ig

{
c,Qµναβ

})
+igΩJ

µναβ

[
c, Jµναβ

]
+ ΩQ̄

µναβ

(
J̄µναβ + ig

{
c, Q̄µναβ

})
+ igΩJ̄

µναβ

[
c, J̄µναβ

])
.

(3.35)
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Table 3.2: Properties of fields and sources. (g]. . . ghost charge, f. . . fermionic, b. . . bosonic)

Field Aµ c c̄ Bµν B̄µν ψµν ψ̄µν Jαβµν J̄αβµν Qαβµν Q̄αβµν

g] 0 1 -1 0 0 1 -1 0 0 -1 -1
dm. 1 0 2 1 1 1 1 1 1 1 1
Statistics b f f b b f f b b f f

Source ΩA
µ Ωc b ΩB

µν ΩB̄
µν Ωψ

µν Ωψ̄
µν ΩJ

αβµν ΩJ̄
αβµν ΩQ

αβµν ΩQ̄
αβµν

g] -1 -2 0 -1 -1 -2 0 -1 -1 0 0
Mass dim. 3 4 2 3 3 3 3 3 3 3 3
Statistics f b b f f b b f f b b

Tab. 3.2 summarizes properties of the fields and sources contained in the model (3.35).

Note that the mass µ is a physical parameter despite the fact that the variation of the action
∂S
∂µ2 = s

(
ψ̄µνD

2D̃2Bµν
)

yields a BRST-exact form. Following the argumentation in Ref. [121]
this is a consequence of the introduction of a soft breaking term. For vanishing Gribov-like
parameter λ = 0 the contributions to the path integral of the µ dependent sectors of Snew in
(3.35) cancel each other . (This latter fact will become obvious when considering explicit loop
calculations in Section 3.2.5.) In the case λ 6= 0 we have to consider the additional breaking term
which couples the gauge field Aµ to the auxiliary field Bµν and the associated ghost ψµν . This

mixing of the fields is the origin for the appearance of the damping factor
(
k2 + a2

k̃2

)
featured

by the propagators (3.36a)–(3.36d). In fact, the IR-regularization vanishes entirely in the limit
a := λ/µ→ 0.

From the action (3.35) with J/J̄ and Q/Q̄ set to their physical values given by (3.32) we can
derive the propagators

k
νµ

= GAAµν (k) =
1(

k2 + a2

k̃2

) (δµν − kµkν
k2

)
, (3.36a)

k
ρσµ

= GABµ,ρσ(k) =
ia
2µ

(kρδµσ − kσδµρ)

k2k̃2
(
k2 + a2

k̃2

) = GAB̄µ,ρσ(k) = −GB̄Aρσ,µ(k) , (3.36b)

k
τǫρσ

= GB̄Bµν,ρσ(k) =
−1

2µ2k2k̃2

δµρδνσ− δµσδνρ− a2kµkρδνσ+ kνkσδµρ− kµkσδνρ− kνkρδµσ

2k2k̃2
(
k2 + a2

k̃2

)
,

(3.36c)

k
ρσµν

= GBBµν,ρσ(k) =
a2

4k2k̃2

kµkρδνσ+ kνkσδµρ− kµkσδνρ− kνkρδµσ

µ2k2k̃2
(
k2 + a2

k̃2

)
= GB̄B̄µν,ρσ(k) , (3.36d)

k

= Gc̄c(k) = − 1
k2
, (3.36e)

k
τǫρσ

= Gψ̄ψµν,ρσ(k) =
(δµρδνσ − δµσδνρ)

2µ2k2k̃2
, (3.36f)

where the abbreviation a = λ/µ was used. From the form of these propagators we notice that
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both GBB̄ and Gψ̄ψ scale with 1/k2k̃2 in the ultraviolet. Furthermore, all vertices with one B,
one B̄, and an arbitrary number of A legs have exactly the same form as the ones with one
ψ, one ψ̄, and the same number of A legs. Therefore, considering the results of explicit one
loop calculations in Section 3.1.3 (see also Ref. [62]), we expect all divergent contributions to
the vacuum polarization coming from the ψ sector to exactly cancel those coming from the B
sector. Of course this conjecture has to be proven by explicit calculations which are postponed
to Section 3.2.5.

Note that the propagators obey the following symmetries and relations:

GABµ,ρσ(k) = GAB̄µ,ρσ(k) = −GBAρσ,µ(k) = −GB̄Aρσ,µ(k), (3.37a)

Gφµν,ρσ(k) = −Gφνµ,ρσ = −Gφµν,σρ(k) = Gφνµ,σρ(k), (3.37b)

for φ ∈ {ψ̄ψ, B̄B,BB, B̄B̄},

2k2k̃2GABρ,µν(k) = i
a

µ

(
kµG

AA
ρν (k) − kνG

AA
ρµ (k)

)
, (3.37c)

1
µ2

(δµρδνσ − δµσδνρ) = i
a

µ

(
kµG

BA
ρσ,ν(k) − kνG

BA
ρσ,µ(k)

)
− 2k2k̃2GBB̄µν,ρσ(k), (3.37d)

0 = i
a

µ

(
kµG

BA
ρσ,ν(k) − kνG

BA
ρσ,µ(k)

)
− 2k2k̃2GBBµν,ρσ(k), (3.37e)

GBB̄µν,ρσ(k) = Gψ̄ψµν,ρσ(k) +GBBµν,ρσ(k). (3.37f)

In fact, relations (3.37c)-(3.37f) follow directly from the equations of motion for Bµν and B̄µν
(see Appendix E.1). Vertex expressions are, due to their rather lengthy form, collected in
Appendix C.1. However, in the light of the above discussion it is worth mentioning that the
symmetry betwen the (B̄, B) and (ψ̄, ψ) sectors is reflected accordingly in the vertices. Each
vertex featuring a pair of (B̄, B) fields has a respective counterpart with (ψ̄, ψ). Particularly
the relation

V
B̄B(n×A)
µν,ρσ,ξ1...ξn

(q1, q2, kξ1 , . . . kξn) = −V ψ̄ψ(n×A)
µν,ρσ,ξ1...ξn

(q1, q2, kξ1 , . . . kξn) , n ∈ {1, 2, 3, 4} , (3.38)

holds. The only exception to the symmetry is given by the vertices V B̄AA
µν,ρσ (q1, k2, k3) and

V BAA
µν,ρσ (q1, k2, k3) originating from the soft breaking term. Of course, these vanish for λ→ 0.

In addition we may note the following symmetries reflecting the antisymmetry of the fields

V
ψ̄ψ(n×A)
µν,ρσ,ξ1...ξn

(q1, q2, kξ1 , . . . kξn) = −V ψψ̄(n×A)
ρσ,µν,ξ1...ξn

(q2, q1, kξ1 , . . . kξn)

= −V ψ̄ψ(n×A)
νµ,ρσ,ξ1...ξn

(q1, q2, kξ1 , . . . kξn),

= −V ψ̄ψ(n×A)
µν,σρ,ξ1...ξn

(q1, q2, kξ1 , . . . kξn), (3.39)

and

V
B̄B(n×A)
µν,ρσ,ξ1...ξn

(q1, q2, kξ1 , . . . kξn) = +V BB̄(n×A)
ρσ,µν,ξ1...ξn

(q2, q1, kξ1 , . . . kξn)

= −V B̄B(n×A)
νµ,ρσ,ξ1...ξn

(q1, q2, kξ1 , . . . kξn)

= −V B̄B(n×A)
µν,σρ,ξ1...ξn

(q1, q2, kξ1 , . . . kξn), (3.40)

n ∈ 1, 2, 3, 4. (3.41)

This completes the discussion of the tree level properties of the model (3.35). However, before
starting to compute loop corrections the discussion of the UV power counting, and the off-shell
algebra of symmetries which is essential for an eventual application of AR have to be derived.
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3.2.3 UV Power Counting

The superficial degree of UV divergence is determined by the number of external legs of the
various fields φ denoted by Eφ. For an explicit example of the derivation see Section 3.1.2. Its
explicit form is given by:

dγ = 4 − EA − Ec/c̄ − 2EB − 2EB̄ − 2Eψψ̄ − 2Eθ (3.42a)

= 4 − EA − Ec/c̄ − 2Eλ , (3.42b)

where Eθ counts negative powers of θ. Since Eθ is not strictly positive it may be more intuitive
to use the second version (counting Eλ, i.e. the overall powers of λ in a graph), as Eλ ≥ 0 always
holds.

From Eqn. (3.42b) it is clear that, not only external fields Aµ and ghosts c/c̄ contribute to
finiteness of graphs, (as in commutative YM theory,) but also appearances of λ. As mentioned
above, this parameter is intimately tied to the soft breaking term which implements the damping
of the 1/p2 model.

3.2.4 Symmetries

Aiming to apply the method of AR we explore the symmetry content of the current model. The
Slavnov-Taylor identity is given by

B(S) =
∫

d4x
[ δS
δΩA

µ

δS

δAµ
+

δS

δΩc

δS

δc
+ b

δS

δc̄
+

δS

δΩB
µν

δS

δBµν
+

δS

δΩB̄
µν

δS

δB̄µν

+
δS

δΩψ
µν

δS

δψµν
+

δS

δΩψ̄
µν

δS

δψ̄µν
+

δS

δΩQ
µναβ

δS

δQµναβ
+

δS

δΩJ
µναβ

δS

δJµναβ

+
δS

δΩQ̄
µναβ

δS

δQ̄µναβ
+

δS

δΩJ̄
µναβ

δS

δJ̄µναβ

]
= 0 . (3.43)

Furthermore we have the gauge fixing condition

δS

δb
= ∂µAµ = 0 , (3.44)

the ghost equation

G(S) = ∂µ
δS

δΩA
µ

+
δS

δc̄
= 0 , (3.45)

and the antighost equation

Ḡ(S) =
∫

d4x
δS

δc
= 0 . (3.46)

Following the notation of Ref. [119] the identity associated to the BRST doublet structure is
given by

U
(1)
αβµν(S) =

∫
d4x

(
B̄αβ

δS

δψ̄µν
+ Ωψ̄

µν

δS

δΩB̄
αβ

+ ψαβ
δS

δBµν
− ΩB

µν

δS

δΩψ
αβ

+Jµνρσ
δS

δQαβρσ
+ ΩQ

αβρσ

δS

δΩJ
µνρσ

+ J̄µνρσ
δS

δQ̄αβρσ
+ ΩQ̄

αβρσ

δS

δΩJ̄
µνρσ

)
= 0 . (3.47)
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Interestingly the first two terms of the second line,

∫
d4x

(
Jµνρσ

δS

δQαβρσ
+ ΩQ

αβρσ

δS

δΩJ
µνρσ

)
= 0 ,

constitute a symmetry by themselves. These terms stem from the insertion of conjugated field
partners J and Q for J̄ and Q̄, respectively, which are not necessarily required, but have been
introduced in order to maintain Hermiticity of the action (see Section 3.2.2).

Furthermore, the action features the linearly broken symmetries U (0) and Ũ (0):

U
(0)
αβµν(S) = −Θ(0)

αβµν = −Ũ (0)
αβµν(S) , (3.48)

with

U
(0)
αβµν(S) =

∫
d4x

[
Bαβ

δS

δBµν
− B̄µν

δS

δB̄αβ
− ΩB

µν

δS

δΩB
αβ

+ ΩB̄
αβ

δS

δΩB̄
µν

+Jαβρσ
δS

δJµνρσ
− J̄µνρσ

δS

δJ̄αβρσ
− ΩJ

µνρσ

δS

δΩJ
αβρσ

+ ΩJ̄
αβρσ

δS

δΩJ̄
µνρσ

]
, (3.49)

Ũ
(0)
αβµν(S) =

∫
d4x

[
ψαβ

δS

δψµν
− ψ̄µν

δS

δψ̄αβ
− Ωψ

µν

δS

δΩψ
αβ

+ Ωψ̄
αβ

δS

δΩψ̄
µν

+Qαβρσ
δS

δQµνρσ
− Q̄µνρσ

δS

δQ̄αβρσ
− ΩQ

µνρσ

δS

δΩQ
αβρσ

+ ΩQ̄
αβρσ

δS

δΩQ̄
µνρσ

]
, (3.50)

Θ(0)
αβµν =

∫
d4x

[
B̄µνΩ

ψ̄
αβ − ψαβΩB

µν + J̄µνρσΩ
Q̄
αβρσ − JαβρσΩQ

µνρσ

]
. (3.51)

For the sake of completeness we should also mention that in the literature there appears a
symmetry denoted by U (2) [119],

U
(2)
µναβ =

∫
d4x

(
ψµν

δS

δψ̄αβ
+ ψαβ

δS

δψ̄µν
− Ωψ̄

µν

δS

δΩψ
αβ

− Ωψ̄
αβ

δS

δΩψ
µν

)
= 0. (3.52)

The latter, however is not considered to contain any physical information, as it is generated solely
by the exchange of indices. From the Slavnov-Taylor identity (3.43) one derives the linearized
Slavnov operator.

BS =
∫

d4x

[
δS

δΩA
µ

δ

δAµ
+

δS

δAµ

δ

δΩA
µ

+
δS

δc

δ

δΩc
+

δS

δΩc

δ

δc
+ b

δS

δc̄
+

δS

δΩB
µν

δ

δBµν
+

δS

δBµν

δ

δΩB
µν

+
δS

δΩB̄
µν

δ

δB̄µν
+

δS

δB̄µν

δ

δΩB̄
µν

+
δS

δΩψ
µν

δ

δψµν
+

δS

δψµν

δ

δΩψ
µν

+
δS

δΩψ̄
µν

δ

δψ̄µν
+

δS

δψ̄µν

δ

δΩψ̄
µν

+
δS

δΩQ
µναβ

δ

δQµναβ
+

δS

δQµναβ

δ

δΩQ
µναβ

+
δS

δΩJ
µναβ

δ

δJµναβ
+

δS

δJµναβ

δ

δΩJ
µναβ

+
δS

δΩQ̄
µναβ

δ

δQ̄µναβ
+

δS

δQ̄µναβ

δ

δΩQ̄
µναβ

+
δS

δΩJ̄
µναβ

δ

δJ̄µναβ
+

δS

δJ̄µναβ

δ

δΩJ̄
µναβ

]
. (3.53)
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Furthermore, the U (0) and Ũ (0) symmetries are combined to define the reality charge10 operator
Q as

Q ≡ δαµδβν

(
U (0)
αβµν + Ũ (0)

αβµν

)
. (3.54)

Notice that the action is invariant under Q, i.e. Q(S) = 0, because of U (0)
αβµν(S) = − Ũ (0)

αβµν(S).

The next logical step in the AR procedure is to set up the off-shell algebra E , yielding constraints
to possible counter terms. In order to assure the completeness of the set of symmetries E (which
is generated by these) has to close. Having defined the operators BS , Ḡ, Q and U (1) we may
derive the following set of graded commutators:{

Ḡ, Ḡ
}

= 0 , {BS ,BS} = 0 ,
{
Ḡ,BS

}
= 0 ,[

Ḡ,Q
]

= 0 , [Q,Q] = 0 ,
{
Ḡ,U (1)

µναβ

}
= 0 ,{

BS ,U (1)
µναβ

}
= 0 ,

{
U (1)
µναβ ,U

(1)
µ′ν′α′β′

}
= 0 ,

[
U (1)
µναβ ,Q

]
= 0 ,

[BS ,Q] = 0 , (3.55)

which shows, since all relations evaluate to 0, that the algebra indeed closes. Now, theoretically,
the preparations for the AR procedure are completed. However, before a general proof procedure
could be started we shall conduct some explicit checks for renormalizability. In this respect, it
seems reasonable to investigate the behavior of the theory at the one loop level.

3.2.5 An Attempt for One Loop Renormalization

The aim of this section is to discuss the one loop corrections to the gauge boson propagator.
Detailed computations of the relevant graphs are given in Appendix C.2. In the standard
renormalization procedure, the dressed propagator at one loop level is given by

p

≡ ∆′(p) =
1
A

+
1
A

Σ(Λ, p)
1
A
, (3.56)

where (with abuse of the notation due to missing indices),

1
A

:= GAA
µν (p) ,

Σ(Λ, p) := (Πp)reg. (Λ, p) + Πnp(p) = : B ,

and the interpretation of the notation has to be 1/A = : A−1 in the sense that A−1A = AA−1 ≡ 1,
and similarily for (A + B)−1. For A 6= 0, A + B 6= 0, ∃A−1, and ∃(A + B)−1, we can apply the
formula

1
A + B

=
1
A
− 1

A
B

1
A + B

=
1
A
− 1

A
B

1
A

+ O(B2) , (3.57)

which allows to rewrite expression (3.56) to order Σ as

∆′(p) =
1

A − Σ(Λ, p)
, (3.58)

10Note that Q is not a charge in the sense that it is the integral over some current but indeed if Q = 0 reality
of the action is guaranteed so we might interpret it as the ‘charge’ associated with reality, assigning the value 0
to reality.
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and, if the model is indeed renormalizable, to absorb any divergences in the appropriate pa-
rameters of the theory (which are hidden in A). Remember that this procedure has successfully
been executed for the scalar 1/p2 model in Section 2.1 (see also Ref. [95]).

In the model (3.35), the expansion (3.57) cannot be applied directly. Due to the existence of the
mixed propagators GAB, GAB̄ (and their mirrored counterparts,) the propagator 〈AµAν〉 receives
contributions from all graphs having two external fields out of the set {A,B, B̄}. Denoting the
sum of corrections with external fields φ1 and φ2 by Σφ1φ2 , and the vacuum polarization by
Πµν ≡ ΣAA

µν , the complete correction can be written as

GAA,1l−ren
µν (p) = GAA

µν (p) +GAA
µρ (p)Πρσ(p)GAA

σν (p)

+GAA
µρ (p)2ΣAB

ρ,σ1σ2(p)G
BA
σ1σ2,ν(p)

+GAA
µρ (p)2ΣAB̄

ρ,σ1σ2(p)G
B̄A
σ1σ2,ν(p)

+GAB
µ,ρ1ρ2(p)Σ

BB
ρ1ρ2,σ1σ2(p)G

BA
σ1σ2,ν(p)

+GAB
µ,ρ1ρ2(p)2ΣBB̄

ρ1ρ2,σ1σ2(p)G
B̄A
σ1σ2,ν(p)

+GAB̄
µ,ρ1ρ2(p)Σ

B̄B̄
ρ1ρ2,σ1σ2(p)G

B̄A
σ1σ2,ν(p) + O

(
g4
)
. (3.59)

Note, that the factors 2 stem from the (not explicitly written) mirrored contributions AB ↔ BA,
AB̄ ↔ B̄A, and BB̄ ↔ B̄B. Certainly the factor A must be the same for all summands. Since
the tensor structure of the propagators (3.36a) and (3.36b) is incompatible, we have to use the
Ward Identities (3.37a) and (3.37c), i.e.

GABµ,ρσ(k) = GAB̄µ,ρσ(k) = −GBAρσ,µ(k) = −GB̄Aρσ,µ(k) ,

2k2k̃2GABρ,µν(k) = i
a′

µ

(
kµG

AA
ρν (k) − kνG

AA
ρµ (k)

)
, (3.60)

which allow us to express the (tree level) AB and AB̄ propagators uniquely in terms of AA-
propagators. This leads (in analogy to (3.57)) to the following representation for the dressed
one loop gauge boson propagator:

GAA,1l−ren
µν (p) =

1
A
− 1

A

(∑
Bi
) 1

A
, (3.61)

where 1/A once more stands for the tree level gauge boson propagator. The Bi’s are given by
the one loop corrections (with amputated external legs) of the two-point functions relevant for
the dressed gauge boson propagator, multiplied by any prefactors coming from (3.60) and the
occasional factor 2 (c.f. (3.59)). Thus, the full propagator is given by

GAA,1l−ren
µν (p) =GAA

µν (p) +GAA
µρ (p)Πρσ(p)GAA

σν (p)

+
(

ia′

µp2p̃2

)[
2GAA

µρ (p)
(
ΣAB
ρ,σ1σ2(p) + ΣAB̄

ρ,σ1σ2(p)
)
pσ2G

AA
νσ1(p)

]
+
(

ia′

µp2p̃2

)2 [
pρ1G

AA
µρ2(p)

(
ΣBB
ρ1ρ2,σ1σ2(p)

+ 2ΣBB̄
ρ1ρ2,σ1σ2(p) + ΣB̄B̄

ρ1ρ2,σ1σ2(p)
)
pσ2G

AA
νσ1(p)

]
. (3.62)

With the results (C.4), (C.6), (C.8), and (C.11) (computed in Appendix C.2) the correction
B =

∑
i

Bi is explicitly given by

B =
g2

8π2µ4

{
p̃µp̃ν

(
16µ4

(p̃2)2
+

θ4λ4

2(p̃2)4

)
− 7λ2µ2 θ4

(p̃2)4
(
p2δµν − pµpν

) (
4 − p̃2Λ2

)
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+
(
p2δµν − pµpν

) [
ln 2 − ln p̃2 − ln Λ

](5
3
µ4 +

3λ2µ2θ2

(p̃2)2
+
λ4θ4

(p̃2)4

)}
+ finite terms . (3.63)

In contrast to commutative gauge models, and even though the vacuum polarization tensor Πµν

only had a logarithmic UV divergence, the complete correction B diverges quadratically in the
UV cutoff Λ. More intriguing is that, despite the fact that Πµν (see Eqn. (C.4)) exhibits the
usual quadratic IR divergence, B behaves like 1

(p̃2)3
in the IR limit. Both properties arise due to

the existence (and the form) of the mixed AB and AB̄ propagators, as these show an IR behavior
GAB,B̄(p) −→

|p|→0
|p|−1

∣∣
|p|→0

= ∞. This is reflected in the factors (p2p̃2)−1pµ and (p2p̃2)−2pµpν

being added to Σ{AB,B̄}(p) and Σ{BB,BB̄,B̄B̄}(p), respectively, in Eqn. (3.62) and Eqn. (3.60).
These additional poles originate from the difference in lim|p|→0G

{AB,B̄}(p) and lim|p|→0G
AA(p)

which has to be counterbalanced by the application of the Ward identities (3.60). Physically,
the interpretation is clear. The actual one loop integrals corresponding to amputated graphs
all feature the same expected 1/p̃2 behavior but upon dressing them with the IR divergent AB
and AB̄ propagators they pick up additional poles from the mixed propagators.
Regarding the renormalization this represents a serious obstacle. For the first, the form of the
propagator is modified, thereby implying new counter terms in the effective action, i.e. the tree
level action is not stable. Secondly, higher loop insertions of this expression may supposedly
lead to IR divergent integrals, as will be discussed in the next section. However, we should
also mention that all of the problems appearing at this point do not state a proof for non-
renormalizability.

3.2.6 Higher loop calculations

In the light of renormalization it is important to investigate the IR behavior of expected inte-
grands appearing at higher loop levels with insertions of the one loop corrections being discussed
in Section 3.2.5. The aim is to identify possible poles at p̃2 = 0. Hence, we consider chains of n
non-planar insertions denoted by Ξφ1φ2(p, n), each representing the sum of all divergent one loop
contributions with external fields φ1 and φ2 (cf. Sections C.2.1–C.2.4). Due to the numerous
possibilities of constructing such graphs, only a few exemplary configurations – especially those
for which one expects the worst IR behavior, will be considered at this place.

To start with, let us state that amongst all types of one loop two point amplitudes ((C.4),
(C.6), (C.8), and (C.11)), the vacuum polarization shows the highest, namely a quadratic IR
divergence. Amongst the tree level propagators those with two external double-indexed legs,
e.g. B or B̄ feature the highest (quartic) divergence in the limit of vanishing external momenta.
A chain of n vacuum polarizations Πnp

µν(p) (see Eqns. (C.3a) and (C.2b)) with (n + 1) AA-
propagators ((n− 1) between the individual vacuum polarization graphs, and one at each end)
leads to the following expression (for a graphical representation, see Fig. 3.3):

ΞAAµν (p, n) =
(
GAA(p)Πnp(p)

)n
µρ
GAAρν (p)

=
(

2g2

π2

)n 1(
p2 + a′2

p̃2

)n+1

p̃µp̃ν
(p̃2)n+1

. (3.64)

Note that, due to the transversality of Πnp
µν(p), from the propagator (3.36a) only the term with

the Kronecker delta enters the calculation. For vanishing momenta, i.e. in the limit p̃2 → 0 the
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expression reduces to

lim
p̃2→0

ΞAA(p, n) =
(

2g2

π2

)n
p̃µp̃ν

a′2(n+1)
, (3.65)

exhibiting IR finiteness which is independent from the number of inserted loops.

pµ

1

. . .
pν

2 n

Figure 3.3: A chain of n non-planar insertions, concatenated by gauge field propagators.

Another representative is the chain

ΞAφ(p, n) ≡
(
GAφ(p)Σnp,φA(p)

)n
µ,ρ
GAφρ,ν1ν2(p), where φ ∈ {B, B̄},

which could replace any single GAB (or GAB̄) line. Obviously, we have

ΞAφµ,ν1ν2(p, n) =
ia′

2µ

(
− 3g2

32π2
a′2
)n (pν1δµ ν2 − pν2δµ ν1)

p2
[
p̃2
(
p2 + a′2

p̃2

)]n+1n ln p̃2 , (3.66)

which for p̃2 � 1 (and neglecting dimensionless prefactors) behaves like

ΞAφ(p, n) ≈ n
(pν1δµ ν2 − pν2δµ ν1)

µp2
ln p̃2 . (3.67)

The latter insertion can be regularized since the pole at p̃ = 0 is independent of n. In contrast,
higher divergences are expected for chain graphs being concatenated by propagators with four
indices, i.e. GB̄Bµν,ρσ, G

BB
µν,ρσ, G

ψ̄ψ
µν,ρσ, due to the inherent quartic IR singularities. Let us discuss

the combination ΞB̄B(p, n) ≡
(
GB̄B(p)Σp,BB̄(p)

)n
GB̄B(p). As before, we can approximate for

p̃2 � 1 and, omitting dimensionless prefactors and indices, find

ΞB̄B(p, n) ∝
p̃2�1

n

µ2

ln p̃2

(p2p̃2)n
, (3.68)

which represents a singularity ∀n > 1 (since in any graph, at n = 0, the divergence is regularized
by the phase factor being a sine function which behaves like p for small momenta). Regarding
the index structures, no cancellations can be expected since the product of an arbitrary number
of contracted, completely antisymmetric tensors (as is G{BB,BB̄,B̄B̄) is again an antisymmetric
tensor with the outermost indices of the chain being free.

Exactly the same result is obtained for ΞBB(p) ≡
(
GBB(p)Σp,BB(p)

)n
GBB(p). From this it is

clear that the damping mechanism seen in ΞAA(p, n) fails for higher insertions of B/B̄ (,and
supposedly also ψ/ψ̄) fields. This is now a more serious threat to the renormalization pro-
gramme. In the following Section 3.3 we will collect the lessons learned from the two gauge
implementations of the 1/p2 model.
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3.2.7 Summary

In response of the proposition [62], of the model described in Section 3.1 giving rise to addi-
tional degrees of freedom, Vilar et al. [119] have shown that the task may be accomplished
without changing the physical content of the theory by the introduction of two pairs of complex
conjugated auxiliary fields and ghosts, such that BRST doublet structures are formed (see Sec-
tion 3.2.1). It was then assumed that the theory could be renormalized within the framework
of Algebraic Renormalization (described in Section 4.1.2) but no proof has been given that this
method is indeed applicable on non-commutative spaces. Another important aspect is the as-
sumed separation of D2D̃2 → θ2(D2)2 which is only possible for a tensor θµν with full rank in
Euclidean space.
Avoiding the problematic presumptions of the model by Vilar et al., the approach described in
Section 3.2.2 introduces only one pair of auxiliary fields, and according ghosts. Besides this, the
action (3.35) features as well a high degree of symmetry, and is far less complex than the one of
Section 3.2. However, both models contain couplings of the gauge boson with auxiliary fields,
leading to IR divergent propagators. These represent an obstacle to renormalization, as being
discussed in Section 3.2.5. Indeed, the näıve approximations of Section 3.2.6 reveal that there
exist types of graphs which diverge at higher loop level. In any case, this cannot be considered
to be a proof for non-renormalizability since, still, cancellations may appear due to the high
degree of symmetry, but it is an indication that there might appear problems. Basing solely
on the facts which have been discussed up to now a decisive answer cannot be given. A more
thorough analysis of the IR problems in this model follows in Section 3.3 below.

3.3 Lessons Learned

Now we have discussed two different implementations of the 1/p2 damping mechanism in gauge
theories (see Section 3.1 and Section 3.2). Since in both of these different problems appeared
we shall now analyze the obstacles to renormalization and the options we have to improve the
situation.

3.3.1 Divergence Structures in Non-Commutative Gauge Field Models

In the literature several examples for implementations of non-commutative gauge theories can
be found. The general concept is to take a commutative theory (YM or QED), and deform it
by the introduction of a star product. Let us consider the situation for U?(1) (see Section 2.2)
gauge fields on R4

θ. The gauge invariant Yang-Mills action (2.43) endowed with stars is repeated
at this point for convenience,

SYM? =
∫

d4x
1
4
Fµν ? Fµν , with

Fµν = ∂µAν − ∂νAµ − ig [Aµ ?, Aν ] .

This action has already been discussed in the early implementations of non-commutative QED
by Hayakawa [51, 52] where the focus was set to the UV divergences of the planar part. IR
phenomena, and corrections for two and three point functions can be found in Refs. [105, 106].
Respective one loop results obtained in these references principally coincide with those obtained
in Sections 3.1.3 and 3.2.5, and take the form

Πµν(p)|p̃→0 ∝ p̃µp̃ν
(p̃2)2

, (3.69)
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Γµνρ(p1, p2, p3)|p̃i→0 ∝ −2ig3

π2
cos (p1p̃2)

∑
i=1,2,3

p̃i,µp̃i,ν p̃i,ρ
(p̃2
i )2

, (3.70)

which is required by the demand for transversality, i.e. p{µ,ν}Πµν(p) = 0 for a two point function,
and p{1,2,3},{µ,ν,ρ}Γµνρ(p1, p2, p3) = 0 for a three point function. It is immediately clear that no
term exists in the tree level actions presented to this point which is capable to absorb such
divergences. Therefore, stability of the theory is violated, and there is no guarantee that the
required counterterms do not lead to even new types of divergences.

More generally, restrictions to the possible form of divergences can only be derived from transver-
sality, and power counting. In order to clarify this point let us consider for example the power
counting of the model with BRST doublets in Section 3.2.3. Since every physical non-vanishing
graph in this model has at least two external photon lines, EA ≥ 2, and insertions of B/B̄ fields
raise Eλ (either by the insertion of mixed propagators G{AB,AB̄} or the vertex V {BAA,B̄AA};
other insertions, such as closed {B, B̄}-lines are cancelled by respective insertions of {ψ, ψ̄}) we
can expect at most quadratic divergences. These may be only be represented by the follow-
ing types of terms (where overall factors, even with non-vanishing mass dimension, have been
omitted)

p̃µp̃ν
(p̃2)2

,
p̃µp̃ν p̃ρ
(p̃2)2

,
p̃µp̃ν p̃ρp̃σ

(p̃2)3
,

1
p̃2

(δµν −
pµpν
p2

) ,
p̃µ
p̃2

(δρσ −
pρpσ
p2

) ,
p̃µp̃ν
(p̃2)3

(δρσ −
pρpσ
p2

) . (3.71)

Note that, each of these divergences may be also be combined with logarithmically divergent
terms. Transversality implies, that the multiplication with any momentum p, carrying a free
index of the divergence, vanishes, i.e. pµ(Eqn. (3.71)) = 0. Hence, the only allowed index
structures are p̃µ1 . . . p̃µ4, (p2δµ1µ2 − pµ1pµ2), and any combinations and permutations thereof
which respect the degree of divergence. Finally, the divergence itself, i.e. overall negative
powers of the momentum, can only appear in a form contracted with θµν since its origin is a
phase factor which always contains a product kθp. From these considerations it is clear that the
set of Eqn. (3.71) is indeed complete.

In contrast to the scalar theory, where renormalizability can be restored by adding a simple
non-local term (see Section 2.1), gauge theories come up with an additional requirement for
counter terms regarding the tensor structure. Hence, one of the main tasks in the construction
of a renormalizable gauge field theory will be to provide terms on tree level which are suitable
to absorb all expected types (3.71) of divergences.

3.3.2 Localization and Auxiliary Fields

We have seen in Section 2.2 that the 1/(D2D̃2) term, implementing the damping behavior of
the 1/p2 model in a gauge covariant way requires to be localized in order to be interpreted in
any reasonable way. The first approach to achieve this by the introduction of a real-valued
auxiliary field in Section 3.1 led to a model with additional physical degrees of freedom. In the
light of Refs. [117, 118] this is an effect of a non-trivial cohomology. In fact, from the BRST
transformations (3.4) we see that Bµν transforms covariant, i.e. sBµν = ig [c ?, Bµν ], rather than
in a BRST doublet structure. Such would require the field to be assigned to respective ghost
fields, as it has been done in Section 3.2.2. There, the (complex) field Bµν (see Eqn. (3.27))
transforms as sBµν = ψµν + ig [c ?, Bµν ], and sψµν = ig {c ?, ψµν}. Note that the covariant
(anti-)commutators in these relations do not contribute since they vanish under integrals due to
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the cyclic invariance of the star product (1.26a). Physical interactions can be excluded due to
Eqn. (3.28), i.e. the doublet structure of the auxiliary fields allows to write the entire localization
term (up to the soft breaking) as a BRST exact expression. As will be discussed in Chapter 4,
the introduction of auxiliary fields in gauge theories has to be performed in a way allowing for
a trivial cohomology of all affected terms Sunphys. in the action. An unintended modification of
the physical content of the theory can be eliminated a priori if new fields are introduced such
that they form BRST doublet structure relations, and Sunphys. obeys[78, 79]

Sunphys. = sŜunphys. ⇒ sSunphys. = 0 . (3.72)

Another point regarding the auxiliary fields is worth considering there. The failure of the one
loop renormalization in Section 3.2.5 was due to the fact that the photon field Aµ was coupled
to the auxiliary field Bµν via mixed propagators G{AB,AB̄}, and respective vertices. This led
to numerous corrections being dressed by external G{AB,AB̄} lines. In this way, additional IR
divergences up to sixth order in the external momentum where introduced which could not be
absorbed by terms being present in the tree level propagator.
For the construction of new models two possible ways to avoid these problems can be identified.
First, if couplings of gauge and auxiliary fields are present, one has to assure that all (pure and
mixed) propagators have a finite IR behavior. Secondly, if the unphysical fields are uncoupled
from the gauge sector there will exist no interactions and, hence, no corrections to the gauge
field. The latter solution seems to be preferable.
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Chapter 4

Renormalization

This chapter represents an excursion to the topic of renormalization with special focus on the
amenabliliy of the discussed methods to gauge theories, and non-commutative physics. First, a
very brief overview of the most successful schemes is given in Section 4.1. A short discussion
of the background and the significance of the renormalization group follows in Section 4.2.
A subject which has, so far, been neglected in the field of non-commutative physics is the
appearance of (composite field-) operators having zero or even negative dimension. It is the
aim of Section 4.3 to discuss the implications of these, and other problems being introduced
by deformation. Finally, Section 4.4 attempts to find a way out of the misery of lacking an
amenable method to prove renormalizability of non-commutative gauge models.

4.1 Excursion: Renormalization in a Nutshell

The early roots of renormalization can be traced back to the advent of QED when it was realized
that in general, the integrals appearing in explicit calculations of scattering matrix elements do
not converge [124]. The reason for this was immediately identified to be the mathematically
ill-defined multiplication of propagators (being distributions) at the same point. A first step to
success was the introduction of regularization procedures which render the integrations finite,
and allow to extract the divergent contributions in an explicit way. However, the result still
was not satisfactory, since the physical values (represented by the respective limits in regula-
tors or cutoffs for which the divergences reappear) were infinite, and therefore unobservable in
experiments. The final solution turned out to be the subtraction of the pole terms from the
respective results, or equivalently (and preferred) the redefinition of the parameters of the the-
ory by absorbing the singularities. Amazingly, and subjected to criticism by the mathematical
community, one obtains physically sound and finite results by computing the (strictly speaking
not well defined) difference of two infinite quantities. Over time physicists and mathematicians
have become accustomed to renormalization, and its oddities. In fact, its history is guided (in
company with the development of the standard model) by a series of remarkable successes, such
as the almost perfect prediction1 of the anomalous magnetic moment of the electron, the Lamb
shift, fine splittings, and a large series of masses and cross sections measured in the large colliders
from the 1970’s until today.

1In fact, the value g − 2 = 1 159 652 188.4 ± 4.3 × 1012 of the anomalous moment of the electron[125] shows
agreement with theory up to 9 digits, which is one of the best experimental verifications known.
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4.1.1 Regularization

After this quick ‘tour de renormalisation’ we will now take a closer look at the concepts, and
their suitability for non-commutative physics. First of all, regularization of the integrands has
to be achieved. This means to alter the integrands in a way that renders them well defined.
After the subsequent renormalization has been executed any remains of the regularization may
be removed since, if applied correctly, the physical values do not depend upon the form of
regulator. Let us discuss some of the available schemes.
The simplest method is to introduce exponential cutoffs, as being described in Appendix A.2.1.
This typically yields expressions contatining the cutoff(s) in a way, which allows to directly
identify the degree of divergence. As an example, consider the planar one loop result of the
tadpole in Eqn. (2.12) (page 20), being (Πp)regul. (Λ) ∝ −λ

3(2π)2
Λ2. Obviously, this expression

shows a quadratic divergence for the physical limit Λ → ∞, and the method is perfectly suitable
for non-commutative theory since the introduction of an exponential cutoff in an integral is
possible without any precondition.
Another quite popular method is dimensional regularization which is applied mostly for (but not
limited to) theories on Minkowski space. The key idea is to turn the dimensionality of the loop
momentum integrals into a complex variable ε, i.e.

∫
d4k I(p, k) →

∫
dεk I(p, k). For a typical

Feynman integral with n ∈ N propagators, P(k,m) symbolizing a generic pole, depending on
momenta, masses, etc., and ε � 1 being chosen in accordence with some pole prescription we
can write (without proof)∫

dεk
1

(k2 −P(k,m) + iε)n
= i(−1)nπ

ε
2
Γ(n− ε

2)
Γ(n)

P
ε
2−n . (4.1)

From the result (4.1) it is obvious that the divergences are now hidden in the Euler Gamma
functions Γ, depending on the value of ε and reappear for ε→ 4 (depending on the value of n).
Again, this method is applicable in non-commutative theories. More thorough descriptions, and
replacement rules for the integrals can be found for example in the textbooks [75, 76, 84] or, for
an application to deformed spaces, Ref. [126].

Different to the both schemes above is the method of BPHZ2. Its basic idea is to subtract
the divergences prior to the actual integration. The assumption is that the relevant terms
can be identified by a Taylor expansion Tn to the order n with respect to the (not integrated)
external momenta3 pi of the UV divergent integrand I(k, pi). Obviously, the number of necessary
derivations, n, is determined by the superficial degree of divergence, as n = d(I(pi, k)) + 1. In
commutative theories, the terms of the expansion can be identified order by order with poles of
the original integrand. The regularized integral is then written as

Jreg.(p) =
∫

d4k
[
I(p, k) − Tn

∣∣
pi→0

◦ I(p, k)
]

+
n∑
j=0

cj(pi)j . (4.2)

In a further step, the coefficients cj , which already represent renormalizations of the respective
parameters in the action, are determined from the solution of renormalization conitions (see
Section 4.1.2 below). Hence, in some sense, BPHZ may be considered as a renormalization
procedure. At this point we have to note that there are several prerequisites which are not
fulfilled in non-commutative theories. First, the Taylor expansion approach only yields all
divergences and regularizes the integrand, if the latter has its poles in the UV limit. This is

2Named after Bogoliubov, Parasiuk, Hepp, and Zimmermann.
3Note that the index i stands symbolically for any additional notation. The same is true for the summation

index j in Eqn. (4.2).
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clear since an IR divergence, which can intuitively be represented by a negative power, will
not vanish upon differentiation but become even worse4. In fact, the expansion T then has a
vanishing radius of convergence and is, hence, not well defined. However, this latter problem
may be resolved by choosing a different point of expansion. The second severe obstacle in
the presence of deformation is the inherent non-locality of the star product which, generally,
invalidates most proofs which support the scheme. Therefore, the BPHZ method, in its original
form is possibly not suitable for non-commutative theories.

4.1.2 Renormalization

In the following a brief review of some ‘classical’ renormalization schemes is given. The aim
is to emphasize the (dis-)advantages with respect to an application on deformed spaces. First,
however, the general process shall briefly be discussed. In QFT, the objects of desire are (scat-
tering) S-matrix elements, which give the probabilities and cross sections of processes which can
(supposedly) be detected in colliders. The perturbation expansion originates from5,

S = 〈0|Te−iSint.[φa−]|0〉

= 1 +
∞∑
n=1

λ

n!

∫ i∏
j=1

d4xj〈0|Tφa−(x1) . . . φa−(xi)|0〉 , (4.3)

where the notation of Section 1.3.1 has been used, λ is a generic coupling constant, and the φa±
are the asymptotically free states before (-) and after (+) the collision. In order to express the
matrix elements (for the transition from an asymptotic state with n incoming to m outgoing
particles) we have to apply the LSZ formalism6

Sαβ(φa−,n, φa+,m) = 〈φa+,m|S|φa−,n〉

= iZ− 1
2

∫ {n,m}∏
{α,β}=1

d4xα d4yβ e
i

[ {n,m}
P

{k,l}=1

pa−,kxk−pa+,lyl

]
(
�yβ

+m2
) (

�xα +m2
)
〈0|Tφ(y1) . . . φ(ym)φ(x1) . . . φ(xn)|0〉 . (4.4)

Vacuum expectation values of time ordered field products Gn(x1..xn) = 〈0|Tφ(x1) . . . φ(xn)|0〉
represent the Green functions (or, if analytically continued to Euclidean space) the Schwinger
functions of the model, being described by the Gell-Mann-Low formula, or equivalently in the
path integral formalism, by the Feynman-Kac formula

Gn(z1..z, n) = Z−1

∫
Dφ

[
n∏
i=1

φ(zi)

]
eiS[φ] , with Z =

∫
Dφ eiS[φ] , (4.5)

where the time ordering is now hidden in the measure. This already represents some kind of
renormalization since the division by Z effectively removes any ‘vacuum bubbles’, i.e. graphs
without connection to external points zi, which contribute to the infinite vacuum energy but
not to any physical processes7.

4Mathematically this becomes obvious for the non-planar integrals which contain a phase factor. The latter
will, upon derivation, contribute one power of the loop momentum to be integrated out for each order in the
Taylor series. Hence, the degree of divergence is not improved but worsened by the procedure.

5Note that the discussion in the general part of this section applies to Minkowski space. The respective
Euclidean expressions can be obtained in the same way, as in Section 1.3.1 (by Wick rotation).

6Named after Lehmann, Symanzik and Zimmermann.
7In this respect it should be mentioned that this is not always true, since the (normally unobservable) vacuum

energy may locally be reduced by imposing boundary conditions, thereby creating a negative potential well giving
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However, in order to compute the n-fold time ordered product of fields, we have to apply the
famous Wick theorem, yielding

〈0|Tφ(x1) . . . φ(xn)|0〉 =
∑

pairings π

∏
γ∈π

∆F (xγ,1, xγ,2) . (4.6)

In the latter expression the sum runs over all n!! possible pairings (‘contractions’) of two fields
each, and the product runs over the resulting two point functions (propagators) ∆F . Now we
have arrived at the very heart of the source for divergences, the illdefined multiple product of
propagators at the same points. These products each correspond to a single Feynman graph.
It has been recognized quite early that a cure to the problem of divergences can be found by
redefining parameters, masses and wavefunctions by adding to them appropriate terms, corre-
sponding to the singularities obtained by loop calculations. However, this requires the action to
be stable, i.e. that for all types of divergences a respective term exists in the tree level action8.
Otherwise, a ‘counterterm’ with an eventual new parameter has to be introduced for each new
type of divergence9. In any case, the target is to include all of the terms appearing at tree level,
and to arbitrary order in the perturbative expansion (4.3) in the form of divergences into the
action. A physical interpretation is that the original masses, parameters, etc. on tree level are
so called bare masses, parameters, etc. which are a priori infinite. The renormalized (physical)
quantities, in contrast, are physically observable. Hence, denoting all available parameters by
the symbol m, we have mphys. = mbare−

∑
mcorr., where the sum runs over loop orders. Stability

of the action can be expressed mathematically in form of (re)normalization conditions which are
constructed such that they are fulfilled solely for actions having an identical form as the one on
tree level. Such relations have been derived for the scalar 1/p2 model in Section 2.1.3, page 26,
and for the BRSW model in Section 5.4, page 84.

One more topic has to be mentioned. Graphs at higher loop orders do not simply contribute
one overall divergence but, as has been recognized early by Bogoliubov, Zimmermann, Hepp,
and others [98, 128], they form a non-trivial structure of singularities which have to be treated
in a very specific way. This can be understood when considering that the integrands may
diverge each separately, or in any possible combination. In order to untangle these nested or
overlapping poles Zimmermann has derived his famous forest formula (see Appendix D). The
heart of this procedure is to identify the substructures (referred to as ‘forests’) of Feynman
graphs contributing to specific poles. Although solving the problem of overlapping divergences
completely, the method is not perfect, as it turns out that too many terms are subtracted,
leading to the so called renormalon problem (see page 66). Generally, this name describes the
dramatic increase of (finite) amplitudes of Feynman graphs after renormalization. Hence, the
rather depressing diagnosis is that neither the bare perturbation series nor the renormalized one
is indeed correct at higher loop orders. Fortunately, as is described below there is a light at the
end of the tunnel: Multiscale Analysis. For now we shall step back and consider explicit ways
of renormalization.

Explicit Loop Calculations

The oldest and most straight-forward way of computing quantum corrections to an action is
definitely to conduct explicit loop calculations. All of the regularization methods mentioned

rise to ‘vacuum forces’. In fact, this effect can be measured (for a good review see for example [127]), and is
named after H.B.G. Casimir.

8In this case, a generic parameter λ of a term t receiving a divergent contribution t′ by renormalization is
redefined according to λren = λ(t + t′)

9Hence, no renormalized constant can be defined, as the parameter of the divergence has to be introduced as
a new constant, i.e. {λ, t}@, new term λt′.
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in Section 4.1.1 may be applied to extract the divergent parts. In a further step, as has been
exercised in Section 2.1.3, and Section 3.2.5, one attempts to absorb the singularities by suitable
redefinition of the parameters of the theory. Since this scheme is treated in most (undergraduate)
courses and textbooks, no further explanation will be given

Algebraic Renormalization

In case the subjected theory obeys a specific symmetry, the renormalizability may be improved
due to the systematic cancellation of divergences. Hence, it is of vital importance that any
applied renormalization procedure leaves invariant the symmetry properties in all its steps,
although it has to be mentioned that there is an option to temporally break invariances during
renormalization, and restore it afterwards on the quantum level in a rigorous way as for example
is done by applying the Polchinski approach in Ref. [129]. In commutative theory, the so
called Quantum Action Principle (QAP) [130–132] defines a set of conditions which, if fulfilled,
guarantee this invariance and enable the application of the Algebraic Renormalization procedure
(see also the textbooks [78, 79]). Let us briefly review this topic.
The general procedure is as follows:

B First, any symmetry of the tree level (starting) action S0[φα, Q] depending on generic
(classical) fields10 φα and composite local field operators Qβ (see below) is expressed by a
Ward identity (WI) Wρ[φ]. It is crucial for the AR procedure not to miss any WI. Hence,
one may check for completeness11 of the set of (anti-)commutators defining the off-shell
algebra Aext. of the model,

{[
Wρ[φα],Wρ′ [φα]

]
, ..
{
Wρ[φα],Wρ′ [φα]

}}
, ∀ρ 6= ρ′, where the

indices ρ, and ρ′ run over all symmetries.

B In some way similar to the renormalization conditions mentioned above, the QAP gives
a general set of conditions which impose restrictions to candidates for possible (counter-)
terms which may freely be added to the action without altering the symmetry content.
Before writing these in a generally applicable form we have to introduce some additional
notation. Composite field operators Qβ , which may be arbitrary local field polynomials,
are coupled to classical external sources ρβ , such that δS0[φ,Qβ ]/δρβ = Qβ . Counterterms
are generally denoted by ∆ and may carry generic indices to indicate their type. jα are
classical sources being coupled to classical fields φα, and λ denotes a generic parameter of
the theory. Finally, the QAP takes the form

δS[φα, Qβ ]
δρβ

= ∆αS[φα, Qβ ] , (4.7)

δS[φα, Qβ ]
δλ

= ∆λS[φα, Qβ ] , (4.8)

δS[φα, Qβ ]
δφγ

= ∆γS[φα, Qβ ] , (4.9a)

φγ
δS[φα, Qβ ]

δφδ
= ∆γδS[φα, Qβ ] , (4.9b)

δS[φα, Qβ ]
δρδ

δS[φα, Qβ ]
δφε

= ∆δεS[φδ, Qε] . (4.9c)

10Note that any additional decoration, is suppressed here, and indices are introduced solely for the purpose of
distinguishing fields.

11In fact, completeness of the symmetries is only given if all possible commutators and anticommutators iden-
tically vanish or yield an element of the algebra, i.e. the set closes. If this is not the case, we have most likely
missed a symmetry.
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The first two equations state that new composite field operators and parameters may only
be inserted into the action in the linear forms Qαρα and λ∆λ, respectively. Linearity, in
this respect, is an important property since non-linear terms may give rise to anomalies in
symmetries as will be described below. The three equations (4.9a)–(4.9c) can be considered
as a generalized form of the equations of motion which shall be retained all the way down
to the quantum level.

B A rather tedious task is then to find all possible local field polynomials ∆ being compatible
with Aext., Eqns. (4.7)–(4.9c), the Wess-Zumino consistency condition s∆ = 0 (where s is
the nilpotent BRST operator) of dimension D = 4, with odd C and even P symmetry12.
After this major step has been achieved, one has obtained the complete set of counterterms
which may freely be added to the action, and the actual proof of renormalizability can be
started.

B Now linearity enters the game, since such proof will only succeed if all breakings and
insertions feature this property. Indeed there is a way to check this in advance. Following
Becchi et al. [133] we collect all symmetries contained in Aext. to a single nilpotent13

operator δ with raises the ghost charge g] by one, and enables us to decide if the theory
contains anomalies or not. Justification is given by computing the cohomology H(δ) :=
Ker δ/Im δ in the sector SG with g] = 1, i.e. the set of all non-invariant counterterms
∆ = δ∆̄. If H(δ(SG)) = 0 the absence of anomalies is proven, and the resulting theory
may be considered physical.
In addition, renormalizability can be guaranteed if the cohomology of the sector with
g] = 0, i.e. the δ-invariant counterterms, is trivial too (which requires ∆ = F + δ∆̄, with
F being some integrated local functional with δF = 0). Since it is not possible to give an
appropriate coverage of the subject within the framework of this thesis please refer to the
literature on the topic. See [133–135] for historic contributions on the application of the
QAP, and classification of anomalies in YM and, more general, Lie Groups, [136, 137] for
the application in commutative theory, and [138] for a more technical approach applying
spectral sequences.
The most important fact to capture here is that trivial cohomology is intimately related to
nilpotency of δ and exactness of the counterterms. For local integrated x−dependent field
polynomials F (differential n−forms with strictly positive degree n > 0) and a nilpotent
operator δ the relation (which, in essence is the Algebraic Poincaré Lemma)

δF = 0 ⇐⇒ F = δF̄ , (4.10)

holds [137]. The left hand side of this equation is called cocycle condition (which rep-
resents a constraint for possible counterterms ∆ which have to fulfill δ∆ ≡ 0, compare
the Wess Zumino consistency condition above), and the right hand side is referred to as
the coboundary condition. For x-independent functionals (with g](F) = 0 the right hand
side allows for not-trivial solutions F = δF̄ + ∆ where ∆ represents a general constant
polynomial of positive form degree, corresponding to the case of δ-invariant counterterms
above. More rigorous definitions and details on these relations can be found in Ref. [137].

B An explicit proof of renormalizability is achieved by induction, assuming that all sym-
metries are indeed fulfilled up to some order n in the perturbative expansion (1.11) in
~. Denoting a generical symmetry operator (which stands for any, not only the Slavnov

12The abbreviations refer to charge and parity transformations, respectively.
13The nilpotency property δ2 = 0 is of vital importance to achieve trivial cohomology.
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Taylor operator) by S, and a classical linear breaking by ∆, we write therefore

SS(n) = ~n∆ + O
(
~n+1

)
,

= ~n∆ + ~n+1∆′
n+1O

(
~n+2

)
, (4.11)

and it remains to show that any term, which may be inserted for ∆n+1 and is compatible
with the relations in Aext., obeys

S∆′
n+1 = ~n+1∆ + O

(
~n+2

)
. (4.12)

Finally, the action at the next order is readily given by S(n+1) = S(n) −
∫

d4x∆′
n+1(x).

In the case of Eqn. (4.12) the symmetry S is linearly broken. In theories with BRST
symmetry with an operator δ, as defined above, one principally has to solve the cohomologic
problem δ∆′ ≡ 0 for ∆′. Regarding the solution we should consider the following

Definition 5. If the cocycle condition δ∆′ = 0 with a candidate counterterm (local
integrated field polynomial) ∆′ of ghost number one, and a nilpotent operator δ2 = 0,
allows for solutions other than the trivial one, ∆′ = δ∆̂′, we speak of an anomaly.

See also Ref. [80] for an extensive review of this topic.

The method of AR has successfully been applied to many theories with gauge symmetry in the
commutative case. However, the restrictions to counterterms from the QAP do not specify any
coefficients. In fact, these have to be obtained by explicit loop calculations which is the reason
why, in the light of the renormalon problem, this does not represent a satisfactory solution.

Being interested mainly in gauge extensions to renormalizable non-commutative QFT models
we also have to analyze the AR scheme for its adequacy in this respect. Immediately we are
confronted with the presumption of locality which seems to be critical. However, we may
postpone any answer to this problem to Section 4.3 below.

Multiscale Analysis

The basic principles of this renormalization method have already been discussed in Section 2.1.4.
However, we may catch up the topic and analyze the scheme with respect to renormalons,
and a possible application to gauge theories. In fact, MSA seems to avoid the problems of
‘classical’ recursive renormalization schemes. The reason for this is that the classification of
divergences is not made with respect to entire subgraphs, ordered in the form of trees (compare
the Zimmermann formalism in Appendix D.1), but with respect to scales (as being discussed
in Section 2.1.4). The principal idea is quite intuitive, to assign a specific energy scale to sub
processes in Feynman graphs in an ordered way, i.e. the higher the (loop) order at which a specific
subgraph appears, the higher its scales. Practically, each propagator effectively acquires a scale
index which then appears in the summation over slices (c.f. Eqn. (2.35) on page 27). These
scale attributions are in a further step used to define so called rooted trees which give a similar
partition of the divergences of a given graph, as the trees in the Zimmermann approach. In the
following we shall try to capture the interpretational content of the scheme. For mathematical
rigor please refer to the textbook [99].
As we have seen in Theorem 1 the propagators are exponentially damped by the scale i. From
this we are led to the insight that at a scale j < i any contribution of i may be neglected. This
motivates a redefinition of locality. We state the following
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Definition 6. Denoting for a subgraph γ ⊆ G of a proper Feynman (sub)graph G, the scale
indices of its inner propagators ` ⊂ γ by i(`), and those of its external propagators (i.e. those
which connect γ to the rest of G) by e(`), we define the locality condition,

i`(γ) = inf
λ⊂γ

i(`) e`(γ) = sup
λ⊂G,λ*γ

e(`) , (4.13)

i`(γ) > e`(γ) . (4.14)

We call a subgraph γ obeying Eqn. (4.14) almost local.

In a more picturesque language we can say, a process (represented by propagators forming a
subgraph) at scale i, i + 1, .. appears at scale j < i as a thick dot as indicated in Fig. 4.1.
Similar to the view through the ocular of a microscope, at different resolutions (scales) we see
different processes. In the literature the notion ‘almost local’ is often used synonymously with
‘quasi local’.

−→ −→

Figure 4.1: Almost locality — on lower scales (energies) the contributions of higher scales appear
as a thick dot. Subgraphs are reduced to quasi local vertices.

As mentioned above, the scale attribution of the propagators in G is the basis for the definition
of all possible quasi local subgraphs γ. Each subgraph then forms a so called ’rooted tree’,
where each vertex represents a divergent quasi local subgraph. The concept is quite simple,
and we will pick up the example with overlapping divergences from Appendix D.1. In Fig. 4.2

G = −→

Figure 4.2: A divergent graph with labeled propagators, and the according rooted tree containing
subdivergences for the scale assignation {a, b, c, f, g, h} → 3, d → 2, e → 1, and external lines
have per definition the scale −1.

a (rather arbitrary) assignment of scales to the propagators of G leads to the simple rooted
tree on depicted the right, which contains solely quasi local subgraphs. In comparison to the
Zimmermann result on page 124 we have 4 instead of 16 subtractions. In fact, only quasi local
subgraphs give rise to divergences [99] but there are also finite ones with i`(γ) ≤ e`(γ). In
the Zimmermann approach, no such distinction is made, and this is the actual origin of the
renormalon problem. In the literature, non-divergent subtractions are referred to as ‘useless’ in
the sense that, when traversing from the bare perturbation series to the renormalized one, not
only divergences but also finite contributions are subtracted. The latter ones give rise to an n!
behaviour at perturbative loop order n in the renormalization group flow (see Section 4.2 below),
i.e. all renormalized masses, wave functions and couplings are finite but scale factorially. This is
the infamous renormalon problem. Indeed, MSA provides a viable solution, as the subtraction
of finite counterterms is avoided by virtue of the locality condition (4.14).
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In the point of view of non-commutative field theories the MSA is perfectly suitable, as is obvious
from the paradigmatic examples in Refs. [36, 36, 40]. Moreover, the concept of quasi locality is
enhanced on Moyal deformed space by the notion of Moyality [5]. It can be understood that in
the same way as higher scale subgraphs appear local on lower scales, the manifest non-locality
of the star product may be considered as a smearing of the vertex (represented by the ‘fat dot’
notation, as in Fig. 4.1 above). From lower energy scales the non-commutative vertices may
therefore appear local, and the question arises if one can, approximatively, entirely neglect non-
locality when considering the limit p→ 0. The latter assumption would, in principle, restore the
validity of the BPHZ subtraction scheme, and supposedly some proofs of AR. However, it will
not remedy the problem of UV/IR mixing. Again, an ultimate answer is still missing but, coming
back to the MSA, the most important point to capture here is that the scheme is applicable to
non-commutative theories, but in view of the discussions above and in Section 2.1.3, it is obvious
that a generalization to gauge theories will require a substantial amount of work to retain all
the proofs and bounds under consideration of the more complex set of fields and ghosts.

4.2 On the Renormalization Group

Besides the renormalization schemes discussed in Section 4.1.2 the renormalization group (RG)
approach follows a rather different strategy. It does not attempt to renormalize a given action
by explicit subtractions but provides a tool for the analysis of the dependence of renormalized
parameters under a change of scale. Knowledge of this so called ‘flow’ allows to investigate
the limit for large scales (respectively energy), which in turn yields information about physical
couplings at high momenta.
Let us specify this in a little more detail. We consider scale transformations p → tp of renor-
malized n-point vertex functions Γ(n)

r [p, λi] with a parameter t. In principle all renormalized
parameters, denoted here generically by λr,i depend upon t. Hence, for an unrenormalized
n-point vertex function, Γ(n), we can state

0 =t
∂

∂t
Γ(n)[p, λi]

=t
d
dt

(
Z−n

2 Γ(n)
r [tp, λr,i]

)
, (4.15)

where Z is a generic wave function renormalization (φr = Z−1/2φ). We have to note that t may
be replaced by any cutoff or mass which influences the energy scale of the theory. Specifically,
this applies to masses in general, momentum cutoffs Λ for minimal subtraction, and the mass
scaling parameter µ usually introduced in dimesional regularization to compensate the non-
integer dimension of the integrals. Therefore, we may rewrite the second line of Eqn. (4.15) with
an explicit mass m, and a coupling λ (where after exchanging the differentiation ∂/∂t→ ∂/∂Λ
we multiply from the right by Zn/2),

0 =
[
nΛ

∂

∂Λ
ln

√
Z + Λ

∂λr

∂Λ
∂

∂λr
+ Λ

∂mr

∂Λ
∂

∂mr

]
Γ(n)

r [p, λr,mr] ,

=
[
−nγ + β

∂

∂λr
+ γm

∂

∂mr

]
Γ(n)

r [p, λr,mr] , (4.16)

and the new functions β, γ, and γm are defined by identification between the first and the
second line. Eqn. (4.16) is generally referred to as the renormalization group (RG) equation.
For the sake of completeness it has to be mentioned that the there exists an extension to the
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homogeneous equation (4.16) which is named after Callan and Symanzik . It is, in the current
notation and for massless theories14, given by

[
−nγ + β

∂

∂λr
+ γm

∂

∂mr
+ lγ2

]
Γ(n,l)

r [p, λr,mr] = m2
r (2 − 2γ) Γ(n,l+1)

r [p, λr,mr] . (4.17)

The interesting fact is, that Eqn. (4.17) allows for a recursion over loop orders l, hence allowing
for inductive proofs of renormalizability (for an extensive review see [77]). This reveals a principal
feature of the renormalization group, which is that the effects of renormalization can be analyzed
in a non-perturbative framework. In this respect it proved to be useful to analyze the β function
of Eqn. (4.16) which yields information about the behaviour of the coupling λr. Let us define
more generally,

β(λ(t)) := t
∂λr(t)
∂t

. (4.18)

In fact, if β|t=0 = 0, and is monotonically rising for t � 1 this indicates an asymptotically free
coupling. If β → 0 for t � 1 the respective coupling is unphysical, and vanishes. For more
details refer to Ref. [75].

As mentioned above, the RG approach opens the door to a non-perturbative analysis and proof
of renormalizability. An explicit method has been found by J. Polchinski [139], which shall be
mentioned at this place only by its key points, as the particular form of the proof is rather
lengthy. First, one recognizes, that in the flow of parameters, generated by Eqn. (4.17) the
action can be split into relevant and negligible parts. The proof is constructed such, that the
latter are shown to vanish in the high momentum limit, while the former converge to a finite
limit. Mathematically, this is achieved by imposing appropriate cutoff functions which render
all integrals finite. In a further step, one replaces the integrals by simple bounds (similar to the
scheme in MSA), which allows finally to show that all vertex functionals have finite limits upon
removal of the cutoff.
It should be mentioned that the original proof is given for a scalar φ4

4 theory with simple
momentum cutoffs. Remarks regarding gauge theories are also given and indicate, that the
explicit cutoff scheme is incompatible with symmetries but that they should reappear upon
going to the unconstrained limits at the end of the proof.

With respect to non-commutative theories, the Polchinski approach is definitively applicable, as
locality is not presumed in any step. Moreover, it has been applied for the proof of renormaliz-
ability in the scalar GW approach [32]. The case of (commutative) spontaneously broken SU(2)
Yang-Mills theory has been discussed by C. Kopper and V. F. Müller [129]. Their starting point
was the classical BRST invariant action including all (i.e. a finite set of) counter terms satisfy-
ing certain symmetry constraints. Since the regularization (which is required in the Polchinski
approach) breaks the local gauge symmetry explicitly, the counter terms are only required to
be invariant under a global SO(3) isosymmetry. Nonetheless, the authors have shown that this
ansatz solves the flow equations to all orders by induction. In the case of non-commutative
gauge theories the set of all possible counter terms is infinite, but one could choose a restricted,
finite set of counter terms instead. Renormalizability would be established, if it could be shown
that this finite set solves the flow equations (which automatically induces that the set is also
closed).

14Note that mr may exist even though m0 = 0, due to counterterms of the type mrφ
2.
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4.3 Non-Commutativity and Locality

As has already indicated before, the introduction of the θ-deformation (see Section 1.3.3) in-
evitably leads to non-locality since the associated ?-product itself is non-local15. This property is
not completely compatible with some of the classical renormalization schemes since the premise
of locality is required to avoid the insertion of artificial (non-local) operators of zero or nega-
tive mass dimension, which in turn spoil renormalizability. Of course, this is exactly the same
problem we are facing now in non-commutative QFT, and the question arises if renormalizabil-
ity exists in the presence of non-locality. An affirmative answer can definitely be given for the
renormalizable scalar models of Section 1.4, and the 1/p2 model of Section 2.1, but there are
subtleties which require some additional argumentation.

There are two fundamental issues which will be discussed subsequently:

B The non-locality of the star product (1.22) invalidates several proofs underlying classical
renormalization schemes.

B Due to the negative mass dimension of the parameter θ (see Section 1.3.3) arbitrary powers
of dimensionless operators and composite fields may freely be inserted into the action.

Regarding the first point, we may consider that in commutative theory one generally follows
the rule that only local terms are allowed in the action. This, at first sight rather arbitrary,
restriction is motivated by the fact, that non-local insertions do allow for constructs, such as
θnφ2n, with n ∈ N and a generic field φ, which give rise to a possibly infinite number of additional
terms, and thereby to a non-renormalizable theory16.

For this reason, almost all proofs buried in classical renormalization schemes presume locality.
As an example, let us review the situation for the ARprocedure. The general form of the QAP,
Eqns. (4.7)–(4.9c), is only defined [78] for local actions. The reason is that highly non-linear
insertions (as for instance the example θnφ2n mentioned above), despite obeying all demanded
symmetries, may result in nontrivial solutions for the cocycle condition δ∆ = 0 (see Eqn. (4.10)
above), and therefore induce anomalies. Regarding the classification with respect to cohomology
one of the key theorems is the Algebraic Poincare Lemma@Algebraic Poincaré Lemma!and
localityAlgebraic Poincaré Lemma (4.10), which again vitally depends on locality [137].

Despite these obstacles, some efforts for a generalization to non-commutative spaces have been
made. For example, the notion of BRST cohomology and the Chern character have been in-
troduced in [142] using Connes’ notation of spectral triples [24, 143]. Another contribution
has been the generalization of the descent equations, which describe Yang-Mills anomalies, to
deformed spaces [144]. It has also been shown [45] that the symmetry content compatible with
the QAP can be established for U?(N) theories, and is invariant under an explicit one-loop UV
renormalization.

Now, what in addition had to be done to restore rigor of the AR procedure on non-commutative
spaces [64]? We may attempt to give an answer to this ‘deep’ question by stating that, first of all,
the computation of the cohomology class has to be worked out rigorously for the ghost number 0
functionals F , representing the most general quantum level action, to fulfill sF = 0. In addition,

15We should mention, though, that attempts have been made to localize the star product by introducing a
bifermionic non-commutativity parameter [140, 141].

16Strictly spoken such a theory is not power counting non-renormalizable since no vertex of mass dimension
dm(v) > D appears, but an infinite number of terms cannot be considered to be physical. In any way, a practical
treatment of such a theory seems impossible.
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a proof for the triviality of the cohomology being sufficient to guarantee renormalizability in the
presence of non-locality had to be achieved. However, this discussion shall only be considered
as a provocation for thought, since it is constructed on rather thin ice.

The second point is more involved and of a quite general nature, as it applies to all non-
commutative theories: It concerns the appearance of dimensionless operator insertions in the
action. A parameter of non-commutativity θ with mass dimension −2 allows to freely add
composite field operators17 of zero mass dimension, such as D2D̃2 or F̃ 2, to the action, where
D̃µ = Dνθµν is a contracted covariant derivative and F̃ = Fµνθµν is a field strength. Being
invariant under all symmetries appearing in the QAP (and gauge transformations in general),
there is no constraint or theorem preventing insertions of arbitrary powers of these operators
both at tree level or as quantum corrections18. This is the reason why the sufficiency of a
trivial cohomology class for renormalizability has been questioned above. It should furthermore
be pointed out that, due to this problem, standard ‘top down’ renormalization schemes, as for
example AR, supposedly do not work, as they start from the set of all possible counter terms,
and restrict these by applying constraints. Since this set is a priori infinite in the presence of
invariant dimensionless insertions, the attempt to achieve a finite number of counter terms will
fail, independent of the cohomology.

4.4 Light on the Horizon

After all, the question is how renormalizability can be proven rigorously in the presence of
deformation. Principally, three scenarios may be suggested.

1. A feasible path seems to re-establish the foundations for AR in the non-local case. As has
already be mentioned in Section 4.3, the classification of anomalies by computation of the
cohomology class H(1) of the BRST operator for general functionals (i.e. counterterms)
with ghost number 1 has already been achieved [142] but the proof for ghost number 0,
(i.e. the action) is missing. In addition it has to be assured in a rigorous way that trivial
cohomology alone is sufficient to prove the absence of anomalies, i.e. renormalizability.
And if this turns out not to be true, one has to find out which additional requirements are
necessary.
After all of these proofs have been achieved, one still has has to find constraints to limit
the appearance of insertions of massless operators into the action. In this context also the
issue of field redefinitions might be important and maybe some classes of insertions can
be rewritten as such redefinitions (cf. [53] in the context of non-commutative U?(1) gauge
theory with Seiberg-Witten maps).

2. The second scenario is to apply the Polchinski approach for gauge theories. Being not
limited to locality, it should be sufficient to pragmatically state that the set of terms
implemented in the tree level action is complete, if stability is guaranteed. The principal
eventuality of insertions of dimensionless operators to arbitrary powers is simply neglected,
thus.
However, explicitely breaking the gauge symmetry, one will have to proof that it is possible
on the quantum level to restore any demanded symmetry. This latter task seems to be
potentially nontrivial and extensive.

17Note that this also occurs in scalar field theories. For example, the non-local term �−1φ2 could be inserted
into the tree level action to arbitrary power.

18work in progress
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3. Finally, the prosperous approach of MSA suffers from similar problems as the Polchinski
method. Although gauge breaking may be restored at the end of the proof, one is still
confronted with the so called ‘Gribov problem’ [116, 145, 146] stating a non-trivial am-
biguity or ‘remanent gauge freeness’ . This can principally be treated by implementing
a soft breaking mechanism, as has been done in Section 3.2. However, there is not much
information available on this topic so a thorough study is essential before any decisive
conclusions can be drawn.

In fact, the question for the renormalizability of non-commutative gauge theories, leads to a
white spot on the map of explored theoretical aspects. Due to the rather constrained time for
work on this thesis no definite answers can be given. Hopefully, one of the above ideas to start
from will lead to success in future.

For now, we shall try to apply the knowledge gained in this chapter, and the analytic dis-
cussion of Section 3.3, to construct a potentially renormalizable gauge theory based on the
non-commutative 1/p2 model; a topic which is addressed below in Chapter 5.
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Chapter 5

The BRSW Model

Bearing in mind the insights of Section 3.3 and Chapter 4 we may now attempt to construct a
model which avoids all of the described problems. The target is to achieve the following points

B The tree level action shall provide a counter term for the quadratic divergence p̃µp̃ν

(p̃2)2
.

B All propagators of fields shall be infrared finite and feature damping factors similar to the
scalar 1/p2 model.

B If possible, any auxiliary fields and ghosts should be uncoupled from the gauge sector.

B The model shall be as simple as possible.

In the following sections a surprisingly simple solution to this ambitious list of requirements, the
BRSW model1, is presented.

5.1 Construction of the Action

The intention is to start from the localized action (3.23) of the model in Section 3.2, and modify
it in order to achieve renormalizability and avoid the problems discussed in Section 3.3. In a
first step, the interplay between terms of the action, and the form and type of propagators is
analyzed. For details on this step see Appendix E.1. There are three main ideas leading to
success.
First, in order to avoid (or at least restrict) the appearance of dimensionless derivative operators
(as is discussed in Section 4.3) it is desirable to remove any explicit appearance of parameters
with negative mass dimension from the action. However, this is impossible, since the effect
of UV/IR mixing inevitably leads to divergences being contracted with θµν (as discussed in
Section 3.3.1), which enter the action in the form of counter terms. A viable solution to this
problem is to split the parameter of non-commutativity into a dimensionless tensor structure
Θµν = −Θνµ, and a dimensionful scalar parameter ε, i.e.

θµν → εΘµν , with dm(Θµν) = 0 , and dm(ε) = −2 . (5.1)

In consequence, the appearance of ε in the tree level action is reduced by modifying our def-
inition of contractions, �̃ := ΘµρΘνσ∂ρ∂σ, p̃µ := pνΘµν , for any vector pµ, and Õµ1m2...µn :=

1The name is an abbreviation for the list of contributors to the initial publication [66], Blaschke, Rofner,
Schweda, Sedmik, Wohlgenannt.
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Oν µ2...µnΘµ1ν for a tensor with n indices. Hence, the only occurrence of the dimensionful ε is in
the phase associated with the star product, which does not influence the bi-linear part accord-
ing to the property (1.26b) (i.e. that the star may be omitted in bi-linear expressions under an
integral). In this respect we note that operators such as �̃ or D̃ now come with their usually
expected mass dimensions dm(�̃) = 2 and dm(D̃) = 1, respectively. Starting from the localized
part of the action from Section 3.2.2, Eqn. (3.23), the remaining two steps can be written as

∫
d4x

a

2
(
Bµν + B̄µν

)
Fµν − B̄µνε

2D̃2D2Bµν (5.2a)

↓ step 1∫
d4x

γ3

2
(
Bµν + B̄µν

) 1

�̃
Fµν + B̄µν(σ −D2)Bµν (5.2b)

↓ step 2∫
d4x

γ2

2
(
Bµν + B̄µν

) 1

�̃

(
fµν + σ

Θµν
2
f̃

)
− B̄µνBµν (5.2c)

with several new definitions being explained subsequently. To understand the first step we
note that the divergences in the G{AB,AB̄}, G{B̄B,BB}, and Gψ̄ψ propagators are mainly caused
by the appearance of the operator D2D̃2 sandwiched between B̄µν and Bµν . On the other
hand this term is crucial to the construction of the correct damping factor for the gauge boson
propagator GAA. The analysis in Appendix E.1 leads to the insight that it is possible to move
the problematic operator into the soft breaking term, thereby maintaining the desired damping
while eliminating the divergences. Note also that, due to the redefinition of θµν in Eqn. (5.1)
the dimensionful ε does not appear explicitly after the first step in Eqn. (5.2b). In the resulting
action, the correct mass dimensions are restored by the new parameters γ and σ featuring
dm(γ) = 1 and dm(σ) = 2, respectively.
In step 2, we note that the regularizing effects are solely implemented in the bi-linear part of the
action, therefore opening the option to reduce the field strength tensor Fµν in the soft breaking
term to its bi-linear part fµν := ∂µAν − ∂νAµ. Noting furthermore, that the D2 operator in
the B̄/B sector is not required any more for the implementation of the damping mechanism
we may entirely omit this derivative. Due to this reduction, any interaction (represented by
n-point functions with n ≥ 3) of Aµ with auxiliary fields and ghosts is eliminated. However, in
order to restore the correct mass dimension for the altered terms we have to change dm of the
fields Bµν and B̄µν from 1 to 2. Finally, in order to implement a suitable term to absorb the
θ-contracted one loop divergence (being discussed in Section 2.2) we further modify the breaking
by the insertion of the term γ2

4 σ
(
Bµν + B̄µν

)
1
e�Θµν f̃ , resulting in (5.2c).

Finally, the complete action takes the form,

S = Sinv + Sgf + Saux + Sbreak + Sext ,

Sinv =
∫

d4x 1
4FµνFµν ,

Sgf =
∫

d4x s (c̄ ∂µAµ) =
∫

d4x (b ∂µAµ − c̄ ∂µDµc) ,

Saux = −
∫

d4x s
(
ψ̄µνBµν

)
=
∫

d4x
(
−B̄µνBµν + ψ̄µνψµν

)
,
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Sbreak =
∫

d4x s

[(
Q̄µναβBµν +QµναβB̄µν

) 1

�̃

(
fαβ + σ

Θαβ
2
f̃

)]
=

=
∫

d4x

[(
J̄µναβBµν + JµναβB̄µν

) 1

�̃

(
fαβ + σ

Θαβ
2
f̃

)
− Q̄µναβψµν

1

�̃

(
fαβ + σ

Θαβ
2
f̃

)
−
(
Q̄µναβBµν +QµναβB̄µν

) 1

�̃
s

(
fαβ + σ

Θαβ
2
f̃

)]
,

Sext =
∫

d4x
(
ΩA
µ sAµ + Ωcsc

)
, (5.3)

where all products are implicitly assumed to be deformed Groenewold-Moyal products, and we
have introduced the external sources ΩA

µ and Ωc. Due to the uncoupling of the gauge sector the
form of the BRST transformations is simpler than the respective counterparts in Eqn. (3.26) for
the model in Section 3.22.

sAµ = Dµc , s c = igcc ,
s c̄ = b , s b = 0 ,
s ψ̄µν = B̄µν , s B̄µν = 0 ,
sBµν = ψµν , s ψµν = 0 ,
s Q̄µναβ = J̄µναβ , s J̄µναβ = 0 ,
sQµναβ = Jµναβ , s Jµναβ = 0 , (5.4)

As before, the additional pairs of sources {Q̄µναβ , Qµναβ} and {J̄µναβ , Jµναβ}, obeying the rela-
tions {Q̄,Q, J̄ , J}µναβ = −{Q̄,Q, J̄ , J}νµαβ = −{Q̄,Q, J̄ , J}µνβα, have been introduced in order
to restore BRST invariance of the entire action (5.3) in the UV limit, i.e. sS = 0. In the IR
limit the physical values

Q̄µναβ
∣∣
phys

= 0 , J̄µναβ
∣∣
phys

=
γ2

4
(δµαδνβ − δµβδνα) ,

Qµναβ
∣∣
phys

= 0 , Jµναβ
∣∣
phys

=
γ2

4
(δµαδνβ − δµβδνα) , (5.5)

lead back to a breaking term of the form of the first part of Eqn. (5.2c). Dimensions and ghost
numbers of all fields and sources of the model are collected in Tab. 5.1. In accordance with the
discussion in Appendix E.1.2 we obtain the following relevant propagators for the model

GAAµν (k) =
1

k2
(
1 + γ4

(k̃2)2

)
δµν − kµkν

k2
−

(
σ + Θ2

4 σ
2
)
γ4[(

σ + Θ2

4 σ
2
)
γ4 + k2

(
k̃2 + γ4

k̃2

)] k̃µk̃ν
k̃2

 , (5.6)

Gc̄c(k) =
−1
k2

, (5.7)

where the Landau gauge α→ 0 has led to the omission of the term −αkµkν

k4 .

2Since the (anti-)commutator relations can be omitted, thus.

Table 5.1: Properties of fields and sources in the BRSW model.

Field Aµ c c̄ Bµν B̄µν ψµν ψ̄µν Jαβµν J̄αβµν Qαβµν Q̄αβµν ΩA
µ Ωc b

g] 0 1 -1 0 0 1 -1 0 0 -1 -1 -1 -2 0
Mass dim. 1 0 2 2 2 2 2 2 2 2 2 3 4 2
Statistics b f f b b f f b b f f f b b
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Although there also exist two point functions G{AB,AB̄}, G{BB,B̄B} and Gψ̄ψ (listed in Ap-
pendix E.2.1) they will not contribute to any quantum correction since none of the vertex
expressions (V 3A

ρστ , V
4A
ρστε, and V c̄Ac

µ being listed in Appendix E.2.2) connects either of these to
the gauge field. At this point we note a remarkable similarity of the Feynman rules of the BRSW
model, and the respective expressions of the näıve implementation of NCQED in Ref. [52]. The
quadratic divergence for k → 0 in the ghost propagator (5.7) is typical for the Landau gauge
α → 0. Alternatively, as has been done in Section 3.1 and Ref. [62] we could add a damping
factor to the gauge fixing term b(∂A) and the ghost sector c̄∂µDµc. However, these damping
insertions would inevitably appear in vertex expressions with an inverse power relative to the
respective propagators and, thus, cancel each other. Moreover, these factors contribute to UV
divergences at higher loop orders, and are omitted, hence.

The gauge boson two point function (5.6) fulfills all requirements which have been stated at the
beginning of this chapter. It is finite in both, the IR limit k2 → 0, and the UV limit k2 → ∞.
A simple analysis reveals that

GAAµν (k) ≈


k̃2

γ4

[
δµν − kµkν

k2 − σ̄4

(σ̄4+γ4)
k̃µk̃ν

k̃2

]
, for k̃2 → 0

1
k2

(
δµν − kµkν

k2

)
, for k2 → ∞

, (5.8)

where the abbreviation

σ̄4 ≡ 2
(
σ +

Θ2

4
σ2

)
γ4 , (5.9)

has been introduced for convenience3. Now, the form of GAA should be stable under quantum
corrections since it provides a suitable term ∝ k̃µk̃ν

k̃2
to absorb expected divergences. This

assumption will receive its confirmation later in Section 5.4 by explicit computation.

5.1.1 UV Power Counting

From the Feynman rules, it is straight forward to derive an expression for the UV power counting
of the BRSW model. With the notation of Section 3.1.2 we obtain

L = IA + Icc̄ − (Vc̄Ac + V3A + V4A − 1) ,
Ecc̄ + 2Icc̄ = 2Vc̄Ac ,
EA + 2IA = 3V3A + 4V4A + Vc̄Ac , (5.10)

and counting the UV powers of respective Feynman rules we have

dγ = 4L− 2IA − 2Icc̄ + V3A + V4A + Vc̄Ac . (5.11)

This system of equations can be resolved by eliminating the Iφ and Vφ to yield

dγ = 4 − EA − Ecc̄ , (5.12)

which, again, shows remarkable agreement with the respective relations for the näıve implemen-
tation of non-commutative U?(1). Indeed, none of the auxiliary fields or respective parameters
influences the power counting4.

3Note that this requires the property k̃2 = Θ2k2 which follows from the special block-diagonal form of Θ, as
has been introduced in Section 1.15. Moreover, since Θ2 = ΘµρΘρν = δµν , we have indeed k̃2 ≡ k2.

4In comparison, the results of respective relations (3.11a) and (3.42b) for previous models are effectively reduced
by the number of external legs of auxiliary fields and/or the parameter of the breaking (respectively damping)
term.
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5.1.2 Symmetries

Although, after the discussion of Section 4.3 it is questionable if the AR procedure is applicable
on deformed spaces at all, we may state the set of symmetries, obeyed by the BRSW model.
The Slavnov-Taylor identity describing the BRST symmetry content of the model is given by

B(S) =
∫

d4x

(
δS

δΩA
µ

δS

δAµ
+

δS

δΩc

δS

δc
+ b

δS

δc̄

)
= 0 , (5.13)

from which one derives the linearized Slavnov-Taylor operator

BS =
∫

d4x

(
δS

δΩA
µ

δ

δAµ
+

δS

δAµ

δ

δΩA
µ

+
δS

δΩc

δ

δc
+
δS

δc

δ

δΩc
+ b

δ

δc̄

)
. (5.14)

Furthermore we have the gauge fixing condition
δS

δb
= ∂µAµ = 0 , (5.15)

the ghost equation

G(S) = ∂µ
δS

δΩA
µ

+
δS

δc̄
= 0 (5.16)

and the antighost equation

Ḡ(S) =
∫

d4x
δS

δc
= 0 . (5.17)

The identity associated to the BRST doublet structure of the auxiliary fields is given by

U (1)
αβµν(S) =

∫
d4x

(
B̄αβ

δS

δψ̄µν
+ ψµν

δS

δBαβ
+ Jµνρσ

δS

δQαβρσ
+ J̄αβρσ

δS

δQ̄µνρσ

)
= 0 , (5.18)

and we finally also have the symmetries U (0) and Ũ (0):

U (0)
αβµν(S) =

∫
d4x

[
Bαβ

δS

δBµν
− B̄µν

δS

δB̄αβ
+ Jαβρσ

δS

δJµνρσ
− J̄µνρσ

δS

δJ̄αβρσ

]
= 0 , (5.19a)

and

Ũ (0)
αβµν(S) =

∫
d4x

[
ψαβ

δS

δψµν
− ψ̄µν

δS

δψ̄αβ
+Qαβρσ

δS

δQµνρσ
− Q̄µνρσ

δS

δQ̄αβρσ

]
= 0 . (5.19b)

The symmetry operators U (0) and Ũ (0) may be combined to the operator Q [119] (describing
the reality of the action) as

Q ≡ δαµδβν

(
U (0)
αβµν + Ũ (0)

αβµν

)
, (5.20)

which obviously also generates a symmetry of the action (5.3). Note, that in contrast to the
model with BRST doublets of Section 3.2 we do not find a U (2) symmetry here, which is a
consequence of omitting the non-bi-linear part of the field strength tensor in the soft breaking
term of the action.
Having defined the operators BS , Ḡ, Q and U (1) we may derive the following graded commutators:{

Ḡ, Ḡ
}

= 0 , {BS ,BS} = 0 ,
{
Ḡ,BS

}
= 0 ,[

Ḡ,Q
]

= 0 , [Q,Q] = 0 ,
{
Ḡ,U (1)

µναβ

}
= 0 ,{

BS ,U (1)
µναβ

}
= 0 ,

{
U (1)
µναβ ,U

(1)
µ′ν′α′β′

}
= 0 ,

[
U (1)
µναβ ,Q

]
= 0 ,

[BS ,Q] = 0 , (5.21)

which means these symmetry operators form a closed algebra.
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5.2 Vacuum Polarization

The Feynman rules (5.6),(5.7), and (E.25a)–(E.25c) give rise to the three ‘classical’ graphs in
Fig. 5.1 contributing to the vacuum polarization Πµν(p).

c)a)

b)

Figure 5.1: One loop corrections to the gauge boson propagator.

As already described in Section 3.1.3, we are interested here in the behavior for small external
momenta p. This rectifies to expand the integrands according to Eqn. (3.17). In addition, since
both, UV and IR divergences, originate from the high momentum limit of the integrated inner
momentum k, the calculations can be simplified by using the propagator (5.8), limited for high
momenta, i.e. k → ∞.

Computation of the expressions corresponding to the Feynman graphs in Fig. 5.1 with the help
of the Mathematica® package VectorAlgebra (see Appendix G.3; intermediate results are given
in Appendix E.3.1) finally leads to

Πµν(p) =
2g2

π2ε2
p̃µp̃ν

(p̃2)2
+

13g2

3(4π)2
(
p2δµν − pµpν

)
ln
(
Λ2
)

+ finite terms , (5.22)

where Λ denotes an ultraviolet cutoff, and ‘finite terms’ collects contributions being finite in
the (simultaneous) limits Λ → ∞ and p̃2 → 0, respectively. The result meets our expectations
in so far as it is quadratically IR divergent (with a subleading logarithmic UV divergence) and
contains theΘ-contracted transversal tensor structure p̃µp̃ν in combination with the dimensionful
parameter ε.

5.3 Vertex Corrections

Using the techniques described for the vacuum polarization in Appendix E.3.1, and simplifying
the computations according to the discussion in Appendix E.3.2, we are able to calculate the
one loop corrections to V 3A

µνρ(p1, p2, p3) corresponding to the graphs depicted in Fig. 5.2.

Collecting terms after integration, and taking into account the symmetry factors sa = 1, sb = 1
2 ,

and sc = −2, we obtain the following logarithmic UV divergence

Γ3A,UV
µνρ (p1, p2, p3) =

ig3

π2
K0

√
M2

Λ2

[
sin

εp1θp2

2(
(p2,ρ− p1,ρ) δµν + (p1,ν− p3,ν) δµρ + (p3,µ− p2,µ) δνρ

)]
, (5.23)

where due to momentum conservation p3 = −p1−p2. Note that the planar result Γ3A,UV
µνρ (p1, p2, p3)

is contributed solely by graph a) of Fig. 5.2, as being discussed in Appendix E.3.2.
In the same way, the non-planar part can be computed. However, the respective results are
much too large to be printed in their explicit form. Instead, we shall only discuss the types of
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a) b) c)

p1,µ

p3,ρ

p2,ν

Figure 5.2: One loop corrections to the gauge boson vertex V 3A
µνρ(p1, p2, p3). Conventions for

external momenta and indices are defined in a).

divergences, and respective counter terms arising from them. According to the power counting
formula (5.12) we expect a linear IR divergence, leaving several options for possible contractions.
In fact, we obtain similar terms to those given the literature [105–107],

Γ3A,IR
µνρ (p1, p2, p3) =

{
ig3

ε

p̃i,µp̃i,ν p̃i,ρ
(p̃2
i )2

,
p̃αδβγ
εp̃2

}
, with i ∈ {1, 2, 3} , and α 6= β 6= γ ∈ {µ, ν, ρ}

(5.24)

which give rise to the counter terms{
g3AµAν

∂̃µ∂̃ν ∂̃ρ

ε�̃2
Aρ, g

3A2 ∂̃ ·A
ε�̃

}
. (5.25)

It is important to remark that these terms do not give rise to any new interactions but solely
scale the tree level function V 3A, (E.25a).

In addition, the Feynman rules (5.6),(5.7), and (E.25a)–(E.25c) give rise to four graphs con-
tributing to a correction of the vertex V 4A

µνρσ(p1, p2, p3, p4) depicted in Fig. 5.3. The numerous
phase combinations appearing in these functions require tedious preprocessing in order to disen-
tangle internal and external momenta. Together with the high number of permutations the total
number of terms in the computations is extraordinary large. For this reason, we will consider
the results (in particular for the non-planar IR divergences) in an abbreviated form, restricting
ourselves to categories or types of terms without specifying all factors. The planar contribution
of the four point graphs (which is given explicitely in Eqn. (E.34), Appendix E.3.4), may basi-
cally be deduced from the respective result obtained for Γ3A. This becomes clear from the F 2

b) c) d)a)

p1,µ

p4,σp3,ρ

p2,ν

Figure 5.3: One loop corrections to the gauge boson vertex V 4A
µνρρ(p1, p2, p3, p4). Conventions for

external momenta and indices are defined in a).

term of the action, which contains the field polynomials

ig [Aµ, Aν ] ∂µAν , and − g2 [Aµ, Aν ]
2 .
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The first term is the source for the vertex V 3A, while the latter corresponds to V 4A, and gauge
invariance is only guaranteed for the particular combination of factors appearing in the tree level
action S(0), i.e. g and g2 as prefactors of the three and four point vertices, respectively. In the
renormalized action S(1)

ren we have, respectively,

igr
[
Arµ, A

r
ν

]
∂µA

r
ν , and − g2

r

[
Arµ, A

r
ν

]2
,

where we have anticipated that a wave function renormalization exists, which gives rise to a
renormalized gauge field Arµ,

Arµ = Z−1
A Aµ . (5.26)

The vertex correction Γ3A has been computed with unrenormalized fields A, and therefore gives
rise to a counter term of the form

g(Zg − 1) [Aµ, Aν ] ∂µAν .

But in the renormalized action we would write only renormalized quantities, i.e. a term of the
form

gr
[
Arµ, A

r
ν

]
∂µA

r
ν .

Hence, in order to retain equivalence between these two forms, we have to define the coupling
constant with one loop corrections as

gZg[Aµ, Aν ]∂µAν = gZgZ
3
A[Arµ, A

r
ν ]∂µA

r
ν =: gr[Arµ, A

r
ν ]∂µA

r
ν , (5.27)

where Zg denotes the correction to the three-photon vertex. Furthermore, writing the renor-
malized vertices V nA

ren., n ∈ {3, 4} at one loop level as

V 3A
ren. = V 3A,(0) − Γ3A,UV ∼= g

(
1 − g2

π2
lnΛ

)(
V 3A,(0)

g

)
= : gZg

(
V 3A,(0)

g

)

= gZgZ
3
A

(
V 3A

ren.

gr

)
= gr

(
V 3A

ren.

gr

)
,

V 4A
ren. = V 4A,(0) − Γ4A,UV ∼= g2

(
1 − g2f4A lnΛ

)(V 4A,(0)

g2

)
= : g2Z4A

(
V 4A,(0)

g2

)

= g2Z4AZ
4
A

(
V 4A

ren.

g2
r

)
= g2

r

(
V 4A

ren.

g2
r

)
,

where we have written the prefactor of the correction to the tree level quantity V 4A,(0) in general
form f4A, and the respective constant is Z4A. Note, that the sign ‘∼=’ is due to applying the
approximation (F.24) for the Bessel function in Eqn. (5.23). In the light of the above discussion
we have to demand, (

gZgZ
3
A

)2 ≡ g2Z4AZ
4
A ⇒ Z4A = (ZgZA)2 .

And the correction to V 4A,(0), i.e. has to be given by5

Γ4A,UV
µνρ (p1, p2, p3) ∼= f4AV

4A,(0)

=
1
13

(
48
π2

+
1225

13g2 ln Λ − 48π2

)
V 4A,(0) . (5.28)

5For explicit definitions of Zg and ZA see Eqn. (5.45) below.
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Note that this result, in fact, is not exact since the correction to V 3A is known only for one loop
order and, additionally, has been approximated as series in g. However, in leading order, the
correction to to V 3A, as computed for the graphs in Fig. 5.3 should obey (5.28).

Regarding the IR divergent non-planar part, we follow the same strategy as above for the three
boson vertex. Due to the enormous number of terms (≈ 41 × 103) in the respective result for
Γ4A,IR we restrict ourselves to analyzing types of divergences. From the power counting formula
we expect at most logarithmic singularities. In fact, these are

Γ4A,IR
µνρ (p1, p2, p3) = g4 K0

√
µ2ε2p̃2

i δαβδγε ×
[
cos
(
εpiθpj

)
cos
(
εpjθpk

)
cos
(
εpiθpk

)]
, (5.29)

with {αβ, γ, ε} ∈ {µ, ν, ρ, σ}, and {i, j, k} ∈ {1, ..4} .

Comparing to similar results in the literature [45] it is likely6 that these divergences are elim-
inated by cancellations of the prefactors. However, this is (at the time of publication of this
thesis) not known, and it has to be remarked that due to the high number of terms a reliable
statement will require a considerable amount of computing time. Therefore, the reader should
be referred to a forthcoming publication [66].
Similarly, it has to be mentioned that in the computation of the vertex corrections there is,
at the moment, an uncertainty. The reason lies in the approximation (E.31), which has been
applied to the denominators of integrands and led to the results stated in this thesis. One may,
alternatively, consider series expansions

I(k, p1, ..pn) ≈ I(k, p1, ..pn)
∣∣
pi→0 ∀i +

n∑
i=1

[∂piI(k, p1, ..pn)]
pj→0 ∀j

pi

which, in principle, equals the zeroth and first order of Eqn. (E.30). It has to be checked
carefully that the limits pi → 0 ∀i commute (see Appendix E.3.2 for a more thorough discussion).
Otherwise this series would not be well defined, and wrong. Hence, all of the prefactors given in
this section, and in Section 5.5 represent the current status but may eventually change. Again,
for a decisive answer the reader should refer to Ref. [66].

For the sake of completeness, we should also mention that there exist two graphs potentially
contributing linearly divergent terms to the vertex V c̄Ac, as given in Appendix E.3.3. However,
these are completely finite and not considered, thus.

5.4 One-loop Renormalization

For the renormalization of the two point function we choose the same ansatz as in Section 3.2.5
where the series of n-loop corrections has been approximated by the recursive Eqn. (2.27) which
shall be repeated at this point for clarity7

1
A + B

=
1
A
− 1

A
B

1
A + B

=
1
A
− 1

A
B

1
A

+ O(B2) ,

with,

1
A

:= GAA , and B := Π .

6A counterexample is Ref. [107], where Γ4A contains 1/ε corresponding in dimensional regularization in a
logarithmic divergence, as well as a term ln p̃2. It is not entirely clear how to treat these divergences in the
renormalization.

7Note that, since the entities A and B are tensors of rank two, the notation 1/A has to be understood to
represent the expression A−1 fulfilling Aµρ(Aρν)−1 = (A−1)µρAρν = δµν , and similarly for B−1 and (A + B)−1.
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With respect to the model of Section 3.2, where the corrections of the two point functions
for B̄/B and ψ̄/ψ fields have contributed to B, the BRSW model, represents a considerable
simplification since the corrections to GAA are solely determined by the results of the vacuum
polarization in Eqn. (5.22).

In the following, the task is to find the inverse of A =
(
GAA

)−1, add up with B, and invert
the result again to obtain the expression (A + B)−1. Recall the tree-level gauge field propagator
(5.6) which is now rewritten in the form

GAAµν (k) =
1
k2D

(
δµν − (1 − αD)

kµkν
k2

−F k̃µk̃ν
k̃2

)
, (5.30)

where we have introduced the abbreviations

D(k) ≡
(

1 +
γ4

(k̃2)2

)
,

F(k) ≡ 1
k̃2

σ̄4(
k2 + (σ̄4 + γ4) 1

k̃2

) , (5.31)

and have generalized to α 6= 0. The latter is necessitated by the fact that the inverse of the right
side of Eqn. (5.30), being required in the subsequent calculation, does not exist. In this respect
it has to be remarked that the quadratic IR divergence, and the result of the renormalization
have to be independent of the gauge fixing [52, 107, 109]. Therefore, in the end, we will consider
the limit α→ 0 again. For now, we demand

δµν ≡ AµρA
−1
ρν

=
1
k2D

(
δµρ − (1 − αD)

kµkρ
k2

−F k̃µk̃ρ
k̃2

)
k2D

(
δµν + a

kρkν
k2

+ b
k̃ρk̃ν

k̃2

)
, (5.32)

from which we obtain by comparison of the coefficients,

a =
1 − αD
αD

, (5.33)

b =
F

1 −F
, (5.34)

and finally arrive at the tree level two point vertex function

ΓAA,treeµν (k) =
(
G−1
AA

)
µν

(k) = k2D

(
δµν +

(
1
αD

− 1
)
kµkν
k2

+
σ̄4

k2k̃2D
k̃µk̃ν

k̃2

)
. (5.35)

The corrections (representing part B) are given by the results from Section 5.2, and can be
rewritten in the form

ΓAA,corr.
µν (k) = Π1

k̃µk̃ν

(k̃2)2
+Π2

(
k2δµν − kµkν

)
,

with

Π1 =
2g2

π2ε2
, and Π2 =

13g2

3(4π)2
lnΛ2 , (5.36)
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and Λ is an ultraviolet cutoff (see Appendix A.2.1, discussion on page 91). Hence, we can
immediately write down the two point vertex function with one loop corrections8.

ΓAA,renµν (k) = ΓAA,treeµν (k) − ΓAA,corr.
µν (k)

= k2(D −Π2)

(
δµν +

(
1

α(D −Π2)
− 1
)
kµkν
k2

+
σ̄4 −Π1

k2k̃2(D −Π2)
k̃µk̃ν

k̃2

)
, (5.37)

The next task in our agenda is to incorporate the additional terms in modified parameters of
the theory, which shall enable us to rewrite the renormalized inverse propagator in exactly the
same form as the tree level expression (5.35). If this can be achieved, we have shown stability
of the theory with respect to one loop vacuum polarization corrections.
In Eqn. (5.37) the first intuitive step is motivated from the form of the third term, where stability
can only be retained if

σ̄4
r ∝ σ̄4 −Π1

Dr
.

The denominator of this expression appears also as an overall prefactor in (5.37), whereas in
the original form (5.35) we find k2D. Hence, we introduce a wave function renormalization
Aµ → Ar

µ = Z−1
A Aµ. Now, the prefactor is rewritten as

D +Π2 = : DrZ
−2
A ,

and after inserting the explicit expressions we demand that the original form is reobtained by
inserting a renormalized γr,

1 +
γ4

r

k2k̃2
+Π2 = (1 +Π2)

(
1 +

γ4

k2k̃2

)
= 1 +

γ4

k2k̃2
(1 +Π2) +Π2

which yields, by comparing coefficients,

γ4
r =

γ4

1 +Π2
=

γ4

Z−2
A

.

We have thus obtained three renormalized quantities, which are collected in Eqn. (5.38). Note,
that the fact that all of these parameters are independent of the momentum, reflects (and proves)
stability of the action under all corrections considered up to now,

ZA =
1√

1 −Π2
,

γ4
r = γ4Z2

A ,

σ̄4
r =

(
σ̄4 −Π1

)
Z2
A , (5.38)

and the one-loop two-point vertex function is cast into the same form as its tree-level counter
part, i.e.

ΓAA,renµν (k) =
k2Dr

Z2
A

(
δµν +

(
Z2
A

αDr
− 1
)
kµkν
k2

+
σ̄4
r

k2k̃2Dr

k̃µk̃ν

k̃2

)
,

8Regarding the notation, renormalized quantities are indicated by a superscript ‘ren.’ or a subscript ‘r’.
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Dr(k) ≡
(

1 +
γ4
r

(k̃2)2

)
. (5.39)

Finally, we may also write σ̄r in terms of the renormalized σr:

σ̄4
r = 2

(
σr +

Θ2

4
σ2
r

)
γ4Z2

A ,

σr = − 2
Θ2

± 2

√(
1 +

Θ2

2
σ

)2

− g2Θ2

π2γ4ε2
. (5.40)

For the sake of completeness, we also write the renormalized propagator in Landau gauge α→ 0,

GAA,renµν (k) =
Z2
A

k2Dr

(
δµν −

kµkν
k2

−Fr
k̃µk̃ν

k̃2

)
,

Fr ≡
1
k̃2

σ̄4
r(

k2 + (σ̄4
r + γ4

r )
1
k̃2

) . (5.41)

In a renormalizable theory, the form of the action should be invariant under quantum correc-
tions9, and the parameters are fixed by normalization conditions. In the following, we will
provide such conditions for the two-point vertex function ΓAA of the gauge boson.

ΓAAµρ = ΓAA,T (δµρ −
kµkρ
k2

) + (ΓAA,NC)
k̃µk̃ρ

k̃2
+ (ΓAA,L)

kµkρ
k2

.

This function allows for a splitting into transversal, longitudinal, and an as well transversal
non-commutative part. Accordingly, we identify

ΓAA,T = k2D , (ΓAA,L) =
k2

α
, ΓAA,NC =

σ̄4

k̃2
, (5.42)

and finally find the following renormalization conditions:

(k̃2)2

k2
ΓAA,T

∣∣∣
k2=0

= γ4 , (5.43a)

1
2k2

∂(k2ΓAA,T )
∂k2

∣∣∣
k2=0

= 1 , (5.43b)

k̃2ΓAA,NC
∣∣∣
k2=0

= σ̄4 , (5.43c)

ΓAA,L
∣∣∣
k2=0

= 0 , (5.43d)

∂ΓAA,L

∂k2

∣∣∣
k2=0

=
1
α
. (5.43e)

In fact, these are fulfilled by the tree level action (5.3) as well as the one loop renormalized
action including the constants (5.38).

9Stability indeed forces renormalizability, but a specific ‘unstable’ tree level action may receive a finite number
of counter terms types via perturbative corrections, and be, after all, renormalizable nonetheless.
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5.5 β Function

The result for the UV correction to the three gauge boson vertex (5.23) exhibits the same
structure10 as the tree level expression (E.25a), and is amenable for a renormalization of the
coupling constant g, thus. As described above, in Eqn. (5.38) we have employed the following
convention for the renormalized gauge field Arµ:

Arµ = Z−1
A Aµ ,

giving rise to the renormalized coupling

gr = gZgZ
3
A , (5.44)

where Zg denotes the correction factor to the three photon vertex V 3A. In the present case, we
have from Eqns. (5.22), (5.38), Eqn. (5.23), and after approximation of the Bessel function K0

for small arguments according to Eqn. (F.24),

ZA =
(

1 − 13g2

3(4π)2
ln Λ2

)−1/2

, (5.45a)

Zg = 1 − g2

2π2
ln Λ . (5.45b)

Consequently, we obtain

gr = g

(
1 − 5

16π2
g2 lnΛ

)
+ O(g5) . (5.46)

In the light of the discussion on page 80 on the current uncertainty in the correct prefactor of
the correction in Zg (due to the approximation in the calculation of Γ3A,UV ) we shall replace
the factor 5/16π2 by a general factor fβ .

According to Eqn. (4.18) the β-function is given by the logarithmic derivative of the bare coupling
g with respect to the cutoff, for fixed gr (i.e. for ∂gr/∂Λ := 0):

β(g,Λ) = Λ
∂g

∂Λ

∣∣∣
gr fixed

, (5.47)

and β(g) = lim
Λ→∞

β(g,Λ) . (5.48)

In order to compute β(g,Λ) we differentiate Eqn. (5.46) according to Eqn. (5.47)

∂gr
∂Λ

= 0 = Λ
∂g

∂Λ
+ 3fβg2Λ

(
∂g

∂Λ

)
lnΛ + fβg

3 (5.49)

= β(g,Λ) + 3fβg2β(g,Λ) lnΛ + fβg
3 . (5.50)

Since the immediate solution β(g,Λ) = −fβg3/(1 + 3fβg2 lnΛ) diverges for Λ → ∞, we try to
use an approximation for small g. The ansatz

β(g,Λ) = −fβg3 + O(g5) ,

solves Eqn. (5.50) up to O
(
g5
)
. Hence,

β(g) = lim
Λ→∞

β(g,Λ) = −fbg3 = − 5g3

16π2
, (5.51)

10Note that this fact is true, independent of the final coefficients of V 3A
ren. and V 4A

ren., as being discussed at the
end of Section 5.3, on page 81 above.
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where we have reinserted the definition of fb. The value of β is negative (at the one loop level)
which indicates asymptotic freedom, as is expected for YM theory (with U?(1) symmetry) [107].
Note, that the corresponding result for commutative QED (also U(1)) is positive. Hence, this
is a manifestation of the deformation, altering the gauge group to be non-Abelian.

Finally, it has to be remarked that the result (5.51) vitally depends upon the prefactor of the
correction Γ3A,UV of the three boson graphs. As indicated above, there exists an uncertainty
which unfortunately could not be resolved at the time of publication of this thesis. A final
answer will be given in Ref. [66].

5.6 Summary

The non-commutative BRSW model is an advanced gauge implementation of the damping
mechanism of the transversal 1/p2 model by Gurau et al.. In comparison to preceding models
[63, 65, 95], it basically features two main enhancements:

B Any auxiliary fields are uncoupled from the gauge sector and, hence, do not give rise to
any quantum corrections.

B The appearance of dimensionless non-local operators is, at least at tree level, avoided by
separating off a dimensionful parameter ε from the tensorial structure Θµν describing the
non-commutativity of the underlying space.

Due to the first point, the form of the action (5.3) is relatively simple, and the interactions (and
hence the number and type of Feynman graphs to consider in loop calculations) are exactly the
same as in näıve implementations of YM theory. Therefore, it is possible to compare results
of respective calculations at one loop order to those given in the literature. The second point
manifests itself in the dimensionality dm(�̃) = 2, which precludes operators such as (��̃)n.
In addition, the action features a soft breaking term, which allows to include terms being not
gauge invariant without any reduction of the symmetry content of the theory. This permits
the addition of a suitable counter term for the well known quadratic IR divergence showing the
transversal tensor structure p̃µp̃ν .

Explicit one loop calculations for the vacuum polarization in Section 5.2 have given the expected
results. Similar to the scalar 1/p2 model, the damping mechanism does not avoid the appearance
of the typical quadratic IR divergence. However, it can be absorbed in the soft breaking term,
which has been constructed exactly for this purpose. Corrections to the three and four point
vertex functions at one loop level (in Section 5.3) have resulted in divergences being linear
in the IR region, and logarithmic in the UV cutoff. While the latter can be absorbed into a
renormalization of the coupling constant g, the first ones give rise to counter terms of the type
(∂̃ · A)3/�̃2, and A2(∂̃ · A)/�̃. These do not represent additional interactions, but result in
multiplicative alternations of the tree level vertex functions. Therefore, they may be included
into the tree level action of the model. Finally, it may be stated that the renormalization in
Section 5.4 leaves invariant the form of the action which proves stability at the one loop level.
The β function of the model from Section 5.5 is negative, and hence indicates asymptotic freedom
of the coupling.

The damping behaviour of the gauge boson propagator and the absence of dimensionless oper-
ators in the tree level action, as well as the explicit one loop results, give a strong indication
that the non-commutative BRSW model is indeed renormalizable. According to the discussions
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of Chapter 4 it shall be suggested to conduct a rigorous proof by Multiscale Analysis. Due to
the appearance of a soft breaking term in combination with a high degree of symmetry, being
compatible with the QAP, the Gribov problem should not appear in this respect.
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Appendix A

Supplementary Content to the 1/p2

Scalar Model

This appendix contains supplementary calculations to the scalar model being discussed in Sec-
tions 2.1–2.2. Derivations of the Feynman rules are given in Appendix A.1. Subsequently, the
basic methodology of computing loop integrations is discussed in Appendix A.2. Extensions to
higher loop orders can be found in Appendix A.3, and the chapter is closed by the proof of
Theorem 1 in Appendix A.4.

A.1 Feynman Rules

For the purpose of demonstration of the concepts presented in Section 1.3.1 the derivation of
the Feynman rules is discussed in detail at this point. The bilinear part of the action (2.4) is

Sbil =

+∞∫
−∞

d4k

(2π)4
1
2
φ(−k)

(
k2 +m2 +

a2

k̃2

)
φ(k) . (A.1)

Hence, the propagator is computed according to,

−j =
δSbil(p)
δφ

=
(
k2 +m2 − a2

k̃2

)
φ(k) , (A.2)

and

G(k) = −δφ(k)
δj

=
1

k2 +m2 + a2

k̃2

. (A.3)

The interaction term Sint[φ] = λ
4!φ

4
? of the tree level action gives rise to one vertex. Explicitly

writing out the star product, the variation reads

V (k1, k2, k3, k4)

= − λ

4!
δ

δφ(−k1)δφ(−k2)δφ(−k3)δφ(−k4)

∫
d4p1..4δ

4(p1+ p2+ p3+ p4)φ(p1)φ(p2)φ(p3)φ(p4)

× e
i
2 (p1θp2+p1θp3+p1θp4+p2θp3+p2θp4+p3θp4)
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= − λ

4!

∫
d4p1..4

[
δ(p1+ k1)

[
δ(p2+ k2)

(
δ(p3+ k3)δ(p4+ k4) + δ(p4+ k3)δ(p3+ k4)

)
+ δ(p3+ k2) (. . .) + δ(p4+ k2) (. . .)

]
+ δ(p2+ k1)

[
. . .
]
+ δ(p3+ k1)

[
. . .
]
+ δ(p4+ k1)

[
. . .
]]

× e
i
2 (p1θp2+p1θp3+p1θp4+p2θp3+p2θp4+p3θp4) .

Explicit evaluation of the δ functions with the exponential factor yields 24 terms which can be
collected by applying the rule Eqn. (F.21) systematically. The remaining phase evaluates to 1
by utilization of the total momentum conservation δ4(k1+ k2+ k3+ k4). Finally, the result can
be written as,

V (k1, k2, k3, k4) = −λ
3
δ4(k1+ k2+ k3+ k4)

×
[
cos

k1θk2

2
cos

k3θk4

2
+ cos

k1θk3

2
cos

k2θk4

2
+ cos

k1θk4

2
cos

k2θk3

2

]
,

(A.4)

where the prefactor consists of the (4!)−1 from Sint[φ], a factor 4 from two cosinii, and a factor
2 since each term in Eqn. (A.4) appears twice in the derivation.

A.2 One Loop Calculations

A.2.1 Tadpole Graph

The integral in Eqn. (2.8) can explicitly be written as

Π(p) =
1
2

+∞∫
−∞

d4k

(2π)4
G(k)V (p,−k, k,−p) (A.5)

= −λ
6

∫
R4

d4k

(2π)4
2 + cos kθp2
k2 +m2 + a2

k2

= Πp(p) + Πnp(p) , (A.6)

where a symmetry factor 1
2 has been included and the cos2 kθp

2 coming from the vertex is trans-
formed by Eqn. (F.18). The expression is then split into a planar and a non-planar part, denoted
by Πp and Πnp respectively. We start here with the non-planar one.
The first step is, to recast the denominator of Πnp into a form featuring only positive powers of
the integrand k, i.e.(

k2 +m2 +
a′2

k2

)−1

= k2

[(
k2 +

m2

2

)2

−
(
m4

4
− a′2

)
︸ ︷︷ ︸

:=M4

]−1

, (A.7)

which can be simplified further (equivalence can easily be seen when explicitly writing out the
sum) by splitting the denominator,

=
1
2

∑
ζ=±1

1 + ζ m2

2M2

k2 + m2

2 + ζM2
. (A.8)
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The full integral then reads,

Πnp(p) = − λ

24

+∞∫
−∞

d4k

(2π)4
∑

η,ζ=±1

1 + ζ m2

2M2

k2 + m2

2 + ζM2
eiηkθp

= − λ

24

+∞∫
−∞

d4k

(2π)4

∞∫
0

dα
∑

η,ζ=±1

(
1 + ζ

m2

2M2

)
e−α(k−

iηp̃
2α )2− η2p̃2

4α
−α

“

m2

2
+ξM2

”

= − λ

24

+∞∫
−∞

d4k

(2π)4
∑

η,ζ=±1

∞∫
0

dα
π2

α2

(
1 + ζ

m2

2M2

)
e−

η2p̃2

4α
−α

“

m2

2
+ξM2

”

(F.11)
= −λ

6
1

16π2

∑
ζ=±1

(
1 + ζ

m2

2M2

)√
2m2 + 4ξM2

p̃2
K1

√
p̃2

(
m2

2
+ ξM2

)
. (A.9)

Applying Eqn. (F.24) to expand the Bessel function for small p yields,

Πnp(p) =
|p|→0

− λ

6(4π)2

[
4
p̃2

+m2 ln p̃2 +m2

(
γE − 1

2
− 2 ln 2 + ln a

)
+
(
M2 +

m4

4M2

)
ln

√
m2 + 2M2

m2 − 2M2

]
+ O

(
p̃2
)
. (A.10)

The planar part is described by the integral

λ

6

∫
R4

d4k

(2π)4
2

k2 +m2 + a2

k2

=
λ

12

∑
ξ=±1

∫
R4

d4k

(2π)4
1 + ξ m2

2M2

k2 + m2

2 + ξM2

=
λ

6

∑
ξ=±1

∫
R4

d4k

(2π)4

∞∫
0

dα
(

1 + ξ
m2

2M2

)
e−α

“

k2+m2

2
+ξM2

”

=
λ

6(4π)2
∑
ξ=±1

∞∫
0

dα
(

1 + ξ
m2

2M2

)
1
α2

e−
1

4Λ2α
−α

“

m2

2
+ξM2

”

,

where a UV cutoff Λ → ∞ has been introduced to regularize the integral,

(F.11)
=

λ

6(4π)2
∑
ξ=±1

(
1 + ξ m2

2M2

)√
4Λ2

(
m2

2 + ξM2
)

K1

√
1
Λ2

(
m2

2 + ξM2
)
,

(F.24)
≈ λ

3(4π)2

[
4Λ2 −m2 ln Λ2 +m2

(
γE − 1

2
− 2 ln 2 + ln a

)
+
(
M2 +

m4

4M2

)
ln

√
m2 + 2M2

m2 − 2M2

]
+ O

(
µ2
)
.

The latter result corresponds to Eqn. (2.12) in the main text (with an overall (−), which has
been omitted here).
Obviously, the results for planar and non-planar parts can be converted into one another by the
operation p̃2 ↔ 1

Λ2 . This general principle has been used in the literature [29, 30, 147] to define
a so called ‘effective cutoff’

Λ2
eff :=

1
p̃2 + 1

Λ2

→

 −→
Λ2→∞

1
p̃2
, non-planar

−→
p̃2→0

Λ2 , planar
, (A.11)
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which allows to generalize the results, independent of planarity. Indeed, by replacing p̃2 → 1/Λ2
eff

in Eqn. (A.9) the respective planar or non-planar results can be obtained by taking the limits
given in Eqn. (A.11). Generally, throughout this work the notation for cutoffs is as follows:
A divergent integrand Idiv(α) is multiplicatively regularized to a convergent integrand Ireg.(α)
according to,∫

dα Idiv(α)
regularization−→

∫
dα Ireg(α) := lim

µ2→0
Λ2→∞

∫
dα Idiv(α)e−

1
4Λ2α

−µ2α . (A.12)

Since the generic parameter α mostly corresponds to the inverse of a momentum, µ → 0 reg-
ularizes the IR region, and Λ → ∞ represents a UV cutoff. These factors are applied where
necessary. It has to be remarked that the arbitrary factor 4 accompanying Λ−2 appears due
to the fact that the 1/p̃2 divergence in non-planar results always appears with a similar factor,
stemming from the completion of squares in exponential functions, prior to Gaussian integration.
Generally, with the exception of Section 2.1, regularizion of integrals will not be indicated ex-
plicitely by any additional decoration. Instead, it is understood, that all quantities depending
on masses µ or cutoffs Λ are indeed regularized versions of the original expressions with the
same name. Correspondence is always given by taking the limits as indicated above.

A.2.2 Vertex Graphs

The vertex correction consists of three graphs, as indicated in Eqn. (2.13). However, since these
are just permutations of one another with respect to the external momenta, it is sufficient to
calculate the graph depicted in Fig. A.1. Setting q ≡ p1 + p2 = p3 + p4, it corresponds (after

p1

p2

p4

p3

k

Figure A.1: One loop corrections to the vertex.

eliminating integrations over all internal momenta but k by conservation at the vertices,) to the
expression,

Γ(p1, p2, p3, p4) =

+∞∫
−∞

d4k

(2π)4
V (p1,−k, k − q, p2)V (k,−p3,−p4, q − k)G(k)G(p1 + p2 − k)

=
λ2

9

+∞∫
−∞

d4k

(2π)4
δ4(p1+ p2+ p3+ p4)

1
k2 +m2 + a2

k2

1
(q − k)2 +m2 + a2

(q−k)2[
cos p1θp22 cos kθ(p1+p2)

2 + cos p2θk2 cos p1θ(k−p2)
2 + cos p1θk2 cos p2θ(k−p1)

2

]
[
cos p3θp42 cos kθ(p3+p4)

2 + cos p4θk2 cos p3θ(k−p4)
2 + cos p3θk2 cos p4θ(k−p3)

2

]
,

(A.13)

where use has been made of the symmetry of the cosine function with respect to the sign of
its argument. In the following we will simplify the lengthy expression for the phase factor.
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Expanding the multiplication yields

cos
p1θp2

2
cos

p3θp4

2

(
cos
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2
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2

)
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[
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2

(
cos
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2
cos
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2
+ cos
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2
cos
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2
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+cos

p3θp4
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[
cos
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2

(
cos
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2
cos
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2
+ cos
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2
cos
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(

cos
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cos
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(

cos
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2
cos
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2

+ cos
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2
cos

p4θ(k − p3)
2

)
. (A.14)

Using repeatedly the relations (F.18), (F.20), and q1 + q2 = q3 + q4 this yields,

1
2
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+
1
4
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+
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+
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2
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+ cos
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+

1
2

[
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2
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)
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2
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. (A.15)

The latter result coincides with the respective form, Eqn. (B.2) in [93] when considering the
different convention for the orientation of the external momenta p1..p4.
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Further simplifications can be achieved, when writing the phase in exponential form. In doing
so we follow Micu and Sheikh-Jabbari and omit all phase factors not depending on the internal
momentum k (by setting pi ≡ 0∀i). This seems reasonable since in loop integrations these
exponentials can be pulled out and their contribution is just a factor (being a function of the
external momenta p1 . . . p4). Therefore the phase (A.15) becomes

2
(
1 + eikθ(p1+p2) + e−ikθ(p1+p2)

)
+

1
2

(
eikθp3 + e−ikθp3

)
+

1
2

(
eikθp4 + e−ikθp4

)
+

1
2

(
eikθp1 + e−ikθp1

)
+

1
2

(
eikθp2 + e−ikθp2

)
+

+
1
4

(
eikθ(p1−p4) + e−ikθ(p1−p4)

)
+

1
4

(
eikθ(p1−p3) + e−ikθ(p1−p3)

)
= 2 +

∑
η=±

[
1
2

4∑
i=2

eiηkθ(p1+σipi) +
3
2
eikθ(p1+p2) +

1
2

4∑
i=1

eiησikθpi

]
, (A.16)

where σ = (1, 1,−1,−1) comes from a switch in the directions of the momenta p3 and p4 relative
to those in Fig. A.1 in order to cast the expression into a form compatible to the one in [93].
Due to the symmetric integrations over k any antisymmetric contribution has to vanish. For
this reason one may omit the signs in the exponent and the sum over η just gives a factor 2.

Finally, one has to add the contributions of the two permutations of the graph as shown in the
insert of Eqn. (2.13). These are generated by the index exchanges (2 ↔ 4) for the second and,
in addition, (3 ↔ 4) for the third diagram1. Eqn. (A.13) can thus be written as

Γ(p1, p2, p3, p4) =
λ2

6 × 36

+∞∫
−∞

d4k

(2π)4

(
1 + ζ m2

2M2

)(
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1
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4∑
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eikθpi

) 4∑
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1
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2 + χM2

+
3
2

4∑
i=2

eikθ(p1+pi)

(p1 + pi − k)2 + m2

2 + χM2

}
, (A.17)

where again the technique (2.9) has been applied to split the propagators (explained above in
Appendix A.2.1) into a form which is convenient for Gaussian integration. The latter expression
contains 48 integrals whose results can all be derived from two generic expressions

I1(p) =
∑

ζ,χ=±1

+∞∫
−∞

d4k

(2π)4

(
1 + ζ m2

2M2

)(
1 + χ m2
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2 + ζM2
)(
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2 + χM2
) , and

I2(p, q) =
∑
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+∞∫
−∞

d4k

(2π)4

(
1 + ζ m2

2M2

)(
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2M2

)
eikθ(p+q)(

k2 + m2

2 + ζM2
)(

(p− k)2 + m2

2 + χM2
) , (A.18)

where p and q are generic external momenta now. Note that these two integrals correspond to
the planar and non-planar contributions respectively. Introducing Schwinger parametrization

1It has to be remarked that the prefactor 1/3 appearing in Eqn. (2.13) is unmotivated and wrong, but kept
here for maintaining consistency with Ref. [95].
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with α and β, and abbreviating f(ζ, χ) :=
(
1 + ζ m2

2M2

)(
1 + χ m2

2M2

)
we can write

I1(p) =
∑

ζ,χ=±1

f(ζ, χ)

+∞∫
−∞

d4k

(2π)4

∞∫
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2
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∞∫
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λ
e−λ

h

ξ(1−ξ)p2+m2

2
+(ξζ+(1−ξ)χ)M2

i

− 1
Λ2λ , (A.19)

where an infrared cutoff has been introduced by Λ → ∞, and the integration variables have
been changed according to

α = ξλ
β = (1 − ξ)λ

}
→ dαdβ = λdξdλ . (A.20)

Applying Eqn. (F.11) the result is,

I1(p) =
∑

ζ,χ=±1

f(ζ, χ)

1∫
0

dξ
2π2

(2π)4
K0

√
4
Λ2

(
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2
+ (ξζ + (1 − ξ)χ)M2

)
. (A.21)

In the same way as discussed above in Appendix A.2.1, the respective expression for I2(p, q) can
immediately be obtained by replacing Λ2 → 4

(p̃+q̃)2
. Therefore, subsequently, a generic variable

A will be used, standing for (p̃+q̃)2

4 in the non-planar case, and for 1
4Λ2 in the planar case. Note

also that, due to the completion of the square in the exponent, there is an additional phase
factor exp[iξpθq] ≈ 1 in the result for I2(p, q), which can be neglected since we approximate for
small external momenta.
The integral Eqn. (A.21) is not immediately solvable in an analytic way. Being interested in
the behavior in the infrared (p, q → 0 or, respectively, Λ2 → ∞) we may first expand the Bessel
function up to first order in its argument (see Eqn. (F.24)). In addition, we now write out the
sum over χ and ζ with the explicit form for f(χ, ζ),

I1(p) ≈
p,q�1
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+ O
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,

and with p2ξ(1 − ξ) � m2

2 ,
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+
(

1− m4

4M4
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2
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(A.22)

The integrations can now be be performed by virtue of Eqn. (F.17b), yielding (after collecting
terms)
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(
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(
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. (A.23)

The latter result is equal to the one given in the main text (see Eqn. (2.17)).

A.3 Higher Loop Calculations

A.3.1 Non-planar Two Loop Snowman Graph

The snowman graph in Fig. 2.2a on page 21 can be computed by using the decomposition (A.8)
and Schwinger parametrization to evaluate the integral (2.18) for n = 1. Hence Π1 np-ins.(p) =
λ2J1(p) with

J1(p) ≡
1
4

∑
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]
. (A.24)

After carrying out the integration over k and, changing variables according to

(α, β, γ) → (λ, ξ, σ) ,
with α = λξσ ,

β = λ(1 − ξ)σ ,
γ = λ(1 − σ) ,

and λ ∈ [0,∞[ , ξ ∈ [0, 1] , σ ∈ [0, 1] , (A.25)

(which is a generalization of (A.20)) one obtains

J1(p) =
∑
ζ,χ

(
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)(
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)
4θ2(4π)2
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× exp
[
− p̃ 2

4λ
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2 . (A.26)

The integration over ξ can be performend by virtue of the Eqns. (F.14a)–(F.14c),

=
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(
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, (A.27)

and Eqns. (F.15a), (F.16a), and (F.16b) readily allow to evaluate the integral over σ, yielding

=
1

θ2(4π)2
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. (A.28)

For the computation of the final λ integrals with Eqn. (F.11) it is necessary to rewrite the
hyperbolic functions in their exponential form. This generates an integrability condition M2 =√

m4

4 − a2 ≤ m2

2 from the exponentials. Introducing the abbreviations m± :=
(
m2

2 ±M2
)
, the

result writes
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−
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+
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−

}
, (A.29)

which equals Eqn. (2.20) if the additional factor 4
3(4π)2

of the non-planar insertion in Eqn. (2.11)
is considered.

A.3.2 Non-planar n-loop Graph

Basically, the calculation proceeds along the lines of the 2-loop integral discussed above in
Appendix A.3.1. The integral (2.19) is given by Πn npl-ins.(p) = λ2Jn(p) with

Jn(p) ≡
+∞∫

−∞

d4k

(2π)4
eikθp(

k̃2
)n [
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)
. (A.30)
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With all the ζi-dependent factors being independent of each other, a total of n + 2 Schwinger
parameters αi are required to parameterize the denominators of the integrand (see Eqn. (F.22)
on page 144),

1
k2 + m2

2 + ζiM2
=

∞∫
0

dαi e
−αi

“

k2+m2

2
+ζiM

2
”

, for i ∈ {1, . . . , n+ 1} ,

1
(k2)n

=
1

Γ(n)

∞∫
0

dαn+2 (αn+2)n−1e−αn+2k2
, for k2 > 0 . (A.31)

Generalizing from Eqn. (A.25) and Eqn. (A.20) we perform a change of variables {α1, ..αn+2}
7→ {ξ1, ..ξn+1, λ} with

α1 = λ
n+1∏
i=1

ξi , α2 = λ(1 − ξ1)
n+1∏
i=2

ξi , .. αk = λ(1 − ξk−1)
n+1∏
i=k

ξi ,

.. αn+2 = λ(1 − ξn+1) ,
(A.32)

where ξi ∈ [0, 1] and λ ∈ [0,∞). The integration measure transforms as

n+2∏
i=1

dαi = λn+1
n∏
l=1

(ξl+1)
l dλ

n+1∏
j=1

dξj , (A.33)

and from the definition (A.32) it follows that
n+2∑
i=1

αi = λ. The integration over k can be carried

out by completing the square in the exponent, so that we arrive at
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2
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2
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1

ζiαi

]
, (A.34)

where the coefficients α1, ..αn+1 in the exponent are functions of the variables λ, ξ1, ..ξn+1 ac-
cording to Eqn. (A.32). The sum over the ζi can be expressed in terms of hyperbolic functions
(as was demonstrated above in Appendix A.3.1),

Jn =
1

θ2n(4π)2Γ(n)

n+1∏
j=1

1∫
0

dξj (1 − ξn+1)n−1
n∏
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l

∞∫
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× e−
p̃ 2

4λ
−λξn+1

m2

2

n+1∏
i=1

[
cosh

(
αiM

2
)
− m2

2M2
sinh

(
αiM

2
)]

.

Integration over ξ1, ..ξn+1 yields a sum of integrals over λ, which are once more given by modified
Bessel functions.

The techniques for solving the above integrations for higher n are the same as described in
Appendix A.3.1. However, since the expressions grow quite fast it is to be recommended to
conduct all calculations aided by a computer, i.e. in Mathematica®.
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A.4 Miscellanea

In the following the proof of Theorem 1 on page 27 shall be given,

Proof. Since the integrand C(α, k) with Gi(k) =
∫M−2(i−1)

M−2i C(α, k) dα in Eqn. (2.36) is monoton-
ically falling and M > 1, it holds that sup {C(α) : α∈ [M−2i,M−2(i−1)]} = C

(
M−2i, k

)
. Hence,

the integral has an upper bound, given by a rectangular patch, Ci≤ (M−2(i−1)−M−2i)C
(
M−2i

)
and,

Gi(k) ≤ (M−2(i−1) −M−2i)︸ ︷︷ ︸
M−2i(M2−1)

e−M
−2i

“

k2+m2+a′2
k2

”

=KM−2ie−M
−2i

“

k2+m2+a′2
k2

”

,

and furthermore, since M > 1, we have M−2i < 1, which finally gives

<Ke−cM
−2i

“

k2+m2+a′2
k2

”

.

In the latter expression we have defined the constants

K := M2 − 1 > 1, and c := sup
i

(
− lnM−2i

)
= − lnM−2 > 0 .

For the slice G0(k) we can compute the explicit integral

∞∫
1

dα e−α
“

k2+m2+a′2
k2

”

= −
(
k2 +m2 +

a′2

k2

)−1

e−
“

k2+m2+a′2
k2

”

,

and by virtue of the damping behaviour, i.e.

lim
k→{0,∞}

(
k2 +m2 +

a′2

k2

)
= 0 ,

the k-dependent factors can be approximated by constants κ. Hence the integral can entirely
be bound by G0(k) < −κ−1e−κ = const.. However, we may also choose a tighter bound by only
approximating the forefactor, and omitting in the exponent only terms which vanish for k → ∞,
leading to

G0(k) < −κ−1e−ck
2
,

which completes the proof.
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Appendix B

Supplementary Content to the 1/p2

Gauge Model with Real Auxiliary
Field

B.1 Feynman Rules

This section briefly describes the derivation of the Feynman rules in the 1/p2 model with local-
ization by one real-valued auxiliary field as being discussed in Section 3.1.

B.1.1 Equations of Motion

The equations of motion for the action (3.5) are obtained by simple variation of the bilinear
part Sbi with respect to the fields.

δSbi

δAµ
= −jAµ =

(
∂µ∂

ν − �δνµ
)
Aν + 2∂νBµν − ∂µb ?

(
1 +

a

��̃

)
, (B.1a)

δSbi

δb
= −jb =

(
1 +

a

��̃

)
∂µAµ − αb = 0 , (B.1b)

δSbi

δc
= jc = −

(
1 +

a

��̃

)
�c̄ = 0 , (B.1c)

δSbi

δc̄
= jc̄ =

(
1 +

a

��̃

)
�c = 0 , (B.1d)

δSbi

δBµν
= −jBµν = (∂µAν − ∂νAµ) − 2

��̃
a
Bµν . (B.1e)

B.1.2 Propagators

Eqn. (B.1e) involves three fields. The derivation shall be sketched at this point. b and ∂νB
µν

are extracted from Eqns. (B.1b) and (B.1e) respectively, and inserted into Eqn. (B.1a) yielding

−jµA = U

[
∂µ (∂A) − �Aµ −

∂µ
α

(
U (∂A) − jb

)]
+

a

��̃
∂νjBµν ,
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where the abbreviation U :=
(
1 + a

�e�

)
has been used. Derivation of this result with respect to

∂µ gives an expression for ∂A which can in turn be inserted into Eqn. (B.1a) again. We finally
end up with

Aµ =
1
U�

[
jAµ + ∂µj

b +
(α
U

− 1
) ∂µ

� (∂jA) +
(
α

U
− 1

�

)
a

��̃
∂µ∂α∂βj

αβ
B +

A

��̃
∂αjBµα

]
. (B.2)

Insertion of Aµ into Eqn. (B.1e) yields,

Bµν =
a

2��̃

[
1
U�

(
∂µj

A
ν − ∂νj

A
µ +

a

��̃
∂α
(
∂µj

B
να − ∂νj

B
µα

))
+ jBµν

]
. (B.3)

The expressions (B.2) and (B.3) form the starting point for the calculation of the propagators
GAA, GAB, GBA, and GBB by variation with respect to the currents jAρ and jBρσ. The ghost
propagator Gc̄c is obtained by resolving Eqn. (B.1c) for c, and subsequent variation with respect
to jc̄. After transformation to momentum space (by applying the simple substitution ∂µ → ikµ,
and respecting the sign from partially integrating terms of the form ∂µj· = −j∂µ·) we arrive at
Eqns. (3.6a)–(3.6b) in the main text on page 35 .

B.1.3 Vertices

The following vertex expressions are derived from the full form of the action (3.5) on page 35.
Remember the conventions from Section 1.3.1.

3A vertex: Three photon fields without other couplings are solely contained in the 1
4F

µν?Fµν
term in Eqn. (3.5). In a more explicit form,∫

d4x
1
4
Fµν ? Fµν =

∫
d4x

[
− 1

2
Aµ (δµν� − ∂µ∂

ν)Aν︸ ︷︷ ︸
(∗a)

+ i
g

4
(∂νAµ − ∂µAν) ? [Aµ ?, Aν ]︸ ︷︷ ︸

(∗b)

+
g2

4
[Aµ ?, Aν ] [Aµ ?, Aν ]︸ ︷︷ ︸

(∗c)

]
. (B.4)

For the sole trilinear term in A{µ,ν}, (∗b) the variation reads

V 3A
ρ,σ,τ (p1, p2, p3) = − ig

4
(2π)12 δ

δAρ(−p1)
δ

δAσ(−p2)
δ

δAτ (−p3)

∫
d4x

∫ dk{1−3}

(2π)12
eix(k1+k2+k3)×

×

[
(kν1A

µ(k1))Aµ(k2)Aν(k3)e−
i
2
(k1θk2+k1θk3)

(
e−

i
2
k2θk3 − e−

i
2
k3θk2

)
− (kµ4A

ν(k4))Aµ(k2)Aν(k3)e−
i
2
(k4θk2+k4θk3)

(
e−

i
2
k2θk3 − e−

i
2
k3θk2

)]
.

(B.5)

The x-dependent exponential together with the d4x integral results in (2π)4δ4 (k1 + k2 + k3)
which can readily be applied to identify the remaining common exponential factors to be unity.
Respecting Eqn. (F.21), the exponentials in the brackets can be written in terms of sine func-
tions. After conducting the variations, momentum conservation unifies the arguments of the
trigonometric functions. Finally, we are left with
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p2,σ

p1,ρ

p3,τ

= V 3A
ρ,σ,τ (p1, p2, p3)

= 2ig(2π)4δ4(p1 + p2 + p3)
[
(p1 − p3)σ δρτ + (p2 − p1)τ δρσ + (p3 − p2)ρ δστ

]
sin

p1θp2

2
.

(B.6)

c̄Ac vertex From Eqn. (3.5) the only available term for a ghost interaction is the trilinear
expression −c̄?

(
1 + a

�e�

)
∂µDµc. By virtue of the partial integration property of the 1

� operator
(see Theorem 3 on page 112) the trilinear part of this expression can be brought into the form

+ig
(

1 +
1

��̃

)
c̄(q1) ? ∂µ [Aµ(k2) ?, c(q3)] . (B.7)

Temporarily denoting this expression by (∗r), appropriate variation gives,

p2,ρ

p1

p3

= V c̄Ac
ρ (p1, p2, p3)

= −(2π)12 δ

δc̄(−p1)
δ

δAρ(−p2)
δ

δc(−p3)
[(∗r)]

= −2ig(2π)4δ4(p1 + p2 + p3)p1,ρ

(
1 +

a

(p3)2(p̃3)2

)
sin

p1θp3

2
. (B.8)

BAA vertex: The relevant term in the Lagrangian is
∫

d4x a′Bµν ?Fµν , where only the terms
being bilinear in A{µ,ν} in Fµν (i.e. the commutator terms) enter. The complete variation reads

V BAA
ρσ,τ,ε(p1, p2, p3) = −ga′(2π)12 δ

δBρσ(−p1)
δ

δAτ (−p2)
δ

δAε(−p3)

∫
d4x

∫
dq dk1 dk2

(2π)12
eix(q+k1+k2)×

×
[
Bµν(q)Aµ(k1)Aν(k2)e

i
2
k1θk2−BµνAν(k2)Aµ(k1)e

i
2
k2θk1

]
e−

i
2
(qθk1+qθk2).

(B.9)

Respecting the relation (F.21), and performing the variations finally results in

p1,ρσ

p3,ε

p2,τ

= V BAA
ρσ,τ,ε(p1, p2, p3) = 2ga′δ4(p1 + p2 + p3) (δρτδσε − δρεδστ ) sin

p2θp3

2
. (B.10)

BBA vertex: The only available term of second order in Bµν is −Bµν?D̃2D2?Bµν . Performing
two partial integrations the expression can be rewritten (see Theorem 2) as

−
(
D̃2Bµν

)
D2Bµν =

{
− �Bµν �Bµν + ig�Bµν [∂ηAη ?, Bµν ]︸ ︷︷ ︸

(a)

+2ig�Bµν [Aη ?, ∂ηBµν ]︸ ︷︷ ︸
(b)

+

+ g2 �Bµν [Aη ?, [Aη ?, Bµν ]]︸ ︷︷ ︸
(c)

+ ig [∂ηAη ?, Bµν ] �Bµν︸ ︷︷ ︸
(d)

+

+ g2 [∂λAλ ?, Bµν ] [∂ηAη ?, Bµν ]︸ ︷︷ ︸
(e)

+2g2 [∂λAλ ?, Bµν ] [Aη ?, ∂ηBµν ]︸ ︷︷ ︸
(f)

−
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— continued —

− ig3 [∂λAλ ?, Bµν ] [Aη ?, [Aη ?, Bµν ]](g)︸ ︷︷ ︸+2ig [Aλ ?, ∂λBµν ] �Bµν︸ ︷︷ ︸
(h)

+

+ 2g2 [Aλ ?, ∂λBµν ] [∂ηAη ?, Bµν ]︸ ︷︷ ︸
(i)

+4g2 [Aλ ?, ∂λBµν ] [Aη ?, ∂λBµν ]︸ ︷︷ ︸
(j)

−

− 2ig3 [Aλ ?, ∂λBµν ] [Aη ?, [Aη ?, Bµν ]]︸ ︷︷ ︸
(k)

+ g2 [Aλ ?, [As ?, Bµν ]]�Bµν︸ ︷︷ ︸
(l)

−

− ig3 [Aλ ?, [Aλ ?, Bµν ]] [∂ηAη ?, Bµν ]︸ ︷︷ ︸
(m)

− 2ig3 [Aλ ?, [Aλ ?, Bµν ]] [Aη ?, Bµν ]︸ ︷︷ ︸
(n)

−

− g4 [Aλ ?, [Aλ ?, Bµν ]] [Aη ?, [Aη ?, Bµν ]]︸ ︷︷ ︸
(o)

}
. (B.11)

The relevant terms for the BBA-vertex are marked by (a), (b), (d), and (h) in Eqn. (B.11).
Variation with respect to the fields, and subsequent summation leads to

p3,τ

p2,γε

p1,ρσ

= V BBA
ρσ,γε,τ (p1, p2, p3)

= −(2π)12 δ

δBρσ(−p1)
δ

δBγε(−p2)
δ

δAτ (−p3)
[(a) + (b) + (d) + (h)]

= −2igθ2(2π)4δ4 (p1 + p2 + p3) (δργδσε − δρεδσγ)
(
p1

2 + p2
2
)
(p1 − p2)τ sin

p1θp2

2
. (B.12)

4A vertex: As for the 3A vertex the required interaction is given by the 1
4F

µν ? Fµν term in
the action (3.5). The 4A vertex is derived by variation of term (∗c) in Eqn. (B.4)

p4,ε

p3,τ

p2,σ

p1,ρ

= V 4A
ρ,σ,τ,ε(p1, p2, p3, p4)

= −(2π)16 δ

δAρ(−p1)
δ

δAσ(−p2)
δ

δAτ (−p3)
δ

δAε(−p4)
[(∗c)]

= 4g2(2π)4δ4(p1 + p2 + p3 + p4)
[

(δτρδσε − δτσδρε) sin
p1θp2

2
sin

p3θp4

2
+

+ (δετδρσ − δτσδρε) sin
p1θp3

2
sin

p2θp4

2
+

+ (δετδρσ − δτρδσε) sin
p1θp4

2
sin

p2θp3

2

]
. (B.13)

2B2A vertex: Six terms with two B fields and two photons can be found in Eqn. (B.11),

p3,τ

p2,ρσ

p1,µν

p4,ε
= V 2B2A

ρσ,τε,γ,κ(p{1..4})

= −(2π)16 δ

δBρσ(−p1)
δ

δBτε(−p2)
δ

δAγ(−p3)
δ

δAκ(−p4)
[(c) + (e) + (f) + (i) + (j) + (l)]
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= 4g2θ2(2π)4δ4(p1 + p2 + k3 + k4) (δρτδσε − δρεδστ )×

×
{[
p3,γp4,κ + 2 (p1,γp4,κ + p2,κp3,γ) + 4p1,γp2,κ − δκγ

(
p1

2 + p2
2
)]

sin p1θp3
2 sin p2θp4

2 +

+
[
p3,γp4,κ + 2 (p2,γp4,κ + p1,κp3,γ) + 4p1,κp2,γ − δκγ

(
p1

2 + p2
2
)]

sin p1θp4
2 sin p2θp3

2

}
. (B.14)

2B3A vertex: Two B fields and three A fields are contained in (g), (k), (m) and (n) of
Eqn. (B.11).

p2,ρσ

p1,µν

p5,κ

p4,ε

p3,τ

= V 2B3A
µν,ρσ,τ,ε,κ(p{1..5})

= −(2π)16
δ

δBµν(−p1)
δ

δBρσ(−p2)
δ

δAτ (−p3)
δ

δAε(−p4)
δ

δAκ(−p5)
1
a

[(g) + (k) + (n)]

= −8ig3θ2(2π)4δ4(p1 + p2 + p3 + p4 + p5) (δµρδνσ − δµσδνρ)×

×
{

[p3 + 2p1]τ δεκ sin
(p3p̃1

2

)[
sin
(p5p̃2

2

)
sin
(p4(p̃5+p̃2)

2

)
+ (p4 ↔ p5)

]
+ [p4 + 2p1]ε δτκ sin

(p4p̃1
2

)[
sin
(p5p̃2

2

)
sin
(p3(p̃5+p̃2)

2

)
+ (p5 ↔ p3)

]
+ [p5 + 2p1]κ δτε sin

(p5p̃1
2

)[
sin
(p3p̃2

2

)
sin
(p4(p̃3+p̃2)

2

)
+ (p3 ↔ p4)

]
+ (p1 ↔ p2)

}
. (B.15)

2B4A vertex: Finally, the only term with two B fields and four A fields is (o) of Eqn. (B.11)

p3,τp2,ρσ

p1,µν

p6,ι
p5,κ

p4,ε = V 2B4A
µν,ρσ,τ,ε,κ,ι(p{1..6})

= −(2π)16
δ

δBµν(−p1)
δ

δBρσ(−p2)
δ

δAτ (−p3)
δ

δAε(−p4)
δ

δAκ(−p5)
δ

δAι(−p6)
[(g) + (k) + (n)]

= 4g4θ2(2π)4δ4(p1 + p2 + p3 + p4 + p5 + p6) (δµρδνσ − δµσδνρ)×

×
{

2δτεδκι
[
sin
(p4p̃1

2

)
sin
(p3(p̃4+p̃1)

2

)
sin
(p6p̃2

2

)
sin
(p5(p̃6+p̃2)

2

)
+ (p3 ↔ p4) + (p5 ↔ p6)

]
+ δτκδει

[
sin
(p5p̃1

2

)
sin
(p3(p̃5+p̃1)

2

)
sin
(p6p̃2

2

)
sin
(p4(p̃6+p̃2)

2

)
+ (p3 ↔ p5) + (p4 ↔ p6)

]
+ δτιδκε

[
sin
(p6p̃1

2

)
sin
(p3(p̃6+p̃1)

2

)
sin
(p4p̃2

2

)
sin
(p5(p̃4+p̃2)

2

)
+ (p3 ↔ p6) + (p5 ↔ p4)

]
+ (p1 ↔ p2)

}
. (B.16)

B.2 One Loop Calculations

This section contains exemplary computations and detailed results of the one loop vacuum
polarization discussed in the main text in Section 3.1.3. The graphs in Fig. 3.2 on page 39
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correspond to the expressions

Π(a)
µν = sa

4g2

(2π)4

+∞∫
−∞

d4k

(2π)4
sin2

(kp̃
2

)
G(k)G(k + p)

{
kµkν
k2

(
11k2 − p2 + 2kp+

(p2 − k2)2

(k + p)2

)

+ δµν

[
α

(
(k2 + 2kp)2

G(k)
+

(k2 − p2)2

G(k + p)

)
+ k2+ 5p2 − 2kp− (k2 − p2)2

(k + p)2
− 4

(kp)2

k2

]

+ αkµkν

(
p2 − k2 − 2kp

G(k)
−

p4

(k+p)2

(
a2

(k̃+p̃)2
− (k + p)2(α− 1)

)
G(k)G(k + p)

− (k2 − p2)2

k2G(k + p)

)

+ pµpν

(
a2

(k̃+p̃)2
− (k + p)2(α− 1)

)
(G(k + p)) (k + p)2

(
k2p2 + (kp)2 − 2k4

k2
− α

(kp)2

G(k)

)
+ pµpν

(
−3 + α

k2

G(k)

)
+ (kµpν + pµkν)

(
3
kp+ 2k2

k2
− α

3kp+ k2

G(k)

)

+ (kµpν+ pµkν)(kp)

(
a2

(k̃+p̃)2
− (k + p)2(α− 1)

)
G(k + p)(k + p)2

(
k2 − p2

k2
+ α

p2

G(k)

)}
, (B.17a)

Π(b)
µν = −sb

8g2

(2π)4

+∞∫
−∞

d4k

(2π)4
sin2

(
kp̃

2

)
1

G(k)

[
2δµν +

kµkν
k2

+ α
(k2δµν − kµkν)

G(k)

]
, (B.17b)

Π(c)
µν = −sc

4g2

(2π)4

+∞∫
−∞

d4k

(2π)4
kµ(k + p)ν
k2(k + p)2

sin2

(
kp̃

2

)
, (B.17c)

Π(d)
µν = sd

4g2θ4

(2π)4

+∞∫
−∞

d4k

(2π)4
sin2

(
kp̃

2

) [
(k + p)2 + k2

]2 (2k + p)µ(2k + p)ν
k2k̃2(k + p)2(k̃ + p̃)2

×

×

[
6 − 3a2

k̃2G(k)
− 3a2

(k̃ + p̃)2G(k + p)
+

a4
(
k2(k + p)2 + 2[k(k + p)]2

)
k2k̃2(k + p)2(k̃ + p̃)2G(k)G(k + p)

]
, (B.17d)

Π(e)
µν = −se

24g2

(2π)4

∫
d4k

sin2
(kp̃

2

)
k4

[pµpν + 4kµkν + 2k2δµν ]
[
2 − a2

k̃2G(k)

]
, (B.17e)

Π(f)
µν = sf

4 a4g2

(2π)4

+∞∫
−∞

d4k

(2π)4
sin2

(
kp̃

2

)
3kµkν + 2kµpν + kνpµ

k2k̃2(k + p)2(k̃ + p̃)2G(k)G(k + p)
, (B.17f)

Π(g)
µν = sg

4 a2g2

(2π)4

+∞∫
−∞

d4k

(2π)4
sin2

(kp̃
2

)
k2k̃2G(k + p)

{
2δµν +

(k + p)µ(k + p)ν
(k + p)2

+
a2

k2k̃2G(k)

[
δµν

(
[k(k+p)]2

(k+p)2
− k2

)
− kµkν − k(k+p)

(k+p)2
(2kµkν + kµpν + pµkν)

]
+

α

G(k + p)G(k)

(
δµν

[
k2(k + p)2 − a2 (kp)2 − k2p2

k2k̃2

]
− k2(kµ + pµ)(kν + pν)

− a2

k2k̃2

(
k2pµpν + p2kµkν − (kp)(kµpν + pµkν)

))}
, (B.17g)
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Π(h+i)
µν = sh

4 a2g2

(2π)4

+∞∫
−∞

d4k

(2π)4
sin2

(kp̃
2

)
k̃2(k + p)2G(k)

(
1
k2

+
1

(k + p)2

)
(2kµ + pµ)×

×
[
3kν − a2kν [(k + p)2 + 2k(k + p)] + 2pν [k(k + p)]

(k + p)2(k̃ + p̃)2G(k + p)

]
+ µ↔ ν, (B.17h)

Π(j)
µν = sj

4a2g2

(2π)4

+∞∫
−∞

d4k

(2π)4
sin2

(
kp̃

2

)(
1

(k + p)2
+

1
k2

)
×

×
(2k + p)µ

[
(6k2 + 6kp+ 2p2)kν + (3k2 + kp)pν

]
k̃2(k + p)2G(k)G(k + p)

, (B.17i)

Π(k+l)
µν = sk

4 a2g2

(2π)4

+∞∫
−∞

d4k

(2π)4
sin2

(kp̃
2

)
k2k̃2G(k)G(k + p)

{
3kµkν + 2pµkν + kµpν

+ δµν

[
k(k − p) + k(k + p)

(p2 − k2)
(k + p)2

− α
k(k + p)(p2 − k2)

G(k + p)

]
+

1
(k + p)2

(
k(k + p)(kµkν − pµpν) + (p2 + 2k2 + 3(kp))(kµkν + kµpν)

)
− α

G(k + p)

(
k(k + p)(kµkν − pµpν) + (p2 + 2k2 + 3(kp))(kµkν + kµpν)

− (k + p)2(2kµkν + kµpν)
)

+ µ↔ ν

}
. (B.17j)

where the Feynman rules (3.6a)–(3.6b), and (B.6)–(B.14) have been applied, and the abbrevia-
tion G(k) :=

(
k2 + a2

k̃2

)
has been introduced.

It is obvious that some of these integrals require three or more Schwinger parameters to be
computed. In addition, the appearance of G(k + p) represents a serious obstacle for practi-
cal calculations. Therefore, the expansion (3.17) for small external momenta p is applied to
the integrands without phase. In lowest order, the expressions (B.17a)–(B.17j) are (where the
superscript 0 indicates the order)

Π(a),0
µν ≈ sa

8g2

(2π)4

+∞∫
−∞

d4k

(2π)4
sin2

(
kp̃
2

)
G(k)2

[
6kµkν + αk2

(
k2δµν − kµkν

)
G(k)

]
, (B.18a)

Π(b),0
µν ≈ −sb

8g2

(2π)4

+∞∫
−∞

d4k

(2π)4
sin2

(
kp̃

2

)
1

k2 + a2

k̃2

[
2δµν +

kµkν
k2

+ α
(k2δµν − kµkν)

G(k)

]
, (B.18b)

Π(c),0
µν ≈ −sc

4g2

(2π)4

+∞∫
−∞

d4k

(2π)4
sin2

(
kp̃

2

)
kµkν
k4

, (B.18c)

Π(d),0
µν ≈ sd

192g2

(2π)4

+∞∫
−∞

d4k

(2π)4
sin2

(
kp̃

2

)
kµkν
k4

2 +
a2
(
a2

k̃2
− 2
)

k̃2G(k)

 , (B.18d)

Π(e),0
µν ≈ −se

24g2

(2π)4

∫
d4k

sin2(kp̃2 )
k4

[4kµkν + 2k2δµν ]
(

2 − a2

k̃2G(k)

)
, (B.18e)
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Π(f),0
µν ≈ sf

12a4g2

(2π)4

+∞∫
−∞

d4k

(2π)4
sin2

(
kp̃

2

)
kµkν(

k2k̃2
)2

G(k)2
, (B.18f)

Π(g),0
µν ≈ sg

4 a2g2

(2π)4

+∞∫
−∞

d4k

(2π)4
sin2

(
kp̃
2

)
k2k̃2G(k)

[
2δµν +

kµkν
k2

− 3a2kµkν

k2k̃2G(k)
+ αk2

(
k2δµν − kµkν

)
G(k)2

]
,

(B.18g)

Π(h+i),0
µν ≈ sh

48 a2g2

(2π)4

+∞∫
−∞

d4k

(2π)4
sin2

(
kp̃
2

)
kµkν

k̃2k4G(k)

(
1 − a2

k̃2G(k)

)
+ µ↔ ν , (B.18h)

Π(j),0
µν ≈ sj

48 a2g2

(2π)4

+∞∫
−∞

d4k

(2π)4
sin2

(
kp̃
2

)
kµkν

k2k̃2G(k)2
, (B.18i)

Π(k+l),0
µν ≈ sk

4 a2g2

(2π)4

+∞∫
−∞

d4k

(2π)4
sin2

(
kp̃
2

)
k2k̃2G(k)2

[
6kµkν +

αk2

G(k)
(
k2δµν − kµkν

) ]
+ µ↔ ν . (B.18j)

The notion +µ↔ ν refers to the addition of the expressions for the mirrored graphs (i) and (k)
to Π(h+i),0

µν and Π(k+l),0
µν , respectively. Explicitly, this summation is eased by the relations

Π(h),0
µν + Π(i),0

νµ = 0 , and Π(k),0
µν + Π(l),0

νµ = 0 ,

which motivates the collection into one term in Eqns. (B.18h) and (B.18j).
Power counting (with respect to k) reveals that only the integrals (B.18a)–(B.18e) (being also
listed in Section 3.1.3) give divergent contributions. These integrals can be solved utilizing the
rules in Appendix F.1.

Practically, the sum of graphs (a)–(e) is computed prior to integration in order to benefit
from cancellations between different contributions. However, the high number of terms, and
the stereotype way of repeated application of the integration rules motivates to conduct the
calculations with the help of modern computing aids. For this purpose a package, called
VectorAlgebra, has been written in Wolfram Mathematica® 6, capable of the simplification (i.e.
collection, cancellation, transformation) of terms, partial differentiation, series expansion, and
integration (for a specific range of integral types appearing in the current calculations) under
consideration of the Einstein sum convention, and the specific properties of the Groenewold-
Moyal product. The respective source code is listed in Appendix G.3.

After computation of the integrals and collection of terms with the help of VectorAlgebra we
receive the results

Πp,0
µν = − g2

(4π)2
Λ2 (2sb(α+ 5) − 2 ((α+ 6)sa + sc + 48 (sd − se))) δµν + finite

= 0 + finite , (B.19)

Πnp,0
µν =

g2

(2π)2
1
p̃4

[
2
(
2sb(α− 1) − 2saα− sc + 12sa − 48se + 96sd

)
p̃µp̃ν

+
(
2sb(α+ 5) − 2 (sa(α+ 6) + 48 (sd − se)) + sc

)
p̃2δµν

]
+ finite

=
14g2

π2

p̃µp̃ν

(p̃2)2
+ finite , (B.20)
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where planar (p) and non-planar (np) results have been separated and the term ‘finite’ refers to
contributions from integrals which are a priori finite, i.e. which are not considered here due to a
dimension d(I) < −4 obtained by power counting. Obviously, the quadratic divergence in Πp,0

µν

is eliminated by cancellations between the graphs upon insertion of the numerical values for the
symmetry factors in Tab. 3.1 on page 40. In this way, Π0

µν boils down to the result Eqn. (3.19)
in the main text. Note that, according to the discussion in Section 3.1.3 the finite contributions
cannot be given accurately due to the approximation (3.14). Therefore, only divergent terms
are given explicitly.

All integrals in the first order of expansion Eqn. (3.17) of the integrands of Eqns. (B.17a)–(B.17j)
vanish identically due to the symmetric integration over an odd power (i.e. an antisymmetric
function in k).

The explicit expressions for the second order terms with gauge fixing parameter α = 1 (Feynman
gauge) read

Π(a),2
µν = sa4g2

+∞∫
−∞

d4k

(2π)4
sin2 kθp

2

(a2 + k4)5
k12

[
k4
(
3p2δµν − 2pµpν

)
+ 40(k.p)2kµkν

+ 2k2
(
2(kp)2δµν − 5

[
p2kµkν − kp (kνpµ + kµpν)

] )]
+ finite , (B.21a)

Π(b),2
µν = 0 , (B.21b)

Π(c),2
µν = sc4g2

+∞∫
−∞

d4k

(2π)4
sin2 kθp

2

[
kµkν

(
p2

k6
− 4

(kp)2

k8

)
+ 2pµkν

kp

k6

]
, (B.21c)

Π(d),2
µν = sd96g2

+∞∫
−∞

d4k

(2π)4
sin2 kθp

2

(a2 + k4)4
k8

[
k2
(
k2pµpν − 4p2kµkν

)
− 4k2kp (kνpµ + kµpν) + 20(kp)2kµkν

]
+ finite, (B.21d)

Π(e),2
µν = −se24g2

+∞∫
−∞

d4k

(2π)4
pµpν sin2 kθp

2

k4

(
2 − a′2

k̃2
“

k2+ a2

k̃2

”

)
. (B.21e)

Π(f),2
µν = −sf4a4g2

+∞∫
−∞

d4k

(2π)4
sin2 kθp

2

k6k̃6
(
k2 + a2

k̃2

)3

[
k2
(
a2 + 3k4

) [
3p2kµkν + 2kp (kνpµ + 2kµpν)

]
− 12

a4 + 3a2k4 + 6k8

k2k̃2
(
k2 + a2

k̃2

) (kp)2kµkν

]
, (B.21f)

Π(g),2
µν = −sg4a2g2

+∞∫
−∞

d4k

(2π)4
sin2 kθp

2

k6k̃8
(
k2 + a2

k̃2

)4

[
a2k2

(
a2 + k4

)2
pµpν

− a2
(
a4 + a2k4 + 8k8

)
kp (kνpµ + kµpν)

+ p2
[
k2(a2 − k4)(a4 + 2a2k4 + 3k8)δµν − a2

(
a4 − a2k4 + 2k8

)
kµkν

]
+

(kp)2

a2 + k4

[ (
a8 − 22a6k4 − 27a4k8 − 40a2k12 + 12k16

)
δµν

+ 8a2k2
(
3a4 + a2k4 + 4k8

)
kµkν

]]
,
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Π(h+i),2
µν = sh4a2g2

+∞∫
−∞

d4k

(2π)4
sin2 kθp

2

k8k̃6 (a2 + k4)3

[
2a2

(
a2 + k4

)
k2pµpν −

(
4a4 + 7a2k4 − 9k8

)
p2kµkν

− kp
[
16a2

(
a2 + 2k4

)
kµpν +

(
2a4 + 5a2k4 − 9k8

)
kνpµ

]
+

4(kp)2

k2(a2 + k4)
(
5a6 + 14a4k4 + 21a2k8 − 12k12

)
kµkν

]
+ µ↔ ν ,

(B.21g)

Π(j),2
µν = sj8a2g2

+∞∫
−∞

d4k

(2π)4
sin2 kθp

2

k2 (a2 + k4)3

[
3k2

(
a2 + k4

)
pµpν − 2p2

(
a2 + 13k4

)
kµkν

− 4kp
[(
a2 + 7k4

)
kµpν + 6k4kνpµ

]
+

12(kp)2

k2(a2 + k4)
(
a4 − 2a2k4 + 13k8

)
kµkν

]
(B.21h)

Π(k+l),2
µν = 4a2g2sk

+∞∫
−∞

d4k

(2π)4
sin2 kθp

2

(a2 + k4)5

[
a6

k2

[
4p2kµkν + kp (4kνpµ + 5kµpν)

]
− k12p2δµν

+ a4k2
[
k2
(
7p2δµν− 2pµpν

)
+
(
2kp (2kp δµν+ 2kνpµ− kµpν) − p2kµkν

)]
+ k8

(
a2
(
4p2δµν − pµpν

)
+ 20(kp)2kµkν

)
− a2k6

(
10p2kµkν + kp (40kpδµν + 4kνpµ + 11kµpν)

)
+
(
2a6p2δµν − a6pµpν − 68a4(kp)2kµkν

)
+ k10

(
−5p2kµkν+ 4(kp)2δµν− 4kp (kνpµ+ kµpν)

)]
+ µ↔ ν . (B.21i)

As before, in order zero, the approximation (3.14) is applied in order to simplify the denomi-
nators of the expressions prior to integration. The resulting integrals can then be evaluated by
utilization of the prescriptions in Appendix F.1. Furthermore, restricting ourselves to divergent
contributions only, we do not have to consider the expressions of all graphs. Power counting with
respect to k reveals a superficial degree of divergence d

(
I{(a),(c),(d),(e)},2
µν

)
= 0, corresponding to

at most logarithmic singularities. All other integrals only give finite contributions, and need
not be considered, i.e. d

(
I{(b),(f),(g),(h+i),(j),(k+l)},2
µν

)
< 0. The explicit results of the integration

(again with the help of VectorAlgebra) read

Πp,2
µν (p) + Πnp,2

µν (p) = Π(a),2
µν + Π(c),2

µν + Π(d),2
µν + Π(e),2

µν + finite , (B.22)

Πp,2
µν =

g2

3(4π)2
K0

(
2

√
µ2

Λ2

)[
(sa(50 − 12α) + sc − 48sd) p2δµν

+ 2pµpν (sa(6α− 28) + sc + 96sd − 72se)
]

+ finite

=
g2

3(4π)2
(3α− 1)

[
ln
( µ2

4Λ2

)
+ 2γE

] (
p2δµν − pµpν

)
+ finite , (B.23)

Πnp,2
µν = − g2

3(4π)4

[
2 ((11 − 15α)sa − 2sc − 168sd)

p̃µp̃ν
θ2

+
[
p2δµν (sa(50 − 12α) + sc − 48sd)

− 2pµpν (sa(28 − 6α) − sc + 72se − 96sd)
]
K0

(√
µ2p̃2

)]
+ finite (B.24)

=
g2

3(4π)2

[
2(3α− 17)

p̃µp̃ν
θ2

+ (1 − 3α)
(
p2δµν − pµpν

)(
ln
(µ2p̃2

4

)
+ 2γE

)]
+ finite .

(B.25)



Appendix B – Supplementary Content to the 1/p2 Gauge Model with Real . . . 111

Note that transversality can only be seen for the divergent terms at this place since all convergent
contributions coming from graphs (b), and (f)–(l) have been omitted. In addition, the approxi-
mation (3.14) introduces indeterminate errors in the finite parts. Summing up the contributions
(B.23) and (B.25) the µ-dependent divergences cancel each other, and we arrive at

Π2
µν =

g2

3(4π)2

[
(6α− 34)

p̃µp̃ν
θ2

− (p2δµν − pµpν)(3α− 1) ln
(
p̃2Λ2

) ]
+ finite

≈ − g2

3(4π)2

[
(p2δµν − pµpν)(3α− 1) ln

(
p̃2Λ2

) ]
+ finite , (B.26)

where the approximation refers to the omission of finite terms (i.e. terms which remain finite
in the limits p̃→ 0, µ→ 0, and Λ → ∞). The later result equals the result (3.20) stated in the
main text for Feynman gauge α→ 1.

B.3 Miscellanea

Theorem 2. The covariant derivative Dn, n ∈ N0 fulfills the rule
∫

d4xA ? (Dn ? B) =
(−1)i

∫
d4x (DiA) ? Dn−i ? B, with A, B being operators, i ∈ {0..n}, for partial integration.

Proof. The proof is given by induction

n = 1 :∫
dDxAµν ? Dρ ? Bµν =

∫
dDxAµν ? (∂ρ ? Bµν − ig [Aρ ?, Bµν ])

=
∫

dDx − (∂ρAµν) ? Bµν −Aµν ? Aρ ? Bµν +Aµν ? Bµν ? Aρ

= −
∫

dDx − (DρA
µν)Bµν , (B.27)

where the cyclic permutation property of the star product has been applied in the last
step.

n = 2 :∫
dDxAµν ? D2 ? Bµν =

∫
dDxAµν ?

(
∂ρ∂ρ ? Bµν − ig∂ρ [Aρ ?, Bµν ]−

− ig [Aρ ?, (∂ρBµν)] − g2 [Aρ ?, [Aρ ?, Bµν ]]
)

=
∫

dDx − (∂ρBµν) ? ∂ρ ? Bµν + ig (∂ρBµν) ? [Aρ ?, Bµν ] +

+ ig [(∂ρ (Aµν ? Aρ)) ? Bµν − (∂ρ (Aρ ? Aµν)) ? Bµν ] +

+ g2 [Aρ ?, Aµν ] [Aρ ?, Aµν ]

= −
∫

dDx (DρAµν)DρBµν (B.28)

= −
∫

dDx
(
D2Aµν

)
Bµν ,

where again the cyclic permutation property gave [Aρ ?, [Aρ ?, Bµν ]] =−[Aρ ?, Aµν ][Aρ ?, Aµν ],
and the last step is rectified by redefining A′µν := (DρAµν) and applying the rule (B.27).
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n > 2 : The right part with n− 1 derivatives can be separated by virtue of the (presumed)
associativity of the operator D and the star product. Redefining then Dn−1 ? B = : B′,
the case can be reduced to Eqn. (B.28),∫

dDxAµν ? Dn ? Bµν =
∫

dDxAµν ? D
(
Dn−1 ? Bµν︸ ︷︷ ︸

:=B′
µν

)

= −
∫

dDx (DρAµν) ? B′
µν

= −
∫

dDx (DρAµν) ? Dn−1 ? Bµν . (B.29)

Theorem 3. The operator 1
� fulfills the rule for partial integration:∫

dxA
1
�B =

∫
ddx

(
1
�A

)
B ,

where A,B ∈ S (Mat) in d dimensions.

Proof. Generally,
∫

dxA�B = +
∫

dx (�A)B for A,B ∈ S (Mat). Hence, with �x�−1
x =

�−1
x �x = 1d, i.e.

[
�x,�−1

x

]
= 0,∫

dxA(x)B(x) =
∫

dxA(x)�−1
x �xB = +

∫
dx (�xA(x)) �−1

x B.

On the other hand,∫
dxA(x)B(x) =

∫
dx
(
�−1
x �xA(x)

)
B.

A redefinition finally leads to the desired result,

A′(x) := (�xA(x))∫
dx
(
�−1
x A′(x)

)
B(x) =

∫
dxA′(x)�−1

x B.

Note that, due to Theorem 2, the inverse of the covariant derivative fulfills the partial integration
rule too, i.e.

∫
ddxA 1

D2B =
∫

ddx
(

1
D2A

)
B.

Theorem 4. For any operator B transforming covariantly under the BRST transformation s,
i.e. sB = ig [c ?, B] the relation s

(
Dn
µB
)

= ig
[
c ?, Dn

µB
]
, ∀n ∈ N0 holds.

Proof. The proof is given by induction. For n = 1 we have,

s (DµB) = s∂µ − igs [Aµ ?, B]
= ig∂µ [c ?, B] − ig [(Dµc)B + igAµ [c ?, B] − ig [c ?, B]Aµ −BDµc]
= ig [c∂µB − (∂µB)c− ig (cAµB − igcBAµ +AµBc+BAµc+ 0)]
= ig [c ?, DµB] .
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For n = 2,

s
(
D2B

)
= s
(
DµDµB︸ ︷︷ ︸

:=B′

)
,

and since, as proven for n = 1, sB′ = ig [c ?, B′], this case can be reduced to the prior step. In
the same way, for general n one defines

s
(
Dn+1
µ B

)
= : s

(
DµB

′) = ig
[
c ?, DµB

′] = ig
[
c ?, Dn+1

µ B
]
, (B.30)

where sB′ = ig [c ?, B′] per construction.

Theorem 5. The inverse of the covariant derivative fulfills Theorem 4, i.e. s
(

1
D2nB

)
=[

c ?, 1
D2nB

]
, for all operators B transforming covariantly in the sense of Theorem 4, and n ∈ N0.

Proof. From Theorem 4, we have

s
(
D2B

)
=
(
sD2

)
B + igD2 [c ?, B]

=
(
sD2

)
B + ig

([
D2c ?, B

]
+ 2 [Dµc ?, DµB] +

[
c ?, D2B

])
= ig

[
c ?, D2B

]
.

By comparing both sides we can deduce that
(
sD2

)
B = −ig

([
D2c ?, B

]
− 2 [Dµc ?, DµB]

)
.

Since, per definition sB = ig [c ?, B], and (D2)−n(D2)n = (D2)n(D2)−n = 1d, for n = 1 we
can write

sB = s (1B) = s
(
D2(D2)−1B

)
=
(
sD2

)
(D2)−1B +D2s

(
(D2)−1B

)
= −ig

[
D2c ?, (D2)−1B

]
− 2ig

[
Dµc ?, Dµ(D2)−1B

]
+D2s

(
(D2)−1B

)
≡ ig [c ?, B] .

In order for the latter equivalence to hold, the identification s
(
(D2)−1B

)
≡ ig

[
c ?, (D2)−1B

]
is

required (as is seen by explicitly writing out the terms).
The rest of the proof proceeds along the lines of Theorem 4. For n = 2 one can redefine
(D2)−2D4B = : (D2)−1B′, which again reduces the situation to the case n = 1. The same is
immediately true for arbitrary n > 0.
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Appendix C

Supplementary Content to the 1/p2

Gauge Model with BRST Doublets

For the sake of completeness the Feynman rules of the model shall be listed in their full form
in this section. The respective derivations are conducted in the same way as described in
Appendix A.1 and Appendix B.1.

C.1 Feynman Rules

Conceptually, details of the computation of the equations of motion and propagators for the
model of Section 3.2 is postponed to Appendix E.1 where a detailed analysis of the damping
mechanisms is presented. Propagators are given in Eqns. (3.36a)–(3.36d), and vertices are listed
below. The vertex expressions are obtained by direct variation of the action (3.35) with respect
to the fields.

p2,σ

p1,ρ

p3,τ

= V 3A
ρστ (p1, p2, p3)

= 2ig(2π)4δ4(p1 + p2 + p3) sin
(
p1p̃2

2

)
×

× [(p3 − p2)ρδστ + (p1 − p3)σδρτ + (p2 − p1)τδρσ] , (C.1a)
p4,ε

p3,τ

p2,σ

p1,ρ

= V 4A
ρστε(p1, p2, p3, p4)

= −4g2(2π)4δ4(p1 + p2 + p3 + p4)×

×
[
(δρτδσε − δρεδστ ) sin

(
p1p̃2

2

)
sin
(
p3p̃4

2

)
+(δρσδτε − δρεδστ ) sin

(
p1p̃3

2

)
sin
(
p2p̃4

2

)
+(δρσδτε − δρτδσε) sin

(
p2p̃3

2

)
sin
(
p1p̃4

2

)]
, (C.1b)

p2,ρ

p1

p3

= V c̄Ac
µ (p1, p2, p3)

= −2ig(2π)4δ4(p1 + p2 + p3)p1µ sin
(
p1p̃3

2

)
, (C.1c)
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p1,ρσ

p3,ε

p2,τ

= V BAA
µν,ρσ (p1, p2, p3) =

p1,µν

p3,σ

p2,ρ

V B̄AA
µν,ρσ (p1, p2, p3)

= λg(2π)4δ4(p1 + p2 + p3) (δµρδνσ − δµσδνρ) sin
(
p2p̃3

2

)
, (C.1d)

p3,τ

p2,γε

p1,ρσ

= V B̄BA
µν,ρσε(p1, p2, p3) = −

p3,ε

p2,ρσ

p1,µν

= −V ψ̄ψA
µν,ρσε(p1, p2, p3)

= −iµ2g(2π)4δ4(p1 + p2 + p3) (δµρδνσ − δµσδνρ)×

×
(
(p̃1)2 + (p̃2)2

)
(p1 − p2)ε sin

(
p1p̃2

2

)
, (C.1e)

p3,τ

p2,ρσ

p1,µν

p4,ε

= V B̄B2A
µν,ρσ,τε(p1, p2, p3, p4) =

p3,τ

p2,ρσ

p1,µν

p4,ε

= V ψ̄ψ2A
µν,ρσ,τε(p1, p2, p3, p4)

= 2µ2g2θ2(2π)4δ4(p1 + p2 + p3 + p4) (δµρδνσ − δµσδνρ)×

×
{[
p3,τp4,ε+ 2 (p1,τp4,ε+ p2,εp3,τ )+ 4p1,τp2,ε− δετ

(
p1

2+ p2
2
)]

sin
(p1p̃3

2

)
sin
(p2k̃4

2

)
+
[
p3,τp4,ε+ 2 (p2,τp4,ε+ p1,εp3,τ )+ 4p1,εp2,τ− δετ

(
p1

2+ p2
2
)]

sin
(p1p̃4

2

)
sin
(p2p̃3

2

)}
,

(C.1f)
p2,ρσ

p1,µν

p5,κ

p4,ε

p3,τ

= V B̄B3A
µν,ρσ,τεκ (p1, p2, p3, p4, p5) = −

p2,ρσ

p1,µν

p5,κ

p4,ǫ

p3,τ

= −V ψ̄ψ3A
µν,ρσ,τεκ (q1, q2, p3, p4, p5)

= −4ig3µ2θ2(2π)4δ4(p1 + p2 + p3 + p4 + p5) (δµρδνσ − δµσδνρ)×

×
{

[p3 + 2p1]τ δεκ sin
(p3p̃1

2

)[
sin
(p5p̃2

2

)
sin
(p4(p̃5+p̃2)

2

)
+ (p4 ↔ p5)

]
+ [p4 + 2p1]ε δτκ sin

(p4p̃1
2

)[
sin
(p5p̃2

2

)
sin
(p3(p̃5+p̃2)

2

)
+ (p5 ↔ p3)

]
+ [p5 + 2p1]κ δτε sin

(p5p̃1
2

)[
sin
(p3p̃2

2

)
sin
(p4(p̃3+p̃2)

2

)
+ (p3 ↔ p4)

]
+ (p1 ↔ p2)

}
, (C.1g)

p3,τp2,ρσ

q1,µν

p6,ι
p5,κ

p4,ǫ= V B̄B4A
µν,ρσ,τεκι (p1, p2, p3, p4, p5, p6) = −

p3,τp2,ρσ

q1,µν

p6,ι
p5,κ

p4,ǫ = −V ψ̄ψ4A
µν,ρσ,τεκι (p1, p2, p3, p4, p5, p6)

= 2g4µ2θ2(2π)4δ4(p1 + p2 + p3 + p4 + p5 + p6) (δµρδνσ − δµσδνρ)×

×
{

2δτεδκι
[
sin
(p4p̃1

2

)
sin
(p3(p̃4+p̃1)

2

)
sin
(p6p̃2

2

)
sin
(p5(p̃6+p̃2)

2

)
+ (p3 ↔ p4) + (p5 ↔ p6)

]
+ δτκδει

[
sin
(p5p̃1

2

)
sin
(p3(p̃5+p̃1)

2

)
sin
(p6p̃2

2

)
sin
(p4(p̃6+p̃2)

2

)
+ (p3 ↔ p5) + (p4 ↔ p6)

]
+ δτιδκε

[
sin
(p6p̃1

2

)
sin
(p3(p̃6+p̃1)

2

)
sin
(p4p̃2

2

)
sin
(p5(p̃4+p̃2)

2

)
+ (p3 ↔ p6) + (p5 ↔ p4)

]
+ (p1 ↔ p2)

}
. (C.1h)
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C.2 One Loop Calculations

C.2.1 Vacuum polarization

The model (3.35) gives rise to 23 graphs contributing to the two-point functionGAAµν (p). Omitting
convergent expressions, there are 11 graphs left depicted in Fig. C.1 on page 118. Being interested
in the IR divergent contributions we apply again the expansion (3.17) for p̃→ 0.

Summing up the contributions of the graphs in Fig. C.1, and denoting the result at order i for
the planar (p) part by Π(i),p

µν , one is left with

Π(0),p
µν (p) =

g2

16π2
Λ2δµν (−10sc − 96sh − 96sj + 12sa + sb + 96sd + 96sf) ,

=0 , (C.2a)

Π(2),p
µν (p) = − 1

3
g2

16π2

[
δµνp

2 (22sa + sb + 48(sd + sf))

+ 2pµpν (72(sh + sj) − 8sa + sb − 96(sd + sf))
]
K0

√
µ2

Λ2
,

= − 5g2

12π2

(
p2δµν − pµpν

)
K0

√
µ2

Λ2

≈− 5g2

12π2

(
p2δµν − pµpν

)
ln
(

Λ2

µ2

)
+ finite , (C.2b)

where the symmetry factors in Tab. C.1 have been inserted and the approximation

K0(x) ≈
x�1

ln 2
x − γE + O

(
x2
)
,

for the modified Bessel function K0 can be utilized for small arguments, i.e. vanishing regulator
cutoffs1 Λ → ∞ and µ → 0. Finally, γE denotes the Euler-Mascheroni constant. Note, that
the first order vanishes identically due to an odd power of k in the integrand which leads to a
cancellation under the symmetric integration over the momenta.

Table C.1: Symmetry factors for the one loop vacuum polarization (where the factor (−1) for
fermionic loops has been included).

sa
1
2 se 1 si 1

sb -1 sf -1 sj -1
sc

1
2 sg -1 sk -1

sd 1 sh 1

1The cutoffs are introduced via a factor exp
ˆ

−µ2α − 1
Λ2α

˜

to regularize parameter integrals
R ∞
0

dα. See
Ref. [62] and Appendix A.2.1 for a more extensive description of the mathematical details underlying these
computations.
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HaL HbL HcL

HdL HeL Hf L HgL

HhL HiL HjL HkL

Figure C.1: One loop corrections for the gauge boson propagator

Of particular interest is the non-planar part (np) which for small p results to:

Π(0),np
µν (p) =

g2

4π2p̃2

[
δµν (96(sh + sj − sd − sf) − 12sa − sb + 10sc)

− 2
p̃µp̃ν
p̃2

(48(sh + sj) − 96(sd + sf) − 12sa − sb + 2sc)
]

=
2g2

π2

p̃µp̃ν
(p̃2)2

, (C.3a)

Π(2),np
µν (p) =

g2

48π2p̃2

{
2θ2pµpνp

2 (72(sh + sj) − 8sa + sb − 96(sd + sf))K0

(√
µ2p̃2

)
+

√
p̃2

µ2
p2

[√
p̃2

µ2
(22sa + sb + 48(sd + sf))µ2δµν K0

(√
µ2p̃2

)
+ 2µ2 (13sa + sb + 120(sd + sf)) p̃µp̃ν K1

(√
µ2p̃2

)
− 3

√
µ2

p̃2
(16sa + sb + 96(sd + sf)) p̃µp̃ν

]}

= − g2

48π2

[
p̃µp̃ν

(
21
θ2

− 11p2

√
µ2

p̃2
K1

(√
µ2p̃2

))
− 10K0

(√
µ2p̃2

) (
p2δµν − pµpν

) ]
. (C.3b)

Considering the limit p̃2 → 0 rectifies application of the approximation

K1(x) ≈
x�1

1
x + x

2

(
γE − 1

2 + ln x
2

)
+ O

(
x2
)
,

which reveals that the second order is IR finite (which is immediately clear from the fact that
the terms of lowest order in p are O

(
p2
)
), apart from a ln(µ2)-term which cancels in the sum of
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planar and non-planar contributions. Hence, collecting all divergent terms one is left with (in
the limit µ→ 0 and Λ → ∞),

Πµν(p) =
2g2

π2

p̃µp̃ν
(p̃2)2

− lim
Λ→∞

5g2

12π2

(
p2δµν − pµpν

)
ln
(
Λ2
)

+ finite terms , (C.4)

which is independent of the IR-cutoff M . As expected, Eqn. (C.4) exhibits a quadratic IR
divergence in p̃2, and a logarithmic divergence in the cutoff Λ. Furthermore, the transversality
condition pµΠµν(p) = 0 is fulfilled, which serves as a consistency check for the symmetry factors.

C.2.2 Corrections to the AB propagator

The action (3.35) gives rise to eight divergent graphs with one external Aµ and one Bµν which
are depicted in Fig. C.2. Applying an expansion of type (3.17) for small external momenta p,
and summing up the divergent contributions of all graphs (all orders of an expansion similar to
Eqn. (3.17)), one ends up with,

HaL HbL HcL HdL

HeL Hf L HgL HhL

Figure C.2: One loop corrections for 〈AµBν1ν2〉 (with amputated external legs).

Table C.2: Symmetry factors for the graphs depicted in Fig. C.2

(a) 1/2 (e) 1
(b) 1 (f) 1
(c) 1 (g) 1
(d) 1 (h) 1

Σp,AB
µ1,ν1ν2(p) = − 3ig2

32π2
λ (pν1δµ1ν2 − pν2δµ1ν1)K0

√
µ2

Λ2
+ finite

Σnp,AB
µ1,ν1ν2(p) =

3ig2

32π2
λK0

(√
µ2p̃2

)
(pν1δµ1ν2 − pν2δµ1ν1) + finite . (C.5)

Approximating the Bessel functions for small arguments (c.f. Eqn. (F.24)) and summing up
planar and non-planar parts one finds the expression

ΣAB
µ1,ν1ν2(p) =

3ig2

32π2
λ (pν1δµ1ν2 − pν2δµ1ν1) (ln Λ + ln |p̃|) + finite , (C.6)
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where the IR cutoff µ has cancelled, and which shows a logarithmic divergence for Λ → ∞.

Due to the symmetry between B and B̄ in the sense that both have identical interactions with
the gauge field, it is obvious that ΣAB

µ1,ν1ν2 ≡ ΣAB̄
µ1,ν1ν2 and as implied by Eqn. (3.37a) it also

holds that ΣBA
µ1µ2,ν1 ≡ −ΣAB

ν1,µ1µ2.

C.2.3 Corrections to the BB propagator

The set of divergent graphs contributing to 〈Bµ1µ2Bν1ν2〉 consists of those depicted in Fig. C.3.
Making an expansion of type (3.17) for small external momenta p, and summing up the contri-
butions of all nine graphs yields

Σp,BB
µ1µ2,ν1ν2(p) =

g2λ2

32π2
(δµ1ν1δµ2ν2 − δµ2ν1δµ1ν2)K0

√
µ2

Λ2
+ finite ,

Σnp,BB
µ1µ2,ν1ν2(p) =

g2λ2

64π2

(
δµ1ν2p̃µ2p̃ν1 − δµ1ν1p̃µ2p̃ν2 − δµ2ν2p̃µ1p̃ν1 + δµ2ν1p̃µ1p̃ν2

p̃2

+ 2 K0

(√
µ2p̃2

)
(δµ1ν2δµ2ν1 − δµ1ν1δµ2ν2)

)
+ finite ,

(C.7)

for the planar/non-planar part, respectively. Approximation of the Bessel functions for p � 1,
i.e. small arguments, reveals cancellations of contributions depending on µ in the final sum.
Hence, the divergent part boils down to

ΣBB
µ1µ2,ν1ν2(p) =

g2λ2

64π2
(δµ1ν1δµ2ν2 − δµ2ν1δµ1ν2)

(
lnΛ2 + ln p̃2

)
+ finite , (C.8)

leaving a logarithmic divergence for both the planar and the non-planar part.

HaL HbL HcL HdL

HeL Hf L HgL HhL

HiL

Figure C.3: One loop corrections for 〈Bµ1µ2Bν1ν2〉 (with amputated external legs).

Due to symmetry reasons this result is also equal to the according correction to the B̄B̄ propa-
gator, i.e.

ΣB̄B̄
µ1µ2,ν1ν2(p) = ΣBB

µ1µ2,ν1ν2(p) . (C.9)
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Table C.3: Symmetry factors for the graphs depicted in Fig. C.3

(a) 1/2 (d) 1 (g) 1
(b) 1 (e) 1 (h) 1
(c) 1 (f) 1 (i) 1

C.2.4 Corrections to the BB̄ propagator

For the correction to 〈Bµ1µ2B̄ν1ν2〉 one finds the ten divergent graphs depicted in Fig. C.4.

HaL HbL HcL HdL

HeL Hf L HgL HhL

HiL HjL

Figure C.4: One loop corrections for 〈Bµ1µ2B̄ν1ν2〉 (with amputated external legs).

Table C.4: Symmetry factors for the graphs depicted in Fig. C.4

(a) 1/2 (e) 1 (i) 1
(b) 1 (f) 1 (j) 1/2
(c) 1 (g) 1
(d) 1 (h) 1

Expansion for small external momenta p and summation of the integrated results yields

Σp,BB̄
µ1µ2,ν1ν2(p) =

g2

2π2
Λ2µ2p̃2 (δµ2ν1δµ1ν2 − δµ1ν1δµ2ν2)

+
g2λ2

32π2
(δµ1ν1δµ2ν2 − δµ2ν1δµ1ν2)K0

√
µ2

Λ2
+ finite ,

Σnp,BB̄
µ1µ2,ν1ν2(p) =

g2λ2

64π2

(
δµ1ν2p̃µ2p̃ν1 − δµ1ν1p̃µ2p̃ν2 − δµ2ν2p̃µ1p̃ν1 + δµ2ν1p̃µ1p̃ν2

p̃2

+ 2K0

(√
µ2p̃2

)
(δµ1ν2δµ2ν1 − δµ1ν1δµ2ν2)

)
+ finite ,

(C.10)
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Hence, the divergent part is given by

ΣBB̄
µ1µ2,ν1ν2(p) =

g2

2π2
Λ2µ2p̃2 (δµ2ν1δµ1ν2 − δµ1ν1δµ2ν2)

+
g2λ2

64π2
(δµ1ν1δµ2ν2 − δµ2ν1δµ1ν2)

(
lnΛ2 + ln p̃2

)
+ finite , (C.11)

which is logarithmically divergent in p̃2 and quadratically in Λ. Once more, µ has dropped out in
the sum of planar and non-planar contributions. Furthermore, note that ΣBB̄

µ1µ2,ν1ν2 ≡ ΣB̄B
ν1ν2,µ1µ2

as is obvious from the result (C.8).
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Appendix D

A Short Story About Forests and
Trees

This chapter aims to give a brief introduction to the treatment of overlapping divergences. Being
split into two parts we will first focus to the Zimmermann approach, and then see the beauty
of the mathematical structure of bi-algebras used by Epstein and Glaser, from which the same
results emerge naturally.

D.1 Zimmermann Approach

For single loop integrands I(k) any UV divergence can directly be extracted and subtracted, as
for instance has been discussed for the BPHZ scheme in Section 4.1.1. At higher loop order this
does not work since the involved momenta may take their limits one at a time or simultaneously.
Hence, the object of desire is a map R : G 7→ R(G) for a graph G, which extracts the finite
content. Intuitively, this is R(G) = G+C(G), where C is a function which returns the divergent
contributions with opposite sign. With these definitions we can define Bogoliubov’s R̄-operator

R̄(G) = G+
∑
γ$G

Cγ(G) . (D.1)

R(G) = R̄(G) + C(G) . (D.2)

Next we define

Cγ(G) =

{
−T ◦ R̄(γ) , if γ has an overall divergence
0 , if γ has no overall divergence

, (D.3)

R(G) = R̄(G) − T ◦ R̄(G) . (D.4)

The operation T with T 2 = T and T ◦ (γ1γ2) = (T ◦ γ1)(T ◦ γ2) gives the overall divergence
of its argument with positive sign, i.e. T ◦ G = −C(G). This puzzling notation is kept only
for historic reasons. Meaning is most easily given to these recursive definitions by some simple
examples.

G = no subdivergences, R(G) = G− T ◦G = G+ C(G) ,

G = no overall, 1 subdiv. γ, R(G) = G− T ◦R̄(γ) = G− T ◦ γ = R̄(G),
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G = no overall, 2 subdiv. γ1, γ2, R(G) = G+ Cγ1 + Cγ2 + Cγ1∪γ2 .

In the first line only the overall divergence needs to be subtracted. The graph of the second
line has one subdivergence. Note that in this case the R̄ operation reduces to R. For the
third line we have the expression Cγ1∪γ2 for the simultaneous occurrence of the two independent
subdivergences.

Cγ1∪γ2 = −T ◦ R̄(γ1 ∪ γ2) = −T ◦ [γ1γ2 + Cγ1γ2 + γ1Cγ2 ]
= (T ◦ γ1)(T ◦ γ2) − (T ◦ T ◦ γ1)(T ◦ γ2) − (T ◦ γ1)(T ◦ T ◦ γ2) = −T ◦ (γ1γ2) .

The important point here is the independence of the divergences. More involved is the case of
overlapping divergences, as explained for the next example

G = R(G) = R̄(G) − T ◦ R̄(G)

= G−
∑
γ

T ◦ R̄(γ)︸ ︷︷ ︸
8 graphs

− T ◦ R̄︸ ︷︷ ︸
8 graphs

,

Cγ1 and Cγ4 : one loop divergences, simple subtraction,
Cγ2 = −T ◦ [γ2 − γ2|γ1→T◦γ1 ] ,
Cγ5 = −T ◦ [γ5 − γ5|γ4→T◦γ4 ] ,

Cγ1∪γ4 = T ◦ (γ1γ4) .

The graph G contains eight combinations which enter the R̄ operation (i.e. which are wrapped
by a T function): single divergences for γ1, γ2, γ4, γ5, the combinations γ1&γ2, γ4&γ5 which
overlap, independently γ1 & γ4, and all of them together. Each of these combinations (according
to Eqn. (D.4)) appears once as single divergence, and together with the overall divergence of G,
yielding a total of 16 counterterms. Now Zimmermann has combined these rather sketchy argu-
ments into a rigorous subtraction scheme which represents a solution to Bogoliubov’s recursion
in a closed form. We have to introduce some additional definitions,

Definition 7. Two graphs γ1, γ2 ⊂ G are called overlapping if they do not fulfill γ1 ⊆ γ2 ∨ γ2 ⊆
γ1 ∨ γ1 ∩ γ2 = 0

Definition 8. A forest f is a set of non-overlapping subgraphs γi of G or the empty set e

Finally, we can write down the famous Forest Formula:

R(G) =
∑

f∈F(G)

∏
γ inf

[−T ◦ γ] , (D.5)

where F =
∪
f ∈ G is the set1 of all forests in G. Now, regarding the above example with

overlapping divergences, we can immediately rewrite the subtractions in terms of forest, de-
noted by explicit sets: {{}, {γ1}, {γ2}, {γ4}, {γ5}, {γ1, γ2}, {γ4, γ5}, {γ1, γ4}}, where the empty
set corresponds to the overall divergence. For a detailed review see Ref. [148].

1Note that F gives rise to a tree structure [148].
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D.2 Epstein Glaser Approach

Despite not being applied directly in this thesis, the beauty of the bi-algebra approach by Epstein
and Glaser [149] shall briefly be discussed at this place. It shall be pointed out that the contents
presented below can be found in a very didactive way in Ref. [150]. A more technical focus is
given in to Ref. [151]. For a rudimentary understanding of the approach we have to introduce
the notion of rooted trees, which are defined by a simply connected (i.e. there are no loops) set
of oriented edges and vertices, where the latter, each, correspond to a divergent subdiagram2 of
the Graph G under consideration, i.e. i.e. t ⊆ G, and each edge connects exactly two vertices.
The root is the only vertex without incoming edges and equals G. We define operations B− and
B+ which remove and add the root nodes of a rooted tree t, respectively (B− : t 7→ {t1..tn},
B+ : {t1..tn} 7→ t, B− ◦ B+ = B+ ◦ B− = id, B−(•) = id, B+(id) = (•)). In addition, we have
the notion of cuts on trees. We distinguish:
elementary cuts which simply split apart any graph •

•
•→ {• , ••}

admissible cuts are sets of elementary cuts for which each vertex is separated from the root by
at most one cut.
We further define R(t) ≡ t, and P (t) to be to be t without its root t0, i.e. t/t0. Then, for the
full cut we have P (t) = e, R(t) = t, and for the empty cut, P (t) = t, R(t) = e, where e is the
empty cut.
On the mathematical side we have the

Definition 9. A Hopf algebra H on rooted trees is defined by the algebra properties

B associative product m : H×H 7→ H

B unit eH : m(eH, a) ≡ m(a, eH) ≡ a∀a ∈ H

B inverse a−1 : m(a−1, a) ≡ m(a, a−1) ≡ eH

and the following coalgebra properties

B coassociative coproduct m̄ : H 7→ H×H, with (m̄H × id)m̄(a) ≡ (id×m̄H)m̄(a)∀a ∈ H

B counit ēH : (ēH × id) ◦ m̄(a) ≡ (id×ēH) ◦ m̄(a) ≡ a∀a ∈ H

B coinverse (antipode) s̄ : m ◦ (s̄× id) ◦ m̄(a) = eH =

{
1 if a ≡ eH

0 a nontrivial
.

Then, a direct application to rooted trees is given by letting m be a disjoint union of trees t, and
the unit eH be the empty set. Then the coproduct is given by the relations m̄(eH) = ēH ⊗ ēH,
m̄(t1, ..tn) = {m̄(t1), ..m̄(tn)}, and finally, m̄(t) = t ⊗ ēH + (id⊗B+) ◦ m̄H(B−(t)). The latter
equation can easily be understood when considering simple examples

m̄(•) = •⊗ ēH + ēH ⊗ • ,

m̄(••) = •
•⊗ ēH + •⊗ • + ēH ⊗ •

•︸ ︷︷ ︸
(id⊗B+)◦m̄(•)

,

m̄(t) = ēH ⊗ t+ t⊗ ēH +
∑

admissible cuts C of t

PC(t) ⊗RC(t) ,

2The vertices representing divergent subdiagrams are refered to as Hepp sectors in the literature.
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from which follows a recursive splitting scheme of trees. In the same way, the antipode becomes
s̄(ēH) = ēH, s̄(t1, ..tn) = s̄(t1), ..s̄(tn) (disjoint union),

s̄(t) = −t−
∑

admissible cuts C of t

PC(t)RC(t) =
∑

full cuts C of t

(−1)ncPC(t)RC(t) ,

where nc is the number of elementary cuts of t. Again, the meaning becomes clear at hand of a
simple example

s̄(•) = − • ,

s̄(••) = − •
• + (−1)1 s̄(•)• ,

from which we recognize the principle of multiplicative subtraction, similar to the Bogoliubov
recursion (D.4). Defining finally a character φ : H 7→ V mapping from the Hopf algebra into a
vector space V on which an action S can be defined, and a renormalization procedure R : V 7→ V ,
the antipode on H induces the definitions

m̄(t) = t⊗ ēH + ēH ⊗ t+
∑

admissible cuts C of t

PC(t) ⊗RC(t) ,

s̄R(t) := −R

[
φ(t) +

∑
C

s̄R
(
PC(t)

)
RC(t)

]
,

which translates, if we replace t by the n-point 1PI vertex functions Γ,

m̄(Γ) = Γ ⊗ ēH + ēH ⊗ Γ +
∑
γ⊆Γ

γ ⊗ Γ/γ ,

R(Γ) = s̄R(Γ) ◦ φ(Γ) = φ(Γ) +
∑

γ ⊆ Γs̄R(γ)φ(Γ/γ)︸ ︷︷ ︸
:=R̄

+s̄R(Γ) . (D.6)

The latter equation resembles the forest formula (D.5) in a natural way, from the pure mathe-
matical structure of the antipode contained in the Hopf algebra generated by 1PI proper graphs.
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Appendix E

Supplementary Calculations to the
BRSW Model

This chapter contains a step by step description of the construction of the BRSW model in
Appendix E.1, listings of the Feynman rules in Appendix E.2, and detailed results for the vacuum
polarization as well as a discussion of the extensive calculations leading to the corrections to the
functions V 3A and V 4A in Appendix E.3. Regarding the first point, it is necessary to thoroughly
review the interplay between the action and the propagators in the gauge model with BRST
doublets. Therefore, actually, part of Appendix E.1 thematically belongs to Section 3.2 rather
than Chapter 5. However, it seams reasonable to discuss the evolution of the BRSW model,
which starts at the action of Section 3.2, in one piece.

E.1 In-Depth Analysis of Propagators

This section describes in detail the analysis of the interplay between terms in the action, and
the resulting form of the IR divergent propagators of the gauge model with BRST doublets
from Section 3.2. The aim is to find out which terms affect the poles in G{AB,AB̄},GBB, and
GBB̄. These shall then be altered in order to achieve finiteness through the implementation of
additional damping mechanisms.

First, we should state the bilinear part of the starting action (3.23)

Sbi =
∫

d4x
[1
2
Aµ (∂µ∂ν − �)Aν +

a

2
(
Bµν + B̄µν

)
(∂µAν + ∂νAµ) − B̄µν�̃�Bµν + ψ̄µν�̃�ψµν

+ b (∂A) − α

2
b2 − c̄�c

]
. (E.1)

The equations of motion are given by variation with respect to the fields.

δSbi

δAµ
= −jAµ =

(
∂µ∂

ν − �δνµ
)
Aν + a∂ν

(
Bµν + B̄µν

)
− ∂µb , (E.2a)

δSbi

δb
= −jb = ∂µAµ − αb = 0, (E.2b)

δSbi

δc
= jc = −�c̄ = 0 , (E.2c)

δSbi

δc̄
= j c̄ = �c = 0, (E.2d)
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δSbi

δBµν
= −jBµν =

a

4
(∂µAν − ∂νAµ) − ��̃B̄µν , (E.2e)

δSbi

δB̄µν
= −jB̄µν =

a

4
(∂µAν − ∂νAµ) − ��̃Bµν , (E.2f)

δSbi

δψµν
= jψµν = −��̃ψ̄µν , (E.2g)

δSbi

δψ̄µν
= jψµν = ��̃ψµν , (E.2h)

By resolving Eqn. (E.2e) for B̄µν , Eqn. (E.2f) for Bµν , and Eqn. (E.2b) for b, we immediately
obtain the equalities

{Bµν , B̄µν} =
a

2�̃�

[
∂µAν − ∂νAµ + 2

{jB̄µν , jBµν}
a

]
, (E.3)

−jAµ =
(

1 +
a2

�̃�

)
(∂µ∂ν − �δµν)Aν + a

∂ν

�̃�

(
jBµν + jB̄µν

)
− 1
α
∂µ (∂A) − ∂µj

b

α
. (E.4)

Applying ∂µ from the left to −jAµ , gives an expression for (∂A) which can be reinserted into
Eqn. (E.4), yielding

Aµ =
1
�

{(
1 +

a2

�̃�

)−1 [
a

�̃�︸︷︷︸
(∗a)

(
δµρ∂σ −

∂µ∂ρ∂σ
�

)(
jB̄ρσ + jBρσ

)
− 1

� (∂µ∂ρ − �δµρ) jAρ
]

+ t(α)

}
,

(E.5)

where t(α) symbolizes terms depending on the gauge parameter α. An explicit expression for
Bµν is then obtained by inserting Aµ into Eqn. (E.3).

Since the mixed propagator is given by G{AB,AB̄}
µ,ρσ = −δAµ/δj{B,B̄}

ρσ , it is obvious that the term
(∗a) in Eqn. (E.5) is responsible for the overall factor (k2k̃2)−1. For the propagators G{BB̄,BB},
the divergence results from the overall prefactor in Eqn. (E.3). It turns out that, with the
only exception of terms involved in Gψψ̄, all occurrences of the operator �̃� originate from
the term −B̄µν�̃�Bµν in the action (E.1). However, the appearance of �̃� does not only
result in divergences but is actually required for the implementation of the desirable damping
behavior of the 1/p2 model (which, initially, has been the cause for its introduction). This
becomes clear when tracing the construction of the operator

(
1 + a2

e��
)−1 back to Eqn. (E.4).

There it is constructed by a factor 1 stemming from the first term in the equation of motion
for Aµ, Eqn. (E.2a), which in turn originates from the term 1

4F
2 in the action. The second

summand a2/�̃� of the damping factor is introduced by the insertion of Eqn. (E.3) into the
Eqn. (E.2a). Its actual origin is the soft breaking term a

2

(
Bµν + B̄µν

)
(∂µAν + ∂νAµ). Hence,

we can unambiguously trace the damping factors, being required for the photon propagator,
back to the breaking term of the action, and the operator �̃� sandwiched between the complex
conjugated pair {Bµν , B̄µν}. The question is now, what can be done in order to avoid the overall
divergences in mixed and pure propagators involving {B, B̄}, while maintaining the desirable
damping in the gauge boson propagator. The answer shall be constructed step by step in the
subsequent Sections E.1.1 and E.1.2.
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E.1.1 Evolutionary Step 1

A fundamental problem of non-commutative theories is (as is discussed in Section 4.3) the
appearance of dimensionless derivative operators being contractions with θµν . The reason for the
existence of such objects is the negative dimension of θ, as defined in Section 1.3.3, Eqn. (1.15).
We now try to avoid this problem by separating the dimension from the tensor structure,

θµν → εΘµν , with dm(ε) = −2 , and dm(Θµν) = 0 ,

as described in the main text. Contractions are then only performed with Θµν , i.e. p̃µ := pνΘµν
and ε appears solely in terms stemming from integrations over phase factors representing star
products.
The idea is now, to move the implementation of the damping part from the B̄B term to the
breaking term. A possible action is given by

Sev1 =
∫

d4x
[1
4
FµνFµν + b∂ ·A− α

2
b2 − c̄∂µDµc

+
γ3

2
(
Bµν + B̄µν

) 1

�̃
Fµν + B̄µν

(
σ −D2

)
Bµν − ψ̄µν

(
σ −D2

)
Pµν + source terms

]
,

(E.6)

where we have introduced the new parameters γ and σ of mass dimension 1 and 2 respectively.
Remember that the tilde symbol in �̃−1, in contrast to all models discussed up to this point,
does not introduce any changes in the mass dimension. In the action (E.6) we have shifted the
D̃2 from the B/B̄ sector to the breaking term, where it appears as �̃−1. It is important to note
that there is no need to use a covariant derivative here since the term states a priori a breaking
to gauge and BRST symmetries. Due to this trick, all the problems linked to the interpretation
and localization of the non-local 1/D2 operator described in Section 2.2 are eliminated at once.

We can now repeat the analysis given above in order to see the changes imposed by the new
action (E.6). The relevant equations of motion are

δSbi
ev1

δAµ
= −jAµ =

(
∂µ∂

ν − �δνµ
)
Aν −

µ2

�̃
∂ν
(
Bµν + B̄µν

)
− ∂µb , (E.7)

δSbi
ev1

δ{Bµν , B̄µν}
= −j{B,B̄}

µν =
µ3

2�̃
(∂µAν − ∂νAµ) +Q{B̄µν , Bµν} , (E.8)

and, proceeding in the same way as described above, this yields (with the temporal notation
Q := (σ − �))

{Bµν , B̄µν} =
−1
Q

[
γ2

2�̃
∂µAν − ∂νAµ + {jB̄µν , jBµν}

]
, (E.9)

−jAµ =
(
1 +

γ6

Q�̃2

)
(∂µ∂ν − �δµν)Aν −

γ3

Q�̃

(
∂σδρµ +

∂µ∂ρ∂σ
�

)(
jBρσ + jB̄ρσ

)
− ∂µ∂ρ

� jAρ ,

(E.10)

Aµ =
1
�

(
1 +

γ6

Q�̃2

)−1 [(
δµρ −

∂µ∂ρ
�

)
jAρ − γ3

�̃Q

(
∂σδρµ +

∂µ∂ρ∂σ
�

)(
jBρσ + jB̄ρσ

)]
+ t(α) .

(E.11)

Now the overall factor (��̃)−1 of {B̄µν , Bµν} in Eqn. (E.3), which directly enters the propagators
G{AB,AB̄} and G{BB,B̄B}, is modified (in momentum space) according to k2k̃2 → (σ + k2);
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an expression having no poles in Euclidean space. The damping factor of the gauge boson

propagator (E.12c) now takes the form
(
1 + γ6

(σ+k2)(k̃2)2

)−1
, which shows the same IR behavior

as the respective counterpart in Eqn. (E.5). For completeness, the propagators of this model
shall be given.

Gc̄c(k) = − 1
k2
, (E.12a)

Gψ̄ψµν,ρσ(k) =
(δµρδνσ − δµσδνρ)

2(σ + k2)
= −Gψψ̄µν,ρσ(k) , (E.12b)

GAAµν (k) =
1

k2
(
1 + γ6

k̃4(σ+k2)

) (δµν − kµkν
k2

)
+ α

kµkν
k4

, (E.12c)

GABµ,ρσ(k) =
iγ3

2
(kρδµσ − kσδµρ)

2k2
(
k̃4(σ + k2) + γ6

k̃4

)
= GAB̄µ,ρσ(k) = −GB̄Aρσ,µ(k) , (E.12d)

GBBµν,ρσ(k) =
γ6

4k2(σ + k2)
(
k̃4(σ + k2) + γ6

) [kµkρδνσ + kνkσδµρ − kµkσδνρ − kνkρδµσ]

= GB̄B̄µν,ρσ(k) , (E.12e)

GBB̄µν,ρσ(k) = GBBµν,ρσ(k) +
1

2(σ + k2)
[δµρδνσ − δµσδνρ] . (E.12f)

(E.12g)

Note that all of these two-point functions are finite in the limit k̃ → 0. However, there are still
some insufficiencies in this model. For the first, a shift of the divergent factors by −σ is suitable
for Euclidean space, where k2 is strictly positive. But this trick will not work in a possible later
implementation in Minkowski space. For the second, this model still lacks a dedicated term to
absorb the expected divergences at the one loop level (see Section 3.3). Hence, we are motivated
to enhance the solution (E.6).

E.1.2 Evolutionary step 2

We have seen above in Appendix E.1.1 that the negative potences of derivatives, which are
required for the construction of damping terms in the 1/p2 model, can be implemented by direct
insertion into a soft breakingterm (thereby avoiding any problems due to the interpretation of
inverse powers of covariant derivatives). Based on the advanced model (E.6) several additional
ideas can be implemented.

B Since the damping is implemented completely by the bilinear part of the action, and the
necessary operator with negative powers of derivatives can be shifted to the breaking term,
we may replace the operator sandwiched in the {B̄, B} and {ψ̄, ψ} sectors by a constant
in Eqn. (E.6).

B In the same way, Fµν in the breaking term may be reduced to its bilinear part, fµν . This
is valid since the breaking term, naturally, doesn’t need to fulfill gauge invariance.

B In order to implement a counterterm for the expected p̃µp̃ν/(p̃2)2 divergence, we may first
analyze how the term kµkν/k

2 in the gauge propagator is constructed (since it carries a
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similar index structure). It offsprings the expression ∂µ∂νAν appearing in the equations
of motion (E.7) and (E.8). Hence, the conjecture is that a term ∂̃µ∂̃νAν will be required,
in addition. In order to avoid unnecessary modification of the damping term which is
influenced by both occurrences of (�δµν − ∂µ∂ν)Aν (from the 1

4F
2 term, and the breaking

term), we will have to take care when implementing any changes to these terms. The overall
damping factor (which we denote now temporarily by G(k)) is added automatically, if the
final expression for jAµ contains an expression �G(k)Aµ which, in turn, is guaranteed, if
the combination Bµν�̃−1fµν is unaltered.

From these considerations we are led to the action

Sev2 =
∫

d4x
[1
4
FµνFµν + b (∂A) − α

2
b2 − c̄∂µDµc+

γ2

2
(
Bµν + B̄µν

) 1

�̃

(
fµν + σ

Θµν
2
f̃

)
− µ2B̄µνBµν + µ2ψ̄µνψµν + source terms

]
, (E.13)

with the definitions from the main text (page 74). Note ,that the mass dimension dm(B̄) =
dm(B) = 2 has changed. For the last time, we repeat the steps of the analysis for the propagators.
The equations of motion now take the form

δSbi
ev1

δAµ
= −jAµ =

(
∂µ∂

ν − �δνµ
)
Aν −

γ2

2�̃

[
2∂σδµρ − σΘρσ∂̃µ

] (
Bρσ + B̄ρσ

)
− ∂µb , (E.14)

δSbi
ev1

δ{Bµν , B̄µν}
= −j{B,B̄}

µν =
γ2

2�̃

(
∂µAν − ∂νAµ − σΘµν

(
∂̃A
))

− {B̄µν , Bµν} , (E.15)

and finally,

{Bµν , B̄µν} =
γ2

2�̃

(
∂µAν − ∂νAµ − σΘµν

(
∂̃A
))

+ {jBµν , jB̄µν} (E.16)

−jAµ = G(k) (∂µ∂ν − �δµν)Aν −
γ4

�̃2
∂̃µ

(
∂̃A
)
Σ

− γ2

�̃

(
∂σδρµ −

σ

4
∂̃µερσ

)(
jBρσ + jB̄ρσ

)
+
∂µ
α

((∂A) + jb) , (E.17)

Aµ =
1

�G(k)

{
∂µ
α
jb − γ2

�̃

(
∂σδρµ −

σ

2
∂̃µΘρσ

)(
jBρσ + jB̄ρσ

)
+
γ4Σ

�̃2
∂̃µ

[
Σ
γ4

�̃
− G(k)�

2

]−1
[(
∂̃jA

)
− γ2

�̃

(
∂̃ρ∂σ −

�̃
4
σΘρσ

)(
jBρσ + jB̄ρσ

)]

− ∂µ
�

[(
∂jA

)
+

�
α
jb − γ2

�̃
∂ρ∂σ

(
jBρσ + jB̄ρσ

)]}

− α
∂µ
�

2 [(
∂jA

)
+

�
α

− γ2

�̃
∂ρ∂σ

(
jBρσ + jB̄ρσ

)]
, (E.18)

where the temporal abbreviation Σ :=
(
σ + Θ2

4 σ
2
)

has been used. The rather lengthy form
of these intermediate expressions leads to surprisingly simple forms for the propagators (E.19)
– (E.24) in the next section. Despite, not being necessary any more due to the uncoupling,
all of these (with the sole exception of the ghost propagator (E.20)) are IR finite. The gauge
propagator now feature a suitable term ∝ k̃µk̃ν/(k̃2)2 to absorb the expected one loop divergence.
Note again, that due to the complete uncoupling of the gauge sector from the {B̄, B} and
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{ψ̄, ψ} sectors, naturally, any interactions of these fields with Aµ vanish. Indeed, although there
exist two point functions G{AB,AB̄}, G{BB,B̄B} and Gψ̄ψ, these may only result in unphysical
disconnected vacuum bubbles. Further consequences and properties are discussed in the main
text of Section 5.1.

E.2 Feynman Rules

E.2.1 Propagators

The propagators follow from the expressions given in Appendix E.1.2. Despite being partly
stated in the main text (Section 5.1) they shall be repeated at this point for the sake of com-
pleteness.

GAAµν (k) =
1

k2
(
1 + γ4

(k̃2)2

)
δµν − kµkν

k2
−

(
σ + Θ2

4 σ
2
)
γ4[(

σ + Θ2

4 σ
2
)
γ4 + k2

(
k̃2 + γ4

k̃2

)] k̃µk̃ν
k̃2

 , (E.19)

Gc̄c(k) =
−1
k2

, (E.20)

GBAµν,ρ(k) =
iγ2
(
kµδσν − kνδσµ − σk̃σΘµν

)
2k2

(
k̃2 + γ4

k̃2

)
δρσ − σ̄4[

σ̄4 + k2
(
k̃2 + γ4

k̃2

)] k̃ρk̃σ
k̃2


= GB̄Aµν,ρ(k) , (E.21)

GBBµν,ρσ(k) = −γ4 (kµkρδνσ + kνkσδµρ − kµkσδνρ − kνkρδµσ)

2k2k̃2
(
k̃2 + γ4

k̃2

)
+

γ4

4k̃2
[
k2
(
k̃2 + γ4

k̃2

)
+ σ̄4

][σΘµν (kρk̃σ − kσk̃ρ

)
+ σΘρσ

(
kµk̃ν − kν k̃µ

)

− σ2k̃2ΘµνΘρσ − σ̄4

(
kµk̃ν k̃ρkσ + kρk̃σk̃µkν − kµk̃ν k̃σkρ + kσk̃ρk̃µkν

)
k2k̃2

(
k̃2 + γ4

k̃2

) ]

= GB̄B̄µν,ρσ(k), (E.22)

GBB̄µν,ρσ(k) = −1
2

(δµρδνσ − δµσδνρ) +GBBµν,ρσ(k) , (E.23)

Gψ̄ψµνρσ(k) = −1
2

(δµρδνσ − δµσδνρ) . (E.24)

E.2.2 Vertices

The vertex expressions result by direct variation of the action (5.3) with respect to the fields

p2,σ

p1,ρ

p3,τ

= V 3A
ρστ (k1, k2, k3) = 2ig(2π)4δ4(k1 + k2 + k3) sin

(
ε
2k1k̃2

)
×

× [(k3 − k2)ρδστ + (k1 − k3)σδρτ + (k2 − k1)τδρσ] , (E.25a)
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p4,ε

p3,τ

p2,σ

p1,ρ

= V 4A
ρστε(k1, k2, k3, k4) = −4g2(2π)4δ4(k1 + k2 + k3 + k4)×

×
[
(δρτδσε − δρεδστ ) sin

(
ε
2k1k̃2

)
sin
(
ε
2k3k̃4

)
+ (δρσδτε − δρεδστ ) sin

(
ε
2k1k̃3

)
sin
(
ε
2k2k̃4

)
+ (δρσδτε − δρτδσε) sin

(
ε
2k2k̃3

)
sin
(
ε
2k1k̃4

) ]
, (E.25b)

p2,ρ

p1

p3

= V c̄Ac
µ (q1, k2, q3) = −2ig(2π)4δ4(q1 + k2 + q3)q3µ sin

(
ε
2q1q̃3

)
. (E.25c)

E.3 One Loop Calculations

E.3.1 Vacuum Polarization

The integrands of the expressions for the three graphs in Fig. 5.1 are expanded around p = 0
(see Section 3.1.3, Eqn. (3.17) on page 39), simplified by approximating for large k, and finally
integrated according to the rules in Appendix F.1. The symmetry factors are determined to be
sa = 1/2, sb = 1/2, sc = −11. Denoting the result at order i for the planar (p) part by Π(i),p

µν

the detailed outcome of these calculations is

Π(0),p
µν (p) =

g2

(4π)2
Λ2δµν (12sa − 10sb + sc) + finite

=0 , (E.26a)

Π(2),p
µν (p) =

g2

3(4π)2
K0

√
µ2

Λ2

(
(50sa − sc)p2δµν − 2(28sa + sc)pµpν

)
=

26g2

3(4π)2
K0

√
µ2

Λ2

(
p2δµν − pµpν

)
+ finite , (E.26b)

≈ 13g2

3(4π)2
ln
µ2

Λ2

(
p2δµν − pµpν

)
+ finite . (E.26c)

Similar for the non-planar (np) part

Π(0),np
µν (p) = − g2

(2π)2
1

(ε2p̃2)2
(
p̃2(12sa − 10sb + sc)δµν − 2p̃µp̃ν(12sa − 2sb + sc)

)
+ finite

=
2g2p̃µp̃ν
π2(ε2p̃2)2

, (E.27a)

Π(2),np
µν (p) =

g2

3(4π)2
K0

√
ε2p̃2µ2

(
(−50sa + sc)p2δµν + 2(28sa + sc)pµpν

)
+ finite ,

= − 26g2

3(4π)2
K0

√
ε2p̃2µ2

(
p2δµν − pµpν

)
+ finite

≈ 13g2

3(4π)2
ln
(
p̃2µ2

) (
p2δµν − pµpν

)
+ O

(
µ2

Λ2

)
+ finite . (E.27b)

1Verified by computation with the SymmetryFactor program; see Appendix G.1.
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Note that the results in first order of the expansion in p vanish identically due to the sym-
metric integration over an antisymmetric function (represented by an odd power of the internal
momentum k).

Combining all orders and parts we see that the regulating IR cutoff µ (see Section A.12) drops
out in the sum if the Bessel functions K0 are expanded according to Eqn. (F.24), and we are
left with

Πµν(p) =
g2

3π2

[
6
p̃µp̃ν
(εp̃2)2

+
13
16
(
p2δµν − pµpν

)(
K0

√
ε2p̃2µ2 − K0

√
µ2

Λ2

)]
+ finite

≈ 2g2

π2ε4
p̃µp̃ν

(p̃2)2
+

13g2

3(4π)2
(
p2δµν − pµpν

)
ln
(
Λ2
)

+ finite terms , (E.28)

which equals Eqn. (5.22) in the main text.

E.3.2 3A Vertex

Principally, the vertex corrections corresponding to the graphs in Fig. 5.1 in the main text
on page 78 are calculated in the same way as the vacuum polarization in Section E.3.1 above.
However, there are a few subtleties which have to be considered. First, the form of the integrands
is quite complicated due to the higher number of concatenated Feynman rules. For example, a
typical expression to appear would be,

∫ ∞

−∞
d4k

kµkνkρkσ sin
(
p1
2 (p̃2 − k̃)

)
sin
(
p2k̃
2

)
sin
(

(p1+p2)k̃
2

)
(−p2 + k)4(−p1 − p2 + k)4

. (E.29)

An explicit computation requires three nested sums for the phase factors, two Schwinger pa-
rameters, and four derivatives. The resulting exponential can still be brought into a quadratic
form, but the remaining terms are much to complicated to be integrated out. Application of the
expansion (3.17) for small external momenta pi is not applicable here since the limits pi → 0 and
pj → 0 for i 6= j do not commute. Let us examine this latter point in a little more detail. The
multidimensional Taylor expansion T to order m of a function f({p1, ..pn}) around the point
p0 := (p0,1, . . . p0,n) = {p0,1, ..p0,n} is written in the form

T (p0) f({p1, ..pn}) = f({p1, ..pn})|{p1,..pn}→{p0,1,..p0,n}

+
n∑
i=1

[
∂if({p1, ..pn})

]
{p1,..pn}→{p0,1,..p0,n}

(pi − p0,i)

+
n∑
i=1

n∑
j=1

[
∂i∂jf({p1, ..pn})

]
{p1,..pn}→{p0,1,..p0,n}

(pi − p0,i)(pj − p0,j)

+
n∑
i=1

. . .

n∑
k=1

[
∂i . . . ∂kf({p1, ..pn})

]
{p1,..pn}→{p0,1,..p0,n}

k∏
α=i

(pα − p0,α) + Rm ,

(E.30)

where Rm is the rest term at order m. Each term in this expansion requires the limit of all
independent variables p1, ..pn to be taken simultaneously. This, in turn, is well defined only for
the case

lim
pi→p0,i

f({p1, ..pn}) lim
pj→p0,j

f({p1, ..pn}) ≡ lim
pj→p0,j

f({p1, ..pn}) lim
pi→p0,i

f({p1, ..pn}) , ∀i, j ∈ {1, ..n} .
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But this is not the case since all the pi are vectorial quantities, and a limit of product expressions
depends upon the relative angle. The problem can intuitively be understood when considering
the simple function g(x) = xy/(x2 + y2) which has no unique limit for (x, y) → (0, 0) since

lim
x→0

(
lim
y→0

g(x, y)
)

= 0 ,

but

lim
y→0

g(x→ ty, y) =
t

1 + t2
∈
[
−1

2 ,
1
2

]
.

A similar example which appears in most computations presented in this work, is the term
(p1 · p2)/(p2

1 + p2
2), with p1,µ and p2,µ being vectors.

In fact, the above discussion leads to the insight that, in general, the expansion (3.17) is only
applicable if it is applied with respect to a single variable. This, however, is not the case for vertex
graphs with an arbitrary number EA > 2 of external gauge boson lines with equal preference.
Hence, the expansion for small external momenta, as it has been applied in Appendices B.2,
C.2, and E.3.1, cannot be utilized here.
An alternative approach for the simplification of the vertex integral expressions is motivated by
the fact that, as has already been mentioned several times, all divergences of planar and non-
planar parts originate from the UV limit of the integrands. Hence, expressions like Eqn. (E.29)
may be reduced by2

+∞∫
−∞

d4k

(2π)4
1

(k + q)n
→
k→∞

+∞∫
−∞

d4k

(2π)4
1
kn

. (E.31)

Furthermore, we can rewrite the threefold phase factor by virtue of the relations (F.21), (F.19),
and (F.20) as3

sin
p1(p̃2 − k̃)

2
sin

p2k̃

2
sin

p3k̃

2

=
1
4

cos
p1p̃2

2

(
sin p1k̃ + sin p2k̃ + sin p3k̃

)
− 1

4
sin

p1p̃2

2

(
1 + cos p1k̃ − cos p2k̃ − cos p3k̃

)
,

(E.32)

which enables to separate an overall phase factor depending solely on external momenta from
a single phase of type sin kp̃i or cos kp̃i to be kept in the integrand. The remaining integrals
can easily be solved by applying the integration rules of Appendix F.1. In addition, we have to
consider permutations of external legs (similar as for the scalar model in Appendix A.2.2, page
94). These are collected in Tab. E.1 Using VectorAlgebra we arrive at the following expression
for the planar part (decorated by ‘UV’ instead of ‘p’ here) of the sum of amplitudes in Fig. 5.1

Γ3A,UV
µνρ (p1, p2, p3) =

ig3

π2
K0

√
M2

Λ2

[
sin

p1θp2

2(
(p2,ρ− p1,ρ) δµν + (p1,ν− p3,ν) δµρ + (p3,µ− p2,µ) δνρ

)]
.

This result is contributed solely by one, namely a), of three graphs in Fig. 5.2. Note that none
of these exists in commutative theories due to different reasons. First of all, the Furry theorem

2See also the discussion at the beginning of Section 3.1.3, and in Section 1.3.7.
3We temporally omit the dimensionful ε here.
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Table E.1: Permutations functions and symmetry factors s of the graphs a)–c) in Fig. 5.1.

Gr. s Permutations
a) 1 {p1,µ, p2,ν , p3,ρ}→{p1,µ, p2,ν , p3,ρ}, {p1,µ, p3,ρ, p2,ν}, {p2,ν , p1,µ, p3,ρ}, {p2,ν , p3,ρ, p1,µ},

{p3,ρ, p1,µ, p2,ν}, {p3,ρ, p2,ν , p1,µ}
b) 1/2 {p1,µ, p2,ν , p3,ρ}{p1,µ, p2,ν , p3,ρ}, {p1,µ, p3,ρ, p2,ν}, {p2,ν , p3,ρ, p1,µ}
c) -2 {p1,µ, p2,ν , p3,ρ}→{p1,µ, p2,ν , p3,ρ}, {p1,µ, p3,ρ, p2,ν}, {p2,ν , p1,µ, p3,ρ}, {p2,ν , p3,ρ, p1,µ},

{p3,ρ, p1,µ, p2,ν}, {p3,ρ, p2,ν , p1,µ}

states that, due to invariance of the action under charge (C) conjugation, any Green function
with an odd number of external photon fields (EA) vanishes. This argument affects all three
graphs. However, the theorem does not exist on non-commutative spaces, and hence, the graphs
do exist. Regarding the functions b) and c), in a theory obeying an undeformed U(1) symmetry,
no ghosts are present, and the commutator term of the field strength Fµν vanishes. Since the
planar contributions correspond, in some sense, to the undeformed part of the theory, it is not
surprising that no planar corrections are generated by the graph with internal ghost loop, b).
In the same way, the function c) of Fig. 5.1 contains a vertex V 4A, which originates solely from
the double commutator term buried in the Yang Mills F 2 term. Accordingly, in the planar case
it is intutitive, that this graph gives no divergent contribution.

The non-planar result Γ3A,IR
µνρ (p1, p2, p3) receives contributions from all three graphs. However,

the explicit form is much to large to be printed here. Instead, we shall discuss the types of
divergences and possible counterterms arising from them in the main text.

E.3.3 cAc̄ Vertex

b)

p3

p2,µ

p1

a)

p3

p2,µ

p1

Figure E.1: One loop corrections to the ghost vertex vertex V c̄Ac
µ (p1, p2, p3).

In fact, the graphs of Fig. E.1 do not give rise to any divergences. Hence, no correction to this
vertex exists on the one loop level.

E.3.4 4A Vertex

For the gauge boson vertex with four external legs, we have the four types of graphs depicted in
Fig. 5.3. The phase transformations are much more involved than for the 3A vertex but can still
be derived by repeated application of the relations (F.19), (F.21), and (F.20). An examplary
result is (where again ε has been omitted in the arguments of trigonometric functions)

sin

(
p1k̃

2

)
sin

(
p2k̃

2

)
sin

(
p3(k̃ + p̃2)

2
)

)
sin

(
p4(k̃ + p̃2

2

)
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=
1
8

[
cos
(
p3p̃2

2

)
cos
(
p4p̃2

2

)(
cos((p1 + p2)k̃) + cos((p1 + p3)k̃) + cos((p1 + p4)k̃)

− cos(p1k̃) + cos(p2k̃) + cos(p3k̃) + cos(p4k̃) + 1
)

− sin
(
p3p̃2

2

)
cos
(
p4p̃2

2

)(
− sin((p1 + p2)k̃) + sin((p1 + p3)k̃) − sin((p1 + p4)k̃)

+ sin(p1k̃) + sin(p2k̃) − sin(p3k̃) + sin(p4k̃)
)

− cos
(
p3p̃2

2

)
sin
(
p4p̃2

2

)(
− sin((p1 + p2)k̃) − sin((p1 + p3)k̃) + sin((p1 + p4)k̃)

+ sin(p1k̃) + sin(p2k̃) + sin(p3k̃) − sin(p4k̃)
)

+ sin
(
p3p̃2

2

)
sin
(
p4p̃2

2

)(
− cos((p1 + p2)k̃) + cos((p1 + p3)k̃) + cos((p1 + p4)k̃)

+ cos(p1k̃) + cos(p2k̃) − cos(p3k̃) − cos(p4k̃) − 1
)]
. (E.33)

However, there exist combinations of arguments in the initial sine functions, which do not
match this form. Hence, the respective transformations are computed in an automated way in
Mathematica® by utilization of the functions TrigReduce[] and TrigExpand[]. The actual
computation proceeds along the lines of Appendix E.3.2, where the respective symmetry factors
and permutations are listed in Tab. E.2. After summing up all contributions and integration

Table E.2: Permutations functions and symmetry factors s of the graphs a)–c) in Fig. 5.1.

Gr. s Permutations
a) 1 {p1,µ, p2,ν , p3,ρ, p4,σ}→{p1,µ, p2,ν , p3,ρ, p4,σ}, {p1,µ, p2,ν , p4,σ, p3,ρ}, {p1,µ, p3,ρ, p2,ν , p4,σ},

{p1,µ, p3,ρ, p4,σ, p2,ν}, {p1,µ, p4,σ, p2,ν , p3,ρ}, {p1,µ, p4,σ, p3,ρ, p2,ν},
{p2,ν , p1,µ, p3,ρ, p4,σ}, {p2,ν , p1,µ, p4,σ, p3,ρ}, {p2,ν , p3,ρ, p1,µ, p4,σ},
{p2,ν , p3,ρ, p4,σ, p1,µ}, {p2,ν , p4,σ, p1,µ, p3,ρ}, {p2,ν , p4,σ, p3,ρ, p1,µ},
{p3,ρ, p1,µ, p2,ν , p4,σ}, {p3,ρ, p1,µ, p4,σ, p2,ν}, {p3,ρ, p2,ν , p1,µ, p4,σ},
{p3,ρ, p2,ν , p4,σ, p1,µ}, {p3,ρ, p4,σ, p1,µ, p2,ν}, {p3,ρ, p4,σ, p2,ν , p1,µ},
{p4,σ, p1,µ, p2,ν , p3,ρ}, {p4,σ, p1,µ, p3,ρ, p2,ν}, {p4,σ, p2,ν , p1,µ, p3,ρ},
{p4,σ, p2,ν , p3,ρ, p1,µ}, {p4,σ, p3,ρ, p1,µ, p2,ν}, {p4,σ, p3,ρ, p2,ν , p1,µ}

b) -2 same as for a)
c) 1/2 {p1,µ, p2,ν , p3,ρ, p4,σ}→{p1,µ, p2,ν , p3,ρ, p4,σ}, {p2,ν , p1,µ, p3,ρ, p4,σ}, {p2,ν , p4,σ, p3,ρ, p1,µ}
d) 1 {p1,µ, p2,ν , p3,ρ, p4,σ}→{p1,µ, p2,ν , p3,ρ, p4,σ}, {p2,ν , p1,µ, p3,ρ, p4,σ}, {p1,µ, p3,ρ, p2,ν , p4,σ},

{p3,ρ, p1,µ, p2,ν , p4,σ}, {p3,ρ, p2,ν , p1,µ, p4,σ}, {p2,ν , p3,ρ, p1,µ, p4,σ},
{p4,σ, p2,ν , p3,ρ, p1,µ}, {p2,ν , p4,σ, p3,ρ, p1,µ}, {p1,µ, p4,µ, p3,ρ, p2,ν},
{p4,σ, p1,µ, p3,ρ, p2,ν}, {p4,σ, p3,ρ, p1,µ, p2,ν}, {p3,ρ, p4,σ, p1,µ, p2,ν},

with VectorAlgebra we arrive at

Γ4A,UV
µνστ (k1, k2, k3, k4) = constπ2g4(2π)4 K0

√
µ2

Λ2
δ4(k1 + k2 + k3 + k4)[

(δµρδνσ − δµσδνρ) sin
(
ε
2k1k̃2

)
sin
(
ε
2k3k̃4

)
+ (δµνδρσ − δµσδνρ) sin

(
ε
2k1k̃3

)
sin
(
ε
2k2k̃4

)
+ (δµνδρσ − δµρδνσ) sin

(
ε
2k2k̃3

)
sin
(
ε
2k1k̃4

) ]
, (E.34)
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for the planar part (where the factor ‘const’ is unfortunately not definitely known at the time
of publication, see [62]), and an expression of more than 4100 terms for the non-planar part. It
does not seem reasonable to give the latter result in an explicit form here, but only to discuss
the types of terms in the main text on page 81.
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Appendix F

Useful Relations

F.1 Momentum Integrals

In the loop calculations discussed within the framework of this thesis several integrals of the
generic type

+∞∫
−∞

d4k

(2π)4
kη1 . . . kηn(
k2 + a2

k2

)m sin2
(

1
2kθp

)
, with m,n ∈ N0 ,

appear. Since one is interested mainly in IR divergences in p which originate from the large
momentum behavior in k (i.e. k → ±∞) the integrands are approximated by considering(
k2 + a2

k2

)
≈ k2. In addition, since sin2 x

2 = 1
2 (1 − cosx), the integration can be split into

planar and non-planar parts. The respective results are given separately (and all factors except
the (2π)−4 are included). In the results the cutoffs µ→ 0 and Λ → ∞ can be found. They stem
from the insertion

∞∫
0

dα Idiv(α) →
∞∫
0

dα Idiv(α)e−µ
2α− 1

4Λ2α ,

which is applied where necessary in order to regularize a divergent integrand Idiv(α). Note that
the prefactor 4 of Λ2 is motivated by the factor 4 which always accompanies p̃2 in non-planar
integrals. In sum, this enables cancellations between planar and non-planar results.

B Integral

+∞∫
−∞

d4k

(2π)4
sin2

(
1
2kθp

)
:

planar part:

π2

2µ4
. (F.1a)

non-planar part:

− π2

2µ4
e−

p̃2

4µ2 . (F.1b)
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B Integral

+∞∫
−∞

d4k

(2π)4
sin2

(
1
2kθp

)
k2

:

planar part:

2π2Λ2 . (F.2a)

non-planar part:

− 2π2 1
p̃2
. (F.2b)

B Integral

+∞∫
−∞

d4k

(2π)4
kµkν
k2

sin2
(

1
2kθp

)
:

planar part:

4π2Λ4δµν . (F.3a)

non-planar part:

− 4π2

[
δµν
p̃4

− 4
p̃µp̃ν
p̃6

]
. (F.3b)

B Integral

+∞∫
−∞

d4k

(2π)4
sin2

(
1
2kθp

)
k4

:

planar part:

π2 K0

(√
µ2

Λ2

)
. (F.4a)

non-planar part:

− π2 K0

√
p̃2µ2 . (F.4b)

B Integral

+∞∫
−∞

d4k

(2π)4
kµkν
k4

sin2
(

1
2kθp

)
:

planar part:

π2Λ2δµν . (F.5a)

non-planar part:

− π2

p̃2

(
δµν − 2

p̃µp̃ν
p̃2

)
. (F.5b)
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B Integral

+∞∫
−∞

d4k

(2π)4
kµkν
k6

sin2
(

1
2kθp

)
:

planar part:

π2

4
δµν K0

(√
µ2

Λ2

)
. (F.6a)

non-planar part:

− π2

4

[
δµν K0

√
p̃2µ2 − p̃µp̃ν

p̃2

]
. (F.6b)

B Integral

+∞∫
−∞

d4k

(2π)4
kµkνkρkσ

k8
sin2

(
1
2kθp

)
:

planar part:

π2

24
[δµνδρσ + δµρ + δµσδνρ] K0

(√
µ2

Λ2

)
. (F.7a)

non-planar part:

− π2

24

[
(δµνδρσ + δµρδνσ + δµσδνρ)K0

√
p̃2µ2

− (p̃µp̃νδρσ + p̃µp̃ρδνσ + p̃µp̃σδνρ + p̃ν p̃ρδµσ + p̃ν p̃σδµρ + p̃ρp̃σδµν)
1
p̃2

+ 2
p̃µp̃ν p̃ρp̃σ

p̃4

]
. (F.7b)

In addition, in the computation of n > 2 point functions on the one loop level, we need in
addition the following integrals

B Integral

+∞∫
−∞

d4k

(2π)4
kµkνkρkσkτ sin (kθp)

k8
:

π2

12

[ 1
p̃2

(
p̃µ (δνρδστ + δνσδρτ + δντδρσ) + p̃ν (δµρδστ + δµσδρτ + δµτδρσ)

+ p̃ρ (δµνδστ + δµσδντ + δµτδνσ) + p̃σ (δµνδρτ + δµρδντ + δµτδνρ)

+ p̃τ (δµνδρσ + δµρδνσ + δµσδνρ)
)

− 2
p̃4

(
p̃µp̃ν p̃ρδστ + p̃µp̃ν p̃σδρτ + p̃µp̃ν p̃τδρσ + p̃µp̃ρp̃σδντ + p̃µp̃ρp̃τδνσ

+ p̃µp̃σp̃τδνρ + p̃ν p̃ρp̃σδµτ + p̃ν p̃ρp̃τδµσ + p̃ν p̃σp̃τδµρ + p̃ρp̃σp̃τδµν
)

+ 8
p̃µp̃ν p̃ρp̃σp̃τ

p̃6

]
. (F.8)
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B Integral

+∞∫
−∞

d4k

(2π)4
kµkνkρ sin (kθp)

k6
:

2π2

[
2
p̃µp̃ν p̃ρ
(p̃2)2

− 1
p̃2

(δµν p̃ρ + δµρp̃ν + δνρp̃µ)
]
. (F.9)

B Integral

+∞∫
−∞

d4k

(2π)4
kµ sin (kθp)

k4
:

− π2p̃µ K0

√
p̃2µ2 . (F.10)

F.2 Integration Formulæ

B parameter integral formula

∞∫
0

dxxν−1e−
β
x
−γx = 2

(
β

γ

) ν
2

Kν

(
2
√
βγ
)
, with Re(β) > 0 ∩ Re(γ) > 0 . (F.11)

Source: Gradshteyn [152], Eqn. (3.471.9)

B negative potence, exponential rest of gauss integration

u∫
0

dx
e−

a
x

x2
=

e−
a
u

a
,

∞∫
0

dx
e−

a
x

x2
=

1
a
,

∞∫
0

dx
e−

a
x

xn
= a1−nΓ(n− 1), ∀n ≥ 2, a > 0 .

(F.12)

Source: Gradshteyn [152], Eqn. (3.471.1)

B negative potence, exponential rest of gauss integration and trigonometric functions

∞∫
0

dxxµ−1 exp
[
−β2

4x

]
sin(ax) =

=
i

2µ
βµa−

µ
2

[
e−

iπ
4
µKµ

(
βe

iπ
4
√
a
)
− e

iπ
4
µKµ

(
βe−

iπ
4
√
a
)]

, (F.13a)

∞∫
0

dxxµ−1 exp
[
−β2

4x

]
cos(ax) =

=
1
2µ
βµa−

µ
2

[
e−

iπ
4
µKµ

(
βe

iπ
4
√
a
)

+ e
iπ
4
µKµ

(
βe−

iπ
4
√
a
)]

, (F.13b)

with a ∈ R > 0, Re(β) > 0, Re(µ) < 1.
Source: Gradshteyn [152], Eqn. (3.957.1/.2)
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B hyperbolic functions∫
dx sinh(ax+ b) sinh(ax+ d) = −x

2
cosh(b− d) +

1
4a

sinh(2ax+ b+ d) , (F.14a)∫
dx sinh(ax+ b) cosh(ax+ d) =

x

2
sinh(b− d) +

1
4a

cosh(2ax+ b+ d) , (F.14b)∫
dx cosh(ax+ b) cosh(ax+ d) =

x

2
cosh(b− d) +

1
4a

sinh(2ax+ b+ d) . (F.14c)

Source: Gradshteyn [152], Eqn. (2.425.4–6)

B hyperbolic functions with exponentials∫
dx eax sinh(bx+ c) =

eax

a2 − b2
[a sinh(bx+ c) − b cosh(bx+ c)] , (F.15a)∫

dx eax cosh(bx+ c) =
eax

a2 − b2
[a cosh(bx+ c) − b sinh(bx+ c)] , (F.15b)

with a2 6= b2

Source: Gradshteyn [152], Eqn. (2.481.1/2)

B hyperbolic functions with exponentials and powers∫
dxxeax sinh(bx+ c) =

eax

a2 − b2

[(
ax− a2 + b2

a2 − b2

)
sinh(bx) −

(
bx− 2ab

a2 − b2

)
cosh(bx)

]
,

(F.16a)∫
dxxeax sinh(bx+ c) =

eax

a2 − b2

[(
ax− a2 + b2

a2 − b2

)
cosh(bx) −

(
bx− 2ab

a2 − b2

)
sinh(bx)

]
,

(F.16b)

with a2 6= b2.
Source: Gradshteyn [152], Eqn. (2.483.1/2)

B logarithms

∫
dxxm ln(a+ bx) =

1
m+1

(
xm+1− (−a)m+1

bm+1

)
ln(a+ bx) +

1
m+1

m+1∑
i=1

(−1)ixm−i+2ai−1

(m− i+ 2)bi−1
,

(F.17a)

simplifies for m = 0, and with the limits
∣∣1
0

to

1∫
0

dx ln(a+ bx) =
(
1 +

a

b

)
ln(a+ b) − a

b
ln a− 1 . (F.17b)

Source: Gradshteyn [152], Eqn. (2.729.1)
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F.3 Miscellanea

B Trigonometric identities

sin2 x =
1
2

(1 − cos 2x) , cos2 x =
1
2

(1 + cos 2x) , (F.18)

sin(x1 ± x2) = sinx1 cosx2 ± sinx2 cosx1 ,

cos(x1 ± x2) = cosx1 cosx2 ∓ sinx1 sinx2 , (F.19)

sinx1 sinx2 =
1
2

(cos(x1 − x2) − cos(x1 + x2)) ,

sinx1 cosx2 =
1
2

(sin(x1 − x2) + sin(x1 + x2)) ,

cosx1 cosx2 =
1
2

(cos(x1 − x2) + cos(x1 + x2)) , (F.20)

sin
kp̃

2
=

1
2i

∑
η=±1

ηe
i
2
ηkp̃,

cos
kp̃

2
=

1
2

∑
η=±1

e
i
2
ηkp̃ . (F.21)

Source: Bartsch [153], pp. 397–400

B Higher order Schwinger parametrization [154]

1
q2N

=
1

Γ(N)

∞∫
0

dααN−1e−αq
2
, ∀N ∈ N, Re(q2) > 0. (F.22)

B Bessel K, general form

Kn(z) =
1
2

n−1∑
k=0

(−1)k
(n− k − 1)!

k!
(
z
2

)n−2k

+ (−1)n+1
∞∑
k=0

(
z
2

)n+2k

k!(n+ k)!

[
ln
z

2
− 1

2
(ψ(k + 1) + ψ(k + n+ 1))

]
. (F.23)

Source: Gradshteyn [152], Eqn. (8.446)

B Bessel Kn, up to 3rd order and n ≤ 4

K0(x) ≈ ln 2
x − γE − x2

4

(
γE − 1 + ln x

2

)
+ O

(
x4
)
, (F.24a)

K1(x) ≈ 1
x + x

2

(
γE − 1

2 + ln x
2

)
+ x3

16

(
γE − 5

4 + ln x
2

)
O
(
x5
)
, (F.24b)

K2(x) ≈ 2
x2 − 1

2 − x2

8

(
γE − 3

4 + ln x
2

)
+ O

(
x4
)
, (F.24c)

K3(x) ≈ 8
x3 − 1

x + x
8 + x3

48

(
γE − 11

12 + ln x
2

)
+ O

(
x5
)
, (F.24d)

K4(x) ≈ 48
x4 − 4

x2 + 1
4 − x2

48 + O
(
x4
)
. (F.24e)
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Appendix G

Code Listings

This appendix includes a very brief documentation of the Mathematica packages which have
been written and utilized in the framework of this thesis.

G.1 SymmetryFactors.m

The SymmetryFactor package basically provides an option to compute the symmetry factors of
any given graph. The scheme is, to fix the vertex positions as described for the pregraphs in
Section 1.3.2, and then construct a list of all possible complete connections which are compatible
with the available Feynman rules (propagators). Finally, the symmetry factor is determined
by counting the instances of the desired target topology in the list, and dividing by internal
symmetry factors of the vertices.

G.1.1 List of Commands

B Command: SymmetryFactor

SymmetryFactor[{E1..En},
{{V11, V12, ..V1m1},..{Vk1, Vk2, ..Vkmk}},
{{F11, F12, V1s, V1e},..{Fj1, Fj2, Vjs, Vje}}]

Description :
Computes the symmetry factor for a given graph topology. The first argument gives the
external fields E1..En of the graph (these correspond to vertices k + 1..k + n). The second
argument gives a list of vertices {1..k}, each defined by a list of mk fields {Fk1..Fkmk

} (where
mk may be different for each vertex). The numbering continues, i.e. the first given vertex
has number 1, the last one k, independent of the fact that some are internal, some external
vertices. These numberings are required for the third argument which is a list of propagators
between vertices. The structure is: {Field at start of prop., Field at end of prop., vertex ]
at start, vertex ] at end}. All internal and external legs have to be connected. The function
then counts all possible permutations which result in the given topology and divides by the
internal symmetry of the vertices given by (n1!...ni!) for i different bosonic fields of cardinality
n1, ..ni at each vertex.
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Variables :
1: E1..En comma-separated list of external fields
2: V{1..k}{1..m1} simply nested, comma separated list of fields entering the

vertices. The outer list runs over the first index (vertices k)
while the inner runs over fields mk of each vertex

3: F{1..j}{1,2,s,e} simply nested, comma separated list of propagator connec-
tions. The outer list runs over connections j, the inner gives
in the order of appearance: the field type at the start (1),
the field type at the end (2), vertex number at the start (s),
vertex number at the end (e).

Return Value :
The function returns a fractional number representing the symmetry factor for the given graph,
or 0 if an error in the definition has been found.

Example :
This simple example resembles the situation for the graph (c) of Fig. C.2, page 119.

In[1]:= SymmetryFactor[{A,B},{{B,A,A},{bB,B,A}},{{A,A,3,1},{B,B,2,4},{B,bB,1,2},{A,A,2,1}}]

Out[1]= 1

G.1.2 Loading of the Package

Get["SymmetryFactor.m", Path -> "〈PATH〉"]];

G.1.3 Source Code

(* ::Package:: *)1

2

(*********************************************************************3

* *4

* Package SymmetryFactors *5

* *6

* Enables the computation of symmetry factors for the current *7

* gauge model. *8

* *9

* Author : Rene Sedmik *10

* Date : 2008-04-29 *11

* *12

* Version History: *13

* ______________________________________________________________ *14

* | Ver | Date | Changes | *15

* +-----+------------+-----------------------------------------+ *16

* | 0.1 | 2008-04-24 | Initial Version | *17

* | 0.11| 2008-04-29 | Change in enumeration of vertices | *18

* *19

*********************************************************************)20

21

BeginPackage["SymFactors‘"];22

23

(**** usage Documentation ****)24

25

SymmetryFactor::usage = "SymmetryFactor[{E1...En},{{V11,V12,..V1m1},26
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..{Vk1,Vk2,...Vkmk}},{{F11,F12,V1s,V1e},...{Fj1,Fj2,Vjs,Vje}}]\n computes27

the symmetry factor for a given graph topology.\n The first argument gives28

the external fields E1..En of the graph (these correspond to vertices29

k+1..k+n).\n The second argument gives a list of vertices (1..k), each30

defined by a list of m_k Fields Fk1..Fkmk (, where m can be different31

for each vertex). The numbering continues, i.e. the first given vertex has32

number 1, the last one k. These numberings are required for the third33

argument which is a list of propagators between vertices. The structure34

is: {Field at start of prop., Field at end of prop., vertex # at start,35

vertex # at end}. All internal and external legs have to be connected.\n36

The function counts all possible permutations which result in the given37

topology and divides by the internal symmetry of the vertices given by38

prod_vertices(n1!...ni!) for i different bosonic fields of cardinality39

n1..ni at each vertex.";40

41

(**** Functions ****)42

43

Off[General::spell1];44

45

46

(* internal function needed by SymmetryFactor[], yields ttransformation rules*)47

(* for propagators *)48

Unprotect[PropOrdering];49

PropOrdering={50

HoldPattern[G[A,A,x_,y_]]:>G[A,A,Sort[{x,y}][[1]],Sort[{x,y}][[2]]],51

HoldPattern[G[B,A,x_,y_]]:>G[A,B,y,x],52

HoldPattern[G[bB,A,x_,y_]]:>G[A,bB,y,x],53

HoldPattern[G[B,B,x_,y_]]:>G[B,B,Sort[{x,y}][[1]],Sort[{x,y}][[2]]],54

HoldPattern[G[bB,bB,x_,y_]]:>G[bB,bB,Sort[{x,y}][[1]],Sort[{x,y}][[2]]],55

HoldPattern[G[B,bB,x_,y_]]:>G[bB,B,y,x],56

HoldPattern[G[c,bc,x_,y_]]:>G[bc,c,y,x],57

HoldPattern[G[P,bP,x_,y_]]:>G[bP,P,y,x]};58

59

60

(* Activate Mathemaitca-internal optimizations to speed up the rules *)61

Detach[PropOrdering];62

63

Protect[PropOrdering];64

65

(********************************************************************)66

(* Function SymmetryFactor, description see usage documentation *)67

Unprotect[SymmetryFactor];68

SymmetryFactor[ExtFields_,Vertices_,Propagators_]:=Module[69

{G,iVrtx,iLegs,iCnt,iCnt2,iPerm,iSym,iCorrFactor,LegList,GraphList,70

PermList,sGraph,sTargetTopo,AllowedProp,AllowedVert},71

72

(* definition of error messages *)73

SymmetryFactor::odderr="The number of free legs in this graph (’1’)74

is odd which indicates an erroneous input.";75

76

(* definition of allowed propagators and vertices *)77

AllowedProp={{A,A},{A,B},{B,A},{A,bB},{bB,A},{B,B},{bB,B},{B,bB},{bB,bB},78

{bc,c},{c,bc},{bB,bB},{bP,P},{P,bP}};79

AllowedVert={{A,A,A},{A,A,A,A},{B,A,A},{bB,A,A},{bB,B,A},80

{bB,B,A,A},{bB,B,A,A,A},{bB,A,A,A,A}};81

82

(* ordering definitions for propagators *)83

(* only topological identities are required, no signs! *)84

ClearAttributes[G,Orderless];85

86

(* allow only propagators in the list *)87
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G[A_,B_,x_,y_]:=If[!MemberQ[AllowedProp,{A,B} ],0];88

89

(*** TARGET TOPOLOGY ***)90

sTargetTopo="";91

Clear[TargetTopo];92

For[iCnt=1, iCnt<=Length[Propagators], iCnt++,93

sTargetTopo = sTargetTopo<>" G["<>ToString[Propagators[[iCnt,1]]]<>","94

<>ToString[Propagators[[iCnt,2]]]<>","95

<>ToString[Propagators[[iCnt,3]]]<>","96

<>ToString[Propagators[[iCnt,4]]]<>"]";97

];98

99

TargetTopo=(ToExpression[sTargetTopo])//.PropOrdering;100

101

(*determines the inner correction factor of the vertices *)102

(* Hint: this works only for theories with a sole bosonic field A.*)103

(* For extensions, the process would have to be repeated for*)104

(* each field, and the factors multiplied *)105

iCorrFactor=1;106

For[iCnt=1, iCnt<=Length[Vertices], iCnt++,107

iCnt2 = Length[Position[Vertices[[iCnt]],A]];108

iCorrFactor *= If[iCnt2>0,iCnt2!,1,1];109

];110

111

(*** ALL POSSIBLE CONTRACTIONS ***)112

(* assemble a list of all free legs *)113

LegList={};114

iLegs=0;115

116

(*vertex legs *)117

For [iCnt=1,iCnt<=Length[Vertices],iCnt++,118

For [iCnt2=1,iCnt2<=Length[Vertices[[iCnt]]],iCnt2++,119

LegList=Append[LegList,{"V",iCnt,Vertices[[iCnt,iCnt2]]}];120

iLegs++;121

];122

];123

124

(* external legs *)125

For [iCnt=1,iCnt<=Length[ExtFields],iCnt++,126

LegList=Append[LegList,{"E",iCnt+Length[Vertices],ExtFields[[iCnt]]}];127

iLegs++;128

];129

130

(* consistency check: there must be an even number of legs *)131

If[OddQ[iLegs],Message[SymmetryFactor::odderr,iLegs]];132

133

GraphPermutations[verts_]:=Module[{ii,jj,PartList,RestList,Tmp,Ret},134

Ret={};135

For [ii=2,ii<=Length[verts],ii++,136

PartList={verts[[1]],verts[[ii]]};137

RestList=Delete[verts,{{1},{ii}}];138

If[Length[RestList]>2,139

Tmp=GraphPermutations[RestList];140

For[jj=1,jj<=Length[Tmp],jj++,141

Ret=Append[Ret,Union[{PartList},Tmp[[jj]]]];142

],143

Ret=Append[Ret,Union[{PartList},{RestList}]];144

](*endif*)145

];(*endfor*)146

Ret147

];(*end module*)148
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149

(* generate all possible contractions as a list of permutations *)150

PermList=GraphPermutations[Range[iLegs]];151

(**Print["Permutations: "<>ToString[Length[PermList]]];**)152

(* generate a list of expressions V1...VN,G1...GN for these *)153

(* permutations *)154

GraphList={};155

For[iPerm=1,iPerm<=Length[PermList],iPerm++,156

sGraph="";157

For[iCnt=1,iCnt<=Length[PermList[[iPerm]]],iCnt++,158

sGraph=sGraph<>" G["<>ToString[LegList[[PermList[[iPerm,iCnt,1]],3]]]159

<>","<>ToString[LegList[[PermList[[iPerm,iCnt,2]],3]]]<>","160

<>ToString[LegList[[PermList[[iPerm,iCnt,1]],2]]]<>","161

<>ToString[LegList[[PermList[[iPerm,iCnt,2]],2]]]<>"]";162

];163

GraphList=Append[GraphList,(ToExpression[sGraph])/.PropOrdering];164

];165

(** DEBUGGING OUTPUT **)166

(**Print["TargetTopo: "];**)167

(**Print[TargetTopo];**)168

(**Print[GraphList];**)169

(**Print["Searching Symmetries..."];**)170

iSym=0;171

For[iCnt=1,iCnt<=Length[GraphList],iCnt++,172

If[TargetTopo==GraphList[[iCnt]],iSym++];173

];174

(**Print[iSym];**)175

iSym/iCorrFactor176

];177

(* end SymmetryFactor *)178

179

Protect[SymmetryFactor];180

181

On[General::spell1];182

183

EndPackage[ ];184

(*** EOF *********************************************************************)185

G.2 VariationalCalc.m

The VariationalCalc package has been designed to automate the computation of symmetries, as they
appear in the gauge model with BRST doublets (see Section 3.2.4) or the BRSW model (see Section 5.1.2).
One of the main achievements is that all functions in VariationalCalc respect the non-commutativity
of the regular product, which is hard to achieve in Mathematica® since the respective option seems to be
‘forgotten’ from time to time. If applied to a new model, the definitions of lAvFields and lFermiFields
in the region marked as NON - GENERIC PART in the code listing below (lines 130–156) have to be altered
accordingly. These two lists are used to determine which variables are fields, and which have fermionic
statistic. In addition, the explicit derivation rules for the respective fields in function VarD[] have to
be adapted. In the following, descriptions for the most important functions are given. Besides, there
exist the auxiliary functions ACo[], Co[], Cyclic[], IdxOf[], GetPerms[], IsDeriv[], IsFermion[],
IsField[], PwrOf[], RmAll[], RmIdx[], and RmPwr[], which are not documented here, but may be
useful in practice ( they are heavily used internally by the main functions). As always, syntactic and
behavioral descriptions are available by entering ?〈FUNCTION NAME〉; without arguments.
Note that it is essential to call ClearAttributes[Times,Orderless]; immediately after loading the
package since Mathematica® seems to reset the Orderless property of Times after returning from the
package.
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G.2.1 List of Commands

B Command: IsEquiv

IsEquiv[ e1,e2,[bPerm]]

Description :
IsEquiv[] determines if two terms e1, and e2 equal each other under consideration of signs
and in normalized form (see NormalForm[] below). The optional parameter bPerm defines if
cyclic permutations and partial derivative may also be taken into account, i.e. if an integral
can be presumed. Note that this function is designed for checks on simple field polynomials
only (as they appear in a local action, for example).

Variables :
1: e1 first term
2: e2 second term
3: bPerm defines if an integral can be presumed

0: integral is present, cyclic permutations are allowed
1: integral is not present.

Output :
The output is binary, False if no equivalence is given, True if e1 ≡ e2.

Example :

In[1]:= IsEquiv[c bc,-bc c,0]

Out[1]= True

In[2]:= IsEquiv[c bc,-bc c,1]

Out[2]= False

In[3]:= IsEquiv[PD[c Subscript[A, \[Mu]],\[Rho],0] PD[Subscript[B, \[Rho],s],\[Sigma],0],

-c Subscript[A, \[Mu]] PD[PD[Subscript[B, \[Rho],s],\[Sigma],0],\[Rho],0]]

Out[3]= True

In[4]:= IsEquiv[PD[c Subscript[A, \[Mu]],\[Rho],0] PD[Subscript[B, \[Rho],s],\[Sigma],0],

-c Subscript[A, \[Mu]] PD[PD[Subscript[B, \[Rho],s],\[Sigma],0],\[Rho],0],1]

Out[4]= False

B Command: NCCancel

NCCancel[ e,bInt]

Description :
NCCancel[] cancels terms in an expression e, under consideration of cyclic permutations and
statistics of fields. The parameter bInt defines if an integral can be presumed to enable cyclic
permutations (bInt = 1) or not (bInt = 0). Internally, NCCancel[] calls GetPerms[] for each
summand it finds in e. Subsequently, all possible combinations, resulting from alternative
representations of the terms, are analyzed and the simplest one is selected. Accordingly,
the timing behavior of this function is pretty bad, but improvements could be achieved by
analyzing the terms in order to perform transformations selectively, instead of the brute force
approach.
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Variables :
1: e any expression
2: bInt defines if an integral can be presumed

0: no integral, no cyclic permutations
1: integral is present.

Output :
The function returns a simplified expression (if any cancellations are possible). Note that the
computational effort scales factorial with the number of terms in e.

Example :

In[1]:= NCCancel[PD[c,\[Mu]] Subscript[A, \[Nu]]+c PD[Subscript[A, \[Nu]] ,\[Mu],0],1]

Out[1]= 0

In[2]:= NCCancel[PD[c,\[Mu]] Subscript[A, \[Nu]]+c PD[Subscript[A, \[Nu]] ,\[Mu],0],0]

Out[2]= c PD[Subscript[A, \[Nu]],\[Mu],1]+PD[c,\[Mu],1] Subscript[A, \[Nu]]

In[3]:= NCCancel[PD[c,\[Mu]] Subscript[A, \[Nu]] PD[c,\[Rho]]

+c PD[Subscript[A, \[Nu]] PD[c,\[Rho]]+Subscript[A, \[Rho]] PD[c,\[Mu]],\[Mu],0],1]

Out[3]= c PD[Subscript[A, \[Rho]],\[CapitalSigma]1,1] PD[c,\[CapitalSigma]1,1]

+c Subscript[A, \[Rho]] PD[PD[c,\[CapitalSigma]1,1],\[CapitalSigma]1,1]|

B Command: NormalForm

NormalForm[ e[,bTop]]

Description :
NormalForm[] transforms a given expression e into a predefined form and ordering, which
allows to effectively compare and analyze terms. Any multiplication is expanded as far as
possible. Scalars are shifted to the front and sorted. Fields are (due to non-commutativity)
left in the order they appear but summation indices are replaced by ‘Σn’, where n is a running
number. Care is taken with respect to contractions and powers (see examples below).

Variables :
1: e any expression
2: bTop is an optional parameter for internal use only

Output :
The function returns a normalized form of the input.

Example :

In[1]:= NormalForm[Subscript[A,\[Mu]] Subscript[A,\[Nu]] PD[Subscript[B,\[Rho],\[Mu]]^2,\[Sigma],1] 4]

Out[1]= 4 Subscript[A,\[CapitalSigma]1] Subscript[A,\[Nu]]

PD[Subscript[B,\[CapitalSigma]2,\[CapitalSigma]1]^2],\[Sigma],1]

In[2]:= NormalForm[Subscript[A,\[Mu]] Subscript[A,\[Nu]] const PD[4 Subscript[B,\[Rho],\[Tau]],\[Tau],1]]

Out[2]= 4 const Subscript[A,\[Mu]] Subscript[A,\[Nu]]

PD[Subscript[B,\[Rho],\[CapitalSigma]1],\[CapitalSigma]1,1]

B Command: PD

PD[ e,v,ind[,bEval]]
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Description :
PD[] (PartialDerivative) implements a symbolic partial derivative, which respects the Leibnitz
rule, transitivity, and non-commutativity but does not actually perform a derivative. Instead,
it represents a functional dependence which is respected upon variation with VarD[]. The
optional parameter bEval implements a switch which determines if VD[] shall be distributed
under consideration of transitivity and Leibnitz rule over e.

Variables :
1: e any expression
2: v variable which is taken for differentiation
3: ind v’s index
4: bEval [optional] defines if VD[] shall be distributed on e

0 (default): The only operation to be performed is pulling
out of scalar factors.
1: Thread VD[] over sums, eliminate derivatives of scalars,
and evaluate the Leibnitz rule. bEval is not propagated to
nested calls of PD[].

Output :
By default (bEval = 0) the function remains unevaluated. If bEval = 1, 0 is returned if e is a
scalar and VD[] performs as described above.

Example :

In[1]:= PD[PD[Subscript[A, \[Mu]] c,\[Rho],0],\[Sigma],1]

Out[1]= PD[PD[Subscript[A, \[Mu]] c,\[Rho],0],\[Sigma],1]

In[2]:= PD[const PD[Subscript[A, \[Mu]] c,\[Rho],1],\[Sigma],0]

Out[2]= const PD[PD[Subscript[A, \[Mu]],\[Rho],1] c+Subscript[A, \[Mu]] PD[c,\[Rho],1],\[Sigma],0]

B Command: VarD

VarD[ e,φ,ind[,bNoInt]]

Description :
VarD[] (VariationalDerivative) implements the functional variation as defined by Eqn. (1.27).
However, this function is more general, as it is not limited to expressions under an integral
but respects non-commutativity in general. The information if an integral is present, is yield
by the optional parameter bNoInt. Partial integrations are performed automatically. Note
however, that the actual variation rules for single fields are to be defined directly within the
function (see source).

Variables :
1: e any expression
2: φ field which is taken for variation.
3: ind φ’s index. For a scalar field give {} or omit the parameter.
4: bNoInt [optional] defines if an integral is present or not, to determine

if partial integrations and cyclic permutations are permitted.
0 (default): an integral is present
1: no integral is present.
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Output :
The output is the result of functional variation δe/δφind.

Example :

In[1]:= VarD[Subscript[A, \[Mu]] Subscript[A, \[Nu]],A,\[Alpha]]

Out[1]= KDelta[\[Nu],\[Alpha]] Subscript[A, \[Mu]]+KDelta[\[Mu],\[Alpha]] Subscript[A, \[Nu]]

In order to give an impression of the practical work with the package, a few more examples shall
be given, which also make use of functions which are not documented here, but whose function
is obvious. We have bosons Aµ, and fermions c, and c̄ (bc).

In[1]:= Co[PD[Subscript[A,\[Nu]],\[Mu]],Subscript[A,\[Rho]]]

Out[1]= -Subscript[A,\[Rho]] PD[Subscript[A,\[Nu]],\[Mu]]+PD[Subscript[A,\[Nu]],\[Mu]] Subscript[A,\[Rho]]

In[2]:= NCCancel[%,1]

Out[2]= 0

In[3]:= FStrength[\[Mu],\[Nu]]

Out[3]= I PD[Subscript[A,\[Mu]],\[Nu],1]-I PD[Subscript[A,\[Nu]],\[Mu],1]

-2 I g Subscript[A,\[Nu]] Subscript[A,\[Mu]]+2 I g Subscript[A,\[Mu]] Subscript[A,\[Nu]]|

In[4]:= VarD[FStrength[\[Mu],\[Nu]], c]

Out[4]= 0

G.2.2 Loading of the Package

Get["VariationalCalc.m", Path -> "〈PATH〉"]];
ClearAttributes[Times,Orderless];

G.2.3 Source Code

(* ::Package:: *)1

2

(*********************************************************************3

* *4

* Package VariationalCalc *5

* *6

* Enables simple variational calculations in nc spaces *7

* *8

* Author : Rene Sedmik *9

* Date : 2009-07-09 *10

* *11

* Version History: *12

* _______________________________________________________________ *13

* | Ver | Date | Changes | *14

* +-----+------------+------------------------------------------+ *15

* | 0.1 | 2009-05-29 | Initial Version | *16

* | 0.2 | 2009-06-03 | Added NormalForm, Cyclic and NCCancel | *17

* | 1.0 | 2009-06-10 | Completely rewritten to act in X-Space | *18

* | 1.1 | 2009-06-16 | Debugged and tested version ready for use| *19

* | 1.2 | 2009-06-18 | VarD and IsEquiv enhanced | *20

* | 1.21| 2009-07-09 | Bugfix for VarD | *21

* *22
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*********************************************************************)23

24

BeginPackage["VariationalCalc‘"];25

26

(**** remove old definitions ****)27

Unprotect[ACo];Clear[ACo];28

Unprotect[Co];Clear[Co];29

Unprotect[ContainsFields];Clear[ContainsFields];30

Unprotect[Cyclic];Clear[Cyclic];31

Unprotect[IdxOf];Clear[IdxOf];32

Unprotect[GetPerms];Clear[GetPerms];33

Unprotect[IsDeriv];Clear[IsDeriv];34

Unprotect[IsEquiv];Clear[IsEquiv];35

Unprotect[IsFermion];Clear[IsFermion];36

Unprotect[IsField];Clear[IsField];37

Unprotect[NCCancel];Clear[NCCancel];38

Unprotect[NormalForm];Clear[NormalForm];39

Unprotect[PartInt];Clear[PartInt];40

Unprotect[PD];Clear[PD];41

Unprotect[PwrOf];Clear[PwrOf];42

Unprotect[RmAll];Clear[RmAll];43

Unprotect[RmIdx];Clear[RmIdx];44

Unprotect[RmPwr];Clear[RmPwr];45

Unprotect[VarD];Clear[VarD];46

47

Unprotect[lAvFields];Clear[lAvFields];48

Unprotect[lFermiFields];Clear[lFermiFields];49

50

(**** usage Documentation ****)51

52

ACo::usage = "ACo[expr1, expr2] gives the anticommutator of expr1 and expr2\n";53

Cyclic::usage= "Cyclic[expr, num, [mode:0]] performs a rotation of expr by num54

places.\nnum > 0 corresponds to the direction in which the55

originally last element is\nrolled to the first position, num < 056

respectively performs in the other direction.\nThe optional mode57

parameter determines if the counting considers arbitrary\nfactors58

(mode=1) or just defined fields (mode=0, default).\n The statistic59

of known fields are respected!\n";60

Co::usage = "Co[expr1, expr2] gives the commutator of expr1 and expr2\n";61

ContainsFields::usage = "ContainsFields[expr] gives true if expr contains any62

defined field, and false otherwise.\nDeprecated function, use63

IsField instead."64

GetPerms::usage = "GetPerms[expr] is applied to monomials of fields and derivatives.65

\nThe function gives a list of all equivalent cyclic permutations66

and partial integrations thereof.\n";67

IdxOf::usage = "IdxOf[expr] gives a one dimensional list of all indices in an68

atomic expression.\nIndices can be single characters (any non-69

whitespace) with an arbitrary number of numbers\n attached to it.70

Any sequence of non-numeric non-whitespace characters is split.\n71

Purely numeric indices are not recognized.\n";72

IsEquiv::usage = "IsEqual[expr1, expr2] determines if two expressions are equal73

under consideration of cyclic permutation and partial integration.\n";74

IsDeriv::usage = "IsDeriv[expr] determines if a given expression constitutes a total75

derivative.\nIf yes, return = True, if not, return = False\n"76

IsFermion::usage = "IsFermion[expr] determines if the expression contains defined77

fermi fields or not.\nIf fields are found, the effective number of78

fields is returned as an integer >0.\nIf no fermions are found the79

result is 0.\n";80

IsField::usage = "IsField[expr] determines if the expression contains defined fields81

(return = True)\nor not (return = False).\n";82

NCCancel::usage = "NCCancel[expr, bInt] cancels terms under consideration of cyclic83
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permutations\nand statistics of fields. The parameter bInt defines if84

cyclic permutations are\nallowed (bInt=1) or not (bInt=0).\n";85

NormalForm::usage = "NormalForm[expr] gives a sorted form of the input. Scalars and86

bosonic expressions\nare shifted to the left, each type sorted87

according to a canonical order. Fermions\nare shifted to the right,88

in their alignment the statistic is respected.\nFurthermore indices89

which are summed over are replaced by a normalized\nnotation90

\[CapitalSigma]i, where i is a counter for summation indices.\nUse91

this function in\norder to make expressions comparable\n";92

PD::usage = "PD[arg, ind [, eval]] symbolizes a partial derivative of arg with93

respect to x, index \[Mu].\nThe optional argument eval determines if94

the expression is to be expanded in terms of the Leibnitz rule95

(eval = 1) or not (eval=0,default).";96

PwrOf::usage = "PwrOf[expr] gives the exponent of an atomic expression.\nThis97

function is intended to be applied only to simple atomic98

expressions!\n";99

RmAll::usage = "RmAll[expr] removes any index or powers from expr.\nThis function100

is intended to be applied only to simple atomic expressions!\n";101

RmIdx::usage = "RmIdx[expr] removes any indices from expr.\nThis function is102

intended to be applied only to simple atomic expressions!\n";103

RmPwr::usage = "RmIdx[expr] removes any powers from expr.\nThis function is intended104

to be applied only to simple atomic expressions!\n";105

VarD::usage = "VarD[expr, var, indx, [NoInt]] performs a variation of expr with106

respect to the field var\nwith index indx.\n For scalar fields set107

indx={} or omit the argument. Statistics\nof known fields are108

respected!\n By default the existence of an integral in front of the109

expression is assumed\nwhich allows for partial integration and cyclic110

permutation of the terms.\nIf no integral is present set the optional111

argument NoInt to 1.";112

113

Off[General::spell1];114

115

(***** Start of functional code *****)116

(* Better not to use the private package space since this rises numerous *)117

(*Begin["‘Private‘"];*)118

119

(*Enable memory sharing for all expressions *)120

Share[];121

122

(* disable canonical sorting of expressions with head Times *)123

Unprotect[Times];124

ClearAttributes[Times,Orderless];125

Protect[Times];126

127

128

(*****************************************************************************)129

(* NON - GENERIC PART *)130

(* functions which are specific to the current model *)131

Unprotect[lAvFields];Clear[lAvFields];132

Unprotect[lFermiFields];Clear[lFermiFields];133

Unprotect[CoD];Clear[CoD];134

Unprotect[FStrength];Clear[FStrength];135

136

CoD::usage = "CoD[expr, index] gives the covariant derivative of the expression137

expr with\nrespect to the given index as defined for our new nc138

gauge model\n";139

FStrength::usage = "CoD[ind1, ind2] gives the field strength tensorcovariant140

derivative\nas defined for our new nc gauge model\n";141

142

(*Listof defined fields for a specific model *)143

(* all fields *)144
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lAvFields = {A,bc,c,b,bB,B,bP,P,J,bJ,Q,bQ,OA,Oc,Obc,OB,ObB,OP,ObP,OJ,ObJ,OQ,ObQ};145

lFermiFields ={bc,c,bP,P,Q,bQ,OA,OB,ObB,OJ,ObJ}; (* fermi fields *)146

147

CoD[f_,ind_]:=I*PD[f,ind,0]-I*g*(Subscript[A, ind]*f-f*Subscript[A, ind]);148

FStrength[ind1_,ind2_]:=(CoD[Subscript[A, ind1],ind2]-CoD[Subscript[A, ind2],ind1]);149

150

Protect[lAvFields];151

Protect[lFermiFields];152

Protect[CoD];153

Protect[FStrength];154

155

(* END OF NON - GENERIC PART *)156

(*****************************************************************************)157

158

159

(* some helper functions *)160

161

(* Gives the power of non-numeric variables. Intended for single variables *)162

(* ONLY, does not work with composite expressions *)163

PwrOf[expr_]:=If[Position[expr,Power]!={},expr//.{(c_:1)*Fun_[___,Power[a_,b_],164

___]:>b,(c_:1)*Power[a_,b_]:>b},1];165

(* Gives a list of the indices of the current expression. Intended for *)166

(* single variables ONLY, does not work with composite expressions *)167

IdxOf[expr_]:=expr//.{(c_:1)*Fun_[___,Subscript[a_,i__],___]:>168

ToExpression[Flatten[StringCases[ToString[#]&/@{i},169

RegularExpression["\\S\\d*"]]]],170

(c_:1)*Subscript[a_, i__]:>ToExpression[Flatten[171

StringCases[ToString[#]&/@{i},RegularExpression["\\S\\d*"]]]],172

others_:>{}/;Position[expr,Subscript]=={}};173

(* a version for more complicated terms including PDs *)174

IdxOf[expr_,1]:=Module[{aLocIdx,tmp,ii},175

aLocIdx={};176

tmp=If[Head[expr]===Times,Level[expr,1],{expr}];177

While[Position[tmp,PD]!={},178

(* add indices of free fields and derivatives *)179

(AppendTo[aLocIdx,#/.{HoldPattern[PD[arg_,ind_,_:0]]:>ind,c_:>IdxOf[c,1]/;180

Position[c,PD]=={}}])&/@tmp;181

(* simple expressions are now already processed -> delete *)182

For [ii=1,ii<=Length[tmp],ii++,183

If[Position[tmp[[ii]],PD]=={},tmp=Delete[tmp,ii];ii--;];184

];185

(* dig deeper into the expression *)186

tmp=Flatten[(#/.HoldPattern[PD[arg_,ind_,eval_:0]]:>arg)&/@tmp];187

(* split of multiplications in PD arguments *)188

tmp=Flatten[If[Head[#]===Times,List@@#,#]&/@tmp];189

];(*end while*)190

(* pick up all remaining indices *)191

(AppendTo[aLocIdx,IdxOf[#]])&/@tmp;192

Flatten[aLocIdx]193

];194

(* Removes index and power decorations as well as derivatives *)195

RmAll[HoldPattern[(c_:1)*PD[expr_,___]]] := RmAll[expr]/;(!ContainsFields[c]);196

RmAll[HoldPattern[PD[expr_,___]]] := RmAll[expr];197

RmAll[expr_]:=expr//.{(c_:1)*Power[Subscript[a_,___],n_:1]/;(!ContainsFields[c])198

:>a,199

(c_:1)*Power[a_,n_:1]/;(!ContainsFields[c]):>a};200

(* Removes inices *)201

RmIdx[expr_]:=expr//.{(c_:1)*(Subscript[a_, __])^(n_:1):>c*a^n,202

(c_:1)*(Subscript[a_, __])^(n_:1):>c*a^n};203

(* Removes powers *)204

RmPwr[expr_]:=expr//.{(c_:1)*Power[a_,n_:1]:>c*a};205
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206

Protect[PwrOf];207

Protect[IdxOf];208

Protect[RmAll];209

Protect[RmIdx];210

Protect[RmPwr];211

212

(* commutator and anticommutator relations *)213

Co[a_,b_] :=a*b-b*a;214

ACo[a_,b_]:=a*b+b*a;215

Protect[Co];216

Protect[Aco];217

218

(* function to determine if an expression contains fields *)219

ContainsFields[expr_]:=Module[{bRes},220

bRes=False;221

(If[Position[expr,#]!={},bRes=True])&/@lAvFields;222

bRes223

];224

225

226

(* Function to perform cyclic permutations. Statistics of known fermi/bose *)227

(* fields are respected. *)228

Cyclic[expr_,num_,mode_:0]:=Module[{iCnt,iCnt2,iCnt3,iList,iSign,iNum,tHead},229

iNum=num;230

tHead=Head[expr];231

(* if the Head of the input is not recognized as List *)232

(* or Times, set num to 0 to bypass cycling operation.*)233

If[!(tHead===Times) && !(tHead===List),iNum=0;];234

iList=List@@expr;235

iCnt=0;iCnt2=0;iCnt3=0;iSign=1;236

(* the simple case*)237

If[iNum==0,expr,238

(*else*)239

While[(iCnt<Abs[iNum]) && (iCnt2<=Length[iList])&&(iCnt3<Abs[iNum]),240

If[iNum>0,241

(* roll the last element to the first place *)242

iList=RotateRight[iList];243

(* if the rolled element was a fermion, check the signs *)244

If[IsFermion[iList[[-1]]]>0,245

(iSign*=(-1)^(IsFermion[#]*IsFermion[iList[[1]]]))&/@iList[[2;;]];246

];247

(* increment the field counter *)248

If[IsField[iList[[1]]],iCnt++];249

,(*else, num<0*)250

(* roll the first element to the last place *)251

iList=RotateLeft[iList];252

(* if the rolled element was a fermion, check the signs *)253

If[IsFermion[iList[[-1]]]>0,254

(iSign*=(-1)^(IsFermion[#]*IsFermion[iList[[-1]]]))&/@iList[[;;-2]];255

];256

(* increment the field counter *)257

If[IsField[iList[[-1]]],iCnt++];258

];(*if num>0*)259

iCnt2++;260

If[mode>0,iCnt3++;];261

];(*while*)262

(* just to be sure *)263

Unprotect[Times];264

ClearAttributes[Times,Orderless];265

Protect[Times];266
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(*correct the sign*)267

iSign*tHead@@iList268

](*endif simple case*)269

]270

Protect[Cyclic];271

272

(* compute a list of all possible permutations and their partial derivatives *)273

GetPerms[exprr_,bNoPI_:0]:=Module[{exprrInt,exprrOut,iCntr,iTmp,tmpr,tmpr2,tmpp,274

jj,bFin,bFin2},275

Unprotect[Times];276

ClearAttributes[Times,Orderless];277

(* the initial expression in its MMTK-convenient form *)278

exprrInt = Evaluate[exprr];279

exprrOut = {};280

tmpr = exprrInt;281

iCntr = 0;282

(* loop over permutations *)283

bFin=False;284

While[(!bFin),285

(* append the new permutation to the list *)286

AppendTo[exprrOut,tmpr];287

(* count permutations *)288

iCntr=Length[exprrOut];289

iTmp = 0;290

(* check for Partial Integration variants if the flag is given *)291

If[bNoPI==0,292

Clear[tmpr2];293

If[Head[tmpr]===Times,tmpr2=List@@tmpr;,tmpr2={tmpr};];294

bFin2=False;295

(* add partially integrated terms as permutations *)296

While[((iTmp<=Length[Position[tmpr2,PD]])&&(bFin2==False)),297

(* check if the first field-containing term is a derivative *)298

jj=1;299

(*Determine the position of the first field-like factor *)300

If[Head[tmpr]===Times,301

(* get the position of the first field *)302

While[(!IsField[tmpr2[[jj]]])&&(jj<=Length[tmpr2]),jj++;];303

];304

(* end the loop as soon as the first field has no more *)305

(* derivatives *)306

If[IsDeriv[tmpr2[[jj]]],307

(* conduct P.I. and assign the modified term *)308

If[Head[exprrInt]===Times,309

ClearAttributes[Times,Orderless];310

tmpr2=Distribute[PartInt[Times@@tmpr2]];311

(*check if the partial integration resulted in a sum *)312

If[Head[tmpr2]===Plus,313

tmpp=List@@tmpr2;314

(* replace every term of the sum by a list of its *)315

(* permutations *)316

tmpp=GetPerms[#,1]&/@tmpp;317

(* compile all possible summations from the subsets*)318

(*replace each variant of the first term by a list of *)319

(* possible summations with terms of the jjth term*)320

For[jj=2,jj<=Length[tmpp],jj++,321

tmpp[[1]]=Flatten[ReplaceList[tmpp[[1]],{___,a_,___}:>322

{(a+ReleaseHold[#])&/@tmpp[[jj]]}]];323

];(*for jj*)324

(* add the new variants to the list *)325

exprrOut = Flatten[Append[exprrOut,tmpp[[1]]]];326

,(* else Head!= Plus*)327
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(* add the new variant of the term to the list *)328

exprrOut=Flatten[Append[exprrOut,GetPerms[Times@@tmpr2,1]]];329

];(* endif Head==Plus*)330

,(*else Head!=Times*)331

tmpr2={PartInt[tmpr2]};332

(* add the new variant of the term to the list *)333

exprrOut=Flatten[Append[exprrOut,GetPerms[Times@@tmpr2,1]]];334

];335

(* count P.I. variants *)336

iTmp++;337

,(*else, no derivative*)338

bFin2=True;Break[];339

]; (*end if IsDeriv *)340

];(* end while bFin2 *)341

];(* end if bNoPI *)342

Clear[tmpr];343

Unprotect[Times];344

ClearAttributes[Times,Orderless];345

Protect[Times];346

(* generate the next permutation *)347

tmpr = Evaluate[Cyclic[exprrOut[[iCntr]],1]];348

If[IsEquiv[tmpr,exprrInt,2],bFin=True;];349

];(* end while bFin *)350

exprrOut351

];352

(*** end of GetPerms ***)353

Protect[GetPerms];354

355

356

(* determine if a given expression is a total derivative *)357

IsDeriv[expr3_]:=Module[{fNum,bTst,ii},358

bTst=False;359

(* rule out expressions that do not feature any PDs *)360

If[Position[expr3,PD]=={},bTst=True;361

,(* else, PD is contained *)362

(* remove any factors *)363

fNum=expr3//.{(c_:1)*b_/;(Position[c,PD]=={}&&!ContainsFields[c]):>b};364

bTst=!(Head[fNum]===PD);365

];366

!bTst367

];368

369

(* determine if fields are contained in a given expression *)370

IsField[expr_]:=Or@@(Position[expr,#]!={}&/@lAvFields);371

372

(* determine the fermionic power in a given expression *)373

IsFermion[expr_]:=Module[{iCnt,iPos,iPos2,ii,bNot,iOut},374

iOut=0;375

For [iCnt=1,iCnt<=Length[lFermiFields],iCnt++,376

Clear[iPos];Clear[iPos2];377

(* first count occurrences with powers *)378

iPos=Position[expr,Power[Subscript[lFermiFields[[iCnt]],___],c_]/;c>1];379

(* necessary workaround for the subsequent /@ syntax *)380

If[iPos=={{}},iPos={{{}}}];381

(* count powers *)382

If[iPos!={},iOut+=Plus@@(PwrOf/@(Flatten[Extract[expr,#]&/@iPos]));];383

(* all occurrences *)384

iPos2=Position[expr,lFermiFields[[iCnt]]];385

If[(iPos2!={}&&iPos!={{{}}}),386

(* have to rule out those which have already been treated with pwrs *)387

(* loop the general occurrences *)388
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For[ii=1,ii<=Length[iPos2],ii++,389

bNot=False;390

(* only check for equivalence if the compared term is longer than*)391

(* the first one *)392

(If[Length[iPos2[[ii]]]>=Length[#],393

If[(Take[iPos2[[ii]],Length[#]]==#),bNot=True;]])&/@iPos;394

(* if bNot has not been set, the term is unique *)395

(* =>one fermionic potence more *)396

If[bNot==False,iOut+=1 ;];397

](* end for ii*)398

];(* end if iPos2!=0 *)399

];(*end for iCnt*)400

iOut401

];402

(*** end of IsFermion ***)403

404

Protect[IsField];405

Protect[IsFermion];406

Protect[IsDeriv];407

408

409

(* checks for equivalence, if mode=0(or not given) permutations are taken *)410

(*into account. For mode>0 only equivalence under cyclic permutations of *)411

(* scalar (non-field) factors are considered. *)412

413

IsEquiv[expr1_,expr2_,mode_:0]:=Module[{expr1Int,i1,ii,bRes,iCnt,aPerms,exprOut},414

Unprotect[Times];415

ClearAttributes[Times,Orderless];416

(* check for immediate equivalence *)417

If[NormalForm[expr1]===NormalForm[expr2],418

bRes=True;419

,(*else*)420

If[mode>0,421

(* security counter *)422

i1=0;423

(* internal backup to enable alternation *)424

expr1Int=expr1;425

If[!(Head[expr1Int]===Times),expr1Int={expr1Int}];426

(* bring the first expression into a defined state with *)427

(* all factors rolled to the start *)428

While[(!IsField[Level[expr1Int,1][[-1]]])429

&&(i1<=Length[Level[expr1Int,1]]),430

expr1Int=Cyclic[expr1Int,1,1];431

i1++;432

];433

(* initial values *)434

bRes = False;i1=0;435

(* roll until a field-valued expr. appears at the 1st pos *)436

While[(!IsField[Level[expr1Int,1][[1]]])437

&&(i1<=Length[Level[expr1Int,1]]),438

(* check for equivalence to the second term *)439

If[Times@@expr1Int===expr2,bRes=True;];440

expr1Int=Evaluate[Cyclic[expr1Int,-1,1]];441

i1++;442

];443

, (*else, bmode >0*)444

(* equivalence check with permutations: start with a difference *)445

(* of the input terms-> must vanish for equivalence *)446

expr1Int=(ReleaseHold[Distribute[(expr1-expr2)447

//.(HoldPattern[PD[arg_,ind_,0]]:>HoldForm[PD[arg,ind,1]])]]);448

Clear[ii];449
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(* build a table of all summands with their possible cyclic *)450

(* permutations *)451

expr1Int=If[Head[expr1Int]===Plus,(List@@(Distribute[expr1Int])),452

{expr1Int}];453

aPerms=Table[expr1Int[[ii]],{ii,Length[expr1Int]}];454

(* replace each single term by a list of its cyclic perms. *)455

aPerms=GetPerms[#]&/@aPerms;456

(* build up a list of possible summations *)457

expr1Int={0};458

(* loop over level-0-summands *)459

For[iCnt=1,iCnt<=Length[aPerms],iCnt++,460

ClearAttributes[Times,Orderless];461

expr1Int=(Flatten[ReplaceList[expr1Int,{___,ap_,___}:>462

{(ap+ReleaseHold[#])&/@aPerms[[iCnt]]}]]);463

];464

ClearAttributes[Times,Orderless];465

(* check for vanishing of any combination *)466

bRes=MemberQ[Evaluate/@(NormalForm/@expr1Int),0];467

]; (* end if mode*)468

];(*end if ===*)469

Protect[Times];470

bRes471

];472

(*** end of IsEquiv ***)473

Protect[IsEquiv];474

475

(*submodule for bringing a term into normal form: *)476

(*scalars first in canonical order, then bosons, then fermions *)477

(*indices are replaced if summed up *)478

NormalForm[exprrr_,top_:1]:=Module[{exprrrInt,exprrrOut,iCntrr,aLocIdx,ii,lSF,479

iPos,iSumInd},480

Unprotect[Times];481

ClearAttributes[Times,Orderless];482

(* expand the term as far as possible *)483

exprrrInt=(Evaluate[Distribute[exprrr//.HoldPattern[PD[arg_,ind_,0]]:>484

PD[arg,ind,1]]];485

(* for sums thread over the summands *)486

If[Head[exprrrInt]===Plus,exprrrOut={Plus@@(NormalForm[#,If[top==1,1,0]]&/@(487

List@@exprrrInt))};488

,(*else*)489

(* generate a list of the terms *)490

If [Head[exprrr]===Times, exprrrInt = List@@exprrr;, exprrrInt = {exprrr};];491

(* build lists for scalars and fields in the order they appear *)492

iSumInd=1;493

lSF={};494

For[iCntrr=1,iCntrr<=Length[exprrrInt],iCntrr++,495

(* pick out scalar terms *)496

If[!IsField[exprrrInt[[iCntrr]]],497

AppendTo[lSF,exprrrInt[[iCntrr]]];498

exprrrInt=Delete[exprrrInt,iCntrr];499

];(* end if*)500

];(*end for iCntrr*)501

(*dig deeper into the expression*)502

exprrrInt=(exprrrInt/.HoldPattern[PD[arg_,idx_,eval_:1]]:>503

ReleaseHold[PD[NormalForm[arg,0],idx,eval]]);504

(* compose the expression with ordered scalars *)505

exprrrOut = Flatten[Append[Sort[lSF],exprrrInt]];506

(* on top level (1st call of the function *)507

If[top==1,508

rep={};509

aLocIdx=IdxOf[Times@@exprrrOut,1];510
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If[aLocIdx!={},511

(* create a list of indices which appear at least twice *)512

aLocIdx=(ReplaceList[Sort[aLocIdx],{___,el_,el_,___}->el]513

//.{al___,el_,el_,bl___})->{al,el,bl};514

(* create a list of replacements for these *)515

(AppendTo[rep,#->Symbol["\[CapitalSigma]"<>ToString[iSumInd++]]])&/@aLocIdx;516

exprrrOut=exprrrOut//.rep;517

];(* end if alocidx*)518

519

(* treat terms with powers *)520

Clear[aLocIdx];521

iPos=Position[exprrrOut,Power[Subscript[c_,ind__],n_]/;((n>1)&&IsField[c])];522

exprrrInt={};523

If[iPos!={},524

(*loop over occurrences*)525

For[ii=1,ii<=Length[iPos],ii++,526

Clear[aLocIdx];527

aLocIdx=Flatten[IdxOf[Extract[exprrrOut,{iPos[[ii]]}]]];528

(*loop over indices in an occurrence*)529

(If[(!StringMatchQ[ToString[#],RegularExpression["\[CapitalSigma]\\d+"]]),530

AppendTo[exprrrInt,#->Symbol["\[CapitalSigma]"<>ToString[iSumInd++]]]])&/531

@aLocIdx;532

];(*end for ii*)533

If[exprrrInt!={},534

exprrrOut=exprrrOut//.exprrrInt;];535

];(*end if rep*)536

];(* end if top*)537

];(*end if Head==Plus*)538

ClearAttributes[Times,Orderless];539

Protect[Times];540

ReleaseHold[Times@@exprrrOut]541

];542

(*** end of NormalForm ***)543

Protect[NormalForm];544

545

(* function to cancel (simplify) sum expressions under consideration of *)546

(* cyclic perm. and partial integration under an integral (bInt>0 given) *)547

NCCancel[expr_, bInt_] :=548

Module[{exprInt,exprOut,aPerms,ii,iCnt,iCnt2,iCnts,iCnt2s,compList,ComplFun,tmp},549

(*just to be sure*)550

Unprotect[Times];551

ClearAttributes[Times,Orderless];552

Protect[Times];553

(*** submodule for evaluating the complexity of a term ***)554

ComplFun[exprr_]:=Module[{CFint,CFout,jj},555

If[Head[exprr]===Plus,CFint=Level[exprr,1],CFint={exprr}];556

CFout=0;557

For[jj=1,jj<=Length[CFint],jj++,558

If[Head[CFint[[jj]]]===Times,CFout+=20*Length[Level[CFint[[jj]],1]]+If[Re[(559

List@@CFint[[jj]])[[1]]]<0||Im[(List@@CFint[[jj]])[[1]]]<0,1,0,0],560

If[NumericQ[CFint[[jj]]],CFout+=0,CFout+=20]];561

];(* end for jj*)562

CFout563

];564

(*** end of submodules ***)565

(* bring into a maximally expanded form *)566

exprInt=ReleaseHold[Distribute[(expr)//.(HoldPattern[PD[arg_,ind_,0]]:>567

HoldForm[PD[arg,ind,1]])]];568

Clear[ii];569

exprInt = If[Head[exprInt]===Plus,Level[Distribute[exprInt],1],{exprInt}];570

(* build a table of all summands with their possible cyclic permutations *)571
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aPerms = Table[exprInt[[ii]],{ii,Length[exprInt]}];572

573

(* if the expr. has an integral in front of it => cyclic perms possible *)574

If[bInt==1,575

(* replace the single terms by a list of their cyclic permutations *)576

For[iCnt = 1,iCnt<=Length[aPerms],iCnt++,577

aPerms[[iCnt]]=GetPerms[aPerms[[iCnt]]];578

If[Length[aPerms[[iCnt]]]<2,aPerms[[iCnt]]={aPerms[[iCnt]]}];579

];580

exprInt={0};581

Unprotect[Times];582

ClearAttributes[Times,Orderless];583

Protect[Times];584

(* loop over level-0-summands, construct a list of all possible sum- *)585

(* mations from the permutations of the single terms *)586

For[iCnt = 1,iCnt<=Length[aPerms],iCnt++,587

(* loop over existing sums in the sum list*)588

For[iCnts=1,iCnts<=Length[exprInt],iCnts++,589

exprInt[[iCnts]]=(exprInt[[iCnts]]+NormalForm[ReleaseHold[#]])&/590

@aPerms[[iCnt]];591

];592

(* the above result is a nested list-> needs to be flattended out *)593

exprInt=Flatten[exprInt];594

];595

596

Print["Num of Sums: "<>ToString[Length[exprInt]]];597

(* compute the complexity for each term *)598

compList=ComplFun/@exprInt;599

(* get the the term with the smallest complexity *)600

exprOut=exprInt[[Ordering[compList,1][[1]]]];601

,(*else, no int*)602

(* just try to eliminate and contract terms in normal form *)603

aPerms=ReleaseHold/@(NormalForm/@aPerms);604

exprOut=Plus@@aPerms;605

];(*end if int*)606

(* if any brackets are left, remove them and add up the result*)607

If[Head[exprOut]===List,608

exprOut=Plus@@exprOut;609

];610

exprOut611

];612

(*** end of NCCancel ***)613

Protect[NCCancel];614

615

(* Perform a partial integration. Note that the argument has to have a *)616

(* partial derivative at the first place *)617

PartInt[(c_:1)*PD[expr_,ind_,eval_:0]*(rest_:1)]/;((!ContainsFields[c]):=618

-c*expr*PD[rest,ind,eval]);619

Protect[PartInt];620

621

622

(* Partial derivative symbol *)623

PD[arg_?NumericQ,ind_, _ : 0] := 0; (* the deriv. of a scalar is 0 *)624

(* the derivative of a non-field is 0 *)625

PD[arg_, ind_, _ : 0] := 0 /; (!ContainsFields[arg]); (* transitivity *)626

PD[a_ + b_, ind_, 1] := PD[a, ind, 1] + PD[b,ind,1]; (*pulling out of factors*)627

PD[Times[a_, b_], ind_, eval_: 0] := a*PD[b,ind,eval] /; (!ContainsFields[a]);628

PD[Times[a_, b_], ind_, eval_: 0] := b*PD[a,ind,eval] /; (!ContainsFields[b]);629

PD[Times[a_, b_], ind_, 1] := PD[a,ind,1]*b + a*PD[b,ind,1]; (*Leibniz rule*)630

631

Protect[PD];632
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633

(* Function to perform functional variation in x-space *)634

VarD[expr_,var_,indx_:{},bNoInt_:0]:=Module[{iCnt,iPwr,iTrm,iVars,iaPos,635

exprIntern,lSubTerms,tTrm,tTrm2,fNum,fNumSub,res},636

(*just to be sure*)637

Unprotect[Times];638

ClearAttributes[Times,Orderless];639

Protect[Times];640

(*assure indx to be a list*)641

exprIntern=Expand[expr//.PD[arg_,ind_,0]->PD[arg,ind,1]];642

(*split the argument into summands and treat each summand separately *)643

exprIntern = If[Head[exprIntern]===Plus,List@@exprIntern,{exprIntern}];644

(*********************************************************)645

(*** the actual variation function ***)646

Vari[trm_,fld_,idx_]:=Module[{ress,lIndices,tmp},647

(*Print["Vari:"];Print[trm];Print[fld];Print[idx];*)648

lIndices=IdxOf[trm];649

Unprotect[Times];650

ClearAttributes[Times,Orderless];651

Protect[Times];652

tmp:=1/4*(KDelta[lIndices[[1]],idx[[1]]]*KDelta[lIndices[[2]],idx[[2]]]653

-KDelta[lIndices[[1]],idx[[2]]]*KDelta[lIndices[[2]],idx[[1]]])654

*(KDelta[lIndices[[3]],idx[[3]]]*KDelta[lIndices[[4]],idx[[4]]]655

-KDelta[lIndices[[3]],idx[[4]]]*KDelta[lIndices[[4]],idx[[3]]]);656

(*generate the permutations for each field*)657

ress=If[(!(RmAll[trm]===fld)),0, Switch[fld,658

A, KDelta[lIndices[[1]],idx],659

B, 1/2*(KDelta[lIndices[[1]],idx[[1]]]*KDelta[lIndices[[2]],idx[[2]]]660

-KDelta[lIndices[[1]],idx[[2]]]*KDelta[lIndices[[2]],idx[[1]]]),661

bB,1/2*(KDelta[lIndices[[1]],idx[[1]]]*KDelta[lIndices[[2]],idx[[2]]]662

-KDelta[lIndices[[1]],idx[[2]]]*KDelta[lIndices[[2]],idx[[1]]]),663

P, 1/2*(KDelta[lIndices[[1]],idx[[1]]]*KDelta[lIndices[[2]],idx[[2]]]664

-KDelta[lIndices[[1]],idx[[2]]]*KDelta[lIndices[[2]],idx[[1]]]),665

bP,1/2*(KDelta[lIndices[[1]],idx[[1]]]*KDelta[lIndices[[2]],idx[[2]]]666

-KDelta[lIndices[[1]],idx[[2]]]*KDelta[lIndices[[2]],idx[[1]]]),667

J, tmp,668

bJ,tmp,669

Q, tmp,670

bQ,tmp,671

c, 1,672

bc,1,673

b, 1,674

OA,KDelta[lIndices[[1]],idx],675

Oc,1,676

Obc,1,677

OB,1/2*(KDelta[lIndices[[1]],idx[[1]]]*KDelta[lIndices[[2]],idx[[2]]]678

-KDelta[lIndices[[1]],idx[[2]]]*KDelta[lIndices[[2]],idx[[1]]]),679

ObB,1/2*(KDelta[lIndices[[1]],idx[[1]]]*KDelta[lIndices[[2]],idx[[2]]]680

-KDelta[lIndices[[1]],idx[[2]]]*KDelta[lIndices[[2]],idx[[1]]]),681

OP,1/2*(KDelta[lIndices[[1]],idx[[1]]]*KDelta[lIndices[[2]],idx[[2]]]682

-KDelta[lIndices[[1]],idx[[2]]]*KDelta[lIndices[[2]],idx[[1]]]),683

ObP,1/2*(KDelta[lIndices[[1]],idx[[1]]]*KDelta[lIndices[[2]],idx[[2]]]684

-KDelta[lIndices[[1]],idx[[2]]]*KDelta[lIndices[[2]],idx[[1]]]),685

OJ,tmp,686

ObJ,tmp,687

OQ,tmp,688

ObQ,tmp]689

];690

ress691

];692

(*** end Vari ***)693
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res=0;694

(*loop over summands*)695

For[iCnt=1,iCnt<=Length[exprIntern],iCnt++,696

(*remove numerical prefactors*)697

fNum=1;698

If[Head[exprIntern[[iCnt]]]===Times,699

Unprotect[Times];700

ClearAttributes[Times,Orderless];701

Protect[Times];702

fNum=Times@@Flatten[Cases[exprIntern[[iCnt]],a_/;!IsField[a]:>a,1]];703

exprIntern[[iCnt]]=Times@@Flatten[Cases[exprIntern[[iCnt]],a_/;704

IsField[a]:>a,1]];705

];(* end if *)706

(*determine the pos. of relevant terms in the current summand *)707

iaPos=Position[exprIntern[[iCnt]],var];708

(*remove the index numbers of deeper levels, only take top one *)709

If[iaPos!={},710

For[iTrm=1,iTrm<=Length[iaPos],iTrm++,711

If[Length[iaPos[[iTrm]]]==0,712

iaPos[[iTrm]]={1};713

,(* else Length > 0 *)714

iaPos[[iTrm]]={iaPos[[iTrm,1]]};715

];716

];717

,(* else iaPos == 0*)718

(* the term does not depend on the variable, skip to the next *)719

Continue;720

];721

(* apply an additional wrapping {} if we have only a single term *)722

If[!(Head[exprIntern[[iCnt]]]===Times),723

exprIntern[[iCnt]]={exprIntern[[iCnt]]};];724

(* check if an integral is present to enable rotations and PI. *)725

If[bNoInt>0,726

Unprotect[Times];727

ClearAttributes[Times,Orderless];728

Protect[Times];729

(* split the multiplication *)730

lSubTerms=Table[List@@exprIntern[[iCnt]],{Length[iaPos]}];731

(*loop over occurrences of the relevant variable in the *)732

(* current summand *)733

For[iVars=1,iVars<=Length[iaPos],iVars++,734

(* extract any numeric prefactor *)735

fNumSub=1;736

If[!IsField[lSubTerms[[iVars,1]]],737

fNumSub=lSubTerms[[iVars,1]];738

lSubTerms[[iVars]]=Delete[lSubTerms[[iVars]],1];739

];740

(* pick up an occasional sign from pulling the variation *)741

(* through a fermionic term -> store in fNumSub *)742

If[iaPos[[iVars,1]]>1, fNumSub=fNumSub*If[IsFermion[var]>0,743

(-1)^IsFermion[Times@@lSubTerms[[iVars,1;;(iaPos[[iVars,1]]-1)]]],1,1];744

];745

(* check if the current term is a derivative -> use alternate *)746

(* variation *)747

(* only the case of a derivative of a power is covered here *)748

If[IsDeriv[lSubTerms[[iVars,iaPos[[iVars,1]]]]],749

If[IsDeriv[lSubTerms[[iVars,iaPos[[iVars,1]]]]/.HoldPattern[750

PD[arg_,ind_,eval_:0]]:>arg],751

(* double derivatives are boundary terms and vanish *)752

lSubTerms[[iVars]]={0};753

,(* else only single derivative*)754



G.2 VariationalCalc.m 166

iPwr=PwrOf[lSubTerms[[iVars,iaPos[[iVars,1]]]]];755

tTrm=RmPwr[lSubTerms[[iVars,iaPos[[iVars,1]]]]];756

If[iPwr>1,757

(* for a fermion: *)758

If[IsFermion[lSubTerms[[iVars,iaPos[[iVars,1]]]]]>0,759

If[EvenQ[iPwr],760

lSubTerms[[iVars]]={0}761

,(*else odd power*)762

lSubTerms[[iVars,iaPos[[iVars,1]]]]=tTrm^(iPwr-1);763

lSubTerms[[iVars]]={764

(-Vari[tTrm/.HoldPattern[PD[arg_,ind_,eval_:0]]:>arg,var,indx])765

*PD[Times@@lSubTerms[[iVars]],tTrm/.HoldPattern[PD[arg_,ind_,eval_:0]]:>766

ind,tTrm/.HoldPattern[PD[arg_,ind_,eval_:0]]:>eval]};767

];(* end if EvenQ *)768

,(*else boson*)769

lSubTerms[[iVars,iaPos[[iVars]]]]=tTrm^(iPwr-1);770

lSubTerms[[iVars]]={771

(-iPwr*Vari[tTrm/.HoldPattern[PD[arg_,ind_,eval_:0]]:>arg,var,indx])772

*PD[Times@@lSubTerms[[iVars]],tTrm/.HoldPattern[PD[arg_,ind_,eval_:0]]:>773

ind,tTrm/.HoldPattern[PD[arg_,ind_,eval_:0]]:>eval]};774

];775

,(*else, no higher powers->take out the current term, *)776

(* apply the derivative to the rest and attach *)777

(* the result of the variation at the start *)778

lSubTerms[[iVars]]=Delete[lSubTerms[[iVars]],iaPos[[iVars,1]]];779

lSubTerms[[iVars]]=-Vari[tTrm780

/.HoldPattern[PD[arg_,ind_,eval_:0]]:>arg,var,indx]781

*PD[Times@@lSubTerms[[iVars]],782

tTrm/.HoldPattern[PD[arg_,ind_,eval_:0]]:>ind,783

tTrm/.HoldPattern[PD[arg_,ind_,eval_:0]]:>eval];784

];(*end if iPwr>1*)785

];(* end if IsDeriv (2)*)786

,(* else no derivative at all*)787

(* check if the current term is a power -> chain rule *)788

iPwr=PwrOf[lSubTerms[[iVars,iaPos[[iVars,1]]]]];789

tTrm=RmPwr[lSubTerms[[iVars,iaPos[[iVars,1]]]]];790

If[iPwr>1,791

(* the case of a power of a derivative is not caugth *)792

(* above; needs special treatment here *)793

If[Head[tTrm]===PD,794

(* derivation of double derivatives is 0 *)795

If[Head[tTrm/.HoldPattern[PD[arg_,ind_,eval_:0]]:>arg]===PD,796

lSubTerms[[iVars]]={0};797

,(*else power of a single derivative *)798

(* for a fermion: *)799

If[IsFermion[lSubTerms[[iVars,iaPos[[iVars,1]]]]]>0,800

If[EvenQ[iPwr],801

lSubTerms[[iVars]]={0}802

,(*else odd power*)803

lSubTerms[[iVars,iaPos[[iVars,1]]]]=tTrm^(iPwr-1);804

lSubTerms[[iVars]]={805

(-Vari[tTrm/.HoldPattern[PD[arg_,ind_,eval_:0]]:>arg,var,indx])806

*PD[Times@@lSubTerms[[iVars]],807

tTrm/.HoldPattern[PD[arg_,ind_,eval_:0]]:>ind,808

tTrm/.HoldPattern[PD[arg_,ind_,eval_:0]]:>eval]};809

];(* end if EvenQ *)810

,(*else boson*)811

(* lower the power by 1 and apply the derivative *)812

(* to the entire term *)813

lSubTerms[[iVars,iaPos[[iVars]]]]=tTrm^(iPwr-1);814

lSubTerms[[iVars]]={815
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(-iPwr*Vari[tTrm/.HoldPattern[PD[arg_,ind_,eval_:0]]:>arg,var,indx])816

*PD[Times@@lSubTerms[[iVars]],817

tTrm/.HoldPattern[PD[arg_,ind_,eval_:0]]:>ind,818

tTrm/.HoldPattern[PD[arg_,ind_,eval_:0]]:>eval]};819

]; (* end if fermion *)820

]; (* end if double derivative *)821

, (* else no PD *)822

(* for a fermion: *)823

If[IsFermion[lSubTerms[[iVars,iaPos[[iVars,1]]]]]>0,824

lSubTerms[[iVars,iaPos[[iVars,1]]]]=825

If[EvenQ[iPwr],0,(Vari[tTrm,var,indx])*tTrm^(iPwr-1)];826

,(*else boson*)827

lSubTerms[[iVars,iaPos[[iVars,1]]]]=828

iPwr*(Vari[tTrm,var,indx])*tTrm^(iPwr-1);829

];830

];(*end if power of PD *)831

,(*else, no higher powers*)832

lSubTerms[[iVars,iaPos[[iVars,1]]]]=Vari[tTrm, var, indx];833

];(*end if iPwr>1*)834

];(*end if IsDeriv (1)*)835

(* add the result of the current line *)836

res+=fNum*fNumSub*Times@@lSubTerms[[iVars]];837

](*end for iVars*)838

,(*else there is an Integral *)839

(* create a table, 1 line for each occurrence of the relevant *)840

(* var, split the multiplication *)841

lSubTerms=Table[Level[Cyclic[exprIntern[[iCnt]],-iaPos[[ii,1]]+1,1],1],842

{ii,Length[iaPos]}];843

(*loop over occurrences of the relevant variable in the *)844

(*current summand *)845

For[iVars=1,iVars<=Length[iaPos],iVars++,846

(* pick up an occasional sign from the rotation *)847

(*-> store in fNumSub *)848

fNumSub=1;849

If[!IsField[lSubTerms[[iVars,1]]],850

fNumSub=lSubTerms[[iVars,1]];851

lSubTerms[[iVars]]=Delete[lSubTerms[[iVars]],1];852

];853

Unprotect[Times];854

ClearAttributes[Times,Orderless];855

Protect[Times];856

(* check if the current term is a derivative *)857

(* -> partial integration *)858

While[Head[lSubTerms[[iVars,1]]]===PD,859

lSubTerms[[iVars]]=List@@(-PartInt[Times@@lSubTerms[[iVars]]]);860

(* put the relative sign into the separate forefactor *)861

fNumSub*=-1;862

];863

(* check if the current term is a power -> chain rule *)864

iPwr=PwrOf[lSubTerms[[iVars,1]]];865

tTrm=RmPwr[lSubTerms[[iVars,1]]];866

If[iPwr>1,867

(* the case of a power of a derivative is not caugth *)868

(* above; needs special treatment here *)869

If[Head[tTrm]===PD,870

Clear[tTrm2];871

tTrm2=tTrm;872

(* conduct partial integrations as often as necessary, *)873

(* variate the rest and return the combined result *)874

tTrm=Times@@Flatten[{tTrm^(iPwr-1),lSubTerms[[iVars,2;;]]}];875

While[Head[tTrm2]===PD,876
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(* Partial Integration *)877

tTrm=-PD[tTrm,tTrm2/.HoldPattern[PD[arg_,ind_,eval_:0]]:>ind,878

tTrm2/.HoldPattern[PD[arg_,ind_,eval_:0]]:>eval];879

(* the rest: *)880

tTrm2=tTrm2/.HoldPattern[PD[arg_,ind_,eval_:0]]:>arg;881

];(* end while *)882

(* compile result *)883

(* for a fermion: *)884

If[IsFermion[tTrm2]>0,885

lSubTerms[[iVars]]=If[EvenQ[iPwr],0,(Vari[tTrm2,var,indx])*tTrm];886

,(*else boson*)887

lSubTerms[[iVars]]=iPwr*(Vari[tTrm2,var,indx])*tTrm;888

]; (* end if fermi *)889

, (* else no PD *)890

If[IsFermion[lSubTerms[[iVars,1]]]>0,891

lSubTerms[[iVars,1]]=If[EvenQ[iPwr],0,892

(Vari[tTrm,var,indx])*tTrm^(iPwr-1)];893

,(* else boson *)894

lSubTerms[[iVars,1]]=iPwr*(Vari[tTrm,var,indx])*tTrm^(iPwr-1);895

];896

];897

,(*else, no higher powers*)898

lSubTerms[[iVars,1]]=Vari[tTrm, var, indx];899

];(*end if iPwr>1*)900

(* add the result of the current line*)901

res+=fNum*fNumSub*Times@@lSubTerms[[iVars]];902

](*end for iVars*)903

];(*end if bNoInt*)904

];(*end for iCnt*)905

res906

]907

(* end VarD *)908

Protect[VarD];909

910

On[General::spell1];911

912

(* disable canonical sorting of expressions with head Times *)913

Unprotect[Times];914

ClearAttributes[Times,Orderless];915

Protect[Times];916

917

Print["IMPORTANT !!!\nCall ’ClearAttributes[Times,Orderless];’918

now BEFORE working with the package!"];919

EndPackage[ ];920

921

(* necessary *)922

Unprotect[Times];923

ClearAttributes[Times,Orderless];924

Protect[Times];925

(*** EOF *********************************************************************)926

G.3 VectorAlgebra.m

The VectorAlgebra package contains several functions and redefinitions which enable computa-
tions in Euclidean R4

θ vector space. The internal multiplication and addition are altered in order
to be compatible with Einstein’s sum convention. In addition, an inner product a · b := aµbµ,
and an anti-symmetric tensorial product aθb := aαbβθαβ are defined by the functions Dot and
VCross, respectively. In the following, only the main functions of the package are listed. There
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are several internal and auxiliary functions, which all feature a built-in help text, accessible by
calling the function name with prepended ? sign, and without arguments.
Vectors have to be defined prior to any calculation by calling the function DefVec with the new
variable as argument. Any undefined vector will be treated as a regular scalar variable, and the
functions of VectorAlgebra will not recognize it.

G.3.1 List of Commands

B Command: DefVec

DefVec[v]

Description :
This command defines a new vectorial variable. Double definitions are ignored but it may
be unsafe to give names which are already defined in another context. This function has no
output.

Variables :
1: v symbol of the new variable.

Example :

In[1]:= DefVec[k]

B Command: UDefVec

UDefVec[v]

Description :
This command removes the definition of a vectorial variable. If given an unknown variable,
the input is ignored. This function has no output.

Variables :
1: v symbol of the variable to remove.

Example :

In[1]:= UDefVec[k]

B Command: IsVec

IsVec[v]

Description :
IsVec determines if the given variable is a vector, defined by a prior call to DefVec, and
returns the result as Boolean values True or False.
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Variables :
1: v symbol of the variable to check.

Output :
The function returns True if v is a defined vector, and False if not.

Example :

In[1]:= IsVec[k]

Out[1]= True

In[2]:= UDefVec[k];

In[3]:= IsVec[k]

Out[3]= False

B Command: KDelta

KDelta[i1,i2]

Description :
The function is an implementation for the four dimensional Kronecker delta δi1,i2 , and enables
index contractions with defined vectors. The Einstein sum convention is respected, no specific
output is generated.

Variables :
1: i1 first index
2: i2 second index

Example :

In[1]:= KDelta[\[mu],\[nu]] Subscript[k,\[nu]]}

Out[1]= Subscript[k,\[mu]]

In[2]:= KDelta[\[mu],\[nu]]^2

Out[2]= 4

B Command: VCross

VCross[k1,k, 2]

Description :
The function is an implementation of the anti-symmetric product appearing in phases, i.e.
kµθµνpν . Note that the ordering of parameters is respected, and interchange results in a
relative sign. Transformation rules are not recognized upon regular input. Only VSimplify[]
(see below) may cancel terms. No specific output is generated.

Variables :
1: k1 a vector defined by DefVec[]
2: k2 a vector defined by DefVec[]
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Example :

In[1]:= VCross[k,k]

Out[1]= 0

In[2]:= VCross[p,k]+VCross[k,p]

Out[2]= VCross[k,p]+VCross[p,k]

In[3]:= VSimplify[VCross[p,k]+VCross[k,p]]

Out[3]= 0

B Command: VSimplify

VSimplify[e,opt..]

Description :
VSimplify[] (Vector Simplify) is a wrapper function for Mathematica®’s internally prede-
fined FullSimplify[] function. For expressions e involving vectorial variables, it performs
additional transformations, being specialized for this purpose (simprule and comprule). It
also passes any additional option to FullSimplify[]. Therefore, please refer to the respective
documentation in Mathematica® for details on the opt parameter.

Variables :
1: e any expression
2: opts options which are passed through to FullSimplify[]

Output :
The function returns a simplified version of e.

Example :

In[1]:= VSimplify[k.p-Subscript[k,\[Mu]] Subscript[p,\[Mu]]

+(KDelta[\[Rho],\[Sigma]] Subscript[p,\[Rho]] Subscript[p,\[Sigma]])/(p.p),TimeConstraint->5]

Out[1]= 1

In[2]:= VSimplify[Sin[VCross[2 k + p, k]] - Sin[VCross[p, k]]]

Out[1]= 0

B Command: VLimit

VLimit[e,v->v0[,vec[,t]]]

Description :
This function performs limiting operations of an expression e with respect to the vectorial
variable v, i.e. lim

v→v0
e. The strategy is to replace each vector by its absolute value times an

unit vector carrying an index vµ → |v|eµ. In a second step the Mathematica® internal Limit[]
function is called with |v| → v0. This method, is not correct in the strict mathematical sense
but gives the expected results in all cases which have been considered within the framework of
this thesis. In general, one has to be aware of expressions like (p · k)/(p2 + k2), which do not
have a well defined limit at {|k|, |p|} → 0. Regarding the implementation, the function first
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checks, if the limiting can be performed by a simple replacement rule, i.e. without special rules
such as l’Hospital. Only if this results in undefined or singular expressions, the actual Limit[]
function is called. In this way, an enormous gain in speed is achieved for most expressions.

Variables :
1: e any expression
2: v the vectorial variable to be taken to a limit
3: v0 the (numerical) limit for v
4: vec [optional], binary parameter.

0(default): return a regular Mathematica® expression,
1: for internal use only.

Output :
The function returns the limit lim

v→v0
e.

Example :

In[1]:= VLimit[(k.p) Subscript[k, \[Mu]] Subscript[p, \[Nu]]/(k.k),k->0]

Out[1]= (Subscript[p, \[Mu]] Subscript[p, \[Nu]])/4}

B Command: VSeries

VSeries[e,{v,v0,o}[,verb]

overloaded
VSeries[e,{{v},{v0},o}[,verb]

Description :
This function performs a Taylor series expansion of the expression e with respect to the
vectorial variable v, at point v0 to order o. Note that any trigonometric phase factors contained
in e are not expanded. For a single indexed list for v and v0 an expansion according to
Eqn. (3.17) (see page 39) is performed. In the case of double indexed lists, the operation
is defined as in Eqn. (E.30) on page 134. However, the implementation of the latter case is
experimental, and it is not guaranteed (due to non-commuting limits for several variables)
that the result is indeed correct (see discussion on page 134). This function is a completely
independent implementation, and does not rely on the built in Series[] function.

Variables :
1: e any expression
2: v, or {v1..vn} the vectorial variable(s) defining the expansion.
3: v0, or {v0,1..v0,n} the limiting point(s) of v
4: o the order up to which the expansion shall be performed,

o ∈ N0

5: verb [optional] Boolean verbosity parameter:
0 (default): only print the result
1: print order by order intermediate results.
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Output :
Both versions of the function returns a single indexed list containing o+1 elements {e0, e1, ..eo}
corresponding to the results ei obtained at each order i.

Example :

In[1]:= VSeries[KDelta[\[Mu],\[Nu]] (p.k)+Subscript[p,\[Mu]] Subscript[k,\[Nu]]/(k.k+m^2),{k,0,2}]

Out[1]= {0, k.p KDelta[\[Mu],\[Nu]]+(Subscript[k, \[Nu]] Subscript[p, \[Mu]])/m^2, 0}

In[1]:= VSeries[f[k,p],{{k,p},{0,0},2}]

Out[1]= {VLimit[VLimit[f[k,p],k->0,0],p->0,0],

1/2 (VLimit[VLimit[VD[f[k,p],k,\[Tau]11],k->0,0],p->0,0] Subscript[k, \[Tau]11]

+VLimit[VLimit[VD[f[k,p],p,\[Tau]12],k->0,0],p->0,0] Subscript[p, \[Tau]12]),

1/6 (VLimit[VLimit[VD[VD[f[k,p],k,\[Tau]11],k,\[Tau]21],k->0,0],p->0,0]

*Subscript[k, \[Tau]11] Subscript[k, \[Tau]21]

+VLimit[VLimit[VD[VD[f[k,p],p,\[Tau]12],k,\[Tau]21],k->0,0],p->0,0]

*Subscript[k, \[Tau]21] Subscript[p, \[Tau]12]

+(VLimit[VLimit[VD[VD[f[k,p],k,\[Tau]11],p,\[Tau]22],k->0,0],p->0,0]*Subscript[k,\[Tau]11]

+VLimit[VLimit[VD[VD[f[k,p],p,\[Tau]12],p,\[Tau]22],k->0,0],p->0,0]*Subscript[p,\[Tau]12])

* Subscript[p, \[Tau]22])}

B Command: VD

VD[e,v,i]

Description :
VD[] performs vectorial differentiation of an expression e with respect to the vectorial variable
v with index i. ∂e(v)/∂vi.

Variables :
1: e any expression
2: v the vectorial variable used as differential
3: i the index of v

Output :
The function returns the differential ∂e(v)/∂vi.

Example :

In[1]:= VD[Subscript[k,\[Mu]] Subscript[k,\[Nu]],k,\[Tau]

Out[1]= KDelta[\[Nu],\[Tau]] Subscript[k,\[Mu]]+KDelta[\[Mu],\[Tau]] Subscript[k,\[Nu]]

B Command: IndexStyle

IndexStyle[e]

Description :
This function is of high importance in practical calculations. It transforms the functions Dot[]
and VCross[] to their explicit index representations. It generates inner indices ηi, where i is
counted from 1 for each run. It may be a good starting point for enhancements to define a
global index counter, as subsequent calls of IndexStyle[] may generate similar indices, which
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eventually contract in an unintended way.
Note also that IndexStyle[] sets the global variable iSimplifyIndices to 0 to disable any
automatic simplifications of index contractions.

Variables :
1: e any expression

Output :
The function returns a version of e in which all vectorial products (symmetric and anti-
symmetric) are written in their explicit form.

Example :

In[1]:= IndexStyle[(k.p)+VCross[k,p]]

Out[1]= Subscript[k,\[Eta]1] Subscript[p,\[Eta]1]

+Subscript[k,\[Eta]2] Subscript[p,\[Eta]3] Subscript[\[Theta],\[Eta]2,\[Eta]3]

B Command: VectorStyle

VectorStyle[e]

Description :
VectorStyle[] is the inverse function to IndexStyle[] as it attempts to rewrite expressions
e containing indices in a form with inner products Dot, and anti-symmetric contractions with
θ, VCross[]. However, in complex expressions this function may miss contractions which
are separated. Hence, it is advisable to expand e prior to calling VectorStyle[]. Note also
that IndexStyle[] sets the global variable iSimplifyIndices to 1 to enable any automatic
simplifications of index contractions.

Variables :
1: e any expression

Output :
The function returns a version of e in which all vectorial products (symmetric and anti-
symmetric) are written in their symbolized form.

Example :

In[1]:= VectorStyle[Subscript[k,\[Eta]1] Subscript[p,\[Eta]1]

+Subscript[k,\[Eta]2] Subscript[p,\[Eta]3] Subscript[\[Theta],\[Eta]2,\[Eta]3]]

Out[1]= k.p+VCross[k,p]

B Command: VSymmetricQ

VSymmetricQ[ e, v]
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Description :
VSymmetricQ[] attempts to find out if a given function e is even or odd with respect to sign
reversal of the variable v. Note, that this function is specialized to integrands appearing in
this thesis which all have simple overall powers of momenta and trigonometric functions. The
result is undefined for functions being neither even nor odd. Internally, this function utilizes
PowerCount[].

Variables :
1: e any expression
2: v a variable contained in e

Output :
The function returns a Boolean result
False: e is an odd function of v
True: e is an even function of v

Example :

In[1]:= VSymmetricQ[Subscript[k, \[Mu]] Sin[VCross[k,p]]/(k.k),k]

Out[1]= True

In[2]:= VSymmetricQ[Subscript[k, \[Mu]]/(k.k),k]

Out[2]= False

B Command: PowerCount

PowerCount[ e, v,lim]

Description :
PowerCount[] performs a power counting according to the definitions in Section 1.3.1. It
determines the superficial degree of divergence d(e) of the expression e, depending on the
vectorial moment v, in the limit lim. The latter is intended to give an option to analyze either
the IR limit, lim → 0 or the UV limit lim → ∞. However, the current implementation only
reliably works for v → ∞, i.e. UV power counting. Note also that in the case that e does not
depend on v, the result is −∞, and that the function is defined solely for polynomial functions.

Variables :
1: e any expression
2: v a vectorial variable contained in e
3: lim the desired limit where the counting should be performed

(i.e. v → lim), lim ∈ {0,\[Infinity]}.

Output :
The function returns an integer ∈ [−∞,∞) corresponding to d(e).
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Example :

In[1]:= PowerCount[Subscript[k,\[Mu]] Subscript[p,\[Nu]] Sin[VCross[k,p]]/(k.k)^2,k,\[Infinity]]

Out[1]= -3

B Command: DivergentPart

DivergentPart[ e, v]

Description :
The function fully expands a given expression e and performs UV power counting on each
summand. The result is a single indexed list of terms, corresponding to those summands si
obeying d(si) ≥ −4. Internally, this is achieved by utilization of the PowerCount[] function.
Hence, all restrictions of this function apply.

Variables :
1: e any expression
2: v the momentum, which shall be utilized for power counting

Output :
The function returns a single indexed list of sub terms in e being potentially divergent upon
integration.

Example :

In[1]:= DivergentPart[(Subscript[k, \[Mu]] Subscript[k, \[Nu]]+\[Theta] k^4)/k^8,k]

Out[1]= {\[Theta]/k^4}

B Command: Int

Int[ e[, np]]

Description :
Int[] performs momentum integrations according to predefined schemes with k being the
integration variable and p being an external momentum, per definition. It basically contains
all (but the vertex integrals) of the replacement rules given in Appendix F.1. Note that this
function is only applicable to the typical one loop integrals containing a sin2(kθp) phase. The
optional parameter np determines if the planar or non-planar result shall be computed. Note
that this function is deprecated. Use IntVert[] instead.

Variables :
1: e any expression
2: np [optional] defines if planar or non-planar results shall be re-

turned.
0: planar results
1 (default): non-planar results
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Output :
The function returns the requested integration result or UnknownInt[e,np] if no rule matches
for e.

Example :

In[1]:= Int[Sin[1/2*VCross[k,p]]^2*Subscript[k, \[Mu]]*Subscript[k, \[Nu]]/(k.k)^2,0]

Out[1]= \[Pi]^2 \[CapitalLambda]^2 KDelta[\[Mu],\[Nu]]

In[2]:= Int[Sin[1/2*VCross[k,p]]^2*Subscript[k, \[Mu]]*Subscript[k, \[Nu]]/(k.k)^2,1]

Out[2]= -((\[Pi]^2 (KDelta[\[Mu],\[Nu]]

-(2 Subscript[p,\[Xi]1] Subscript[p,\[Xi]2] Subscript[\[Theta],\[Xi]1,\[Mu]]

*Subscript[\[Theta],\[Xi]2,\[Nu]])

/(p^2 \[Theta]^2)))/(p^2 \[Theta]^2))

B Command: IntVert

IntVert[ e]

Description :
IntVert[] is the successor of Int. It does not presume a phase factor sin2 but contains all
integrals in their actual form, as they could be found in an integral table. It contains all of
the replacement rules given in Appendix F.1.

Variables :
1: e any expression

Output :
The function returns the requested integration result or UnknownInt[e] if no rule matches for
e.

Example :

In[1]:= IntVert[1/2 Subscript[k,\[Mu]]*Subscript[k,\[Nu]]/(k.k)^2]

Out[1]= \[Pi]^2 \[CapitalLambda]^2 KDelta[\[Mu],\[Nu]]

In[2]:= IntVert[-1/2 Cos[VCross[k,p]] Subscript[k,\[Mu]]*Subscript[k,\[Nu]]/(k.k)^2]

Out[2]= -((\[Pi]^2 (KDelta[\[Mu],\[Nu]]

-(2 Subscript[p,\[Xi]1] Subscript[p,\[Xi]2] Subscript[\[Theta],\[Xi]1,\[Mu]]

*Subscript[\[Theta],\[Xi]2,\[Nu]])

/(p^2 \[Theta]^2)))/(p^2 \[Theta]^2))

G.3.2 Loading of the Package

Get["VectorAlgebra.m", Path -> "〈PATH〉"]];

G.3.3 Source Code

(* ::Package:: *)1

2
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(*********************************************************************3

* *4

* Package VectorAlgebra *5

* *6

* Enables simple 4-vector calculations in Euclidean space *7

* *8

* Author : Rene Sedmik *9

* Date : 2009-10-27 *10

* *11

* Version History: *12

* ______________________________________________________________ *13

* | Ver | Date | Changes | *14

* +-----+------------+-----------------------------------------+ *15

* | 0.1 | 2008-10-08 | Initial Version | *16

* | 0.11| 2008-10-09 | Bug fixes for cross product | *17

* | 0.12| 2008-10-14 | vec[ ] syntax and speed improvements | *18

* | 0.13| 2008-10-22 | VD, VSeries, VLimit, unit vector | *19

* | 0.14| 2008-10-23 | NumEquiv | *20

* | 0.15| 2008-10-24 | Bug fixes | *21

* | 0.16| 2008-10-28 | Humanize | *22

* | 0.17| 2008-11-13 | Various bug fixes | *23

* | 0.18| 2008-12-01 | More stability for VLimit and VSeries | *24

* | 0.19| 2008-12-03 | Bracket markup functions added | *25

* | 0.20| 2008-12-19 | Memory sharing and bug fixes | *26

* | 0.21| 2009-01-29 | DivergentPart,PowerCount, and Int added | *27

* | 0.22| 2009-01-30 | Bug fix for Int | *28

* | 0.23| 2009-02-12 | Bug fix for Int (signs) and IndexStyle | *29

* | 0.24| 2009-02-13 | Rule ptilde *p =0 | *30

* | 0.25| 2009-04-17 | Enhancements for Int | *31

* | 0.26| 2009-04-21 | rule p\theta p=0 | *32

* | 0.27| 2009-04-28 | VLSimplify added | *33

* | 0.28| 2009-05-06 | Several bug fixes and mem. optimizations| *34

* | 0.29| 2009-06-09 | Bugfix for VSimplify | *35

* | 0.30| 2009-06-24 | Bugfixes for VD | *36

* | 0.31| 2009-09-17 | Enhancement for PowerCount and Int | *37

* | 0.32| 2009-06-24 | Bugfixes for VSeries | *38

* | 0.33| 2009-10-13 | VSymmetricQ added | *39

* | 0.34| 2009-10-27 | IntVert added | *40

* *41

*********************************************************************)42

43

BeginPackage["VectorAlgebra‘"];44

45

(**** clear all definitions ****)46

Unprotect[DefVec,UDefVec,ClearDefVec,IsVec,KDelta,VCross,VSimplify,VLSimplify,47

VLimit,VSeries,VD,\[Theta],uv,IndexStyle,VectorStyle,PowerCount,48

DivergentPart,Int,NumEquiv,Humanize,SizeBrackets,ColorBrackets,49

VSymmetricQ,SubPwrCnt,IntVert];50

Clear[DefVec,UDefVec,ClearDefVec,IsVec,KDelta,VCross,VSimplify,VLSimplify,51

VLimit,VSeries,VD,\[Theta],uv,IndexStyle,VectorStyle,PowerCount,52

DivergentPart,Int,NumEquiv,Humanize,SizeBrackets,ColorBrackets,53

VSymmetricQ,SubPwrCnt,IntVert];54

55

(**** usage Documentation ****)56

57

DefVec::usage = "DefVec[symbol] defines symbol to be a 4-vector. This must58

be done for each vector appearing in subsequent calculations.";59

UDefVec::usage = "UDefVec[symbol] undefines [symbol] to be a 4-vector.60

Thereafter it can be used as normal Mathematica symbol without61

special meaning.";62

ClearDefVec::usage = "ClearDefVec undefines all previously defined vectors.";63



Appendix G – Code Listings 179

IsVec::usage = "IsVec[symbol] gives True if the given symbol has been64

defined to be a vector, False in any other case. IsVec is aware65

of non-vectorial factors and indices of the argument.";66

KDelta::usage = "KDelta[i,j] gives 4 if i equals j, 0 otherwise. This67

modified version of the built-in KroneckerDelta[] is useful if68

Einstein’s sum convention is presumed.";69

VCross::usage = "VCross[k,p] is a symbolic version of Mathematica’s Cross[]70

product. It acts solely on vectorial objects defined by DefVec71

and is antisymmetric.";72

VSimplify::usage = "VSimplify[expression, options ..] does simplifications73

in the same way as FullSimplify does, but is aware of the74

vectorial calculus and sum convention. It takes any additional75

options FullSimplify takes with the exception of76

’TransformationFunctions’ and ’ComplexityFunction’";77

VLSimplify::usage = "VLSimplify[expr,[verbose, opts]] is a version of78

VSimplify (->see ?VSimplify) for very long expressions expr79

which crawls through the given formula piece by piece, thereby80

avoiding to give the whole expression to FullSimplify. This81

(in most cases) shortens computational times. Set the optional82

verbose argument to 1 to receive more progress information. The83

opts argument can be used to pass arguments to the inherited84

VSimplify function.";85

VLimit::usage = "VLimit[f(x), x->x0, opt:OutputVect?] takes the limit x->x086

for the function f respecting all vectorial rules. Eventually the87

result contains the unit vector uv. If the limit is to be taken88

in a variable that is not known to be a vector VLimit utilizes89

the Mathematica-internal Limit function. The optional 3rd90

parameter is a boolean indicating if the output is given in vec[]91

form (=1) or in standard notation (=0, default).";92

VSeries::usage = "VSeries[f(x), {x, x0, ord}] expands the function f(x)93

into a series around x0 up to order ord. The result is a regular94

Mathematica expression (not a Series object as for the standard95

Series function). VSeries respects analytic vectorial computation96

rules for defined vectors.";97

VSymmetricQ::usage = "VSymmetricQ[ f(x), x ] determines if the function f(x)98

is symmetric in x (return True) or not (False).\n If f(x) is a sum99

the result is a list of the outcomes for every summand.";100

VD::usage = "VD is the vector analysis complement to the standard D101

derivation in Mathematica. The syntax VD[f(x), x, index] has an102

additonal parameter ’index’ - therefore representing a partial103

derivative regarding x with index ’index’.";104

\[Theta]::usage = "The non-commutative parameter theta.";105

uv::usage = "Symbolizes a unit vector.";106

IndexStyle::usage = "IndexStyle[expr] transfers a given expression into a107

form with regular Times products, thereby writing all indices in108

an explicit form. Note that this deactivates the automatic109

simplification of vectorial expressions. Use VectorStyle to110

retransform expressions into normal Dot and VCross syntax, and111

reactivate the auto-simplification.";112

VectorStyle::usage = "VectorStyle[expr] activates the automatic vector113

simplification rules, and transforms the given expression into114

a format writing Dot and VCross products wherever possible.";115

PowerCount::usage = "PowerCount[expr, var, lim] gives the effective power of116

var in expression expr for the limit lim. For the latter one 0 and117

\[Infinity] are supported. This function only works on ’simple’118

expressions, i.e. the output of Expand[].Note that PowerCount[0,..]119

=-\[Infinity]."120

DivergentPart::usage = "DivergentPart[expr,var] gives a list of the summands121

of an expanded expression for expr whose power counting gives a122

degree of >=-4 in var."123

Int::usage = "Int[expr[,np]] is a very specialized function applicable only124
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in the p^-2 gauge model and gives a list of divergent summands125

integrated out according to known integral replacements.\n The126

optional parameter np defines if planar (np=0) or non-planar (np=1)127

results shall be computed.\nRegarding the cutoffs, M->0 is the128

prefactor of \[Alpha] in the exponent and is a mass,129

\[CapitalLambda]->\[Infinity] is the inverse prefactor of130

1/\[Alpha] and is a cutoff."131

IntVert::usage = "IntVert[expr] performs moemntum integrations by utilizing132

known integral replacements.\n Regarding the cutoffs, M->0 is133

the prefactor of \[Alpha] in the exponent and is a mass,134

\[CapitalLambda]->\[Infinity] is the inverse prefactor of135

1/\[Alpha] and is a cutoff."136

NumEquiv::usage = "NumEquiv[expr1, expr2] returns a 4x4 matrix corresponding137

to the numerical differences between expressions.138

I.e. a zero-matrix means equality."139

Humanize::usage = "Humanize[expr [,mode]] collects terms and tries to reshape140

a given equation. The optional parameter mode defines which terms141

are pulled out.\n 1: no variables are pulled out explicitely,\n 2:142

only alpha,\n 3: first alpha, then KDelta[mu,nu], \n, 4: first143

KDelta[mu,nu], then alpha,\n, 5: alpha, then KDelta[mu,nu], then144

k_mu k_nu\nThe default value is 1.";145

SizeBrackets::usage = "SizeBrackets[expr] sizes brackets comparable to146

\\left( and \\right) in TeX. \nWARNING: The output of this147

function is for display purposes only and cannot be taken as an148

input to any further calculation!.\n";149

ColorBrackets::usage = "ColorBrackets[expr] colors each bracket level150

differently and sizes brackets comparable to \\left( and \\right)151

in TeX. \nWARNING: The output of this function is for display152

purposes only and cannot be taken as an input to any further153

calculation!.\n";154

155

(* turn off an annoying warning *)156

Off[General::spell1];157

158

(***** Start of functional code *****)159

(*Enable memory sharing for all expressions *)160

Share[];161

162

163

(*Listof defined Vectors *)164

DefinedVectors = {uv}; (* unit vector uv *)165

166

(* enable global simplification and contraction of indices *)167

iSimplifyIndices = 1;168

169

(* List administration functions *)170

DefVec := (DefinedVectors = Union[Append[DefinedVectors, #]];) &;171

UDefVec := (DefinedVectors=If[#!=uv,172

DeleteCases[DefinedVectors,#],DefinedVectors];)&;173

ClearDefVec := (DefinedVectors = {uv});174

175

(* internal conversion functions for simprule and VSimplify *)176

(* defined vector-> vec[def. vector] *)177

iVectorize[expr_] := expr /. (k_ :> vec[k] /; MemberQ[DefinedVectors, k]);178

iDeVectorize[expr_]:= expr //. (vec[a_] :> a); (* inverse fun. of iVectorize *)179

180

(* Questioning function for vector definitions *)181

IsVec[vec[k_]] :=IsVec[k]; (* resolvation of vec *)182

IsVec[Subscript[k_, i_]]:=MemberQ[DefinedVectors,k]; (* index awareness *)183

IsVec[k_] := MemberQ[DefinedVectors, k]; (* standard expressions *)184

IsVec[k_*p_] := (IsVec[k] || IsVec[p]); (* product arguments *)185
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IsVec[Dot[_,_]]:= False; (* dot products-> scalars *)186

IsVec[k_ + p_] := (IsVec[k] && IsVec[p]); (* sum arguments *)187

188

(* Definition of the customized Cross product*)189

VCross[_, 0] := 0; (* zero arguments *)190

VCross[0, _] := 0;191

VCross[n_.*a_, m_.*a_] := 0/;(IsVec[iDeVectorize[a]]); (*linearity *)192

(* ordering of the arguments according *)193

(* to their signature -> antisymmentry *)194

VCross[vec[k_],vec[p_]]:= (-1)*Unevaluated[195

VCross[vec[p],vec[k]]]/;(Signature[{k, p}]!=1);196

(* if given vectors (lists) use the *)197

(* standard built-in function *)198

VCross[a_, b_] := Cross[a, b] /; (MemberQ[a, List] && MemberQ[b, List]);199

Protect[VCross];200

201

(* Modification of the vector dot product *)202

(* Defining the attribute ’ Orderless’, associativity and transitivity *)203

(* are defined for the first and second argument instantaneously *)204

205

Unprotect[Dot];206

SetAttributes[Dot, {Orderless, Flat}]; (* commutativity and associativity *)207

Dot[0, _] := 0; (* zero argument *)208

Protect[Dot];209

210

(* Modification of the Cross Product *)211

Unprotect[Cross];212

Cross[vec[k_], vec[p_]] := VCross[vec[k], vec[p]]; (*use VCross for defd. v. *)213

Cross[k_, p_] := VCross[k, p] /; (IsVec[k] && IsVec[p]);214

Protect[Cross];215

216

(* Simplification transformation rules: *)217

(* simprule expands all terms until only atomic arguments are found. *)218

(* comprule does some compression by applying inverse rules to simprule. *)219

220

(* dot product rules *)221

simprule[Dot[vec[k_], vec[p_]]] := Sort[Unevaluated[Dot[vec[k],vec[p]]]];222

simprule[Dot[a_, b_ + d_]] := simprule[Dot[a,b]]+simprule[Dot[a,d]];223

simprule[HoldPattern[Dot[a_*vec[k_], b_.*vec[p_]]]] := a*b*Dot[vec[k], vec[p]];224

simprule[Power[vec[k_],n_?EvenQ]] := simprule[Power[Dot[vec[k],225

vec[k]],n/2]]/;IsVec[iDeVectorize[k]];226

simprule[Subscript[Power[vec[k_],n_?EvenQ],i_]] := simprule[Power[Dot[227

vec[k],vec[k]],n/2]]/;IsVec[iDeVectorize[k]];228

229

(* cross product rules *)230

simprule[HoldPattern[VCross[a_,c_+d_]]] := simprule[VCross[a,c]]+simprule[VCross[a,d]];231

simprule[HoldPattern[VCross[a_+b_,c_]]] := simprule[VCross[a,c]]+simprule[VCross[b,c]];232

simprule[HoldPattern[VCross[a_*k_,p_]]] := a*simprule[VCross[k, p]]/;(233

IsVec[iDeVectorize[k]] && IsVec[iDeVectorize[p]]);234

simprule[HoldPattern[VCross[k_,b_*p_]]] := b*simprule[VCross[k, p]]/;(235

IsVec[iDeVectorize[k]] && IsVec[iDeVectorize[p]]);236

simprule[HoldPattern[VCross[a_,b_]]] := 0 /; (237

!(IsVec[iDeVectorize[a]] && IsVec[iDeVectorize[b]]));238

239

(* index rules *)240

simprule[Subscript[(vec[k_]), i_]*Subscript[(vec[p_]), i_]]:=vec[k].vec[p];241

simprule[HoldPattern[Subscript[(a_.*vec[k_]+b_),i_]]]:=a*Subscript[(vec[k]),i]242

+simprule[Subscript[b, i]]/;IsVec[iDeVectorize[b]];243

simprule[HoldPattern[Subscript[(a_*vec[p_]), i_]]] :=a*Subscript[(vec[p]), i];244

simprule[HoldPattern[Subscript[k_,i_]*Subscript[p_,i_]]]:=k.p/;(245

IsVec[iDeVectorize[k]]&&IsVec[iDeVectorize[p]]);246
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simprule[HoldPattern[Subscript[vec[k_],i_]*Subscript[vec[p_],i_]]]:=vec[k].vec[p];247

simprule[HoldPattern[KDelta[i_, j_]^n_?IntegerQ]] := KDelta[i, i]/;n>1;248

249

(* general term parsing *)250

simprule[a_ + b_] := simprule[a] + simprule[b];251

simprule[a_ * b_] := simprule[a] * simprule[b];252

simprule[fun_[args_]] := fun[simprule[args]];253

simprule[expr_] := expr;254

255

(* simprule is associative and projective *)256

SetAttributes[simprule, {Flat, Listable, OneIdentity}];257

258

(* compression of dot products *)259

comprule[HoldPattern[Dot[vec[k_], vec[p_]] + Dot[vec[m_], vec[p_]]]] :=260

Dot[vec[k] + vec[m], vec[p]];261

262

(* compression of indices for atomic vector sums *)263

comprule[HoldPattern[a_?NumericQ*Subscript[(vec[k_]), i_]264

+b_?NumericQ*Subscript[(vec[p_]), i_]]]265

:=Subscript[(a*vec[k]+b*vec[p]),i]/;IsVec[iDeVectorize[p]];266

267

(* compression of cross products *)268

comprule[HoldPattern[Dot[vec[k_], vec[p_]] + Dot[vec[m_], vec[p_]]]]269

:= Dot[vec[k] + vec[m], vec[p]];270

comprule[HoldPattern[a_?NumericQ*Subscript[(vec[k_]), i_]271

+b_?NumericQ*Subscript[(vec[p_]), i_]]]272

:=Subscript[(a*vec[k]+b*vec[p]), i]/;IsVec[iDeVectorize[p]];273

comprule[Plus[HoldPattern[(a_:1)*VCross[vec[k_],vec[p_]]],274

HoldPattern[(b_:1)*VCross[vec[m_],vec[p_]]]]]275

:=VCross[a*vec[k]+b*vec[m],vec[p]]/;(NumericQ[a]&&NumericQ[b]);276

comprule[Plus[HoldPattern[(a_:1)*VCross[vec[k_],vec[p_]]],277

HoldPattern[(b_:1)*VCross[vec[k_],vec[m_]]]]]278

:=VCross[vec[k],a*vec[p]+b*vec[m]]/;(NumericQ[a]&&NumericQ[b]);279

comprule[Plus[HoldPattern[(a_:1)*VCross[vec[k_],vec[p_]]],280

HoldPattern[(b_:1)*VCross[vec[p_],vec[m_]]]]]281

:=VCross[vec[p],b*vec[m]-a*vec[k]]/;(NumericQ[a]&&NumericQ[b]);282

comprule[Plus[HoldPattern[(a_:1)*VCross[vec[k_],vec[p_]]],283

HoldPattern[(b_:1)*VCross[vec[m_],vec[k_]]]]]284

:=VCross[vec[k],a*vec[p]-b*vec[m]]/;(NumericQ[a]&&NumericQ[b]);285

286

(* comprule is associative and projective ( comprule^n = comprule ) *)287

SetAttributes[comprule, {Flat, Listable, OneIdentity}];288

289

(* Activate Mathemaitca-internal optimizations to speed up the rules *)290

Dispatch[simprule]; Dispatch[comprule];291

292

(* Index rules *)293

(* These rules are valid at any time, thus, they are applied whenever *)294

(* Mathematica computes an expression. Some index transformations can be *)295

(* deactivated by the global switch iSimplifyIndices set to 0 *)296

Unprotect[Times];297

Unprotect[Plus];298

Unprotect[Power];299

Subscript[(a_*p_), i_] := a*Subscript[p, i]/;((!IsVec[a])&&IsVec[p]);300

Subscript[k_, i_]*Subscript[p_, i_]^:=k.p/;(IsVec[k]&&IsVec[p]301

&&(iSimplifyIndices==1));302

Subscript[(k_+p_), i_]^:= Subscript[k, i]+Subscript[p, i]/;(IsVec[k]&&IsVec[p]);303

Subscript[(vec[k_]+vec[p_]), i_]^:= Subscript[vec[k], i]304

+Subscript[vec[p], i]/;(IsVec[k]&&IsVec[p]);305

Subscript[(a_*vec[p_]), i_]:=a*Subscript[vec[p], i]/;(!(isVec[iDeVectorize[a]]));306

(Subscript[k_, i___])^(n_?EvenQ)^:=(k.k)^(n/2)/;307
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(isVec[iDeVectorize[k]]&&(iSimplifyIndices==1));308

309

Subscript[0, i_] := 0;310

Subscript[uv, ___]^(n_?EvenQ)^:=1;311

Subscript[uv, i_]*Subscript[uv, j_]:=KDelta[i,j]/4;312

uv.uv ^:= 1;313

Subscript[vec[0], _] := 0;314

vec[0] := 0;315

Subscript[vec[k_], i_]*Subscript[vec[p_], i_]316

^:=vec[k].vec[p]/;(iSimplifyIndices==1);317

Subscript[(vec[k_]+vec[p_]), i_]^:=Subscript[vec[k], i]+Subscript[vec[p], i]318

(Subscript[vec[k_], i___])^(n_?EvenQ)319

^:=(vec[k].vec[k])^(n/2)/;(iSimplifyIndices==1);320

(*** removed due to dramatic inc. in computing time for fun. such as Expand321

a_*Subscript[vec[k_], i1_]*Subscript[vec[k_], i2_]*Subscript[\[Theta],i1_,i2_]322

^:=0/;(IsVec[iDeVectorize[k]]&&(iSimplifyIndices==1));323

a_*Subscript[vec[k_], i1_]*Subscript[vec[k_], i2_]*Subscript[\[Theta],i2_,i1_]324

^:=0/;(IsVec[iDeVectorize[k]]&&(iSimplifyIndices==1));325

a_*Subscript[k_, i1_]*Subscript[k_, i2_]*Subscript[\[Theta],i1_,i2_]326

^:=0/;(IsVec[iDeVectorize[k]]&&(iSimplifyIndices==1));327

a_*Subscript[k_, i1_]*Subscript[k_, i2_]*Subscript[\[Theta],i2_,i1_]328

^:=0/;(IsVec[iDeVectorize[k]]&&(iSimplifyIndices==1));329

***)330

Protect[Power];331

Protect[Plus];332

Protect[Times];333

Protect[uv];334

335

(* Definition of an alternate Kronecker Delta *)336

(* The sum convention is explicitely built in *)337

KDelta[i_, j_] /; i != j := KroneckerDelta[i, j];338

KDelta[i_, j_] /; i === j := 4;339

SetAttributes[KDelta, Orderless];340

KDelta[i_, j_]*KDelta[j_, k_] ^:= KDelta[i, k];341

KDelta[i_,j_]*Subscript[vec[p_], j_]^:= Subscript[vec[p], i];342

KDelta[i_,j_]*Subscript[p_, j_] ^:= Subscript[p, i]/;IsVec[p];343

Power[KDelta[i_,j_],n_?IntegerQ] ^:= KDelta[i,i]/;n>1;344

KDelta[i_,j_]*Subscript[o_,j_,k_] ^:= Subscript[o,i,k];345

KDelta[i_,j_]*Subscript[o_,k_,j_] ^:= Subscript[o,k,i];346

Protect[KDelta];347

348

(* Wrapper for FullSimplify *)349

(* Expression are first ’vectorized’, i.e. defined vectors written explicitly*)350

(* in the vec[ ] syntax. Then the simprule expansion rules are applied and *)351

(* the results are fully simplified and contracted using comprule. Finally, *)352

(* the explicit vec[ ] syntax is transformed back to standard syntax. *)353

(* This function assures that the vectorial transformations are considered in*)354

(* both directions *)355

VSimplify := iDeVectorize[356

FullSimplify[357

Together[FactorTerms[simprule[ iVectorize[#1]]]],358

TransformationFunctions -> {Automatic,comprule}, ##2]] &;359

Protect[VSimplify];360

361

(* VectorStyle and IndexStyle *)362

(* These helper functions change the display style of expressions to be *)363

(* either with explicit indices or in dot/cross product form. They are *)364

(* inherently used by VSeries and VLimit functions. *)365

(* Remark: Note that IndexStyle sets the global iSimplifyIndices to 0 which *)366

(* disables automatic simplification of indexed vector structures. *)367

(* To reactivate this feature use iSimplifyIndices=1 or VectorStyle. *)368
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Unprotect[VectorStyle];Clear[VectorStyle];369

Unprotect[IndexStyle];Clear[IndexStyle];370

VectorStyle[arg_: 1] := Module[{tmp},371

(* subfunction: expand all arguments *)372

RExpand[fun_]:=fun/.{f_[arrg__]:>f@@Expand[RExpand[#]&/@{arrg}]};373

tmp = RExpand[arg]//.{Times[Subscript[k1_,i1_], Subscript[k2_,i2_],374

Subscript[\[Theta],i1_,i2_]]:>VCross[k1,k2]};375

iSimplifyIndices = 1;376

Evaluate[ReleaseHold[tmp]]377

];378

IndexStyle[arg_]:=Module[{i,pos,tmp},379

iSimplifyIndices=0;380

(* subfunction *)381

iindexrep[Dot[p_,q_]^(n_:1)]/;((IsVec[iDeVectorize[p]])&&(IsVec[iDeVectorize[q]]))382

:=Module[{iind,tmp2,j},383

tmp2 = 1;384

For[j=0, j<n, j++,385

tmp2*=HoldForm[Subscript[p, iind]*Subscript[q, iind]]386

/.iind->Symbol["\[Eta]"<>ToString[i]];387

i=i+1;];388

tmp2389

];390

iindexrep[VCross[p_,q_]]/;((IsVec[iDeVectorize[p]])&&(IsVec[iDeVectorize[q]]))391

:=Module[{iind,jind,tmp3},392

tmp3 = Unevaluated[Subscript[p, iind]*Subscript[\[Theta], iind,jind]393

Subscript[q, jind]]/.{iind->Symbol["\[Eta]"<>ToString[i]],394

jind->Symbol["\[Eta]"<>ToString[i+1]]};395

i=i+2;396

tmp3397

];398

i = 1;399

pos = Position[arg,(Dot[p_,q_]^(n_?IntegerQ)/;n>1)];400

tmp = MapAt[iindexrep,arg,pos];401

pos = Position[tmp,Dot[p_,q_]];402

tmp = MapAt[iindexrep,tmp,pos];403

pos = Position[tmp,VCross[k_,p_]];404

MapAt[iindexrep,tmp,pos]405

];406

407

408

(* Partial Derivative \partial_\mu as replacement for Mathematica D *)409

(* use standard D for non-vectors *)410

VD[arg_, p_, ind_] := D[arg, p] /; (! IsVec[iDeVectorize[p]]);411

VD[arg_?NumericQ, _, _] := 0; (* the derivative of a scalar is 0 *)412

VD[arg_, p_, _] := 0 /; (! MemberQ[Level[arg, {-1}], p]);413

(* basic rule for derivative of a vector*)414

VD[Subscript[(vec[p_]), i_],p_,ind_] :=KDelta[i,ind];415

VD[Subscript[p_, i_],p_,ind_] :=KDelta[i,ind]/;IsVec[p];416

(* Leibnitz rule *)417

VD[a_*b_, p_, ind_] := VD[a, p, ind]*b + a*VD[b, p, ind];418

(* Leibnitz rule for the dot product *)419

VD[HoldPattern[Dot[a_, b_]], p_, ind_] := VectorStyle[VD[ReleaseHold[420

IndexStyle[Distribute[Dot[a, b]]]], p, ind]];421

(* transitivity regarding sum *)422

VD[a_ + b_, p_, ind_] := VD[a, p, ind] + VD[b, p, ind];423

(* Leibnitz rule for the cross product *)424

VD[VCross[a_, b_], p_, ind_] := VectorStyle[VD[ReleaseHold[425

IndexStyle[Distribute[VCross[a, b]]]], p, ind]];426

(* Exp[] needs special treatment since *)427

(* it is instantaneously converted to *)428

(* Power[E, arg] which has different *)429
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(* derivation rules, however. *)430

VD[HoldPattern[Power[E, arg_]], p_, ind_] := VD[Unevaluated[Exp[arg]], p, ind];431

(* treatment for unevaluatable functions*)432

VD[HoldForm[arg_], p_, ind_] := HoldForm[VD[arg, p, ind]];433

(* derivative of a generic function *)434

VD[HoldPattern[fun_[arg__]], p_, ind_] /; (MemberQ[Level[{arg}, {-1}], p]) :=435

Module[{tmp=0, rep, icnt, targ=arg},436

If[(ToString[Definition[fun]]=="Null"),437

tmp=HoldForm[VD[rep,p,ind]]/.rep->Evaluate[If[Length[{targ}]>0,fun[targ],fun]],438

(*else*)439

For[icnt=1, icnt<=Length[{targ}], icnt++,440

tmp += ((D[fun[targ]/.{targ}[[icnt]]->rep, rep]/.rep->{targ}[[icnt]])*441

VD[{targ}[[icnt]], p, ind]);442

](*end for*)443

];(*end if*)444

tmp445

]446

SetAttributes[VD,Listable];447

Protect[VD];448

449

450

(* Taylor Series expansion for vectorial objects *)451

(* Remark: This function is not generally applicable since it leaves out any *)452

(* sin^2 expressions, multiplying them to the final result. *)453

VSeries[expr_,{p_,p0_,ord_},verb_:0]:=454

(* Set the global Mathematica variable RecursionLimit. *)455

(* Necessary for lengthy expressions taken to a limit (to incorp. simprule) *)456

Module[{smex,zro,tmp,iind,sinfac,fac,o,APhases,i,aa,bb,nn},457

Off[General::spell1];458

$RecursionLimit=Infinity;459

CorrectPowerIndices[iexpr_, pwr_]:=(Dot[iexpr//.{Subscript[pp_,i_]/;460

IsVec[pp]->pp},iexpr//.{Subscript[pp_,i_]/;IsVec[pp]->pp}])^(pwr/2);461

zro[_] := 0;462

smex = Array[zro,ord+1];463

(* get all phase factors *)464

APhases = Cases[Level[(expr//.{(aa_:1)*(-1+Cos[bb_])->-2*aa*465

Sin[bb/2]^2}),1],Sin[_]^(n_:1)];466

(* treat only the rest *)467

o = ReleaseHold[iVectorize[iDeVectorize[expr//.{(aa_:1)*Sin[bb_]^(nn_:1)->aa,468

(aa_:1)*(-1+Cos[bb_])^(nn_:1)->(-2)^(nn)*aa}]]];469

i = 0; fac = 1;470

(* take the limit in order 0 *)471

smex[[1]] = VLimit[o,p->p0,1];472

If[verb==1, Print["Order 0:"];Print[iDeVectorize[smex[[1]]]];];473

(* check if the limit was finited *)474

If[Position[smex[[1]],DirectedInfinity]!={},475

Print["ERROR: Limit returned an infinite result, Series expansion476

aborted, result up to now:"],477

For[i=1, i<=ord, i++,478

o = VD[o,p,Symbol["\[Tau]"<>ToString[i]]];479

iSimplifyIndices=1;480

If[o==0, Break[];];481

fac *= Subscript[(vec[p]-vec[p0]),iind]/.iind->Symbol["\[Tau]"<>ToString[i]];482

smex[[i+1]] = VLimit[o,p->p0,1]*fac/i!;483

ClearSystemCache[];484

If[verb==1, Print["Order "<>ToString[i]<>":"];485

Print[iDeVectorize[smex[[i+1]]]];];486

If[Position[smex[[i+1]], DirectedInfinity]!={},487

Print["ERROR: Limit returned an infinite result, Series expansion488

aborted, result up to now:"];Break;489

];490
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];491

];492

iSimplifyIndices=1;493

If[Position[smex,DirectedInfinity]!={},494

((ReleaseHold/@(iDeVectorize/@(smex*Times@@APhases)))//.495

(Power[Subscript[(k_),i_],(n_?EvenQ)]->(k.k)^(n/2)))/.496

{Power[Subscript[k_, i_],(n_?EvenQ)]/;IsVec[k]:>(k.k)^(n/2),497

Power[k_,(n_?EvenQ)]/;IsVec[k]:>CorrectPowerIndices[k,n]},498

(VSimplify[#,TimeConstraint->300,ExcludedForms->499

{((_).(_)+Divide[a^2,_])^(n_:1)}]&/@((ReleaseHold/@(iDeVectorize/@500

(smex*Times@@APhases)))//.(Power[Subscript[k_, i_],(n_?EvenQ)]->501

(k.k)^(n/2))))502

/.{Power[Subscript[k_, i_],(n_?EvenQ)]/;IsVec[k]:>(k.k)^(n/2),503

Power[k_,(n_?EvenQ)]/;IsVec[k]:>CorrectPowerIndices[k,n]}504

]505

];506

507

(* experimental multi-variable version of VSeries *)508

Unprotect[VSeries]; Clear[VSeries];509

(* experimental multi-variable version of VSeries *)510

VSeries[expr_,{{p__},{p0__},ord_},verbose_:0]:=511

(* Set the global Mathematica variable RecursionLimit. *)512

(* Necessary for lengthy expressions taken to a lim (to incorporate simprule)*)513

Module[{Plexpr,zro,uty,AOrds,APhases,Phas,ADerT,AFacT,ANumF,ALastDerT,uu,514

vv,ii,iOrd,iTrm,iDer,iTmp,iCnt,iind,fac,o},515

Off[General::spell1];516

$RecursionLimit=Infinity;517

VSeries::limerr="Limit returned an infinite result, Series expansion518

aborted, result up to now found below.";519

VSeries::paramerr="VSeries called with an unequal number of arguments520

for dependent variables {’1’} and expancion center points {’2’}.";521

(*input parameter check*)522

If[Length[{p}]!=Length[{p0}],Message[VSeries::paramerr,{p},{p0}],523

zro[_]:=0;uty[_]:=1;524

(*replace and remember phase factors*)525

APhases=Cases[Level[(expr//.{(aa_:1)*(-1+Cos[bb_])526

->-2*aa*Sin[bb]^2}),1],Sin[_]^(n_:1)];527

If[APhases!={},528

If[verbose==1, Print["Phases: "];Print[APhases]];529

Phas = Times@@APhases;530

Plexpr= ReleaseHold[iDeVectorize[DeleteCases[expr,Sin[_]^(n_:1)]]]531

,532

Phas = 1;533

Plexpr= ReleaseHold[iDeVectorize[expr]];534

];(*end if APhases*)535

(*generate derivative expressions and prepare factors*)536

AOrds = Array[0&,ord+1];537

ADerT = Array[1&,ord+1];538

ALastDerT = Array[1&,ord+1];539

ANumF = Array[1&,ord+1];540

AFacT = Array[1&,ord+1];541

ADerT[[1]] = {Plexpr};542

ALastDerT[[1]]= {1};543

AFacT[[1]] = {1};544

ANumF[[1]] = {1};545

(*loop over orders 1..n*)546

For[iOrd=1, iOrd<=ord, iOrd++,547

(*allocate the lists for the current order*)548

Clear[iTmp];549

iTmp=ToExpression[NumTerms[iOrd,Length[{p}]]];550

(* the number of terms for non-commutative limits is the number *)551
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(* of terms in the previous order times the number of derivatives*)552

iTmp = Length[{p}]*Length[ADerT[[iOrd]]];553

ADerT[[iOrd+1]] = Array[1&,iTmp];554

ALastDerT[[iOrd+1]]= Array[1&,iTmp];555

AFacT[[iOrd+1]] = Array[1&,iTmp];556

ANumF[[iOrd+1]] = Array[1&,iTmp];557

(*loop over terms in next lower order (for building the tree) *)558

iCnt = 1;559

For[iTrm=1, iTrm<=Length[ADerT[[iOrd]]], iTrm++,560

For[iDer=1, iDer<=Length[{p}], iDer++;iCnt++,561

ADerT[[iOrd+1,iCnt]] = VD[ADerT[[iOrd,iTrm]],{p}[[iDer]],562

Symbol["\[Tau]"<>ToString[iOrd]<>ToString[iDer]]];563

AFacT[[iOrd+1,iCnt]] = AFacT[[iOrd,iTrm]]*(Subscript[({p}[[iDer]]),564

iind]-Subscript[({p0}[[iDer]]), iind])565

/.iind->Symbol["\[Tau]"<>ToString[iOrd]<>ToString[iDer]];566

AFacT[[iOrd+1,iCnt]] = AFacT[[iOrd+1,iCnt]]567

//.Subscript[num_?NumericQ,_]->num;568

];569

];570

If[verbose==1,Print["Order "<>ToString[iOrd]<>" Derivatives: "];571

Print[ADerT[[iOrd+1]]]];572

];573

(* add the limits to each term *)574

i = 0; fac = 1;575

For[iOrd=1, iOrd<=ord+1, iOrd++,576

For[iTrm=1,iTrm<=Length[ADerT[[iOrd]]],iTrm++,577

AOrds[[iOrd]] += Fold[VLimit[#1,{p}[[#2]]->{p0}[[#2]]]&,578

ADerT[[iOrd,iTrm]],579

Table[jj,{jj,1,Length[{p}]}]]*AFacT[[iOrd,iTrm]];580

If[Position[AOrds[[iOrd]],DirectedInfinity]!={},581

Message[VSeries::limerr]];582

];583

AOrds[[iOrd]] = 1/(iOrd!)*Phas*Simplify[Plus@@AOrds[[iOrd]]];584

];585

(* output *)586

AOrds587

](*end if Length[{p}]!=Length[{p0}]*)588

](*end Module VSeries*)589

590

591

(* Vector-aware limit *)592

VLimit[expr_,pxx_->plxx_,vector_:0,TimeConstr_:900]:=593

Module[{tmp,tmp2,out},594

Off[General::spell1];595

If[(ToString[Head[expr]]==ToString[HoldForm]),596

out = expr/.HoldPattern[HoldForm[tmp_]]->HoldForm[VLimit[tmp,pxx->plxx,vector]],597

(* else *)598

If[(ToString[Definition[Evaluate[Head[expr]]]]=="Null"),599

out=HoldForm[VLimit[expr,pxx->plxx,vector]],600

(*else*)601

iSimplifyIndices=0;602

(* try to perform the limit by a simple replacement and check for *)603

(* any errors which would indicate that Limit has to be used. *)604

Quiet[Check[605

tmp2=(ReleaseHold[IndexStyle[iDeVectorize[simprule[606

iVectorize[iDeVectorize[expr]/.{(k_)^n_?EvenQ/;IsVec[k]->(k.k)^(n/2)}]607

]]]]/.{Subscript[pxx, i_]->pxx*Subscript[uv, i]})//.pxx->plxx,608

(* if check did not succeed use limit *)609

TimeConstrained[610

Print["try1"];tmp=ReleaseHold[IndexStyle[iDeVectorize[611

simprule[iVectorize[iDeVectorize[expr]/.{(k_)^n_?EvenQ612
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/;IsVec[k]->(k.k)^(n/2)}]]]]]613

/.{Subscript[pxx, i_]->pxx*Subscript[uv, i]};614

tmp2 = Limit[tmp,pxx->plxx],TimeConstr,Print["try2"];615

tmp = ReleaseHold[IndexStyle[iDeVectorize[simprule[616

Expand[iVectorize[iDeVectorize[expr]617

/.{(k_)^n_?EvenQ/;IsVec[k]->(k.k)^(n/2)}]]618

]]]]/.{Subscript[pxx, i_]->pxx*Subscript[uv, i]};619

tmp2 = Map[Limit[#,pxx->plxx]&,tmp,1]620

] (* end TimeConstrained *)621

]]; (* end check *)622

iSimplifyIndices = 1;623

If[IsVec[plxx],624

Print[tmp2];625

tmp2=tmp2//.{Times[v_,Subscript[uv,ind_]]/;IsVec[v]->Subscript[v, ind]}626

];627

On[General::spell1];628

out= If[(Position[tmp2,DirectedInfinity]!={}),629

If[vector>0,iVectorize[tmp2],tmp2,tmp2],630

If[vector>0,iVectorize[Simplify[tmp2]],631

Simplify[tmp2],VLSimplify[tmp2,0,TimeConstraint->300]]632

];633

];634

];(*end if*)635

out]636

637

Protect[VSeries];638

Protect[VLimit];639

640

(* Check for equivalence of two expressions *)641

(* All trigonometric functions are replaced to their value at Pi/4, all *)642

(* vectors are replaced by discrete prime-numerical four-vectors. Indices \mu*)643

(* and \n u are run from 0 to 3 and the results of both given expressions are*)644

(* evaluated and compared. Equivalence is given if the result is a *)645

(* zero-matrix *)646

NumEquiv[expr1_, expr2_] :=647

Module[{i, pos},648

Off[Part::"pspec"];649

tmp1 = StandardForm[VectorStyle[expr1]] /.{Sin[_] -> Sqrt[3]/2, Cos[_]650

->-1/2, Power[k_?IsVec, n_?EvenQ] -> (k.k)^(n/2)};651

tmp2 = StandardForm[VectorStyle[expr2]] /.{Sin[_] -> Sqrt[3]/2, Cos[_]652

->-1/2, Power[k_?IsVec, n_?EvenQ] -> (k.k)^(n/2)};653

numerize[Subscript[a_, i_]] := a[[i]];654

numerize[Subscript[a_, i_, j_]] :=655

a[[i, j]];(*numerize[Dot[a_, b_]] /; {! (Head[b] === Transpose)} :=656

Dot[Transpose[a], b];*)657

numerize[expr_] := expr;658

i = 1;659

indx := (i += 1);660

numrep[expr_] := (expr -> Array[Prime[10*indx + #] &, 4]);661

replacelst = numrep /@ DefinedVectors;662

res1 = ToExpression[ToBoxes[663

Table[Evaluate[numerize //@ (tmp1 /. replacelst)],664

{\[Mu], 1, 4}, {\[Nu], 1, 4}]]];665

res2 = ToExpression[ToBoxes[666

Table[Evaluate[numerize //@ (tmp2 /. replacelst)],667

{\[Mu], 1, 4}, {\[Nu], 1, 4}]]];668

On[Part::"pspec"];669

MatrixForm[N[Simplify[(res1 - res2)]]]670

];671

Protect[NumEquiv];672

673
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(* Collects terms like deltas, alpha, a, or potences of momenta *)674

Humanize[expr_,mode_:1]:=675

Module[{tmp},676

pull:=a_^(n_:1)*b_+a_^(m_:1)*c_->If[n<m,a^n*(b+c*a^(m-n)),a^m*(b*a^(n-m)+c)];677

tmp = FullSimplify[(Collect[#,{\[Alpha]^(n_:1),KDelta[\[Mu],\[Nu]],678

Subscript[k, \[Mu]]*Subscript[k, \[Nu]],a^(n_:1)}]&679

//@(expr//.{(b_:1)*(a_^2+(Dot[k_,k_])^2)^(n_:1)->b*(k.k)^n*680

(k.k+a^2/k.k)^n,a_^(n_:1)*b_+a_^(m_:1)*c_->If[n<m,a^n*681

(b+c*a^(m-n)),a^m*(b*a^(n-m)+c)]})),682

TransformationFunctions->{pull,simprule,Collect[#,683

{\[Alpha]^(n_:1)}]&,Collect[#,{KDelta[\[Mu],\[Nu]]}]&,Automatic},684

ExcludedForms->(Dot[k_,k_]+a^2/Dot[k_,k_])^(n_:1)];685

Switch[mode,686

1,tmp/.Dot[k_,k_]^(n_:1)->k^(2*n),687

2,(Collect[#,\[Alpha]^(n_:1)]&//@(tmp/.Dot[k_,k_]^(n_:1)->k^(2*n)))//.pull,688

3,(Collect[#,{\[Alpha]^(n_:1),KDelta[\[Mu],\[Nu]]}]&//@689

(tmp/.Dot[k_,k_]^(n_:1)->k^(2*n)))//.pull,690

4,(Collect[#,{KDelta[\[Mu],\[Nu]],\[Alpha]^(n_:1)}]&//@691

tmp/.Dot[k_,k_]^(n_:1)->k^(2*n))//.pull,692

5,(Collect[#,{\[Alpha]^(n_:1),KDelta[\[Mu],\[Nu]],Subscript[k, \[Mu]]693

*Subscript[k, \[Nu]]}]&//@tmp/.Dot[k_,k_]^(n_:1)->k^(2*n))//.pull]];694

Protect[Humanize];695

696

(* Conducts a power counting for a given variable and a given limit *)697

(*(0 or \infty supported) for simple expressions *)698

PowerCount[expr1_, var_, lim_] :=699

Module[{tmp1,numr,denom},700

Off[Part::"pspec"];701

tmp1 = expr1//.{ Dot[a_,b_]->a*b,Subscript[var, i_]->var};702

numr =Exponent[Numerator[tmp1],var];703

denom=Exponent[Simplify[If[lim==0,Denominator[tmp1]//.{((c_:1)*var^(n_:1)+b_)->1},704

If[lim==\[Infinity],Denominator[tmp1]705

//.{((c_:1)*var^(n_:1)+b_)->var^n}]]],var];706

numr-denom707

];708

709

(* Extracts the divergent part with power counting >=-4 of a given expression*)710

DivergentPart[expr_,var_]:=711

Module[{tmp,mask},712

tmp=Expand[expr];713

If[ToString[Head[tmp]]=="Plus",714

mask=Select[Level[tmp,1],PowerCount[#,var,\[Infinity]]>=-4&],715

mask=Select[{tmp},PowerCount[#,var,\[Infinity]]>=-4&]]716

];717

Protect[PowerCount];718

Protect[DivergentPart];719

720

Clear[VSymmetricQ];721

Clear[SubPwrCnt];722

(* subfunction as wrapper for powercount to treat trigonometric functions *)723

SubPwrCnt[trm_,varr_]:=Module[{cntloc},724

cntloc=0;725

If[Position[trm,varr]!={},726

If[Head[trm]===Sin||Head[trm]===Tan,727

cntloc+=PowerCount[Level[trm,1],728

varr,729

\[Infinity]][[1]],730

(*else*)731

If[Head[trm]===Power,cntloc+=(trm/.Power[a_,b_]:>b*SubPwrCnt[a,varr]),732

(*else*)733

cntloc+=PowerCount[trm,varr,\[Infinity]]734
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]735

];736

(* workaround, should trigger a warning *)737

If[!NumericQ[cntloc],cntloc=0]]; cntloc];738

739

(* Helper function for reliable determination if an integrand is *)740

(* symmetric or not *)741

VSymmetricQ[arg_,var_]:=Module[{ret},742

(*check for trivial result *)743

If[Position[arg,var]=={},ret=True];744

(*Thread over sums*)745

If[Head[arg]===Sum,ret=VSymmetricQ[#,var]&/@arg;];746

(*Separate parts of the argument and compute power for each*)747

EvenQ[Plus@@(SubPwrCnt[ReleaseHold[#],var]&/@(Level[IndexStyle[arg],1]748

//.Subscript[var,_]:>var))]749

];750

751

(* Special Integration rules based on known integral replacements. The *)752

(* function acts on expanded lists of known integrations. Any Cos-1 *)753

(* expressions have to be brought in the corresponding form with Sin^2. *)754

(* The limit a->0(old model) in the denom. of the expressions is implied *)755

(* automatically. *)756

(* Cutoffs: M->0 is the prefactor of \[Alpha] in the exponent, a mass *)757

(* \[CapitalLambda]->\[Infinity] is the inverse prefactor of *)758

(* 1/[Alpha], a cutoff *)759

(* Current model: \[Lambda]->0 *)760

(* Factors 1/2 for planar and -1/2 for non-planar are included! *)761

762

Int[expr_,np_:1]:=763

Module[{tmp,intnpdefs,intpnpdefs,elimrule},764

Off[Part::"pspec",General::"spell"];765

elimrule=(a^2+(k.k)^2)->(k.k)^2;766

(* non-planar integration replacement rules *)767

intnpdefs={768

(c_:1)*Subscript[k,\[Mu]_]*Subscript[k,\[Nu]_]*Subscript[k,\[Rho]_]769

*Subscript[k, \[Sigma]_]*Cos[(__)]/(k.k)^4/;770

(Position[c,Subscript[k,_]]=={})771

->1/12 c \[Pi]^2 BesselK[0,Sqrt[M \[Theta]^2 p.p]] (KDelta[\[Mu],772

\[Sigma]] KDelta[\[Nu],\[Rho]]+KDelta[\[Mu],\[Rho]] KDelta[\[Nu],773

\[Sigma]]+KDelta[\[Mu],\[Nu]] KDelta[\[Rho],\[Sigma]])+(\[Pi]^2774

Subscript[p, \[Chi]1] Subscript[p, \[Chi]2] Subscript[p, \[Chi]3]775

Subscript[p, \[Chi]4] Subscript[\[Theta], \[Mu],\[Chi]1]776

Subscript[\[Theta],\[Nu],\[Chi]2] Subscript[\[Theta],\[Rho],\[Chi]3]777

Subscript[\[Theta], \[Sigma],\[Chi]4])/(6 \[Theta]^4 (p.p)^2)-1/778

(12 \[Theta]^2 p.p) \[Pi]^2 (KDelta[\[Rho],\[Sigma]] Subscript[p,\[Chi]1]779

Subscript[p,\[Chi]2] Subscript[\[Theta],\[Mu],\[Chi]1]780

Subscript[\[Theta],\[Nu],\[Chi]2]+KDelta[\[Nu],\[Sigma]]781

Subscript[p, \[Chi]1] Subscript[p, \[Chi]3]782

Subscript[\[Theta], \[Mu],\[Chi]1] Subscript[\[Theta],\[Rho],\[Chi]3]783

+KDelta[\[Mu],\[Sigma]] Subscript[p, \[Chi]2] Subscript[p, \[Chi]3]784

Subscript[\[Theta], \[Nu],\[Chi]2] Subscript[\[Theta],\[Rho],\[Chi]3]785

+KDelta[\[Nu],\[Rho]] Subscript[p, \[Chi]1] Subscript[p, \[Chi]4]786

Subscript[\[Theta],\[Mu],\[Chi]1] Subscript[\[Theta],\[Sigma],\[Chi]4]787

+KDelta[\[Mu],\[Rho]] Subscript[p, \[Chi]2] Subscript[p, \[Chi]4]788

Subscript[\[Theta],\[Nu],\[Chi]2] Subscript[\[Theta],\[Sigma],\[Chi]4]789

+KDelta[\[Mu],\[Nu]] Subscript[p, \[Chi]3] Subscript[p, \[Chi]4]790

Subscript[\[Theta], \[Rho],\[Chi]3] Subscript[\[Theta], \[Sigma],\[Chi]4]),791

(c_:1)*Subscript[k,\[Alpha]_]*Subscript[k,\[Beta]_]*Subscript[k,\[Gamma]_]792

*Subscript[k,\[Delta]_]*Sin[1/2*(__)]^2/(k.k)^4/;793

(Position[c,Subscript[k,_]]=={})794

->-c*\[Pi]^2/24*((KDelta[\[Alpha],\[Beta]]*KDelta[\[Gamma],\[Delta]]795
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+KDelta[\[Alpha],\[Gamma]]*KDelta[\[Beta],\[Delta]]796

+KDelta[\[Alpha],\[Delta]]*KDelta[\[Gamma],\[Beta]])797

*BesselK[0,Sqrt[\[Theta]^2*p^2*M^2]]-(Subscript[p, \[Xi]1]798

*Subscript[\[Theta],\[Xi]1,\[Alpha]]*Subscript[p, \[Xi]2]799

*Subscript[\[Theta],\[Xi]2,\[Beta]]*KDelta[\[Gamma],\[Delta]]800

+Subscript[p,\[Xi]3]*Subscript[\[Theta],\[Xi]3,\[Alpha]]*Subscript[p,\[Xi]4]801

*Subscript[\[Theta],\[Xi]4,\[Gamma]]*KDelta[\[Beta],\[Delta]]802

+Subscript[p,\[Xi]5]*Subscript[\[Theta],\[Xi]5,\[Alpha]]*Subscript[p,\[Xi]6]803

*Subscript[\[Theta],\[Xi]6,\[Delta]]*KDelta[\[Beta],\[Gamma]]804

+Subscript[p,\[Xi]7]*Subscript[\[Theta],\[Xi]7,\[Beta]]*Subscript[p,\[Xi]8]805

*Subscript[\[Theta],\[Xi]8,\[Gamma]]*KDelta[\[Alpha],\[Delta]]806

+Subscript[p,\[Xi]9]*Subscript[\[Theta],\[Xi]9,\[Beta]]*Subscript[p,\[Xi]10]807

*Subscript[\[Theta],\[Xi]10,\[Delta]]*KDelta[\[Alpha],\[Gamma]]808

+Subscript[p,\[Xi]11]*Subscript[\[Theta],\[Xi]11,\[Gamma]]809

*Subscript[p,\[Xi]12]*Subscript[\[Theta],\[Xi]12,\[Delta]]810

*KDelta[\[Alpha],\[Beta]] )/(\[Theta]^2*p^2)+(Subscript[p,\[Xi]13]811

*Subscript[\[Theta],\[Xi]13,\[Alpha]]*Subscript[p,\[Xi]14]812

*Subscript[\[Theta],\[Xi]14,\[Beta]]*Subscript[p,\[Xi]15]813

*Subscript[\[Theta],\[Xi]15,\[Gamma]]*Subscript[p,\[Xi]16]814

*Subscript[\[Theta],\[Xi]16,\[Delta]])*2/(\[Theta]^4*p^4)),815

(c_:1)*Subscript[k,\[Alpha]_]*Subscript[k,\[Beta]_]*Sin[1/2*(__)]^2/(k.k)^3/;816

(Position[c,Subscript[k,_]]=={})817

->-c*\[Pi]^2/4*(KDelta[\[Alpha],\[Beta]]*BesselK[0,Sqrt[\[Theta]^2*p^2*M^2]]818

-Subscript[p, \[Xi]1]*Subscript[\[Theta],\[Xi]1,\[Alpha]]*Subscript[p,\[Xi]2]819

*Subscript[\[Theta],\[Xi]2,\[Beta]]/(p^2*\[Theta]^2)),820

(c_:1)*Subscript[k,\[Alpha]_]*Subscript[k,\[Beta]_]*Sin[1/2*(__)]^2/(k.k)^2/;821

(Position[c,Subscript[k,_]]=={})822

->-c*\[Pi]^2/(p^2*\[Theta]^2)*(KDelta[\[Alpha],\[Beta]]-2*Subscript[p,\[Xi]1]823

*Subscript[\[Theta],\[Xi]1,\[Alpha]]*Subscript[p, \[Xi]2]824

*Subscript[\[Theta],\[Xi]2,\[Beta]]/(p^2*\[Theta]^2)),825

(c_:1)*Sin[1/2*(__)]^2/(k.k)^2/;(Position[c,Subscript[k,_]]=={})826

->-\[Pi]^2*c*BesselK[0,Sqrt[\[Theta]^2*p^2*M^2]],827

(c_:1)*Sin[1/2*(__)]^2/(k.k)/;(Position[c,Subscript[k,_]]=={})828

->-2*\[Pi]^2*c/(p^2*\[Theta]^2),829

(c_:1)*Sin[1/2*(__)]^2/;(Position[c,k]=={})->-\[Pi]^2/(2*M^4)*c830

*Exp[-(p^2*\[Theta]^2)/(4*M^2)],831

someexpr_->UnknownInt[someexpr,1]832

};833

(* planar integration replacement rules *)834

intpnpdefs={835

(c_:1)*Subscript[k, \[Alpha]_]*Subscript[k, \[Beta]_]*836

Subscript[k, \[Gamma]_]*Subscript[k, \[Delta]_]*Sin[1/2*(__)]^2/(k.k)^4/;837

(Position[c,Subscript[k,_]]=={})838

->c*\[Pi]^2/24*(KDelta[\[Alpha],\[Beta]]*KDelta[\[Gamma],\[Delta]]839

+KDelta[\[Alpha],\[Gamma]]*KDelta[\[Beta],\[Delta]]840

+KDelta[\[Alpha],\[Delta]]*KDelta[\[Gamma],\[Beta]])841

*BesselK[0,Sqrt[M^2/\[CapitalLambda]^2]],842

(c_:1)*Subscript[k, \[Alpha]_]*Subscript[k, \[Beta]_]*Sin[1/2*(__)]^2/(k.k)^3/;843

(Position[c,Subscript[k,_]]=={})844

->c*\[Pi]^2/4*KDelta[\[Alpha],\[Beta]]*BesselK[0,Sqrt[M^2/\[CapitalLambda]^2]],845

(c_:1)*Subscript[k,\[Alpha]_]*Subscript[k,\[Beta]_]*Sin[1/2*(__)]^2/(k.k)^2/;846

(Position[c,Subscript[k,_]]=={})->c*\[Pi]^2*KDelta[\[Alpha],\[Beta]]847

*\[CapitalLambda]^2,848

(c_:1)*Sin[1/2*(__)]^2/(k.k)/;(Position[c,Subscript[k,_]]=={})849

->c*\[Pi]^2*2*\[CapitalLambda]^2,850

(c_:1)*Sin[1/2*(__)]^2/(k.k)^2/;(Position[c,Subscript[k,_]]=={})851

->c*\[Pi]^2*BesselK[0,Sqrt[M^2/\[CapitalLambda]^2]],852

(c_:1)/(k.k)^2/;(Position[c,Subscript[k,_]]=={})853

->c*2*\[Pi]^2*BesselK[0,Sqrt[M^2/\[CapitalLambda]^2]],854

(c_:1)*Sin[1/2*(__)]^2/;(Position[c,k]=={})->c*\[Pi]^2/(2*M^4),855

someexpr_->UnknownInt[someexpr,0]856
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};857

tmp=Simplify[(ReleaseHold[IndexStyle[expr/.elimrule]])/.858

(Subscript[k_, a_])^(n_?EvenQ)->(k.k)^(n/2)];859

If[!VSymmetricQ[tmp,k],0860

,(*else*)861

iSimplifyIndices=1;862

On[Part::"pspec",General::"spell"];863

If[np==1, tmp/.intnpdefs, tmp/.intpnpdefs]864

]865

];866

867

(* Modified version of the Int function above to treat more general integrals*)868

(* as they appear in vertex expressions at one loop level *)869

IntVert[expr_]:=870

Module[{tmp,intnpdefs,intpnpdefs,elimrule},871

Off[Part::"pspec",General::"spell"];872

iSimplifyIndices=0;873

elimrule=(a^2+(k.k)^2):>(k.k)^2;874

intdefs = {875

Times[(c_:1),Subscript[k, \[Mu]_],Subscript[k, \[Nu]_],Subscript[k, \[Rho]_],876

Subscript[k, \[Sigma]_],Subscript[k, \[Tau]_],Sin[Times[Subscript[k,_],877

Subscript[p_,_],_]]]/(k.k)^4/;(Position[c,k]=={}):>c \[Pi]^2 (-(878

(2 Subscript[p, \[Chi]1] Subscript[p, \[Chi]2] Subscript[p, \[Chi]3]879

Subscript[p,\[Chi]4] Subscript[p,\[Chi]5] Subscript[\[Theta],\[Mu],\[Chi]1]880

Subscript[\[Theta], \[Nu],\[Chi]2] Subscript[\[Theta], \[Rho],\[Chi]3]881

Subscript[\[Theta], \[Sigma],\[Chi]4] Subscript[\[Theta], \[Tau],\[Chi]5])882

/(3 \[Theta]^6 (p.p)^3))+1/12 (-(1/(\[Theta]^2 p.p))((KDelta[\[Mu],\[Tau]]883

KDelta[\[Rho],\[Sigma]]+KDelta[\[Mu],\[Sigma]] KDelta[\[Rho],\[Tau]])884

Subscript[p, \[Chi]2] Subscript[\[Theta], \[Nu],\[Chi]2]+885

KDelta[\[Sigma],\[Tau]] (KDelta[\[Nu],\[Rho]] Subscript[p, \[Chi]1]886

Subscript[\[Theta],\[Mu],\[Chi]1]+KDelta[\[Mu],\[Rho]] Subscript[p,\[Chi]2]887

Subscript[\[Theta],\[Nu],\[Chi]2]+KDelta[\[Mu],\[Nu]] Subscript[p,\[Chi]3]888

Subscript[\[Theta],\[Rho],\[Chi]3])+KDelta[\[Nu],\[Sigma]] (889

KDelta[\[Rho],\[Tau]] Subscript[p,\[Chi]1] Subscript[\[Theta],\[Mu],\[Chi]1]890

+KDelta[\[Mu],\[Tau]] Subscript[p,\[Chi]3]891

Subscript[\[Theta],\[Rho],\[Chi]3])+(KDelta[\[Mu],\[Tau]]892

KDelta[\[Nu],\[Rho]]+KDelta[\[Mu],\[Nu]] KDelta[\[Rho],\[Tau]])893

Subscript[p, \[Chi]4] Subscript[\[Theta], \[Sigma],\[Chi]4]894

+KDelta[\[Nu],\[Tau]] (KDelta[\[Rho],\[Sigma]] Subscript[p, \[Chi]1]895

Subscript[\[Theta],\[Mu],\[Chi]1]+KDelta[\[Mu],\[Sigma]]896

Subscript[p, \[Chi]3] Subscript[\[Theta], \[Rho],\[Chi]3]+897

KDelta[\[Mu],\[Rho]] Subscript[p, \[Chi]4]898

Subscript[\[Theta],\[Sigma],\[Chi]4])+(KDelta[\[Mu],\[Sigma]]899

KDelta[\[Nu],\[Rho]]+KDelta[\[Mu],\[Rho]] KDelta[\[Nu],\[Sigma]]+900

KDelta[\[Mu],\[Nu]] KDelta[\[Rho],\[Sigma]]) Subscript[p, \[Chi]5]901

Subscript[\[Theta], \[Tau],\[Chi]5])-1/(\[Theta]^4 (p.p)^2)902

(-2 KDelta[\[Sigma],\[Tau]] Subscript[p, \[Chi]1] Subscript[p, \[Chi]2]903

Subscript[p,\[Chi]3] Subscript[\[Theta],\[Mu],\[Chi]1]904

Subscript[\[Theta],\[Nu],\[Chi]2] Subscript[\[Theta], \[Rho],\[Chi]3]905

-2 Subscript[p, \[Chi]4] (KDelta[\[Rho],\[Tau]] Subscript[p, \[Chi]1]906

Subscript[p, \[Chi]2] Subscript[\[Theta], \[Mu],\[Chi]1]907

Subscript[\[Theta], \[Nu],\[Chi]2]+Subscript[p, \[Chi]3] (908

KDelta[\[Nu],\[Tau]] Subscript[p, \[Chi]1]909

Subscript[\[Theta], \[Mu],\[Chi]1]+KDelta[\[Mu],\[Tau]]910

Subscript[p, \[Chi]2] Subscript[\[Theta], \[Nu],\[Chi]2])911

Subscript[\[Theta], \[Rho],\[Chi]3]) Subscript[\[Theta],\[Sigma],\[Chi]4]912

-2 Subscript[p, \[Chi]5] (KDelta[\[Rho],\[Sigma]] Subscript[p, \[Chi]1]913

Subscript[p,\[Chi]2] Subscript[\[Theta],\[Mu],\[Chi]1]914

Subscript[\[Theta], \[Nu],\[Chi]2]+Subscript[p, \[Chi]3]915

(KDelta[\[Nu],\[Sigma]] Subscript[p,\[Chi]1]916

Subscript[\[Theta],\[Mu],\[Chi]1]+KDelta[\[Mu],\[Sigma]]917
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Subscript[p, \[Chi]2] Subscript[\[Theta], \[Nu],\[Chi]2])918

Subscript[\[Theta],\[Rho],\[Chi]3]+Subscript[p,\[Chi]4] (919

KDelta[\[Nu],\[Rho]] Subscript[p,\[Chi]1] Subscript[\[Theta],\[Mu],\[Chi]1]920

+KDelta[\[Mu],\[Rho]] Subscript[p,\[Chi]2] Subscript[\[Theta],\[Nu],\[Chi]2]921

+KDelta[\[Mu],\[Nu]] Subscript[p,\[Chi]3] Subscript[\[Theta],\[Rho],\[Chi]3]922

)Subscript[\[Theta],\[Sigma],\[Chi]4]) Subscript[\[Theta],\[Tau],\[Chi]5]))),923

Times[(c_:1),Subscript[k,\[Alpha]_],Subscript[k,\[Beta]_],924

Subscript[k,\[Gamma]_],Subscript[k, \[Delta]_]]/(k.k)^4/;(Position[c,k]=={})925

:>c*\[Pi]^2/12*(KDelta[\[Alpha],\[Beta]]*KDelta[\[Gamma],\[Delta]]+926

KDelta[\[Alpha],\[Gamma]]*KDelta[\[Beta],\[Delta]]+KDelta[\[Alpha],\[Delta]]927

*KDelta[\[Gamma],\[Beta]])*BesselK[0,Sqrt[M^2/\[CapitalLambda]^2]],928

Times[(c_:1),Subscript[k, \[Alpha]_],Subscript[k, \[Beta]_],929

Subscript[k, \[Gamma]_],Subscript[k, \[Delta]_],Cos[Times[Subscript[k,_],930

Subscript[p_,_],_]]]/(k.k)^4/;(Position[c,k]=={}):>c*\[Pi]^2/12*((931

KDelta[\[Alpha],\[Beta]]*KDelta[\[Gamma],\[Delta]]+KDelta[\[Alpha],\[Gamma]]932

*KDelta[\[Beta],\[Delta]]+KDelta[\[Alpha],\[Delta]]*KDelta[\[Gamma],\[Beta]]933

)*BesselK[0,Sqrt[\[Theta]^2*p^2*M^2]]-(Subscript[p, \[Xi]1]934

*Subscript[\[Theta],\[Xi]1,\[Alpha]]*Subscript[p, \[Xi]2]935

*Subscript[\[Theta],\[Xi]2,\[Beta]]*KDelta[\[Gamma],\[Delta]]936

+ Subscript[p, \[Xi]3]*Subscript[\[Theta],\[Xi]3,\[Alpha]]937

*Subscript[p, \[Xi]4]*Subscript[\[Theta],\[Xi]4,\[Gamma]]938

*KDelta[\[Beta],\[Delta]] + Subscript[p, \[Xi]5]939

*Subscript[\[Theta],\[Xi]5,\[Alpha]]*Subscript[p, \[Xi]6]940

*Subscript[\[Theta],\[Xi]6,\[Delta]]*KDelta[\[Beta],\[Gamma]]941

+ Subscript[p, \[Xi]7]*Subscript[\[Theta],\[Xi]7,\[Beta]]942

*Subscript[p, \[Xi]8]*Subscript[\[Theta],\[Xi]8,\[Gamma]]943

*KDelta[\[Alpha],\[Delta]] + Subscript[p, \[Xi]9]944

*Subscript[\[Theta],\[Xi]9,\[Beta]]*Subscript[p, \[Xi]10]945

*Subscript[\[Theta],\[Xi]10,\[Delta]]*KDelta[\[Alpha],\[Gamma]]946

+ Subscript[p, \[Xi]11]*Subscript[\[Theta],\[Xi]11,\[Gamma]]947

*Subscript[p, \[Xi]12]*Subscript[\[Theta],\[Xi]12,\[Delta]]948

*KDelta[\[Alpha],\[Beta]] )/(\[Theta]^2*p^2)+(Subscript[p, \[Xi]13]949

*Subscript[\[Theta],\[Xi]13,\[Alpha]]*Subscript[p, \[Xi]14]950

*Subscript[\[Theta],\[Xi]14,\[Beta]]*Subscript[p, \[Xi]15]951

*Subscript[\[Theta],\[Xi]15,\[Gamma]]*Subscript[p, \[Xi]16]952

*Subscript[\[Theta],\[Xi]16,\[Delta]])*2/(\[Theta]^4*p^4)),953

Times[(c_:1),Subscript[k, \[Mu]_],Subscript[k, \[Nu]_],Subscript[k,\[Rho]_],954

Sin[Times[Subscript[k,_],Subscript[p_,_],_]]]/(k.k)^3/;(Position[c,k]=={})955

:>-c*(\[Pi]^2 (-2 Subscript[p, \[Chi]1] Subscript[p, \[Chi]2]956

*Subscript[p, \[Chi]3] Subscript[\[Theta], \[Mu],\[Chi]1]957

*Subscript[\[Theta], \[Nu],\[Chi]2] Subscript[\[Theta], \[Rho],\[Chi]3]958

+\[Theta]^2 p.p (KDelta[\[Nu],\[Rho]] Subscript[p, \[Chi]1]959

*Subscript[\[Theta],\[Mu],\[Chi]1]+KDelta[\[Mu],\[Rho]] Subscript[p,\[Chi]2]960

*Subscript[\[Theta],\[Nu],\[Chi]2]+KDelta[\[Mu],\[Nu]] Subscript[p,\[Chi]3]961

*Subscript[\[Theta], \[Rho],\[Chi]3])))/(2 \[Theta]^4 (p.p)^2),962

Times[(c_:1),Subscript[k, \[Alpha]_],Subscript[k, \[Beta]_],963

Cos[Times[Subscript[k,_],Subscript[p_,_],_]]]/(k.k)^3/;(Position[c,k]=={})964

:>c*\[Pi]^2/2*(KDelta[\[Alpha],\[Beta]]*BesselK[0,Sqrt[\[Theta]^2*p^2*M^2]]965

-Subscript[p,\[Xi]1]*Subscript[\[Theta],\[Xi]1,\[Alpha]]*Subscript[p,\[Xi]2]966

*Subscript[\[Theta],\[Xi]2,\[Beta]]/(p^2*\[Theta]^2)),967

Times[(c_:1),Subscript[k, \[Alpha]_],Subscript[k, \[Beta]_]]/(k.k)^3/;968

(Position[c,k]=={}):>c*\[Pi]^2/2*KDelta[\[Alpha],\[Beta]]969

*BesselK[0,Sqrt[M^2/\[CapitalLambda]^2]],970

Times[(c_:1),Subscript[k, \[Alpha]_],Subscript[k, \[Beta]_],971

Cos[Times[Subscript[k,_],Subscript[p_,_],_]]]/(k.k)^2/;(Position[c,k]=={})972

:>c*2*\[Pi]^2/(p^2*\[Theta]^2)*(KDelta[\[Alpha],\[Beta]]-2973

*Subscript[p,\[Xi]1]*Subscript[\[Theta],\[Xi]1,\[Alpha]]974

*Subscript[p,\[Xi]2]*Subscript[\[Theta],\[Xi]2,\[Beta]]/975

(p^2*\[Theta]^2)),976

Times[(c_:1),Subscript[k, \[Alpha]_],Subscript[k, \[Beta]_]]/(k.k)^2/977

(Position[c,k]=={}):>c*2*\[Pi]^2*\[CapitalLambda]^2*KDelta[\[Alpha],\[Beta]],978
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Times[(c_:1),Cos[Times[Subscript[k,_],Subscript[p_,_],_]]]/(k.k)^2/;979

(Position[c,k]=={}):>2*\[Pi]^2*c*BesselK[0,Sqrt[\[Theta]^2*p^2*M^2]],980

Times[(c_:1),Sin[Times[Subscript[k,_],Subscript[p_,_],_]],981

Subscript[k,\[Alpha]_]]/(k.k)^2/;(Position[c,k]=={}):>2 \[Pi]^2*c982

*Subscript[p, \[Sigma]1]*Subscript[\[Theta],\[Alpha],\[Sigma]1]983

/(\[Theta]^2 (p.p)),984

(c_:1)/(k.k)^2/;(Position[c,k]=={}):>2*\[Pi]^2*c985

*BesselK[0,Sqrt[M^2/\[CapitalLambda]^2]],986

Times[(c_:1),Subscript[k, \[Alpha]_],Subscript[k, \[Beta]_]]/(k.k)^2/;987

(Position[c,k]=={}):>c*2*\[Pi]^2*KDelta[\[Alpha],\[Beta]]*\[CapitalLambda]^2,988

Times[(c_:1),Cos[Times[Subscript[k,_],Subscript[p_,_],_]]]/(k.k)/;989

(Position[c,Subscript[k,_]]=={})->4*\[Pi]^2*c/(p^2*\[Theta]^2),990

(c_:1)/(k.k)/;(Position[c,k]=={}):>c*\[Pi]^2*4*\[CapitalLambda]^2,991

Times[(c_:1),Cos[Times[Subscript[k,_],Subscript[p_,_],_]]]/;(Position[c,k]=={})992

:>\[Pi]^2/(M^4)*c*Exp[-(p^2*\[Theta]^2)/(4*M^2)],993

(c_:1)/;(Position[c,k]=={}):>c*2*\[Pi]^2/(2*M^4),994

someexpr_:>UnknownInt[someexpr]995

};996

tmp=Simplify[(ReleaseHold[IndexStyle[expr/.elimrule]])997

/.(Subscript[k_, a_])^(n_?EvenQ):>(k.k)^(n/2)];998

If[!VSymmetricQ[tmp,k],iSimplifyIndices=1;0999

,(*else*)1000

On[Part::"pspec",General::"spell"];1001

tmp=tmp/.intdefs;1002

iSimplifyIndices=1;1003

tmp1004

]1005

];1006

Protect[Int];1007

1008

1009

(* Functions for graphical markup of expressions. *)1010

TransformBrackets[f_,expr_]:=DisplayForm[FindBrackets[ToBoxes[expr],f]];1011

FindBrackets[startexpr_,f_]:=1012

Fold[Function[{expr, location},1013
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SizeBrackets[expr_]:=TransformBrackets[StyleBox[1018

AdjustmentBox[#1,BoxMargins->{{0,0},{.5,.5}}], Background->White]&,expr]1019
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