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Kurzfassung

Bei Betrachtung sehr kleiner Skalen in der Nähe der Planck Länge oder - äquivalent
dazu - sehr hoher Energien (weit höher als jene, welche durch die heutigen Teilchen-
beschleuniger erreicht werden), erwartet man, dass die Raumzeit eine quantisierte Struk-
tur aufweist. Mit Ausnahme der Gravitation können heute alle fundamentalen Natur-
kräfte durch Quantenfeldtheorien (QFT’s), im speziellen durch Eichfeldtheorien, be-
schrieben werden. Deren Herzstück sind die Renormierungsverfahren, die es erst ermög-
lichen, die Divergenzen, welche bei der perturbativen Entwicklung der das Modell re-
präsentierenden Wirkung auftreten und durch hohe interne Impulse verursacht wer-
den, in einer konsistenten Art und Weise zu behandeln. In den letzten Jahren wurden
zahlreiche Versuche unternommen, eine konsistente und renormierbare Theorie auch für
nicht-kommutative Geometrien zu formulieren. Jedoch ist es v.a. letztgenannter Punkt,
welcher eines der bedeutendsten Probleme der Quantenfeldtheorien darstellt: ganz all-
gemein wird die Nicht-Kommutativität der Raum(zeit) durch das sogenannte Sternpro-
dukt implementiert, im einfachsten Fall durch das Moyal-Weyl-Produkt. Dieses führt
zu einer zusätzlichen Phase in den Vertizes, welche vom nicht-kommutativen Parameter
θ abhängt, und in Folge zu einer Modifikation des Wechselwirkungsanteils der Theorie.
Des Weiteren bewirkt diese Phase ein Mischen von hohen und niedrigen Energien, welche
direkt mit dem in Erscheinung treten einer neuen Klasse von Divergenzen für niedrige
Energien verknüpft ist. Während es eine Reihe diverser Renormierungsschemata für die
im Ultravioletten (UV) auftretenden Divergenzen gibt, stellen deren Gegenspieler im
infraroten (IR) Sektor das vielleicht größte Hindernis bei der Formulierung einer konsis-
tenten θ-deformierten Quantenfeldtheorie dar. Ein erster Ausweg aus dieser misslichen
Lage konnte für ein skalares Modell durch Grosse und Wulkenhaar aufgezeigt werden
[6], und zwar durch die Einführung eines geeigneten Zusatzterms - in diesem Fall eines
Oszillatorterm - in der Wirkung, welcher zu einer Entkopplung des UV und IR Sek-
tors führt. Dieselbe Vorgangsweise wurde auch von Gurau et. al. umgesetzt [7], welche
einen Term der Form 1

p2
zu der skalaren Wirkung hinzufügten. Für beide Modelle konnte

Renormierbarkeit gezeigt werden. Das letztgenannte Modell führt des Weiteren zu einem
translationsinvarianten Eichfeldpropagator, was Impulserhaltung in jedem Raumpunkt
impliziert.

Wie bereits erwähnt basiert das Standardmodell auf der Formulierung entsprechen-
der Eichfeldtheorien. Es ist daher essentiell, zu einer Formulierung entsprechender
renormierbarer Modelle auch im Nicht-Kommutativen zu gelangen. Damit sind auch
Ziel und Inhalt dieser Dissertation umrissen, welche in dem Versuch der Formulierung
einer renormierbaren, θ-deformierten U(1) Eichtheorie (kurz U⋆(1)) besteht.

In einem ersten Schritt wurde eine lokalisierte Version des in [8] eingeführten Mod-
ells einer gründlichen Analyse unterzogen. Dieses Modell stellt eine nicht-kommutative
Verallgemeinerung der (im Euklidischen formulierten) üblichen U(1) Eichtheorie dar.
Es basiert auf der Einführung eines dem von Gurau et. al. analogen Terms, welcher in
Folge zu einem für niedrige Energien gedämpften Eichbosonpropagator führt. Im Rah-
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men von perturbativen Berechnungen auf 1-Loop Niveau [1] konnten wir zeigen, dass
diese Wirkung zu zusätzlichen physikalischen Freiheitsgraden und damit einer Modi-
fikation der Physik führt. Ein Ausweg konnte in [2] aufgezeigt werden. In der dort
vorgestellten Wirkung konnte die Modifikation des IR-Sektors durch die Einführung
eines sogenannten “soft breaking” Terms erreicht werden, analog zum Gribov-Zwanziger
Verfahren, welches uns von der kommutativen Yang-Mills Theorie her bekannt ist.
In Folge wurde der Versuch der 1-Loop Renormierung unternommen, welcher jedoch
ohne Erfolg war. Der Grund hierfür ist das Fehlen geeigneter Terme in der Wirkung,
welche die Absorption der IR-Divergenzen erlauben würde, siehe [3]. Üblicherweise
wird man in diesem Fall den Versuch unternehmen, eine sogenannte effektive Wirkung
zu konstruieren, welche renormierbar sein soll. Dies wird durch die Anwendung von
Renormierungs- schemata wie z.B. der Algebraischen Renormierung erreicht, welche
in diesem Fall jedoch nicht angewandt werden kann, aufgrund der inhärenten Nicht-
Lokalität des Stern-Produkts. Ideen bezüglich der Anwendbarkeit und möglichen Er-
weiterung bestehender Renormeriungsschemata auf nicht-kommutative Eichfeldtheorien
wurden in [4] diskutiert. Schlussendlich wurde eine neue Wirkung konstruiert [5], das
sogenannte BRSW Model (benannt nach den Anfangsbuchstaben von Daniel Blaschke,
Rene Sedmik, Michael Wohlgenannt und des Autors), für welches 1-Loop Renormier-
barkeit gezeigt werden konnte. Obwohl ein strenger Beweis noch ausständig ist, denken
wir, dass es sich hierbei um einen vielversprechenden Kandidaten einer ersten vollständig
renormierbaren U⋆(1) Eichtheorie handelt.
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Abstract

When considering very small scales near the Planck-length, or equivalently very high
energies (far from being reached by today’s particle accelerators), space-time is expected
to be quantized. Today, all but one forces governing nature (i.e. gravitation) are de-
scribed via Quantum Field Theories (short QFTs) and more precisely gauge field theories
(GFTs). Their heart is the art of renormalization, which allows to handle the divergences
for high internal momenta appearing in the course of the perturbative development of the
action in a consistent manner. Over the last years numerous attempts have been made
to formulate consistent and renormalizable theories also on non-commutative spaces.
Yet, it is the latter that represents a major problem for non-commutative QFTs: gener-
ally, the non-commutativity is implemented via the so-called star product, which in the
simplest case is given by the Moyal-Weyl product, and which leads to a modification of
the interaction terms of the theories by introducing additional phase factors depending
on the non-commutative parameter θ. Then, this phase leads to a mixing of high and
low energies, which is directly linked to the appearance of a new class of divergences for
small momenta. While there exist various traditional renormalization schemes in order
to handle UV divergences, their counterparts in the IR sector form a major obstacle in
formulating consistent θ-deformed QFTs. However, a first way out of this misery could
be achieved by Grosse and Wulkenhaar for a scalar model [6]. The idea was to add a
suitable term to the action, in their case an oscillator term, leading to a decoupling of
the high and low energy sectors. Later, the same philosophy has been followed by Gurau
et. al. [7] by adding a 1

p2
-like term to the scalar action. Both models have been shown

to be renormalizable, and additionally, the latter model leads to a translation invariant
propagator, which implies momentum conservation in all space points.

Now, the standard model is formulated via gauge field theories. It is therefore crucial
to find their non-commutative, renormalizable counterparts. Having said this we have
already addressed the goal and content of this dissertation, which consists in finding a
potentially renormalizable θ-deformed U(1) gauge theory, denoted U⋆(1).

In a first step, we studied in detail a localized version of the model introduced in [8],
which represents an extension of ordinary U(1) gauge theory (formulated on Euclidean
space) to the non-commutative setting, and is based on adding a term similar to the one
of Gurau et. al., leading to an IR-damped gauge boson propagator. In the course of one-
loop calculations [1], we have shown that it implements additional degrees of freedom
and hence modifies the original physical content of the theory. A way out was found in
[2] by implementing the modification of the IR sector through the introduction of a soft
breaking term similar to the approach of Gribov and Zwanziger known from commutative
Yang Mills theory. However, when trying to show renormalizability at one-loop level, it
turned out that the action does not contain the appropriate terms for absorbing the IR
divergences, c.f. [3]. Usually, in such cases one constructs an effective renormalizable
action via application of renormalization schemes such as Algebraic Renormalization,
which in this case fails, due to the inherent non-locality of the star product. Some

iv



ideas regarding the applicability and possible extension of traditional renormalization
schemes to non-commutative GFTs have been discussed in [4]. Finally a new action, the
BRSW model [5] (named after the initials of Daniel Blaschke, Rene Sedmik, Manfred
Schweda, Michael Wohlgenannt and the author) was constructed. It could be shown
to be renormalizable to one-loop order. Although a rigorous proof is still missing, we
expect it to be a very promising candidate for the first fully renormalizable U⋆(1) gauge
field theory.
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Introduction

1.1 Motivation for studying NCQFT . . . . . . . . . . . . . . . . 1
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 A brief historical overview . . . . . . . . . . . . . . . . . . . . 5
1.4 The Moyal-Weyl product . . . . . . . . . . . . . . . . . . . . . 6
1.5 UV/IR mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.1 Classification of graphs . . . . . . . . . . . . . . . . . . . . . . 9
1.5.2 One loop self energy in ϕ4⋆-theory . . . . . . . . . . . . . . . . . 10

1.1 Motivation for studying NCQFT

The universe we know is made of roughly 61 different scales using powers of ten [9], as
depicted in Fig. 1.1. The upper limit is given by the distance of the earth to the edges

Figure 1.1: The scales of the physical universe
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Chapter 1. Introduction

of the observable universe of 46 billion light-years or 4.41026m1, whereas the lower limit
is given by the Planck-length which one obtains by combining the three fundamental
constants of physics2:

lp =

√
~G
c3
≈ 1.6 10−35m. (1.1)

As of today, the physically accessible universe ranges from the size of the observable
universe down to 10−20m. For its description we have two basic theoretical building
blocks at our disposal (Fig. 1.2): Einstein’s theory of general relativity (GRT) on one
hand for the description of large scale phenomena, and quantum theory as the appro-
priate tool for understanding the microscopic world. Especially, quantum field theories
or QFTs provide the description of particles and their interactions which is compatible
with special relativity, forming the basis of the standard model of particle physics. This
latter encompasses three of the four basic forces of nature and all its related phenomena.
Now the question is: what does a theory look like that describes the terra incognita of

Figure 1.2: The theoretical buildings in theoretical physics

physics, being composed of the remaining scales between the above mentioned 10−20m
and the Planck length? We definitely expect a final unification of all four forces govern-
ing nature, leading to the so called Theory Of Everything (TOE), being the Holy Grail
of theoretical physics. Indeed, at very small scales / very high energies both GRT and
QFT enter the picture, thus only their combination will give the right physics. This
can qualitatively be seen from Fig. 1.33, which shows the physical theories suitable for

1Due to the expansion of the universe, co-moving coordinates must be used, leading to a size which
is bigger than the expected 13.7 billion light years when considering the age of universe [9].

2The three fundamental constants are Newton’s gravitation constant G, Planck’s constant ~ and the
speed of light c.

3Source: unofficial talks by Univ.Prof.Dr. Harald Grosse.
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Chapter 1. Introduction

describing phenomena for a given scale of energy (c), quantization (~) and (space-)time
deformation, expressed via the Einstein tensor (symbolically denoted by G) or the pa-
rameter θ expressing non-commutativity in Non-Commutative Quantum Field Theory
(NCQFT). At this stage, the latter is one very promising ansatz, as detailed in what
follows.
In ordinary quantum physics, i.e. ordinary quantum mechanics and quantum field the-

Figure 1.3: Classification of theories

ory, the non-commutativity between conjugated pairs of variables such as the operators
corresponding to space coordinates xi and momentum coordinates pj is expressed by the
famous Heisenberg uncertainty relation [x̂i, p̂j ] = i~δi,j . This leads to the quantization of
the phase space, where the notion of a point is replaced by that of a Planck cell. Now,
generalizing the notion of non-commutativity to ordinary space arises very naturally,
leading to

[x̂i, x̂j ] = iθij . (1.2)

Here the space(time) variables have been replaced by operators, and θij is a matrix with
mass dimension -2 (c.f. (1.7)).
Indeed, there are several physical considerations motivating the above ansatz : as is well-
known, GRT describes gravitation by a modification of space-time. Thus a quantum
field theory of gravity should quantize space-time itself.
Another very strong argument arises from the following Gedankenexperiment (Wheeler
1957, [10]; DeWitt 1962, c.f.[11],[12]): following GRT, any concentration of energy in
space-time leads to a curvature of space-time:

Gµν ≡ Rµν −
1

2
Rgµν = Tµν , (1.3)

with Gµν the Einstein tensor, gµν the space-time metric, and Rµν , R the Ricci-tensor
and Ricci-scalar respectively. According to Heisenberg’s uncertainty principle the mea-
surement of the position of a particle with accuracy a will lead to an uncertainty and

3



Chapter 1. Introduction

therefore energy concentration in this region of the order4 1/a. It follows that measuring
the position of a particle with accuracy near the Planck length will lead to a curvature
of space-time so strong that a black hole will be created, preventing light or any other
signal to leave the region under consideration. This problem can be circumvented by
“smearing” space coordinates, e.g. non-commutativity between the spatial directions.
Whatsoever, the original motivation for using non-commutative space(time) in QFT5

originates from the problem of the appearance of ultraviolet or UV -divergences in or-
dinary QFT’s and goes back to Snyder. In fact, this problem already appears in the
classical Maxwell-theory and originates from the idealized description of point-like parti-
cle interactions. In classical electrodynamics, this leads to a divergence at the interaction
space point, whereas in QFT the problem gets worse: an infinite number of divergences
appears. In mathematical terms, the problem originates in the multiplication of distri-
butions at the same point and thus causes singularities. Snyder’s idea was to smear out
point-like interactions by using non-commutative coordinates and thus to regularize the
UV divergences.
Against all initial hopes, the use of a non-commutative geometry does not remedy the
UV-problem, indeed it gets worse: now a new class of divergences appears, the so called
UV/IR-mixing6, which is a general characteristic to all non-commutative theories. So
the initial motivation has not been fulfilled, nonetheless the physical motivation intro-
duced at the beginning of this section still remains valid, which is the reason for the
intense study of non-commutative theories over the last two decades. The next but one
section will give a brief historical overview of the progresses made in this exciting field of
research up to now, forming the basis for the present thesis. More precisely, a QFT has
to be renormalizable in order to be self-consistent7. So far, renormalizability could be
shown for some non-commutative scalar models [13, 6, 7]. The next logical step would
then be the extension of non-commutative geometry to the simplest theory describ-
ing the interaction of physical particles, namely the formulation of a non-commutative
U(1) gauge theory, the resulting algebra called U⋆(1), representing the gauge group of a
non-commutative formulation of Quantum Electrodynamics (NCQED).

1.2 Outline

After a short historical overview of the field of non-commutative geometry, we will intro-
duce the Moyal-Weyl correspondence, which allows to implement the non-commutativity
between space variables of (1.2) in field theories while working with ordinary functions

4In natural units with ~ = c = 1.
5Note that a non-commutative geometry very naturally arises also in condensed matter theory, the

most prominent example being the Landau problem, describing the two dimensional motion of a charged
particle in an external magnetic field.

6Considered in detail in Section 1.5.
7A theory is not necessarily renormalizable in order to be physically relevant; however, in that case it

is necessarily only a piece of the big picture, c.f. Fermi’s (non-renormalizable) theory of weak interaction,
which has been replaced the Glashow-Weinberg-Salam theory of electroweak interaction.
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Chapter 1. Introduction

instead of operator valued objects. This naturally leads to the problem of UV/IR
mixing, which is strongly connected to the appearance of a new type of graphs called
non-planar (Section 1.5). In Chapter 2 we will consider two scalar models where this
problem could be overcome by the introduction of a new term in the action, leading
to a decoupling of the ultraviolet and infrared regimes and finally to renormalizability.
In particular, for the model of Gurau et. al. of Section 2.2 this has been achieved by
introducing a term of the form 1

p2
. The aim of this thesis being the construction of a

non-commutative gauge field theory or NCGFT, various models intending to implement
the same damping behaviour for a U⋆(1) or θ-deformed U(1) theory will be studied in
Chapter 3. For the case where this could finally be achieved, we will provide one-loop
calculations and explicitly show the desired transversality of the vacuum polarization
with respect to external momenta. Yet, we will also see that this model contains a major
drawback, given by the introduction of new physical degrees of freedom, hence altering
the original content of the theory. Motivated by [14], we will study how infrared effects
have been implemented for commutative Yang-Mills theories in the framework of the
Gribov-Zwanziger approach, c.f. Chapter 4. There we will systemize this method of soft
breaking, which then will lead to an improved non-commutative gauge model in Chapter
5. In the latter we will also derive the complete one-loop correction to the gauge boson
propagator. Unfortunately, we will see that the attempt for showing one-loop renor-
malizability will fail. For such a case, one usually tries to construct an effective (and
in the end hopefully) renormalizable action, and the intention was to apply Algebraic
Renormalization to the model under consideration. However it turned out that for non-
commutative QFTs, the application of the latter fails, due to the inherent non-locality of
the star product. Based on this finding, problems are to be expected for the application
of some prominent traditional renormalization schemes and their possible extension to
NCGFTs, which will be discussed in Chapter 6. Instead of following further this path, a
new type of non-commutative gauge models still based on the idea of soft breaking will
be introduced in Chapter 7, where one-loop renormalizability for the full gauge boson
propagator of the starting action, and the derivation of appropriate counterterms for
the vertex corrections will be shown. Although a rigorous proof is still missing, this
model is expected to be renormalizable to all orders. A short conclusion and outlook
will complete the investigations on the renormalizability of U⋆(1) gauge theories.
Useful formulae and detailed calculations have been shifted to the appendix. It also
contains a chapter which explains the evaluation of symmetry factors for any Feynman
diagram. There we will also give an overview of the programmed routines which have
been developed in order to afford the very involving loop calculations for the various
models.

1.3 A brief historical overview

The idea of generalizing the notion of non-commutativity from phase-space to ordinary
space-time has already been expressed by the founding fathers of quantum theory, espe-
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Chapter 1. Introduction

cially Heisenberg, the motivation being the introduction of a natural UV-cutoff and thus
avoiding the problem of UV-divergences which is characteristic to quantum field theory.
It was then Snyder (1947, [15, 16]) who formalized the idea of using a non-commutative
geometry in order to smear out the point-like particle interactions, leading to non-local
interactions. At the same time, the renormalization program became successful, and
non-commutative geometry had not been investigated any further until the 1980’s when
Connes, Woronowicz and Drinfeld generalized the notion of a differential structure to
the non-commutative setting. Especially Connes’s reformulation of the standard model
based on an (inner) non-commutative geometry attracted much attention [17, 18, 19].
It was discovered in the late 1990’s that simple limits of M-theory8 lead to non-commu-
tative gauge theories, keeping some of its basic characteristics of nonlocality but at the
same time being simpler9 [20, 21, 22], thus leading to a renewed and intense interest for
non-commutative geometries amongst high energy physicists. For introductions to the
field of non-commutative geometry and its application in quantum field theories, see e.g.
[23, 24, 25] and [11, 26] containing also a historical overview of the field.

1.4 The Moyal-Weyl product

Ordinary quantum mechanics is based on the following commutation relations, which
lead to a quantization of phase space, replacing thus the notion of a point with that of
a Planck cell: [

x̂i, p̂j
]
= i~δij ,[

x̂i, x̂j
]
=
[
p̂i, p̂j

]
= 0, (1.4)

with i, j = 1, 2, 3, the x̂i, p̂j being (unbounded) operators acting on a Hilbert space.
Here and in the following the hat indicates operator valued objects. A non-vanishing
commutator relation always implies an uncertainty relation, in this case the famous
Heisenberg uncertainty:

△x△y ≥ ~
2
. (1.5)

In order to implement non-commutativity between space-time variables one generalizes
the above concept [27, 28, 29]. The simplest case is a Heisenberg algebra

[x̂µ, x̂ν ] = iθµν ,

[x̂µ, θµν ] = 0, (1.6)

8In M-theory developed in the mid 1990’s the former rather independently existing different string
theories together with supergravity are shown to be limits of a more fundamental theory.

9Non-locality is a fundamental property to string theories, as the notion of point like particles is
being replaced by that of (open or closed) strings
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Chapter 1. Introduction

where θµν is a real10, constant and antisymmetric deformation matrix, with mass di-
mension -2, which - after bringing it into its canonical form - is given by:

(θµν) =


0 θ1
−θ1 0

. . .

0 θd/2
−θd/2 0

 , with θi ∈ R . (1.7)

Note, that the usual coordinates have been replaced by Hermitian operators x̂µ with
µ = 0, 1, · · · , (d− 1), where d is the dimension of the θ-deformed (Minkowskian or Eu-
clidean) space under consideration. The deformation matrix might be of full rank or not,
depending whether one wishes to express non-commutativity between all coordinates or
only between selected directions. Especially models formulated on the Euclidean R4

θ

have been investigated intensely in the literature (e.g. [6, 7]). One can implement
noncommutativity also by other deformations (see [34] for a detailed discussion), the
Lie-case

[x̂µ, x̂ν ] = iCµνρ x̂ρ, (1.8)

or the quantum group space

[x̂µ, x̂ν ] = iRµνρσ x̂
ρx̂σ. (1.9)

However, we will limit ourselves to the simplest case (1.6). At this point, it has to be
mentioned that this procedure spoils Lorentz-invariance [35, 36], due to the preferred
direction of noncommutativity.
In the following we want to use fields instead of operator valued objects. In order to keep
the property (1.6) the multiplication law of functional (field) space has to be modified.
This is being done through the so called Weyl-Moyal correspondence:

ϕ̂(x̂)⇐⇒ ϕ(x), (1.10)

where the l.h.s is a operator valued object and the r.h.s. is an ordinary field depending
on (commuting) space-time coordinates x ≡ xµ. A possible correspondence is given by

ϕ̂(x̂) =

∫
ddk

(2π)d
eikx̂ϕ(k),

ϕ(k) =

∫
ddxe−ikxϕ(x) . (1.11)

10For experimental considerations regarding the size of θ see for example the following publications:
[30] contains investigations on the influence of non-commutative space on the Lamb shift; in [31] estimates
for the predicted additional energy-loss in stars induced by space-time non-commutativity are derived;
relevant considerations in the context of astrophysical observations, relying in particular on γ ray bursts
are discussed in [32, 33].
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For the product of two operator valued objects it follows

ϕ̂1(x̂)ϕ̂2(x̂) =

∫
ddk1
(2π)d

∫
ddk2
(2π)d

eik1x̂ϕ1(k1)e
ik2x̂ϕ2(k2)

=

∫
ddk1
(2π)d

∫
ddk2
(2π)d

ei(k1+k2)x̂−
1
2
[x̂µ,x̂ν ]k1,µk2,νϕ1(k1)ϕ2(k2), (1.12)

where in the last line of (1.12) the Baker-Campbell-Hausdorff-formula has been used11.
This leads to the definition of the Groenewold-Moyal-Weyl star product

ϕ̂1(x̂)ϕ̂2(x̂)⇐⇒ (ϕ1 ⋆ ϕ2)(x), (1.13)

that is given by

(ϕ1 ⋆ ϕ2)(x) = e
i
2
θµν∂xµ∂

y
νϕ1(x)ϕ2(y)|x=y . (1.14)

By implementing the star product we have achieved that we can work with the ordinary
commuting coordinates, whereas the modified product guarantees that (1.6) holds:

[x̂µ, x̂ν ] = [xµ ⋆, xν ] ,

[xµ ⋆, xν ] = xµ ⋆ xν − xν ⋆ xµ = iθµν . (1.15)

Following the definition of the star product, we have the following identities:∫
ddx(ϕ1 ⋆ ϕ2)(x) =

∫
ddxϕ1(x) · ϕ2(x) , (1.16a)∫

ddx(ϕ1 ⋆ ϕ2 ⋆ · · · ⋆ ϕn)(x) =
∫
ddx(ϕn ⋆ ϕ1 · · · ⋆ ϕn−1)(x) , (1.16b)

δ

δϕ1

∫
ddx(ϕ1 ⋆ ϕ2 ⋆ · · · ⋆ ϕn)(x) = (ϕ2 ⋆ · · · ⋆ ϕn)(x) . (1.16c)

(1.16a) states that under the integral the star product does not affect the product of
two fields, which directly translates into the calculation of propagators being derived
from the bilinear part of the action. Thus the propagators in the non-commutative case
remain unchanged with respect to the commutative counterpart of a given model12, i.e.
when replacing in the action the ordinary product by the star product. (1.16b) states
the invariance of a product of integrated fields under cyclic permutations.
Furthermore, associativity holds:

[(ϕ1 ⋆ ϕ2) ⋆ ϕ3)] = [ϕ1 ⋆ (ϕ2 ⋆ ϕ3)] . (1.17)

11The Baker-Campbell-Hausdorff-formula gives eAeB = eA+B+ 1
2
[A,B]under the condition [A, [A,B]] =

[B, [A,B]] . In the present case we have [xµ, [xν , xρ]] = [xµ, θνρ] = 0, from which follows the vanishing
of higher order commutators.

12Note that this is only true in Euclidean space, and in Minkwoski space if time is commutative.

8



Chapter 1. Introduction

1.5 UV/IR mixing

By writing down explicitly the star product of n fields (which is being used in order to
implement non-commutativity amongst the position coordinates as explained above),

ϕ1(x) ⋆ · · · ⋆ ϕn(x) =

=

∫
ddk1
(2π)d

· · ·
∫

ddkn
(2π)d

ϕ1(k1) · · ·ϕn(kn)ei
∑n

i=1 k
µ
i xµe−

i
2

∑n
i<j k

µ
i θµνk

ν
j (1.18)

one can see that with comparison to the ordinary product of fields one observes an
additional phase factor. According to (1.16a), this affects only the product of more than
two fields, from which it follows, that replacing the ordinary product by the star product
in a given Lagrangian will affect the interaction part of the theory. More precisely, this
will generate not only the ordinary planar but also the so called non-planar graphs,
finally leading to the infamous UV/IR-mixing problem typical for θ-deformed quantum
field theories. After a classification of the Feynman graphs, the analysis of a θ-deformed
ϕ4-theory will allow for a better understanding of the problem [37, 38].

1.5.1 Classification of graphs

As stated in (1.16b), the (compared with commutative theories) additional phase factor
is only symmetric under cyclic permutations. This property is similar to matrix theories,
where we observe a symmetry under cyclic permutations of the indices. Note that in
matrix theories the Feynman graphs are ribbon graphs (c.f. e.g. [26]). Therefore
the same double line notation may be applied in our case by assigning double lines to
propagators and the order of connecting them for a given graph reflects the ordering
of the fields. Moreover, this notation allows to distinguish different types of graphs by
their topological properties (e.g. [39]), i.e. by their Euler characteristics χ, given by

χ = V − I + F → 2− 2g, (1.19)

with V, I, F the number of vertices, internal lines and faces. Internal lines are lines wich
connect to vertices at both ends. A face is a line which delimits a surface. This is
equivalent to say that the number of faces corresponds to the number of single lines in a
graph, after having closed the external lines at their ends. For connected diagrams this
reduces to the r.h.s of (1.19), where g denotes the genus. Now the Feynman graphs can
be classified: graphs with g = 0 are called planar, they can be drawn on a plane without
crossing lines; graphs with g ≥ 1 are called non-planar, and can be drawn without
crossing lines only on a surface with genus g. Moreover, the planar graphs are further
classified with respect to the number of broken faces B, i.e. faces broken by external
lines. They are called planar regular for B = 1 and planar irregular for B > 1.
As an example, let us analyze the graphs depicted in Fig. 1.4. Both graphs have two
vertices, two internal lines, and two faces. In order to distinguish them, the two faces of a
graph are represented by continuous and dashed lines respectively. From (1.19) it follows,

9



Chapter 1. Introduction

Figure 1.4: Planar (planar regular) and non-planar (planar irregular) one-loop graphs

that both graphs have genus g, and are therefore considered as planar. However, the
left graph has only one broken face (the one delimited by the continuous line), whereas
the right graph has both faces broken by external legs. It follows that the left graph is
planar regular, and the right one planar irregular.
There is a second way to classify graphs, namely by considering whether a given graph
has lines crossing each other, i.e. propagators crossing over each other or over external
lines [26]. If this is the case, a graph is said to be non-planar, and planar otherwise.
The reason is that the additional phase factor for planar graphs will depend on external
momenta only, whereas the expression for a non-planar graph contains also a vertex and
therefore phase factor for each internal crossing of lines. The behavior of the latter will
therefore substantially depend on its inner structure. In particular it can be expected,
that the additional factor being a phase will serve as a UV regulator due to rapid
oscillations for high internal momenta. In this convention, in Fig. 1.4 the left graph is
again planar, but the right graph is non-planar. We will follow this second convention.

1.5.2 One loop self energy in ϕ4
⋆-theory

Let us start with the formulation of the usual ϕ4-action on the four-dimensional Moyal
space (e.g.[40]). This is done by replacing the ordinary product by the star product,
and the usual integration by the non-commutative integration which is a combination
of the usual integration and a trace [11]. This results in the simplest non-commutative
model with the tree-level action

S[ϕ] =

∫
d4x

(
1

2
∂µϕ ⋆ ∂

µϕ+
1

2
m2ϕ ⋆ ϕ+

λ

4!
ϕ ⋆ ϕ ⋆ ϕ ⋆ ϕ

)
, (1.20)

where λ is the coupling constant. Rewriting this action in momentum space we get (for
i, j = 1, . . . , 4)

S =
1

2

∫
d4p

(2π)4
ϕ(−p)ϕ(p)(p2 +m2)+

+
λ

4!

∫ ∏
i

d4pi
(2π)4

(2π)4δ(
∑
i

pi) exp(−
i

2

∑
i<j

pµi θµνp
ν
j )
∏
i

ϕ(pi). (1.21)

10
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It can also be written in terms of vertex functions

S =

∫
d4p

{
1

2
ϕ(−p)ϕ(p)Γ(2)

0 +
λ

4!

∏
i

ϕ(pi)Γ
(4)
0

}
(1.22)

with Γ
(i)
j denoting the i-point function of loop order j. By comparison of the vertex

functions with those of the ordinary theory, that can be retained from (1.21) by con-
sidering the limit θµν → 0, it becomes now evident that the propagator, given by the
inverse of13

Γ
(2)
0 = p2 +m2 (1.23)

remains unchanged. Only the interacting part of the theory will be modified by an
additional phase factor.
Calculation of the one loop self energy diagrams leads to

Γ
(2)
1 =

λ

6(2π)4

∫
d4k

2 + eikp̃

k2 +m2
≡ Γ

(2)
1,pl + Γ

(2)
1,n.p.. (1.24)

In the last equation we have introduced the notation p̃µ = θµνp
ν . It can be seen that

the integral splits into a planar and non-planar contribution, the corresponding graphs
being drawn in Fig. 1.5. Note that in the limit θ → 0 we get the commutative result as

p

k

p k

Figure 1.5: Planar and non-planar one-loop graphs

expected. By using Schwinger parametrization (c.f. (A.1)), bringing the exponential in
the non-planar expression to a quadratic form and integration over k (c.f. (A.3)) we get
the following integrals, depending on the Schwinger parameter α:

Γ
(2)
1,pl. =

λ

48π2

∫ ∞
0

dα
e−αm

2− 1
Λ2α

α2
, (1.25a)

Γ
(2)
1,n.p. =

λ

96π2

∫ ∞
0

dα
e−αm

2− p̃2

4α

α2
. (1.25b)

13Note that for non-commutative time the calculation of the propagator becomes more involved, i.e.
it is not simply given by the inverse of (1.23).
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In order to regularize the small α divergence in (1.25a) we have multiplied the integrand
by exp(− 1

Λ2α
), where Λ is an UV-cutoff: Λ2 → ∞ creates UV-divergences as one can

see in the next formulae. Now (A.5) can be applied for both cases, leading - after
approximation of the modified Bessel functions, c.f. (A.10b) - to

Γ
(2)
1,pl. =

λ

48π2
2
√
Λ2m2K1

(
2

√
m2

Λ2

)
≈ λ

48π2

{
Λ2 +m2 ln

(
m2

Λ2

)}
, (1.26a)

Γ
(2)
1,n.p. =

λ

96π2
4

√
m2

p̃2
K1(

√
m2p̃2) ≈ λ

96π2

{ 4

p̃2
+m2 ln

(
m2p̃2

)}
. (1.26b)

From this result, we can observe the following:

• The non planar vertex function is now finite as long as p̃2 ̸= 0, i.e. the momentum
acts as UV-regulator with the effective cutoff

Λeff =
1√
p̃2
. (1.27)

Therefore, otherwise UV divergent graphs are rendered finite.

• In the limit p̃2 = p̃µp̃
µ → 0, i.e. for the commutative limit and/or vanishing

external momenta, the original UV divergence reappears. From the latter case we
can see, that the former UV divergence has just been replaced by a IR singularity.
Indeed, this becomes also clear when considering the regulating exponential for
(1.25a) as described above, which is just inverse to the momentum dependent
term already present in (1.25b).

• The planar contribution can be absorbed in a mass redefinition, mren = m+Γ
(2)
1,pl..

Thus, the usual UV-renormalization schemes may be applied. Unfortunately this
is not the case for the non-planar expression, the reason being its non-locality,
i.e. dependence from the integration parameter. Note that IR divergences have
already been present in commutative QFTs, in the form of singularities appearing
in some ill-defined loop integrals requiring regularization. Contrary to that non-
planar graphs lead to divergences in the external momenta, and are thus of totally
different nature.
Finally, the one loop 1PI effective action can be written as

S =

∫
d4p

{
1

2
ϕ(−p)ϕ(p)

(
Γ
(2)
0 + Γ

(2)
1,pl. + Γ

(2)
1,n.p.(p̃

2)
)
+ . . .

}
=

∫
d4p

{
1

2
ϕ(−p)ϕ(p)

(
p2 +m2

ren + Γ
(2)
1,n.p.(p̃

2)
)
+ . . .

}
, (1.28)

with m2
ren = m2 + Γ

(2)
1,pl..

• As a result of the above said, inserting the non-planar graph into graphs of higher
loop order will lead to IR-divergences of increasing order.
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In summary, this mixing of the high and low energy sector is the (in)famous UV/IR
mixing problem. In order to make a non-commutative theory renormalizable, one has
to handle this obstacle. This project forms a major part of this thesis.
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Chapter 2

Renormalizable non-commutative
scalar models

2.1 Model with oscillator term . . . . . . . . . . . . . . . . . . . . 15
2.2 A translation invariant scalar model . . . . . . . . . . . . . . 16

In Section 1.5 we have elaborated on the example of the θ-deformed scalar ϕ4⋆-model,
that the implementation of non-commutativity generally leads to the problem of UV/IR
mixing1. As is well known, the planar graphs lead to UV-divergences which can be
absorbed in the parameters of the theory, hence are renormalizable (under the condition
that this is true for the commutative limit of the model). Contrary to that, the non-
planar graphs may contain IR-divergences which are not of the renormalizable type,
and therefore destroy renormalizability of the model. Yet, renormalization is the soul of
QFT. Therefore intense work has been done in this direction, finally leading to several
models that overcome the UV/IR problem (for the scalar case) and which could be
shown to be renormalizable.
In the following we will describe two of those models2: the model with oscillator term
in Section 2.1 for its historical importance, showing the path for the construction of
several other models; the second in Section 2.2 due to its importance for the present
work. For both of them we will show their strengths and shortcomings. Whatsoever,
both rely on the same philosophy: based on the fact that noncommutativity relevant at
very short distances modifies the physics of the model at very large distances, the idea
is to alter the free theory, as at long distances a theory is a (almost) free one. This
is done by adding a properly chosen new term to the action, which is not present in

1This is the case at least for models with a constant deformation matrix, c.f. (1.6), formulated on
the Euclidean space. There are some hints, that in Minkowskian space-time UV/IR mixing would not
occur (e.g. [41]).

2After the first model of Section 2.1 has been introduced, several models have been proposed, c.f.
e.g. [7, 42].
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the näıve model3. This term modifies the propagator in such a way that the theory is
rendered finite in the IR-sector by mixing short and long distances. At this point it
has to be mentioned that both theories are formulated on Groenewald-Moyal deformed
(also called θ-deormed) Euclidean space R4

θ.

2.1 Model with oscillator term

In the years 2003/04, H. Grosse and R. Wulkenhaar published a series of papers, in
which they introduced a non-commutative scalar model on the Euclidean space, first in
R2
θ [13] than in R4

θ [6], which where shown to be renormalizable to all orders (c.f. also
[43]). This has been achieved by adding to the action a marginal harmonic oscillator-like
potential of the form x̃ϕ2, leading to the action

S[ϕ] = Sint + Sfree ,

Sfree =

∫
d4x
(1
2
(∂µϕ) ⋆ (∂

µϕ) +
Ω2

2
(x̃µϕ) ⋆ (x̃

µϕ) +
µ20
2
ϕ ⋆ ϕ

)
(x) ,

Sint =

∫
d4x

λ

4!
(ϕ ⋆ ϕ ⋆ ϕ ⋆ ϕ) (x) , (2.1)

where x̃µ = 2(θ−1)µνx
ν and Ω is a oscillator parameter with dim(Ω) = 0. Retrospec-

tively, the oscillator term can be made plausible by denoting that it is required in order
to get an action that is covariant under Langmann-Szabo duality [44] as the näıve action
is not. More specifically, the original interaction part of the action is LZ-covariant, while
the free part has to be altered before fulfilling the same property. Roughly speaking, LZ-
covariance denotes form-invariance when passing from space to momentum coordinates,
i.e. under the transformations

pµ → x̃µ and ϕ̂(p) =

∫
d4x exp {(−1)aipa,µxµa}ϕ(xa) . (2.2)

The index a = {1, . . . , 4} in the Fourier transformation follows a cyclic ordering at the
vertex. By writing down explicitly the action in both momentum and position coordinate
space, one can see the following property of LZ-covariance:

S (ϕ,m, λ,Ω) = Ω2S

(
ϕ,
m

Ω
,
λ

Ω2
,
1

Ω

)
. (2.3)

At Ω = 1, one has complete equivalence of the theory in momentum and coordinate
space when looking at the bilinear part of the action. Based on this result, it is intuitive
that the most suited base should be found in phase-space. There the basis consists of
Gaussian wave packages. Due to the non-commuting space coordinates, there is one
best-focused Gaussian, and by defining creation and annihilation operators, one gets

3Here and in the following with näıve model we address non-commutative models that result from
the commutative theory by simply replacing the ordinary by a star product, e.g. (1.20).
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successively all base functions. Applying the star product to those functions reduces to
a ordinary matrix product, hence the naming matrix base. In order to show renormal-
izability, Grosse and Wulkenhaar formulated the propagator in matrix base, imposed
maxima on the base-space indices which is equivalent to impose a cutoff, and checked
renormalizability by using the Polchinski scheme [45].
In summary, the Grosse-Wulkenhaar or GW model was the first one to overcome the
UV/IR mixing problem. The β-function of the model vanishes at all orders, hence is
asymptotically safe and therefore free of any Landau ghost, and should be fully consis-
tent at a non-perturbative, i.e. constructive level.
On the other hand, the model also has some shortcomings, the most important being
the explicit breaking of translation invariance. This can directly be seen from (2.1) by
the presence of space coordinates. Yet, translation invariance is a direct expression of
the homogeneity of space and should therefore be fulfilled in order to describe physi-
cal phenomena. This implies that the theory will be able to describe local phenomena
only. Another disadvantage is the difficulty of generalizing the model to gauge theories,
as keeping gauge invariance and LZ-duality simultaneously leads to theories with non
trivial vacua, i.e. non vanishing tadpole contributions [46, 47], rendering perturbation
theory difficult.

2.2 A translation invariant scalar model

In [7] Gurau et al. presented another solution to the UV/IR mixing for the ϕ4-model
on Euclidean R4

θ by adding to the action a 1/p2-term, resulting in a action, which in
momentum space [48] is given by

S[ϕ] =
1

2

∫
d4p ϕ(−p)

(
p2 +m2 +

a

θ2p2

)
ϕ(p) + Sint[ϕ]

Sint[ϕ] =
λ

4! 3

∫
d4p1 . . . d

4p4ϕ(p1) . . . ϕ(p4) δ
(4)(p1 + p2 + p3 + p4)×

×
[
cos

p1p̃2
2

cos
p3p̃4
2

+ cos
p1p̃3
2

cos
p2p̃4
2

+ cos
p1p̃4
2

cos
p2p̃3
2

]
. (2.4)

leading to the convention that the model is commonly referred to as 1/p2 scalar model.
In coordinate space the action is given by

S[ϕ] =

∫
d4x

[
1

2

(
∂µϕ ⋆ ∂µϕ+m2ϕ⋆2 − ϕ ⋆ a

2

�̃
ϕ
)
+
λ

4!
ϕ⋆4
]
,

�̃ = ∂̃µ∂̃µ = θ2�, where ∂̃µ = θµν∂
ν . (2.5)

with a > 0 a dimensionless parameter. In the last equation, the usual short-hand
notation in physics has been used, where 1/� is the symbolical notation for the Green
function of the differential operator

�xG(x− x′) = δ(4)(x− x′), G(x) =
1

|x− x′|2
. (2.6)
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Considering the bilinear part this leads to the propagator

G(p) =
1

p2 +m2 + a2

p̃2

, (2.7)

which mixes long and short scales. Compared to the propagator of the näıve model
(p2 + m2)−1, (2.7) contains an additional term, that leads to a damping behavior for
vanishing external momentum,

lim
p→0

G(p) ∝ lim
p→0

p̃2

a
= 0. (2.8)

In order to understand how the above propagator leads to renormalizability, let us
investigate the divergence structure in loop calculations [49]. When effecting one-loop
calculations, the divergence structure is dominated by large internal momenta, i.e. where
the a-dependent part of the propagator is vanishing. As in the näıve model, for the
self energy one finds a quadratic UV divergence coming from the planar sector and a
quadratically IR divergent term from the non-planar graph of the form 1

p̃2
. However,

due to the presence of the additional term in the tree-level action (2.5) of the same form,
the latter divergence can be absorbed by renormalizing the parameter a [49, 39]. Going
over to higher loop insertions of the non-planar tadpole graph, one finds that due to the
new propagator the IR-dangerous insertions will be damped. It is this mechanism that
leads to the renormalizability of the model, which has been proved generically in the
paper of Gurau et al. [7] by multiscale analysis.
Compared to the model of Grosse and Wulkenhaar, the main advantage of the 1/p2-
model is that it does not break translation invariance. Furthermore, a commutative limit
mechanism can be written down [50]. A possible drawback is the missing of an analog
to the Langmann-Szabo symmetry and hence of asymptotic safety. This may even not
be required when extending the model to gauge theories, as at least non abelian gauge
theories are asymptotically free even in the commutative limit.
In summary, this represents the reason for the extensive study of a generalization to
gauge theories of the 1/p2-model.
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Several suggestions have been made on how to handle the UV/IR mixing problem
in gauge field theories. The one by Slavnov [51, 52] reduces the degrees of freedom of
the gauge field through the addition of a constraint, while the extension of the Grosse-
Wulkenhaar model (described in Section 2.1) to gauge field theory [47, 46, 53, 54] breaks
translation invariance. Motivated by the model presented in Section 2.2 which avoids
all of the mentioned drawbacks, in [8] its generalization to a θ-deformed U⋆(1)-theory,
leading to a damping of the gauge propagator in the IR sector, has been presented. At
this point it has to be remarked that a similar term had already been introduced earlier
in [55] based on a resummation procedure (however, not leading to the desired damping
behavior), and before in [56].
In this chapter we will first discuss the construction of the model, before proceeding
to the calculation of the Feynman rules. It follows power counting and one loop cal-
culations, and finally a discussion of the physical implications of the results. Detailed
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calculations are given in Section C. Due to the tediousness of the very involving and
long loop calculations, algorithms have been developed in order to automatize the work,
which are presented in the appendix in Section F.
Here and in the following, the deformation matrix is always given by its canonical form
as block-diagonal matrix:

θµν = θ


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , where dim θ = −2 , (3.1)

if not mentioned otherwise.

3.1 Construction of the 1/p2 U⋆(1) model

As described in Section 2.2, the additional term in the Euclidean momentum space
action of the form a/p̃2 leads to renormalizability of the model while keeping translation
invariance. The motivation for this term stems from the fact that the 1-loop-self-energy
of the naiv̈e ϕ⋆4-model is quadratically IR divergent, i.e. is of the same form as the
additional term, and thus might be absorbed in the parameter a.
We will now undertake the construction of a translation invariant gauge model along
the same line.

3.1.1 The näıve U⋆(1) model and its IR-divergence structure

In order to be able to construct an appropriate counterterm for the IR divergences,
let us investigate the IR-divergence structure of the näıve U⋆(1) model, formulated on
Euclidian space R4

θ. We first have to formulate the model. The gauge invariant action
is the same as in the commutative case1:

Sinv =

∫
d4x

1

4
Fµν ⋆ F

µν , (3.2)

Fµν = ∂µAν − ∂νAµ − ig [Aµ ⋆, Aν ] . (3.3)

Due to the star product, the field strength tensor Fµν is now of non-abelian character
even in the case of a θ-deformed U(1). The action is invariant under the infinitesimal
gauge transformations of the form

δAµ = ∂µΛ + i [Λ ⋆, Aµ] ≡ DµΛ(x)⇒ δFµν = i [Λ ⋆, Fµν ] . (3.4)

On the r.h.s. the gauge covariant derivative Dµ has been defined. As is well known,
the two-point Green function of (3.2), being the inverse of the operator in the bilinear

1In order to exhibit the non-commutative character, let us replace the ordinary product by the star
product even in the bilinear case.
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part of the action (which we denote by Kµν) does not exist. Indeed, it can be written
as a projection operator, whereas the only projection operator possessing an inverse is
the unity operator 14 (c.f. Section C.1.1). In order to get an invertible Kµν one adds a
gauge fixing term. It can be linear or nonlinear, as well as covariant, e.g.

δSgf,cov
δb

= ∂µAµ(x)− αb(x) = 0 , (3.5)

or non covariant (i.e. with respect to Lorentz transformations), as in the case of axial
gauges (c.f. [57] and references therein):

δSgf,nc
δb

= nµAµ(x) = 0 , (3.6)

where nµ is an axial vector, and b denotes the Lagrange multiplier field implementing
the gauge fixing; α in (3.5) is a dimensionless parameter, leading to the conventional
classification of the gauge fixing into Feynman gauge (α = 1), Landau gauge (α = 0)
and unitary gauge (α→∞).
Although we will work mostly with covariant gauges, there will be one exception: in Sec-
tion F we will present an algorithm for the calculation of counterterms in the framework
of algebraic renormalization, by the example of an axially gauge fixed action. From now
on we refer always to the covariant case, if not mentioned otherwise.
Whereas in ordinary QED or U(1) (its gauge part) we would now be ready for calcu-
lations, due to the present Moyality we encounter the same difficulties as in ordinary
non-abelian, e.g. Yang-Mills theory. In particular, we observe a coupling between the
physical gauge field Aµ and the unphysical field b (c.f. the commutator in (3.8)) which
would directly translate into a gauge dependence of physical obersvables. This cou-
pling can be seen on the example of the Ward identity expressing the breaking of gauge
invariance applied on the tree level action Γ(0). One arrives at the Ward identity by
considering the variation of a functional, i.e. δ (F [Aµ]) =

∫
d4x ∂F

∂Aµ
δAµ. Inserting δAµ

given in(3.4), partial integration in ∂µΛ, and respecting the invariance of the product
under cyclic permutations in the integral when considering the commutator2 allows to
write

δF =

∫
d4xW(x)F [A]Λ(x), with

W(x) = −∂µ
δ

δAµ(x)
+ i

[
Aµ(x),

δ

δAµ(x)

]
. (3.7)

Application to the action

Γ(0) = Sinv + Sgf ,

W(x)Γ(0) = −
[
�b(x)− i [Aµ(x), ∂

µb(x)]
]
. (3.8)

2Note that in the case of U⋆(1) cyclic permutativity under the integral is given due to the Weyl-Moyal
product, while in commutative SU(N) this is the case due to the matrix character of the fields, hence
formally leading to the same WI.
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directly exhibits the coupling between the gauge and the auxiliary field. This problem
has been overcome by Becchi, Rouet and Stora, and independently by Tyutin who
assumed the existence of an enlarged symmetry besides the usual gauge symmetry [58,
59], allowing to decouple the physical from the unphysical sector. We therefore introduce
the Faddeev-Popov (ϕπ) ghost and antighost fields c and c̄ in the usual way (c.f. e.g.
[60]), which finally leads to the following action

Γ(0) = Sinv + Sgf + Sϕπ ,

Sinv =

∫
d4x

1

4
Fµν ⋆ Fµν ,

Sgf + Sϕπ = s

∫
d4x c̄ ⋆

[
∂µAµ −

α

2
b

]
=

∫
d4x

[
b ⋆ ∂µAµ −

α

2
b ⋆ b− c̄ ⋆ ∂µDµc

]
. (3.9)

The action has been constructed in a way to fulfill

sSinv = 0 and s(Sgf + Sϕπ) = 0 , (3.10)

which means invariance with respect to the BRST transformations, which are listed
next:

sAµ = Dµc ≡ ∂µc− ig [Aµ ⋆, c] , sc̄ = b,

sc = igc ⋆ c, sb = 0,

s2φ = 0 for φ ∈ {Aµ, c, c̄, b} , (3.11)

their properties being nilpotency, non linearity and increment of the ghost number by
one.
Now we want to study the divergence structure of the action (3.9), which has already
been done extensively in the literature ([61] for the formulation on Minkowskian space).
Due to the fact that the star product does not modify the bilinear part of the action,
hence only the interacting part, the propagators remain the same as in the commutative
case, while the vertices will carry additional phases. The graphs are the same as for
the gauge part of ordinary QCD (including their non-planar counterparts). For the IR
sector, this finally leads to a contribution for the vacuum polarization of the form (k̃ are
the external momenta)

ΠIRµν ∝
k̃µk̃ν

(k̃2)2
, (3.12)

which is independent of the chosen gauge fixing.
We will now try to formulate an additional term for the action which should allow to
cure the UV/IR mixing by a damping of the photon propagator. The conditions imposed
on such a term are:

• Damping of the gauge propagator for vanishing momenta, which is equivalent to
finiteness in the IR sector
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• Invariance with respect to the extended gauge transformations, i.e. BRST invari-
ance

• Dimensional consistency

3.1.2 A gauge analogon to the scalar 1/p2-model

In analogy to the new term of the model (2.4), we construct the counterterm by multi-
plying (3.12) by gauge fields in a bilinear way. This leads to

Γnew = a

∫
d4kAµ(−k)

k̃µk̃ν

(k̃2)2
Aν(k). (3.13)

Note that the negative argument of the first gauge field propagator stems from the
Fourier transform from coordinate to momentum space, i.e.

a

∫
d4xAµ(x)

∂̃µ∂̃ν

(∂̃2)2
Aν(x) =⇒ −a

∫
d4k1,2
(2π)2

δ(k1 + k2)Aµ(k1)
k̃2µk̃2ν

(k̃22)
2
Aν(k2) . (3.14)

As observed in [61], this term is invariant with respect to the gauge transformation
δAµ(x) = ∂µΛ(x), which in momentum space yields to δAµ = ikµΛ. This can immedi-
ately be seen when taking into consideration the relation k̃µkµ = θµνkνkµ = 0. However,
it is not invariant under the full gauge transformation δAµ = Dµc.

3.1.3 A BRST invariant action

A BRST-invariant generalization can be obtained by the following considerations:

• Similar to the gauge invariant part of the original action, the gauge fields should
be replaced by the field strength tensors

• Partial derivatives should be replaced by their covariant counterparts

• In order to respect dimensionality, θµν should be inserted where appropriate

This leads to the following additional term in the action, which was already introduced
in [55]:

Γnew =
a

4

∫
d4xF̃ ⋆

1

(D̃2)2
F̃ . (3.15)

where

F̃ = θµνF̃µν , with Fµν = ∂µAν − ∂νAµ − ig [Aµ ⋆, Aν ] ,

D̃2 = D̃µ ⋆ D̃µ, with D̃µ = θµνD
ν (3.16)
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from which follows

1

D̃2
⋆ F̃ =

1

θ2D2
⋆ F̃ ≡ 1

θ2
Y. (3.17)

On the r.h.s. we have introduced the abbreviation Y . Although in the above action
there appears the inverse of the fourth power of D̃µ, it is sufficient to consider (3.17),
because partial integration leads to

Γnew =
a

4

∫
d4x

1

D̃2
F̃ ⋆

1

D̃2
F̃ , (3.18)

as shown in Section C.1.2. The expression Y has to be understood as formal power
series in Aµ, which has to be determined recursively. First we can write

D2Y = ∂µ(DµY )− ig [Aµ ⋆, DµY ]

= �Y − ig∂µ [Aµ ⋆, Y ]− ig [Aµ ⋆, δµY ] + (ig)2 [Aµ ⋆, [Aµ ⋆, Y ]]

⇒ Y =
1

�
(
F̃ + ig∂µ [Aµ ⋆, Y ] + ig [Aµ ⋆, δµY ]− (ig)2 [Aµ ⋆, [Aµ ⋆, Y ]]

)
, (3.19)

where the last line follows by applying the Green function of the operator � to the
preceding line. Indeed, it represents a recursive relation for Y :

Y (0) =
1

� F̃ ,

Y (1) = Y (0) +
1

�
(
ig∂µ

[
Aµ ⋆, Y (0)

]
+ ig

[
Aµ ⋆, δµY

(0)
]
− (ig)2

[
Aµ ⋆,

[
Aµ ⋆, Y (0)

]] )
,

(3.20)

which may be continued up to arbitrary order. Together with the BRST-transformations

(3.11) and the relation s
(

1

D̃2
⋆ Fµν

)
= ig

[
c ⋆, 1

D̃2
Fµν

]
, as was previously shown in Ref. [8]

we can now directly show the BRST invariance of (3.18):

sΓnew ∝ s
∫

d4x
1

D̃2
F̃ ⋆

1

D̃2
F̃ =∫

d4x

{
ig

[
c ⋆,

1

D̃2
Fµν

]
⋆ (

1

D̃2
Fµν) + ig(

1

D̃2
Fµν)

[
c ⋆,

1

D̃2
Fµν

]}
=

∫
d4x

{
c ⋆

(
1

D̃2
Fµν

)2

−
(

1

D̃2
Fµν

)2

⋆ c

}
= 0 . (3.21)

In the last step the invariance of the star product under cyclic permutations under the
integral has been used. However, calculation of the gauge propagator leads to (similar
as in [55])

GAµν(k) =
1

k2

(
δµν − a

k̃µk̃ν

(k̃2)2k2

)
, (3.22)

which is not damped for vanishing momentum k.
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3.1.4 Action with IR-damping for the gauge propagator

In [8], the authors introduced a new model formulated on Euclidean space R4 which
reads

Γ = Sinv + Sgf ,

Sinv =

∫
d4x

[
1

4
Fµν ⋆ Fµν +

1

4
Fµν ⋆

1

D2D̃2
⋆ Fµν

]
,

Sgf = s

∫
d4x c̄ ⋆

[(
1 +

1

��̃

)
∂µAµ −

α

2
b

]

=

∫
d4x

[
b ⋆

(
1 +

1

��̃

)
∂µAµ −

α

2
b ⋆ b− c̄ ⋆

(
1 +

1

��̃

)
∂µDµc

]
. (3.23)

Here again, 1

D2D̃2
⋆Fµν in the gauge invariant part of the action Sinv is to be understood

as a formal power series in the gauge field Aµ (c.f. previous section). The field strength
tensor Fµν has already been defined in (3.3). As introduced above, b is the Lagrange
multiplier field implementing the gauge fixing, c and c̄ are the ghost and antighost, and
α is a dimensionless parameter which determines the kind of gauge fixing. Note that(
1 + 1

��̃

)
improves the IR behavior in the ghost sector, a term that has already been

introduced in [55].
The new expression in the gauge invariant action is indeed BRST invariant, fulfils di-
mensional consistency conditions, and leads to the gauge field propagator

GAAµν (k) =
1(

k2 + 1
k̃2

)
δµν − kµkν

k2
+ α

kµkν(
k2 + 1

k̃2

)
 , (3.24)

which shows the desired damping behavior for k → 0. We almost reached the target
that we imposed to ourselves at the beginning of the chapter. However, this model
incorporates a drawback arising from the fact that the series expansion of the 1

D2D̃2
⋆Fµν

term introduces an infinite number of gauge boson vertices. This can be seen by looking
at the recursive relation in (3.20): a term up to order n will contain up to n+ 1 fields,
and as consequence a corresponding vertex with the same number of legs. Hence it is not
possible to compute a finite sum of contributions in a given loop order. Furthermore,
any approximation to the infinite series 1

D2D̃2
⋆ Fµν with just a finite number of terms

cannot be gauge invariant, and therefore any explicitly calculated (physical) quantities
using such an approximation will fail to be gauge invariant as well.
Fortunately, there is a way out, which will be described in the next section.

3.2 Localization of the translation invariant gauge model

In [1], we succeeded in localizing the model (3.23) by the introduction of a new (dynamic)
field Bµν . As in the corresponding scalar model a new parameter a′ has been introduced,
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which is expected to play an essential role in the renormalization procedure, being the
reason it has been introduced in the action.
Let us start by writing down the Euclidean action (3.23) with the additional parameter
a′:

Γ(0) = Sinv + Sgf ,

Sinv =

∫
d4x

[
1

4
Fµν ⋆ Fµν +

1

4
Fµν ⋆

a′2

D2D̃2
⋆ Fµν

]
,

Sgf = s

∫
d4x c̄ ⋆

[(
1 +

a′2

��̃

)
∂µAµ −

α

2
b

]

=

∫
d4x

[
b ⋆

(
1 +

a′2

��̃

)
∂µAµ −

α

2
b ⋆ b− c̄ ⋆

(
1 +

a′2

��̃

)
∂µDµc

]
. (3.25)

The fields are defined as in section Section 3.1.4. The gauge fixed action (3.25) is
invariant under the BRST transformations (3.11). As can be seen in (3.25), the gauge

fixing part Sgf is BRST exact. Moreover, it follows that s
(

1

D̃2
⋆ Fµν

)
= ig

[
c ⋆, 1

D̃2
Fµν

]
,

as was previously shown in Ref. [8].
The issue of the appearance of an infinite number of vertices still remains. However,
this can be circumvented by the introduction of a new antisymmetric field Bµν of mass
dimension two, as will be shown in what follows. Let us start with

Lemma 1 Auxiliary fields allow to linearize terms of the action which are quadratic in
the dynamic fields.

Consider e.g. the gauge fixing term (∂A)2/2α. Introduction of the auxiliary field b leads
to the equivalent linearized expression of our model. This can be summarized as follows:

Laux =
(∂A)2

2α
≡ b(∂A)− α

2
b2, with b =

∂A

α
.

In a similar way, we obtain for the action term under consideration, after partial inte-
gration and extracting θ, the expression

S
(2)
inv =

∫
d4x

1

2

(
2θ2

a′2

)−1(
1

D2
Fµν

)2

, (3.26)

which has been written in analogy to our foregoing example. In the same way we now
introduce the new field

Bµν =

(
2θ2

a′2

)−1(
1

D2
Fµν

)
and obtain for the action term

S
(2)
inv =

∫
d4xBµν

(
1

D2
Fµν

)
− θ2

a′2
B2
µν .
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The redefinition Bµν ⇒ D2Bµν allows to finally eliminate the inverse of covariant deriva-
tives:

S
(2)
inv =

∫
d4xBµν ⋆ Fµν −Bµν ⋆

θ2(D2)2

a′2
Bµν .

In a last step we again conduct a redefinition by rescaling Bµν ⇒ a′Bµν in order to pull
the to-be-renormalized constant a′ to the numerator. With θ2D2 = D̃2 the respective
term in the action replacing the infinite power series finally reads

S
(2)
inv =

∫
d4x

[
a′Bµν ⋆ Fµν −Bµν ⋆ D̃2D2 ⋆ Bµν

]
, (3.27)

and gauge invariance is given if Bµν transforms covariantly, i.e.

sBµν = ig [c ⋆, Bµν ] . (3.28)

The equivalence between the two formulations of the new term in the action can be seen
by reinserting its equation of motion

δS
(2)
inv

δBρσ
= a′Fρσ − 2D̃2D2 ⋆ Bρσ = 0 (3.29)

into (3.27). This leads to

S
(2)
inv =

∫
d4x

[(
a′2

2D2D̃2
⋆ Fµν

)
⋆ Fµν −

(
a′2

2D2D̃2
⋆ Fµν

)
⋆
1

2
Fµν

]
=

∫
d4x

[
1

4
Fµν ⋆

a′2

D2D̃2
⋆ Fµν

]
. (3.30)

Note that the second line of (3.30) vanishes in the limit a′ → 0 while in the “improved”
formulation given in Eqn. (3.27) the second term does not. Hence, the newly introduced
Bµν is a dynamic field whose existence is independent from the value of the parameter a′,
in contrast to the auxiliary gauge fixing field b, which by definition does not propagate.
We will come back to this point in Section D.

3.3 Feynman rules

Without the Lagrange multiplier field b, the model gives rise to four propagators and
eight vertices. The main results will be given in this section, while detailed calculations
can be found in the appendix in Section C.2.
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Equations of motion

We follow the usual approach for the calculation of the equations of motion by defining
first the generating functional for the connected Green functions:

Zc[jϕ] = S
[
ϕ[jϕ]

]
+

∫
d4xjϕϕ[jϕ] (3.31)

with ϕ = {A,B, b, c, c̄} and the external sources jϕ = {jAµ , jBµν , jb, jc, j c̄}. This leads to
the following equations of motion

δSbil
δAν

= − (�δνµ − ∂ν∂µ)Aµ − 2a′∂µBµν −
(
1 +

a′2

��̃

)
∂νb = −jAν , (3.32a)

δSbil
δBµν

= a′ (∂µAν − ∂νAµ)− 2�̃�Bµν = −jBµν , (3.32b)

δSbil
δb

=

(
1 +

a′2

��̃

)
∂µAµ − αb = −jb , (3.32c)

δSbil
δc̄

= −
(
�+

a′2

�̃

)
c = j c̄ . (3.32d)

Propagators

One arrives at the tree level propagators by expressing in (3.32) each field as functional
of external sources and variation with respect to the latter, i.e.

Gba = ⟨0|ϕa(xµ)ϕb(xν)|0⟩(0) = −
δϕa(xµ)

δjb(xν)
. (3.33)

The generalized index a denotes the species of the fields as well as Lorentz indices,
and the positions in Euclidean space are denoted by xµ. For obvious reasons, with
respect to the corresponding expression in Minkowskian space there is no time ordering
in the expectation value of the product of fields. With the definitions k̃2 = θ2k2 and
a′2 = θ2a2θ2, the propagators are given by the following expressions:

k
νµ

= GAAµν (k) =
1(

k2 + a′2

k̃2

)
δµν − kµkν

k2
+ α

kµkν(
k2 + a′2

k̃2

)
 , (3.34a)

k

= Gc̄c(k) =
−1(

k2 + a′2

k̃2

) , (3.34b)

k
στρ

= GABρ,στ (k) =
−i a′

2

(kτδρσ − kσδρτ )

k2k̃2
(
k2 + a′2

k̃2

) , (3.34c)
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k
τερσ

= GBBρσ,τϵ(k)

=
−1

4k2k̃2

δρτδσϵ− δρϵδστ+ a′2
kσkτδρϵ+ kρkϵδστ− kσkϵδρτ− kρkτδσϵ

k2k̃2
(
k2 + a′2

k̃2

)
.
(3.34d)

The latter two are antisymmetric in the index pairs corresponding to the Bµν fields, i.e.

GABρ,στ (k) = −GABρ,τσ(k) = −GBAστ,ρ(k) ,
GBBρσ,τϵ(k) = −GBBσρ,τϵ(k) = −GBBρσ,ϵτ (k) . (3.35)

As for the non local model, the gauge and ghost propagators go to zero for vanishing
momentum and non-vanishing a′. This can also be seen from Fig. 3.1 (where a′2/k̃2

has been replaced by a2/k2), which shows the qualitative behavior of the damping term
with the maximum of 1/2a at positions ±

√
a.

k

Hk2
+

a2

k2
L-1

Figure 3.1: Qualitative representation of the damping for the gauge propagator.

Notice furthermore the relations

2k2k̃2GABρ,µν(k) = ia′kµG
AA
ρν (k)− ia′kνG

AA
ρµ (k),

2k2k̃2GBBµν,ρσ(k) =
1

2
(δµρδνσ − δµσδνρ) + ia′kµG

BA
ρσ,ν(k)− ia′kνG

BA
ρσ,µ(k), (3.36)

which follow from the equations of motion for Bµν Eqn. (3.32b), c.f. Section C.2.1 for a
detailed calculation.

Vertices

The interaction part of the action is given by

Sinv,int = S
(1)
inv,int + S

(2)
inv,int + Sgf,int ,
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where

S
(1)
inv,int =

1

4

∫
d4x
{
− 2ig (∂µAν − ∂νAµ) ⋆ [Aµ ⋆, Aν ] + (ig)2 [Aµ ⋆, Aν ]

2
}
,

S
(2)
inv,int =

∫
d4x
{
ia′gBµν [Aµ ⋆, Aν ]

− 2igθ2
(
�Bµν ⋆ ∂µ [Aµ ⋆, Bµν ] +�Bµν ⋆ [Aµ ⋆, ∂µBµν ]

)
+ (ig)2θ2

(
�Bµν [Aµ ⋆, [Aµ ⋆, Bµν ]] + (∂µ [Aµ ⋆, Bµν ])

2

+ 2∂µ [Aµ ⋆, Bµν ] [Aµ ⋆, ∂µBµν ] + [Aµ ⋆, ∂µBµν ]
2
)

− (ig)3θ2
(
∂µ [Aµ ⋆, Bµν ] [Aµ ⋆, [Aµ ⋆, Bµν ]] + [Aµ ⋆, ∂µBµν ] [Aµ ⋆, [Aµ ⋆, Bµν ]]

)
+ (ig)4θ2

(
[Aµ ⋆, [Aµ ⋆, Bµν ]]

2
)}

Sgf,int = ig

∫
d4x c̄

(
1 +

a′2

��̃

)
∂µ [Aµ ⋆, c] (3.37)

where Sgf,int is the gauge fixing interaction part of (3.25), and the gauge invariant

interaction has been split into the Bµν-independent part S
(1)
inv,int and Bµν-dependent

part S
(2)
inv,int (c.f. (3.27)). Writing the action with respect to the interacting fields one

gets, with obvious notation,

Sint = S3A + S4A + SBAA + SBBA + S2B2A + S2B3A + S2B4A + S c̄Ac , (3.38)

which leads to eight different vertices. Note that in addition to the usual ones describ-
ing interactions between (anti)ghost and gauge bosons, one now also has interactions
of gauge bosons with Bµν fields giving rise to numerous new Feynman diagrams, c.f.
Section 3.5.
Their explicit calculation is done by first performing a Fourier transform of the interac-
tion under consideration:

Sϕ1,...,ϕnint (x)→ Sϕ1,...,ϕnint (k) ,

Sϕ1,...,ϕnint (k) =

∫
d4x

∫
dnq

(2π)n
ei

∑n
i=1 k

µ
i xµL

[
ϕ̃1(k1), . . . , ϕ̃n(kn)

]
e−

i
2

∑
i<j ki×kj

=

∫
dnq

(2π)n
δ

(
n∑
i=1

ki

)
(2π)4L

[
ϕ̃1(k1), . . . , ϕ̃n(kn)

]
e−

i
2

∑
i<j ki×kj , (3.39)

with ϕi ∈ {Aµ, Bµν , c, c̄}3. In the last equation we observe the additional phase factor
due to non-commutativity. Now functional variation can be performed, leading to

Ṽ ϕ1,...,ϕn(k1, . . . , kn) = −(2π)4n
δ

δϕ1(−k1)
. . .

δ

δϕn(−kn)
Sϕ1,...,ϕnint (k1, . . . kn) . (3.40)

The vertices give rather lengthy expressions; thus, they are listed in Section C.2.2. There
we will also give one explicit example for the application of (3.40).

3Note that in (3.39) the non-commutative phase factor has been written explicitly, and that the
interaction Lagrangian is given via the usual product between the fields.
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3.4 Power Counting

In order to determine the superficial degree of (ultraviolet) divergence of an arbitrary
Feynman graph of the present model, we take into account the powers of internal
momenta k each Feynman rule contributes and also that each loop integral over 4-
dimensional space increases the degree by 4. For example, the gauge boson propagator
behaves like 1/k2 for large k and therefore reduces the degree of divergence by 2, whereas
each ghost vertex (cf. Eqn. (C.25c) in Section C.2.2) contributes one power of k to the
numerator of a graph, hence increasing the degree by one. Continuing these considera-
tions for all other Feynman rules we arrive at

dγ = 4L− 2IA − 2Ic − 5IAB − 4IBB + Vc + V3A + 3VBBA + 2V2B2A + V2B3A , (3.41)

where the I and V denote the number of the various types of internal lines and vertices,
respectively (see Eqn. (3.34) and Appendix C.2.2). The number of loop integrals L is
given by

L = IA + Ic + IAB + IBB−
− (Vc + V3A + V4A + VBAA + VBBA + V2B2A + V2B3A + V2B4A − 1) .

Furthermore, we take into account the relations

Ec/c̄ + 2Ic = 2Vc , (3.42a)

EA + 2IA + IAB = Vc + 3V3A + 4V4A + 2VBAA + VBBA

+ 2V2B2A + 3V2B3A + 4V2B4A , (3.42b)

EB + 2IBB + IAB = VBAA + 2VBBA + 2V2B2A + 2V2B3A + 2V2B4A , (3.42c)

Eθ = 2IAB + 2IBB − 2VBBA − 2V2B2A − 2V2B3A − 2V2B4A , (3.42d)

Ea′ = IAB + VBAA , (3.42e)

between the various Feynman rules describing how they (and how many) can be con-
nected to one another. The Ec/c̄, EA and EB denote the number of external lines of the
respective fields. Their only possible numerical prefactor is one, as they will connect
only on one side to other fields. For the internal lines and vertices, the prefactor equals
their number of possibilities to connect to the field under consideration. E.g. (3.42b)
considers the possible connections for the Aµ field. The Eθ and Ea′ count the negative
powers of θ and positive powers of a′ in a graph, respectively. Using these relations one
can eliminate all internal lines and vertices from the power counting formula. From the
last three lines of Eqn. (3.42) it follows that EB + Eθ = Ea′ , and therefore we find two
alternative expressions for the power counting, reading

dγ = 4− EA − Ec/c̄ − 2EB − 2Eθ , (3.43a)

dγ = 4− EA − Ec/c̄ − 2Ea′ . (3.43b)

In Eqn. (3.43a) the superficial degree of divergence is reduced by the number of external
legs weighted by the dimension of the respective fields (and parameters). However,
this formula can be misleading, since Eθ may also become negative in some graphs.
Therefore, in practice, it is more convenient to use Eqn. (3.43b).

30



Chapter 3. A localized translation-invariant gauge model

3.5 One loop calculations

3.5.1 A remark on UV/IR mixing in the present model

Before analyzing the one loop graphs in detail, let us consider the integrals to be expected
for the one- and two-point functions (graphs with one respectively two external legs).
The one-point functions will be composed by a 3-vertex and one propagator. A look
at the vertices in Section C.2.2 reveals that each of them contains one sine, i.e. we
encounter a purely non-planar structure, and using the decomposition integrals for the
sine given in Section A.1.4 the integrals are of the form∫

d4k
eikp̃(

k2 + a′2

k̃2

) . (3.44)

We observe the following:

• Superficially, i.e. by näıve power counting, one would expect this integral to
diverge quadratically necessitating the introduction of a UV cutoff. However,
it is regularized by the phase and no cutoff is needed. This is the usual mechanism
leading to UV/IR mixing.

• For dimensional reasons the above integral is expected to be ∝ 1
p̃2
, which is an

IR divergent expression. The explicit calculation of the integral can be found in
Section A.2.2, and confirms the expected bevahiour, which has already been found
in scalar theories [49, 7].

• However, insertions of such an IR divergent expression into higher loop graphs
are regularized by the IR damping behavior of additional propagators (see also
ref. [49]). This is the reason why the present gauge model is expected to remedy
the UV/IR mixing problem.

Considering the two point functions, we observe that the involved vertices (one 4-vertex
or two 3-vertices) lead to a squared sine in the momenta. Applying the corresponding
decomposition formulae this leads to

sin2
(
kp̃

2

)
=

1

2
(1− cos (kp̃)) =

1

2
− 1

4

∑
η=±1

eiηkp̃ . (3.45)

Here one directly can see that one gets planar (phase independent)4 and non-planar
(phase dependent) contributions, which reflects the UV/IR mixing of non-commutative
quantum field theories.
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a)

d)c)

b)

Figure 3.2: One-loop tadpole graphs

3.5.2 Vanishing Tadpole Graphs

From the Feynman rules Eqn. (3.34) and Eqn. (C.25) arise four possible one-loop tadpole
graphs with one external gauge boson line. These are depicted in Figure 3.2. A short
look at the relevant vertices in Section C.2.2 shows that for each of them the integrand
incorporates a factor of the form

δ4(p+ k − k) sin
(
kp̃

2

)
, (3.46)

p and k being the external and internal momenta, respectively. Note that due to the
oscillating phase one only encounters non-planar one-loop tadpole graphs. From momen-
tum conservation at the vertices (expressed by the δ-functional) follows p = 0 leading
to a vanishing sine-function. Hence, all four graphs vanish.

3.5.3 Bosonic Vacuum Polarization

The present model gives rise to twelve 1PI one-loop graphs with external boson lines.
These are collected in Fig. 3.3 where the first three graphs are already known to ap-
pear in theories like QCD. Due to the corresponding lengthy expressions they are given
in Section C.3. Computing the respective integrals according to the Feynman rules
Eqn. (3.34) and Eqn. (C.25) one encounters expressions of the form

Πµν =

∫
d4k Iµν(k, p) sin2

(
kp̃

2

)
,

where Iµν is a function in the external and internal momenta p and k, respectively.
Details are given in Appendix C.3.

4Note that also planar expressions can be accompanied by a phase, however it would depend on
external momenta only.
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h)

j)

i)

l)

c)

d) f)

a)

e)

g)

k)

b)

Figure 3.3: Summary of contributions to the one-loop boson vacuum polarization

Taylor expansion

Before proceeding to the evaluation of the integrals let us first note, that we are mainly
interested in the IR behavior of the theory, i.e. for vanishing external momenta. Hence
it is natural to consider the expansion of the single-graph results around p→ 0 according
to the rule5

Πµν =

∫
d4k Iµν(p, k) sin2

(
kp̃
2

)
≈
∫
d4k sin2

(
kp̃
2

){
Iµν(0, k) + pρ

[
∂pρIµν(p, k)

]
p=0

+
pρpσ
2

[
∂pρ∂pσIµν(p, k)

]
p=0

+O
(
p3
)}

=

=
∑

j=0,1,2

Π(j)
µν +O

(
p3
)
. (3.47)

Here the integrand Iµν(p, k) has been separated from the phase factor in order to keep
the regularizing effects in the non-planar parts due to rapid oscillations for large k. Note

5Note, that the phase is not expanded in order to benefit from the regularizing effects in the non-
planar parts due to rapid oscillations for large k.
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that the expansion requires p2≪ k2. Yet, this condition is not fulfilled for the integration
range about k ≈ 0. The resulting error can be ignored if it is finite. This is always the
case for the non-planar graphs due to the regulating effect of the phase factor. For the
planar graphs this is the case as long as the power counting in the internal momenta
shows a mass dimension > −4. A closer look to the expression in Section C.3 now shows
the following:

• The first term in the expression for the graph e) shows a logarithmic behavior for
vanishing internal momenta, i.e. mass dimension = −4 in k.

• As will be shown explicitly below, the second order expansion of the divergent
graphs will lead to logarithmic divergences for both large and small k. Indeed
this can be understood also in an intuitive way by considering the fact that the
maximum UV divergence of the unexpanded expressions is of second order. Hence,
differentiating twice will lead to at most logarithmic divergences.

In summary, for the expanded as well as unexpanded case we will encounter divergences,
demanding the introduction of a regulator mass. In addition, the evaluation of the
unexpanded expressions has the disadvantage of being rather complicated. We will
hence apply the expansion (3.47) and introduce a regulator mass µ for the expressions
in second order.

Evaluation to lowest order

To lowest order in the expansion (3.47) only five of the graphs depicted in Fig. 3.3,
namely graphs a – e, are found to diverge superficially and read

Π(0,a)
µν ≈ sa

8g2

(2π)4

∫
d4k

sin2
(
kp̃
2

)
(
k2 + a′2

k̃2

)2
6kµkν + αk2

(
k2δµν − kµkν

)(
k2 + a′2

k̃2

)
 , (3.48a)

Π(0,b)
µν ≈ −sb

8g2

(2π)4

∫
d4k sin2

(
kp̃

2

)
1

k2 + a′2

k̃2

2δµν + kµkν
k2

+ α
(k2δµν − kµkν)(

k2 + a′2

k̃2

)
 ,

(3.48b)

Π(0,c)
µν ≈ −sc

4g2

(2π)4

∫
d4k sin2

(
kp̃

2

)
kµkν
k4

, (3.48c)

Π(0,d)
µν ≈ sd

192g2

(2π)4

∫
d4k sin2

(
kp̃

2

)
kµkν
k4

2 +
a′2
(
a′2

k̃2
− 2
)

k̃2
(
k2 + a′2

k̃2

)
 , (3.48d)

Π(0,e)
µν ≈ −se

24g2

(2π)4

∫
d4k

sin2(kp̃2 )

k4
[4kµkν + 2k2δµν ]

2− a′2

k̃2
(
k2 + a′2

k̃2

)
 , (3.48e)
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Table 3.1: Symmetry factors for the graphs in Fig. 3.3

sa=
1
2 sb=

1
2 sc=1

sd=
1
2 se=

1
2 sf=1

sg=1 sh=1 si=1

sj=
1
2 sk=1 sl=1

where the symmetry factors are listed in Table 3.1. For a detailed explanation of the
calculation of the symmetry factors see Section B. The other graphs (graphs f) – l) of
Fig. 3.3) are found to be finite. This observation is consistent with the power counting
formula (3.43), since graphs g) – l) come with two overall powers of a′, i.e. Ea = 2, and
graph f even has 4 powers of a′, i.e. Ea = 4. After summing up all these contributions
(and neglecting the finite terms) one arrives at the following expression for the quadratic
IR divergence:

Π(0)
µν =

∑
j

Π(0,j)
µν

=
4g2

(2π)4

∫
d4k sin2

(
kp̃

2

)[
−1(

k2 + a′2

k̃2

)
2δµν +

kµkν
k2

+ α
(k2δµν − kµkν)(

k2 + a′2

k̃2

)
− kµkν

(k2)2

+
1((

k2 + a′2

k̃2

))2
6kµkν + αk2

(k2δµν − kµkν)(
k2 + a′2

k̃2

)


+
12

k2

(
2
kµkν
k2
− δµν

)]

= 14
g2

π2
p̃µp̃ν
(p̃2)2

+ finite terms. (3.49)

From this result, we observe the following:

• The term is quadratically divergent in the IR sector. Hence the zero order terms
in Eqn. (3.49) do not produce logarithmic IR divergences.

• The expected transversality with respect to pµ is given. Furthermore, the contribu-
tion from graphs d) and e) in Fig. 3.3 is transversal by itself (as is the contribution
from the other three graphs). This was expected, as the graphs a) to c) are known
to be transveral from QCD.

• The result is independent from the gauge parameter α. In the limit a′ → 0, the
α-dependent terms even drop out before integrating over k.

• a′ does not actually play a role in one-loop UV/IR mixing since that effect is
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dominated by large k for which

1(
k2 + a′2

k̃2

) ≈ 1

k2
.

Therefore it is not surprising that the result for the quadratic IR divergence of
(3.49) does not depend on a′.

Second order evaluation

Proceeding to the next order in the expansion (3.47), it has to be noted that the first
order terms vanish due to the symmetric integration of an odd power in k. Thus it
remains to calculate the explicit expressions for the second order terms of the graphs
depicted in Fig. 3.3. With gauge fixing parameter α = 1 they read:

( ∂2

∂pρpσ
I(a)µν

)
p=0

pρpσ
2

= sa
4g2

(2π)4
1

k4

{
10
kµkν
k2

(
4
(kp)2

k2
− p2

)
+ δµν

(
4
(kp)2

k2
+ 3p2

)

− 2pµpν − 10
(kp)

k2
(kµpν + pµkν) + finite terms

}
,

(3.50a)( ∂2

∂pρpσ
I(b)µν

)
p=0

pρpσ
2

= 0 , (3.50b)

( ∂2

∂pρpσ
I(c)µν

)
p=0

pρpσ
2

= sc
4g2

(2π)4

{
kµkν

(
p2

k6
− 4

(kp)2

k8

)
+ 2pµkν

kp

k6

}
, (3.50c)

( ∂2

∂pρpσ
I(d)µν

)
p=0

pρpσ
2

= sd
96g2

(2π)4
1

k4

[
pµpν − 4

(kp)

k2
(kµpν + pµkν)

+ 4
kµkν
k4

(
5(kp)2 − k2p2

)
+ finite terms

]
,

(3.50d)( ∂2

∂pρpσ
I(e)µν

)
p=0

pρpσ
2

= −se
24g2

(2π)4
pµpν
k4

2− a′2

k̃2
(
k2 + a′2

k̃2

)
 . (3.50e)

As discussed at the beginning of this section, we encounter logarithmic divergences
for large and for small k. As expected, the sine-squared (cf. Eqn. (3.47)) cures this
divergence for the non-planar sector, i.e. one has the integral

∫
d4k

sin2
(
kp̃
2

)
k4

=
1

2

∫
d4k

(1− cos(kp̃))

k4
. (3.51)
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In order to calculate the planar, i.e. phase independent, part one has to introduce a
regulator mass µ, and in the end those contributions depending on this cutoff coming
from the non-planar sector will exactly cancel the ones from the planar sector.

The regulator mass may be introduced in the following way in order to arrive at
integrable expressions (namely integrals leading to modified Bessel functions) after the
initial Gauss integration: ∫

d4k
eikp̃

(k2)2
−→

∫
d4k

eikp̃

(k2 + µ2)2
. (3.52)

This integral leads to Bessel-integrals of the type (for details of this and the following
integral c.f. Section A.2)

Iα ≡
∞∫
0

dαα−1e−
p̃2

4α
−αµ2 = 2K0

(√
p̃2µ2

)
, (3.53)

which for vanishing regulator reduces to

lim
µ→0

Iα = −2γE − ln

(
p̃2

4

)
− lim
µ→0

ln(µ2) . (3.54)

For the planar sector, the parameter integral denoted I ′α is given by

I ′α ≡
∞∫
0

dαα−1e−
1

4Λ2α
−αµ2 = 2K0

(√
µ2

Λ2

)
, (3.55)

where Λ is an ultraviolet cutoff, leading to

lim
µ→0

I ′α = −2γE − ln

(
1

4Λ2

)
− lim
µ→0

ln(µ2) . (3.56)

Returning to Eqn. (3.50), we see that we need to solve three types of integrals (and
their planar counterparts, i.e. with p̃ = 0):∫

d4k
eikp̃

(k2 + µ2)2
= π2Iα , (3.57a)∫

d4k
kµkνe

ikp̃

(k2 + µ2)3
=
π2

4
δµνIα + finite terms , (3.57b)∫

d4k
kµkνkρkσe

ikp̃

(k2 + µ2)4
=
π2

24
(δµνδρσ + δµρδνσ + δµσδνρ) Iα + finite terms , (3.57c)

where by “finite terms” we mean terms which converge for both µ→ 0 and p→ 0 (the
full expressions are given in Section A.2). Plugging these formulae into Eqn. (3.50) we
find( ∂2

∂pρpσ

(
Π(a)
µν +Π(c)

µν

))
p=0

pρpσ
2

+
( ∂2

∂pρpσ

(
Π(d)
µν +Π(e)

µν

))
p=0

pρpσ
2
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=
2g2π2

(2π)4

[
5

3

(
p2δµν − pµpν

)
− 2

(
p2δµν − pµpν

) ] (
I ′α − Iα + finite terms

)
. (3.58)

As expected, the result is transversal with respect to pµ, i.e. pµΠlog
µν = 0. Furthermore,

as already in first order the sum of B-dependent graphs (i.e. graphs d and e in Fig. 3.3)
is also transversal by itself.
Hence we are led to the final expression where the infrared cutoff µ drops out in the
sum of planar and non-planar parts, as expected:

Π(2)
µν (p) ≡

( ∂2

∂pρpσ

(
Π(a)
µν +Π(c)

µν +Π(d)
µν +Π(e)

µν

))
p=0

pρpσ
2

=

=
g2

24π2
(
pµpν − p2δµν

) (
ln
(
Λ2p̃2

)
+ finite terms

)
. (3.59)

Notice, that we only have a logarithmic divergence in the UV cutoff Λ coming from
the planar parts and that the result (3.59) is well-behaved for p → 0, i.e. there is no
logarithmic infrared divergence in the external momentum.

3.6 Discussion

Based on the translation invariant scalar model introduced in Section 2.2, in the present
chapter we have discussed the construction of a translation invariant non-commutative
gauge model in Euclidean space based on earlier work [8, 7]. The behavior regarding di-

vergences of the theory is improved mainly by inserting operators of the form
(
1 + a′2

��̃

)
in the action, where the parameter a′ (introduced in [1]) is a free parameter of the the-
ory. As has already been worked out in great detail in [49] for a similar scalar model
these kinds of additional factors lead to a damping in all propagators, thereby taming
the divergences arising from the UV/IR mixing present in non-commutative models.
The action (3.25) is invariant with respect to the BRST transformations Eqns. (3.11)
and (3.28). Furthermore, a power counting formula (3.43) allowing to estimate the up-
per bound degree of UV divergence of the model has been introduced in Section 3.4. It
appears that powers of the newly introduced parameter a′, which are closely tied to the
number of external Bµν-legs and powers of θ, play an essential role.
One-loop calculations show that, due to the phase factors associated with vertices and
momentum conservation, tadpole graphs with one external line vanish. Examination
of one-loop corrections to the photon propagator show the well-known

p̃µp̃ν
(p̃2)2

diver-

gence [61, 62, 63]. Detailed computation of the divergent part, the results being given in
Eqns. (3.49) and (3.59), shows transversality and gauge independence of the quadratic
divergence as expected. The next logical step would be to conduct the entire one-loop
program, i.e. calculate the one-loop corrections to the other propagators and the vertices
before going over to higher loops. Then it would remain to be shown that the damping
mechanism caused by the inserted operators 1

D2D̃2
and 1

�̃ mentioned earlier suffices to
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render the theory renormalizable at higher loop orders. Before rolling up one’s sleeves
and starting to work off the program, let us recapitulate the localization of the damping
term in the action. In order to realize the desired damping for the gauge propagator,
the gauge invariant equivalent of the 1

�̃ operator, namely 1

D2D̃2
, acting on Fµν as been

introduced. However this leads to an infinite number of gauge boson vertices, and hence
avoids any practical calculations. As has been shown in Section 3.2 this problem can
be circumvented by the introduction of a new real antisymmetric field Bµν . Initially
thought to be a simple Lagrange multiplier, Bµν appears to have its own dynamic prop-
erties (c.f. the e.o.m Eqn. (3.29)), and it remains in the action even for a′ = 0. Even
if it is related to the gauge field by the Ward-like identities (3.36) suggesting a close
relation between the new field and the field strength Fµν of the gauge boson Aµ, it
represents an additional degree of freedom and has to be considered as being physical.
This latter statement directly translates into the statement that the theory does not
any more represent a pure generalization of U(1)-gauge theory to the non-commutative
setting, but a deep modification of its physics. This was not the original objective of
the model. Yet, a way out restoring the original physical content of the theory while
maintaining a finite number of tree-level interactions has been found. Before presenting
the corresponding model in Section 5, we will first introduce some notions which will be
key in understanding the ideas leading to its construction in the following chapter.
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In this chapter we will undertake an excursion to commutative non-abelian Yang
Mills theory1, being formally similar to a U⋆(1) field model, due of the non-commutativity
of the gauge fields based on the star product. In particular we will see that restricting
the integration range of the functional space for the generating functional to the first
Gribov horizon, will lead to a propagator with the same IR-damping behaviour as in our
gauge model introduced in Section 3.2. First a introduction to the Gribov problem will
be given, followed by the derivation of the Gribov-Zwanziger action, both leading to an
IR damped gauge propagator. We will than show how this latter action can be obtained
by the method of softly breaking the BRST invariance of the Faddeev-Popov action
without changing its physical content in the UV sector. Indeed, that is exactly what we
need: constructing an action which leads to the IR damping as in the aforementioned
model while avoiding new degrees of freedom. This goal has been achieved in [2] and
will be detailed in Section 5.

1Note that a Yang-Mills theory is defined via the coupling of fields by covariant derivatives. It can be
abelian as in the case of ordinary QED, or non abelian as in QCD and non-commutative gauge theory.
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Chapter 4. Excursion: The Gribov-Zwanziger approach

4.1 Gribov ambiguities

In [64] (c.f. also [65] for an excellent pedagogic introduction to the topic) Gribov states
that fixing the divergence of the gauge field in non-abelian theories does not uniquely
fix its gauge and that this problem can be circumvented by restricting the integration
range in the path integral to the first Gribov horizon.

Considering the commutative Euclidean Yang-Mills action in four dimensions

SYM =
1

4g2

∫
d4xF aµνF

a
µν with F aµν = ∂µA

a
ν − ∂νAaµ + fabcAbµA

c
ν (4.1)

where a, b, c denote the color indices of the adjoint representation of a semi-simple Lie
group G with its structure constants fabc. It will not be affected by the gauge transfor-
mation

Aµ → Ãm = S†∂µS + S†AµS = Aµ + S†(∂µS + [Aµ, S]) with S = eα
aλa = eα

⇒ F̃µν = S†FµνS ,

infinitesimal case:

δAµ = ∂µα+ [Aµ, α] = Dµα with S = 1 + α⇒ δFµν = [Fµν , α] . (4.2)

Here α denotes the gauge parameter, λa are the generators of the group and Aµ =
Aaµλ

a. When calculating the generating functional this leads to an overcounting and in
consequence to its divergence, because field configurations which are just connected by
the gauge transformation are considered individually, although being equivalent with
respect to the action. This can be seen schematically by

Z =

∫
dAeiSY M ≈

∫
dĀeiSY M

∫
dΛ , (4.3)

with Ā belonging to different gauge classes defined by the gauge parameter Λ. In order
to take into account only inequivalent field configurations when quantizing the action,
in a first step one fixes the divergence by ∂µAµ = f (i.e. f = 0 in the Landau gauge
expressing transversality), leading to the partition function

Z = N
∫
DAµδ(∂A) det(Mab)e−SY M whereMab(A) = −∂µ

(
∂µδ

ab − fabcAcµ
)
.

M, N denote the Faddeev-Popov operator and a normalization factor respectively (see
e.g. [66], p. 245 for its derivation). Now consider two fields being connected by a gauge
transformation, and impose the condition that both are of vanishing divergence, i.e.

Ã = A+ δA, ∂A = ∂Ã⇔ ∂µ (∂µα+ [Aµ, α]) = 0 . (4.4)

Note that on the r.h.s. we find the Faddeev-Popov operator, whose determinant enters
the Faddeev-Popov quantization formula. From the last equation we can see that if the
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Chapter 4. Excursion: The Gribov-Zwanziger approach

condition is fulfilled, there exist different field configurations which are equivalent in the
above sense, even after imposing a gauge condition, which are called Gribov copies. Let
us study when this is the case. For this we write down its eigenvalue equation, which is
a kind of Schrödinger equation, Aµ being the potential.

−∂µ (∂µψ + [Aµ, ψ]) = ϵ(A)ψ (4.5)

For small potential, there will be only positive solutions, ϵ > 0. When it becomes larger,
one of the eigenvalues will first vanish, than become negative, indicating the existence
of bound states. For ever increasing potential, a second zero eigenvalue will appear etc.
According to Gribov, the functional space might be divided into regions Cn where the
Fadeev-Popov operator has n negative eigenvalues, being encompassed by the lines ln+1

of n zero eigenvalues. In particular, C0 called the first Gribov region, contains only
positive eigenvalues, i.e. the ϕπ-operator is strictly positive, and on its surrounding
line l1 (the first Gribov horizon) appears the first vanishing eigenvalue. Now, it can be
proved that for any field on Cn there exists an equivalent field on C0, i.e. each gauge
orbit passes through the first Gribov region (in particular also Aµ = 0, which allows
for the usual perturbation theory). It is therefore sufficient to restrict the domain of
integration in the path integral to the first Gribov horizon2

C0 = {Aµ, ∂A = 0,−∂µ (∂µ •+ [Aµ, •]) = −∂µDµ• > 0} . (4.6)

Next we will calculate the gauge propagator on C0. The generating functional now
contains an additional factor V0 which implements the restriction of the integration
range:

Z = N
∫
DAµδ(∂A) det(Mab)e−SY MV(C0)

= N
∫
DAµDcDc̄δ(∂A)e

−(SY M+
∫
d4xc̄a∂µDab

µ cb)V(C0). (4.7)

According to Gribov, we can write

V(C0) = θ(1− σ(0, A)) (4.8)

with σ(0, A) being given in the Landau gauge by (N being the dimension of the adjoint
representation of the semi-simple Lie group)

σ(0, A) =
N

4(N2 − 1)

∫
d4q

(2π)4
1

q2
Aaµ(q)A

a
µ(−q) . (4.9)

Actually the argument of the step function stems from the ghost propagator in the
external Aaµ-field with ghost momentum k,

(Gcc̄)ab(k,A) =
δab

k2
1

1− σ(k,A)
= (M−1)ab(k,A) . (4.10)

2Actually even within the first Gribov horizon there exist Gribov copies, and one should restrict
the integration range to the first modular region (FMR). Yet there are indications that the expectation
values in either regions are the same, [67].
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The first vanishing of the ϕπ-operator at low momenta therefore coincides with σ(0, A)
approximating unity. Applying the step function (A.1.5) we obtain for the quadratic
part in Aµ of (4.7), after transformation to momentum space, and evaluating the integral
over β at its saddle point,

Zquadr = N
∫

dβ

2πiβ
eβDAµe

− 1
2g2

∫ d4q

(2π)4
Aa

µ(q)Qab
µνA

b
ν(−q), where

Qabµν =

[(
q2 +

γ4

q2

)
δµν +

(
1

α
− 1

)
qµqν

]
δab . (4.11)

The parameter γ is called Gribov parameter and is determined by the gap equation

γ2 ≈ Λ2e
− 1

g2 , (4.12)

which stems from a diverging integral that has been regularized by the UV -cutoff Λ.
The gluon propagator now can be easily be obtained:

Gabµν(k) = ⟨Aaµ(k)Abν(−k)⟩ = δabg2
1

k2 + γ4

k2

(
δµν −

kµkν
k2

)
. (4.13)

In the ultraviolet, the propagator shows the well-known ≈ 1
k2
-behaviour, whereas in

the infrared region it vanishes, due to the Gribov parameter γ. This is the same as in
our non-commutative gauge model, where a′ implements the damping. Whereas in the
latter this has been achieved by introducing suitable additional terms in the action, in
the present case it arises in a very natural way due to the restriction of the functional
space to the first Gribov horizon.
Now, referring to the before mentioned divergence of the gap-equation and as a conse-
quence of γ, the corresponding action should be enhanced in order to obtain a renor-
malized version of the gap equation, based on the introduction of suitable counterterms.

4.2 The Gribov-Zwanziger action

The construction of a local, renormalizable effective action which implements the restric-
tion of the functional space to the first Gribov horizon has been obtained by Zwanziger
in [68]. As will be shown, this has been done by introducing a nonlocal horizon function
in the measure, which in a second step will be localized by introducing suitable addi-
tional fields.
We start with the generating functional in (4.7) with the replacement (4.8). It can be
shown (c.f. the cited papers), that in the thermodynamical limit the step function can
be replaced by a δ-distribution, leading to

Z = N
∫
DAµδ(∂A) det(Mab)e−SY M δ(1− σ(0, A))

= N
∫
DAµDcDc̄Dbe

−(SY M+Sgf)δ(1− σ(0, A)) , (4.14)
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where the action terms are given by

SYM =
1

4

∫
d4xF aµνF

a
µν , and Sgf =

∫
d4xba∂Aa + c̄a∂µD

ab
µ c

b . (4.15)

This can be understood in an intuitive way by considering that the ratio between the
volumes of a ball with radius R and its surface is given by Vsphere/Vsurface ∼ R/N .
When the dimension N goes to infinity (which holds in the present case, remember
that the A-space is infinite dimensional), the volume of the ball gets concentrated on its
surface, i.e. the sphere of radius R.
Now let us consider for a moment the microcanonical ensemble and its equivalence with
the canonical Boltzmann ensemble in the thermodynamic limit in statistical mechan-
ics [69]. More specifically, given a Hamiltonian H the averages of the microcanonical
ensemble can be constructed via

Z(E) =

∫
dµδ(E −H) ∼

∫
dβf(β) , with f(β) =

∫
dµeβ(E−H), (4.16)

with dµ the measure and E the energy of the system. In the thermodynamical limit, it
is exact to evaluate the integral on the r.h.s. at its saddle point β̄ given by f ′(β̄) = 0,
leading to the following gap equation:

E = ⟨H⟩β̄ =

∫
dµHe−β̄H∫
dµe−β̄H

(4.17)

In other words, the gap equation determines the parameter β̄.
Assuming the same equivalence between the microcanonical and the canonical ensemble
we introduce the Boltzmann factor also in our model:

δ(1− σ(0, A)) =⇒ e−γ
4H(x),

H = (A,M−1A) ≡
∫

d4xh(x) =

∫
d4xfabcAbµ(M−1)adfdecAeµ. (4.18)

In the last line, the horizon function has been defined. The parameter γ is the Gribov
parameter introduced above and has mass dimension one. It will turn out later that this
is an important property when implementing infrared effects in a renormalizable way.
In this context the gap equation or horizon condition which determines γ reads

g2⟨h⟩ = f ≡ 4(N2 − 1) , (4.19)

where the expectation value on the left is calculated with (4.14). On the right hand
side we have the dimension of the adjoint representation of SU(N) multiplied with the
dimension of the underlying (here Euclidean) space. It equals therefore the number
of components or degrees of freedom f of Aaµ in four dimensions, and is obtained by
calculating the lowest eigenvalue of the ϕπ-operator.
Now the horizon term is nonlocal: it contains the inverse of M, i.e. of differential
operators. In order to localize it, by gaussian quadrature for the Boltzmann factor one
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introduces pairs of complex conjugate commuting bosonic fields (ϕ, ϕ̄) ≡ (ϕacµ , ϕ̄
ac
µ ) of

dimension one and ghost number zero, and anticommuting Grassmann fields (ω, ω̄) ≡
(ωacµ , ω̄

ac
µ ) of ghost numbers (1,−1), and with the abbreviationM≡Mab this leads to

e−γ
4(A, 1

MA) ⇒
∫
DωDω̄DϕDϕ̄e(ω̄,Mω)−(ϕ̄,Mϕ)−γ2(A,ϕ−ϕ̄)

Sloc = SYM + Sgf + (ϕ̄,Mϕ)− (ω̄,Mω) + γ2(A,ϕ− ϕ̄). (4.20)

The equivalence between the original and localized version can be seen by the following
variable definition (indices are suppressed),(

ϕ̄+
γ2

M
A

)
︸ ︷︷ ︸

ϕ̄′

M
(
ϕ− γ2

M
A

)
︸ ︷︷ ︸

ϕ′

= ϕ̄Mϕ+ γ2A(ϕ− ϕ̄)−A γ
4

M
A⇒

ϕ̄′Mϕ′ +A
γ4

M
A = ϕ̄Mϕ+ γ2A(ϕ− ϕ̄) . (4.21)

Now the A field is decoupled from the auxiliary fields. Therefore the functional integra-
tion over the latter can be performed, which gives unity and finally leads to the above
equivalence.
The action is now local. The next step now consists of formulating the theory in a
BRST invariant way. Terms that can be written as exact BRST transformations do not
change the physical content of a theory, as they will not modify the expectation value
for a given (single of composite) gauge invariant operator. For this purpose, consider
the following action:

S0 = SYM + s

∫
d4x

(
c̄a∂Aa + ωacµ Mabϕbcµ

)
. (4.22)

With the following BRST-transformations

sAaµ = −Dab
µ c

b sc̄a = ba sϕabµ = ωabµ sω̄abµ = ϕ̄abµ ,

sca =
g

2
fabccbcc sba = 0 sωabµ = 0 sϕ̄abµ = 0,

s2 = 0, (4.23)

this leads to

S0 = Sloc(γ = 0) +

∫
d4xω̄acµ ∂ν

(
gfabdϕbcµD

de
ν c

e
)
. (4.24)

By a variable shift in Sloc [70] given by ωacµ → ωacµ − (M−1)ab∂ν
(
gf bedϕecµ D

dn
ν cn

)
it

transforms into S0 and the partition function results in

Z =

∫
DΦe−S0−γ2(A,ϕ−ϕ̄) ≡ e−ΓGZ , (4.25)
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where Φ = {A, c, bc, b, ϕ, ϕ̄, ω, ω̄} denotes all fields and the action is BRST -exact expect
in the last term. ΓGZ denotes the effective action. It can be shown (e.g. [71]) that
introduction of local sources for the latter that take appropriate values in the ultraviolet
yield to BRST -covariance and renormalizability while in the infrared they take the
values leading to (4.13).
The gap equation now reads

∂ΓGZ
∂γ2

= 0. (4.26)

Notice that the gluon propagator becomes

Gabµν(k) = ⟨Aaµ(k)Abν(−k)⟩ = δab
1

k2 + γ4

k2

(
δµν −

kµkν
k2

)
, (4.27)

which up to g2 is the same as in Section 4.1, as expected.

4.3 Soft breaking of BRST invariance

We have seen in the last section that the Gribov-Zwanziger action consists of a BRST-
exact term plus a soft breaking. To emphasize it again, this finally leads to a damped
gauge boson propagator. Based on [72] it will now be shown how to introduce infrared
effects in a systematic way by introducing BRST-doublets, without changing the phys-
ical content of the theory and allowing renormalizability. In the present case this will
reproduce the same action. Lessons learned, this will allow for constructing a non-
commutative gauge model in the same spirit.

4.3.1 The methodology

The goal is the introduction of non-perturbative, i.e. infrared effects while keeping
locality and renormalizability, supposed this is the case for the original action Sinv(ϕ).
Furthermore, the space of local observables which coincides with the cohomology classes
of the BRST operator in the space of local field polynomials should remain unchanged.
This is the same as saying that the correlation functions ⟨O1(x1) . . . On(xn)⟩ of the
theory should stay the same, while their infrared behaviour will be modified in a desired
way. From another point of view this means that the physical content of the theory will
remain unchanged in the UV. This is done in three steps:

1. Introduction of fields forming BRST-doublets, e.g. of auxiliary fields and corre-
sponding ghosts in a way that BRST-doublets are formed:

sα = β ,

sβ = 0. (4.28)
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They allow to construct invariant terms that can be written as exact BRST trans-
forms, i.e. Sinv(α, β) = sS̃(α, β): From the nilpotency of s it follows that they are
of vanishing cohomology, and no new observables are introduced.

2. The new fields are coupled (linearly) to the original fields ϕ of the theory whose
IR behaviour shall be modified, and to a parameter γ with mass dimension > 0.
This leads to a soft breaking of the BRST invariance:

s (Sinv(ϕ) + Sinv(α, β) + Ssb(γ, α, β, ϕ)) = sSsb = γ∆(α, β, ϕ) . (4.29)

Soft breaking means a breaking term with a field polynomial ∆ of lower mass
dimension than the invariant Lagrangian, which is possible due to the massive new
parameter (obviously the whole action term Ssb is of the same dimension as the
remaining action, i.e. zero). Due to its super-renormalizability, this term will not
affect the UV region of the theory. Indeed, it has already been shown by Zwanziger
in [73] that terms of this type do not spoil renormalizability. However, the Gribov
like soft breaking parameter γ is necessarily a physical one, as s∂Ssb

∂γ = ∆ ̸= 0.

3. In order to restore BRST invariance in the UV region (which is necessary to allow
e.g. the application of algebraic renormalization), sources are introduced for the
breaking term. They are constructed such that BRST exactness is achieved in the
UV, while taking their physical values in the IR, i.e. restoring the original soft
breaking term. We therefore have three kind of sources: first, the usual sources for
any elementary field introduced in the generating functional (c.f. (3.31)). Second,
those for the composite, i.e. non-linear BRST-transfoms (i.e. of the gauge and
ghost fields), c.f [57] and [60] for a detailed discussion. Finally those introduced
above.

4. Gap actions have to be imposed which determine the new parameter as a function
of the original parameters of the theory, i.e. the coupling constant, γ = γ(g).

Although being obvious, it should be mentioned that the constructed polynomials have
to be consistent with respect to the dimensionality and quantum numbers (i.e. ghost
numbers).

4.3.2 The Gribov-Zwanziger action in the framework of soft breaking

Consider the Gribov-Zwanziger action derived in the last section: it can be written as

SGZ = S
(1)
inv(Aµ, c, c̄, b) + S

(2)
inv(ϕ, ϕ̄, ω, ω̄) + Ssb(γ,Aµ, ϕ, ϕ̄) (4.30a)

S
(1)
inv(Aµ, c, c̄, b) = SYM + Sgf (4.30b)

S
(2)
inv(ϕ, ϕ̄, ω, ω̄) = sS̃(ω̄, ϕ) = s

∫
d4xωacµ ∂νDνϕ

ac
µ (4.30c)

Ssb = −γ2g
∫

d4x
(
fabcAaµ(ϕ

bc
µ + ϕ̄bcµ )

)
= −γ2

∫
d4xDµϕ . (4.30d)
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The fields and their BRST transformations as well as SYM and Sgf are given in the
previous section.

• According to (1) of the previous discussion we observe that the BRST doubletts
(ϕ, ω) and (ϕ̄, ω̄) (c.f. (4.23) for their transformations) lead to a BRST invariant
term in the action given by (4.30c).

• According to (2), the new fields are coupled to the gauge field, as we intend
to modify its IR behaviour, c.f. (4.30d). Furthermore we observe the Gribov
parameter γ of dimension 1. It follows from the fact that the soft breaking can be
written as

sSsb = γ2∆, (4.31)

thus γ is a physical parameter. Indeed this leads to a modified gauge propagator,
as has been elaborated in detail above and can bee seen from (4.13).

• According to (3), external sources are introduced in the action (all indices, e.g.
denoting colors, components or of the Lorentz type are suppressed):

S =S
(1)
inv + S

(2)
inv − (Mµ, Dϕ)− (U, sDϕ)

− (sDω̄, V )− (Dω̄, N)− (K, sA)− (L, sc) . (4.32)

Based on this action, with additional sources for the elementary fields, renormal-
izability can be shown. The original action is obtained by the physical values of
the sources, given by

Mph = −Vph ∝ γ2 × (Index structure) and K = L = N = U = 0. (4.33)

For details refer to [73], Section 4 ff. This program will be explicitly applied to
non-commutative gauge theory in Section 5.

• Finally, the gap equation is given by (4.26) according to (4).
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In this chapter, we will apply the method of introducing infrared effects to the prop-
agators of a θ-deformed gauge theory via introducing auxiliary fields [2, 3]. Contrary to
Section 3, they will be introduced as BRST doublets, therefore avoiding the introduction
of new degrees of freedom. In order to achieve this, the method introduced in Section 4
will be followed.
First, the model of Vilar et al. given in [14] will be discussed in short in Section 5.1,
which follows the same philosophy, and was published in response to [2]. It will then be
discussed how the same objective can be reached in a simpler way, as we could show in
[3]. In particular, the construction of the model will be given in Section 5.2, followed
by its symmetry content (Section 5.3). They form the basis for the possible application
of Algebraic Renormalization. The Feynman rules will be derived in Section 5.4, fol-
lowed by power counting formulae (Section 5.5), and one loop calculations are given in
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Section 5.6. There, we will also undertake the attempt of renormalizing the full gauge
boson propagator. Together with Section 5.7 dealing with higher loop calculations, we
will finally see the problems appearing in the renormalization program. Conclusions will
be given in Section 5.8.

5.1 The model of Vilar et. al.

In response to the model presented in the last chapter Section 3.2, Vilar et al. [14]
presented a model which avoids the introduction of new degrees of freedom. This has

been achieved by localizing the term under consideration S
(2)
inv (c.f. second line in (3.30)),

i.e.

S
(2)
inv ≡ Snloc =

∫
d4x

[
1

4
Fµν ⋆

a′2

D2D̃2
⋆ Fµν

]
, (5.1)

in a way compatible with the methodology in Section 4.3.1. Instead of (3.27), their
localized term reads:

Snloc → Sloc = Sloc,0 + Sbreak ,

Sloc,0 =

∫
d4x

(
χ̄µν ⋆ D

2Bµν + B̄µν ⋆ D
2χµν + γ2χ̄µν ⋆ χµν

)
, (5.2)

Sbreak =

∫
d4x

[
−iγ

2
Bµν ⋆ F

µν + i
γ

2
B̄µν ⋆ F

µν
]
, (5.3)

with (Bµν , B̄µν), and (χµν , χ̄µν) being two pairs of auxiliary complex conjugated anti-
symmetric tensorial bosonic fields of mass dimension one, and γ a parameter of mass
dimension one corresponding to a Gribov-like parameter according to (2 ), Section 4.3.1.
The term Snloc is now split into a BRST invariant part Sloc,0, and a breaking term Sbreak
as can be seen by explicit calculation with the definitions in Ref. [14].
According to (1 ), Section 4.3.1, ghosts are furthermore added for each of the bosonic
fields by the action term SG, given by {ψµν , ψ̄µν , ξµν , ξ̄µν}. This is being done in such a
way that BRST doublet structures are formed. This results in a trivial BRST cohomol-
ogy for Sloc,0 from which follows [72] that

sSloc,0 = 0 ⇒ Sloc,0 = sŜloc,0 , (5.4)

i.e. the part of the action depending on the auxiliary fields and their associated ghosts
can be written as an exact expression with respect to the nilpotent BRST operator s.
The breaking term does not join this nice property due to a non-trivial cohomology.
However, it is constructed such that its mass dimension is smaller than four, the di-
mension of the underlying Euclidean space. As mentioned in (1 ), Section 4.3.1 such a
breaking is referred to as “soft” and does not spoil renormalizability. In fact, Sbreak is
the actual origin of the avoidance of UV/IR mixing featured by this theory as it alters
the IR sector while not affecting the UV part.
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With the usual gauge fixing term Sgf the tree level action of Ref. [14] is finally given
by1:

S = S0 + Sbreak + SG + Sgf,

S0 =

∫
d4x

[
1

4
Fµν ⋆ F

µν + χ̄µν ⋆ D
2Bµν + B̄µν ⋆ D

2χµν + γ2χ̄µν ⋆ χ
µν

]
,

SG =

∫
d4x

[
−ψ̄µν ⋆ D2 ⋆ ξµν − ξ̄µν ⋆ D2ψµν − γ2ψ̄µν ⋆ ψµν

]
,

Sgf =

∫
d4x [ib ⋆ ∂µAµ + c̄ ⋆ ∂µDµc] , (5.5)

with Sbreak already defined in (5.3). The total action leads to 19 tree level propagators,
which are given in Section D.1.

5.2 Construction of the action

The starting point is the localized gauge invariant part S
(2)
inv, in the following denoted

Sloc (c.f. Eqn. (3.27)),

Sloc =

∫
d4x

[
a′Bµν ⋆ Fµν − Bµν ⋆ D̃2D2 ⋆ Bµν

]
. (5.6)

Note that the former notation Bµν for the real auxiliary field has been changed to Bµν ,
in order to avoid any confusion with respect to the auxiliary fields introduced below.
The latter action term is equivalent to (5.1).
From now on we will omit the star when writing the product of fields, and the product
in x-space has to be understood in the sense of the star product, if not mentioned
otherwise.

Introduction of fields forming BRST-doublets

According to Section 4.3.1, (1 ), Eqn. (4.28) we introduce fields forming BRST doublets2.
They are given by a pair of ghost and antighost fields (ψµν , ψ̄µν), and a pair of fields
(Bµν , B̄µν). The latter result from turning Bµν into a pair of complex conjugated fields.
The doublet structure can be seen by considering the BRST-transformations of the new
fields,

sψ̄µν = B̄µν + ig
{
c, ψ̄µν

}
, sB̄µν = ig

[
c, B̄µν

]
,

sBµν = ψµν + ig [c,Bµν ] , sψµν = ig {c, ψµν} . (5.7)

1The total action including external sources according to (1 ), Section 4.3.1, can be found in [14].
2The same has been done in [14], however leading to a more complex action than derived in what

follows, c.f. Section 5.1.
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The transformation laws for the other fields are the same as before, i.e.

sAµ = Dµc , sc = igcc ,

sc̄ = b , sb = 0 ,

sFµν = ig [c, Fµν ] , (5.8)

which are valid when considering Landau gauge fixing, given by

Sϕπ =

∫
d4x (b∂µAµ − c̄∂µDµc) . (5.9)

Note that contrary to the general approach defined in Section 4.3.1, we have now in-
troduced two BRST-doublets. Indeed, one doublet would suffice for eliminating the
additional degree of freedom of the previous model, but only with complex conjugated
fields we will restore hermiticity of the action3.

Invariant and soft breaking terms in the action

Eqn. (5.6) is now being replaced by [2, 3]

Sloc =

∫
d4x

[
λ

2

(
Bµν + B̄µν

)
Fµν − µ2B̄µνD2D̃2Bµν + µ2ψ̄µνD

2D̃2ψµν
]
, (5.10)

where (as in the remainder of this section) all field products are considered to be star
products. The parameters λ and µ both have mass dimension 1 and replace the for-
mer dimensionless parameter a′. They are connected via the relation a′ ≡ λ/µ. The
equivalence of this localized action and the original non-local version can be shown by
employing the path integral formalism:

Z =

∫
D(ψ̄ψB̄BA) exp

{
−
(∫

d4x
1

4
FµνF

µν + Sloc

)}
=

∫
D(B̄BA) det4

(
µ2D2D̃2

)
exp

{
−
∫

d4x

[
1

4
FµνF

µν +
λ

2

(
Bµν + B̄µν

)
Fµν

− µ2B̄µνD2D̃2Bµν

]}
=

∫
D(B̄BA) det4

(
µ2D2D̃2

)
exp

{
−
∫

d4x

[
1

4
FµνF

µν +
λ2

4µ2
Fµν

1

D̃2D2
Fµν−

−
(
B̄µν −

λ

2µ2
1

D̃2D2
Fµν

)
µ2D2D̃2

(
Bµν − λ

2µ2
1

D̃2D2
Fµν

)]}
=

∫
DAdet4

(
D2D̃2

)
det−4

(
D2D̃2

)
exp

{
−
∫

d4x

[
1

4
FµνF

µν +
λ2

4µ2
Fµν

1

D̃2D2
Fµν

]}
.

(5.11)

3Note that also for the Gribov-Zwanziger action two BRST-doublets have been introduced, c.f. Sec-
tion 4.3.2.
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With the BRST doublet structure of Eqn. (5.7) one can write

Sloc =

∫
d4x

[
λ

2
BµνF

µν + s

(
λ

2
ψ̄µνF

µν − µ2ψ̄µνD2D̃2Bµν

)]
, (5.12)

Following the discussion Section 4.3.1, (2 ), we observe the following: first the localized
action is split into a BRST-invariant part and a breaking term (c.f. Eqn. (4.29)), as

sSbreak =

∫
d4x

λ

2
ψµνF

µν , with Sbreak =

∫
d4x

λ

2
BµνF

µν . (5.13)

Second, the mass dimension dm of the field dependent part of Sbreak fulfills the condition
dm (ψµνF

µν) = 3 < D = 4, the breaking is therefore considered to be “soft”, and does
not spoil renormalizability of the action. Here λ plays the role of the Gribov parameter.
Next, the new fields are coupled linearly to the gauge field as required in order to modify
its IR behaviour.
Finally, according to the same discussion it should be noticed that the mass µ is a phys-

ical parameter despite the fact that the variation of the action ∂S
∂µ2

= s
(
ψ̄µνD

2D̃2Bµν
)

yields an exact BRST form. Following the argumentation in Ref. [72] this is a conse-
quence of the introduction of the soft breaking term. For vanishing Gribov-like parame-
ter λ the contributions to the path integral of the µ dependent sectors of Sloc (and below
in Snew in (5.19)) cancel each other. If λ ̸= 0 one has to consider the additional break-
ing term which couples the gauge field Aµ to the auxiliary field Bµν and the associated
ghost ψµν . This mixing is reflected by the appearance of a′ = λ/µ in the damping factor(
k2 + a′2

k̃2

)
featured by all field propagators (5.32c)–(5.32f).

Restoring BRST invariance in the UV sector

In order to restore BRST invariance in the UV region (as is a prerequisite for a possible
application of algebraic renormalization) an additional set of sources, given by

sQ̄µναβ = J̄µναβ + ig
{
c, Q̄µναβ

}
, sJ̄µναβ = ig

[
c, J̄µναβ

]
,

sQµναβ = Jµναβ + ig {c,Qµναβ} , sJµναβ = ig [c, Jµναβ ] , (5.14)

is introduced, and coupled to the breaking term which then takes the form

Sbreak =

∫
d4x s

(
Q̄µναβB

µνFαβ
)

=

∫
d4x

(
J̄µναβB

µνFαβ − Q̄µναβψµνFαβ
)
. (5.15)

Eqn. (5.13) is reobtained if the sources Q̄ and J̄ take their “physical values” given by
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Q̄µναβ
∣∣
phys

= 0 , J̄µναβ
∣∣
phys

=
λ

4
(δµαδνβ − δµβδνα) ,

Qµναβ
∣∣
phys

= 0 , Jµναβ
∣∣
phys

=
λ

4
(δµαδνβ − δµβδνα) . (5.16)

Note that the Hermitian conjugate of the counterterm Sbreak in Eqn. (5.10), (i.e. the
term

∫
d4xB̄µνF

µν) may also be coupled to external sources which, however, is not
required for BRST invariance but restores Hermiticity of the action,

λ

2

∫
d4xB̄µνF

µν −→
∫

d4x s
(
Jµναβψ̄

µνFαβ
)
=

∫
d4xJµναβB̄

µνFαβ . (5.17)

Including external sources Ωϕ, ϕ ∈ {A, c,B, B̄, ψ, ψ̄, J, J̄ , Q, Q̄} for the non-linear BRST
transformations the complete action with Landau gauge ∂µAµ = 0 and general Q/Q̄
and J/J̄ reads4:

S = Sinv + Sϕπ + Snew + Sbreak + Sext , (5.18)

with

Sinv =

∫
d4x

1

4
FµνF

µν ,

Sϕπ =

∫
d4x s (c̄ ∂µAµ) =

∫
d4x (b ∂µAµ − c̄ ∂µDµc) ,

Snew =

∫
d4x s

(
Jµναβψ̄

µνFαβ − µ2ψ̄µνD2D̃2Bµν
)

=

∫
d4x

(
JµναβB̄

µνFαβ − µ2B̄µνD2D̃2Bµν + µ2ψ̄µνD
2D̃2ψµν

)
,

Sbreak =

∫
d4x s

(
Q̄µναβB

µνFαβ
)
=

∫
d4x

(
J̄µναβB

µνFαβ − Q̄µναβψµνFαβ
)
,

Sext =

∫
d4x

(
ΩAµD

µc+ igΩccc+ΩBµν (ψ
µν + ig [c,Bµν ]) + igΩB̄µν

[
c, B̄µν

]
+igΩψµν {c, ψµν}+Ωψ̄µν

(
B̄µν + ig

{
c, ψ̄µν

})
+ΩQµναβ

(
Jµναβ + ig

{
c,Qµναβ

})
+igΩJµναβ

[
c, Jµναβ

]
+ΩQ̄µναβ

(
J̄µναβ + ig

{
c, Q̄µναβ

})
+ igΩJ̄µναβ

[
c, J̄µναβ

])
.

(5.19)

Tab. 5.1 summarizes properties of the fields and sources contained in the model (5.19).

4Note that compared to (3.25), in Sϕπ the damping term
(
1 + 1

��̃

)
has been omitted, and the gauge

parameter has been set to 0.
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5.3 Symmetry content

Following the objective of applying the method of algebraic renormalization we explore
the symmetry content of the theory given in Eqn. (5.18). The Slavnov-Taylor identity
is given by

B(S) =
∫

d4x
[ δS
δΩAµ

δS

δAµ
+

δS

δΩc
δS

δc
+ b

δS

δc̄
+

δS

δΩBµν

δS

δBµν
+

δS

δΩB̄µν

δS

δB̄µν

+
δS

δΩψµν

δS

δψµν
+

δS

δΩψ̄µν

δS

δψ̄µν
+

δS

δΩQµναβ

δS

δQµναβ
+

δS

δΩJµναβ

δS

δJµναβ

+
δS

δΩQ̄µναβ

δS

δQ̄µναβ
+

δS

δΩJ̄µναβ

δS

δJ̄µναβ

]
= 0 . (5.20)

It expresses the invariance of the action under BRST transformations on a functional
level, i.e. generalizes sϕ from the fields to the total action, with ϕ an arbitrary field of
the action. It can be written very generally as

B(S) =
∫

d4x
∑
ϕ

(s ϕ)
δS

δϕ
,

which shows that only fields with non-vanishing BRST-transformations enter the sym-
metry.
Furthermore we have the gauge fixing condition

δS

δb
= ∂µAµ = 0 , (5.21)

the ghost equation

G(S) = ∂µ
δS

δΩAµ
+
δS

δc̄
= 0 , (5.22)

Table 5.1: Properties of fields and sources.

Field Aµ c c̄ Bµν B̄µν ψµν ψ̄µν Jαβµν J̄αβµν Qαβµν Q̄αβµν

g♯ 0 1 -1 0 0 1 -1 0 0 -1 -1
Mass dim. 1 0 2 1 1 1 1 1 1 1 1
Statistics b f f b b f f b b f f

Source ΩAµ Ωc b ΩBµν ΩB̄µν Ωψµν Ωψ̄µν ΩJαβµν ΩJ̄αβµν ΩQαβµν ΩQ̄αβµν
g♯ -1 -2 0 -1 -1 -2 0 -1 -1 0 0
Mass dim. 3 4 2 3 3 3 3 3 3 3 3
Statistics f b b f f b b f f b b
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and the antighost equation

Ḡ(S) =
∫

d4x
δS

δc
= 0 . (5.23)

The latter two are given by the equations of motion for the ghost and antighost on a
functional level.
Following the notation of Ref. [14] the identity associated to the BRST doublet structure
is given by

U
(1)
αβµν(S) =

∫
d4x

(
B̄αβ

δS

δψ̄µν
+Ωψ̄µν

δS

δΩB̄αβ
+ ψαβ

δS

δBµν
− ΩBµν

δS

δΩψαβ

+Jµνρσ
δS

δQαβρσ
+ΩQαβρσ

δS

δΩJµνρσ
+ J̄µνρσ

δS

δQ̄αβρσ
+ΩQ̄αβρσ

δS

δΩJ̄µνρσ

)
= 0 ,

(5.24)

in short:

U (1)(S) =

∫
d4x

∑
ϕ

{
(s ϕ)

δS

δϕ
+Ωϕ

δS

δΩsϕ

}
, ∀ϕ : sϕ = ig [c, ϕ]±

with [ , ]+ ≡ { , } the anticommutator for fermionic fields, and [ , ]− the commutator in
the case of bosonic fields.
It is interesting to mention that the first two terms of the second line,∫

d4x

(
Jµνρσ

δS

δQαβρσ
+ΩQαβρσ

δS

δΩJµνρσ

)
= 0 ,

constitute a symmetry by themselves. These terms stem from the insertion of conjugated
field partners J and Q for J̄ and Q̄, respectively, which are not necessarily required as
discussed above in Section 5.2.

Furthermore, we have the linearly broken symmetries U (0) and Ũ (0):

U
(0)
αβµν(S) = −Θ

(0)
αβµν = −Ũ (0)

αβµν(S) , (5.25)

with

U
(0)
αβµν(S) =

∫
d4x

[
Bαβ

δS

δBµν
− B̄µν

δS

δB̄αβ
− ΩBµν

δS

δΩBαβ
+ΩB̄αβ

δS

δΩB̄µν

+Jαβρσ
δS

δJµνρσ
− J̄µνρσ

δS

δJ̄αβρσ
− ΩJµνρσ

δS

δΩJαβρσ
+ΩJ̄αβρσ

δS

δΩJ̄µνρσ

]
,
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Ũ
(0)
αβµν(S) =

∫
d4x

[
ψαβ

δS

δψµν
− ψ̄µν

δS

δψ̄αβ
− Ωψµν

δS

δΩψαβ
+Ωψ̄αβ

δS

δΩψ̄µν

+Qαβρσ
δS

δQµνρσ
− Q̄µνρσ

δS

δQ̄αβρσ
− ΩQµνρσ

δS

δΩQαβρσ
+ΩQ̄αβρσ

δS

δΩQ̄µνρσ

]
,

(5.26)

Θ
(0)
αβµν =

∫
d4x

[
B̄µνΩ

ψ̄
αβ − ψαβΩ

B
µν + J̄µνρσΩ

Q̄
αβρσ − JαβρσΩ

Q
µνρσ

]
. (5.27)

In short the linearly broken symmetries can be written as∫
d4x

∑
ϕ

(−1)n
{
ϕ
δS

δϕ
− Ωϕ

δS

δΩϕ

}
, (5.28)

where U (0)(S) / Ũ (0)(S) is obtained by summing over bosonic / fermionic fields, only.
In the last sum, n = 1 for the fields denoted with an overbar, and n = 0 otherwise.
The above relations form the starting point for the algebraic renormalization procedure5.
In order to assure the completeness of the set of symmetries it has to be assured that the
algebra generated by them closes. From the Slavnov-Taylor identity (5.20) one derives
the linearized Slavnov operator

BS =

∫
d4x

[
δS

δωAµ

δ

δAµ
+

δS

δAµ

δ

δωAµ
+
δS

δc

δ

δωc
+
δS

δωc
δ

δc
+ b

δS

δc̄
+

δS

δωBµν

δ

δBµν
+

δS

δBµν

δ

δωBµν

+
δS

δωB̄µν

δ

δB̄µν
+

δS

δB̄µν

δ

δωB̄µν
+

δS

δωψµν

δ

δψµν
+

δS

δψµν

δ

δωψµν
+

δS

δωψ̄µν

δ

δψ̄µν
+

δS

δψ̄µν

δ

δωψ̄µν

+
δS

δωQµναβ

δ

δQµναβ
+

δS

δQµναβ

δ

δωQµναβ
+

δS

δωJµναβ

δ

δJµναβ
+

δS

δJµναβ

δ

δωJµναβ

+
δS

δωQ̄µναβ

δ

δQ̄µναβ
+

δS

δQ̄µναβ

δ

δωQ̄µναβ

+
δS

δωJ̄µναβ

δ

δJ̄µναβ
+

δS

δJ̄µναβ

δ

δωJ̄µναβ

]
. (5.29)

Furthermore, the U (0) and Ũ (0) symmetries are combined to define the operator Q as

Q ≡ δαµδβν
(
U (0)
αβµν + Ũ

(0)
αβµν

)
. (5.30)

Notice that the action is invariant under Q, i.e. Q(S) = 0 because of U (0)
αβµν(S) =

− Ũ (0)
αβµν(S).

5We will see below, why the application of the algebraic procedure finally fails.
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Having defined the operators BS , Ḡ, Q and U (1) we may derive the following set of
graded commutators:{

Ḡ, Ḡ
}
= 0 , {BS ,BS} = 0 ,

{
Ḡ,BS

}
= 0 ,[

Ḡ,Q
]
= 0 , [Q,Q] = 0 ,

{
Ḡ,U (1)

µναβ

}
= 0 ,{

BS ,U (1)
µναβ

}
= 0 ,

{
U (1)
µναβ ,U

(1)
µ′ν′α′β′

}
= 0 ,

[
U (1)
µναβ ,Q

]
= 0 ,

[BS ,Q] = 0 , (5.31)

which shows that the algebra of symmetries closes.

5.4 Feynman rules

5.4.1 Propagators

From the action (5.19) with J/J̄ and Q/Q̄ set to their physical values given by (5.16)
one finds the propagators

Gc̄c(k) = − 1

k2
, (5.32a)

Gψ̄ψµν,ρσ(k) =
(δµρδνσ − δµσδνρ)

2µ2k2k̃2
, (5.32b)

GAAµν (k) =
1(

k2 + a′2

k̃2

) (δµν − kµkν
k2

)
, (5.32c)

GABµ,ρσ(k) =
ia′

2µ

(kρδµσ − kσδµρ)

k2k̃2
(
k2 + a′2

k̃2

) = GAB̄µ,ρσ(k) = −GB̄Aρσ,µ(k) , (5.32d)

GB̄Bµν,ρσ(k) =
−1

2µ2k2k̃2

δµρδνσ − δµσδνρ − a′2kµkρδνσ + kνkσδµρ − kµkσδνρ − kνkρδµσ
2k2k̃2

(
k2 + a′2

k̃2

)
 ,

(5.32e)

GBBµν,ρσ(k) =
a′2

2µ2k2k̃2

kµkρδνσ + kνkσδµρ − kµkσδνρ − kνkρδµσ
2k2k̃2

(
k2 + a′2

k̃2

)
 = GB̄B̄µν,ρσ(k) , (5.32f)

where the abbreviation a′ ≡ λ/µ is used. Notice, that they obey the following symme-
tries and relations:

GABµ,ρσ(k) = GAB̄µ,ρσ(k) = −GBAρσ,µ(k) = −GB̄Aρσ,µ(k), (5.33a)

Gϕµν,ρσ(k) = −Gϕνµ,ρσ = −Gϕµν,σρ(k) = Gϕνµ,σρ(k), (5.33b)

for ϕ ∈ {ψ̄ψ, B̄B,BB, B̄B̄},
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2k2k̃2GABρ,µν(k) = i
a′

µ

(
kµG

AA
ρν (k)− kνGAAρµ (k)

)
, (5.33c)

1

µ2
(δµρδνσ − δµσδνρ) = i

a′

µ

(
kµG

BA
ρσ,ν(k)− kνGBAρσ,µ(k)

)
− 2k2k̃2GBB̄µν,ρσ(k), (5.33d)

0 = i
a′

µ

(
kµG

BA
ρσ,ν(k)− kνGBAρσ,µ(k)

)
− 2k2k̃2GBBµν,ρσ(k), (5.33e)

GBB̄µν,ρσ(k) = Gψ̄ψµν,ρσ(k) +GBBµν,ρσ(k). (5.33f)

Note that the relations (5.33c) to (5.33e) directly follow from the equations of motion
for the fields Bµν and B̄µν .

5.4.2 Vertices

The action (5.19) leads to 13 tree level vertices whose rather lengthy expressions are
listed in Appendix D.3. One immediately finds the following vertex relation:

Ṽ
ψ̄ψ(n×A)
µν,ρσ,ξ1...ξn

(q1, q2, kξ1 , . . . kξn) = −Ṽ
B̄B(n×A)
µν,ρσ,ξ1...ξn

(q1, q2, kξ1 , . . . kξn) , (5.34)

i.e. all vertices with one B, one B̄ and an arbitrary number of A legs have exactly the
same form as the ones with one ψ, one ψ̄ and an arbitrary number of A legs. This is
due to the fact that the ψ̄ψnA and B̄BnA vertices stem from terms in the action which
are of the same structure, and are thus equal in their form. We therefore expect all
divergent contributions to the vacuum polarization coming from the ψ sector to exactly
cancel those coming from the B sector. We will come back to this point in Section 5.6.

Finally, the vertices obey the following additional relations:

Ṽ
ψ̄ψ(n×A)
µν,ρσ,ξ1...ξn

(q1, q2, kξ1 , . . . kξn) = −Ṽ
ψψ̄(n×A)
ρσ,µν,ξ1...ξn

(q2, q1, kξ1 , . . . kξn)

= −Ṽ ψ̄ψ(n×A)
νµ,ρσ,ξ1...ξn

(q1, q2, kξ1 , . . . kξn)

= −Ṽ ψ̄ψ(n×A)
µν,σρ,ξ1...ξn

(q1, q2, kξ1 , . . . kξn), (5.35)

and

Ṽ
B̄B(n×A)
µν,ρσ,ξ1...ξn

(q1, q2, kξ1 , . . . kξn) = +Ṽ
BB̄(n×A)
ρσ,µν,ξ1...ξn

(q2, q1, kξ1 , . . . kξn)

= −Ṽ B̄B(n×A)
νµ,ρσ,ξ1...ξn

(q1, q2, kξ1 , . . . kξn)

= −Ṽ B̄B(n×A)
µν,σρ,ξ1...ξn

(q1, q2, kξ1 , . . . kξn),

for n ∈ 1, 2, 3, 4 . (5.36)

In the first line on the r.h.s. of (5.35) we observe a minus sign, contrary to (5.36). This
is due to the reversed order of variation with respect to the fermionic fields ψ and ψ̄.
More specifically, this can be understood as follows (indices are suppressed):

59



Chapter 5. Localization via BRST-doublets

• The vertex Ṽ ψ̄ψ(n×A) stems from a term in the action with the same fields in a
given order, e.g. it is proportional to the integrated product ψ̄ψ(n×A).

• According to (3.40) the vertex under consideration will be obtained by functional
variation of this action term, i.e.

Ṽ ψ̄ψ(n×A) ∝ +
δ

δψ̄

δ

δψ

(
δ

δA

)n ∫
d4xψ̄ψA1 . . . An

= − δ

δψ

δ

δψ̄

(
δ

δA

)n ∫
d4xψ̄ψA1 . . . An . (5.37)

In the first line we have to pull the derivation with respect to ψ through the field
ψ̄. Due to their fermionic character, this leads to a overall minus.

5.5 Power counting

The superficial degree of UV divergence is determined by the number of external legs of
the various fields denoted by E. Its explicit form is given by:

dγ = 4− EA − Ec/c̄ − 2EB − 2EB̄ − 2Eψψ̄ − 2Eθ , (5.38a)

dγ = 4− EA − Ec/c̄ − 2Eλ , (5.38b)

where

Eλ = EB + EB̄ + Eψ/ψ̄ + Eθ , (5.39)

and Eθ counts negative powers of θ. It is possible that Eθ becomes negative. Hence,
the first version (counting Eλ, i.e. the overall powers of λ in a graph) is probably more
useful, as Eλ ≥ 0.

5.6 One-loop calculations

As the main objective of this section we will investigate the possibility of renormalizing
the IR divergences at one-loop level. Given the high number of vertices and propagators
compared to ordinary (i.e. commutative) Yang-Mills theory, this directly translates into
a very high number of one loop graphs. A short overview of the number of Feynman
graphs for each type is given in Tab. 5.3. However, the main results can already be de-
duced by considering the vacuum expectation value of the gauge field, c.f. Section 5.6.3.
In order to get there, all two point functions allowing to connect both of their external
(amputated) legs to gauge propagators have been evaluated and calculated. In order to
master the complexity and high effort regarding calculations also for this limited task,
algorithms have been developed with MathematicaR⃝, which are explained in Section F.
Due to the lenghty results, details have been collected in Section D.4. In the following
we will limit ourselves to the discussion of the main observations and results.
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5.6.1 Vanishing tadpoles

As has been the case for the previous model with dynamical Bµν , the tadpole graphs
(defined by having only one external field) all vanish due to momentum conservation.
Remember that, since all of these graphs have only one vertex, there exists a delta
function δ4(p + k − k) = δ4(p), i.e. p → 0 where p is the external momentum and k
is the internal momentum of the loop. In consequence,

∫
d4k sin kθp

2 δ
4(p) = 0. This is

the case for all tadpoles, independent of the external leg, because all 3-vertices contain
a sine in their analytical expressions.

5.6.2 Two point functions with amputated external legs

For each type of two-point functions, being characterized by the kind of (amputated)
external legs6, the result is obtained based on the following method:

• Evaluation of all possible graphs.

• Evaluation of their superficial degree of divergence, based on power counting of
Section 5.5. Due to our interest in the divergence behaviour of theory, only the
divergent graphs will be considered further.

• Evaluation of the analytic expressions of the remaining graphs and expansion up
to second order of the integrands according to (3.47). Note that we expand up to
second order because of the appearance of utmost quadratic divergences.

• Summing up all contributions, order by order, and considering planar/nonplanar
expressions individually. Evaluation of the divergent part of the integrals7.

• Finally, the result is obtained by summing up the planar and non planar integrated
results of each order.

While the final results and any relevant observations are given in what follows, for more
detailed information please refer to the appendix, Section D.4.

Vacuum polarization

The action (5.19) gives rise to eleven divergent graphs for the one-loop correction to the
vacuum polarization. The final result is given by

Πµν(p) =
2g2

π2
p̃µp̃ν
(p̃2)2

− 5g2

12π2
(
p2δµν − pµpν

)
ln
(
Λ2
)
+ finite terms . (5.40)

It exhibits a quadratic IR divergence in p̃2 and a logarithmic divergence in the cutoff Λ.
Furthermore, the transversality condition pµΠµν(p) = 0 is fulfilled.

6For the conventions regarding the graphical representation of the fields refer to Section D.2
7It should be obvious that also the divergent integrals may still contain a finite part.
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Figure 5.1: Total two point function for the AµAν propagator with amputated external
legs.

Note, that explicit calculations reveal that the graphs coming from the ψ/ψ̄ sector
cancel with those from the B/B̄ sector8. This was expected, as mentioned above. What
remains, are the three “classical” graphs known from commutative Yang-Mills theory,
e.g. QCD given in Fig. 5.2, which are transversal on their own.

Figure 5.2: The three “classical” one loop Feynman graphs for the vacuum polarization.

Corrections to the AB and AB̄ propagator

The action (5.19) gives rise to eight divergent graphs with one external Aµ and one Bµν .
The sum of all divergent contributions (c.f. Fig. 5.3) is given by

Figure 5.3: Total two point function for the AµBν1ν2 propagator with amputated exter-
nal legs.

ΣAB
µ1,ν1ν2(p) =

3ig2

32π2
λ (pν1δµ1ν2 − pν2δµ1ν1) (lnΛ + ln |p̃|) + finite , (5.41)

which shows a logarithmic divergence for Λ→∞.
From the symmetry between B and B̄ in the sense that both have identical interactions
with the gauge field, it follows

ΣAB
µ1,ν1ν2 ≡ ΣAB̄

µ1,ν1ν2 , (5.42)

and as implied by Eqn. (5.33a) it follows furthermore

ΣBA
µ1µ2,ν1 ≡ −ΣAB

ν1,µ1µ2. (5.43)

8This can be seen by inserting the symmetry factors of Tab. D.1 into the Taylor expanded expressions
given in (D.5b) and (D.6b).
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Corrections to the BB and B̄B̄ propagator

The action (5.19) gives rise to nine divergent graphs with two external Bµν . The sum

Figure 5.4: Total two point function for the Bµ1µ2Bν1ν2 propagator with amputated
external legs.

of all divergent contributions (c.f. Fig. 5.4) is given by

ΣBB
µ1µ2,ν1ν2(p) =

g2λ2

64π2
(δµ1ν1δµ2ν2 − δµ2ν1δµ1ν2)

(
ln Λ2 + ln p̃2

)
+ finite , (5.44)

leading a logarithmic divergence for both the planar and the non-planar part.
Due to symmetry reasons this result is also equal to the according correction to the B̄B̄
propagator, i.e.

ΣB̄B̄
µ1µ2,ν1ν2(p) = ΣBB

µ1µ2,ν1ν2(p) . (5.45)

Corrections to the BB̄ propagator

The action (5.19) gives rise to ten divergent graphs with one external Bµν and one
external B̄µν . The sum of all divergent contributions (c.f. Fig. 5.5) is given by

Figure 5.5: Total two point function for the Bµ1µ2B̄ν1ν2 propagator with amputated
external legs.

ΣBB̄
µ1µ2,ν1ν2(p) =

g2

2π2
Λ2µ2p̃2 (δµ2ν1δµ1ν2 − δµ1ν1δµ2ν2)

+
g2λ2

64π2
(δµ1ν1δµ2ν2 − δµ2ν1δµ1ν2)

(
lnΛ2 + ln p̃2

)
+ finite , (5.46)

which is logarithmically divergent in p̃2 and quadratically in Λ. Furthermore the relation

ΣBB̄
µ1µ2,ν1ν2 ≡ ΣB̄B

ν1ν2,µ1µ2 (5.47)

holds.
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5.6.3 The complete gauge propagator and attempt for renormalization

The complete gauge boson propagator up to one loop

In the standard renormalization procedure, the complete (also called dressed) propagator
up to the first loop level, is given by

≡ ∆′(p) =
1

A
+

1

A
Σ(Λ, p)

1

A
, (5.48)

where

1

A
≡ GAA

µν (p) ,

∆′(p) ≡ GAA,1l−complete
µν (p) Σ(Λ, p) ≡

(
Πplan

)
regul.

(Λ, p) + Πn-pl(p) ,

where “regul.” indicates that the planar contribution has been regularized by the UV
cutoff Λ, and “complete” stands for the complete or dressed one loop propagator. For
A ̸= 0, one can apply the formula

1

A+ B
=

1

A
− 1

A
B 1

A+ B
=

1

A
− 1

A
B 1

A
+O(B2) , (5.49)

which allows one to rewrite expression (5.48) to order Σ as

∆′(p) =
1

A− Σ(Λ, p)
, (5.50)

and thus (in the case of renormalizability) to absorb any divergences in the appropriate
parameters of the theory present in A (see [49] for an example).

However, in our case (5.49) cannot be applied directly, as the complete one loop
correction to the gauge boson propagator is given by the sum of all the results of section
5.6.2 after multiplication with appropriate, i.e. different external legs:

GAA,1l−complete
µν (p) = GAA

µν (p) +GAA
µρ (p)Πρσ(p)G

AA
σν (p)

+GAA
µρ (p)2Σ

AB
ρ,σ1σ2(p)G

BA
σ1σ2,ν(p)

+GAA
µρ (p)2Σ

AB̄
ρ,σ1σ2(p)G

B̄A
σ1σ2,ν(p)

+GAB
µ,ρ1ρ2(p)Σ

BB
ρ1ρ2,σ1σ2(p)G

BA
σ1σ2,ν(p)

+GAB
µ,ρ1ρ2(p)2Σ

BB̄
ρ1ρ2,σ1σ2(p)G

B̄A
σ1σ2,ν(p)

+GAB̄
µ,ρ1ρ2(p)Σ

B̄B̄
ρ1ρ2,σ1σ2(p)G

B̄A
σ1σ2,ν(p) +O

(
g4
)
. (5.51)

Note, that the factors 2 stem from the (not explicitly written) mirrored contributions
AB ↔ BA, AB̄ ↔ B̄A, and BB̄ ↔ B̄B. Since the factor A must be the same for all
summands we have to use the Ward Identities (5.33a) and (5.33c), i.e.
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GABµ,ρσ(k) = GAB̄µ,ρσ(k) = −GBAρσ,µ(k) = −GB̄Aρσ,µ(k)

2k2k̃2GABρ,µν(k) = i
a′

µ

(
kµG

AA
ρν (k)− kνGAAρµ (k)

)
, (5.52)

which allow us to express the (tree level) AB and AB̄ propagators uniquely in terms
of AA-propagators. This leads (in analogy to (5.49)) to the following representation for
the dressed one-loop gauge boson propagator:

GAA,1l−complete
µν (p) =

1

A
− 1

A

(∑
Bi
) 1

A
, (5.53)

where 1/A once more stands for the tree level gauge boson propagator. The Bi’s are given
by the one-loop corrections (with amputated external legs) of the two-point functions
relevant for the dressed gauge boson propagator, multiplied by any prefactors coming
from (5.52) and the factor 2 where needed (c.f. (5.51)). Thus, the full propagator is
given by

GAA,1l−complete
µν (p) = GAA

µν (p) +GAA
µρ (p)Πρσ(p)G

AA
σν (p)

+

(
ia′

µp2p̃2

){
2GAA

µρ (p)
(
ΣAB
ρ,σ1σ2(p) + ΣAB̄

ρ,σ1σ2(p)
)
pσ2G

AA
νσ1(p)

+
(

ia′

µp2p̃2

)
pρ1G

AA
µρ2(p)

(
ΣBB
ρ1ρ2,σ1σ2(p) + 2ΣBB̄

ρ1ρ2,σ1σ2(p) + ΣB̄B̄
ρ1ρ2,σ1σ2(p)

)
pσ2G

AA
νσ1(p)

}
.

(5.54)

The expression B =
∑
i
Bi can now be extracted from (5.54) and is explicitly given by

B =
g2

8π2µ4

{
p̃µp̃ν

(
16µ4

(p̃2)2
+

θ4λ4

2(p̃2)4

)
− 7λ2µ2

θ4

(p̃2)4
(
p2δµν − pµpν

) (
4− p̃2Λ2

)
+
(
p2δµν − pµpν

) [
ln 2− ln p̃2 − lnΛ

](5

3
µ4 +

3λ2µ2θ2

(p̃2)2
+
λ4θ4

(p̃2)4

)}
+ finite . (5.55)

Next we need to derive the inverse of the tree level gauge boson propagator (5.32c)9

A ≡ ΓAAµν (p). According to (D.4.1) we get, after writing the gauge fixing term of the
action (5.19) with general α,

Aµν ≡ ΓAAµν (p) =

(
k2 +

a′2

k̃2

){
δµν −

kµkν
k2

+
1

α

kµkν(
k2 + a′2

k̃2

)}
9A remark regarding the symbolic notation: at the beginning of this section the propagator GAA

µν

has been identified with 1
A . Now one could naively think of A to be simply its inverse. However, this

would imply a index structure in the denominator. Therefore note that in a more stringent (less lazy)
way we would have to write 1

A ≡ ( 1
A )µν and A ≡ (A)µν , where the second is defined via requiring

( 1
A )µν(A)νρ = δµρ.
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=

(
k2 +

a′2

k̃2

){
δµν −

kµkν
k2

(
1− 1

α

k4

k4 + a2

)}
. (5.56)

With the last two equations we can now apply (5.50), i.e. in the present case

GAA,1l−complete
µν (p) =

1

A− B
. (5.57)

Attempt for renormalization and discussion

Before proceeding to the renormalization of the gauge boson propagator, let us briefly
recapitulate the notion of renormalization (c.f. for example [66] chapter 9, section 6.).

• The bare Lagrangian LB up to the first loop order of the action is obtained by
adding to the original tree level Lagrangian L0 (here 0 denotes zero loop order)
the expression L1. It is constructed in a way that the resulting propagator is
GAA,1l−complete, i.e. ∫

d4xL0(g,m, . . . )⇒ GAA
µν (p) ,∫

d4xLB(g,m,Λ, . . . )⇒ GAA,1l−complete
µν (p), .

In this symbolic expressions, we have made explicit the dependence of the action
on the parameters of the theory (g is the coupling constant, m the mass, Λ a UV
cutoff introduced by regularization of divergent expressions. Whereas the first two
are physical parameters, the latter is called unphysical).

• If the terms present in L1 are of the same form as those of L0, than they can be
combined by defining the bare or renormalized parameters of the theory, leading
to a action which is of the same form as L0, but where the original parameters
have been replaced by the renormalized parameters:

(g,m,Λ, . . . )⇒ (gR,mR, . . . ) ,⇔∫
d4xLB(g,m,Λ, . . . )⇒

∫
d4xLB(gR,mR, . . . )

The form invariance can be expressed via renormalization conditions, for example
by stating for the two-point function of the scalar ϕ4-theory at the tree level

obeys Γ
(2)
(0)(p)

∣∣
p2=0

= m2. Then, if they are still valid after loop calculations, i.e.

if Γ
(2)
(1)(p)

∣∣
p2=0

= m2
R in the present example, this is equivalent with the form

invariance or stability of the Langrangian.
Note that the UV cutoff Λ is not present any more in the action, because it has been
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absorbed in the physical parameters. In this approach, the bare or renormalized
quantities are the physical quantities of the theory10.

• Equivalently we can write down the one loop propagator (or its inverse, the vertex
function), examine the possibility of absorbing the divergences in the parameters
of the tree level propagator, leading to renormalized parameters, and introduce
them in the action. The two equivalent possibilities are summarized as follows,
applied to the case under consideration, i.e. the renormalization of the gauge
boson propagator, which depends on the parameter11 a′ = λ/µ.

L0(a′, g) L0(a′, g)
↓ ↓

GAA
µν (a

′) + Feynman rules GAA
µν (a

′) + Feynman rules

↓ ↓
1 loop calculations 1 loop calculations

↓ ↓
GAA
µν,1l−complete(a

′) LB(a′, g,Λ) = L0(a′, g) + L1(a′, g,Λ)
↓ ↓

a′ → a′R, G
1l−ren,AA
µν (a′), a′ → a′R, Lren(a′R, g)
↓ ↓

Lren(a′R, g) G1l−ren,AA
µν (a′)

We will follow the approach on the l.h.s.

• If the loop calculations lead to terms which can not be absorbed in the parameters
of the theory, the form of the action will be modified, and the original theory L0
is not renormalizable. Symbolically,

if LB(a′, g,Λ) ≡ Lren(a′R, g,Λ) + L′1(a′, g,Λ) =⇒ non renormalizable ,

where Lren = L0 + L′′1 is the sum of the tree level action and the one loop part
that can be absorbed in the parameters of the first. L′1 denotes the part of L1
that leads to a modification of the form of the action, which is equivalent to a
breaking of the renormalization conditions.

• Given the case that by loop calculations we encounter divergent terms that cannot
be absorbed in the parameters of the theory. If their number is bounded, we could
introduce new terms in the action, so called counterterms, which compensate them.
This would then lead to a new theory given by the so called effective action, which
is renormalizable. However, if the number of divergent loops increases with the
order, no renormalizable action can be defined, as the effective action will never
become stable.

10Note that other authors use different conventions. E.g. in [66], the original parameters are the
physical ones and therefore finite, and the bare quantities are divergent. In the approach followed here,
we assume the original parameters to be divergent; then, adding the divergent expressions from one loop
calculations lead to a compensation of the infinite expressions.

11Note that wave function renormalization is not being made explicit for reasons of simplicity.
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Let us apply the above said to the case under consideration. Making explicit the qual-
itative divergence structure of A and B, we can write for the inverse of (5.57) (with
a′2/p̃2 = a2/p2):

ΓAA,1l−completeµν (p) = A
(
p2,

a′2

p̃2

)
+ B

(
p2, ln(p2),

1

p2
,
1

p4
,
1

p6
, ln(Λ) ,Λ2

)
. (5.58)

We observe the following: in contrast to commutative gauge models and even though
the vacuum polarization tensor Πµν only had a logarithmic UV divergence, the full B
diverges quadratically in the UV cutoff Λ. Secondly, despite the fact that Πµν exhibited
the usual quadratic IR divergence, B behaves like 1

(p̃2)3
in the IR limit. Both proper-

ties arise due to the existence (and the form) of the mixed AB and AB̄ propagators.
Whereas the first point represents no problem, the second does: from the above discus-
sion follows that terms of the form p2 and 1

p2
can be absorbed by wave function and a′

renormalization, while the more divergent terms cannot be absorbed, i.e. the form of
the propagator is modified implying new counterterms in the effective action. Therefore,
the original theory is not renormalizable.
Next it should be examined whether a finite number of counterterms could be intro-
duced, leading to a renormalizable effective action. This is done in the next section,
where higher loop orders are examined.

5.7 Higher loop calculations

In the light of attempting to construct a renormalizable effective action, it should be
understood whether the number of possible counterterms is finite, or if it increases with
the loop order. Motivated by the previous section, which showed that renormalizability
of the model (5.18) is impeded by the IR divergences not absorbable in the parame-
ters of the action, we will now investigate the qualitative IR behaviour of higher loop
expressions. In other words, the aim is to identify possible poles at p̃ → 0 for loops
of higher order. More specifically, we will focus on the integrands of those expressions,
which result from inserting the one-loop corrections with amputated external legs of
Section 5.6.2.
Due to the high number of possibilities of constructing such graphs, we will solely focus
on the IR behaviour of chains of n non-planar insertions denoted by Ξϕ1ϕ2(p, n), with
the external fields ϕ1 and ϕ2. These expressions may be part of a higher loop graph. For
example, connecting them with the legs of a vertex leads to a 1PI graph of order n+ 1.
More generally it could be inserted in any loop graph of order i, which leads to a graph
of order i+ n. Being interested in the IR divergence structure, we will examine only a
few exemplary configurations in this section - especially those for which one expects the
worst IR behaviour.
To start with, let us state that amongst all types of two point functions, the vacuum po-
larization shows the highest, namely a quadratic divergence. Amongst the propagators
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those with two external double-indexed legs (B, B̄, ψ and ψ̄) feature the highest (quar-
tic) divergence in the limit of vanishing external momenta. This directly leads to the
most divergent chains, as they are composed by one loop corrections and propagators
in between, as investigated in the following.

5.7.1 Chain of vacuum polarizations

A chain of n vacuum polarizations Πnp
µν(p) (see Eqns. (D.6a) and (D.6b)) with (n + 1)

AA-propagators ((n−1) between the individual vacuum polarization graphs, and one at
each end) leads to the following expression (for a graphical representation, see Fig. 5.6):

pµ

· · ·

1 n2

pν

Figure 5.6: A chain of n non-planar insertions, concatenated by gauge field propagators.

ΞAAµν (p, n) =
(
GAA(p)Πnp(p)

)n
µρ
GAAρν (p)

=

(
2g2

π2

)n
1(

p2 + a′2

p̃2

)n+1

p̃µp̃ν
(p̃2)n+1

. (5.59)

Note that due to transversality, from the propagator (5.32c) only the term with the
Kronecker delta enters the calculation. For vanishing momenta, i.e. in the limit p̃2 → 0
the expression reduces to

lim
p̃2→0

ΞAAµν (p, n) =

(
2g2

π2

)n
p̃µp̃ν

a′2(n+1)
, (5.60)

exhibiting IR finiteness which is independent from the number of inserted loops.

5.7.2 Chain of truncated AB / AB̄ one loop corrections

Another representative is the chain

ΞAϕ(p, n) ≡ GAϕ(p)
(
Σnp,ϕA(p)GAϕ(p)

)n
, where ϕ ∈ {B, B̄},

which could replace any single GAB (or GAB̄) line. Obviously, one has

ΞAϕµ,ν1ν2(p, n) =
ia′

2µ

(
− 3g2

32π2
a′2
)n

(pν1δµ ν2 − pν2δµ ν1)

p2
[
p̃2
(
p2 + a′2

p̃2

)]n+1n ln p̃
2 , (5.61)
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which for p̃2 ≪ 1 (and neglecting dimensionless prefactors) behaves like

ΞAϕµ,ν1ν2(p, n) ≈ n
(pν1δµ ν2 − pν2δµ ν1)

µp2
ln p̃2 . (5.62)

The latter insertion can be regularized since the pole at p = 0 is independent of n.

5.7.3 Chain including double-indexed propagators

In contrast to the previous examples, higher divergences are expected for chain graphs

being concatenated by propagators with four indices, i.e. GB̄Bµν,ρσ, G
BB
µν,ρσ, G

ψ̄ψ
µν,ρσ, due to

the inherent quartic IR singularities. Let us first consider the combination ΞB̄B(p, n) ≡(
GB̄B(p)Σp,BB̄(p)

)n
GB̄B(p). As before, we can approximate for p̃2 ≪ 1 and, omitting

dimensionless prefactors and indices, and find

ΞAϕ(p, n) ∝
p̃2≪1

n

µ2
ln p̃2

(p2p̃2)n
, (5.63)

which represents a singularity ∀n > 1 (since in any graph, at n = 0, the divergence
is regularized by the phase factor being a sine function which behaves like p for small
momenta). Regarding the index structures, no cancellations can be expected since the
product of an arbitrary number of contracted, completely antisymmetric tensors is again
an antisymmetric tensor with the outermost indices of the chain being free.
Exactly the same result is obtained for ΞBB(p) ≡

(
GBB(p)Σp,BB(p)

)n
GBB(p). From

this it is clear that the damping mechanism seen in ΞAA(p, n) fails for higher insertions
of B/B̄ (and also ψ/ψ̄) fields). Furthermore, the divergence increases with the loop
order.

5.7.4 Summary

The considered examples show a damping for the chain of the vacuum polarization. The
chain including both gauge and auxiliary fields contains poles, however independent
of the order and hence can be regularized. A problem regarding renormalizability is
expected from chains involving only the (doubled indexed) auxiliary fields, as the degree
of divergence increases with the order, and hence one could expect that this leads to an
infinite number of counterterms in the action. It should be noted, however, that this is
nothing more than a hint. One could e.g. expect to cancel the divergences coming from
the sector of auxiliary bosonic fields B, B̄ with those from the fermionic sector ψ, ψ̄12.
As in the one loop case, this assumption would have to be confirmed by explicit loop
calculations.

12Note that we encounter a similar mechanism in supersymmetric or SUSY theories, where quadratic
divergences coming from the bosonic and fermionic sectors cancel each other.
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5.8 Discussion

In the spirit of the Gribov-Zwanziger approach, and due to suggestions of Vilar et al. [14],
we constructed a non-commutative gauge model [2, 3] wich avoids the introduction of
new degrees of freedom. After deriving the Feynman rules, explicit loop-calculations
were presented, and our hope was to show renormalizability - at least at the one-loop
level. In this respect, unexpected difficulties appeared. The soft breaking term, being
required to implement the IR damping behaviour of the 1/p2 model in a way being
compatible with the Quantum Action Principle or QAP of Algebraic Renormalization
(AR), gives rise to mixed propagators GAB and GAB̄. These, in turn, allow the inser-
tion of one-loop corrections with external B-fields into the dressed AA propagator (see
Section 5.6.3) and, therefore, enter the renormalization. Despite all corrections featur-
ing the expected 1

p̃2
IR behaviour, the dressed propagators with external AB or AB̄

legs multiplicatively receive higher poles due to the inherent quadratic divergences in
GAB(p) (and GAB̄(p)) for p→ 0. As a consequence, the resulting corrections cannot be
absorbed in a straightforward manner.
In order to investigate the possibility of the construction of an effective action (i.e. with
a finite number of counterterms to be added to the tree level action), we have also
investigated the structure of singularities in higher-loop integrands by studying chain
graphs consisting of tree-level propagators, and one-loop corrections of various types. It
turned out that chains containing gauge fields benefit from the damping of the propaga-
tor (5.32c) while those consisting (solely) of concatenated B and B̄ fields and insertions
do (expectedly) not. Hence, at first sight, there exist divergences which increase order
by order, which would indicate non-renormalizability. However, as we pointed out in
Section 5.7, due to the symmetry between the B/B̄ and ψ/ψ̄ sectors, cancellations can
be expected. These already appear in our one-loop calculations, and there is strong
evidence that they appear to all orders. An intuitive argument can be given when con-
sidering the action (5.10) for λ→ 0, i.e. vanishing damping. In this case, the B/B̄ and
ψ/ψ̄ fields may simply be integrated out in the path integral formalism (see Ref. [2]),
and the contributions cancel exactly.
In order to prove renormalizability of the model, one could explicitly conduct the calcu-
lation of all divergent loops to arbitrary order and hence directly determine any coun-
terterms. Yet, tables Tab. 5.2 and Tab. 5.3 will persuade the reader of the impossibility
of realizing this task. The first table lists the number of possible configurations leading
to one loop graphs, depending on the number of involved vertices. E.g. the first line
states that there are four possible configurations when involving only one loop, which
can easily be verified, as there are four different types of vertices. In this context the
type is characterized only by the number of external legs. Table Tab. 5.3 contains a
listing of exemplary configurations for one loop graphs and the corresponding number
of divergent expressions, where each configuration is characterized by the kind and re-
spective number of vertices entering the loops. E.g. the second line indicates that when
combining two vertices with three legs (2× 3V ) in all possible ways leading to one loop
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# of involved vertices # of configurations

1 4
2 10
3 19
4 28
5 37

Table 5.2: Number of possible (one loop) configurations for a given number of involved
vertices.

Configuration # of divergent graphs

1× 3V 12
2× 3V 76
1× 4V 12

1× 3V , 1× 6V 200

Table 5.3: Number of divergent graphs for exemplary one-loop configurations.

graphs, this will lead to 76 divergent expressions13. Fortunately, different renormal-
ization schemes exist, allowing to prove renormalizability in a more efficient way, one
of them being Algebraic Renormalization (AR), which has been used also by Vilar et
al. [14], where they claimed to have proven the renormalizability of their action, which
differs from our model only on how it is localized. In the light of that renormalization
scheme it is most important to maximize the symmetry content of the theory which
is the basis for the generation of constraints to potential counterterms. Therefore, the
symmetries and their resulting algebra has been studied in Section 5.3.

However, as will be discussed in the next chapter (see also [4]) the foundations of
AR are only proved to be valid in local QFTs so far, and hence may not be applicable
in non-commutative field theories, as the deformation inherently implies non-locality.
Nonetheless, the authors claim to have shown renormalizability using Algebraic Renor-
malization. Indeed, an explicit argument which shows that the proof of renormalizability
is questionable comes from the following considerations: it has to be noted that renor-
malizability of the non-local model (3.25) cannot depend on how it is localized. The
reason is the equivalence of the respective path integrals (see [2]). Therefore, we expect
the same problems of IR divergences to appear in all localized versions of (3.25) (and in
particular of the term under consideration (5.1)), including the one of Vilar et al. [14].

13The number of possible divergent graphs has been evaluated via the MathematicaR⃝ routine de-
scribed in Section F, where power counting of Section 5.5 is being applied. This means more precisely
that we count the number of graphs with positive superficial divergence. Note, however, that due to
internal cancellations or symmetries, the effective degree of divergence can be smaller, which implies
that some of the expressions may even become convergent. An example is the vanishing of all tadpoles,
i.e. superficially divergent 1× 3V graphs.
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In fact, from the discussion in Appendix D.1, one notices that the propagators (D.1f)-
(D.1h) and (D.1s) of their action all exhibit the same quartic IR divergences as those of
our present model (5.19), even though the operator Dµ appears at most quadratically
as D2 in the according action (5.5).
In this respect it has to be noted that in commutative space the model of Vilar et al. [14]
should indeed be renormalizable, since the action, apart from the star product, is com-
pletely local and provides the necessary symmetries for the Quantum Action Principle.
Since the propagators are the same in both spaces, and hence show the same quartic
IR divergences, one may expect related IR problems to cancel when considering the
sum of bosonic and fermionic sectors (i.e. B/χ and ψ/ξ). These cancellations should
also take place in non-commutative space (in both models), but the problem of proving
renormalization remains (cf. Section 5.6.3).
Based on this findings regarding the problem of applying AR to non-commutative gauge
theories, the next chapter Section 6 will be dedicated to a general review of existing
non-commutative field theories. In particular we will investigate on the possibility of
generalizing renormalization schemes which have been succesful for non-commutative
scalar theories and / or commutative gauge theories to non-commutative gauge models.
An alternative approach which avoids the above-mentioned uncertainties will then be
presented in Chapter 7.
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The last chapter has revealed an unexpected complexity in our attempt to prove
renormalizability for the respective gauge model: on the one hand, although the model
has been constructed on the basis of Gurau’s renormalizable 1

p2
scalar model, one loop

renormalization seems far more complex for the gauge version (c.f. Section 5.6.3). On
the other hand, standard renormalization schemes might not be applicable in the case
of θ-deformed gauge theories, a discussion already initiated in Section 5.7.4. In this
chapter, which heavily relies on our paper [4], we will therefore try to better understand
which are the problems specific to non-commutative gauge models. We will point out
obstacles for renormalization on a very general basis, and not particular to any specific
model. This will be done by first taking a step backwards and reviewing the history
of non-commutative renormalization. In order to allow for a self-contained discussion,
we will repeat some of the findings of the previous chapters (especially Section 1.5 and
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Chapter 2), where it is required. In doing so, this will allow us to see the big picture,
revealing where non-commutative renormalization succeeded, and for which reasons it
failed whenever this was the case. In the successful cases, renormalization schemes
have been applied. We will therefore investigate the possibility of extending them to
non-commutative gauge theories in Section 6.2. A final discussion of non-commutative
renormalization will conclude this chapter.
As in the previous work, in this chapter we presume θ-deformed R4

θ endowed with the
non local Groenewold-Moyal star product [28, 29]

(Φ1 ⋆ Φ2) (x) ≡ Φ1(x) e
i
2

←−
∂ µθµν

−→
∂ νΦ2(x) , where iθµν ≡ [xµ ⋆, xν ] . (6.1)

In the simplest case considered here, the antisymmetric real matrix θµν is constant and
has mass dimension −2. Again we will use the notation p̃µ ≡ θµνpν .

6.1 Non-commutative renormalization: a review

Ever since the first non-commutative quantum field theory models were constructed,
the biggest obstacle has been the infamous so-called UV/IR mixing problem [37], where
certain types of Feynman graphs, the non-planar graphs, exhibit new unrenormalizable
IR singularities in exceptional momenta (see [11, 26, 9] for a review).
Historically, (an incomplete list of references is given by [74, 75, 76, 77, 78]) the IR
divergences have been neglected in the discussion of renormalization. Instead, direct
correspondences between known commutative results and the outcome of planar part
calculations of the non-commutative counterparts have been sought. Soon afterwards,
there appeared a series of publications [37, 38, 26, 79, 80] describing the finally discovered
UV/IR mixing in all detail.

6.1.1 Implications of the UV/IR mixing

After discovering the UV/IR mixing, it was not clear at this point how to apply renor-
malization in the presence of this new effect. More precisely, when computing a simple
tadpole graph with n non-planar insertions for ϕ4-theory näıvely generalized to the
non-commutative case, one gets [37, 49, 48]

∝ 1

p̃2
⇒

. . .

∝
∫
d4p

1

(p̃2)n
1

(p2 +m2)n+1
.

(6.2)

Hence, the IR singularity grows order by order. The case is very similar for a U⋆(1)-field
theory (the star denoting the θ-deformation of the product), where one finds the same
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quadratic IR behaviour in the non-planar part of the self-energy (which is independent
of the gauge fixing [61, 62, 81, 63]). Due to BRST invariance, it takes the form

ΠIR
µν ∝ g2

p̃µp̃ν
(p̃2)2

, (6.3)

i.e. pµΠ
IR
µν = 0 due to pµp̃µ = pµθµνpν = 0, and no term exists in the tree level action to

absorb this divergence. Note, that contrary to the scalar case now the divergent term
is endowed with an index structure.
As discussed in Section 1.5, the 1

p̃2
singularities are intimately tied to the Groenewold-

Moyal product. More specifically, the deformation gives rise to phase factors, e.g. for one
loop order of the type eikµθµνpν , with kµ being an internal momentum to be integrated
out, and pµ being an external momentum. In the UV limit the rapid oscillation effec-
tively eliminates UV divergences in (non-planar) loop integrals. However, this damping
behaviour vanishes in the limit pµ → 0 ∀µ or p̃µ → 0 ∀µ, where the phase becomes
unity. Naturally, in this limit the original divergence has to reappear, and in the case
of a quadratic divergence is represented in the form 1

p̃2
.

As a consequence of the UV/IR mixing, the following new problems appeared:

• The IR divergences are no ‘classical’ singularities appearing in some ill-defined
loop integrals requiring regularization, but divergences in the external momentum.
Therefore, the well known renormalization schemes from commutative quantum
field theory cannot be applied straightforwardly.

• The standard choice for the renormalization conditions [57, 60] cannot be taken
due to the appearance of the 1/p̃2 term in loop corrections1.

From the short discussion we conclude the following:

• The näıve approach of starting from a renormalizable commutative model and
replacing all products with Groenewold-Moyal products does not lead to a renor-
malizable non-commutative theory.

• Introduction of a θ-deformed product into quantum field theories results in inher-
ent non-locality (i.e. divergences for vanishing external momenta). Therefore, the
renormalization schemes known from commutative theory that require locality,
cannot be used directly, c.f. Section 6.2.

6.1.2 Successful mechanisms in renormalizable scalar models

As has been shown in Chapter 2, the problems could be overcome at least in the scalar
case, first by the Grosse&Wulkenhaar breakthrough [13, 6, 43], and later by the model
of Gurau et al. [7]. Their approach was the following:

1One should also mention, that supersymmetry can in principle improve the situation by reducing
the degrees of divergences, and hence the UV/IR mixing (An incomplete list of references is given
by [82, 83, 84, 85, 86]).
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• Introduction of an additional counterterm in the action in order to be able to
absorb and damp the non-local IR divergences which are generated in loop calcu-
lations.

• Application of a suitable renormalization scheme in order to prove renormalizabil-
ity to all orders of perturbation theory. For the GW-model, this was achieved
by using flow equations [45, 87], i.e. via application of the Polchinski approach
and Multiscale Analysis in a matrix base formulation [13, 6]. For the 1

p2
-model,

Multiscale Analysis (MSA) in x-space [7, 43] has been used.

Both models have furthermore in common that they are formulated on Groenewold-
Moyal deformed [28, 29] Euclidean space R4

θ (rather than Minkowski).
The models differ in some points, which however do not affect renormalizability: while
translation invariance is broken explicitly in the Grosse-Wulkenhaar model by adding
an oscillator-like term to the action, the scalar 1/p2 model avoids this problem through
a non-local bilinear term of the form ϕ ⋆ a

�ϕ for the quadratic one-loop IR divergence
inherently generated by the phase factors of the non-planar part at one-loop level. On the
other hand, the Grosse-Wulkenhaar model implements the so-called Langmann-Szabo
duality [44] and kills the infamous Landau ghost [88, 89], whereas the scalar 1/p2 model
does not.

6.1.3 State-of-the-art

Before proceeding, let us briefly summarize the open problems of non-commutative
quantum field theory. Despite of almost a decade of work in this field, two important
steps have not been achieved yet:

• A good handling and efficient computation of Feynman diagrams on non-commuta-
tive Minkowski space-time and the construction of a candidate for a renormalizable
scalar model, such as a Minkowskian version of the Grosse-Wulkenhaar or the
scalar 1/p2 model, although for the latter a promising candidate has recently been
put forward [90];

• The construction of a renormalizable gauge model, or more precisely, a rigorous
proof of renormalizability of one of the promising candidates [53, 46, 47, 91, 8, 1,
2, 3].

Regarding the first point, we only would like to mention that it has been claimed that
the UV/IR mixing might not be present in a Minkowskian non-commutative QFT if
one considers proper Feynman rules taking into account a generalized notion of time
ordering [92, 93, 94, 95, 96, 97]. However, these conjectures still lack a rigorous proof.
The present chapter focuses on the second point.
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6.1.4 Generalization to gauge models

Along the lines of the above approach and following the same ideas, we have constructed
our gauge models in Section 3.1 and Section 5.2. Now the question is: if renormalizability
was so straightforward in the scalar case, what causes difficulties when generalizing the
same ideas to gauge models?
Let us recapitulate our findings of the work done so far in this thesis, and review them
on a very general basis. Remember that we started with U(1) gauge fields on R4

θ. We
have seen that in the näıve ansatz (i.e. by simply replacing the ordinary product by a
star product), the gauge invariant Yang-Mills action is given by

SYM⋆ =

∫
d4x

1

4
Fµν ⋆ Fµν , with

Fµν = ∂µAν − ∂νAµ − ig [Aµ ⋆, Aν ] . (6.4)

The star product (6.1) modifies the initial U(1) algebra in a way that it becomes non-
Abelian2. We have called the resulting algebra U⋆(1) (c.f. Section 1.1)3.
As indicated above, the action (6.4) does not lead to a renormalizable model no matter
how the gauge fixing and Faddeev-Popov terms are chosen. The reason is, as in the
näıve scalar case, that one finds a quadratic IR divergence in the non-planar part of
the self-energy according to (6.3). Therefore one may suggest that the obstacles are in
principle the same for scalar and gauge models, and that the solutions that worked for
the scalar versions [7, 43], i.e. of the method described in Section 6.1.2, should easily be
generalized to gauge models. Obviously, a higher degree of complexity is expected, which
can also be seen when remembering that the work done so far in this thesis respects
mainly the first point of the above mentioned method. Whatsoever, a straightforward
generalization to gauge models does not directly lead to a renormalizable theory due to
the following:

• In contrast to the scalar theory where renormalizability can be restored by adding
a simple non-local term (see Chapter 2), gauge theories contain an additional
requirement for counterterms regarding the tensor structure as observed in Sec-
tion 6.1.1. Indeed, the form of Eqn. (6.3) cannot simply be generated by contract-
ing Fµν with θµν (c.f. [8] and Section 3.1.3), but requires ‘fine tuning’ of the action.
This has been done in [1, 2, 3, 46, 47, 53, 8], as discussed in detail in the foregoing
chapters. However, as we have seen in Section 5.6.3, contrary to the scalar case,
the additional term does not allow to absorb all IR-divergences coming from one
loop calculations.

2In θ-deformed U(N) algebras all defining commutator relations are replaced by star-commutators[
Xa(x)T a ⋆, Y b(x)T b

]
≡

(
Xa(x)T a ⋆ Y b(x)T b − Y b(x)T b ⋆ Xa(x)T a

)
where X,Y are arbitrary func-

tions on R4
θ, and T are the generators of U(N). Hence, even in the special case N → 1 these commuta-

tors do not vanish in contrast to the commutative case. Hence, any Moyal-deformed gauge theory is of
the non-Abelian type.

3It has been shown [98, 99, 100, 101, 102] that only enveloping algebras, such as U(N) or O(N) and
USp(2N), survive the introduction of a deformed product (in the sense that commutators of algebra
elements are again algebra elements), while e.g. SU(N) does not.
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• Furthermore, there is an additional demand for gauge invariance. In commuta-
tive theories, several techniques have been established over the years to conduct
renormalization in the presence of symmetries [60, 57] but application of these
is prevented by an inherent property introduced by the deformation (6.1): non-
locality.

From the first observation follows the need of constructing an effective action, allow-
ing to absorb all divergences. This directly leads to the necessity of generalizing the
renormalization schemes to non-commutative gauge models. We will discuss this issue
in detail in Section 6.2.

6.2 Renormalization schemes in the light of non-commu-
tative gauge theories

In this section we will review some representative renormalization procedures. Far from
being exhaustive, we will only discuss some of the possible techniques, being selected due
to their functioning for non-commutative scalar (Polchinski, MSA) and/or commutative
gauge theories. For each of them, we address issues and possible solutions regarding
their applicability for θ-deformed gauge theories.

6.2.1 The BPHZ approach

In the BPHZ subtraction procedure4 ([103], see [57], [60] for a introduction to the field),
the divergences are absorbed in the parameters of the theory leading to renormalized
quantities.
Lets consider a loop integral J(p) with degree of (UV) divergence n according to näıve
power counting. By subtracting from its integrand I(p) the first n terms of its Taylor
expansion in the external momentum p, we get an integral which is convergent denoted
by Ĵ(p). By considering the equivalence

∂

∂pµ1i1
. . .

∂

∂pµnin
Ĵ(p) =

∂

∂pµ1i1
. . .

∂

∂pµnin
J(p) , (6.5)

we get the general solution:

J(p) = Ĵ(p) + c+
n∑
l=1

1

l!
ci1...ilµ1...µl

pµ1il . . . p
µl
il
. (6.6)

If the starting action is the most general one (i.e. includes all possible tree level terms)
and suppose it is power-counting renormalizable, than the coefficients lead to a finite
renormalization of the parameters of the theory. If it is renormalizable but not the most

4BPHZ stands for Bogoliubov, Parasiuk, Hepp and Zimmerman.
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general one, this leads to the new counterterms in the action, which are given by the
product of the coefficients ci1...ilµ1...µl

with l differentiated fields.
Obviously, this procedure is only well-defined if the convergence radius of the series
does not vanish. In the case of non-commutative field theories, we definitely expect it
to work for the planar graphs, being (up to a factor) the same as in the commutative
case. However, consider a typical non-planar integral at one loop level:

Jn.p.(k, p) ∝
∫
d4kI(k, p) exp

(
ikp
)
=

∫
d4kIn.p.(k, p) , (6.7)

where k, p are internal and external momenta, respectively, and I(k, p) is essentially the
integrand of the planar expression, i.e. a polynomial where BPHZ might be applied.
Note that the phase factor present in this (momentum space) integral is a direct expres-
sion of the non-locality of the star product in coordinate space. Now let us look at the
Taylor expansion of the whole integrand, which is given by

In.p.(k, p) =I(k, 0) +
∞∑
l=0

1

l!
pµ1 . . . pµl

[
∂

∂pµ1
. . .

∂

∂pµl
In.p.(k, p)

] ∣∣∣∣∣
p=0

=I(k, 0) +
∞∑
l=0

1

l!
pµ1 . . . pµl

[
∂

∂pµ1
. . .

∂

∂pµl
exp

(
ikp
)]
I(k, p)

∣∣∣∣∣
p=0

+ other term with derivations acting also on I(k, p)

=I(k, 0) +
∞∑
l=0

1

l!
(kp)lI(k, 0) + . . . . (6.8)

We see that at each order there appear additional powers in k, steming from the deriva-
tion of the phase factor, which is equivalent to a increase of the power counting degree
of divergence by one at each order. Hence, the BPHZ subtraction scheme is not directly
applicable to non-planar expressions, without previous modifications.

6.2.2 Algebraic Renormalization

The Algebraic Renormalization procedure (in short AR, c.f. [60] for a introduction to
the topic) enables one to determine the most general counterterms for a given action
which are allowed by its symmetry content. Hence, all possible terms resulting from the
brute force ansatz of explicit loop calculations can be retained algebraically5.

Methodology

The application of the Algebraic Renormalization procedure can be summarized by the
following algorithm:

5However, this does not mean that explicit loop calculations would become dispensable, as the pref-
actors still have to be evaluated explicitly whenever required.
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Given a particular action, i.e. a theory at tree level. Determine all symmetries of
the theory. Examples are the gauge invariance (broken after gauge fixing) for ordinary
QED or YM, the broken Ward Identity WI for the gauge fixed U(1) action, and the
Slavnov Taylor identity for Yang-Mills theories. Based on them, we also construct their
algebras, the so called consistency conditions. For our gauge model with soft breaking,
this has been done in Section 5.3.

Now construct the set of all solutions of the consistency conditions ∆i, and let
us define ∆ =

∑
ri∆i, where ri are numerical coefficients. They are determined by

the so called Quantum Action Principle or QAP. It tells us that for a given tree level
(generally order n−1) action, a given symmetry is only true as long as one ignores results
from next loop order calculations, and that the breakings of the symmetries are field
polynomials, which have to be local (i.e. polynomials of fields defined at the same point
in spacetime6). This can be understood when considering that indeed loop calculations
might lead to new terms in the action, disturbing the nice symmetry. By denoting a
symmetry generally with Υ and a possible breaking already present at order (n − 1)
with Ξ we can write:

Υ(Γ(n−1)) = Ξ + ~n∆(n) . (6.9)

For the solutions we have the following possibilities7:

1. Those that can be written as variations of the symmetry under consideration, i.e.
∆ = Υ(∆̂). By redefining the action, i.e. Γ1 = Γ0− ∆̂i, we can restore the original
symmetry content. Again we have two cases:

(a) Polynomials ∆̂i of the same form as those already present in the action,
so called invariant counterterms, leading only to a change in the prefactor.
For the above example of the gauge condition, e.g. Υ ≡ δ

δb we would have

∆ = ∂A, ∆̂ =
∫
d4xb∂A. Than ∆̂ is a invariant counterterm.

(b) Polynomials ∆̂i not of the same form, i.e. noninvariant counterterms. They
will be subtracted from the action Γ(n−1), leading to a new effective action
Γn being invariant under the transformation under consideration. For the
example of the Slavnov-Taylor identity S, i.e. the generalization of the BRST
symmetry s on a functional level, ∆ = s(∆̂) and Γ(1) = Γ(0) − ~∆̂. Due to
s2 = 0 we have: sΓ(1) = 0, hence the symmetry is again valid at first loop

order. Note that ∆̂ has ghost number zero.

6This is a obvious consequence of the fact that the original action is made of local polynomials. Now,
a symmetry or WI always expresses the invariance of the whole action under the variation of ”some
part”, e.g. one of the local fields. It follows then that a possible breaking has to be defined at the same
spacetime point, i.e. be local as well.

7In the following, the term “(non)invariant” is intended to be used in the context of form invariance,
whereas in the standard literature it is usually referred to as “BRST-invariance”. However, note that
counterterms may result from all symmetries (not only BRST symmetry), and that our notation seems
to distinguish more precisely the various cases.
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2. Polynomials that cannot be written as variations of a given symmetry ∆i ̸= Υ(∆̂i).
Hence the symmetry cannot be restored, ∆i is a so called anomaly. It is of ghost
number one.

Another way of constructing the non-invariant counterterms which are not anomalies,
i.e. those given under (1b) relies on first constructing all ∆i with ghost number zero and
that respect any other conditions (e.g. PC symmetry). Evaluate if they vanish under
application of symmetry, e.g. s. If not, they have to be included in the original action.

In a more formal language, in order to apply the AR, first the validity of the so-
called Quantum Action Principle (QAP), which is based on the assumption of locality,
[104, 105, 106] has to be proved. Secondly, one has to show that the symmetry content
of the theory at tree level is stable under quantum corrections, i.e. that the theory
is free of anomalies, i.e. the set of polynomials under 2 has to be empty. This latter
point involves the computation of the cohomology [107, 108, 109] H(s) = Ker s/ Im s
(see also [110] for an exemplary application of this concept in commutative theories
and further references) of the nilpotent BRST operator s, or its generalized nilpotent
operator δ which collects all Ward identities in the presence of further symmetries, e.g.
supersymmetry. There, one has to show triviality of the respective cohomology group
for ghost number one local functionals (i.e. anomalies). This again requires locality in
all steps [109].

Excursion: additional counterterm for axially gauged U(1) theory

According to the second method presented in the last section, a short algorithm has
been developed in MathematicaR⃝ programming language and applied to the axially
gauged U(1) action presented in [57]. It could be shown that the set of noninvariant
counterterms given in [57], Eqn.(4.99) is not complete. One missing term, given by

∆̂2,new = (nA)(nd)(dA) (6.10)

could be identified, where n is the axial gauge vector, which is fixed and of mass dimen-
sion zero, and following the notation of [57], the index “2” refers to the counterterms
depending on n. For details c.f. Section F.2.

Applicability to non-commutative quantum field theories

Unfortunately, from the short discussion above it follows that the AR cannot directly
be applied: the QAP does not exist in its usual form, due to the inherent non-locality of
the star product. The proof of the triviality of the cohomology group H(1), or equiva-
lently ghost number one local functionals corresponding to anomalies, fails for the same
reason. Furthermore, the computation of the cohomology class has to be worked out
rigorously for the ghost number 0 functionals F , representing the most general quantum
level action, to fulfill sF = 0.
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In this respect, some efforts for a generalization to non-commutative spaces have
been made. For example, the notion of BRST cohomology and the Chern character has
been introduced in [111] using Connes’ notation of spectral triples [112, 113]. Another
contribution has been the generalization of the descent equations describing Yang-Mills
anomalies to non-commutative spaces [114]. It has also been shown [74] that the sym-
metry content compatible with the QAP can be established for non-commutative U⋆(N)
theories and is invariant under an explicit one-loop UV renormalization. Furthermore,
the classification of anomalies by computation of the cohomology class H(1) of the BRST
operator for general functionals (i.e. counterterms) with ghost number one has already
been achieved [111].

However, in order to fully restore the foundations of AR in the non-local case, still
some work has to be done:

• The computation of the cohomology class has to be worked out rigorously for the
ghost number 0 functionals F , representing the most general quantum level action,
to fulfill sF = 0, as mentioned above.

• It has to be assured in a rigorous way that trivial cohomology alone is sufficient to
prove the absence of anomalies also in the non-commutative case. If this turns out
not to be the case, one has to find out which additional requirements are necessary.

• Whereas the absence of anomalies would imply (power counting) renormalizability8

in the commutative case, this is not true for the non-commutative case. Therefore
a proof that the triviality of the cohomology is sufficient to guarantee renormaliz-
ability in the presence of non-locality is missing as well.

The last point is of very general nature, as it applies to all non-commutative theories: It
concerns the appearance of dimensionless operator insertions in the action. A parameter
of non-commutativity θ with mass dimension −2 allows to freely add composite field op-
erators9 of zero mass dimension, such as D2D̃2 or F̃ 2, to the action, where D̃µ = Dνθµν
is a contracted covariant derivative and F̃ = Fµνθµν is a field strength. Being invari-
ant under all symmetries appearing in the QAP (and gauge transformations in general),
there is no constraint or theorem preventing insertions of arbitrary powers of these oper-
ators both at tree level or as quantum corrections. This is the reason why the sufficiency
of a trivial cohomology class for renormalizability has been questioned above. We have
seen that the AR starts from the most general set of all possible counterterms, and re-
stricts them by applying constraints (we will call this a top-down approach). Since this
set is a priori infinite in the presence of invariant dimensionless insertions, the attempt
to achieve a finite number of counterterms will fail, independent of the cohomology.

We have to conclude, that it is essential to identify constraints that limit the appear-
ance of insertions of massless operators into the action. In this context also the issue
of field redefinitions might be important and maybe some classes of insertions can be

8Note that a power counting renormalizable theory can also be non-renormalizable, c.f. [57].
9Note that this also occurs in scalar field theories. For example, the non-local term �−1ϕ2 could be

inserted into the tree level action to arbitrary power.
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rewritten as such redefinitions (cf. [115] in the context of non-commutative U⋆(1) gauge
theory with Seiberg-Witten maps).

Most general U⋆(1)-action with IR damping

In the context of the foregoing discussion regarding the insertion of an arbitrary number
of dimensionless operators, we have to review our action (3.23) which has been con-
structed in order to get an IR-damped gauge propagator. A generalized form including
damping terms is then given by

Γ =

∫
d4x

{[
1

4
Fµν

(
1 + (D2D̃2)m

)n
Fµν +

1

4
(F̃ )p

1

(D̃2)2
(F̃ )q

+
1

4
Fµνθνρθρσ

1

(D̃2)2
Fσµ + . . .

]
+ b

(
1 + (∂2∂̃2)r

)s
∂µAµ − c̄

(
1 + (∂2∂̃2)u

)v
∂µsAµ

}
, (6.11)

where θµν is given by (3.1) and of dim θ = −2, and D̃µ ≡ θµνDν , from which it follows

that D̃2D2 and F̃ ≡ θµνFµν are both dimensionless. We see that the models (3.25) and
(5.18) represent minimal versions with the choice m = −1, n = 1 and r = u = −1 =
−s = −v in (3.25), and s = v = 0 in (5.18). However, in the light of AR nothing
prevents the other terms of (6.11) to appear in the course of loop calculations.

6.2.3 Multiscale Analysis

Multiscale Analysis or MSA is inspired by the ideas of Wilson concerning the Renormal-
ization Group, i.e. the behaviour of a theory under change of scales. To start with, let
us first state that in this approach, the Schwinger-parametrized propagator gets sliced
with respect to the integration variable. E.g. for ϕ4-theory:

∆̂(p) =
1

p2 +m2
=

∫ ∞
0

dαe−α(p
2+m2) ⇐⇒ ∆(x) =

∫ ∞
0

dα

α2
e−αm

2− (xµ−xν )2

4α ,

∆(x) =
∞∑
i=0

Ci(xµ, xν) , with Ci ∝
∫ M−2(i−1)

M−2i

dα

α2
e−αm

2− (xµ−xν )2

4α , for i ≥ 0 ,

and C0 ∝
∫ ∞
1

dα

α2
e−αm

2− (xµ−xν )2

4α . (6.12)

Here M is a fixed number. Ci can intuitively be imagined to be the piece of field
oscillating with Fourier momenta mainly of sizeM i. The integration result for each slice
can be estimated by an upper bound, which shows that the slicing indeed corresponds
to a scale or energy decomposition of the propagator:

Ci(xµ, xν) ≤ KM2ie−kM
i|xµ−xν | , (6.13)
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with K a positive constant. From this result one directly can see, that under the inte-
gral, i.e. in the course of loop calculations, the sum in (6.12) will diverge, and in order
to regularize it, one replaces the upper summation limit by a (large) integer ρ, serving
as UV cut-off. Furthermore we introduce the decomposition of the fields by defining
Φi =

∑i
j=0 ϕj .

Now, after having introduced the ideas of slicing and scale decomposition we shortly re-
view the philosophy behind MSA. It relies on the idea that the original or bare couplings
of the action are the divergent quantities, and the bare action Sρ(Φρ) itself represents
the physics at high energy scales. But one is interested in a effective renormalized action
S0(Φ0) = S0(ϕ0) in the last slowly varying field. This is done as follows: By performing
ρ − i steps, starting from the highest scale ρ, one gets to an effective action for the
remaining field Φi = Φi−1+ϕi, which has been split into a background field and a (high
energy) fluctuating field. Now in a first step we perform functional integration, which
is performed over ϕi only (The action obviously depends on Φi, i.e. is given by Si(Φi)).
By computation of the logarithm one gets Si−1(Φi−1). By recursion one finally gets S0.
The renormalization proof and evaluation of the infinite counterterms is performed ac-
cording the following algorithm:

• Slicing of the propagator, including the evaluation of the upper bounds for the
slices according to (6.13).

• General definition of the graphs of the theory. For a N -point function (i.e. N
external legs) of loop order (n− 1) (i.e. with n internal vertices) one gets:

AG(z1, . . . , zN ) =

∫
d4x

n∏
i=1

dxi
∏
l∈G

Cl(xµ,l, xν,l) . (6.14)

Here, l stands for all lines of a graph G. In perturbation theory, going over to
higher loop orders is equivalent to consider further, i.e. new “inner” loops, which
is equivalent to consider higher energies. Therefore each propagator in a given
graph is characterized by one index (i.e. one slice instead of the full propagator),
where the inner most propagators carry the highest indices.

• Estimating the upper bounds for the most general graph expression leads to power
counting, and as a consequence allows to determine the superficially divergent
graphs. Note that only those (sub)graphs will be superficial, where the upper
estimate will not decrease with growing difference for the inner and outer slice
indices.

• The divergent graphs will then lead (as usual in perturbative renormalization) to
a redefinition of the parameters of the theory.

• In the usual way, an action is called renormalizable and stable, if the divergent
graphs will only lead to a redefinition of parameters already present. This is the
case, if for each divergent loop having N external legs (to arbitrary loop order),
a N -point tree level function is already present in the original action. Otherwise
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this leads to a finite number of counterterms, i.e. to a new renormalizable effective
action. If the number of primitively divergent graphs grows with the loop order,
the theory is not renormalizable.

The above procedure has been applied to the Grosse-Wulkenhaar oscillator model in
the matrix base [43] and the a/p2-model of Gurau et al. in x-space [7]. Consider that by
extending the same procedure to a gauge theory, in a first step breaks gauge symmetry
due to the slicing of the propagator. Therefore, in the end one has to show that gauge
invariance has been restored for the effective action.
In Ref. [116], attempts to treat pure Yang-Mills models within this renormalization
approach are described. The authors tried to construct Schwinger functions (i.e. the
Euclidean counterpart of the Green functions) of the field in Feynman or Landau gauge
with an IR cut-off. However, their approach was unsuccessful: On the one hand the
functional integrals they obtained lacked sufficient positivity, and on the other hand the
related Gribov problem [64] was not solved.

Therefore it may be suggested to handle the Gribov problem using a soft breaking
mechanism [2, 72] similar to the one present in the Gribov-Zwanziger action ([68, 73, 71],
c.f. also Chapter 4) when using the MSA for gauge theories, and see if renormalizability
can in principle be achieved.

6.2.4 Polchinski approach

Let us further mention the Polchinski approach which has successfully been applied to
the Grosse-Wulkenhaar model [13, 6]. Similar to MSA it relies on the Renormalization
Group approach of Wilson. In contrast to MSA where different scales are treated simul-
taneously, the Polchinski apporach goes through the scales in an inductive way.
The case of (commutative) spontaneously broken SU(2) Yang-Mills theory has been
discussed by C. Kopper and V. F. Müller [117]. Their starting point was the classical
BRST invariant action including all (i.e. a finite set of) counterterms satisfying certain
symmetry constraints. Since the regularization (which is required in the Polchinski ap-
proach) breaks the local gauge symmetry explicitly, the counterterms are only required
to be invariant under a global SO(3) isosymmetry. The authors showed that this ansatz
solves the flow equations to all orders by induction. In the case of non-commutative
gauge theories the set of all possible counterterms is infinite, but one could choose a re-
stricted, finite set of counterterms instead. Renormalizability would then be established,
if it could be shown that this finite set solves the flow equations.

6.3 Discussion

We have reviewed the current status of renormalization of non-commutative quantum
field models. The effect of UV/IR mixing gives rise to the well-known quadratic IR
divergence in the external momentum p. In gauge theories this singularity is endowed
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with a new type of (transversal) tensor structure pρθρµpσθσν ≡ p̃µp̃ν which cannot
be absorbed in a straightforward manner. For scalar models it has been shown that
this can be done by adding a corresponding non-local term into the tree level action.
This leads to renormalizability because the insertion alters the propagator in a way
that it ‘damps’ in the IR limit. In this respect, mainly two approaches have been
followed: The Grosse-Wulkenhaar model featuring an oscillator-like term [13, 6], and
the 1/p2 model by Gurau et al. [7]. Both have been proven to be renormalizable up
to all orders using ‘bottom up’ schemes, such as the so-called Multiscale Analysis and
the Polchinski approach. From the point of view of renormalization the inherent non-
locality introduced by the θ-deformed Groenewold-Moyal product turns out to be a great
obstacle since almost all ‘classical’ procedures rely on the presumption of locality10 . It is
well known that omitting the latter requirement generally leads to non-renormalizability
since it allows for the insertion of arbitrarily high powers of massless operators into the
action. This is exactly the problem one is facing in non-commutative theories. In
addition, in gauge models, the mentioned insertions are completely invariant under any
symmetry compatible with the well known Quantum Action Principle, BRST, or gauge
transformations. At present, there is no criterion to rule out these terms, and the set
of all possible counterterms, which is the starting point for ‘classical’ renormalization
schemes such as the Algebraic Renormalization program, is a priori infinite.

In order to find a way out of this misery, and towards renormalizability of non-
commutative gauge models, we have made several suggestions. The first one is to use
schemes, such as the Polchinski approach or Multiscale Analysis, which both should in
principle work out for gauge theories. However, there are indications that, in addition
to the standard gauge fixing, a soft breaking mechanism is required in order to avoid
the Gribov problem violating positivity of functional integrals. This point will have to
be studied more thoroughly before the mist clears.

Another approach is to rigorously prove that trivial cohomology automatically in-
duces absence of anomalies, and renormalizability, even in the presence of a deformed
product. Since the latter point is rather questionable one will have to find an additional
criterion to restore validity of the Algebraic Renormalization procedure, or find some
proper modification. Finally, it will be of great importance to investigate possible con-
ditions to restrict the appearance of arbitrary powers of massless operator insertions,
which affect all non-commutative models on the market, including the model of Vilar
et al. [14]. It follows that - contrary to what has been stated by the authors - their
renormalization proof cannot be regarded as being complete.

Finally, let us summarize the findings of this chapter in the light of our aim to
construct an effective renormalizable action for the model presented in Chapter 5. We
may state that at this point, a generalized multiscale approach is the appropriate tool at
our hands. However, instead of applying this approach to the rather complicated action
(5.18), in the next Chapter we will break new ground and present an alternative and

10In the context of renormalization schemes requiring locality also other procedures than BPHZ or
AR have to be mentioned, e.g. the bi-algebra based approach of Epstein and Glaser [118].
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more simple model, leading finally to a promising candidate for a renormalizable action
remedying the UV/IR mixing problem of non-commutative gauge theory.
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Chapter 7

The BRSW model

In this chapter which heavily relies on [5] we will present a new type of U⋆(1) gauge
model, and deliver strong arguments for the conjecture that it is renormalizable to all
orders. A careful analysis of the problems encountered for the previous models and
lessons learned will lead to the construction of the new model in Section 7.1. After
presenting its symmetry content (Section 7.2) the Feynman rules and power counting
will be derived in Section 7.3. The fact that one-loop corrections to the gauge boson
propagator will reduce to the three graphs (and the same divergence structure) which
already appear for the näıve U⋆(1)-model will reveal the simplicity of the new action
with respect to the previous models, as shown in Section 7.4. There we will also see
that the gauge boson propagator allows for the absorption of all divergences of the
vacuum polarization, i.e. one-loop renormalizability of the model will be shown. A
short analysis of the IR-behaviour at higher loop order will lead to the strong conjecture
of renormalizability to all orders of the BRSW model. After deriving the one-loop
corrections to the vertices and the β-function, we will conclude by a short summary of
the findings and address the next step of a rigorous renormalization proof still to be
done.

7.1 Construction of the BRSW model

7.1.1 Preliminary considerations

Before proceeding to the construction of the new model, let us briefly summarize the
problems discussed in Section 5.8 for the previous model, the ideas behind its construc-
tion, which will very naturally lead to the more simple action of this Chapter. The
drawbacks associated with the model (5.18) are the following:

• The tree level gauge propagator does not allow for the absorption of the IR di-
vergences appearing in the full one loop expression. The reason is the appearance
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of IR divergences of new type due to the new Feynman rules, involving the gauge
field Aµ and the auxiliary fields. Yet, even if we would only have encountered the
IR divergence of the vacuum polarization already present in the case of the näıve
gauge model, there would be no term in the propagator capable of absorbing it.
This latter is given by

ΠIR
µν(k) ∝

k̃µk̃ν

(k̃2)2
, (7.1)

and is the same found in the previous models of this thesis.

• The mass dimension of -2 of the matrix θµν implementing non-commutativity
between the space variables leads to the possibility of arbitrary insertions of the
dimensionless operator D2D̃2 and F̃ = θµνFµν in the effective action. Even when
considering a minimal tree level action, they may and do appear as counter terms
in the effective n-loop action.

• The action is rather complicated, and concrete calculations are very involving, due
to the appearance of new vertices and mixed propagators with respect to the näıve
action involving the auxiliary fields.

Let us recapitulate the ideas behind the construction of the last model:

• The starting point was the model of Gurau et. al. remedying the UV/IR mixing
for the scalar ϕ4⋆-theory by implementing a damping behaviour for the propagator.

• The 1
p2
-term was then implemented for gauge models in a gauge invariant way,

leading to the desired damping also for the gauge field propagator at tree level.
Yet, this latter is non-local1, i.e. an infinite number of vertices appeared. In order
to localize it and according the Gribov-Zwanziger approach, new fields forming
BRST-doublets have been introduced. This finally led to a finite number of vertices
while keeping the mentioned damping behaviour.

• As a side-effect, also mixed propagators and vertices appeared, leading to a rather
complicated IR-divergence structure for the full gauge boson propagator, impeding
a direct IR-renormalization as mentioned before.

Now let us make a step backwards, recapitulate our goal and the assumptions our work
was based on so far, leading to a constructive criticism of the latter and as its consequence
to a new model avoiding all mentioned drawbacks.

Our goal is the construction of a renormalizable U⋆(1) gauge theory, remedy-
ing the UV/IR mixing problem present in the näıve model obtained by simply
replacing the ordinary product by the star product.

Our work was then based on the following assumptions:

1Let us mention again that we encountered two types of non-locality: a inherent one due to the star
product, and a second one (addressed in the context above) due to the inverse of a covariant derivative.
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1. This goal may be achieved via a damping of the gauge propagator.

2. The damping has to be implemented in a gauge invariant way.

3. The antisymmetric matrix implementing non-commutativity is of mass dimension
-2.

While the first assumption must be regarded as essential keeping in mind that IR
problems are expressed via the behaviour of the gauge propagator, assumption 2 grew
historically. Indeed, from the Gribov Zwanziger approach (see Chapter 4) we know that
the damping is implemented via the soft breaking. This can nicely be seen when looking
at (5.11), showing the equivalence with the undamped action for vanishing Gribov-like
parameter λ. Here the question arises: Why not implement the damping directly via
the soft breaking, avoiding the detour via a gauge invariant action term? A further
simplification arises when considering that the propagators stem from the bilinear part
of the action. The appearance of the additional Feynman rules spoiling renormalizability
(in the IR sector) was a side effect for achieving our goal of implementing the damping,
due to the coupling of the full field strength tensor Fµν to the auxiliary fields. This
leads to the next question: can’t we avoid additional Feynman rules involving Aµ while
implementing the desired damping, by simply modifying the bilinear part only? Let us
therefore split Fµν into a non-interacting and a interacting part:

fµν ≡ ∂µAν − ∂µAν , Fµν = fµν + ig [Aµ, Aν ] . (7.2)

Regarding the last assumption it should be noted that it is the property of antisymme-
try which is essential for constructing the non-commutative counterparts for fields and
variables. We are therefore free to split θµν into a parameter ε carrying the dimensions
and a dimensionless matrix θµν ,

θoldµν → εθµν , (7.3)

with

θµν =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 . (7.4)

The Moyal deformed product now gets

[xµ ⋆, xν ] ≡ xµ ⋆ xν − xν ⋆ xµ = iεθµν . (7.5)

We will from now on use the abbreviations ṽµ ≡ θµνvν for vectors v and M̃ ≡ θµνMµν

for matrices M .
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7.1.2 The model

Based on the previous considerations and equipped with the new conventions, the fol-
lowing action S formulated on Euclidean R4 is put forward:

S = Sinv + Sgf + Saux + Sbreak + Sext ,

Sinv =

∫
d4x1

4FµνFµν ,

Sgf =

∫
d4x s (c̄ ∂µAµ) =

∫
d4x (b ∂µAµ − c̄ ∂µDµc) ,

Saux = −
∫

d4x s
(
ψ̄µνBµν

)
=

∫
d4x

(
−B̄µνBµν + ψ̄µνψµν

)
,

Sbreak =

∫
d4x s

[(
Q̄µναβBµν +QµναβB̄µν

) 1

�̃

(
fαβ + σ

θαβ
2
f̃

)]
=

=

∫
d4x

[(
J̄µναβBµν + JµναβB̄µν

) 1
�̃

(
fαβ + σ

θαβ
2
f̃

)
− Q̄µναβψµν

1

�̃

(
fαβ + σ

θαβ
2
f̃

)
−
(
Q̄µναβBµν +QµναβB̄µν

) 1

�̃
s

(
fαβ + σ

θαβ
2
f̃

)]
,

Sext =

∫
d4x

(
ωAµ sAµ + ωcsc

)
, (7.6)

where all products are implicitly assumed to be the deformed Moyal product. This will
also apply to the rest of this chapter. As usual, Aµ denotes the gauge field, c̄ and c are
the (anti-)ghosts and the multiplier field b implements the gauge fixing, in the present
case of the Landau type ∂µAµ = 0. ωAµ and ωc are external sources introduced for
the non-linear BRST transformations sAµ and sc (c.f. (7.8)). Next, the complex field
Bµν and its conjugate B̄µν together with their associated ghosts ψµν and ψ̄µν have been
introduced into the bilinear part of the action in order to implement the IR damping.
Note that these new unphysical fields interact with the gauge field Aµ utmost bilinearly,
hence the appearance of new vertices for Aµ has been avoided.
The additional sources Q̄,Q, J̄ , J allow to restore BRST invariance of Sbreak in the
ultraviolet. In the infrared these sources take their “physical values”

Q̄µναβ
∣∣
phys

= 0 , J̄µναβ
∣∣
phys

=
γ2

4
(δµαδνβ − δµβδνα) ,

Qµναβ
∣∣
phys

= 0 , Jµναβ
∣∣
phys

=
γ2

4
(δµαδνβ − δµβδνα) , (7.7)

implementing a “soft breaking” of the BRST symmetry, where γ is a new parameter of
the theory of mass dimension 1. Finally, also note the introduction of a new dimension-
less parameter σ.
With general Q̄,Q, J̄ , J , the action (7.6) is invariant under the following BRST trans-
formations:

92



Chapter 7. The BRSW model

sAµ = Dµc , sc = igcc ,

sc̄ = b , sb = 0 ,

sψ̄µν = B̄µν , sB̄µν = 0 ,

sBµν = ψµν , sψµν = 0 ,

sQ̄µναβ = J̄µναβ , sJ̄µναβ = 0 ,

sQµναβ = Jµναβ , sJµναβ = 0 . (7.8)

Dimensions and ghost numbers of all fields appearing in the action are listed in Table 7.1.

Table 7.1: Properties of fields and sources.

Field Aµ c c̄ Bµν B̄µν ψµν ψ̄µν Jαβµν J̄αβµν Qαβµν Q̄αβµν ΩAµ Ωc b

g♯ 0 1 -1 0 0 1 -1 0 0 -1 -1 -1 -2 0
Mass dim. 1 0 2 2 2 2 2 2 2 2 2 3 4 2
Statistics b f f b b f f b b f f f b b

7.2 Symmery content

As in the foregoing chapters, let us for completness reasons also list the symmetry content
which would be necessary when applying the Algebraic Renormalization procedure. As
detailed in Section 6.2.2, the symmetries allow to exclude possible counter terms in the
effective action. The Slavnov-Taylor identity describing the BRST symmetry content of
the model is given by

B(S) =
∫

d4x

(
δS

δωAµ

δS

δAµ
+
δS

δωc
δS

δc
+ b

δS

δc̄

)
= 0 , (7.9)

from which one derives the linearized Slavnov-Taylor operator

BS =

∫
d4x

(
δS

δωAµ

δ

δAµ
+

δS

δAµ

δ

δωAµ
+
δS

δωc
δ

δc
+
δS

δc

δ

δωc
+ b

δ

δc̄

)
. (7.10)

Furthermore we have the gauge fixing condition

δS

δb
= ∂µAµ = 0 , (7.11)

the ghost equation

G(S) = ∂µ
δS

δωAµ
+
δS

δc̄
= 0 , (7.12)
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and the antighost equation

Ḡ(S) =
∫

d4x
δS

δc
= 0 . (7.13)

The identity associated to the BRST doublet structure of the auxiliary fields is given by

U (1)
αβµν(S) =

∫
d4x

(
B̄αβ

δS

δψ̄µν
+ ψµν

δS

δBαβ
+ Jµνρσ

δS

δQαβρσ
+ J̄αβρσ

δS

δQ̄µνρσ

)
= 0 ,

(7.14)

and we finally also have the symmetries U (0) and Ũ (0):

U (0)
αβµν(S) =

∫
d4x

[
Bαβ

δS

δBµν
− B̄µν

δS

δB̄αβ
+ Jαβρσ

δS

δJµνρσ
− J̄µνρσ

δS

δJ̄αβρσ

]
= 0 ,

(7.15a)

and

Ũ (0)
αβµν(S) =

∫
d4x

[
ψαβ

δS

δψµν
− ψ̄µν

δS

δψ̄αβ
+Qαβρσ

δS

δQµνρσ
− Q̄µνρσ

δS

δQ̄αβρσ

]
= 0 .

(7.15b)

The symmetry operators U (0) and Ũ (0) may be combined to the operator Q describing
the reality of the action [14] as

Q ≡ δαµδβν
(
U (0)
αβµν + Ũ

(0)
αβµν

)
, (7.16)

which obviously also generates a symmetry of the action (7.6). With the definitions of
the operators BS , Ḡ, Q and U (1) we get the following graded commutators:{

Ḡ, Ḡ
}
= 0 , {BS ,BS} = 0 ,

{
Ḡ,BS

}
= 0 ,[

Ḡ,Q
]
= 0 , [Q,Q] = 0 ,

{
Ḡ,U (1)

µναβ

}
= 0 ,{

BS ,U (1)
µναβ

}
= 0 ,

{
U (1)
µναβ ,U

(1)
µ′ν′α′β′

}
= 0 ,

[
U (1)
µναβ ,Q

]
= 0 ,

[BS ,Q] = 0 . (7.17)

It can be seen that these symmetry operators form a closed algebra.

7.3 Feynman rules and power counting

7.3.1 Propagators

In order to calculate the gauge boson propagator we first integrate over the auxiliary
fields B, B̄, ψ, ψ̄ in the path integral, and assign to J, J̄ , Q, Q̄ their physical values given
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in Eqn. (7.7). The action becomes

Snl =

∫
d4x

(
1

4
FµνFµν +

γ4

4

[
1

�̃
fµν

1

�̃
fµν +

(
σ + σ2

θµνθµν
4

)
1

�̃
f̃
1

�̃
f̃

]
+ s (c̄∂µAµ)

)
,

(7.18)

which by using the abbreviation θ2 = θµνθµν and with the definition of f̃ reduces to

Snl =

∫
d4x

(
1

4
FµνFµν + γ4

[
∂µAν

1

2�̃2
fµν +

(
σ + θ2

4 σ
2
)
(∂̃A)

1

�̃2
(∂̃A)

]
+ s (c̄∂µAµ)

)
.

(7.19)

With the abbreviation

σ̄4 ≡ 2

(
σ +

θ2

4
σ2
)
γ4 , (7.20)

and considering the case where θµν has the simple block diagonal form given in (7.4) so
that k̃2 = k2, we get for the gauge field propagator:

GAAµν (k) =
1

k2
(
1 + γ4

(k̃2)2

)
δµν − kµkν

k2
− σ̄4[

σ̄4 + k2
(
k̃2 + γ4

k̃2

)] k̃µk̃ν
k̃2


=

[
k2 +

γ4

k̃2

]−1 δµν − kµkν
k2
− σ̄4(

k2 + (σ̄4 + γ4) 1
k̃2

) k̃µk̃ν
(k̃2)2

 . (7.21)

For the general action, we encounter furthermore the following propagators:

Gc̄c(k) =
−1
k2

, (7.22a)

GBAµν,ρ(k) =
iγ2
(
kµδσν − kνδσµ − σk̃σθµν

)
2k2

(
k̃2 + γ4

k̃2

)
δρσ − σ̄4[

σ̄4 + k2
(
k̃2 + γ4

k̃2

)] k̃ρk̃σ
k̃2


= GB̄Aµν,ρ(k) , (7.22b)

GBBµν,ρσ(k) = −γ4
(kµkρδνσ + kνkσδµρ − kµkσδνρ − kνkρδµσ)

2k2k̃2
(
k̃2 + γ4

k̃2

)
+

γ4

4k̃2
[
k2
(
k̃2 + γ4

k̃2

)
+ σ̄4

][σθµν (kρk̃σ − kσk̃ρ)+ σθρσ

(
kµk̃ν − kν k̃µ

)

− σ2k̃2θµνθρσ − σ̄4

(
kµk̃ν k̃ρkσ + kρk̃σk̃µkν − kµk̃ν k̃σkρ + kσk̃ρk̃µkν

)
k2k̃2

(
k̃2 + γ4

k̃2

) ]

= GB̄B̄µν,ρσ(k), (7.22c)
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GBB̄µν,ρσ(k) = −
1

2
(δµρδνσ − δµσδνρ) +GBBµν,ρσ(k) , (7.22d)

Gψ̄ψµνρσ(k) = −
1

2
(δµρδνσ − δµσδνρ) . (7.22e)

7.3.2 Vertices

The model (7.6) leads to three vertices which equal those of the “näıve” implementation
of QED on non-commutative spaces found, for example, in Ref. [81]:

k2,σ

k1,ρ

k3,τ

= Ṽ 3A
ρστ (k1, k2, k3) = 2ig(2π)4δ4(k1 + k2 + k3) sin

(
ε
2k1k̃2

)
×

× [(k3 − k2)ρδστ + (k1 − k3)σδρτ + (k2 − k1)τδρσ] ,
(7.23a)

k4,ε

k3,τ

k2,σ

k1,ρ

= Ṽ 4A
ρστϵ(k1, k2, k3, k4) = −4g2(2π)4δ4(k1 + k2 + k3 + k4)×

×
[
(δρτδσϵ − δρϵδστ ) sin

(
ε
2k1k̃2

)
sin
(
ε
2k3k̃4

)
+ (δρσδτϵ − δρϵδστ ) sin

(
ε
2k1k̃3

)
sin
(
ε
2k2k̃4

)
+ (δρσδτϵ − δρτδσϵ) sin

(
ε
2k2k̃3

)
sin
(
ε
2k1k̃4

) ]
,

(7.23b)

k2,µ

q1

q3

= Ṽ c̄Ac
µ (q1, k2, q3) = −2ig(2π)4δ4(q1 + k2 + q3)q3µ sin

(
ε
2q1q̃3

)
. (7.23c)

7.3.3 Power counting

Regarding the superficial degree of UV divergence dγ one gets the following relations
for the number of loops L, external lines Eϕ, internal lines Iϕ and vertices Vϕ for fields
ϕ ∈ {A, c, c̄} (c.f. Section 3.4 for an explanation of the method):

L = IA + Icc̄ − (Vc̄Ac + V3A + V4A − 1) ,

Ecc̄ + 2Icc̄ = 2Vc̄Ac ,

EA + 2IA = 3V3A + 4V4A + Vc̄Ac . (7.24)

By simply counting the UV powers of the Feynman rules one gets:

dγ = 4L− 2IA − 2Icc̄ + V3A + V4A + Vc̄Ac . (7.25)
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This system of equations can be resolved by eliminating the Iϕ and Vϕ which leads to

dγ = 4− EA − Ecc̄ . (7.26)

This is again in agreement with the respective relations for the “näıve” implementation
of non-commutative U⋆(1).

7.3.4 Analysis

Let us start by investigating the behaviour of the gauge boson propagator in the IR
(k2 → 0) and UV limit (k2 →∞). We get

GAAµν (k) ≈


k̃2

γ4

[
δµν − kµkν

k2
− σ̄4

(σ̄4+γ4)
k̃µk̃ν
k̃2

]
, for k̃2 → 0

1
k2

(
δµν − kµkν

k2

)
, for k2 →∞

. (7.27)

In the IR limit we encounter (by construction) a term of the same form as the one-
loop vacuum polarization (7.1). Contrary to the previous models, we have no vertices
involving the auxiliary fields. Hence the only contribution for the propagator at one-loop
level will stem from the vacuum polarization. As will be explicitly shown in Section 7.4,
this will allow for the absorption of the divergence and hence lead to renormalization.
Another advantageous property of the gauge propagator is that the UV limit (from which
divergences originate), admits to neglect the term proportional to γ which reduces the
number of terms in Feynman integrals considerably.

Looking at the ghost propagator (7.22a) we see that it is quadratically IR divergent,
as usual in Landau gauge. Obviously, we could add a damping factor to the gauge
fixing term b(∂A) and the ghost sector c̄∂µD

µc as has been done in (3.25) Ref. [1].
However, such dampings appear in vertex expressions with an inverse power relative
to the respective propagators and, thus, cancel each other. Moreover, these factors
contribute to UV divergences at higher loop orders, and are omitted, hence.

Regarding the other propagators (7.22) involving the auxiliary fields (B, B̄, ψ, ψ̄) it
may be observed that all of them tend towards a constant in the infrared as well as in the
ultraviolet. However, eventually they will not contribute to the physical results, because
respective vertices are missing. This simplifies explicit calculations considerably.

7.4 Vacuum polarization and renormalization

Vacuum polarization

The Feynman rules of Section 7.3 lead to three graphs for the vacuum polarization
Πµν(p), depicted in Fig. 7.1. Note that they are the same as encountered in theories like
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c)a)

b)

Figure 7.1: One loop corrections to the gauge boson propagator.

commutative QCD and the näıve extension of QED to the non-commutative setting. In
order to get the expressions for the three graphs, we expand the integrands according
to (3.47) around small external momenta (which is allowed since we are interested in
the behaviour for p2 → 0). Note that the phase factor is excluded from the expansion,
in order to keep its regulating effect for high internal momenta. By noting furthermore
that all divergences arise from large momenta k of the integrand, the tree level gauge
propagator may be replaced by its values at high momenta (i.e. the expression for
k →∞ in (7.27)). Finally the sum of the integrated results is given by

Πµν(p) =
2g2

π2ε2
p̃µp̃ν

(p̃2)2
+

13g2

3(4π)2
(
p2δµν − pµpν

)
ln
(
Λ2
)
+ finite terms . (7.28)

As usual, Λ denotes a ultraviolet cutoff, and ‘finite terms’ collects contributions being
finite in the limits Λ→∞ and p̃2 → 0, respectively. As expected, in the IR we observe
a quadratic divergence with the tensor structure Eqn. (7.1).

Renormalization of the one-loop gauge propagator

Along the same line as in Section 5.6.3 and according to (5.50), we can write for the
complete gauge boson propagator at one-loop level

GAA,1l−complete
µν (k) =

[
ΓAA,treeµν (k)− ΓAA,corr.µν (k)

]−1
, (7.29)

where the tree level vertex function ΓAA,1l−complete
µν (k) has been identified with A, and

Σ(Λ, p)→ ΓAA,corr.µν (k) = Πµν(k) is given by the vacuum polarization. Renormalizability
(at one loop level) is given, if all divergences present in Πµν(k) may be absorbed in the
parameters and the wave function of the tree level action.

First, we calculate the tree level vertex function. It is given by the inverse of the
gauge boson propagator, which due to Landau gauge fixing does not exist. We therefore
have to consider the propagator derived from the action (7.6) with general gauge fixing
parameter α2 (c.f (D.12)), leading to

GAAµν (k) =
1

k2D

(
δµν − (1− αD) kµkν

k2
−F k̃µk̃ν

k̃2

)
, with

2Note, that the quadratic IR divergence is independent of the gauge fixing [63, 62, 81].
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D(k) ≡
(
1 +

γ4

(k̃2)2

)
and F(k) ≡ 1

k̃2
σ̄4(

k2 + (σ̄4 + γ4) 1
k̃2

) . (7.30)

This leads to the vertex function

ΓAA,treeµν (k) =
(
G−1AA

)
µν

(k) = k2D

(
δµν +

(
1

αD
− 1

)
kµkν
k2

+
σ̄4

k2k̃2D
k̃µk̃ν

k̃2

)
. (7.31)

With the abbreviations

ΓAA,corr.µν (k) =Π1
k̃µk̃ν

(k̃2)2
+Π2

(
k2δµν − kµkν

)
, with

Π1 =
2g2

π2ε2
, and Π2 =

13g2

3(4π)2
lnΛ2 , (7.32)

splitting the vacuum polarization into momentum dependent/independent parts, we get
for the complete one-loop vertex function:

ΓAA,1l-compl.
µν (k) = ΓAA,treeµν (k)− ΓAA,corr.µν (k)

= k2(D −Π2)

{
δµν +

(
1

α(D −Π2)
− 1

)
kµkν
k2

+
σ̄4 −Π1

k2k̃2(D −Π2)

k̃µk̃ν

k̃2

}
.

(7.33)

By introduction of the wave-function renormalization ZA and the renormalized param-
eters γr and σ̄r,

ZA =
1√

1−Π2
,

γ4r = γ4Z2
A ,

σ̄4r =
(
σ̄4 −Π1

)
Z2
A , (7.34)

the one-loop two-point vertex function is cast into the same form as its tree-level counter
part, i.e.

ΓAA,renµν (k) =
k2Dr
Z2
A

{
δµν +

(
Z2
A

αDr
− 1

)
kµkν
k2

+
σ̄4r

k2k̃2Dr
k̃µk̃ν

k̃2

}
,

Dr(k) ≡
(
1 +

γ4r

(k̃2)2

)
. (7.35)

Finally, we may also write σ̄r in terms of the renormalized σr:

σ̄4r = 2

(
σr +

θ2

4
σ2r

)
γ4Z2

A ,

σr = −
2

θ2
± 2

√(
1 +

θ2

2
σ

)2

− g2θ2

π2γ4ε2
. (7.36)
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The renormalized propagator in Landau gauge fixing (i.e. α→ 0) finally becomes

GAA,renµν (k) =
Z2
A

k2Dr

(
δµν −

kµkν
k2
−Fr

k̃µk̃ν

k̃2

)
,

Fr ≡
1

k̃2
σ̄4r(

k2 + (σ̄4r + γ4r )
1
k̃2

) . (7.37)

Now that the two-point vertex function for the gauge boson can be written as sum of a
longitudinal, transversal and non-commutative part according to

ΓAAµρ =ΓAA,T (δµρ −
kµkρ
k2

) + (ΓAA,NC)
k̃µk̃ρ

k̃2
+ (ΓAA,L)

kµkρ
k2

, with

ΓAA,T = k2D , ΓAA,NC =
σ̄4

k̃2
and (ΓAA,L) =

k2

α
. (7.38)

The renormalization conditions are then given by

(k̃2)2

k2
ΓAA,T

∣∣∣
k2=0

= γ4 , (7.39a)

1

2k2
∂(k2ΓAA,T )

∂k2

∣∣∣
k2=0

= 1 , (7.39b)

k̃2ΓAA,NC
∣∣∣
k2=0

= σ̄4 , (7.39c)

ΓAA,L
∣∣∣
k2=0

= 0 , (7.39d)

∂ΓAA,L

∂k2

∣∣∣
k2=0

=
1

α
. (7.39e)

7.5 IR damping at higher loop orders

In the previous section we have shown renormalizability of the gauge propagator at
one loop level. In order to investigate the IR behaviour at higher loop order, let us
analyze the behaviour of a chain of n vacuum polarizations connected by gauge boson
propagators, which might be part of another loop graph:

ΞAAµν (p, n) =
(
GAA(p)Πnp(p)

)n
µρ
GAAρν (p)

∣∣∣
IR

≈ g2n

[ε2 (σ̄4 + γ4)]n+1 p̃µp̃ν . (7.40)

We observe a vanishing, i.e. IR-finite behaviour, which is independent of the number
of graphs. We therefore conclude the absence of IR problems at higher loop order.
Obviously, for vanishing soft breaking parameter γ (implying σ̄ → 0) the divergent
behaviour of the “näıve” model without soft breaking is recovered.

100



Chapter 7. The BRSW model

7.6 Vertex corrections and β-function

In this section we will first discuss the one-loop corrections for the three vertices. The
planar result for the vertex with three external A-legs will then lead to the β-function.

7.6.1 Methodology for the calculation of the vertex expressions

The calculation of the respective expressions for the vertex corrections is basically done
along the same line as for the propagator corrections. However, some additional diffi-
culties appear.
First, when considering vertices with n external legs, we get integrands which contain
products of the same number of sine functions, each of them depending on the internal
momentum. Such integrals are difficult to evaluate. Yet, a product of sine-functions
can be reduced to a sum of expressions, each of them containing only one trigonometric
function depending on the integration variable, as explained in Section E.1. The result-
ing integrals can then easily be calculated, the only practical difficulty being given by
the high number of summands.
A more basic difficulty is given by the fact that a Taylor expansion of the type (3.47)
can not be applied for n > 2 external momenta. This can be understood by consider-
ing the example p1,µp2,ν/(p

2
1 + p22)

∣∣
{|p1|,|p2|}→0

. Here the limit is not well defined for its

derivatives, i.e. the limit depends on the order of its application. In order to calculate
the expressions, there exist several possibilities:

• Taylor expansion of the integrand: Momentum conservation is applied, which leads
to the elimination of one of the momenta. The Taylor expansion of the integrand
without the phase, denoted by I(k, p1, . . . , pn) is then (for vertices with 3 external
A-legs) given by

I(k, p1, p2, p3) ≈ I(k, 0, 0, 0) +
∑
i=1,2

[ ∂
∂pi
I(k, p1, p2,−p1 − p2)

]∣∣∣
p2≈p1

pi . (7.41)

Being interested in the divergence structure only, it follows from power counting
that it is sufficient to consider the expansion only up to first order for the case
n = 3 and zero order for n = 4. In the next step, the limit p → 0 can be taken.
A possible criticism is given by considering that the above Taylor expansion leads
to integrals with one external momentum only, similar to the case of one-loop
propagator corrections.

• Approximation of the denominator: When considering expressions of the form∫
d4k

k1,µ(k + p)2,ν(k + p)3,σ
(k1 + p2)2

sin (k(p̃1 − 2p̃2)) (7.42)

one may first approximate the denominator by setting all external momenta to
zero. This is justified by the fact that all divergences (in the UV and IR sector)
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Graph # of expressions Symmetryfactors

3A a) 1/2 3
3A b) 1 6
3A c) 2 6
4A a) 1/2 6
4A b) 1 12
4A c) 1 24
4A d) 2 24
c̄Ac a) 1 2
c̄Ac b) 1 2

Table 7.2: Symmetry factors and number of different expressions for the vertex correc-
tions

result from integration over high internal momenta. With the integration formulae
given in the appendix it is then easy to evaluate such integrals. In the cases below,
the second method has been applied.

Before proceeding to the explicit results, note that for each graph there exist different
expressions resulting from permuting the external legs. For the example of the graph
Fig. 7.2 a) we have 3! = 6 different possibilities of permuting the external legs. However,
we have to divide by 2, because interchanging the external legs from the 4A-vertex leads
to identical expressions. The resulting number of graphs is then 3. Furthermore, each
of those expressions has to be multiplied by the correct symmetry factor steming from
internal symmetries. The corresponding information is listed in Tab. 7.2.

7.6.2 Corrections to the 3A-vertex

The graphs are displayed in Fig. 7.2. Although power counting allows linear divergences,

a) b) c)

Figure 7.2: One loop corrections to the 3A-vertex.

in the planar part we observe only a logarithmic UV divergence:
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Γ3A,UV
µνρ (p1, p2, p3) =

ig3 lnΛ

π2
(2π)4δ4(p1 + p2 + p3)×

sin

(
ε
p1p̃2
2

)
[(p1 − p2)µδνρ + (p2 − p3)νδρµ + (p3 − p1)ρδµν ] .

(7.43)

The non-planar parts Γ3A,IR
µνρ (p1, p2, p3) result in linear IR divergences of the form [78,

77, 62]g3 ∑
i=1,2,3

p̃i,µp̃i,ν p̃i,ρ
ε(p̃2i )

2
, g3

∑
i=1,2,3

δµ1µ2 p̃i,µ3
p̃2i

with {µ1, µ2, µ3} ∈ {µ, ν, ρ}

 , (7.44)

and the corresponding counterterms (up to numeric prefactors) which have to be added
to the Langrangian are then given by{

(∂̃A)3

�̃2
,

(∂̃A)

�̃
A2

}
. (7.45)

7.6.3 Corrections to the 4A-vertex

b) c) d)a)

Figure 7.3: One loop corrections to the 4A-vertex.

The planar part Γ4A,UV
µνρ (p1, p2, p3) is given by the tree level vertex multiplied by a

correction term, as follows from the following considerations: Renormalization of the
3A vertex leads to a expression of the form

Γ
(1)
3A,complete = Γ

(0)
3A − Γ

(1)
3A = g

(
1− ig2 lnΛ2

(2i)π2

)(
Γ
(0)
3A

g

)

⇒ g′r = g

(
1− ig2 lnΛ2

(2i)π2

)
= gZ3A

g ≡ g(1− f3Ag ) . (7.46)

Here, g′r denotes the renormalized coupling by considering the corrections stemming
from the one-loop vertices only, while the full renormalized coupling has to include also
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the wave function renormalization, c.f. Section 7.6.5. Furthermore, Z3A
g denotes the

renormalization due to the 3A vertex, and Γ
(i)
3A denotes the 3A vertex at order i. Now,

the same consideration applies to the correction of the 4A-vertex:

Γ
(1)
4A,complete = Γ

(0)
4A − Γ

(1)
4A = g2Z4A

g = g2(1− f4Ag ) ≡ (g′)2r

⇒ (1− f4Ag ) = (1− f3Ag )2 ⇔ f4Ag = 2f3Ag − (f3Ag )2 . (7.47)

Hence, the planar part of the one-loop correction to the 4A-vertex is given by the tree
level expression (7.23b), multiplied by

g2 ln Λ2

2π2

{
2− g2 lnΛ2

2π2

}
. (7.48)

For the non-planar part, we get expressions of the form{
g4
∑
i=1...4

p̃i,µp̃i,ν p̃i,ρp̃i,σ
p̃4i

, g4
∑
i=1...4

p̃i,µ1 p̃i,µ2
p̃2i

δµ3µ4 , g
4
∑
i=1...4

K0

(√
p̃2i η

2

)
δµ1µ2δµ3µ4

}
with {µ1, µ2, µ3, µ4} ∈ {µ, ν, ρ, σ} (7.49)

Only the terms with a Bessel function represent a problem, the others being finite.
They are divergent in both of their arguments, the external momentum as well as the
regulator mass η. At this point it is not clear how to construct appropriate counterterms.
Yet, it is strongly expected that they will vanish when summing up all corresponding
contributions (c.f. [119]). Yet, this has to be clarified by explicit calculations.

7.6.4 Corrections to the c̄Ac-vertex

The two graphs which enter the one-loop correction of the c̄Ac vertex are given in
Fig. 7.4. Explicit calculation show that they are both finite, hence do not have to be
considered further.

a) b)

Figure 7.4: One loop corrections to the c̄Ac-vertex.

104



Chapter 7. The BRSW model

7.6.5 The β-function

As can be seen from (7.34), we have employed the following convention for the renor-
malization of the gauge field:

Ar = Z−1A A . (7.50)

Therefore, we obtain for the renormalized coupling

gr = g′rZ
3
A = gZgZ

3
A , (7.51)

where Zg denotes the vertex correction to the three-photon vertex, i.e. is identical to Z3A
g

considered before. The wave function renormalization has to be included, because the
vertex correction has been calculated using the unrenormalized fields A, and therefore
would yield a counter term of the form

g(Zg − 1)[Aµ, Aν ]∂µAν , (7.52)

where (Zg − 1) = −f3A according to the definition in (7.46). This expression has to be
compared with the expression in the renormalized action, namely

gr[A
r
µ, A

r
ν ]∂µA

r
ν . (7.53)

In other words, when renormalizing the gauge fields, this has to be compensated by
a corresponding term to be included in the coupling. How to obtain the expression
for g′r has been discussed above. Obviously, the coupling is also renormalized by 1-loop
corrections from the four-point functions. But these corrections just reproduce the above
result for g′r due to gauge invariance, c.f. Section 7.6.3.
Let us proceed to the calculation of the β-function. It is given by the logarithmic
derivative of the bare coupling with respect to the cut-off, for fixed gr:

β(g,Λ) = Λ
∂g

∂Λ

∣∣∣
gr fixed

, (7.54)

β(g) = lim
Λ→∞

β(g,Λ) . (7.55)

In the present case, we have

ZA =

(
1− 26g2

3(4π)2
lnΛ

)−1/2
, (7.56)

Zg = 1− g2

2π2
lnΛ , (7.57)

Note that ZA stems from (7.28), where we have used lnΛ2 = 2 lnΛ. By applying to

Z
3/2
A the Taylor expansion (1− x)−

3
2 = 1 + 3x

2 +O(x2) we obtain

gr = g

(
1 +

5

16π2
g2 lnΛ

)
+O(g5) . (7.58)
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Differentiation with respect to Λ, considering the relation

∂gr
∂Λ

= 0 ,

and subsequent multiplication with Λ leads to

0 = β(g,Λ) + 3 vg2β(g,Λ) lnΛ + vg3 , (7.59)

where the we have used the definition

gr = g(1 + g2v lnΛ) +O(g5).

For β(g,Λ), this leads to the solution

β(g,Λ) = −g3v +O(g5) . (7.60)

Finally we obtain for the β-function

β(g) = lim
Λ→∞

β(g,Λ) = −g3v = − 5g3

16π2
< 0 . (7.61)

Hence, it is negative and will decrease with g, which exhibits asymptotic freedom, con-
trary to commutative U(1) gauge theory. This confirms the result obtained in [120],
where the β-function has been calculated for the näıve U(1) gauge theory.

7.7 Conclusion and outlook

We have first analyzed the problems encountered in the renormalization attempt for
the previous model according to Section 5.6.3, which can be summarized by a lack of
terms in the action (or equivalently in the gauge boson propagator) capable of absorbing
the one-loop divergences, and the problems empeding the application of schemes like
Algebraic Renormalization. This is due to the possibility of constructing an arbitrary
number of counterterms which are invariant with respect to all symmetries, which again
stems from the mass dimension of the deformation matrix with dim(θoldµν ) = −2. Based
on these findings, we have split the latter into two parts and shifted the tensor struc-
ture to a constant matrix with dim(θµν) = 0. By this, contracting operators with the
deformation matrix does not lead to dimensionless operator insertions in the tree level ac-
tion, although they might still appear at higher order. Based on the Gribov-Zwanziger
approach already applied for the previous model, we have introduced auxiliary fields
forming BRST-doublets. The fact that it is always the soft breaking term which im-
plements the damping finally led to an action avoiding the detour via a gauge invariant
damping term. A splitting of the field strength tensor Fµν into a linear and interacting
part allowed for affecting only the bilinear part of the action, avoiding the introduction
of new vertices.
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In summary, this led to a non-commutative action which - with respect to the Feyn-
man rules - is as simple as the näıve U⋆(1) gauge model while remedying the UV/IR
mixing problem. Furthermore, the possibility of absorbing all divergences present at
one-loop level for the propagator corrections, and the missing of IR divergent terms in
higher loop orders does not only show one-loop renormalizability of the action but also
suggests renormalizability to all orders. At this point, a rigorous proof is still missing.
This would be the next logical step, which however requires to establish the foundations
for schemes like Multiscale Analysis to θ-deformed gauge theories.
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Summary and outlook

In our attempt of finding a renormalizable non-commutative U(1) gauge theory, short
U⋆(1), three models defined on Euclidean θ-deformed space (E4

θ) were discussed. All of
them are based on the idea of Gurau et. al. [7] of adding additional terms to the action,
which allow to absorb the IR-divergences appearing in the course of one-loop calcula-
tions. While in the model of Chapter 3 [1] a new dynamical field appeared, this drawback
could be avoided in Chapter 5 (c.f. [2, 3]) by the introduction of a soft breaking term
known from the Gribov-Zwanziger approach, c.f. Chapter 4. However, it turned out not
to contain the appropriate terms to absorb all divergences appearing at one-loop level,
i.e. to be non-renormalizable without adding new terms. With the target of arriving
at a renormalizable effective action, the possible extension of standard renormalization
schemes known from commutative QFTs was discussed, c.f. Chapter 6 and [4]. There it
was found, that their direct application without prior modifications is impeded by the
inherent non-locality of θ-deformed gauge field theories (GFTs). However, a new type
of model was developed (Chapter 7, [5]), which implements the IR damping behaviour
directly via the soft breaking term. For the latter, one-loop renormalizability could be
shown, and there are strong hints that it is renormalizable to all orders.

The next step would consist in delivering a rigorous proof for the renormalizability
of the model, e.g. by application of Multiscale Analysis. The next logical step is then
the transition to non-commutative Minkowski space-time3 M4

θ. In the long run, it will
be necessary to consider dynamic deformation matrices. Possibly, the formulation of
consistent and renormalizable gauge field theories with a deformation matrix depending
on the space-time metric will one day lead to a description of gravity4 via non-commuta-
tive QFT and to a unified description of all forces by the resulting Theory of Everything.

3For a discussion of problems and possible solutions concerning non-commutative time see e.g. [95].
4Note that there exist models under the notion of Emergent gravity, where gravity arises naturally

within the framework of NCQFT, c.f. [121] for a review.
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Appendix A

Useful formulae and integrals

A.1 Useful formulae

A.1.1 Schwinger parametrization

With Γ(N) the Gamma function, Γ(N) = (n− 1)! for n > 0, n ∈ N one gets:

1

k2N
=

1

Γ(N)

∫ ∞
0

dααN−1e−αk
2
, ∀N ∈ N, Re(k2) > 0. (A.1)

The more general form reads:

1

(k2 + β)N
=

1

Γ(N)

∫ ∞
0

dααN−1e−α(k
2+β), ∀N ∈ N, Re(k2 + β) > 0. (A.2)

A.1.2 Integration formulae

Integration of quadratic forms ([66], p. 179 (5A.3)):∫
dx exp (−αx2 + βx+ γ) = exp

(β2
4α

+ γ
)(π

α

) 1
2
. (A.3)

A special case is the Gaussian integral with β = γ = 0:∫
dx exp (−αx2) =

(π
α

) 1
2
. (A.4)

Parameter integrals ([122] 3.471; Kν are the modified Bessel functions of the second
kind): ∫ ∞

0
dxxν−1e−

β
x
−γx = 2

(β
γ

) ν
2
Kν(2

√
βγ) , (A.5)

∫ ∞
0

dx

xν
e−

α2

x = Γ(ν − 1)
(
α2
)(1−ν)

, for ν > 1, α2 > 0 . (A.6)
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A.1.3 Modified Bessel functions

The modified Bessel functions represent the solutions to the modified Bessel’s differential
equation, which is given by

x2
d2y(x)

dx2
+ x

dy(x)

dx
− (x2 + α2)y(x) = 0 , {α, x} ∈ C . (A.7)

where α defines the order of the equation. The two linearly independent solutions are
given by the modified Bessel functions of the first kind Iα(x) and second kind Kα(x):

Iα(x) =
∞∑
m=0

1

m!Γ(m+ α+ 1)

(x
2

)2m+α
, (A.8a)

Kα(x) =
π

2

I−α(x)− Iα(x)
sin(απ)

. (A.8b)

In this thesis only the solutions (A.8b) with α being integers will be of interest, i.e.
Kn(x), n ∈ Z. They are exponentially decaying and singular at the origin (c.f. Fig. A.1).
From the definitions (A.8) follows the property:

Kn(x) = K−n(x) . (A.9)

Series expansion of the modified Bessel functions

0 1 2 3 4
x

1

2

3
K0HxL K1HxL K2HxL K3HxL K4HxL

Figure A.1: The modified Bessel functions of the second kind

With γE ≈ 0.577 the Euler-Mascheroni constant we get:

K0(x) ≈ ln
2

x
− γE −

x2

4

(
γE − 1 + ln

x

2

)
+O(x4) , (A.10a)

K1(x) ≈
1

x
+
x

2

(
γE −

1

2
+ ln

x

2

)
+
x3

16

(
γE −

5

4
+ ln

x

2

)
+O(x4) , (A.10b)
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K2(x) ≈
2

x2
− 1

2
− x2

8

(
γE −

3

4
+ ln

x

2

)
+O(x4) , (A.10c)

K3(x) ≈
8

x3
− 1

x
+
x

8
+
x3

48

(
γE −

11

12
+ ln

x

2

)
+O(x4) , (A.10d)

K4(x) ≈
48

x4
− 4

x2
+

1

4
− x2

48
+O(x4) . (A.10e)

A.1.4 Decomposition formulae for trigonometric functions

exp(±ix) = cos(x)± i sin(x) (A.11a)

sin (x) =
eix − e−ix

2i
(A.11b)

cos (x) =
eix + e−ix

2
(A.11c)

sin2 (x) =
1

2

(
1− cos(2x)

)
=

1

2

(
1− e2ix + e−2ix

2

)
(A.11d)

sin(x± x) = sin(x) cos(y) ± cos(x) sin(y) (A.11e)

A.1.5 Various

Integral representation of the heavyside step function

θ(x) =

∫ i∞+e

−i∞+e

dβ

2πiβ
eβx . (A.12)

A.2 Integrals for one loop corrections to the propagators

In this chapter we solve the integrals appearing in the expressions for the various one-
loop corrections of the propagators. The integrals we encounter are of the form

I(m,n, a′) ≡
∫
d4k

kµ1 . . . kµm(
k2 + a′2

k̃2

)n sin2
(
kp̃

2

)
, (A.13)

where k, p are the internal and external momenta, m ∈ {0, 2, 4} and n ∈ {1, . . . , 4}.
In Section A.2.2 it will be shown that a′ in the denominator can be put to zero before
calculating the integrals. Hence, we may write I(m,n, a′) ≡ I(m,n) for the integrals.
In Section A.2.1 the method for their calculation will be given generically.
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A.2.1 Methodology for calculating the integrals

After setting a′ = 0 in the denominator of (A.13), we get

I(m,n) ≡
∫
d4k

kµ1 . . . kµm
(k2)n

sin2
(
kp̃

2

)
. (A.14)

The integrals can be evaluated by following the methodology given below.

1. Simplification of the trigonometric function: by applying the decomposition for-
mula for the sine squared given in (A.11) we get:∫

d4k
kµ1 . . . kµm

(k2)n
1

2

(
1− cos (kp̃)

)
=

∫
d4k

kµ1 . . . kµm
(k2)n

1

2

(
1− ei(kp̃)

)
≡ Ipl.(m,n) + In.p.(m,n) , (A.15)

splitting the integral explicitly into a planar and non-planar part, which have to
be evaluated individually. Contrary to what the definition (A.11c) might suggest,
it is sufficient to evaluate the exponential with positive argument as indicated in
the second line: due to the even integration range, only the cosine will survive,
leading to the desired result.

2. For the momenta in the nominator we can write:

kµ =
[
−i ∂zµ eikz

]
z=0
⇒ kµ1 . . . kµm = (−i)m∂zµ1 . . . ∂

z
µm e

ikz
∣∣
z=0

. (A.16)

Together with Schwinger parametrization of the denominator (c.f. (A.1)) we get:

1

2

(−i)m

Γ(n)

∫ ∞
0

dαα(n−1)∂zµ1 . . . ∂
z
µm

∫
d4k

(
e−αk

2+ikz − e−αk2+ik(p̃+z)
) ∣∣∣

z=0
. (A.17)

3. Next we bring the exponential to a quadratic form:

−αk2 + ik(p̃+ z) = α

(
ik +

p̃+ z

2α

)2

− (p̃+ z)2

4α
. (A.18)

Application of (A.3) than leads to a factor π2/α2 (Note that the square follows
from the integration over 4 dimensions, which leads to a power of 4 compared to
(A.3)):

1

2

(−i)mπ2

Γ(n)

∫ ∞
0

dαα(n−3)∂zµ1 . . . ∂
z
µm

(
e−

z2

4α − e−
(p̃+z)2

4α

) ∣∣∣
z=0

. (A.19)

The derivations are given by

∂µe
− (p̃+z)2

4α = − p̃+ z

2α
e−

(p̃+z)2

4α , (A.20a)
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∂µ∂νe
− (p̃+z)2

4α =

{
−δµν

2α
+

(p̃+ z)µ(p̃+ z)ν
(2α)2

}
, (A.20b)

∂µ∂ν∂ρe
− (p̃+z)2

4α =

{
δµν(p̃+ z)ρ + δµρ(p̃+ z)νδρν(p̃+ z)µ

(2α)2

− (p̃+ z)µ(p̃+ z)ν(p̃+ z)ρ
(2α)3

}
e−

(p̃+z)2

4α , (A.20c)

∂µ∂ν∂ρ∂σe
− (p̃+z)2

4α =

{
δµνδρσ + δµρδνσ + δνρδµσ

(2α)3

− δµν(p̃+ z)ρ(p̃+ z)σ + δµρ(p̃+ z)ν(p̃+ z)σ + δνρ(p̃+ z)µ(p̃+ z)σ
(2α)3

− δµσ(p̃+ z)ν(p̃+ z)ρ + δνσ(p̃+ z)µ(p̃+ z)ρ + δρσ(p̃+ z)µ(p̃+ z)ν
(2α)3

+
(p̃+ z)µ(p̃+ z)ν(p̃+ z)ρ(p̃+ z)σ

(2α)4

}
e−

(p̃+z)2

4α . (A.20d)

This leads to integrals of the form

I(m,n) = I(m,n)pl. + I(m,n)n.p.

1

2

(−i)mπ2

Γ(n)

{
Am−1

∫ ∞
0

dαα(n−3+(m−1)) −
∑

i=m−1,m
Ai

∫ ∞
0

dαα(n−3+i)
(
e−

p̃2

4α

)}
,

(A.20e)

where the prefactors Ai can be deduced from (A.20) in an obvious way.

4. Evaluation of the integrals: in order to evaluate the planar integrals we introduce a
UV-cut off Λ in the exponential. Furthermore, if n−3+(m−1) = −1, a regulator
mass for the IR sector µ is required. In this case the integrals become

I(m,n)pl. ∼
∫ ∞
0

dα
1

α
e−

1
Λ2α

+µ2α , (A.21a)

I(m,n)n.p. ∼
∫ ∞
0

dα
1

α
e−

p̃2

4α
+µ2α , (A.21b)

which can be evaluated by application of (A.5), leading to the modified Bessel
function of zero order. For n− 3 + (m− 1) < −1 one has two possibilities: direct
evaluation by applying (A.6), or again introduction of a regulator mass, leading
to Bessel functions of higher order by application of (A.5).

A.2.2 Neglecting the a′ term in the denominator

In this thesis the integrals are evaluated for a′ → 0, due to the following
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Lemma 2 Setting a′ = 0 in the integrand of the integrals (A.14), i.e. approximating

1(
k2 + a′2

k̃2

) ≈ 1

k2

will not affect the divergence behaviour of the result.

This can be understood intuitionally as the integration over high internal momenta will
not be affected by the approximation. In the low-energy sector, for the non-planar
graphs the oscillating phase will regulate the divergence, and for the planar graphs, a
regulator mass will be introduced. Hence, the approximation is valid and the integrals
will be denoted by I(m,n, a′)→ I(m,n).
In order to see the equivalence, we will give a explicit proof for the simplest integral
I(0, 1, a′)←→ I(0, 1, 0) ≡ I(0, 1),

1

2

∫
d4k

1− eikp̃(
k2 + a′2

k̃2

) ⇐⇒ 1

2

∫
d4k

1− eikp̃

k2
. (A.22)

Integral with a′ ̸= 0

In order to do the explicit calculation of the integral

I(0, 1, a′) ≡ 1

2

∫
d4k

1− eikp̃(
k2 + a′2

k̃2

) . (A.23)

the denominator can be written as

1(
k2 + a′2

k̃2

) =
k2

(k2 + ia) (k2 − ia)
=

1

2

[
1

(k2 + ia)
+

1

(k2 − ia)

]
,

where a ≡ a′/θ. (Note that the rescaled parameter a has mass dimension two.) Using
Schwinger parametrization and introduction of the UV-cutoff Λ for the planar sector
one arrives at

1

4

∑
ξ=±1

∫
d4k

∞∫
0

dα

{
exp

[
−α

(
k2 + iξa

)]
− exp

[
−α

(
k2 + iξa

)
+ ikp̃

]}

=
π2

4

∑
ξ=±1

∞∫
0

dα
1

α2

{
exp

[
−α (iξa)− 1

Λ2α

]
− exp

[
−α (iξa)− p̃2

4α

]}

=
π2

2

∑
ξ=±1

{(
Λ2(iξa)

) 1
2 K−1

(
2

√
iξa

Λ2

)
− 2

(
iξa

p̃2

) 1
2

K−1
(
p̃2(iξa)

)}
. (A.24)
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For small arguments x→ 0 the modified Bessel function of first type K−1 = K1 admits
the expansion (A.10b) (c.f. Section A.1.3). Being interested in the IR behaviour of the
theory, this expansion can be applied to the last equation for the limit of small external
momenta p, yielding,

π2

2

∑
ξ=±1

{(
Λ2(iξa)

) 1
2
1

2

√
Λ2

iξa
− 2

(
iξa

p̃2

) 1
2 1√

p̃2(iξa)

}
+O(p̃2) ≈ π2

{
Λ2

2
− 2

p̃2

}
.

(A.25)

Integral with a′ = 0

For a′ = 0 the integral reads

I(0, 1, 0)→ I(0, 1) ≡ 1

2

∫
d4k

1− eikp̃

k2
. (A.26)

Following the method detailed in Section A.2.1, we get the result (A.27), which is the
same as (A.25), up to finite contributions.

This completes the proof of Lemma 2. �

A.2.3 Integrals

In the following formulae, (b) and (c) give the planar and non-planar solutions respec-
tively, for the integrals given in (a). Only those results are given, which appear in the
calculations for the presented models. Regarding the notation, it shall be repeated that
I(m,n) stands for an integral with the argument sine square in (kp̃)/2 multiplied by
a fraction with m (n) powers of k in the (de)nominator. Furthermore, Λ denotes the
UV-cutoff, while µ is a IR-regulator mass.

• I(0, 1) ∫
d4k

1

k2
sin2

(
kp̃

2

)
= (A.27a)

+
1

2
π2Λ2 (A.27b)

− 2
π2

p̃2
. (A.27c)

• I(0, 2) ∫
d4k

1

k4
sin2

(
kp̃

2

)
= (A.28a)
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+ π2K0

(
2

√
µ2

Λ2

)
(A.28b)

− π2K0

(√
µ2p̃2

)
. (A.28c)

• I(2, 2) ∫
d4k

kµkν
k4

sin2
(
kp̃

2

)
= (A.29a)

+
1

4
π2δµνΛ

2 (A.29b)

− π2
{
δµν
p̃2
− 2

p̃µp̃ν
(p̃2)2

}
. (A.29c)

• I(2, 3) ∫
d4k

kµkν
k6

sin2
(
kp̃

2

)
= (A.30a)

+
π2

4
δµνK0

(
2

√
µ2

Λ2

)
(A.30b)

− π2

4

{
δµνK0

(√
µ2p̃2

)
− p̃µp̃ν

p̃2

}
. (A.30c)

• I(4, 2)∫
d4k

kµkνkρkσ
k4

sin2
(
kp̃

2

)
= (A.31a)

+
π2

8
Λ4 (δµνδρσ + δµρδνσ + δνρδµσ) (A.31b)

− 2π2

{
1

p̃4
(δµνδρσ + δµρδνσ + δνρδµσ)−

4

p̃6
(
δµν p̃ρp̃σ

+ δµρp̃ν p̃σ + δνρp̃µp̃σ + δµσp̃ν p̃ρ + δνσp̃µp̃ρ + δρσp̃µp̃ν
)

+ 24
p̃µp̃ν p̃ρp̃σ

p̃8

}
. (A.31c)

• I(4, 4)∫
d4k

kµkνkρkσ
k8

sin2
(
kp̃

2

)
= (A.32a)

+
π2

24
(δµνδρσ + δµρδνσ + δνρδµσ)K0

(
2

√
µ2

Λ2

)
(A.32b)

116



Chapter A. Useful formulae and integrals

− π2

24

{
(δµνδρσ + δµρδνσ + δνρδµσ)K0

(√
µ2p̃2

)
−
(
δµν p̃ρp̃σ + δµρp̃ν p̃σ + δνρp̃µp̃σ

+ δµσp̃ν p̃ρ + δνσp̃µp̃ρ + δρσp̃µp̃ν

) 1

p̃2

+
2

p̃4
p̃µp̃ν p̃ρp̃σ

}
. (A.32c)

117



Appendix B

Symmetry factors

The algorithm derived here for the calculation of the combinatorial factors heavily relies
on [123]. A proof relying on the Wick expansions leading to a given graph can be found
in [124]. For a general formula being applicable to scalar QFT as well as QED (spinor
and scalar) and QCD c.f [125]. A note regarding the correct wording: what in the main
part of this thesis are called symmetry factors in the literature are commonly denoted
as combinatoric factors, while symmetry factor is assigned to the internal symmetries of
a graph. In order to avoid confusion, the following explanations will rely on the usual.

B.1 Origin of combinatoric factors

The necessity to multiply the analytical expression for a given Feynman graph with a
symmetry factor relies on the fact that, given its ingredients (the Feynman rules), there
might be several possibilities to connect them in order to get the same result.
The problem can be best understood in terms of Wick contractions (c.f. for example
[126], Chapter 4). Consider ϕ4-theory on four dimensional Minkowski space, where all
n-point functions result from the expansion

⟨0|T [ϕ(x1) . . . ϕ(xn)] |0⟩ ≈ ⟨0|T
[
ϕ(x1) . . . ϕ(xn) exp

{
i

∫
d4zLint(z)

}]
|0⟩ ,

Lint =
g

4!
ϕ(z)ϕ(z)ϕ(z)ϕ(z), (B.1)

with Lint denoting the interaction Lagrangian. The r.h.s. of the first line leads to the
vacuum expectation value of the product of i (time ordered1) fields, where i = n+ j×m
depends on the order m, and the number of fields in the interaction terms j (in the
present example j = 4). For example the expression in second order for the 2-point

1Note that for obvious reasons there is no time ordering in the non-commutative theories considered
in this thesis, due to the underlying Euclidean manifold.
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function reads

1

2!
⟨0|T

[
ϕ(x1)ϕ(x2)

ig

4!

∫
d4z′ϕ(z′)ϕ(z′)ϕ(z′)ϕ(z′)

ig

4!

∫
d4z′′ϕ(z′′)ϕ(z′′)ϕ(z′′)ϕ(z′′)

]
|0⟩ .

(B.2)

For such an expression, Wick’s theorem tells us that it is equivalent to evaluate the sum
of all possible contractions, and due to the expectation value only the fully contracted
expressions will survive. Finally, each of them can graphically be represented by a
Feynman graph. However, consider the following two Wick contractions:

⟨0|ϕ(x)ϕ(y)
∫
dz′ ϕ(z′)ϕ(z′)ϕ(z′)ϕ(z′)

∫
dz′′ ϕ(z′′)ϕ(z′′)ϕ(z′′)ϕ(z′′)|0⟩ ,

⟨0|ϕ(x)ϕ(y)
∫
dz′ ϕ(z′)ϕ(z′)ϕ(z′)ϕ(z′)

∫
dz′′ ϕ(z′′)ϕ(z′′)ϕ(z′′)ϕ(z′′)|0⟩ . (B.3)

Both of them lead to the same analytical expression, and the same graphical repre-
sentation, i.e. the Feynman graph depicted in Fig. B.1. When performing all Wick

yz’ z’’x

Figure B.1: Two point graph in scalar ϕ4-theory

contractions for the example under considerations, one will encounter in total 192 ones
leading to identical analytical expressions. Therefore, one draws the graph just once, and
multiplies it by its multiplicity M = 192, i.e. the number of expectation values leading
to a topologically equivalent graph. Furthermore, by pulling the factors 1/4! from the
vertices before the expectation value, and considering the term 1/n! from the expansion
to order n (in the present case n = 2), one ends up with the following expression for the
graph in Fig. B.1:

192

2! 4! 4!
×One of the expectation values in (B.3)⇒

192

2! 4! 4!
× (ig)2

∫
dz′
∫
dz′′DF (x− z′)DF (y − z′′)DF (z

′ − z′′)DF (z
′ − z′′)DF (z

′ − z′′),

(B.4)

with DF (x− y) the Feynman propagator between the space-time points x and y.
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Rules leading to the combinatoric factor in scalar and gauge theories

Now we start from the other side, i.e. with the Feynman graph. In what follows we
derive a general set of rules leading to the combinatoric factor for a given graph. Simul-
taneously, we will apply the rules to the two graphs of Fig. B.3. The graph a) is the one
from scalar theory considered above (which allows us to verify the result). The graph
b) corresponds to k) of Fig. 3.3 of our non-commutative gauge model with real Bµν in
Section 3.5.3. Actually it is rotated by an angle of 180 ◦. However, rotating or twisting
a graph does not modify its topology, and leads to the identity operation.
Given the Feynman rules, one will get the corresponding analytical expression by trans-
lating each graphical element (lines, vertices, etc.) into the corresponding rule. The ex-
pression than must be multiplied by the correct numerical or combinatorial factor. From
the above considerations, it follows that the multiplicity has to be included. Without
performing explicitly Wick contractions, it can be evaluated as follows:

1. Draw the pre-diagram. It consists of the elements of the graph drawn separately,
but in the right relative positions with respect to the final graph (for our examples,
c.f. Fig. B.2). The elements are the graphical counterparts of the Feynman rules.

2. Count the number of ways the first vertex (e.g. the left one) can be connected to
the external legs.
a) This leads to 2 × 4, because there are 4 possibilities to connect it with either
external leg.
b) 2× 3: the 3A vertex may be connected in 3 ways on the left and right external
leg, respectively.

3. Count the number of ways to connect the remaining vertices to the remaining
external legs. In our examples, there is just one vertex left, that can be connected
a) in 4 different ways, b) in 2 different ways to the remaining external leg.

4. Take one of the unconnected ends of a vertex and count the ways to connect it
to the other vertex. Repeat this, until all internal legs are connected. For a) we
have first 3 ways, than 2 ways and finally just 1 possibility of connection, leading
to 3× 2× 1 = 6 possibilities; for b) there is just one way to connect the two lines
on the left to those one on the right, leading to2 1.

5. The product of all factors gives the Multiplicity M : Ma = 192, Mb = 12.

Furthermore, there are factors contributing to the denominator that are collected in the
symmetry factor S:

1. For n identical vertices, we get a factor 1/n!. Actually, each type of vertex cor-
responds to an interaction term in the Lagrangian, and a graph with n identical
vertices stems from the expansion of the exponential (c.f. (B.1)) to the same order,

2One could argue that there are actually two possibilities of interconnecting the internal lines; how-
ever, this results in the two graphs k and l of Fig. 3.3.
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leading to the factor mentioned above. For the examples this delivers a factor 1/2!
for a), 1 for b).

2. Finally, for a general theory, a term of the action involving nϕ1 , nϕ2 , . . . , nϕk fields
of type ϕ1, ϕ2, . . . , ϕk contains a prefactor 1/(nϕ1 !nϕ2 ! . . . nϕk !). In the case a)
this reduces to nϕ = 4 identical fields of type ϕ, and from (B.2) we see indeed that
each vertex delivers a factor3 1/4!. In the case b) this leads to 1/(3!2!).

To summarize, this leads to the combinatorial factors

C =
M

S
⇒ Ca =

1

6
, Cb = 1 , (B.5)

where Ca is the same as in (B.4), as expected.

Application of this procedure to arbitrary graphs delivers e.g. the table Tab. 3.1.

(a) Scalar 2-point graph.

(b) Two-point graph in gauge model with real Bµν .

Figure B.2: Prediagrams.

(a) Scalar 2-point graph. (b) Two-point graph in gauge
model with real Bµν .

Figure B.3: Examples for the evaluation of the combinatoric factor.

3Note that when performing Wick contractions, each vertex will be accompanied by the right numer-
ical factor. However, when calculating the expression for a given graph, the Feynman rule for a vertex
is just ig, so the corresponding numerical factor has to be introduced by hand.
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Calculations for the gauge model
with real Bµν

C.1 Calculations for the preliminary models

C.1.1 Gauge propagator for the undamped gauge invariant action

The bilinear part of the action (3.2) reads as

Sinv,bil =

∫
d4x

1

4
(∂µAν − ∂νAµ) ⋆ (∂µAν − ∂νAµ) =

= −
∫

d4x
1

2
Aµ ⋆ {(�Aµ − ∂µ(∂A)} =

= −
∫

d4x
1

2
Aµ ⋆

{
�
(
δµν −

∂µ∂ν
�

)
Aν

}
. (C.1)

By denoting the operator of the bilinear part by Kµν and the projection operator to the
orthogonal plane by Pµν , we can write

Kµν = �
(
δµν −

∂µ∂ν
�

)
= �Pµν , (C.2)

which shows that the bilinear part is proportional to the projection operator. Now for
any projection operator we can write P 2 = P and PP−1 = 1, from which follows

P 2P−1 = 1 ⇒ P = 1 . (C.3)

The unity is the only projection operator which has an inverse.
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C.1.2 Partial integration of the inverse of covariant derivatives

Let us consider the integral of two fields F1 and F2 with the square of the inverse of a
covariant derivative to power n:

I =

∫
d4xF1 ⋆

1

(D2)n
⋆ F2 . (C.4)

This can also be written as

I =

∫
d4x1F1 ⋆

1

(D2)n
⋆ F2 =

∫
d4x

1

(D2)k
(D2)kF1 ⋆

1

(D2)n
⋆ F2 . (C.5)

Now one may conduct the usual partial integration, leading to

I =

∫
d4x

1

(D2)k
F1 ⋆ (D

2)k
1

(D2)n
⋆ F2 =

∫
d4x

1

(D2)k
F1 ⋆

1

(D2)n−k
⋆ F2. (C.6)

For the special case of k = 1, n = 2 one obtains∫
d4xF1 ⋆

1

(D2)2
⋆ F2 =

∫
d4x

1

D2
F1 ⋆

1

D2
⋆ F2 , (C.7)

which leads to the desired result.

C.2 Feynman rules for the localized gauge model

C.2.1 Propagators

In this section we will derive the propagators (3.34). From the equations of motion
(3.32) and with the abbreviation

χ =

(
1 +

a′2

��̃

)
(C.8)

it directly follows

δSbil
δBµν

⇒Bµν =
1

2�̃�
[
jBµν + a′ (∂µAν − ∂νAµ)

]
, (C.9a)

δSbil
δb
⇒b = 1

α

[
jb + χ∂µAµ

]
, (C.9b)

δSbil
δc̄
⇒c = − j c̄

χ� . (C.9c)

We will also need the following derivations:

∂µBµν =
1

2�̃�
[
∂µj

B
µν + a′ (�δµν − ∂ν∂µ)Aµ

]
, (C.10a)

123



Chapter C. Calculations for the gauge model with real Bµν

∂ν∂µBµν =
1

2�̃�
∂ν∂µj

B
µν = 0 , (C.10b)

∂µb =
1

α

[
∂µj

b + χ∂µ∂µAµ

]
. (C.10c)

The vanishing of the second derivative (C.10b) follows from the anti-symmetry of the
Bµν field. Inserting the previous expressions for the fields into the equation of motion
for the gauge field (3.32a) yields

jAν = (�δνµ − ∂ν∂µ)Aµ + 2a′∂µBµν + χ∂νb

= �χAµ +
(
χ2

α
− χ

)
∂µ∂νAµ +

a′

��̃
∂µj

B
µν +

χ

α
∂νj

b . (C.11)

Derivation of the previous equation and taking into consideration the vanishing of the
second derivative of jBµν allows one to express Aµ as

∂µAµ =
α

χ2�
[
∂νj

A
ν −

χ

α
�jb

]
. (C.12)

This finally leads to an expression of Aν as functional of external sources only:

Aν =
a

χ�

[
jAν −

(
1− α

χ

)
1

�(∂jA)− a′

��̃
∂µj

B
µν − ∂νjb

]
. (C.13)

Inserting the last equation into the expression for Bτϵ (C.9a) after choosing the index
names according to the propagators (3.34) results in

Bτϵ =
1

2��̃

[
jBτϵ +

a′

�χ
(
∂τ j

A
ϵ − ∂ϵjAτ

)
− a′2

�̃�2χ
(∂τ∂µjµϵ − ∂ϵ∂µjµτ )

]
. (C.14)

Fourier transformation of the two expressions (∂µ → ikµ) and (C.9c) gives the results in
momentum space:

Aν(k) = −
1

k2 + a′

k̃2

(
jAν −

kµkν
k2

jAµ + α
kµkν

k2 + a′2

k̃2

jAµ + i
a′kµ

k̃2k2
jBµν + ikνj

b

)
, (C.15)

Bτϵ(k) =

=
1

2k2k̃2

jBτϵ − ia′

k2 + a′2

k̃2

(kτ j
A
ϵ − kϵjAτ )−

a′2

k2k̃2
(
k2 + a′2

k̃2

) (kτkµjµϵ − kϵkµjµτ )

 ,
(C.16)

c(k) =
c̄

k2 + a′2

k̃2

. (C.17)

The final propagators are obtained by

GAAµν (k) = −
δAν(k)

δjAµ (k)
,
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GABρ,στ (k) = −
δBστ (k)

δjAρ (k)
= −GBAστ,ρ(k) =

δAρ(k)

δjBστ (k)
,

GBBρσ,τϵ(k) = −
δBτϵ(k)

δjBρσ(k)
,

Gc̄c(k) = −δc(k)
c̄(k)

. (C.18)

Interdependence of the propagators

In order to derive the interdependences between the propagators including Aµ and Bµν ,
one starts with the bilinear part of (3.29), with the r.h.s replaced by the source −jBµν ̸= 0:

δS
(2)
inv, bil

δBµν
= a′ (∂µAν(x)− ∂νAµ(x))− 2�̃� ⋆ Bµν = −jBµν . (C.19)

Fourier transformation and rearranging the terms leads to

2k̃2k2 ⋆ Bµν(k) = ia′
(
kµAν(k)− k̃νAµ(k)

)
+ jBµν(k) . (C.20)

In accordance with (3.33) we functionally derivate with respect to jAρ and jBρσ, leading
to the result (3.36).

C.2.2 Vertices

Explicit calculation of the cAc̄-vertex

Here we want to apply explicitly and in detail the procedure given in Section 3.3 by the
example of the c̄Ac vertex. Application of (3.39) to S c̄Ac in (3.38) leads to

S c̄Ac = Sgf,int =

= −ig
∫

d4x
(
1 +

a′2

��̃

)
∂µc̄(x) [Aµ(x) ⋆, c(x)]

= −ig
∫

d4x

∫
d4q1,2,3
(2π)12

(
1 +

a′2

q21 q̃
2
1

)
(iq1µ)e

i
∑
qµi xµ

˜̄c(q1)
[
Ãµ(q2)c̃(q3)− c̃(q2)Ãµ(q3)

]
e−

i
2
(q1×q2+q1×q3+q2×q3)

= g

∫
d4q1,2,3
(2π)8

δ(q1 + q2 + q3)
(
1 +

a′2

q21 q̃
2
1

)
q1µ

˜̄c(q1)c̃(q2)Ãµ(q3)e
− i

2

(
q1×(q2+q3)

) (
e

i
2
(q2×q3) − e−

i
2
(q2×q3))

)
. (C.21)
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With respect to (3.38), in the first line we have partially integrated in order to have the
derivatives acting on c̄ only. Due to momentum conservation by the δ-function we have
q3 = −q1 − q2, and by application of the relation (A.11b) we obtain

S c̄Ac =

= 2ig

∫
d4q1,2,3
(2π)8

δ(q1 + q2 + q3)
(
1 +

a′2

q21 q̃
2
1

)
(q1µ)˜̄c(q1)c̃(q2)Ãµ(q3) sin

(
q1 × q2

2

)
.

(C.22)

Now one can apply the functional derivation with respect to the fields (3.40), which in
our case reads as

Ṽ c̄Aµc(k1, k2, k3) = −(2π)12
δ

δ˜̄c(−k1)
δ

δÃµ(−k2)
δ

δc̃(−k3)
S c̄Ac , (C.23)

and one gets:

Ṽ c̄Aµc(k1, k2, k3) =

= −2ig(2π)4
∫
d4q1,2,3δ(q1 + q2 + q3)

(
1 +

a′2

q21 q̃
2
1

)
(q1µ)

δ(q1 − k1)δ(q3 − k2)δ(q2 − k3) sin
(
q1 × q2

2

)
=

= −2ig(2π)4δ(q1 + q2 + q3)
(
1 +

a′2

k21k̃
2
1

)
(k1µ) sin

(
k1 × k3

2

)
. (C.24)

By renaming the momenta of the ghost and antighost, ki → qi one gets the expression
(C.25c).

Vertices

k2,σ

k1,ρ

k3,τ

= Ṽ 3A
ρστ (k1, k2, k3)

= 2ig(2π)4δ4(k1 + k2 + k3) sin
(
k1k̃2
2

)
×

× [(k3 − k2)ρδστ + (k1 − k3)σδρτ + (k2 − k1)τδρσ] , (C.25a)

k4,ε

k3,τ

k2,σ

k1,ρ

= Ṽ 4A
ρστϵ(k1, k2, k3, k4)
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= −4g2(2π)4δ4(k1 + k2 + k3 + k4)×

×
[
(δρτδσϵ − δρϵδστ ) sin

(
k1k̃2
2

)
sin
(
k3k̃4
2

)
+(δρσδτϵ − δρϵδστ ) sin

(
k1k̃3
2

)
sin
(
k2k̃4
2

)
+(δρσδτϵ − δρτδσϵ) sin

(
k2k̃3
2

)
sin
(
k1k̃4
2

)]
, (C.25b)

k2,µ

q1

q3

= Ṽ c
µ (q1, k2, q3)

= −2ig(2π)4δ4(q1 + k2 + q3)q1µ

(
1 +

a′2

(q1)2(q̃1)2

)
sin
(
q1q̃3
2

)
, (C.25c)

q1,µν

k3,σ

k2,ρ

= Ṽ BAA
µν,ρσ (q1, k2, k3)

= 2ga′(2π)4δ4(q1 + k2 + k3) (δµρδνσ − δµσδνρ) sin
(
k2k̃3
2

)
, (C.25d)

k3,ε

q2,ρσ

q1,µν

= Ṽ BBA
µν,ρσ,ϵ(q1, q2, k3)

= −2igθ2(2π)4δ4(q1 + q2 + k3) (δµρδνσ − δµσδνρ)×

×
(
(q1)

2 + (q2)
2
)
(q1 − q2)ϵ sin

(
q1q̃2
2

)
, (C.25e)

k3,τ

q2,ρσ

q1,µν

k4,ε

= Ṽ 2B2A
µν,ρσ,τϵ(q1, q2, k3, k4)

= 4g2θ2(2π)4δ4(q1 + q2 + k3 + k4) (δµρδνσ − δµσδνρ)×

×
{[
k3,τk4,ε+ 2 (q1,τk4,ε+ q2,εk3,τ )+ 4q1,τq2,ε− δετ

(
q1

2 + q2
2
)]

sin
( q1k̃3

2

)
sin
( q2k̃4

2

)
+
[
k3,τk4,ε+ 2 (q2,τk4,ε+ q1,εk3,τ )+ 4q1,εq2,τ− δετ

(
q1

2 + q2
2
)]

sin
( q1k̃4

2

)
sin
( q2k̃3

2

)}
,

(C.25f)
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k4,ε

k3,τ

q1,µν

q2,ρσ

k5,κ

= Ṽ 2B3A
µν,ρσ,τϵκ (q1, q2, k3, k4, k5)

= −8ig3θ2(2π)4δ4(q1 + q2 + k3 + k4 + k5) (δµρδνσ − δµσδνρ)×

×

{
[k3 + 2q1]τ δϵκ sin

(k3q̃1
2

)[
sin
(k5q̃2

2

)
sin
(k4(k̃5+q̃2)

2

)
+ (k4 ↔ k5)

]

+ [k4 + 2q1]ϵ δτκ sin
(k4q̃1

2

)[
sin
(k5q̃2

2

)
sin
(k3(k̃5+q̃2)

2

)
+ (k5 ↔ k3)

]

+ [k5 + 2q1]κ δτϵ sin
(k5q̃1

2

)[
sin
(k3q̃2

2

)
sin
(k4(k̃3+q̃2)

2

)
+ (k3 ↔ k4)

]

+ (q1 ↔ q2)

}
, (C.25g)

k3,τq2,ρσ

q1,µν

k6,ι
k5,κ

k4,ε = Ṽ 2B4A
µν,ρσ,τϵκι (q1, q2, k3, k4, k5, k6)

= 4g4θ2(2π)4δ4(q1 + q2 + k3 + k4 + k5 + k6) (δµρδνσ − δµσδνρ)×

×

{
2δτϵδκι

[
sin
(k4q̃1

2

)
sin
(k3(k̃4+q̃1)

2

)
sin
(k6q̃2

2

)
sin
(k5(k̃6+q̃2)

2

)
+ (k3 ↔ k4) + (k5 ↔ k6)

]
+ δτκδϵι

[
sin
(k5q̃1

2

)
sin
(k3(k̃5+q̃1)

2

)
sin
(k6q̃2

2

)
sin
(k4(k̃6+q̃2)

2

)
+ (k3 ↔ k5) + (k4 ↔ k6)

]
+ δτιδκϵ

[
sin
(k6q̃1

2

)
sin
(k3(k̃6+q̃1)

2

)
sin
(k4q̃2

2

)
sin
(k5(k̃4+q̃2)

2

)
+ (k3 ↔ k6) + (k5 ↔ k4)

]
+ (q1 ↔ q2)

}
. (C.25h)

C.3 One-loop graphs

Using the abbreviation

G(k) ≡
(
k2 +

a′2

k̃2

)
, (C.26)
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the full expressions for the graphs depicted in Fig. 3.3 including the factors listed in
Table 3.1 are given by:

Π(a)
µν = sa

4g2

(2π)4

∫
d4k

sin2
(
kp̃
2

)
G(k)G(k + p)

{
kµkν
k2

(
11k2 − p2 + 2kp+

(p2 − k2)2

(k + p)2

)

+ δµν

[
α

(
(k2 + 2kp)2

G(k)
+

(k2 − p2)2

G(k + p)

)
+ k2 + 5p2 − 2kp− (k2 − p2)2

(k + p)2
− 4

(kp)2

k2

]

+ αkµkν

(
p2 − k2 − 2kp

G(k)
−

p4

(k+p)2

(
a′2

(k̃+p̃)2
− (k + p)2(α− 1)

)
G(k)G(k + p)

− (k2 − p2)2

k2G(k + p)

)

+ pµpν

(
a′2

(k̃+p̃)2
− (k + p)2(α− 1)

)
(G(k + p)) (k + p)2

(
k2p2 + (kp)2 − 2k4

k2
− α(kp)

2

G(k)

)
+ pµpν

(
−3 + α

k2

G(k)

)
+ (kµpν + pµkν)

(
3
kp+ 2k2

k2
− α3kp+ k2

G(k)

)

+ (kµpν + pµkν)(kp)

(
a′2

(k̃+p̃)2
− (k + p)2(α− 1)

)
G(k + p)(k + p)2

(
k2 − p2

k2
+ α

p2

G(k)

)}
,

(C.27a)

Π(b)
µν = −sb

8g2

(2π)4

∫
d4k sin2

(
kp̃

2

)
1

G(k)

[
2δµν +

kµkν
k2

+ α
(k2δµν − kµkν)

G(k)

]
, (C.27b)

Π(c)
µν = −sc

4g2

(2π)4

∫
d4k

kµ(k + p)ν
k2(k + p)2

sin2
(
kp̃

2

)
, (C.27c)

Π(d)
µν = sd

4g2θ4

(2π)4

∫
d4k sin2

(
kp̃

2

) [
(k + p)2 + k2

]2
(2k + p)µ(2k + p)ν

k2k̃2(k + p)2(k̃ + p̃)2
×

×

[
6− 3a′2

k̃2G(k)
− 3a′2

(k̃ + p̃)2G(k + p)
+

a′4
(
k2(k + p)2 + 2[k(k + p)]2

)
k2k̃2(k + p)2(k̃ + p̃)2G(k)G(k + p)

]
,

(C.27d)

Π(e)
µν = −se

24g2

(2π)4

∫
d4k

sin2(kp̃2 )

k4
[pµpν + 4kµkν + 2k2δµν ]

[
2− a′2

k̃2G(k)

]
, (C.27e)

Π(f)
µν = sf

4 a′4g2

(2π)4

∫
d4k sin2

(
kp̃

2

)
3kµkν + 2kµpν + kνpµ

k2k̃2(k + p)2(k̃ + p̃)2G(k)G(k + p)
, (C.27f)
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Π(g)
µν = sg

4 a′2g2

(2π)4

∫
d4k

sin2
(
kp̃
2

)
k2k̃2G(k + p)

{
2δµν +

(k + p)µ(k + p)ν
(k + p)2

+
a′2

k2k̃2G(k)

[
δµν

(
[k(k+p)]2

(k+p)2
− k2

)
− kµkν − k(k+p)

(k+p)2
(2kµkν + kµpν + pµkν)

]
+

α

G(k + p)G(k)

(
δµν

[
k2(k + p)2 − a′2 (kp)

2 − k2p2

k2k̃2

]
− k2(kµ + pµ)(kν + pν)

− a′2

k2k̃2

(
k2pµpν + p2kµkν − (kp)(kµpν + pµkν)

))}
,

(C.27g)

Π(h+i)
µν = sh

4 a′2g2

(2π)4

∫
d4k

sin2
(
kp̃
2

)
k̃2(k + p)2G(k)

(
1

k2
+

1

(k + p)2

)
(2kµ + pµ)×

×
[
3kν − a′2

kν [(k + p)2 + 2k(k + p)] + 2pν [k(k + p)]

(k + p)2(k̃ + p̃)2G(k + p)

]
+ µ↔ ν, (C.27h)

Π(j)
µν = sj

4a′2g2

(2π)4

∫
d4k sin2

(
kp̃

2

)(
1

(k + p)2
+

1

k2

)
×

×
(2k + p)µ

[
(6k2 + 6kp+ 2p2)kν + (3k2 + kp)pν

]
k̃2(k + p)2G(k)G(k + p)

, (C.27i)

Π(k+l)
µν = sk

4 a′2g2

(2π)4

∫
d4k

sin2
(
kp̃
2

)
k2k̃2G(k)G(k + p)

{
3kµkν + 2pµkν + kµpν

+ δµν

[
k(k − p) + k(k + p)

(p2 − k2)
(k + p)2

− αk(k + p)(p2 − k2)
G(k + p)

]
+

1

(k + p)2

(
k(k + p)(kµkν − pµpν) + (p2 + 2k2 + 3(kp))(kµkν + kµpν)

)
− α

G(k + p)

(
k(k + p)(kµkν − pµpν) + (p2 + 2k2 + 3(kp))(kµkν + kµpν)

− (k + p)2(2kµkν + kµpν)
)
+ µ↔ ν

}
. (C.27j)
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Appendix D

Calculations for gauge model
with soft breaking

D.1 Propagators for the model of Vilar et al.

The action (5.5) leads to 19 propagator:

GAµν(k) =
−1(

k2 + γ4

k2

) (δµν − kµkν
k2

)
, (D.1a)

GBAρ,στ (k) =
−γ3(

k2 + γ4

k2

) (kσδρτ − kτδρσ)
2(k2)2

, (D.1b)

GB̄Aρ,στ (k) = −GBAρ,στ (k) , (D.1c)

GχAρ,στ (k) =
iγ(

k2 + γ4

k2

) (kσδρτ − kτδρσ)
2k2

, (D.1d)

Gχ̄Aρ,στ (k) = −GχAρ,στ (k) , (D.1e)

GB̄B̄ρσ,τϵ(k) =
γ4

(k2)2
(kρkτδσϵ + kσkϵδρτ − kρkϵδστ − kσkτδρϵ)

4(k2)2
(
k2 + γ4

k2

) , (D.1f)

GBBρσ,τϵ(k) = GB̄B̄ρσ,τϵ(k) , (D.1g)

GBB̄ρσ,τϵ(k) = γ2
(δρτδσϵ − δρϵδστ )

2(k2)2
−GB̄B̄ρσ,τϵ(k) , (D.1h)

Gχ̄χ̄ρσ,τϵ(k) = −γ2
(kρkτδσϵ + kσkϵδρτ − kρkϵδστ − kσkτδρϵ)

4(k2)2
(
k2 + γ4

k2

) , (D.1i)

Gχχρσ,τϵ(k) = Gχ̄χ̄ρσ,τϵ(k) , (D.1j)

Gχχ̄ρσ,τϵ(k) = −Gχ̄χ̄ρσ,τϵ(k) , (D.1k)
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GχBρσ,τϵ(k) =
γ4

k2
(kρkτδσϵ + kσkϵδρτ − kρkϵδστ − kσkτδρϵ)

4(k2)2
(
k2 + γ4

k2

) , (D.1l)

Gχ̄B̄ρσ,τϵ(k) = GχBρσ,τϵ(k) , (D.1m)

GχB̄ρσ,τϵ(k) =
(δρτδσϵ − δρϵδστ )

2k2
−GχBρσ,τϵ(k) , (D.1n)

Gχ̄Bρσ,τϵ(k) = GχB̄ρσ,τϵ(k) , (D.1o)

Gc̄c(k) = − 1

k2
, (D.1p)

Gξ,ψ̄µν,ρσ(k) =
(δµρδνσ − δµσδνρ)

2k2
, (D.1q)

Gξ̄,ψµν,ρσ(k) = −Gξ,ψ̄µν,ρσ , (D.1r)

Gξ̄ξµν,ρσ(k) = −γ2
(δµρδνσ − δµσδνρ)

2(k2)2
. (D.1s)

D.2 Graphical conventions

= Aµ

= c and c̄

= Bµν

= B̄µν

= ψµν

= ψ̄µν

(D.2)

D.3 Vertices

k2,σ

k1,ρ

k3,τ

= Ṽ 3A
ρστ (k1, k2, k3)

= 2ig(2π)4δ4(k1 + k2 + k3) sin
(
k1k̃2
2

)
×

× [(k3 − k2)ρδστ + (k1 − k3)σδρτ + (k2 − k1)τδρσ] , (D.3a)
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k4,ε

k3,τ

k2,σ

k1,ρ

= Ṽ 4A
ρστϵ(k1, k2, k3, k4)

= −4g2(2π)4δ4(k1 + k2 + k3 + k4)×

×
[
(δρτδσϵ − δρϵδστ ) sin

(
k1k̃2
2

)
sin
(
k3k̃4
2

)
+(δρσδτϵ − δρϵδστ ) sin

(
k1k̃3
2

)
sin
(
k2k̃4
2

)
+(δρσδτϵ − δρτδσϵ) sin

(
k2k̃3
2

)
sin
(
k1k̃4
2

)]
, (D.3b)

k2,µ

q1

q3

= Ṽ c̄Ac
µ (q1, k2, q3)

= −2ig(2π)4δ4(q1 + q2 + k3)q1µ sin
(
q1q̃3
2

)
(D.3c)

q1,µν

k3,σ

k2,ρ

= Ṽ BAA
µν,ρσ (q1, k2, k3) =

k3,τ

q2,ρσ

q1,µν

k4,ε

Ṽ B̄AA
µν,ρσ (q1, k2, k3)

= λg(2π)4δ4(q1 + k2 + k3) (δµρδνσ − δµσδνρ) sin
(
k2k̃3
2

)
, (D.3d)

k3,ε

q2,ρσ

q1,µν

= Ṽ B̄BA
µν,ρσϵ(q1, q2, k3) = −

k3,ε

q2,ρσ

q1,µν

= −Ṽ ψ̄ψA
µν,ρσϵ(q1, q2, k3)

= −iµ2g(2π)4δ4(q1 + q2 + k3) (δµρδνσ − δµσδνρ)×

×
(
(q̃1)

2 + (q̃2)
2
)
(q1 − q2)ϵ sin

(
q1q̃2
2

)
, (D.3e)

k3,τ

q2,ρσ

q1,µν

k4,ε

= Ṽ B̄B2A
µν,ρσ,τϵ(q1, q2, k3, k4) =

k3,τ

q2,ρσ

q1,µν

k4,ε

= −Ṽ ψ̄ψ2A
µν,ρσ,τϵ(q1, q2, k3, k4)

= 2µ2g2θ2(2π)4δ4(q1 + q2 + k3 + k4) (δµρδνσ − δµσδνρ)×

×
{[
k3,τk4,ϵ+ 2(q1,τk4,ϵ+ q2,ϵk3,τ )+ 4q1,τq2,ϵ− δϵτ

(
q1

2+ q2
2
)]
sin
( q1k̃3

2

)
sin
( q2k̃4

2

)
+
[
k3,τk4,ϵ+ 2(q2,τk4,ϵ+ q1,ϵk3,τ )+ 4q1,ϵq2,τ− δϵτ

(
q1

2+ q2
2
)]
sin
( q1k̃4

2

)
sin
( q2k̃3

2

)}
,

(D.3f)
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q2,ρσ

q1,µν

k5,κ

k4,ε

k3,τ

= Ṽ B̄B3A
µν,ρσ,τϵκ (q1, q2, k3, k4, k5) = −

q2,ρσ

q1,µν

k5,κ

k4,ε

k3,τ

= −Ṽ ψ̄ψ3A
µν,ρσ,τϵκ (q1, q2, k3, k4, k5)

= −4ig3µ2θ2(2π)4δ4(q1 + q2 + k3 + k4 + k5) (δµρδνσ − δµσδνρ)×

×

{
[k3 + 2q1]τ δϵκ sin

(k3q̃1
2

)[
sin
(k5q̃2

2

)
sin
(k4(k̃5+q̃2)

2

)
+ (k4 ↔ k5)

]

+ [k4 + 2q1]ϵ δτκ sin
(k4q̃1

2

)[
sin
(k5q̃2

2

)
sin
(k3(k̃5+q̃2)

2

)
+ (k5 ↔ k3)

]

+ [k5 + 2q1]κ δτϵ sin
(k5q̃1

2

)[
sin
(k3q̃2

2

)
sin
(k4(k̃3+q̃2)

2

)
+ (k3 ↔ k4)

]

+ (q1 ↔ q2)

}
, (D.4a)

k3,τq2,ρσ

q1,µν

k6,ι
k5,κ

k4,ε = Ṽ B̄B4A
µν,ρσ,τϵκι (q1, q2, k3, k4, k5, k6) = −

k3,τq2,ρσ

q1,µν

k6,ι
k5,κ

k4,ε = −Ṽ ψ̄ψ4A
µν,ρσ,τϵκι (q1, q2, k3−6)

= 2g4µ2θ2(2π)4δ4(q1 + q2 + k3 + k4 + k5 + k6) (δµρδνσ − δµσδνρ)×

×

{
2δτϵδκι

[
sin
(k4q̃1

2

)
sin
(k3(k̃4+q̃1)

2

)
sin
(k6q̃2

2

)
sin
(k5(k̃6+q̃2)

2

)
+ (k3 ↔ k4) + (k5 ↔ k6)

]
+ δτκδϵι

[
sin
(k5q̃1

2

)
sin
(k3(k̃5+q̃1)

2

)
sin
(k6q̃2

2

)
sin
(k4(k̃6+q̃2)

2

)
+ (k3 ↔ k5) + (k4 ↔ k6)

]
+ δτιδκϵ

[
sin
(k6q̃1

2

)
sin
(k3(k̃6+q̃1)

2

)
sin
(k4q̃2

2

)
sin
(k5(k̃4+q̃2)

2

)
+ (k3 ↔ k6) + (k5 ↔ k4)

]
+ (q1 ↔ q2)

}
. (D.4b)

D.4 Two point functions

According to Section 5.6.2 we will list the following information for the divergent two
point functions (with amputated external legs):

• Feynman graphs

• Symmetry factors

• For the sum of graphs: the integrated results, given individually for each order
and planar/non-planar results
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Each type of two point functions, characterized by its external legs, is considered indi-
vidually.

Vacuum polarization

The model (5.19) gives rise to 23 graphs contributing to the vacuum polarization. Omit-
ting convergent expressions, there are 11 graphs left depicted in Fig. D.1. The symmetry

HaL HbL HcL

HdL HeL Hf L HgL

HhL HiL HjL HkL

Figure D.1: One loop corrections for the gauge boson propagator

factors are listed in Tab. D.1. Being interested in the divergent contributions one can

Table D.1: Symmetry factors for the one loop vacuum polarization (where the factor
(−1) for fermionic loops has been included).

sa
1
2 se 1 si 1

sb -1 sf -1 sj -1
sc

1
2 sg -1 sk -1

sd 1 sh 1

apply the expansion in Eqn. (3.47). Summing up the contributions of the graphs in

Fig. D.1 and denoting the result at order i for the planar (p) part by Π
(i),p
µν , one is left

with

Π(0),p
µν (p) =

g2

16π2
Λ2δµν (−10sc − 96sh − 96sj + 12sa + sb + 96sd + 96sf)

=0 , (D.5a)
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Π(2),p
µν (p) =− 1

3

g2

16π2

[
δµνp

2 (22sa + sb + 48(sd + sf))

+ 2pµpν (72(sh + sj)− 8sa + sb − 96(sd + sf))
]
K0

(
2

√
M2

Λ2

)

=− 5g2

12π2
(
p2δµν − pµpν

)
K0

(
2

√
M2

Λ2

)

≈− 5g2

12π2
(
p2δµν − pµpν

)
ln

(
Λ2

M2

)
+ finite . (D.5b)

According to Eqn. (A.10a) we have approximated the modified Bessel function K0 by

K0(x) ≈
x≪1

ln 2
x − γE +O

(
x2
)
,

where γE denotes the Euler-Mascheroni constant. Note that this is valid for small ar-
guments, i.e. vanishing regulator cutoffs1 Λ → ∞ and M → 0. Note that the first
order vanishes identically due to an odd power of k in the integrand which leads to a
cancellation under the symmetric integration over the momenta.

Of particular interest is the non-planar part (np) which for small p results to:

Π(0),np
µν (p) =

g2

4π2p̃2

[
δµν (96(sh + sj − sd − sf)− 12sa − sb + 10sc)

− 2
p̃µp̃ν
p̃2

(48(sh + sj)− 96(sd + sf)− 12sa − sb + 2sc)
]

=
2g2

π2
p̃µp̃ν
(p̃2)2

, (D.6a)

Π(2),np
µν (p) =

g2

48π2p̃2

{
2θ2pµpνp

2 (72(sh + sj)− 8sa + sb − 96(sd + sf))K0

(√
M2p̃2

)
+

√
p̃2

M2
p2
[√

p̃2

M2
(22sa + sb + 48(sd + sf))M

2δµν K0

(√
M2p̃2

)
+ 2M2 (13sa + sb + 120(sd + sf)) p̃µp̃ν K1

(√
M2p̃2

)
− 3

√
M2

p̃2
(16sa + sb + 96(sd + sf)) p̃µp̃ν

]}

=− g2

48π2

[
p̃µp̃ν

(
21

θ2
− 11p2

√
M2

p̃2
K1

(√
M2p̃2

))
− 10K0

(√
M2p̃2

) (
p2δµν − pµpν

) ]
. (D.6b)

1The cutoffs are introduced via a factor exp
[
−M2α− 1

Λ2α

]
to regularize parameter integrals

∫∞
0

dα.
See Section A.2 for a more extensive description of the mathematical details. Note that here the regulator
mass is written as M instead of µ, as the latter represents a parameter of the theory under consideration.
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Considering the limit p̃2 → 0 allows the application of the approximation Eqn. (A.10b)
for K

K1(x) ≈
x≪1

1
x + x

2

(
γE − 1

2 + ln x
2

)
+O

(
x2
)
,

which reveals that the second order is IR finite (which is immediately clear from the
fact that the terms of lowest order in p are O

(
p2
)
). We are left with a UV divergence

given by the ln(M2)-term, however which cancels in the sum of planar and non-planar
contributions. Hence, collecting all divergent terms one is left with the final result given
in Eqn. (5.40), after performing the limit M → 0 and Λ→∞. It is independent of the
IR-cutoff M .

Corrections to the AB and AB̄ propagator

HaL HbL HcL HdL

HeL Hf L HgL HhL

Figure D.2: One loop corrections for ⟨AµBν1ν2⟩ (with amputated external legs).

The action (5.19) gives rise to eight divergent graphs with one external Aµ and one
Bµν which are depicted in Fig. D.2. The symmetry factors are given by Tab. D.2.

Table D.2: Symmetry factors for the graphs depicted in Fig. D.2

(a) 1/2 (e) 1
(b) 1 (f) 1
(c) 1 (g) 1
(d) 1 (h) 1

Applying an expansion of type (3.47) for small external momenta p and summing
up the divergent contributions of all graphs one ends up with,

Σ
(1),p,AB
µ1,ν1ν2 (p) =−

3ig2

32π2
λ (pν1δµ1ν2 − pν2δµ1ν1)K0

(
2

√
M2

Λ2

)
+ finite

Σ
(1),np,AB
µ1,ν1ν2 (p) =

3ig2

32π2
λK0

(√
M2p̃2

)
(pν1δµ1ν2 − pν2δµ1ν1) + finite . (D.7)
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Note that the expansions in zero and second order (Σ
(0),p+np,AB
µ1,ν1ν2 (p),Σ

(2),p+np,AB
µ1,ν1ν2 (p))

vanishes identically, due to the odd power of k in the integrand.
Approximating the Bessel functions as in Section 5.6.2 and summing up planar and
non-planar parts one finds the final result Eqn. (5.41) where one can see that the IR
cutoff M has cancelled.

Corrections to the BB and B̄B̄ propagator

HaL HbL HcL HdL

HeL Hf L HgL HhL

HiL

Figure D.3: One loop corrections for ⟨Bµ1µ2Bν1ν2⟩ (with amputated external legs).

The set of divergent graphs contributing to the Bµ1µ2Bν1ν2-propagator consists of
those depicted in Fig. D.3. The symmetry factors are given by Tab. D.3. Making

Table D.3: Symmetry factors for the graphs depicted in Fig. D.3

(a) 1/2 (d) 1 (g) 1
(b) 1 (e) 1 (h) 1
(c) 1 (f) 1 (i) 1

an expansion of the type (3.47) for small external momenta p and summing up the
contributions of all nine graphs yields

Σ
(0),p,BB
µ1µ2,ν1ν2(p) =

g2λ2

32π2
(δµ1ν1δµ2ν2 − δµ2ν1δµ1ν2)K0

(
2

√
M2

Λ2

)
+ finite ,
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Σ
(0),np,BB
µ1µ2,ν1ν2(p) =

g2λ2

64π2

(
δµ1ν2p̃µ2p̃ν1 − δµ1ν1p̃µ2p̃ν2 − δµ2ν2p̃µ1p̃ν1 + δµ2ν1p̃µ1p̃ν2

p̃2

+ 2K0

(√
M2p̃2

)
(δµ1ν2δµ2ν1 − δµ1ν1δµ2ν2)

)
+ finite ,

(D.8)

for the planar/non-planar part, respectively. Note that the expansions in first order
vanishes due to the even power of k in the integrand and that also the divergent part

of the second order (Σ
(0),p+np,AB
µ1,ν1ν2 (p),Σ

(2),p+np,AB
µ1,ν1ν2 (p)) is zero, due to only logarithmic

divergence.
Approximating the Bessel functions as in Section 5.6.2 reveals cancellations of contribu-
tions depending on M in the final sum, which is given in Eqn. (5.44).

Corrections to the BB̄ propagator

HaL HbL HcL HdL

HeL Hf L HgL HhL

HiL HjL

Figure D.4: One loop corrections for ⟨Bµ1µ2B̄ν1ν2⟩ (with amputated external legs).

For the one loop correction to the Bµ1µ2B̄ν1ν2 propagator one finds the ten divergent
graphs depicted in Fig. D.4. The respectie symmetry factors are given in Tab. D.4.

Expansion for small external momenta p and summation of the divergent results after
integration yields

Σ
(0),p,BB̄
µ1µ2,ν1ν2(p) =

g2λ2

32π2
(δµ1ν1δµ2ν2 − δµ2ν1δµ1ν2)K0

(
2

√
M2

Λ2

)
+ finite ,
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Table D.4: Symmetry factors for the graphs depicted in Fig. D.4

(a) 1/2 (e) 1 (i) 1
(b) 1 (f) 1 (j) 1/2
(c) 1 (g) 1
(d) 1 (h) 1

Σ
(0),np,BB̄
µ1µ2,ν1ν2(p) =

g2λ2

64π2

(
δµ1ν2p̃µ2p̃ν1 − δµ1ν1p̃µ2p̃ν2 − δµ2ν2p̃µ1p̃ν1 + δµ2ν1p̃µ1p̃ν2

p̃2

+ 2K0

(√
M2p̃2

)
(δµ1ν2δµ2ν1 − δµ1ν1δµ2ν2)

)
+ finite ,

Σ
(2),p,BB̄
µ1µ2,ν1ν2(p) =

g2

2π2
Λ2µ2p̃2 (δµ2ν1δµ1ν2 − δµ1ν1δµ2ν2)

(D.9)

The final result given in Eqn. (5.46) is the sum of all contributions in Eqn. (D.9). It can
be seen that it is logarithmically divergent in p̃2 and quadratically in Λ. Once more, µ
has dropped out in the sum of planar and non-planar contributions.

D.4.1 Calculation of the inverse propagator

The derivation of the inverse of the gauge propagator (5.32c) is based on the relation

GAAµν (p)Γ
AA
νρ (p) = δµρ. (D.10)

Remember however that so far we worked in the Landau gauge (i.e. α = 0), and that
the resulting gauge propagator is proportional to a projection operator, which following
Section C.1.1 has no inverse. We therefore have to generalize the gauge fixing term in
the action (5.19) to an arbitrary gauge, i.e.

Sϕπ →
∫

d4x
[
b∂µAµ −

α

2
b2
]
+ Sghost , (D.11)

leading to the more general propagator

GAAµν (k) =
1(

k2 + a′2

k̃2

) (δµν − kµkν
k2

)
+ α

kµkν
k4

. (D.12)

(D.13)

Now we can calculate the inverse via the ansatz{
δµν −

kµkν
k2

+ α

(
k2 +

a′2

k̃2

)
kµkν
k4

}{
aδνρ + b

kνkρ
k2

+
c

α

1(
k2 + a′2

k̃2

) kνkρ
k4

}
!
= δµρ
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=⇒ a = 1, b = −1, c = k4 , (D.14)

leading to the two point vertex function

Aµν ≡ ΓAAµν (p) =

(
k2 +

a′2

k̃2

){
δµν −

kµkν
k2

+
1

α

kµkν(
k2 + a′2

k̃2

)} . (D.15)

In the last line the relation a′2/k̃2 = a2/k2 has been used.
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Appendix E

Calculations for the BRSW model

While the one-loop corrections for the gauge propagator can be calculated in the same
way as for the previous models, new types of integrals appear in the course of one-
loop corrections to the vertices. In particular it follows from the Feynman rules, that
each corresponding integral will contain a product of three (four) sine-functions, for the
corrections to the vertices with three (four) external legs. We will first show how to
simplify such products, followed by a list of the resulting new integrals.

E.1 Simplification of integrals for one-loop corrections to
the vertices

The integrals appearing in the course of one-loop corrections to the vertices are of the
form ∫

d4k
kµ1 . . . kµm

(k2)n
F
{
sinr(k, p, εθµν)

}
, (E.1)

where F (sinr) symbolically denotes the product of r sine-functions, which depend on
internal (k) and external (p) momenta, and r = {3, 4} equals the number of external
legs. In order to solve such integrals, F (sinr) can be reduced to expressions containing
only one (or even none for the planar part) trigonometric function depending on both
internal and external momenta, multiplied by trigonometric functions depending only
on external momenta and hence not affecting the integration. This leads to the rather
simple integrals given in Section A.2.3 and the next section Section E.2.
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Chapter E. Calculations for the BRSW model

A first example is given by the phase factor appearing in the one-loop graph composed
by three Ṽ 3A vertices (c.f. (7.23a))

4 sin
(
ε
p1
2
(p̃2 − k̃)

)
sin

(
ε
p2k̃

2

)
sin

(
ε
(p1 + p2)k̃

2

)
=

sin

(
ε
p1p̃2
2

)
+ sin

(
ε
p1p̃2
2

)
cos
(
εp1k̃

)
− cos

(
ε
p1p̃2
2

)
sin
(
εp1k̃

)
− sin

(
ε
p1p̃2
2

)
cos
(
εp2k̃

)
− cos

(
ε
p1p̃2
2

)
sin
(
εp2k̃

)
+ cos

(
ε
p1p̃2
2

)
sin
(
ε(p1 + p2)k̃

)
− sin

(
ε
p1p̃2
2

)
cos
(
ε(p1 + p2)k̃

)
, (E.2)

where the sum of momenta in the original expression have been separated by using
(A.11c).

In the case of the four-point functions, we encounter products of four sine functions,
which is given by

sin

(
ε
p1k̃

2

)
sin

(
ε
p2k̃

2

)
sin

(
ε
p3(k̃ + p̃2)

2

)
sin

(
ε
p4(k̃ + p̃2)

2

)

=
1

8

[
cos

(
ε
p3p̃2
2

)
cos

(
ε
p4p̃2
2

)(
cos(ε(p1 + p2)k̃) + cos(ε(p1 + p3)k̃) + cos(ε(p1 + p4)k̃)

− cos(εp1k̃) + cos(εp2k̃) + cos(εp3k̃) + cos(εp4k̃) + 1
)

− sin

(
ε
p3p̃2
2

)
cos

(
ε
p4p̃2
2

)(
− sin(ε(p1 + p2)k̃) + sin(ε(p1 + p3)k̃)

− sin(ε(p1 + p4)k̃) + sin(εp1k̃) + sin(εp2k̃)− sin(εp3k̃) + sin(εp4k̃)
)

− cos

(
ε
p3p̃2
2

)
sin

(
ε
p4p̃2
2

)(
− sin(ε(p1 + p2)k̃)− sin(ε(p1 + p3)k̃)

+ sin(ε(p1 + p4)k̃) + sin(εp1k̃) + sin(εp2k̃) + sin(εp3k̃)− sin(εp4k̃)
)

+ sin

(
ε
p3p̃2
2

)
sin

(
ε
p4p̃2
2

)(
− cos(ε(p1 + p2)k̃) + cos(ε(p1 + p3)k̃)

+ cos(ε(p1 + p4)k̃) + cos(εp1k̃) + cos(εp2k̃)− cos(εp3k̃)

− cos(εp4k̃)− 1
)]
. (E.3)

More generally, the simplification of such products of trigonometric functions may be
achieved by using the software MathematicaR⃝. Without entering into technical details,
the overall way to get there is the following:
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• Application of the built-in function TrigReduce[...] to the entire expression
allows to rewrite a product of trigonometric functions as a sum of single trigono-
metric functions, which depend on sums of the previous arguments.

• By application of TrigExpand[...] we again get products of trigonometric func-
tions, yet this time only depending on two momenta (Note that the original ex-
pression may contain arguments of the form (p1p̃2 + p3k̃)).

• In the expression evaluated before, we apply the following procedure to each sum-
mand: first, separation of the functions depending on external momenta only, from
those depending also on internal momenta. Then, application of TrigReduce[...]
to the part depending on k. Finally, multiplication with the external part sepa-
rated before.

By this simple algorithm, one is able to simplify the calculation of integrals depending
on a product of trigonometric functions.

E.2 Integrals

In addition to the integrals of Section A.2.3, in the course of one-loop corrections of the
vertices we encounter also integrands with an odd power in k. Hence, by generalizing
the definition (A.14) of I(m,n) to arbitrary trigonometric functions we get:

• I(1, 2) ∫
d4k

kµ
k4

sin (kp̃) =
2π2p̃µ
p̃2

(E.4)

• I(3, 3) ∫
d4k

kµkνkρ
k6

sin (kp̃) = π2
p̃µp̃ν p̃ρ
p̃4

− π2

2

δµν p̃ρ + δµρp̃ν + δνρp̃µ
p̃2

(E.5)

• I(5, 3)∫
d4k

kµkνkρkσkϵ
k8

sin (kp̃) =
π2

12

{
−

(
(1)

)
1

k̃2
+ 2

(
(2)

)
1

k̃4
− 8

k̃µk̃ν k̃ρk̃σk̃ϵ

k̃6

}
,

(E.6a)

(1) ≡

(
δµνδρσk̃ϵ + δµρδνσk̃ϵ + δρνδµσk̃ϵ + δµνδρϵk̃σ + δµνδσϵk̃ρ + δµρδνϵk̃σ

+ δµρδϵσk̃ν + δρνδµϵk̃σ + δρνδσϵk̃µ + δµσδνϵk̃ρ + δµσδρϵk̃ν + δνσδµϵk̃ρ

+ δνσδρϵk̃µ + δρσδµϵk̃ν + δρσδνϵk̃µ

)
, (E.6b)
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(2) ≡

(
δµν k̃ρk̃σk̃ϵ + δµρk̃ν k̃σk̃ϵ + δρν k̃µk̃σk̃ϵ + δµσk̃ν k̃ρk̃ϵ+

δνσk̃µk̃ρk̃ϵ + δρσk̃µk̃ν k̃ϵ + δµϵk̃ν k̃ρk̃σ + δνϵk̃µk̃ρk̃σ

+ δρϵk̃µk̃ν k̃σ + δσϵk̃µk̃ν k̃ρ

)
. (E.6c)
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Appendix F

Mathematica algorithms

The main part of the results presented in this thesis, especially the very involved cal-
culations for the explicit evaluation of the Feynman graphs, has been obtained with
MathematicaR⃝ routines, which have been developed and continuously refined for this
purpose. The intention of this chapter is not to provide a full description of the (rather
lengthy) source code, nor to present a self-contained manual for its use. Instead, an
overview of the developed packages with focus on the main ideas leading to the algo-
rithms, which finally allowed to handle a given problem by the MathematicaR⃝ software
tool will be presented, followed by the programmed functions based on them. For this
purpose, also built inMathematicaR⃝ functions and source code will be presented where
useful.
This chapter contains two sections. In Section F.1 we will present as an example the
algorithms for the calculation of Feynman diagrams for the model of Chapter 5, their
adaption to the other models being obvious. In Section F.2 we will then briefly discuss
the algorithm for the evaluation of counterterms in the framework of Algebraic Renor-
malization, which eventually led to the detection of an additional counterterm for an
axially gauged commutative QED, which was missing in the respective publication [57],
as mentioned in Section 6.2.2.

F.1 One loop calculations

In order to obtain the explicit results for the various loop calculations of this thesis,
several packages have been developed. From Fig. F.1 one can nicely see the connection
between the (high level) algorithmic steps (displayed on the left with respect to the
vertical dashed line), and the respective packages allowing to conduct the calculations
in an automated way, shown on the right hand side. The package VariationalCalc.m

allows to perform functional variation, partial integration and partial differentiation, for
simple expressions as well as for a given action. All1LoopGraphs.m allows to identify
all one-loop graphs with an arbitrary number of external legs and number of involved
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Figure F.1: Interplay between the single steps for loop calculations (displayed on the
left) and corresponding MathematicaR⃝ packages (on the r.h.s.).

vertices, their power counting degree of divergence and to define the corresponding un-
evaluated integrals. Furthermore, the argument for the evaluation of the combinatoric
factor is evaluated. The latter serves then as input for a function performing the explicit
calculation of the combinatoric factors based on Wick contractions, which is defined in
the package SymmetryFactor.m, whereas the explicit calculation of the Feynman inte-
grals and their sum is done via the package VectorAlgebra.m. Finally, DrawGraphs.m
allows to draw and label any of the formerly identified graphs.

In the present section we will focus explicitly on the packages of the second line in
Fig. F.1 (All1LoopGraphs.m and DrawGraphs.m). We will first provide a short overview
of the programmed functions, which have been applied in our daily work. Then we will
go over to a deep dive into the basic ideas of the algorithms and provide some source
code, where necessary for the understanding. For the other packages mentioned before
this information can be found in [127]. First of all, in order to allow a straightforward
discussion, let us first provide some basic definitions:

• Configuration of a graph: It is defined by the number of involved vertices of each
kind, which by itself is uniquely characterized by the number of legs. It is displayed
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as {No.of 3V, No.of 4V, No.of 5V, No.of 6V}.
Example: The configuration {1,1,0,0} denotes all graphs involving one vertex
with three legs and one with four legs.

• Representation of Feynman graphs as a nested list: In order to operate with Feyn-
man rules and the resulting graphs, to each field of the theory a numeric and a
alphanumeric value have been assigned, c.f. Tab. F.1. Based on the theses defini-
tions one can now define the propagators and vertices of the theory, i.e. the vertex
Ṽ B̄BA
µν,ρσϵ of Section D.3 is defined by {-2,2,0}. Note that the fields are listed in

clockwise order. Now it is easy to construct a graph by collecting the appropriate
vertices, which gives a nested list. For example, the graph of Fig. B.3b would be
given by {{0,0,0},{0,0,2}} or equivalently {{A,A,A},{A,A,B}}. Consider that
for each vertex, the first and last elements represent the inner legs, i.e. they will
connect to inner propagators, while all other legs are amputated and external.
Furthermore, they follow a clockwise order.

• Feynman rules: they are written as functions of momenta and indices,

< type >< field1 > ... < fieldn > [p1, ..., pn, ind1, ..., indn], (F.1)

where <type> is given by g for propagators and v for vertices. By the definition
of such a function, i.e. for the gauge boson propagator (5.32c)

gAA[k , µ , ν ] := 1/(k2 + a′/(θ2k2))(δµ,ν − kµkν/k
2); (F.2)

one deduces the Feynman integrals, which is explained next.

• Feynman expressions: For each Feynman graph, the integrand is obtained by
multiplying the respective Feynman rules, i.e. vertices and propagators, with the
correct arguments of momenta and indices, which express which legs are connected
and how they are connected. In general, the below defined functions will provide
the integrand as a product of expressions of the l.h.s. form of (F.2). Loading the
full definitions given by e.g. (F.2) will then lead to the explicit integrand. Note
that each expression is accompanied by a label allowing its unique identification
by encoding the configuration of the graph combined with an arbitrary letter.

• Combinatoric factors: For each graph, the appropriate combinatoric prefactor has
to be evaluated. The package All1LoopGraphs.m contains a function allowing to
generate the correct syntax, i.e. expressions of the form SymmetryFactor[...].
Then, by loading the package SymmetryFactor.m and evaluation of this expression
one finally gets the numeric factor. Note that in this chapter we consider the first
package only. Hence, in this context “combinatoric factor” refers to the input form
and not to the final numeric factor.
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F.1.1 Programmed functions

Note again that all functions are explicitly designed for one-loop calculations. The
following descriptions mainly reproduce the content of the help files, which have been
written for each function.

GetAll1LoopGraphs[. . . ]

The syntax is given by

GetAll1LoopGraphs[{# of 3V, # of 4V, # of 5V, # of 6V},

[PrintOptionTable], [PrintOptionGraphs],[OptionDivergence]]

The first argument specifies the graph configuration to be considered. Then the following
information will be provided:

1. If PrintOptionTable is set to 1, a table will be printed with 3 columns and n+1
lines (the number of graphs plus the header):

• The first column contains the graph represented as nested list, c.f. the defi-
nitions above.

• The second column contains the degree of divergence for each graph.

• The third column contains the integrand for the respective Feynman graph, or
more precisely, the product of the Feynman rules with the correct arguments
(indices, momenta). Furthermore, each expression is multiplied by a prefactor
allowing the unique identification of the graph.

For PrintOptionTable=0 it will be obmitted. Default is 1.

2. The option PrintOptionGraphs allows to print the Feynman diagrams for 1, or
to ommit their printing by setting it to 0.

3. Finally, OptionDivergence specifies whether all graphs (for 1) or only the diver-
gent graphs (for 0) will be considered.

AllConfigurations[. . . ]

The function is given by

AllConfigurations[#V(min), #V(max)]

where # V(min), # V(max) indicate the minimum respectively maximum number of ver-
tices to be considered. The function returns a list with two columns. The first column
contains all possible graph configurations which are constructed by combining at least
V(min) and at most V(max) vertices, and which are displayed in the form of the first
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argument of the function GetAll1LoopGraphs. The second column contains the number
of divergent graphs for each configuration.
This function allows to determine explicitly, which configurations of vertices lead to
divergent 1 loop graphs, and to know their number. It has been used e.g. for the
construction of Tab. 5.3, which contains a few of the lines which will be returned by
the choice {# V(min), # V(max)}={1,2}. By determining the length of the output of
AllConfigurations[i,i] with i = 1 . . . 5 one arrives to Tab. 5.2.
Example: AllConfiguration[1,4] returns a list with e.g. the following configurations:
Four 3-vertices {4,0,0,0}, two 3-vertices and two 4-vertices {2,2,0,0}, one 3-vertex and
two 4-vertices {1,2,0,0}, ...

GetAllPropGraphs[. . . ] and GetAllGaugePropGraphs[]

The function

GetAllPropGraphs[{field1,field2},[PrintOptionGraphs], [OptionDivergence]]

returns (for OptionDivergence=1 all, if set to 0 only the divergent) one loop corrections
to the propagator specified by the two (amputated) external legs {field1,field2}. It
returns a list with 3 columns with the graph represented as nested list, the degree of
divergence and the Feynman integrand, as for GetAll1LoopGraphs. Furthermore, a list
with two columns will be displayed, containing the identification label of the graph and
the input form for the function SymmetryFactor[...] (to be evaluated by loading the
package SymmetryFactor.m). Finally the argument PrintOptionGraphs allows to print
the graphs (”1”) or to suppress it (”0”).
Due to the frequently calculation of the vacuum polarization, the function (without ar-
guments) GetAllGaugePropGraphs[]:=GetAllPropGraphs[A,A,1,1] has furthermore
been defined.

SymFacExpr[. . . ]

SymFacExpr[<nested list encoding graph>]

The input is given by the Feynman graph written as nested list, c.f. definitions above. It
delivers as output the expression SymmetryFactor[<arguments>], where <arguments>
denotes the arguments of the function following the right syntax, which is required by
the package SymmetryFactor.m (c.f. explanations below). The final symmetry factor is
obtained after loading the respective package and evaluating this expression.
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DrawFeynGraph[. . . ]

DrawFeynGraph[<nested list encoding graph>,[Label]]

allows to get the Feynman diagram for a given integral, which optionally can be tagged
with a label.

ExportGraphArray[. . . ]

The function

ExportGraphArray[GraphsList, [iMaxRow], [Path], [bDisplay]]

exports the list of graphics elements GraphsList to the file given by the optional ar-
gument Path. If Path is not given it is automatically set to the variable DefaultPath

which has to be set externally. The optional parameter iMaxRow defines the number
of elements of GraphsList aligned in each row, the default value is 5. The optional
boolean (True or False) bDisplay defines if the resulting table will also be printed to
screen (1=print+export, 0=export only).

F.1.2 Algorithms

All functions described in the foregoing section are based on a given combination of the
following algorithms. Note that they are presented in a thematical order, which does
not reflect how they are arranged in the source code of the packages. Furthermore, all
but the last one (defined in DrawGraphs.m) are contained in All1LoopGraphs.m.

Evaluation of all graphs with a given number of vertices for each type

This is being done by a internal function GetAllGraphsInternal[{No.of 3V, No.of

4V, No.of 5V, No.of 6V}], where the input is a graph configuration. First, for each

Field Aµ c, c̄ Bµν B̄µν ψµν ψ̄µν

Unicode A c B bB P pP

Assigned g♯ 0 1 2 -2 3 -3

Table F.1: Designations for the fields.

of the fields, a abbreviation (in Unicode) and a respective integer have been assigned (c.f.
Tab. F.1), followed by the definition of the propagators and vertices, which have been
classified according the number of legs. This latter allows housekeeping of all vertices
when adapting the package to a new model:
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Props={{0,0},{1,1},{0,2},{2,0},{0,-2},{-2,0},{-3,3},{3,-3},{-2,2},

{2,-2},{2,2},{-2,-2}};

ThreeVertBase={{0,0,0},{1,0,1},{2,0,0},{-2,0,0},{-2,2,0},{-3,3,0}};

FourVertBase={{0,0,0,0},{-2,2,0,0},{-3,3,0,0}};

FiveVertBase={{-2,2,0,0,0},{-3,3,0,0,0}};

SixVertBase={{-2,2,0,0,0,0},{-3,3,0,0,0,0}};

Next, these lists are extended by adding all cyclic permutations of all of its elements.
Based on the latter, all formally possible graphs are obtained by simply constructing all
combinations of vertices leading to the configuration specified by the input, and may be
collected in the list called e.g. AllGraphs. For example, the input {2,0,0,0} defines
all one-loop graphs involving two vertices with 3 legs, i.e. the one loop corrections to
the various propagators. Then the corresponding set of all possible graphs is obtained
by combining two elements of the extended list of ThreeVertBase in all possible ways.
This procedure leads to a list of Feynman graphs defined as nested lists. A more general
example is given by {0,2,0,0}, leading to the graphs defined by

{{V1[1], V1[2], V1[3], V1[4]}, {V2[1], V2[2], V2[3], V2[4]}}; (F.3)

The corresponding vertices are displayed in Fig. F.2. There one can also see the conven-
tions which are valid for all graphs: for all vertices of a graph, the last field (e.g. V1[4])
combines with the first field of the following vertex (e.g. V2[1]) to a inner propagator
(i.e. one belonging to the loop). For the last vertex (in the example of Fig. F.2 V[2]),
the following vertex is given by the first one (V1). It follows that for each vertex, the
first and last elements (V1[1],V1[4],V2[1],V2[4]) represent the inner legs, while all
other legs are external. Next, we have to consider that AllGraphs might contain graphs

V1[1]

V1[2]

V1[3]

V1[4]

V2[2]

V2[3]

V2[4]

V2[1]

Figure F.2: Graphical representation of a nested list representing a Feynman graph

with with inner propagators not belonging to the list Props, i.e. which do not exist for
the given model. Those graphs have to be excluded. This can be implemented by the
following code line:

If[MemberQ[Props, {AllGraphs[[i, j, Length[AllGraphs[[i, j]]]]],
AllGraphs[[i, j+ 1, 1]]}]]; (F.4)

Here i runs over all graphs and j over all vertices (If j==Length[AllGraphs[[i]]],
than j+1 has to be replaced by 1). Finally, one gets all physically possible graphs by
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identifying all graphs being identically under cyclic permutations of the vertices, and by
keeping just one of them.

Determination of the degree of divergence

In order to determine the superficial degree of divergence for a given graph contained in
the set AllGraphs, one performs simple power counting. In the model under consider-
ation, the degree of divergence for the graph i is then given by

DivergenceList[[i]] = 4− 2 ∗ ccCounter+ ...+ AAACounter+ 2 ∗ bBBAACounter;
(F.5)

after having counted the number of involved Feynman rules of each type. For the triple-A
vertex this is achieved by e.g.

If[MemberQ[{{0, 0, 0}}, AllGraphs[[i, j]]], AAACounter++]; (F.6)

where i,j are loop variables running over all graphs and vertices. Remember that
AAACounter counts the number of vertices with three gauge boson lines, which are
encoded by {0,0,0}.

Determination of Feynman expressions

As discussed at the beginning of this section, the Feynman expressions are obtained by
the following steps:

1. Definition of the functions for the Feynman rules of the form gAA[<momenta,

indices>] for all vertices and propagators of the graph, with the appropriate
fields, momenta and indices.

2. Multiplication of the Feynman rules.

3. Loading the definitions of the functions, which replaces the functions by their
corresponding values, i.e. the explicit expressions for the Feynman rules.

4. Performing index contractions.

5. Evaluation of the integral.

Due to the technicality of this task, at this place we will not enter into details of the
source code. However, the basic ideas can be grasped by looking at the simple example
of the graph {{A,B,A},{A,A,A}}. First let us give some conventions: external momenta
are denoted by p, internal momenta by k; momenta oriented towards the vertex are
counted positive, otherwise negative; momentum conservation at each vertex has to be
considered. This leads to Fig. F.3.

When programming the routine for the definition of the Feynman rules, one has to
consider the following:
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+p, µ1, µ2 −p, ν

−(k + p), ρ +(k + p), σ

+k, τ −k, ε

Figure F.3: Momenta and indices for a one loop graph with two external legs

• Fields requiring one index (e.g. Aµ) have to be distinguished from those with two
or more indices (e.g. Bµν).

• If the functions for the Feynman rules have been defined for the elements of the
“base” lists (ThreeVertBase etc.) then the presence of vertices obtained by cyclic
permutations must be brought to the appropriate form. In the present example
this would apply to A,B,A where we have to write vBAA[p,-(p+k),k,m,n,r,t]

instead of vABA[k,p,-(p+k),t,m,n,r].

The final product of Feynman function is given by

vBAA[p,−(p+ k), k, m, n, r, t] ∗ gAA[p+ k, ρ, σ] ∗ vAAA[k+ p,−p,−k), σ, ν, ϵ] ∗ gAA[k, ϵ, τ ];
(F.7)

Loading the corresponding definitions leads to the integrand of the expression for the
diagram in Fig. F.3. In order to get the integrated results, the next operations consist
in performing the index contractions and solving the integral, which are defined in the
package VectorAlgebra.m.

Symmetry factors

The purpose of the algorithm is to generate expressions of the form

SymmetryFactor[{E1...En}, {{V11, V12, . . . , V1m1}, ..., {Vk1, Vk2, ...Vkmk}},
{{F11, F12, V1s, V1e}, ..., {Fj1, Fj2, Vjs, Vje}}]; (F.8)

which, after loading the package SymmetryFactors.m allows to compute the symmetry
factor for the specified graph topology based on Wick contractions as described in Ap-
pendix B. In order to specify the topology, an integer is assigned to each vertex, the
last numbers being assigned to the external vertices. Then the first argument specifies
the external fields, the second is the graph written as nested list. The third argument
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contains the various propagators and the numbering of the vertices which they connect.
For our example the corresponding expression is given by

SymmetryFactor[{B, A}, {{A, B, A}, {A, A, A}}, {{B, B, 3, 1},
{A, A, 4, 2}, {A, A, 1, 2}, {A, A, 2, 1}}]; (F.9)

The numbering of the vertices can be seen in Fig. F.4. In MathematicaR⃝ terms, the

V 3 V 1 V 2 V 4

Figure F.4: Numbering of the vertices for the definition of the function
SymmetryFactor[...].

correct expressions are obtained by combining the information encoded in the nested
list for a graph in the appropriate way. Once again, due to the pure technicality we will
not enter in detail into the source code.

Drawing Feynman diagrams

The routine allowing for the graphical representation of the Feynman graphs is imple-
mented in the package DrawGraphs.m. Its core definitions are contained in the internal
function FeynGraphInternal[g ,label ], its arguments being a given graph g given
as nested list and a optional label. For all configurations and all fields of the theory it
contains a corresponding set of lines that may be printed graphically. In other words, in
order to allow the graphical representation of a graph belonging to a given configuration,
for each of its elements and all possible values, a graphical element has to be defined.
For the example of the configuration {0,2,0,0} the set of lines is given by

If[GraphConfig=={0,2,0,0},

ALines={ALines[[1]],...,ALines[[6]]};

cLines={...};

...

];

and e.g. the line ALines[[1]] is given by

{Translate[PolarPlot[{1+0.06 Sin[21t]},{t,Pi,3/2Pi},

PlotStyle->Directive[Thickness[.003],Black],Axes->None][[1]],{1,0}]};
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Elements
Mass
dimension

# indices
Charge con-
jugation

Aµ 1 1 −Aµ
nµ 0 1 nµ
∂µ 1 1 ∂µ
b 3 0 -b

Table F.2: Elements entering the counterterms generated by Algebraic Renormlaization.

Now, for a given graph, the routine first checks its configuration, and collects all relevant
lines to form a list, which then will be accessed and printed by any of the functions
making use of it.

F.2 Algebraic Renormalization

This section contains a brief description of the algorithm, which was implemented in
MathematicaR⃝ in order to evaluate the non-invariant counterterms (no anomalies) of
an axially gauged commutative U(1) theory. Originally thought to be a finger exercise
before applying the algorithm to the non-commutative model of Chapter 5 ([57] contains
a listing of the counterterms and hence allows to check the results), the latter motiva-
tion disappeared due to the problems mentioned in Section 6.2.2. As a side-effect, the
additional term (6.10) which is missing in [57] has been detected.

The gauge part of the Langrangian for the commutative axially gauged fixed QED
on Minkowski space M4 is given by

L = −1

4
FµνF

µν + bnµAµ . (F.10)

According to the discussion in Section 6.2.2, the non-invariant counterterms will be
obtained by first constructing all monomials allowed by considering the mass dimension
and index structure, followed by application of the symmetries: in the present case the
gauge Ward identity WI, the gauge condition and charge conjugation. In other words,
those monomials which survive the application of the Ward identities are non-invariant
countertems to be included in the action.

It follows the cooking recipe, which has been turned into MathematicaR⃝ source
code, leading to all non-invariant counterterms:

1. Construction of all monomials with mass dimension 4 : the elements allowing to
construct the monomials together with their mass dimension and number of indices
as well as their behaviour under charge conjugation are listed in Tab. F.2. In a
first step, only monomials without the massless axial gauge vector are constructed.
This is done by

Monomials = Tuples[AllFields, i]; where AllFields = {A, d, b} , (F.11)
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and i={2,3,4}. It suffices to consider only monomials with at least two and
at most four elements due to considerations regarding mass dimension. Notice
furthermore, that the index structure of the fields has not yet been considered.
Then, from this set of monomials all those with mass dimension unequal to four
are excluded. Furthermore are excluded those monomials with a derivation as last
element. It remains the set of all possible combinations (inlcuding permutations)
of AllFields.

2. Insertion of the axial gauge vector nµ: For a given monomial with n fields carrying
an index, the gauge vector will be inserted i = n, n − 2, n − 4, . . . times, as long
as i is positive (for n odd) or zero (for n even). More precisely, the insertion
follows three rules: first, the nµ have to be separated by an element of AllFields.
Second, the inserted axial vector is contracted with the consecutive element of the
monomial. Third, for a given i, all possible positions (combinations of positions
for i > 0) respecting the previously defined rules have to be realized.
Finally, the remaining fields will be combined to form scalars, as required by the
fact that the action is a scalar. As an example, let us consider the term A∂2A.
This will lead to

{A∂2A, (nA)(n∂)(∂A), ∂2(nA)2, (n∂)2A2, (n∂)2(nA)2}+ permutations . (F.12)

3. Exclusion of multiples and non-allowed terms Now, after having saturated all
indices, multiples must be excluded. Monomials can be equivalent with respect
to permutations, but also with respect to integration (i.e. (∂A)2 ≡ −Aµ∂2Aµ),
remembering that they are integrands. Furthermore, all monomials violating the
symmetry under charge conjugation must be eliminated.

4. Application of Ward identities First one defines the WI and the gauge condition
as functions, i.e.

WI[Counterterm ] := −PD[VarD[Counterterm, A, µ], µ];
GC[Counterterm ] := VarD[Counterterm, b]; (F.13)

with PD[argument,index] a partial differentiation and VarD[argument, field]

the variation of the argument with respect to field. Both functions are defined
in the package VariationalCalc.m. Having done so, they are applied to the set
of monomials.

Those monomials which “break” the symmetry expressed by the identities (F.13), i.e.
which give a non-vanishing result remain to form the set of non-invariant counterterms
and hence shall be - accompanied by numerical prefactors - included in the action. In
the above example this considers all explicitly written monomials in (F.12). All but
the second one, i.e. (nA)(n∂)(∂A) can be found (up to partial integration and cyclic
permutations) in [57], Eqns. (4.98) and (4.99).

157



Bibliography

[1] D. N. Blaschke, A. Rofner, M. Schweda, and R. I. P. Sedmik, “One-Loop
Calculations for a Translation Invariant Non-Commutative Gauge Model,” Eur.
Phys. J. C62 (2009) 433, arXiv:0901.1681 [hep-th].

[2] D. N. Blaschke, A. Rofner, M. Schweda, and R. I. P. Sedmik, “Improved
Localization of a Renormalizable Non-Commutative Translation Invariant U(1)
Gauge Model,” EPL 86 (2009) 51002, arXiv:0903.4811 [hep-th].

[3] D. N. Blaschke, A. Rofner, and R. I. P. Sedmik, “In-Depth Analysis of the
Localized Non-Commutative 1/p**2 U(1) Gauge Model,” arXiv:0908.1743

[hep-th].

[4] D. N. Blaschke, E. Kronberger, A. Rofner, M. Schweda, R. I. P. Sedmik, and
M. Wohlgenannt, “On the Problem of Renormalizability in Non-Commutative
Gauge Field Models — A Critical Review,” arXiv:0908.0467 [hep-th].

[5] D. N. Blaschke, A. Rofner, M. Schweda, R. I. P. Sedmik, and M. Wohlgenannt,
“On Non-Commutative U⋆(1) Gauge Models and Renormalizability – The
BRSW model,” TUW-09-17 .

[6] H. Grosse and R. Wulkenhaar, “Renormalisation of ϕ4 theory on
noncommutative R4 in the matrix base,” Commun. Math. Phys. 256 (2005)
305–374, hep-th/0401128.

[7] R. Gurau, J. Magnen, V. Rivasseau, and A. Tanasa, “A translation-invariant
renormalizable non-commutative scalar model,” Commun. Math. Phys. 287
(2009) 275–290, 0802.0791.

[8] D. N. Blaschke, F. Gieres, E. Kronberger, M. Schweda, and M. Wohlgenannt,
“Translation-invariant models for non-commutative gauge fields,” J. Phys. A41
(2008) 252002, arXiv:0804.1914 [hep-th].

[9] V. Rivasseau, “Non-commutative renormalization,,” 0705.0705. in Quantum
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