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Abstract

Robotics is a fascinating scientific discipline, which has connections to electronics, me-
chanics and software algorithms. The ultimate goal of robotics is to create autonomous
intelligent robots capable of solving various tasks. Despite long term efforts, the first
autonomous robots, with limited intelligence, appeared only in the 20th century. Today,
robots are successfully helping humans in many areas, usually where high precision is
demanded, more dangerous working conditions can be expected, or long-term distant
work is needed. Due to the complexity of the tasks and the working environment,
robotics remains an active research topic.

One of the main tasks of a mobile robot is to know its own position accurately. This
self-localising in space is a priori condition for the navigation from its current position
to a defined place. In environments, where no map has been given, the navigation to
the new place is difficult, because the robot has to solve two parallel tasks.

These two parallel tasks, commonly known as the Simultaneous Localisation and
Mapping (SLAM), attracted considerable attention within the scientific community
over the past forty years. Due to the concentrated effort, several advanced algorithms
have been developed, and nowadays it is generally considered that these algorithms are
well-matured. In recent years, the attention of the community has focused mainly on
various SLAM applications, which are using different kinds of sensors or mapping large
environments.

In this thesis, we present three different contributions to the SLAM research topic.
Our contributions aim to improve the robustness, speed or accuracy of SLAM through
enhanced vision or a fusion of vision and inertial sensors.

The first contribution presents a fusion of vision and inertial sensors, which provides
a robust solution to the localisation and mapping problem. The main idea is that we can
use the complementary characteristics of these sensors in an efficient way. The involved
algorithms have the same task as SLAM, but are working on different principles.

The second contribution introduces a high-speed camera to the SLAM framework,
and discusses a more complex motion model. This improvement for the mobile robot
increases the ability to move more rapidly in space.

The last contribution involves the possibility of using a Time-of-Flight (ToF) sensor.
The standard vision camera does not provide direct scene depth measurements. The
standard camera has to move in order to build a three-dimensional map of the unknown
environment. Our result shows how the ToF camera direct scene depth measurements
enhance the accuracy of the final map.
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Zusammenfassung

Robotik ist eine faszinierende wissenschaftliche Disziplin, die Verbindungen zur Elek-
tronik, der Mechanik und der Informatik hat. Die Hauptaufgabe der Robotik ist, au-
tonome intelligente Roboter zu schaffen, die dazu fähig sind, verschiedenste Aufgaben zu
lösen. Trotz langfristiger Anstregung erschienen die ersten autonomen Roboter - zwar
mit beschränkter Intelligenz - erst im 20. Jahrhundert. Heute helfen Roboter den Men-
schen erfolgreich in vielen Gebieten, z.B. wo hohe Präzision gefordert wird, gefährliche
Arbeitsbedingungen erwartet werden, oder Arbeiten an entfernten Orten durchgeführt
werden müssen. Wegen der Komplexität der Aufgaben und des Arbeitsumfeldes bleibt
Robotik ein aktives Forschungsthema.

Eine der Hauptaufgaben eines beweglichen Roboters ist seine eigene Position genau
feststellen zu können. Dieses Selbstlokalisieren im Raum ist a priori Bedingung für
die Navigation von seiner gegenwärtigen Position hin zu einem definierten Platz. In
Umgebungen, wo keine Karte gegeben worden ist, ist die Navigation zum neuen Platz
schwierig, weil der Roboter zwei parallele Aufgaben lösen muss.

Diese zwei parallelen Aufgaben, allgemein bekannt als “Simultaneous Localisa-
tion and Mapping”(SLAM), zogen beträchtliche Aufmerksamkeit innerhalb der wis-
senschaftlichen Gemeinschaft im Laufe der letzten vierzig Jahre an sich. Wegen
der fokusierten Bemühung sind mehrere fortschrittliche Algorithmen entwickelt wor-
den, und heutzutage wird es allgemein betrachtet, dass diese Algorithmen nun aus-
gereift sind. In den letzten Jahren hat sich die Aufmerksamkeit der Gemeinschaft
hauptsächlich auf verschiedene SLAM Anwendungen konzentriert, die mehrere Arten
von Sensoren verwenden oder grosse Umgebungen darstellen.

In dieser Doktorarbeit präsentieren wir drei verschiedene Beiträge zum SLAM
Forschungsthema. Unsere Beiträge haben das Ziel, die Robustheit, die Geschwindigkeit,
oder die Genauigkeit des SLAM durch die verbesserte Vision, oder Fusion der Vision
und Trägheitssensoren zu verbessern.

Der erste Beitrag präsentiert eine Fusion der Vision und Trägheitssensoren, der
eine robuste Lösung zur Lokalisierung und Mapping Problem zur Verfügung stellt.
Die beteiligten Algorithmen haben dieselbe Aufgabe wie SLAM, aber arbeiten an ver-
schiedenen Grundsätzen.

Der zweite Beitrag führt eine Hohgeschwindigkeitkamera ins SLAM ein, und erklärt
ein erweitertes Bewegungsmodell. Diese Verbesserung vergrössert die Fähigkeit für den
beweglichen Roboter, sich schneller im Raum zu lokalisieren.

Der letzte Beitrag ist mit der Möglichkeit verbunden, einen “Time-of-Flight”(ToF)
Sensor zu verwenden. Die standard Visionkamera stellt keine Tiefenmessungen für die
Szene bereit. Unser Ergebnis zeigt, wie die Verwendung der Tiefenmessungen der ToF
Kamera die Genauigkeit der resultierenden Karte erhöht.
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Chapter 1

Introduction

Robotics is a challenging research field, closely related to Artificial Intelligence (AI),
which attracts the attention of the general public. The reason for this is that in many
areas an intelligent autonomous robot is needed to assist or substitute humans. The goal
of robotics is to build robots capable of intelligent behavior, which involves perception,
reasoning, learning, communicating, and acting in complex environments [76].

Currently, there are already robots working in different fields, but with limited
intelligence, usually controlled by humans or pre-programmed commands. Off-the-shelf
intelligent robots capable of solving autonomously different tasks in an indoor or an
outdoor environment are still not available. Due to the fact that the robot consists of
mechanical, electrical and software algorithms, and the complexity of the environment,
its development is still a research topic for many scientific institutes worldwide.

The general robot decision and acting scheme as depicted in Fig. 1.1 (ref e.g. Sieg-
wart and Nourbakhsh in [90]), has four main modules: perception responsible for ac-
quiring sensor data, localisation and mapping estimating the current position, cognition
and path planning deciding on the next action and action executing the selected action.
The main challenge in robotics has been localisation and mapping, which processes the
perceived data, estimates the pose and map of the scene, and outputs the results to the
cognition and path planning module.

Real World

Localisation and
Mapping

Cognition and
Path Planning

ActionPerception

Figure 1.1: Robot’s architecture.
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2 1.1. MOTIVATION

The parallel localisation and mapping algorithm has been already used in several
autonomous robotic platforms. We present shortly three examples of prototypes appli-
cations, which use these algorithms and have been introduced recently.

One of the most successful stories in robotics is the Darpa Grand Challenge competi-
tion [98]. This prize competition for driverless cars, sponsored by the Defense Advanced
Research Projects Agency (DARPA), attracted considerable attention in the robotics
community. The success is due to the localisation and mapping algorithms, which
helped the driverless cars to accurately navigate in a desert or a small town.

Recently introduced robots copying the human appearance and behavior commonly
known as humanoids, are a field of interest for many researchers worldwide. Due to
the their possible general use in home, or office environment, they are a very appealing
research platform, and many universities and private companies develop humanoids.
Many of them have a navigation module [95], which helps them to localise and map in
indoor environments.

The localization and mapping algorithms helps autonomous vehicles to navigate in
environments, where no global position can be received. This environments include
outer space and earth’s places e.g. mines or oceans. An interesting application, intro-
duced by Eustice et al. in [35], presented successful localisation in the surrounding of
the RMS Titanic while mapping the wreck.

1.1 Motivation

It is only after several decades of research that the localisation and mapping algorithms
are generally considered to be well-advanced. However, there are further possibilities
on how to improve the state-of-the-art algorithms e.g. mapping larger environments [9]
or using a more complex perceptional input.

An overall robot’s architecture is depicted in Fig. 1.1. The focus of this work is
the robot’s module, which enables autonomous finding of desired places in an unknown
environment. The module is known as localisation and mapping, and is responsible for
solving two parallel problems. The first is to maintain the actual robot’s position in the
three-dimensional space, and the second problem is to estimate the metric volume of
the surrounding. These two tasks should help the robot to navigate itself to the desired
position while avoiding potential obstacles.

Perfect noiseless sensors would ease these tasks, but this is not the case in real-world
scenarios. The localisation and mapping algorithms have to handle noisy measurements,
which plays a crucial role in the resulting pose and map estimates. However, any
inaccurate estimations further influence the path planning, so it might happen that the
robot can not find the desired destination or get lost.

We think that using a combination of different sensors, or using recently introduced
more advanced sensors can improve the performance of the state-of-the-art localisation
and mapping algorithms. Our motivation is that these efforts should enable the robot
to move and react faster, be more robust against pose lost, estimate the metric volume
of the scene more accurately or prevent one sensor failure.



3 1.2. PROBLEM DECLARATION

1.2 Problem Declaration

A working environment of a robot significantly influences the complexity of its tasks. An
industrial robot mounted on a fixed place usually does not have to deal with obstacles,
the path to be executed is pre-programmed, and its position can be accessed anytime
with high accuracy. The difficulty in robotics is that the advantage of precise navigation
is lost when the robot is mobile.

A mobile robot has a completely different environment to the industrial robot, be-
cause it has to deal with e.g. moving or occluded obstacles. The main difficulty of a
dynamic environment is that position changes of moving obstacles have to be predicted.
Successful navigation has paramount importance for a mobile robot while moving to a
goal position.

Successful navigation involves, as depicted in Fig. 1.1, a collaboration of these four
modules. In the last four decades localisation has been an important topic for the mobile
robotics research, and due to this long-term effort significant results were reported. The
successful localisation algorithms developed in past years have a common denominator
known as the probabilistic techniques. These techniques helped to solve the localisation
problem with many reported successful practical applications.

The localisation problem can be separated into two categories. The first category
represents localisation with a known or given map of the environment. This given map
aids the localisation task significantly, and several methods have been proposed [11]
on how to solve this problem. The second category introduces localisation without
a map of the scene, and the mobile robot has to build the map while moving in the
unknown environment. This truly autonomous task is very challenging, because the
robot has to solve simultaneously the localisation and mapping task as depicted in
Fig. 1.2. In the robotics literature this is known as Simultaneous Localisation and
Mapping (SLAM) [30], or it is called parallel or co-occurent localisation and mapping.

Robot

Landmark

Figure 1.2: The robot has to localise itself while estimating positions of unknown
landmarks in the scene.

We think that the most promising sensor for navigation is a single camera, because
this sensor provides very rich information about the content of the scene. Humans
can process vision information effortlessly, but it proves to be a very difficult task for
computers [76].



4 1.3. CONTRIBUTION DESCRIPTION

The problem with using a single camera for navigation is that it can not measure
the depth of the environment directly. Due to the perspective-projective nature of a
camera the depth information is lost after an image is taken. The only possibility on
how to reconstruct the lost depth information is to move with the camera and estimate
the motion and structure from several different views. To solve this task in robotics
SLAM or Structure from Motion (SfM) algorithm can be applied, and recently several
successful examples have been demonstrated (e.g. [77, 56]). Despite having the same
goal, the robotics and computer vision communities use different types of algorithms.

In mobile robotics, a real scene can contain dynamic objects, which move along
unpredictable trajectories. The robot using a vision SLAM system can encounter situ-
ations, when a rapid motion is needed. In such cases, the SLAM system should be able
to react appropriately in a short amount of time. This problem can be tackled by fusing
low frequency vision information with other high frequency signals or by increasing the
frame rate of the camera.

This collision avoidance scenario is one example of a possible application of the
vision SLAM system. We think that there are many more industrial possibilities, where
such a system can be applied. These possibilities include, e.g., automotive or gaming
industries.

Moving in an unknown scene, the SLAM system has to rely on the identification
of features in the images received from a single camera. When a feature is wrongly
identified as a good corner, and inserted in the map of the scene, it can bias the SLAM
estimates. To avoid these bias estimates, a recently introduced sensor can be used. A
ToF camera, which provides amplitude and depth data simultaneously. By using both
of these measurements the wrong scene features can be detected and pruned.

1.3 Contribution Description

A mobile robot is usually equipped with various sensors based on different physical
principles. These sensors should help the robot to navigate in the environment more
robustly and safely. We think that for the navigational task, a camera provides one of
the richest information content about a new scene. Due to this fact, every contribution
of our work is by using a camera as the primary sensor.

Our goal was to improve the robustness, speed or accuracy of SLAM using the
camera as the primary sensor. To achieve this goal, we empirically tested and improved
state-of-the-art localisation and mapping algorithms. To provide a more comprehensive
overview, this thesis is divided into four chapters.

The Chap. 2 provides a brief description of computer vision algorithms and proba-
bilistic techniques, which were used in this work.

In Chap. 3, the benefits of using a fusion of vision and inertial data for structure
and motion estimation are described. We empirically proved (e.g. [40])that the combi-
nation of these two sensors is well-suited for a robot, because it is more robust against
e.g. temporary linear or rotational accelerations. The introduced structure and mo-
tion estimation scheme is considered to be suboptimal, and currently more advanced
algorithms have been introduced (e.g. [25]).



5 1.3. CONTRIBUTION DESCRIPTION

The Chap. 4 presents the advantages of using a sensor with higher frame rate while
simultaneously localising and mapping in real-time [39]. The main advantage is that
the camera movement is more stable and robust against jitter. The other contribution
of this part is an extended motion model, which takes advantage of additional second
order continuous parameters. Simulated and experimental results proved that using
the sensor with a higher frame rate and the extended motion model improves the
performance of SLAM framework.

The Chap. 5 introduces a corner selection scheme, which enables it to choose good
three-dimensional features [41]. Our selection scheme exploits the amplitude and direct
depth measurements of the newly introduced ToF camera. We proved on a simulated
SfM example how false corners influence structure and mapping results. Using our
proposed scheme false corners can be rejected, and the accuracy of the pose and map
results is increased. This increased map accuracy helps the mobile robot in a unknown
scene to navigate to a goal position.



Chapter 2

Description of Computer Vision

Algorithms and Probabilistic

Methods

This chapter provides an overview of computer vision algorithms and probabilistic meth-
ods, which were used in this work. In Sec. 2.1, we describe the selected feature detection
and matching algorithms. Sec. 2.2 introduces: the possible representations of the cam-
era pose, the geometric properties of a perspective-projective camera, the pose compu-
tation and the linear triangulation. Last Sec. 2.3 presents several stochastic methods,
which help to estimate the unknown state of a linear or non-linear problem.

2.1 Detecting and Matching Image Features

The first step in computer vision is to create an image of the environment on a two-
dimensional array on a photosensitive device. This image is typically formed by a
camera through a lens that perceives the scene with a limited field of view. The photo-
cells convert the scene image into a two-dimensional, time-varying matrix with intensity
values I(x, y).

As a second step, image pre-processing can be involved, but from the information-
theoretical point of view this results in information lost. Sonka et al. in [93] stated
that from the information-theoretical point of view: “the best pre-processing is no
pre-processing ”.

The next step is to select features, which would be suitable for tracking and further
scene analysis. One of the most important criterion is that these features have to be
distinctive, which allows to match them easily through an image sequence. For this
purpose one of the most often selected features are the so called corners. In this work,
the terms corner and landmark have an interchangeable meaning.

The existence of a corner in the image is equivalent to the summation of the outer
product of the gradients [67] :

6
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G(x) =
∑

x̃∈W(x)

∇I(x̃)∇IT (x̃) =

[ ∑
I2
x

∑
IxIy∑

IxIy
∑
I2
y

]
∈ R2×2, (2.1)

when G(x) is nonsingular. x = [x, y]T is the position of a corner in an image.
∇I(x̃) is the gradient calculated at x̃ = [x̃, ỹ]T ∈ W(x), where W(x) represents the
search window. The eigenvalues λ1 and λ2 of G(x) represent the curvature of the image
surface, and form a rotationally invariant description of G. However, the components of
G are calculated using only horizontal and vertical gradients, so they are not rotationally
invariant.

The two-dimensional matrix G(x) is the so called structure tensor. The term tensor
refers to a representation of an array of data, and the rank describes the number of
indices needed to address it. G(x) has a rank that equals two.

As depicted in Fig. 2.1, we can generally consider four cases of detecting corners,
where the red window is the detection area, and the black rectangle is a virtual object. In
the first position (see Fig. 2.1(a)), image intensity is fairly constant in the whole window
and the curvature is little in any direction. The second position (see Fig. 2.1(b)) has
little curvature along the edge, but large curvature perpendicular at the edge. The last
two positions (see Fig. 2.1(c) and Fig. 2.1(d)) have large curvatures in any direction.

(a) Interior region. (b) Edge. (c) Corner. (d) Isolated pixels.

Figure 2.1: Different cases for a feature detector.

2.1.1 Harris Corners

The analysis of the eigenvalues λ1 and λ2 of G(x) indicates that these eigenvalues can
be divided into three regions as depicted in Fig. 2.2(a).

To classify corners, edges and interior regions, the lines dividing the regions have
to be selected. Instead of labeling every single pixel it is suitable to have a single
cornerness measure. Harris and Stephens in [44] proposed this cornerness measure:

C(G) = det(G) + κ× trace2(G). (2.2)

Empirical tests proved that the best performance of this cornerness measure is
achieved when κ = 0.04 as displayed in Fig. 2.2(b).

In the literature the features found by this algorithm are commonly known as Harris
or Plessey corners.
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(a) Plane formed by λ1 and λ2 of G(x).
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(b) Cornerness measure κ=0.04.

Figure 2.2: Division of eigenvalues space into distinct feature regions.

2.1.2 Shi-Tomasi Features

In [89], an improved algorithm for detecting the so called Shi-Tomasi features is demon-
strated. However, except the different cornerness measure the rest of the computation
equals to the above-mentioned Harris corner detection (see Sec. 2.1.1). The authors
proved that for image patches undergoing affine transformation this is a better measure
of the corner strength:

min(λ1, λ2) > λ, (2.3)

where λ is a predefined threshold.

2.1.3 Features from Accelerated Segment Test

Rosten and Drummond introduced in [86] a detector called Features from Accelerated
Segment Test (FAST). As depicted in Fig. 2.3, this feature detector considers contiguous
pixels in a Bresenham circle of radius r around a candidate point p. If n, in the Fig. 2.3
n equals 12, contiguous pixels are brighter than the candidate p by at least t, then p is
considered to be a feature.

Additionally, a machine learning algorithm is used to discriminate true candidate
corners based on entropy measurements. This algorithm creates a decision tree which
correctly classifies all corners seen in the training set.

In [86], an efficient detector is generated for n equals 9, which is, according to
authors the most reliable FAST detector. According to [86] this detector outperforms
Harris or Shi-Tomasi features in speed and accuracy.

2.1.4 Scale-Invariant Feature Transform

Lowe in [65] presented a method for extracting distinctive image features from image
sequences. These features are invariant to image scale and rotation, and the author
called the method Scale-Invariant Feature Transform (SIFT).

Brief summary of the four major steps of SIFT method:
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Figure 2.3: FAST 12 point segment test corner detection. The highlighted squares are
used for corner detection around a candidate corner p. The arc represents 12 contiguous
pixels, which are brighter than p by more than the threshold.

• Scale-space extrema detection: For efficient key point localisation in scale
space a convolution of the image with Difference-of-Gaussians (DoG) is involved.
Searching across all possible scales provides locations invariant to scale changes.

• Key point localisation: At each candidate location a three-dimensional
quadratic function is fitted. This fitting provides (according to authors) improved
matching and stability. The principal curvature (see Eq. 2.1) is computed to elim-
inate edge features.

• Orientation assignment: An orientation histogram is formed based on the local
image gradient information. Peaks in this histogram correspond to dominant
directions.

• Key point descriptor: Is created by computing the magnitude and orientation
of the local gradient around the key point location. Followed by weighting with
a Gaussian function, and finally the accumulation into orientation histograms is
performed.

Due to the provided robust matching, SIFT features are an interesting and popular
method. However, this method has a higher computational burden, and we did not use
it in this work.

2.1.5 Matching Image Features

Image matching is a fundamental concept of many problems in computer vision, in-
cluding feature tracking, or scene metric model computation. In this section a simple,
but widely used matching criterion is explained.

A way to compute the similarity between two patches is the normalised Sum-of-
Squared-Distances (SSD), or also known as normalised sum-of-squared-differences:
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Template

Image

normalised SSD S̃(x, y) 0.0026 0.0057

Table 2.1: An example of matching two similar regions around a candidate corner using
the normalised SSD criterion.

S̃(x, y) =

∑h−1
y′=0

∑w−1
x′=0[T (x′, y′)− I(x+ x′, y + y′)]2

√∑h−1
y′=0

∑w−1
x′=0 T (x′, y′)2

∑h−1
y′=0

∑w−1
x′=0 I(x+ x′, y + y′)2

. (2.4)

The smaller is the value of S̃(x, y) at a particular pixel, the more similarity exists
between the template T and the image I in the neighborhood of that pixel. An example
is displayed in Tab. 2.1.

Other methods to match the template patch with the image include e.g. Normalised
Cross-Correlation (NCC). However, the computation of these criteria is simple compar-
ing to the selection of suitable matches. As depicted in Tab. 2.1, two similar patches
produce very similar matching results. The challenging task is to select a suitable
threshold, which would distinguish corresponding features. Finding a corresponding
set of features is very important for reconstructing the metric map of the scene from
multiple views.

The mentioned matching criteria have poor performance when the lighting condi-
tions change, and are not rotationally invariant. However, they have been used in
real-time localisation and mapping systems due to the low computational load.

2.1.6 Random Sample Consensus

Random Sample Consensus (RANSAC) [36] is an opposing technique to least squares
methods. Instead of considering as many measurements as possible, RANSAC uses a
small subset of data. When possible, this small subset is subsequently extended with
further consistent data.

As depicted in Fig. 2.4, the main advantage of RANSAC is that it can efficiently re-
ject outliers from a data set. This popular property is widely used for feature matching,
when two sets of candidates are matched, implying geometric constraints [45].

2.2 Single and Multiple View Geometry

Detection and matching of scene features, as described in the previous section, is an
obligatory initial step for subsequent vision algorithms. These algorithms can e.g.
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Figure 2.4: Fitting a line in the two-dimensional space using RANSAC and least squares
method. RANSAC fitted green line had rejected the outlier point, but least squares
fitted red line had considered all points.

compute the orientation and position of the camera based on a known scene object.
They can recover unknown scene metric information etc. In both mentioned algorithms,
a camera model and motion representation are needed.

For the camera orientation and position computation, a single view of the scene and
a known object model is provided. When an instance of the known object can be found
in the image, the pose can be computed as presented in the section.

Recovering the scene map is a more challenging task, this is because the perspective-
projective camera can not measure depth. At least two different views are needed, where
the camera position and orientation is provided.

In this thesis, we have been using several algorithms based on a single or multiple
views, and this section is a brief summary of them in five sub-sections. Firstly, an
overview of the motion representation is presented. Secondly, a camera internal model
is introduced. Thirdly, a camera calibration procedure is demonstrated. Fourthly, a
camera position and orientation computation is suggested. Finally, a linear triangula-
tion procedure based on multiple views is presented.

2.2.1 Representing Camera Pose

Three-dimensional Euclidean space can be represented globally by a Cartesian coordi-
nate frame [67], where every point is identified by X = [X, Y, Z]T .

In this work different Cartesian coordinate systems have been used, and an example
containing two frames is defined as follows:

XW = RWCXC + tWC , (2.5)

where XC is a point in the camera frame. RWC is the camera orientation repre-
sented by a rotation matrix, and tWC is the translational vector. This orientation and
translation define the geometric relation between the camera and the world coordinate
system. In computer vision, this relation is commonly known as the camera pose [88],
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Figure 2.5: The geometric relation between the world and camera coordination systems.

or camera rigid body motion [67]. As displayed in Fig. 2.5, when the pose is known
every point XC in the camera frame can be transformed to XW in the world frame.

Every camera pose has an inverse representation, and point XW can be easily trans-
formed to the camera frame:

XC = (RWC)TXW − (RWC)T tWC ,

XC = RCWXW −RCW tWC ,

XC = RCWXW + tCW . (2.6)

In this work, a perspective-projective camera has been used. This introduces differ-
ent geometric properties, as included in the Euclidean space. In Euclidean space e.g.
two parallel lines do not intersect, but in projective space an intersection exists.

However, we need to calculate the transformation between two frames as easily as in
the Cartesian frame. The solution is to use homogeneous coordinates. The homogeneous
coordinates of a point X with length n are usually written as:

[
X

1

]
=





Xx

Xy

Xz

1



 , (2.7)

where the new length equals n+ 1.
Using homogeneous coordinates Eq. 2.6 can be formulated as:

[
XC

1

]
=





XC
x

XC
y

XC
z

1



 =

[
RCW tCW

01×3 1

] [
XW

1

]
. (2.8)

2.2.2 Representing Camera Orientation

The orientation of the camera pose can be expressed using different mathematical rep-
resentations. Possible representations are: rotation matrices, Euler angles, quaternions,
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etc. As described in Eq. 2.9, a typical orientation representation is based on three pa-
rameters. The disadvantage of computing orientation using three parameters in three-
dimensional (3D) space is that singularities occur.

The orientations RWC and RCW are represented using orthogonal rotation matrices,
which is a part of the rotation group SO(3) [67]. This matrix expresses a compound
sequence of orientations following e.g. the Roll-Pitch-Yaw or the Euler angle Z−Y−X

convention

RWC =




1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)








cos(φ) 0 − sin(φ)

0 1 0
sin(φ) 0 cos(φ)








cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1



 (2.9)

where ψ is yaw, φ is pitch and θ is roll. These angles are a specific sequence of Euler
angles often used in robotics or aerospace applications.

We can read the rotation sequence in Eq.2.9 in two ways. If we start from right, the
rotations are referred to the world coordinate frame. Starting from the left side causes
the orientations to be represented in the camera coordinate system.

An interesting example, where the singularities in 3D orientation computation can
be demonstrated, is the gimbal lock problem. As depicted in Fig. 2.7, this problem
occurs when e.g. an aircraft pitches up 90◦ so the roll and yaw axes become parallel.
When using three parameters (see Eq. 2.9) to represent the orientation, singularities in
the calculations occur.

One of the popular orientation representations called quaternions, introduced by
Sir William Rowan Hamilton in 1843, solved this problem in 3D space robustly and
efficiently as displayed in Fig. 2.8. Similarly as a two-dimensional complex number can
be represented as a point in a plane, a four-dimensional quaternion can be displayed as
a point in space.

A nice overview of quaternion algebra and analysis is presented in e.g. [18, 58, 101].
The basic multiplication rule, carved on the Brougham Bridge in Dublin, is defined

as:
i2 = j2 = k2 = ijk = −1, (2.10)

where i, j, k are three orthogonal unit spatial vectors [18].
The common description of a normalised quaternion is:

q = (q0, qx, qy, qz), (2.11)

where q0 is the real part of the quaternion. (qx, qy, qz) is the vector part of the
quaternion.

Since quaternions contain four parameters they can be visualised by projecting three
out of four components into a 3D subspace. As depicted in Fig. 2.6, a visualisation of
these quaternions is called quaternion map. These maps are obtained by connecting a
set of quaternions to form a smooth curve, for example.

The error in quaternions is calculated as a sum of distances between the truth (qgt
i )

and measured quaternions (qm
i ):

n∑

i=1

d(qgt
i ,q

∗m
i ). (2.12)
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(b) Rotation axis equals (0.7, 0.7, 0, 0).

Figure 2.6: Quaternion maps computed for different rotation sequences, and depicted in
3D subspace. These independent rotations about three orthogonal axes can be identified
by their colours: x is yellow, y is blue and z is green.
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(a) Three independent gimbals.
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(b) After applying Rz(0
◦), Ry(90◦) and

Rx(0◦).

Figure 2.7: Three orthogonal gimbals (2.7(a)) rotated using the sequence Rz(0
◦),

Ry(90◦) and Rx(0
◦) result in the so called gimbal lock situation (2.7(b)). This means

that one degree of freedom is lost, because two gimbals become parallel.

2.2.3 Camera Geometry

In this sub-section, the most general camera model (widely used in computer vision
and robotics) is explained. As depicted in Fig. 2.9, this model is commonly known as
pinhole or perspective-projective model [45]. The basic feature of this model is that it
projects 3D points X = [X, Y, Z] on the image plane. The centre of the projection is
the origin of the Cartesian coordinate system and the image plane is assumed to be at
Z = f .

As displayed in Fig. 2.9, a 3D point is mapped on the image plane using these
equations:

x = −f X
Z
, y = −f Y

Z
, (2.13)
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Figure 2.8: Comparison of orientation computation, using the rotation matrix and
quaternion representation, when the gimbal lock occurs. Both results should form an
identical closed curve. However, the computation of orientation using rotation matrices
contains a singularity, and any subsequent rotation around x or z is ignored.

Figure 2.9: Pinhole camera model. The centre of the projection or optical centre is C,
P is the principal point, X is the 3D point to be projected and x is the result of the
projection.

and the projected two-dimensional point is represented by x = [x, y].
However, a more convenient representation would be to assume to localise the cam-

era centre C behind the image plane. This case is known as frontal pinhole imaging
model [67]:

x = f
X

Z
, y = f

Y

Z
. (2.14)

As defined in the Eq. 2.13 and Eq. 2.14, due to the projection of a 3D point on the
image plane is the depth dimension lost. As depicted in Fig. 2.9, this lost dimension
can not be recovered from a single view, because infinitely many 3D points can project
on a single two-dimensional point.

In homogeneous coordinates, see 2.2.1, can be the Eq. 2.14 rewritten as:

[
X

1

]
7→




fx

fy

z



 =




f 0

f 0
1 0









X

Y

Z

1



 . (2.15)
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In the Eq. 2.13 and Eq. 2.14 it is assumed that the origin of coordinates of the image
plane is at the principal point P. However, in the practice P is usually not exactly in
the origin of the coordinates, and the exact position needs to be estimated.

When a precise position of P is known, this not invertible mapping is valid:

λx =




fx+ zpx

fy + zpy

z



 =




f px 0

f py 0
1 0









X

Y

Z

1



 , (2.16)

where P = [px, py] and λ is the unknown scale.
The focal length f and the coordinates of the principal point px and py are com-

monly known as intrinsic camera parameters. In practice, their exact values are usually
unknown and have to be estimated. This process of camera parameters estimation is
known as calibration [113], and the result can have e.g. a matrix form:

K =




f px

f py

1



 . (2.17)

Then the projection in the Eq. 2.16 can be rewritten as:

λx = K[I|0]X. (2.18)

The projected point x, see Eq. 2.14, is localised in the image plane in the normalised
coordinate system [67]. However, we need the representation of this point in the pixel
values. After multiplying with a scaling factor, this projected point in the normalised
system can be transfered to the camera system (xcam,ycam). As depicted in Fig. 2.10,
when the coordinates of the principal point are added to the point in the camera system,
we receive a point in the pixel representation.

In pinhole cameras, there is the possibility of having non-square pixels due to the
difference between the horizontal and vertical resolution. The solution to this is to
introduce two different scaling factors mx and my. To represent K in terms of pixel
dimensions the focal lengths αx and αy are suggested:

K =




αx s px

αy py

1



 , (2.19)

where αx = fmx and αy = fmy. Another intrinsic parameter is the skew s, which
models the possibility of the angle between x and y pixels. However, skew s equals zero
for most cameras.

The previously defined relation between the world and camera coordinate systems,
see Eq. 2.8, allows it to project a 3D world point on the image plane. The rotation
RCW and translation tCW between these two coordinate systems are called extrinsic
camera parameters.

The projection using intrinsic and extrinsic camera parameters can be written as:

λx = KRCW [I|tCW ]X. (2.20)
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Figure 2.10: Two possible representations of the coordinate system in the image plane.
The first (xcam, ycam) is known as the camera system. The second (x, y) is called the
image coordinate system.

2.2.4 Lens Distortions

In practice, considering only previously suggested intrinsic and extrinsic camera pa-
rameters is not sufficient. The camera lens usually introduces additional non-linear
distortions, which can significantly influence the image measurement process. These
distortions typically increase with the decreasing quality, and price of the lens.
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(a) Undistorted image.
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(b) Radially distorted image.

Figure 2.11: An ideal image (a) deformed by the radial distortions (b).

2.2.4.1 Radial Distortion

The most important lens deviation is generally a radial distortion (see Fig. 2.11). This
distortion can be modelled as follows:

[
xd

yd

]
= L(r)

[
x− px

y − py

]
, (2.21)

where x and y are the coordinates of a point in the ideal image, px and py are the
coordinates of the principal point, xd and yd are the coordinates of the distorted point,
and r equals:

r =
√

(x− px)2 + (y − py)2. (2.22)

The function L can contain arbitrarily many radial parameters κ:
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Figure 2.12: On the left side a distorted image taken with a wide-angle lens (2.1mm -
horizontal angle is 81◦) is displayed. On the right side an undistorted image is presented.

L(r) = 1 + κ1r + κ2r
2 + κ3r

3 + · · · , (2.23)

but in practice typically two or three radial coefficients are used.
Approaches of how to estimate these radial coefficients have been introduced by e.g.

Zhang in [113] or by Hartley and Zisserman in [45].

2.2.4.2 Tangential Distortion

The image distortion can be approximated with more complex models, where all ex-
cept radial additional tangential parameters are implemented. An example of this
extended distortion model is presented in Fig. 2.12. The image taken by a camera with
a wide-angle lens is undistorted using two radial (κ1 = −0.3178, κ2 = 0.0915) and two
tangential (κ3 = 0.0004, κ4 = −0.0009) coefficients.

The tangential distortion is added to the radially distorted coordinates (xd,yd):

[
xd

yd

]
=

[
xd

yd

]
+

[
κ3a1 + κ4a2

κ3a3 + κ4a1

]
(2.24)

where a1, a2 and a3 equal:

a1 = 2xy

a2 = r2 + 2x2

a3 = r2 + 2y2. (2.25)

r is defined in Eq. 2.22, and (x,y) are the coordinates of a point in the ideal image.
A comparison between radial and tangential distortion is displayed in Fig. 2.13(b).

A distorted image (see Fig. 2.13(a)) is an abstraction of a real example as displayed
in e.g. Fig. 2.12. In Fig. 2.13(c), only undistortion using radial coefficients is pre-
sented. In Fig. 2.13(d), undistortion considering both radial and tangential coefficients
is introduced.

For further details please refer to e.g. [12].
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(d) Radially and tangentially undistorted.

Figure 2.13: Image undistortion using two types of parameters.

2.2.4.3 Swaminathan’s Model

To allow proper compensation of the lens inaccuracies, the radial and tangential pa-
rameters introduced previously have to be modeled carefully and precisely. The main
problem of these complex models containing radial and tangential parameters, is that
there exist no closed-form inverse representation.

When calculating the projection of a 3D point on the image plane this inverse rep-
resentation is not needed. However, when computing the re-projected two-dimensional
position of a point on the image plane, this inverse form is necessary. This re-projection
is commonly known as back-projection [45].

The back-projection has this form:

[
X Y Z

]
= λ

[
x y 1

]T
, (2.26)

where λ is the unknown scale, X, Y and Z are the coordinates of an unknown 3D point,
and x and y are coordinates of a known point on the image plane.

Despite efforts to model the lens inaccuracies precisely, in some applications only
one parameter distortion model proved to be satisfactory [27]. This one parameter is
the radial distortion, and the model has been introduced by Swaminathan and Nayar
in [96].
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When substituting L in Eq. 2.23 with:

L(r) =
1√

1 + 2κ1r2
, (2.27)

the other undistorting equations can be found in Sec. 2.2.4.1.
For the back-projection the inversion of L in Eq. 2.27 is needed:

L(r) =
1√

1− 2κ1r2
. (2.28)

An example of undistorting image points considering two different κ1 coefficients is
depicted in Fig. 2.14.
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Figure 2.14: Undistorting image points using Swaminathan’s approximated model.

2.2.5 Camera Calibration

The intrinsic and extrinsic camera parameters described in the above-mentioned sub-
sections are usually unknown, and have to be estimated. This camera parameters
estimation process is called camera calibration.

As presented by Zhang in [113], there are three possible ways to calibrate a camera:

• photogrammetric calibration - using a precisely known 3D object,

• self-calibration - no calibration object needed and

• others - calibrating from pure rotation, or using vanishing points (see Fig. 2.15).

In this thesis, a calibration algorithm [12], based on the work of Zhang in [113],
has been used. This algorithm lies between the photogrammetric and self-calibration
approach, because it uses a two-dimensional metric instead of 3D information.

The contribution of Zhang’s method [113], is that it provides a closed-form solution
to the calibration problem using only a planar pattern. The basic idea is depicted in
Fig. 2.16. This calibration algorithm needs at least two different scene views with at
least three points in each view.
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Figure 2.15: The points P1, P2 and P3 are commonly known as vanishing points. The
plane fitted through these three vanishing points is called as the plane at infinity. Two
displayed images represent the same example from different viewpoints.

Figure 2.16: If the camera centre moves, then the images are in general not related by
a projective transformation, unless all space points are coplanar [45].

2.2.5.1 The Image of the Absolute Conic

An important concept in the camera calibration literature is the Absolute Conic (AC)
(see Fig. 2.17) lying in the plane at infinity (see Fig. 2.15). The projection of AC in
an image is called Image of the Absolute Conic (IAC), and is constant under Euclidean
transformation. This means that for constant intrinsic camera parameters the relative
position of IAC is constant even when the camera is moving. The concepts of AC
and IAC are abstract and imaginary, but an approximated description is displayed in
Fig. 2.17.

In [45], a simple calibration example is introduced, where three planar squares pro-
vide sufficient constraints to compute K. This simple calibration uses the idea of a
conic ω, which contains the calibration matrix K.
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Figure 2.17: Absolute Conic is lying in the plane at infinity (π). Two projections of
AC from different viewpoints have constant relative positions. These projections of AC
are commonly known as IAC.

2.2.5.2 Calibration Conic

For visualisation purposes it is suitable to consider a different conic called calibration
conic (see Fig. 2.18):

C = K−T




1

1
−1



K−1, (2.29)

where K is defined in Eq. 2.19.

Figure 2.18: Reading the intrinsic camera parameters (see Sec. 2.2.3) from a calibration
conic.

The camera intrinsic parameters are easily read from the calibration conic. The
principal point P is the centre of the conic, and the scales (αx, αy) are easily identified.
The skew parameter s can be read as depicted in Fig. 2.18.

Please, for further details about the camera calibration refer to [45].
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2.2.6 Pose Computation

The process of computing the position and orientation of a given calibrated camera
from a known 3D scene or an object is called pose computation [66]. In this thesis, only
techniques based on point-based computation has been used.

Point-based methods compute the pose using 3D points and the corresponding image
projections. These methods are commonly known as the Perspective-n-Point (PnP)
problem [36].

Depending of the number of points n, PnP problem can have the following number
of solutions [36]:

• n = 3: theoretically, the P3P problem admits eight possible solutions. However,
Fischler and Bolles remark in [36] that in fact four solutions exist.

• n = 4: when the four points are coplanar then P4P problem admits a unique
solution [66].

For an extended overview of the PnP problem please refer to [36] and [66].
In this work, the pose computation is based on the algorithm of Lu et al. [66], which

is robust against noise or possible outliers.
The starting point for this algorithm is the object-space collinearity error vector:

ei = (I−Vi)(RXi + t), (2.30)

where Vi is the observed line-of-sight projection matrix. This matrix projects the
point orthogonally to the line of sight defined by the image point xi:

Vi =
xix

T
i

xT
i xi

. (2.31)

The goal is to minimise the sum of the squared error:

E(R, t) =
n∑

i=1

‖ei‖2 =
n∑

i=1

‖(I−Vi)(RXi + t)‖2, (2.32)

which can not be solved in closed-form. However, it can be computed using an
iteration algorithm, and an example is depicted in Fig. 2.19.

Schweighofer and Pinz presented in [88] an improved version of Lu et al. algorithm.
They empirically proved that the algorithm of Lu et al. introduces pose ambiguity for
planar objects, and proposed to refine the output.

In this thesis, we have been using the algorithm of Schweighofer and Pinz [88], where
the reference object is e.g. an artificial planar target displayed in Fig. 2.20.

2.2.7 Linear Triangulation

In computer vision, given two cameras and the corresponding image point pairs, the
computation of the coordinates of an unknown 3D point is called triangulation.
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Figure 2.19: Using an iterating algorithm to find the camera pose.
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Figure 2.20: The camera pose is initialized using this object. The 3D positions of corner
features (1-7), and the correspondence between 3D word and 2D image plane positions
are assumed to be known [88].

A simple linear triangulation algorithm can be found in [45]. Having e.g. two
cameras P and P′, where P = KRCW [I|tCW ] (see Eq. 2.20), the projections (x = [x, y]
and x′ = [x′, y′]) of an unknown point X:

x = PX, (2.33)

x′ = P′X.

are measured in the cameras’ image planes.
The coordinates of X can be calculated as a solution (see Fig. 2.21) of an equation

of the form AX = 0, where:

A =





xp3T − p1T

yp3T − p2T

x′p′
3T − p′

1T

y′p′
3T − p′

2T



 . (2.34)

piT and p′
iT is the ith row of the matrix P, and P′ respectively.
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Figure 2.21: Triangulation using ten identical cameras.

2.3 Probabilistic Techniques

One of the most important issues of using sensors in the real world are the inaccurate
and uncertain observations. In robotics for example, the desired goal of a mobile robot
is to move to a pre-defined location. Any inaccurate sensor measurement disturbs the
position state estimate, for example this causes the robot to not reach the final place.

Estimating the behavior of a dynamic system by assuming noisy measurements
is one of the fundamental problems of an interdisciplinary field called control theory.
“Estimation can be viewed as the process of selecting a point from a continuous space
- the best estimate” [7]. In the control theory, this process is also known as filtering,
and it is the key idea of eliminating noise in this thesis.

To find the best estimate of the dynamic system, a carefully designed equation plant
has to be introduced. These state estimation equations have roots in the probability
theory, and contain:

• an imperfect initial estimate,

• disturbances of its dynamics - process noise,

• only some components are observable and

• the sensor measurements are corrupted by noise.

In control theory literature (see e.g. [7]) are the first two items encompassed in the
process model and the second two items in the measurement model of the system. The
so called recursive prediction-update behavior, using these two models, is an essential
part of all Bayes filters introduced below [97].
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2.3.1 The Problem of Dynamic State Estimation

The problem of linear dynamic state estimation is:

x(k) = F(k − 1)x(k − 1) + G(k − 1)u(k − 1) + ν(k − 1)

z(k) = H(k)x(k) + w(k) (2.35)

similar to the non-linear dynamic state estimation:

x(k) = f [k − 1,x(k − 1),u(k − 1)] + ν(k − 1)

z(k) = h[k,x(k)] + w(k) (2.36)

where the goal is to estimate the true state x(k) corrupted by unknown zero-mean white
Gaussian noise ν(k−1). The state is estimated using observed unprecise measurements
disturbed by unknown zero-mean white Gaussian noise w(k).

F(k− 1), G(k− 1) and H(k) are known as possibly time-varying matrices. f is the
known non-linear process and h is the known non-linear measurement function.

2.3.2 Kalman Filter

In control theory, one of the most important algorithms for estimating a quantity of
interest from inaccurate and uncertain measurements is Kalman filter (KF). Due to
the suitability for discrete-time systems and easy implementation is KF widely used in
computer vision and robotics.

If the initial state, process noise and measurement noise are Gaussian and mutually
independent, and the evolution of the system state and measurements can be described
with linear time-varying difference equations, then KF is an optimal Minimum Mean
Square Error (MMSE) estimator. If the initial state, process or measurement noise are
not Gaussian, then KF is the linear MMSE estimator [7].

The equation plant of KF has two distinct phases. The first phase is Prediction

(Process model):

x̂(k|k − 1) = F(k − 1)x̂(k − 1|k − 1) + G(k − 1)u(k − 1)

P(k|k − 1) = F(k − 1)P(k − 1|k − 1)FT (k − 1) + Q(k − 1), (2.37)

where x̂ is the state vector. F(k− 1),G(k− 1) and Q(k− 1) are assumed to be known
and possibly time-varying. The initial state x̂(0), generally unknown, is modeled as a
random variable. u(k − 1) is known input vector, ν(k − 1) is the process noise with
covariance Q(k − 1). F(k − 1) is the state transition matrix and G(k − 1) is the input
matrix. The covariance associated with the estimate x̂ is known as P.

The second phase is Update (Measurement model):

ỹ(k) = z(k)−H(k)x̂(k|k − 1)

S(k) = H(k)P(k|k − 1)HT (k) + R(k)

K(k) = P(k|k − 1)H(k)TS(k)−1

x̂(k|k) = x̂(k|k − 1) + K(k)ỹ(k)

P(k|k) = (I−K(k)H(k))P(k|k − 1), (2.38)
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where z(k) is the measurement vector. This measurement vector is uncorrelated from
the estimation error, that means they are orthogonal. H(k) is the possibly time-varying
output matrix. The matrix K(k) is the Kalman gain, and ỹ(k) is called innovation or
measurement residual. R(k) is the possibly time-varying measurement noise matrix.
The two noise matrices Q(k − 1) and R(k) are assumed to be mutually independent.

2.3.3 Example: Tracking

The use of KF is demonstrated on a kinematic motion model revealing the major issues
encountered in estimation.

Consider a continuous state-space system:

ẋ =

[
ṗ

~̇v

]
=

p ~v
︷ ︸︸ ︷[

0 1
0 0

]
[

p

~v

]
+

[
0
1

]
~a (2.39)

where x is the state vector of the system. The state vector contains the position p and
velocity vector ~v of a target object. The acceleration of the target ~a is unknown, and
represents the system noise.

When we transform this one-dimensional continuous state-space system to a two-
dimensional discrete state-space system the transition matrix F has this form:

F =





1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1



 . (2.40)

Not only do we observe the position of the target, but we estimate the velocity as
well:

H =

[
1 0 0 0
0 1 0 0

]
. (2.41)

The process noise covariance matrix equals:

Q =





0.5 0 0 0
0 0.5 0 0
0 0 0.5 0
0 0 0 0.5



 , (2.42)

and this matrix can be adjusted as introduced e.g. in [7].
The measurement noise covariance matrix describes how accurate the new observa-

tions are:

R =

[
0.75 0
0 0.75

]
, (2.43)

and these values can be estimated by analysing a sequence of measurements.
We have an imperfect estimate of the initial state vector x̂(0):
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x̂(0) =
[

0 0 3 3
]
. (2.44)

The exact initial covariance is not known, so we approximate the initial values P(0):

P(0) =





8 0 0 0
0 8 0 0
0 0 0.5 0
0 0 0 0.5



 , (2.45)

The true state x of the target object is corrupted by the system noise ν, and only
an estimate x̂ of the true state can be computed (see the left side of Fig. 2.22).

When a new position measurement is available the state of the target object is
updated. The state update depends on the computed gain K, which can be:

• large, if the state is inaccurate and the measurement is accurate or

• small, if the state is accurate and the measurement is inaccurate.

In this example the gain is large, and the response to the new measurements is rapid
as displayed on the right side of Fig. 2.22.
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Figure 2.22: Tracking a target object. The state vector encompasses the position and
velocity of the target. Left is the true, observed and estimated position. Right is the
predicted and updated covariance of the position.

2.3.4 Extended Kalman Filter

In many real applications non-linearities occur, and KF can not be considered to be op-
timal. In this work, kinematic models have been used, which contain e.g. rotations. To
track the state vector of an object undergoing a non-linear transformation a suboptimal
technique has to applied.

For this purpose, the well-known Extended Kalman Filter (EKF) (see [7] or [97])
can be applied. The idea of EKF is based on the linearisation of the non-linear process
and measurement equations. In this thesis, a first-order EKF based on first order series
expansion has been used.
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Prediction (Process model):

x̂(k|k − 1) = f [k − 1, x̂(k − 1|k − 1),u(k − 1)]

P(k|k − 1) = F(k − 1)P(k − 1|k − 1)F(k − 1)T + Q(k), (2.46)

where f is the non-linear process function and F(k − 1) equals:

F(k − 1) =
∂f(k − 1)

∂x

∣∣∣
x=x̂(k−1|k−1)

. (2.47)

Update (Measurement model):

ỹ(k) = z(k)− h[k, x̂(k|k − 1)] + w(k − 1)

S(k) = H(k)P(k|k − 1)HT (k) + R(k) (2.48)

K(k) = P(k|k − 1)HT (k)S−1(k) (2.49)

x̂(k|k) = x̂(k|k − 1) + K(k)ỹ(k) (2.50)

P(k|k) = (I−K(k)H(k))P(k|k − 1), (2.51)

where h is the non-linear measurement function and H(k) equals:

H(k) =
∂h(k)

∂x

∣∣∣
x=x̂(k|k−1)

. (2.52)

The other matrices and vectors have the same meaning as explained in Sec. 2.3.2.

2.3.5 Unscented Kalman Filter

An alternative algorithm to EKF is known as Unscented Kalman Filter (UKF), sum-
marised by Julier and Uhlmann in [52].
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Figure 2.23: Representation of the standard normal distribution and its discrete ap-
proximation.

The basic idea of UKF is stated in [51]: “We use the intuition that it is easier to
approximate a probability distribution than it is to approximate an arbitrary nonlinear
function or transformation.”
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UKF introduces deterministic sampling of the probability distribution function,
which is depicted in Fig. 2.23. The deterministically selected sigma points are computed
as follows:

X0(k − 1|k − 1) = x̂(k − 1|k − 1) ,

Xi(k − 1|k − 1) = x̂(k − 1|k − 1) + (
√

(n+ κ) P(k − 1|k − 1))i ,

Xi+n(k − 1|k − 1) = x̂(k − 1|k − 1)− (
√

(n+ κ) P(k − 1|k − 1))i , (2.53)

W0 =
κ

(n+ κ)
,

Wi =
1

2 (n+ κ)
,

Wi+n =
1

2 (n+ κ)
, (2.54)

where κ ∈ ℜ,
√

(n+ κ) P(k|j)
i
is the ith row of the matrix square root. The Wi is the

weight associated with the ith row, and assuming a Gaussian distribution κ = 3− n.
The predicted sigma points are defined below:

X i(k|k − 1) = f [X (k − 1|k − 1),u(k − 1), k − 1]. (2.55)

Predicted mean and covariance is computed as:

x̂(k|k − 1) =
2n∑

i=0

WiXi(k|k − 1), (2.56)

P(k|k − 1) =
2n∑

i=0

Wi[Xi(k|k − 1)− x̂(k|k − 1)][Xi(k|k − 1)− x̂(k|k − 1)]T . (2.57)

Instantiate each of the prediction points through the observation model:

Yi(k|k − 1) = h[Xi(k|k − 1)] + Vi(k). (2.58)

The predicted observation is calculated by:

ỹ(k) =
2n∑

i=0

Wi Yi(k|k − 1). (2.59)

Finally, updates of mean and covariance are computed as follow:

K(k) = Pxy(k|k − 1)P−1
yy (k|k − 1),

x̂(k|k) = x̂(k|k − 1) + K(k)[z(k)− ỹ(k)],

P(k|k) = P(k|k − 1)−K(k)Pyy(k|k − 1)KT (k),
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where

Pyy(k|k − 1) =
2n∑

i=0

Wi[Yi(k|k − 1)− ỹ(k)][Yi(k|k − 1)− ỹ(k)]T , (2.60)

and

Pxy(k|k − 1) =
2n∑

i=0

Wi[Xi(k|k − 1)− x̂(k|k − 1)][Yi(k|k − 1)− ỹ(k)]T . (2.61)

2.3.6 Particle Filter

Another algorithm, which offers an alternative to EKF and UKF, is called Particle
Filter (PF) or sequential Monte-Carlo methods [97]. The key idea of PF is to represent
the posterior probability density function by samples drawn from this posterior. This
idea is similar to UKF, but in PF the samples are drawn randomly. The next major
difference between PF and other non-linear filters (EKF and UKF) is that the poste-
rior distribution is approximated and non-parametric. This advantage enables PF to
represent different probability distributions, and not only e.g. Gaussians.

The PF algorithm contains following steps:

1. generation of initial particles (see Fig. 2.24(a) at time equals 0),

2. calculating prediction (see the red crosses in Fig. 2.24(a)),

x̂(k|k − 1) = f [k − 1, x̂(k − 1|k − 1),u(k − 1)] (2.62)

3. computation of weights,

ωi =
1√
σ
e
− 1

2

1√
σ

((z(k)−ỹ(k))2)
(2.63)

where
ỹ(k) = h[k, x̂(k|k − 1)] (2.64)

followed by normalisation,

ωi =
ωi∑M
j=1 ωi

(2.65)

4. selection step (see the blue lines in Fig. 2.24(a)), which encompasses resampling
algorithm (e.g. residual resampling algorithm [60]), and selecting particles with
resampled indices.

As depicted in Fig. 2.24(b), with sufficient particles is PF more accurate than EKF
or UKF. However, in real-time applications, a large amount of particles can decrease
the performance of the system.
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Figure 2.24: Particle filter state estimation and performance evaluation.



Chapter 3

Motion and Structure Estimation

by Fusion of Vision and Inertial

Data

Humans can easily and rapidly move forward into a new environment while acquiring
a model of it. As stated by e.g. Lobo in [61], the perceived retinal image of a scene is
stabilised by a part of the human inner ear called the vestibular system. This vestibular
system measures tilt and angular acceleration, and as with other biological systems, it
has inspired the development of technical prototypes with similar functions commonly
known as inertial sensors.

The inertial sensors, namely three orthogonal accelerometers and three orthogo-
nal gyroscopes, are typically integrated in one Inertial Measurement Unit (IMU). The
accelerometer measures translational acceleration, or in other words it senses the de-
viation from freefall. The development of this device can be tracked back to the work
of Schuler in [87]. The gyroscope measures angular velocity, helping to maintain the
orientation. The development of the first gyroscope prototype started in the beginning
of the 20th century [24].

The rationale behind fusing vision and inertial data is their complementary charac-
teristics. On one hand, a vision system provides a precise and long-term estimation of
the ego-motion and its environment. However, it lacks the ability to cope with fast and
unpredicted motions that may blur features in the image, or that may lead to failure
to detect the features at all. This problem is particularly relevant when simultaneously
estimating the pose and the structure. The structure estimation is the prerequisite to
pose estimation and vice versa. On the other hand, inertial sensors provide good signals
during rapid motions, but suffer from biased estimations, due to the dual integration
performed to compute the pose from the acceleration readings.

While the complementarity of visual and inertial data suggests a combination of
these two cues, the following problems need to be solved to provide a technical solution.
First, any dynamics in the scene such as occlusions or foreground motion make it
difficult to decide what is the fixed and unmovable structure or background. Second,
the continuous change of illumination and appearance with viewpoint change, may lead

33
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to a loss of correspondence of visual features. Fast camera motion poses a similar
problem, especially rotation, which results in motion blur and makes feature matching
difficult to nearly impossible. And third, technical solutions employ iterative algorithms
to handle non-linear models.

The problems that arise due to occlusions or foreground motion in the scene can
be tackled using different approaches. Firstly, a dense map of the environment can
be recovered, where the assumption is that only a certain amount of features can be
occluded at once. Secondly, a rather sparse map of the scene is reconstructed, and in
the case of occlusions a camera pose reconstruction algorithm is employed. Thirdly, a
sensor fusion approach is involved, where e.g. the visual data failure can be substituted
temporarily with inertial measurements, which helps to estimate the ego-motion.

The problem caused by continuous change of illumination or fast camera motion
is challenging in the computer vision field. Firstly, most computer vision algorithms
assume that the illumination of the scene is fairly constant during the whole experi-
ment. Secondly, the fast camera motion typically introduces motion blur, which can be
generally avoided by executing only smooth slow movements.

This chapter is divided into six sections. A detailed overview of state-of-the-art is
given in Sec. 3.1. The previous work and our contribution are outlined in Sec. 3.2.
The principle of our IMU is explained in Sec. 3.3. Sec. 3.4 presents the motion and
structure estimation algorithms. The experimental results are introduced in Sec. 3.5
and the conclusion in Sec. 3.6.

3.1 Related Work

In [5], one of the first papers tackling the sensor fusion problem is introduced, where a
combination of a radar and an IMU is presented. As explained by Babister in [5], the
advantage of this fusion is that the radar provides long-term stability and the IMU has
little high-frequency noise. Several decades later a seminal paper, presented by Viéville
and Faugeras [102], motivated to use the fusion of vision and inertial sensor in mobile
robotics. In the work of Viéville and Faugeras, the first example of using an IMU on a
robotic platform is mentioned, and a calibration of these inertial sensors is presented.

In the work of Lobo and Dias the advantages of using an IMU and a camera have
been extensively studied. In [63], a pose estimation algorithm is proposed to integrate
measurements from a stereo camera system and the IMU for mobile robots. Accelerom-
eter signals have been low pass filtered to compute the gravity as a vertical reference.
Further investigations are carried on in [1], where an algorithm is presented to estimate
the intrinsic IMU parameters as scale, bias and axis alignment. Also to estimate the rel-
ative orientation between the single camera and the IMU. In [62], a robot equipped with
a stereo camera and low-cost inertial sensors computes the vertical reference, fixates us-
ing an active stereo vision system on a ground plane, and obtains the three-dimensional
model of it. In [64], a further extension of this work is presented, where using the
estimated vertical reference stereo depth map can be aligned, and vertical or horizontal
features can be extracted. Recently, Lobo summarised these papers in [61].

An interesting work presented by Diel et al. in [28] describes a vision-aided iner-
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tial navigation without augmenting scene features directly. Instead stochastic epipolar
constraints over a broad baseline in time and space using an omnidirectional camera
have been proposed, which proved to have long-term stability. A probabilistic Epipolar
Constraint filter (EPC), based on Kalman filter, performs the data fusion.

Corke introduced in [22] an architecture of a low-cost, light-weight inertial and visual
sensing system for a small-scale autonomous helicopter. The vision system consists of
a stereo camera, which provides measurements to compute features’ correspondences.
After these correspondences are found, optical flow is calculated, and a first-order com-
plementary filter is involved to fuse the inertially and visually derived velocity informa-
tion.

In [83], a rotation estimation algorithm is presented, where line correspondences and
IMU data have been combined. The mathematical formulation of orientation is based
directly on the group of rotation matrices, and simulated experimental results proving
the convergence of the algorithm are provided.

Huster et al. presented several papers on estimating the relative position of an Au-
tonomous Underground Vehicle (AUV) by fusing the vision and inertial measurements.
In [47], a free floating vehicle capable of autonomous tasks in a two-dimensional world
has been proposed. In [46], an extension of the previous algorithm to estimate relative
position, velocity, attitude and inertial sensors’ biases in a three-dimensional world has
been introduced. In their paper, a modified Kalman filter has been used, where all
non-linearities have been transfered to the state dynamics. In [48], the robustness of
the algorithm has been successfully tested in the presence of significant process noise.

Klein and Murray in [55] introduced a tightly coupled inertial-vision tracking sys-
tem. The authors used only three rate gyroscopes without considering accelerations.
However, the angular velocities helped to predict the pose of known three-dimensional
models, and this increases the system’s robustness. For the sensor fusion a simple
Kalman Filter is proposed.

Except for robotics the fusion of vision and inertial data has been an interesting
topic in Augmented Reality (AR) as well. The AR community has been using this
sensor fusion to build faster and more reliable trackers to overlay the three-dimensional
information more precisely.

Naimark and Foxlin presented in [74] a prototype hybrid vision-inertial self-tracker
capable of tracking artificial landmarks in indoor environments. As fiducial landmarks,
two-dimensional barcodes have been used, and the paper discusses the robust locali-
sation of these landmarks. Later the authors introduced in [37] a small, wearable and
low-cost product having the same functions as the prototype.

Ribo et al. in [84] presented so called hybrid tracking for augmented reality appli-
cations, which is based on the fusion of vision and inertial information. Their system
is built on the Ditree algorithm, which deals with multiple hypotheses simultaneously.
Using the five best hypothesis a set of Kalman filters is repeatedly updated. A new ob-
ject pose is computed with the help of the maximum likelihood scheme. To fuse current
object pose with the inertial measurements Extended Kalman Filter (EKF) is applied.
The experiments with a mobile AR kit prototype demonstrated successful tracking in
simple outdoor environments.

In [13], a stereo camera combined with an IMU is used to track the head mo-
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tion. Two parallel EKF filters update their states independently only when new mea-
surements are available. The head motion filter is fusing information provided by ac-
celerometers, gyroscopes and camera measurements. The structure filter computes the
three-dimensional position of five natural landmarks.

In [112], a hybrid inertial and vision tracking approach for AR is proposed. where the
complementary characteristic of both devices is tackled. This work is extended in [111],
where 6DOF EKF with two separate processing channels is presented. These two
processing channels process the high-speed gyroscope and low-rate vision measurements
independently, which helps to compensate for each other weaknesses.

For an extended overview of the fusion of vision and inertial information please refer
to the survey presented in [23].

3.2 Contribution Description

One of the first papers, which inspired our work is [111]. The difference with our work
is that the EKF fusion filter is using vision and only gyroscopic measurements, while
the goal is to design a more stable and robust tracking system. An interesting idea of
their work is the independent updating of inertial or vision information.

Chroust and Vincze in [19] demonstrated an extension of this idea, where also ac-
celerometers have been used. They concentrated their efforts on motion estimation,
and the structure algorithm has been proposed only conceptually. Armesto et al. in [2]
continued this research, and experimentally tested different types of motion filters.

Our work, recently summarised in [40], presented in this chapter continues with the
afore mentioned efforts, but the goal is to develop a system capable of robust real-time
motion estimation in an unknown environment. The structure estimation is realised
as an independent algorithm, so our system consists of two loosely coupled statistical
filters.

The contribution of our work is an extension of afore mentioned research, and we
summarise it as follows:

• implementation of the work of Chroust and Vincze [19] and Armesto et al. [2],

• extending this implementation with a structure estimation algorithm and

• real-time experiments.

3.3 Inertial Measurement Unit

This section addresses the problem of position and orientation estimation using ac-
celerometers and gyro inertial sensors. These inertial sensors provide acceleration and
rates (attitude changes over a time interval - known as angular velocity). To provide
three components of acceleration and rate measurements, accelerometers and gyros are
typically mounted in orthogonal triad clusters enclosed within an IMU.
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In many modern navigational systems the inertial sensors are attached rigidly to the
body of the host vehicle. This rigid or “strapped down”configuration has several bene-
fits: lower cost, light weight and greater reliability compared with equivalent platform
system [99, 15].

The main disadvantage of an IMU is that the new position and orientation compu-
tation is based solely on the previous values. This disadvantage causes the estimation
errors to cumulate. Estimating current position only from previous values is known as
dead-reckoning.

To overcome this difficulty, IMU is usually combined with a sensor, which is able
to perceive absolute position and orientation. Two additional interesting examples,
to those presented in Sec. 3.1, where an IMU supports estimation of the position and
orientation:

• in humanoid robotics in combination with a single camera [95] or

• in land vehicle applications using an additional GPS sensor [29].

3.3.1 Our Inertial Measurement Unit - MT9B

In the last 25 years, the demand in the automotive industry initiated an intensive re-
search in Micro-Machined Electromechanical System (MEMS) sensors [99]. The reason
was that these MEMS sensors have several advantages: small size, low weight, low
power consumption, short start-up time, inexpensive to produce, etc. Except automo-
tive industry are these MEMS features attractive in robotics, for example.

In this work we have been using MT9B unit (see Fig. 3.2(a)), which contains MEMS
sensors. The output of these sensors includes:

• orthogonal triad accelerometer readings,

• orthogonal triad gyro measurements,

• output of the temperature sensor placed in the middle of the electronics and

• orthogonal triad magnetic field strength readings in atomic units (a.u.).

However, only the accelerometer and gyro measurements have been used in this
work. A brief explanation of the MEMS accelerometer and gyro measurement principle:

• MEMS accelerometer detects the change in the capacitance gap (see Fig. 3.1(a))
between the proof mass and the substrate (out-of-plane), or measures the change
in capacitance across the comb fingers (in-plane) [99]. MT9B has two in-plane
accelerometers in the horizontal plane and one out-of-plane accelerometer in the
vertical plane.

• MEMS gyroscope relies on detecting a force acting on a mass that is subject to
linear vibratory motion. The resulted Coriolis force is measured. As depicted in
Fig. 3.1(b), this Coriolis force is perpendicular to the axis of linear motion and
input rotation [99].
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(a) MEMS accelerometer scheme

Input Rotation

Output Coriolis Force

Linear Vibrating Motion

(b) MEMS gyroscope principle

Figure 3.1: Basic construction scheme of an out-of-plane MEMS accelerometer, and the
MEMS gyro measurement principle.

The manufacturer of MT9B [109] assumes that the enclosed accelerometers and
gyros are calibrated, when these three constants are known: bias, scale factor and
misalignment. The sensor model of MT9B IMU is formulated as:

s = KT (u− bT ), (3.1)

where the gain matrix KT contains the scale factor and misalignment elements. bT

is the bias vector. The gain matrix KT and bias vector bT are the unknown calibra-
tion quantities. The calibration data is used to relate the sampled digital voltages, u,
(unsigned integers from the 16 bit Analog-Digital-Converter) streaming from the IMU
to the respective physical quantity, s [109].

We have been using a calibrated MT9B, where the KT and bT have been provided
by the manufacturer.

Accelerometer Gyroscope

Full scale ±20m
s2 (2g) ±900deg

s2

Bandwidth 50Hz 30Hz

Table 3.1: This MT9B configuration has been used.

The manufacturer stated in [109] that:

• bias stability is 1 for accelerometer and 0.02 for gyro (in units per ◦C),

• scale factor is 0.2 for accelerometer and 0.03 for gyro (in % per ◦C) and

• misalignment is 0.1◦ for accelerometer and gyro.

We have been streaming MT9B output at 100Hz, but this does not mean that the
sensors can sense at such a high sampling rate. The bandwidths of the IMU sensors
have lower sampling rates, and a standard configuration of the manufacturer is tabled
in Tab. 3.1.

In this thesis the MT9B IMU has been attached rigidly to the body of a single
camera. The relation between the coordination frames of the IMU and the camera is
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(b) Experimental setup

Figure 3.2: The experimental setup contains the robotic (”R”) platform, the sensor
rig and the initial target(”T”). The sensor rig includes a MT9B IMU (”I”) and a
single camera (”C”). The seven initial crosses of the target object are additionally
superimposed on the target frame.

calibrated [19]. An overview of the robot, target, IMU, and single camera coordination
frames, is depicted in Fig. 3.2(b).

For further details about MT9B please refer to [109].

3.3.2 Example: Integration vs. Estimation of Attitude

As mentioned in Sec. 3.3, estimation of new attitude (θi) using a gyro is based solely
on the last attitude (θi−1), and current angular velocity measurement (θ̇m):

θi = θi−1 +

∫
θ̇m dt. (3.2)

However, a more suitable way of computing the current attitude is estimating, e.g.
using EKF (see Sec. 2.3.4), instead of integrating the last attitude. In the following
example, we demonstrate how the non-linear probabilistic algorithm improves state
estimation using noisy measurements.

The state x̂ of the EKF has two elements:

x̂ =
[
θ θ̇b

]
, (3.3)

where θ is the estimated angle, and θ̇b is the angular velocity bias.
An unbiased θ̇ is computed as:

θ̇ = θ̇m − θ̇b. (3.4)

The state prediction is computed as follows:

x̂(k|k − 1) = x̂(k − 1|k − 1) +
[
θ̇ dt , 0

]
. (3.5)
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Figure 3.3: Left is the comparison of integration vs. estimation of attitude when no
external force has been applied. Right is an additional overview of measured angular
velocities and estimated angular velocity bias.

The system matrix equals:

F(k − 1) =

[
∂θ̇
∂θ

∂θ̇
∂θ̇b

∂α
∂θ

∂α
∂θ̇b

]
, (3.6)

where α is angular acceleration bias, and equals:

α =
∂θ̇b

∂t
. (3.7)

The F(k − 1) as a result of differentiating:

F(k − 1) =

[
1 −dt
0 1

]
(3.8)

The input matrix:
H(k) =

[
1 0

]
. (3.9)

The noise matrices Q(k) and R(k) have the following values:

Q(k) =

[
0.003 0

0 0.001

]
, (3.10)

R(k) =
[

0.00011
]
. (3.11)

Additionally, this attitude estimation in x-direction is corrected using Y (ay) and Z
(az) axis accelerometer readings:

z(k) = tan−1(az, ay). (3.12)

As depicted in Fig. 3.3(a), estimating attitude using EKF and accelerometer read-
ings outperforms integration significantly. Another advantage of EKF is that it esti-
mates additionally the angular velocity bias (see Fig. 3.3(b)).

A similar example of attitude estimation for mobile robots is presented in [8].
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3.4 Motion and Structure Estimation

To explain the details of the structure and motion estimation, this section comprises of
three parts. Firstly, the extraction of visual and inertial measurements is explained in
Sec. 3.4.1. Secondly, the camera motion estimation is described in Sec. 3.4.2. Thirdly,
the structure estimation algorithm is presented in Sec. 3.4.3.

Before introducing the structure and motion algorithms, these are the general as-
sumptions under which we developed them:

• using monocular images only,

• accurate, well-calibrated sensors and

• known initial pose of the target.

Inertial

Measurement Unit

Motion

Estimation

3D Acceleration and

Angular Velocity

Structure

EstimationEstimated Egomotion

Camera Pose

Computation

3D Position and

Rotation

Matched 2D and 

3D Features

Linear

Triangulation

3D Features

Moving Monocular

Camera

Tracked 2D

Features

Feature Tracker

Measurements

Figure 3.4: Flow chart for the motion and structure estimation.

3.4.1 Measurements

The basic idea of this chapter is to fuse vision and inertial information for structure
and motion estimation. To perform this fusion we need to process visual images from
a single camera, and read the output from an IMU (see Sec. 3.3).
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3.4.1.1 Visual Measurements

The vision input comes from a moving monocular camera, where in each image frame
corner features are detected. For extraction and tracking (see Fig. 3.4) of corners, we
have been using these two very similar approaches:

1. For estimating new scene 3D landmarks in Sec. 3.4.3.1 we used a feature tracker
implementation [114] based on the well-known Shi-Tomasi features (see Sec. 2.1.2).
This tracker is a stand-alone module, which tracks features independently on the
last estimated motion state.

For a good compromise of fast tracking and visibility from different viewpoints
we detect features in 7x7 pixel patches. From a sequence of images the output
are the 2D positions of the matched features. The correspondence errors of the
tracked features are not found in the tracking step. If a correspondence error
occurs it can be detected using the structure estimation procedure, and tracking
of the erroneous feature is stopped (for details refer to Sec. 3.4.3).

2. In the experiments described in Sec. 3.5.2, we detect new scene features using the
Harris corner detector (see Sec. 2.1.1). The problem of features matching between
two consecutive frames is tackled with the fundamental matrix computation [45],
and consequent RANSAC (see Sec. 2.1.6) robust fitting.

The extracted 2D features from at least two different images are used to obtain the
3D position of this feature by linear triangulation (see Sec. 2.2.7). The prerequisite for
linear triangulation is to know the camera pose for each of the images used.

3.4.1.2 IMU Measurements

Inertial measurements angular velocity and linear acceleration have been used. Our
IMU, which delivers acceleration in three orthogonal coordinate directions and the
three angular velocities about these directions, is presented in Sec. 3.3.1.

3.4.2 Modelling Camera Motion

The input to this function block (see Fig. 3.4) are measurements from the IMU, and the
pose estimate from the vision system. The measurements of the inertial system are not
synchronized with the measurements of the vision system, and it is not assumed that
both sensors have a fixed sampling rate. The prediction from one time frame to the
next is performed with the same equation independent of the type of the measurement,
but the dependencies between system state and measurement are totally different. The
idea used in this work is based on the multi-rate Kalman filter motion estimation [19, 2].
Whenever there is a new measurement it updates either the inertial or visual estimates,
and is then fused in motion state estimation.
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3.4.2.1 Pose Calculation

As depicted in Fig. 3.4, camera pose calculation is the link between structure estimation
and motion estimation: a given structure allows it to calculate the camera pose, from
the camera pose the egomotion is estimated, and finally, due to motion new features
are detected and added to the model in the structure estimation frame.

However, the pose calculation suffers from many errors. The most important impact
on the pose calculation is the distortion (up to 10mm) introduced by the printer, when
printing the image of the target. The known 3D points of the target are precise up to
1µm, and it is very difficult to measure the printed version with such accuracy. The next
error affecting the pose is the camera calibration [12]. The last source of pose evaluation
errors is the sub-pixel accuracy of the corner feature extraction. To calculate the pose
we use the algorithm described in Sec. 2.2.6, which proved to be sufficiently robust.

The calculated pose has been used only for the motion estimation. The estimated
motion has not been used for the tracking of the features’ 2D positions.

As initial target, an artificial planar object (see Fig. 2.20) with seven known features
is chosen [14]. The correspondences of these features are given, that means the relation-
ships between 3D world positions and 2D positions in the image plane are known. This
object has properties, which are invariant to perspective transformation. It is assumed
that in the first image frame of every sequence all seven features are visible.

3.4.2.2 Motion Model

The camera motion estimation in 3D space is treated as a non-linear dynamic state
estimation problem, and this problem is described in Eq. 2.36.

The state vector x(k), the measurement vector y(k), the system noise ν(k) and the
measurement noise w(k) are defined as follows:

x(k) = [pT ~vT ~aT bT qT ~ωT ]Tk ,

y(k) = [~aT
m ~ωT

m pT
m qT

m]Tk ,

ν(k) = [~jT ~αT b′T ]Tk ,

w(k) = [~wT
am

~wT
wm

~wT
pm

~wT
qm

]Tk ,

where the state vector is represented with positions p(k), velocities ~v(k), accelera-
tions ~a(k), biases of the acceleration measurements b(k), quaternions (see Sec. 2.2.2)
q(k), and angular velocities ~ω(k). The measurement vector is formed with acceleration
~am(k) and angular velocity ~ωm(k) measurements from the IMU and position pm(k), and
quaternion qm(k) measurements from the vision system. The system noise is composed
of: jerks ~j(k), angular accelerations ~α(k) and velocity biases b′(k).

The non-linear dynamic Eq. 2.36 can be separated in two parts:

xt(k) = ft[k − 1,x(k − 1),u(k − 1)] + ν(k − 1) , (3.13)

xr(k) = fr[k − 1,x(k − 1),u(k − 1)] + ν(k − 1) . (3.14)
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The translational part of the estimated state vector x̂(k) equals:

x̂t(k) = [pT ~vT ~aT bT ]Tk , (3.15)

and the rotational part:

x̂r(k) = [qT ~ωT ]Tk . (3.16)

The translational dynamic equations have the form:

p(k) = p(k − 1) + T ~v(k − 1) +
T 2

2
~a(k − 1) +

T 3

6
~j(k − 1) , (3.17)

~v(k) = ~v(k − 1) + T ~a(k − 1) +
T 2

2
~j(k − 1) , (3.18)

~a(k) = ~a(k − 1) + T ~a′(k − 1) =

= ~a(k − 1) + T (~j(k − 1) + ~α(k − 1)× ~v(k − 1)) +

+T (~ω(k − 1)× ~a(k − 1)) , (3.19)

b(k) = b(k − 1) + T b′(k − 1) , (3.20)

where acceleration consists of two parts:

~a(k) = ~at(k) + ~ω(k)× ~v(k) , (3.21)

where ~at(k) is the tangential and ~ω(k)× ~v(k) is the centripetal acceleration.
The translational part of the state vector x̂(k) is composed of Eq. 3.17-3.20 and can

be computed as:

x̂t(k) =





I3×3 T I3×3
T 2

2
I3×3 03×3

03×3 I3×3 T I3×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3









p

~v

~a

b





k−1

+

+





03×3

03×3

T ~ω × ~a
03×3





k−1

+





T 3

6
I3×3

T 2

2
I3×3

T I3×3

03×3



~j(k − 1) +

+





03×3

03×3

T ~α× ~v
03×3





k−1

+





03×3

03×3

03×3

T I3×3



b′(k − 1) . (3.22)

The rotational dynamic equations have the form:

q(k) = q(k|k − 1)⊗ q(k − 1)

= exp(
∆θ

2
)⊗ q(k) , (3.23)

~ω(k) = I3×3 ~ω(k − 1) + T I3×3 ~α(k − 1) , (3.24)
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where Eq. 3.23 consider that the rotation is composed of the angular velocity and
acceleration:

∆θ = ~ω T +
1

2
~α T 2 . (3.25)

The multiplication of two quaternions (~α, β), represented by ⊗, is defined as in [18]

α̃⊗ β = (a0 + a)⊗ (b0 + b)

= a0b0 + a0b+ b0a− ab+ a× b ,

where each quaternion has a scalar (e.g. a0) and a vector (e.g. a) part.
The Eq. 3.23 can be expanded as mentioned in [101]:

q(k) = q(k − 1) cos(
‖∆θ‖

2
) + Ω(q)~ω(k)T

sin(‖∆θ‖
2

)

‖∆θ‖ +

+Ω(q) ~α(k)
T 2

4
sin(

‖∆θ‖
2

) , (3.26)

where

Ω(q) =





−q1 −q2 −q3
q0 q3 −q2
−q3 q0 q1
q2 −q1 q0



 .

3.4.2.3 Multi-Rate Filters

In our application, the vision system is sampled at approximately 25Hz and the IMU is
sampled at 100Hz in order to sense fast motions. Therefore multi-rate fusion techniques
are required to improve the estimations, and to exploit the complementary characteristic
properties of each sensor.

The main drawback of EKF (see Sec. 2.3.4) is the need of linearisation, which can
produce unstable filter performance and is usually non-trivial. Therefore Julier and
Uhlmann [51] decided to approximate a Gaussian distribution, rather than to approx-
imate an arbitrary non-linear function. They introduced UKF, for more details please
refer to Sec. 2.3.5.

The multi-rate explanation of EKF and UKF can be found in [2]. The idea behind
the multi-rate fusion is to build up a size-varying measurement vector, containing only
those measurements that have been sampled at each time instant. In this sense, the
measurement vector is given by:

y(k) =
[
~aT

m ~ωT
m pT

m qT
m

]T
iff data from both sensors are sampled,

=
[
~aT

m ~ωT
m

]T
iff inertial data are available,

=
[

pT
m qT

m

]T
iff vision data are available, (3.27)

where no data are sampled, then an update step can not be executed and only the
predicted pose can be used for the next iteration.
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Figure 3.5: For two 2D vision measurements, rays from the image plane are projected
in the 3D space (raytracing) and the view angle (θ) between them is measured. If the
view angle is satisfactory, the algorithm proceeds.

3.4.3 Mapping Scene Structure

To present the mapping of the scene structure, this section comprises three parts.
Firstly, the structure estimation algorithm is introduced. Secondly, the pose-recovery
algorithm is explained. Thirdly, updating of the scene model is presented.

3.4.3.1 Structure Estimation Algorithm

The goal of the structure estimation algorithm (see Alg. 3.1) is to estimate the natural
landmarks in 3D space. These natural landmarks represent the 3D positions of the
extracted corner features (see Sec. 3.4.1.1). To achieve this goal, every natural landmark
is estimated in two steps. The first step is the triangulation from several images, which
delivers the initial 3D position. In the second step, the landmark’s initial 3D position
is futher estimated with the EKF (see Sec. 2.3.4).

To estimate the 3D position of a new feature in world coordinates the pose of the
camera in world coordinates must be estimated (see Sec. 3.4.2.1). The next step is the
calculation of the 3D position of each single feature. At least two measurements in
successive images from different viewpoints are necessary to calculate the 3D position
using triangulation (see Sec. 2.2.7). Finally, to estimate the position of a feature more
reliably, a Kalman filter (see Sec. 2.3.2) is used to smooth the calculation. Each new
feature gets its own EKF to keep the computational burden small. The multiple in-
stances of the same EKF for each corner feature are called a filter bank. If the position
estimation of a feature is reliable, then it is inserted in the model of the scene to en-
large the model for an increase of the robustness of the pose estimation. The overall
procedure is outlined in Alg. 3.1.

In this work, it is assumed that at the beginning of the experiment, the 3D positions
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Require: 2D feature is found
Ensure: EKF for this feature is uninitialized
1: while feature is visible do

2: track this feature
3: if feature is not in scene model then

4: if EKF not initialized then

5: calculate the view angle (see Fig. 3.5)
6: if view angle > threshold (see Sec. 3.4.3.3) then

7: linear triangulation for this feature
8: initialize EKF for this feature
9: end if

10: else

11: update the state with EKF
12: if EKF converging (see Sec. 3.4.3.3) then

13: if baseline shift > threshold (see Sec. 3.4.3.3) then

14: insert this feature to the scene model
15: end if

16: end if

17: if iterations > threshold (see Sec. 3.4.3.3) then

18: terminate feature estimation
19: end if

20: end if

21: else

22: if covariance < threshold (see Sec. 3.4.3.3) then

23: update the state with EKF
24: end if

25: use this feature for pose estimation
26: end if

27: end while

Algorithm 3.1: Structure estimation pseudocode.

of the seven points of the initial target (see Fig. 2.20) are known. The calculation of
the 3D position of a new feature point can be done if at least two 2D measures are
available, together with the camera pose of both measures. Then, for two 2D vision
measurements, rays from the image plane are projected in the 3D space (raytracing - see
Fig. 3.5) and the view angle between them is calculated. If the view angle is satisfactory,
the algorithm proceeds. Next, the calculation of the 3D position is evaluated and it is
based on the linear triangulation (see Sec. 2.2.7). It is important for a good triangulation
to have a large baseline, which is certainly not true for frame-to-frame measurements,
but can be achieved over time by employing a triangulating from multiple image frames.
The calculation of this baseline threshold is given in Sec. 3.4.3.3. The output of the
triangulation is then used as an initial estimate for EKF.

The EKF is used to continually smooth the 3D position of a feature. Smoothing is
necessary to cope with the inaccuracies of the camera pose computation and inaccurate
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feature detection. The accuracy of camera pose computation depends on the features
that are used. If using only the seven corner features of the initializing mask, the pose
calculation is accurate. Any new feature has a corresponding uncertainty when added
to the model, and, hence, pose calculation might slightly jump if a new feature is added.
As a consequence, the EKF smoothing helps to reduce this effect, which improves the
filter update by using the known 3D features and the new 2D feature measurements.
The accuracy of the feature measurement for the 2D corners is about one pixel and
can only be eliminated in the image using computationally expensive sub-pixel fitting.
Hence, the EKF smoothing is welcome and serves the same purpose as explained above.

The non-linear state-space description for the filter process can be described as in
Sec. 2.3.4, where x(k) describes the state of the process, in this case the 3D position x, y
and z, the measurements in the camera image plane (u, v), f is the dynamic description
of the system, ν(k− 1) is the process noise, h is the mapping of the state to the output
and w(k) is the measurement noise.

3.4.3.2 Pose-Recovery

When due to the fast motion no corners are extracted from an image or no correspon-
dence can be found between consecutive frames or RANSAC (see Sec. 2.1.6) algorithm
failed because of insufficient count of putative matches, then this pose-recovery algo-
rithm is used:

1: Back-project known 3D model points with the last estimated pose on the image
plane.

2: Search for corners in threshold-bounded windows around the back-projected (ref
Sec. 2.2.4.3) points.

3: If no corners are found, continue to estimate pose from inertial data, and go back
to the first step.

Algorithm 3.2: Pseudocode of the pose-recovery algorithm.

3.4.3.3 Model Update

As mentioned in Alg. 3.1, there are four key decisions for updating the model of the
environment.

Raytracing Threshold

First a raytracing threshold is introduced. In this work, only one camera has been
used, and there is no previous knowledge about the baseline of two consecutive frames.
Therefore, every extracted feature from the image plane is treated separately. The
raytracing (see Fig. 3.5) threshold is represented by a view angle. This view angle is
calculated from two frames. The first frame is the one, where the feature appears for
the first time, and then every next frame is taken into account until a pre-defined view
angle is reached.

EKF Convergence Thresholds
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The next threshold is the EKF convergence condition, which is represented by three
thresholds. First is the Euclidean distance between last and previous state estimates
(x(k)) in the feature 3D position. The second threshold is the norm of the 3 × 3
covariance matrix, which contains the information about the uncertainty of the feature
in 3D space. The third is a condition, which stops, when a maximum count of iterations
(across multiple images) has been reached. It means that the initial state is inaccurate
or the filter is diverging. In this case, the estimation of this feature starts again from
raytracing.

Baseline Threshold

Before inserting the newly estimated 3D feature into the model of the scene, the mo-
tion drift is evaluated. A pose hypothesis is computed from the last model of the scene
with the new feature inserted. If the Euclidean norm of the difference between the pose
hypothesis and the last estimated pose is above a threshold, then return to raytracing.
Otherwise, insert the new feature (3D position) into the model of the environment.
This procedure assures that features not fitting to the model are rejected. The reason
can be that the baseline was too short for a good 3D estimate or correspondence in the
tracking step failed.

Smoothing Condition

The structure estimation is correlated with the pose computation (see Fig. 3.4),
and once a new feature has been inserted into the model of the scene, it is used for
subsequent pose calculation. To enable a more accurate pose computation, all features
(except initial - see Fig. 2.20) in the model are estimated as long as the norm of the
feature 3D position uncertainty (3 × 3 covariance matrix) lies above a threshold. If
the norm of the feature 3D position uncertainty is below the threshold, the estimation
process stops.

3.5 Experimental Results

The presented motion and structure estimation algorithms have been tested using two
different experimental setups. The first experiment tested the robustness and perfor-
mance of our algorithms when the sensor rig was mounted on a custom mobile platform.
The second experiment aimed at testing the sensor fusion complementary characteristic
and accuracy of the proposed motion and structure approaches, where the camera and
IMU were attached to an industrial robotic arm.

3.5.1 Experiments Using a Mobile Platform

A set of offline experiments has been devised to demonstrate the performance and ro-
bustness of our motion and structure algorithms (see Sec. 3.4) [40, 42]. These algorithms
operate with calibrated sensors where the intrinsic parameters are assumed known. The
comparison with the true state is introduced for ego-motion, and also for structure of
the scene. The true motion state has been compared with the robotic platform poses,
and the correctness of 3D feature positions has been evaluated in comparison to their
true distance in the 3D scene.
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(a) The robotic platform from Blue-
Botics with mounted sensor rig.

(b) Sensor rig consists of the Inertial
Measurement Unit (IMU), two CMOS
vision sensors (only one of them is be-
ing used) and the custom hardware.

Figure 3.6: Sensor rig mounted on a mobile platform.

The assumptions under which these experiments have been conducted are:

• well-calibrated sensors,

• known initial object (see Fig. 2.20) and

• constant lightning conditions.

To detect features in the image sequence, an implementation of the Kanade-Lucas-
Tomasi feature tracker [114] has been used. The details about this tracker are explained
in Sec. 3.4.1.1.

3.5.1.1 Experimental Setup

As depicted in Fig. 3.2(b), the coordinate frames of this experimental setup consists
of: the robotic platform (see Fig. 3.6(a)), one CMOS vision sensor and a XSens MT9B
IMU (see Fig. 3.6(b)). These sensors are mounted on the robotic platform, which can
perform only planar motions.

When calibrating the camera, the radial and tangential lens distortions were consid-
ered (see Sec. 2.2.4). The calibration software used was introduced by Bouguet in [12].
For more details about the MT9B calibration, please refer to Sec. 3.3.1.

The robotic platform that has been used in the experiments is a prototype of the
MOVEMENT [71] system’s Mobile Platform, designed and manufactured by Blue-
Botics. It features a differential drive with two driven wheels in the middle, two castor
wheels in the back and two castor wheels on springs in the front. The platform’s sen-
sor system comprises wheel encoders (odometry) and a SICK laser ranger in the front.
There are two modes of motion control: avoid mode and bump mode. Avoid mode
is intended for autonomous motion of the platform to a destination specified by the
user. Using its laser ranger and a map, the platform continuously corrects its odometry
data and avoids obstacles. However, in this mode the motion (i.e. the speed) is entirely
controlled by the platform’s onboard navigation algorithm in response to the sensor
data. In bump mode the user can specify the translation and rotation speed of the
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platform, but with the downside that its onboard controller makes no use of the laser
ranger, neither for obstacle avoidance nor for correcting the odometry data. In our
experiments all motions have been controlled in bump mode.

3.5.1.2 Motion Evaluation

The robotic platform performed motions including translation and rotation as given in
Tab. 3.2. The translation to the target includes changing the scale of the initial object
and changing the velocity. The rotation includes: loss of the initial target and the
system moves into a completely new environment. Each of the motion runs is about
18s long. For longer runs in an unknown environment more new landmarks are assumed
to be inserted in the map of the scene. These new landmarks have larger uncertainties
in their 3D positions, and due to this the accuracy in pose computation is decreasing.
This results in increased motion drift.

The offline performance of two multi-rate motion filters (EKF and UKF) is depicted
in Fig. 3.7 and in Fig. 3.8. When the model of the scene has been updated by adding
new landmarks, we refer to it as ’with updated model’, while adding no new features
is called ’without updated model’. The mean square errors over the complete motions
of EKF/UKF to ground truth are given in Tabs. 3.3 and 3.4. The Fig. 3.7 and Fig. 3.8
indicate that without an update, model uncertainty increases the further the motion
moves away from the initial pose (compare the increase of py and qx). When returning
to the initial position, accuracy is similar for both cases. The graphs also indicate that
the performance of EKF and UKF are very similar.

Translation Rotation
Type of motion length average velocity length velocity

[m] [m/s] [◦] [◦/s]
1.13 0.1 12.72 2.70

translation + rotation 1.28 0.1/0.2 10.54 2.19
1.11 0.1 54.16 11.32

Table 3.2: Performed motion patterns.

RMSE in position [m]
x y z

EKF 0.0409 0.0100 0.0242
UKF 0.0603 0.0065 0.0177

Table 3.3: Residual mean square error (RMSE) in position estimation when comparing
the motion states of EKF and UKF with the ground truths.

In all experiments, the process noise (Q(k− 1)) and the measurement noise (R(k))
have the same values for the multi-rate EKF and UKF. To find the optimal values
for these noise matrices Armesto et al. [3] performed different movements with various
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Figure 3.7: The translational part of motion estimation using multi-rate EKF and UKF.

RMSE in orientation
q0 qx qy qz

EKF 0.0033 0.0175 0.0124 0.0147
UKF 0.0057 0.0170 0.0205 0.0133

Table 3.4: Residual mean square error (RMSE) in orientation estimation when com-
paring the motion states of EKF and UKF with the ground truths.

velocities, and the error in motion estimation using EKF or UKF has been analyzed.
The values obtained are

Q(k − 1) =




7.447 10−1 I3×3

3.8 10−1 I3×3

1.9 10−7 I3×3



 ,

R(k) =





1.0 10−3 I3×3

1.0 10−4 I3×3

1.0 10−7 I3×3

1.0 10−6 I4×4



 .

The benefit of the fusion of inertial and vision data is that the inertial sensors
provide more information about rapid motions, but the drawback is that they typically
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Figure 3.8: The rotational part of motion estimation using multi-rate EKF and UKF.

suffer from drift. In this work, the calibrated XSens MT9B [110] IMU has been used,
and the gyroscope drift rate of this IMU is up to 60◦/h. When estimating the position
only from acceleration readings a bias of 0.1m/s has been measured [19]. However, the
drift rate from gyroscope and the bias from accelerometer are compensated by EKF or
UKF using the vision data.

3.5.1.3 Structure Evaluation

The structure of the unknown environment is measured by hand, and these measure-
ments are taken as the true states for the estimated 3D positions. The comparison of
some rigid 3D features is tabled in Tab. 3.5. From the table it is clear that features
closer to the camera image plane are more accurate than more distant ones (e.g. ID 66).
Some of the tabled features are highlighted on the left side in Fig. 3.9. The possible
danger for long-term tracking are features like the one with ID 78, because they are
not true 3D points. These outliers in corner tracking can slide in each image frame for
several reasons (moving objects, occlusion boundaries, specular reflections, etc.). If the
model has been updated with a non existing 3D feature, then it can cause a motion
drift.

Fig. 3.10 depicts all estimated 3D positions of features with superimposed uncer-
tainties (ellipsoids). The uncertainty of the feature mainly depends on its distance from
the camera, duration in the model (due to the smoothing process) and if the feature is
stable in 3D space.
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ID |Xx −Xx| |Xy −Xy| |Xz −Xz| ‖X −X‖
52 0.025 0.114 0.006 0.117
53 0.015 0.020 0.011 0.027
59 0.027 0.104 0.013 0.108
66 0.726 0.794 0.553 1.210
107 0.155 0.131 0.009 0.203
108 0.159 0.135 0.017 0.209
109 0.743 0.015 0.015 0.743

Σ 1.849 1.312 0.624

Table 3.5: Errors in structure estimation, where 3D points have been measured and
estimated in the world coordinate frame in [m]. First item in the header row is the
identification number of a feature (ID). Other items represent Euclidean norms between
true values (X) and estimated 3D positions (X). The corresponding image points are
depicted in Fig. 3.9.

Figure 3.9: This image frame depicts only those 2D features, whose corresponding 3D
positions can be initialised using the raytracing procedure (see Sec. 3.4.3.3).
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Figure 3.10: This is the virtual 3D space with all estimated 3D positions of features
found up to the current frame. The uncertainties are represented by superimposed
ellipsoids, and the camera coordinate frame is plotted additionally.

The thresholds for updating the model of the environment are as follows:

• Raytracing threshold (see Sec. 3.4.3.3) - The angle between two frames has to be
greater than 1◦.

• EKF convergence threshold (see Sec. 3.4.3.3) - The Euclidean distance between
the last and previous estimate is expected to be less than 1.0 10−2. The norm of
the covariance matrix has to be below 1.0 10−1. The maximum count of iterations
is set to 75.

• Pose discrepancy (see Sec. 3.4.3.3) - The pose difference with and without the
new estimated feature has to be below 1.0 10−2 in translation (Euclidean distance
between translation vectors) and in rotation (absolute difference in RPY angles)
it can not be more than 3.0 10−1.

The system can also move into an unknown environment performing a faster rotation
(11.32◦/s - third row of Tab. 3.2). The last image frame from this sequence is depicted
in Fig. 3.11. The results of the pose estimation are similar to Fig. 3.7 and Fig. 3.8, and
the error is once again similar as it was for the slower motions. The performance of EKF
and UKF have been found to be similar. Further experiments with higher velocities
need to be conducted, but require other hardware to obtain ground truth.

3.5.1.4 Run-time Evaluation

On a 3.0GHz Pentium processor, the minimum processing time needed for simultaneous
motion and structure estimation using vision and inertial data is typically about 45ms.
For inertial measurements only, about 5ms are needed. The performance of the motion
estimation using EKF is about ten times faster than using UKF. This difference in
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Figure 3.11: This is the last image frame of the first motion from Table 3.2. The
initial artificial object is out of view, and the pose calculation is based only on new
features. The back-projected 3D feature positions are depicted as circles, and the
corner measurements are displayed as crosses.

Image loading (512×512 pixels at 25Hz) 2ms
Corner tracking (see Sec. 2.1.2) 10ms
Pose calculation (see Sec. 2.2.6) 10-15ms
Acquiring inertial data 1ms
Motion estimation (UKF - see Section 2.3.4 and Sec. 3.4.2.3) 2ms
Motion estimation (EKF - see Section 2.3.5 and Sec. 3.4.2.3) 0.2ms
Structure estimation (see Sec. 3.4.3) 10ms
Visualization 5ms
Total 45ms

Table 3.6: Computational time for the steps of simultaneous motion and structure
estimation.

performance between EKF and UKF is similar to the one presented in [94]. The time
needed in each step is given in Tab. 3.6.

3.5.2 Pose-Recovery Experiments Using a Robotic Arm

In these experiments, we performed fast motions with the KUKA KR/15 robot to re-
capture the features from the inertial data, and in Sec. 3.4.3.2 we call this pose-recovery
procedure [38]. The estimation of the motion can be compared with the true state,
because the sensor head is attached to a robotic arm whose known motion provides
ground truth. The involved motion and structure algorithms are explained in Sec. 3.4.
The same assumptions as presented in Sec. 3.5.1 are valid for experiments with the
robotic arm.

In these experiments, image features have been detected using the Harris corner
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Figure 3.12: Left is the KUKA KR15/2 robot with the mounted sensor rig. Right is
the vision sensor with the superimposed Cartesian coordinate system. The blue box on
the top of the camera is the IMU unit.

detector. RANSAC has been employed for robust matching of two feature sets between
consecutive frames. The feature extraction is explained in Sec. 3.4.1.1.

3.5.2.1 Experimental Setup

This section describes the simulation results with the architecture hardware, as depicted
in Fig. 3.12. The custom CMOS camera (developed by the project partner EMT, TU-
Graz - [73]) contains: two Fuga1000 1024×1024 vision sensors from FillFactory (used
in a 512 ×512 subsampled mode) and an IMU unit from XSens (MT9-B). This sensor
rig is mounted on a KUKA KR15/2 robot.

3.5.2.2 Motion Evaluation

Vision typically fails when in fast motion, so pose-recovery has been tested on a parallel
translatory motion pattern with four different vision failure situations. The robot was
moving from the first position along the world y-axis (the world y-axis is aligned with
camera y-axis - see Fig. 3.12) to the final position and then back, during the beginning
of the return an acceleration was introduced. The desired velocity for losing vision
measurements with CMOS camera running at 20Hz from approximately 1m distance
to the object is about 2m/s, but the problem with the robot acceleration is that it
needs some distance to achieve 2m/s. The minimum distance for losing vision frames
was empirically set to 0.1m and then 0.15m, 0.2m and 0.3m distances were tested (see
Fig. 3.13).

Every tested motion pattern has been a translation along the y-axis. In Fig. 3.13 is
the overall comparison of all motions. On the left side is the ideal motion pattern and
on the right side is the comparison of all motions with the estimated y-translational
part.

The average vision failure distance (0.2m) is depicted in Fig. 3.14. Due to the fast
motion for three frames the feature extraction failed.

In figures 3.13 and 3.14 the pose calculation is precise enough to recover the pose.
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Figure 3.13: Left is the ideal motion pattern, while focused on the y-translational part
of the pose. Right are the different vision failure situations. The estimated pose is
plotted with a solid line, while ground-truth is displayed with dash dotted line, and
vision measurements are represented with superimposed crosses.

Figure 3.14: Successful camera pose-recover after loosing three frames, when the robot
was moving approximately 2m/s for 0.2m on the way back. The estimated translational
part of the pose is plotted with a solid line, while ground-truth is displayed with dash
dotted line, and vision measurements are represented with superimposed crosses.
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Figure 3.15: Left is the image with all estimated landmarks and right are highlighted
only landmarks with very low or no change in their estimated 3D positions.

3.5.2.3 Structure Evaluation

To prove the structure estimation algorithm a sparse set of landmarks is estimated.
These landmarks represent 3D positions of extracted corners (see Fig. 3.15). The errors
between estimated 3D positions and the ground-truth 3D positions (measured with
the KUKA robot 1) are tabled in Tab. 3.7. To compare, which direction has the
largest discrepancy, the Euclidean distances are calculated separately for x, y and z
direction, then the Euclidean distances for two points in 3D space are calculated. Next
the Mahalanobis distance (σ is the covariance matrix of the estimated landmark) is
evaluated, and additionally all errors are calculated.

From Tab. 3.7 it is clear that the calculated error is largest in z and smallest in
x direction. This result corresponds to the fact that the largest distance from the
target was in z and smallest in x direction. The Euclidean distance of two points
should diminish for every new point, because the system is smoothing the estimated
pose. This is not true, due to the discrepancies in the motion estimation (see the end
of Sec. 3.5.2.2). In opposite the Mahalanobis distance is diminishing, but this should
not be taken as a measure for the distance calculation in this case. The Mahalanobis
distance indicates that the system believes, that the new points (with higher IDs) are
evaluated more precisely.

3.6 Conclusion

The presented motion and structure estimation framework has the ability to estimate
the egomotion of the sensor rig by fusion of vision and inertial data, which has been
tested on robotic and less smooth handheld motions. For generating the ground-truth
values a mobile platform and a robotic arm have been used. However, the platform is
able to perform only planar motion, while the system can estimate 6DOF motion. Free
6DOF motion is estimated in the case of handheld and robotic arm motion. In the
case of handheld motion ground truth is not available. The estimation techniques use

1The calibration error of the KUKA KR15/2 robot is less than 1[mm].
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ID ‖Xx −Xx‖ ‖Xy −Xy‖ ‖Xz −Xz‖ ‖X −X‖ ((X −X)Tσ−1(X −X))
1

2

18 6.53e-3 1.246e-2 7.869e-2 7.993e-2 2.8e-2

19 1.44e-2 2.48e-2 1.19e-1 1.23e-1 1.35e-2

33 5.7e-4 1.33e-2 8.27e-2 8.38e-2 2.9e-3

37 1.14e-2 1.41e-2 4.99e-2 5.31e-2 1.9e-3

38 5.4e-3 4.6e-3 2.02e-2 2.15e-2 8.19e-4

111 1.05e-2 1.44e-2 6.78e-2 7.01e-2 2.3e-3

121 3.6e-3 3.58e-2 6.0e-2 7.0e-2 2.1e-3

Σ 5.24e-2 1.195e-1 4.783e-1 5.014e-1 5.15e-2

Table 3.7: Errors in structure estimation, while 3D points have been measured and
estimated in [m].

the well-known EKF and UKF, both filters are used in the multi-rate sampling scheme,
because of the asynchronous sampling of the vision and inertial sensor.

As presented in [40], we think that the proposed motion and structure estimation al-
gorithms can help the mobile robot to navigate faster and more robustly. The real-time
implementation of those algorithms proved to be able to deliver the pose of the sensor
rig even though missing the presence of vision measurements. This useful property can
be used in the case of performing rotations with the mobile platform.

However, the main disadvantage of this work is the ignorance of inter-feature corre-
lations. In the structure estimation algorithm, the features are estimated separately and
they are correlated only with the camera’s pose. The lack of inter-feature correlations
is an important drawback [91] and the main reason why we do not consider developing
this structure algorithm in the future.

Due to this drawback we decided to substitute our motion and structure algorithms
with the SLAM framework. The principle of this framework is explained in the next
chapter.



Chapter 4

High-Speed Vision SLAM

In this chapter the motion and structure of an unknown scene is estimated using SLAM.
This incremental probabilistic approach is more suitable to recover the geometry of
an unknown environment than our previous algorithm (see Sec. 3.4.3). The need to
incorporate the inter-features correlations in the probabilistic framework is argued by
Smith and Cheeseman in [91]:“ merge independent measurements by the sensor into a
single approximate transformation”.

The success of SLAM and its applications can be considered as a product of well-
advanced probabilistic techniques [97], where the basic algorithm is e.g. Kalman fil-
ter [54]. Thanks to those techniques a wide range of SLAM algorithms have been
introduced, and successfully applied in real scenarios (e.g. [35, 95, 106, 115]). The key
idea here is that the position of the robot as well as the features of the map are esti-
mated, which means that we know where they might be with certain probability. This
concept is crucial in SLAM and proved to work very well in practice [30].

An overview of SLAM is depicted in Fig. 4.1, and it consists of three parts. The
prediction part predicts robot’s and scene feature’s position, while receiving information
about the control and current positions. The next part matches the observed scene and
predicted features, which is crucial for later updates. False matches can cause SLAM
to collapse, and without a proper re-initialisation the position is lost. The last part is
the map building, which is responsible for managing scene features.

As input for SLAM different kinds of sensors e.g. laser [106] or sonars [115] can
be used. One of the most interesting (in terms of cost, weight, etc.) and challenging
sensors is a single perspective-projective camera. When observing the environment with
a camera, the depth information of new landmarks can not be directly acquired. To
recover this depth information the camera has to move, and observe these landmarks
from different viewpoints. While performing motions, the robot with the onboard
camera is expected to move slowly, as any abrupt position changes can cause motion
blur in the camera images.

The underlying assumption of vision SLAM is that in every two consecutive camera
images enough feature matches have to be found. Otherwise, the SLAM framework
will most likely diverge, causing the robot to get lost. If one camera image contains
motion blur, matching the features becomes a challenging task and difficult to solve in

61
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Figure 4.1: SLAM basic scheme.

real-time applications. Algorithms for image de-blurring are well-known [59], but they
have a considerable computational burden, which is unsuitable for a real-time vision
SLAM application.

A possibility of how to eliminate the motion blur and retain or increase the robot’s
translational and rotational velocity is to increase the readout speed of the vision sensor.
Using a camera with a higher readout speed allows to update the pose of the robot more
often. This can prevent the vision SLAM from diverging when more abrupt motion
occurs.

The problem of camera motion and unknown environment reconstruction is known
in the computer vision community as SfM. The main difference comparing to SLAM
framework is that the probabilistic techniques are replaced with non-linear least square
estimation algorithms. For a mobile robot real-time is a very important constraint,
because it needs to react instantly in some scenarios. Generally the non-linear least
square estimation requires a higher computational burden, but recently also real-time
SfM frameworks have been introduced (e.g. [56]).

An important difference between SfM and vision SLAM frameworks is how they
compensate for the motion drift. SfM frameworks, e.g. [77], track the features from
frame to frame, and do not correct their positions after re-observing the same place.
However, SLAM algorithms recognise a place that has been seen before, and this is
known as the loop-closing [6]. Loop-closing is considered to be a data association
problem, and SLAM is very fragile to incorrect association of observations [30]. The
loop-closing problem is considered to be very difficult, and an overview of possible
solutions is provided by Bailey and Durrant-White [6].

Davison et al. introduced the first real-time Monocular SLAM (MonoSLAM) algo-
rithm, recently summarized in [27]. The camera motion estimation and incremental
map building are computed within a standard EKF (see Sec. 2.3.4) SLAM frame-
work. An alternative SLAM framework is based on FastSLAM-type particle filter
(see Sec. 2.3.6) algorithms [31]. This FastSLAM-type particle filter has the advan-
tage that it can estimate more features keeping the computational costs low, because it
requires O(MN) space. M is the count of particles and N is the count of landmarks.
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However, MonoSLAM requires O(N2) space. The disadvantage of the FastSLAM-type
particle filter algorithm is that the loop-closing SLAM property is not available, and
has to be added using visual appearance-based models [33], for example. Using visual
appearance-based models it is possible to identify an image or place in a video sequence.

This chapter consists of six sections. Sec. 4.1 and Sec. 4.2 present the related work.
Sec. 4.3 introduces our contribution and Sec. 4.4 explains the MonoSLAM framework.
Sec. 4.5 presents the theorical background of high-speed MonoSLAM and Sec. 4.6 in-
troduces experimental results. Finally, Sec. 4.7 concludes this chapter with an outline
of the future work.

4.1 Related Work

The problem of SfM is tackled in the seminal work of Pollefeys et al. [81]. To find
an optimal solution the authors presented offline non-linear and linear self-calibration
approaches. The proposed self-calibration methods are based on the idea of an absolute
conic (see Sec. 2.2.5.1).

In [17], an interesting three-dimensional real-time structure from motion estimation
system is described. This system is based on non-linear filtering. The main disadvantage
of this approach is the unavoidable presence of drift, which occurs when long motion is
performed.

Bosse et al. presented in [10] a SfM system based on EKF recursive estimation.
An interesting aspect of their work is that they exploited omni-directional images, and
detected vanishing points (see Sec. 2.2.5) and lines. These features were used for motion
and structure estimation. In subsequent work Bosse et al. [9] proposed the ATLAS sub-
mapping framework, where they used a graph of coordinate frames for mapping large
man-made environments.

In the same year, when Davison presented MonoSLAM [25], Nister introduced a
system capable of robust real-time SfM estimation [77]. Nister’s system is based on
a preemptive scoring in RANSAC (see Sec. 2.1.6) and the framework uses the bundle
adjustment [100] algorithm to find robust motion and structure estimates.

In [34], Elinas et al. introduced a stereo vision SLAM system based on particle
filters, which is particularly suitable for large-scale environments. They used SIFT for
feature matching (see Sec 2.1.4). But this computationally intensive matching hinders
real-time processing.

Recently, a very interesting real-time parallel tracking and mapping approach was
introduced by Klein and Murray in [56]. They proposed splitting the tracking and
mapping into two separate tasks, running them in parallel threads. The goal of their
approach is to estimate a dominant plane in a small workspace, where virtual characters
can be displayed. The result is a system capable of estimating the pose of the camera
while mapping thousands of features in real-time.
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4.2 Increasing Localisation Robustness

One of the underlying assumptions in MonoSLAM is that the camera is expected to
move smoothly. This classical EKF SLAM framework is prone to fail as soon as sudden
or erratic camera movements occur, and can not reliably recover when the pose is
lost. The smooth motion assumption attracted attention recently, and several authors
proposed solutions to this problem.

Williams et al. presented in [108] an additional relocalisation algorithm, which can
operate parallel to MonoSLAM, and increases robustness against camera shakes and
occlusions. A recent improvement of this algorithm is using a randomised list classifier
and RANSAC to determine the pose robustly [107]. This randomised list of classifier are
trained when a feature is observed for the first time. The input for the training are
400 synthetically warped views of this feature, so it can be recognised from a variety of
views.

To handle erratic camera motion and occlusions, Pupilli and Calway [82] presented
a visual SLAM framework based on a FastSLAM-type particle filter. This work tackles
mainly the problem of robust camera localisation. Chekhlov et al. [16] extended this
SLAM framework to operate over a large range of views using a SIFT-like spatial
gradient descriptor.

Another visual SLAM framework based on a FastSLAM-type particle filter intro-
duced by Eade and Drummond [31] can incorporate hundreds of features in real-time.
However, the filter needs to be adapted for closing loops over large trajectories.

The monocular SLAM algorithms discussed above [108, 107, 82, 16, 31] use a stan-
dard 30Hz camera.

Interesting high-speed applications already enabled to e.g. measure the motion of a
waving flag or a flying ball [104]. Komuro and Ishikawa proposed in [57] a method for
three-dimensional object tracking from noisy images. The noise typically produced by
high-speed cameras can be tackled with proper noise models.

Another way to improve the robustness of tracking and estimating features is to
increase the sampling rate of the camera. This has been beautifully demonstrated by
Ishii et al. [49]. They introduced a 1ms visual feedback system using massively parallel
processing. Since image acquisition time is countered with equally fast image processing
(both operate at 1kHz), very fast motion of a bouncing ball can be tracked. However,
objects need to be bright in front of dark background.

4.3 Contribution Description

The high-speed cameras used in this work outperform a standard CCD camera because
they provide a faster read-out speed, can address independent windows, have little
motion blur, and provide more visual information. This increase in visual information
reduces the uncertainty in robot localisation and the uncertainties of the 3D positions
of the new landmarks.

From the above-mentioned state-of-the-art visual SLAM frameworks we are using
in this work the MonoSLAM algorithm [25, 27], because that it is the most convincing
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one.
Our idea is to show that MonoSLAM can operate at a frame rate of 200Hz and

that this improves the robustness of localisation considerably. An example of how
higher frame rate improves the dynamics and system performance of visual tracking is
presented in [103]. The intention of this chapter is to show that with a higher frame rate
a performance similar to the recent improvements discussed above [108, 107, 82, 16, 31]
can be achieved, while additionally all these measures could again be used to even
further improve performance.

In MonoSLAM framework, it is assumed that the robot moves with constant veloc-
ity. This does not mean that the velocity is constant between two consecutive frames,
but it is assumed to be constant on average. When we increase the readout speed of the
camera, it should be possible to estimate motion with higher dynamics. However, to
estimate such motion an extended motion model should be considered. We introduced
additional continuous parameters, which model motion accelerations, and we assume
that these accelerations are on average constant. The expected advantage of this con-
stant acceleration motion model, when comparing it to the constant velocity motion
model, is a better ability to track a faster motion.

We summarise our contributions as follows:

• introduction of the high-speed camera to MonoSLAM framework and

• presentation of an extended motion model.

We presented this contribution in [39].

4.4 MonoSLAM

The intention of this section is to give a brief overview of MonoSLAM. We divided this
overview of functionalities into four sections. Firstly, the functionalities of MonoSLAM
are described as an example in Sec. 4.4.1. Secondly, a probabilistic description of EKF
MonoSLAM is given in Sec. 4.4.2. Thirdly, the camera pose estimation and the typical
motion model description are presented in Sec. 4.4.3. Fourthly, the computation of map
updates with recently published additional modules are mentioned in Sec. 4.4.4.

The only sensor input in MonoSLAM used in this work are images from a single
perspective-projective camera as displayed in Fig. 4.2(a). After successful initialisation
the camera moves into an unknown scene. The output of MonoSLAM are the camera
poses and a sparse geometrical model of the scene. Due to the sparse map constraint,
the system is capable of real-time performance, which is crucial for robotic applications.
Additionally, a correct association of the present to the previously seen features enables
MonoSLAM to close the loop.

However, before we start with this example, we have to mention the initial assump-
tions of MonoSLAM:

• constant lighting conditions,

• calibrated camera,
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(a) Start to localise and map in unknown
environment.

(b) Camera moves to unknown scene.

(c) Initial known object. (d) New landmarks are estimated.

Figure 4.2: The goal of MonoSLAM is to simultaneously localise in an unknown envi-
ronment and to generate a map from new landmarks. The upper row contains scene
images, taken with the camera, and back-projected known features. The bottom row
contains the resulting 3D maps, and the camera poses.

• smooth movements,

• rigid scene (no moving objects) and

• scene contains textured objects.

If at least one of these assumptions is not valid, then we can expect erratic MonoSLAM
localisation or mapping results. A more detailed description of these assumptions can
be found in Sec. 4.6.

4.4.1 Example: MonoSLAM

Using a perspective-projection camera in MonoSLAM has several advantages - the
sensor is low-cost, small and light-weight. The drawback is that once a screenshot
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of the scene is taken, the 3D information can not be directly observed. To estimate
the position of a landmark, the camera has to move and for this several 2D feature
positions are required. From these new landmarks a map is generated. These landmarks
are subsequently required for the localization step. These steps are described in this
subsection as an example where the camera moves in an indoor scene.

In this example, a perspective-projection camera with a wide-angle lens (see
Sec. 2.2.4) has been used. Comparing this with a standard lens, the wide-angle lens
has the advantage that the features stay longer in the field of view, resulting in a more
stable MonoSLAM performance. However, this lens can introduce extremely large dis-
tortions. As mentioned in Sec. 2.2.4.3, this can be calibrated using only one radial
coefficient. This one radial coefficient is satisfactory for MonoSLAM [27] to model the
image distortions.

The initially known object can be placed arbitrarily in the scene, and its position
describes the beginning of the world coordination frame (see Sec. 2.2.1). The geometry
of the initial black rectangle is known, so the first known 3D positions (see Fig. 4.2(c))
can be re-projected into the image (see Fig. 4.2(a)). When the first features overlay
with the initial object, tracking can be initialised.

As depicted in Fig. 4.2(a), after tracking is initialised the camera can start to move
in the scene. Due to the read-out speed of the standard camera the camera motion
has to be smooth. Any abrupt or shaky movement can cause that MonoSLAM will get
lost. When the camera moves in a certain direction, MonoSLAM tries to detect new
features in the direction of this motion (see Fig. 4.2(b)) so that these newly detected
features do not overlap. This is possible due to the fact that the predicted camera
pose is computed. Using the predicted pose and the displacement of projected known
features in the image, MonoSLAM tries to found a non-overlapping region.

MonoSLAM is referred to as a top-down approach due to this decision strategy. This
type of approach together with the usage of EKF puts MonoSLAM into the family of
top-down Bayesian framework [27]. In opposition to the top-down approaches are the
bottom-up methods. The SfM algorithms are based on the bottom-up approaches, for
example [79].

As displayed in Fig. 4.2(d), after a new feature is detected using the Shi-Tomasi
detector (see Sec. 2.1.2), it is inserted into the map of the scene. When the camera
moves further into an unknown scene, and this feature is observable, then its 3D position
uncertainty decreases (see Fig. 4.3(c)). After some video frames the initial object gets
lost and the count of new features increases (see Fig. 4.3(a)). As the camera continues
to move in the unknown space, MonoSLAM estimates the pose and scene structure (see
Fig.4.3(c)). When new features are inserted in the map, the uncertainty of the camera
pose grows. Meaning that moving into a new environment without seeing known places
increases the camera pose drift.

An important feature of MonoSLAM is the ability to compensate drift when an
already known place is repeatedly seen. As depicted in Fig. 4.3(b), seeing the initial
part of the scene helps to close the loop. The final scene map is displayed in Fig. 4.3(d),
where the landmarks on the cupboard lies correctly in a plane.
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(a) Initial object is lost. (b) Returning to the beginning and correct-
ing motion drift.

(c) Uncertainties of features’ positions are
decreasing.

(d) Final sparse map of the unknown scene.

Figure 4.3: Loop-closing is an important MonoSLAM property. The upper row contains
scene images, taken with the camera, and back-projected known features. The bottom
row contains the resulting 3D maps, and the camera poses.

4.4.2 Probabilistic Description

MonoSLAM is formulated as a system with dynamic state estimation (see Sec. 2.3.1),
where EKF is applied to estimate the true state of the system. The equations’ notation
in this chapter is identical with the description of EKF in Sec. 2.3.4.

The state vector x̂ contains the camera pose (x̂v) and the 3D positions of estimated
scene landmarks:

x̂ =
[

x̂v y1 . . . yi . . .
]T
, (4.1)

where i is the index of the feature’s estimated 3D position y.
The symmetric covariance matrix P has the following form:
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P =





Pxx Pxy1
Pxy2

. . .

Py1x Py1y1
Py1y2

. . .

Py2x Py2y1
Py2y2

. . .
...

...
...

. . .




, (4.2)

where Py1x = Pxy1

T .
The prediction and update steps of EKF estimation procedure are explained in the

subsequent subsections.

4.4.3 Motion Representation

This subsection is focused on the mathematical model of the motion representation.
The goal of this motion representation is to predict (see Sec. 2.3.4) the camera’s next
pose. This predicted pose determines, where the searching ellipses (see e.g. Fig. 4.2(b))
will lie in the next image frame.

In this work, the only used sensor in MonoSLAM is a single camera, which can
perform an unconstrained motion in 3D space. The vector x̂v describes the camera
motion state with 13 states, and has the following form:

x̂v =
[

rW qWC ~vW ~ωC
]T
, (4.3)

where rW
1×3 is the position and qWC

1×4 is the orientation of the camera in reference
to the initial object (see Sec. 2.2.2). Vectors ~vW

1×3 and ~ωC
1×6 represent the linear and

angular velocities. W is the coordinate frame of the initial object (referred to as world
frame) and C is the camera coordinate frame.

The motion of the camera can be represented with different models. Davison, for
example, has been using the constant linear velocity and the constant angular velocity
model in his work [27]. The modeling of the camera motion state stops with the 1st

order derivatives. With this representation a smooth motion is assumed.
Higher motion derivatives such as linear acceleration, angular acceleration or jitter

can be modeled as noise. In MonoSLAM, the noise modeling stops with 2nd order
derivatives. The vector ~n6×1 represents the camera motion noise, and can be written as

~n =

[
~V W

~ΩC

]
=

[
~aW△t
~αC△t

]
, (4.4)

where aW
3×1 is an unknown linear acceleration and αC

3×1 is an unknown angular ac-
celeration.

The covariance matrix of the noise vector ~n is defined as:

Pn =

[
PV V PV Ω

PΩV PΩΩ

]
. (4.5)

The values of Pn define what kind of motion do we might expect. The higher are
the values in the matrix Pn, the more rapid motion is expected.
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4.4.3.1 Constant Velocity Motion Model

The constant linear and angular velocity motion model is characterised by Davison
in [27] as: “. . . we assume that the camera moves at a constant velocity over all time,
but that our statistical model of its motion in a time step is that on average we expect
undetermined accelerations occur with a Gaussian profile.”

In this subsection, for a better readability the exponents W and C are omitted in
the following equations.

The state vector x̂v is described in Eq. 4.21, and the covariance of this state vector
has this form:

Pv =





Prr Prq Prv Prω

Pqr Pqq Pqv Pqω

Pvr Pvq Pvv Pvω

Pωr Pωq Pωv Pωω



 . (4.6)

The prediction of the state x̂v is computed as:

x̂v(k|k − 1) =





r

q

~v
~ω





k|k−1

=





r + (~v + ~V∆t)

q× q((~ω + ~Ω)∆t)

~v + ~V

~ω + ~Ω





k−1|k−1

, (4.7)

where ~V and ~Ω are unknown impulses with Gaussian profiles (see Eq. 4.4), and the
quaternion product × is defined in [101].

After the computation of Eq. 4.7 the predicted state x̂v(k|k − 1) equals:

x̂v(k|k − 1) =





I3×3 03×4 I3×3 ∆t 03×3

04×3
∂q

∂q
04×3

∂q

∂~ω

03×3 03×4 I3×3 03×3

03×3 03×4 03×3 I3×3



 . (4.8)

After differentiating of the two elements in Eq. 4.8 the results are:

∂q

∂q
= Mτ (q(~ω ∆t))

∂q

∂~ω
= M ′

τ (q(k − 1|k − 1))
∂q(~ω ∆t)

∂~ω
, (4.9)

where Mτ (q) equals:

Mτ (q) =





q0 −qx −qy −qz
qx q0 qz −qy
qy −qz q0 qx
qz qy −qx q0



 , (4.10)

M ′
τ (q) has the form:
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M ′
τ (q) =





q0 −qx −qy −qz
qx q0 −qz qy
qy qz q0 −qx
qz −qy qx q0



 , and (4.11)

∂q(~ω ∆t)

∂~ω
=





−∆t
2

ωx

‖~ω‖
sin ‖~ω‖∆t

2
. . . . . .

∆t
2

ω2
x

‖~ω‖2
cos ‖~ω‖∆t

2
+ 1
‖~ω‖

(1− ω2
x

‖~ω‖2
) sin ‖~ω‖∆t

2
. . . . . .

ωxωy

‖~ω‖2
(∆t

2
cos ‖~ω‖∆t

2
− 1
‖~ω‖

sin ‖~ω‖∆t
2

) . . . . . .
...

...
. . .




. (4.12)

In the above-mentioned equation:

‖ ~ω ‖=
√
ω2

x + ω2
y + ω2

z . (4.13)

The missing elements in Eq. 4.12 can be computed by symmetry.
The last step of state vector prediction is the normalisation of the predicted

quaternion q(k|k − 1). The computation of quaternion normalisation can be found
in [18, 58, 101].

The computation of the prediction covariance matrix, when applying the unknown
impulses with Gaussian profiles (see Eq. 4.4), results in this form:

Pv(k|k − 1) =





Prr Prq Prv Prω

Pqr Pqq Pqv Pqω

Pvr Pvq Pvv + PV V Pvω + PV Ω

Pωr Pωq Pωv + PΩV Pωω + PΩΩ





k|k−1

. (4.14)

The values of PV V and PΩΩ define the expected linear and angular impulses. We
assume no other impulses so the off-diagonal elements PV Ω and PV Ω equal zero.

The process noise covariance matrix Qv(k − 1) equals:

Qv(k − 1) =
∂x̂(k|k − 1)

∂~n
P~n~n

∂x̂(k|k − 1)

∂~n

T

. (4.15)

The noise vector ~n and the noise covariance matrix are defined in Eq. 4.4, and
Eq. 4.5 respectively.

After computing the partial differential equation in Eq. 4.15, we get:

∂x̂(k|k − 1)

∂~n
=





∂r

∂~V

∂r

∂~Ω
∂q

∂~V

∂q

∂~Ω
∂~v

∂~V

∂~v

∂~Ω
∂~ω

∂~V

∂~ω

∂~Ω





k|k−1

=





I3×3∆t 03×3

04×3
∂q(k|k−1)

∂~Ω

I3×3 03×3

03×3 I3×3



 , (4.16)

where ∂q(k|k−1)

∂~Ω
equals ∂q

∂~ω
(~ω(k|k − 1)∆t) in Eq. 4.12.
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4.4.4 Mapping

In this subsection, a brief description of MonoSLAM map building is described in three
parts. Firstly, active matching of known features with new measurements, and the
computation of map updates is mentioned in Sec. 4.4.4.1. Secondly, feature initialisa-
tion using two different methods of representing a new feature’s depth is described in
Sec. 4.4.4.2. Thirdly, recently presented MonoSLAM additional modules are explained
in Sec. 4.4.4.3.

4.4.4.1 Computing Map Updates

The goal here is to explain how a known feature is found and updated. In the previous
section we computed a predicted camera pose, which will be used here to maximise the
feature’s search region.

Using the predicted camera position rW and orientation RCW , the new position of
a feature in the camera frame hC

L is computed by:

hC
L = RCW (yi − rW ), (4.17)

where yi is feature’s last known position in the world frame. An explanation of
transforming a point from world to camera coordinate system can be found in Sec. 2.2.1.

The computed position of the feature hC
L is projected in the image using a

perspective-projective camera model as explained in Sec. 2.2.3. However, the camera
lens introduces non-linear distortions. In MonoSLAM these distortions are approxi-
mated using the Swaminathan Model (see Sec. 2.2.4.3). The result of applying the
radial distortion to the projected position hC

L is a two-dimensional point udi lying in
the image plane.

The search region for this feature is defined by a 2 × 2 covariance matrix Si:

Si =
∂udi

∂xv

Pxx
∂udi

∂xv

T

+
∂udi

∂xv

Pxyi

∂udi

∂yi

T

+
∂udi

∂yi

Pyix
∂udi

∂xv

T

+
∂udi

∂yi

Pyiyi

∂udi

∂yi

T

+R, (4.18)

where Pxx, Pyix, Pxyi
, and Pyiyi

, are parts of the covariance matrix P mentioned in
Eq. 4.2. The covariance matrix R defines the measurement noise, which is determined
by the image resolution. This means that the value of R increases from the centre to
the image corners.

The active matching of a feature at the position udi and within the search region Si

is the last step before computing the map update. When the feature’s stored template
texture can be successfully matched (see Sec. 2.1.5) with the current image, this feature
is selected for the map update computation. In MonoSLAM between 10 and 12 features
are selected in each time step and the map update is computed as EKF update step
(see Sec. 2.3.4).

4.4.4.2 Feature Initialisation

In the previous section, only the state of known features has been updated. When
mapping an unknown scene new features have to be initialised. As described in the
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introduction of this chapter the initial depth of new features is unknown and can not
be acquired directly.

The initial feature position estimate is a difficult task, because the perspective-
projective camera model is highly non-linear. In MonoSLAM the new features’ position
estimation is carefully treated to avoid updating the map with false landmarks. The
challenging part of the scene structure estimation is the unknown depth. An unknown
feature can possibly lie before the lens or at very large distances, which is difficult to
recognise from a single image.

The depth of a new feature is estimated in [27] using a particle set. This means that
a new feature lies on a semi-infinite line starting at the camera position and heading
along ray hW

i . The representation for this feature is as follows:

ypi =

[
rW

i

hW
i

]
, (4.19)

where rW
i is one end of the semi-infinite line.

The main disadvantage of this representation is that only features in about 5m range
around the camera position can be considered. Initialising more distant features would
need a large particle set, which hinders the real-time constraint of MonoSLAM. Another
disadvantage is that it takes several steps to convert a new feature to a fully-initilised
point, as depicted in Fig. 4.4.

In [72] a straightforward feature initialisation is presented. A new feature is repre-
sented as:

ypi =





rW
i

θi

φi

ρi



 , (4.20)

where rW
i is the position of the optical centre of the camera, θi is the azimuth, φi is

the elevation, and ρi is the inverse depth of the feature.
Due to this improved initilisation very distant features can be considered. Another

advantage is that no initial object is needed, because this representation allows new
features to be added to the camera pose computation. An example is depicted in
Fig. 4.5.

4.4.4.3 Additional Modules and Extensions

Due to the concentrated effort, MonoSLAM framework has been improved using several
additional modules and extensions. This section briefly describes the algorithms used
in this chapter.

One of the most important parts of the whole framework is the map management
introduced by Davison et al. in [25]. The goal of this module is to keep only reliable
features in the map of the scene. The count of these features has to be constrained by
the real-time performance.

A disadvantage of MonoSLAM was that the used Shi-Tomasi features were not ro-
tation invariant. A potential remedy would be to use the SIFT features (see Sec. 2.1.4),
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(a) Found a candidate
feature.

(b) Re-weighting the
depth distribution.

(c) Feature converted
to fully-initialised
point.

Figure 4.4: Feature initialisation using the depth representation based on the particle
set. In the first frame, a candidate image patch is found. When a new feature is
found, a ray is projected into subsequent images. A set of ellipses are searched along
the ray to re-weight the depth distribution. Typically, after several time steps the
depth uncertainty reduces the depth uncertainty, and the new feature is converted to a
fully-initialised point.

(a) Found a candidate
feature.

(b) Updating the par-
tially initialised state.

(c) Feature converted
to fully-initialised
point.

Figure 4.5: Feature initialisation based on the depth representation known as the in-
verse depth. Similarly, as by the particle set depth representation, in the first frame, a
candidate feature is found. When a new feature is found, the explicit feature parametri-
sation is updated. In this example, this feature converts to the fully-initialised point
after longer period of time.
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Figure 4.6: Feature orientation estimation of an indoor scene containing one dominant
planar plane.

but they require higher computational burden. As depicted in Fig. 4.6, another way of
handling the camera rotations is to estimate the orientation of the features [27].

In MonoSLAM the data association problem is crucial, because false feature matches
typically cause the framework to collapse. The standard feature matching algorithm
in SLAM systems is the Nearest Neighbour (NN) method. This algorithm is efficient,
but selects only individual compatible hypothesis. In [75] Neira and Tardós introduced
an improved version of NN, which is called Joint Compatibility Branch and Bound
(JCBB). The most important difference between JCBB and the standard NN method
is that JCBB is selecting only joint compatible hypothesis. One example of this differ-
ence is depicted in Fig. 4.7. JCBB improves the robustness of the data association in
MonoSLAM as presented in [21].
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Figure 4.7: The result of a comparison between NN and JCBB algorithms using a
two-dimensional robot simulation. The first row (a. and b.) displays the true positives
values, and the second row (c. and d.) represents the false positives values. The first
column depicts NN and the second column JCBB results.

Additionally, a possible way of improving the performance of a new feature detection
in MonoSLAM is to use Fast features (see Sec. 2.1.3). An example is displayed in
Fig. 4.5(a).
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4.5 Improving Localisation Robustness

To explain the details related to the more robust localisation, this section comprises
four parts. Firstly, the benefits of the localisation using the high-speed camera are
presented in Sec. 4.5.1. Secondly, the proposed more robust MonoSLAM motion model
is explained in Sec. 4.5.2. Thirdly, a discussion of motion parameters is included in
Sec. 4.5.3. Fourthly, a problem of skipping vision information when using an asyn-
chronous high-speed camera is reviewed in Sec. 4.5.4.

4.5.1 Dense Visual Information

The standard camera (difference of timestamps ∆t is equal 33ms) provides rather sparse
vision input, but when a smooth movement is expected (see Fig. 4.8), it is sufficient for
MonoSLAM to robustly localise. If an erratic camera motion is performed, EKF based
MonoSLAM is very likely to lose the pose. Observing the scene features with faster
readout speed (e.g. ∆t is equal 5ms) allows to update the camera state more frequently,
and this can prevent MonoSLAM losing the pose as depicted schematically in Fig. 4.9.

4.5.2 Constant Acceleration Motion Model

In MonoSLAM it is assumed that the camera linear and angular velocities may change
in every frame but they are expected to be constant on average. In other words, the
camera movements are approximated using the so-called constant linear and angular
velocity motion model. This model assumes that in each time step the unknown linear
(~aW ) and the unknown angular (~αR) accelerations cause impulses of linear (~V W ) and

angular (~ΩW ) velocities. The noise vector ~n is defined in Eq. 4.4 and the unknown
accelerations are assumed to be zero mean Gaussian processes.

However, the high-speed camera can readout images several times faster (∆t is equal
e.g. 5ms) than a standard camera (∆t is 33ms). Due to this high frame rate we assume
that the velocities (~vW and ~ωR) can change arbitrarily, but the accelerations (~aW and
~αR) are expected to be constant on average.

The constant linear and angular velocity motion model can be extended to a second
order model. The second order model includes linear (~aW ) and angular (~αR) accelera-
tions in the camera state vector x̂v. We expect that this model can handle more erratic
and jitter motion as depicted schematically in Fig. 4.10.

As introduced in Eq. 4.21. the camera vector state using the constant linear and
angular velocity model has 13 states. The extended camera state vector x̂v in the
constant linear and angular acceleration model has 6 new states and includes

x̂v =
[

rW qWC ~vW ~ωC ~aW ~αC
]T
, (4.21)

where the zero order (rW and ~qWC) and the first order (~vW and ~ωC) states are inherited
from the first order motion model. The new state comprises of the linear (~aW ) and
angular (~αC) accelerations.

We assume that in each time step when using the constant linear and angular
acceleration model, an unknown linear jitter ~jW and unknown angular jitter ~ηC cause
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Ät = 5ms

Ät = 33ms

Figure 4.8: MonoSLAM can handle smooth camera movements using the standard
camera (difference of timestamps - ∆t is equal 33ms), and the high-speed camera (∆t
is equal 5ms) is not needed.

Ät = 5ms

Ät = 33ms

Figure 4.9: If erratic camera movements occur, MonoSLAM using the standard camera
(difference of timestamps - ∆t is equal 33ms) loses the pose. An example is displayed
in the upper row, where the camera pose (solid line) drifted away from the true pose
(dashed line). A high-speed camera provides more dense visual information, which
helps to handle this erratic motion, as depicted in the bottom row.

Ät = 5ms

1.

2.

Figure 4.10: If erratic or jitter movements occur and dense vision information are
available, the second order motion model (2) is assumed to be more robust than the
first order model (1).
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an impulse of linear ( ~AW ) and angular (~ΨC) accelerations. These accelerations are
again zero mean Gaussian processes and the noise vector is

~n =

[
~AW

~ΨC

]
=

[
~jW ∆t
~ηC∆t

]
. (4.22)

For a better readability, the below-mentioned equations in this subsection are miss-
ing the exponents W and C.

The camera state update is computed as follows:

x̂v(k|k − 1) =





r

q

~v
~ω
~a
~α





k|k−1

=





r + ~v∆t+ 1
2(~a+ ~A)∆t2

q× q(~ω∆t+ 1
2(~α+ ~Ψ)∆t2)

~v + (~a+ ~A)∆t

~ω + (~α+ ~Ψ)∆t

~a+ ~A

~α+ ~Ψ





k−1|k−1

, (4.23)

where the quaternion product × is defined in [101].
The notation:

q(~ω∆t+
1

2
(~α+ ~Ψ)∆t2) (4.24)

represents the quaternion trivially defined by the addition of two angle-axis rotation
vectors:

~ω∆t and
1

2
(~α+ ~Ψ)∆t2. (4.25)

After the computation the predicted state x̂v(k|k − 1) equals:

x̂v(k|k − 1) =





I3×3 03×4 I3×3 ∆t 03×3
1
2
I3×3 ∆t2 03×3

04×3
∂q

∂q
04×3

∂q

∂~ω
04×3

∂q

∂~α

03×3 03×4 I3×3 03×3 I3×3 ∆t 03×3

03×3 03×4 03×3 I3×3 03×3 I3×3 ∆t
03×3 03×4 03×3 03×3 I3×3 03×3

03×3 03×4 03×3 03×3 03×3 I3×3




. (4.26)

The quaternion q(~ω∆t+ 1
2
~α∆t2) is treated as a result of an addition of two quater-

nions:

q(~ω∆t+
1

2
~α∆t2) = q(~ω∆t) + q(

1

2
~α∆t2). (4.27)

Using the result of quaternion addition:
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q(~ω∆t+
1

2
~α∆t2) =





cos ‖~ω‖∆t
2

ωx
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sin ‖~ω‖∆t

2
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2
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2
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+


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4
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=
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4




, (4.28)

where ‖ ~ω ‖ is defined in Eq. 4.13, and

‖ ~α ‖=
√
α2

x + α2
y + α2

z. (4.29)

After differentiating of the three elements in Eq. 4.26 the results are:

∂q

∂q
= Mτ (q(~ω∆t+

1

2
~α∆t2)), (4.30)

∂q

∂~ω
= M ′

τ (q(k − 1|k − 1))
∂q(~ω∆t+ 1

2
~α∆t2)

∂~ω
, (4.31)

and

∂q

∂~α
= M ′

τ (q(k − 1|k − 1))
∂q(~ω∆t+ 1

2
~α∆t2)

∂~α
. (4.32)

The Mτ in Eq. 4.30 is defined in Eq. 4.10. M ′
τ in Eq. 4.31 and Eq. 4.32 is defined

in Eq. 4.11.
The first element of the result of the differentiating Eq. 4.31 is:

∂q(~ω∆t+ 1
2~α∆t2)

∂ωx
=





−1
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2




, (4.33)

where the other elements can be computed be symmetry.
Similarly, the first element of the differentiation of Eq. 4.32 equals:

∂q(~ω∆t+ 1
2
~α∆t2)

∂αx

=




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1
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4




, (4.34)
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where

Sa = sin(
‖ ~α ‖ ∆t2

4
)

Ca = cos(
‖ ~α ‖ ∆t

4
).

The EKF process noise covariance Qv(k − 1) is defined in Eq. 4.15, but for this

motion model ∂x̂(k|k−1)
∂~n

equals:

∂x̂(k|k − 1)
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. (4.35)

4.5.3 Motion Model Parameter

Choosing EKF process noise Qv is an important part of the filter deployment. The
only part of Qv, which can be parameterised is the covariance matrix Pn of the noise
vector ~n. This matrix is diagonal as required when the linear and angular components
are uncorrelated.

In MonoSLAM using the constant linear and angular velocity motion model the
covariance noise matrix Pn is

Pn =

[
SD2

a ∆t2 0
0 SD2

α ∆t2

]
, (4.36)

where the standard deviation parameters (SDa and SDα) define the smoothness of
motion we expect.

If the constant linear and angular acceleration motion model is applied, the covari-
ance noise matrix Pn is

Pn =

[
SD2

j ∆t2 0
0 SD2

η ∆t2

]
, (4.37)

and standard deviation parameters (SDj and SDη) again define the kind of motion we
assume.

If the camera with fast readout speed (e.g. ∆t is 5ms) is used and the noise co-
variance matrix Pn contains the same values as when using the standard camera (∆t
is 33ms), the motion model expects very smooth motion. To increase the robustness of
localisation using the high-speed camera, it set so the Pn parameters to larger values
in both motion models is sufficient. An example is displayed in Fig. 4.11.
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a.

b.

c.

Figure 4.11: To update the camera pose in each time step, known scene feature descrip-
tors (square) are matched with predicted features’ positions (a). Localisation using the
camera with fast readout speed (e.g. ∆t is equal 5ms) causes these predicted feature
positions to shrink obviously (b). To handle more erratic movements the motion noise
uncertainty Pn should contain larger values, which cause the feature search regions to
enlarge (c).
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Figure 4.12: Simulated results of the constant linear and angular acceleration model.
Left are the camera true, observed and estimated positions. Right are the camera
orientations depicted as unit quaternions (see Sec. 2.2.2).

4.5.3.1 Example: Motion Model Simulation

A simulated example of the introduced constant linear and angular acceleration model
is depicted in Fig. 4.12. The motion profile displays extreme translation and rotation.

The estimated state x̂v proves to be robust and accurate enough for this motion. We
assume that the extended motion model is sufficiently robust for real-time experiments.
Several examples of real-time experiments will be explained in the next section.

4.5.4 Skipping Vision Information

The standard camera (∆t is 33ms) is typically providing a fairly stable vision input, and
missing frames are unlikely to occur. However, the asynchronous high-speed camera
(e.g. ∆t is 5ms) is not so reliable. A skipped or missing frame causes the ∆t to increase
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Figure 4.13: The asynchronous high-speed camera can not guarantee constant time
between consecutive frames. We expect that the readout speed unpredictably decreases
for some frames (left image). This ∆t diminution causes the features’ searching ellipses
to grow (right image).

Constant Velocity Motion Model

∆t[ms] Translation [m/s2] Rotation [rad/s2]

33 4 6
5 40 60

Constant Acceleration Motion Model

∆t[ms] Translation [m/s3] Rotation [rad/s3]

33 40 60
5 4000 6000

Table 4.1: Standard deviation parameters for both motion models.

and this will have an effect on enlarged searching regions as depicted in Fig. 4.13.
To handle erratic motion using the high-speed camera the values of the noise covari-

ance matrix Pn (for both motion models) should be adjusted to large values. However,
it is suitable to keep a balance between the motion model robustness and the real-time
demand. Larger Pn values require to search for feature matches in larger regions and
this is a more time consuming operation. The Pn values have been found empirically,
and are showed in Tab. 4.1.

Figure 4.14: The gigabit ethernet camera has been thrown and caught for a distance
approximately equal 0.1m.
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Camera

Figure 4.15: The setup for the controlled experiments consists of the gigabit ethernet
camera mounted onto a 7DOF robotic arm.

4.6 Experimental Results

To prove the improved robustness of MonoSLAM using the high-speed camera, these
experiments are introduced:

• repeated, controlled and precise robotic arm movements have been executed,

• the camera has been thrown and caught and

• handheld jitter motions in different world frame directions have been performed.

Currently, there are several industrial high-speed cameras, and there is no need to
develop a custom product. These cameras have the same measurement principle as the
perspective-projective camera (see Sec. 2.2.3) used in the vision SLAM framework. The
only difference is the communication interface. An example of the high-speed camera
is displayed in Fig. 4.14.

4.6.1 Setup

The setup for the controlled experiments consists of: the commercial Amtec1 7DOF
robotic arm (see Fig. 4.15), a robotics path planning software package2 and the high-
speed camera. The arm has been used to perform an accurate, pre-defined and smooth
movement, which was repeated with different camera readout speeds.

For the two types of handheld experiments the high-speed camera has been needed.
Firstly, the camera has been shortly thrown and caught (see Fig. 4.14). Secondly, a
movement with higher dynamics has been performed to compare the motion models.

In this work, we have been using a very fast GE680C Prosilica3 gigabit ethernet
camera (see Fig. 4.15 and Fig. 4.14), which - thanks to the 1/3” CCD sensor - offers a
very good image quality.

1www.amtec-robotics.com
2www.amrose.dk
3www.prosilica.com
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Figure 4.16: Scheme of coordination frames, which has been used in the robotic arm
experiments.

This gigabit ethernet camera can provide VGA resolution vision output at 200Hz.
In MonoSLAM, 320x240px images are more suitable, because VGA resolution would
require more computationally intensive vision processing. This camera can resize the
image on the chip, and this allows to address smaller images directly, faster, and at
requested frame rates.

4.6.2 Ground-truth Computation

To precisely evaluate experiments with MonoSLAM motion models and the high-speed
camera, we need accurate localisation and mapping ground truth. For the computation
of accurate ground truth we used two offline, iterative and computationally intensive
algorithms from the field of computer vision. The first is a camera pose algorithm
presented in Sec. 2.2.6. This algorithm needs an object with known geometry (black
rectangle in Fig. 4.16), which is visible in every frame. The second is a structure
reconstruction algorithm based on nonlinear optimisation, summarised by Triggs et al.
in [100]. An example of the scene reconstruction computed with the combination of
these two algorithms is introduced in the next chapter.

Before we start with the explanation of the performed experiments, these were our
assumptions:

• constant lighting conditions,

• calibrated camera,

• calibrated robotic arm,

• one object with known geometry,

• rigid scene (no moving objects) and

• scene contains textured objects.
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As explained in Sec. 2.2.1, a camera pose is defined by the rotation (e.g. rotation
matrix R) and the translation t. These two parts of the pose form a transformation
matrix T, commonly known as Euclidean transformation [67] :

T =

[
R t

01×3 1

]
. (4.38)

The coordination frames of the experimental setup are depicted in Fig. 4.16, where
only two Euclidean transformations are unknown. The first is the camera pose Tec

wrt. to the robot endeffector. The second unknown Euclidean transformation is the
object pose Trw wrt. to the robot frame. Both of these transformations remain constant
during the experiments.

To find the optimal Tec and Trw values, this calibration procedure has been sug-
gested:

1. obtain several images of the known object and simultaneously record the poses of
the robot endeffector Tre,

2. calculate the poses (see Sec. 2.2.6) of the camera wrt. to the known object Tcw,

3. estimate initial unknown poses Tec and Trw,

4. optimise the unknown poses using computed camera and recorded endeffector
poses.

As depicted in Fig. 4.16, Trw equals:

Trw = Tre Tec Tcw, (4.39)

and the optimisation error is defined as:

e =
n∑

i=1

‖Trw −Tre
i Tec Tcw

i‖. (4.40)

The Levenberg-Marquardt optimisation procedure [68] has been used to find the un-
known Trw and Tec. The minimisation function is presented in Eq. 4.40. The unknown
Euclidean transformations has not been represented in the minimization procedure as
matrices, but as vectors e.g.:

x0 = [tec, qec, trw, qrw], (4.41)

where a non-linear function computing a rotation matrix from a quaternion can be
found here [18].

4.6.2.1 Ground Truth Accuracy

To present the ground truth accuracy, an example of a comparison of four reconstructed
feature positions and their known values is given in Tab. 4.2. This shows that the
estimation using the procedure described in Section 4.6.2 is accurate to within 0.1
percent of the true values, which refers to an estimate of better than 0.1mm.
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True Reconstructed

X[m] Y[m] Z[m] X[m] Y[m] Z[m]

1 0.105 0.07425 0.0 0.10497 0.07428 -0.00010
2 -0.105 0.07425 0.0 -0.10499 0.07429 -0.00013
3 0.105 -0.07425 0.0 0.10502 -0.07428 0.00008
4 -0.105 -0.07425 0.0 -0.10502 -0.07426 -0.00005

Table 4.2: Three-dimensional features’ true vs. reconstructed positions. The root mean
square error (RMSE) of the reconstructed positions is smaller than 0.1mm.

4.6.3 Evaluations

This section describes the localisation and mapping evaluations, when different real-
time motion patterns have been tested. These tests should prove the results of the
simulation (see Sec. 4.5.3.1), and the suitability of the extended motion model for high-
speed applications.

4.6.3.1 Evaluation of Localisation Accuracy

Prior to the evaluation of MonoSLAM localisation results against the ground truth we
explain the used criterions and present the motion model parameters.

The criterions to compare the true and estimated camera poses are:

• the root mean square error (RMSE) to calculate the deviations of positions and

• the RMSE to compute the discrepancies of rotations.

For comparison purposes the camera rotation representation is transformed from quater-
nions to Roll-Pitch-Yaw (RPY) radians.

An overview of both MonoSLAM motion model parameters is given in Tab. 4.1.
These parameters have been adjusted according to the Sec. 4.5.3 and 4.5.4.

Robotic Arm Movements When performing smooth robotic arm movements using
5ms camera readout speed (∆t), both motion models were providing robust results as
depicted in Fig. 4.17. The position RMSE was 0.227m and the rotation RMSE was
0.2922rad, when using the constant linear and angular velocity motion model. How-
ever, the constant linear and angular acceleration motion model provided less accurate
results: the position RMSE was 1.461m and the rotation RMSE was 1.9595rad. An
overview of the localisation accuracies is given in Tab. 4.3. The results in this Table
indicate that the extended motion model is less accurate.

An important localisation advantage when using the fast vision readout speed is that
the uncertainties of the camera poses are obviously smaller as depicted in Fig. 4.18.

The MonoSLAM output quaternion is qm
i and q

gt
i represents the ground truth

quaternion. The error in quaternions has been calculated as presented in Eq. 2.12.
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Constant Velocity Motion Model

∆t[ms] Translation[m] Rotation

33 0.054 0.908
5 0.227 19.819

Constant Acceleration Motion Model

∆t[ms] Translation[m] Rotation

33 0.523 11.998
5 1.461 104.071

Table 4.3: The evaluated localisation accuracy.
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Figure 4.17: Three loops of the controlled movement, using the high-speed camera
(∆t equals 5ms) carried by the robotic arm. Left are the three-dimensional camera
world frame positions and right are the camera rotations. The rotations in MonoSLAM
are represented as normed quaternions, which can be visualised in a unit sphere (see
Sec. 2.2.2). The red lines are the estimated camera poses using the constant linear and
angular velocity motion model, and the green lines are the computed ground truth.
The black lines are the estimated camera poses using the constant linear and angular
acceleration motion model.
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Figure 4.18: The localisation uncertainties using two different vision readout speeds
(∆t): 33ms and 5ms. The camera performed the same movements repeatedly as de-
picted in Fig. 4.17, but only the camera world frame positions of the first 15s are
displayed here.
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Figure 4.19: The Euclidean distance between the initial (1.) and final (3.) camera
positions is equal 0.175m. The high-speed camera has been thrown (2.) and caught
(3.) over a distance of approximately 0.1m. In MonoSLAM, the constant linear and
angular acceleration motion model has been used. The velocity (left) and acceleration
vectors (right) are scaled.

Thrown Camera The setup for camera throwing and catching is displayed in
Fig. 4.14, where the distance between two hands was approximately 0.1m. This ex-
periment has been performed repeatedly. The result is that MonoSLAM can operate
in real-time capturing both the free as well as high accelerations in the throwing and
catching motions.

As an example, Fig. 4.19 displays the individual track points and for each point
the estimated motion using the constant linear and angular acceleration model. The
throwing of the camera does not contain significant jitter, so the accuracy differences
between the two motion models are similar to the robotic arm movements. Again the
initialisation used is a black rectangular object (see 4.2-b) in the first field of view.

High Acceleration Handheld Motion Finally, we want to demonstrate the be-
havior for fast and shaky motion. Fig. 4.20 depicts the motion following rapid up and
down movements of the camera in hand. Maximum frequency of the up/down motion
is about 5Hz. The graphs show the MonoSLAM reconstruction using the two motion
models. As the Figure indicates, the constant linear and angular acceleration model
(∆t equals 5ms) successfully tracks such a motion while the constant linear and angu-
lar velocity model first shows considerably high inaccuracy and then looses track (see
Tab. 4.4).

4.6.3.2 Mapping Evaluations

MonoSLAM using high-speed visual information can faster converge feature location
uncertainties as depicted in Fig. 4.21.

MonoSLAM’s known problem is that the processing time associated with the EKF
update is O(n2), where n is the number of features in the map. Due to the real-
time demand all experiments in this paper have been performed in a small scene with
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Figure 4.20: In the upper row a handheld jitter motion has been performed in world x
direction, and the camera world frame x positions are depicted. In the bottom row a
jitter movement in world y direction is displayed as camera y positions. The constant
linear and angular velocity model (red lines) lost the camera pose during both motions
(time equals 2s in upper row and short after 8s in bottom row). The constant linear and
angular acceleration model (black lines) proved to be more robust to these movements.
The green lines are the computed ground truth.

Velocity model Acceleration model
Type errors errors

translation rotation translation rotation
[m] [m]

Catch/Throw 0.237 10.927 1.767 73.581
Catch/Throw 0.090 3.636 0.301 12.071
Jitter in xW 16.656 1054.800 0.088 3.135
Jitter in yW 6.567 143.946 0.085 3.653

Table 4.4: Handheld motion. ∆t is equal 0.005s.

approximately 20 features. MonoSLAM has been able to operate in such an environment
in real-time using the high frame rate vision input (∆t equals 5ms).

An overview of the mapping accuracy is given in Tab. 4.5, where both readout
speeds deliver similar results.

4.7 Conclusion

This chapter presents these contributions: the introduction of a high-speed camera to
monocular SLAM and a combination of this fast readout speed with a second order
motion model to allow MonoSLAM operate under motions with significant jitter. Such
a MonoSLAM algorithm running at a frame rate of 200Hz was implemented and in-
vestigated. We performed repeated and controlled experiments with a robot arm and
various handheld motion. The comparison of the camera poses is made against accurate
ground truth from off-line vision. As expected the constant velocity model is better
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Figure 4.21: In MonoSLAM, the uncertainty of a feature location is decreasing as
presented in [30]. If the fast readout speed is used, then the feature three-dimensional
position uncertainty is converging several times faster.

Mapping Accuracy

∆t=33ms ∆t=5ms
Feature [m] [m]

1 0.0044 0.0058
2 0.0096 0.0075
3 0.0015 0.0073
4 0.0082 0.0004
5 0.0025 0.0039
6 0.0104 0.0123
7 0.0002 0.0032
8 0.0003 0.0085

Table 4.5: Mapping accuracy.

suited for rather smooth motions. In handheld motions with an up and down motion
at a frequency of about 5Hz, the acceleration model is superior and successfully tracks
throughout the sequence. Additionally, the high frame rate operation of MonoSLAM
makes it possible to throw the camera from one hand to the other.

By showing that high frame rate is able to considerably improve the localization
robustness of monocular SLAM, new applications become possible. For example, in
a future project it will be evaluated in consumer robotics and wearable computing
applications.

Future ideas of enhancing the real-time performance of MonoSLAM include:

• Davison presented in [26] a more efficient matching approach. This has been
achieved using methods from information theory. This approach would be very
attractive for high-speed MonoSLAM, because we can select features based on
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their mutual information.

• An interesting work of Clemente et al. in [21] would help significantly to improve
the mapping real-time performace of MonoSLAM. As introduced by the authors,
this improvement can be achieved using local coordinate frames. Due to this
mapping strategy the computational complexity can be reduced from current
O(n2) to O(n).

• Recently, Civera et al. [20] presented a Bayesian Interacting Multiple Models
(IMM) for MonoSLAM. This IMM framework was successfully tested on sequences
containing: no motion, pure rotation and general motion with various dynamics.
We think that the extended motion model introduced in this chapter could be
integrated into this framework and could increase the localisation robustness of
MonoSLAM. However, the disadvantage of IMM is the higher computational bur-
den because all filtering operations have to be duplicated for each model.



Chapter 5

Good Corners for Structure and

Motion Recovery

When mapping an unknown scene using a perspective-projective camera, the camera
has to move to observe landmarks from different viewpoints. Due to this motion be-
tween subsequent frames, the correspondence has to be maintained. However, one can
not predict if a new landmark lies on a false T-junction. If we detect features lying
on an occlusion boundary, or other so-called false features, these can be rejected in
MonoSLAM only after several time steps [27]. Inserting more false features into the
map of the scene usually causes the SLAM framework to collapse.

To prove the influence of false landmarks of the accuracy of the final map, we present
a simulated example. In this example the estimated 3D positions of several landmarks
are compared with the truth values. The estimated 3D positions were computed using a
non-linear optimisation technique known as Bundle Adjustment [100]. Our results show
how the accuracy of the final map diverges with the increasing count of false features.

To avoid inserting false features into the map of the environment, we tested a recently
introduced ToF camera. This ToF camera belongs to the category of the so-called Range
Imaging sensors (RIM). These sensors can acquire a digital image of the scene and for
each pixel deliver the distance measurement. These parallelly acquired measurements
are synchronised and spatially aligned in the camera coordination frame. The distance
measurements of ToF camera can be based on the direct or the indirect measurement
principle [53]. Our ToF camera uses the indirect measurement principle, which has
roots in the theory of the amplitude-modulated light.

The ToF camera is a very appealing sensor for mobile robotics. As argued in Sec. 1.3,
a vision sensor provides rich scene information, which is helpful for the localisation and
mapping tasks. Additional distance measurements would ease the task for the mobile
robot in many real-time applications. ToF camera capable of measuring digital image
data with correlated distances in higher-resolution is still not available, but is a topic
of intensive applied research. We think that other fields in robotics or computer vision
would certainly benefit from this product.

This chapter is divided into six sections. The related work is presented in Sec. 5.1
and the contribution is outlined in Sec. 5.2. The Bundle Adjustment is explained in

92
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Sec. 5.3 and Sec. 5.4 introduces the corner selection scheme. The experimental results
are introduced in Sec. 5.5 and the conclusion including the future work is presented in
Sec. 5.6.

5.1 Related Work

Due to the fact that the ToF measuring principle has been introduced in robotics only
recently, there are few papers exploiting the ToF camera.

May et al. in [69] presented results using a ToF camera when estimating parallelly
an unknown scene and the camera poses. Their framework is based on two major steps,
and is not designed to work on-line. These two steps are: the pose estimation and the
3D mapping. The pose estimation uses the Iterative Closest Point (ICP) algorithm,
which takes advantage of parallelly acquired 2D and 3D data. The 3D mapping is
a three-stage process, which refines and smoothes the surfaces. The pose estimation
accuracy result of the accumulated translational error is on average an equal 140mm,
when comparing different 2D feature extraction methods (SIFT, KLT, etc.).

Recently, May et al. introduced in [70] an improved version of their 3D mapping
approach. The authors also presented a more accurate distance calibration method,
where the ToF camera light scattering effect is tackled.

Bearing-Only SLAM [27, 82, 31] and SfM [77, 81, 78, 56] approaches can not infer
the depth information of the scene from a single view due to the perspective-projective
nature of the camera. To initialize new landmarks’ positions, different views of the
scene are usually needed, and in Bearing-Only SLAM [27] this is known as delayed
initialisation. However, in [92] an undelayed initialisation method is proposed, however
only simulated results are introduced. Despite these efforts, landmarks’ initialisation in
Bearing-Only SLAM and SfM is still a challenging task, because if these new landmarks
do not represent distinct 3D corners and lie at e.g. occlusion boundaries, it can lead to
SLAM [27] failure or SfM [77] inaccuracies.

An alternative approach of how to use the depth ToF measurements to initialize
new landmarks could be Range-Bearing SLAM, e.g. [80]. This SLAM algorithm only
takes advantage of the depth geometric information. However, the contribution of our
work focuses on how to combine the amplitude and depth ToF measurements to select
good scene corners.

A comprehensive overview of the ToF principle and camera which has been used in
this work can be found in [53].

5.2 Contribution

Introducing false scene landmarks, lying at, e.g., occlusion boundaries or curved sur-
faces, to SLAM or SfM framework causes, e.g., inaccuracies or loss of position. To prove
this statement a virtual SfM example is presented, where the dependence of the count
of false features versus inaccuracy of projection is computed.

To improve the accuracy and robustness of the final map, a ToF camera capable of
measuring the scene amplitude and depth directly has been used. Due to the available
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depth data the geometry of the visible scene can be inferred. We presented a three-stage
selection scheme capable of pruning false landmarks. The first stage of the presented
selection scheme uses a well-known corner detector applied on the amplitude data. The
second stage analyses the geometry of the depth measurements, and decides if the
landmark is a valid three-dimensional corner. If necessary, the third stage verifies using
RANSAC [36] if the corner lies in a plane.

To our knowledge, this is the first use of such an approach to locate 3D corners in
the scene. We published this approach result recently in [41].

5.3 Bundle Adjustment

To explain how the false landmarks influence the accuracy of the recovered map, we
divided this section into three parts. Firstly, a description of the pinhole camera model
is provided. Secondly, the non-linear optimisation method used in the bundle adjust-
ment algorithm is introduced. Thirdly, a simulated example of how false scene corners
influence the accuracy of the final map is presented.

5.3.1 The Perspective-Projective Camera Model

The perspective-projective, also known as the pinhole camera, maps 3D landmarks into
a 2D image plane. This mapping, in our case central projection Pi [45, 43], has the
following form:

λijxij = PiXj, i = 1 . . .m, j = 1 . . . n , (5.1)

where Xj are the homogeneous 3D landmarks, xij are the homogeneous 2D points
and λij are the projective depths.

The central projection Pi is a part of this equation:

λij
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, (5.2)

where K is the calibration matrix. The camera pose is defined by R and t (see
Sec. 2.2.1). For further details considering the perspective-projective camera model
please refer to Sec. 2.2.3.

5.3.2 Iterative Non-linear Optimisation

It is generally considered that there exist two groups of SfM algorithms. The first group
are known as sequential algorithms (e.g. [77]) that try to estimate unknown scene and
camera parameters as soon as new data is available. The other group called batch or
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bundle adjustment algorithms [43] optimises the unknown parameters, when the data
acquisition is complete.

As mentioned in Sec. 4.4.1, the problem of sequential SfM algorithms is that the
reconstruction error accumulates along the process. Beyond a certain point, i.e., for
longer sequences, the accumulated error might be unrecoverable [43]. However, the
batch algorithms can overcome local ambiguities, since the problem is solved globally.
In this section, to generate truth values of the camera pose and the scene 3D features,
the batch algorithm has been used.

The difference between a Bearing-Only SLAM technique like MonoSLAM (ref
Sec. 4.4) and bundle adjustment is that MonoSLAM recovers a rather sparse map
of the scene in real-time. An example is displayed in Fig. 5.1. When the camera moves,
new distinctive features can be detected (e.g. corners with numbers 5-10 in Fig. 5.1-b
and Fig. 5.1-c). The output of MonoSLAM are the camera poses and a sparse map of
recovered features, as depicted in Fig. 5.1-c. Due to the real-time demand, mapping in
MonoSLAM does not play a crucial role and should rather support localisation.
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Figure 5.1: The only sensor input in MonoSLAM are images from a single camera
(a). As the camera moves, new distinctive features are detected (b). The output of
MonoSLAM is the camera pose and a sparse, three-dimensional map of these distinctive
features (c). An alternative to MonoSLAM sparse mapping is a more dense structure
reconstruction using bundle adjustment (d).

The recovery of an unknown structure and motion can be solved when this problem
is formulated as Maximum Likelihood Estimation [43]:
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L = max
∏

i,j∈I

e|xij−g(Pi,Xj)|
2/2σ2

, (5.3)

where g(Pi,Xj) represents the re-projected landmarks.
A standard reformulation of this maximisation problem is to minimise the negative

logarithm of the likelihood function in Eq. 5.3:

f =
∑

i,j∈I

(xij − g(Pi,Xj))
2 . (5.4)

The advantage of this reformulation is that this problem can be minimised as a Eu-
clidean distance between measured (xij) and modelled (Xj) scene points. The minimi-
sation of f is usually computed using iterative non-linear methods.

The 2D re-projections xij of 3D corners Xj are calculated as:

xij = g(Ki,Ri, ti,Xj) . (5.5)

Central projection Pj in (5.1) encompasses the same camera parameters (Ki, Ri and
ti), where Ki are the intrinsic parameters, Ri is the orientation and ti is the position.

The task of bundle adjustment is to minimise the deviation between 2D measured
and re-projected points in the L2 norm. The formulation is to calculate the:

min
Ki,Ri,ti,Xj

∑

ij

(xij − x̂ij)
2 . (5.6)

This solution is optimal in a statistical sense, i.e. when the coordinates of the mea-
sured image points are corrupted by zero mean and equal standard deviation Gaussian
noise. A Gauss-Newton method is used here to find the minimum solution.

Introduce a residual vector Y, formed by putting all deviations between measured
and re-projected image coordinates in a column vector. The sum of f = YTY is
minimised w.r.t. to the unknown parameters △x. A linearisation of Y(△x) gives:

Y(△x) ≈ Y(0) +
∂Y

∂ △ x
△ x (5.7)

Then △x equals:

△x = −(ATA + ǫI)−1ATb,

A =
∂Y

∂ △ x
(0),

b = Y(0) (5.8)

In practice, to find a minimum to this formulation, the Levenberg-Marquardt iter-
ative non-linear optimisation method is used.

For further camera geometry details and bundle adjustment explanations please
refer to, e.g., [45, 43].
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5.3.3 Example: Simulated Bundle Adjustment

As discussed in [32], the recovered scene using the bundle adjustment algorithm can be
considered as the ground-truth.

To show how false corners influence the bundle adjustment results, an unknown
structure of a simulated scene and virtual camera motion has been recovered. The
simulated scene is depicted in Fig. 5.2.

False Corners

True Corners

Figure 5.2: Our simulated scene contains one table and four chairs. In this bundle
adjustment example, twenty-two good corners were used, but in this figure, only three
of them are depicted as circles. We used up to three bad corners, which are marked
with arrows.

The evaluation criterion is the re-projection error f as defined in Eq. 5.4. The
empirical results are displayed in Fig. 5.3, where it is obvious that every additional
false corner introduces inaccuracies to the re-projection errors.

5.4 Corner Selection Scheme

In real scenes it is obvious that there are usually features which do not represent true
3D points, e.g. lying at occlusion boundaries, caused by specular highlights or curved
surfaces (see also example in Fig. 5.2). However, one of the underlying Bearing-Only
SLAM or SfM assumptions is that the scene is rigid, which means that features are
not expected to change their position within the scene. The map management imple-
mented (e.g. in MonoSLAM) can prune some of these bad corners, but using the depth
information a further feature validation can be performed.

Our proposed corner selection scheme contains three stages:

• detect the best 2D corners using the amplitude data,

• decide whether it is a true 3D point using the computed 3D cornerness measure,
and
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Figure 5.3: Simulated bundle adjustment reprojection errors using zero, one, two or
three false corners. It can be seen that the addition of a false corner increases the
reprojection errors.

• if not prove that this 2D point belongs to a planar surface.

In the first stage, the Fast feature detector [86] is applied to the amplitude data.
The best Fast features are then found using the Shi and Tomasi [89] cornerness measure
(ref to Sec. 2.1).

With the second stage we decide whether it is a good 3D corner. To evaluate this,
the standard matrix of image partial gradients:

Si =

( ∑
I2
x

∑
IxIy∑

IxIy
∑
I2
y

)
(5.9)

is extended to three dimensions as proposed in [85]

Sd =





∑
D2

x

∑
DxDy

∑
DxDz∑

DxDy

∑
D2

y

∑
DyDz∑

DxDz

∑
DyDz

∑
D2

z



 , (5.10)

using the depth instead of the visual information. To compute the 3D cornerness
measures, two operators have been compared. Rohr presented in [85] a survey on 3D
operators, and we selected the following one:

Op(x, y, z) =
det Sd

trace Sd

→ max, (5.11)

because it is related to the Shi and Tomasi [89] 2D cornerness measure. Another 3D
cornerness measure mentioned by Arseneau in [4] is based on the eigen-decomposition
of the Sd matrix, where this matrix is called the structure tensor. If a corner does
not pass this stage, it can still be a good corner, possibly lying in the plane. This is
explained in detail in Sec. 5.4.1.
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In the third stage, a plane is fitted to the depth data at the 2D corner position found
using RANSAC (ref to Sec. 2.1.6) to test whether this is a planar feature. We propose
fitting the plane using two criteria. The first is the distance of points to the fitted plane,
and the second one is the angle between the direction of a new feature and the plane
normal vector.

For the robust plane fit, the distance function between the plane P and an array of
measured depth points is computed as follows

~n = (P2 − P1)× (P3 − P1)

di = |(Xi − P1) ~n|, i = 1 . . .m

where the plane P is a matrix defined column-wise by three points, ~n is the plane
normal vector, Xi are the measured points, and di are the distances.

5.4.1 Structure Tensor

As explained in the previous section, the structure tensor matrix (ref Eq. 5.10) can be
used to evaluate the measured 2D or 3D data. In this subsection, we introduce the
computation and the properties of the structure tensor in more detail.

The computation of the structure tensor has three stages. In the first stage, we
obtain the partial derivative information. However, there are several ways how to
calculate the partial derivative information: simple differencing between neighbouring
pixels, ’Difference of Gaussians’, or using the average of absolute pixel difference. Ar-
seneau in [4] uses the average of absolute pixel difference. The key idea here is that
using any previously mentioned method the coherence structure tensor property can
distinguish between the uniform and isotropic case [4]. During the second stage we
selected the tensor form (ref Eq. 5.10) as presented in [4]. This means that we consider
only the diagonal elements (D2

x, D
2
y, D

2
z). In the last stage, the three eigenvalues and

the three eigenvectors are calculated.
As depicted in Fig. 5.4(a), we generated an ideal 3D corner. The structure tensor

computed from this simulated data has three identical gradient elements. The result of
the eigen-decomposition of this tensor are three identical eigenvalues and three orthog-
onal eigenvectors as displayed in Fig. 5.4(b). According to Arseneau [4], every structure
tensor with λ3 ≫ 0 (λ3 is the third eigenvalue of Sd in Eq. 5.10) has isotropic behaviour.

There are three possible results of the structure tensor eigen-decomposition:

• λ1 ≫ 0 and λ2 ≫ 0 and λ3 ≫ 0, which forms an ideal corner as mentioned in the
text above.

• (λ1 ≫ 0 and λ2 ≫ 0) or (λ1 ≫ 0 and λ3 ≫ 0) or (λ2 ≫ 0 and λ3 ≫ 0), which
would form a 3D circle after visualisation.

• λ1 ≫ 0 or λ2 ≫ 0 or λ3 ≫ 0, which depicts a 3D line.

These eigenvalues determine the underlying structure of the 3D data [4]. For exam-
ple, (λ1 − λ2) ≫ 0 indicates a surface element, where the eigenvector corresponding to
λ1 is the normal vector to the surface.
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(a) Generated distance data. (b) Eigen-decomposition visu-
alisation of the gradient ma-
trix.

Figure 5.4: Generated ideal 3D corner and the visual interpretation of the structure
tensor eigen-decomposition.

5.5 Experimental Results

In this section, we present our experimental setup as well as simulated and real data
results in three parts. Firstly, the measurement principle as well as the properties of the
ToF camera are briefly explained. Secondly, the relation between the amplitude and
standard deviation in distance information is estimated. Thirdly, our proposed feature
extraction scheme is evaluated.

5.5.1 ToF Camera

The ToF distance measurement process is divided into two categories [53]. The first
category is known as the direct measurement principle. Direct means that the distance
is determined by the time difference, which needs an emitted light pulse to return to
the receiver. The second category is by analogy known as the indirect measurement
principle. This principle uses more complex signals. The light can be modulated in
amplitude, frequency, polarisation or phase.

In this work, we have been using the state of the art Swiss Ranger SR30001 ToF
camera (ref Fig. 5.5(a)). The measurement principle of this camera is based on the
indirect measurement principle. Swiss Ranger SR3000 uses amplitude-modulated near
infrared (NIR) light, and this leads to the phase measurement principle as depicted in
Fig. 5.5(b) and Fig. 5.6.

Using this principle the distance D is computed as:

D = L (
ϕ

2π
+N), (5.12)

where N = 0 when measuring the depth up to 7.5m, and L equals:

L =
cλmod

2
. (5.13)

The speed of light is c and λmod is the modulation wavelength.

1Produced by Mesa Imaging - http://www.mesa-imaging.ch.
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(a) ToF camera.
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(b) Phase difference distance measurement
principle. [53].

Figure 5.5: The Swiss Ranger SR3000 ToF camera (courtesy of Mesa Imaging -
http://www.mesa-imaging.ch).

The ϕ is computed as:

ϕ = tan−1 c(τ1)− c(τ3)

c(τ0)− c(τ2)
, (5.14)

where the c(τi) are the four measured intensities as depicted in Fig. 5.6.
The amplitude A is determined as:

A =
δ

∆t sin(δ)

√
((c(τ3)− c(τ1))2 + (c(τ0)− c(τ2))2)

2
, (5.15)

and offset B is calculated as:

B =
c(τ0) + c(τ1) + c(τ2) + c(τ3)

4
. (5.16)

The δ equals:

δ = π
∆t

T
. (5.17)

This principle is complex and includes systematic (e.g. distance-related, amplitude-
related, fixed pattern noise) and non-systematic (e.g. signal-to-noise ratios, rays reflec-
tion, light scattering) errors, which are further described in [53, 69]. The camera has a
limited field of view (horizontal 47.5◦, vertical 39.6◦), a small resolution (176x144pix),
and a depth range up to 7.5m.

The SR3000 ToF camera uses a perspective-projection camera model [113] for the
amplitude data. As explained in [53], the distance measurements have been calibrated
for every single pixel separately. The amplitude and distance calibration has been
performed by the camera manufacturer.

Before capturing real data sequences, the camera integration time, which influences
the measurement precision and read-out speed, has to be adjusted. In this paper, the
camera integration time is adjusted to 7200µs, and the read-out speed then equals
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Figure 5.6: Phase measurement principle [53]. The not displayed emitted wave has
phase ϕ = 0. The incoming wave is shifted in phase, and the demodulation is based on
four intensity values.

approximately 21Hz. A faster read-out speed would be suitable to reduce the motion
blur. However, a faster read-out leads to a higher signal-to-noise ratio (SNR), and this
introduces inaccuracies in feature extraction [50].

The ToF camera is calibrated by the producer, so the intrinsic parameters (optical
centre and focal length) are known, and only the distortion coefficient needs to be
adjusted. The distance-related error calibration is also provided by the producer, and
it is done by reducing the measurement offset using an acquired Fixed Pattern Noise
matrix [53].

5.5.2 Static Depth Noise Modelling

To estimate the relation between the amplitude and the standard deviation in depth
measurements as proposed by Kahlmann in [53], we perceived multiple measurements
of a white wall using several integration times (from 200µs to 9800µs). The obtained
relation between amplitude and standard deviation in distance measurement for our
camera is depicted in Fig. 5.7.

5.5.3 Feature Extraction

To prevent inserting bad corners into the model of the scene, we have implemented three
validation stages, as explained in Sec. 5.4. This sub-section presents the experimental
results using these three stages.

5.5.3.1 2D Corner Extraction

The first validation stage is used to detect the 2D corner in the amplitude data. As
displayed in the first row of Fig. 5.8(a), this validation stage works well for most of the
real corners.
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Figure 5.7: The standard deviation of depth data as a function of amplitude data
using different integration times. The longer is the integration time, the smaller is
the standard deviation of the depth data. This function has been fitted using the
Levenberg-Marquardt algorithm.

Cornerness Measure

planar corner 0.022

good corner 0.030

false corner 0.018

Table 5.1: Result of cornerness measure proposed by Rohr in [85].

However, we typically found occluded features such as, e.g., the last row in
Fig. 5.8(a). Using the ToF camera amplitude data, other kinds of bad features can
also occur, e.g. caused by rays reflection as depicted in Fig. 5.9. To prune these false
features the 3D corner extraction has been proposed.

5.5.3.2 3D Corner Extraction

To improve the feature extraction, we have implemented two similar 3D feature corner-
ness measures, as described in Sec. 5.4. Both of these measures use the depth gradient
information. As compared in Tab. 5.1, we think that the cornerness measure proposed
by Rohr in [85] proved to be less depth distinctive.

In this validation stage, only the structure tensor cornerness measures have been
used (see Eq. 5.10). As presented in 5.4.1, the visualiation of a good 3D corner is
expected to be similar to a sphere like structure. A real good corner is depicted in the
second row of Fig. 5.8(c).

The corners in Tab. 5.1 are the same as depicted in Fig. 5.8.
Our criterion for a good 3D corner (see the second row of Fig. 5.8 or Fig. 5.10) is

that the differences of the three computed structure tensor eigenvalues have to be lower
than a predefined threshold:

|λ1 − λ2| < t and |λ1 − λ3| < t and |λ2 − λ3| < t, (5.18)
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Figure 5.8: Detection of new features using the real image and depth information. The
upper row is a planar feature, the middle row depicts a good 3D feature, and the bottom
row displays a bad 3D corner. The first column displays the amplitude data provided by
the camera. The second column depicts measured depth information w.r.t. the world
frame. The third column represents the visualisation of the eigen-decomposition of the
3D feature gradient matrix. The structure tensor visualisation of a good 3D corner is
expected to have a sphere like structure, as displayed in the last column of the middle
row. The other two features did not pass the 3D cornerness measure.

Figure 5.9: An example of a ray reflection on a metallic surface, which is one type of
the possible non-systematic ToF camera errors.
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(a) Initialisation. (b) Initialisation+Depth.

(c) Mapping Features. (d) Mapping+Depth.

(e) Rejecting Corner. (f) Rejecting+Depth.

Figure 5.10: An example of rejecting a false corner. The newly detected corner in the
last row (the smallest green box on the left side) is rejected.
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Figure 5.11: Plane fitted to the depth data using RANSAC.

where λ1, λ2 and λ3 are the eigenvalues of Sd (ref Eq. 5.10).
Using this criterion, planar features and bad 3D corners are pruned (see the first

and third row of Fig. 5.8). These false 3D corners are pruned, because at least one of
the eigenvalues is different.

5.5.3.3 Planar Corner Extraction

The third stage is needed when a new real feature is pruned by the 3D cornerness
measure but it can lie in a plane. To evaluate this stage, a robust plane fit using RANSAC

has been implemented, and an example of the fitted plane is depicted in Fig. 5.11.
Using this RANSAC plane fit, planar features are detected and initialized as depicted

in the first row of Fig. 5.8(a). The criterion here is the angle between the normal vector
of the plane and the ray of the back-projected 2D feature (ref Sec. 2.2.4.3).

RANSAC’s plane fit criterion is the distance of the other points to the potential candi-
date plane. However, it occurs that RANSAC fails to find the correct plane, and a possibly
good planar feature is pruned. This usually happens when the 3D measurements form
several optional planes. For example, Fig. 5.12 depicts such a case. We think that a
possible solution is to introduce additional geometrical constraints, which would select
e.g. fronto-parallel planar corners.

5.6 Conclusion

Inserting false corners into a map of the scene can cause e.g. a mobile robot to get
lost [27]. We presented a simulated example how these corners influence the accuracy
of the map. From the result it is clear that every false feature introduces additional
inaccuracy.

The contribution of this is a three-stage corner selection scheme, which enables the
rejection of false features lying at occlusion boundaries or curved surfaces, for example.
Our corner selection scheme takes advantage of a recently introduced ToF camera, which
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Figure 5.12: RANSAC failed to find the correct plane.

can measure scene amplitude and depth directly. We think that our scheme helps e.g.
SLAM approaches to operate in indoor environments more accurately.

Current ToF cameras have several drawbacks (e.g. field of view, noisy data) due
to the complex measurement principle, but enhanced sensors have already been an-
nounced. It is obvious that this camera can ease the parallel localisation and mapping
task significantly, and we think that it is an interesting sensor for indoor robotics nav-
igation and many future applications. The two main disadvantages of the current ToF
cameras are: higher cost and lower resolution. However, there is an announced ToF,
which addresses these two issues, and should be available soon.

5.6.1 Future Work

The fusion of ToF amplitude and depth information for parallel localisation and map-
ping has been addressed in the work of Weingarten in [105]. The conclusion is that
the ToF camera is less suitable for localisation and mapping than the rotating laser
scanner due to its noisy data and limited field of view. However, with the advantage of
excluding false corner points this conclusion may now be revised.

In an offline 3D pose estimation and mapping approach introduced by May et al.
in [69], the Iterative Closest Point algorithm has been used to register point clouds from
different perspectives, and KLT or SIFT features have been applied to amplitude data.
We think that our proposed corner selection scheme could increase the performance of
May et al. approach.



Chapter 6

Conclusion

There are many areas, where robots already help or assist humans. For example, they
explore distant spaces or repeat certain tasks accurately. We believe that robotics has
the potential to further improve the quality of our lives in the near future. We think
that mobile robots especially will play an important role, because they could be applied
in a broad range of areas like: office assistance, autonomous transportation vehicles,
helping elderly persons, etc.

To present those future applications, the mobile robots need to navigate in unknown
indoor or outdoor environments. An important part of the navigation task is the
localisation and mapping of an unknown scene. These two subtasks have to be tackled
simultaneously, because the success of driving to the right place depends on both of
them. The simultaneous nature of these subtasks makes the problem solving very
challenging, and it is well-known as SLAM in the robotics community. Nowadays,
there exist several well-matured SLAM algorithms suitable for various conditions and
sensor setups of which most use laser sensors.

In this thesis, we decided to use visual information as the main sensor input. We
think that vision sensors provide the richest information content about an unknown
scene. However, the bottleneck of this sensor source is that we had to carefully select
the usable content, because the processing time is usually constrained. The reason
behind this is that the mobile robot has to make on-line decisions when moving through
an unknown environment.

The goal of this thesis was to improve the robustness and the accuracy of present
localisation and mapping algorithms. We divided our contribution into three parts.

Our first contribution addresses the problem of localising and mapping an unknown
scene using the fusion of vision and inertial sensors. The presented implementation
of the motion and structure estimation has two loosely coupled parts. Firstly, we in-
troduced a real-time implementation of the asynchronous non-linear motion estimation
filter. This filter uses the fusion of inertial and visual data. Using the combination of
these sensor measurements proved to be very efficient for motion estimation. Secondly,
we proposed a structure estimation algorithm. This algorithm estimates the unknown
scene landmarks using a set of independent non-linear filters. The experiments proved
that this concept works for small workspaces. However, our idea with the structure
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estimation was missing the inter-feature correlations.
In the second contribution, we substituted the previous motion and estimation

framework with SLAM. The goal of this contribution was to enhance the robustness
of a monocular SLAM approach using a high-speed camera. We introduced here a
high-speed camera to a well-known vision SLAM framework [27], and suggested to use
an extended motion model. This motion model presents two additional continuous
parameters, which allowed us to follow movements containing higher dynamics. Our
experiments with handheld and robotic arm setups validated these expectations. We
think that the sensors with a higher readout speed will play an important role for future
mobile robot applications. For example, the gaming industry can benefit from potential
applications.

In the last contribution, we suggested to select good scene landmarks using a ToF
camera. Before presenting our contribution we empirically proved that every false scene
landmark decreases the accuracy of the map. These false landmarks are lying at e.g.
occlusion boundaries or curved surfaces. To prevent inserting false features into the
map of the scene, we proposed a three-stage selection scheme, which takes advantage
of using a ToF camera. The ToF camera provides a digital image of the scene together
with the depth data. This image and depth information is synchronised and spatially
aligned in the camera coordination frame. Our experimental results showed that the
selection scheme is capable of rejecting false features. We think that our contribution
can help mobile robots to navigate in unknown environments more accurately.

We think that in the future more applications in the area of mobile robotics will
emerge. As previously mentioned, using vision sensors has an important advantage,
but the algorithms need to process a significant amount of information. Considering,
e.g., the high-speed camera and the SLAM framework, the algorithm receives huge
amount of incoming data. In this case the algorithm is carefully selecting the useful
information, but due to the increasing count of features in the map, the algorithm fails
to fulfil the real-time constraint. This is an example, where ongoing research tries to
improve the state-of-the-art methods. We believe that this topic has an interesting
commercial potential, because many applications require higher dynamics.

The main hardware obstacles in mobile robotics applications are: the computational
performance of mobile workstations, the cost of some sensors and the battery capacity.
There are many cases when, e.g., a price of a sensor influences the success of a com-
mercial application. In this work, we used an expensive ToF camera, but recently a
cheaper alternative has been announced. We think that such a cheap sensor, which can
provide amplitude and depth information, would raise immense interest in the robotics
community.
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