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Kurzfassung

In dieser Arbeit wird der Phasenschub eines nahe einer Braggbedingung transmit-

tierten Neutronenstrahls untersucht. Dieser Fall wird durch die dynamische Beu-

gungstheorie beschrieben und hat an Interesse gewonnen, seit er zur Präzisions-

messung der kohärenten atomaren Streulänge vorgeschlagen wurde.

Zuerst werden die prinzipiellen Eigenschaften dieses Phasenschubes diskutiert.

Dabei findet man vor allem eine sehr hohe Winkelsensitivität sowie eine bemer-

kenswerte Feinstruktur aufgrund von Pendellösungsoszillationen.

Weiters wird der Phasenschub in Hinblick auf eine Messung mit Hilfe eines

Neutroneninterferometers diskutiert. Dabei werden vor allem die einhergehen-

den Herausforderungen in Zusammenhang mit den Kohärenzeigenschaften dis-

kutiert. Innerhalb dieser Arbeit wurde darauf aufbauend ein geeignetes Sechs-

platteninterferometer hergestellt und erfolgreich getestet. Dieses Interferometer

stellt das momentan größte Perfektkristallinterferometer dar. Zusätzlich können

als neue Besonderheit bis zu vier Reflexe im Bereich von 2.72Å bis in den Sub-

angströmbereich verwendet werden.

Da die für die Phasenmessungen nötigen Strahlablenkungen mit Hilfe von Pris-

men erfolgen, wurde der Einsatz von Prismen und stark brechenden Materialien

in Bezug auf die speziellen Kohärenzanforderungen der Neutroneninterferometrie

untersucht.

Schließlich wurden Messungen des Phasenschubs rund um die Braggbedin-

gung für zwei Reflexe durchgeführt und mit numerischen Berechnungen, die die

Strahldivergenz berücksichtigen, verglichen.

Abseits dieses Phasenschubes erfolgte zudem eine Messung der vertikalen Ko-

härenzfunktion bei drei Reflexen.



Abstract

This work investigates the phase shift of a neutron beam transmitted through a

perfect crystal under near Bragg condition. This case is described by dynamical

diffraction theory. The interest in this feature arose recently due to proposals

suggesting a precision measurement of the coherent atomic scattering length.

First the principal properties of this phase shift are investigated. One finds an

extreme angular sensitivity and a remarkable finestructure due to Pendellösung

oscillations.

This phase shift is then considered in view of a neutron interferometric mea-

surement. Possible setups and related challenges, especially concerning the co-

herence properties, are discussed. Within this work a suitable six-plate neutron

interferometer has been designed, built and successfully tested. This interferom-

eter constitutes the actually largest perfect crystal interferometer. Another new

feature is the use of up to four harmonics ranging from 2.72Å to the sub-angstrom

regime.

As prisms are required for the phase measurements, the use of prisms and

suitable materials is discussed with respect to the special coherence requirements

in neutron interferometry.

As final part measurements of the phase shift around the Bragg condition are

presented for two harmonics and compared with numerical calculations taking a

divergent beam into account.

Beyond the topic of the phase shift by dynamical diffraction, the vertical

coherence function has been measured for three harmonics.
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Chapter 1

Preface

Laue diffraction on a perfect crystal slab is the basis for perfect crystal neutron

interferometry as it coherently splits the incoming neutron wave into a transmit-

ted and a reflected beam. Both wave components can be calculated by dynamical

diffraction theory[1, 2, 3, 4]. A special feature is the strong angular dependence of

the refracted and transmitted intensities. Furthermore a distinct pattern known

as Pendellösung oscillations [5, 6] can be observed.

Figure 1.1: Two cases for a neutron beam incident on a medium: (a)

far off a Bragg condition only the phase of the wave function changes,

whereas in the vicinity of a Bragg condition (b) a transmitted and re-

fracted beam can be observed.

Another important case in neutron optics deals with the beam refraction for

non-crystalline media or for crystals far off a Bragg condition. Usually one char-

acterizes such media similar to light optics by an index of refraction. Here the

5



6 CHAPTER 1. PREFACE

phase and/or direction of the neutron beam changes, whereas the intensity usu-

ally doesn’t change1. There are many applications to neutron optics such as

prisms, lenses and phase shifters in interferometry.

In this work we want to investigate a perfect crystal close to a Bragg con-

dition as a ”phase shifter”, that is to say we are interested in the phase of the

transmitted beam. Although this has been always implicit part of the solutions of

dynamical diffraction theory, the focus on it shall bring new perspectives. Interest

on the explicit phase of the transmitted beam arose via a proposal to measure the

neutron-electron scattering length by it [7, 8]. Just recently an even more ambi-

tious suggestion deals with the investigation of non-Newtonian gravity behavior

at short distances [9]. Interestingly the main focus so far is on precision measure-

ments, hence on rather tiny effects. However despite some related experiments

[10, 11] so far no quantitative measurement and principal investigation of the

phase shift has been addressed. Besides the interest in connection with precision

measurements of fundamental interactions the extreme angular sensitivity of the

phase shift should be noted. This is comparable to the strong angle amplification

effect inside a perfect crystal [1]. Therefore this phase shift might find its interest

beyond the stated applications, all the more as the same concept is applicable

to X-ray physics. From a technical point of view the measurement of such phase

shifts involves either the rotation of perfect crystal slabs or beam deflections in-

side a neutron interferometer, both with an accuracy below the arc second range.

Studying such configurations therefore gives also valuable information on the sen-

sitivity of possible future split perfect crystal neutron interferometers which have

so far only been realized for X-rays [12, 13, 14].

Moreover phase shifts by dynamical diffraction and related coherence proper-

ties might be considered when the neutron beam is diffracted inside a neutron

interferometer [15, 16]. Especially the discrepancy concerning the measurement

of a confinement induced neutron phase [15, 16] might be analyzed in this respect.

Outline

This thesis is structured in the following way:

Chapter two investigates the phase shift of the transmitted beam theoretically

for the plane wave solutions.

Chapter three discusses the phase shift in the context of neutron interferome-

try, related challenges and possible setups.

Chapter four analyzes several setups by a numerical model, whereby interfer-

ometric configurations are simulated by spherical wave theory.

1Assuming negligible absorption.
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Chapter five describes the fabrication and testing of an interferometer espe-

cially designed for these experiments. A new feature is here the use of up to four

harmonics without changing the beam geometry.

Chapter six deals with prisms in neutron interferometry, where former expe-

riences have been rather limited. Prisms are needed for beam deflection in the

discussed experiments.

Chapter seven discusses the concrete experimental setup and the results. More-

over an outlook to future applications is given.

Chapter eight deals with another application of prisms in neutron interferom-

etry: the measurement of the vertical coherence function.
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Chapter 2

Phase shifts by Dynamical

diffraction

2.1 Dynamical diffraction theory

We are here considering a neutron wave with wave vector k incident on a perfect

crystal under near-Bragg orientation (Fig. 1.1 (b)). This case is described by

dynamical diffraction theory [1, 2, 3, 4]. Here a short summary of the most

important aspects together with the used notations shall be given.

The neutron wave function ψ(r) inside the crystal is calculated via solving the

stationary Schrödinger equation for the crystal potential V (r)(
− ~2

2mn

∆∆∆ + V (r)

)
ψ(r) = Eψ(r) (2.1)

Due to the periodicity of the potential this equation can be transformed into

reciprocal space using a Bloch ansatz

ψ(r) = eiKr
∑
H

uHe
iHr (2.2)

where K is the wave vector inside the crystal and H are the reciprocal lattice vec-

tors. Thereby one obtains an infinite set of coupled equations for the amplitudes

uH (
~2

2mn

|K + H|2 − E
)
uH = −

∑
H′

VH′−H uH′ (2.3)

with the neutron mass mn and energy E whereas the Fourier components of the

potential are determined via

V (r) =
∑
H

VHe
iHr (2.4)

9
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The potential V (r) is determined by the Fermi pseudo potential

Vrigid(r) =
2π~2

mn

∑
i

bNδ(r − ri) (2.5)

with bN the coherent nuclear scattering length. However here we have to regard

a static instead of a rigid lattice, as the atoms can move around their equilibrium

position

ri(t) = r0,i + ai(t) (2.6)

Consequently the potential reads

Vstatic(r) =
2π~2

mn

∑
i

bN〈δ(r − ri)〉 (2.7)

and the Fourier coefficients read

VH =
1

Vcryst

∫
d3r · e−iHrVstatic(r)

VH =
2π~2

mnVcryst

∫
d3r · e−iHr

∑
i

bN〈δ(r − ri)〉

VH =
2π~2

mnVcryst
F (H)

∑
i

e−iHr0,ibN〈e−iHai〉 (2.8)

with F (H) the structure function and the factor

〈e−iHai〉 = e−W (H) (2.9)

determines the Debye-Waller factor W (H). For a harmonic crystal the Debye-

Waller factor is determined by [1]

W (H) =
1

2
〈(Hai)

2〉 (2.10)

In general this can be understood as a correction to the coherent scattering length

batom → batom · e−W (2.11)

where for H 6= 0 one has to additionally take the atomic instead of the nuclear

scattering length. This will be discussed in more detail in subsec. 2.2.2.

The hitherto obtained system of equations cannot be solved generally. How-

ever one only expects a notable contribution of an amplitude uH if the wave

vector of the reflected beam K + H is close to a reciprocal lattice point. This

leads to the one- and two beam approximations1.

1In the following the vectorial notation of the indices is dropped.
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2.1.1 One-beam approximation

For the case that only H = 0 is effective, simply the amplitude u0 is excited.

Hence the remaining relevant equation is(
~2

2mn

K2
0 − E

)
u0 = −V0u0 (2.12)

and the solution for the wave vector simply reads

K0 = k ·
√

1− V0

E
≈ k ·

(
1− V0

2E

)
(2.13)

where the mean crystal potential

V0 =
2π~2N

mn

bN (2.14)

is much smaller then the energy of the incoming neutron. The mean potential

characterizing the medium is determined by the atomic density N and the co-

herent nuclear scattering length bN . One can characterize the effect of such a

potential by an index of refraction

n =
K0

k
≈ 1− λ2NbN

2π
(2.15)

Figure 2.1: A neutron wave incident on a medium with index of refraction

n < 1 is refracted off the surface normal.

As in light optics only the wave vector component normal to the crystal surface

changes while the tangential component remains constant (Fig. 2.1). Thereby the
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wave vector in general changes both direction and magnitude - the neutron wave

is refracted. This case is valid for a perfect crystal far off any Bragg condition

as well as for homogeneous non-crystalline media. Neutron refraction is used in

neutron optics for example for prisms and in interferometry for phase shifters.

2.1.2 Two-beam approximation

A Bragg reflection is determined by Bragg’s equation

λ = 2dhkl sin θB (2.16)

with the lattice plane distance

dhkl =
a√

h2 + k2 + l2
(2.17)

according to the miller indices (h,k,l) and the lattice constant a. Close to a

Bragg condition two reciprocal lattice points lie near the Ewald sphere and two

amplitudes have to be considered. These amplitudes u0 and uH belong to the

forward and reflected direction, respectively(
~2

2mn

K2
0 − E

)
u0 = −V0u0 − V−HuH(

~2

2mn

K2
H − E

)
uH = −VHu0 − V0uH (2.18)

where KH = K0 + H denotes the reflected wave vector inside the crystal2. The

crystal potential V±H is given by

V±H =
πN~2

4mn

batom(H)F (H) (2.19)

where batom(H) denotes the atomic scattering length (compare section 2.2.2) and

F (H) the structure factor. The latter can take three values: F = 8 if the sum

of the Miller indices (h, k, l) is divisible by 4, F = 4 ± 4i for h, k, l all odd and

F = 0 for all other cases. Hence for the most commonly used (220) and (111)

reflections one obtains

V±220 =
2πN~2

mn

batom(220)

V±111 =
2πN~2

mn

batom(111)
1± i

2
(2.20)

2K0 is the wave vector in forward direction whereas the remaining H is the reciprocal lattice
vector of the reflecting lattice planes.
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In the following we assume the symmetric Laue case where the crystal surface is

oriented exactly perpendicular to the crystal surface. Then the coupled equations

2.18 lead to the standard formulas for the transmission and reflection amplitudes

of the neutron wave behind a crystal of thickness D

t(y) = exp [−i(A0 + AHy)]

{
cos
(
AH
√

1 + y2
)

+
iy√

1 + y2
sin
(
AH
√

1 + y2
)}

(2.21)

r(y) = exp [−i(A0 + AHy)]

√
VH
V−H

· −i√
1 + y2

sin
(
AH
√

1 + y2
)

(2.22)

where the scaled misset angle3 δθ = θ − θB, namely

y = −δθ sin 2θB/vH (2.23)

and

A0,H =
Dkv0,H

2 cos θB

vH =
|VH |
E

, v0 =
V0

E
(2.24)

have been introduced. From the amplitudes 2.21 and 2.22 one can calculate

the intensities in the forward and reflected direction which in a non-absorbing

medium have to fulfill the relation

|t(y)|2 + |r(y)|2 = 1

The reflected beam shows a Lorentzian-shaped peak with rapid oscillations (Fig.

2.2). These oscillations are known as Pendellösung oscillations and depend on

the ratio between crystal thickness D and the so called Pendellösung length ∆H :

AH =
πD

∆H

→

∆H =
2π cos θB
kvH

(2.25)

These oscillations are due to the interference of two internal wave fields with

slightly different wave vectors [1, 3]. This constitutes an important result of

3Throughout most presentations of dynamical diffraction theory equations and figures are
given in terms of this y-parameter. However according to the discussion of higher order reflec-
tions and in view of the experimental realization, the misset angle dependence will be discussed
more explicitly in the following chapters.
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Figure 2.2: Intensities of the forward (I0(y) = |t(y)|2) and reflected

(IH(y) = |r(y)|2) beam behind a perfect crystal slab for two thicknesses

D in ratio to ∆H . The dashed line shows the average taken over the

Pendellösung oscillations.

dynamical diffraction theory and has been experimentally demonstrated in several

experiments [5, 6].

An average over these oscillations yields

〈IH(y)〉 =
1

2

1

1 + y2

〈I0(y)〉 =
1

2

(
1 +

y2

1 + y2

)
(2.26)

which is compared with the oscillating functions in Fig. 2.2. The average re-

flected intensity falls to half its maximum value when the y-parameter is unity

or equivalently the misset angle is

∆θ1/2 =
λ2NF (H)batom(H)

8π sin 2θB
(2.27)

This is known as the Darwin width of the reflection and depends on both the

Bragg angle and the type of reflection. Thereby higher order reflections such as
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the (440) reflection have a strongly reduced width. The Darwin width describes

the angular acceptance of a crystal and will thereby become important for the

subsequent discussion of the phase shift.

2.2 Phase shift due to Laue transmission

So far a brief description of the transmission and reflection amplitudes and

thereby the related intensities has been given. Here we want to focus on a dif-

ferent aspect. The transmission amplitude does not only describe the intensity

but also contains the phase factor of the neutron wave in forward direction. This

phase shift - modulo π - is given by the argument of the transmission factor

φ(y) ≡ arg[t(y)] (2.28)

which is shown in Fig. 2.3. This phase has been mentioned in [8, 7] as ”dynamical

phase”, which might be misleading in the sense of distinguishing dynamical from

topological phase shifts [1]. Therefore we refer to a phase that arises by a Laue

transmission as ”Laue transmission phase” or short as ”Laue phase”4.

To obtain an explicit form for the Laue phase the transmission factor has to

be rewritten as

t(y) = A(y) · eiφLaue(y) (2.29)

In general the phase φ of a complex number z = a + ib = r · eiφ in the interval

] − π, π] can be expressed using the arctan function ] − π, π] can be expressed

using the arctan function:

φ =



arctan b
a

for a > 0, b arbitrary

arctan b
a

+ π for a < 0, b ≥ 0

arctan b
a
− π for a < 0, b < 0

π/2 for a = 0, b > 0

−π/2 for a = 0, b < 0

undetermined for a = 0, b = 0

(2.30)

4Also within the reflected term there is a phase relationship between the different y, the wave
vector kH however is not in the original direction. Analogous to the ”Laue transmission phase”
arising in Laue geometry, also a ”Bragg transmission phase” arising in Bragg geometry can
be defined. Nevertheless it is important to note, that closely around the exact Bragg position
−1 < y < 1 the transmitted beam vanishes. Outside this region a ”Bragg phase” might be of
interest.
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Alternatively the phase can be expressed using the arccos function, where one

needs only three distinctions of cases:

φ =


arccos a√

a2+b2
for b ≥ 0

− arccos a√
a2+b2

for b < 0

undetermined for
√
a2 + b2 = 0

(2.31)

Hence one can write the Laue phase in the interval ]− π, π] as

φLaue(y) = sgn[β(y)] arccos

(
α(y)√

α2(y) + β2(y)

)
β(y) = cos (A0 + AHy)

y√
1 + y2

sin
(
AH
√

1 + y2
)

− sin (A0 + AHy) cos
(
AH
√

1 + y2
)

α(y) = cos (A0 + AHy) cos
(
AH
√

1 + y2
)

+ sin (A0 + AHy)
y√

1 + y2
sin
(
AH
√

1 + y2
)

where one can simplify the amplitude of the transmitted beam according to

√
α2(y) + β2(y) =

√√√√
1−

sin2
(
AH
√

1 + y2
)

1 + y2
(2.32)

However we aim here for a continuous presentation of the Laue phase as one

can directly extract the phase term −A0−AHy from the exponential part of Eq.

2.21. For the remaining term one can apply the arctan function according to

(2.30). This yields

φLaue(y) = φLaue(0)− AHy + arctan

[
y√

1 + y2
· tan

(
AH
√

1 + y2
)]

(2.33)

The term φLaue(0) is in principle determined by −A0 which is the phase shift that

would occur in the case of a phase shifter at an angle θB
5. However according to

(2.30) a constant ±π adds depending on the ratio between crystal thickness and

Pendellösung length. This can be seen from

lim
y→0

{
cos
(
AH
√

1 + y2
)

+
iy√

1 + y2
sin
(
AH
√

1 + y2
)}

=

lim
y→0
{cosAH + iy sinAH} = cosAH (2.34)

5This can be shown by inserting v0 into φLaue(0) = −A0 = − Dkv0
2 cos θB

yielding φLaue(0) =
− D

cos θB
NbNλ which is exactly the phase shift of a phase shifter of thickness D at an angle θB .
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Figure 2.3: Plot of the argument of the transmission factor around the

Bragg position (b) and over a larger region of δθ (a). The parameters

are D = 1mm, θB = 45◦ for a silicon-(220) reflection. The vertical lines

do not indicate a discontinuity of the phase, as the difference is just 2π.

According to (2.30) in the case cosAH < 0 a constant ±π adds. Consequently

φLaue(0) = −A0 for
4n− 1

2
<

D

∆H

<
4n+ 1

2
(2.35)

for n natural numbers. Otherwise one has to add ±π. This is insofar interesting

as the phase shift at δθ = 0 differs from the phase shift of an equivalent phase

shifter −A0 depending on the crystal thickness. The transition between cases

where the phase shift is equal or differs by a constant ±π happens exactly at

the minima of the transmitted beam for δθ = 0. However in the following only

the angular dependence of the Laue phase is of interest. Here one finds that

besides the constant φLaue(0) the Laue phase is antisymmetric with respect to y

and thereby δθ. Still the phase function (Eq. 2.33) is not continuous. Due to

the periodicity of the arctan term in Eq. 2.33 artificial phase jumps of height π

would appear at the poles of the tan term, if plotting expression 2.33 directly.



18 CHAPTER 2. PHASE SHIFTS BY DYNAMICAL DIFFRACTION

One therefore has to continue the function, which can for example be achieved

by

φLaue(y) = φLaue(0)− AHy + arctan

[
y√

1 + y2
· tan

(
AH
√

1 + y2
)]

+π · sgn(y) ·

(⌊
AH
√

1 + y2 + π
2

π

⌋
−
⌊
AH + π

2

π

⌋)
(2.36)

It is interesting to note, that the arctan term of Eq. 2.36 or equivalently the

term cos
(
AH
√

1 + y2
)

+ iy√
1+y2

sin
(
AH
√

1 + y2
)

in the transmission amplitude

(2.21) contains the whole nonlinearity of the Laue phase. Moreover it contains

the relevant dependences on the crystal potential and the wavelength as we will

see later.

Recently in [7] a formula different from ours has been given6

φLaue,approx(y) = φLaue,approx(0)− AH
(
y ±

√
1 + y2

)
(2.37)

with the plus (minus) sign corresponding to positive (negative) y.

This approximation is identical to Eq. 2.33 in the limit |y| → ∞ where∣∣∣∣ y√
1+y2

∣∣∣∣→ 1. In this case Eq. 2.21 can simply be written as

t(y) = exp[−i(A0 + AHy)]
{

cos
(
AH
√

1 + y2
)

+ i · sgn(y) · sin
(
AH
√

1 + y2
)}

= exp
[
−i
(
A0 + AHy − sgn(y) · AH

√
1 + y2

)]
(2.38)

directly yielding the phase Eq. 2.37. Besides the limit |y| → ∞, Eq. 2.37 is also

exact for

AH
√

1 + y2 = nπ =⇒ sin
(
AH
√

1 + y2
)

= 0. (2.39)

Thereby we expect a significant difference between Eq. 2.33 and Eq. 2.37 closely

around Bragg for the case AH
√

1 + y2 ≈ (2n + 1) · π
2
. Indeed Fig. 2.4 shows a

remarkable fine structure in the form of small plateaus in the phase function by

Eq. 2.33 (or Eq. 2.36, see below) which is not contained in Eq. 2.37. This fine

structure - that can also be observed in Fig. 2.3 - will be discussed in detail in

subsection 2.2.2.

6Here the formula of [7] is written in the notations used in this work.
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Figure 2.4: Comparison of the phase functions by Eq. 2.37 (blue curve)

and Eq. 2.36 (red curve) closely around the Bragg condition. The pa-

rameters are D = 3mm, θB = 45◦ for a Si-(220) reflection, corresponding

to λ = 2.72Å. Here the constant φLaue(0) is subtracted.

Plotting the phase function

Before we discuss the principal properties and dependences of the Laue phase

some comments on plotting the phase function are necessary.

One possibility consists in plotting the phase modulo π as shown in Fig. 2.3.

On the other hand the progress of the phase function is better visible if the phase

function is plotted as a continuous function. This can for example be done by

using approximation 2.37. Omitting the constant value −A0 the phase shift is

plotted in Fig. 2.5(a). In this depiction the limits δθ → ±∞ are equal and zero.

This can be easily seen from Eq. 2.37 as

lim
y→±∞

{
y ∓

√
1 + y2

}
= lim

y→±∞

1

2y
= 0. (2.40)

On the other hand one obtains a huge jump at δθ = 0. In contrast to this

Fig. 2.3 shows that the phase function is continuous at δθ = 0. To emphasize

the continuity of the phase function at δθ = 0 it is preferable to choose the

representation shown in Fig. 2.5 (b) by using Eq. 2.36.

Here the two asymptotes |δθ| → ∞ are separated by a large value. This seems

to be a contradiction. However the two asymptotes - or alternatively the huge

jump at δθ = 07 (Fig. 2.5(a)) - are separated exactly by a multiple of 2π. The

7Using approximation Eq. 2.37 one in fact obtains lim
δθ→0

φLaue(δθ)− lim
δθ→∞

φLaue(δθ) = AH
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reason is that according to Eq. 2.33 lim
δθ→0

φLaue(δθ) = φLaue(0) = −A0 (±π) and

lim
|δθ|→∞

φLaue(δθ) = −A0. Thereby these two limits can only be separated by a

multiple of π (periodicity of the arctan-term in Eq. 2.33). Consequently the

separation between the two asymptotes in Fig. 2.5(b) is exactly a multiple of 2π.

This means that they are identical. During most of this work the representation

of Fig. 2.5(b) will be used but in some cases it is more convenient to use another

representation.

Figure 2.5: Two possibilities to plot the Laue phase over a large range

of δθ: (a) with a discontinuity at δθ = 0 but equal asymptotes or (b)

continuous at δθ = 0 but with separated asymptotes. In these two rep-

resentations Eq. 2.33 can not be distinguished from Eq. 2.37. The huge

jump at δθ = 0 in (a) and the difference between the asymptotes in (b)

is equal to a multiple of 2π. Parameters as in Fig. 2.4.

2.2.1 General properties of the phase function

The angular dependence

The most significant feature of the Laue phase is its dependence on y (Eq. 2.23)

and thereby small deviations δθ from the Bragg condition. A first observation is

the antisymmetry of the Laue phase with respect to the Bragg condition. There

the angular dependence reaches its maximum. Fig. 2.4 shows that for a plate of

3 mm thickness already a deviation δθ = 0.1” leads to phase differences in the

order of 20 rad (≈ 3 · 2π) relative to δθ = 0” and δθ = 0.0001” would still lead

to relative phase shifts in the order of 1◦! This extreme sensitivity to angular

which is in general not a multiple of 2π. This is due to the fact that this expression is only
a good approximation for large δθ. However due to the argument presented also 2.33 can be
plotted as in Fig. 2.5(a).
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deviations is the main difference to the phase shift induced by a non crystalline

material or a perfect crystal far off any Bragg condition. In this case the angular

sensitivity for an equally thick plate in the same configuration is of the order of 1

degree phase shift per angular deviation by 15 arc seconds, which means that the

angular dependence here is by an order of 10−5 weaker. Closely around Bragg

the Laue phase can be approximated by

φLaue(y) = φLaue(0)− y(AH − tanAH) +

+ y3

(
AH
2
− tanAH

2
+

1

2
AH tan2AH −

tan3AH
3

)
+

+O(y5) (2.41)

In terms of δθ this reads

φLaue(δθ) = φLaue(0) + δθ · sin 2θB
vH

(AH − tanAH) +

− δθ3 · sin3 2θB
v3
H

(
AH
2
− tanAH

2
+

1

2
AH tan2AH −

tan3AH
3

)
+

+O(δθ5) (2.42)

Consequently the phase is to second order linear in δθ at δθ = 0. As for thick

crystals8 AH � tan AH - beside the case AH ≈ (2n+1)π
2

which will be discussed

separately (Appendix A) - one can use the approximation

φLaue(y) ≈ φLaue(0)− yAH +O(y3) (2.43)

and

φLaue(δθ) ≈ φLaue(0) + δθ · πD
d

+O(δθ3) (2.44)

respectively. In the last step Eq. 2.16 and k = 2π
λ

has been used. An important

observation here is that in the immediate surrounding of Bragg, the angular

dependence of the Laue phase is described simply by the crystal thickness D and

the lattice plane distance d. The ratio D/d is under usual conditions of the order

of 107 and thereby leads to the high phase sensitivity around δθ = 0. For larger

δθ the higher order contributions lead to a flattening of the phase function and

finally to the asymptotic behavior (Eq. 2.40) shown in Fig. 2.5. Nevertheless the

angular dependence of the Laue phase is still effective many arc seconds away.

Another important observation can be made by Eq. 2.37 for the phase progress

from the Bragg condition to the asymptotes. Using approximation 2.37 one can

estimate

lim
δθ→∞

φLaue(δθ)− φLaue(δθ = 0) ≈ AH ∝ DNbatomd tan θB (2.45)

8Here: D � ∆H .
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It is important to note that besides the fact that the exact value is a multiple

of π (App. A) this is not an absolute phase difference between the asymptotes

and δθ = 0 as it does not constitute a shift by a potential. It rather constitutes

a measure for the effective region of the Laue phase. Thereby this asymptotic

behavior together with Eq. 2.44 is an useful estimation for an understanding of

the phase dependences discussed in the following. Close to Bragg the phase is

dominated by an almost energy independent lattice scattering, further away the

influence of the neutron energy and the crystal potential via the wavelength (or

θB) and the scattering length density Nbatom gain importance.

Crystal thickness

Of course the phase shift depends on the crystal thickness D which is contained

in AH (2.24). Thus the phase shift is - apart from the fine structure discussed in

subsection 2.2.2 - proportional to D. This will become important for the correct

limit to the phase shifter case (section 2.3). Fig. 2.6 (a) shows the Laue phase

for several crystal thicknesses.

Figure 2.6: Laue phase for several thicknesses D. Other parameters as

in Fig. 2.4.

Bragg angle

Closely around the Bragg condition the Laue phase is to first order independent of

the Bragg angle θB and thereby the wavelength. This means that the phase shift

is almost non dispersive9. On the other side due to the higher order contributions

9There is almost no dispersion with respect to λ. However there is a large ”dispersion” -
according to the ”dispersion surfaces” [1, 3] - with respect to the energy independent angle
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Figure 2.7: The Laue phase for different Bragg angles θB. Other param-

eters as in Fig. 2.4.

the phase function bends off into the asymptotes earlier for smaller Bragg angle

(Fig. 2.7). From Eq. 2.45 it can be observed that the phase difference to the

asymptotes is approximately proportional to tan θB. This means that for larger

θB the Laue phase is effective over a larger region of δθ. This is related to the

Darwin width (Eq. 2.27) given explicitly in terms of θB by

∆θ1/2 =
d2NF (H)batom(H)

4π
tan θB (2.46)

Crystal properties

Different types of lattice plane orientations - entering via the structure function

F(H) - will naturally influence the steepness of the Laue phase. As with our

neutron interferometers we use the (110) orientation, we will concentrate on this

lattice plane orientation. However higher order reflections m are of great interest.

In our case these are the (2m, 2m, 0) reflections, leading via the Bragg equation

(Eq. 2.16) to

λm =
λ(220)

m
. (2.47)

As the phase around Bragg is inversely proportional to the lattice plane distance

d there is a strong dependence on the order of reflection

φLaue(|δθ| ' 0) ∝ δθ

d
∝ mδθ (2.48)

Fig. 2.8 displays the fact that higher order reflections show a higher steepness

of the phase close to Bragg10 but on the other hand bend off earlier into the

distribution δθ and hence the direction of the wave vector.
10This would not be the case, if plotting φLaue(y) as y ∝ m2 · δθ.
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asymptotes due to the higher order contributions of δθ. This is can easily be seen

from Eq. 2.45, whereby

lim
δθ→∞

φLaue(δθ)− φLaue(δθ = 0) ∝ d ∝ 1

m
(2.49)

The larger steepness close to Bragg and the smaller value of the asymptotes on

the other hand is reflected via the effective range of the Darwin width (Eq. 2.46).

Figure 2.8: The Laue phase for the (220), (440) and (660) reflection.

Other parameters as in Fig. 2.4.

Certainly the special material properties such as the atomic number density

N and the atomic scattering length batom entering via the mean crystal potentials

V0,H are relevant for the phase shift. Interestingly the angular dependent part

of the phase shift is independent of the mean potential in the immediate vicin-

ity of the Bragg condition, as it is only described by the lattice geometry and

crystal thickness. For larger δθ where the higher order terms become relevant -

and especially in the case of the fine structure discussed in 2.2.2 - the material

properties show a significant influence as according to (2.45)

lim
δθ→∞

φLaue(δθ)− φLaue(δθ = 0) ∝ Nbatom (2.50)

Fig. 2.9 shows that for larger crystal potential (batom or equivalently N) the Laue

phase is more effective for larger δθ. This will become important for the correct

limit to the phase shifter case discussed in 2.3.

2.2.2 Pendellösung structures of the Laue phase

In Fig. 2.4 we have observed a remarkable structure in the form of small plateaus

in the phase function. These only occur in the exact expression for the Laue
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Figure 2.9: Dependence of the Laue phase on the nuclear scattering

length. bSi = 4.1507 · 10−15m is the value for silicon. Other parameters

as in Fig. 2.4.

phase (Eq. 2.33). There one has to consider the arctan term:

arctan

[
y√

1 + y2
tan
(
AH
√

1 + y2
)]

(2.51)

At the poles of the tangent term

AH
√

1 + y2 = (2n+ 1)
π

2
(2.52)

the scaling factor y√
1+y2

prevents a simple extraction of the argument of the

tangent function by the arc tangent. At these positions the phase becomes very

sensitive to small changes in the argument of the tangent and this fine structure

in the form of plateaus appears. These positions are just where we expect the

most striking deviations from Eq. 2.37. Using Eq. 2.24 it becomes obvious that

similar to the reflected and transmitted intensities the ratio between the crystal

thickness and Pendellösung length ∆H affects this behavior

D

∆H

=
(2n+ 1)

2
√

1 + y2
(2.53)

It is interesting to note, that the positions of this fine structure

yPend(n) =

√
(2n+ 1)2∆2

H

4D2
− 1

nmin =

⌈
1

2

(
2D

∆H

− 1

)⌉
(2.54)
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are exactly identical with the minima of the transmitted intensity (Fig. 2.10)

and thereby the maxima of the reflected intensity. Apparently the interference

of the α and β wave functions inside the crystal [1, 3] does not only explain the

Pendellösung oscillations of the reflected and transmitted intensities but also the

structure of the Laue phase.

Figure 2.10: The fine structure of the Laue phase appears exactly at the

minima of the transmitted intensity. Parameters: D = 0.5mm, θB = 45◦,

Si-(220) reflection.

Position of Pendellösung structures

The positions of the plateaus (2.54) depend sensitively on the crystal thickness

D and all parameters relevant for the Pendellösung length ∆H , such as batom, θB
and the order of reflection m. If

D1 =

(
n+

1

2

)
∆H (2.55)

this structure (compare Appendix A) will directly occur at y = 011. The same

is valid for D2 = (n+ 3
2
)∆H where the difference between D2 and D1 is just one

Pendellösung length ∆H . Between these two thicknesses the first plateau will

roam continuously between 0 and a maximum of yPend(D2, n = nmin(D2)+1) (Eq.

2.54). Fig. 2.11 shows the Pendellösung structure for two crystal thicknesses.

11In this special case Eq. 2.44 is no more an appropriate approximation for the phase around
Bragg.
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Figure 2.11: The Pendellösung structure of the Laue phase for two crystal

thicknesses D. Other parameters as in Fig. 2.4.

The distance between successive plateaus decreases with rising y and finally

becomes a constant value

lim
n→±∞

{yPend(n+ 1)− yPend(n)} =

lim
n→±∞

{√
(2n+ 3)2∆2

H

4D2
− 1−

√
(2n+ 1)2∆2

H

4D2
− 1

}
=

∆H

D
(2.56)

Hence the plateaus are the denser, the larger the thickness D in comparison to

∆H . As ∆H ∝ m and δθ ∝ 1
m2 y for higher order reflections m, for these the

distances between the plateaus are denser by a factor 1
m

. The limit calculated

above nevertheless is just the case where the plateaus vanish as it corresponds

to the limit y →∞ where approximation 2.37 is valid. Fig. 2.11 shows this fine

structure for two crystal thicknesses. It can be observed that an extraordinary

phase difference between the two curves occurs in the vicinity of the plateaus.

This difference is the more pronounced the closer the structure to the Bragg

position. This additional phase sensitivity due to the Pendellösung structure

depends not only on the crystal thickness but on all parameters contained in ∆H .

The sensitivity due to the neutron-electron scattering length bne contained via

the atomic scattering length batom is discussed in the following part.

The neutron-electron scattering length

The relevant scattering length in the regime described by dynamical diffraction

theory is the atomic scattering length

batom = bN − Z[1− f(q)]bne
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Besides the nuclear scattering length the neutron-electron scattering length bne
12

is contained in this expression. This contribution describes the interaction of

a charged particle with the internal charge separation within the neutron [1,

17]. There is still a clear disagreement between measurements of bne by different

methods. The two disputed values are [18, 19, 20, 21, 22]

bne(1) = −0.00131(3)fm [Garching − Argonne]
bne(2) = −0.00159(4)fm [Dubna] (2.57)

Therefore S. A. Werner [7]13 and A. Ioffe [8] proposed to determine bne by a pre-

cision measurement of the phase shift arising from dynamical diffraction theory.

This gives additional motivation for the investigation of the Laue phase. The

contribution of bne to batom depends on the atomic number Z and on the atomic

form factor f(q). According to [17] the latter is given by

f(q) =
1√

1 + 3 q
2

q2
0

q =
4π sin θB

λ
=

2π

d
q0 = 19 · Z1/3nm−1 (2.58)

where d is the lattice constant (Eq. 2.17). As f(q = 0) = 1 the contribution of

bne vanishes off Bragg and batom = bN there. The contribution to the Laue phase

vanishes as well:

lim
y→±∞

φLaue(y) = lim
y→±∞

{
−A0 + AH(∓y ±

√
1 + y2)

}
= −A0 (2.59)

and −A0 contains the nuclear scattering length only. This is an important fact

for the correct limit to the phase shifter case treated in section 2.3. Estimating

in general the influence of small scattering length corrections

b∗atom = batom(1 + ε) (2.60)

where for the case of the neutron electron scattering length

ε ≈ Z · [1− f(q)] · [bne(1)− bne(2)]

bN
≈ 3.8 · 10−4 (220) (2.61)

12Here bne is used for the bound scattering length similar to the bound nuclear scattering
length bN . The relation between the bound and free (ane) scattering length is bne = ane

A+1
A

where A is the mass number of the nucleus.
13These proposals do not mention the here discussed Pendellösung structures, however the

extraordinary phase sensitivity there is a good reason to give a discussion in this context.
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one finds for the phase difference:

∆φLaue(y, ε) = φLaue(y, ε)− φLaue(y, 0) (2.62)

According to the first order expansions y(ε) = y · (1− ε) and AH(ε) = AH · (1 + ε)

the resulting first order expansion of Eq. 2.37 yields

∆φLaue(y, ε) = AH
1√

1 + y2
· ε ≈ AH · ε

y
y � 1 (2.63)

As y ∝ m2δθ the sensitivity for higher order reflections m is significantly reduced.

Furthermore there is almost14 no contribution at the exact Bragg position, due

to the independence of the atomic scattering length there. Close to Bragg one

has to regard the full first order expansion (Eq. 2.41)

φLaue(y) = −y(AH − tanAH) +O(y3) (2.64)

The phase difference to first order in ε and y then reads

∆φLaue(y, ε) = y
(
AH [1 + tan2AH ]− tanAH

)
· ε y � 1 (2.65)

This is a linear phase term strongly depending on the ratio D/∆H . Considering

the wavelength dependence, the atomic scattering length is independent of the

Bragg angle but depends according to Eq. 2.58 on the lattice constant d and

thereby the order of reflection m (Tab. 2.1).

reflection f(q) batom(bne(2) = −0.0013fm) batom(bne(1) = −0.0016fm)

0 1 4.1507fm 4.1507fm

(220) 0.6284 4.1575fm 4.1590fm

(440) 0.3746 4.1621fm 4.1647fm

(660) 0.2600 4.1642fm 4.1673fm

(880) 0.1980 4.1653fm 4.1687fm

Table 2.1: Form factor and atomic scattering length for the (220) and higher

order reflections in the case of Si. The Debye-Waller factor is here omitted.

Fig. 2.12 shows that due to a small shift of the plateaus of the fine structure

a remarkable phase difference in the Laue phase between the two bne values in

discussion appears. This difference decreases with the order of reflection m, al-

though the influence on batom is larger for higher order reflections m. Additionally

14Unless the case that a Pendellösung structure is very close to δθ = 0. However then also
the transmitted beam vanishes at δθ = 0.
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Figure 2.12: Laue phase for two disputed values of bne (2.57) around a

plateau of the Pendellösung structure for (a) Si-(220) reflection and (b)

Si-(440) reflection. Other parameters as in Fig. 2.4.

the Laue phase close to Bragg is by a factor m steeper, thereby a shift of the

plateaus should yield a higher phase difference. However the phase difference

also depends on the width of these plateaus, which is - according to the reflection

width - significantly narrower. Thus the phase difference for higher order reflec-

tions is smaller. The phase difference at plateaus close to Bragg can be estimated

by the phase difference caused by the magnitude of the plateau shift. For this

the position of the plateaus (Eq. 2.54 written in the explicit dependences)

δθPend =
√
α + β

α =
(2n+ 1)d2

4D2

β = −4N2b2
atomd

4

π2
tan2 θB (2.66)

is expanded in ε (2.61):

∆δθPend(ε) = δθPend(ε)− δθPend(0) = δθPend(0)
β

α + β
· ε (2.67)

The resulting phase difference can then be estimated by

∆φLaue(δθ, ε) ≈ ∆δθPend(ε)
πD

d
= δθPend(0)

β

α + β
· ε · πD

d
(2.68)

Furthermore it can be observed (Fig. 2.13) that this phase difference becomes

smaller at successive plateaus, which can be understood by the decreasing phase

slope for larger δθ. As already discussed there is no sensitivity to bne in the limits
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δθ → 0 and |δθ| → ∞, although a notable contribution can still be observed

as far as 10 arc seconds away from Bragg. This range of influence depends in

turn on the Darwin width. It is also around the Darwin width, where the largest

average sensitivity can be found and in general the phase sensitivity for higher

order reflections is reduced.

Figure 2.13: Difference in Laue phase for two disputed values of bne (2.57)

for (a) Si-(220) reflection and (b) Si-(440) reflection. Other parameters

as in Fig. 2.4.

The phase sensitivity due to bne at the fine structure plateaus could give rise to

the hope that a precise measurement of bne could be possible there. Unfortunately

the parameters D and θB (or equivalently λ) lead to a similar sensitivity of the

Pendellösung structure position to small changes as batom, which can be shown by

expanding Eq. 2.66. According to the relative difference in the scattering length

(2.61) one would need to know tan θB and D with a precision of the order 10−4.

In the case of a plate of 3 mm thickness this would mean a precision of 0.3µm,

for the Bragg angle or wavelength this would mean ∆λ/λ ≈ 10−4. In principle
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the thickness can be measured to such an accuracy. Uncertainties due to etching

errors and surface roughness in usual interferometer preparation are neverthe-

less > 1µm (compare chapt. 5). A precise wavelength measurement can yield a

precision approximately the desired precision [23]. However the wavelength dis-

tribution in an experimental situation is normally of the order ∆λ
λ
≈ 10−3−10−2.

This distribution of thicknesses, wavelengths and finally most important δθ is

the main reason for difficulties in an approach to determine the neutron-electron

scattering length by a precision measurement of the Laue phase.

The Debye Waller factor

The neutron-electron scattering length only contributes to the phase shift in the

range around a Bragg/Laue reflection but not far off in the limit of a phase

shifting slab. Another parameter that only adds in this regime is the Debye

Waller factor W . This factor is due to the fact that at finite temperature T

atoms move around their equilibrium position. The Debye Waller factor for a

harmonic crystal depends on the displacement r of the single atoms and - similar

to bne - on the momentum transfer q (Eq. 2.10) :

W =
1

2
〈(q · r)2〉T (2.69)

This leads to a further correction of the atomic scattering length

batom → batome
−W (2.70)

but not the nuclear scattering length bN contained in A0. For room temperature

the Debye Waller factor can be calculated by [24]

W = B
sin2 θB
λ2

=
B

4d2
(2.71)

where Eq. 2.16 has been used. In the case of silicon B = 0.45(1)Å
2

[24]. As

W ∝ 1/d2 the correction to the scattering length increases significantly with the

order of reflection (Tab. 2.2) but as the bne contribution is independent of the

Bragg angle.

Similar to the neutron-electron scattering length one could also consider a

precision measurement of the Laue phase for a precise determination of the Debye

Waller factor. An uncertainty in the Debye Waller factor δW by δB leads to

batome
−W±δW ≈ batome

−W (1± δW ) = batome
− B

4d2

(
1± δB

4d2

)
(2.72)
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Figure 2.14: Difference in Laue phase for B = 0.45Å
2

and B = 0.455Å
2

for (a) the Si-(220) and (b) Si-(440) reflection. Both values are within

the given error of B. Other parameters as in Fig. 2.4.

The relative uncertainty due to the given error of B (0.01Å
2
) for the (220) reflec-

tion is thereby in the order of 7 ·10−4. Thus the uncertainty created by the Debye

Waller factor is approximately twice as large as the present uncertainty due to

bne. This uncertainty is even more pronounced at higher order reflections. Fig.

2.14 shows the phase difference created by two values of B within the given error.

By the chosen value the phase difference in the (220) case is similar to the phase

difference by the two disputed bne values (Fig. 2.13). For the (440) reflection the

maximum phase difference is even larger than the one for the (220) reflection.

This is just the other way round than for the bne difference. The reason is that

the influence of the reflection order on batom is much stronger by the Debye Waller

factor. According to the same argument as for the neutron-electron scattering
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reflection e−W batom(bne = −0.0013fm) batom(bne = −0.0016fm)

0 1 4.1507fm 4.1507fm

(220) 0.9699 4.0325fm 4.034fm

(440) 0.8851 3.6838fm 3.6862fm

(660) 0.7599 3.1642fm 3.1665fm

(880) 0.6137 2.5563fm 2.5584fm

Table 2.2: Debye Waller factor for silicon (B = 0.45Å
2
) and thereby corrected

atomic scattering length for the (220) and higher order reflections.

length, the Debye Waller factor gives no contribution in the limits δθ → 0 and

δθ → ±∞. To measure either the neutron-electron scattering length or the Debye

Waller factor independent methods have to be applied. Alternatively one could

investigate the possibility of using the inverse behavior concerning the reflection

order to extract both of them by performing measurements at several orders of

reflection. Anyhow it is interesting to note that a possible measurement of the

Laue phase is one of very few experiments in neutron interferometry where the

Debye Waller factor and the neutron-electron scattering length enter.

2.2.3 The asymmetric case

So far dynamical diffraction theory in the Laue geometry has been considered.

In this case the lattice planes are assumed to be orthogonal to the surface of the

crystal plate. Now we will examine deviations from this condition (Fig. 2.15)

and their influence on the Laue phase. For this the transmission factor for the

asymmetric case is considered [3, 25]

t(δθ, γ) = exp[−i(A0,as(γ) + AH,as(γ)yas(δθ, γ))] ·

·
{

cos
[
AH,as(γ)

√
1 + y2

as(δθ, γ)
]

+
iyas(δθ, γ)√
1 + y2

as(δθ, γ)
sin
[
AH,as(γ)

√
1 + y2

as(δθ, γ)
]}

(2.73)

with

b(γ) =
cos(θB − γ)

cos(θB + γ)
(2.74)
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and

yas(δθ, γ) = −(b(γ)− 1)v0 + 2b(γ) sin 2θBδθ

2
√
|b(γ)|vH

∆H,as(γ) =
2π
√
| cos(θB − γ) · cos(θB + γ)|

kvH

AH,as(γ) =
πD

∆H,as(γ)
A0,as(γ) =

v0kD

2 cos(θB − γ)
(2.75)

The lattice orientation relative to the surface normal is denoted by γ. For γ = 0

the expressions reduce to the ones of the symmetric theory.

Figure 2.15: If the lattice planes enclose an angle γ with the surface

normal n̂, slightly modified equations of dynamical diffraction theory

have to be used.

The asymmetric Laue phase φLaue,as is obtained by substituting A0,H and y in

the symmetric formula (Eq. 2.33) by the corresponding asymmetric terms (Eq.

2.75):

φLaue,as(δθ, γ) = φLaue,as(0, γ)− AH,as(γ)yas(δθ, γ) + arctan

[
yas(δθ, γ)√

1 + y2
as(δθ, γ)

·

· tan
(
AH,as(γ)

√
1 + y2

as(δθ, γ)
)]

(2.76)

The Laue phase in the asymmetric case is still antisymmetric with respect to yas
but due to (Eq. 2.75) no more antisymmetric with respect to δθ. The center of

antisymmetry is shifted to

δθcenter(γ) = −v0
1− b(γ)

2b(γ) sin 2θB
(2.77)
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Figure 2.16: Laue phase for γ = 0 (symmetric case) and γ = 1◦ around

Bragg (a) and in the limit of the asymptotes γ = 5◦(b). Other parameters

as in Fig. 2.4.

in the asymmetric case. This can be observed in Fig. 2.16 where a shift of the

asymmetric curve relative to the symmetric occurs15. Thereby a significant phase

difference relative to the Laue phase in the symmetric geometry - mainly at the

positions of the plateaus (a) and in the limit of the asymptotes (b) - is generated.

It should be noted here, that the asymmetric shift depends on θB and especially

on the order of reflection m:

δθcenter(γ) ∝ 1

m2 · sin 2θB
(2.78)

Thus the shift reduces by 1/m2 for higher order reflections m. Fig. 2.17 shows

the (220) phase difference between the symmetric and asymmetric case for a

typical accuracy of lattice plane orientation γ = 10′ and for γ = 10′′. For γ =

10′ the corrections from the asymmetric theory are not negligible in a precision

measurement. At a higher precision of approximately γ < 30′′ the symmetric

theory can be used, if the goal is not a phase precision significantly below 1◦.

The aimed precision of crystal orientation in our experiment is within this limit.

Hence the symmetric theory is sufficient for the further treatment.

15Secondary also the crystal potentials vH and v0 are scaled by - however different - γ
dependent cosine terms. This yields a similar effect as a change in the scattering length and
thereby also leads to a slight shift of the Pendellösung structure.
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Figure 2.17: (a) Phase difference between the symmetric and asymmetric

case for γ = 10′ (b) and γ = 10′′. Parameters: (220) reflection, θB = 45◦,

D = 3mm.

2.3 The limits of Dynamical diffraction theory

In section 2.1 we have discussed the one- and two beam approximation as de-

scriptions for the case of a phase shifter and a perfect crystal close to Bragg

respectively. The two beam approximation is the more general ansatz and should

thereby also yield the results of the one beam approximation in the limit far off

Bragg. Indeed the reflected intensities vanish for this case. However also the

phase shift should yield the correct limit of a phase shifter. We have already

shown that for large y or δθ the phase approaches a constant value16

lim
y→±∞

φLaue(y) = −A0 (2.79)

16In the following the potential constant ±π in φLaue(0) is omitted.
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In the case of a phase shifter around an angle of the same value θ = θB +δθ there

should be however to first order in δθ an angular dependence

φphaseshifter(δθ) = D(Kz − kz) = D
(√

K2 − k2
x − kz

)
= D

[√
k2(1− v0)− k2 sin2 θ − k cos θ

]
= Dk

(√
cos2 θ − v0 − cos θ

)
≈ −Dk v0

2 cos θ
= −A0

cos θB
cos θ

= −A0
cos(θ − δθ)

cos θ
≈ −A0(1 + tan θBδθ) (2.80)

where Eq. 2.13 and Eq. 2.24 have been used. This observation lead us to the

conclusion, that the derivation of the equations of standard dynamical diffraction

theory must include approximations that prevent a correct description in the

transition range between these two cases. H. Lemmel [26] realized that a first

order expansion of v0 and vH in the derivation is the main source of the stated

problem. By a second order expansion one arrives at the following transmission

and reflection amplitudes

ttrans(η) = exp[−iA0(1 + ε̄)− iAHη]
{

cos
[
AH
√

1 + η2(1 + ε)
]

+

iη√
1 + η2

sin
[
AH
√

1 + η2(1 + ε)
]}

rtrans(η) = exp[−iA0(1 + ε̄)− iAHη]

√
VH
V−H

·

−i√
1 + η2

sin
[
AH
√

1 + η2(1 + ε)
]

(2.81)

where

η = 2 sin θB(sin θB − sin(θB + δθ))/vH (2.82)

ε =
v0

2 cos2 θB
, ε̄ = ε

1 + v2
H/v

2
0

2

Instead of y (2.23), η is now the new dimensionless representation of the misset

angle δθ. Though y was directly proportional to δθ, the new quantity includes

higher order terms:

η =
2 sin θB
vH

(
− cos θBδθ +

1

2
sin θBδθ

2 +
1

6
cos θBδθ

3

)
+O(δθ4) (2.83)

= y + y2 vH
4 cos2 θB

− y3 v2
H

6 sin2 2θB
+O(y4)
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As vH is of the order 10−6, the higher order contributions will only be recognized

for y ≫ 1. The Laue phase within the new approximations now reads

φLaue,trans(η) = −A0(1 + ε̄)− AHη + arctan

[
η√

1 + η2
·

· tan
(
AH
√

1 + η2(1 + ε)
)]

(2.84)

The main difference to expression 2.33 is contained in the parameters ε and ε̄. The

term A0ε̄ can be neglected as it contains no angular dependence and additionally

A0ε̄ � 1. The relevant correction to the angular dependence of Eq. 2.33 is

contained in the term

AH
√

1 + η2(1 + ε) = AH
√

1 + η2 + AH
√

1 + η2 · ε (2.85)

The ε dependent correction AH
√

1 + η2 · ε gives a remarkable contribution to the

phase for large η. In this case the phase correction to (2.33) amounts to17

φLaue,corr ≈ AHηε ≈ AHyε (2.86)

and is thereby to first order linear in δθ. This already reflects the linear correction

that will lead to the proper limit of the phase shifter case. For a typical config-

uration (D = 3mm, (220)-reflection, θB = 45◦) the parameters are AH ≈ 240,

ε ≈ 4.9 · 10−6 and η ≈ 2.06 · 105 · δθ. Thus a significant correction in the order of

1◦ will be recognized at δθ ' 15′′. Fig. 2.18 shows the phase difference to (2.33).

Due to tiny shifts of the Pendellösung structure also small phase differences can

be observed at the positions of the plateaus:

AH
√

1 + η2(1 + ε) ≈ AH
√

1 + y2(1 + ε) = (2n+ 1)
π

2
=⇒

yPend,Lauetrans ≈

√
(2n+ 1)2∆2

H

4D2(1 + ε)2
− 1 ≈

√
(2n+ 1)2∆2

H

4D2
(1− 2ε)− 1

≈ yPend,Laue

{
1− (2n+ 1)2∆2

H

(2n+ 1)2∆2
H − 4D2

· ε
}

(2.87)

17The difference between the parameter η and y is of minor relevance for the phase correction.
As

η = y + y2 vH
4 cos2 θB

+O(y3) ≈ y + y2 · ε · e
−W

2
+O(y3)

and

lim
η→±∞

φLaue(η)− φLaue(0) = lim
η→±∞

∓AHη ±AH
√

1 + η2(1 + ε) = lim
η→±∞

±AHηε

the second order contribution in y is also second order in ε. Thus there will only be a further
significant correction at δθ � 1◦.
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Now we will show that these new approximations indeed give the correct limit

to the one beam approximation by a continuous phase shift. Using

AHηε = − DkvH
2 cos θB

2 sin θB[sin(θB + δθ)− sin θB]

vH

v0

2 cos2 θB

= − A0

2 cos2 θB
2 sin θB[sin(θB + δθ)− sin θB]

=
A0

cos2 θB
sin θB

(
− cos θBδθ +

1

2
sin θBδθ

2

)
+O(δθ3) (2.88)

we find for η � 1

φLaue,trans(η) ≈ −A0 + AH

[
sgn(η) ·

√
1 + η2(1 + ε)− η

]
(2.89)

≈ −A0 + AHηε

= −A0

{
1− sin θB

cos2 θB

(
− cos θBδθ +

1

2
sin θBδθ

2

)}
+O(δθ3)

≈ −A0(1 + δθ tan θB), |δθ / 1◦|

This is just the expected result for the case of a simple phase shifter (2.80), where

the dependence on the atomic scattering length cancels and only the nuclear part

is left via A0.

Fig. 2.19 shows the transition range between the case of a phase shifter and

the region around Bragg. Only the new approximations treat the whole angular

range of the phase shift correctly. As the higher order terms of Eq. 2.84 are neg-

ligible in the interesting transition range |δθ| . 1◦ the transmission and reflection

amplitudes can be written as

ttrans(y) = exp [−iA0 − iAHy]
{

cos[AH
√

1 + y2(1 + ε)]

+
iy√

1 + y2
sin
[
AH
√

1 + y2(1 + ε)
]}

(2.90)

rtrans(y) = exp [−iA0 − iAHy]

√
VH
V−H

·

−i√
1 + y2

sin
[
AH
√

1 + y2(1 + ε)
]

(2.91)

and the Laue phase

φLaue,trans(y) = −A0 − AHy + arctan

[
y√

1 + y2
·

· tan
[
AH
√

1 + y2(1 + ε)
]]

(2.92)
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Figure 2.18: (a) Phase difference between the new approximations (2.92)

and (2.33) closely around Bragg (a) and over a larger range of δθ (b).

Parameters as in Fig. 2.4.

For the description of our experiments these approximations are sufficient, as

even the corrections to the original equations will be hardly noticeable. In most

cases even

φLaue,trans(δθ) ≈ φLaue(δθ)− A0δθ tan θB

= φLaue(δθ) + A0 + φphaseshifter(δθ) (2.93)

is a good approximation. This additionally defines the transition-range between

the case where the phase effects are dominated by dynamical diffraction to the

case of a simple phase shifter. The condition

φLaue,trans(yt) = φphaseshifter(yt) (2.94)

is well approximated by

− AH
(
yt −

√
1 + y2

t

)
= AHytε (2.95)
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Figure 2.19: Comparison of the Laue phase by the standard approxima-

tions (2.33), the case of a phase shifter (2.86) and the new approximations

(2.92). The constant φLaue(0) is subtracted. Parameters as in Fig. 2.4.

This yields

|yt| =
1√

2ε+ ε2
≈ 1√

2ε
=

cos θB√
v0

(2.96)

and in terms of δθ

|δθt| =
vH√
v0

1

2 sin θB
≈
√
v0 · e−W

2 sin θB
∝ e−m

2B/4d2
220

m · sin θB
(2.97)

Although in the case of higher order reflections m the pure nuclear phase shift is

weaker (proportional to m), the effective range of the reflection falls off even faster

according to the Darwin width (proportional to 1/m2). On the other hand in the

case of the (220) reflection at θB = 45◦ the nuclear phase shift is dominated by

the Laue phase more than 5 arc minutes off Bragg! For thick samples corrections

from dynamical diffraction to the ordinary phase shift can still be of the order of

1◦ for δθ ≈ 1◦. This should be accounted for in high precision measurements of

nuclear scattering lengths of single crystals by proper orientation of the pieces.



Chapter 3

Laue phase and interferometry

3.1 Review of Related Experiments

In the first chapter the theoretical concept of a phase shift by Laue transmission

has been discussed. So far there have been no quantitative measurements of this

phase shift. However there have been a few related interferometric experiments

that are interesting from a qualitative point of view.

Laue geometry

Graeff et. al [10] have performed the only directly related experiment. For the

goal of studying the crystal structure function a perfect silicon crystal sample

in Laue orientation has been rotated through the Bragg condition (Fig. 3.1).

Although no phase shift has been extracted from the data, one can qualitatively

interpret the data by an increasing phase shift in the surrounding of the Bragg

condition. The interference pattern has been destroyed completely in a sur-

rounding of approximately 5 arc seconds around the expected Bragg condition.

Moreover the interference pattern is not even symmetric around the indicated

Bragg condition, which is probably a result of the difficult alignment require-

ments. An interpretation of the data was given by a superimposition of the usual

sinusoidal oscillation ”with sharp oscillations caused by the diffraction induced

length change of k-vectors within the sample”. This variation of the k-vectors on

the dispersion surface [1, 3] is of course the cause for the distinct phase shift in

the surrounding of Bragg.

43



44 CHAPTER 3. LAUE PHASE AND INTERFEROMETRY

Figure 3.1: Interference pattern for a perfect silicon crystal in Laue ge-

ometry rotated through the Bragg condition [10].

Bragg geometry

In a similar experiment [11] a thick perfect crystal silicon sample in Bragg ori-

entation has been rotated in one of the beam paths (Fig. 3.2). Similar to the

Graeff experiment qualitatively an increasing phase shift can be observed when

the Bragg condition is approached, on the other hand the interference pattern

is rapidly destroyed in the surrounding of Bragg. Already 0.5 arc minutes away

from the indicated Bragg condition the visibility is almost destroyed completely

and it becomes difficult to extract data for an information on a phase shift there.

This is probably due to the chosen sample thickness, which is not explicitly men-

tioned in the article. Judging the sketch it seems to be in the range of 1 cm. This

has the benefit that remarkable deviations from the usual phase shifter behavior

become already obvious more than 2 arc min away from Bragg. In contrast to the

Laue experiment here the destruction of the interference pattern at least at the

exact Bragg condition has an obvious reason. The transmitted beam in Bragg

geometry in principle vanishes at exact Bragg which is almost similar to placing

an absorber into one of the beam paths of an interferometer. This is not the case

in Laue geometry1. In [1] a qualitative interpretation of the decreasing oscillation

period of the interference pattern has been given. Thus the index of refraction

deviates from its normal value n = 1− λ2NbN
2π

to n ≈ 1− 2λ2NbN
2π

at the edges of

the Darwin reflection curve at |y| = 1.

1In the experiment by Graeff et al. [10] additionally the change of the transmission ampli-
tudes is equal in both interferometer paths.
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Figure 3.2: Interference pattern for a perfect silicon crystal in Bragg

geometry rotated through the Bragg condition [11].

X-ray interferometer

In addition there has been a similar experiment for X-rays [27] that is interesting

as explicitly a ”phase shift in X-ray forward diffraction” is mentioned. Similar to

the Bragg case for neutrons a model with a modified index of refraction n has been

discussed. Qualitatively good agreement with the measured interference pattern

could be achieved and similar to the neutron experiments an increasing phase shift

can be observed. However quantitatively there is a clear disagreement as far as 0.5

arc minutes away from the indicated Bragg condition. Furthermore, similar to the

neutron experiments so far, the interference pattern has been destroyed rapidly

in the surrounding of Bragg. Though dynamical diffraction theory for X-rays is

entirely different from the neutron case, due to the not negligible absorption in

the X-ray case.

Suggested setup

Apart from these experiments, just recently a new experiment [7] has been pro-

posed to determine the already mentioned neutron-electron scattering length.

The proposed setup is similar to the Graeff experiment [10], but employs an

auxiliary phase shifter, to determine the phase shift directly (Fig. 3.3).

3.2 Experimental Challenges

In chapter 2 the Laue phase for one monochromatic plane wave and its depen-

dence on deviations from the exact Bragg condition has been discussed. In fact

in any realistic experimental situation, one has to deal with a distribution of

both wavelengths and misset angles relative to Bragg. Taking this into account
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Figure 3.3: Proposed setup for a measurement of the neutron-electron

scattering length in [7]. A silicon crystal sample in Laue geometry is

rotated through the Bragg condition.

leads to a much more complex treatment of the phase shift than simply applying

2.33. Furthermore the experiments discussed so far have shown, that one might

expect severe problems concerning the visibility of the interference pattern in the

interesting region around the Bragg condition. As for an interferometer - which

we are here regarding as the suitable measurement tool - the visibility is the

most crucial quantity, an understanding of this problem is essential. Although

some of the troubles might be addressed to alignment problems [8], there remain

fundamental challenges that have to be considered in any experimental approach.

3.2.1 Defocusing and beam spreading

The first challenge is devoted to interferometer and beam geometry. One of the

results of dynamical diffraction theory consists in a pronounced sweep of the

probability current density

J =
i~
2m

(Ψ∇Ψ∗ −Ψ∗∇Ψ) (3.1)

within the Borrmann triangle [1, 3]. As this sweep takes place inside the crystal,

Ψ labels the wave function there. Fig. 3.4 shows how a single plane wave incident

on a crystal in Laue geometry is split up into two probability currents α and β

inside. Defining Ω as the angle with respect to the lattice planes, and

Γ ≡ tan Ω

tan θB
(3.2)
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leads in the symmetric case2 to

Γ(δθ) =
±y(δθ)√
1 + y(δθ)2

(3.3)

where the plus (minus) sign corresponds to the α (β) wave currents. The currents

are limited to the range −1 < Γ < 1 corresponding to −θB < Ω < θB, known as

the ”Borrmann fan”. In the special case of a neutron wave incident at the exact

Bragg condition δθ = 0 both currents are going straight in the direction of the

lattice planes.

Figure 3.4: A plane wave at misset angle δθ relative to θB is split up into

an α and β current. The red line shows the current directions for δθ = 0.

The angle Ω within the crystal can be explicitly written as

Ω(δθ) = ± arctan

(
tan θB

y(δθ)√
1 + y2(δθ)

)
(3.4)

This yields in the surrounding of Bragg an enormous angle amplification effect

by the order of 106 relative to the misset angle δθ assuming practical conditions.

Fig. 3.5 shows |Ω(δθ)| for the (220) and higher order reflections. In all cases

the asymptotic behavior limδθ→∞ |Ω(δθ)| = θB can be observed. But it is also

2The results for the asymmetric case are treated in [3].
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apparent that the angle amplification is stronger for higher order reflections m.

This is due to the fact that to first order Ω ∝ y and y ∝ m2δθ. The behavior is

thereby similar to the one of the Laue phase, which shows a strong correlation

between angle amplification and phase shift.

Figure 3.5: Angle amplification effect Ω(δθ) for Si (220) and higher order

reflections at θB = 45◦.

This distinct behavior of the probability density currents is important for the

consideration of an experimental setup to measure the Laue phase. The most

simple approach may consist in putting one Laue crystal of thickness D inside a

neutron interferometer and rotate it through the Bragg condition as in principle

performed in the experiments cited in section 3.1. Fig. 3.6 now shows for such

a configuration that a ray at δθ = 0 experiences a macroscopic parallel shift of

D sin θB. This arrangement represents basically a new interferometer geometry.

The visibility of a neutron interferometer depends on the accurate compliance

of the focusing conditions in the micrometer range. By this additional Laue

crystal the interferometer becomes in principle ”defocused”. However this is not

a simple defocusing constant for all wave components. In fact this defocusing

depends strongly on the misset angle and is different for α (D · [tan θB + tan |Ω|])
and β (D · [tan θB − tan |Ω|]) contributions. This defocusing distance Dd (Fig.

3.6) has thereby a variation between

0 < Dd < 2D tan θB (3.5)

In principle the beam is fanned out by the additional crystal.
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Figure 3.6: A ray exactly at the Bragg angle δθ = 0 is shown for a three

plate interferometer (full line, plates B, M and A) and with an additional

lamella (L) of thickness D in Laue orientation inserted (dotted lines). In

the case of the additional lamella, the rays do not meet at the analyzer

plate (A), the interferometer is defocused.

Although there are contributions with very small defocusing left3, one will

expect a significant decrease of the visibility in this arrangement. One approach

could consist in choosing a very thin crystal plate to keep the defocusing as small

as possible. However due to the magnitude of the angle amplification effect one

would need impractically thin plates. Another approach could consist in inserting

an equally thick crystal plate into the other beam path to compensate for the

defocusing effect. Fig. 3.7 shows that for ensuring the correct focusing condition,

it is essential, that in one beam path, the crystal plate is inserted before the mirror

plate, in the other after the mirror plate. In general one has to insert the crystal

plates in parallel beams. Otherwise the defocusing would be even twice as large as

for a single crystal. The setup used in [10]4 and the one suggested in [7] (Fig.3.3)

are just defocused arrangements in this sense. Thus the encountered visibility

reduction around the Bragg condition is not just a problem of accurate alignment

or inhomogeneous crystal strains, but has fundamental reasons. Though this

setup could be used to measure the phase shift sufficiently far off Bragg.

Inserting two equally thick crystal plates into the interferometer as shown in

Fig. 3.7 would lead to zero net phase shift. Hence it is necessary to rotate

one crystal plate while the other is kept in exact Bragg condition and measure

3These are however contributions with large δθ which give almost no contribution to the
interference pattern due to successive reflection in the interferometer.

4The authors claim, that in this setup ”defocusing effects compensate”. They probably refer
to the spatial shift by the sample far off the Bragg condition and not the much stronger effect
around Bragg.
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Figure 3.7: Introducing another crystal plate in the other beam path

after the mirror leads to an even stronger defocusing (a) while before the

mirror plate (b) the interferometer is focused again (new focuspoint F1).

the relative phase shift. While the first plate is rotated away from the Bragg

condition, the interferometer will certainly become defocused again. Nevertheless

it should be possible to start in Bragg condition and measure the Laue phase

closely around it. One could use even more crystal plates to compensate for all

defocusing [26], but the practical realization would be rather difficult. In general

this defocusing effect will be of importance for very narrow, localized beams. In

this case the overlap of the two beam path contributions of the interferometer will

decrease faster than for a large beam divergence. In general it should be noted

that this is a more graphic illustration of the subsequent discussion as the focusing

conditions are inevitably coupled to phase and intensity relations. For example

the configurations shown in Fig. 3.7 can be understood by the antisymmetry of

the Laue phase with respect to y:

φLaue(−y) = −φLaue(y) + 2φLaue(0) (3.6)

Writing down the total wave functions ψa,b for the two configurations (Fig. 3.7
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a, b) yields

ψa = ψa,I + ψa,II = ψ0 {t(y) + t(−y)}
= ψ0 · A(y)

{
eiφLaue(y) + eiφLaue(−y)

}
= ψ0 · A(y)

{
eiφLaue(y) + e−i[φLaue(y)−2φLaue(0)]

}
ψb = ψb,I + ψb,II = ψ0 {t(y) + t(y)}

= ψ0 · A(y)
{
eiφLaue(y) + eiφLaue(y)

}
= 2ψ0 · t(y) (3.7)

with ψ0 as the wave function of one beam (I,II) of the empty interferometer. While

ψb fulfills the focusing conditions of a neutron interferometer (equal phases and

amplitudes in both beam paths), ψa does not fulfill the phase equality due to the

antisymmetry of the Laue phase. The phase difference

∆φb(y) = φLaue(y)− φLaue(−y) = 2 {φLaue(y)− φLaue(0)} (3.8)

here is strongly dispersive with respect to y. The consequences of this will be

discussed in the next subsection.

3.2.2 Phase averaging by beam divergence

The Laue phase shows a strong dependence on the misset angle. In any realistic

experiment one has to consider divergent beams where the phase shift is averaged

over the beam divergence5. This is analogous to the case of a phase shifter,

where the phase shift is averaged over the wavelength distribution and leads to

the definition of coherence lengths [1]. For a distribution of phase shifts P (φ),

one obtains an average phase factor

〈eiφ〉 =

∫
dφP (φ)eiφ (3.9)

which can be rewritten [1] as6

〈eiφ〉 = ei〈φ〉
∫
dφP (φ)ei(φ−〈φ〉) ≈ ei〈φ〉−〈δφ

2〉/2 (3.10)

where the average phase shift

〈φ〉 ≡
∫
φP (φ)dφ (3.11)

5In this work ”beam divergence” denotes the distribution of misset angles on an arc second
scale for a single wavelength. The distribution of possible Bragg angles and wavelengths is
referred to as ”wavelength distribution”. In the following the angle δθ stands for the rotation
of a crystal plate or the beam deflection relative to one, while δθ∗ denotes an angle within the
incoming beam distribution.

6This relation is only a good approximation for a narrow distribution P (φ).
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and the mean fluctuation

〈δφ2〉 ≡ 〈φ2〉 − 〈φ〉2

〈φ2〉 ≡
∫
φ2P (φ)dφ (3.12)

have been introduced. The term e−〈δφ
2〉/2 describes the reduction of the visibil-

ity. Thus phase distributions in the order of radiant will lead to a significant

reduction of the visibility. One can understand this easily as for example a phase

distribution in the order of 2π leads to an phase averaging over a whole period,

which destroys the visibility. Despite the knowledge of the defocusing problem,

lets consider the configuration of Fig. 3.6 for a 3mm thick crystal plate and

θB = 45◦. Fig. 2.4 shows that the phase shift within a beam divergence of

just −0.1′′ < δθ∗ < 0.1′′ would already vary by approximately 40rad. One would

therefore need beam divergences smaller than 10−2 arc seconds to not significantly

decrease the visibility by phase averaging. On the other hand using realistic beam

divergences in the order of 1 arc second one would need to choose the thickness

of the crystal plate below 50µm to keep the phase averaging adequately small

within the beam divergence.

Another strategy - as already proposed during the discussion of the defocusing

effect - is to use another crystal plate in the other beam path for compensation.

This creates the same steepness of the Laue phase in both beam paths. Now one

can rotate one plate while keeping the other in exact Bragg condition. If the Laue

phase would be strictly linear, the phase difference within the beam divergence

would be constant. Indeed the Laue phase shows a nonlinear behavior for |δθ| > 0

(Fig. 3.8).

Thus the phase difference

∆φLaue(δθ, δθ
∗) = φLaue(δθ + δθ∗)− φLaue(δθ∗) (3.13)

is not constant within the δθ∗ distribution of the beam. This fact is especially

pronounced at the plateaus of the Pendellösung structure and far off Bragg (Fig.

3.8, 3.9). In the latter case the phase difference tends to zero7. This phase

averaging is the stronger, the larger the relative rotation angle δθ and depends

on the considered beam divergence σθ

− σθ < δθ∗ < σθ (3.14)

7The corrections from the correct limit to the phase shifter case - the angular dependence
of the pure nuclear phase shift - are negligible.
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Figure 3.8: Laue phase as a function of the incoming angular beam

distribution δθ∗ for a crystal plate in exact Bragg condition (δθ = 0) and

slightly rotated off Bragg (δθ = 0.02 arc sec). (Parameters: θB = 45◦,

D = 3mm, Si-(220) reflection, φLaue(0) is subtracted).

Furthermore Fig. 3.10 (a) shows that for the same relative crystal rotation

δθ the phase averaging is stronger for higher order reflections. Considering large

beam divergences, one can qualitatively regard the phase distribution averaged

over the Pendellösung structures Fig. 3.10 (b). While in the case of very small

beam divergences, one will expect the measured value to be close to φLaue(δθ), the

measured value will decrease with increasing divergence σθ. Within this simple

picture one might suspect

〈φ(δθ)〉σθ→∞ = lim
σθ→∞

1

2σθ

∫ σθ

−σθ
∆φLaue(δθ, δθ

∗)dδθ∗ = 0 (3.15)

This neglects that with increasing δθ∗ the contribution to the interference pattern

decreases, due to successive reflection at the interferometer lamellas. Fig. 3.10

(c) shows that the width of the averaged reflectivity of one crystal plate is just

according to the width of the associated phase distribution (b). In a standard

neutron interferometer the neutron beam experiences two reflections and two

transmissions (one because of the sample crystal). Omitting the Pendellösung

structures one can in this case for |δθ| & 0 estimate the limit of large beam

divergences by

〈φ(δθ)〉σθ→∞ ≈
∫∞
−∞ P (δθ, δθ∗)∆φLaue(δθ, δθ

∗)dδθ∗∫∞
−∞ P (δθ, δθ∗)dδθ∗

≈ 0.4 ·∆φLaue(δθ, 0) (3.16)
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Figure 3.9: Phase difference ∆φLaue(δθ, δθ
∗) (3.13) within an angular

distribution δθ∗ for a crystal plate rotated by δθ relative to another in

exact Bragg condition. (Parameters: θB = 45◦, D = 3mm, Si-(220)

reflection).

Here

P (δθ, δθ∗) = R2(δθ∗) · T (δθ∗) · T (δθ + δθ∗) (3.17)

where the averaged intensities 2.26 are used for reflected and transmitted in-

tensities R and T and Eq. 2.37 for the phase average. In fact the average -

which also depends on δθ - will be somewhat lower as the Pendellösung struc-

tures closely around Bragg push the average down further (Fig. 3.9). Con-

cerning the visibility one can qualitatively suspect a significant reduction when

∆φLaue(δθ, 0) = φLaue(δθ) is of the order of 2π. In the case of a three millimeter

thick plate for the (220) reflection this is already the case for δθ ≈ 0.03 arc sec.

Thus one expects in the discussed arrangement a significant visibility reduction

already for relative rotations of the order 0.01 arc seconds!

This qualitative analysis shows that the beam divergence has a crucial influ-

ence on the measurable phase shift and the expected visibility. However it is

important to note that the concrete influence of the beam divergence depends on

the special experimental configuration.
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Figure 3.10: (a) Comparison of the phase difference ∆φLaue(δθ, δθ
∗) (3.13)

of a crystal plate rotated by δθ = 0.002 arc sec relative to another in ex-

act Bragg condition for (220) and (440) reflection. (b) The same phase

difference over a larger range of beam divergence and averaged over the

Pendellösung structures using Eq. 2.37. (c) The reflectivity over the same

range of beam divergence than in (b). (Parameters: θB = 45◦, D = 3mm,

Si-(220) reflection).

3.2.3 Wavelength distribution

Usually a neutron beam is not simply a mono energetic distribution of misset

angles but is above all described by a distribution of wavelengths. This will have

a further influence on the averaging of the Laue phase as

φLaue(δθ) = φLaue(λ, δθ
∗
λ, δθ) (3.18)

where each λ consists of a distribution δθ∗λ. While in the case of a phase shifter

the δθ dependence on an arc second scale is negligible, the Laue phase depends

on both the wavelength and for each wavelength on the beam divergence. The

contribution of each wavelength is given by the average over the beam divergence,

which has been discussed in the last subsection. Fig. 3.11 shows the phase
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distribution within the beam divergence for two values of a typical wavelength

distribution of ∆λ/λ ≈ 5·10−3. The main effect consists in a shift of the positions

of the Pendellösung structures, which appear according to the condition:

AH(λ)
√

1 + y2(λ) = (2n+ 1)
π

2
(3.19)

where around Bragg the dependence on y(λ) is dominated by AH(λ). Hence the

phase distribution is almost repeated whenever

AH(λ) ≈ (2n+ 1)
π

2
(3.20)

In general the arising phase distribution might result in significant changes of the

phase average for small beam divergences, whereas for large beam divergences,

the difference will be rather small. This suggests that the averaging over the

wavelength distribution will have a small effect on the measured phase shift as

well as on the visibility by a further reduction of the latter.

Figure 3.11: Phase difference ∆φLaue(δθ = 0.02”, δθ∗) (3.13) within beam

divergence δθ∗ compared for two Bragg angles or wavelengths respec-

tively: θB = 45◦ → λ = 2.7155Å and θB = 45.1◦ → λ = 2.7203Å. (Other

parameters: D = 3mm, Si-(220) reflection).

In this context it is interesting to note, that while in the case of a non-

crystalline material or a crystal far off the Bragg condition, the wavelength distri-

bution describes the phase and coherence behavior, in the case of a crystal close to

the Bragg condition an energy independent, pure geometrical angle distribution

is dominant.

3.2.4 Asymmetric intensities

Rotating a Laue crystal inside an interferometer also changes the beam path’s

intensity, as the transmitted intensity shows a strong angular dependence around
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the Bragg condition. Asymmetric intensities in the two beam paths of the inter-

ferometer reduce the visibility according to[1]8

V =
2
√
I1I2

I1 + I2

|Γ(1)| (3.22)

where Γ(1) is the first order coherence function. This can be also understood in

the context of the visibility V and predictability P relation [28]:

P 2 + V 2 5 1 (3.23)

as one in principle gains path information by a rotation of a Laue crystal inside

an interferometer. This could be directly monitored by measuring the reflected

intensity of the Laue crystal. The square relation between visibility and pre-

dictability (Eq. 3.23) is the reason that this intensity asymmetry has not a large

influence on the visibility. In the extreme case of one additional Laue crystal in

exact Bragg condition in one beam path and one rotated far off Bragg in the

other path, the intensity ratio can be estimated to

I1

I2

≈ lim
δθ→∞

∫∞
−∞ P (δθ, δθ∗)dδθ∗∫∞
−∞ P (0, δθ∗)dδθ∗

≈ 1.5. (3.24)

where P (δθ, δθ∗) is given by 3.17. Thus the visibility will still be V ≈ 0.975 ·Γ(1).

More precisely the intensity ratio depends on all the crystal thicknesses Di of the

interferometer and how the according Pendellösung structures of the transmitted

and reflected intensities fit together. The problem of asymmetric intensities is

not present in every setup, as for example in the setup shown in Fig. 3.3 the

intensity modulation in both beam paths is equal.

3.2.5 Crystal alignment and the prism method

Summarizing there are four fundamental effects that influence the visibility and

partly the measured phase shift

8Due to the strong nonlinearity of the Laue phase it is difficult to find analogies to the
relations for the usual coherence function obtained to the relations for the usual coherence
function obtained via a momentum distribution ρ(k) and a spatial shift ∆

Γ(1)(∆) =
∫
ρ(k)eik∆dk (3.21)

However one can at least define a related coherence function - depending on the involved crystal
thicknesses, δθ and the beam divergence - via Eq. 3.22.
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1. The defocusing effect - a geometrical effect related to interferometer geom-

etry and beam spreading, with principal effects on the visibility.

2. The beam divergence - an effect related to phase averaging and thereby to

a fundamental coherence property similar to the wavelength distribution in

the case of a phase shifter

3. The wavelength distribution is another phase averaging effect related to

coherence, which is however strongly dominated by the beam divergence

4. Intensity modulations within the beam paths, which might influence the

visibility but also the weighting of the phase distributions concerning the

phase averaging

However these effects can not be viewed independently but are strongly cou-

pled. This already constitutes the basis for an understanding and description of

experiments related to the Laue phase and in general measurements in a neutron

interferometer around the Bragg condition.

Finally there remains the experimental problem of crystal alignment. The

requirements are similar to the alignment of a split perfect crystal interferometer,

which has so far only been realized for X-rays [13, 12, 14]. There are two critical

axis of alignment. The first is the Bragg axis concerning the discussed misset

angle δθ. Hitherto considerations for a crystal plate with a thickness in the order

of millimeters lead to the conclusion, that an alignment precision of at least 0.01

arc seconds is necessary to remain the visibility. Furthermore relative rotations in

the order of 10−4 arc seconds might result in relative phase shifts in the order of

degrees. Hence for a precise measurement a stability to at least this precision has

to be maintained. The other sensitive axis corresponds to a rotation around the

surface normal of the crystal plate. A misalignment with respect to the lattice

planes of the interferometer lamellas might result in horizontal Moire fringes [8].

The period of the fringes is determined by the crystal lattice spacing d and the

relative misalignment δα

Λ =
d

δα
(3.25)

To ensure adequate visibility, this period should be significantly larger than the

beam height, as usual neutron detectors integrate over the whole beam area. The

requirement Λ� 1cm demands an accuracy of δα . 10−3 arc sec. To achieve and

especially remain such an accuracy with respect to two axis during the time of

the experiment constitutes a severe technical challenge. Additionally there could

be problems due to small disturbing crystal strains by the support of the sample

crystal. In the context of a measurement of the neutron-electron scattering length
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A. Ioffe [8] has therefore proposed to cut the sample crystals together with the

neutron interferometer so that they are monolithically fixed to it. The necessary

rotation can instead be achieved by a beam deflection relative to the sample

crystal. The idea of this approach is similar to the technique of building a perfect

crystal interferometer. Instead of trying to align perfect crystals, one can use

the prealignment achieved by crystal growing. Fig. 3.12 shows a possible setup,

where instead of rotating lamella L2, the beam is deflected in front by using the

sketched prism arrangement. Altogether four prisms are needed to compensate

defocusing effects within the interferometer.

Figure 3.12: Possible setup to measure the Laue phase induced by L2

relative to L1 via beam deflection in front of L2. The beam paths within

the prisms and lamellas are simplified.

To continuously change the beam deflection δθ in front of the crystal slabs,

prisms with apex angle β are rotated by an angle α around the incident beam

direction, Fig. 3.13, as to first order there is only a sensitivity relative to the

crystal lattice planes. The relevant beam deflection is then given by

δθ = δ sinα (3.26)

where δ ∝ (1 − n) (chapter 6) is the refraction angle of the prism. Due to

(1− n) ≈ 10−5 a very high resolution in δθ can be achieved. The final setup and

the measurements will be discussed in chapter 7.
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Figure 3.13: Continuous tuning of the relevant beam deflection δθ =

δ · sinα in the scattering plane by a rotation of the prisms with beam

deflection δ by an angle α around the incident beam direction. Fig. 3.12

corresponds to the case α = 90◦.



Chapter 4

Numerical interferometer

calculation

In the last chapter we have shown that a simple use of Eq. 2.33 will not give

a satisfactory description of a Laue crystal inside a neutron interferometer. It

is necessary to take the beam divergence and the wavelength distribution into

account. A first approach for a phase calculation could consist in an averaging

of Eq. (3.13) over both of these distributions of the incoming beam P (λ) and

P (δθ∗)

φ(δθ) = 〈〈∆φLaue(δθ, δθ∗)〉δθ∗〉λ

=

∫∞
−∞ P (λ)

∫∞
−∞ P (δθ∗) · PI(δθ∗, δθ,Di) ∆φLaue(δθ, δθ

∗)dδθ∗ dλ∫∞
−∞ P (λ)

∫∞
−∞ P (δθ∗) · PI(δθ∗, δθ,Di)dδθ∗ dλ

(4.1)

Here it is important to introduce another distribution function PI(δθ
∗, δθ,Di)

that takes a further modification of the incoming δθ∗ distribution by all inter-

ferometer lamellas into account. As it is necessary to resolve the Pendellösung

structures1 this distribution function depends on all crystal lamella thicknesses

Di. In general however |δθ| is not equal for both beam paths, thereby the in-

tensities are asymmetric and consequently expression 4.1 is not strictly correct.

The defocusing discussed in the last chapter is another aspect that would not be

included in this approach. In fact one needs a model that does not only take the

beam properties but the whole interferometer geometry into account. Addition-

ally it would be desirable to obtain information on the visibility. Such a model

can consist in spherical wave theory applied to the whole interferometer setup.

1For example for one single sample crystal the transmission factor has its minima at the
Pendellösung plateaus. Thereby these would give a minor contribution to the phase average.
Another crystal of the same thickness in the beam, where a reflection is of interest, could
however enlarge this contribution.

61
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Just recently such a model with an accompanying program has been developed

by H. Lemmel [26, 16, 29], which can now be adapted to our problem. Alterna-

tively one could also apply an incoherent model by integrating the intensities of

plane waves over the beam divergence and fitting the intensities similar to the

subsequent discussion.

4.1 Spherical wave model

Spherical waves can be considered as a coherent superposition of plane waves

with a certain angular divergence. This is an important observation, as the plane

wave solutions for dynamical diffraction theory are well known. We have already

stated, that in the surrounding of the Bragg condition the beam divergence is

much more important than the wavelength distribution. To simplify the model

and especially save computational time, we are here considering a monochromatic

beam with a given wavelength. Another restriction is a reduction of the problem

to a plane2. In fact thereby one does not create a three-dimensional spherical wave

but rather a two-dimensional beam with a representation in polar coordinates.

For this beam one can now consider a certain misset angle distribution g(δθ)

relative to the Bragg angle determined by the wavelength. The wave function in

momentum space now reads

ψ(k) = ψ(k, δθ) = δ(k − k0)g(δθ) (4.2)

The wave function in real space is obtained by a Fourier transform

ψ(r) =
1

2π

∫
d2k ψ(k)eikr =

1

2π

∫ π

−π
dδθ

∫ ∞
0

dk keikrδ(k − k0)g(δθ)

=
k0

2π

∫ π

−π
dδθeik0rg(δθ) (4.3)

One can think of such a wave function as originating from a point source, as it

would be created by a plane wave incident on an extremely narrow slit. In this

case one could use a Gaussian angle distribution

g(δθ) =
1√

2πσ2
θ

e
−δθ2

2σ2
θ (4.4)

where σθ is the width of the δθ distribution. This width of the beam divergence

together with the distance to the source ρ = |r− r0| determine the intensity

2The dimension normal to this plane is of no significance, as long as effects of the vertical
divergence of the incoming beam can be neglected.
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distribution and the related beam width σζ , at the transversal coordinate ζ [26]:

|ψ(ρ, ζ)|2 =
1√

1 + k2
0ρ

2σ4
θ

e
−ζ2

2σ2
ζ

σ2
ζ =

1

2

(
1

k2
0σ

2
θ

+ σ2
θρ

2

)
(4.5)

Via this relation one can calculate the position r0 of the point source, if a certain

beam width at a certain distance ρ is desired. In reality the angular acceptance

Figure 4.1: A spherical beam with divergence σθ can be described as a

coherent superposition of a divergent bundle of plane waves. Beam width

σζ and source distance ρ determine each other.

of the interferometer is restricted to the arc second range. If one chooses σθ �
∆θ1/2 most of the plane wave contributions will not give any contribution to

the interference pattern. In addition large beam divergences would require long

computation times. Choosing σθ ≈ ∆θ1/2 in the Gaussian distribution would

however underestimate plane wave contributions for 0 < δθ∗ / ∆θ1/2 as normally

in an experimental setup there are no beam collimations of the order of arc

seconds. Thus using a square function for the angle distribution

g(δθ) = θ(δθ + σθ)− θ(δθ − σθ) (4.6)

seems more appropriate. In this case the beam profile is also a square function

with width

σζ = σθ · ρ (4.7)
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at distance ρ. In comparison to the originally implemented Gaussian distribution

it is sufficient to choose σθ in the order of several ∆θ1/2 to include the relevant con-

tributions accepted by the interferometer lamellas. Furthermore, there is another

reason for preferring a square distribution. If a perfect crystal monochromator is

used - as in the case of instrument S18 - the incoming angular distribution per

wavelength should be determined by the reflection width of the monochromator.

This width is just given by the Bragg reflection width of the monochromator,

where the Bragg reflection curve for thick crystals is well described by

R(δθ) = 1 |y(δθ)| < 1

R(δθ) = 1−

√
1− 1

y(δθ)2
|y(δθ)| > 1 (4.8)

In the most important range |y(δθ)| < 1 it is thereby given by a square function.

However the half width of the Bragg reflection curve is rather yH = 4√
3
≈ 2.3

and thereby a factor of approximately 1.15 larger than the plateau. Fig. 4.2 (a)

compares the Bragg reflection curve with a Gaussian- and square distribution of

width σθ = δθy=1, whereas Fig. 4.2 (b) shows a comparison with the averaged

reflectivity of one Laue crystal, which is a measure for the angular acceptance of

the interferometer.

Figure 4.2: Bragg reflection curve for (220) reflection at θB = 45◦ com-

pared with an angular square- and Gaussian distribution with σθ = 1′′

(a) and an according Laue reflection curve (b).

Another possibility consists in the use of a mosaic crystal as monochromator.

As this type of monochromator consists of many small perfect crystals with a

certain angle distribution much larger than the Darwin width of the single crys-

tals the beam divergence of the incoming beam in this case would be large in

comparison to ∆θ1/2. In this case a square function with σθ � ∆θ1/2 should be

appropriate for the incoming beam.
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For the numerical calculation it is of course useful to use the dimensionless y

parameter instead of the misset angle δθ

gsquare(y) = θ(y + σy)− θ(y − σy)

gGaussian(y) =
1√

2πσ2
y

e
−y2

2σ2
y

ψ(r) =

∫
dyeik0rg(y) (4.9)

Eq. 4.9 constitutes a suitable normalized representation for the incoming beam.

Considering now a simple setup with only one crystal in Laue orientation the

transmitted and reflected wave functions can be calculated via

ψt(r) =

∫
dyeik0rg(y)t(y)

ψr(r) =

∫
dyeikHrg(y)r(y) (4.10)

This approach can be easily extended to a specific arrangement of crystal plates

like a neutron interferometer. The two beam path contributions ψOI,II(r) to the

O-beam are given by an integral over the plane wave solutions ψOI,II(r, y)

ψOI,II(r) =

∫
g(y)ψOI,II(r, y)dy (4.11)

The absolute square of the superposition of the two wave functions yields the

intensity of the O-beam at a specific point r.

ψO(r) = ψOI(r) + ψOII(r)

IO(r) = |ψO(r)|2 (4.12)

IO(r) yields the intensity profile in the O-beam, an integral over this profile or

rather the transverse coordinate ζ yields the total O-beam intensity

IO =

∫
IO(r)dζ (4.13)

Applying an auxiliary phase shift χ via ψO,I(r)eiχ to one beam path, one obtains

similar to the experimental case an intensity IO(χ) that can be fitted by a (co-)

sine function to obtain both phase shift φ and visibility V

IO(χ) = IO,mean[1 + V cos(φ+ χ)] (4.14)

The same procedure is valid for the H-beam. Carrying out the involved integrals

numerically it is important to choose the step size ∆y small enough to resolve
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all Pendellösung structures and to resolve the structures in the transversal beam

profile in the case of the ζ integration. This approach has been implemented by

H. Lemmel in the program ifmsim [26, 16, 29]. With this program any possible

interferometer geometry can be analyzed. Just recently this program has been

adopted to our needs, as one can also rotate specific lamellas relative to the others

and the incident beam. The most important parameters that can be chosen by

the user are

• exact interferometer geometry (lamella distances, thicknesses, lattice plane

orientation)

• angle δθ of each lamella relative to the ideal Bragg condition

• type of reflection (lattice plane distance)

• Bragg angle

• beam type: square or Gaussian distribution

• beam divergence σθ

• beam width σt (this does not make any difference for our calculations but

might be useful for calculating beam profiles)

• angle α of the incoming beam (center) relative to the interferometer (Posi-

tion in the rocking curve)

• physical quantities like bne, B (Eq. 2.71)

In the following the results for some interesting configurations are shown.

Most of the calculations have been performed for both square and Gaussian beam

distribution, with rather small differences for the same σθ. In the following usually

the results for the square distribution are shown if not explicitly mentioned.

In addition numerical calculations by a direct integration of the phase shift

have been carried out. A comparison will be given in Fig. 4.9.

4.2 One crystal plate in one beam path

One of the conclusions of the last chapter has been, that one single crystal plate

inserted close to the Bragg condition into a neutron interferometer will decrease

if not destroy the visibility. Applying the spherical wave model more quantitative

estimations shall now be given. Therefore the configuration shown in Fig. 4.3 is
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Figure 4.3: Neutron interferometer with an additional crystal lamella L.

The visibility can be studied either as a function of the thickness D or

by a rotation of the plate with fixed thickness by δθ.

considered, where first the additional crystal lamella is assumed to be aligned in

perfect Bragg condition (δθ = 0).

Now the visibility can be studied as a function of the crystal thickness D. The

result is shown in Fig. 4.4 for the (a) (220) and (b) (440) reflection. Depending

somewhat on the beam divergence σθ the visibility is rapidly destroyed at a

thickness of D ' 20µm (220) and D ' 40µm (440), although some damped

reappearance of visibility can be observed at larger thicknesses. A comparison

with the Laue phase for small crystal thicknesses (Appendix A), reveals that

the sharp drop of the visibility at D ' ∆H/2 is explained by the jump of the

asymptotes from 0 to ±π. Thereby the phase distribution strongly increases to

a range of 2π. Hence in this regime also the visibilities are governed by the

Pendellösung length. The dependence of the Pendellösung length on the order of

reflection

∆H ∝ m (4.15)

explains the faster decrease of the visibility for the (220) reflection.

How does this compare to the case, if the crystal plate would have not been

cut in Laue orientation and would thereby just act as a phase shifter? There

the visibility is simply described by the incident wavelength distribution. It is

now interesting to note, that the sample crystal3 is just orientated in the con-

3Here it is assumed that the sample crystal has the same lattice orientation as the inter-
ferometer and is made of the same material. In the case, that crystals of another orientation
or material are inserted, the configuration is in general between the configuration for longi-
tudinal and transversal coherence. Moreover in this case the crystal would be in a dispersive
arrangement, where the influence of the wavelength distribution becomes crucial.
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Figure 4.4: Visibility for one additional Si-crystal plate in one path of

a neutron interferometer as a function of the thickness: in exact Bragg

condition for the (220) (a) and (440) (b) reflection and for the crystal

plate orientated far off a Bragg condition (220) (c) and (440) (d), where

the wavelength distribution ∆λ/λ determines the coherence function.

figuration related to the longitudinal coherence length4. The visibility is in this

case proportional to the longitudinal coherence function. Assuming a Gaussian

momentum distribution of width δk one obtains a Gaussian coherence function

|Γ(∆L)| = |Γ(D)| = e−(∆Lδk)2/2 = e−(∆φ)2/2

∆L = −NbNλ
2D0

2π cos θB
(4.16)

with a corresponding width of phase shift distribution

∆φ = −λNbND0

2π cos θB

∆λ

λ
(4.17)

4Here the definition of the longitudinal coherence function normal to the crystal lamellas [1]
is considered.
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This coherence function for both reflections is shown in Fig. 4.4 for two typical

values of a wavelength distribution ∆λ/λ. Whereas in the case of the crystal in

Bragg condition, thicknesses in the range of 10µm already decrease the visibility

significantly, here thicknesses in the order of millimeters are needed to create the

same effect. This reveals the much stronger effect of the phase averaging by the

beam divergence around Bragg in comparison to the usually considered case of a

phase shifter described by the incident wavelength distribution.

Figure 4.5: Thick Si-crystal lamella (3 mm) in one path of a neutron in-

terferometer. Visibility and phase shift for the (220) and (440) reflection

as a function of a rotation δθ relative to θB = 45◦ (Fig. 4.3). The pure

nuclear phase shift is subtracted as offset.

Let’s now consider the additional crystal plate to be of the same thickness

than the other interferometer lamellas (D = 3mm). In exact Bragg condition

the visibility is of course destroyed almost completely, but what happens if one

rotates this plate continuously off Bragg?

Fig. 4.5 (a), (b) shows that the visibility is restored several arc seconds away
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Figure 4.6: Phase distributions within the angular distribution δθ∗ ac-

cording to Fig. 4.5. A phase offset is subtracted.

from the exact Bragg condition, with a strong dependence on the beam diver-

gence. However there is a quite large range of many arc seconds around Bragg,

where the beam divergence has a dominant influence on the visibility. This range

depends on the Darwin width (Eq. 2.27) whereby for example the (220) reflection

is affected over a significantly larger range than the higher order reflections. The

phase shift (Fig. 4.5 (c), (d)) strongly ascends, as the Bragg condition is ap-

proached. On the other hand it shows outside the immediate surrounding of the

Bragg condition only a weak dependence on the beam divergence. For δθ � ∆θ1/2

even the single plane wave solution for δθ∗ = 0 is a good approximation. This

can be understood by the phase distribution within the beam divergence (Fig.

4.6). Several Darwin widths off Bragg, this distribution is almost linear and an-

tisymmetric around δθ∗ = 0. Thus the average phase shift is almost not affected

by the divergence, whereas 〈δφ2〉 and thereby the visibility (3.10) are strongly

connected to the beam divergence.

Summarizing, the coherence properties in the case of a perfect crystal are

dominated several arc seconds off a Bragg condition by the beam divergence,

whereas far off the wavelength distribution dominates. In between there is a

region δθ / 1′ where both coherence properties are relevant. This transition range

of course depends on both the type of reflection and the associated Darwin width

in combination with the beam divergence as well as the wavelength distribution.

4.3 One crystal plate in each beam path

Now we will study the configuration that we have already discussed in chapter

3, where one crystal plate is placed in each beam path. In this case the visibility
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corresponds just to the visibility of the empty interferometer. The interesting

part begins, if now one crystal plate is rotated relative to the other one, that is

kept in exact Bragg condition (Fig. 4.7).

Figure 4.7: One additional crystal lamella inside of each beam path of

the interferometer. One crystal lamella is rotated while the other is kept

in exact Bragg condition.

Fig. 4.8 (a), (b) shows the visibility as a function of the rotation δθ. Besides

the case σθ � ∆θ1/2 the calculated visibility is roughly independent of the beam

divergence. Considering now the phase shift (Fig. 4.8 (a), (b)), a completely

different picture can be observed. Here one obtains a strong dependence on the

beam divergence. The steepness of the phase shift decreases significantly with

increasing σθ. This behavior can be understood by the already discussed phase

distribution in Fig. 3.9, 3.10. Here the Pendellösung structures in the vicinity

of δθ∗ = 0 play a dominating part for the mean phase fluctuation 〈δφ2〉. Thus

〈δφ2〉 is almost not enlarged when the beam divergence is increased to larger

values of δθ∗, which anyhow give a decreasing contribution to the interference

pattern. In the case of 〈φ〉 however, the contributions for δθ∗ ' ∆θ1/2 still lower

the phase shift. Here the influence on phase shift and visibility is just contrary

to the one found in Fig. 4.5. Thus each possible configuration has to be analyzed

separately to make conclusions on the influence of σθ on the phase and coherence

behavior. Regarding the visibility, a reduction to approximately 0.5 is obtained

by a rotation of only 0.02′′ for the (220) and 0.01′′ for the (440) reflection. The

stronger decrease for higher order reflections is mainly explained by the larger

steepness and the associated phase averaging discussed in Fig. 3.10. Although

the calculated phase shift depends strongly on the beam divergence, in general

one can say, that higher order reflections show - just as expected from the case

of a single plane wave - a steeper curve. Very close to δθ = 0 the calculated

phase shift is approximately linear in δθ, for larger δθ the steepness of the curve
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gets weaker and ripply structures appear. These stem from the Pendellösung

structures that are washed out by the averaging over the beam divergence. For

small σθ they are still more pronounced as it can be seen for the (440) reflection

at σθ = 0.125′′.

Figure 4.8: Visibility and phase shift for the (220) and (440) reflection

using configuration (Fig. 4.7). Thickness of all lamellas: D = 3mm.

Influence of the beam divergence

In Fig. 4.9 (a) the calculated phase shift for a fixed plate rotation δθ is shown

as a function of the beam divergence. In the limit of very small divergences

σθ � ∆θ1/2 the phase shift approaches the plane wave result (Eq. 2.33). In the

other limit of large beam divergences σ � ∆θ1/2 the phase shift approaches a

constant value.
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Figure 4.9: (a) Calculated phase shift as a function of the beam diver-

gence for a fixed beam deflection of δθ = 0.0036′′ and several reflections.

(b) Comparison of the square distribution with a Gaussian distribution

(4.4) (c) comparisons with directly averaged phase distributions accord-

ing to Eq. 4.19 (φaverage,1) and Eq. 4.1 (φaverage,2, monochromatic beam

assumed). Same parameters as in Fig. 4.8.

This is expected as plane waves far off the Bragg angle can give no signifi-

cant contribution to the interference pattern and the essential contributions are

already included within the smaller beam divergences. This constant value for

small δθ is approximately

lim
σθ→∞

φspherical(δθ) ' 0.3∆φLaue(δθ, 0) (4.18)

Thus it is a little bit lower than the estimated average omitting the Pendellösung

structures (Eq. 3.16).

Between these two limits - determined by the Darwin width - one obtains a

strong dependence of the phase shift on the divergence. Consequently the posi-

tion of the drop in Fig. 4.9 is different for different reflections. The limit of large
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σθ is already well approximated for σθ ≈ 4∆θ1/2, so one does not need to accom-

plish the calculations for large σθ, which would result in long computation times.

Thereby the essential angular regime determined by the effective reflectivities of

the interferometer lamellas, makes life - in this respect - a lot easier.

Fig. 4.9 (b) compares the same curve to a calculation assuming a Gaussian

instrument width function (Eq. 4.4). For the same σθ the Gaussian includes

additional contributions in the regime |δθ∗| > σθ, while it underestimates contri-

butions for |δθ∗| 5 σθ. The difference between the calculated phase shifts is not

very striking. Moreover in Fig. 4.9 (c) a comparison to a simple phase averaging

〈φ(δθ)〉 =
1

2σθ

∫ σθ

−σθ
∆φLaue(δθ, δθ

∗)dδθ∗ (4.19)

and the phase average calculated via Eq. 4.1 is shown, where a monochromatic

beam has been assumed. The simple averaging over the phase function can be

used as an approximation for σθ . ∆θ1/2 whereas for σθ � ∆θ1/2 the contribu-

tions for larger δθ∗ are overestimated and the average approaches zero in the limit

σθ → 0. On the other hand taking the phase average according to Eq. 4.1 gives

a rather good approximation over the whole range of beam divergences, despite

the disregard of the asymmetry between the two beam paths.

Beam alignment in the rocking curve

If a perfect crystal monochromator is used, the phase shift can also depend on

the alignment between monochromator and interferometer. This determines the

angle of the incident beam spectrum relative to the interferometer lamellas. Fig.

4.10 shows the effect on the phase, if the incident beam is shifted by an angle

α relative to the exact Bragg condition of the interferometer lamellas. Such a

relative shift has a similar effect than a larger beam divergence, as the averaged

phase shift contains more contributions with large δθ∗. One could even choose

α � ∆θ1/2. In this case the interfering intensity would become very small. On

the other hand the phase averaging within the interferometer would be much

less severe and calculations show that the sample lamella can be rotated over a

significantly larger range of δθ until the visibility is lost.

Influence of the crystal thickness

Fig. 4.11 shows the visibility and the phase shift as a function of the sample

crystal thickness D, equal for both additional crystals. As φLaue ∝ D the visibility

decreases faster, while the steepness of the phase shift increases with larger crystal

thickness. Thus the gained phase shift is counteracted by a loss of visibility.
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Figure 4.10: (a) Phase shift as a function of a beam misalignment (b) α

relative to the interferometer. As incident beam a square function with

σθ = 1′′ is used. Other parameters as in Fig. 4.8.

Hence there seems to be almost no advantage in choosing a specific thickness,

except for special experimental considerations. If one uses prisms - as suggested

in subsection 3.2.5 - it is difficult to create large δθ, thus in this case thick crystal

lamellas can help in accessing large phase shifts. As the phase shift depends on

the beam divergence, a fixed divergence of σθ = 4′′ - approximately equal to the

limit σθ → ∞ has been chosen. The crystal thickness is also a possibility to

improve the angular sensitivity of the phase shift, which could be interesting for

the measurement of very small beam deflections.

Figure 4.11: Calculated visibility (a) and phase shift (b) for several crys-

tal thicknesses. Configuration as in Fig. 4.7, σθ = 4′′.
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Influence of the wavelength distribution

Figure 4.12: Calculated phase shift as a function of the Bragg angle θB or

equivalently wavelength λ. Configuration as in Fig. 4.7. (a) δθ = 0.0072′′

for several σθ (b) σθ = 4′′ for several δθ.

So far a monochromatic beam has been considered. Now we will discuss the

variation for different wavelengths and thereby the impact of the wavelength dis-

tribution. Therefore the visibility and phase shift can be calculated as a function

of the wavelength or Bragg angle. As the visibility is virtually independent of the

Bragg angle, we will here only discuss the phase shift. For the phase shift one

finds to first order an oscillatory behavior with comparatively small amplitude

(Fig. 4.12). This oscillation is determined by the change of the Pendellösung

length as the wavelength is varied (compare Fig. 3.11). Accordingly the condi-

tion for two successive minima λ1 and λ2 of this oscillatory curve is given by (Eq.
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3.20)

AH(λ1)− AH(λ2) = π

(
D

∆H(λ1)
− D

∆H(λ2)

)
=
π

2
(4.20)

The amplitude of this oscillation increases with δθ and decreases with σθ. This

wavelength dependence leads to a further averaging of the phase shift 〈φ(δθ, λ)〉δθ∗
gained by the monochromatic spherical wave calculation over the (normalized)

wavelength distribution P (λ)

φ(δθ) = 〈〈φ(δθ, λ)〉δθ∗〉λ =

∫ ∞
−∞

P (λ)〈φ(δθ, λ)〉δθ∗ dλ (4.21)

However if one chooses the Bragg angle for the calculation approximately at the

mean value of this oscillatory curve, one can omit this further averaging. This

reflects the fact, that the influence of the wavelength distribution in the considered

range is not crucial in comparison to the beam divergence. A small influence on

the visibility remains, as the wavelength distribution creates a mean fluctuation

〈δφ2〉 that increases with δθ. Thus one obtains a further decrease of the visibility

V (δθ) = Ṽ (δθ)e−〈δφ
2(δθ)〉/2 (4.22)

where Ṽ (δθ) is the calculated visibility for a monochromatic beam. From Fig.

4.12 it can be observed that in the relevant regime 〈δφ2(δθ)〉 < 1
10
〈φ(δθ)〉. Thus

uncertainties in the beam divergence might result in even larger uncertainties of

the visibility (Fig. 4.8).

4.3.1 Defocused arrangement of two crystal plates

Finally we investigate the case, that in one beam path the plate is inserted before

the mirror, in the other after the mirror. In 3.2.1 it has already been pointed out

that this configuration is not optimal as it leads to a severe defocusing problem.

As this setup has been proposed in [7] for a measurement of the neutron-electron

scattering length, estimations on the visibility while rotating both lamellas off

Bragg are of basic interest. As the article gives no information on the planned

sample crystal thicknesses or exact orientation5, the calculations have been per-

formed for a (220) lattice orientation at θB = 30◦ for D = 3mm and D = 1mm

(Fig. 4.13).

The visibility and phase shift strongly depend on the thickness of the crystal

plate. Whereas measurements as close as δθ = 2′′ seem possible for D = 1

5At NIST interferometers with (220) as well as (111) lattice orientation are used. More-
over the sample Laue crystal could in principle be cut in even another orientation than the
interferometer. This would however correspond to a dispersive arrangement.
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Figure 4.13: Calculated visibility and phase shift for the setup shown in

Fig. 3.3 at θB = 30◦. Two lamella thicknesses (D) and several beam

divergences are compared. A phase offset is subtracted.

mm, for D = 3mm the visibility is already significantly reduced at δθ = 5′′,

which is in good agreement with Fig. 3.1. This is closer to Bragg than with the

one plate setup at 45◦ though (Fig. 4.5). The reason is the reduced effective

range of the Laue phase at smaller Bragg angles (Fig. 2.7). This however also

results in a reduced phase sensitivity when comparing with Fig. 4.5 and for

different thicknesses. Hence increased phase sensitivity is to some extent always

counteracted by a loss in visibility due to phase averaging. Moreover increased

phase sensitivity implies also a larger dependence on the actual beam divergence.

Comparing Figs. 4.13 c,d and 4.5 it is obvious that the phase curves for different

beam divergences start to show a significant difference just in the region the

visibilities decrease. Concerning the goal of the experiment - a measurement of

the neutron electron scattering length bne - it is interesting to note, that reduced

phase sensitivity by decreasing crystal thickness or Bragg angle (compare Fig.
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4.14 and Fig. 2.13) results also in a reduced sensitivity to bne over the whole

range of δθ. Moreover it does not seem possible to measure the phase shift over

the whole aimed range −10′′ < δθ < 10′′ [7]. Though measuring the visibility and

phase shift within the accessible range could be still interesting. Nevertheless it

has still to be shown if this setup can be used for a precision measurement of bne.

Figure 4.14: Difference in Laue phase (Eq. 2.62) for two disputed values

of bne (2.57) at θB = 30◦. (Other parameters: Si-(220) reflection, D =

3mm).
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Chapter 5

Interferometer

5.1 Interferometer preparation

5.1.1 Planning of the interferometer

The most essential requirement for an experiment dedicated to a measurement

of the Laue phase is a suitable neutron interferometer. According to our strategy

of using prisms for beam deflection relative to monolithically fixed lamellas, we

have the following basic requirements

• Interferometer with at least two additional lamellas according to Fig. 3.7

(b)

• path length and beam separation allowing sufficient space for the required

prism operations

• Accurate crystal orientation to the symmetric case or alternatively precise

measurement of the actual orientation. Precise crystal orientation will ad-

ditionally simplify the sample alignment in non dispersive position for the

accurate measurement of nuclear scattering lengths.

• Thick interferometer base to reduce perturbations by crystal bending

The problem with conventionally used symmetric and skew-symmetric types

(Fig. 5.1 (a), (b)) is the severe limitation of the path length, which strongly

depends on the diameter of the silicon ingot. A new skew-symmetric interferom-

eter geometry [30, 31] uses a different crystal orientation where the (110) lattice

planes enclosing a 45◦ angle to the (100) ingot orientation are used. Here the

beams are traveling along the crystal axis (Fig. 5.1 (c)), hence the path length is

only limited by the ingot length. The diameter of the ingot only limits the beam

81
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separation, which is usually still larger than in the original types. An interesting

feature of this geometry with θB = 45◦ is that both the first (220) with λ = 2.72Å

and second order reflection (440) with λ = 1.36Å lie within the neutron spectrum

available at S18. On the downside the intensity at the first order is significantly

lower than at the usually employed interferometers at θB = 30◦ with λ ≈ 1.9Å.

Figure 5.1: Three different IFM types: (a) symmetric 3 blade interferom-

eter (b) skew-symmetric interferometer and (c) the new skew-symmetric

type using a θB = 45◦ geometry.

For the final interferometer dimensions the total path length and the lamella

size have been optimized to the required prism configurations, while maintain-

ing the required focusing conditions [25]. On the other hand the interferometer

should not be larger than necessary, as thereby also the sensitivity to external

disturbances increases. As the main planned experiment should consist in a

beam deflection relative to one sample lamella while not to the other, a prism

configuration as shown in Fig. 5.2 is necessary. In this configuration the beam
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Figure 5.2: One of the essential prism arrangements determining the

interferometer dimensions.

displacement by both prism sets is equal. Hereby for example the lamella width

d and the partial path lengths x1,2 are determined. The lamella sizes have been

optimized to the desired beam geometry, taking the beam spreading due to the

Borrmann fan into account. In a first layout it seemed to be advantageous to cut

the two sample lamellas displaced (Fig. 5.2 x1 6= x2), whereby the use of larger

prisms would have been possible. Moreover extraordinary thick sample lamellas

would have given an even higher phase sensitivity. Finally we have chosen equal

thickness for all lamellas and a design that also enables further use of the in-

terferometer in double loop configuration. Moreover in this layout it is possible

to deflect the beam in front of both lamellas simultaneously and study relative

deflections (compare 7.2.5).

Figure 5.3: Finally planned geometry of the interferometer.
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Fig. 5.3 shows the finally planned dimensions of the interferometer1(Table

5.1), more detailed plans are given in Appendix B. This constitutes the plan for

the hitherto largest perfect crystal neutron interferometer.

Interferometer length 23.5 cm

Path length 25 cm

Beam separation 5 cm

Full enclosed beam area (loop 1/2) 100 (45 /55) cm2

Lamella height 5cm

Lamella thickness 0.3cm

Base thickness 3.4cm

Table 5.1: Geometric parameters of the new interferometer.

5.1.2 Crystal selection and orientation

Crystal selection

For the interferometer a float-zone grown 4 inch silicon ingot from Wacker-Sitronic

(Burghausen) with fourfold symmetry and cubic lattice oriented in (100) direction

has been chosen. The initial length of the crystal amounted to 40cm, ingots of

length 1m are available though. Hitherto there have been good experiences with

this type of ingots, that are to a high degree free of dislocations. Disturbing

lattice distortions may occur via axial and radial carbon and oxygen impurities

[32]. These amount to [33]

δdL
dL

= −6.9 · 10−24NO

δdL
dL

= 4.4 · 10−24NC (5.1)

where dL is the lattice spacing and the impurities for the chosen quality amount

to

NC = 2 · 1015cm−3

NO = 1.4 · 1015cm−3 (5.2)

1From a later point of view it would maybe have been better to make the first loop smaller
and hence increase the size of the second. The reason for the chosen sample lamella positions
has been due to a planned arrangement with large 90◦ prisms which has not been used finally
in the experiment.
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Axial gradients can be avoided to a high degree, if intermediate pieces of long

ingots are chosen. Radial gradients on the other hand appear mainly close to the

surface. Hence the beam geometry should be chosen accordingly.

Crystal orientation

Usually for crystal orientation we employ the X-ray Laue camera of our institute.

Hereby with some effort a precision of 10 arc minutes is possible. To avoid re-

markable corrections from the asymmetric case (subsection 2.2.3) a much higher

precision γ < 30′′ is required. Such precision is possible with the X-ray diffrac-

tometer of our co-operation partner at the PTB Germany. This diffractometer

has been especially adapted for the precise lattice orientation of a large crystal

as large as ours, where we have already cut the initial 40cm ingot down to 25

cm at our institute. Special adjustment of the employed four-fold (220) silicon

monochromator leads to an accuracy of ±0.2 arc sec. This is less than one tenth

of the achievable rocking curve width (≈ 2.6 arc sec) for etched crystals. Perpen-

dicular to the thereby obtained orientation of the (110) crystal lattice planes an

auxiliary mirror is aligned and fixed (Fig. 5.4 (a)). This is performed by an espe-

cially adjusted autocollimator, which constitutes the main source of uncertainty

(±1 arc sec). This is well within the necessary accuracy though.

Figure 5.4: (a) Orientation of the ingot on the X-ray diffractometer (b) an

auxiliary mirror is orientated via an autocollimator on the X-ray diffrac-

tometer parallel to the (110) lattice vector for the final interferometer.

For the finished interferometer the same method has been used to determine

the orientation of the finally obtained lamella surfaces to the lattice planes (Fig.

5.4 (b)).
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5.1.3 Crystal machining and fine grinding

Preliminary machining

The hitherto machined interferometers could be cut at the surface grinding ma-

chine at our institute. With the present size this is no more possible as the plan

parallel transfer of the cutting wheel is limited. Thus the preliminary cutting has

been performed at the PTB Meyer Burger grinding machine employing bronze-

bonded diamond wheels. In a first step the flat base and top are cut off, then

the crystal is glued with its base on an especially adapted metal plate for fixing

on the goniometer of the grinding machine. After cutting out the material in

between the three lamella pairs (Fig. 5.5 (a)) employing a 0.3mm thick diamond

coated wire saw, an 8mm thick diamond cutting wheel has been used to cut

out the lamellas (Fig. 5.5 (b)). As during the later preparation processes - fine

grinding and etching - the thickness will be further reduced and moreover later

repreparations of the crystal have been expected, the planned lamella thickness

at this step has been 3.3µm.

Figure 5.5: (a) ingot after base and top cutting, additionally the silicon

in between the lamella pairs has been cut out (b) cutting of the lamellas

with a diamond cutting wheel.

The cutting process is already important for the accuracy of the overall geom-

etry and the orientation of the lamellas. The surface quality is determined by the

later fine grinding though. The measured geometry at this step (compare sub-

sec. 5.1.5) showed an average lamella thickness of 3.287(4)mm. The maximum

difference between two lamellas was 10µm. Again using the X-ray diffractometer

an auxiliary mirror has been aligned perpendicular to the (110) lattice planes, as

a reference orientation for the subsequent fine grinding process.
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Fine grinding

To obtain the final geometric accuracy and surface quality, the interferometer

has been fine grinded at G. Rauch company. Here a similar surface grinding

machine with a diamond cutting wheel is used to finish the geometry by an

iterative pendular grinding process (v ≈ 20 cm/s) along the lamella surfaces.

The orientation of the surfaces is obtained by accurate alignment of the cutting

wheel according to the auxiliary mirror.

Figure 5.6: Fine grinding of the interferometer. The interferometer is

moved with approximately v ≈ 20 cm/s along the diamond cutting wheel

- in the photo actually a corundum wheel is employed - until the desired

lamella thickness is reached.

Usually this fine grinding procedure leads to an accuracy of approximately

3µm. Unfortunately, due to fixed time schedules for testing at S18 in Grenoble,

the procedure could not be finished properly and furthermore a not optimal

corundum wheel had to be used. Hence the thickness errors have accumulated up

to 17µm. This explains the poor results of the first interferometer test (compare

section 5.2). In a second step the interferometer has been fine grinded again with

a newly-acquired diamond cutting wheel. This time the geometric errors have

been below 3µm. The remaining geometric imperfection has a minor influence

on the visibility [25, 31], which will be more influenced by thermal gradients at

the interferometer, lattice distortions due to crystal bending and vibrations. In

addition to the described fine grinding process an alternative approach using a

coordinate milling machine [34] has been tested with two interferometers that

had to be repaired after damage to the surface structure. Due to the size of

the interferometer this procedure is extremely time-consuming - 20 days for six
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lamellas. An attempt with 10 times faster grinding than usually applied for X-ray

interferometers at the PTB yielded visibilities below 5% at usual etching depths of

approximately 30µm. Hence this technique results in a more pronounced surface

damage and shows no advantage. Moreover even for the optimal (slow) procedure

the measured surface roughness is larger than 5−10µm which can only be reduced

by large etching depths. The difference to the normal fine grinding process is even

optical visible at the lamella surfaces (Fig. 5.7).

Figure 5.7: Surface pattern after fine grinding (a) employing a coordinate

milling machine and (b) employing the usual fine grinding method.

5.1.4 Etching

The final step in interferometer preparation consists in the removal of the dam-

aged perfect crystal structure at the lamella surfaces due to the cutting and fine

grinding process. Furthermore etching reduces the surface roughness below 1µm.

The etching depth De is a crucial parameter in interferometer preparation and

has to be optimized in two respects. The minimum etching depth depends on the

cutting process. Fulminating diamond grains or abrupt changes in the cutting

speed or cooling flow can cause deep rills and long-ranging lattice deformations.

Presuming smooth cutting and grinding the minimum etching depth is 15µm, in

some cases remaining lattice distortions up to 30µm etching depth may occur.

On the upper side etching is accompanied by unavoidable convex-shaped thick-

ness errors due to higher acid flow and thereby etching speed at the crystal edges.

Hitherto experiences for a typical lamella size show a relative thickness gradient

from the center to the edges of

∆De

De

≥ 0.2 (5.3)

Such a gradient within the beam area results in a decrease of the visibility. Hence

the etching depth should be chosen as small as possible, otherwise the utilizeable
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beam area is reduced. This thickness gradient is also one of the reasons why the

chosen neutron beam paths should be close to the center of the lamellas. The

actual etching process is carried out in an appropriately sized and acid-resistant

reservoir, that is embedded in a large water vessel for cooling. During several

recently carried out etching processes2 we have optimized the etching speed. An

acid mixture of hydrofluoric acid (HF 40% pA) and Nitric acid (HNO3 60% pA)

is used in relative concentration 1 : 60. Nitric acid oxidizes the silicon surface

3Si+ 4HNO3 → 4NO + 3SiO2 + 2H2O (5.4)

which is removed by the hydrofluoric acid

SiO2 + 4HF → SiF4 + 2H2O (5.5)

in the form of SiF4. During this process the concentration of HF is reduced.

Hence it is necessary to continuously add hydrofluoric acid according to the re-

moved silicon mass ∆m during etching

+ ∆HF (ml) ≈ 0.02∆m(mg) (5.6)

If bubbles of SiF4 occur during the etching process at the surface of the lamellas

these have to be removed by moving the whole crystal to guarantee homogeneous

etching. This movement leads to enhanced acid flow and hence increased etching

speed though. Thus extensive cleaning - both mechanical and chemical - of

the lamella surfaces together with the optimized acid mixture turned out to be

essential for the accurate control of the etching speed. Applying the described

procedure we could extremely good stabilize the etching rate to ≈ 0.3µm/min3.

The accurate knowledge of the etching rate is essential for choosing the proper

etching time. After etching the etching depth can be determined by the mass

difference ∆m of the crystal before and after etching. Via

∆D(µm) =
10 ·∆m(mg)

2.33 ·O(cm2)
(5.7)

the etching depth ∆D can be calculated by the known surface area O. Addition-

ally the etching depth and furthermore thickness gradients can be determined by

2During this work also several interferometers for colleagues have been etched after a damage
of the crystal surface.

3Formerly the etching speed has been chosen larger, by a mixture of approximately 1 : 20
[34]. Such highly concentrated mixtures are also used for X-ray interferometers [13], resulting
in high etching depths and strongly convex shaped surfaces. Anyhow for X-ray interferometers
this problem is of minor importance, as the beam size can be chosen small in comparison to
neutron interferometers.
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accurate geometric measurements of the crystal geometry before and after etch-

ing. These measurements confirm the accurate accomplishment of the etching

procedure.

5.1.5 Final geometric measurements

In a final step the geometry of the crystal is measured with a Zeiss-Prismo co-

ordinate measuring machine at G. Rauch company. For this a 1mm ruby sensor

sphere with small contact force (0.1N) to avoid scratches on the lamella surfaces

is applied. The reproducibility within the interferometer geometry is of the or-

der of 1µm. These measurements have been applied between several preparation

stages, thus we obtained valuable information not only on the overall geometry

but also on the etching procedure and thickness gradients on the crystal lamellas.

Figure 5.8: Measuring of the interferometer geometry together with an

auxiliary mirror that is aligned parallel to the (110) lattice vector.

After the last etching once again an auxiliary mirror has been aligned perpen-

dicular to the (110) lattice planes (5.1.2). Including the mirror in the geometric

measurement (Fig. 5.8) revealed the final orientation between lamella surface

and the (110) lattice vector, thus the angle of asymmetry γ. This amounted to

γaverage = 13.5′′(±5′′) (5.8)

in the relevant lamella areas, where the error contributions are ±0.2′′ from the

diffractometer, ±1′′ from the autocollimator and ±4′′ via the coordinate mea-

surement. This is surprisingly small concerning the long preparation history and
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Figure 5.9: Finally measured geometry of the interferometer. Dimensions

in millimeters.

should be sufficient concerning the estimations in subsection 2.2.3. In fact, this

is the first neutron interferometer oriented symmetrically to such high accuracy.

Fig. 5.9 shows the final geometry of the interferometer. The average lamella

thickness in the illuminated area has been measured to D̄ = 2.960mm, the max-

imum thickness difference between two lamellas to 4µm4. The same accuracy is

fulfilled for the relevant lamella distances guaranteeing the focusing conditions.

The surface flatness has been measured to 1.8µm in the beam area on average.

A short overview of the preparation history and resulting visibilities is given

in Tab. 5.2.

5.2 Interferometer testing

The test of the interferometer has been performed at the instrument S18, ILL in

Grenoble. Actually there have been three tests and interim optimization of the

preparation. Here only the results after the final preparation stage are discussed.

4Moreover a slightly vertically wedge shaped form at some of the lamellas has been measured
which should be of minor importance.
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Step total etching depth max. error (µm) visibility

Fine grinding - -

Etching 31.4(10) 17(1) < 0.2

Fine grinding - 3(1) -

Etching 23.7 (10) - 0.45

Etching 32.7(10) (measured: 31.2(10)µm) 4(1) 0.6

Table 5.2: Final steps of the interferometer preparation and resulting geometrical

errors and the visibility measured at the (220) reflection. The given values of the

etching depth are calculated from the etching process.

Figure 5.10: Finished interferometer

5.2.1 Rocking curve

Up to now in neutron interferometric experiments at S18 the second order re-

flection could be neglected - as in the usually used θB = 30◦ setup - or has been

separated as far from the first order, so that the latter is not contaminated. How-

ever one of the advantages of a perfect crystal monochromator is the possibility

to separate higher order reflections in the rocking curve and thus make use of

them. Hence the goal has been to separate the second order reflection far enough

to avoid contamination from the comparatively broad first order. The use of

higher order reflections is interesting for systematic precision measurements and

might be also useful for the experimental discrimination between topological and

dynamical phase shift. In a later stage even the (660) and (880) could be found

in the rocking curve. This has been accomplished by the use of six 140◦ prisms
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(Appendix C). Fig. 5.11 shows the obtained rocking curve.

Figure 5.11: Rocking curve in interferometric configuration, showing the

separation from the (220) to the (660) reflection in O and H-beam. Here

the zero position is arbitrary according to the goniometer encoding.

Whereas the (220) reflection is almost perfectly separated from the other re-

flections in the O-beam, at the positions of the higher order reflections remain

small contributions from other harmonics. This is even more pronounced in the

H-beam with higher peak width, where it becomes difficult to resolve the (660)

reflection. In the O-beam the contaminations have been corrected by interpolat-

ing the corresponding peak profiles and thereby weighting the λ contributions.

As the angular width of the reflection curves reduces according to

∆θ1/2 ∝ λ2 ∝ 1

m2
. (5.9)

high angular stability between monochromator and interferometer are required

for measurements at higher order reflections. This constitutes a problem as non

systematic drifts of the piezo could be observed.

5.2.2 Visibility measurements

Whereas optimizing and moreover maintaining the visibility of a perfect crystal

interferometer is not trivial usually, it turned out to be even more challenging in
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the case of the new large interferometer. The main disturbances such as tempera-

ture gradients and vibrations strongly increase with the size of the interferometer.

Moreover intrinsic or residual strains due to crystal mounting are more likely to

appear at large lamella distances. These result in space dependent phase pat-

terns - Moires - and thereby reduce the visibility when position-insensitive gas

detectors are used. This has been addressed by choosing an accordingly thick in-

terferometer base. One of the problems in the case of a lack of visibility consists

in the location of the actual cause. Moreover for a new interferometer one has

no reference for the achievable performance, and problems with the crystal can

not be excluded. This has been a severe uncertainty factor in the first two tests.

Crystal support

With the present size of the interferometer the limit of the support table at S18

has been reached. Thus a new aluminium table with 30cm diameter and 1cm glass

plate has been installed5. On this glass plate many combinations of underlays

have been tested (a selection is shown in Tab. 5.3). Satisfying results could only

be obtained with a stack of papers though.

Support V (220) V (440)

Thin carton 0.5mm 0.1

Plexiglas 5mm 0.1

Plexiglas 5mm + rubber mat 2mm 0.17

Plexiglas + rubber mat + sheets of paper 1.5mm 0.27

Plexiglas + thin smooth tissue 0.23

Damping rubber mat 10mm 0.38 < 0.1

Tissue + Plexiglas + sheets of paper 1mm 0.51 0.4

Sheets of paper 1.5mm or hydrophobic tyvek 0.6 0.73

Table 5.3: Selection of several tested crystal supports. The underlay is placed on

a glass plate of 1cm thickness and 30cm diameter. The best measured visibilities

V are shown.

To more systematically investigate this behavior a position sensitive ND&M

detector (App. E) with 50µm resolution has been employed in the O-beam6.

5The glass plate is mounted on three fine thread screws, by which the ρ axis relative to the
monochromator is adjusted. This axis corresponds to a rotation around the surface normal of
the lamellas.

6Another interesting possibility of this detector is the measurement of beam profiles in
the interferometer output ports, and comparison with calculations from dynamical diffraction
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The investigation of phase dependent patterns is well established in X-ray inter-

ferometry [35, 13]. However due to the relatively small count rates in neutron

interferometry7 and accordingly long measurement times, sufficient phase sta-

bility has to be guaranteed. At least in the case of non vanishing visibility this

stability can be monitored via the intensity of the H-beam. For the clear discrimi-

nation of phase dependent patterns from pure intensity distributions, at least two

images with different phase shifter position are required.

Fig. 5.12 confirms the absence of Moire fringes for the best underlay for the

(220) and (440) reflection. The integral visibility for 1.5cm (width) x 2.5cm

(height) beam size yielded still 36%. Thus for this setup intrinsic strains and

induced contact strains due to crystal support could be excluded to a high degree.

Figure 5.12: Intensity distribution in the O-beam with phase shifter in

O-minimum (left), O-maximum (middle) position and phase averaged

(right). Average pixel counts N̄((220),Min −Max) = 96 − 195/pixel,

N̄((440),Min−Max) = 33− 73/pixel.

Fig. 5.13 (c) shows an intrinsic Moire detected in the forerunner interferometer

that has not been present after the original preparation [30], whereas in Fig. 5.13

(d) -(e) horizontal Moires detected at a suboptimal underlay (damping rubber

mat Tab. 5.3) are shown. Horizontal Moire patterns result from small lattice

rotations ∆ρ - around the axis normal to the lamella surfaces - relative to other

theory. This can also give valuable information on the actual beam width at the positions of
the prisms and thereby the possible rotation angle in the Laue phase experiments.

7The count rates at θB = 45◦ are even significantly below the usually used θB = 30◦

geometry.
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interferometer lamellas. Thereby fringes with spacing

ΛR =
d

∆ρ
∝ 1

m
(5.10)

are generated. Consequently the period of such fringes is smaller for higher order

reflections m (Fig. 5.13 (d) -(e)) and these are more sensitive to relative lattice

distortions. In general there is the requirement ∆ρ� 0.001′′. On the other hand

the higher sensitivity of the higher order reflections can be used as a test for the

crystal support. Employing the position sensitive detector, fringe spacings that

can no more be observed in (220) reflection are still observable in (440) reflection.

Hence a further optimization is possible.

Figure 5.13: a) No Moires in the new interferometer with optimal un-

derlay in (220). b) Artificial Moires with a 1.9◦ Al-wedge. c) Intrinsic

Moire in another large interferometer. d) Intrinsic Moire in the new in-

terferometer with suboptimal underlay (damping rubber mat). e) Same

setup but (440) reflection. f) Retrieval of a homogeneous phase profile

by putting weights on the interferometer base.

Besides the change of crystal supports, one can try to place weights on the in-

terferometer base and systematically improve via observation of the Moire fringes.

Fig. 5.13 (f) shows a compensation by weights of the Moire shown in (e). Due

to the thick base the interferometer is not very sensitive to weights though8.

8An alternative approach consists in placing thin strips of paper etc. below the interferom-
eter base and thereby systematically improve the Moire patterns. This however turned out to
be not very efficient. Most of the time the Moire fringes would only become denser and the
visibility became worse.
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Another strategy is the use of wedges with opening angle β in one beam path.

Thereby an artificial fringe pattern with period [13]

Λw =
λ

δwedge(β, λ)
=

π

λNbN
cot

β

2
∝ m (5.11)

is created (Fig. 5.13 (b)), which can be used to compensate the horizontal Moire

fringes due to lattice rotations:

Λw = ΛR =⇒

β = 2 arctan
π∆ρ

2d2NbN sin θB
(5.12)

Hence for higher order reflections one needs wedges with larger apex angle, as

on the one hand the horizontal fringes are denser on the other hand stronger

refracting wedges are needed to obtain the same fringe distance than for larger

λ. Anyhow this type of compensation is not optimal for our experiment, where

additional material in one beam path might decrease the visibility and moreover

gives further limits to the available space for prism and phase shifter positioning.

Visibility performance

The actual visibility tests have been performed by scanning a 6×6mm2 entrance

slit across the lamella surface. In the horizontal direction the possible beam

width has been limited to approximately 1.5 cm due to the fore prisms9. The

beam height has been limited to approximately 2.5 cm, where the upper half of

the lamellas have been illuminated. This included the beam height optimal for

the prism experiments, i.e. 10 -20 mm below the upper edge of the lamellas.

Within this area no significant visibility variations could be observed.

Fig. 5.14 shows the best visibility scans for the (220) to (660) reflections and

Tab. 5.4 summarizes the measured values. The H-beam visibility for the (440)

and (660) is comparatively small due to the contamination by the broad (220) and

(440) H-beam respectively. For the visibility values given in Tab. 5.4 corrections

for background and contributions from other harmonics have been performed.

As stated above higher order reflections are more sensitive to suboptimal crystal

support. On the other hand one finds a better performance at optimal crystal

support. This can be understood by the reduced sensitivity to lattice vibrations,

as the time of flight through the interferometer is proportional to λ. Another

9Translating the interferometer induces too much uncertainties for a real comparison and a
translation of the fore prisms is time-consuming, as precise prism alignment - and masking by
cadmium - is required to avoid contamination by background and other harmonics.
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Figure 5.14: Unprocessed visibility scans for different wavelengths as a

function of the path difference ∆D by the silicon phase shifter.

interesting point is the reduced sensitivity due to small geometric errors resulting

in a slight defocusing of the interferometer. For the ideal geometry10 a defocusing

∆x of the analyzer plate results in [25]

V =

∣∣∣∣∣1 +
2π∆x

∆H

− 5

9

(
2π∆x

∆H

)2
∣∣∣∣∣ e− 2π∆x

∆H (5.13)

where the visibility reduction is described by the ratio between ∆x and the Pen-

dellösung length ∆H . As

∆H ∝
m

tan θB
(5.14)

the sensitivity to this type of geometric errors is reduced as shown in Fig. 5.15

(b).

10Here the mirror lamella DM is assumed to be equally thick than the analyzer and beam
splitter lamellas D. For the geometry DM = 2D the sensitivity to defocusing can be further
reduced as

V =

∣∣∣∣∣1 +
2π∆x
∆H

− 5
17

(
2π∆x
∆H

)2
∣∣∣∣∣ e− 2π∆x

∆H

This could be advantageous in the θB = 45◦ geometry, that is more sensitive to geometric
errors. However it is not possible to use this strategy for our interferometer, where also the
double loop configuration is an interesting option.
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reflection wavelength (Å) relative intensity peak width visibility

(220) 2.72 1 3.2” 0.596(10)

(440) 1.36 0.3 0.9” 0.733(20)

(660) 0.91 0.03 0.4” 0.850(60)

(880) 0.68 0.01 0.3” > 0.5

Table 5.4: Selectable wavelengths at 45◦ Bragg angle and best obtained values

for the visibility after correction for background and contamination by other

harmonics.

Figure 5.15: Defocusing due to translation of the analyzer lamella by

a distance ∆x. (a) Visibility reduction for (220) and (440) reflection

at θB = 45◦ (b) for (220) at θB = 45◦ and θB = 30◦, compared with

spherical wave calculation using ifmsim at σθ = 4′′.

Moreover the used θB = 45◦ geometry is a factor tan 45◦/ tan 30◦ ≈ 1.7 more

sensitive to geometric errors (Fig. 5.15 (b)). In the latter case Eq. 5.13 has

been compared with calculations by spherical wave theory (chapter 4), result-

ing in good agreement. This reveals the usefulness of ifmsim for the estimation

of geometrical errors in interferometer geometry. In this respect the exact in-

terferometer geometry has been analyzed and the theoretical values have been

calculated. The calculated values are shown in Tab. 5.5 and compared with the

best measured values.

In the same way the single loops have been analyzed. A comparison between

calculated and measured values is given in Tab. 5.6. However the measured

visibilities are probably not the best achievable ones, as the main focus of testing

has been on the performance of the large loop, that is used for the experiments.

The calculations can also be used to evaluate possible improvements by selec-

tive etching at specific lamellas. In the present case however the main visibility
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reflection wavelength (Å) calculated visibility measured visibility

(220) 2.72 89(4) 0.596(10)

(440) 1.36 97(2) 0.733(20)

(660) 0.91 99(1) 0.850(60)

(880) 0.68 99(1) > 0.5

Table 5.5: Comparison of calculated visibility for the exact interferometer geome-

try with the measured values after correction for background and contamination

by other harmonics. The errors for the calculated visibilities have been deter-

mined by assuming small variations in the geometry within the precision of the

geometry measurement.

reflection area calculated visibility measured visibility

1. Loop 45cm2 92(3) 0.635(10)

2. Loop 55cm2 91(3) 0.54(1)

Table 5.6: Comparison of calculated (220) visibility for the first and second loop

with the best measured values.

reduction is obviously not due to interferometer geometry.

The (880) reflection

Finally it was also possible to resolve the (880) reflection. Fig. 5.16 (a) shows a

zoom into the (660) and (880) region of the rocking curve. Despite the difficulties

concerning the necessary angular stability and resolution due to the extremely

small width of the (880) peak it was possible to reproduce an oscillation with

approximately the correct period λ ≈ 0.68Å at the position of the peak. Al-

though at this beam line measurements below λ ≈ 1Å are rather challenging the

measurements at the (660) and (880) orders are to our knowledge the shortest

wavelengths hitherto used in neutron interferometry11. This is insofar interesting,

as almost all other approaches are into the direction of cold and ultra cold neu-

trons. Moreover the use of several harmonics is of essential interest with respect

to precision measurements such as for the neutron-electron scattering length, the

Debye Waller factor of silicon and gravitational short Range interactions (7.3).

Visibility within the rocking curve

In another measurement the visibility as a function of the position in the rocking

curve has been measured. This is of interest with respect to remaining inter-

11To our knowledge λ ≈ 0.95Å [36] has been the smallest wavelength so far.
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Figure 5.16: Rocking curve between (660) and (880) reflex and visibility

scan at the (880) peak.

fere able contribution of for example the (220) reflection at the position of the

higher order reflections. Another aspect consisted in a preliminary study of the

dependence of the Laue phase on the rocking position (chapter 7).

Fig. 5.17 shows the average intensities normalized with respect to the max-

imum together with the measured visibilities12 (corrected for the average back-

12In addition a variation of the phase shift of the empty interferometer within the rocking
curve could be measured. This should not be the case in ideal interferometer geometry. However
in the non-ideal geometry like for a defocused interferometer the phase shift can depend on the
misset angle of the incident beam [25]. Hence a variation of the incident beam spectrum by a
variation of the angle between monochromator and interferometer can change the phase shift.
Just recently a more accurate measurement of this feature has been addressed with a different
interferometer in 30◦ geometry. Placing a diffracting sample in front of the interferometer
reduced this phase variations due to a broadening of the rocking curve (private communication
with H. Lemmel). Therefore a mosaic crystal would be optimal for higher phase stability.
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Figure 5.17: Visibility (with background correction) and average inten-

sity within the rocking curve and unprocessed scan for δθ ≈ 25′′.

ground) within the rocking curve (the higher order reflections are at negative

angles). One has to be careful with interpretations of the measured visibility

variations, as the measurements had to be performed serially. Moreover the mea-

surement times at the low intensities far off the maximum are quite long and

phase drifts might have a negative influence on the visibility13. All the more the

visibilities obtained up to δθ = 25′′ are remarkable. This is already more than ten

five times the FWHM off Bragg. Also from a theoretical point of view interfer-

ence at such large angles comes out naturally, in praxis it’s astonishing. Probably

it is possible to measure visibilities at even larger angles and one can thereby to

some extent distinguish interfere able contributions from background. It is also

interesting to note that by a measurement at the side of the rocking curve con-

taining the higher order reflections, one would again expect to measure interfere

able (220) contributions after scanning over all higher order contributions.

Stability problems

Summarizing the interferometer test we have

• successfully tested the presently largest perfect crystal neutron interferom-

eter

• shown the use of up to four wavelengths without changing the beam geom-

etry or interferometer setup

13These measurements have only been possible during a time of high phase stability.
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• Systematically investigated the influence of crystal support and space de-

pendent phase patterns employing a position sensitive detector

• investigated and discussed some aspects of the interferometer performance

with respect to higher order reflections

Unfortunately there remained a fundamental stability problem concerning the

interferometer performance. For instance recurring visibility losses have been

observed, continuously and in time scales between one and many hours. This

resulted in severe problems concerning the available measurement time and the

accuracy of the phase measurements. As it might be useful for the further inves-

tigation of this phenomenon, an overview of addressed approaches is given in the

following

• Employing the ND&M camera allowed to distinguish effects from the crystal

support from other disturbances. Taking images in the O-beam - optionally

with the help of an auxiliary wedge to create an artificial pattern for refer-

ence - gives information on principal interference and phase stability even

if no visibility can be found with the position insensitive detector. However

in the times of visibility loss, also the spatial phase patterns vanished.

• Sometimes the loss of visibility has been accompanied by strong phase drifts

- an indication for a temperature drift of the whole setup - but not all the

time.

• A careful monitoring of the temperature close to the interferometer, within

the S18 housing, the guide hall, the beam guide and even the temperature

outside didn’t show any distinct correlation. A similar observation had been

made before [37], although some correlation between guide hall temperature

and phase stability had been found then.

• Although due to the type of time structure of the visibility loss vibrations

seemed to be a rather unlikely cause, trials with optimal and suboptimal

damping14 especially during the time of high visibility have been performed.

Additionally the influence of magnitude and frequency of vibrations has

been studied using a loud speaker close to the interferometer. As main

conclusion vibrations can be excluded to a high degree as cause of the

discussed visibility problems.

14Even the optical bench has been fixed, still showing a remarkable value of visibility.
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• Although non polarized neutrons have been used, as pointed out by H.

Rauch, disturbances from the large magnetic field (up to 15 Tesla) of the

neighboring instrument might result in disturbing phase shifts and thereby

visibility losses. Neither measurements directly at the interferometer nor

a monitoring of the absolute magnetic field of the neighboring instrument

did show any correlation with the visibility.

• The rather unusual crystal support by a stack of papers raised the ques-

tion, if the support might be unstable or humidity might cause problems.

However monitoring of phase patterns by a wedge has shown a simple loss

of the visibility but no change in the structure of the fringes. Furthermore

paper together with silica gel and instead of paper hydrophobic tyvek have

been tried, without any improvement.

• As temperature gradients at the interferometer seemed to be the main

source, the aluminium interferometer table has been isolated to gradients

emerging from the bottom, and a weak heat source in the form of a small

lamp has been tested around the interferometer. This probably has been

to rough as the visibility could only be decreased, in extreme cases even

the intensities changed, as due to temperature variations the reflectivities

change.

• As the interferometer - just as in the case of previous interferometers -

has been housed in a box with foil windows, the density of this box has

been studied. Sometimes small holes seemed to be better, with increasing

hole size however the phase drift also increased. An attempt to cover the

box with aluminium foil, to avoid a sort of greenhouse effect, did show no

improvement.

• Finally the identical setup as usually used for the experiments with polar-

ized neutrons has been used, employing water cooled coils with adjustable

temperature around the interferometer. Although measurements before and

after ours with a small interferometer in the identical setup (except the an-

gle of the optical bench) have shown good visibility, no improvement could

be achieved.

• During times of visibility reduction still better values could be achieved

in the single loops. Additionally also in the case of the small interferom-

eters regularly slight reductions in the order of 10% of the visibility are

detected, without an obvious reason. This suggests that the problem is

more pronounced for large interferometers.
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Although no final conclusion on this can be made, the most likely source still

seems to consist in small thermal gradients at the interferometer lamellas and/or

the overall temperature stability. However it should be noted that in no case

vertical Moires could be detected, which are likely to appear by thermal gradients

between beam splitter and analyzer lamella [38, 39]. An improvement should be

addressed via the installation of more reliable15 temperature sensors at S18, and

attempts with infrared diodes (J. Summhammer) around the interferometer, for

a fine tuning of the lamella temperature. Additionally upcoming measurements

at NIST with the same interferometer shall bring more insight into this problem.

15Despite the theoretical accuracy of 0.01◦C the sensors turned out to be not very reliable.
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Chapter 6

Prisms in neutron interferometry

Figure 6.1: Beam deflection δ by a prism in asymmetric (ε 6= 0) configu-

ration.

Optical components such as prisms and lenses in light optics make use of the

fact that light waves are refracted when they pass from one medium to another.

Therefore the media are characterized by their index of refraction n. This de-

scription can be also applied to neutron optics where the index of refraction is

given by

n = 1− λ2NbN
2π

(6.1)

This can be used for neutron beam deflections by prisms, where the angle of

deflection δ reads (Fig. 6.1)

δ = 2(1− n)
sin β

cos β + cos 2ε
(6.2)

107
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This expression simplifies in the symmetric case (ε = 0)

δ = 2(1− n) tan
β

2
(6.3)

For most materials bN is positive, thus δ is positive in contrast to light optics.

As for thermal neutrons 1 − n is of the order of 10−5, the beam deflection is

extremely small, in the order of arc seconds or below. The strong dependence on

the wavelength 1−n ∝ λ2 leads to a strong dispersion, which can be used for the

separation of wavelengths. Fig. 6.2 (a) shows the strong increase of the beam

deflection with the apex angle. A further increase can be gained by the asymmet-

ric rotation ε (Fig. 6.2(b)). However in the extreme case of ε . π/2 − β/2, the

utilizeable beam width becomes very small. In another interesting approach a

perfect silicon prism has been used to significantly enhance the deflection close to

a Bragg condition [40]. This method is connected to our study of the increasing

phase shift around the Bragg condition. Anyhow using such a prism for beam

deflection the strong dispersion of the beam deflection close to Bragg would com-

plicate the experiment significantly. Moreover the justage of this kind of silicon

prism would be almost as delicate as the justage of a sample Laue crystal inside

the interferometer.

Figure 6.2: (a) beam deflection in the symmetric case as a function of

the apex angle β (b) beam deflection as a function of the asymmetric

rotation ε for a silicon prism of apex angle β.

Concerning neutron interferometry, so far prisms have been applied in two

cases: First for the separation of wavelengths before the interferometer (App. C),

secondly within an interferometer for the creation of position dependent phase

patterns (section 5.2). In the latter case the beam deflection is however extremely
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low in the order of 0.01′′. Hitherto there have been no experiences with strong

deflecting prisms inside a neutron interferometer, where the coherence properties

of the neutron beam become crucial. However parallel to our investigations,

similar experiments have been carried out at NIST [41, 42].

6.1 Materials

There are several possibilities to increase the beam deflection in neutron optics.

One can choose long wavelengths or a large apex angle β eventually combined

with an asymmetric rotation ε. However in a perfect crystal neutron interfer-

ometer one is limited to the range of thermal neutrons and the beam height in

combination with the path length limit the apex angle and ε. Thus to obtain

sufficient deflection the choice of appropriate prism materials becomes important

as 1−n ∝ NbN . Furthermore the requirements in interferometry are much higher

than in other neutron optical experiments. The use of prisms has to maintain

the coherence between both beams and should not disturb precise phase mea-

surements. Especially inhomogeneities causing variations of the scattering length

density NbN and variations δD of the thickness D over the beam diameter can

cause a severe reduction of the visibility by phase averaging. Such a variance of

the phase 〈δχ2〉 over the beam diameter gives rise to a damping factor (3.10) for

the coherence function. For a Gaussian distribution of the variations δN , δD,

δbN one obtains a coherence function [1, 43]

|Γ(∆)| = ΓD(δD)ΓD(δN)ΓD(δbN)|Γ(∆)|0

= exp

([
−
(
δD

D

)2

+

(
δN

N

)2

+

(
δbN
bN

)2
]

(∆0k0)2/2

)
|Γ(∆)|0

= exp

(
−

[(
δD

D

)2

+

(
δN

N

)2

+

(
δbN
bN

)2
](

NbNλD

cos θ

)2

/2

)
|Γ(∆)|0

(6.4)

where θ is the angle between surface normal and wave vector k. |Γ(∆)|0 is the

coherence function omitting all variations concerning the material and is usually

described by the width of the wavelength distribution ∆λ/λ. Variations of the

nuclear scattering length δbN for example due to a mixture of isotopes are in most

cases of minor importance. The influence of the thickness and density variations

increases with λ2. Thus at the first order reflection with λ = 2.72Å our setup

is much more sensitive to surface roughness and inhomogeneities than at the

usually used 1.9Å at θB = 30◦ or at the higher order reflections. The influence
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of the variation δD is independent of the absolute thickness and thus a pure

surface effect, however scales with the number of surfaces n by a factor
√
n. In

the applied prism arrangements there are at least four surfaces per beam path.

Thus δD should optimally be in the range δD / 1µm. The variation of δN

on the other hand increases strongly with the absolute thickness D. Normally

only relatively thin phase shifters are used in neutron interferometers. Hence

there are only very few experiences with thicknesses D ' 1cm [44] and problems

probably due to material inhomogeneities have been encountered [23]. Thus the

investigation of possible materials for prism fabrication is essential.

6.1.1 Material candidates

Hitherto there have been experiences with several materials for phase shifters,

mainly with silicon, aluminium, bismuth and thin plates of fused silica. For

aluminium for example problems concerning the quality of the material have

been encountered [23]. On the other hand it is desirable to especially investigate

materials with strong refraction for the fabrication of prisms. Therefore we have

the following requirements on prism materials

• extremely homogeneous (negligible variations δN)

• absorption negligible

• large scattering length density NbN for sufficient beam deflection

• high surface quality (negligible variations δD)

• reasonable material and production costs

• producibility with high geometric accuracy

Table 6.1 shows a list of elements that are possible constituents because of

their small absorption and scattering cross sections.

Table 6.2 shows a selection of materials that could be suitable for prisms.

The materials in brackets are only of theoretical interest, as they would yield

extremely high refraction. Affordable fabrication of suitable diamond prisms

would be unrealistic. In the case of 58Ni the magnetic domain structures result in

a critical inhomogeneity of the material. Inhomogeneities are a problem of several

metals with high scattering length density such as iron, copper. E. Jericha had an

interesting suggestion as to use D2O in cuvettes in prism form. Nevertheless the

accurate fabrication of the cuvettes and the problem to guarantee a homogeneous

density over the volume might cause problems. Pyrolytic graphite might be
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Isotope bnuc [fm] σcoh [barn] σincoh [barn] σabs [barn]
2H 6.674(6) 5.592(7) 2.05(3) 0.000519(7)
9Be 7.79(1) 7.63(2) 0.0018(9) 0.0076(8)

C 6.6484(13) 5.551(2) 0.001(4) 0.00350(7)

O 5.805(4) 4.232(6) 0.000(8) 0.00019(2)
19F 5.654(12) 4.017(14) 0.0008(2) 0.0096(5)

23Na 3.63(2) 1.66(2) 1.62(3) 0.530(5)

Mg 5.375(4) 3.631(5) 0.08(6) 0.063(3)
27Al 3.449(5) 1.495(4) 0.0082(6) 0.231(3)

Si 4.15071(22) 2.1633(10) 0.004(8) 0.171(3)
31P 5.13(1) 3.307(13) 0.005(10 0.172(6)

S 2.847(1) 1.0186(7) 0.007(5) 0.53(1)

Ca 4.70(2) 2.78(2) 0.05(3) 2.83(2)

Ge 8.185(20) 8.42(4) 0.18(7) 2.20(4)
93Nb 7.054(3) 6.253(5) 0.0024(3) 1.15(6)

Pb 9.401(2) 11.115(7) 0.0030(7) 0.171(2)
209Bi 8.532(2) 9.148(4) 0.0084(19) 0.0338(7)
58Ni 14.4(1) 26.1(4) 0 4.6(3)

Table 6.1: Various elements - or alternatively specific isotopes - that are inter-

esting as components for neutron optical components [45].

an interesting candidate, but it is difficult to obtain sufficient large pieces of

homogeneous material for testing or prism fabrication. Especially interesting are

materials that are used for light optical components, as in this case experience in

prism fabrication can be guaranteed. Concerning these there would be of course

a lot of other possibilities such as LiNbO3, CaF2, ZnS, BaF2, RuF , ZrO2,

ZrSiO4, SnO2, CaCO3, NaF , SrF2..., which however do not give an advantage

in refraction in comparison to the listed materials.

In this context it is interesting to note that in the recent years the interest in

strongly refracting neutron optical devices such as prisms and (Fresnel-)lenses has

grown from the side of applied neutron optics such as SANS. Therefore several

projects especially investigating components for cold neutrons have been initiated.

Especially MgF2 seems to be very promising [46, 47, 48, 49]. Other components

have been built from MnF2 [50] (with however non-negligible absorption in the

thermal neutron range) and vitreous silica [51]. Another promising candidate is

the amorphous perfluoropolymer CYTOP (C6F10O) with relatively large refrac-

tion NbN = 4.5 · 1014m−2 and a high degree of homogeneity. Nevertheless at

the moment only thin sheets of thicknesses in the order of 100µm are available.
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Material ρ [g · cm−3] NbN [1010cm−2] δ (β = 30◦)

Silicon Si 2.33 2.07 0.27′′

Aluminium Al 2.7 2.08 0.27′′

Bismuth Bi 9.78 2.35 0.31′′

Lead Pb 11.34 3.09 0.40′′

Fused silica SiO2 2.201 3.46 0.45′′

Germanium Ge 5.323 3.61 0.46′′

Quartz SiO2 2.65 4.18 0.54′′

Magnesiumfluorid MgF2 3.177 5.11 0.66′′

Silicon carbide SiC 3.21 5.22 0.68′′

Sapphire Al2O3 3.99 5.74 0.74′′

Magnesiumoxid MgO 3.585 5.99 0.77′′

Heavy water D2O 1.1047 6.36 0.82′′

Graphite C 2.25 7.5 0.96′′

Beryllium Be 1.848 9.62 1.23′′

(Diamond) C 3.51 11.7 1.53′′

(Nickel58) 58Ni 8.908 13.2 1.72′′

Table 6.2: Materials that could be interesting for strong refracting prisms in

neutron optics and the calculated scattering length density NbN . As an example

the beam deflection for a symmetric 30◦ prism is given.

These can be grooved and afterwards stacked, resulting in large beam deflections

[52, 53]. This method is not easily applicable to neutron interferometry, as it

is difficult to avoid thickness gradients over the neutron beam, resulting in a

strong reduction of the visibility. This again shows the much higher restrictions

in neutron interferometry in comparison to the usual needs in neutron optics.

6.1.2 Testing materials

For the purpose of testing several candidates for prism fabrication, thick plan par-

allel plates of these materials with good surface quality have been ordered. The

length of these test plates was larger than the beam separation in our interferome-

ter, so that they reached through both paths. The product ΓD(δD)ΓD(δN)ΓD(δbN)

is obtained by the visibility reduction

Vred(λ) =
Vsample(λ)

Vempty(λ)
(6.5)

relative to the visibility of the empty interferometer Vempty. The results are shown

in Table 6.3 together with measured values of ΣSANS (Eq. 6.10).
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Material specification thickness Vred ΣSANS

AlMgSi0.5 wrought 2 cm 0.96(1) 0.03

AlMgSi1 wrought 2 cm 0.10(2) 0.19

Al99.5 wrought 2 cm 0.72(3) 0.06

AlMg4.5Mn cast 0.5 cm 0.35(3) 0.73

Fused silica grade 2F 1 cm 0.94(3) 0.0084

Fused silica Suprasil, 6 cm 0.00(1) 0.09

Fused silica Infrasil - - 0.05

Fused silica SQ0 - - 0.01

MgF2 VUV, single crystal 1 cm 0.92(3) 0.0015

Al2O3 single crystal 1 cm 0.98(2) 0.01

Be S200F 0.5 cm 0.00(1)

Table 6.3: Materials tested for visibility reduction at λ = 2.72Å and/or small

angle scattering. The surface roughness of all plates tested for visibility has been

significantly below 1µm.

Small angle scattering measurements

Another approach consisted in a qualitative measurement of small angle scatter-

ing from the samples. This has the advantage that these measurements are not

restricted to plan parallel plates of good surface quality. Thus also other test

pieces that are available without special preparation can be tested for material

inhomogeneities.

Small angle scattering refers to the scattering from small structures of size d

characterized by a variation of the scattering length density NbN , which according

to Eq. 6.4 decrease the coherence function. This scattering is characterized by a

momentum transfer q that is inversely proportional to the structure size:

q =
2π

d

q =
2π

λ
· 2 sin

θ

2
(6.6)

where the q is related to the scattering angle θ. Concerning the momentum

transfer and thus the structure size, two techniques are established

• SANS (Small angle neutron scattering) for structure sizes below 1µm

10−3 < q (6.7)

Due to the relatively large scattering angles a two dimensional detector in

a distance defined by the expected scattering angles is used.
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• USANS (Ultra Small angle neutron scattering) for structure sizes in the

range of micrometers

2 · 10−5 < q < 5 · 10−3Å
−1

(6.8)

The small scattering angles are detected by the application of a Bonse-Hart

camera (Fig. 6.3 )[54].

Figure 6.3: Sketch of a Bonse-Hart camera employed for USANS mea-

surements [55].

A first simple approach could consist in a measurement of the small angle

cross section ΣSANS integrated over most of the q range. This can be easily

carried out during measurements in the interferometric setup [23] (Fig. 6.4 (a)).

Blocking one beam path and placing the test plate in the other path, the scattered

neutrons will increase the transmitted beam intensity at the analyzer lamella,

thereby increasing the O-beam intensity and decreasing the H-beam intensity.

Thus ΣSANS adds to the total cross section

Σtot = Σabsorption + Σscattered = N · (σa + σs) (6.9)
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Figure 6.4: (a) Setup for the measurement of the total and small an-

gle scattering cross sections with a neutron interferometer (b) USANS

equivalent measurement with the interferometer

for the H-intensity while it has to be subtracted for the O-intensity:1

IH,sample
IH,empty

= e−(Σtot+ΣSANS)D

IO,sample
IO,empty

= e−(Σtot−ΣSANS)D (6.10)

Measuring both intensities yields Σtot and ΣSANS. Table 6.3 compares visibility

measurements with measurements of ΣSANS. It is obvious that larger ΣSANS

decrease the visibility. However it is desirable to obtain more information on

the structure sizes inside the material, as structures larger than 1µm are mainly

responsible for visibility reductions [56]. Therefore USANS measurements can

give the necessary information. In the case of different aluminium alloys we had

the possibility to make measurements with the USANS-setup at S18 at 1.9Å,

shown in Fig. 6.5.

It is difficult to obtain measurement time for this purpose and desirable to

perform such measurements together with visibility measurements. Therefore we

have employed the interferometer as an USANS device as shown in Fig. 6.4.

Instead of the usual threefold Bragg reflection by the analyzer here a threefold

1The range of measured scattering angles θ is limited by the distance and opening area of
the O-detector. Neutrons scattered outside this angle of acceptance θ ' 2◦ will here give a
contribution to Σtot.
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Figure 6.5: USANS measurements for several aluminium alloys, applying

the conventional Bonse-Hart camera at λ = 1.9Å.

Laue reflection is employed2. Concerning the reflected intensity (Fig. 6.6, App.

D) this setup is not competitive to the usual Bonse-Hart camera. Nevertheless it

is sufficient for our needs.

Fig. 6.7 (a) shows qualitatively the same results as obtained by the usual

USANS setup (Fig. 6.5). These measurements in comparison with Tab. 6.3

clearly show that enlarged small angle scattering at inhomogeneities in the size

of micrometers is related to a significant loss of visibility.

Hence it is advisable to test each non-crystalline material before prism fabri-

cation, as a large variation of usability has been confirmed, with a strong depen-

dence on the manufacturing process.

In the following some comments on some of the tested materials are given.

Single crystals

One finds especially good results for single crystals like silicon, MgF2 and sap-

phire, which is expected due to their homogeneity. USANS measurements similar

to Fig. 6.7 (b) have shown no detectable small angle scattering. Using single

crystals as phase shifters or prisms one has to consider the crystal orientation,

2Concerning the monochromator in the usual setup, also there a threefold Bragg-reflection
is employed, in the case of the monochromator for the interferometer, there is only one Bragg
reflection.
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Figure 6.6: (a) Multiple Bragg reflections and (b) Multiple Laue reflec-

tions compared with a threefold Bragg reflection for (220) reflection at

θB = 45◦. In all cases the average over the Pendellösung oscillations has

been taken.

as remarkable phase effects from dynamical diffraction occur many arc minutes

off the exact Bragg condition. Concerning the strongly refracting materials like

MgO, MgF2 and Al2O3 there are experiences in manufacturing from light optics.

However the standard size of crystals is rather limited (MgO), and due to the

hardness of the materials it is difficult to polish the surfaces to the desired flat-

ness. Nevertheless it was possible to find manufacturers, that could in principle

handle at least Al2O3 and MgF2 to the desired precision and size. Unfortunately

it was not possible to order prisms in the final phase of the project, due to the

prices: approximately 9000 Euro for 4 MgF2 prisms and approximately 6000

Euro for 4 Al2O3 prisms (dimensions similar to the ones shown in Fig 6.12).

Fused silica

There have been already many good experiences with thin pieces of fused silica in

neutron interferometry, where it is routinely used for example for cuvettes in scat-

tering lengths measurements. In a measurement with Suprasil3 with a however

extremely thick sample D ≈ 6 cm the visibility has been destroyed completely

[57]. Additionally slightly enhanced small angle scattering in comparison to other

tested silica types could be confirmed (Tab. 6.3, Fig. 6.7), which has not been

expected from the stated homogeneity. Thus further tests with silica have been

performed. However all further tested pieces have shown a high degree of homo-

geneity and negligible USANS (Fig. 6.7). The tested Suprasil turned out to be an

outlier. One especially prepared test plate (Silo, grade 2F, Tab. 6.3) has main-

3Linos Photonics GmBH, Göttingen, Germany
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Figure 6.7: (a) USANS measurements applying the interferometer setup

(Fig. 6.4) at λ = 2.72Å for several aluminium alloys D = 2mm (b) for

several types of fused silica D = 1 mm.

tained the visibility to a high degree. Thus fused silica seems to be a promising

candidate. Furthermore the fabrication of silica prisms is comparatively easy and

cheap. On the downside silica offers only slight enhanced refraction in compari-

son to silicon or aluminium. Moreover due to inhomogeneities on the nanometer

scale there is a remarkable loss of intensity due to scattering in a wide range of

angles.

Aluminium

Concerning refraction, aluminium is not really a prime candidate. However it

offers large advantages concerning the fabrication and also the price. For example

it is possible to manufacture a joined prism set, that is cut from one block as

shown in Fig. 6.8. This is extremely useful as most alignment problems can be

circumvented.

Furthermore aluminium is routinely used for phase shifters in neutron inter-

ferometry. Though usually only pieces of several millimeters are used and for

thick plates problems have been reported [23]. In a first approach for prism

manufacturing pure, wrought (99.5) aluminium and cast AlMg4.5Mn have been

used, as these have suggested for their homogeneity from the manufacturer. Un-

fortunately severe problems concerning the visibility have been encountered in

our first measurements. Thus tests on several aluminium alloys have been per-

formed. The best usability has been found for wrought AlMgSi0.5. The large

difference in homogeneity between AlMgSi0.5 and AlMgSi1 might probably also

explain the encountered problems in [23], as AlMgSi1 is mainly used for thicker
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Figure 6.8: Connected set of two 25◦ aluminium prisms, that are cut

from one aluminium block.

aluminium bars. In general before the fabrication of neutron optical devices in

interferometry, a test of the material is strongly advisable, as results between

different manufacturers might vary. Concerning the surface quality, electrical

discharge machining, has been used. This technique allows to cut connected

forms (Fig. 6.8) to a high geometrical precision. The emerging roughness is of

the order δD ≈ 1.5µm. This roughness can be further reduced by electrochemical

polishing below 1µm. A comparison in a visibility measurement of a test plate

before and after electrochemical polishing4, has shown no detectable difference.

Thus the surface quality directly obtained from electrical discharge machining is

sufficient for aluminium phase shifters and prisms in interferometry.

Beryllium

Beryllium would be ideal concerning the strong refraction. Moreover there has

been already an application to X-ray interferometry [58]. Unfortunately the

tested material (Tab. 6.3) revealed extremely strong small angle scattering. Plac-

ing a 5mm thick plate in front of the interferometer lead to a broadening of the

rocking curve to almost one arc minute! Thus no visibility has been preserved

despite an extremely good surface quality of the tested plate. The reason is the

4Performed by Henkel Beiz- und Elektropoliertechnik GmbH, Waidhofen an der Thaya. 15
to 20µm at each surface have been removed during the polishing process.
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manufacturing of usually available beryllium is by compressing, resulting in an

inhomogeneous density. Single crystals can in principle be grown, which is com-

plex and costly though. Furthermore beryllium components should be handled

with care anyhow, due to its toxicity.

6.2 Prism design and alignment

The accurate alignment together with accurate fabrication is essential for the

maintenance of the visibility and moreover for precise phase measurements. In

general one can say that for larger wavelengths ((220) reflection) the requirements

are higher than for shorter wavelengths ((440) reflection) due to the strong disper-

sion of the index of refraction. Moreover for the use of strongly refracting prisms

these requirements are higher and have to be taken into account accordingly.

In this context it is interesting to note that also the prism design has an impact

on the alignment requirements. Practically one normally uses either symmetric

prisms or orthogonal prisms (Fig. 6.9). The orthogonal prisms can be understood

as an asymmetric rotation of a symmetric prism by ε = β/2. Thus the beam

deflection is somewhat stronger than in the symmetric case

δorth(β) = δsym

(
β, ε =

β

2

)
= 2(1− n)

sin β

cos β + cos β
= (1− n) tan β >

> 2(1− n) tan
β

2
= δsym(β) (6.11)

This enhancement is especially significant for β → 90◦, while it is of minor

importance for β / 45◦. However concerning misalignments with respect to ε the

error in beam deflection is significantly larger for orthogonal prisms

δorth(δε) ∝
sin β

cos β + cos [2(β/2 + δε)]

=
tan β

2
+

tan2 β

2
δε+

1

2
(tan β + tan3 β)δε2 +O(δε3)

δsym(δε) ∝ tan
β

2
+

2 sin β

(1 + cos β)2
δε2 +O(δε4) (6.12)

This refers to the fact that the symmetric layout just corresponds to the case

where the beam deflection has its minimum (Fig. 6.2 (b)), hence ∂δ(β,ε)
∂ε

(ε = 0) =

0. Thus alignment errors there only contribute to second order in δε. A similar

statement can be made for errors concerning the apex angle β

δorth(β + δβ) ∝ tan β

2
+

1

2
(1 + tan2 β)δβ +O(δβ2)

δsym(β + δβ) ∝ tan
β

2
+

1

1 + cos β
δβ +O(δβ2) (6.13)
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As 1
2
(1 + tan2 β) > 1

1+cosβ
for 0 < β < π/2, the required accuracy of prism

fabrication is usually higher for orthogonal prisms. This is not as striking as in the

case of the misalignment though. These considerations show a clear preference for

symmetric prisms. However there are practical reasons to choose the orthogonal

design:

• A pair of orthogonal prisms needs less space in a neutron interferometer

(Fig. 6.9)

• Sometimes the fabrication or alignment is easier or more efficient (for ex-

ample in the case of the combined set of aluminium prisms or in the case

of the self-made silicon prisms)

• For the measurement of the vertical coherence function both prism sets can

be separated to double the vertical displacement between the two beam

paths (section 8.3)

Figure 6.9: Usual prism designs (a) orthogonal (b) symmetric and (c)

the minimum spatial requirement for a set of two compensating prisms.

There are several possibilities for misalignment. In the following several prin-

cipal effects shall be discussed that influence either the visibility or the phase

shift.

• An angle α between the two path contributions (Fig. 6.10 (a)) leads to a

horizontal phase (Moire-) pattern with vertical spacing

Λ =
λ

α
(6.14)

The period of these fringes has to be much larger than the beam height:

Λ = λ
α
� h ≈ 1cm. Thus one obtains for example for λ = 2.72Å: α �
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0.005′′. The angle α may result from a not perfect compensation of a pair of

prisms in one beam path5. This can for example result from unequal apex

angles of the single prisms, from asymmetric rotations of one prism relative

to the other (Fig. 6.10 (b)) or from a rotation of one prism relative to the

other around the beam axis. The latter case is additionally accompanied

by a thickness gradient over the width and height of the prism set, resulting

in a phase gradient when the set is translated through the beam. The case

of asymmetric misalignment with respect to ε depends on the prism design.

Assuming λ = 2.72Å in the case of an orthogonal silicon prism (β = 30◦)

one obtains δε / 1.5◦ while in the case of an symmetric prism δε / 7◦ would

be sufficient, to avoid the discussed fringes within the beam height. The

influence of such a rotation on the measured phase shift has to be analyzed

accordingly.

Figure 6.10: (a) An angle α between two beams leads to a horizontal

phase pattern (b) Asymmetric rotation of one prism as a source of such

an angle.

• A not perfect compensation within a prism set might additionally result in

beam deflections relative to the lattice planes of successive lamellas with

an accompanying phase shift and result on the visibility if the deflection

has a component in the scattering plane. As the phase shifts are of the

order 1◦ for δθ = 0.0001′′, accurate compensation within one prism set is

5During a rotation of a prism set around the beam axis the phase pattern shows also an
according angle. This has been explicitly tested during the stepwise rotation of a 1.9◦ Al-wedge
in one of the interferometer paths. However the fringe visibility decreases due to the additional
deflection component in the scattering plane, which reduces the overall visibility.
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required. For 2.72Å and a silicon prism with 30◦ apex angle for example a

misalignment of the order of 1′ with respect to a rotation around the beam

axis would yield such an effect.

• A shift ∆ of one beam path relative to the other (Fig. 6.11) results in a

decrease of the visibility according to the related coherence length (chapter

8). Such a shift in vertical direction might occur from unequal prism sep-

aration distances in the two beam paths or in longitudinal direction by an

unequal thickness of the whole prism set due to a translation of one prism

vertically relative to another (Fig. 8.10).

Figure 6.11: (a) A displacement ∆ between two beam paths in an in-

terferometer reduces the coherence function according to Γ(∆). (b) a

difference of ∆x between the two beam paths leads to a vertical displace-

ment between the two beams.

6.2.1 Preparation of silicon prisms

As silicon is well established in neutron interferometry, we decided to prepare

Si-prisms at our institute.

Figure 6.12: Geometry of the cut perfect crystal silicon prisms.
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In a first attempt6 twelve symmetric 20◦ (Fig. 6.12 (a)) have been cut. Fur-

thermore four additional 140◦ prisms7 for wavelength separation in front of the

interferometer have been cut. As raw material a 20cm long oddment of the four

inch crystal used for the interferometer has been used. To avoid the vicinity of

reflecting lattice planes during the experiment, the crystal has been orientated

accordingly employing an X-ray-Laue camera. The same technique has been

applied to check this symmetry for several orientations of the finished prisms,

as these are rotated through the neutron beam. The cutting of the prisms has

been performed using the grinding machine at our institute employing a bronze-

bonded diamond wheel. The same machine has in the past also been used for

cutting most of the interferometers. Using this machine plan parallel serrations

can be performed. Careful rigging of the machine allows distance errors between

the serrations below approximately 3µm. The angle between serrations can be

adjusted using a goniometer with an accuracy of 1′. Nevertheless during the pro-

cess of prism cutting only an accuracy of approximately 3′ could be guaranteed.

For the cutting process the crystal has to be glued on a Tampax-glass plate that

is mounted on a steel plate for fastening on the grinding machine. For the gluing

an epoxy resin8 at 120◦ melting temperature has been used. The gluing process

is extremely important for the stability of the crystal and thereby the achieved

cutting accuracy and surface quality.

Figure 6.13: (a) one of the used ingot pieces after preliminary cuttings

(b) 140◦ prisms after final separating cut. By a final separating cut of

the two small pieces the 20◦ prisms are obtained.

The cutting process is very time consuming as many serrations with interme-

6In this part Robert Farthofer participated for his diploma thesis[57].
7Two 140◦ prisms had been already cut earlier for the instrument S18.
8Vinnapas B60, Wacker Polymer Systems
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diate changing of the crystal position and thereby gluing are necessary to obtain

the final prisms. For high surface quality a final cutting speed of approximately

4mm/min has been employed. Unfortunately problems with unbalance of the

diamond cutting wheel have been encountered probably due to a recent reinstal-

lation of the grinding machine. Thereby some of the prisms have been damaged.

Moreover the accuracy of gluing with respect to the orthogonality between the

prism sides and the cutting wheel has not been optimal. This resulted in a thick-

ness gradient over the prism width [57]. Furthermore the course of cutting has

not been optimal, especially concerning the insufficient chamfer of the 20◦ prism

edge and unequal thicknesses between the single prisms.

Etching of prisms

As the prisms are not used as beam splitters, the removal of the damaged sur-

face structure after the cutting process is of minor importance in comparison to

the interferometer lamellas. On the other hand silicon is rather brittle after the

cutting, which is especially a problem at the edges of the prisms. This brittle-

ness can be significantly reduced by etching the surface. The etching process

is similar to the etching of the interferometer, however some specifics shall be

mentioned here. As after an etching of approximately 50 − 100µm the silicon

surface becomes reflective to light, this can in principle be used for the control of

prism justage by an autocollimator or a Laser reflection. In this first approach

we however neglected the effect of the appearance of a convex-shaped thickness

gradient induced by etching, which has a severe influence on phase measurements.

Furthermore after the etching process it turned out that the etching speed for

the prisms had been severely underestimated by the usual rate of 0.3µm/min

(chapt. 5). In fact the etching rate had been approximately 0.6µm/min for the

20◦ prisms and 0.5µm/min for the simultaneously etched 140◦ prisms. The reason

is the much smaller structure of the prisms in comparison to the interferometer,

combined with the need to move the prisms in the utilized etching vessel more

than usual. This leads to a strongly increased acid flow, which increases the

etching speed. Altogether, instead of the aspired 50µm the 20◦ prisms had been

etched 100µm. By the resulting curved prism surface and together with the in-

sufficient cutting accuracy the prisms have proven to be useless for precise phase

measurements. However they could be used for the measurement of the vertical

coherence function (chapter 8).
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Second prism set

In a second attempt 30◦ prisms (Fig.6.12 (b), Fig. 6.14) have been cut. Together

with the enlarged apex angle this time orthogonal prism design has been used,

as the procedure of cutting has been simplified thereby. Furthermore the gluing

on the Tampax-glass plate has been significantly optimized, resulting in a set9

of four prisms with identical apex angle and negligible thickness gradient. This

time the etching depth has been reduced to 8(0.5)µm, the etching speed however

also here was approximately 0.5µm/min.

Figure 6.14: Two finished sets of orthogonal 30◦ silicon prisms.

Additionally several large silicon phase shifters for S18 have been prepared in

this process.

9Altogether two sets have been cut, to have a backup if a prism should have been damaged
during the cutting process or later.



Chapter 7

Laue phase measurement

7.1 Experiment

7.1.1 Idea of the experiment

As suggested in chapt. 3, 4 the main approach of our experiment consists in a

measurement of a phase shift obtained by beam deflection relative to one lamella

while a second one in the other beam path remains in exact Bragg condition

(Fig. 3.12). As numerical calculations (chapt. 4) show a strong reduction of the

visibility already for small beam deflections, one is here limited to the immediate

vicinity of Bragg. Alternatively one could also measure over a larger range of δθ

in a larger distance to Bragg (Fig. 4.5). Nevertheless there are several reasons

for choosing the region around Bragg:

• The vicinity of the Bragg condition has not even qualitatively been reached.

• At Bragg the phase shift shows the strongest angular dependence and

thereby sensitivity.

• The study of the strong effect on the coherence properties there is another

interesting aspect.

• The possibility to observe Pendellösung structures.

• Starting in the well defined Bragg condition reduces uncertainties.

• Large beam deflections δθ > 1′′ by prisms are difficult to achieve.

• The stronger sensitivity to higher order reflections around Bragg. For these

large beam deflections due to prism refraction would be even more chal-

lenging.

127
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For the actual measurement four prisms are needed as shown in Fig. 7.1. One

prism P3 deflects the beam relative to lamella L2, whereas P4 realigns the beam

back to avoid further phase shifts at successive lamellas. In the other beam path

one needs an identical set P1 and P2 to compensate for the beam displacement

by the first prism set.

Figure 7.1: Sketch of the main measurement: the prism set P3 - P4

creates a beam deflection relative to lamella L2. The obtained phase

shift is measured relative to lamella L1 in Bragg position.

7.1.2 Experimental devices

Concerning the rotation of the prisms an approach has been chosen, where both

prism sets are rotated simultaneously via one single axis of rotation. Thereby the

realization with only one motor driven goniometer is relatively easy and identical

rotation in both beam paths can be guaranteed. On the other hand this has

the disadvantage, that the axis of rotation is several centimeters away from the

beam and thereby the prisms move through the beam (Fig. 7.2). Hence there

are several issues:

• As one illuminates different prism areas, thickness gradients or varying

surface quality will lead to unwanted variations. of the phase shift and/or

visibility

• The angle of rotation is limited

• To guarantee a sufficient angle of rotation a certain prism height and width

is required. A larger prism height leads inevitably to larger prism thickness

with higher requirements on the material.
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Figure 7.2: View normal to the beam: The prisms move through the

neutron beam during the rotation by an angle α. For the beam cross

section the beam spreading by the Borrmann fan and the vertical diver-

gence have to be considered. Hence the beam cross sections are unequal

in the two beam paths.

To avoid the stated problems one could also choose the axis of rotation for

both beam paths separately centered to each beam. Hence the whole range of

rotation α = 0◦ → 90◦ would be accessible, and prisms with smaller apex angle

and/or height could be used, significantly reducing the problem caused by large

thicknesses due to material inhomogeneities. Therefore special goniometers with

large aperture around the center of rotation to hold the single prisms would have

to be used. Nevertheless precise adjustment of the prisms would be complicated

thereby, thus for the beginning the more simple approach has been taken. The

actual geometry of the axis of rotation relative to the prisms has been optimized

according to the planned beam and lamella geometry and prism size.

To take into account intrinsic phase shifts that occur simply by the rotation

of the prisms through the beam, a measurement as shown in Fig. 7.3 is required.

The total phase shift is then the difference between the phase shifts measured by

the configurations Fig. 7.3 and Fig. 7.1.

For the realization of the required operations - together with the measurement

of the vertical coherence function discussed in section 8 - a special prism holding

device (Fig. 7.4) has been constructed together with the machine shop of the

atomic institute. This device allows the separation of the single prisms as needed

for the measurement of the vertical coherence function and a rotation of both sets

relative to the beam. As the motor drives1 are quite close to the interferometer

lamellas, especially small, low power motor drives have been ordered to avoid

1Linear Motor drive: M-111.1DG, goniometer: M-116. DG, both using a DC-motor and
installed at C-809.40 control. All from PI Physik instruments GmbH & Co. KG, Germany.
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Figure 7.3: Measurement of a possible intrinsic phase shift.

thermal gradients. Moreover the whole holding device is thermally isolated from

the robot that is used for positioning relative to the interferometer.

Prisms

For the measurements several sets of prisms have been used

• self fabricated 30◦ orthogonal silicon prisms (6.2.1)

• 25◦ and 15◦ Al99.5 prisms in connected design (Fig. 6.8), which have how-

ever shown a significant reduction of the visibility (6.1.2)

• 25◦ AlMgSi0.5 prisms in connected design

The geometry of the connected prism sets has been measured by the same coor-

dinate measurement machine used for the interferometer (Fig. 5.8), where also

deformation effects via the mounting by screws have been studied. The precision

of the apex angle turned out to be better than 1′ while thickness gradients over

the prism surfaces were at least below 5µm resulting in very good geometry. The

single prisms had to be fixed on the holding device by gluing2. This has been

performed using a mask to define the plane parallelism of the prism surfaces and

the prism faces. Finally it is also important to ensure precise parallelism between

the two sets in the two beam paths.

2Concerning the small glued surface problems with the stability of the glue have been en-
countered. Additionally glue on the illuminated surfaces - which easily happens with thin fluid
glues - has to be avoided. The best results for aluminium and silicon - after proper cleaning of
the surfaces - have been obtained by the two-component DELO-DUOPOX 01 rapid, 2K-Epoxy.
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Figure 7.4: Prism holding device. The second goniometer is for adjusting

the angle of the rotation axis parallel to the beam path.

Measurement method

For precise phase measurements parallel instead of serial measurement of interfer-

ograms is required. Thereby at each phase shifter position a measurement with

and without sample is performed. Thus phase drifts of the interferometer caused

by the environment cancel. This method is sometimes also referred to as ”in-

out”-measurement. In our case this would mean, that interferograms with and

without prisms are measured in parallel. Moving the comparatively large prism

holding device in and out of the beam paths constitutes a not negligible source

of disturbance though. Furthermore the implemented course of motions has to

be extremely accurate and reliable, otherwise the interferometer can be damaged

easily. Hence for the main measurement an optimized approach has been cho-

sen. The prism holding device remained always in the ”in”-position, and parallel

measurements have been performed between the α = 0 position and the desired

α values. Nevertheless also in this case accurate alignment of the whole holding

device and a detailed test of the prism rotation is required, as the prisms are

rather close to the interferometer lamellas. This method is not applicable for the

measurements discussed in 7.2.5. Here one needs an absolute reference for the

phase shift. Consequently it is at least necessary to perform one measurement

where the prisms are moved in and out of the beam paths.
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7.2 Results

The measurements have been performed at the instrument S18, ILL. Unfortu-

nately the useable measurement time and precision have been severely limited

by the visibility problems discussed in 5.2.2. If possible the measurements have

been employed by two different prism sets to get rid of systematic effects. In the

following the beam deflection is calculated from the rotation angle via Eq. 3.26

and the according prism refraction (chapter 6).

Due to the good geometry of the combined prism sets the intrinsic phase shifts

turned out to be almost negligible, whereas in the case of the silicon prisms a

not negligible correction remained. Also a slight variation of the visibility was

detected. For the results in the following the visibility has been normalized to

these measured curves. In general the precision of the visibility and phase results

is given by both measurements (Fig. 7.1) and (Fig. 7.3). Consequently the error

bars in the following show some variations because some of the measurements

could not be finished to the desired precision.

The measurements are compared with numerical calculations as described in

chapter 4 where the exact interferometer geometry according to Fig. 5.9 has been

implemented.

7.2.1 Visibility

(220) reflection

Fig. 7.5 (a) shows the measured visibility by two prism sets for the (220) case

and a Gaussian fit through both data sets. For both the symmetry of the curve

is shifted relative to the expected zero position. Although the initial prism posi-

tion can only be aligned approximately to the zero position, determined by the

lattice planes of the interferometer, this shift is too large to be explained by this

uncertainty. The shift is approximately equal for both prism sets and amounts

to

δθshift = −0.0080(4)′′ (7.1)

whereas it is different concerning the rotation angle α:

αshift, Si = −1.7(1)◦

αshift, Al = −2.0(1)◦ (7.2)

This is another hint, that the shift is not due to the uncertainty of the zero po-

sition. A discussion of possible reasons for this shift will be given in subsection
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Figure 7.5: Visibility at the (220) reflection measured by two prism sets.

(a) compared with a Gaussian fit (b) normalized relative to the maximum

and compared with an accordingly shifted numerical calculation for σθ =

1.25′′.

7.2.4. By this shift the visibility in fact increases to a maximum, with approx-

imately 15% higher visibility than in the zero position. The most interesting

aspect is the width of this visibility curve with

δθFWHM = 0.037(1)′′ (7.3)

which experimentally demonstrates the strong effect of the Laue phase shifts on

the coherence. In Fig. 7.5 (b) the measurement is normalized to the maximum

value of the fitted curve and compared with the calculated curve3, that is shifted

accordingly. Obviously the calculations give a good estimation for the visibility

reduction.

(440) reflection

For the (440) reflection the measurement for only one prism set (25◦ aluminium

prisms) could be finished properly, however a few points measured with 15◦ alu-

minium prisms have been in good agreement.

Similar to the (220) reflection a shift relative to the expected zero position has

been detected (Fig. 7.6 (a)). Here the shift amounted to

δθshift = −0.0045(3)′′

αshift = −4.7(2)◦ (7.4)

3As shown in chapter 4 the visibility depends only marginally on the beam divergence. Here
the beam divergence with the best fit to the phase values has been chosen.
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Figure 7.6: Visibility at the (440) reflection: (a) compared with a Gaus-

sian fit (b) normalized relative to the maximum and compared with an

accordingly shifted numerical calculation for σθ = 1.25′′.

Whereas with respect to δθ the shift is roughly half the one in the case of the

(220) reflection, the α position is more than twice as large. This is another

strong argument against a dependence on the absolute prism position. Here the

shift results in an increase of approximately 10% from the zero position to the

maximum of the visibility curve. The width of the visibility curve is

δθFWHM = 0.018(1)′′ (7.5)

which is half the width of the (220) curve and demonstrates the much stronger

phase averaging in the (440) case. Finally Fig. 7.6 (b) gives a comparison with

the calculated curve which again shows good agreement.

7.2.2 Phase shift

(220) reflection

After correcting for the intrinsic phase shift good agreement between the results

for both prism sets could be achieved (Fig. 7.7 (a)). Interestingly also the phase

curve is not symmetric around the expected position but shows exactly the same

shift as found for the visibility curve (7.1). This shift is especially characterized

by the asymmetric appearance of a wiggled structure stemming from the Pen-

dellösung structures. The observation of these structures in the measurement is

an extremely interesting fact. Consequently for the phase shift an averaging over

these structures as in principle done by Eq. 2.37 is not sufficient, to explain the

details of the phase curve. The shift detected equally in the phase as the visibility
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Figure 7.7: Phase shift at the (220) reflection (a) measurements for two

prism sets (b) compared with the plane wave solution and calculated

values including the best fitting beam divergence.

measurements is a good justification, for also shifting here the calculated curves

by the same value (Fig. 7.7(b)). After this shift one finds exactly the same

symmetry within calculated and measured phase curves. Furthermore for the

best fitting divergence (σ = 1.25′′) one finds a good fit even to the Pendellösung

structures. Moreover it is obvious that a simple plane wave model would signif-

icantly overrate the slope of the phase shift. Larger beam divergences than the

best fit would underestimate the slope though. Consequently the phase shift can

not be explained by the limit to large beam divergences. In fact the best fitting

divergence is close to the half-width of the Bragg reflection curve (σ ≈ 1.15′′) of

the perfect crystal monochromator. Calculations comparing a phase averaging

according to Eq. 4.1 with σ = 1.25′′ and on the other hand applying a Bragg

reflection curve and taking the integration boundaries to infinity in fact show

a very good match. However in this region of beam divergence the phase shift

is quite sensitive to small changes of the beam divergence (Fig. 4.9) and beam

misalignments (Fig. 4.10). Despite the phase averaging the measured angular

sensitivity around the Bragg condition

φ(δθ)

δθ

∣∣∣∣
δθ=0

≈ 6◦

0.001′′
(7.6)

is still remarkable.

(440) reflection

For the (440) reflection only one measurement could be finished satisfactorily.
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Figure 7.8: Phase shift at the (440) reflection compared with the best fit-

ting beam divergence and half of this value which is close to the expected

width resulting from the monochromator.

Also here one finds the same shift (7.4) for the phase curve as for the visibility.

The calculated values are adjusted accordingly. Moreover there are Pendellösung

structures visible in the measured curve and it is possible to find a good fit for the

measured values (σθ = 0.5′′). However this divergence is approximately twice as

large as the expected divergence from the monochromator (σθ ≈ 0.29′′). Taking

this divergence, the slope of the phase curve would be significantly overrated.

In fact the best fitting beam divergence is already close to the limit of large

divergences (Fig. 4.9). This is astonishing due to the good agreement with the

monochromator width for the (220) reflection. One problem of the (440) reflection

constitutes the strongly reduced peak width in comparison to the (220) reflection.

Hence there is a larger sensitivity to small misalignments between monochroma-

tor and interferometer. In fact during all measurements non-systematic drifts4

of the piezo used for the adjustment of the rocking position have been observed.

Especially concerning the higher order peaks it turned out to be difficult to main-

tain the position in the peak maximum. Moreover due to the finite resolution of

the rocking axis the peak maximum can be only resolved to approximately 0.2′′5.

This uncertainty is of similar order than the beam divergence of the monochro-

mator. As shown in Fig. 4.10 misalignments of this order have a similar effect

4With strong variations the order 0.1− 0.5′′ on average over one hour.
5A higher resolution can be chosen but the piezo will not move reliably then.
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than an increased beam divergence of approximately 2σθ. Hence the stability

and resolution of the rocking position is a likely explanation for the discrepancy,

although a final conclusion on this can not be made and should be clarified in

future measurements. Another open question is the influence of slight deviations

from the perfect alignment between monochromator and interferometer according

to the so called ρ axis (axis normal to the lamella surface).

Despite the relatively large effective beam divergence the angular sensitivity

still amounts to
φ(δθ)

δθ

∣∣∣∣
δθ=0

≈ 8.5◦

0.001′′
(7.7)

and is thereby larger than in the (220) case. The fact that the phase shift around

Bragg is twice as large as in the (220) case still becomes obvious from the correct

description of the visibilities.

7.2.3 Studying the beam divergence

Hitherto the perfect crystal monochromator has been identified as the main source

for the beam divergence incident on the interferometer. However it would be de-

sirable to obtain more experimental insight into the influence of the beam diver-

gence on the phase shift. Hence for future measurements the following attempts

could be of interest

• In the case of a mosaic crystal as monochromator as employed at NIST, the

beam divergence is much larger than the Darwin width. Consequently the

phase shift should approach the limit of large beam divergences (Fig. 4.9)

and should show a smaller slope than with our setup. Despite the reduced

angular sensitivity this has the advantage of a strongly reduced uncertainty

concerning the accurate modeling of the beam divergence and the exact

rocking position.

• To increase the angular sensitivity and moreover study the case of small

beam divergences, one can place a narrow absorbing entrance slit on the

front and back side of the beam splitter lamella [59] of the interferometer.

Due to the strong angle amplification one can thereby select a certain beam

divergence that is smaller than the Darwin width. Another possibility could

be to post-select small divergences after the analyzer lamella by a similar

technique and thereby obtain the visibility and phase results for small di-

vergences. Nevertheless in both approaches the intensity is dramatically

reduced.
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• One can study the influence of the beam divergence by placing a narrow

spaced lattice with vertical orientation in front the interferometer. Thereby

the incoming beam should be diffracted, corresponding to a slightly enlarged

beam divergence. Hence the slope of the measured phase shift should de-

crease accordingly.

In general the dependence of the phase shift on the rocking position and ad-

justment of the ρ axis between interferometer and monochromator should be

measured systematically. This would be extremely time-consuming though. In

general a better resolution and higher stability of the rocking axis is desirable.

7.2.4 Shift of phase and visibility curves

There remains the problem of the discussed shift of the phase and visibility curves.

As already stated the shift cannot be addressed to an absolute rotation angle of

the prisms as different angles have been observed for different reflections and also

different prism sets. Although a slight offset due to the unknown zero position of

the prisms can not be excluded, we found∣∣δθshift,(220)

∣∣ = 0.0080(4)′′∣∣δθshift,(440)

∣∣ = 0.0045(3)′′ (7.8)

So far we have analyzed the following effects resulting from interferometer geom-

etry and the prism configuration.

• The shift looks rather similar to the shift arising from the case when the

lattice planes are not orthogonal to the lamella surface (section 2.2.3). This

kind of shift is proportional to 1/m2 (Eq. 2.77) though and not to 1/m as

found in our measurements. Furthermore the measured shift for the (220)

case would amount to γ ≈ 0.5◦ which is the precision of the usually oriented

interferometer. In our case the precision has been a factor of hundred better

and the shift would be below δθ = 10−4”, thus not resolvable. Hence this

cannot be the source of the shift.

• One could think of this shift as a result of the not perfect interferometer

geometry. For example one could imagine that in the case of a slightly

defocused interferometer, one compensates for this by the beam deflection

relative to one lamella, which to some extent also constitutes a defocusing in

ideal geometry (compare section 3.2.1). However the exact interferometer

geometry has been implemented for the calculations, but both visibility and

phase shift remained symmetric. Moreover several variations of the actual
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as well as of the ideal geometry including unequal lamella thicknesses6 and

distances have been studied. None of these geometries has shown a shift

though. As an example the visibility and phase shift in the case of a simple

defocused interferometer - distance to the analyzer lamella increased by 4µm

- is shown in Fig. 7.9. Both curves are perfectly symmetric with respect to

the Bragg angle. Anyhow the non ideal interferometer geometry is a rather

Figure 7.9: Calculated visibility and phase shift of setup Fig. 7.1 for a

defocused interferometer (distance to the analyzer lamella increased by

4µm).

unlikely cause for the discussed shift. The calculated visibilities for the

present geometry (Tab. 5.5) are too high to explain the obtained increase

of the visibilities (15% for the (220) and 10% for the (440) reflection).

• The smaller shift in the case of the (440) reflection might be addressed to

the decreased prism refraction which is however ∝ λ2. In fact there is an

effect stemming from the usage of prisms. So far we have only regarded the

contribution into the scattering plane δeff = δ sinα. This is due to the fact,

that to first order the exact Bragg condition is only violated in this plane.

However to second order one in principle also violates the Bragg condition

by a deflection normal to this plane. One can think of this as a violation of

the Bragg condition normal to the lattice vector which is according to the

cosine function second order in δθ while the usually regarded violation is

6Here special attention has been given to the effect of unequal thickness of the two additional
lamellas, although they have been confirmed to be equally thick within the known precision of
1µm (Fig. 5.9). Besides the numerical simulations it can be shown that the obtained phase
distribution according to Fig. 3.9 is symmetric with respect to δθ = 0 and leads to a reduction
of the visibility.



140 CHAPTER 7. LAUE PHASE MEASUREMENT

parallel to the lattice vector and thereby first order in δθ. Another viewpoint

is the change of the wavelength while maintaining the Bragg condition. The

wave vector here is projected to the scattering plane via

keff = k cos δ ≈ k

(
1− δ2

2

)
(7.9)

whereby the wavelength is changed to

λeff ≈ λ

(
1 +

δ2

2

)
(7.10)

The difference between the Bragg angle between λeff and λ thus amounts

to

sin θB,eff − sin θB =
1

2d
(λeff − λ) ≈ 1

2d
λ
δ2

2
= sin θB

δ2

2
(7.11)

As δ2

2
< 10−12 for the used prisms - in the case of the (220) reflection - the

according shift is of the order 10−7”, hence much smaller than the measured

effect.

Of course as explanation could remain some kind of crystal imperfection or

strain, but this is almost impossible to account for. Additionally one would

expect detectable Moire patterns, which we didn’t find with our position sensitive

detector.

Coriolis force and gravitational interaction

Recently D. Petrascheck suggested the Coriolis force by the earth rotation ω =

7.29 · 10−5s−1 acting along the neutron beam path as cause of the detected shift.

This can in general lead to beam deflections relative to the interferometer lamel-

las. The Coriolis force is given by

Fcor = 2mnv × ω (7.12)

The relevant deflection component is parallel to the lattice vector H and yields

FH,cor = 2mnv · ω · sin θ · cos θB (7.13)

Here θ is the angle between ω and v and is determined by the colatitude angle

(Grenoble: 45.18◦) and the exact interferometer orientation at 45◦ Bragg angle

(47◦ to the east from the north direction). During a time of flight ∆t = L/v the

momentum component parallel to the lattice vector changes by

∆pH = ~∆kH = FH∆t = 2mnL · ω · sin θ · cos θB (7.14)
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It is here interesting to note that the change in momentum ∆pH is independent

of the neutron velocity as the Coriolis force depends itself on the velocity. The

relevant beam deflection can then be calculated via

∆δθ =
∆kH
k

cos θB (7.15)

An important observation here is that

∆δθCoriolis ∝
1

m
(7.16)

with m the order of reflection. This is just what has been found in the experiment.

Moreover if the lattice planes are tilted by an angle α relative to the vertical

direction the beam deflection by the gravitational force of the earth results also

in a beam deflection relative to the lattice planes. The relevant component of the

gravitational force is

FH,grav = m · g · sinα (7.17)

As here the force is independent of the velocity, the resulting beam deflection is

∆δθgrav ∝
1

m2
(7.18)

which is not what we found in the experiment. However the potential angle α

has not been determined during our measurements and a slight correction from

gravitational beam deflection might remain. Here it is interesting to note that

tilts of the order of 1◦ result in similar beam deflections than caused by the

Coriolis force.

Both effects have in common that they are proportional to the path length

of the neutron L. Consequently the larger the distance of lamellas to the beam

splitter, the larger they are affected by the Coriolis and gravitational force. All

things considered the beam deflection relative to each lamella is different, which is

equivalent to the case that all six lamellas would be tilted against each other. This

together with the non ideal interferometer geometry constitutes the most general

problem of a six lamella interferometer. As neutron interferometers are rather

sensitive to beam deflections this also implies, that the Coriolis force and/or

the gravitational force reduce the visibility of an interferometer according to its

path length L. Hence there seems to be a limit for even larger interferometers.

However one could try to compensate for the resulting beam deflections by using

appropriate wedges. This could be an interesting method for future measurements

with large interferometers. Indeed our method corresponds to some extent to a

compensation by wedges, as we improve the visibility by beam deflection relative

to one lamella. Implementing all resulting deflections from the Coriolis force
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into the interferometer simulation indeed shows a shift, which is approximately

half of the measured shift. A more accurate investigation should be aimed for

in upcoming measurements, when also the exact tilt of the lattice planes should

be determined. Another interesting observation is that deflecting the beam with

respect to L1 instead of L2 (Fig. 7.1) should yield a shift of equal magnitude

but opposite sign. Unfortunately this measurement configuration has not been

possible during the available measurement time.

7.2.5 An approach beyond Bragg

By the hitherto approach one is limited to the close vicinity of Bragg due to the

rapid destruction of the visibility. On the other hand starting off Bragg one is

limited to the region several arc seconds off Bragg (section 4.2). To access the

region in between one has to compensate the arising phase distribution in one

beam path to some extent in the other. This can be performed by rotating both

crystal lamellas or alternatively deflect the beam in front of both (Fig. 7.10).

Figure 7.10: Equal beam deflection in front of both sample lamellas.

In this simple experiment one shifts the phase curves in both beam paths by

exactly the same δθ (Fig. 3.8) and creates the same phase distribution in both

beam paths

∆φ(δθ, δθ∗) = φLaue, I(δθ + δθ∗)− φLaue, II(δθ + δθ∗) = 0 (7.19)

Hence the relative phase shift for all plane wave components δθ∗ is zero. Moreover

the manipulation of the beam path intensities is equal whereby the visibility is

equal to the visibility of the undisturbed interferometer. With respect to phase

shift and coherence this approach is similar to applying equal spatial shifts by

phase shifters in both beam paths. The difference here is that instead of a phase
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shift linear proportional to the wavelength, one here deals with a strongly non-

linear phase shift that is manipulated by its angular sensitivity rather than by a

spatial shift.

Figure 7.11: Equal beam deflection δθ in front of both sample lamellas

(Fig. 7.10) using the (220) reflection: (a) normalized visibility (b) phase

shift.

The accuracy of the results is rather poor due to the especially pronounced

stability problems of the interferometer during these measurements. Anyhow one

finds the expected constancy of phase shift and visibility. The outcome of this

measurement is to some extent trivial, but constitutes the basis for the following

measurements. Moreover the manipulation on the neutron beam is rather com-

plex, as strong modifications to phase, beam geometry and beam intensities7 are

generated. It demonstrates that the process of dynamical diffraction maintains

the coherence of the neutron beam, a fact that is however already incorporated

in the functionality of the interferometer itself.

Differential rotation

To measure a phase shift as a function of the deflection angle, one has to apply

an offset to one of the beam deflections: δθ in one beam path, δθ+δ in the other:

∆φ(δ, δθ, δθ∗) = φLaue, I(δθ + δ + δθ∗)− φLaue, II(δθ + δθ∗) (7.20)

This idea is related to a measurement of the slope of the phase function, which

would be only true for a single plane wave though. In principle the whole complex

7The intensity in the output beams increases by almost forty percent over the displayed
range in Fig. 7.11.
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system of interferometer and beam divergence creates a special phase distribution

that is measured as a function of δθ. In praxis this measurement is carried out

by two prism sets slightly tilted (δα)8 against each other, that are rotated by an

angle α together (Fig. 7.12):

α1 = α

α2 = α + δα (7.21)

Figure 7.12: Measurement method where one prism set is rotated by

α1 = α while in the other beam path the set is rotated slightly shifted

α2 = α + δα.

For this experiment of course a measurement of the intrinsic phase analogous

to Fig. 7.3 is required. Fig. 7.13 compares the measured visibilities and phase

shifts with calculated values. As in the phase measurements for beam deflection

relative to one lamella only (Fig. 7.7), one finds the best fitting beam divergence

to be σθ ≈ 1.25′′. Even though the large error bars due to visibility and stability

problems are quite large, the central peak in the calculated curves seems to come

out in the measurements. Beyond that the accuracy is too poor for a comparison

with the damped oscillatory behavior found in the calculations. It is important

to note, that the slight shift of the central peak is not related to the asymmetry

of the original phase measurement (section 7.2.4) but is due to the relative prism

rotation9. Phase shift and visibility thereby reach their maximum when both sets

8This method does not accurately correspond to constant δ, due to the non-linearity of
the sine function: sin(α + δα) − sin(α) = sin(δα) + (cos(δα) − 1) · α − sin(δα)

2 α2 + O(α3) =
δθ(1− α2

2 ) + (
√

1− δθ2 − 1) · α+O(α3) thereby one obtains corrections that gain importance
with increasing α and δα. Either one accounts for this in the evaluation or the relative tilt δα
is adjusted accordingly.

9Upcoming measurements with higher precision should reveal if this is really the case if the
influence of the Coriolis force is taken into account.
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lead to a perfect antisymmetric deflection: δ/2 and −δ/2 respectively. The phase

offset of approximately 55◦ results from the relative beam deflection δ ≈ 0.009′′

(compare Fig. 7.8).

Figure 7.13: Measured and calculated visibility and phase shifts by the

setup Fig. 7.12 for the (220) reflection.

So far the range of δθ has not been extended in comparison to the original

measurement method 7.1. This was due to the relatively small prism refraction

and the geometry of prism rotation. Anyhow it has been shown qualitatively

that one can perform a phase measurement around Bragg without (significant)

visibility reduction. Hence this approach should be applicable to a larger range

of δθ.

7.3 Outlook: Precision measurements?

One of the motivations to study the Laue phase might of course be S. A. Werner’s

proposal to use it for a precision measurement of the neutron electron scatter-

ing length (subsection 2.2.2). Might this or another precision measurement be

possible? We first summarize some of the aspects discussed in chapt. 2, 3:

• The sensitivity to the neutron-electron scattering length is on average the

largest around the Darwin width of the reflection.

• This sensitivity reduces for higher order reflections, thus the (220) reflection

would be most sensitive.

• Increasing the crystal thickness and the Bragg angle also increases the phase

sensitivity for bne. However increased phase sensitivity is counteracted by

reduced visibility over a larger range of δθ.
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At this point it is important to note that further studies are required. The

main idea of this work consisted in a fundamental investigation of the principal

phase properties, effects on the visibility and possible experimental approaches.

This constitutes the most important stage before even thinking about a precision

measurement. Hence the fairest answer to this question would probably be: It is

still to early, to answer this question.

Nevertheless some comments on this shall be given in the following: We have

already discussed several challenges during the treatment of a single plane wave

(subsection 2.2.2). A fundamental problem - independent of the concrete setup

- consisted in the present uncertainty of the Debye Waller factor resulting in a

larger uncertainty of the atomic scattering length than by the neutron electron

scattering length. However using several reflections might help in measuring both

effects. Alternatively one could measure the Debye Waller factor by a precision

measurement of the Laue phase in the X-ray case, employing a similar X-ray

setup. This would additionally have the advantage of higher precision accord-

ing to higher intensities and visibilities. Provided that the required precision of

the Debye Waller factor has been gained, what sensitivity remains for divergent

beams where one takes the average over many plane waves?

In the following we still neglect variations of the crystal thickness and the

wavelength and fix these values as well as the Debye Waller factor. Fig. 7.14

shows the calculated phase difference

∆φσθ(δθ) = φσθ(bne(1), δθ)− φσθ(bne(2), δθ) (7.22)

for the method shown in Fig. 7.1 and the values given in Eq. 2.57. There remains

still some δθ dependent phase sensitivity, which would even increase further for

larger δθ. There measurements due to the strongly reduced visibility would be

useless though. It is obvious that this phase difference depends significantly on

the thickness and Bragg angle.

Hence one could aim for an optimal combination of crystal thickness and Bragg

angle. Nevertheless to achieve the required phase accuracy also the knowledge of

the absolute value of δθ has to be within 10−4”. Moreover the beam divergence for

modeling should be known within 10−2” and an equivalent effect concerning the

position in the rocking curve has to be considered. Otherwise the absolute phase

uncertainty due to these effects would be as large as the phase difference by the

present uncertainty in the neutron electron scattering length. The problem of the

absolute beam divergence and/or rocking position could probably be significantly

reduced using a mosaic crystal, although also the phase sensitivity is reduced for

larger beam divergences (Fig. 7.14 (c)).
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Figure 7.14: Calculated phase difference 7.22 according to Fig. 7.1 as

a function of δθ for (220) reflection. (a) in dependence of the lamella

thickness (θB = 45◦, σθ = 1.25′′), (b) of the Bragg angle (D = 2.967mm,

σθ = 1.25′′) and (c) of the beam divergence (θB = 45◦, D = 2.967mm).

Similar calculations for the approach discussed in subsection 7.2.5 over a large

range of δθ only reveal phase differences well below 1◦. These phase differences

of course depend on the relative rotation δ. Nevertheless even for relatively large

δ where the visibility would already drop significantly, no satisfying sensitivity

can be achieved.

The third possibility - a measurement far off Bragg - would have the advantage

of reduced dependence on the accurate modeling of the beam divergence, as to

first order already the plane wave solution is a good approximation. However

the obtainable phase difference over the accessible region while maintaining a

reasonable degree of visibility is also here in the order of 0.5◦ (compare Figs. 4.5,

2.13, 4.14, 4.13). At such precision the absolute value (or at least the angular

difference) of δθ has to be known to approximately 0.001′′, as otherwise this
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uncertainty would create larger phase differences. This is not trivial at distances

δθ > 1′′.

The stated phase sensitivities still neglect the distributions arising from the

variation of the crystal thickness and the averaging over the wavelength distri-

bution. The knowledge of these quantities should be in the same order as the

aimed precision of the atomic scattering length (10−4).

Just recently there has been a further proposal [9] showing interest in neutron

interferometric measurements of the Laue phase. This proposal is dedicated to the

investigation of non-Newtonian gravity theories, where one assumes corrections to

the usual 1/r law at short distances described by the effective range λ according

to

V (r) = −GmnM

r
(1 + αGe

−r/λ) (7.23)

where αG is a dimensionless parameter and mn and M are the two interacting

masses. Thereby a further term bG adds to the atomic scattering length

batom = bN + Z[1− f(q)]bne + fG(q)bG (7.24)

with

bG = −2m2
nMGαGλ

2

~2

fG(q) =
1

1 + (qλ)2
(7.25)

Although two unknown scattering lengths bG and bne enter, one could measure

both - or rather measure bne and find constraints for bG - by measuring at differ-

ent q or reflections respectively. This is possible as the form factors f(q) (Eqs.

2.58, 7.25) show a different q dependence. Obviously this proposal neglects the

uncertainty and q dependence of the Debye-Waller factor, but however shows the

broad interest in related phase measurements - ranging from crystal physics to

elementary particle physics.

Anyhow besides experimental problems with the setup10 and the present un-

certainty of the Debye Waller factor it still has to be shown to what principal

accuracy one can measure and model the Laue phase. Therefore more accu-

rate measurements are required. Furthermore one should also give thought to

the modeling, including the detailed reflection curve of the monochromator into

the program. Although preliminary calculations do not show a large effect, for

precision measurements this would be inevitable.

10At the moment the achievable phase precision at S18 can not be guaranteed below 0.5◦ due
to systematic phase drifts and instability of the rocking axis. These problems are even larger
for the employed 45◦ large scale interferometer. The problem of the rocking axis could maybe
be improved by employing a mosaic crystal.
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7.3.1 Future approaches

Figure 7.15: Optimized position for a fixed prism set (prisms 1-4) to

set the sample lamellas to a certain value off Bragg. By an additional

rotatable prism set (prisms 5-8) one changes the overall beam deflection.

Proceeding with Laue phase measurements a detailed study of the influence

of the beam divergence and its manipulation as discussed in subsubsection 7.2.3

should be addressed. Furthermore a new interferometer with significantly thicker

sample lamellas could be interesting due to the higher angular sensitivity. Be-

sides the continuation of the already applied measurement methods the already

discussed measurement further off Bragg could be interesting. Therefore one can

deflect the beams in both paths with a fixed strong deflecting prism set to a

certain value and then modify the overall deflection by additional prisms as up

to now. In the present interferometer one can optimize the position of the fixed

prism set as shown in Fig. 7.15 without loosing place for the rotatable prism set.

It should be noted that the study of phase shifts by dynamical diffraction theory

is also interesting with respect to split crystal interferometers which have so far

only been realized for X-rays[13, 12]. In this case however also phase shifts from

crystal reflection are involved and have to be analyzed. An equivalent setup to

measure at least the sensitivity with respect to the Bragg axis11 is shown in Fig.

7.16.

11 The sensitivity with respect to a rotation around the axis of the incoming beam is quite
large though. Concerning the rotation around the Bragg axis in the suggested setup this would
be equivalent to a rotation of the lamellas around their center. In the real split crystal case
there is one axis of rotation for both lamellas additionally leading to a length change in the
beam paths.
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This measurement would be quite straight forward with the present equipment.

Accompanied by numerical calculations this could reveal interesting information

on the realization of a split crystal interferometer.

Moreover one should give thought to the extraordinary angular sensitivity

of the phase shift which could become interesting for the precise detection and

measurement of beam deflections, similar to the angle amplification effect [59].

Figure 7.16: Simulation of a split interferometer by using two prisms

with equal distance to the recombiner lamella (a). Lattice rotation in

the split interferometer (b), largely exaggerated.



Chapter 8

Vertical coherence function

The investigations for prisms in neutron interferometry and the related adjust-

ment challenges due to the coherence properties of the neutron beam lead to the

idea, to use prisms for the measurement of coherence functions in the interferom-

eter. This is based on the idea, that the neutron beam is deflected by one prism

and can be deflected back to the original direction via another prism. According

to the separation of the two prisms one obtains a spatial shift ∆ of the neutron

beam in one beam path related to the coherence function Γ(∆). This approach

is especially attractive for the measurement of the vertical coherence function

which has so far only been studied once at θB = 30◦ by a different method [23].

8.1 Calculation of the spatial shift

First we have to investigate the direction and magnitude of the spatial shift

generated by a compensated prism set as shown in Fig. 8.1.

Although usually symmetric or orthogonal prisms will be used, the derivation

for the general case shall be given. In general the total spatial shift of a specific

arrangement is a sum of all single spatial shifts of the neutron beam:

∆ =
∑
i

∆i (8.1)

Considering the separated prism set one can think of it as an arrangement of one

large slab defined by the effective thickness L = L0 + x and surface normal ŝ0,

minus the slab defined by the separation of the prisms x and the surface ŝ1. In

general the spatial shift for a slab with surface normal ŝ, thickness D and neutron

151
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Figure 8.1: Compensated prism set and arising vertical shift ∆ by sepa-

rating a distance x.

wave unit vector k̂ is given by1

∆ =
(n− 1)ŝ

(k̂ · ŝ)2
D =

(n− 1)ŝ

(k̂ · ŝ)
Deff (8.3)

where Deff = D

(k̂·ŝ) denotes the effective thickness or path length of the neutron

beam in the slab. Thereby one finds for the spatial shift of the large slab

∆L =
(n− 1)ŝ0

(k̂ · ŝ0)
(L0 + x) (8.4)

whereas the spatial shift of the separation part is

∆x =
(n− 1)ŝ1

(k̂ · ŝ1)
x (8.5)

Thus one obtains for the spatial shift of one separated prism set

∆tot(x) = ∆L −∆x

= (n− 1)

(
L0 + x

(k̂ · ŝ0)
ŝ0 −

x

(k̂ · ŝ1)
ŝ1

)

= (n− 1)

(
L0

ŝ0

(k̂ · ŝ0)
+ x ·

[
ŝ0

(k̂ · ŝ0)
− ŝ1

(k̂ · ŝ1)

])
(8.6)

1In the literature one finds ∆ = (n − 1)ŝD [60, 1] or ∆ = (n−1)ŝ

(k̂·ŝ)
D [61, 62] which however

do not yield the correct phase shift

χ = ∆ · k = (n− 1)kDeff = −NbNλDeff . (8.2)

The sign convention is according to the surface vectors shown in Fig. 8.1.
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The relative spatial shift between the two beam paths, where in one beam path

the prism set is separated by a distance x, while it is joined (x = 0) in the other,

then reads

∆rel(x) = ∆tot,I(x)−∆tot,II(x = 0)

∆rel(x) = (n− 1)x ·

[
ŝ0

(k̂ · ŝ0)
− ŝ1

(k̂ · ŝ1)

]
(8.7)

We now have to evaluate the term2

ŝ0

(k̂ · ŝ0)
− ŝ1

(k̂ · ŝ1)
(8.9)

Using the definitions by Fig. 8.2 one obtains

Figure 8.2: Angle definition for a prism with apex angle β when regarded

as a symmetric prism rotated by an angle ε.

k̂ · ŝ0 = cosα

k̂ · ŝ1 = cos γ (8.10)

2In the case of symmetric prisms this expression immediately simplifies via k̂ · ŝ0 = k̂ · ŝ1 =
cos β2 and ŝ0 − ŝ1 = −2 sin β

2 · ẑ to −2 tan β
2 ẑ and thereby

∆rel(x) = 2x(1− n) · tan
β

2
ẑ = xδẑ (8.8)

where δ is the deflection angle by the prism.
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and

ŝ0 =

(
cosα

sinα

)
ŝ1 =

(
cos γ

sin γ

)
(8.11)

Hence we arrive at

ŝ0

(k̂ · ŝ0)
− ŝ1

(k̂ · ŝ1)
=

(
1

tanα

)
−
(

1

tan γ

)
=

(
0

tanα− tan γ

)
= ẑ · (tanα− tan γ) (8.12)

Consequently the relative spatial shift has only a component in vertical direc-

tion. Any prism can be viewed as a symmetric prism with opening angle β and

asymmetric rotation ε, hence according to Fig. 8.2

α = ε− β

2

γ = ε+
β

2
(8.13)

and
ŝ0

(k̂ · ŝ0)
− ŝ1

(k̂ · ŝ1)
= ẑ ·

[
tan

(
ε− β

2

)
− tan

(
ε+

β

2

)]
(8.14)

After some manipulation one can rewrite this into

ŝ0

(k̂ · ŝ0)
− ŝ1

(k̂ · ŝ1)
= −ẑ ·

[
2

sin β

cos β + cos 2ε

]
(8.15)

Summarizing the relative spatial shift reads

∆rel(x) = 2x · (1− n) · sin β

cos β + cos 2ε
· ẑ = x · δ(β, ε) · ẑ (8.16)

where in the last step Eq. 6.2 has been used. Consequently we found for any

compensated prism set that the obtained spatial shift has only a vertical compo-

nent which is directly given by the prism deflection angle δ and the separation x

between the two prisms. This is just what one would expect.

This setup is relatively easy to realize in comparison to the hitherto applied

method [60, 23]. Interestingly the same idea has independently and parallel been

invented and applied at NIST [42].
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8.2 Vertical momentum distribution

The coherence function is in general related via a Fourier Transform [1] to the

momentum distribution

Γ(∆) =

∫
ρ(k)eik∆d3k (8.17)

Consequently a measurement of the vertical momentum distribution ρz(kz) yields

the vertical coherence function Γ(∆z). For the measurement of the vertical mo-

mentum distribution a horizontal slit of 1 mm height has been placed after the

fore prisms for wavelength separation (App. C).

Figure 8.3: Measurement of the vertical intensity profile using a posi-

tion sensitive detector. Via the interferometer and prisms the different

harmonics can be separated.

If now the position sensitive detector (App. E) is placed into a certain distance

d (Fig. 8.3) one finds according to the geometry given by d and the position z on

the detector the vertical angular3 and thereby the momentum distribution. For

our setup it is essential to place the interferometer between slit and detector to

separate the different harmonics, which would otherwise overlap. This has the

disadvantage of strongly reduced intensity4 and accordingly long measurement

times, but on the other hand there is the possibility to obtain the momentum

distribution for several harmonics, by choosing the according peaks in the rocking

curve.

3In addition the vertical angular divergence gives important information on the increasing
beam height within the interferometer which is especially important in large interferometers as
ours. The increased beam height gives for example further restrictions for the possible rotation
angle in Fig. 7.2.

4To obtain maximum intensity all beam paths have been opened. In order to avoid the
appearance of remaining visibility fringes at the detector, the phase shifter has been rotated
during the whole measurement time to average out all phase effects.
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Figure 8.4: Measured intensity distribution employing the position sen-

sitive detector according to Fig. 8.3.

Fig. 8.4 shows the obtained images5 for the (220) to the (660) reflection,

where the latter constituted the largest challenge concerning the intensity and

peak stability. From the images it is obvious that the vertical extension and

thereby the angular divergence strongly reduces for higher order reflections, which

is shown explicitly in Fig. 8.5. Here the intensities have been integrated over the

horizontal direction.

Figure 8.5: Vertical angular distributions of several harmonics after in-

tegrating over the horizontal direction.

5Actually several images with different vertical positions of the aperture (Fig. 8.3) within
the beam height have been taken. The variations of the momentum distributions within the
beam height were negligible. Due to the employed fore prisms the possible variation of aperture
position was rather limited though.
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Figure 8.6: Vertical momentum distribution for three reflections, fits by

sums of Gaussian functions (a)-(c) and comparison of the fitted distribu-

tion (d).

The (440) intensity distribution is by a factor of two narrower than the (220)

profile. This can be explained by the wavelength-proportional critical angle for

total reflection in the beam guide

αmax = λ

√
NbN
π

(8.18)

Thereby the super mirror beam guide H256 can be identified as the main source

for the vertical beam divergence, as by a collimator within the beam the angular

divergence would be equal for different wavelengths. The thereby calculated

6This neutron guide consists of a complex multilayer coating by nickel-titan with m ≈ 2.
Here m is the factor gained in comparison to using only nickel.
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angles of total reflection amount to

αmax,(220) ≈ 0.54◦

αmax,(440) ≈ 0.27◦

αmax,(660) ≈ 0.18◦ (8.19)

For the (220) and (440) reflection the measured angular distributions are in rea-

sonable agreement with these values. The vertical divergence of the (660) reflec-

tion is slightly smaller than expected. This has to be explained by the non-optimal

guiding behavior in the sub-Angstrom regime.

From this angular distributions one derives the momentum distributions (Fig.

8.6) via kz = k sinα. Contrary to the angular distributions one finds approxi-

mately the same width of the momentum distributions. This is due to the relation

kz,max = k · αmax ∝
2π

λ
λ ≈ const. (8.20)

The momentum distributions are not simple Gaussian distributions but show a

specific structure, which can be fitted by sums of Gaussian distributions though7

(Fig. 8.6). For Gaussian momentum distributions with width δkz the related

coherence function is also Gaussian:

Γ(∆z) = e−
(∆zδkz)2

2 (8.21)

In this case the vertical coherence length ∆c
z is defined when the coherence func-

tion has decayed to a value 1/e. Consequently the coherence length and the

momentum width δkz are directly related via

∆c
z · δkz =

1

2
(8.22)

Hence the coherence length of the (440) and (220) reflection should be approxi-

mately equal whereas the (660) distribution results in a larger coherence length.

In Fig. 8.7 the related coherence functions Γ(∆z) derived via Fourier transforms8

7The (660) reflection has been fitted by a simple Gaussian function although a slightly better
fit could be gained by including another Gaussian function. However at this level of resolution,
the structures are not conclusive and an estimation for the width of the curve is sufficient. Hence
also the derived vertical coherence function is Gaussian, although a more precise measurement
might result in deviations as for the other reflections.

8For the (220) and (440) reflection the Fourier transforms for the fit functions and directly
applied to the data via a Fast-Fourier transform are almost identical. In the (660) case the
result for the Fourier transform of the fit function is shown.
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Figure 8.7: Vertical coherence function derived from the vertical momen-

tum distributions (solid lines) and comparison with visibility measure-

ments using the prism method.

are shown. Despite slight deviations in the coherence functions, the coherence

length for the (220) and (440) reflection is approximately equal and amounts to

∆c
z ≈ 11nm (8.23)

This is in good agreement with the derived coherence length for a different wave-

length (λ = 1.91Å, [23]). The coherence length for the (660) reflection is accord-

ing to the reduced width of the momentum distribution

∆c
z,(660) ≈ 15nm (8.24)

It is also obvious that the deviation from a single Gaussian behavior of the mo-

mentum distributions leads to a non Gaussian form of the coherence function

with a damped reappearance of the visibility at large ∆z.

For the (220) reflection these measurements have been compared with mea-

surements by the prism method. At the time of this experiment9 the first set of

self fabricated silicon prisms with suboptimal geometry have been used, resulting

only in measurements up to approximately ∆c
z. Nevertheless good agreement

9This measurement has been performed together with Robert Farthofer[57] for testing the
usage of prisms in neutron interferometry. Due to the concentration on interferometer testing
and Laue phase measurements there has been no possibility to continue these measurements.
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with the coherence function determined by the momentum distribution has been

found. As the prism refraction increases proportional to λ2, the data for the (440)

reflection has been even more limited in the range of ∆z and is not shown here. An

interesting feature of this experiment is, that the spatial shift is purely vertical.

Consequently contrary to the measurements of the longitudinal and transversal10

coherence function no phase shift arises during the prism separation

φ(x) = ∆ · k = x · δ(β, ε) · ẑ · k · x̂ = 0 (8.25)

Fig. 8.8 shows this feature observed during our measurement. The phase uncer-

tainty due to the overall low visibility is relatively large, a linear fit through the

data confirms this property accurately though.

Figure 8.8: Measured phase shift during prism separation.

8.3 Outlook

A direct measurement of the coherence function with prisms would be desirable

also for the higher order reflections. Furthermore one should aim to resolve

the slight reappearance of the visibility at vertical displacements beyond the

coherence length. Large displacements are especially difficult for the higher order

reflections due to the strongly reduced prism refraction. Besides the application

of strongly refracting prisms, the orthogonal prism design would be especially

10Here the definition for longitudinal and transversal with respect to the lattice vector is used
[1]. Sometimes these directions are defined according to the neutron wave vector though.
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useful. As shown in Fig. 8.9 this enables to double the spatial shift, if the sets

in the two beam paths are rotated by 180◦ against each other and one separates

both prism sets simultaneously.

Figure 8.9: Arrangement of orthogonal prisms to double the spatial shift

between the two beam paths.

An alternative and much faster method of a coherence measurement would be

the measurement of intensity changes in the O- and H-output as a function of

the prism separation. If the initial phase - preferable at the O-beam minimum or

maximum - is known and phase stability can be maintained during prism sepa-

ration, then the visibility is completely determined by the intensity modulations.

For instance, intensity changes become constant if the visibility approaches zero.

This is a special feature of this type of measurement as no phase shift arises

during the prism separation (Eq. 8.25). By adjusting the prisms in the hori-

zontal position (δy) one derives the coherence function transversal to the beam.

The coherence measurement in longitudinal direction can be achieved in the non-

dispersive arrangement with phase plates of various thicknesses, or continuously,

with two prisms moving against each other in order to smoothly vary the thick-

ness (Fig. 8.10).
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Figure 8.10: Variation of the effective thickness D = D(∆z) by sliding

two prisms along each other.



Appendix A

Laue phase: special cases

In Eq. 2.42 an expansion for small δθ has been given. For the further consider-

ations the term sin 2θB
vH

tanAHδθ has been dropped. This is only a good approxi-

mation for the case AH � 1 and simultaneously tanAH / 1. There are two cases

where these conditions are not fulfilled

• For thin crystals where the thickness is of similar order than the Pen-

dellösung length

• for

AH =
πD

∆H

≈ (2n+ 1)
π

2
(A.1)

which corresponds to the case that the Pendellösung structure discussed in

2.2.2 is very close to the exact Bragg condition

In these cases the first order expansion reads

φLaue(δθ) = φLaue(0) + δθ · sin 2θB
vH

(AH − tanAH) +O(δθ3) (A.2)

Hitherto the phase function has been considered as steadily increasing. However

now

AH − tanAH < 0 for AH <
π

2
=⇒ D <

∆H

2
(A.3)

This implicates, that for thicknesses smaller than half of the Pendellösung length

the slope of the phase function is negative in the vicinity of Bragg. Furthermore

the slope of the phase function becomes extremely large at D ≈ ∆H

2

lim
D→∆H/2−

(AH − tanAH) → −∞

lim
D→∆H/2+

(AH − tanAH) → +∞ (A.4)
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Figure A.1: Laue phase for small thicknesses: (a) around Bragg and

(b) in the limit of the asymptotes. (c) shows the case closely around

r = D
∆H

= 0.5. According to the chosen parameters ∆H = 40.622µm.

The constant φLaue(0) has been subtracted.

and changes the sign from D < ∆H

2
to D > ∆H

2
. This evolution of the phase

function is shown in Fig. A.1.

In Fig. A.1 (b) another interesting feature can be observed, concerning the

asymptotes

lim
δθ→±∞

φLaue(δθ)− φLaue(0) = 0 D /
∆H

2

lim
δθ→±∞

φLaue(δθ)− φLaue(0) = ±π D '
∆H

2
(A.5)

Thus the asymptotes are separated exactly by 0 or 2π respectively. The tran-

sition between these two cases occurs exactly at D = ∆H

2
. Another interesting

observation is

|φLaue(D1, δθ)| > |φLaue(D2, δθ)| for
∆H

2
/ D1 / D2 (A.6)

This behavior of the Laue phase for small thicknesses is important for an under-

standing of the calculated visibilities presented in Fig. 4.4. Let’s now consider
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the case D > ∆H . Here the slope of the phase function at Bragg is only negative

for AH < tanAH . Whereas this condition has been fulfilled over the whole first

half of the period of the tangent, this range where AH . (2n + 1)π
2

significantly

decreases with increasing D/∆H as shown in Fig. A.2.

Figure A.2: Comparison of tanx (black curve) with x (blue curve) The

regions where tan x > x are highlighted by a red line.

In these increasingly narrow areas the slope of the phase function at Bragg is

still negative though, as shown in Fig. A.3.

Figure A.3: The case of D ≈ (2n + 1)∆H

2
. Here D ≈ 73.5∆H ≈

2.9857mm. (a) shows the evolution of the Laue phase around Bragg

depending on r = D
∆H

. (b) shows the Laue phase further away. The

phase curves for r < 73.5 and r > 73.5 are separated by π in the limit of

the asymptotes. The constant φLaue(0) has been subtracted.

Similar to the case of D = ∆H

2
, here the distance between the asymptotes

changes by exactly 2π:

lim
δθ→±∞

φLaue(δθ)− φLaue(0) = ±nπ D < (2n+ 1)
∆H

2

lim
δθ→±∞

φLaue(δθ)− φLaue(0) = ±(n+ 1)π D > (2n+ 1)
∆H

2
(A.7)
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Thus every time the thickness reaches another uneven multiple of half of the

Pendellösung length, the separation of the asymptotes changes by 2π. As for

D < ∆H

2
the asymptotes are zero, the asymptotes are always separated by a

multiple of 2π as discussed in subsection 2.2. Eq. A.8 gives also the correct limit

in comparison with Eq. 2.45, where the value AH can take every value. Thus the

asymptotes go to the closest lower or upper bound multiple of π rather than to

AH exactly:

lim
δθ→±∞

φLaue(δθ)− φLaue(0) = ±
⌈
AH
π

⌉
π

∣∣∣∣AHπ −
⌊
AH
π

⌋∣∣∣∣ > ∣∣∣∣AHπ −
⌈
AH
π

⌉∣∣∣∣
lim

δθ→±∞
φLaue(δθ)− φLaue(0) = ±

⌊
AH
π

⌋
π

∣∣∣∣AHπ −
⌊
AH
π

⌋∣∣∣∣ < ∣∣∣∣AHπ −
⌈
AH
π

⌉∣∣∣∣
(A.8)

This separation of the phase curves takes already place closely around Bragg (Fig.

A.3 (a)). The discussed cases D = (2n + 1)∆H

2
are also just the case where the

Pendellösung structure appears exactly at the Bragg condition, hence where the

transmitted intensity has a minimum at δθ = 0. Here the Pendellösung structure

shows no more a phase ”plateau” but a distinct change of the slope. Actually

also the Pendellösung structures at δθ 6= 0 are not really plateaus, but also there

remains a slight change of the slope to negative values Fig. A.4, that however

decreases with increasing δθ.

Figure A.4: Zoom into the Pendellösung structure plateaus of the Laue

phase.

Hence the Laue phase is not a steadily increasing function over all angular

range. Of course instead of varying the thickness the same holds for a variation
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of the Pendellösung length via a variation of the scattering length or the Bragg

angle.
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Appendix B

Interferometer cutting drafts

The plans for the first cutting: In view of the further preparation steps, the initial

lamella thickness has been planned to D = 3.3µm.

Figure B.1: Aimed lamella thicknesses and distances after the first cut-

ting process.
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Figure B.2: Horizontal projection and lamella widths.

Figure B.3: Front elevation.



Appendix C

Rocking curves

The separation of the higher order reflections has been accomplished using six

140◦ perfect crystal silicon prisms, that have been fabricated during this work at

the atomic institute (6.2.1). The prism deflection is strongly dispersive, yielding

a total deflection δ as a sum1 of the individual deflections by n prisms with apex

angle βi
2

δ(λ) =
n∑
i=1

δi = λ2

n∑
i=1

NbN
π

tan
βi
2

(C.1)

Hence the separation between two wavelengths becomes

∆δprism(λ1, λ2) = δ(λ1)− δ(λ2) = (λ2
1 − λ2

2)
n∑
i=1

NbN
π

tan
βi
2

(C.2)

Moreover the combination of a perfect crystal monochromator with the in-

terferometer leads to an intrinsic separation of the wavelengths. This is due to

the asymmetry of the Bragg reflection curve with respect to δθ, although it is

symmetric with respect to y (Eq. 4.8). According to Eqs. 2.75, 2.74

y = −(b− 1)v0 + 2b sin 2θBδθ

2
√
|b|vH

b = 1 Laue case

b = −1 Bragg case (C.3)

1Corrections to the asymmetric case by the deflection of the previous prisms can be neglected,
as the deflections are only in the range of arc seconds. The error by manual alignment of the
prisms is much higher.

2Here symmetric alignment of the prisms is assumed. One can even enhance the deflection
by an additional asymmetric angle ε. The useable beam width for the interferometer would
become smaller though.
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Figure C.1: (a) Shift between Bragg- and Laue reflections curves. (b)

Laue curves centered relative to the according Bragg curves and intrinsic

separation thereby.

In the Laue case the center of reflection is still θB while in the Bragg case it is

shifted to (y = 0):

θ = θB − θshift

θshift =
v0

sin 2θB
= λ2 NbN

π sin 2θB
(C.4)

This relative shift of the Bragg- to the Laue reflection curve is shown in Fig. C.1.

To obtain the maximum intensity both curves are centered to each other,

which results in different angles for different reflection orders, as θshift depends

on λ.

Thus an intrinsic separation between two orders of reflection m1 and m2 can
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Figure C.2: Rocking and wavelengths separation in non-interferometric

configuration (one beam path blocked). The zero position here is arbi-

trary according to the goniometer encoding.

be observed

δintrinsic(m1,m2) = θshift(m1)− θshift(m2) = (m2
1 −m2

2) · λ2
220 ·

NbN
π sin 2θB

(C.5)

Altogether the obtained wavelength separation yields

∆δ(m1,m2) = ∆δprism(λ1, λ2)± δintrinsic(m1,m2)

= (m2
1 −m2

2) · λ2
220 ·

NbN
π
·

(
n∑
i=1

tan
βi
2
± 1

sin 2θB

)
(C.6)

where the plus/minus sign depends on the assembly of the prism arrangement

relative to the direction of the intrinsic separation. To obtain maximal separa-

tion the prism arrangement should be chosen accordingly. By rotating the prisms

by 180◦, one can easily measure the intrinsic separation as half of the difference

between the measured total separations. Tab. C.1 shows the calculated separa-

tions. Good agreement with the measured values has been found, although in

our experiments the exact separation has been of minor importance.
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reflections intrinsic separation prism separation total separation

(220) - (440) 0.75” 12.41” 13.16”

(440) - (660) 0.14” 2.3” 2.44”

(660) - (880) 0.05” 0.8” 0.85”

Table C.1: Theoretical separation between several reflection orders at θB = 45◦,

without prisms (intrinsic), by six 140◦ prisms omitting the intrinsic separation

and totally.



Appendix D

Reflectivity of Laue-USANS

Here a short comparison of the reflectivity and thereby the intensity ratio between

the usually applied USANS method and our interferometric method in Laue

geometry (Fig. 6.4) is given. The reflectivity of a threefold Bragg reflection is

calculated via

RBragg,tot =

∫ ∞
−∞

R3
H,Bragg(y)dy

=

∫ 1

−1

1dy + 2 ·
∫ ∞

1

(
1−

√
1− 1

y2

)3

dy

=
9π

2
− 12 ≈ 2.14 (D.1)

and in the case of the Laue reflection one obtains

RLaue,tot =

∫ ∞
−∞

R3
H,Laue(y)dy

=

∫ ∞
−∞

(
1

2(1 + y2)

)3

dy

=
3π

64
≈ 0.15 (D.2)

where the averages over the Pendellösung oscillations according to Eqs. 4.8, 2.26

have been taken. Hence the intensity ratio yields

RBragg,tot

RLaue,tot

≈ 14.5 (D.3)

175



176 APPENDIX D. REFLECTIVITY OF LAUE-USANS



Appendix E

Position sensitive detector

For the detection of spatial dependent phase patterns and the measurement of

the vertical momentum distribution a position sensitive detector has been em-

ployed. This ND&M detector1 had been used before at S18 for neutron phase

tomography [63] but had been rejected afterwards. Therefore we have reinstalled

this detector on a suitable computer containing an ISA slot. Now this detector

is again available for the measurement of intensity distributions within beams

and spatial dependent phase patterns (compare section 5.2). Additionally this

detector can now be used for neutron imaging at low intensity beam lines such as

the one at our institute. An according test on resolution and usability has been

performed [64] and shall be summarized in this chapter.

E.0.1 General features

The ND&M camera is a compact neutron detector, which consists of a handmoni-

tor and a readout unit. The handmonitor contains a 6LiF−ZNS(Ag) scintillator

coupled to a micro-channel plate image amplifier with 25mm opening, the output

of which is projected to a phosphor screen (Fig. E.1). Moreover the handmonitor

can be used as a stand-alone device for beam alignment. For quantitative imaging

it is attached to a readout unit, which consists of a mirror, a high speed lens, and

a low noise CCD camera with 512× 512 pixels and 11× 11µm2 resolution. The

readout unit is connected to the ND&M realtime centroiding processor in the

host PC. Special features of this detector are single neutron counting and a high

optical resolution of 50µm, realized by an electronic centroiding procedure of the

light spots on the screen. Single neutron counting is accomplished by the high

readout rate of the CCD frames, thereby avoiding an overlap of the light spots

on the single digitized image. Frames with overlapping spots are discarded. Each

1ND&M Felber, Raum, Rausch GBR, D-85356 Freising

177



178 APPENDIX E. POSITION SENSITIVE DETECTOR

Figure E.1: Outline of the ND&M micro-channel detector

digitized video frame runs through a two-dimensional convolver where the frames

are correlated with idealized model distributions of scintillation light spots. This

allows very effective noise discrimination. The centroids of the spots and their

peak value are determined in realtime and can be viewed at the PC monitor.

The host PC sums up the spatial distribution of incoming neutrons with 16 bit

dynamic range. A demonstration of the efficient electronic noise suppression and

the homogeneous intensity profile in the central beam area is shown in Fig. E.2.

E.0.2 Characterization of the resolution

The spatial resolution at our beam line is primarily limited by the collimation

ratio L/D = 130, i.e, the ratio between collimator length L = 2600 mm and

aperture D = 20 mm. This results in a geometric unsharpness

Ug = LS−D
D

L
(E.1)

determined by the sample-to-detector distance LS−D, which should therefore be

minimized. The second blurring effect is the intrinsic unsharpness in the sensitive

layer. A thin layer narrows the spread of secondary radiation in the converter,

thereby reducing the detector blurring at the cost of detection efficiency. To com-

pare the spatial resolutions a sharp edge (Fig. E.2) fabricated of a 25µm thick

gadolinium foil with 5.1% neutron transmission was placed directly on the scin-

tillator (Fig. E.2). The measured edge spread function (ESF) and its derivative,

the line spread function (LSF), can be approximated by a Lorentzian model if

image blurring predominantly emerges in the converter. The ESF parameters
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Figure E.2: The ND&M open beam analysis yields a rather homoge-

neous profile with intensity variance σ = 1.2×
√
Naverage. The measured

intrinsic noise was 8200 counts in 28 hours on the whole sensitive area.

p1,2,3 and λ are fitted to the measured edge profile with the resolution parameter

λ as result. The latter is important for the resolution given by the full-width

half-maximum (FWHM).

ESF (x) = p1 + p2 · arctan[λ(x− p3)]

LSF (x) =
d

dx
ESF (x)

FWHM(λ) =
2

λ
(E.2)

Fig. E.3 shows the fits for the gadolinium edge horizontally and vertically.

The corresponding resolutions are

horizontal: 50± 15µm

vertical: 80± 15µm (E.3)
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thereby yielding a slightly better resolution in horizontal direction, due to the

CCD readout procedure.

Figure E.3: ESF resolution with the ND&M camera evaluating the edges

of a 25µm thick gadolinium foil horizontally and vertically.

In an alternative approach a specially developed gadolinium layer of 6µm thick-

ness with periodic structures has been employed [65]. Fig. E.4 B, C shows the

image of a star consisting of a structure of transparent lines with periodicity be-

tween 500 and 50µm. The resolution is marked by concentric rings corresponding

to 500, 400, 300, 100 and finally 50µm for the ring in the center.

Detector Spatial resolution n/γ-ratio Intrinsic noise/pixel
6Li- ND&M 50(80) µm 40 3× 10−7/s

6Li-thin-plate 150 µm 500 300 + (0.4/s)

Gd-NIP 40 µm 50 4× 10−5/s

Table E.1: Summary of detector characteristics and comparison with the other

two available detectors at our imaging beam line: a 100µm thin-plate scintillator

(6Li-thin-plate) and an imaging plate detector with 25µm scanning resolution

(Gd-NIP).

Fig. E.4 D shows the image of a grid with line widths down to 50µm embedded

in the same gadolinium layer. It is obvious that line structure down to 50µm and

probably below can easily be resolved, while the detection of periodic structures

is restricted by the pixel resolution to approximately 100µm. Finally the same

images have been made with a 7 bit film converter. A comparison of Fig. E.4 A.

B, C shows the advantage of the 16 bit digitized imaging.

Furthermore the neutron-to gamma ratio was determined to approximately a

value of 40 (Tab. E.1) by comparing the intensities with open and closed boron
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Figure E.4: Imaging of an artificial test mask of transparent lines etched

in a 6µm gadolinium layer. A) Siemens star imaged with a X-ray film

(Structurix D7, 35 min exposure) with gadolinium converter and 7 bit im-

age gradation; the resolution of periodic line structures is approx. 200µm.

B) ND&M image with approx. 100µm line pair resolution. C) Zoom in

the inner zones of the star, one recognizes that the resolution below

100µm is limited by the pixel size. D) ND&M image of the grid, the

finest lines have 50µm width with 30 % elevated transmission.

beam shutter. Concerning the usability for radiography a severe limitation for

neutron imaging is the maximum acceptable count rate of approx. 3000n/s in

the whole detector field to avoid overlapping light spots on the phosphor screen.

This limit counteracts the high efficiency of approx. 40%, as one has to attenuate

the beam at our beam line. Nevertheless due to its effective noise suppression

and high efficiency the ND&M camera is interesting for NR/NT applications

with weak beams of the order 103 − 104n/s (compare Tab. E.1). Based on

these results we have applied this detector for neutron radiography mainly in

the investigation of the homogeneity of the neutron transmission through boron

alloyed steels accompanied by Monte Carlo simulations. This however is beyond

the scope of this work [66].
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