
Graphical Debugging of QVT Relations
using Transformation Nets

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur/in

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Patrick Zwickl

Matrikelnummer 0525849

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer: Univ.-Prof. Mag. DI Dr. Gerti Kappel
Mitwirkung: DI(FH) Johannes Schönböck

Wien, 07.12.2009
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Erklärung zur Verfassung der Arbeit

Patrick Zwickl, Gröhrmühlgasse 36E, 2700 Wiener Neustadt

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die
Stellen der Arbeit einschließlich Tabellen, Karten und Abbildungen, die anderen
Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf
jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 7. Dezember 2009
Patrick Zwickl

i

ii

Danksagung

Im Zuge meines Studium wurde ich von vielen Menschen, als Kommilitonen,
Lehrende, Betreuuer, Freunde, Familie etc., begleitet. Dabei war es mir möglich
Unterstützungen auf verschiedensten Ebenen zu erhalten oder in einer guten
Zusammenarbeit respektable Ergebnisse zu erzielen. Aufgrund der größeren Zahl
an Begleitern, möchte ich mich in der Danksagung im Besonderen auf jene Un-
terstützer beschränken, die in einem überdurchschnittlichen Zusammenhang mit
dieser Diplomarbeit stehen.

Ich möchte mich sehr herzlich für die engagierte Hilfe, Leitung und Supervision
bei meinen Betreuuern O.Univ.-Prof. Mag. DI Dr. Gerti Kappel und Univ.-Ass.
Mag. Dr. Manuel Wimmer bedanken. Darüber hinaus möchte ich mich einen
besonderen Dank für die fachliche Untersützung an DI (FH) Johannes Schönböck
und DI Angelika Kusel richten. Es würde mich daher freuen, sollte sich auch
in Zukunft die eine oder andere Möglichkeit der Zusammenarbeit (Supervision)
bieten.

Aufgrund der aufgewandten Unterstützung und der reichlich zuteil gewordenen
Geduld möchte ich mich bei meiner Familie, aber im Besonderen bei meiner Fre-
undin, Jacqueline Lonsky, für ihre große Hilfe durch Korrekturlesen der schriftlichen
Ausarbeitung bedanken.

Neben all diesen klassischen Danksagungen, erfreue ich mich besonders über
jede Zeile, die von jenen Menschen gelesen werden/wurden, die dies nicht aus
(moralischer) Pflicht, sondern aus Interesse an dem Thema und der geistigen Au-
seinandersetzung mit diesem Gebiet machen/machten. Dementsprechend möchte
ich großen Dank an jene für Ihr fachliches Interesse richten.

iii

iv

Abstract

Model transformations (MT) play a key role in the Model Driven Engineering
(MDE) paradigm, leading to the standardization of the Query/View/Transfor-
mation (QVT) model transformation language by the Object Management Group
(OMG). Until now, however, this language did not attract the same interest as
the Unified Modeling Language (UML), because of the lack of adequate debug-
ging facilities which are necessary regarding the following three problem areas:
First, declarative languages like QVT Relations (QVT-R) hides the operational
semantics of transformations. Only the information provided by the interpreter,
as well as the tendered inputs and returned outputs are available for tracking
the progress of transformations. Furthermore, the ordering of transformation ap-
plication is hidden by the MT engines providing only a black-boxes view to the
users. This can lead to the problem of impedance mismatches between design and
runtime. These characteristics of QVT-R are assets for developing, but are hand-
icaps for debugging. Second, QVT-R code is specified on higher abstraction level
than its execution and state-of-the-art debugging. This deteriorates the ability to
deduce causes from produced results. Third, the information content responsible
for operating MTs is spread over several artifacts including the input model, a
resulting target model and the QVT-R code. As a consequence, the reasons for
a particular outcome are hard to be derived from the involved artifacts. This
severely harms the ease of debugging.

Therefore, this master thesis tackles the mentioned problems by visualizing
QVT-R as Transformations Nets, using the MT framework “Transformations
On Petri Nets In Color” (TROPIC) based on Colored Petri Nets (CPN). This
can be seen as explicit definition of operational semantics on a high abstraction
level providing a white-box view for debugging QVT-R. This thesis proposes a
procedure model formulated in a conceptual approach and in a prototypic im-
plementation striving for bridging the existing gap between these two different
paradigms by mapping the concepts of QVT Relations to such nets. In this thesis
three particular contributions are provided: (i) a solution approach for unidirec-
tional mappings producing target models from an existing source model, (ii) the
support for model inheritance, (iii) and synchronization approaches for timely
and version-based incremental changes.

v

vi

Kurzfassung

Modelltransformationen (MT) übernehmen eine Schlüsselrolle im Model Driven
Engineering (MDE) Paradigma, welche zur Standardisierung der Modelltransfor-
mationssprache Query / View / Transformation (QVT) von der Object Mana-
gement Group (OMG) führte. Allerdings konnte diese Sprache bislang nicht das
gleiche Interesse wie die Unified Modeling Language (UML) wecken, da ein im-
manenter Mangel an adequaten Debugging Mechanismen besteht. Folgende drei
Problembereiche wurden dabei identifiziert: Erstens offerieren deklarative Spra-
chen wie QVT Relations (QVT-R) keine operative Sicht des Transformationspro-
zesses. Nur die Informationen, die von den Interpretern zur Verfügung gestellt
werden, sowie die vorhandenen Ein- und Ausgabedaten, können für die Beobach-
tung der Transformationsumsetzung genutzt werden. Sogar die Reihenfolge der
Transformationsausführung wird durch den MT engine als Black-box-System ver-
schleiert. Dies kann zum Problem der Diskrepanz zwischen Design- und Laufzeit
führen. Zweitens verfügt der QVT-R Code über ein höheres Abstraktionslevel als
die Ausführung und das Debugging des Codes. Dies beeinträchtigt die Möglich-
keit von Schlussfolgerungen aus produziereten Ergebnissen. Drittens sind die
Informationen der Durchführung der Modelltransformationen über mehrere Ar-
tefakte – einschließlich des Source-Modells, des resultierenden Ziel-Modells und
des umfassenden QVT-R Codes – zerstreut. Daraus folgend sind die Gründe für
ein bestimmtes Ergebnis für den Benutzer nicht nachvollziehbar.

Zur Lösung der genannten Probleme wird in dieser Diplomarbeit die Visualisie-
rung von QVT-R in Transformationsnetzen mittels des MT Frameworks “Trans-
formation On Petri Nets In Color” (TROPIC), das auf Colored Petri Nets (CPN)
aufbaut, erörtert. Diese kann als explizite Definition der operationalen Semantik
für die Fehlersuche auf hoch abstraktem Level interpretiert werden. Die vor-
liegende Arbeit formuliert einen konzeptionellen Ansatz mit protoypischer Um-
setzung zur Überwindung der bestehenden Kluft zwischen den verwendeten Pa-
radigmen. Dies erfolgt durch die Abbildung der QVT-R Konzepte auf TRO-
PIC. Konkret werden drei Kontributionen präsentiert: (i) ein Lösungsansatz für
unidirektionale Transformationen welche ein Zielmodell aus einem bestehenden
Quellmodell erstellen, (ii) die Untersützung von Modelvererbung, und (iii) Syn-
chronisationsansätze für zeitliche und versionsbedingte inkrementelle Änderun-
gen.

vii

viii

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Problem Statement . 1
1.3. Solution . 2
1.4. Structure of the Thesis . 3

2. Model Transformation Fundamentals 5
2.1. Model Driven Engineering . 5
2.2. Model Transformation . 6

3. Model Transformation Technologies 9
3.1. Query/View/Transformations (QVT) 9

3.1.1. QVT Relations (QVT-R) 10
3.2. Transformation On Petri Nets In Color (TROPIC) 14

3.2.1. Core concepts of TROPIC 15
3.3. Comparison of QVT Relations and TROPIC at a glance 18

4. Transforming QVT Relations to TROPIC 21
4.1. Overview . 21

4.1.1. Execution Semantics of QVT-R 23
4.2. Types . 26

4.2.1. Domains . 28
4.2.2. Primitive Domains . 29
4.2.3. Primitive types . 30
4.2.4. Complex types . 30

4.3. Relationships . 32
4.4. Dependencies . 34

4.4.1. Where- and When-Clauses 34
4.4.2. Hierarchical Data Passing 35

4.5. Finding Correspondence of Source and Target Objects 37
4.5.1. Heavyweight Approach . 37
4.5.2. Lightweight Approach . 39

4.6. Realization of Correspondences 41
4.6.1. Transition “Owners” . 41
4.6.2. Relationships . 42
4.6.3. Referred Relations . 44

4.7. Complexity and Effort . 46

5. Supporting Advanced Features of QVT Relations 51
5.1. Inheritance . 51

ix

Contents

5.2. Incremental Changes . 52
5.2.1. Introduction . 52
5.2.2. Model Synchronization . 52

5.3. Summary . 55

6. Realization 57
6.1. Environments . 57

6.1.1. Eclipse and its Plugins . 57
6.1.2. QVT-R Parser . 58

6.2. Implementation Specifics . 59
6.2.1. Data Types . 59
6.2.2. Information Encapsulation 60
6.2.3. Class Structure . 61

6.3. Execution Process . 64
6.3.1. Course of Execution . 64
6.3.2. Managing Flow Information 71
6.3.3. Managing colours in TROPIC 72
6.3.4. Adding Model Information 72
6.3.5. Element Arrangement . 75

6.4. Summary . 76

7. Evaluation 79
7.1. Capability of Erroneous Code Recognition 79

7.1.1. Pitfall Detection . 79
7.2. Visualization . 81

7.2.1. Performance . 83
7.2.2. Unavailable Language Elements 84
7.2.3. Effort Increase Analysis for Transformation Net Creations 84

7.3. Model Synchronization . 86
7.4. Summary . 87

8. Related Work 89
8.1. Testing . 89

8.1.1. Trial & Error . 89
8.1.2. Test-Driven-Development 90

8.2. Debugging . 91
8.2.1. Model-based Debugging 92
8.2.2. QVT-R Debuggers . 92
8.2.3. Forensic Debugging Techniques 94
8.2.4. Backwards Debugging . 94

8.3. Verification . 95
8.3.1. Verification by Translation 95
8.3.2. Verification of Graph Transformations 96
8.3.3. Verification based on CPN 96

8.4. Summary . 99

9. Conclusion 101
9.1. Summary . 101

x

9.2. Future Work . 101

A. Appendix 103

Bibliography 105

xi

1. Introduction

1.1. Motivation

Over the last years Model Driven Engineering (MDE) experienced a strong im-
petus, placing models as first class artifacts throughout the software lifecycle.
Although models are used in software development since several decades up to
now [7], documentation was their main purpose only. In contrast to that, models
in MDE not only serve for documentation, but the main promise of MDE is to
raise the level of abstraction from technology and platform-specific concepts to
platform-independent and computation-independent modeling [3].

This success exceptionally qualifies and advocates models – such as models
from the Unified Modeling Language (UML) standard – to be used for architec-
tural issues to create a common understanding. Typically several model types are
used which is apparently related to the complexity that modern software devel-
opment has to face. Therefore, it is often necessary to use a set of different model
types for representing a particular environment that is directly related to a single
domain specific model (or to all other models). Hence, automatization or even
synchronization mechanisms for model transformations (MT) from certain source
models to desired target models are needed as they can improve the consistency
of models and can reduce the effort.

To fulfill this promise, the availability of appropriate model transformation
languages is the crucial factor, since transformation languages are as important
for MDE as compilers are for high-level programming languages. Transformation
scenarios can be divided into vertical model transformations and horizontal model
transformations. Vertical model transformations lower the level of abstraction,
e.g., generation code from UML class diagrams, whereas horizontal model trans-
formations transform models between two different representations on the same
level of abstraction, which is the focus of the rest of this thesis, e.g., a UML class
model is transformed to an entity relationship diagram. There already exist sev-
eral model transformation languages (MTL) that provide the transformation from
one model (conforming to a meta model) to another model (conforming to an-
other meta model), e.g., the Query/View/Transformation (QVT) standard [22].
Typically a rich set of transformation rules – defined by the developer – is nec-
essary to determine which structure(s) of the source model correspond to which
structure(s) of the target model.

1.2. Problem Statement

In this thesis the declarative model transformation language QVT Relations
(QVT-R) is used which has been standardized by the Object Management Group.

1

1. Introduction

Although model transformations are highly necessary in the context of model
driven approaches, not even the QVT standard was able to attract sufficient in-
terest until now. A main factor for this weak adoption results from the lack of
adequate debugging facilities. Such facilities are highly necessary according to
the three particular identified problem areas:

First, declarative languages like QVT-R cannot make the operational seman-
tics of transformation specifications explicit to the transformation designer. Only
the information provided by the interpreter, as well as the tendered inputs and
returned outputs are available for tracking the progress of transformations. Even
the ordering of rule application is hidden by the MT execution engine which is
provided as a black-box to the users. This can lead to the problem of impedance
mismatches between designtime and runtime. This characteristic of QVT-R is a
valuable asset for developers as they need not specify these details, but for de-
bugging this can be seen as severe handicap. Second, QVT-R code is specified on
a high-level of abstraction whereas its execution and state-of-the-art debugging
mechanisms are positioned on significant lower level of abstraction. This deterio-
rates the ability to deduce causes from produced results. Third, the information
content responsible for operating MTs is spread over several artifacts including
the input model, a resulting target model and a comprehensive QVT-R code. As
a consequence, the reasons for a particular outcome are hard to be derived from
the involved artifacts. This severely harms the ease of debugging.

These three problem areas are, moreover, influenced by the complexity of typ-
ical model transformation rules and the unclear semantics of some QVT-R lan-
guage elements – e.g., “check” and “enforce”.

1.3. Solution

This master thesis concentrates on several areas of improving the ease and quality
of debugging. It discusses the possibilities of visualizing QVT-R in “Transforma-
tions On Petri Nets In Color” (TROPIC) – which uses Transformation Nets
based on Colored Petri Nets (CPN). This can be seen as an explicit definition
of the operational semantics providing a white-box view for debugging QVT-R.
This thesis proposes a conceptual approach that is transposed into a prototypi-
cal implementation. It strives for bridging the existing gap between the desired
operational semantics for debugging and the declarative language elements (as
used in QVT-R) by mapping the concepts of QVT-R to TROPIC. TROPIC can
provide a white-box-view – as paths from source to target representation by using
Arcs and Transitions – of the code on a high-level of abstraction by visualizing
the involved metamodel structures (as Places) and the concrete model informa-
tion (as Tokens). It, therefore, allows the analyzation of the before scattered
content in one single visualization. In the first step the focus lies on the detec-
tion of solutions for unidirectional transformation mappings. This is deepened in
the second step by providing support for advanced features such as inheritance
used in input or output models. The third will concentrate on the fundamental
problem of incremental changes by proposing synchronization mechanism theo-
rems and providing a simple prototypic implementation. Incremental changes are
modifications of a previously created model whereas synchronization approaches

2

1.4. Structure of the Thesis

can assist to hold related models consistent in the case of modifications.
The thesis finalizes by an evaluation of how the proposed concepts are appro-

priate for the specified context and which challenges and possible exploitations of
the TROPIC runtime model, e.g., complex Object Constraint Language (OCL)
statements [21], remain for future research.

1.4. Structure of the Thesis

The rest of the thesis is structured as follows. Section 2 introduces the fundamen-
tals of model transformations and debugging facilities. This thesis proceeds with
the used technologies and standards. The major component of this theses is the
practical part according to the focus on a set of scientific solution concepts and
considerations. This part starts with an introduction of the conceptual approach
of this paper in section 4 leading to advanced problems in section 5. The actual
realization is presented in section 6 and is evaluated in chapter 7. This thesis
finalizes with the presentation of related works and approaches (section 8), and
a summarization of results (9).

3

1. Introduction

4

2. Model Transformation
Fundamentals

There exist some fundamental areas in the field of modeling and metamodeling
that are introduced in this section. The differentiation between abstraction levels
is essential for the usage of model-driven approaches. How such model-driven ap-
proaches can be integrated in modern software development is introduced as well.
As a result of the spreading of model-based approaches for software development,
model-to-model transformations are necessary and, therefore, introduced in this
section.

2.1. Model Driven Engineering

Model Driven Engineering (MDE) places models as first class artifacts through-
out the software lifecycle. A particular approach for MDE is presented by the
Object Management Group with their Model Driven Architecture (MDA) ap-
proach [23]. In MDA this means the usage of a Platform-Independent-Model
(PIM) as abstract architectural representation that is transformed to more con-
crete Platform-Specific-Models (PSM) or even source code. The usage of several
models on different levels of abstraction for different purposes and the intended
generation of the more specific models from a more general representation clearly
states the importance of model transformations in the context of MDE.

Furthermore, it is necessary for the understandability and usage of MDE to
specify the abstraction levels of models. The execution of a program is placed on
level M0. From this execution a model (M1) can be built abstracting “real world”
problems to make it ascertainable for humans. But normally models are not built
by just drawing some lines and boxes, they actually follow grammars consisting
of rules how to build this type of model. For example a UML class diagram
has restrictions according to types that can be used and in which relations they
have to stand (and many more rules that have to be followed). This structure is
defined on meta level (M2) by a metamodel. One abstraction level higher (M3),
it reaches the abstraction level of metamodeling languages like the recursively
defined Meta Object Facility (MOF). At this level the boundaries for building
metamodels and Modeling languages respectively are set.

A simple overview of the abstract levels provides Figure 2.1. The left branch of
the diagram shows the source model Ma (input) that conforms to its metamodel
MMa. On the right branch the target model Mb (output) is placed that conforms
to the metamodel MMb.

5

2. Model Transformation Fundamentals

Figure 2.1.: Abstraction levels in the context of model transformation [13]

2.2. Model Transformation

Transformations languages like QVT transform models (M1) to other models. To
be able to transform all models conforming to a metamodel (M2) to a model con-
forming to another metamodel, the metamodels are used for defining the particu-
lar transformation rules. Metamodels ares used as they provide the knowledge of
which elements can occur in a particular model. In Figure 2.1 the central branch
is the transformation combining source and target models conforming to a meta-
model MMt. Tab represents the actual transformation program. All metamodels
(MMa, MMb, MMt) again conform to a more abstract model – the MOF metameta-
model. The execution engine consumes some input and produces some output
data and interacts with the transformation code of the program.

In MDA the transformation form PIM to PSM is a vertical transformation.
Additionally, there are horizontal transformations that do not change the ab-
straction level, but transform the model to fulfill the needs of another language
(according to domains and special needs) or perspective. In the context of this
thesis the focus is on horizontal model to model transformations.

According to Juan de Lara and Esther Guera [7] model transformations can be
divided into: “Inter-Formalism (also known as exogenous)”, specifying a trans-
formation between different source and target metamodels, and “Intra-formalism
(also known as endogenous)”, specifying a transformation where source and target
metamodels are equal.

The actual transformation from a source to a target model is done using a trans-
formation language like QVT-R or Atlas Transformation Language (ATL). There
exist some requirements and some desired features for transformation languages
which are declared in the thesis of Thomas Reiter [25]).

Furthermore, according to Juan de Lara et al. [7] transformation languages
can be categorized by “three orthogonal characteristics in the transformation
language”: (i) visual or textual, (ii) imperative, declarative, (iii) formal or semi-
formal.

6

2.2. Model Transformation

(i) Most transformation and programming languages can be considered as tex-
tual representations. For example Java [7] and ATL are obviously textual as they
use text in lieu of graphical representations such as boxes, or graphs. In contrast
to graph transformations can be considered to be visual.

(ii) Declarative languages are comfortable to use and reduce the lines of code
necessary. If all elements in all facets from a source model can be fully mapped
using declarations, such usages are to be favoured according to its simpleness.
The model transformation language engine is then responsible for changing these
declarations in clear imperative commands in the back-end. This ensures qual-
ity and performance and reduces avoidable mistakes such as mixing commands,
variables or names, or the improper ordering of rules, because such facets are
automatically and implicitly handled by the transformation engines.

Imperative languages are very similar to normal programming languages and,
therefore, very flexible. Writing many commands for one actual transformation
rule seems somehow unpurified and makes it hard to fined errors. Therefore, it is
considered good practice only using imperative languages, if declarative mappings
cannot be used.

For the scenario of complex transformation rules in the same transformation
process, hybrid languages can be used trying to combine the benefits of both
parts. Hybrid languages like the Atlas Transformation Language (ATL) allow
declarative statement blocks as well as imperative statement blocks.

(iii) Formal languages are defined by a clear alphabet used to form a gram-
mar that specifies the combination of elements from the alphabet. A full formal
languages does leave any gap for interpretation. This not the case for typical pro-
gramming – like Java – and model transformation languages. For example Java
and QVT-R (and similar languages) are semi-formal as they provide a formal
alphabet and grammar, but leave gaps for interpretability.

7

2. Model Transformation Fundamentals

8

3. Model Transformation
Technologies

To be able to run model transformations, a set of technologies and standards
are necessary to be used. In the approach presented in this thesis, the model
transformation language QVT Relations is used and visualized in TROPIC Nets.
Both QVT Relations and TROPIC are presented isolated in this section as prepa-
ration for combining them later on. Finally, QVT Relations and TROPIC are
compared with each other to identify possible ways of transforming elements of
QVT Relations to TROPIC in following sections.

3.1. Query/View/Transformations (QVT)

This thesis uses the Object Management Group (OMG) standard Query/View/-
Transformations (QVT) [22] ; a part of the Meta/Object/Facility (MOF) for
model transformations. QVT is a transformation language that can be split
into the three parts (1) Core, (2) Relations and (3) Operational transformations,
shown in Figure 3.1). The Core and Relations component build up the declarative
part of the language. Imperative transformations are done using the Operational
component which is not used in this thesis. There also exists the possibility of
transforming code from the Relations to the Core language to specify the opera-
tional semantics of QVT-R.

Furthermore, codes written in another programming language offering a “MOF
binding” [22] can be plugged-in as black-box systems. They have to be considered
as black-box, because their actual implementation is not accessible or visible from
the QVT code.

Figure 3.1.: QVT components and interactions [22]

The possibility of using different transformation approaches (declarative, op-
erational) is reflected in the component-oriented architecture of this MTL. Ad-
ditionally, QVT is not a standalone language. For example OCL expressions are
used for the definition of QVT Relations. QVT is a very versatile language that
allows many different queries according to its powerful definition. Besides this

9

3. Model Transformation Technologies

integration of other languages QVT also relies on other standards, e.g., the Meta
Object Facility (MOF).

Although the QVT specification has already reached a professional and utiliz-
able level, there exist some open issues. For example it is unclear how the ordering
of rules should be accomplished by the engines. Such issues do not directly reflect
the particular elements of the MTL, but their conversion to real systems.

3.1.1. QVT Relations (QVT-R)

QVT-Relations can be used for uni- and bidirectional transformations. After
creating a certain QVT-R code, it can be executed by QVT-R engines using a
source model, an source metamodel and an target metamodel. There is even the
possibility of translating QVT-R transformations to QVT-C to execute them on
QVT-C engines. However, the QVT-R and QVT-C engines are rare.

In the following section technical details of the QVT-R language are presented.

Language introduction

In QVT Relations “a transformation between candidate models is specified as a
set of relations that must hold for the transformation to be successful” [22].

Transformations have to be invoked in a specific direction. This means that
it has to be defined which model with which metamodel acts as source model
and which model acts as target model. Typically QVT-R is used to read model
elements from the source model, to check if some conditions are fulfilled and to
finally produce the target model. However, QVT-R can also be used to compare
source and target model with each other.

Available QVT Relations (QVT-R) engines/tools supporting many features of
this language – according an article of Ivan Kurtev [14] - are IK++ medini QVT,
Eclipse M2M, Relations2ATLVM or Tata Consultancy ModelMorf. In the context
of this thesis there will be a strong focus on the usage of medini QVT1, because
it has been widely used at the moment of writing and is able to handle many
features of the QVT-R language.

The term “mapping” in the context of QVT (QVT-Relations) refers to the
rules for transformations. One rule, therefore, is a mapping. In the context of
this thesis the term “mapping” is, therefore, used synonymously.

Relations and Domains

A Relation is a definition holding concrete transformations and pre- and post-
conditions that are directly related to this particular set of transformation state-
ments. Such transformations can be compared to constraints that need to be
fulfilled to allow the execution for a particular object. A Relation is defined by
at least two Domains and optional When-/Where-Clauses.

“A domain is a distinguished typed variable that can be matched in a model of
a given model type. ” [22]. A domain follows a pattern that represents a number
of included types.

1http://www.ikv.de/ - last accessed: November 27 2009

10

3.1. Query/View/Transformations (QVT)

The example listing on the left side of Figure 3.2 shows the definition of a
Relation to transform a class to a table – conforming to the source and target
metamodel depicted on the right side of Figure 3.2 – including Domains as well
as Where and When Clauses. The Domain c:Class holds several variables – the
pattern of this Domain – representing specific constraints that need to hold.
For example kind=’Persistent’ means that the variable kind has to have the
type ’Persistent’. On the other side name = cn in the Domains c:Class and
t:Table means that the names have to be the same – cn is a placeholder for this
constraint.

Where and When

The Where-Clause specifies a post condition for a Relation. This means that
the stated Relation has to be called, if the calling Relation itself has been called.
This has to be interpreted as explicit call of the stated other Relation with the
specified parameters, i.e. variables identifying the actual Domain. In contrast
When-Clauses specify preconditions that have to hold before a Relation can be
executed. This does not mean that the When-Clause forces the referred Relation
to be called, but it waits for its execution. If the referred Relations is never
called from somewhere else, the Relations holding this When-Clause cannot be
executed.

See the listing in Figure 3.2 for the usage of When- and Where-Clauses within
a Transition. The When-Clauses refers to the Relation PackageToSchema and
involves the variables p and s. The Where-Clause explicitly calls the Relation
AttributeToColumn with the date of the variables c and t.

Top level

The transformations discussed so far were non-top level Relations. These Rela-
tions have to be invoked directly or indirectly (transitively using where clauses).
Beyond that there also exists the type of top level Relations. They hold the key-
word top. All top level Relations have to executed. Non-top level need not to
be executed, if they are not invoked. See Listing 3.1 for the specification of the
different types of Relations. The top level Relation ClassToTable invokes the
non-top level Relation AttributeToColumn in its Where Clause.

Listing 3.1: A QVT transformation holding different types of Relations [22]

1
2 t rans fo rmat ion umlRdbms (uml : SimpleUML , rdbms :

SimpleRDBMS) {
3 top r e l a t i o n PackageToSchema { . . }
4 top r e l a t i o n ClassToTable {
5 where {
6 AttributeToColumn (c , t) ;
7 }
8 }
9 r e l a t i o n AttributeToColumn { . . }

10 }

11

3. Model Transformation Technologies

Figure 3.2.: Left side: QVT Relation with Domains and When- and Where-
Clauses. Right side: Related source and target metamodel. [22]

Check and Enforce The Relations language makes use of the Check (Checking)
and Enforce (Enforcement) elements, as depicted in Listing 3.1.

• Checking: The checking is a “weaker” mode than the enforcement mode.
It simply checks, if the constraints of models are fulfilled in the context
of this transformation, and reports errors if any constraints are violated.
However, this mode implies that nothing is “produced” in the sense of
model transformations.

• Enforcement: The use of enforcement mode defines the transformation di-
rection. This means “the selection of one of the candidate models as the tar-
get model. The execution of transformation proceeds by, first checking the
constraints, and secondly attempting to make all the violated constraints
hold by modifying only the target model and the trace model.” [22]

Listing 3.2: Checkable and enforceable Domains [22]

12 r e l a t i o n PackageToSchema
13 /∗map each package to a schema ∗/
14 {
15 checkonly domain uml p : Package {
16 name=pn
17 }
18 e n f o r c e domain rdbms s : Schema {

12

3.1. Query/View/Transformations (QVT)

19 name=pn
20 }
21 }

Metamodel

The grammar of the QVT-R language is defined by its metamodel (see Figure 3.3).
This metamodel describes available language elements (the alphabet), possible
combinations and dependencies. Therefore, it is essential for the QVT-R usage.

The metamodel has one obvious root tag named RelationTransformation.
This item is equivalent to transformation in the QVT-R code. Relation and
TypedModel instances are in a composition-relationship to RelationTransformation.
The TypedModel expresses the modelParameters. Such parameters define the
used models for the model transformation. Objects of Relation have a boolean
attribute isTopLevel which refers to the top level property discussed in previous.
When and Where Clauses make use of Patterns which are aggregated by the
corresponding Relation. Such a pattern can hold several Predicates for calling
referred Relations. For each call of a Relation another instance of Predicate is
added to the pattern. This call is accomplished using the type RelationCallExp

which is a subtype of OclExpression.

Figure 3.3.: The basic meta model of QVT Relations [29]

The basic transformation, however, takes place on another path from the
Relation objects. Using another composition RelationDomain (a subtype of
Domain). The RelationDomain represents the Domain as it is specified in the
QVT standardization. Therefore, it has to belong to the source or target model
which is determined by an instance of TypedModel. This instance belongs to
the RelationTransformation and is reused here to highlight its model corre-
spondence. In addition, such objects of RelationDomain hold the boolean at-
tributes isCheckable – checkonly in the QVT-R code – and isEnforceable –
enforce in the QVT-R code. The RelationDomain holds zero or one instances

13

3. Model Transformation Technologies

of DomainPattern – classically one. In this pattern the actual mappings take
place. At least one complex type (ObjectTemplateExp) is contained that can
hold several other types. PropertyTemplateItem objects are used to match for
attributes in the Domain pattern. Primitive (several types) and complex types
refer to subtypes of the OclExpression which represents a detail left out in the
shown metamodel.

QVT-R can be transformed to QVT Core to represent the formal semantics
behind the statements such as Relations.

3.2. Transformation On Petri Nets In Color
(TROPIC)

“Transformations On Petri Nets In Color” (TROPIC) [25] is a project presented
in the thesis of Thomas Reiter - Johannes Kepler Universität Linz at the Institute
of Bioinformatics - to propose “a dedicated transformation execution model based
on Colored Petri Nets, which allows to combine the statefulness of imperative ap-
proaches as well as raised level of abstraction from declarative approaches” [25].
This master thesis uses TROPIC to improve the ease of debugging of “classical”
transformation languages – respectively QVT-R. In particular, for every meta-
model element corresponding Places in TROPIC are derived, whereby a Place is
created for every class, every attribute and every reference. Model elements are
represented by Tokens which are put into the according Places. Finally, the ac-
tual transformation logic is represented by Transitions. The existence of certain
model elements (i.e., Tokens) allows Transitions to fire and thus stream these
Tokens from source places to target Places representing instances of the target
metamodel to be created (see Figure 3.4).

Figure 3.4.: The involved artifacts in TROPIC [30]

The stepwise firing of the Transitions makes the operational semantics of the
transformation logic explicit and thereby enables simulation. The ability to
combine all the artifacts involved, i.e., metamodels, models, as well as the ac-

14

3.2. Transformation On Petri Nets In Color (TROPIC)

tual transformation logic, into a single representation makes the formalism espe-
cially suited for gaining an understanding of the intricacies of a specific model
transformation. Moreover, TROPIC form a runtime model, serving as an execu-
tion engine for diverse model transformation languages, e.g., QVT-R. Therefore,
TROPIC exceptionally qualifies for trying to uncover the elements hidden by the
QVT-R declarations as black-box statements.

In this section the main features of TROPIC nets are explained that together
with QVT built up the basis for the later on proposed method to translate QVT-R
code to TROPIC in order to debug model transformations.

3.2.1. Core concepts of TROPIC

TROPIC uses a different perspective on transformation problems as MTLs like
QVT-R. Since TROPIC is based on Colored Petri Nets, the main parts of the
TROPIC metamodel (see Figure 3.7) consists of Places, Tokens and Transitions.

The Net is the root element holding all other TROPIC items. There exist
one- and two-coloured – represented by a doubled border – Places represent-
ing (concrete or abstract) classes (see Figure 3.5). The objects (the instances
of these classes) are represented by Tokens. One-coloured Tokens can only be
added to one-coloured Places and two-coloured Tokens to two-coloured Places.
Places itself are, therefore, the holders of the state in TROPIC. The colours of
Tokens are used to differentiate between different object instances they repre-
sent. TropicUnit can be used for clustering other TROPIC units together in
meaningful groups.

Models in this thesis - including the TROPIC models – are based on Ecore.
Ecore is an implementation for a subset of MOF and allows the usage of so called
EClasses, EAttribute and EReference. EClasses are comparable with classes
in UML class diagrams holding relationships – EReference – and attributes –
ECAttribute. Such a mapping of MOF model concepts to TROPIC can be seen
in Figure 3.5 – in this Figure EClass, EAttribute and EReference are named
as Class, Attribute and Reference.

Figure 3.5.: Comparing MOF and TROPIC elements on model and metamodel
level [15]

15

3. Model Transformation Technologies

Transitions consist of input placeholders (LHS of the Transition) represent-
ing the preconditions of a certain trans- formation, whereas output placeholders
(RHS of the transition) depict its postcondition. Those placeholders are expressed
by the classes InPlacement (LHS) and OutPlacement (RHS) in the metamodel
as shown in Figure 3.7. Every Placement is connected to a source or target Place
using Arcs, whereby incoming and outgoing Arcs are represented by the classes
PTArc and TPArc, respectively. To express these pre- and postconditions, so-called
MetaTokens (see class MetaToken in the metamodel in Figure 3.7) are used, pre-
scribing a certain Token configuration by means of colour patterns which can
be used in two different ways, either as Query Token (LHS) or as Production

Token (RHS), as shown in Figure 3.6. The Transitions, therefore, provide the
construction of a transformation flow by using certain colour patterns. Query

Tokens and Production Tokens using same colours imply a correspondence of
LHS and RHS elements. Colours only used on one side represent unique or new
colours (if used as Production Tokens).

Different colours – although they are not forced to be used – are necessary
for aggregating and differentiation between different values of Tokens. How-
ever, two-coloured MetaTokens can be used for aggregating values from two one-
coloured objects. This is achieved by placing two one-coloured MetaTokens in
InPlacements of the same Transition. Furthermore, a two-coloured MetaToken

is placed in an OutPlacement of the same Transition holding the same colours
as both MetaTokens in the InPlacements. Naturally, this procedure can be used
to split up values or to newly address values, but it clearly states that colours are
the only method that can be used in TROPIC to differentiate between different
values.

The importance of colouring MetaTokens is also describable by using Tokens

as conditions to fire Transitions. For example it can be defined that the Token

“isPersistent=true” is a necessary condition for a Transition that transform the
Token “Class” to a “Table” (Place). Hence, many Tokens can be necessary to
fire a Transition that produces just a single output Token. To be able to pro-
duce comprehensive transformations there is the possibility to create sequences of
Transitions. A Transition delivering a Token to a Place need not be the first
nor the last Transition in a row. The receiving Place can again have an outgo-
ing Arc to another Transition or even Arcs to a handful of Transitions. This
also implies the possibility for a Place to have several Arcs from Transitions

filling it with Tokens.

Furthermore, Transitions can hold InPlacements that are hungry or not
hungry (standard). Hungry means that by firing a Transition the used inputs
are removed from its original Place. The overall principle of passing Tokens on
(or even modifying them) stays the same.

A colour that is not used for MetaTokens on both sides like the blue MetaToken
in Figure 3.6, represents a newly created colour. This represents one-sided condi-
tions. Colours used on both sides represent value correspondences. Colours reused
on the same side (LHS or RHS) represent model dependencies such a from a class

to its attributes. This accomplished by using two-coloured MetaTokens.

Furthermore, configurations can be used that describe the Transition be-
haviour that should be applied when firing it. Such configurations can be used

16

3.2. Transformation On Petri Nets In Color (TROPIC)

Figure 3.6.: Colour binding example of TROPIC [31]

Figure 3.7.: Metamodel of TROPIC [29]

by defining functional constraints. A configuration is directly applied to the
Transition and is not automatically used for predecessors or successors.

Some typical Transitions are explained in the Figure 3.8. A simple Transition
just “waits” for an incoming Token and passes it in the same colour to the out-
put Place (cf. Figure 3.8 (a)). Transitions for Two-coloured Tokens can also
be used to invert the colours of incoming Tokens (cf. Figure 3.8 (b)). Fur-
thermore, two one-coloured incoming Tokens can produce a two-coloured output
Token (cf. Figure 3.8 (c)). More complex Transitions could use some incoming
two-coloured (or even one-coloured Tokens) and mix the colours to new one or
two coloured Tokens (cf. Figure 3.8 (d)). Another interesting example is the us-
age of horizontally aligned Tokens which can be compared to a logical disjunction
(“or”-expression). Vertically aligned MetaTokens can be used that again express a
logical disjunction (cf. Figure 3.8 (e)). This means that whenever a two-coloured
Token with black (outer) and white (inner) – representing two different colours –
or a Token with black (outer) and black (inner) – representing the same colour
– is available in the Place related to this Transition it can fire and produces a
Token with turned colours (according to the configuration of white (outer) and
black (inner) for the MetaToken on the right side.). This example produces a
two-coloured Token using two colours what can lead to unambiguous results. In
the case of a two-coloured Token that is built up by just one colour (the right

17

3. Model Transformation Technologies

alternative of the incoming MetaTokens is addressed) it is not clear which colour
should be used. This problem can be addressed by using ColorMaps.

Figure 3.8.: Typical variants of Transitions [25]

So far only “positive” conditions were introduced. This means that for example
a Token is expected to be able to fire a Transition from a certain Place. The
other way round is the possibility to use “Negations” that negate the specified
condition. Enabling the negation of this condition for the net (and the related
formula) transfers the meaning in its opposite. E.g., a Transition can be fired,
if a certain “Class” Token is unavailable for this Transition.

3.3. Comparison of QVT Relations and TROPIC at
a glance

A simple element to element mapping from QVT-R to TROPIC is summarized
in Table 3.1 and also described in [29]. The most essential element in QVT-
R code is the RelationTransformation that holds all Relations responsible for
the transformation execution. Such a RelationTransformation can be con-
sidered as the full transformation net (Net). As a consequence only a single
RelationTransformation can be held by a Net.

In TROPIC, Tokens represent a certain object instance, whereas in QVT-R
there are no means to explicitly represent model elements. The passing of data
from source to target side is done in QVT-R by variables and in TROPIC this can
be visualized with the colour of the used MetaToken and Token (for the instance
itself).

The Relation is compared with a TropicUnit which represents a modulariza-
tion concept for the actual transformation logic. DomainPatterns representing
the transformation mappings, can be compared with a Transition. The proper-
ties included in the Domain - or rather the Pattern of the Domain - can have the
type ObjectTemplateExp or PropertyTemplateItem as described in more details
later on. They can be compared with a Placement and a OneColoredMetaToken

or TwoColoredMetaToken respectively. The concept of a When- and Where-clause

can be visualized using an InPlacement / OutPlacement and an Arc from or to
a trace place.

How this transformation from QVT-R to TROPIC – including the usage of
input models – can be accomplished in an application, is described in detail in
the course of the presentation of the solution approach.

18

3.3. Comparison of QVT Relations and TROPIC at a glance

QVT Relation Concept TROPIC Concept
RelationTransformation Net
n.a. (Model element) Token
Relation TropicUnit
Execution direction Arc
DomainPattern Transition
ObjectTemplateExp Placement + OneColoredMetaToken
PropertyTemplateItem Placement + TwoColoredMetaToken
Variable Colour of MetaToken
When-clause InPlacement + PTArc from dependent trace place
Where-clause Trace place + TPArc to InPlacement

Table 3.1.: Mapping QVT Relations to TROPIC [29]

19

3. Model Transformation Technologies

20

4. Transforming QVT Relations to
TROPIC

In this part of this thesis, an approach for graphically debugging QVT-R is pre-
sented. An approach is presented that is based on live interaction to overcome
the difficulty of debugging of QVT-R code and, moreover, to improve the adop-
tion level of QVT-R. Therefore, it is necessary to highlight why a certain result
could be achieved. Furthermore, TROPIC allows inspection of the actual state
of a transformation execution – which is necessary for live interaction – as it vi-
sualizes the state using coloured Tokens. The overall visualization is intuitive –
as it allows the tracking of paths from a certain starting point to a certain target
by following simple arcs – and allows step-wise proceeding of the process. This
exceptionally qualifies TROPIC to be adopted for such a debugging approach
that tries to visualize the operational semantics.

Hereinafter the presented approach is called “Graphical Debugging of QVT”
according to the name of the thesis. To simplify its usage the abbreviation “Grade
QVT” or “Grade” is used. Furthermore, the meaning of this abbreviation seems
appropriate as well, because to grade QVT-R could be related to the idea of
debugging in general.

4.1. Overview

In this section the conceptual approach based on the ideas defined by building
the Grade application is presented. Some further implementation specific ideas
are presented in a following section.

To identify the desired result of this section see Figure 4.1. On the left side
a typical QVT-R code is placed that is visualized in TROPIC on the right side.
This example is used in hereinafter sections to explain how this functionality can
be achieved and why it needs to be displayed as it is done in this figure. Several
more specific cases are added by additional examples.

The desired integration of Grade in the model transformation process is visual-
ized in Figure 4.2. First, syntactically correct QVT-R code has to be written and
a certain input model needs to be defined. These pieces of information are for-
warded to Grade (the grey box in the background of Figure 4.2) and transformed
to a TROPIC Net in order to visualize the operational semantics. This Net can
be analyzed in the Debugging View by stepwise proceeding the transformation.
By identifying an error, changes are undertaken at the QVT-R code. On the
left side the QVT engine is placed that consumes the QVT-R Code – holding the
knowledge about the involved source model, source metamodel, and the target
metamodel – and produces the target model conforming to the target metamodel.
The QVT engine itself is not part of Grade.

21

4. Transforming QVT Relations to TROPIC

Figure 4.1.: A basic TROPIC visualization of a typical QVT-R snippet

Figure 4.2.: The interaction of Grade with other components and artifacts

22

4.1. Overview

In particular the process necessary to receive the Transformation Net from a
QVT-R file and input model is treated in this conceptual approach. How such
resulting TROPIC nets can be analyzed is introduced in the section of evaluating
the results.

4.1.1. Execution Semantics of QVT-R

In this section it is the aim to specify in which ordering Relations can be trans-
formed to TROPIC by building a graph that specifies paths that can be followed.
To create such a graph, an entry point has to be found. Obviously, a tree like
situation with a single root-node and always two nodes (as balanced tree) that are
directly derived from every root would be perfectly for a transformation process,
but unfortunately the situation is more complex.

QVT-R introduces two different types of Relations, as already mentioned be-
fore. These types reflect the hierarchy level of their execution in the process
of visualizing them. Top Relations mark possible starting points of the graph,
whereas non top Relations can only be called by a top Relation in its where
or when clause (or by a Where-Clause in a Relation that has been called be-
fore by a top Relation). Therefore, it would be possible to build multiple trees
that coexist in parallel, but do not interact. Again it has to be more sophis-
ticated. Although top-Relations can be directly called, preconditions can avoid
there execution (When-Clauses). Therefore, it can only represent a root tag for
a following computation path. After in all paths all nodes have been computed,
such a Relation could be useable. In the common sense of terminology Relations
with preconditions are illegible for being used as root nodes.

Another case is the problem when one top Relation calls a Relation in a Where-
Clause that has a When-Clause expecting another Relation of another tree to
be already executed. At this point merging the two trees does not make sense
anymore and probably does not work. Hence, a graph results with multiple root
nodes being able to join at some points. This is simplified in Figure. 4.3.

Figure 4.3.: A graph representation of QVT-R Relation ordering and its execution
paths

In Figure 4.3 there are two main trees PI and PII. Both sides start with a

23

4. Transforming QVT Relations to TROPIC

top Relation marked with T. All edges linking derived Relations can be seen as
Where-Clauses in the QVT standard. Although the main flow directs from the
top of a tree to the bottom, undirected edges are used, because it is very valuable
to be able to go back to a previous node. The node marked with W represents
a Relation that holds two undirected edges from parent nodes. One of them is
visualized with a dotted line. This represents a When-Clause and is, therefore,
no direct dependency. This means that the parent node reachable over this path
does not call this child. To be able to execute the child Relation, however, the
parent item execution has to be completed before this transformation can be
started or it has to be postponed for later execution.

This example shows how the classification or Relations could be seen in an
abstract way. There exist two trees that are not connected to each other by a
direct path. Only a Where-Clause forms a dependency that has to be fulfilled.
As this example shows it could be assumed that the left tree could be integrated
as a subtree under the node of a Relation with a When-Clause. However, if
another When-Clause at another point exists, that points to another Relation –
even to a parent node of the Relation with the When-Clause or to another tree –
this cannot be done anymore. Another problem could be seen, if a When-Clause
could never be fulfilled, because the referred Relations is never called. This is a
severe computation problem which does not exist for When-Clauses as they are
always directly called in the parent Relation. Furthermore, it can be seen that
the Where-Clauses form the edges of the graph and, therefore, are – beyond the
entry points – the items defining the execution path. This is helpful, because
Where-Clause directly pass values to following Relations in QVT-R. This can be
used in the computation as well as for both Relations the information can be
made available. This need not hold for other approaches.

Figure 4.4.: An example graph using two top Relations that involve several
Where-Clauses and one When-Clause

See Figure 4.4 for a concrete example of using several top Relations with Where-
and When-Clauses. The Relation PackageToSchema and NonPrimaryAttributeTo

24

4.1. Overview

are top-level Relation marked with the letter T. These two Relations can be consid-
ered as entry points for the execution. However, at a closer look a precondition us-
ing a When-Clause at the NonPrimaryAttributeTo can be identified. This Clause
requires that the ClassToTable Relation has been executed before. This cannot
be the actual state by starting the execution. The only way to fulfill this require-
ment for a top-level Domain is to start with another Domain – in this example
this can only be PackageToSchema. If there does not exist any further top Rela-
tion, the execution cannot be continued. After starting with PackageToSchema,
ClassToTable, then AttributeToColumn and finally DataTypeToColumnType are
executed by calling these Relations using a Where-Clause. After this tree has been
executed, the next root node NonPrimaryAttributeTo is tried to be executed
again. At this time the precondition is fulfilled and the execution can continue.
Furthermore, this Relation involves the second calling of DataTypeToColumnType
which need not be redundancy, because it can involve a different set of objects
(here non-primary or primary).

So first the Relations are categorized in top-Relations, top-Relations with
When-Clauses and all other Relations. The transformation process clearly starts
with the top-Relations without any precondition.

By taking one Relation the need can arise to execute related Relations (Where-
Clauses). It could make sense to assume that all nodes at one hierarchical level
are somehow equivalent to each other. Therefore, it sounds logical – although this
is fully in the responsibility of each specific model – to assume that by executing
a Relation the probability of a precondition of another Relation at the same level
is fulfilled is higher than by executing just “another” Relation. This leads to an
approach similar to Breadth-first-search through this graph. However, this idea
is more problematic than the deepening over Where-Clauses. Following Where-
Clauses has the advantage that the developer of the QVT-R Relations is of the
opinion that the called Relation can directly be followed by the calling Relation
which improves the probability of being able to execute them without involving
intermediate Relation executions.

For example in the Listing 4.1 the Relation ClassToTable holds a Where-
Clause calling a referred Relation AttributeToColumn with the variables c and
t as passed attributes. Furthermore, it is possible to call several other Relations
or the same Relation with different data stored in different variables.

Listing 4.1: QVT Relation with a Where-Clause calling a referred Relation

22
23 r e l a t i o n ClassToTable{
24 cn : S t r ing ;
25 checkonly Domain c l a s s c : Class {
26 name=cn
27 }
28 e n f o r c e Domain r e l t : Table{
29 name=cn
30 }
31 where{
32 AttributeToColumn (c , t) ;
33 }

25

4. Transforming QVT Relations to TROPIC

34 }

To be able to get the data that is passed within a single parsing step ,it is
necessary to execute a Relation included in a Where-Clause of the current Rela-
tion directly after the execution of the current Relation itself (Depth-first-search
algorithm). Furthermore, this concept also helps to improve the performance,
because at the point a Relation is called as post-condition the Relation should be
ready to be executed. The big disadvantage of the used algorithm is clearly the
insolubility of infinite Relation-dependencies. Nevertheless, this problem exists
for other algorithms as well, because in EMF the serialization of models – which
is necessary to be able to store them – is accomplished in a single writing process.
Therefore, a resulting Net which is produced using EMF like in this thesis, cannot
provide any partial results and, therefore, has to fail for graphs of infinite lengths.
So following this path – a path to the depth by using referred Relations in post-
conditions – provide higher probability of executability with high performance.
The actual call and execution of the Relations are done by recursively process-
ing from the top of the virtual graph down by calling the Where-Clauses. The
Where-Clauses are executed like normal Transitions, but holding some external
data – the parent Relation. After the last Relation of a path has been reached
the next path down from this top-Relation (“root”-node) is executed, if existing.
Although Where- and When-Clauses can often be substituted in some way (a
Where-Clause of level N can be seen as When-Clause at the level N+1) there can
be the case both coexist in just one Relation. For example a top-Relation that
holds a When-Clause can be necessary to force the execution of this Relation, but
it, furthermore, implies the usage of a particular ordering. The same top-Relation
could also be called from another context by a Where-Clause, meaning that in
the case that the Relation is reached there arises the need to execute another
Relation. A top-Relation, however, always has to be called at least once. For
such Relations with unfulfilled preconditons that where called as post-condition
of another Relation lead without fail to a situation in which an execution cannot
be continued. For this case the Relation is stored on a stack for later execution.

After all top-Relations were tried to be executed, all top-Relations with When-
Clauses are processed. The process works exactly as described before. If some
Relations are not able to be executed, although they have been attempted to be
executed, they can be found on the stack for later execution. This stack is the
last to be processed and continues until all nodes were successfully transformed.

For the case a precondition is needed that does not exist or cannot be fulfilled,
an error is produced. For such cases tools like “medini QVT” that can execute
QVT-R code provide error messages. Therefore, this thesis does not focus on
syntactical correctness, but rather on correctly producing what the developer
expects by formulating a mapping rule.

4.2. Types

It has to be distinguished between primitive and complex type objects – such
objects can represent certain root elements that need to be called or properties
that are place in root objects. Primitive type objects hold a certain value or

26

4.2. Types

variable, whereas complex types hold a pattern similar to Domains (Domains
hold a Domain pattern that uses the same complex type). To execute a primitive
object a direct creation of Places and Arcs can be done. However, the complex
types recursively call the same method in the code as for the Domain pattern
execution. This is necessary because such complex objects can be deeply nested
(complex objects holding complex objects) – even infinite paths or loops can be
constructed – and should be executed in the same manner as they have the same
issues that need to be handled. The execution of a Domain and its contained
properties only stops at the point in which no primitive or complex property –
including its child elements – in the Domain is unexecuted.

Moreover, there is the need to differentiate between objects used as conditions
(one-sided) and two-sided constellations passing values from the source to its tar-
get representation. One-sided variants represent conditions like isPersistent=

true that request a certain condition for a certain object mapped by a Domain to
be executed with this Domain. Another alternative is that it just creates Tokens
for the target model that have this certain property. This implies that there is
no direct relationship between a one-sided condition in source Domains and other
ones in target Domains – semantically, however, this could be intended to hold.
In contrast two-sided variants provide certain linkings between input and output
property values. For example name=cn (see Figure 4.1) with a variable named
cn used in both source and target Domain results in output Tokens that have
the same name as its representation in the source Tokens. The need for such
two-sided definitions is based in the opportunity of using bidirectional usage in
QVT-R.

To be able to map the different types of objects, it has to be defined why to
use two-coloured or one-coloured Places. Two-coloured Places represent a certain
dependency on another (typically in hierarchically superior position) element –
such as Package to Class in Figure 4.1. A complex type is dependent on another
parent object or the Domain holding such properties. In the QVT-R code it is
easy to differentiate between these types. Braces with or without same mappings
within them are always an indicator for a complex type – see t:Table in Figure
4.1. Whereas a primitive type holds some simple value like a certain character
string, variable, boolean or other value – like isPersistent = true.

Each type – complex and primitive – belongs to one execution side – the source
side that has mainly reading functionality whereas the target model side that
produces elements. So, it is essential to differentiate between these two different
situations. For both the so called EndpointModule – the source or the target
Module – has to be defined or looked up. These Modules are stored in the ba-
sic data set of the execution process and are called Source and Target. More
about the storing, definition and execution process is described in the following
section about the practical realization. Moreover, it seems notable that the us-
age of MetaTokens in Transitions - and they can only be used in Transitions -
involve the usage of In- and OutPlacements. These Placements do not provide
more functionality as providing a base for placing MetaTokens in a Transition.
In the context of this master thesis never more than one MetaToken is placed in
a Placement and it is never intentionally done to add Placements without Meta-
Tokens. This is typically done in one encapsulated process. Hence, for every

27

4. Transforming QVT Relations to TROPIC

MetaToken a Placement according the execution direction has to be placed in
the certain Transition and is left out for easier terminology and better overview
of the described concepts.

4.2.1. Domains

Domains are the most essential element within a Relation that specify concrete
constraints that need to hold or objects that are created. Domains can be check-
able or enforceable as described in a section before. To transform a Domain it is
necessary to understand the basic concepts. A Domain holds a Domain pattern
that posses the data of the Domain (the differentiation of the Domain and its pat-
tern is clarified later on). Furthermore, a Domain pattern holds some properties.
The Domain itself provides the necessary execution information. In Figure 4.1
the Domains of the Relation PackageToSchema are transformed in the Module of
Module:PackageToSchema. The actual mappings like from Class to Table are
declared in the pattern of the Domain. At this point it seems notable that in the
context of this thesis the usage of Domain typically refers to the Domain and all
included objects like Domain patterns.

The processing of Domains has to start with the determination of execution
direction. This decision has to be split into two possible situations. On the one
hand unidirectional QVT-R Relations may be used. Such Relations typically use
the keywords checkonly and enforce – e.g., in Figure 4.1 the Domain p:Package

is checkonly and s:Schema is enforceable. For this reason the execution direction
obviously has to be established from the Domain marked as checkable to the
Domain marked as enforceable. Two Domains that are declared to be check-
able and enforceable are not considered in this thesis, because this represents a
syntactical error that should be recognized by IDEs. On the other hand both
Domains could be enforceable. Therefore, it has to be read from the Domain to
which model a Domain belongs to. Nevertheless, it is not enough to know from
which or to which model a Domain belongs to, it also has to be defined which of
both models is the “source” and which is the “target” model. Execution engines
integrated in an IDE like medini QVT also need this information to be able to
execute a MT. Hence, it is necessary to get this information from the user. In this
thesis only the second variant is used, because it is broader usable and cleaner in
its definition.

The particular transformations in the Domain are done in the Domain pattern
which is a complex type as well. However, the Domain itself is at some points
different to other complex type objects usages. First, it represents a root tag
within a Relation, whereas other complex type objects are added as properties
to the Domain pattern (hierarchically deepening) and, therefore, only depend on
their parent objects. The Domain pattern and all contained properties depend
to one concrete execution side (source or target). So this circumstance needs
to be identified and stored on the level of the Domain pattern to be used later
on. This execution side influences the placement of the Places – they have to be
placed in one of the EndpointModules. Furthermore, the direction of the Arcs
and the usage of In- or OutPlacements in the Transition have to be adapted to
this fact. The accomplishment of the concrete mappings for the Domain pattern

28

4.2. Types

are described in the section about complex types. The colouring necessary to
visualize the operational semantics in TROPIC is expressed in the section about
correspondence identification methodologies.

In addition, if the Relation holds a When-Clause that specifies the variable of
this Domain or one of its properties has already been created, then it should be
desisted to create a one-coloured Place for this item. However, a two-coloured
Place combining the variable of the parent Relation with the instance in the child
Relation is needed to express the coherence.

4.2.2. Primitive Domains

There is often used a so called primitive Domain [19] which was not specified in the
QVT Relations Standard 1.0 [22]. Primitive Domains are Domains that possess
a data type, but no specification of the Domain pattern. Primitive Domains only
have the purpose to forward the values of QVT data types at the call of Relations
without any proof of provided conditions [19].

In contrast, the evaluation of the contained mappings of classical Domains
have to be proofed and translated. The passing of values for both variants can
be accomplished by using Where-Clauses.

See Listing 4.2 for an example using primitive Domains. The primitive Domain
is called prefix and is of the type “String”. Other variables or constants can be
stored or added to this primitive Domain and can be reused in following Relations.

Listing 4.2: A QVT Relations example with primitive Domains

36 top r e l a t i o n ClassToTable {
37 cn : S t r ing ;
38 domain uml c : Class {
39 name=cn
40 }
41 domain rdbms t : Table {
42 name=cn
43 }
44 p r i m i t i v e domain p r e f i x : S t r ing ;
45 where {
46 p r e f i x = i f (cn = ’ ’) then ’ ’ e l s e cn e n d i f ;
47 AttributeToColumn (c , t , p r e f i x) ;
48 }
49 }
50
51 r e l a t i o n AttributeToColumn {
52 pn : S t r ing ;
53 domain uml c : Class { . . }
54 domain rdbms t : Table { . . }
55 p r i m i t i v e domain p r e f i x : S t r ing ;
56 where {
57 p r e f i x = i f (p r e f i x = ’ ’) then pn e l s e p r e f i x +’ ’+pn

e n d i f ;
58 . . .

29

4. Transforming QVT Relations to TROPIC

59 }
60 }

The primitive Domains are not used in the further proceeding of this thesis
and, therefore, the name Domain always refers to the complex variant.

4.2.3. Primitive types

Primitive type properties can be seen as simple types holding a particular value
like the boolean true of isPersistent=true. Primitive types have to be placed
within complex types such as Domain patterns.

Primitive type properties can be translated to two-coloured Places on Source
and/or Target side. The two-coloured Tokens that are added to these Places hold
the colour of their parent type – the parent type must be a complex type like a
Domain - and its own colour value. Therefore, this represents the linking between
these two sets of data and assures that dependencies are expressed. For complex
type this transformation has to be more complex unless more coloured Tokens
are introduced.

The primitive types in the example of Figure4.1 are name and isPersistent.
isPersistent=true holds a certain value that does not correspond to any value
on the other side (target or source). All other classes are ignored for this trans-
formation rule. Such conditions could also be used to set a standard value that
is needed for all transformed Tokens independently from its value. Therefore,
such conditions are only represented in Transitions by one InPlacement or Out-
Placement respectively. The property name is a variable expression. The variable
cn creates the possibility to link the values of both transformation sides. This
notation is used to be able to transform QVT rules in both directions without
changing the code. Hence, the usage of such expressions implies the necessity of
an In- and OutPlacement for each of them. So this can be seen as the classical
simple transformation where data from one model is passed step by step to the
target model.

The relationships of primitive and complex type properties can be seen in the
graphics of Figure 4.5. As already mentioned primitive type properties can be
strings, booleans or other types. They always have to depend to a surrounding
complex type property which itself can hold several different other properties.

4.2.4. Complex types

Supplementary to primitive type properties there are complex types like the Do-
main pattern of Class of Figure 4.1 or other nested complex types. Complex
types can be seen as a similar concept to objects or their classes in object-
oriented programming. For example in the Domain Class another class could
be instantiated – independently from its meaningfulness – without any specified
data – cl:Class. This means that an isolated Token – a Token unrelated to
any other Token such as representations for attributes on the same execution
side – is created for the target model. In many situations these created objects
are passed to other rules and refined there, but also empty objects could make
sense. Therefore, for the transformation it has to be considered that another set

30

4.2. Types

Figure 4.5.: A model of the relationship between simple and complex types

of data is used in the complex types. Additionally, it seems notable that Domains
itself are no complex types itself, but they hold a Domain pattern that actually
is a complex type that represents all contained nested mappings. Therefore, Do-
mains with their patterns are specialized complex types, as they represent entry
points within a certain Relation (this does not imply that information cannot
be consumed from other Relations). All other complex or primitive types can
only be included and encapsulated in Domains (the owners of the Domain pat-
terns). So, the Domain pattern is the container for the mappings. The Domains
are responsible for storing general information like checkable or enforceable and,
therefore, are the holders of the meta data that is necessary to execute the con-
tained pattern and its properties. It seems notable as well that in most cases
it is not differentiated technically between normal complex types and a Domain
pattern, but the TROPIC language does need this differentiation for a correct
transformation. See Figure 4.1 to get an idea about the different interpretations
– the example is explained in all details in a following section.

Hence, this implies that there can never result an empty Transition from any
Domain definition – even empty Domains (empty brace block). Consequently
there cannot be an empty Transformation Net (or Module of a net), if at least one
Domain is used – according to the typical usage two Domains are necessary. The
QVT Parser mentioned above does not differentiate between Domain patterns
and other complex types at all, but in this master thesis this needs to be done
for addressing entry point constellation which intensively affects their execution
process – this can be seen in the discussed example of Figure 4.1.

The mapping and colouring of Places is more complex than in primitive type
variants. To map a complex type like a Domain to TROPIC a one-coloured Place
is needed to hold its value. But for every complex type that is placed within
another complex type, a two-coloured Place for the representation of dependency
and a one colored place for the referred complex type is needed. Both Places
are added to the EndPointModule. This is similar for all other nested complex
types, because their properties clearly and visually have to belong to them. So,
to express such a constellation at this point some own data of this type is needed
to be passed to its child. For sure a two-coloured Token can hold an own value
as well, but at this point it has to be stated that it is unnatural that similar

31

4. Transforming QVT Relations to TROPIC

types (Domains and enclosed complex types) are translated differently. In the
context of graphical debugging it is most necessary to overview the classification
of different types and their handling. Therefore, it is important to be able to track
the proceeding of such a complex type. One-coloured Places allow the focussing
on the most important issues. It always needs to be clear which properties belong
to which complex type (including Domains). This is done by correct colouring
in this thesis and leads to the usage of two-coloured elements for such situations.
Even for constellations ranging over several Transitions these dependencies using
their colouring have to be kept.

For example, if the complex type Class is transformed and passed from its ori-
gin using postconditions – Where-Clauses – from one Relation to another to refine
it. In such transformations there is probably no need to use the data of the par-
ent type unless it is not passed itself. Hence, a visual differentiation makes sense.
A parent-child synthesis could be a two-coloured Place called Package classes

combining a certain Package with a Class.
For all created Places so far an InPlacement for types of the source model or

an OutPlacement for other types respectively – including correct MetaTokens -
have to be created in the current Transition. Afterwards Arcs can be created
from a source Place to an InPlacement and from the correct OutPlacement to
the receiving Place. The details of when which MetaToken has to be used is
specified later on.

As a consequence complex types with the enclosed other types and the needed
transformations tend to be enormous complex – not only in visualization, but
also for QVT engines to execute them. So, from performance side it is, obviously,
important to minimize complex type relationships (especially in one-to-many con-
stellation as discussed later on) in favour to primitive type variants. The Grade
debugging mechanism presented in this thesis helps to discover such performance
leaks. Of course, in many cases a change from complex types to primitive types
or a change from one-to-many to one-to-one is impossible, but from debugging
side it is only the issue to highlight possible problems. The clue has to be made
by developer himself or herself.

For better understanding the nesting of complex types within another complex
type (e.g., the Domain pattern) can be seen in Figure 4.5. This figure clearly
systematically highlights the broadening and deepening effects of nesting complex
types.

4.3. Relationships

The relationships used in MOF models are two-sided which means that multi-
plicity can be defined for both reading directions. In this thesis a TROPIC Net
for QVT-R debugging always represents a hierarchical dependency. This means
that only a single parent object for a specific child object can exist, but several
child objects can exist per parent object.

Relationship variations It has to be differentiated between one-to-one- (1:1)
and one-to-many-relationships (1:n). The former ones are easier to handle, be-
cause is obviously true that a certain object of one complex or primitive type

32

4.3. Relationships

directly depends on the instance of the enclosed complex type. Therefore, there
is no need for a new Transition and a TracePlace as an intermediary space to
wait for the further execution. However, 1:n-relationships – see Package and
Class being transformed in the example of Figure 4.1 – have the problem that
a number of other types can depend on one complex type instance. So, a new
Transition is needed that is dedicated to match these one-to-many-relationship
transformation. A TracePlace combines the outgoing instance of the parent type
with the new Transition. The reason for TracePlaces in this context is the fact
that the colour of one parent complex type is needed in all of its children. Be-
cause 1:n-relationships imply that more than one child can exist for this type,
the parent type must be made reusable. Moreover, another execution part is
fired several times defining all the subelements. A duplicate from the OneCol-
orMetaToken representing the Class is placed in the new Transition to receive
the information from the TracePlace. Another two-coloured Token is needed here
for the synthesis of the passed Tokens from the parent type (TracePlace) and the
nested 1:n-related properties. These two-coloured Places are addressed in both
Transitions, because the parent Transition should only be fireable, if at least one
child object is available. The child Transition has to use address these Places (by
using MetaTokens) to verify that for a linking between the passed value from the
parent Transition and a child object exists.

Figure 4.6.: A combination of one-to-many and one-to-one related properties

As exemplarily shown in Figure 4.6 one-to-one and one-to-many related prop-
erties can both be used within one complex type. However, 1:n related items can
involve several different referred instances and, therefore, are displayed as range
of instances (box with black border). Every instance of a complex one-to-many
related property can hold again other 1:n related properties according to the used
metamodel. Therefore, this visualization broadens and broadens. Meanwhile it
can deepen and deepen as well, but in Figure 4.6 the tree downwards node E1

shows that the missing broadening leads to easier manageable situations.

33

4. Transforming QVT Relations to TROPIC

An example of a TROPIC representation with correct colouring can be seen in
figure 4.8 which is explained in more detail later on.

TracePlaces for 1:n relationships As described before TracePlaces are used to
allow the usage of 1:n-relationships. Nevertheless, it is necessary to acknowledge
that these TracePlace-situations do not place the incoming information as main
information / main type of the following Transitions. It is rather used to create
a linking – two-coloured Tokens, MetaTokens and Places - between the parent
and every child instance. The type of the property that forces the execution
in another Transition is set as main type for this Transition instead of using
the parent information like for Where-/When-Clause-TracePlaces. This is very
essential for the handling in the implementation.

4.4. Dependencies

Besides the introduction of classical relationships on metamodel level and, there-
fore, on model instance level as well, the dependencies resulting from QVT-R
rules definitions need to be translated. These dependancies allow the breaking
up of long transformation rules (Relations) into several depending sub-rules or the
transformation to TROPIC elements for dependencies resulting from the involved
paradigm change.

4.4.1. Where- and When-Clauses

The Where-Clause combines two different Relations with each other. Hence, it
has to have a MetaToken in the calling Relation’s Transition that receives the data
from a TracePlace. The target side does not receive information, but produces it.
The TracePlace does not receive the data from the Place in the EndpointModule,
but from the parent Transition. Therefore, the OutPlacement that holds the
main type of this Relation is duplicated with its contained OneColorMetaToken
combined with a TPArc with the created TracePlace. So far is not clear which
information of the previous Transition is passed to the child Relation. This needs
to be identified which is explained later on. In contrast TracePlaces resulting
from 1:n relationships automatically provide the parent type and the Transition
in which is transformed.

The main type is typically the type of the Domain pattern, but could also be
a one-to-many related property that involves a new Transition. Therefore, it is
essential to take the last hierarchy level. Combinations from every level of each
Domain are not necessary. The concept of different hierarchy levels is out of the
scope of this section and is explained later on. Going back to the original problem
of combining the two Relations, the duplicated OutPlacement has to be combined
with a TPArc with the created TracePlace. As a last step the TracePlace has to
be registered for other execution paths that might want to reuse it.

The When-Clause execution is similar but not the same as Where-Clauses. The
origin has to be looked up. The Relation calling another Relation in a Where-
Clause can be directly linked. The When-Clause is a little diverse for this issue.
It can refer to direct execution “neighbours”, to another Relation with longest

34

4.4. Dependencies

path in-between both Relations, or even to Relations that have not been executed
yet. Hence, this can only be executed in the called Relation (there is not even
a calling Relation). Implementing this issue the differences is bigger, because
the Where-Clause can be handled in the call of the referred Relation. At this
point both Relations are presented and their information is known. For When-
Clauses the execution in the code can not directly match them together and so
it is necessary to find out which Module with which Transitions belongs to the
certain Relation. Therefore, these pieces of information have to be stored and
managed.

In both constellations the information passed over the TracePlace to a child
Relation can be considered as the main information for this Transition - its type,
therefore, can be seen as main type that somehow “owns” the Transition. This
is important for the colouring later on and reflects the differences in translating
these TracePlace-situations to all others – in respect to the linking mechanism of
the two related Transitions.

As already discussed 1:n relationships always force at least one child object
is produceable (hierarchically deepening). For Where-/When-Clause this is not
necessary. This weaker specification is adequate, because the data is passed on
to the another Relation and does not expect anything else then the usage of this
data. There is no dependency in the other direction that could force the parent
type not to execute. So it has to be assumed that the execution of the previous
Relation has been successful according to its intended and defined transformation
mappings.

4.4.2. Hierarchical Data Passing

A Where condition means that the passed values have to be executed in a called
Relation. For this reason the value that it is passed on has to exist or has to
be created in the calling Relation. The value of the passed variable is needed
to continue execution in this particular instance of data. It is the normal flow
that a Token is passed from a source Place to a target Place - or just represents
a certain condition for the incoming or outgoing Token. However, in this case
the data passed in Tokens is not only needed at the target side, but also in
the referenced Relation. For example to transform a Class with Attributes it is
necessary to pass the classes to the Relation that executes the attributes for this
class to be able to create a two-coloured Place and a two-coloured MetaToken
in the Transition. The two-coloured items are needed to visualize the linking
between parent and child constellations. Such a constellation can be a Domain
to a property or a complex property of the pattern of a Domain to its properties
or just a passed variable in a Where-Clause.

Additionally, there can exist the situation of variables being hierarchically
passed over several post- or preconditions. For example the Relation ClassTo

Table could create an attribute. This attribute is passed to a Relation deter-
mining which type of attribute it is and passes it on to another Relation that
fills this attribute with data. Then the creation of TracePlaces would result in
several Places that do nothing then passing a value. For the first Relation the
attribute is only a precondition. The second Relation really needs the data to

35

4. Transforming QVT Relations to TROPIC

create the mappings. Hence, a great number of TracePlaces could be created,
but in reality there arises the question, if it is sufficient to link the original Trace-
Place with all others waiting for the data within one execution flow of Relations.
The definition of this theory also implies that is obligatory to search for already
existing Places before creating them. To be able to handle this situation with
better performance, in this approach every Relation registers its used, created
and known TracePlaces. This means that the same TracePlace could be stored
several times like in the example mentioned above (Listing 4.1). Thus, it is pos-
sible to retrieve passed data by knowing its own parent Relation, because this
parent Relation does hold all hierarchically passed values. To be able to supply
following Relations again with this full set of data, it makes sense to automatize
this registration procedure. However, this theory would lead to a situation of
hierarchically passing values from one Relation to another and again to another
or even more without involving all defined conditions and issues in the original
QVT Code. Just think about the situation that one Relation creates a Class and
passes it to a Relation that adds some properties to this item. Furthermore, the
called Relation calls a third Relation and passes this variable of a Class again
on. By passing the data hierarchically and directly from a source Place that lies
in between the first and the second Relation only consuming the data of the first,
this would lead to a situation in which the third Relation could be fired more
often than the second Relation executes. Although the result of Relation two
(at least in the context of Class) should be a dependency for further executions.
Consequently a hierarchical passing cannot be implemented to fulfill all restric-
tions. Therefore, a similar dependency on each level of the computation graph
of QVT-R is to interpret as (potentially) different instance to following levels,
although they might involve the same set of variables.

Nevertheless, there is a possibility of sharing TracePlaces among different calls
of referred Relations. It is often the situation that one Relation calls several
other Relations. Such constellations should not result in several TracePlaces, but
lead to a sharing of TracePlaes as they are involving value passings on the same
hierarchy level.

In the context of Grade the creation of TracePlaces is placed on Relations
level. This is done, because at this level the Where-Clause information is easily
extractable and analyzable. However, the usage of these TracePlaces is rather
done in the transformation of Domains, because Domains hold the data that is
transformed and offer the possibility of lazy combining the two Relations. An-
other tested approach is the usage of two different stages of TracePlace transfor-
mations. On the production side there is the possibility of creating a TracePlace
and the connection from the calling reference at the time of recognizing related
Relations. On consuming side the TracePlace is looked up (in a list stored in
the application) and combined with the actual Relation. This would lead to the
possibility of looking for errors in transformation by searching for unconnected
TracePlaces. A reason for this could be a called Relation via Where-Clauses that
has some When-Clauses (Preconditions) avoiding its execution until the end of
transformation. This can only happen, if another Relation specified in the When-
Clause can never be fired, because it has not been defined top-level and has not
been called before (Where-Clause). However, this approach could not be used in

36

4.5. Finding Correspondence of Source and Target Objects

the practical solution for two reasons. On the one hand the data handling is much
easier, if both sides are known. The colouring can be done at once, combining
both meaningful. Other MetaTokens need the colour of the incoming MetaTo-
kens. On the other hand the ease of debugging of the source code increases by
combining semantically related steps. Hence, the unusual case described above
is ignored. Nevertheless, this fact can be changed easily in the future.

4.5. Finding Correspondence of Source and Target
Objects

One of the most important points is to define which item of the source model
depends to which item of the target model. This means the identification of cor-
respondences (or equivalent structures). For humans it is, obviously, semantically
true that a class is related to a table, but syntactically – and all computers rely
nearly only on syntax and definitions – this relationship cannot hold without any
further information.

4.5.1. Heavyweight Approach

For reason of correspondence identification it must be analyzed which items be-
long together by stepwise parsing the Relation. First of all the Where- and
When-Clauses are relevant, because they offer an easy overview of variables that
can be linked. Just look at the Where-Clause in the example of Figure 4.1.

The Variable c is matched with t and passed on to the following Relation.
Therefore, for this and for the following Relation these two variables have to be
equal. This cannot be guaranteed for any other variable involved. The Where-
Clauses are syntactically the same. A combination of two variables in a When-
statement of a Relation must hold for this Relation and for its parent Relation.
Parent Relation in this context means the Relation specified in the When-Clause.

Another construct used in QVT-R is a primitive type with a Variable. This
variable implies a two-sided usage and in this context affords to define that the
properties calling this variables are equal, but also all other properties on hi-
erarchically higher levels. This means that two complex types such as Domain
patterns are parsed. With every iteration both sides go deeper in parallel and
look for variables. All passed complex types are stored to be able to track which
items were passed. Finding another complex type means that the iteration has
to go deeper. If a variable is found, the variable is stored with its stack of passed
properties. The same is done for the other side. Afterwards the stack of proper-
ties is read backwards and matched one-by-one. With this backwards-approach it
is unproblematic, if the list is longer on one side than on the other side, because
entries without counterpart are just left out and have to be matched somehow
else.

The third step in the computation of Relations is to check, if only one complex
type is available on each side. If this is true, these items obviously belong (or
can belong) to each other. Therefore, we can map them as equal. If more than
one type is available per side, then it has to be considered, if previously known

37

4. Transforming QVT Relations to TROPIC

correspondences (equivalent structures) can help to solve this issue. Otherwise
a many-to-many computation of all paths would be necessary leading to wild
permutations and heavy computation problems. This is the only reason why
Where-/When-Clause analyzation and the examination of variables have to be
undertaken in previous. Furthermore, this step can even provide more advantages.
Instead of checking only available types, it is possible to check the multiplicity
of arguments. If only a single one-to-many or one one-to-one is available on each
side, then a correspondence seems to exist. Hence, this “weaker” condition can
lead to powerful results showing further equalities.

All these discussed analyzation steps have to be stored as useable objects.
There always exists the possibility that some names occur in different properties
with different meaning. Therefore, the name is only interesting within one prop-
erty and cannot be used to check equalities of types. In the practical part of this
thesis, a special data construct was created called GradeTable. A GradeTable is
a double-sided hashed two column table that stores a complex type as key and all
other known equal types in a Set (Sets do not hold duplicates!). This allows the
fast querying of values of both columns. So for realizing an equality between two
variables, lists of equal types for both instances are retrieved without any fur-
ther handling. The avoidance of duplicate values is important as QVT-R handles
variables name like other languages as unique specifiers for variables. Further-
more, it is necessary to remember all Transitions and MetaTokens involved in
transformations with this variable. Therefore, tables for these issues have exist
as well.

Another problem has not been discussed yet. If more than two Domains -
one for each side – exist, all pairwise permutations of these Domains have to be
checked in the previously discussed manner. This would involve an exponential
computation effort increase. The minimum Domain count per Relation should not
be less than two to be able to transform source and target side issues. Additional
Domains do not specify information indescribable in two Domains, they only split
the execution side in several Domains per Relation. Hence, we can assume that
only two Domains are used to reduce the effort dramatically (Assumption I). In
the OMG standard no example is mentioned that violates Assumption I and for
real world problems typically it holds as well.

In Figure 4.7 the basic structural discovery of correspondences is summarized
by identifying structural equivalencies. On the source (left) and target (right)
side three complex types exist being linked by deepening 1:n relationships. The
QVT code is placed in the center of the figure, because it is responsible for the
transformation from one to the other side. Correspondences can now be discov-
ered by counting complex types in each parent complex type and comparing it
with the correspondent target element. However, it might also be necessary to
deepen the counting of complex types (beginning at the root element). This can
lead to an inference of relationships. Another discussed strategy is the search of
variables (cn in Figure 4.7). If one variable occurs on each side, this represents a
structural equivalence between these two primitive types. Moreover, it can also
mean a correspondence of the path leading to this element on each side. Similar is
the analysis of Where- and When-Clauses that express equivalences by mapping
two types/variables together. The inspection of the path to reach the elements on

38

4.5. Finding Correspondence of Source and Target Objects

Figure 4.7.: A structural summary of discussed equivalence discovery

each side are as interesting as for variables. Another interesting issues of Figure
4.7 is the unmapped type on the target side. This type seems not to correspond
with the source side, because the correspondence inference deducted from the
analysis of variable cn made it very probable that the parent path of each side
involve equivalent structures. It is from this perspective not provable which role
the unmapped type takes in the model transformation. Further pieces of infor-
mation have to be gathered to be able to construct an equivalence relationship.
Naturally, this type could also be a newly created type that does not correspond
in any way with the source side besides the embedding in its parent type that
holds a certain relationship.

4.5.2. Lightweight Approach

Using hashed data structures and using Assumption I can highly reduce the
amount of computation necessary and can help improving the quality of execu-
tion. However, the effort producing linkings in the discussed manner is still high
and there are still open questions preventing an execution for 100 percent of all
QVT-R transformations.

The gaps result from new Transitions that are created for each 1:n relationship
or even for one-to-one constellations. To be able to link them, data has to be
known, but to be able to execute the second Domain representing the second
side (target side) of the Transition, it has to be known to which Transition it
belongs to – if there exist several Transitions produced by the source side, the
target execution side does not know to which Transition of this Relation this
execution item semantically belongs to. If there exists only one Transition, this
is obviously easy. So one-to-one related properties are less problematic, because
they do not need to be transformed in external Transitions from the perspective
of the actual TROPIC algorithm. For the colouring it is interesting to know
the other side, but this is discussed in the next section. So if the assumption
(Assumption II) is made that a one-to-one Relationship is never translated in

39

4. Transforming QVT Relations to TROPIC

an own Transition, the transformation becomes much easier. It can be executed
directly without knowing any equality or semantical linking respectively. Only
one-to-many complex types have to be checked for equality anymore which is a
heavy improvement.

The next and only open issue is to discuss, if one-to-many Relations can be
reduced. According to the QVT standard no obvious restriction of such Relations
is discussed. Nevertheless, the usage of two or more one-to-many constellation
leads to many-to-many situations – two 1:n-relationships mean N x M or three
mean N x M x L - the cross-products of the matches. These situations would,
therefore, lead to a set of possible combinations that should be too high for
the execution of QVT Relations and, therefore, be avoided by QVT engines (a
warning should be presented or even better the execution should be denied). For
this reason the visualization does not need to be able to translate more Relations
then QVT engines can handle. So the assumption (Assumption III) is made that
every complex type – including all Domains! – can only have one one-to-many
related complex type as property. Nevertheless, it has to be realized that these
three assumptions do not handle all problem situations. The third assumption
leaves a gap that is described in the Listing 4.3. This issue is not present in the
mainly discussed example in Figure 4.1.

Listing 4.3: Reusing one-to-many related properties

61
62 e n f o r c e Domain r e l t : Table {
63 c o l s=c l : Column{
64 name=an ,
65 type=pn
66 } ,
67 pk=pk : PKey{
68 c o l s=c l
69 }
70 }

There exists a one-to-many related property with the name cols which is
transformed. The essential code element is placed after at the property pk. This
element is a one-to-one related property (which is the only option according to
the Assumption III), but it holds a one-to-many related property with the name
cols. This is a situation that could lead to too many matches and confusing
results. Hence, this constellation has to be forbidden as well. This means that
Assumption III has to be extended. From every complex type at any place there
exists only one path holding somewhere a one-to-many related property on the
full length of the path. However, this path can hierarchically hold one-to-many
related properties which is not explicitly disallowed. Coming back to the discussed
example of above, it has to be mentioned that this example in reality fully fulfills
this assumption, because it does only refer to a previously executed one-to-many
related property. This is a certain exception that allows to execute the value of
pk fully in the Transition of cols. There is actually no need for more hierarchy
levels or other constellations violating the executability.

These three assumptions solve this problem much faster and computation-

40

4.6. Realization of Correspondences

friendlier than the discussed three step process. Furthermore, they do not leave
any gap for special cases. So the further approach does not use this three step
process anymore. Nevertheless, this analyzation procedure can be used for other
interesting issues in the future. However, to be able to map the colours correctly
and efficiently some more problems have to be solved. This is discussed in the
next section presenting the problems beginning at generating colours and leading
to colour-aware MetaToken productions.

Furthermore, the information handling also involves a hierarchical perspective
on data sets encapsulated in Domains and its included and nested complex types.

4.6. Realization of Correspondences

To be able to colour the MetaTokens – which provides the only correspondence
mechanism in TROPIC – it is obviously necessary to understand which Token
(or its Place of origin) corresponds to which item of the other model. According
to the previous section this cannot fully be defined, but most correspondences
can be usefully identified.

Therefore, the colouring has to handle different types, cases and solutions.
These differentiates are built upon the defined assumptions to link source and
target side.

4.6.1. Transition “Owners”

Starting an execution the focus is typically set on the source side. A certain
Domain of a specific Relation is going to be executed. This Domain is on one
hierarchy level referring to some other levels that are enclosed. Primary the source
model defines the colours that are used. Of course, there can occur items that
are only used at the target model side, like conditions resulting from specifics of
this certain model that does not correspond with the source model. Nevertheless,
every Domain has to have one one-colored MetaToken which receives the complex
type objects from a source Place or a TracePlace. For most cases there exists
a MetaToken on target model side as well. So, how can this basic mapping be
managed?

Each hierarchy level allows the storage of some data. By executing a source
MetaToken a colour has to be taken. For the MetaToken that depends on the
complex type that “owns” this Transition (Domains or one-to-many related com-
plex type properties) this is called the masteringColor (in the application) that
is stored in the specific hierarchy level. The masteringColor is the main colour
of a Transition and, therefore, the colour for the basic element. Furthermore,
this colour can be necessary for referencing to the previously created main One-
ColorMetaToken. This way of storing the data is only possible, because of the
previously defined assumptions that avoid parallel paths. Parallel paths would be
hard to handle as discussed before, because it is not to hundred percent possible
to link both model sides with each other. But the defined assumptions and the
used hierarchy level storage enables the target side to consume a colour for a
complex type. A second value is available for most other issues. This is called

41

4. Transforming QVT Relations to TROPIC

metaLinkingColor and represents a certain alternative colour value for simultane-
ously linking a type with another type within the same Transition. This concept
is presented in more depth in the next colouring issue explanations.

4.6.2. Relationships

The execution of properties can be split up in several different cases. The realiza-
tion of correspondence between source and target objects is especially different
for relationships of one-to-one or one-to-many nature. Hence, in this section
the main differentiation is done according the multiplicity of the relationships.
Beyond this fact, a determination of complex and primitive types is necessary.

One-to-one Relationships

The most essential variant is the one-to-one (1:1) related primitive type property.
This only implies the usage of one TwoColorMetaToken that uses the masterLink-
ingColour of this hierarchy level as FromColor and another value as ToColor1.
This colour, of course, has to be unique and should be trackable for the other
execution side.

Therefore, the colours could be stored in an ordered list, but this would imply
that 1:1 related types could mix up their colours. To avoid the confusing mixture
of complex and primitive types and to improve the probability of correct matches,
they are stored separately. For example it could occur that one side has the
condition isPersistent=true (like in Figure 4.1) whereas the other side only
produces a new complex type called type. It would be confusing, if Tokens of
type would get the colours of the Tokens from isPersistent.

So, in lieu thereof the type of variable for each Relation is retrieved. If a vari-
able is found, meaning a two-sided relationship, the colour needs to be stored with
the name of the variable. If a boolean, string, numerical or other constant value
is found, a unique colour has to be requested by the ColorManager - the Color-
Manager is a construct provided by the TROPIC language implementation and
is extended by own colouring mechanisms. This colour need not be stored at all,
because there is no scenario of reuse known. A bigger problem is the colouring of
complex-types properties that are one-to-one related – one-to-many relationships
are unproblematic, because another Transition is produced and this complex type
somehow “owns” it and, therefore, the knowledge of correspondences – structural
equivalences – on this level is rather easy. Complex types always hold a variable
and, therefore, also a variable name. However, the variables of source and target
side are never the same. So if on the source side a complex one-to-one related
property occurs, it can, but need not, reflect another type of the same structure
on the target side. Hence, the colours of complex types cannot be stored and
reused. There is the possibility of trying to calculate probabilities or to ana-
lyze the further usage of these variables (Where-, When-Clauses, nested variables
matching on each side). For example a similar naming could reflect the wish to

1Within the application the ToColor is often referred to the term innerColor, because it seems
more intuitive from the graphical perspective. However, the logical statement of “from” and
“to” seems useful as well

42

4.6. Realization of Correspondences

reuse the information, but in reality this is not be useful, because source and
target side normally use different names. Therefore, at this point it would be de-
sirable to have the equivalences analyzation component discussed in the section
above. However, for the practical solution of this thesis, this seldom scenario is
left out, because it can only lead to major execution problems, if a following Re-
lation reuses the information from these variables. This is not typical for normal
complex types that do not represent the owner of their Transition, but this can,
of course, occur sometimes.

The execution of a complex type that is one-to-one related to its parent complex
type, is similar to the execution of primitive types. Nevertheless, there are some
special exceptions that have to be considered to be able to execute them in the
context of a highly reusable system. The TwoColorMetaTokens are translated as
for primitive types. However, another OneColorMetaToken has to be produced.
A one-to-many related complex type can be seen as just a complex type like a
Domain that is executed in the same Transition as the parent complex type. This
means that the execution process of OneColoredPlace and OneColorMetaTokens
can be expected by the method that executes the main features of a complex type.
To be able to reuse this method some colour specific settings have to be done.
To be able to combine other nested properties (except one-to-many relationships,
because they “care” about themselves) the colouring of the masterLinkingColor
and masterColor have to be changed temporarily for the execution of this property
and all of its nested properties. However, after the execution is important that the
previously used colours are utilised again to be able to transform all properties
in the same manner that are placed on the same hierarchy level. So, before
executing the child elements for a complex type the colours have to be stored
temporarily on another place. For every child that is executed, the masterColor
and the masterLinkingColour are set back to this original value. Then, if a one-
to-one related complex type occurs they can be set to different values for the
execution of this single property. What values should be stored for these colours?
The innerColor (ToColor) of the TwoColorMetaToken that is produced similar to
items for primitive types in one-to-one relationships are stored as both colours,
From- and ToColor. This is needed, because the execution process refers to these
colours to be able to set the FromColor for enclosed properties. This leads to
properties that are translated in the same Transition, but obviously show their
dependency to their certain direct parent type. The main type (the type that
“owns” the Transition) of the Transition stays untouched, because it is needed
for further executions.

One-to-many Relationships

In contrast to one-to-one, one-to-many (1:n) relationships are more difficult as
already discussed. This continues with the realization of correspondences (colour-
ing), because more colourings have to be clarified. Furthermore, the colour data
for one of such executions has to be present for both parent and child Transition.
This means that the conditions placed in the parent Transition have to be set to
the same colours like the classical OneColorMetaTokens (and TwoColorMetaTo-
kens) as described in the one-to-one relationship section. The latter execution
is logically and programmatically the same as discussed before. Furthermore,

43

4. Transforming QVT Relations to TROPIC

the MetaToken in the new Transition (higher hierarchy level) receiving informa-
tion from the parent Transition (lower hierarchy level) has to be set. This is
done similar to the execution of Where- and When-Clauses in the combination of
TracePlaces. Again the MetaColor for the receiving trace information is reused
from the masterColor that is used in the lower hierarchy level and represents the
masterLinkingColor of this level. This is done to be able to combine all referred
properties from this colour. Then a differentiation of primitive and complex types
has to be made again. Both need a TwoColorMetaToken that links the receiving
colour to their own value. However, a complex type does also need an own One-
ColorMetaToken with its own colour value. This is again done in the execution
of the basic proceedings for a complex type initiated at the current state.

Therefore, the execution and colouring of one-to-many related properties with
complex types is a recursive process that needs more pieces of information to
handle the linking process of the two related complex types.

Figure 4.8.: One to many relationship example

An example is placed in Figure 4.8 which represents a subview of Figure 4.1. A
single Package instance can hold n instances of Class. Hence, the TwoColored-
Place Package classes and the TwoColorMetaToken exist that combine both
involved types. The colouring of the MetaTokens which is the most essential can
be seen in the first Transition (from the top). The grey meta colour of Class is
the inner colour of the TwoColorMetaToken. The border represents the “origin”
which is in this example black of the type Package.

4.6.3. Referred Relations

For Relations that are called by a calling Relation via Where-Clauses, but also
for top-level Relations that imply some pre-conditions that have to be executed
before (When-Clauses), a special treatment has to be done. At this point it seems
notable that TracePlace executions can only be source transformation executions,
because the consumption of information is a source side task and it seems to be
avoidable that this linking is done twice.

Instead of producing an own MetaToken in the Transition a value is consumed
from another Relation or Transition respectively. This colour received is obviously

44

4.6. Realization of Correspondences

a colour value that need not represent the value that is important for the called
Relation in the sense of a typical main type execution, because the received Tokens
need not be transmitted to the target Places. Therefore, the colouring of this
scenario needs some further assistance. It seems again notable that TracePlace
consumers resulting from a Where-/When-Clause use the transmitted information
as main type information which means that the colour of its MetaToken represents
the main information to which all other properties refer to. In all other cases
another main type and main colour respectively is available. In one-to-many
relationships the referred complex property is the main type and, therefore, its
colour matters most. However, the linking between passed and main type value
has to be prepared as well.

First of all, the main colour (masteringColor) of the calling Relation has to be
retrieved. This is done by checking the parent Relation (this is only possible using
the information handling process discussed in the section about the realization
of this thesis). Nevertheless, it cannot be so easy to just take the mastering
colour of any hierarchy level and to create a linking from this Transition to the
main type of the new Transition. In the first considerations it could seem rather
necessary to get the last (highest counter) hierarchy level that has been added to
the parent Relation. However, it has to arise the question why it should be the
last hierarchy level. This question is quite more interesting than it seems at first
glance. For example in Figure 4.1 transforming the type Class that holds some
attributes (attributes). Attributes is a one-to-many relationship resulting in
an own hierarchy level. However, it is the intention of this Relation to pass on
the variable of the type Class. For this purpose it seems to be wrongly placed
to use the last hierarchy level. However, this usage can be quite advantageous,
because this level of information provides something more useful than the first
or any other level. It is a guarantee that only Tokens are passed on fulfilling all
conditions set in the whole Domain (or Relation respectively) execution. Going
back to the example of a Class holding some one-to-many related attributes, this
Domain statement means that a class that is passed on has to has these certain
pieces of information represented by the Tokens of these attributes. However, for
the production of colour-aware transformations it seems wishful to combine the
advantages of using the last hierarchy level or the very specific one transforming
the passed type. Respecting identities and flows the correct colouring is very
essential. On the one hand it has to be determined that only Tokens are passed
for which all conditions are fulfilled – like in the usage of the last hierarchy level
– and on the other hand it is necessary to pass the correct colour from the correct
position to the next Relation. The latter issue is important to allow intuitive
information handling. Hence, the hierarchy level has to be chosen carefully. The
Transition transforming an element of the type Class should directly pass its
value to any receiving Relations using exactly the same colours. For example a
Class could hold a child type. If the information (and, therefore, also colour) of
the child is passed on, this results in different used colours for the same instance of
Class. This has to be avoided to allow intuitive debugging and to represent useful
relationships. See the following section for a solution for avoiding improper partial
states that can result from the information passing from a Transition that is not
the last Transition within one Relation. In the context of the implementation in

45

4. Transforming QVT Relations to TROPIC

this thesis, the information is always directly passed on and, therefore, the later
on presented modifications have to be accomplished.

From this chosen level the mastering colour can be received and stored as mas-
terLinkingColor in the new hierarchy level of the child Relation (the actually
executed Relation). This colour needs to be used to produce a MetaToken for a
new OutPlacement in the parent Transition, because it is important to pass the
mastering information on to the next Relation. The same colour is used for the
MetaToken receiving information from the set TracePlace. This is no need, but a
comfortable way of visualizing this. It is no necessity, because the colouring only
needs to be loyal within one single Transition, meaning that some value that is
received is send to the target in a certain combination. Hence, they could also
be mixed and rearranged in the target model. However, this is not really used
effectively in this thesis, because no real execution scenario has been found for it.
Going back to the colouring problem of TracePlaces, the colouring of the main
type is realized setting or getting the masterColour of the child Relation. For
a source side execution this colour has to be generated, while for target side it
can be picked from the stored value. The linking between the MetaToken only
holding the masterColour (main type) and the received information over the Tra-
cePlaces is done by creating TwoColorMetaTokens with FromColor (border) of
masterLinkingColor and ToColor (innerColor) that holds the masterColour. Fur-
thermore, all other properties can be linked afterwards using this colour scheme.

4.7. Complexity and Effort

The possibility of cross-products and the need of computing permutations of all
Domains for each Relation showed the importance of algorithmic sensitiveness
for transforming QVT code to Transformation Nets. Hence, this section tries
to give an idea how the complexity can rise by using different constellations of
QVT Codes. This thought is the basis for developing the practical graphical
debugger solution, because the restrictions of QVT engines and the possibility
of visualization in Petri Nets has to be considered in every detail to be able to
produce a useful solution.

Therefore, it seems a necessity to go back to the algorithmic processing of
Relations. A top Relation can be seen as root of a computation tree holding
other referred Relations as child notes – please, keep in mind that the top(N)
Relations with several dependencies through postconditions (When-Clauses) have
to be included with special care. Computing a flow from one top Relation to all of
its deepest child nodes (Relations) evolves a process similar to depth-first-search
(DFS) algorithm. However, the When-Clauses can interrupt this computation
process, what could lead to the skipping of tree parts. This does not change the
computation effort intensively from DFS-search for each top Relation. The space
complexity of a depth-first search is known to be

O(b ∗m)

and its time complexity is considered to be

O(bm)

46

4.7. Complexity and Effort

(O-Notation of absolute value of vertex and edge counts) which is the worst-case
complexity (upper bound) [27]. The parameter b is the “branching factor or
maximum number of successors of any node” and m represents the “maximum
length of any path in the state space” [27]. The involvement of several different
top-level Relations – leaving out the problem of missing preconditions – would
rather lead to a definition of different maximum tree heights. An index called i

is needed to differentiate between the different depth of Relations. However, the
execution path that is needed to know all information data is much more complex.
This clearly shows that the complexity effort has to be calculated differently, but
very simplified to show its importance for this thesis.

Each Relation that is executed (once or several times) holds preferable two
Domains that are of complex nature. It could also include several more Domains,
but this is not used in this implementation according to the difficulty of find-
ing correspondences within each pairwise combination of Domains. A Domain
pattern can hold several primitive types, complex types that are in one-to-one
or one-to-many relationship to it. A one-to-one related primitive type does only
imply the transformation of one value. A complex type is much more challenging.
Just remember the infinity of other properties within a complex type (broadening)
including the basic Domain types. Furthermore, the infinitely deepening through
nesting of complex types (deepening) is a computation problem as already dis-
cussed before. So, the usage of complex types obviously leads to an infinitely
set in the worst case. However, the situation for one-to-many related properties
is even worse (the infinity of the worst case cannot become worse, however the
average computation can worsen) compared to its one-to-one counterparts. One-
to-many related primitive type properties cannot hold infinitely often the same
type (broadening) – see Figure 4.6. For example it can hold a set of names as
simple string values. This broadening is an additional broadening to the previ-
ously discussed situation. The one-to-many related properties are similar to other
complex types, but involve like other 1:n relationships the further broadening for
each used complex type. Therefore, the complexity of such a type could really
get amazing. Constructing a calculation from this idea the computation effort
for each Domain of each Relation could be formulated similar to the following
formula 4.1. In this calculation the computation effort for each processing step
is considered to be equally at the constant value of 1. This is somehow compara-
ble with the number of instructions needed to compute a certain transformation
visualization.

CC =
R∑

i=1

D∑
j=1

(1 +

PP ij∑
p=1

(NPijp
∗Bijp

) +

PCij∑
p=1

(NCijp
∗Bijp

+

+

Kijp∑
k=1

(complexTypesOfEnclosedProperties)) + ... + ...))

(4.1)

The used indices and abbreviations are explained in the Table 4.1.
This formula only considers some steps from a complex type object deepen-

ing to its child Relations. This algorithm of involved mappings grows for each

47

4. Transforming QVT Relations to TROPIC

Abbreviation Description
CC Computing complexity
i Relation index
j Domain index
p Root level properties index
k Enclosed properties index

PPij
Number of primitive properties of a certain Domain
of a certain Relation

PCij
Number of complex properties of a certain Domain
of a certain Relation

NPiju
Each primitive property of a parent complex type
(Domain) of a certain Relation

NCiju
Each complex property of a parent complex type
(Domain) of a certain Relation

Biju
The boundary (broadening) of a specific property
(one-to-many or one-to-one)

Table 4.1.: Description of the used abbreviations

attempt of deepening, because for each parent type many child types can be
used, but for every child type only one parent type can exist. Simplifying the
stated formula, would lead to a deeply nested constellation. The formula stops at
the computation of the child elements of related complex types. The calculation
would be similar, but the deeper the calculation becomes, the more indicators
are needed to track the actual state of execution. Hence, the brackets holding
complexity of enclosed properties would get deeper and deeper and this is
clearly out of the scope of this thesis. Furthermore, it is not the intention of this
formula to fully calculate the complexity of such a graph constellation, but to
give an idea, how the effort grows with each node (especially nodes with more
than one outgoing edges).

To be able to consider a more realistic effort calculation the space needed to
store and the time needed to compute the certain instructions would have to
be weighted. Besides this necessity, the effort can also be viewed at in different
perspectives. First, as already mentioned, the theoretical calculation of time and
space complexity seems appropriate. This can be seen as the effort to produce
such items. Second, each element enforces other elements that are needed on the
Transformation Net as well. For example a MetaToken typically also involves the
usage of an In-/OutPlacement and an Arc. This could also lead to a rethinking
about complexity computation based on dependencies. Third, the visual repre-
sentation can be seen as the used resource that matters most. There is only a
screen with certain – typically too low – screen resolution that has to visualize
a numerousness of elements. Therefore, a Module or Transition could be more
costly than the production of a MetaToken.

In all usage variants the determination of complex/primitive types in one-to-
one or one-to-many relationships matters most. To see the relationships of the
different types in an execution process, the set of all contained types for a single
complex type (without children) can be visualized as mathematical set of data.

48

4.7. Complexity and Effort

See Figure 4.9 for the graphical representation of this idea. The outer boarder
marked with n is the set of all properties contained in this complex type. In the
best case – for the execution complexity – this set is empty as all others have to
be empty as well as consequence. In the worst case it holds an infinite amount of
other types. In this set two other sets are contained. One is called NC meaning
all complex types. The other one is the inversion of this set and, therefore, 1-NC
meaning all primitive types. The one-to-many related properties 1:m (NCM for
complex types and NPM for primitive types) are part of both of the previously
described sets. Naturally, all depend to the set N of all properties.

Figure 4.9.: Determination of different types contained in a complex type
container

Nevertheless, this should only give an idea about the need of some restrictions.
For sure many problems were not considered in this short review of complexity
and effort respectively. For example it has to be left out, that every step includes
searching through the whole tree elements, internal data structures, types or
nested types.

The effort for computing such transformations is not easily (monetary) valu-
able. However, the complexity of the involved steps and the effort to compute a
single execution (a simple statement leading to a simple output value) and the
related amount of writing out the results, would lead to a certain effort value.
In this thesis only the execution and serialization effort is valued. Details about
these efforts are presented at the evaluation of the graphical debugger. Further-
more, it seems notable that although from outside it might appear differently,
the full process is deterministic and could be pre-estimated before, because the
used algorithms follow strict processing rules.

49

4. Transforming QVT Relations to TROPIC

50

5. Supporting Advanced Features
of QVT Relations

In the previous section the transformation of QVT-R to TROPIC elements has
been discussed. However, there exist advanced features that have not been men-
tioned. In this section we will discuss meta-class inheritances and its mapping to
TROPIC. Furthermore, solutions for incremental changes are identified.

5.1. Inheritance

Another often used feature of MOF models is inheritance of classes. If a class is
a subclass of another class (parent class), then all of its instances are indirectly
instances of this parent class as well. This fact has not been visualized in the
TROPIC Net so far. For each used type – representing a class in the model – a
Place is created as discussed in the previous section. If there is a wish to visualize
unused superclasses, the Places for these types have to be created before creating
any Tokens, but after visualizing the transformation rules.

The model loading feature of TROPIC creates for every instance a Token for its
direct class. This has to be enhanced to create duplicate Tokens for all indirect
classes it is an instance of as well. This allows the addressing of direct and
indirect instances in different transformation rules. However, as all duplicate
Tokens represent only one object (instance of a certain class), a functionality is
necessary that allows the merging of Tokens in the target Module. This is a
necessity for a consistent representation and has to take place at the end of the
transformation.

Figure 5.1.: A TROPIC example with metamodel inheritance

51

5. Supporting Advanced Features of QVT Relations

The usage of subclass and its parent class is shown in the example of Figure
5.1. Instances of Vehicle are only transformed, if they have been transported
by a FreightVehicle. Therefore, the instance representing the yellow Token is
transformed as by-product of the transformation of the blue Token as it does not
satisfy this condition itself. If it is desired to express that all FreightVehicle
instances are instances of Vehicle as well, a duplication functionality could be
called after creating this Transformation Net.

5.2. Incremental Changes

Incremental changes for models are modifications of existing models by adding,
deleting and updating model elements. For TROPIC nets this could mean the
adding of another Token in a Place whereas the rest of the net stays the same.
Such incremental changes should not lead to the production of fully independent
model version as this could harm the intended consistency over model versions.
Therefore, synchronization approaches can be used to propagate modifications
back to the previous model version or even to related models. This means instead
of reproducing models, the changes have to be analyzed and integrated in the
other models.

5.2.1. Introduction

Incremental changes can be interpreted differently on several (granularity) levels
for TROPIC nets, because there is no common understanding available that would
define incremental changes in the context of such nets.

Incremental changes only imply that models are modified to improve or enhance
the models instead of providing the fully correct or intended model at once.
Moreover, incremental changes can be caused by repeatedly modifying models
to achieve a certain intended result. Nevertheless, models could also be shared
by several developers who try to place their model information (e.g., test data)
in the model. In contrast to the repeatedly modifying elements, these parallel
pieces of information stored in the model need not directly correlate. However,
the handling of both types in this thesis is the same. In this thesis incremental
changes are addressed by model synchronization approaches. Synchronization
allows the propagating of model changes to other model versions. This allows the
incremental modification of models without reproducing the whole model itself,
but only propagating the identified changes.

5.2.2. Model Synchronization

Model synchronization allows the consistent merging of model states. Models can
be seen as MOF models (such as the input and output models for QVT-R) in this
thesis. The QVT-R code as well is parsed to a model representation before it is
visualized. The transformation net in TROPIC is a model based on the TROPIC
metamodel.

Model synchronization for model transformations is described with the help of
the example of Figure 5.2. A model is created (Model A0) and transformed to its

52

5.2. Incremental Changes

Figure 5.2.: Model synchronization for model transformations

target model representation (Model B0) in step 1. Afterwards another interaction
(step 2) with the resulting model takes place by modifying it. These modifications
need to be kept for the future. In step 3 the original source model is modified
(Model A1) and afterwards (step 4) the model transformation is rerun. Therefore,
an output model (Model B1) is created that does not contain the modifications
added to Model B0. Therefore, a merging process (step 5) has to take place that
propagates the changes from Model B0 to Model B1. This process is the model
synchronization.

Variants of Model Synchronization

In this thesis model synchronizations are used in three different variants: First,
the synchronization of the input and output model; Second, the synchronization
of QVT-R and its TROPIC representation; Third, the synchronization of the
execution trace. All three variants are sketched in Figure 5.3 and marked with
dotted lines and numbers.

Figure 5.3.: Different variants of model synchronization in Grade

Model synchronizations can be achieved by archiving previous versions of mod-
els. If a new model is created from a certain input, it could be built to a history

53

5. Supporting Advanced Features of QVT Relations

area first. Then the result could be compared with the previous applicable re-
sult and then be merged. Only particular changes are considered in the merge
process. The merged model is then used as actual model.

Input / Output Model Synchronization There is the possibility of synchro-
nizing the input and output models (1 in Figure 5.3). Using a certain QVT Code
a source model is transformed to a target model. By changing the input model
at some point, the target model should not be newly created. Only the changes
should be propagated to the target model.

Net Synchronization The created TROPIC net can be synchronized with its
QVT-R representation (2 in Figure 5.3). Every change in the QVT mappings
should be reflected to the net without reproducing the full net. Typically the
user adds new Tokens to be able to test certain Transitions. Such modifications
should be keepable to improve the effectivity and efficiency of debugging with
Grade.

Execution Trace Synchronization The execution trace from one model to a
certain result using a transformation net can be used (3 in Figure 5.3). As the
QVT-R code may change dramatically over versions, the pure synchronization
of models might not be sufficient. This results from the problem that transfor-
mation paths from source to target may change intensively. For example, if a
certain Token results from firing particular Transitions, this could be somehow
different to the result that could be achieved in the TROPIC Net based on the new
QVT-R code. This change of behaviour needs to be propagated over the whole
transformation path. For such situations the execution trace synchronization is
useful.

Instead of synchronizing models, the user interactions with the TROPIC net
are tracked. If a user fires several Transition, he or she typically tries to identify
particular problem areas (origins). After realizing that a certain erroneous be-
haviour occurs, the QVT-R code is changed. Afterwards a new TROPIC net is
created. This Net should be able to be set in the same condition as before to see,
if the result can be achieved that has been expected. Therefore, this approaches
allows the replaying of the execution trace by firing the Transitions in the same
manner as in the previous debugging session. This can only be done as long
a firing is possible. If firing a Transition is not possible anymore the replayed
execution path has to be stopped and the user has to be shown a prompt that
informs him or her about this fact. Such execution traces should be keepable over
versions allowing naming and selection.

A drawback for this approach is the fact that TROPIC uses names (or some-
times not even names) for identification of elements. So, if an element such as a
Transition is renamed, it cannot be found anymore. The firing of the execution
trace has to stop at this point.

54

5.3. Summary

Adopting Model Synchronization in Grade

The synchronization use case being adopted to the prototypical implementation
focuses on the synchronization of Tokens. The Token synchronization is a subset
of the TROPIC Net synchronization use case. The Tokens are used as the only
hold one particular value – their colour. This colour is sufficient to identify them
within a Place. Their synchronization is, moreover, very valuable as modifying,
adding or deleting Tokens is a very commonly used debugging scenario. For the
synchronization of Tokens in Grade three particular synchronization needs could
be identified: First, it should allow the possibility of synchronizing the Tokens
being placed in the source Module. Second, the Tokens being placed in the target
Module can be necessary as well. Third, the information stored in all intermediary
Places (TracePlaces) in other Modules should be synchronized as well. As these
variants are realizable, they are integrated in Grade.

5.3. Summary

In this section some advanced model transformation topics have been discussed.
In particular the areas of class inheritance and incremental changes have been
discussed. On the one hand, incremental changes have been addressed by model
synchronization. Several use cases for model transformations have been identified
in Grade. On the other hand, class inheritance has been addressed by duplicating
Tokens in the source Module at the beginning of the transformation, and merging
the Tokens in the target Module at the end of the transformation.

55

5. Supporting Advanced Features of QVT Relations

56

6. Realization

This section concentrates on technical, programmatic and realization-specific is-
sues. Therefore, the used IDE (Integrated Developer Environment) to implement
this graphical debugger as well as the used components are introduced. Then the
actual accomplishment of the execution process is presented. All topics described
in this section fully correspond to the conceptual approach discussed in previous
sections.

The prototype called “Grade” can be considered as prototypical implemen-
tation showing a specific way of visualizing QVT-R Code. However, the user
interface is not intended to be designed for professional usage up to now.

6.1. Environments

Naturally, not all used components or tools are built from scratch for the appli-
cation presented in this thesis. There is an intensive reuse of IDE functionalities
and external components that provide the opportunity to develop in a modern
manner and to focus on open issues addressed by this thesis.

6.1.1. Eclipse and its Plugins

Grade is developed in the open-source IDE Eclipse using the Eclipse Modeling
Framework (EMF) [28] to create the models on which the Transformation Nets
are based. To be able to use the features for modeling and reading models of
EMF, Java 1.61 is used to create this application. A TROPIC plugin (for Eclipse
EMF) connects this implementation with the algorithm used in the TROPIC
project.

For the purpose of this project, an Eclipse 3.4 Ganymede Modeling Edition
configuration is used. This specific version provides the basic Eclipse 3.4 func-
tionality combined with a set of plugins that fulfill important tasks in the area
of modeling and model transformations. This configuration contains the Eclipse
Plugins “Eclipse Modeling Framework ” (EMF) in Version 2.4.2, “Kermeta” (Ver-
sion 1.2) and “Graphical Modeling Framework” (Version 1.1 and Tolling version
2.1). These three plugins – as some related – are needed to view, run, read,
write and use the models written in Ecore format. All parsed QVT-R codes are
transformed to Ecore models that are evaluated and visualized. Furthermore, the
TROPIC plugin needs these Eclipse plugins as well.

The most important component used in this practical realization of this thesis
is the TROPIC plugin. This is needed to visualize the information with the algo-
rithm specified by TROPIC. Basic intersection point for this graphical debugger

1http://java.sun.com/javase/6/ - last accessed: November 27 2009

57

6. Realization

and the plugin is the construction of a Petri Net using the factory specified in
the plugin. The graphical notation provided by the editor is similar to the pre-
viously pointed images. However, there is some derivation resulting from the
graphical placement of elements on the Transformation Net as there is still room
for improvement concerning automatic layout algorithms.

6.1.2. QVT-R Parser

To transform a textual QVT Relations code formulated as before to an EMF
QVT model, a free QVT-R parser available on SourceForge has been used. The
parsed QVT-R Relations are stored in an EMF model conforming to the QVT
metamodel. Figure 6.1 shows an extract of the metamodel for QVT Relations
used in this QVT Parser.

Figure 6.1.: Metamodel for QVT Relations used in the QVT Parser

In this metamodel a more specific representation can be seen that reflects the
model (as XML-file) in which the identified QVT-R elements are stored by the
parser. This model is used for the computation in Grade later on. As from this
metamodel settings like boundaries have be derivable, finer granular differentia-
tions are necessary than in the simplified metamodel shown in the sections before.
For example a RelationDomain is the same as a stored Domain. The included
pattern - the complex type that refers to the Domain - is called DomainPattern.
Furthermore, many differentiation like top-level or non-top-level can be stored
using normal boolean attribute values. Relations that can be called using Where-
Clauses and similar mechanisms do not directly call the Relation, but hold an
instance of RelationCallExp that refers to the Relation itself. These changes in
naming and the finer differentiation of types does not change the overall mecha-
nisms of mapping QVT-R to TROPIC as they have been described in the sections
before, but they are necessary for retrieving the information in the code and are,
therefore, mentioned here.

Generally, this parser helps to classify and read the structures in a QVT file, but
it does not help to understand, sort, interpret and visualize the data. Hence, this
application is used to prepare a common basis on which analysis is undertaken.

1http://sourceforge.net/projects/qvtparser/ - last accessed: November 27 2009

58

6.2. Implementation Specifics

Moreover, the parser cannot only analyze QVT-R, but also Core and Opera-
tional rules which are effectively not used in this approach.

6.2. Implementation Specifics

As this thesis propagates the Grade prototype many details concerning the im-
plementation solution exist that are presented in this section by addressing the
following areas: (1) Many data types are used in Grade that are important for
the execution processing; (2) The encapsulation of information is an issue result-
ing from the graph-transformation approach involving a reduction of accessible
data per node; (3) The usage of patterns and strategies leads to a specific class
structure which needs to be introduced;

6.2.1. Data Types

This section discusses the usages of important data types resulting form the
QVT parser. Those types have a storage and sometimes management function-
ality. The entities resulting from the QVT parser are metamodel conform – e.g.,
Relation, Domain and DomainPattern. In this section the Predicates with
RelationCalls being used for identifying the execution ordering of Relations, the
OclExpression accomplishing value assignments, and the particular representa-
tion of complex (ObjectTemplateExp) and primitive types (PrimitiveLiteral
Exp) in the application are discussed. Therefore, these types are essential for the
visualization of QVT-R in TROPIC.

Predicate and RelationCall

The PredicateImpl is the information provider in Where- and When-Clauses.
Such Clauses consist of several Predicates that can call other Relations Relation
CallExp with a value set (variables).

OclExpression

The OclExpression - or OclExpression respectively – is the parent type of all
types (primitive and complex). This has not been mentioned so far, but, of
course, the naming results from the fact that each condition or mapping is an
expression specified in OCL constraints.

ObjectTemplateExp and PrimitiveLiteralExp As the ObjectTemplateExpImpl
– implementing ObjectTemplateExp – is used for storing complex types like Do-
main patterns, it is essential for the Grade computation. The primitive types ex-
tend the PrimitiveLiteralExp class – e.g., types for Boolean (BooleanLiteral
Exp), String (StringLiteralExp), Numeric (NumericLiteralExp), Variable (
VariableExp) exist. The VariableExp allows source-target correspondences and
value passings to other Relation, and are used for complex types as well.

59

6. Realization

6.2.2. Information Encapsulation

A model is a worthy way for encapsulating data for a certain problem scenario.
However, the model produced by the used QVT parser cannot provide all pieces
of information needed to be able to handle the full course of transforming QVT-R
to its Transformation Net representation. Hence, by starting the execution of a
certain Relation, the received parsed Relation needs to know which Domains it
handles. Furthermore, every Relation is translated into an own module. This
module is used throughout the execution of all contained types (Domains, prop-
erties). Therefore, it has to store the module. Additionally, TracePlaces have to
be remembered to be able to access them later on to reuse them or change their
information content. To be able to trace this flow from one Relation to another –
which is not possible using the passed Relations - the parent Relation has to be
known and stored additionally. According to the colouring issues discussed in the
concept of this thesis, some sets of data have to be stored for each hierarchy level
of a Relation. A hierarchy level is a set of data transformed to one Transition.
This implies that the usage of a one-to-many related property results in a new hi-
erarchy level with its own Transition. The information handled in a certain level
is basically the colouring of the main type – as described in the approach before
–, a linking colour (linking to the parent type), a colour list for variable mappings
and a sorted list of colourings for complex types that are not the main type of the
Transition. The separation of complex types is undertaken to avoid the mistake
of mixing the colours of a primitive and complex type – this could confuse the
developer quite a lot. Going back to the original problem of a certain information
need for Relations in the phase of executing them, it is obviously necessary to
put them in a container. In this thesis this container is called RelationItem and
its counterpart for Domains is called DomainItem. The latter container is used
for each Domain of a Relation. Therefore, a RelationItem can contain several
DomainItems. DomainItems itself are able to refer to the RelationItem they
belong to and, furthermore, hold the information of Domains. At this point it
seems notable that there does not exist something like a PropertyItem, because
the execution is to similar to Domains and, therefore, is maintained using other
storage mechanisms. Together all these containers allow the “jumping” from one
item to another one without parsing the whole model. This form of packing the
original information in a construct holding additional information is a concept
called “container” [4]. This usage also implies a certain management of the en-
capsulated data using the container instead of directly accessing the Relations or
Domains. This helps to include often needed processes or queries in a clean and
easily accessible way.

This way of storing the data is helpful in navigating from one item to an-
other, but it does not fully solve the issue of reusing code parts. The process of
transforming data from QVT code to a Petri Net involves many repeatedly used
TROPIC Net production Nets (such as the creation of Places and their registra-
tion in the system) that can be sourced to an external factory or similar construct.
To be able to execute the correct information item at the correct time, there is a
need of remembering what special item is to be executed at this moment. Hence,
a GradeExecutionCard is introduced to track the actually transformed complex
type. Moreover, this card helps to manage the actual objects and to refer to

60

6.2. Implementation Specifics

related and previously executed items. Therefore, this flexibility is interesting for
executing a certain method, because it does not need to know what it actually has
to transform and it need not be specified by each method call in which context
the execution should take place. Hence, the GradeExecutionCard can be seen as
context provider for the execution process.

Another momentous advantage of using the GradeExecutionCard structure is
the easiness adding new pieces of context information in the future without mod-
ifying any parameter passing. This results in a beneficial advancement of the
overall software quality of the graphical debugger by raising the maintainability
of the source code.

6.2.3. Class Structure

The basic structure of the application is split up in three sections. (1) Several
libraries like TROPIC are used. They are only added to the project and available
for usage. (2) The QVTParser and its classes are integrated in own packages
of the project. The structure of this parser is left unchanged and is, therefore,
easily updatable or replaceable. It is, furthermore, handled similar as an external
component being only accessed at some known interfaces to decrease the depen-
dency on external software modules. (3) The last component is the code of the
debugger itself.

The internal debugger structuring is again split up in several categories. There
are factories providing access functionalities to the TROPIC plugin. The execu-
tors provide the main transformation execution. Furthermore, several supporting
categories exist to store and handle the actual state.

Factories

In this application several factory methods [10] – abbreviated with the term
factories – are used mainly to decouple the Grade implementation from external
components – or to reduce the coupling to some extent. Hence, the creation of
Places, Arcs and Colors, as well as the loading of model information is delegated
using a factory.

The TROPIC plugin provides a ColorManager that is able to provide unique
colours throughout the execution of the debugger. This ColorManager, however,
does not handle some application specific semantics represented in the colouring
of Tokens. For example it could be wishful to provide a mechanism that auto-
matically tries to use the same colour for the same types in all Relations - if this
is possible according to some restrictions. Therefore, a factory is placed between
the ColorManager and the application code. It tries to remember the colours and
transforms the request to a correct delegation to the ColorManager. The advan-
tages of placing this code in a factory are the exchangeability and modifiability of
the ColorManager at one single place, as well as the reduction of the amount of
code necessary to introduce this logic in every method using the ColorManager.

Moreover, the loading of model information is again a task that is delegated
to an external plugin. To be more precise TROPIC fulfills this task. The model
loading process requires the correct instantiation of the related class using correct
parameter values. Therefore, this is placed in an own factory as well.

61

6. Realization

Executors

The executors provide the main execution work of the Grade application. They
are split up into RelationExecutor, DomainExecutor and TracePlaceExecutor.
The main focus of these classes is the handling of the logical flow of the appli-
cation. Therefore, the information storage is not done in this executors – this,
therefore a similar concept to the action/executor pattern2.

The RelationExecutor is able to construct the basic flow of Relations and
is, furthermore, responsible for delegating the transformation work to related
executors. This means that the RelationExecutor checks preconditions – if
the Relation is able to be executed – and then retrieves the Domains from the
Relation. The execution of the Domains is delegated to the DomainExecutor.
After executing all Domains the execution of all referred Relations can start.

This DomainExecutor is the component that produces nearly all elements that
are added to the Transformation Net in the whole application. This results from
the strategic positioning of Domains in the model transformation process. At the
point of executing a Domain, the application should know the path it took to reach
this Domain (Relation, parent Relation, ..), the Domain data and all referred
properties. Therefore, a PropertyExecutor could only provide the possibility of
pushing some code in other classes to improve readability and maintainability.
However, this does not represent the meaning of the used “Executors” in this
thesis that prepare the orchestration of the course of actions.

Another Executor is used for TracePlaces to be able to bundle the logics of
the creation at a single point. The assignment of linking two Relations or types
are done at several different points in the application. The logical execution is
similar in all situations. Furthermore, the flow between these items is essential
for the basic information flow within the produced Transformation Net.

In addition, it is possible to see a top-down weakening from RelationExecutor,
DomainExecutor to TracePlaceExecutor. The Relations are central elements in
all transformations and are, therefore, the corpus of the application. The organs
providing the real functionality, however, are placed in the DomainExecutor class.
The TracePlaceExecutor and the related factories can be seen as solution for
not needing to provide all functionality at one point at every time.

Information

Naturally, the execution process needs data objects supporting the course of
execution. For the storage of the actual state and for being able to reuse methods
as often as possible, the execution state needs to be present. This state is stored
in the GradeExecutionCard holding the actual object that is transformed and
the context information. For example to transform a certain property it is a
necessity to be able to access the Domain and Relation information. Furthermore,
the GradeExecutionCard does not only provide easier storage and passing of
information, it also helps to differentiate between different execution cases. The
logics for this differentiation is bundled at this single place to be able to extend
or modify it in the future.

2http://msdn.microsoft.com/en-us/library/cc984279.aspx - last accessed: November 27 2009

62

6.2. Implementation Specifics

The already discussed RelationItem and DomainItem are also classified in
this category, because they allow the encapsulation of relevant information (meta
information or related pieces of information) for Relations and Domains respec-
tively.

Furthermore, the execution process has to handle a handful of settings, like
model names, file endings, temporary storage files or the enabling/disabling of
some application parts. Normally such values are passed in the call of the ap-
plication or are specified in a certain configuration file – typically a property or
“eXtensible Markup Language” (XML) file. However, the information received
at this point is not only relevant for the class representing the entry point, it is,
naturally, also a necessity to be able to access these values in many (all) other
classes. Hence, this configuration is managed in another class that returns the
values requested by classes. Again, this approach enables the opportunity to ex-
change the storage format and handling at a single class without having the need
of changing several other files that require this information as well. In the first
release a relatively simply property file is used that stores key-value pairs in a
text file that can be loaded in Java Hashtables. It is even used to maintain the
staging process in Grade – it therefore always the configuration whether or not a
new QVT-R model from a source code should be built, the synchronizer should
be called, and model information should be loaded to the resulting TROPIC Net.

Another important information encapsulation is found in the HierarchyLevel

class. A hierarchy encapsulates related TROPIC elements according the used
input and output Metamodel – as described in the sections before. This class does
not handle the creation and management of hierarchies, because they depend on a
specific Relation (or RelationItem) that is, therefore, able to overtake this issue,
but to encapsulate the information relevant for a single hierarchy level – this class
can then be used in Relations for this purpose. For example the correct colouring
is an issue that requires some detailed information about the hierarchy level. It
is necessary to know the colour of the main type (MasterColor) and the colour –
if existent – of the parent type. Furthermore, certain constraints regarding the
colour management, the call of the factory responsible for creating colours, or
the decision whether to create or reuse a colour, rely on the data stored for each
hierarchy level. Some logics for such decision can be even moved to the hierarchy
level to reduce the amount of misuses.

Moreover, the RelationStack class is used to store the Relations classified by
Grade (which have originally been returned unclassified by the QVT parser) at the
beginning of the computation. This helps to separate the concerns by removing
such functionality from executors or entry class (main class). The categorization
is done using three lists (according the described groups) that allow the polling
of contents and removing of executed Relations. An additional group is used for
storing all executed Relations for traceability reasons.

Serialization and Deserialization

Not only the creation of a Transformation Net is necessary, but to serialize/dese-
rialize and manage the models representing the object information creation the
course of execution of this application needs to be handled. Hence, several classes
exist to bundle this functionality at a single point. Although the deserialization

63

6. Realization

and serialization is only done once in the whole execution, the bundling in an own
category seems necessary, because their functionality does represent semantically
different sorts of actions. The other areas are fully object-oriented and do only
handle object representations of models – reading from or writing to them. The
serialization process, however, provides the functionality of storing the objects
to a real model file. This separation leads to good hiding of implementation
complexity at some points of the application.

6.3. Execution Process

The actual execution process of Grade is split up in four major areas of interest.
First, the state-intensive general mappings creation of TROPIC elements from
QVT-R code is introduced in different granularity levels. Second, it is important
how to integrate the information to accomplish the execution flow. Third, the
model information (the state) of concrete models have to be added like it is done
in QVT-R itself. Fourth, the actual usability of the Grade application is improved
by adding a pretty printing functionality.

6.3.1. Course of Execution

The actual execution process is a complex stateful procedure moving from state
to state by calling actions by action. As described before there is a need of
reusing many code elements and, therefore, the execution process is definitely
dynamic. This can be seen similar to rule-based approaches. The combination
of used parameter values leads to a certain way of execution. However, changing
one of the two parameters and calling the same code lines again (maybe through
iteration or recursive approaches) often results in a very or even totally different
result. So it is the aim of this section to introduce the course of action for
an execution process in a medium granularity level to make the process behind
understandable. Naturally, many essentials details have to be left out, to reduce
it to an understandable issue.

Pre- and Postcondition

The actual graphical debugging process consists of three steps: The parsing of the
QVT Code, the creation of the Transformation Net (implemented in this thesis)
and, finally, the loading of the model information (and additional optional steps).
All three steps are made available in the Grade application. However, for step
one and three only the usage and integration was implemented in the Grade
application.

First, the model for a certain input QVT-R code has to be be created using the
discussed QVT parser. This step returns an XML file (the model) that is then
used as data basis in the following steps.

Second, the Transformation Net is produced. This process is complex and is
discussed in all following sections representing the course of execution.

Third, After the Transformation Net has been built, the model information
has to be loaded to the produced Net. This is undertaken using the TROPIC

64

6.3. Execution Process

plugin with the aim of integrating it as much as possible in the Grade application
execution.

Execution Overview

The activity diagram from Figure 6.2 shows the basic iteration process on high
granular level for the Transformation Net generation. This means that it concen-
trates on the selection of Relations and does not jump into depth of execution.
The names of activities start with a letter, a number and a colon are diagram
“ids” to simply the process of referring to a certain activity. This handling is
continued in all other used diagrams as well.

The execution starts by classifying the Relations in groups as discussed in
this thesis. Then the Relation groups are iterated (in a foreach-loop manner).
Relation groups are the classification groups – top Relations, top Relations with
When-Clauses and all other Relations which were not executable at there last
call (pre-conditions not fulfilled) – and are stored in an ordered form. For each
group the Relations are retrieved and iterated as well. For all executed cases
these three classification groups have to exist, but they might be empty. At the
start of execution the group of all Relations that are not top level is empty. This
group is filled in the process of the execution. Relations that are only addressed
over Where-Clauses are not listed in any of these three groups at the beginning.
Only Relations that could not be executed at their call are added to the third
group. This classification can be rather seen as entry point storage, because it
is not important which Relations are existing, but it is rather important which
have to be called to start an execution process – the root of a tree or subtree. For
this reason, the third group need not contain information, if no post-conditions
are used in all transformation mappings.

In the following “General process” the execution path within a Relation is
prepared. Hence, it is in the full charge of the transformation process. The main
Transformation Net generation is not done on this level, but rather on the level
of Domains and properties. However, the registration of Where-Clause types is
done and the delegation of the execution process is provided. This means that
all related Relations (post-conditions) have to be called after the execution of
this Relation as well. This is done according to the structural dependencies of
this treelike graph. Moreover, the basic setup for execution is needed. A Module
that holds the transformation visualization elements of this Relation and a main
Transition has to be prepared and registered. The storing of data is done in
an execution card and the related container objects. The setup of this storage
environment is not done at this point, but is completed here for this execution
stage.

So the Domains of the picked Relation are retrieved. Then another iteration
process is used to execute each Domain. In this process the first task is to retrieve
the DomainPattern that actually provides the relevant information of this Domain
- all data needed to execute the process. In the following steps the execution of
Domains and related items – or to be more precise their Patterns and values –
are accomplished. Then it has to be checked, if the complex type related to the
specific Domain has been passed over a Where-Clause to the actual Relation.
This differentiation has to be down, because the Transformation Net production

65

6. Realization

Figure 6.2.: High granular course of application execution

66

6.3. Execution Process

is different for these types. A type that has been passed in a Where-Clause (D1
is “YES”) and should be executed now for this Domain, involves a TracePlace
and should avoid the production of the normal TROPIC elements. Therefore, the
incoming information from the TracePlace is only a condition. The information
of this incoming colour is reused to link related items to it. On the other side (D1
is “NO”) the Places (D2) have to be created newly. The Places have to be linked
with the Transition of this Relation. At this point it seems necessary to mention
that the TracePlace creation should only be done once for source and target side.
Because source side is normally the first side to be executed, it is restricted to
the source side.

The execution continues for this Domain by retrieving the nested properties of
this complex type – the child elements in the perspective of XML representations.
These child elements can have a count of zero or be infinite. Hence, it has to be
iterated over all properties again. For each identified property another classifica-
tion has to be made. At this point it is relevant, if a complex or a primitive type
is found in the pattern of the property. Nevertheless, in the execution process
on a more detailed granularity level it can be seen that several more constraints
have to be considered to execute these properties. However, to represent the basic
dependencies and flows the differentiation between complex and primitive types
seem to be sufficient. The latter one can be directly executed to TROPIC Places,
MetaTokens and Arcs. The first one points back to the point of D1, because the
execution process is similar to Domains and can, therefore, include many more
properties and execution iterations.

After executing every property of a Domain - and all the nested properties of
a property – the execution of the Domain finishes and the next Domain starts to
be executed. After transforming all available Domains the next referred Relation
(Where-Clauses) can be executed – this is not specified additionally in the figure.
When also all referred Relations are completely executed the next Relation can
be used. When all Relations of a group have been executed, the next Relation
group can be taken. After executing all groups from highest to lowest priority,
the transformation finishes and the Net can be serialized.

For the process of developing the graphical debugger it is relevant that a concep-
tual or algorithmic mistake is often not reflected by exceptions during executions,
but at the process of serializing the Net. For example if an element refers to an-
other item, but the later one has not been added to the Transformation Net at
any point – it can be placed in other items or in the Transformation Net itself.
Therefore, the development and the handling of error cases can be somehow mis-
leading. This represents a important issue for the future, but cannot be linked
to this implementation approach itself, but rather to the usage of Ecore-models
serialized to XML files. This serialization process already implies that the stored
object have to be persisted and validated at the end of the execution process.
Although it would be wishful and worthy, a parallel validation for objects cannot
be provided, because it would need some transactional logic to understand when
a validation could be done. This is a drawback that has to be accepted.

Furthermore, it has not been mentioned at any point that preconditions (us-
ing When-Clauses) are used and handled. These preconditions, however, can
strongly influence the course of execution, because they can avoid a Relation to

67

6. Realization

be picked. This might not only be at the point of selecting the next Relation in
the iteration process, but also in the course of calling referenced Relations from
a Where-Clause. At all points of taking and executing a Relation the When-
Clauses have to be checked. There is no need to prove, if this condition has been
fulfilled with a particular set of data, because the graphical dependency in vi-
sualization is independent from the actual transformed object – the TracePlaces
provide this process of delivering the correct data to the related Transition. If a
precondition is not fulfilled at the execution time, the transformation of this Re-
lation is skipped and added to the last Relation group. The last Relation group
is picked, because the probability of executability rises by letting pass some other
Relations. Often the circumstance occurs that a When-Clause cannot be fulfilled,
because a Relation of another execution path (other top level Relation with or
without preconditions) is required. As it has already been mentioned Relations
only addressed by Where-Clause calls are not listed in any group at the beginning
of their execution. However, if such a Relation has to be stopped in its execution
and has to be skipped for later execution, the status has to be maintained as well.
So they are stored in the third group like all others in the same situation - other
Relations are moved from their original group to the third one.

This perspective on the process of this graphical debugger is comfortable, be-
cause leaves out the main execution. However, behind each step several other
finer granular steps are placed and often more cases have to be considered. In ad-
dition, the noted structure does not fully reflect the structure of the application.
It is the basic approach to encapsulate the execution process of each step, but it
is sometimes more useful to reuse elements, especially those which are related to
the production of the Transformation Net model. For example the used factories
change the structural appearance of the application to a certain extent, however,
they cannot be listed in the graph representing the execution flow, because this
is too much linked to specific implementation issues. Classes used to produce the
described flow, are often named or structured differently to handle the complex-
ity on real basis more efficiently. This for example relates to the ideas of using
“executor”-classes and similar approaches.

Detailed Transformation Net Creation

This level of granularity gives an idea of how the programmatic execution can be
pursed. A more detailed introduced of the done computation is presented in the
activity diagram of Figure 6.3.

The process starts by receiving the Domain. From this Domain the complex
type – the related pattern – is extracted and used for the further execution. The
next step is to look up the hierarchy level object. This can only be done by know-
ing the actual hierarchy level index. This information has to be prepared before
calling this sequence of activities. This is also needed for the main Transition
and the creation of relevant Modules.

Then it has to be checked, if the current hierarchy level is higher than zero or is
zero. If it is zero (higherLevel? is “False”) than it is an execution on the same
Transition and hierarchy as the beginning complex type – this should always be
a DomainPattern. Otherwise it is the execution of a one-to-many related prop-
erty and, therefore, holds an own Transition. This case needs further treatment,

68

6.3. Execution Process

Figure 6.3.: Finer granular course of Domain and property execution

69

6. Realization

because both Transitions do not only have to be linked to each other, the parent
Transition also needs conditions using MetaTokens preventing an execution of
too many Tokens - too many Tokens typically refer (like in this situation) to too
weak conditions. So it has to be checked, if it is a source or target side execu-
tion, because such a conditioning should only be done once and, furthermore,
be placed on the source side. Therefore, for all source Domains fulfilling higher
hierarchyLevels a OneColorMetaToken and a TwoColorMetaToken are produced
in the activities of C1 and C2. The colouring has to be taken from the hierarchy
level of both Transitions. The masterMetaColor of the parent Relation can be
used as masterMetaLinkingColor – as described in the conceptual approach – of
the child level (the detailed colour information processing is done like described
in the concept and is only mentioned in the realization to give an idea where and
when this has to take place). All executions of higher hierarchy levels continue
with the execution of the basic complex type transformation done in the activities
starting with N. But before describing this execution other paths leading to these
activities have to be discussed. All target side complex types on hierarchy level
zero also join the computation of this group of activities. However, this need
not be the case for source side complex types on the same level, because they
could be relevant for receiving information from TracePlaces. Hence, it has to be
checked, if this type has already been executed and has been passed using Where-
or When-Conditions. If this is not valid, the execution again joins the series of
N-activities. Otherwise the T-sequence for TracePlace execution is processed.

The N marked sequence of activities cares about the basic complex type execu-
tion. This means that the EndpointModule (Source/Target) has to be retrieved
and stored. Furthermore, they create the OneColoredPlace in the EndpointMod-
ule, if it does not already exist. If it is already available, it can be reused. Then
the OneColorMetaToken is produced in the Transition of the actual level – with
the additional In- or OutPlacement. In the last step of this series the Place is
linked with the MetaToken using an Arc.

The T marked series reuses information passed from one Relation to another.
This does not handle the information somehow passed within a Transition. For
this reason these activities look up the related Transition and create a TracePlace
(if not available for this Relation-to-Relation combination). Then again the Meta-
Token and InPlacement has to be created. The information is than combined by
creating two Arcs - one from the Transition of the parent Relation to the Trace-
Place and the other one from the Place to the new Transition (The Transition of
the parent Relation means looking up the Transition of the hierarchy level of the
parent Transition with the highest level count).

Both execution series join and continue with the execution of child elements
(P1). Naturally, not only one property can be included as child element, but
rather a set of items. Therefore, the next child element has to be picked for
executions. The ordering, however, is irrelevant, because both are executed on
the same level. If one execution should need the usage of another hierarchy level,
this does not affect the other properties, because they are all provided with the
same hierarchy level information.

For the selected child element the pattern has to be received (the actual value).
This pattern always has the type OclExpressionImpl and can, therefore, be

70

6.3. Execution Process

different in the actual execution process. The most important step is to retrieve
the upper bounds of the element multiplicities (upperBound) of the child itself
(and not from the property) – the upperBound and the name are the only relevant
information used from the property objects. One-to-many related properties can
directly continue their execution with P5.

One-to-many related properties, however, need a higher hierarchy level, be-
cause they do not need to handle one object, but can need to handle a magnitude
(up to infinity!) of objects that have to be treated fully independent from each
other, but have to hold the relationships to parent and child elements. Because
every one-to-many related property needs the execution information (in the visu-
alization only the colour of the MetaToken is important) of the parent Relation, a
TracePlace has to exist between these two Transitions. Moreover, the own Tran-
sition provides the independent execution environment. In P4 this new hierarchy
level is produced, as well as the referred TracePlace, the involved MetaTokens,
In- and OutPlacements and Arcs from and to the TracePlace. Therefore, this
step is in reality a powerful and important one that needs to handle the colour
information of both sides carefully.

Both sides join again in the activity P5, but one-to-many related properties
already execute this information on their new level – the others stay at the same
execution level as before. In this activity the TwoColorMetaToken is produced
for the property to combine the parent type – whether on the same or different
Transition - with the new Type by using correct colouring. The border uses
the colour of the parent type (FromColor) and the inner circle color (ToColor)
is the colour of the newly translated property. The MetaToken is placed in
an In- or OutPlacement of the Transition of the current level. Furthermore,
a TwoColoredPlace has to be created – if it does not already exist – in the
EndpointModule and needs to be combined by using an Arc with the InPlacement
of the Transition.

If the property is of primitive type, the property execution is finished at this
points. Then the next property can be executed as the previous one. For complex
types the execution continues with two further steps – one of those can be a really
huge one. First, a OneColoredPlace (EndpointModule) and a OneColorMetaTo-
ken (current Transition) have to be created and linked – if they are not already
existing. The colour information is used from the ToColor of the previously cre-
ated TwoColorMetaToken. Then the execution continues with the execution of
this complex type. This actually is the same execution process that has been
described in the whole procedure above. At this point it is notable that the new
hierarchy level status has to be passed on to the execution process. In addition,
it can now be the situation described in C1 and C2 that add the condition to the
previous Transition.

6.3.2. Managing Flow Information

For being able to fulfill the described flow of execution, it is necessary to retrieve
certain pieces of information. As already presented in this thesis the differentia-
tion between different types is possible checking the type of a property instance.
However, it has not been discussed so far, how to retrieve the correct names,

71

6. Realization

boundaries and types based on the certain meta model.

The names are well integrated in the parser data. They can be received from
any object, but the results can be more or less useful for a certain computation.
To retrieve the name of a property, returns a string of characters like classes

representing the name of the attribute within the model. This does not reflect the
name of the type of the attribute or the name of a related variable. Hence, it is
necessary to retrieve the pattern information – the value – form a certain property
object. This object includes the type information and the related names.

For the execution of elements linking a parent and a child type, it is necessary
to receive and store the name of the parent type (e.g., Package) and the name
of the type stored in the pattern of the attribute (e.g., classes). Both names
are necessary to uniquely couple the elements together. Uniquely in this context
can be somehow misleading, because a second constellation with the same naming
could occur. In reality this synthesis of names is sufficient for avoiding duplicates.
The usage of a simple name of the type of the child property pattern cannot be
useful, because the naming of properties is often similar in different types. For
example name could be a property of nearly every type. However, Class name is
clearly understandable and well restricted.

Besides the correct retrieval of names and types, the correct upper bound is
important for visualizing the model transformation. Typically for models there
exist several different upper and lower bounds. For example, the pattern of a
property offers such values, but – this is a common mistake – they always have
the value of one. This results from the constellation that every property can
have a boundary from one to infinite. The values of the certain property instance
(pattern) is related to just one instance and represents the full set of data stored
for this item. Therefore, the boundary can never change and is not valuable for
the differentiation in one-to-one and one-to-many relationships. The boundary of
the property itself – the OclExpression - represents the expected information.

6.3.3. Managing colours in TROPIC

The previously discussed ColorManager is a class reused from the TROPIC plugin
that is able to create unique colours in the format needed to produce this Petri
Net. To be able to manage the colours more effectively, methods were created
in the hierarchy level that take the masteringColor or masteringLinkingColor, if
they exist. Instead of returning null values a new colour is requested and stored
as the certain item. Therefore, there is no need to explicitly think about the
availability of a value for each hierarchy level. It can be used as existing, because
every non-existing value obviously has to be produced as it is requested at this
point. Therefore, this can be seen as a form of lazy-colour-management.

6.3.4. Adding Model Information

By now, the development of Grade focused on developing the correct Transforma-
tion Net. Indeed, all the done steps are necessary, but after running the debugger
for a certain QVT-R Code only a Transformation Net without any Tokens results
from it. This is the case, because at no point the model information of a certain

72

6.3. Execution Process

source model has been used until now. Hence, this information is not known for
the execution. Naturally, the Transformation Net itself has to be independent
from the data filling it.

To be able to use this debugger for real world development it is necessary
to fill it with the same data the QVT engine receives to undertake a certain
transformation. By now, the transformation direction is specified, but to be able
to add the information by placing OneColoredTokens and TwoColoredTokens,
the model information and the used metamodel are needed.

The TROPIC plugin is able to load such model information, but the plugin
cannot know which Token should belong to which Place. Therefore, it can only
be done by using a certain naming strategy that has to be used and implemented
by the Grade application in the process of producing Places.

Naming Strategies and Conventions

For the production of a useful Net the naming strategy is important. The
TROPIC elements do not use a unique identifier (ID) that differentiates them
from each other, but a string of characters that should reflect the meaning of it.
It is mostly interesting for Places that hold some information. They should be
named after the complex type that is related to it in the model’s metamodel.
Therefore, typically this naming strategy can only hold for OneColoredPlaces
representing the complex types and not primitive types or linking Places. Hence,
this has to be enhanced to represent primitive properties and linkings. The name
of two-coloured Places resulting from them should consist of the name of the par-
ent complex type, the infix “ ” and the name of the property itself – not the type
name of the property. This leads to names that look like “Package classifiers”
for a complex type “Package” holding an attribute with the name “classifiers”
that is of type “Class”. So it is not important which type name the property has
for the production of the TwoColoredPlace, but it is needed to create its own
OneColoredPlace, if it is a complex type itself. Moreover, it is not important if a
one-to-one or one-to-many relationship exists, because the naming of Places only
reflects the name of the containers holding the information.

TracePlaces, however, do not follow this naming strategy, because it is not de-
pendent on any external information loading. It receives the information directly
form a Transition. This Transition consumes the data from some Places that
have to be filled. Because the data in the TracePlace is no new information, it
need not be filled externally and, therefore, can be named independently.

The naming of Transitions and Modules are independent from this strategy
as well. However, they should follow some rules to allow the developer a fast
recognition of relevant pieces of information. For this purpose the Modules are
always named after the Relation they belong to. The contained Transitions should
always reflect the name of the main type of it.

Another useful naming convention has been defined for Arcs. They are always
named according to the “work” they are doing. If they link a Transition to a
TracePlace, then the name should include “ToTracePlace” and “FromTracePlace”
for the other direction. Similar naming strategies can be found for every Arc
usage, but they do not help the developer in using the Transformation Net for
debugging. However, they can help in the development of this graphical debugger,

73

6. Realization

because it helps to realize from where the information should come and to which
Place it should flow. It also helps to find the correct Arc to test some constraints
or qualities. These names are, however, not visible in the TROPIC view itself,
but are very useful in the XML representation (which can be used for debugging
or other tasks) as they make the differentiation easier. Therefore, it is a quality
characteristic that should not be omitted.

Loading models

This is done using the TROPIC import functionality that is included in the tool
palette of Eclipse after starting the plugin. Hence, the LHS Metamodel has to be
specified, which means the left-hand-side metamodel. In the context of this thesis
LHS is always called the source side. The metamodel is needed by the plugin to
fulfill the naming needs discussed above.

Figure 6.4.: Import and export functionality in TROPIC

Furthermore, the actual data should be loaded from the model. So the LHS

model has to be specified. Then Tokens are produced according to the data
included in this file. They are placed in the Places with the names using the
discussed naming strategy. If one Place has a wrong name, the Tokens cannot not
be produced and placed there, which actually means that the information reading
is unsuccessful to some extent. Figure 6.4 demonstrates the model loading process
in TROPIC by describing the dialog sequence after calling the functionality in
the application. The export functionality of TROPIC is not used in the context
of this thesis.

After reading the model information it can be started to test the Transforma-
tion Net. By firing all possible Transitions the information should flow from the
source to the target side. Therefore, the actual model transformation is rebuilt
and visualized. The real debugging process can start after doing this loading step,
because it is then possible to visually follow the process of executing one mapping
by each other. The information, therefore, moves from the left-hand-side to the
right-hand-side using some Transitions and intermediary states. At all points
of execution the developer can analyze easily from where the information came
from, how it is related on other elements and where it flows to.

Without using the model loading process, only “dummy”-testing can be done
by placing some Tokens for testing purpose on the Net that do not reflect any real
information. Naturally, the real information stored in the Tokens can be rebuilt

74

6.3. Execution Process

by hand, but there can never be a trust that the developer made it correctly. The
automatized process is fast and tested and, therefore, similar to what a developer
could expect from a visual debugger.

Inheritance The model loader provided by the TROPIC language is not able
to fulfill the adding of model information in the handshake process – structure
creation and adding the actual state – of fulfilling types involving inheritance,
because it does not handle inheritance at all. Hence, the used loader has to be
extended.

For every object of a certain type colours are created and afterwards set to
newly added Tokens. So in the process of retrieving the object and its type, all
supertypes have to be retrieved. For every supertype the same colour as for the
subtype is added. This is a unidirectional constellation, because instances of the
supertype cannot be reflected to any subtype without any clear evidence that is
definitely an instance of this type. This can only be proved by holding an object
of the subtype. The adding of colours for a certain type of a model leads to the
production of Tokens for every stored colour, if a Place exists. By adding the
colours for a type, new colours are produced. So the duplicate values of super-
and subtype are produced automatically.

Beside the modification of the loader, some errors were identified by the usage
while developing the extensions. The colouring was erroneous at some points,
because zero values were set. This lead to the generation of another randomly
created colour information. After duplicating it for the inheritance structure it
was visible that the colours were unintentionally set, because the generation of a
new colour lead to a situation of different colours of sub- and supertype, although
the same colour was set originally. The errors were removed and can, further-
more, express the importance of this practical implementation to the quality
improvement of the TROPIC plugin itself.

6.3.5. Element Arrangement

The element arrangement and other pretty printing mechanisms are not in the
focus of this thesis, but are handled to some extend to make the resulting Nets use-
able for further developing this prototype and to evaluate the provided TROPIC
Nets.

There exists an element arrangement mechanism in the TROPIC framework
that is in several ways insufficient for the usage in this thesis. Programmati-
cally producing a Transformation Net with this mechanism results in a dozen of
overlapping elements, because they have to be placed without any positioning
information. The arrangement functionality provided by the TROPIC frame-
work is buggy (NullPointerExceptions for missing names, unintuitive placement
of elements, high distances between related items, etc.). The original variant did
spread the elements widely over the whole canvas without any knowledge about
dependencies and semantical or syntactical relationships. Furthermore, the End-
pointModule logic used in the Grade application was naturally ignored. Although
the errors could be removed and some quality improvements could be achieved,
the mechanism has not worked adequately as it still could not arrange related

75

6. Realization

items close to each other.
So, a new layout provider is used in Grade that optimizes the element arrange-

ment for the debugging usage of QVT-R and tries to overcome these pitfalls.
Therefore, it positions source and target Modules on the flanks of the Trans-
formation Net. In the middle of the visualization all other Relations in form
of Modules are placed. However, it is useful to place only one Module (besides
source and target) in one row (same y-coordinate). Source and target Modules
can be considered as columns interacting with all other Modules in the center
and, therefore, typically range over the whole Transformation Net canvas.

The size of each Module is automatically adopted by analyzing the contained
elements like Transitions and Places. The more elements are used the bigger the
Module has to be. This also influences the positioning of all following Modules.
According to the placement mechanism used in this thesis the growth of the
height of each Module is more important than its width growth.

Within one Module the arrangement should be optimized as well. Therefore,
two modes are defined. On the one hand the “Source-Target”-mode that arranges
all Places (or other elements) in one single column from top of the narrow Module
to the bottom – placing only one element in each row. In the source and target
Module typically only Places are needed, but other elements would be placed in
the same manner. The second mode is responsible for all other Modules placed
in the center of the Transformation Net. These broad Modules hold the Tran-
sitions and TracePlaces related to execution of the Relations and its Domains.
The transformation execution has to be geared to the placement of Transitions.
Therefore, these Transitions are set in the first column – at most one Transition
should be placed by each row of a Module. In a second column Places are set.
They typically directly refer to the Transition placed before and, therefore, seem
to be appropriately positioned with a lateral-offset to the Transition for being able
to interact with several ones. Moreover, it is important to set Places in a new
row, if the column for Places has already been filled by another Place. However,
the column (the x-coordinate) has to stay the same to allow easy recognition of
structurally similar elements.

This new layout provider allows a quick overview of the TROPIC Net and
arranges elements closely together. The distance between related elements could
be dramatically reduced as it respects the domain specific usage of TROPIC.

6.4. Summary

In this section the implementation specific details were presented including the
tooling needs, configurations, and modality and structuring of the implementa-
tion. A modern tool set including a modern Eclipse IDE version – with a set of
plugins – is used that provides good extendability for the future. Furthermore,
existing project such as TROPIC and a QVT Parser is used to avoid a “reinven-
tion of the wheel”-methodology in the development of this application. Therefore,
the focus could be led on the most important issues such as the mapping of the
QVT-R structures to TROPIC, the presentation of results and the handling of
simple incremental changes.

The execution provided by the Grade application is strongly state-dependent

76

6.4. Summary

and iterative. Therefore, the overall process is rather complex, especially resulting
from the reuse of many logical blocks. This reuse cannot be avoided according
the deep and broad nesting that has to be supported in QVT-R. Often slightly
different transformation variants exist such as the Where-Clause TracePlaces that
differ from TracePlaces resulting from one-to-many relationships (in visualization
and especially storage of information).

77

6. Realization

78

7. Evaluation

In this section a retrospective on the discussed approaches, used technologies,
and implemented features will be done. The focus will be lead on evaluating the
suitability of the presented approach and to identify open problems.

7.1. Capability of Erroneous Code Recognition

In this section general problems in the usage of QVT-R are identified and com-
pared with the capability of Grade to help to identify them. First, some general
considerations are presented and, deepened, with exemplary pitfall detection ex-
amples.

A typical error is to forget some necessary elements in the QVT-R transfor-
mation. This means that for example a certain condition is needed that filters a
certain type. Identifying such a fault can be difficult without debugger, because
the transformation execution path is not visible. Therefore, the developer cannot
know at which point too many or too few elements are present. All information
of the source and target model, as well as the transformation process, have to
be kept in mind to be able to expect a certain output and to compare it to the
produced result. The visualization in TROPIC can help to identify such issues as
it can be analyzed that a wrong number of Tokens are present at a certain Place.

Another typical and hardly recognizable issue is the specification of transfor-
mation details at the wrong position. For example if the parent Relation that
refines the transformation has weaker conditions than the child Relation. Then
the skeleton is produced in the parent Relation, but the refinement cannot take
place. A similar problem exists by forcing a wrong ordering of the Relations by
wrongly using pre- or postconditions.

7.1.1. Pitfall Detection

According to [15] several typical pitfalls of QVT-R can easily be detected in
TROPIC, which will be discussed in this section shortly.

A characteristic scenario is used to show typical problems that can occur. The
basic example scenario can be seen in Figure 7.1 and will be used as basic reference
to define typical pitfalls. The used examples should highlight the qualification of
Grade for debugging.

A Package can hold several instances of the type Class that directly depends
on the Package. In the class the attributes isPersistent and name exist. These
Packages are transformed to Schemas, if they hold at least one instance of Class
where isPersistent is true.

79

7. Evaluation

Figure 7.1.: One-to-one and one-to-many related properties transformation [15]

Interrelation Need Example

The first typical problem is the usage of several top-Relations that are not related
to each other (referred Relation according When- and Where-Clauses). This
results in completely independent data instances. Duplicate values can result
from executions. For example a Relation is defined that executes Packages and its
classes. The next Relation is used to express the detail of the classes. Therefore,
the classes would be created two times for each instance that exists in the Source
model. Detection: All instances of a type (here Class) occur several times in the
target model Place. Furthermore, more than one Arc points to the target Place
of the type Class. Solution: Top-Relations containing same data parts have to
be related to work on the same instances (continued in the next Pitfall)

Adoption in Grade As it is described in figure 7.2 this pitfall is visible in the
Grade application. The overall visualization is different in its pretty printing
behaviour, but it is easily recognizable that two Arcs are pointing to a single
target Place. If this is intended to be, the developer knows that this duplication
works as is it has been planned. Otherwise this obviously a fault to be corrected.
However, Grade cannot provide the same element distribution on the canvas like
shown in Figure 7.1. Although the arrangement capabilities of TROPIC are
enhanced by Grade, the result is different.

Condition Strength Example

After realizing the need of dependency and interrelation between two Relations
(partially) working on the same set of data, the quality of interrelation has to
be defined. This is done using an example of the discussed article [15]. The
calling Relation can be too weak regarding its used conditions and in contrast to
the called Relation. For example the calling Relation uses all instances of Type
class whereas the called Relation defines further restrictions using conditions (for
example IsPersistent=true). Detection: Too many instances can be found

80

7.2. Visualization

Figure 7.2.: Two independent producers of Package Tokens – one is intended
and one unintended (Comments used as explanations have a light
grey background)

in the TracePlace between called and calling Relation. Solution: Use the same
restrictions/conditions for the shared type in the calling and called Relation or
shift the condition form the called Relation to the calling Relation. This results
in the same amount of writing, but less elements in the TracePlace. Hence, the
condition isPersistent=true is found in the calling Relation. According to the
referenced article this can be seen as correct solution.

Adoption in Grade This issues can be identified similarly as it has been planned
theoretically. The TracePlace is filled by the user firing the Transitions. By firing
the calling Transition it has to happens that items are produced that do not
qualify for further transformation. Therefore, these Tokens will be placed in the
TracePlace, but no execution takes place with them. Hence, referred objects
will not be transformed. This is visible by identifying for which Token (colour)
properties (FromColor – colour of the border) have been created. All other Tokens
are result of the too weak condition in the calling Relation.

7.2. Visualization

The used TROPIC plugin is responsible for the graphical arrangement and auto-
matic layout generation of the Transformation Net. However, in this application
the encapsulation is handled to optimize it. Hence, source and target side Places
and all relations specific transformations are all stored in special Modules.

However, this cannot change the way the Modules are placed on the surface.
The TROPIC plugin does not allow the specification of coordinates, but it allows
to use a variant of an automatized graphical arrangement method that is derived
from the GMF functionality. This mechanism is not optimized for the TROPIC
language and, therefore, leads to the problem that it tends to distribute all Tokens
widely on the canvas to improve visibility, but does not care about the information
flow. So, the useful placement of all items of the Net has to be rearranged by
hand. This is enough for the an application in prototyping status, but would
lead to enormous efforts in real world debugging scenarios. The advantage of the
proposed graphical debugger is the time and quality benefit in handling erroneous
QVT Relations statements. However, the time benefit gets lost, if developers have
to concert their Net manually.

81

7. Evaluation

A second visualization problem is the scalability of these Nets. Declarative
transformation mappings have a simple and straightforward appearance. The
hidden operational semantics behind each declaration is considerably more sump-
tuous in details and instructions. The Transformation Net in the graphical de-
bugger tries to visualize the operational semantics and, therefore, has to produce
extensive flows of information. However, it can be seen as problematic that the
growth of Nets cannot be considered to be linearly, but rather polynomial or even
worse by adding another one-to-many relationship. See figure 7.3 for an example
of an unsorted Transformation Net holding several Relations and one-to-many
related properties in their Domains.

Figure 7.3.: Unsorted Net with several Relations and one-to-many-relationships

Nevertheless, the visualization of transformation mappings is clear and human-
understandable. The transformation flow can be seen by following the path of
the used Arcs from one input information to its produced and related outputs.
Furthermore, it is easy to understand which type belongs to which Place in the
Net, because the naming is well structured and uses the original specifications.
The linking of attributes with parents is easily understandable as well, because
the parent type name as basis is combined with the enclosed attribute name.

The approach of using colours has several advantages to using more sophis-
ticated approaches. It helps to focus on the structural meaning and behaviour
of the used constellation and keeps track of identities – each colour can be seen
as unique identifier that is easily recognizable without looking in the details of
a Token. Additionally, the focusing on the most relevant information for a spe-
cial task is highly linked with the usage of models at all. Models give people an
easily recognizable representation of real world problems by presenting a certain

82

7.2. Visualization

useful perspective and leaving out (implementation) details. This is common
way of reducing complexity to a human manageable amount. However, it has
to be acknowledged that between four and five percent (calculated from several
figures [34]) of all humans cannot recognize all or some colours. This fact is not
addressed by the actual prototype, but can be done by using black-white patterns
in lieu of colours.

For the discussed problem with the element arrangement – including its sizing
and nesting – an own defined layout provider was created that arranges the items
according to the specific usage in this graphical debugger – this can be interpreted
as focusing on the most important arrangement issues in this context and is an
alternative to the other existing visualization mechanisms. This layout provider
has to address the problems of mixing source, target and intermediary Places with
each other, TracePlaces not being placed between the two involved Transitions,
and a generally unclear structuring.

On the flanks of the canvas, therefore, the source and target Modules are
placed. In the center the Modules representing the Relations are positioned. This
structuring dramatically increases the possibility of realizing the main problem
areas and decreases the needed time to rearrange the Transformation Net by hand.
The clear differentiation between Transitions and Places seems to be beneficial
as well, because it is obvious where a developer has to look for to find a certain
information.

However, in the used approach no analyzation is done according the correct
placement of a TracePlace. A TracePlace typically relates to at least one Tran-
sition and should be placed closely to it. In the used mechanism this cannot be
guaranteed. Additionally, the calculation of Module sizes is actually not done by
including all facets from finest granular perspective upwards to the most coarse
grained view. Hence, misinterpretations in form of too small or too big elements
(width or height) could result from this fact. Moreover, it seems notable that
optimal results could not be achieved – helping to realize all elements at once –
for all situations tested in the development of this graphical debugger.

7.2.1. Performance

The performance of the graphical debugging process can be seen in several per-
spectives. On the one hand the time to produce a certain visual representation
can be measured (parsing of inputs, TROPIC Net creation, serialization, syn-
chronization, model loading). On the other hand the time to be able to recognize
problems could be used – which is not deepened here as it relates to the common
pitfall detection. Furthermore, it is necessary to acknowledge that the resource
usage may be of high importance as well.

The time to create the TROPIC Net is good measurable and does only depend
on the complexity of used QVT-R mappings. For examples that have been used
and presented in this thesis the transformation process typical took less than one
second with an additional serialization time of 0.3 seconds. This highlights that
the performance of analyzing the transformation mappings is sufficient for the
intended debugging usage. It also shows that the serialization of the model takes
about 30 percent of the overall time. The stated time constraints, however do

83

7. Evaluation

not include the time resources necessary to open the resulting TROPIC Net and
to rearrange it with the provided layout manager.

7.2.2. Unavailable Language Elements

The QVT specification is detailed, but the usable constellations are even more
creative. Recursive information flows, passing of information at an unexpected
position, passing of massive amount of data or other issues could lead to situations
which produce Transformation Nets that do not seem to be optimized for this
certain case.

The most recent problem is the need of interpreting the semantics of QVT-R
language constructs such as check and enforce. The QVT-R specification does
not provide such definitions. Furthermore, a certain interpretation is necessary
in the identification of correspondences. This interpretations is a gap resulting
from the restriction of being only able to analyze syntactical correspondences. In
QVT-R, especially, complex type correspondences are often not specified in the
code.

Additionally, QVT-R supports powerful OCL expressions. These expressions
are often used in QVT-R to select certain elements of a set of elements or to
transform it to very specific needs. According to the definition of QVT-R, all
mappings can be considered as OCL Expressions. However, the discussed ex-
pressions in this thesis so far, have not fathomed the high potential of complex
OCL queries. Therefore, it has to be mentioned that the visualization of such
expressive queries is necessary for future research as well. Due to its powerful-
ness and its ability for long queries, a certain complexity results. The results of
the used OCL expressions, furthermore, directly influence the used objects in the
TROPIC Transformation Net. Therefore, the visualization of these expressions is
important for understanding why a certain result could or could not be achieved.

Another unsupported feature of QVT-R is the usage of bidirectional transfor-
mations in one single TROPIC Net. The execution direction can be flipped such
as for QVT-R engines, but the visualization is only done according one specific
execution direction.

7.2.3. Effort Increase Analysis for Transformation Net
Creations

To identify particular effort increases in the Transformation Net creation several
common instructions are evaluated. Instructions are simple statements in the
QVT-R code that mostly have the length of one line. Lines of code were not
used, because often the formatting with curly braces that often cause the usage
of several lines for a single instruction. An instruction typically finishes with a
semicolon. For complex types holding several properties this has to be mitigated.
All elements within the curly braces do not depend to the basic complex type
instructions, but are own instructions – if there exist any. Naturally, the nesting
using braces involves dependencies that have to be transformed, but this does
not influence the instruction boundaries themselves.

84

7.2. Visualization

Identifier Description Items

Rt
Adding a new top level Relation (without consideration
of reuses) 2

Rw
Adding a new top/non-top level Relation with called by a
Where-Clause or possessing a When-Clause 9

OP Adding a new one-to-one related primitive property 6
OC Adding a new one-to-one related complex property 12
Ns New complex one-to-many relationship 26

NnMs
Adding a new complex one-to-many relationship where
parent Transition is not the main Transition 32

NAp
Adding a new primitive property in an 1:n related complex
type 5

NAmp
Adding a new primitive property in an 1:n related complex
type where the parent Transition is not the main Transition 8

NAc
Adding a new complex property in an 1:n related complex
type 10

NAmc
Adding a new complex property in an 1:n related complex
type where the parent Transition is not the main Transition 16

Table 7.1.: Description of the used effort increase scenarios

See Table 7.1 to identify the used scenarios. The perspective of adding a certain
new instruction is chosen to identify the problem areas in visualization. Hence,
these instructions can be considered as simple and plain that do not contain any
further information unless it is stated. The stated elements in the table are the
TROPIC elements that have to be created newly to add this certain feature to
the Transformation Net. Such elements are Modules, Places, Transitions, Arcs,
In-/OutPlacements, OneColorMetaTokens, TwoColorMetaToken. The dynamic
data involved by filling the Transformation Net with concrete model information
does not matter for the evaluation of the structuring. However, these consid-
erations do not give the different TROPIC elements a weight according their
complexity and size. The comparison of the discussed scenarios of Table 7.1 is
shown in Figure 7.4

The most typical scenario is the adding of a new Relation in the QVT Code.
Starting with an empty file it is necessary to add one or more Relations that
contain the transformation mappings. A Relation called by a Where-Clause or a
top level Relation with a When-Clause involves more transformation steps and,
therefore, requires more new elements than top Relations without precondition.

In contrast to adding new primitive or complex properties that are moderately
costly, one-to-many relationships involve many new items. The highest count of
new items can be seen for the scenario of adding a new 1:n related complex type
where the parent Transition holding this type is not the main (first) Transition of
this Relation (Module). Such single instructions involve up to 32 new TROPIC
items. If the parent Transition is the main Transition, still 26 elements have to
be created. This implies that by adding a single instruction of such types the Net
grows exorbitantly. Using many nested one-to-many relationships, therefore, will
lead to a Transformation Net that cannot be viewed by humans anymore.

85

7. Evaluation

Figure 7.4.: A diagram representing the element increase for typical scenarios -
Abscissa: Different scenarios - Ordinate: Element count

Another interesting issue is the scenario of adding additional properties to such
one-to-many related types. Here the increase is dominated by the facts, if the
new property is a complex or primitive type and if the parent Transition is the
main Transition of this Relation. The basic skeleton of complex types costs about
60% more than their primitive type equivalents. If the parent Transition is not
the main Transition, the item count even doubles.

Furthermore, the needed space to visualize a certain Transformation Net item
can lead to other issues. One-to-many relationships need a new Transition. Tran-
sitions are size-intensive and, therefore, matter most. Modules are needed for the
creation of a Relation. Although they typically represent the biggest item on the
TROPIC Net that can hold dozens of other elements, their usage is rather rare in
a Transformation Net. Typically a handful different Relations are used and these
Modules help to differentiate between elements depending to different Relations.
So the main issue is the reduction of Transitions and MetaTokens/InPlacements.
The latter one are interesting, because of their great numerousness.

7.3. Model Synchronization

In this thesis the advanced topic of model synchronization has been presented.
Model synchronization is important for the ease of use of Grade. In this thesis
only a simple solution synchronizing Tokens has been implemented, but several
other use case have been presented. The simple approach is a good addition to
Grade, but cannot be regarded as sufficient for professional usage. All presented

86

7.4. Summary

use cases in section 6 are desirable for professional debugging. This is an open
issue that has to be solved in complementary work.

Nevertheless, it needs to be acknowledged that the identification of TROPIC
elements by name is a major drawback for synchronization approaches and their
quality. This should be modified in future version of the TROPIC language to
be able to achieve high quality results with efficient solutions.

7.4. Summary

The main model transformation process works with good performance and pro-
duces a human-understandable Transformation Net. However, there exist several
unsupported language elements, element combinations or derivations from the
original QVT specification such as primitive Domains. Furthermore, the QVT-R
standard does not provide a detailed inference of usages and their backend effect
(undertaken by some engines) which forces the used approaches such as others to
use some interpretations. The detection of typical pitfalls in QVT-R using the
Grade application turned out be as good as theoretically discussed. The most
common mistakes are easily recognizable according to missing Arcs, duplication of
values or missing values. Furthermore, the propagation of solutions for advanced
and related features such as synchronization highlight the extendability of the con-
cept, but undoubtedly highlight as well the need of complementary approaches.
The advanced problems of class inheritance and synchronization presenting sim-
ple mechanisms. However, especially the latter problem again highlights the need
of the overall application for a more compact visualization form.

87

7. Evaluation

88

8. Related Work

The debugging, testing and verification mechanisms for QVT-R code are rare.
This section highlights the most effective error handling alternatives.

In particular related work from (1) the observation of erroneous code over (2)
the tracking of origins of errors to (3) the fixing of bugs is outlined (cf. [32]).
Verification concepts are finally presented to address unsolved problem areas of
(1) and (2). It concentrates on formally proving or analyzing the code whereas
testing concentrates on using certain inputs and expected outputs to handle the
most typical usages. The focus in this thesis is on graphical debugging approaches.
Some tools for debugging are presented as well.

8.1. Testing

Testing of code such as QVT-R implies the specification of test scenarios to be
used for observing the code. Hence, it can be used to identify erroneous results
(1) and often even to track the origins (2) of such errors. It is typically not the
aim of testing approaches to provide mechanisms to fix bugs as this is rather
intended to be realized by debugging in following tasks. Testing and debugging,
however, cannot be seen as alternative, but rather as supplementary strategies.

8.1.1. Trial & Error

A human-like approach for error handling is the rudimentary trial and error
approach (typically manual) as it is described in the work of Jochen Müsseler [18].
This can be applied for error detection in QVT Relations code as well. Trying to
transform a certain model into a target model, a specific outcome of this process
will be received. This outcome can be compared with an expected or desired
result to detect errors. So, typically the code is modified after receiving undesired
outcomes. Adaptions have to be decided manually and their effectivity is only
tested by running the test case(s) again. After reaching the desired outcome the
code seems to work correctly.

On the one hand the advantage of this approach is the simpleness. As it typi-
cally only involves manual invocations of the code, no additional tooling support
is typically necessary. Furthermore, it represents an intuitive approach for solv-
ing problems. On the other hand the main disadvantage is the low efficiency, but
also the low effectivity. Due to this time consuming approach of trying out code
modifications as long an incorrect behaviour is achieved the efficiency is quite low.
Effectivity is related to the problem that only “desired” mistakes are corrected.
If there is a mistake in the transformations code not related to certain test data
items, no mistake can be identified in the transformation result. However, it is
desired that a graphical debugger (or a debugger at all) allows a perspective on

89

8. Related Work

the transformations that enables to identify possible problem areas and issues not
related to any tested data.

8.1.2. Test-Driven-Development

Pau Giner et al. [11] introduce a concept of Test-Driven-Development (TDD) for
model transformations. TDD uses tests as entry points for developing applica-
tions. Ideally the checking of test cases works automatically. At the moment of
writing no tool support for TDD for QVT-R exists.

In the discussed paper [11] Pau Giner et al. use the Human Usable Textual
Notation (HUTN) [20] – which was standardized by OMG – to meaningfully
express test cases. Furthermore, it is stated that HUTN is generic and could
be “applied to any MOF-based metamodel” and would be fully automated and
“no human intervention” would be necessary. As it is named “Human Usable”,
HUTN is designed to be human-understandable and easy modifiable.

Figure 8.1.: A HUTN example representation [11]

In Figure 8.1 there exists a class Class1 in the section Test Data. This infor-
mation is provided as input for the test case. On the right side there is placed the
Expected result. It is mainly dividable in “result parts and assertions” [11]. In
the result part the expected result can be defined to be “inclusion, exclusion or
exact” [11]. The assertions are named OCL-Queries that have to return true. If
the expected result for a specified input matches the outcome and all assertions
return true, the test case is correct.

Figure 8.2.: The development cycle using TDD for model transformations [11]

90

8.2. Debugging

The basic procedure of TDD in the field of model transformation is sketched
in the Figure 8.2. Starting by defining test cases in HUTN the input models
and result parts for validation are generated. Then in the second step the imple-
mentation of the model transformations code takes place. The produced source
code and the generated input models can then be used to produce a certain out-
come. This result is compared with the expectations from the generated result
parts. Moreover, the assertions are run at this stage. This leads to an evaluation
of the source code and typically results in further source code development or
improvement.

8.2. Debugging

Debugging is a very commonly used method for tracking the origins of errors
(2) and, furthermore, fixing bugs (3). A technical tool, application or sometimes
plugin for an application providing debugging functionalities is called debugger.
However, the terminology of a “graphical debugger” (or “graphical debugging”)
can be somehow misleading. The debugger offers a graphical representation of
variables and data structures necessary to debug a piece of code. Typically this
involves a variable inspector as it is used for many programming languages like
Java or C++ in IDEs (Integrated Development Environment) like Eclipse. The
term “graphical” results from a graphical user interface (GUI). As it is aimed in
this thesis the same terminology refers to the graphical visualization of the data
involved in the MT. So the visual debugger is seen as a mechanism representing
causal information visualizations of why a certain result is achieved or a certain
error occurs. However, as it should be the intention of a graphical debugger to
support the identification of problem areas and their origins, this section focuses
on this aspect.

An example for a classical graphical debugger is the DataDisplayDebugger1

(DDD) which allows the inspection of program variables in intermediary execu-
tion states by placing so called breakpoints. These breakpoints stop the appli-
cation execution until the developer manually allows the execution to continue.
Meanwhile, the developer can inspect the actual data status. By setting many
breakpoints the developer can get an overview of how the data changes and even
in which line of code this is reflected. However, this does not automatically allow
a causal inference to the problem origin. Furthermore, DDD is known for the “in-
teractive graphical data display, where data structures are displayed as graphs”2.
The most known debugger is the gdb (a GNU project debugger)3 project which
is the basis for many other top-level debuggers.

Another interesting characteristic of debuggers is the ease of live or forensic
debugging. Live debugging means the direct and immediate interaction of a
certain result and its source code (and potentially inputs). If a certain result –
failure or success – is returned the code can be modified for another test run.
Forensic approaches, however, analyze pieces of information that are produced in
the action of executing the certain code. Typically such pieces are log files and

1http://www.gnu.org/software/ddd/ - last accessed: November 27 2009
2http://www.gnu.org/software/ddd/ - last accessed: November 27 2009
3http://www.gnu.org/software/gdb/ - last accessed: November 27 2009

91

8. Related Work

stored results. This analysis is done some time after a certain code snippet was
executed and, therefore, does not serve a direct interaction.

8.2.1. Model-based Debugging

There exists a set of different concepts using models for debugging approaches
[17]. Typically models are used for providing an understandable perspective to
debug a certain programming language like Java in this context. The applica-
tion that “outperforms” [17] all other presented approaches in the comparison of
Mayer et al. [17] is MBSD (Model-based software debugging). It is an application
providing Model-based Diagnosis (MBD) [24]. Its origin is set in the identifica-
tion of “incorrect clauses in logic programs” [17], but has already added support
for several other languages like Java. It creates a formal code representation –
model – from the test case result. The focus of MBSD lies here on the identi-
fication of error origins instead of focusing on observing the code and its errors
itself. The analysis itself takes place by calculating the deviation of the “observed
behaviour” with “normal behaviour” [17]. According to Mayer et al. the most
essential characteristic of MBSD is the role exchange of the model – reflecting
“the behaviour of the (incorrect) program” – and the system – which specifies
the “correct result” [17] in the test cases. A deeper view of usable methods and
their relationships is described by Mayer et al. [16] al which is beyond the focus
of the thesis.

8.2.2. QVT-R Debuggers

Beyond the general debugging principles and opportunities, very specific solutions
can be identified for QVT-R. Such tools presented in this section offer similar
functionalities as discussed for other languages and platforms before, but severely
differ in their optimization for QVT-R.

Eclipse Debugger

The Eclipse Modeling Edition4 (Eclipse with Modeling Tools) is a freely available
open source bundle of plugins for modeling and model transformation available in
the Eclipse Modeling Project5 included in the basic Eclipse project. The relevant
component for this thesis is the Model To Model (M2M) project that presents
a solid ATL and an exemplary QVT Core support. There are still many open
problems for the QVT Core execution, because the debugger is not integrated
and not all concepts seem to be supported. At the time of writing OBEO6 is
working on the integration of QVT-R functionality for M2M. As it is a rather
new introduced field of the Eclipse project it can be expected that the QVT
support will be improved steadily. It is planed to support all three branches of
QVT in future versions. The Eclipse debugger that provides classical graphical
debugging facilities. It allows stepwise execution of program codes controlled
by breakpoints. So it can be directly compared with the basic functionality of

4Download: http://www.eclipse.org/downloads/ - last accessed: November 27 2009
5http://www.eclipse.org/modeling/ - last accessed: November 27 2009
6http://www.obeo.fr/ - last accessed: November 27 2009

92

8.2. Debugging

typical debuggers such as DDD, but provides deep IDE integration. However,
the Eclipse debugger does not provide a graphical data visualization for which
DDD is famous for. This debugging functionality is reused and configured for
the language specific usage in related projects such as Medini QVT and many
other top level applications. However, the unmodified Eclipse Debugger does not
provide a good suitability for QVT-R.

Medini QVT

Medini QVT7 is a promising IDE for QVT Relations. It provides a powerful
QVT engine, code validations, and a debugging perspective. The QVT Relations
engine can be used to execute transformations and can, therefore, also be used
for “Trial & Error”-mechanisms. The code validation helps to identify syntax
errors. For example wrong spelled keywords are marked as incorrect and can
be automatically corrected to existing ones. The debugging perspective offers a
variable inspector. This view can show the value for each variable. This is the
very same associated perspective like for other programming languages in Eclipse,
because Medini QVT is based on Eclipse (Medini QVT is a set of plugins added
to the base Eclipse project). So it offers a stepwise viewing of actual variable
storages. Naturally, this is not enough to give an idea why a certain result is
produced or how it is processed. This has to be tested by the developer and can
be time consuming.

ModelMorf

The ModelMorf application8 supports the QVT Relations language. However, not
all language constructs are already supported. In contrast to the other products
discussed so far, ModelMorf is a commercial product.

ModelMorf positions itself as lightweight command-line model transformation
application. It does not serve a graphical user interface, but, therefore, only uses
about 7 Megabytes of hard disk space. However, the debugging functionality
provided is unclear as no information could be found on this issue.

Summary

There is a multitude of other implementations available. However, projects like
SmartQVT9 (QVT Operational) or Borland Together Architect10 (QVT Opera-
tional) have not added QVT Relations support yet and do not seem promising
enough to add the support in the coming versions. ModelMorf, however, does
support QVT-R, but no information about its debugging features could be found.
Hence, only the previously discussed Debuggers are compared in this summariza-
tion.

7Download: http://projects.ikv.de/qvt-lastaccessed:November272009 - last accessed:
November 27 2009

8http://www.tcs-trddc.com/solutions-software rd.htm#ModelMorf - last accessed: November
27 2009

9http://smartqvt.elibel.tm.fr/ - last accessed: November 27 2009
10http://www.borland.com/us/products/together/ - last accessed: November 27 2009

93

8. Related Work

In the following Table 8.1 the most important properties for QVT Relations
debuggers are presented. The table differentiates between “fully applies” (+),
“partially applies” (~) and “does not apply” (-). The used properties are listed
hereinafter: QVT Relations support – at the moment of writing – (QVT-R); Sup-
port for direct or indirect debugging (Debugging); Platform independent / Several
platforms (Platforms); Graphical User Interface (GUI); and operational seman-
tics visualization (Visualization).

Application Q
V

T
R

D
eb

u
gg

in
g

P
la

tf
or

m
s

G
U

I

V
is

u
al

iz
at

io
n

Medini QVT + + + + -
ModelMorf ˜ - - - -
Eclipse M2M - + + + -

Table 8.1.: Tabular summarization of QVT Relations tools

In this summarization the MediniQVT presents itself as most promising which
results from its advanced integration of QVT Relations. All discussed products
fall short in the category Visualization representing the visualization of the
operational semantics. This means that this debugger provides rudimentary sup-
port for removing errors, but does not outstandingly assist in finding problem
origins. Nevertheless, this point seems to be the most important for developers
that have lost themselves in the complexity of a magnitude of possibilities result-
ing from complex bidirectional statements. Very often it is not obvious why a
certain rule fires for a specific item.

8.2.3. Forensic Debugging Techniques

Another approach that can be used for debugging is forensic debugging. In partic-
ular interesting for the context of this thesis is the approach for forensic debugging
of MTs introduced by Hibberd et al. [12]. In this research work a forensic ap-
proach is presented that tries to identify relationships between source elements,
target elements and the referred MT rules. This approach uses trace models
that can be seen as intermediary representations being able to answer debugging
queries. These queries are used to identify problem areas and are assisted by
program slicing mechanisms. In contrast to this approach, this thesis focuses on
live debugging mechanisms are discussed and presented.

8.2.4. Backwards Debugging

The typical debugging procedure involves the starting at a certain (entry) point
and step-by-step moving forwards to identify the problem area. However, there
is another approach presented in the WHYLINE (“Workspace that Helps You

94

8.3. Verification

Link Instructions to Numbers and Events” [32]) system. It allows the querying
of problem origins by asking questions that are answered by the debugger.

According to Zeller et al. [32] WHYLINE allows “Why did” and “Why didn’t”
questions. The first type can be used to identify why a certain result is achieved
for a specific line or element. Therefore, WHYLINE shows all elements backwards
on which the variable or element is dependent on. The latter question can be used
to “retrieve those statements that directly prevent execution. It then performs
the why did questions on each” [32].

The user can also ask such informally called “why did”-questions [32] again at
any point of the provided results again to better understand why a certain result
was or was not achieved.

8.3. Verification

Not only classical debugging and testing approaches can be used for the error
handling in QVT-R codes. There also exist other live and forensic verification
approaches that mainly address the problems of observing codes and their errors
(1), as well as the identification of error origins (2). In contrast to testing ap-
proaches verification tries to logical prove (verify) or analyze the code in lie of
using test data or the intuition of the user. However, full verification of complex
codes has a too high effort to be used.

8.3.1. Verification by Translation

The tooling support for direct debugging or verification of QVT Relations is very
rare at the time of writing. Translational approaches try to overcome this issue
by transferring the QVT Relations code in other textual representations that are
better debuggable. For example the approach of Jouault and Kurtev [13] aims at
executing the QVT-R mappings in the ATL Virtual Machine (ATL VM). This
is achieved by a code transformation to an ATL representation. Moreover, there
exists a concept of Romeikat et al. [26] to transform QVT-R to QVT-C code.
The resulting statements can then be executed in the QVT-C implementation
environments. Both approaches can help to improve the tooling support heavily,
but both variants reduce the abstraction level. This leads to losing the easiness
of realizing statements and as a result makes the overall process less efficient.

Another translational approach with similar ideas to the concept of Hibberd
et al. [12] is the “graphical declarative debugger of incorrect answers for the con-
straint lazy functional-logic programming language TOY [1]” [5]. The debugging
in a step-by-step manner introduced and used for many imperative languages is
often “not suitable for debugging declarative programming languages” [5]. As
already discussed QVT Relations is a declarative language and, therefore, faces
similar problems. However, this debugger is based on the issues of functional lan-
guages like TOY. As visualized in Figure 8.3 the debugging process starts with
the raw TOY code file. This file is syntactically and semantically analyzed and
transformed to an intermediary code file. This resulting code is again checked by
a type checker and afterwards generates prolog code. The last step is undertaken
because this debugger is written in prolog. This debugger than obtains a formal

95

8. Related Work

Figure 8.3.: Transformation of a TOY code file to a Prolog representation [5]

computation tree that is the entry point for debugging. From this point on the
developer can freely inspect the results of the computation tree or call provided
strategies “or finding out a buggy node and hence an incorrect program rule” [5].

8.3.2. Verification of Graph Transformations

As stated in [7] there is the possibility of representing models “as attributed,
typed graphs” [7]. Because of this fact, graph transformation can be used for
model transformation as well. Graph transformation rules consist of a left-hand-
side (LHS) and a right-hand-side (RHS). Models are transformed to graphs. An
example is visualized in Figure 8.4. The LHS and the respectively RHS of the
models are mapped to its graph representations. The graph representations are
more abstract and, therefore, allow better analysis of dependencies and relations.
This process is supported by the graphical tool called AToM3 [9].

Graph transformations itself, however, need to be verified as well. There exists
a verification approach provided by Zhao et al. [33] that tries to identify, if a design
pattern still holds after evolutionary modifying it structures. The overall process
starts by creating UML models representing the design patterns. Then the UML
diagram as input information is modified by using a graph transformation engine
and modification rules specified by the user to achieve a certain modification.
Running the graph transformation results in a certain output pattern that needs
verification.

“If a pattern can be reduced to an initial graph by a sequence of productions,
the evolved pattern is considered to conform to the structural properties of a
particular design pattern represented by the graph grammar and the evolution of
the design is proved correct.” [33]

8.3.3. Verification based on CPN

Another mechanism is described by Juan de Lara and Esther Guerra in the pa-
per “Formal Support for QVT-Relations with Coloured Petri Nets” [8]. This
approach uses CPN to visualize QVT-R transformations. As this approach tries
to visualize QVT-R in CPN, has some similar boundaries than the approach pre-
sented in this thesis. At the end of this section some open issues and differences

96

8.3. Verification

Figure 8.4.: A graph transformation rule [7]

to the own presented ideas are highlighted.
An overview of the visualization approach is given in Figure 8.5. In the

center (the box with the green border) there exists a Relation with the name
PackageToSchema. This Transition interacts with Places (holding the actual
state) by using Arcs. The Arcs specify the direction from a certain source to a
certain target model. On the right side of figure there is the definition of the
actual data types, representing metamodel elements, e.g., Package or Schema.

Figure 8.5.: Example CPN model: net (left) and colour set declarations (right) [8]

A more sophisticated generated example model in Figure 8.6 shows the usage
of TracePlaces and more detailed interactions. The TracePlaces are needed to
provide a possibility of passing values to other Relations as it is done with Where-
and When-Clauses in QVT Relations. The Place Trace PackageSchema at the
bottom of the figure represents such a TracePlace. Detailed specifications of the

97

8. Related Work

types in the Places are specified in the green pages close to them. For example
ids or names are declared.

Figure 8.6.: Generated transition from relation ClassToTable [8]

Such representations only visualize Relations one-by-one. For a “high-level
view” [8] another perspective is introduced (see Figure 8.7) using hierarchical
Colored Petri Nets. This only describes the Relations and their interactions
using the intermediary TracePlaces.

Figure 8.7.: A high granular view of the CPN model [8]

The approach presented in this paper provides a good modeling of QVT Re-
lations mappings. Moreover, these models can be generated and analyzed. The
usage of CPN creates the possibility of using CPNTools (cross-platform) and Petri
Net analyzation tools. However, this concept does not try to fill the gap between
declarations and its operational semantics for execution. For developers this gap
can be an understanding barrier. In the approach presented in this thesis it is the
main aim to visualize how a certain result could be achieved and all intermediary
states. In this approach, however, only the dependencies of logical Relations and
other QVT-R elements are visualized on a high-granular level. Therefore, it can-
not be deducted in particular where the error occurs and for which state. In the
approach based on TROPIC live interaction with particular objects from certain
models should be accessible to highlight over which path objects are transformed
and what why this has to happen.

98

8.4. Summary

8.4. Summary

As summarization the following Table 8.2 compares the discussed related work
approaches using the hereinafter criteria: Automatable debugging functional-
ity (Automatable); Observation of errors (Observation); Tracking of origins
(Origins); Fixing of bugs (Bugs); QVT Relations support (at the time of writ-
ing) (QVT-R); Live debugging or testing (Live); Forensic debugging or testing
(Forensic); Outstanding adequacy for identifying common pitfalls in QVT Rela-
tions coding (Pitfalls); and operational semantics visualization (Visualization).
The discussed approaches represent the most promising alternative of this field
to give an idea of the approach’s underlying potential.

Approach A
u
ot

m
at

ab
le

O
b
se

rv
at

io
n

O
ri

gi
n
s

B
u
gs

Q
V

T
-R

L
iv

e

Fo
re

n
si

c

P
it

fa
ll
s

V
is

u
al

iz
at

io
n

Testing + + ˜ - ˜ + - - -
Debugging + - + + + + 11 + 12 - -
Verification + + + - + + - - -

Table 8.2.: Summarization of QVT Relations debugging approaches

In the comparison debugging with the respectable tool support (MediniQVT)
turns out to be a well adjusted solution for classical error origin detection (or
even error observation) in QVT Relations code. It lacks at the support for a
visual representation of causal inferences (visualization of operational semantics)
and does not exceedingly qualify for research in identifying typical pitfalls in
the QVT Relations coding. Testing is a good approach for observing the source
code and its errors, but is not applicable for fixing bugs or and only partially
suitable for identifying the origins of errors. The verification approach, however,
has typically a “higher distance” to the original code due to a more abstract
methodology, but can provide good analysis opportunities. The identification
of common pitfalls is not supported by any of these approaches in particular.
However, there exists a machine learning [2] debugger for distributed system –
proposed by Nitesh Chawla et al. [6] – that shows exceptional high potential for
being used for the identification of common pitfalls. It focuses focuses on forensic
data analyzation and is itself, therefore, not appropriate for live origin tracking
and bug removing.

Beyond the mentioned comparison of high level approaches it seems notable
that the concept by de Lara and Guerra [8] – verification based on CPN – can
provide a great improvement of the overall positioning of verification mechanisms.
However, the tooling support itself is very unclear and the fact that the approach
seems still in phase of conception makes it unrealistic to use for professional
development at the moment of writing.

12Both live and forensic approaches are available and were discussed

99

8. Related Work

Although some interesting approaches or even tools have been discussed, some
unsolved issues are still existing. No solution could be identified that can visualize
the operational semantics behind a certain declaration. To identify errors in the
QVT-R code a live mechanism is necessary that allows direct interaction and
observation when which path is taken for execution for which objects of the model.
Furthermore, it is necessary to analyze which correspondences and dependencies
exist in the QVT-R code. There is no solution discussed here that can fully
satisfy all these characteristics. Therefore, it is the aim of this thesis to provide
such an approach taking the live interaction like described in QVT-R debuggers,
combining them with the good dependency visualization of [8] and adding the
ability to visualize all states and intermediary states.

100

9. Conclusion

This thesis is concluded with a summary of the presented content and an outlook
on future work.

9.1. Summary

Models are intensively used in the Model Driven Engineering which have expe-
rienced a strong impetus over the last years. For automatically transforming
models to structurally different models, model transformations (MTs) are used
– in particular the model transformation language QVT Relations (QVT-R) is
used. The MTs in QVT-R have to face the complexity resulting from the us-
age of very heterogenous source and target models. Additionally, QVT-R is a
declarative approach tailored for bidirectional transformations. The declarative
character also leads to the problem of impedance mismatch between designtime
and runtime of MTs. This problem is tackled in this thesis by introducing a
graphical debugging approach based on TROPIC.

The solution in this thesis is based on practical experiments leading to a concep-
tual approach (section 4) and a prototypical implementation (section 6). The con-
ceptual approach for visualizing the operational semantics of QVT-R in TROPIC
is considered to be the main contribution of this thesis.

The analysis of a QVT-R code starts with the classification of the Relations –
the most essential elements of a QVT-R transformation. As described in section
4 this is accomplished by establishing a graph of Relations presenting a possible
execution ordering. The principle focuses on transforming each Relation at once.
Afterwards the next Relation is executed, if no preconditions avoids it. However,
the concrete transformation mappings stating which conditions have to be ful-
filled and which correspondences from source to target exist, have to take place in
the execution of the Domains of each Relation. In these Domains a differentiation
between executions on different execution levels has to take place (as stated in
section 4). Another interesting discussed issue is the identification of correspon-
dences between source and target types. In lieu of an incomplete heavyweight
analyzation approach, a light-weight approach based on several assumptions and
restrictions is used.

9.2. Future Work

The TROPIC Nets try to visualize many details hidden by the textual represen-
tation in QVT-R. This circumstance leads to the problem of scalability as the
Nets tend to grow disproportionally. Therefore, it is a necessity to improve the
pretty printing mechanism which has been out of the focus in this thesis.

101

As described in section 7 interpretations of QVT-R have been necessary, mainly
corresponding to the realization of medini QVT. Future work could arise from the
enforcement of other ways of interpreting the QVT-R code, e.g., adopting specific
interpretations to future versions of the QVT-R specification. For this issue the
usage of the stated assumptions reflecting the interpretations are problematic
and, therefore, may involve future work for optimization or correction.

Moreover, QVT-R code compromises many OCL statements, e.g., for value as-
signments or variable usages. However, OCL expressions may consist of complex
queries that involve several different types and their properties. Moreover, OCL
supports functions like sorting or counting, the retrieving of specialized informa-
tion, and the usage of programmatic constructs like loops and decisions. In this
thesis, only simple expressions such as value assignments are supported. This
is due to the fact, that the magnitude of language constructs in OCL and its
complexity in nesting them, as well as the possibility of querying from different
origins, will lead to an immense effort in visualization. Heavy use of complex OCL
queries would lead to a magnitude of TROPIC elements on the Transformation
Net. So, it might be necessary to transform an expression in a dedicated visual-
ization, if this is requested by the user, but normally the complexity of queries
should be hidden. An integration of OCL expression visualization, therefore,
would be desirable.

The improvement of the identification of source and target element correspon-
dences, furthermore, is essential as not all correspondences could be derived from
the QVT-R code in this thesis. QVT-R itself does not specify correspondences
on element to element level which has been addressed by an approach (described
in section 4) that cannot handle complex type correspondences, if they are not
declared by variables which are used on both source and target side.

Furthermore, specialized transformations for particular one-sided transformable
primitive types could be necessary in the future. Grade allows to specify such
dedicated transformations, but does not make use of them at the moment of
writing. However, there can arise situations for which this is necessary.

The most inconvenient open task is the identification and integration of unsup-
ported language construct combinations such as special cases or occasional us-
ages. Although many theoretical considerations and practical experiments were
undertaken, the conciseness of the QVT-R standard leaves enough space for in-
terpretations leading to the usage of other unconsidered combination variants. In
particular the most common QVT-R usages are documented, but the standard
does not support a precise inference of how these declarations can be transferred
to operational instructions which is attempted in this thesis.

102

A. Appendix

The source code of the Grade application presented in this thesis is glued in as
DVD-Rom version.

The DVD-Rom includes the following items:

• The source code of the Grade application

• All plugins/components used by Grade

• The bundled Eclipse version used for Grade & TROPIC development

• A Readme file

Note for consumers of the digital edition: Please, visit the site of the Business
Informatics Group (http://www.big.tuwien.ac.at) or the associated TROPIC
project site (http://www.modeltransformation.net) for further information
about this and related projects.

103

104

Bibliography

[1] Abengozar-Carneros, M., Arenas-Sanchez, P.,
Caballero-Roldan, R., Gil-Luezas, A., Gonzalez-Moreno, J.,
Leach-Albert, J., Lopez-Fraguas, F., Rodriguez-Artalejo, M.,
Ruz-Ortiz, J., and Sanchez-Hernandez, J. TOY: A Multiparadigm
Declarative Language. In Proceedings of the 6th ACM SIGPLAN
international conference on Principles and practice of declarative
programming (2004), ACM New York, pp. 329–334.

[2] Alpaydin, E. Introduction to Machine Learning. MIT Press, 10 2004.

[3] Bezivin, J. On the Unification Power of Models. In Journal on Software
and Systems Modeling (2005).

[4] Buschmann, F., Henney, K., and Schmidt, D. C. Pattern-Oriented
Software Architecture, vol. 4 of Software Design Patterns. Wiley, 2007.

[5] Caballero, R. A Declarative Debugger of Incorrect Answers for
Constraint Functional-Logic Programs. In Proceedings of the 2005 ACM
SIGPLAN Workshop on Curry and Functional Logic Programming (2005),
ACM New York, pp. 329–334.

[6] Cieslak, D., Chawla, N. V., and Thain, D. Troubleshooting
thousands of jobs on production grids using data mining techniques. In
Proceedings of the 2008 9th IEEE/ACM International Conference on Grid
Computing (2008), vol. 00, IEEE Computer Society.

[7] de Lara, J., and Guerra, E. Formal Support for Model Driven
Development with Graph Transformation Techniques. In Proceedings of the
Congreso Español de Informática (CEDI’05) (2005).

[8] de Lara, J., and Guerra, E. Formal Support for QVT-Relations with
Coloured Petri Nets. In Proceedings of the 12th International Conference
on Model Driven Engineering Languages and Systems (MoDELS’09)
(2009), Springer Berlin / Heidelberg.

[9] de Lara, J., and Vangheluwe, H. AToM3: A Tool for
Multi-Formalism Modelling and Meta-Modelling. In Proceedings of the
Fundamental Approaches to Software Engineering (FASE’02) (2002),
Springer Berlin / Heidelberg.

[10] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. M. Design
Patterns: Eelements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 11 1994.

105

Bibliography

[11] Giner, P., and Pelechano, V. Proceedings of the 12th international
conference on model driven engineering languages and systems (models’09).
In Proceedings of the 12th International Conference on Model Driven
Engineering Languages and Systems (MoDELS’09) (2009), Springer Berlin
/ Heidelberg.

[12] Hibberd, M., Lawley, M., and Raymond, K. Forensic Debugging of
Model Transformations. In Proceedings of the 10th International
Conference on Model Driven Engineering Languages and Systems
(MODELS’07) (2007), Springer Berlin / Heidelberg.

[13] Jouault, F., and Kurtev, I. On the architectural alignment of atl and
qvt. In Proceedings of the 2006 ACM symposium on Applied computing
(2006), ACM, pp. 1188–1195.

[14] Kurtev, I. State of the Art of QVT: A Model Transformation Language
Standard. In Proceedings of the Applications of Graph Transformations
with Industrial Relevance: Third International Symposium (AGTIVE 2007)
(2007), Springer Berlin / Heidelberg.

[15] Kusel, A., Retschitzegger, W., Schwinger, W., and Wimmer,
M. Common Pitfalls of Using QVT Relations - Graphical Debugging as
Remedy. In Proceedings of the 14th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS 2009) (October
2009), IEEE Computer Society, pp. 329–334.

[16] Mayer, W., and Stumptner, M. Model-Based Debugging - State of
the Art And Future Challenges. Electronic Notes in Theoretical Computer
Science (2007).

[17] Mayer, W., and Stumptner, M. Evaluating Models for Model-Based
Debugging. In Proceedings of the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering (ASE 2008) (2008), IEEE
Computer Society, pp. 128–137.

[18] Müsseler, J. Allgemeine Psychologie, 2.0 ed. Spektrum Akademischer
Verlag, 2008.

[19] Nolte, S. QVT - Relations Language: Modellierung mit der Query Views
Transformation. Xpert.press. Springer-Verlag Berlin, 2009.

[20] Object Management Group. Human-Usable Textual Notation
(HUTN) Specification1, 1.0 ed., 8 2004.

[21] Object Management Group. OCL 2.0 Specification2, 2.0 ed., 06 2005.

[22] Object Management Group. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification3, 1.0 ed., 4 2008.

1http://www.omg.org/cgi-bin/doc?formal/2004-08-01 - last accessed: November 27 2009
2http://www.omg.org/cgi-bin/doc?ptc/2005-06-06 - last accessed: November 27 2009
3http://www.omg.org/spec/QVT/1.0/ - last accessed: November 27 2009

106

Bibliography

[23] Object Management Group. The Architecture of Choice for a
Changing World. http://www.omg.org/mda/, 2009.

[24] Reiter, R. Aritificial Intelligence, vol. 32. 1987, ch. A theory of diagnosis
from first principles.

[25] Reiter, T. T.R.O.P.I.C.: Transformations On Petri Nets In Color. PhD
thesis, Johannes Kepler Universität, Institute of Bioinformatics,
Altenberger Straße 69, A-4040 Linz, Austria, 2 2008.

[26] Romeikat, R., Roser, S., Müllender, P., and Bauer, B.
Translation of QVT Relations into QVT Operational Mappings. In
Proceedings of the Second International Conference on Theory and Practice
of Model Transformations (ICMT 2009) (2009), Springer Berlin /
Heidelberg.

[27] Russell, S., and Norvig, P. Artificial Intelligence: A Modern
Approach, 2. a. International Edition ed. Series in Artificial Intelligence.
Prentice Hall International, 2003.

[28] Steinberg, D., Budinsky, F., Paternostro, M., and Merks, E.
EMF- Eclipse Modeling Framework, 2.0 ed. the eclipse series. Pearson
Education, Inc., 2009.

[29] Wimmer, M., Kusel, A., Schönböck, J., Kappel, G.,
Retschitzegger, W., and Schwinger, W. A Petri Net based
Debugging Environment for QVT Relations. In Proceedings of the 24th
International Conference on Automated Software Engineering (ASE 2009)
(2009), IEEE Computer Society, pp. 1–12.

[30] Wimmer, M., Kusel, A., Schönböck, J., Kappel, G.,
Retschitzegger, W., and Schwinger, W. Proceedings of the 12th
international conference on model driven engineering languages and
systems (models’09). In Proceedings of the 12th International Conference
on Model Driven Engineering Languages and Systems (MoDELS’09)
(2009), Springer Berlin / Heidelberg.

[31] Wimmer, M., Kusel, A., Schönböck, J., Reiter, T.,
Retschitzegger, W., and Schwinger, W. Lets’s Play the Token
Game – Model Transformations Powered By Transformation Nets. In the
International Workshop on Petri Nets and Software Engineering PNSE’09
(2009), pp. 35–50.

[32] Zeller, A. Why Programs Fail - A Guide to Systematic Debugging.
Morgan Kaufmann and dpunkt.verlag, 2006.

[33] Zhao, C., Kong, J., and Zhang, K. Design Pattern Evolution and
Verification Using Graph Transformation. In Proceedings of the 40th
Annual Hawaii International Conference on Systems Sciences (HICSS
2007) (2007), IEEE Computer Society.

107

Bibliography

[34] Zimbardo, P. G., Gerrig, R. J., and Graf, R. Psychologie. Pearson
Studium, 2008.

108

