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Abstract

As texture is one of the main characteristics of images, texture classification

has become an emergent field within image analysis over the last decades.

This thesis proposes two novel approaches for classifying textures using the

theory of displacement operators.

In the first method, a Stein or Sylvester displacement operator with two

sparse operator matrices is utilized to transform a texture into a displace-

ment with low rank. Two textures are assumed to be of the same kind if

they have low rank with respect to the same displacement operator. New

operator matrices and the corresponding classes of textures, or rather classes

of structured matrices, are introduced.

The second method makes use of the assumption that textures are gener-

ated by a Gaussian Markov Random Field. Thereby the inverse of the covari-

ance matrix, the precision matrix, which represents the field, is a compound

of structured matrices with low displacement rank. A basic framework of only

vertical and horizontal field interactions is presented and then expanded to a

more general framework, which is less restrictive to the structured matrices.

Since textures are often subject to different maps, such as Wavelet trans-

form or FIR filters, it is examined how the displacement operator and its

operator matrices have to change so that the transformed texture still has

low displacement rank. The discussed transformations are linear maps and

upsampling.

Empirical data is given and shows the possible value of these approaches

in the future of texture classification.



Kurzfassung

In den letzten Jahrzehnten entwickelte sich die Texturklassifikation zu einem

wichtigen Bestandteil der Bildanalyse. Diese Diplomarbeit stellt zwei neu-

artige Methoden zur Texturerkennung vor und verwendet dabei die Theorie

der Displacement-Operatoren.

Die erste Methode benutzt einen Stein oder Sylvester Displacement-Operator

mit dünn besetzten Operatormatrizen, um eine Textur in ein Displacement

mit geringem Rang zu transformieren. Es wird angenommen, dass zwei Tex-

turen derselben Klasse angehören, falls beide geringen Rang bezüglich des

gleichen Displacement-Operators haben. Neue Operatormatrizen und die ent-

sprechenden Texturklassen mit ihren repräsentativen Texturen bzw. struk-

turierten Matrizen werden vorgestellt.

Bei der zweiten Methode wird angenommen, dass die Textur von einem

Gaussian Markov Random Field (GMRF) generiert wurde. Dabei wird un-

terstellt, dass die Inverse der Kovarianzmatrix, die Präzisionsmatrix, eine

Zusammensetzung von strukturierten Matrizen mit geringem Displacement-

Rang ist. Ein Basismodell mit vertikalen und horizontalen Feldinteraktionen

wird vorgestellt und im weiteren Verlauf weiterentwickelt, um die Bedingun-

gen an die strukturierten Matrizen aufzulockern.

Schließlich wird untersucht, wie die Operatormatrizen angepasst werden

müssen, um einen geringen Displacement-Rang beizubehalten, falls die Tex-

tur linear oder durch Upsampling transformiert wird.

Empirische Daten in der Form von Texturen werden präsentiert und de-

monstrieren das mögliche Potenzial dieser Methoden zur Texturklassifikation.
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1 Introduction

In this thesis, two new proposals to texture classification are introduced.

Both cases are based on the displacement rank approach. The first assumes

that the texture itself has structure with respect to a displacement operator

with sparse operator matrices. The second assumes that the texture is gen-

erated by a Gaussian Markov Random Field and the inverse of the respective

covariance matrix is a composition of structured matrices.

1.1 Motivation

Texture is one of the main features of an image, such as color, shape, etc.

Hence different techniques for texture classification have been applied in mul-

tiple areas such as automated inspection, medical image processing, docu-

ment processing, and remote sensing. The field of automated inspection

involves detecting defects in images of textiles and controlling automaticly

the quality of carpet wear and car paint. Texture classification is, and will

be even more in the future, an important part of medical technology such

as detecting diseased lungs and leukemia, distinguishing between dissimilar

white blood cells, and analyzing a heart’s ultrasound image. Already quite

common in many applications is character recognition, which is part of doc-

ument processing. Remote sensing incorporates the identification of images

taken from airplanes or satellites [36].

Though several promising approaches to characterize textures have been

proposed in the last decades, researchers of different fields are still facing

difficulties and are eager to find more sophisticated, precise, and less compu-

tationally expensive solutions to classify textures.

1.2 Texture

Although the classification of textures has been intensively studied, there

is no single formal definition of texture. However, it is often assumed that
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within a texture, one or more patterns appear repeatedly [1]. The elements of

these patterns and their spatial organization create the following properties

of a texture [15]:

∙ Fineness

∙ Coarseness

∙ Smoothness

∙ Granulation

∙ Randomness

∙ Lineation

Common examples of textural images are pictures of fabrics, grassland,

walls, soil, etc. To represent textures, grayscale images are typically used.

The value I(k, l) denotes the intensity of the texture I at site (k, l). In

general, this intensity ranges from 0 to 1, black to white. Values in-between

are mapped to 2N shades of gray, where N is the number of bits available

for every site. Figure 1 shows two textures from the Brodatz album [5].

Figure 1: Brodatz textures [5]

(a) D53 (b) D82
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1.3 Classification of Texture

The characterization of an unknown texture employs a classifier to decide

which class of textures the unknown texture belongs to. The textural features

that represent each class and the computed textural features of the unknown

texture are the parameters of this optimization process. Four main categories

of methods to compute textural features were designated by Tuceryan and

Jain [36]:

∙ Statistical

∙ Geometrical

∙ Model based

∙ Signal processing

Statistical methods try to describe texture through the spatial distribu-

tion of its gray values. One of the earliest approaches was published by

Haralick [15]. He utilized a gray level co-occurrence matrix which stores the

frequency of two gray values appearing seperated by a given offset. The co-

occurrence matrix enables the computation of certain features of the texture

such as energy, entropy, contrast, homogeneity and correlation [36].

Geometrical methods assume that a texture is a set of primitives. After

the type of primitive is determined, one can either compute statistical fea-

tures of the found primitives or derive the placement rule of the primitives

to characterize the texture [36].

Model based classification of textures uses a certain image model, and the

parameters of the model are the features of the texture. Commonly utilized

models are Markov Random Fields or Gibbs Random Fields [36]. For ex-

ample, Chellappa and Chatterjee [8] assume that the texture is generated

by a Gauss Markov Random Field and use the least square method to esti-

mate the model parameters. Cohen, Fan and Patel [10] introduce a Gauss
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Markov Random Field model, which is able to describe even rotated and

scaled textures.

In Signal processing methods, the texture is transformed by a linear map,

a filter or a filter bank. Energy computations of the output are then used

as textural features. Commonly applied transforms are Laws masks, dyadic

Gabor filter banks, optimized Gabor filters, Wavelet transforms, Wavelet

packets, Wavelet frames, Fourier transform, discrete cosine transform, eigen-

filters and optimized FIR filters [30]. For example, Chang and Kuo [6] use

the tree-structured wavelet transform, since they claim that the middle fre-

quency channels are dominant in textures. Therefore the pyramid-structured

wavelet transform is suboptimal as only low frequency channels get further

decomposed. Jain and Farrokhnia [18] utilize Gabor filters for texture clas-

sification and segmentation.

A good overview of the topic of textures and their classification can be

found in [15, 36]. For a comparative study of different signal processing

methods, I refer the reader to [9, 30]. An examination of invariant texture

classification methods is presented in [40].

1.4 Contribution of this Thesis

While various methods can be found in the literature of texture classifica-

tion, the usage of the displacement operator is an entirely novel attempt.

Although an incomplete model for texture characterization is presented, this

thesis gives an introduction to the connections between the displacement

rank approach and textures, serving as a foundation for further research.

Two methods are presented and their potency is demonstrated empirically

by generating several textures that correspond to different classes of opera-

tors. A selection of this empirical data is displayed in sections 4.1.3 and 4.2.3.

A preview is given in Figure 2. Both methods may provide a strong basis for

an advanced texture classification model in the future.
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Figure 2: Sample of textures

(a) Exact structure (b) Exact structure

(c) Random field (d) Random field

1.5 Structure of this Thesis

Section 2 provides an overview of the two types of displacement operators and

the displacement rank approach. In section 3, an introduction to Gaussian

Markov Random Fields is presented. After the necessary theory is demon-

strated, three equivalent representations of a Gaussian Markov Random Field

are described. The main section 4 covers the two new proposals of texture

classification. The case where the texture itself is assumed to have structure

is shown in section 4.1, whereas section 4.2 details the case where the texture

is assumed to follow a Gaussian Markov Random Field and the inverse of the
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respective covariance matrix has structure. Section 5 demonstrates how the

displacement operator changes once the structured matrix is transformed.

Finally a conclusion is given, mentioning the potential of these approaches

and suggestions for further research.



2 The Displacement Operator

The following section is meant to provide a general description of displace-

ment operators and their use in computations with structured matrices. The

displacement operator will be defined, its origins presented and its use in the

displacement rank approach explained. Texts from Kailath and Sayed [20]

and Pan [28] were consulted in preparation of this overview and should be

examined by the reader for further clarification.

2.1 Introduction

Academics in various fields of science and engineering frequently encounter

structured matrices and computations that contain them, such as matrix-

vector multiplication or solving n× n linear systems of equations. The fact

that fundamental operations with polynomials and rational functions can be

represented through structured matrices, as both share many characteristics,

gave researchers further incentive to simplify calculations with structured

matrices. For further insights on the correlation between polynomials and

rational functions and structured matrices, I refer the reader to [20, 28] and

references therein.

While searching for a way to make computations with structured matrices

more effective and faster, the displacement rank approach was derived. The

idea is that the structured matrices get compressed and can then be repre-

sented by their displacements, which are specified by just a small number of

parameters. Through decompression, one can regain the matrices from their

displacements.

The big advantage of using the displacements instead of the original struc-

tured matrix is the reduction in time and memory space needed when con-

ducting certain basic computations. One just has to consider that a n × n
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matrix with displacement rank r has n2 parameters, while its displacement

only needs from rn to 2rn parameters. Furthermore, solving a non-singular

structured linear system of n equations (Ax = b) with the classical Gaussian

elimination algorithm uses time of the order n3. Improved versions, which

partly use the structure of matrices, use time of the order n2. The displace-

ment rank approach enables a further acceleration to acquire a solution in

linear arithmetic time, with logarithmic or polylogarithmic factors possible.

2.2 History

The beginnings of the displacement rank approach can be found in the sem-

inal paper [19], in which the authors wrote about their achievements with

Toeplitz-like matrices. Later it was shown that the displacement rank ap-

proach can be used for further structured matrices [13, 14, 17]. Pan [27]

showed that there is a relationship between the four most important classes

of structured matrices, Toeplitz, Hankel, Vandermonde and Cauchy. It was

demonstrated that a representative of one of these four types can be trans-

formed into a matrix of another class by simply changing the related dis-

placement operators and displacements.

2.3 Structured Matrices

Commonly used matrices with structure are Toeplitz, Hankel, Vandermonde,

Cauchy, Pick, Bézout, Loewner, circulant Toeplitz and block matrices with

structured blocks. The most frequent ones used are shown in Table 1.

Table 2 displays the number of parameters and flops needed for describing

M and calculating Mv, where M is the regarding structured matrix and v

is a vector. The flop count is achieved if the multiplication is implemented

efficiently, specifically if the structure of the matrix was used. For further

reading on efficient algorithms, please consult chapters 2 and 3 in [28].
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Table 1: Most common classes of structured matrices [28]

Toeplitz matrices (ti−j)
n−1
i,j=0 Hankel matrices (ℎi+j)

n−1
i,j=0�

t0 t−1 ⋅ ⋅ ⋅ t1−n

t1 t0
. . .

...
...

. . . . . . t−1

tn−1 ⋅ ⋅ ⋅ t1 t0

� �
ℎ0 ℎ1 ⋅ ⋅ ⋅ ℎn−1

ℎ1 ℎ2
. . . ℎn

...
. . . . . .

...
ℎn−1 ℎn ⋅ ⋅ ⋅ ℎ2n−2

�
Vandermonde matrices (tji )

n−1
i,j=0 Cauchy matrices ( 1

si−tj )n−1
i,j=0�

1 t0 ⋅ ⋅ ⋅ tn−1
0

1 t1 ⋅ ⋅ ⋅ tn−1
1

...
...

...
1 tn−1 ⋅ ⋅ ⋅ tn−1

n−1

� � 1
s0−t0 ⋅ ⋅ ⋅ 1

s0−tn−1
1

s1−t0 ⋅ ⋅ ⋅ 1
s1−tn−1

...
...

1
sn−1−t0 ⋅ ⋅ ⋅

1
sn−1−tn−1

�

Table 2: Required amount of parameters and flops to typify M and com-
pute Mv [28]

Matrices M
Parameter count for Flop count for
m× n matrix M calculating Mv

general mn 2mn− n
Toeplitz m+ n− 1 O((m+ n)log(m+ n))
Hankel m+ n− 1 O((m+ n)log(m+ n))

Vandermonde m O((m+ n)log2(m+ n))
Cauchy m+ n O((m+ n)log2(m+ n))

In [28], Pan states four common features structured matrices have:

1. They can be described by only a few parameters.

2. Structured matrix-vector multiplication can be achieved in almost lin-

ear time.

3. They have a tight correlation to some calculations with polynomials

and rational functions.
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4. There exists a displacement operator L which transforms the structured

matrix into a matrix with low rank r, namely the displacement. One

can use the displacement operator L and the displacement to retrieve

the original matrix.

Characteristic 1 is obviously true for the matrices of Table 1. Toeplitz

matrices are entirely described by the vector (ti)
n−1
i=1−n, Hankel matrices by

(ℎi)
2n−2
i=0 , Vandermonde matrices by (ti)

n−1
i=0 , and Cauchy by (si)

n−1
i=0 and (ti)

n−1
i=0 .

Table 2 and [28] demonstrate characteristic 2. For more information on char-

acteristic 3, I refer the interested reader to [28]. Characteristic 4 is the most

important conclusion for this thesis as it is assumed that two textures are

equivalent if they have the same displacement operator L.

2.4 The Displacement Rank Approach

2.4.1 Basic Definitions

To achieve these low flop counts shown in Table 2 when computing with

structured matrices, the displacement rank approach is needed. When it was

first introduced by Kailath, Kung and Morf [19], the goal was to examine

if a matrix was Toeplitz-like or not. Nowadays the displacement rank ap-

proach covers a wider range of structured matrices and has become a stronger

tool than probably expected. Originated in [19], the structure of the linear

displacement operator L is given by

ΔA,B(M) = M − AMB, (1)

where A ∈ ℂm×m and B ∈ ℂn×n are the fixed operator matrices and M ∈
ℂm×n is the structured matrix. This function ΔA,B(⋅) is called the Stein

displacement operator L = ΔA,B. Initially in [19], M was a Hermitian matrix,

A was equal to Z0 and B was equal to Z∗0 where ⋅∗ signifies the Hermitian
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conjugation and Zf a lower shift matrix with first row [0 ⋅ ⋅ ⋅ 0 f ]

Zf =

0BBBBBBBBBB@
0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 f

1
. . . 0 0

0
. . . . . .

...
...

. . . . . . . . .
...

0 ⋅ ⋅ ⋅ 0 1 0

1CCCCCCCCCCA . (2)

A second design of displacement structure, the Sylvester displacement

operator L = ∇A,B, was first proposed in [17]:

∇A,B(M) = AM −MB. (3)

The most popular operator matrices are Zf , Z
T
f and D(u), where ⋅T

denotes the transpose and D(u) is a diagonal matrix with entries (ui)
n
i=1,

D(u) =

0BBBBBBBBB@
u1

u2

. . .

un−1

un

1CCCCCCCCCA .
In case there exists a displacement operator L = ∇A,B or L = ΔA,B so

that the displacement L(M) has low rank r and r is independent of m and

n or at least relatively small compared to m and n, then rA,B (or just r)

is named the displacement rank of M , and M is considered as structured

matrix concerning L [19].

2.4.2 Generator Matrices

As the displacement L(M) has low rank r, it can be represented by only a

small number of parameters. These parameters are stored in two Generator
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Matrices G ∈ ℂm×r and H ∈ ℂn×r such that

L(M) = GHT . (4)

To derive the generator matrices G and H, one can either use the Singular

Value Decomposition (SVD) of the displacement L(M) or the Eigenvalue

Decomposition, in case L(M) is Hermitian or real symmetric [28].

Definition. The SVD of a matrix M. Let M ∈ ℂm×n, r = rank(M), and

assume that M is nonzero. In this case, there exists a rectangular diagonal

matrix S ∈ ℝm×n and unitary matrices U ∈ ℂm×m and V ∈ ℂn×n such that

M = USV ∗, (5)

U∗U = Im and V ∗V = In, (6)

S(i,i) = �i(M), for i ∈ {1, ⋅ ⋅ ⋅ ,min{m,n}}, (7)

�1(M) ≥ �2(M) ≥ ⋅ ⋅ ⋅�r(M) > �r+1(M) = ⋅ ⋅ ⋅ = �min{m,n}(M) = 0, (8)

where (�i)
min{m,n}
i=1 are the nonnegative singular values of M .

When L(M) is a displacement and L(M) = USV ∗ its SVD, then a pos-

sible generator of minimum length is given by [28]

G = U(:,1:r)S
1
2

(1:r,1:r) and H = V(:,1:r)S
1
2

(1:r,1:r), (9)

where S
1
2

(1:r,1:r) = diag(�1(M)
1
2 , �2(M)

1
2 , ⋅ ⋅ ⋅ , �r(M)

1
2 ).

Both generator matricesG andH together have (m+n)r entries compared

to mn entries of the displacement L(M).

2.4.3 Examples of Displacement Operators

The following examples display particular displacement operators for some

of the fundamental categories of structured matrices.
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Example. Toeplitz matrices. Let T be a Toeplitz matrix defined by the

vector t = (ti)
n−1
i=1−n. Hence,

ΔZ0,ZT
0

(T ) = T − Z0TZ
T
0

=

0BBBBBB@
t0 t−1 ⋅ ⋅ ⋅ t1−n

t1 t0
. . .

...
...

. . . . . . t−1

tn−1 ⋅ ⋅ ⋅ t1 t0

1CCCCCCA−
0BBBBBB@

0 0 0 0

0 t0 ⋅ ⋅ ⋅ t2−n

0
...

. . .
...

0 tn−2 ⋅ ⋅ ⋅ t0

1CCCCCCA
=

0BBBBBB@
t0 t−1 ⋅ ⋅ ⋅ t1−n

t1 0 ⋅ ⋅ ⋅ 0
...

...
...

tn−1 0 ⋅ ⋅ ⋅ 0

1CCCCCCA .
As the displacement L(T ) has rank 2, the corresponding generator matrices

G and H, derived from the SVD of L(T ), are of size n× 2.

Definition. Pick matrix. A Pick matrix P ∈ ℂn×n is given by

P(i,j) =
U(i,:)U

∗
(i,:) − V(j,:)V

∗
(j,:)

1− fifj
, for i, j ∈ {1, ⋅ ⋅ ⋅ , n},

where U ∈ ℂn×p, V ∈ ℂn×q, and f ∈ ℂn×1 is a vector with ∣fi∣ < 1 ∀i.

Example. Pick matrices. Let P be a Pick matrix defined by the vector f

and the matrices U and V , F = diag(f), and define

UV(i,j) := U(i,:)U
∗
(i,:) − V(j,:)V

∗
(j,:), for i, j ∈ {1, ⋅ ⋅ ⋅ , n}.
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Hence,

ΔF,F (P ) = P − FPF =

0BBBBBBB@
UV(1,1)
1−f1f1

UV(1,2)
1−f1f2 ⋅ ⋅ ⋅

UV(1,n)

1−f1fn
UV(2,1)
1−f2f1

UV(2,2)
1−f2f2

...
...

. . .
...

UV(n,1)

1−fnf1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ UV(n,n)

1−fnfn

1CCCCCCCA
−

0BBBBBBB@
f1UV(1,1)f1

1−f1f1
f1UV(1,2)f2

1−f1f2 ⋅ ⋅ ⋅ f1UV(1,n)fn
1−f1fn

f2UV(2,1)f1
1−f2f1

f2UV(2,2)f2
1−f2f2

...
...

. . .
...

fnUV(n,1)f1
1−fnf1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ fnUV(n,n)fn

1−fnfn

1CCCCCCCA
=

0BBBBBB@
UV(1,1) UV(1,2) ⋅ ⋅ ⋅ UV(1,n)

UV(2,1) UV(2,2)
...

...
. . .

...

UV(n,1) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ UV(n,n)

1CCCCCCA .
As before, the displacement L(P ) has rank 2. Therefore the corresponding

generator matrices G and H, computed from the SVD of L(P ), are of size

n× 2.
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Example. Hankel matrices. Let H be a Hankel matrix defined by the

vector h = (ti)
2n−2
i=0 . Hence,

∇Z1,ZT
0

(H) = Z1H −HZT
0

=

0BBBBBB@
ℎn−1 ℎn ⋅ ⋅ ⋅ ℎ2n−2

ℎ0 ℎ1 ⋅ ⋅ ⋅ ℎn−1

...
...

. . .
...

ℎn−2 ℎn−1 ⋅ ⋅ ⋅ ℎ2n−3

1CCCCCCA−
0BBBBBB@

0 ℎ0 ⋅ ⋅ ⋅ ℎn−2

0 ℎ1 ⋅ ⋅ ⋅ ℎn−1

0
...

. . .
...

0 ℎn−1 ⋅ ⋅ ⋅ ℎ2n−3

1CCCCCCA
=

0BBBBBB@
ℎn−1 ℎn − ℎ0 ⋅ ⋅ ⋅ ℎ2n−2 − ℎn−2

ℎ0 0 ⋅ ⋅ ⋅ 0
...

...
. . .

...

ℎn−2 0 ⋅ ⋅ ⋅ 0

1CCCCCCA .
Similar to the previous examples, the displacement L(H) has rank 2, and

therefore the corresponding generator matrices G and H, derived from the

SVD of L(T ), are of size n× 2.

As one can see from the above examples, the type of operator and operator

matrices change based on the kind of structure the matrix has. Furthermore,

the types and operator matrices shown above are not unique. For a Hankel

matrix, one may also use ΔZ0,Z0 , which also yields a displacement with rank

2. Apart from the common operator matrices, others like Z0 +ZT
0 for Hankel

+ Toeplitz matrices can be used, depending on the structure.

Definition. Supposing that a matrix M has a low displacement rank with

respect to a displacement operator, which is affiliated with Toeplitz, Hankel,

etc., we call this matrix M Toeplitz-like, Hankel-like, etc.

The displacements are then used to compute matrix-vector multiplica-

tions, solve linear systems of equations or other basic calculations. To learn

more about this topic, I refer the reader to [20] and [28].
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2.4.4 Inversion of Displacement Operators

The concluding process is the retrieval of the original matrix from its com-

pressed displacement. This retrieval corresponds to the inversion of the dis-

placement operator L. The following theorem and proof from [29] states

a necessary and sufficient condition for the invertibility of a displacement

operator L.

Theorem 2.1 Let {a1, ⋅ ⋅ ⋅ , am} be the eigenvalues of (A), and {b1, ⋅ ⋅ ⋅ , bn}
the eigenvalues of (B). The Stein type displacement operator ΔA,B is non-

singular if and only if aibj ∕= 1 for all combinations (i, j), and the Sylvester

type displacement operator ∇A,B is non-singular if and only if ai ∕= bj for all

combinations (i, j).

For the proof of Theorem 2.1, three definitions and two propositions are

needed [2].

Definition. Kronecker Product. Let C ∈ ℝm×n and D ∈ ℝk×l. The

Kronecker product (C ⊗D) ∈ ℝmk×nl is given by

C ⊗D =

�
C(1,1)D C(1,2)D ⋅ ⋅ ⋅ C(1,n)D

...
...

. . .
...

C(m,1)D C(m,2)D ⋅ ⋅ ⋅ C(m,n)D.

�
. (10)

Definition. Kronecker Sum. Let C ∈ ℝn×n and D ∈ ℝm×m. The Kro-

necker sum (C ⊕D) ∈ ℝnm×nm is given by

C ⊕D = C ⊗ Im + In ⊗D. (11)

The two propositions show how the eigenvalues and eigenvectors of a

Kronecker product or a Kronecker sum of 2 matrices look like.

Proposition 2.2 Let C ∈ ℝn×n, D ∈ ℝm×m, and {c1, ⋅ ⋅ ⋅ , cn} and {d1, ⋅ ⋅ ⋅ , dm}
be the eigenvalues of C and D, respectively. Then the eigenvalues of C ⊗D
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are equal to

{cidj∣1 ≤ i ≤ n, 1 ≤ j ≤ m}. (12)

If x is an eigenvector of C corresponding to the eigenvalue ck and y is an

eigenvector of D corresponding to the eigenvalue dl, then x⊗ y is an eigen-

vector of C ⊗D corresponding to the eigenvector ckdl.

Proof.

(C ⊗D)(x⊗ y) = (Cx)⊗ (Dy) = (ckx)⊗ (dly) = ckdl(x⊗ y)

□

Proposition 2.3 Let C ∈ ℝn×n, D ∈ ℝm×m, and {c1, ⋅ ⋅ ⋅ , cn} and {d1, ⋅ ⋅ ⋅ , dm}
be the eigenvalues of C and D, respectively. Then the eigenvalues of C ⊕D
are equal to

{ci + dj∣1 ≤ i ≤ n, 1 ≤ j ≤ m}. (13)

If x is an eigenvector of C corresponding to the eigenvalue ck and y is an

eigenvector of D corresponding to the eigenvalue dl, then x⊗ y is an eigen-

vector of C ⊕D corresponding to the eigenvector ck + dl.

Proof.

(C ⊕D)(x⊗ y) = (C ⊗ Im)(x⊗ y) + (In ⊗D)(x⊗ y)

= (Cx⊗ y) + (x⊗Dy) = (ckx⊗ y) + (x⊗ dly)

= ck(x⊗ y) + dl(x⊗ y) = (ck + dl)(x⊗ y)

□

The last definition is frequently needed when the Kronecker product or

the Kronecker sum are used. It symbolizes the transformation of a matrix to

a vector.
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Definition. Vectorization. The column vector
−→
M =

� m1

...
mn

�
is obtained by

vectorizing the matrix M = (m1, ⋅ ⋅ ⋅ ,mn) columnwise.

Proof. [Theorem 2.1] From

−−−−−−→
ΔA,B(M) = (I −BT ⊗ A)

−→
M and

−−−−−−→
∇A,B(M) = (I ⊗ A−BT ⊗ I)

−→
M,

we can see that ΔA,B is non-singular if and only if the matrix (I − BT ⊗
A) is also non-singular and ∇A,B is non-singular if and only if the matrix

(I ⊗ A − BT ⊗ I) is also non-singular. Propositions 2.2 and 2.3 show that

the eigenvalues of the matrix (I − BT ⊗ A) are equal to 1 − aibj for all

combinations (i, j) and the eigenvalues of the matrix (I ⊗ A − BT ⊗ I) are

equal to ai − bj for all combinations (i, j), which proves the theorem. □



3 Gauss Markov Random Fields

Rue and Held’s book [34] was consulted in preparation of the following sec-

tion.

3.1 Introduction

In the past years, Gauss Markov Random Fields (GMRFs) have been an

increasingly important topic. Especially in the areas of spatial statistics

and image analysis, researchers make use of GMRFs; however one can also

find applications of them in structural time-series analysis, analysis of lon-

gitudinal and survival data, spatiotemporal statistics, graphical models and

semiparametric statistics. GMRFs are employed to characterize the spatial

and temporal dynamics of nature and real systems. A GMRF is a random

vector, which has a multivariate normal (also called Gaussian) distribution.

To justify the term Markov, it also has to fulfill supplementary conditional

independence conditions. These conditional independences cause the preci-

sion matrix, which is the inverse of the covariance matrix, to be highly sparse.

Therefore the GMRF is preferably represented by its precision matrix, rather

than by its covariance matrix, as the latter is in general not sparse.

3.2 History

In [7] Chellappa gives a brief overview of the most important developments

in the literature of GMRFs:

In 1954, Whittle [37] published a paper about non-causal autoregressive

time series. Furthermore he discussed the weaknesses of the ordinary least

square method when it comes to estimating the parameters of a 2-D non-

causal autoregressive (NCAR) model and hypothesis testing processes to

choose a model structure. An abstract concept of GMRFs was suggested by

Rosanov [33] in 1967. Around that time, Levy [21,22] and Wong [38] exam-

ined continuous random fields and thereby stimulated Woods [39], who was
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unfamiliar of Rosanov’s previous work, to produce equivalent results in 1972.

In addition, Woods demonstrated that GMRFs can be used for spectral es-

timation. In the seventies, many papers were published about GMRFs or

Markov Random Fields (MRFs); for instance, Moran [24,25] explored on his

own representations of basic MRF models, and together with Besag [4], the

maximum likelihood estimation for rectangular lattice autonormal schemes.

But it was especially the celebrated paper by Besag [3], which motivated

multiple researchers to further examine the applications of GMRFs or MRFs

in general. Besag’s seminal paper not only includes an illustration of the

Hammersely Clifford theorem, but also various representations of MRF mod-

els, coding estimates, and connections between NCAR and GMRF models.

Since then, applications of GMRFs have been utilized in various areas, such

as texture classification. For published papers on this topic, I refer the reader

to [8, 10,16,31,32].

3.3 Theory

This section will provide the necessary background for understanding GM-

RFs, including notations, and explanations of conditional independence, undi-

rected graphs, positive-definiteness of matrices and the multivariate normal

distribution.

3.3.1 Some Definitions

Let Ω denote a m × n lattice with sites (k, l) such that Ω = {(k, l)∣1 ≤ k ≤
m, 1 ≤ l ≤ n}. If X takes values on Ω, then X(k,l) indicates the value of X

at site (k, l). In case W ⊆ Ω is a subset, then XW = {X(k,l)∣(k, l) ∈ W} are

the values of X at the sites (k, l), which are part of the set W . Let W ⊆ Ω

and V ⊆ Ω be two sets; thus W ∖ V = {(k, l)∣(k, l) ∈ W and (k, l) /∈ V }.
Furthermore −W denotes the set Ω ∖W .

The density of a random variable X is denoted by fX . The conditional
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density of a random variable X, when a realization y0 of the random variable

Y is known, is given by fX∣Y . To calculate the conditional density, the

following formula is used

fX∣Y (x, y0) =
fX,Y (x, y0)

fY (y0)
, (14)

for fY (y0) > 0. E(⋅), Cov(⋅, ⋅), Prec(⋅) and Var(⋅) symbolize the expected

value, the covariance, the precision and the variance respectively.

3.3.2 Conditional Independence

Assume that X = (X1, X2, X3)T is a random vector consisting of three ran-

dom variables and x3 is the known realization of X3. If the revealment of

x2 doesn’t provide new information about the distribution of X1, then X1

and X2 are conditionally independent. Therefore the joint density can be

represented as follows

fX = fX1∣X3fX2∣X3fX3 ,

instead of the general formula for the joint density

fX = fX1∣X2,X3fX2∣X3fX3 .

As a result, two random variables X and Y are conditionally independent

given the random variable Z if and only if fX,Y ∣Z = fX∣ZfY ∣Z . This condi-

tional independence is indicated by [12]

X ⊥⊥ Y ∣ Z.

Be aware that, although X and Y are conditionally independent, they don’t

have to be marginally independent.

The following factorization theorem by Dawid [12] shows a simple way to

test if two random variables/vectors are conditionally independent.
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Theorem 3.1 X ⊥⊥ Y ∣ Z if and only if there exist some functions g and

ℎ such that for all z with fZ(z) > 0

fX,Y,Z(x, y, z) = g(x, z)ℎ(y, z).

3.3.3 Undirected Graphs

A convenient way of representing a GMRF is a system of undirected graphs,

which practically visualizes the conditional dependences between the different

random variables. An undirected graph G consists of a set of Nodes V and a

set of edges ℰ . For k, l ∈ V and k ∕= l, the pair {k, l} is an element of ℰ if and

only if node k and node l are connected by an undirected graph. Describing

Markov fields with undirected graphs was first introduced by Darroch, Lau-

ritzen and Speed [11].

Every node that shares an edge with node k is considered to be in the

neighborhood of node k [11]:

ne(k) = {l ∈ V∣{k, l} ∈ ℰ}.

Additionally, if k and l are neighbors, it is denoted by k ∼ l.

If {ki, ki+1} ∈ ℰ for i ∈ {1, ⋅ ⋅ ⋅ , j − 1}, then the sequence k1, ⋅ ⋅ ⋅ , kj of

distinct nodes is called a path. In case every path from node k /∈ W to node

l /∈ W includes at least one node from a subset W ⊆ V , then W seperates

k and l. A subset W ⊆ V seperates two disjoint subsets V ⊆ V ∖W and

U ⊆ V ∖W , if W seperates the nodes k and l for all k ∈ V and l ∈ U .

A basic model of an undirected graph is displayed in Figure 3. One can

verify that the sets of nodes and edges and some examples of neighborhoods
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are given by

V = {1, 2, ⋅ ⋅ ⋅ , 7},

ℰ = {{1, 3}, {2, 3}, {3, 4}, {3, 6}, {4, 5}, {5, 6}, {4, 7}},

ne(1) = 3, ne(3) = {1, 2, 4, 6}, ne(5) = {4, 6}, etc.

Figure 3: Basic model of an undirected graph

2

3

1

4

56

7

This system can be easily extended to a 2-dimensional lattice. The nodes

are then the sites of the lattice, and the elements of the sets and the neigh-

bourhoods look as follows

{k, l} ∈ V , for 1 ≤ k ≤ m and 1 ≤ l ≤ n,

{{k, l}, {i, j}} ∈ ℰ <=> there is an edge between {k, l} and {i, j},

ne({k, l}) = {{i, j} ∈ V∣{{k, l}, {i, j}} ∈ ℰ}.

With a 2-dimensional lattice, normally the Euclidean distance is used to

determine the order of the neighborhood [16].

Definition. Let Ω be a m×n lattice. A P -th order neighborhood neP ({k, l})
of site (k, l) can be written as

neP ({k, l}) = {{i, j}∣0 < (k − i)2 + (l − j)2 ≤ DP}, (15)
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with DP being the square of the Euclidean distance between the correspond-

ing site and its furthest neighbor [26].

Common values for DP are 1, 2, 4, 5, 8, 9 for P = 1, 2, 3, 4, 5, 6. Be aware

that a P -th order neighborhood set also contains the neighbors of the neigh-

borhood sets with lower orders. Figure 4 displays neighborhoods of different

orders following the previous definition.

Figure 4: Hierarchical neighborhood system [16]
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3.3.4 Symmetric Positive-Definite Matrices

To ensure that a GMRF X defines a proper density, the precision matrix

must be positive-definite. The case where the precision matrix is positive-

semidefinite and the corresponding GMRF X is therefore improper is not

discussed in this thesis.

Let A ∈ ℝn×n be a symmetric matrix, {�1, ⋅ ⋅ ⋅ , �n} its real eigenvalues

and �min = min{�1, ⋅ ⋅ ⋅ , �n}. A is positive-definite (positive-semidefinite) if

and only if �min > 0 (�min ≥ 0). A positive-definite matrix is symbolized by

A > 0 and a positive-semidefinite matrix by A ≥ 0 [2].
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Some fundamental attributes of a symmetric positive-definite (SPD) ma-

trix A are:

∙ A−1 is SPD.

∙ rank(A) = n.

∙ det(A) > 0.

∙ Every principal submatrix of A is positive definite.

∙ There exists a unique lower triangular matrix C such that A = CCT ,

whereas the diagonal elements of C are strictly positive. This factor-

ization is denoted by Cholesky decomposition.

It is sufficient for a symmetric matrix to be positive definite if the matrix is

diagonally dominant:

A(i,i) −
X
j:j ∕=i
∣A(i,j)∣ > 0 ∀i. (16)

Note that this condition is not necessary for positive definiteness.

3.3.5 Multivariate Normal/Gaussian Distribution

This section will recapitulate the most fundamental characteristics of the

multivariate normal distribution. Let X = (X1, ⋅ ⋅ ⋅ , Xn)T be a normal ran-

dom vector with mean � and SPD covariance matrix Σ. The distribution of

X is given by the density function

fX(x) =
1

(2�)
n
2 ∣Σ∣ 12

exp
�
−1

2
(x− �)TΣ−1(x− �)

�
, x ∈ ℝ, (17)

where �k = E(Xk), Σ(k,l) = Cov(Xk, Xl) and Σ(k,k) = Var(Xk) > 0. This

distribution of X is also denoted by X ∼ N (�,Σ).
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3.4 Characterization of GMRF’s

3.4.1 Basic Definition

If the random vector X = (X1, ⋅ ⋅ ⋅ , Xn)T is normally distributed with pa-

rameters � and Σ and the undirected graph G = (V , ℰ) is given such that

V = {1, ⋅ ⋅ ⋅ , n} and the edge {k, l} is not an element of ℰ if and only if

Xk ⊥⊥ Xl ∣ X−{k,l}, then X is a GMRF concerning G.

As we know, changes in � don’t affect the pairwise conditional indepen-

dences of X. Therefore all the information about these independences must

be contained in the second parameter, the covariance matrix Σ. However,

it is more convenient to use its inverse, the precision matrix Q, to represent

a GMRF. This follows from the fact that the precision matrix reflects the

conditional independences of X. The next theorem from [34] proves this link.

Theorem 3.2 If X is normally distributed with mean � and precision matrix

Q > 0, then

Xk ⊥⊥ Xl ∣ X−{k,l} ⇐⇒ Qk,l = 0, for k ∕= l.

Proof. Partitioning X as (Xk, Xl,X−{k,l}), fixing k ∕= l, assuming � = 0

without loss of generality, and using the formula for the multivariate normal

distribution (17) yields

fXk,Xl,X−{k,l} ∝ exp

�
−1

2

X
i,j

xiQ(i,j)xj

�
∝ exp

�
−1

2
xkxl(Q(k,l) +Q(l,k))−

1

2

X
{i,j}∕={k,l}

xiQ(i,j)xj

�
,

where the sign ∝ denotes “is proportional to”.

Clearly xkxl is not included in the second term. The first term includes

xkxl if and only if Q(k,l) ∕= 0. As a result, the density function fXk,Xl,X−{k,l}
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can be factorized as follows

fXk,Xl,X−{k,l}(xk, xl,x−{k,l}) = g(xk,x−{k,l})ℎ(xl,x−{k,l}),

for some functions g and ℎ if and only if Q(k,l) = 0. Applying Theorem 3.1

concludes the proof. □

Consequently it is possible to deduce from Q whether or not Xk and Xl

are conditionally independent and the graph G is fully defined by Q. In

contrast, a graph G specifies which entries of Q are nonzero.

Remark. Some authors use the term potential matrix instead of precision

matrix for the inverse of the covariance matrix. For consistency, the term

precision matrix is used throughout this thesis.

The following definition is the first of three characterizations for a GMRF

stated in this thesis.

Definition. GMRF. Let X = (X1, ⋅ ⋅ ⋅ , Xn)T be a random vector with

mean � and precision matrix Q > 0. X is a GMRF regarding the graph

G = (V , ℰ) if and only if its density is given by

fX = (2�)−
n
2 ∣Q∣

1
2 exp

�
−1

2
(x− �)TQ(x− �)

�
(18)

and

Q(k,l) ∕= 0 ⇐⇒ {k, l} ∈ ℰ , for all k ∕= l.

For a completely dense matrix Q, the graph G is completely connected.

Therefore every Gaussian distribution with SPD covariance matrix Σ is also

a GMRF. At the same time, every GMRF is a Gaussian distribution with

SPD covariance matrix; but in general, only GMRFs with a sparse precision

matrix are used.
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Certain values such as the conditional expected value can be easily de-

termined from the precision matrix Q [34].

Theorem 3.3 If X is a GMRF with respect to the graph G = (V , ℰ) with

parameters � and Q > 0, then

E(Xk∣X−k) = �k −
1

Q(k,k)

X
l:l∼k

Q(k,l)(xl − �l), (19)

Prec(Xk∣X−k) = Q(k,k), (20)

Corr(Xk, Xl∣X−{k,l}) = −
Q(k,l)È

Q(k,k)Q(l,l)

, for k ∕= l. (21)

Consequently the conditional precision of Xk given x−k for k ∈ {1, ⋅ ⋅ ⋅ , n}
can be found along the diagonal of Q, whereas the conditional correlation

between Xk and Xl given x−{k,l} for k ∕= l can be extracted by scaling the

off-diagonal elements of Q. By contrast, the entries of the covariance matrix

Σ reflect the marginal dependencies: Var(Xk) = Σ(k,k) and Corr(Xk, Xl) =
Σ(k,l)√

Σ(k,k)Σ(l,l)
.

3.4.2 Markov Properties

Up to this point, only the pairwise Markov property has been incorporated.

Additionally there exist the local Markov property and the global Markov

property, which can be used to describe a GMRF.

Theorem 3.4 In case X is a GMRF concerning the graph G = (V , ℰ), the

following three Markov properties are equivalent:

∙ The pairwise Markov property,

Xk ⊥⊥ Xl ∣ X−{k,l}, if {k, l} /∈ ℰ and k ∕= l.
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∙ The local Markov property,

Xk ⊥⊥ X−{k,ne(k)} ∣ Xne(k), ∀k ∈ V .

∙ The global Markov property,

XA ⊥⊥ XB ∣ XC , for all disjoint sets A,B and C,

with C seperating A and B and A,B ∕= ∅.

A proof by Speed and Kiiveri can be found in [35].

3.4.3 Full Conditionals

A second approach to representing a GMRF is full conditionals fXk∣X−k
.

This approach was introduced by Besag [3,4] under the name of Conditional

Autoregressions (CAR).

The normal full conditionals are given by

E(Xk∣X−k) = �k −
X
l∣l∼k

�k,l(xl − �l) and (22)

Prec(Xk∣X−k) = �k > 0, (23)

with k ∈ {1, ⋅ ⋅ ⋅ , n}, {�k,l} for k ∕= l and vectors � and �. In case �k,l is not

zero, the node l is in the neighborhood of node k (k ∼ l). Apparently �k,l

is nonzero if �l,k is nonzero, as ∼ is a symmetrical relation. Considering the

formulas (19) and (20), as well as the fact that a precision matrix has to be

symmetric, yields the following theorem:

Theorem 3.5 Let X be a random vector defined by the n normal full con-

ditionals as in (22) and (23). X is a GMRF with respect to the graph

G = (V , ℰ) with the parameters � and Q where

Q(k,k) = �k and Q(k,l) = �k�k,l,
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if �k�k,l = �l�l,k and Q > 0.

For a proof of this theorem, see [34].

The precision matrix Q is given by

Q = diag(�)(I +B),

where B ∈ ℝn×n and B(k,l) = �k,l, with �k,k set to zero. Therefore,

Q > 0⇐⇒ (I +B) > 0.

3.4.4 Noncausal Autoregressive Field Representation

A third possibility for symbolizing a GMRF is a noncausal autoregressive

(AR) model, which has a correlated field as input. It was introduced by

Woods [39] as the minimum mean-square representation.

Let Ω be a m × n lattice, X a random field defined on Ω, and
−→
X the

vectorial representation of X, obtained by stacking every coloumn on top of

each other. In case X is a zero-mean GMRF, then it can be written as

Q�

−→
X = −→e , (24)

where Q� ∈ ℝmn×mn is a scaled version of the inverse of the covariance matrix

E(
−→
X
−→
XT ) =

�
1

�2
Q�

�−1

, (25)

−→e ∈ ℝmn×1 is a zero-mean Gaussian noise with

E(−→e −→e T ) = �2Q�, (26)

and

E(
−→
X−→e T ) = �2I. (27)
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Note that the GMRF covariance is not affected by changing to a nonzero-

mean.

3.4.5 One-Sided Representations for Noncausal Fields

In [26] Moura and Balram presented two equivalent one-sided representations

of the field defined by (24). Unlike the original noncausal definition (24),

where the field is driven by correlated noise, the two equivalent characteri-

zations by Moura and Balram are driven by white noise.

The backward representation uses the lower-upper Cholesky decomposi-

tion of the symmetric and positive definite precision matrix Q�:

Q� = UTU, (28)

with U being upper triangular. Revision of the field representation (24) yields

U
−→
X = −→w , (29)

where −→w is white noise

−→w = (UT )−1−→e , (30)

E(−→w−→w T ) = �2I. (31)

From those equations, it follows that

E(
−→
X−→w T ) = �2U−1. (32)

The field defined by (29) is equivalent to (24), but, unlike the latter, it is

one-sided and any entry in the random vector
−→
X depends just on the random

variables Xk, which are situated in its “future”. Considering the not vector-

ized version X, which is defined on a 2-D lattice, the “past” is every column



3.4 Characterization of GMRF’s 32

to the left of the “present” and every node above the present in the same

column (see Figure 5). Be aware that the partition of “past” and “future”

depends on the ordering of the vectorized version
−→
X of the field X.

Figure 5: Division of the 2-D lattice: ⊙ symbolizes the “present” [26]
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In addition to (28), there exists the upper/lower Cholesky decomposition

of Q�, which is applied in the forward representation model.

Q� = LTL, (33)

with L being lower triangular. Using the factorization in (24) generates

L
−→
X = −→z , (34)

where −→z is white noise

−→z = (LT )−1−→e , (35)

E(−→z −→z T ) = �2I. (36)

From those equations, it follows that

E(
−→
X−→z T ) = �2L−1. (37)
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In the “forward” regressor model (34), the “present” depends only on those

values that lie in its “past”.

3.4.6 The Structure of the Precision Matrix

Moura and Balram [26] also explored the form of the precision matrix Q� for

zero-mean, nondegenerated GMRFs of first and higher order. Considering

that sites at the border of a finite 2-D lattice can have neighbours from the

outside of the lattice, the introduction of boundary rules is required. Moura

and Balram give some examples of suitable boundary conditions, such as

setting the values of the neighbours outside of the lattice to zero or supposing

that the lattice is a torus. For further reading on this topic, I refer to [26].

Moura and Balram claim that a SPD matrix Q� is the precision matrix

of a first-order GMRF if and only if it can be written as

Q� = Qc +Qb.c., (38)

whereQb.c. contains all the information about the chosen boundary conditions

and Qc is unaffected by them. Qc is structured as follows

Qc =

0BBBBBBBBBB@
A1 Ã1 0 ⋅ ⋅ ⋅ 0

Ã1 A2 Ã2
. . .

...

0 Ã2 A3
. . . 0

...
. . . . . . . . . Ãn−1

0 ⋅ ⋅ ⋅ 0 Ãn−1 An

1CCCCCCCCCCA , (39)
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where

Ai =

0BBBBBBBBBB@
qi,1 −�i,1v 0 ⋅ ⋅ ⋅ 0

−�i,1v qi,2 −�i,2v
. . .

...

0 −�i,2v qi,3
. . . 0

...
. . . . . . . . . −�i,m−1

v

0 ⋅ ⋅ ⋅ 0 −�i,m−1
v qi,m

1CCCCCCCCCCA (40)

and

Ãi = − diag(�i,1ℎ , �
i,2
ℎ , ⋅ ⋅ ⋅ , �

i,m
ℎ ). (41)

The parameters �i,jv denote the vertical and �i,jℎ the horizontal field interac-

tions between neighboring sites.

The following characteristics of the matrix Qc are apparent from the

description [26]:

∙ It is highly sparse, symmetric and block tridiagonal.

∙ The blocks Ai are also highly sparse, symmetric and tridiagonal while

the blocks Ãi are diagonal matrices.

∙ In total, the matrix Qc has a maximum of 5 nonzero diagonals.

For further reading on the structure of the boundary precision matrix

Qb.c. in first-order fields and cases where the field is homogeneous or of higher

order, I refer the reader to [26].



4 Texture Description through Displacement

Operators

4.1 Exact Structure

The goal of the project is to demonstrate the potential of the displacement

operator as an effective approach for classifying textures. The idea behind

this approach is that two textures are equivalent or of the same type, if both

have low displacement rank with respect to the same displacement operator.

One can think of having n classes of textures, each uniquely defined by

a type of displacement operator and its sparse operator matrices, such as

ΔZ0,ZT
0

for Toeplitz-like matrices. In addition, each class has a certain number

of representative textures/structured matrices, which have low displacement

rank with respect to the displacement operator of that class. To assign

the class for an unknown texture, an optimization algorithm is used. The

algorithm operates either by checking with which displacement operator the

unknown texture has the lowest displacement rank or by verifying which

representative texture is the “closest” to the unknown texture. In the latter

case, it is necessary to define “close” in a mathematical way.

This thesis doesn’t examine this optimization process but rather considers

new classes of structured matrices and their representative textures. By

reversing the process, first finding new displacement operator matrices and

then working backwards, new textures/structured matrices can be found.

This work is described in the following section.

4.1.1 Basic Setup

As mentioned above, to find representatives for a certain class, one has to

begin by checking which textures M have a low displacement rank for given

sparse displacement operator matrices A and B and given generator matrices

G and H. A and B are either common displacement operator matrices
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like shift matrices or diagonal matrices, modifications of these or completely

different ones. G and H are matrices of size n× r, where n is the dimension

of the matrix M and r is the displacement rank. For simplicity reasons, we

assume that the matrix M is a square matrix. The generator matrices G

and H are either random matrices, 2-dimensional trigonometric, polynomic,

logarithmic or exponential functions or a mixture of these. In MATLAB R⃝

the Sylvester type displacement operator ∇A,B(M) is solved for M by

M = lyap(A,-B,-G*H’); (42)

which solves the continuous-time Lyapunov equation.

In a similar manner one can solve the Stein type displacement operator

ΔA,B(M) for M

M = dlyap(A,B,G*H’); (43)

which solves the discrete-time Lyapunov equation.

If necessary, a logtransformed matrix of the obtained M is generated to

make patterns more visible.

if min(min(M)) < 0

M pos = M >= 0;

M neg = M < 0;

M check = M pos - M neg;

M log = (log(1+abs(M)));

M log = M check.*M log;

else

M log = (log(1+M));

end
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in MATLAB R⃝ where log denotes the natural logarithm, abs the absolute

value, and .* the elementwise matrix multiplication.

4.1.2 Visualization

The matrices M and M log are then displayed by the function imshow(M,[])

as a grayscale image. The rectangular brackets adjust the display range in

such a way that the value min(M(:)) is mapped to black and the value

max(M(:)) to white, where min(M(:)) and max(M(:)) denote the mini-

mum and the maximum entries of the matrix M . The function linearly

interpolates the values in-between and displays them as intermediate shades

of gray using 8-bits of gray levels [23]. This is equivalent to applying the

linear transformation (44) and using the command imshow(M), the former of

which maps the interval [min(M(:)),max(M(:))] on the interval [0,1] of

each entry of the matrix M :

MP
(i,j) = kM(i,j) + d, i, j ∈ {1, ⋅ ⋅ ⋅ , n}, (44)

where

k =
1

max(M(:))−min(M(:))
and

d = −kmin(M(:)).

The interval [0,1] is chosen because it is the default display range for a

grayscale image when using the function imshow(M). The case where max(M(:

)) = min(M(:)) is not relevant, as it would mean that every pixel of the tex-

ture has the same tone of gray and can therefore be excluded.

Lemma 4.1 Let M have low displacement rank rA,B(M) and MP be defined

as in equation (44). Then rA,B(MP ) ≤ rA,B(M) + 2.



4.1 Exact Structure 38

Proof. The transformed matrix MP , which has only values in the intervall

[0, 1], is given by MP = kM + D, where k is the scalar from above and D

is a constant matrix of the same size as M with all entries equal to d from

above. For the Stein displacement operator, this yields

ΔA,B(MP ) = kM +D − A(kM +D)B

= k(M − AMB) +D − ADB.

M − AMB has a rank of rA,B(M), D has a rank of 1 (unless it’s the null

matrix), and the maximum rank of ADB is 1. Consequently the rank of the

sum of these three terms is bound by rA,B(M) + 2. One can easily verify the

same results for the Sylvester type displacement operator. □

Therefore, at least before the rounding process takes place (see Remark

below), the matrix, which is represented by the image, also has a low dis-

placement rank concerning the same displacement operator matrices.

Remark. One has to consider that the images created by imshow(M,[]) or

imshow(M) are rounded versions of the actual matrices with low displacement

rank, as the computer uses only a finite number, like 256 or 65536, of shades

of gray. In fact the formula specifying the colormap index of each data value

of the original matrix, when using the function imshow(M,[]), is given by [23]

cm index = fix((data-dmin)/(dmax-dmin)*cm length)+1;

where cm index stands for the colormap index, data denotes the value of

the original matrix M , dmax and dmin represent max(M(:)) and min(M(:))

respectively, cm length is the length of the colormap, and fix rounds the

value in the brackets towards zero. One can easily verify that the linear

transformation (44) is equivalent to the term in the outer brackets with

cm length equal to 1. The rounding process fix will, in many cases, destroy

the structure of the matrix but will generate a matrix which is very close to

a structured matrix.
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4.1.3 Results

The following images will show a small sample of the structured textures that

can be generated by solving the continuous-time Lyapunov equation (42)

for the Sylvester type displacement operator or the discrete-time Lyapunov

equation (43) for the Stein type displacement operator. The caption of each

group of images will indicate which type of displacement operator and what

kind of operator matrices were used. Be aware that a group of images may

extend more than one page. The caption of each image of a structured matrix

M denotes the generator matrices G and H of the corresponding structured

matrix. The unknown operator matrices will be characterized throughout

the text. One can find a rough description of the generator matrices and the

corresponding displacement rank r in Table 3.

Table 3: Generator matrices G and H

Abbreviation G H r

GH1 Random Random 1
GH2 Random Random 15
GH3 Sinus x 1
GH4 Sinus Cosinus 1
GH5 Sinus(Random) Cosinus(Random) 1
GH6 Sinus(Random) Cosinus(Random) 1
GH7 Triangle Triangle 5
GH8 Triangle Triangle 15
GH9 Chess Chess 5
GH10 Chess Chess 15
GH11 Stripes Stripes 1

GH12
Exp(Random)+ Exp(Random)*

1
+Log(Random) *Log(Random)

GH13 Ones Ones 1
GH14 Sinus*Cosinus Sinus*Cosinus 10
GH15 Random Random 5
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Random denotes a matrix of size n × r with random entries, where n

stands for the dimension of the original matrix M . Exp and Log signify

the exponential function and the natural logarithm respectively. Ones is a

matrix of size n×r with all entries being equal to 1. The n×1 vector Stripes

and the n× r matrices Chess and Triangle are given as follows

Stripes = [

5 timesz }| {
1 ⋅ ⋅ ⋅ 1

5 timesz }| {
0 ⋅ ⋅ ⋅ 0

5 timesz }| {
1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ ]T ,

Chess =

0BBBBBB@
r1 0 r2 ⋅ ⋅ ⋅
0 rk 0 ⋅ ⋅ ⋅
rl 0 rl+1 ⋅ ⋅ ⋅
...

...
...

. . .

1CCCCCCA , with ri random, and

Triangle =

0BBBBBBBBBBBBB@
1

. . .

1

. ..

1
. . .

1CCCCCCCCCCCCCA
, with blank areas equal to zero.

In each row, the first image represents the structured matrix M , which

has low displacement rank with regard to the indicated type and operator

matrices. Its displacement can be described by the denoted generator ma-

trices. For example, if an image has the caption “(c) Struct. matrix M with

GH2” and the respective group of images has the caption “Figure 7: Stein

with A = Z0 and B = Z0”, then for the structured matrix M the image

symbolizes the following is true

ΔZ0,Z0(M) = M − Z0MZ0 = GH2,

and M has displacement rank equal to 15 (see Table 3).

Only if beneficial, a logtransformed matrix Mlog of M is added to make
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patterns more apparent.

The last image in each row illustrates the absolute value of the 2-dimensional

discrete Fourier transform (2-D DFT) of M . The origin of the transform is

moved to the center of the picture. This means that the low frequencies can

be found in the middle and the high frequencies at the border of the image.

Before the Fourier transform was applied, the mean of the matrix was sub-

tracted; hence the dc is equal to zero. The unitary discrete Fourier transform

matrix was used to preserve the energy of the matrix.

dftmat = 1/sqrt(n)*dftmtx(n);

dft M = dftmat*(M-mean(mean(M)))*dftmat; (45)

shift dft M = abs(fftshift(dft M));

where n is equal to the dimension of the matrix M .

All matrices are displaced through the function imshow(M,[]).

Figure 6 shows some Toeplitz-like matrices. Therefore the Stein displace-

ment operator with A = Z0 and B = ZT
0 is used.

Figure 6: Stein with A = Z0 and B = ZT
0

(a) Struct. matrix M with GH1 (b) 2-D DFT of M
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Figure 6: Stein with A = Z0 and B = ZT
0 (Continued)

(c) Struct. matrix M with GH2 (d) 2-D DFT of M

(e) Struct. matrix M with GH3 (f) 2-D DFT of M

(g) Struct. matrix M with GH4 (h) 2-D DFT of M
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Figure 6: Stein with A = Z0 and B = ZT
0 (Continued)

(i) Struct. matrix M with GH7 (j) 2-D DFT of M

(k) Struct. matrix M with GH10 (l) 2-D DFT of M

(m) Struct. matrix M with GH13 (n) 2-D DFT of M
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Figure 6: Stein with A = Z0 and B = ZT
0 (Continued)

(o) Struct. matrix M with GH14 (p) 2-D DFT of M

Since Hankel matrices are just horizontally flipped Toeplitz matrices,

Hankel-like matrices are similar to Toeplitz-like matrices. A few examples of

them are displayed in Figure 7.

Figure 7: Stein with A = Z0 and B = Z0

(a) Struct. matrix M with GH3 (b) 2-D DFT of M
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Figure 7: Stein with A = Z0 and B = Z0 (Continued)

(c) Struct. matrix M with GH4 (d) 2-D DFT of M

(e) Struct. matrix M with GH6 (f) 2-D DFT of M

(g) Struct. matrix M with GH13 (h) 2-D DFT of M
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Figure 7: Stein with A = Z0 and B = Z0 (Continued)

(i) Struct. matrix M with GH14 (j) 2-D DFT of M

(k) Struct. matrix M with GH15 (l) 2-D DFT of M

In Figure 8, the operator matrices Y00 = Z0 +ZT
0 and Y11 = Y00 + e1e

T
1 +

ene
T
n are used. They are used in a Sylvester type displacement operator for

Toeplitz+Hankel-like matrices.
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Figure 8: Sylvester with A = Y00 and B = Y11

(a) Struct. matrix M with GH1 (b) 2-D DFT of M

(c) Struct. matrix M with GH3 (d) 2-D DFT of M

(e) Struct. matrix M with GH4 (f) 2-D DFT of M
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Figure 8: Sylvester with A = Y00 and B = Y11 (Continued)

(g) Struct. matrix M with GH5 (h) 2-D DFT of M

(i) Struct. matrix M with GH6 (j) 2-D DFT of M

(k) Struct. matrix M with GH7 (l) 2-D DFT of M
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Figure 8: Sylvester with A = Y00 and B = Y11 (Continued)

(m) Struct. matrix M with GH14 (n) 2-D DFT of M

Figure 9 uses the operator matrices of another basic structured matrix,

the Cauchy matrix. Both operator matrices are diagonal and have random

entries along their diagonals. Hence, A = diag(w) and B = diag(v), where

w and v are random vectors.

Figure 9: Sylvester with A = diag(w), B = diag(v), and w and v random

(a) Struct. matrix M with GH2 (b) 2-D DFT of M



4.1 Exact Structure 50

Figure 9: Sylvester with A = diag(w), B = diag(v), and w and v random
(Continued)

(c) Struct. matrix M with GH4 (d) 2-D DFT of M

(e) Struct. matrix M with GH5 (f) 2-D DFT of M

(g) Struct. matrix M with GH7 (h) 2-D DFT of M
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Vandermonde-like matrices can be seen in Figure 10. The Stein type

displacement operator is utilized with a diagonal matrix with random entries

and a shift matrix as generator matrices.

Figure 10: Stein with A = diag(w), B = ZT
0 , and w random

(a) Struct. matrix M with GH1 (b) 2-D DFT of M

(c) Struct. matrix M with GH14 (d) Logtransf. matrix of M (e) 2-D DFT of M

The next operator matrix has not yet appeared in the literature of dis-

placement operators. It is similar to the shift matrix Z0 but the line of ones

is bent. Figure 11 illustrates the new operator matrix YC . The black area is

all zeros and the curved white line represents the ones.

As operator matrices, YC and the transpose of YC are used in a Stein

displacement operator in Figure 12.
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Figure 11: Operator matrix YC

Figure 12: Stein with A = YC and B = Y T
C

(a) Struct. matrix M with GH1 (b) Logtransf. matrix of M (c) 2-D DFT of M

(d) Struct. matrix M with GH2 (e) Logtransf. matrix of M (f) 2-D DFT of M
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Figure 12: Stein with A = YC and B = Y T
C (Continued)

(g) Struct. matrix M with GH4 (h) Logtransf. matrix of M (i) 2-D DFT of M

(j) Struct. matrix M with GH5 (k) Logtransf. matrix of M (l) 2-D DFT of M

(m) Struct. matrix M with GH7 (n) Logtransf. matrix of M (o) 2-D DFT of M
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Figure 12: Stein with A = YC and B = Y T
C (Continued)

(p) Struct. matrix M with GH8 (q) Logtransf. matrix of M (r) 2-D DFT of M

(s) Struct. matrix M with GH11 (t) Logtransf. matrix of M (u) 2-D DFT of M

(v) Struct. matrix M with GH14 (w) Logtransf. matrix of M (x) 2-D DFT of M
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The applied operator matrices in Figure 13 are −Z0 and Z0.

Figure 13: Stein with A = −Z0 and B = Z0

(a) Struct. matrix M with GH2 (b) 2-D DFT of M

(c) Struct. matrix M with GH3 (d) 2-D DFT of M
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Figure 13: Stein with A = −Z0 and B = Z0 (Continued)

(e) Struct. matrix M with GH5 (f) 2-D DFT of M

(g) Struct. matrix M with GH7 (h) 2-D DFT of M

(i) Struct. matrix M with GH9 (j) 2-D DFT of M
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Figure 13: Stein with A = −Z0 and B = Z0 (Continued)

(k) Struct. matrix M with GH13 (l) 2-D DFT of M

(m) Struct. matrix M with GH14 (n) 2-D DFT of M

Here a new operator matrix is introduced. It’s again similar to a shift

matrix, but this time the line of ones is rotated. As before, an image of the

matrix best clarifies the structure of the new operator matrix Xf , where f

is the angle between the upper border of the image and the line of ones. In

Figure 14, the black area and the white line denote zeros and ones respec-

tively.

Figure 15 demonstrates matrices which have a low displacement rank with

respect to a Stein type displacement operator, with the operator matrices

being equal to X80 and XT
80.
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Figure 14: Operator matrix Xf with f = 80

Figure 15: Stein with A = X80 and B = XT
80

(a) Struct. matrix M with GH1 (b) 2-D DFT of M

(c) Struct. matrix M with GH2 (d) 2-D DFT of M
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Figure 15: Stein with A = X80 and B = XT
80 (Continued)

(e) Struct. matrix M with GH5 (f) 2-D DFT of M

(g) Struct. matrix M with GH7 (h) 2-D DFT of M

(i) Struct. matrix M with GH8 (j) 2-D DFT of M
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Figure 15: Stein with A = X80 and B = XT
80 (Continued)

(k) Struct. matrix M with GH9 (l) 2-D DFT of M

(m) Struct. matrix M with GH10 (n) 2-D DFT of M

(o) Struct. matrix M with GH11 (p) 2-D DFT of M
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Figure 15: Stein with A = X80 and B = XT
80 (Continued)

(q) Struct. matrix M with GH13 (r) 2-D DFT of M

(s) Struct. matrix M with GH14 (t) 2-D DFT of M

Figure 16 displays two more operator matrices. The first, W , is a wiggly

line of ones along the main diagonal. The second, C, is a centered circle of

ones.
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Figure 16: Operator matrices W and C

(a) (b)

Figure 17 shows the structured matrices that solve the Stein type dis-

placement operator with A = W and B = C.

Figure 17: Stein with A = W and B = C

(a) Struct. matrix M with GH5 (b) Logtransf. matrix of M (c) 2-D DFT of M
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Figure 17: Stein with A = W and B = C (Continued)

(d) Struct. matrix M with GH10 (e) Logtransf. matrix of M (f) 2-D DFT of M

The next Stein type displacement operator in Figure 19 uses the already

known operator matrix XT
80 and a new operator matrix V , which has vertical

lines of ones, as shown in Figure 18.

Figure 18: Operator matrix V
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Figure 19: Stein with A = V and B = XT
80

(a) Struct. matrix M with GH1 (b) 2-D DFT of M

(c) Struct. matrix M with GH9 (d) 2-D DFT of M

The structured matrix M in Figure 20 was created by using the Stein

type displacement operator, and V and W as operator matrices.
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Figure 20: Stein with A = V and B = W

(a) Struct. matrix M with GH4 (b) 2-D DFT of M

A new operator matrix is introduced in Figure 21. The matrix Xf , with

f ∈ {E,R}, has entries unequal to zero only along the main- and the anti-

diagonal. The entries are either all equal to 1, XE, or random, XR. The

structured matrices with respect to the Stein type displacement operator

ΔXE ,XR can be seen in Figure 22.

Figure 21: Operator matrix XE
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Figure 22: Stein with A = XE and B = XR

(a) Struct. matrix M with GH7 (b) Logtransf. matrix of M (c) 2-D DFT of M

(d) Struct. matrix M with GH8 (e) Logtransf. matrix of M (f) 2-D DFT of M

(g) Struct. matrix M with GH14 (h) Logtransf. matrix of M (i) 2-D DFT of M



4.1 Exact Structure 67

The subsequent operator matrix YX is a sum of already known operator

matrices. The matrix YX is given by the downshift matrix Z0 plus the hor-

izontally flipped downshift matrix. Therefore it looks similar to the matrix

XE from Figure 21, except that it is shifted down one line. This operator

matrix, its transposed, and the Stein type displacement operator yield the

structured matrices in Figure 23.

Figure 23: Stein with A = YX and B = Y T
X

(a) Struct. matrix M with GH11 (b) 2-D DFT of M

(c) Struct. matrix M with GH15 (d) 2-D DFT of M



4.1 Exact Structure 68

4.1.4 Summary

As one can see, various textures or rather structured matrices can be created

by solving the two Lyapunov equations. Every texture has structure with

regard to the corresponding displacement operator. Due to the diversity of

the results and intuition, one can speculate that for every texture, there exists

a displacement operator with two sparse operator matrices that transforms

the texture into a displacement with low rank r; however, that still remains

to be seen.

One method would be to think of further operator matrices or generator

matrices and enlarge the database of structured matrices by hand, but obvi-

ously it is impossible to cover every texture in this way. Especially to find a

displacement operator for a certain texture, another approach is necessary.

For instance, one could begin by using already existing displacement opera-

tors and changing certain parameters of the operator or generator matrices

to see how the matrix M is impacted. Another method could be to write

an algorithm, which captures the structure of the matrix and suggests an

operator type and two sparse displacement operators.

Once enough displacement operators are found which cover a sufficiently

large range of textures, the process has to be reversed. For a given texture,

the ideal displacement operator must be found to indicate which “family”

of textures it belongs to. This is a very complex optimization problem and

won’t be treated in this thesis.

If the structured matrix is slightly disturbed by a noise term, the matrix

will most likely lose its structure with respect to the original displacement

operator. Therefore it is necessary for the structure to be exact. This draw-

back leads us to the next section, where structure is not imposed on the

matrix itself, but rather the matrix is a Gauss Markov Random Field and

structure is imposed on the inverse of its covariance matrix.
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4.2 Random Field

In the second approach to describing textures, it is assumed that the texture

is generated by a GMRF model. In this case, the texture itself doesn’t

have a low displacement rank, but rather the set of matrices which make

up the precision matrix have low displacement ranks with respect to certain

displacement operators.

First a framework is introduced, in which there are only vertical and

horizontal field interactions. Thus the precision matrix of size n2 × n2 is

highly sparse and can be defined by just 2 matrices of size n × n, which

are assumed to have a low displacement rank. The noncausal autoregressive

field representation from section 3.4.4 is utilized to describe the GMRF, and

the one-sided characterization from section 3.4.5 enables the generation of

drawings from the GMRF.

Due to restrictions on the matrices that compose the precision matrix, a

modification of the elementary model is presented. Thereby more structured

matrices can be applied in the compound of the precision matrix. Multiple

textures are shown at the end of this section to demonstrate the potential of

this approach.

4.2.1 Basic Setup

As already indicated, it is supposed that the precision matrix is a compound

of matrices with low displacement rank. This precision matrix is the main

parameter of a GMRF, which takes values on a 2-D lattice and symbolizes

the texture. Without loss of generality, it is assumed that the GMRF has

zero mean and that the lattice is square. Furthermore the values at sites

outside of the lattice are set to zero, simply meaning that sites close to the

border of the lattice may have fewer neighbors.

The first option to define a GMRF through matrices with low displace-
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ment rank is given by the following equation.

X = MX + XN +  , (46)

where X is a GMRF defined on a n × n lattice Ω with precision matrix

Q� ∈ ℝn
2×n2

, M ∈ ℝn×n and N ∈ ℝn×n are matrices that have a low rank

with respect to a known displacement operator, and  ∈ ℝn×n is zero-mean

Gaussian noise with

E(
−→
 
−→
 T ) = �2Q�. (47)

Transforming equation (46) yields

(In2 − In ⊗M −NT ⊗ In)
−→
X =

−→
 . (48)

Considering the noncausal autoregressive field representation (24), it follows

that

Q� = (In2 − In ⊗M −NT ⊗ In), (49)

which ensures that equation (46) is a valid representation for the GMRF X.

For dense matrices M and N , the neighbors of a site (k, l) are all the sites

that are either in row k or column l. There is no diagonal interaction in this

field (see Figure 24). Thus,

ne({k, l}) = {{i, j}∣i = k and N(j,l) ∕= 0 or j = l and M(k,i) ∕= 0}. (50)

Since Q� is a precision matrix, it has to be symmetric and positive defi-

nite. The next Lemma shows which conditions the matrices M and N have

to satisfy to ensure that Q� is SPD.

Lemma 4.2 Let Q� be defined as in equation (49), and {m1, ⋅ ⋅ ⋅ ,mn} and

{n1, ⋅ ⋅ ⋅ , nn} be the eigenvalues of M and N , respectively. Q� is SPD if and
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Figure 24: Neighborhood scheme: Neighbours of site ⊗ are denoted by ⊙
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only if M and N are symmetric and the eigenvalues of Q�,

{1−mi − nj∣i, j ∈ {1, ⋅ ⋅ ⋅ , n}}, (51)

are strictly positive.

Proof. It is clear from equation (49) that Q� is symmetric if and only if M

and N are symmetric. Proposition 2.3 shows that the eigenvalues of Q� are

given by equation (51). The definition of a SPD matrix proves the lemma.

□

These conditions are rather restrictive; only a few of the structured ma-

trices introduced in sections 2.3 and 4.1.3 fulfill these requirements. For

example, the Toeplitz matrix with all entries along the first off-diagonals

being equal to 0, 249 and the rest set to zero

T1 =

0BBBBBBBBBB@
0 0.249 0 ⋅ ⋅ ⋅ 0

0.249 0 0.249
. . .

...

0 0.249
. . . . . . 0

...
. . . . . . 0 0.249

0 ⋅ ⋅ ⋅ 0 0.249 0

1CCCCCCCCCCA (52)

can be used to obtain a SPD precision matrix. Setting M = T1 and N = T1
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in equation (49) yields a precision matrix Q� for a first order GMRF, which

corresponds to the structure presented in section 3.4.6, except that the field is

homogeneous. Therefore the GMRF can also be represented in the following

way [39]:

X(k,l) =
X
{i,j}∈�

�{i,j}X(k+i,l+j) +  (k,l), (53)

where � = {{1, 0}, {0, 1}, {−1, 0}, {0,−1}} and  is defined as in equa-

tion (47). In this particular case with M = T1 and N = T1, �{i,j} is equal to

0.249 for all {i, j} in �.

As Q� is symmetric and positive definite, the Cholesky decomposition

can be computed. The lower or upper triangular matrix then enables the

generation of a GMRF with precision matrix Q�:

U = chol(Q sigma);

vecPsi = randn(n*n,1);

vecX = U∖vecPsi; (54)

X = reshape(vecX,n,n);

in MATLAB R⃝ where chol denotes the Cholesky decomposition, randn gen-

erates pseudo-random values following the standard normal distribution,

U∖vecPsi is equivalent to U−1vecPsi, and the reshape command transforms

the vectorized version of X into a matrix of size n× n.

An example of a GMRF with precision matrix Q�, as described in equa-

tion (49) with M = T1 and N = T1, is presented in Figure 25. Two drawings

with the corresponding 2-D discrete Fourier transform are shown, whereas

the computation of the drawing and of the 2D-DFT is given by equations (54)

and equations (45), respectively. As described in section 4.1.2, the command

imshow(M,[]) is used to visualize the drawings of the GMRFs. One can

see that, after the linear interpolation (44) is applied to every entry in the
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matrix, the new mean and the new covariance matrix are given by

E(
−→
XP ) =

−→
D (55)

and

E((
−→
XP − E(

−→
XP ))(

−→
XP − E(

−→
XP ))T ) = k2E(

−→
X
−→
XT ), (56)

where XP = kX +D, k =
1

max(X(:))−min(X(:))
, D ∈ ℝn×n, and D(i,j) =

−kmin(X(:)) for all pairs (i, j).

Figure 25: Example of a GMRF (1)

(a) First drawing (b) 2-D DFT of first drawing

(c) Second drawing (d) 2-D DFT of second drawing
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4.2.2 Deviation of the Basic Setup

The restrictions on the structured matrices described in Lemma 4.2 give

incentives to find a less limiting approach for the composition of the precision

matrix. This is achieved by using the following formula for the precision

matrix:

Q� = QT
�Q� = (In2 − In ⊗M −NT ⊗ In)T (In2 − In ⊗M −NT ⊗ In). (57)

Clearly Q� is symmetric for any matrices M and N . However, it is no longer

sparse for most matrices M and N . Futhermore Q� is positive-definite if and

only if det(Q�) ∕= 0; otherwise Q� is positive-semidefinite. The next Lemma

indicates for which matrices M and N the precision matrix Q� is positive

definite.

Lemma 4.3 Let Q� be defined as in equation (57), and {m1, ⋅ ⋅ ⋅ ,mn} and

{n1, ⋅ ⋅ ⋅ , nn} be the eigenvalues of M and N , respectively. Q� is positive

definite if and only if

1−mi − nj ∕= 0, ∀i, j ∈ {1, ⋅ ⋅ ⋅ , n}. (58)

Proof. Follows from Lemma 4.2. □

Given the new precision matrix Q�, the constraints on the matrices M

and N are much looser than in the basic setup. Under these conditions,

the structured matrices from sections 2.3 and 4.1.3 can also be used in the

composition of the precision matrix, as they satisfy equation (58) but are not

symmetric or don’t comply with the restraints of Lemma 4.2.

Before the framework of a GMRF with precision matrix Q� is character-

ized, two propositions are needed.

Proposition 4.4 Let Q� ∈ ℝn
2×n2

be symmetric and positive-definite, Q� =

UTU its Cholesky decomposition, and B ∈ ℝn2×n2
such that Q� = BTB.
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Then there exists a unique orthogonal matrix O ∈ ℝn2×n2
, which solves B =

OU .

Proof. As Q� is positive-definite, the upper triangular matrix U is unique

and has strictly positive entries along the diagonal. Therefore U is regular,

which proves the existence and the uniqueness of O. To be orthogonal, O

has to fulfill OTO = OOT = I, as shown:

OTO = U−1TBTBU−1 = UT−1

UTUU−1 = I.

□

Note that in the following proposition the letter Q�, which is used in

section 3.4.4, is substituted by the letter Q�.

Proposition 4.5 Let Q� ∈ ℝn
2×n2

be a SPD matrix, Q�
−→
X = −→e a minimum

mean square represenation of a GMRF as in equation (24), Q� = UTU the

Cholesky decomposition of Q�, O ∈ ℝn2×n2
an arbitrary orthogonal matrix,

and B = OU . Then it is statistically equivalent to either use the decomposi-

tion Q� = UTU or the decomposition Q� = BTB to aquire a representation

of the GMRF X, which is driven by white noise.

Proof. The statistically equivalent representation to equations (24), (29) and (34)

is given by

B
−→
X = −→� , (59)

where
−→� = BT−1−→e (60)

and therefore

E(−→� −→� T ) = E(BT−1−→e −→e TB−1)

= �2OUT−1

UTOTOUU−1OT (61)

= �2I.
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Furthermore

E(
−→
X−→� T ) = E(

−→
X−→e TB−1) = �2B−1. (62)

□

Remark. Although it is very convenient to be able to use any decomposition

Q� = BTB, one should consider that, contrary to the representations from

section 3.4.5, the GMRF defined by equation (59) is generally not one-sided.

As in the basic setup, an effective way to generate a GMRF X with preci-

sion matrix Q� makes use of the noncausal autoregressive field representation

from section 3.4.4.

Q�
−→
X = −→e , (63)

where

E(
−→
X
−→
XT ) =

�
1

�2
Q�
�−1

,

E(−→e −→e T ) = �2Q�, (64)

E(
−→
X−→e T ) = �2I,

andQ� is given like in equation (57). It is known from Propositions 4.4 and 4.5

that the model given by equation (63) is equivalent to

Q�

−→
X =

−→
� , (65)

where
−→
� = QT−1

�
−→e (66)

and therefore

E(
−→
�
−→
� T ) = �2I, (67)

E(
−→
X
−→
� T ) = �2Q−1

� . (68)
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Equation (65) can be rewritten as

(In2 − In ⊗M −NT ⊗ In)
−→
X =

−→
�

⇐⇒ X−MX−XN = �

⇐⇒ (I −M)X−XN = �. (69)

Equation (69) has the same form as the continuous-time Lyapunov equa-

tion, which simplifies the generation of a GMRF in MATLAB R⃝. The fol-

lowing code is necessary for given structured matrices M and N :

zeta = randn(n,n);

X = lyap(eye(n)-M,-N,-zeta);

For example, using the Toeplitz matrix T1 (52), a precision matrix Q�
of order 3 is aquired by setting M = T1 and N = T1 in equation (57).

Two drawings from a GMRF with precision matrix Q� and their according

2D-DFTs are shown in Figure 26.

Figure 26: Example of a GMRF (2)

(a) First drawing (b) 2-D DFT of first drawing
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Figure 26: Example of a GMRF (2) (Continued)

(c) Second drawing (d) 2-D DFT of second drawing

Changing the values along the first off-diagonals of the matrix T1 from

0.249 to 0.25 and keeping the rest of the setup from the prior example unal-

tered yields the drawings demonstrated in Figure 27.

Figure 27: Example of a GMRF (3)

(a) First drawing (b) 2-D DFT of first drawing
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Figure 27: Example of a GMRF (3) (Continued)

(c) Second drawing (d) 2-D DFT of second drawing

4.2.3 Results

Now the textures/structured matrices generated in section 4.1.3 are used to

compose the precision matrix of a GMRF X. The caption of each figure

indicates which texture/structured matrix is used for both M and N (see

equation (57)). For example, “Figure 28: M and N are equal to Figure 6e”

denotes that for the GMRF X and the matrix S, illustrated in Figure 6e,

the following holds true:

E(
−→
X
−→
XT ) = (In2 − In ⊗ S − ST ⊗ In)T (In2 − In ⊗ S − ST ⊗ In).

The pictures within one figure are organized in such a way that each

column represents one drawing of the GMRF X. The first row of each column

contains the actual drawing, the second row its logtransform, and the third

row its 2-D discrete Fourier transform.
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Figure 28: M and N are equal to Figure 6e

(a) First drawing (b) Second drawing

(c) Logtransf. of first drawing (d) Logtransf. of second drawing

(e) 2-D DFT of first drawing (f) 2-D DFT of second drawing
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Figure 29: M and N are equal to Figure 6m

(a) First drawing (b) Second drawing

(c) Logtransf. of first drawing (d) Logtransf. of second drawing

(e) 2-D DFT of first drawing (f) 2-D DFT of second drawing
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Figure 30: M and N are equal to Figure 6o

(a) First drawing (b) Second drawing

(c) Logtransf. of first drawing (d) Logtransf. of second drawing

(e) 2-D DFT of first drawing (f) 2-D DFT of second drawing
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Figure 31: M and N are equal to Figure 7c

(a) First drawing (b) Second drawing

(c) Logtransf. of first drawing (d) Logtransf. of second drawing

(e) 2-D DFT of first drawing (f) 2-D DFT of second drawing
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Figure 32: M and N are equal to Figure 7e

(a) First drawing (b) Second drawing

(c) Logtransf. of first drawing (d) Logtransf. of second drawing

(e) 2-D DFT of first drawing (f) 2-D DFT of second drawing
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Figure 33: M and N are equal to Figure 7g

(a) First drawing (b) Second drawing

(c) Logtransf. of first drawing (d) Logtransf. of second drawing

(e) 2-D DFT of first drawing (f) 2-D DFT of second drawing
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Figure 34: M and N are equal to Figure 7i

(a) First drawing (b) Second drawing

(c) Logtransf. of first drawing (d) Logtransf. of second drawing

(e) 2-D DFT of first drawing (f) 2-D DFT of second drawing
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Figure 35: M and N are equal to Figure 8c

(a) First drawing (b) Second drawing

(c) Logtransf. of first drawing (d) Logtransf. of second drawing

(e) 2-D DFT of first drawing (f) 2-D DFT of second drawing
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Figure 36: M and N are equal to Figure 8k

(a) First drawing (b) Second drawing

(c) Logtransf. of first drawing (d) Logtransf. of second drawing

(e) 2-D DFT of first drawing (f) 2-D DFT of second drawing
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Figure 37: M and N are equal to Figure 13c

(a) First drawing (b) Second drawing

(c) Logtransf. of first drawing (d) Logtransf. of second drawing

(e) 2-D DFT of first drawing (f) 2-D DFT of second drawing
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Figure 38: M and N are equal to Figure 13k

(a) First drawing (b) Second drawing

(c) Logtransf. of first drawing (d) Logtransf. of second drawing

(e) 2-D DFT of first drawing (f) 2-D DFT of second drawing
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Figure 39: M and N are equal to Figure 13m

(a) First drawing (b) Second drawing

(c) Logtransf. of first drawing (d) Logtransf. of second drawing

(e) 2-D DFT of first drawing (f) 2-D DFT of second drawing
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Figure 40: M and N are equal to Figure 15e

(a) First drawing (b) Second drawing

(c) Logtransf. of first drawing (d) Logtransf. of second drawing

(e) 2-D DFT of first drawing (f) 2-D DFT of second drawing
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4.2.4 Summary

This section has proposed an approach for describing textures using the the-

ory of GMRFs and assuming that the precision matrix is a compound of two

structured matrices. The main advantage of the GMRF appraoch is that

the texture doesn’t have to be exact, since the GMRF incorporates a noise

term. Furthermore the basic setup involves only vertical and horizontal field

interactions, which implies a very sparse structure of the precision matrix.

However, because a precision matrix has to be SPD to represent a proper

density, the variety of matrices which compose the precision matrix is re-

stricted. Most of the structured matrices presented in section 4.1.3 do not

comply with those restrictions, so a deviation of the basic setup is proposed.

It is assumed that the precision matrix used in the basic setup is multi-

plied with its transpose to create a new precision matrix. On one hand, this

ensures its symmetry and, in case the former matrix has full rank, the pos-

itive definiteness of the newly created precision matrix. On the other hand,

in most cases the sparseness gets lost and every site depends on all the other

sites.

A diversity of textures can be generated using only 2n2 parameters for

the precision matrix. The abundance and variety of the produced textures

shows that characterizing textures with the help of displacement operators is

a very promising approach. However, as in the previous section, the process

of classifying unknown textures with this approach is not treated. In order

to do so using the deviation of the basic setup, one would face the difficulty

of extracting the 2 structured matrices from the computed precision matrix.



5 Transformation of Textures

Often textures are transformed by applying functions such as the Wavelet

transform, the Fourier transform or a FIR filter, which in turn impacts

the texture’s displacement operator. It is assumed that for a given tex-

ture/structured matrix M , the displacement operator L is known, and the

corresponding displacement L(M) has low rank rA,B(M). This section ex-

plores how the displacement operator L, and its operator matrices A and B

change when a function f(⋅) is applied to the texture/structured matrix M .

5.1 Linear Transformation

First the case where f(⋅) is a linear function is examined. The function f(⋅)
can be represented by a matrix F ∈ ℝk×l.

Throughout this section, let M ∈ ℝl×m be a texture/structured ma-

trix with displacement rank rA,B(M) with respect to the Stein ΔA,B or the

Sylvester ∇A,B displacement operator with operator matrices A ∈ ℝl×l and

B ∈ ℝm×m. Let rF and rM be the rank of F and M respectively, and

UFSFV
T
F = F the Singular Value Decomposition of F .

The first Lemma supposes that F is a square matrix and invertible:

Lemma 5.1 Let F ∈ ℝl×l and rF = l. Then rR,B(FM) = rA,B(M), where

R = FAF−1

Proof.

Stein:

FM −RFMB = FM − FAF−1FMB = FΔA,B(M)

Sylvester:

RFM − FMB = FAF−1FM − FMB = F∇A,B(M)
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The rank of the displacement stays unaltered, as F has full rank. □

For the next Lemma, a generalization of the matrix inverse, which can

be applied to singular and rectangular matrices, is needed [2].

Definition. Moore-Penrose Generalized Inverse. Let M ∈ ℂm×n be

nonzero, r = rank(M), and USV ∗ = M the Singular Value Decomposition

of M . The Moore-Penrose generalized inverse M † ∈ ℂn×m of M is given by

M † = V(:,1:r)S
−1
(1:r,1:r)U

∗
(:,1:r). (70)

M and M † satisfy the following equations:

MM †M = M,

M †MM † = M †,

(MM †)∗ = MM †,

(M †M)∗ = M †M.

For the remaining Lemmata, the assumption that F is square and invert-

ible is no longer used.

Lemma 5.2 rR,B(FM) ≤ rA,B(M) + (−∣rF − l
2
∣+ l

2
), where R is computed

as follows

D = V T
F AVF , (71)

K = SFDS
†
F ,

R = UFKU
T
F .

Proof.
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Stein:

FM −RFMB

= FM − UFKSFV T
F MB

= FM − UF (SFD − (SFD −KSF ))V T
F MB

= FM − UFSFDV T
F MB + UF (SFD −KSF )V T

F MB

= FΔA,B(M) + UF (SFD −KSF )V T
F MB

Sylvester:

RFM − FMB

= UFKSFV
T
F M − FMB

= UF (SFD − (SFD −KSF ))V T
F M − FMB

= UFSFDV
T
F M − UF (SFD −KSF )V T

F M − FMB

= F∇A,B(M)− UF (SFD −KSF )V T
F M

where

SFD =

�
(SFD)(1:rF ,1:rF ) (SFD)(1:rF ,l−rF +1:l)

0 0

�
and

KSF =

�
(SFD)(1:rF ,1:rF ) 0

0 0

�
.

It follows that

(SFD −KSF ) =

�
0 (SFD)(1:rF ,l−rF +1:l)

0 0

�
.

As the submatrix (SFD)(1:rF ,l−rF +1:l) has rF rows and l − rF columns, the

matrix UF (SFD−KSF )V T
F MB in the Stein case and the matrix UF (SFD−

KSF )V T
F M in the Sylvester case have a maximum rank of min(rF , l − rF ).
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This proves the upper limit of the displacement rank. □

So far only one operator matrix was affected by the transformation. By

also changing the second operator matrix, the upper limit of the displacement

rank can be further decreased. A permutation matrix P is employed to

maximize the rank of DP ∣(1:rL,1:rL) in the equation DP = DP , where D is

from equation (71). If the submatrix DP ∣(1:rL,1:rL) already has full rank, P is

equal to the identity matrix. In addition, the following variables are defined:

KP = SFDPS
†
F , (72)

R = UFKPU
T
F . (73)

For the next two Lemmata it is assumed that the texture/structured

matrix M is invertible. The first Lemma explores the case with the Stein

displacement operator

Lemma 5.3 Let M ∈ ℝl×l, rM = l, and the displacement ΔA,B(M) have

low rank rA,B(M). Then rR,Y (FM) ≤ rA,B(M), where R is defined by equa-

tion (73) and Y is given by

DZ = (KPSF )†(SFD −KPSF ), (74)

DL = M−1VFDZV
T
F M,

Y = B +DLB,

where D and KP are given by (71) and (72), respectively.

Proof. Let [M ] denote the column space of a matrix M , and ⊆ and ⊈
symbolize “a subset of” and “a proper subset of”, respectively.

First it is necessary to show that KPSFDZ = SFD −KPSF : Assuming

that [KPSF ] ⊈ [SFD], a vector v exists with v ∈ [SFD] and v /∈ [KPSF ].

As (KPSF )(:,1:rF ) = (SFDP )(:,1:rF ), it follows that v ∈
�
(SFDP )(:,rF +1:l)

�
and

v /∈
�
(SFDP )(:,1:rF )

�
. However, that creates a contradiction to the condition
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that P maximizes the rank of DP ∣(1:rL,1:rL). Therefore [KPSF ] ⊇ [SFD]. It

is easy to see that [KPSF ] ⊆ [SFD]. As a result, [KPSF ] = [SFD] and

KPSFDZ = SFD −KPSF , with DZ∣(i,j) = 0 for i > rF .

FM −RFMY

= FM −RFMB −RFMDLB

= FM − UFKPSFV
T
F MB − UFKPSFDZV

T
F MB

= FM − UF (SFD − (SFD −KPSF ))V T
F MB − UF (SFD −KPSF )V T

F MB

= FM − UFSFDV T
F MB − UF (KPSF − SFD + SFD −KPSF )V T

F MB

= FΔA,B(M)

Because F may have a rank less than l, rR,Y (FM) ≤ rA,B(M). □

The following Lemma is equivalent to the previous one for the Sylvester

displacement operator.

Lemma 5.4 Let M ∈ ℝl×l, rM = l, and the displacement ∇A,B(M) have

low rank rA,B(M). Then rR,Y (FM) ≤ rA,B(M), where R is defined by equa-

tion (73) and Y is given by

DZ = S†F (SFD −KPSF ), (75)

DL = M−1VFDZV
T
F M,

Y = B −DL,

where D and KP are given by (71) and (72), respectively.

Proof. Because [SF ] ⊇ [KP ], it follows that SFDZ = SFD − KPSF with
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DZ∣(i,j) = 0 for i > rF .

RFM − FMY

= UFKPSFV
T
F M − FMB + FMDL

= UF (SFD − (SFD −KPSF ))V T
F M − FMB + UFSFDZV

T
F M

= UFSFDV
T
F M − UF (SFD −KPSF − SFD +KPSF )V T

F M − FMB

= F∇A,B(M)

Because F may have a rank less than l, rR,Y (FM) ≤ rA,B(M). □

The two following Lemmata are extensions of the two previous ones, when

the texture/structured matrix M is not invertible.

Let UMSMV
T
M be the singular value decomposition ofM , mF

M = min(rF , rM)

the minimum of rF and rM , Λ = V T
F UM , � = Λ(1:mF

M ,1:mF
M ) a leading princi-

pal submatrix of Λ, r� = rank(�) the rank of the submatrix �, and rloss =

mF
M − r� the nullity of the submatrix �. Jcol and Jrow denote two index sets,

such that �(:,j) j ∈ Jcol is a basis of the column space of � and �(j,:) j ∈ Jrow
is a basis of the row space of �. Clearly Jcol and Jrow have both r� elements.

Moreover the subsequent definitions are needed:

D̂Z∣(Jrow,:) = DZ∣(Jrow,:), D̂Z ∈ ℝl×l, (76)

with DZ from either equation (74), which will be applied in Lemma 5.5, or

equation (75) in Lemma 5.6, and the other rows of D̂Z set to zero.

Dt = D̂ZΛ,

D̃(Jcol,:) = �−1
(Jrow,Jcol)

Dt∣(Jrow,:), D̃ ∈ ℝl×l,
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with the other rows of D̃ set to zero.

Ď = S†MD̃SM ,

DL = VMĎV
T
M . (77)

Let De1 = (V T
F UMD̃ − D̂ZV

T
F UM)UT

MVF denote the first error matrix and

De2 = DZ − D̂Z the second. From the definitions of D̃ and D̂Z , it can be

deduced that De1∣(i,j) = 0 for i ∈ Jrow. In addition, equation (76) verifies

that De2∣(i,j) = 0 for i ∈ Jrow or i > rF .

As before, the Stein displacement operator is examined first.

Lemma 5.5 Let the displacement ΔA,B(M) have low rank rA,B(M). Then

rR,Y (FM) ≤

8<: rA,B(M) + rLoss if rF ≤ rM

rA,B(M) + rLoss + rF − rM if rF > rM ,

where R is defined like in equation (73) and Y is given by

Y = B +DLB,

where DL is defined by equation (77), while DZ from equation (74) is used

in equation (76).

Proof.

FM −RFMY

=FM − UFKPSFV
T
F MB − UFKPSFV

T
F MDLB

=FM − UF (SFD − (SFD −KPSF ))V T
F MB − UFKPSFV

T
F UMD̃SMV

T
MB

=FM − UF (SFD − (SFD −KPSF ))V T
F MB − UFKPSF (D̂Z +De1)V

T
F MB

=FM − FAMB + UF (SFD −KPSF −KPSF D̂Z −KPSFDe1)V
T
F MB

=FΔA,B(M) + UF (SFD −KPSF −KPSFDZ −KPSFDe1 +KPSFDe2)V
T
F MB

=FΔA,B(M)− UFKPSF (De1 −De2)V
T
F MB



5.1 Linear Transformation 101

If E = SF (De1 −De2), then E(i,j) = 0 for i ∈ Jrow or i > rF . This yields

rank(E) ≤

8<: rLoss if rF ≤ rM

rLoss + rF − rM if rF > rM .

The same is valid for the term UFKPSF (De1−De2)V
T
F MB, which proves the

Lemma. □

The same upper border can be found for the Sylvester displacement op-

erator:

Lemma 5.6 Let the displacement ∇A,B(M) have low rank rA,B(M). Then

rR,Y (FM) ≤

8<: rA,B(M) + rLoss if rF ≤ rM

rA,B(M) + rLoss + rF − rM if rF > rM ,

where R is defined by equation (73) and Y is given by

Y = B −DL,

where DL is defined by equation (77), while DZ from equation (75) is used

in equation (76).

Proof.

RFM − FMY

=UFKPSFV
T
F M − FMB + FMDL

=UF (SFD − (SFD −KPSF ))V T
F M − FMB + UFSFV

T
F UMD̃SMV

T
M

=UF (SFD − (SFD −KPSF ) + SF D̂Z + SFDe1)V
T
F M − FMB

=FAM − UF (SFD −KPSF − SFDZ − SFDe1 + SFDe2)V
T
F M − FMB

=F∇A,B(M) + UFSF (De1 −De2)V
T
F M
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If E = SF (De1 −De2), then E(i,j) = 0 for i ∈ Jrow or i > rF . This yields

rank(E) ≤

8<: rLoss if rF ≤ rM

rLoss + rF − rM if rF > rM .

The same is valid for the term UFSF (De1 − De2)V
T
F M , which proves the

Lemma. □

Lemmata 5.1-5.6 demonstrate ways to alter the operator matrices in

case the texture/structured matrix M is linearly transformed. In the first

Lemma the transformation matrix F is invertible and therefore the solution

is straightforward. In Lemma 5.2, F doesn’t have to be regular, but still

only one operator matrix is changed and the solution is independent of M .

The border of the new displacement rank depends on the rank of F and the

number of rows of M . If rF is close to l
2
, then the displacement rank may

rise substantially. On the other hand, if rF is close to zero or l, then the

displacement rank may change just slightly. Lemmata 5.3 and 5.4 affect the

second operator matrix as well and the computation depends on M , which is

assumed to be invertible. By also transforming the second operator matrix,

a lower displacement rank is achieved. In addition to the two previous ones,

Lemmata 5.5 and 5.6 handle the case where M is not invertible. Thereby

the border of the new displacement rank is subject to rF , rM , and the rank

of a leading principal submatrix of the product V T
F UM .

Examples of interesting linear transforms especially for textures are (cyclic)

shift, Wavelet transform, Fourier transform or FIR filter. A model for a co-

sine transform will be introduced here.

Example. Cosine transformed texture. The discrete cosine transform

(DCT) of a square matrix M ∈ ℝn×n is given by

CnMCT
n ,
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where Cn denotes the orthogonal n× n DCT matrix:

Cn∣(i,j) = �i cos
�(2(j − 1) + 1)(i− 1)

2n
, for i, j ∈ {1, ⋅ ⋅ ⋅ , n},

with �1 = 1√
n
, and �i =

È
2
n

for i ∈ {2, ⋅ ⋅ ⋅ , n}. Figure 41 demonstrates

a commutative diagram. It is equivalent to either apply the DCT first and

then use the adapted displacement operator, or first utilize the original dis-

placement operator and then employ the DCT. Of course, the arrows could

be reversed by appyling the inverse DCT and the inverse of the displace-

ment operator, provided that the conditions from Theorem 2.1 are fulfilled.

For the transformation of the displacement operator matrices, Lemma 5.1 is

used.

Figure 41: Commutative diagram of the DCT and a displacement operator

M

M − AMB

CnMCT
n

CnMCT
n − CnAMBCT

n

Cn ⋅ CT
n

ΔA,B(⋅) ΔCnACT
n ,CnBCT

n
(⋅)

Cn ⋅ CT
n

Remark. Depending on which transformation matrix F is applied, the al-

tered operator matrices will be in most cases not sparse anymore. Exceptions

are for example cyclic shifts Z1 or shifts like Z0 (see equation (2)). Applying

Lemma 5.1 or Lemma 5.2 will yield two sparse operator matrices once again.
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5.2 Upsampling

Upsampling is a commonly utilized operation in the field of image analysis.

It signifies the increase of the spatial resolution. An image upsampled by an

integer L is given by

MU ∣(i,j) =

8<: M( i−1
L

+1, j−1
L

+1) if mod(i− 1, L) = 0 and mod(j − 1, L) = 0

0 otherwise,

where i ∈ {1, ⋅ ⋅ ⋅ , Lm}, j ∈ {1, ⋅ ⋅ ⋅ , Ln}, M ∈ ℝm×n, and mod denotes

the modulo operator. Upsampling can also be defined with the help of the

Kronecker product:

MU = M ⊗ Uℒ,

where

Uℒ =

0BBBBBB@
1 0 ⋅ ⋅ ⋅ 0

0 0
...

...
. . .

...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

1CCCCCCA| {z }
L×L

.

The following Lemma illustrates how the operator matrices change when

the texture/structured matrix M is upsampled.

Lemma 5.7 Let M ∈ ℝl×m, A ∈ ℝl×l and B ∈ ℝm×m such that the dis-

placement ΔA,B(M) or ∇A,B(M) has low rank rA,B(M). If MU = M ⊗Uℒ is

the upsampled version of M , then rR,Y (MU) = rA,B(M), where R = A ⊗ IL
and Y = B ⊗ IL.

Proof.
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Stein:

MU −RMUY = M ⊗ Uℒ − (A⊗ IL)(M ⊗ Uℒ)(B ⊗ IL)

= M ⊗ Uℒ − (AMB)⊗ Uℒ
= ΔA,B(M)⊗ Uℒ

Sylvester:

RMU −MUY = (A⊗ IL)(M ⊗ Uℒ)− (M ⊗ Uℒ)(B ⊗ IL)

= (AM)⊗ Uℒ − (MB)⊗ Uℒ
= ∇A,B(M)⊗ Uℒ

The new displacements ΔA,B(M) ⊗ Uℒ and ∇A,B(M) ⊗ Uℒ have the same

rank as ΔA,B(M) and ∇A,B(M) respectively. □

Remark. In the previous Lemma, any L×L matrix D could have been used

for R = A ⊗D and Y = B ⊗D, as long as DUℒ = Uℒ and UℒD = Uℒ hold

true. For example, D = Uℒ would be possible.



6 Conclusion

This thesis has considered the classification of textures, presenting two new

techniques that are based on the displacement rank approach. The first

assumes that two textures are equivalent if and only if they have low dis-

placement rank with respect to the same displacement operator. The second

assumes that the texture is generated by a GMRF and that the respective

precision marix is a composition of structured matrices. While the former

has a simpler framework, the advantage of the latter is that the structure

doesn’t have to be exact.

In both cases, numerous textures were generated by reversing the classifi-

cation process. This variety of pictures shows the potency of these approaches

and encourages further research to be conducted.

An effective and computationally inexpensive optimization algorithm that

works as a classifier would need to be developed. In addition, more insights

concerning the change of the displacement operator matrices once the texture

is transformed are needed. For instance, certain existing transformations

need to be altered such that the sparseness of the new operator matrices is

ensured, and new maps have to be added.

With these considerations in mind, texture classification with displace-

ment operators may proof to be an emerging technique in image analysis.
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