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Preface

This dissertation is the result of 31
2 years of research at the Christian Doppler laboratory for

portfolio risk management (CD-lab PRisMa) at the research group for financial and actuarial
mathematics at the Vienna University of Technology.
We found LIBOR market models an especially interesting field concerning both theory and prac-
tice. For practitioners they are an essential tool for pricing interest rate derivatives. Concerning
theory LIBOR models driven by jump processes have interesting dynamics. We see ”approxima-
tions” of various types as essential for a better understanding of such models. Approximations to
obtain pricing formulae. Approximations to get a better understanding of the dynamics . And
finite dimensional approximations of infinite dimensional interest rate market models. Finding
better approximations seems to be the key, to better understand those models and is mathemat-
ically challenging.
The structure of this work is as follows:

• Chapter 1 deals with the construction of LIBOR market models and provides an insight
into several different approaches and resulting models. We are especially interested in the
behavior of spot-LIBOR modeling, as we can show as a first original theorem, that this
type of model allows an extension of a given tenor structure to larger one in a consistent
way.

• Chapter 2 proceeds to deal with the question of how we can interpolate rates starting from
a discrete tenor grid and thus build a continuous tenor model. We have extended a known
method for the log normal case to our models with jumps but we go beyond even that,
as we combine interpolation and extension of a given discrete model to give an existence
result for LIBOR term structures. All of this is original work, though the interpolation for
a log-normal forward LIBOR market model has been done in [15].

• Chapter 3 shows results of a practical implementation of a LIBOR market model, Laplace
pricing methods for a frozen drift variant and possibilities of more sophisticated approxi-
mations. We also show some smiles generated by our models.

• Chapter 4 deals with another new idea: a completely discrete LIBOR analogon. We con-
struct such a model. Show its properties and then give approximation results and we give
proof of the convergence of a particular approximation from chapter 3 against a exact Lévy
LIBOR model.

• Chapter 5 deals with measure change techniques necessary for chapter 4. The represen-
tation is original though the knowledge of the possibility of such a procedure is of course
not.

• Chapter 6 compares our work in chapter 4 to the work of Glasserman and Zhao [8] on
arbitrage free interpolation. We felt there should be some relation and indeed we found,
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that, after several calculations, one suggested arbitrage free interpolation coincides in the
log normal case with the discrete log-normally driven model.

• The appendix provides important notions and theorems which are necessary to understand
this work but certainly too specific to be considered general knowledge even in financial
mathematics.

Finally I would like to thank all those people who supported me in one way or the other in those
3 1

2 exciting years. Especially I want to thank my advisor Friedrich Hubalek for helping me to
find my way in the world of financial mathematics and supporting my various ideas and critically
examining of the respective results, the staff of FAM, my family and all the dear people who
make life so much more interesting and enjoyable.
I would also like to thank the Christian Doppler society for supporting our research lab and
Bank Austria for providing interesting problems, essential data and valuable feedback. Here my
thanks go especially to Peter Schaller, who was the best research partner one could wish for.
Furthermore the two reviewers of this dissertation Josef Teichmann and again Friedrich Hubalek
deserve extra thanks for agreing to review this work on such short notice.
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Chapter 1

Interest Rate Modeling

1.1 LIBOR-Essentials

In this section, we will review the notions essential to understand LIBOR market models. Most
definitions here are taken from the excellent book [4] by Brigo and Mercurio. We also construct
a classic log-normal forward LIBOR model.
We then proceed to give the defintion of interest rate market models from the paper [3] and a
very general formulation by Eberlein and Özkan ([6]).
Finally we show the existence of a semimartingale driven forward LIBOR model and discuss
spot-LIBOR market models.

Our starting point is the bank account process.

Definition 1 (Bank Account Process) We define B(t) to be the value of a bank account at
time t ≥ 0. We assume B(0) = 1. The dynamics are given as

dB(t) = r(t)B(t)dt B(0) = 1 (1.1)

where r(t) is a positive stochastic process.

As a consequence

B(t) = exp (
∫ t

0

r(s)ds). (1.2)

We therefore have, that investing 1 unit of currency at time 0 will yield B(T ) units of cur-
rency at time T .
From this observation we define

Definition 2 (Stochastic Discount Factor) The stochastic discount factor D(t, T ) between
two time instants t and T is the amount at time t that is ”equivalent” to one unit of currency
payable at time T , and is given by

D(t, T ) =
B(t)
B(T )

= exp (−
∫ T

t

r(s)ds). (1.3)

Now the traded objects are the so called zero-coupon bonds
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4 CHAPTER 1. INTEREST RATE MODELING

Definition 3 (Zero-Coupon Bond) A T -maturity zero-coupon bond (pure discount bond) is
a contract that guarantees its holder the payment of one unit of currency at time T , with no
intermediate payments. The contract value at time t < T is denoted by B(t, T ).

This implies
B(T, T ) = 1 ∀T > 0. (1.4)

Necessary to understand the conventions in the interest-rate market is the following

Definition 4 (Time To Maturity) The time to maturity T − t is the amount of time from
the present time t to the maturity T > t.

There are now several type of ”interest rates” we can define. For instance

• The simple forward rate for [S, T ] contracted at t, henceforth referred to as the LIBOR
forward rate( which we will be modeling).

L(t;S, T ) :=
B(t, T )−B(t, S)
(S − T )B(t, T )

(1.5)

• The instantaneous forward rate with maturity T , contracted at t

f(t, T ) = −∂ logB(t, T )
∂T

(1.6)

• The instantaneous forward rate is related to the short rate via

r(t) = f(t, t) (1.7)

• Then there is the so called simply compounded spot interest rates defined by the formula

Ls(t, T ) =
1−B(t, T )
τ(t, T )B(t, T )

. (1.8)

Here τ(t, T ) is the number of days between t and T in a given day-count convention (see
[4]).

Essential for LIBOR market models in practice is the concept of the tenor structure

Definition 5 (Tenor-Structure) We choose an ordered set of values 0 = T0 < T1 < T2 < . . .
(often equidistant). This set of times is called the tenor-structure of our model.
We speak of discrete tenor models if only LIBOR rates L(t, Ti) with maturities on such a discrete
grid are modeled.
We speak of a continuous tenor model if all rates with maturities in an interval [0, Tmax] are
modeled.

Definition 6 (LIBOR Forward Rates - Discrete Tenor) We will only use the forward LIBOR-
rates. We set

L(t, Ti) := L(t;Ti, Ti + δi) =
1
δ i

(
B(t, Ti)−B(t, Ti + δi)

B(t, Ti + δi)
) =

1
δ i

(
B(t, Ti)

B(t, Ti + δi)
− 1) (1.9)

where we assume a given time-grid {Ti}i∈I , possibly only finite, for which it holds that Ti + δi =
Ti+1.
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Definition 7 (LIBOR Forward Rates - Continuous Tenor) We assume a fixed (for nota-
tional simplicity) δ > 0 . We set

L(t, T ) := L(t, T, T + δ) =
1
δ

(
B(t, T )−B(t, T + δ)

B(t, T + δ)
) =

1
δ

(
B(t, T )

B(t, T + δ)
− 1) (1.10)

for all T ∈ (0, Tmax).

1.2 Measures And No-Arbitrage

Suppose we are given a filtered probability space (Ω, (Ft),P), where the filtration (Ft)t is the P
augmentation of a certain driving semimartingale (Xt)t.
The classic BGM model [3] is constructed under the risk neutral measure, defined by the choice
of numeraire B(t).

Definition 8 (Risk Neutral Measure) The risk-neutral measure P∗ is defined as the measure
with numeraire B(t)( the Bank account defined above).

For the development of LIBOR theory (especially for models with discrete tenor) the two concepts
of ”spot-measure” and ”forward measure” are essential. To define them we need conditions on
our setting

• For any date T the Bond-price is a positive special semimartingale in t where the process
of left-limits is also strictly positive.

• for any fixed T ≤ T ∗ the forward process

FB(t, T, T ∗) :=
B(t, T )
B(t, T ∗)

follows a martingale under P∗, the risk neutral measure, or equivalently

B(t, T ) = EP(
B(t, T ∗)
B(T, T ∗)

|Ft).

Definition 9 (Forward Measure) Let U be a fixed maturity date. A probability measure PU
equivalent to P on (Ω,FU ) is called a forward martingale measure for the date U if for any ma-
turity T the forward process FB(t, T, U) follows a local martingale( see appendix A for definition
of a local martingale) under PU .
This is certainly satisfied, if we choose as numeraire B(t, TU ). Therefore, when we speak of ”the”
forward measure PU we will always mean the measure defined by choosing as numeraire B(t, TU ).

In comparison a spot measure is defined as

Definition 10 (Spot Measure) A spot martingale measure is any probability measure Ps equiv-
alent to the risk neutral measure P∗ on (Ω,F∗T ) for which there exists a process B ∈ A+( see
appendix C for the definition of A+) with B(0) = 1 and such that for any maturity T the bond
price B(t, T ) satisfies

B(t, T ) = EPs(B(t)/B(T )|Ft).
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For instance, the bank account process, will be such a process in the continuous tenor framework
of [3]. In that setting, the risk neutral measure is the spot measure.
As it is shown in [15], the spot-LIBOR measure introduced below, is a spot-measure by this
definition in the discrete tenor framework.
Referring to the bond-market and the special situation of term-structure-modeling, we have two
appropriate no-arbitrage notions.

Definition 11 A family of bond prices B(t, T ) satisfies the weak no-arbitrage condition if and
only if there exists a probability measure Q equivalent to the risk neutral measure P∗ on (Ω,FT∗)
such that for any maturity T < T ∗ the forward process FB(t, T, T ∗) = B(t, T )/B(t, T ∗) belongs
to Mloc(Q)(see appendix A for definition of Mloc).

Definition 12 The family B(t, T ) satisfies the no-arbitrage condition if in addition the inequality
B(T,U) ≤ 1 holds for any maturities T,U ∈ [0, T ∗] such that T ≤ U .

The models we treat will always fulfill the weak no-arbitrage condition. In fact, forward-modeling
gives this property automatically.

Now the classic HJM interest rate models are usually specified under the risk neutral mar-
tingale measure P∗ with numeraire B(t) (the bank account process).
LIBOR Market Models in practice model the driving process of LIBOR-rate dynamics already
under the so called terminal measure, thus assuming (in the classical models) log-normality of
the LIBOR-rate-process.
This lognormality is essential if we want a model that prices the classical interest rate derivatives
called caps (or more precisely the caplets) via Black’s formula.

Definition 13 (Cap) A cap is a contract on the LIBOR-rate which has the following present
value at t

β∑
α=1

D(t, Ti)NTi(L(Ti−1, Ti)−K)+. (1.11)

Where NTi is the nominal value. (which is 1 for 1 unit of currency).
As can be seen from this formula, a cap can be decomposed into a sum of European options(called
caplets) with payoffs D(t, Ti)NTi(L(Ti−1, Ti)−K)+ over disjoint time-intervals.

Thus if the LIBOR-rates were simultaneously (under a single measure) lognormal, those sum-
mands would each be priced by Black’s formula and then summed up.

1.3 Log Normal Discrete Tenor Forward LIBOR Modeling

We have to restrict ourselves to a finite number of maturities and are therefore in a discrete tenor
framework.

Definition 14 (Terminal Measure) Given a finite tenor-Structure 0 = T0 < T1 < · · · < Tn <
Tn+1 =: T ∗, we call the forward measure PT∗ associated to the last time Tn+1 =: T ∗, the terminal
measure with respect to the tenor structure.

We want to prove the following:
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Theorem 1 Given a volatility structure λ(., T1), . . . , λ(., Tn) where each λ(., Ti) is assumed to
be bounded and the λ(., Ti) strictly increasing in i, a probability measure PTn+1 and a standard
PTn+1-Wiener process Wn+1

t . Define the processes L(t, T1), . . . , L(t, Tn) by

dL(t, Ti) = −L(t, Ti)
( N∑
k=i+1

δkL(t, Tk)
1 + δkL(t, Tk)

λ(t, Tk)
)
dt+ L(t, Ti)λ(t, Ti)dWn+1

t (1.12)

for i = 1, . . . , n.
Then the PTi+1-dynamics are given by

dL(t, Ti) = L(t, Ti)λ(t, Ti)dW i+1
t . (1.13)

Thus there exists a LIBOR model with the given volatility structure.

Proof:
A good derivation is in [15], which we will adapt to give our proof:
Given a finite tenor structure {Ti}n+1

i=1 , we model the LIBOR rate L(t, T ) under the terminal
measure PTn+1 as a log-normal 1-dimensional martingale. Therefore it fulfills

dL(t, Tn) = L(t, Tn)λ(t, Tn)dWn+1
t (1.14)

where Wn+1
t denotes standard Brownian Motion under PTn+1 . The initial condition is

L(0, Tn) =
1
δ

( B(0, Tn)
B(0, Tn+1)

− 1
)
. (1.15)

We also have the dynamics of the forward rate process FB(t, Tn, Tn+1) from the relation 1 +
δnL(t, Tn) = FB(t, Tn, Tn+1)

dFB(t, Tn, Tn+1) = FB(t, Tn, Tn+1)
δnL(t, Tn)

1 + δnL(t, Tn)
λ(t, Tn)dWn+1

t . (1.16)

From the definition of the forward-measure PTn through the numeraire B(t,Tn)
B(0,Tn) , we have the

property
dPTn
dPTn+1

=
B(0, Tn+1)
B(0, Tn)

B(t, Tn)
B(t, Tn+1)

=
FB(t, Tn, Tn+1)
FB(0, Tn, Tn+1)

(1.17)

We want the measure change to be described by a stochastic exponential, which yields

FB(t, Tn, Tn+1)
FB(0, Tn, Tn+1)

= E(
∫ t

0

λ(t, Tn)
δnL(s, Tn)

1 + δnL(s, Tn)
dWn+1

s ). (1.18)

From this we can calculate standard Brownian Motion for PTn in terms of PTn+1 and we get

Wn
t = −

∫ t

0

δnL(s, Tn+1)
1 + δnL(s, Tn+1)

λ(s, Tn+1)ds+ dWn+1
t (1.19)

and plug this into the equation for L(t, Tn−1) under PTn( since it has to be a martingale under
that measure)

dL(t, Tn−1) = L(t, Tn−1)λ(t, Tn−1)dWn
t (1.20)
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to get the dynamics of L(t, Tn−1) under PTn+1 :

dL(t, Tn−1) = −L(t, Tn−1)λ(t, Tn−1)
δnL(t, Tn)

1 + δnL(t, Tn)
λ(t, Tn)dt+ L(t, Tn−1)λ(t, Tn−1)dWn+1

t

(1.21)
More generally, if we switch between two consecutive forward measures PTi and PTi+1 we get

dPTi
dPTi+1

=
B(0, Ti+1)
B(0, Ti)

B(t, Ti)
B(t, Ti+1)

(1.22)

=
FB(t, Ti, Ti+1)
FB(0, Ti, Ti+1)

which will result in

FB(t, Ti, Ti+1)
FB(0, Ti, Ti+1)

= E(
∫ t

0

δiL(s, Ti)
1 + δiL(s, Ti)

λ(t, Ti)dW i+1
s ). (1.23)

From this we can calculate standard Brownian Motion for PTi in terms of PTi+1 and we get

W i
t = −

∫ t

0

δiL(s, Ti)
1 + δiL(s, Ti)

λ(s, Ti)ds+ dW i+1
t . (1.24)

Now for arbitrary i in relation to n+ 1, we have the property

dPTi
dPTn+1

=
B(0, Tn+1)
B(0, Ti)

B(t, Ti)
B(t, Tn+1)

=
B(0, Tn+1)
B(0, Tn)

B(0, Tn)
B(0, Tn−1)

. . .
B(0, Ti+1)
B(0, Ti)

(1.25)

B(t, Tn)
B(t, Tn+1)

B(t, Tn−1)
B(t, Tn)

. . .
B(t, Ti)
B(t, Ti+1)

=
n∏
j=i

FB(t, Tj , Tj+1)
FB(0, Tj , Tj+1)

We want the measure change to be described by a stochastic exponential, which yields

n∏
j=i

FB(t, Tj , Tj+1)
FB(0, Tj , Tj+1)

= E
(∫ t

0

δiL(s, Ti)
1 + δiL(s, Ti)

dWn+1
s −

n−1∑
j=i

∫ t

0

δiL(s, Ti)
1 + δiL(s, Ti)

δj+1L(t, Tj+1)
1 + δj+1L(t, Tj+1)

λ(s, Tj+1)ds
)
.

(1.26)
From this we can calculate standard Brownian Motion for PTi in terms of PTn+1 and we get

dW i
t = −

n∑
k=i+1

δkL(t, Tk)
1 + δkL(t, Tk)

λ(t, Tk)dt+ dWn+1(t) (1.27)

and plug this into the equation for L(t, Ti−1) under PTi

dL(t, Ti−1) = L(t, Ti−1)λ(t, Ti−1)dW i
t (1.28)

to get the dynamics of L(t, Ti) under PTn+1 which is just the equation 1.12 from the theorem. �
There are now some standard choices for the form of the volatility functions

• For each i = 1, . . . , n, assume that the corresponding volatility is constant in time, i.e. that

λ(t, Ti) = λi ∈ R+

for 0 ≤ t ≤ Ti−1
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• For each i = 1, . . . , n, assume that λ(., Ti) is piece-wise constant, i.e. that

λ(t, Ti) = λij ∈ R+, for Tj−1 < t ≤ Tj , j = 0, . . . , i− 1

• As above but with the requirement that the volatility only depends on the number of
resettlement dates left to maturity, i.e. that

λ(t, Ti) = λij = βi−j ∈ R+, for Tj−1 < t ≤ Tj , j = 0, . . . , i− 1

where βi are fixed numbers.

• As above, but with the further specification that

λ(t, Ti) = λij = βiγj for Tj−1 < t ≤ Tj , j = 0, . . . , i− 1

where βi and γj are fixed numbers.

• Assume some simple functional parametrized form of the volatilities such as for example

λ(t, Ti) = qi(Ti−1 − t)eβi(Ti−1−t)

where qi(.)is some real polynomial and βi is a real number.

A problem we see immediately from equation 1.12 however is that under the terminal measure
the rates will never be simultaneously lognormal, but( except for the first modeled rate) will
always incorporate some stochastic ”drift” term we denote by

`(t, Ti) :=
δiL(t, Ti)

1 + δiL(t, Ti)
(1.29)

In order to have the rates simultaneously log-normal under the terminal measure one often does
”freeze” the drift, in other words replace `(t, Ti) by its deterministic initial value `(0, Ti).

1.4 Risk Neutral Modeling - Continuous Tenor Forward
Rates

The original LIBOR Market Model constructed in the paper [3] starts from the HJM framework
where the dynamics of the term structure of interest rates are modeled by an infinite dimensional
SDE for the forward rates f(t, T ). We obviously are in a continuous tenor framework.
We assume all processes to be defined on a probability space (Ω,Ft,P) where the filtration {Ft|t ≥
0} is the P-augmentation of the natural filtration generated by a d-dimensional Brownian Motion
W = {W (t)|t ≥ 0}. In the original BGM-Paper the authors use the Musiela parametrization
x = T − t. We will adopt this for the derivation of the result, but for comparability afterwards
give the main SDE in standard parametrization.

1.4.1 Musiela Parametrization - Log-Normal Rates

We look at the process r(t, x) := f(t, T−t) and assume that the process {r(t, x)|t, x ≥ 0} satisfies

dr(t, x) =
∂

∂x

((
r(t, x) +

1
2
|σ(t, x)|2

)
dt+ σ(t, x)dW (t)

)
, (1.30)
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where for all x ≥ 0 the volatility process {σ(t, x)|t ≥ 0} is Ft adapted with values in Rd while |.|
stands for the usual Euclidean Norm in Rd. We assume that the function x→ σ(t, x) is at least
absolutely continuous and the derivative τ(t, x) = ∂

∂xσ(t, x) is bounded on R2
+ × Ω. It follows

then that
dD(t, x) = D(t, x)((r(t, 0)− r(t, x))dt− σ(t, x)dW (t) (1.31)

and hence σ(t, x) can be interpreted as price volatility. Obviously we have σ(t, 0) = 0.
The spot rate process {r(t, 0)|t ≥ 0} satisfies

dr(t, 0) =
∂

∂x
r(t, x)|x=0dt+

∂

∂x
σ(t, x)|x=0dW (t) (1.32)

and hence is not Markov in general. The process

B(t) = exp
(∫ t

0

r(s, 0)ds
)
, t ≥ 0 (1.33)

represents the amount generated at time t ≥ 0 by continuously reinvesting 1 amount of currency
in the spot rate r(s, 0), 0 ≤ s ≤ t.
In order to have no-arbitrage between zero-coupon bondsB(., T ) we need the processB(t, T )/B(t)
to be a martingale under P∗ for all maturities T .
Given the dynamics of r(t, x) we see that

B(t, T )
B(t)

= B(0, T ) exp
(
−
∫ t

0

σ(s, T − s)dW (s)− 1
2

∫ t

0

|σ(s, T − s)|2ds
)
, (1.34)

where the right hand side is a martingale. It also follows that

dB(t, T ) = B(t, T )(r(t, 0)dt− σ(t, T − t)dW (t)). (1.35)

The LIBOR rate is then

1 + δL∗(t, x) = exp
(∫ x+δ

x

r(t, u)du
)
. (1.36)

and is assumed to have a lognormal volatility structure

dL∗(t, x) = . . . dt+ L∗(t, x)γ(t, x)dW (t) (1.37)

where the deterministic function γ : R2
+ → Rd is bounded and at least piecewise continuous.

This LIBOR rate relates to our standard notation L∗(t, T ) as

L∗(t, x) = L∗(t, t+ x) ∀x ≥ 0. (1.38)

By applying Ito’s formula we get, that the lognormal volatility structure can only hold for all
x ≥ 0 if and only if

σ(t, x+ δ)− σ(t, x) =
δL∗(t, x)

1 + δL∗(t, x)
γ(t, x). (1.39)

We have then, as equation for L∗(t, x)

dL∗(t, x) =
( ∂
∂x
L∗(t, x) + L∗(t, x)γ(t, x)σ(t, x+ δ)

)
dt+ L∗(t, x)γ(t, x)dW (t). (1.40)
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If we have the HJM volatility process σ defined on 0 ≤ x < δ then through the recurrence relation
above, we have defined σ for all times and x.
Now if we set σ(t, x) = 0 for all 0 ≤ x < δ, then we get for x ≥ δ

σ(t, x) =
[δ−1x]∑
k=1

δL∗(t, x− kδ)
1 + δL∗(t, x− kδ)

γ(t, x− kδ). (1.41)

Combining those results, our process {L∗(t, x)|t, x ≥ 0} must satisfy

dL∗(t, x) =
( ∂
∂x
L∗(t, x)+L∗(t, x)γ(t, x)σ(t, x)+

δ(L∗(t, x))2

1 + δL∗(t, x)
|γ(t, x)|2

)
dt+L∗(t, x)γ(t, x)dW (t)

(1.42)
in Musiela-parametrization.Now BGM in [3] use the following

Lemma 1 For all x ≥ 0 let {ξ(t, x)|t ≥ 0} be an adapted bounded stochastic process with values
in R, a(., x) : R+ → Rd be a deterministic bounded and piecewise continuous function and let

M(t, x) =
∫ t

0

a(s, x)dW (s). (1.43)

For all x ≥ 0 the equation

dy(t, x) = y(t, x)a(t, x)×

(( δy(t, x)
1 + δy(t, x)

a(t, x) + ξ(t, x)
)
dt+ dW (t)

)
y(0, x) > 0 (1.44)

(where δ is constant) has a unique strictly positive solution an R+. Moreover if for some k ∈
{0, 1, 2, 3, . . . }, y(0, .) ∈ C(R+) and for all t ≥ 0, a(t, .), M(t, .) and ξ(t, .) ∈ Ck(R+ then for all
t ≥ 0, y(t, .) ∈ Ck(R+).

from which they get their main result

Theorem 2 Let γ : R2
+ → Rd be a deterministic bounded piecewise continuous function δ > 0

be a constant and let

M(t, x) =
∫ t

0

γ(s, x+ t− s)dW (s). (1.45)

Then the equation admits a unique nonnegative solution L(t, x) for any t ≥ 0 and any nonnegative
initial condition L(0, .) = L0. If L0 > 0 then L(t, .) > 0 for all times and if L0, γ(t, .),M(t, .),∈
Ck(R+) and ∂j

∂jxγ(t, x)|x=0 = 0∀j then L(t, .) ∈ Ck(R+) for all times.

See [3] for the proof. �

This theorem applied to 1.42 says effectively that a LIBOR term structure model exists, em-
bedded in an overall HJM framework.

1.4.2 Standard Parametrization With Jumps

A good derivation without the Musiela parametrization is done in [6] based on the work of
Jamshidian [11]. Proofs are to be found in [6].
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We assume some complete stochastic basis (Ω,FT∗ ,P∗, (Ft)t). In this setting we assume there
holds

df(t, T ) = α(t, T )dt+ σ(t, T )T dW ∗t +
∫

Rr
δ(t, x, T )(µ− ν∗)(dt, dx) (1.46)

where W ∗ is a standard Brownian Motion in Rd, µ is the random measure of jumps of a semi-
martingale with continuous compensator ν∗ for which ν∗(dt, dx) = F (t, dx)dt is assumed to
hold. The coefficients are continuous in the second variable. α : Ω × [0, T ∗] × [0, T ∗] → R and
σ : Ω× [0, T ∗]× [0, T ∗]→ Rd+ are assumed to be P ×B([0, T ∗]) measurable( see Appendix A for
the definition of P) and δ : Ω× [0, T ∗]×Rr× [0, T ∗]→ R is assumed to be P×B(Rr)×B([0, T ∗])
measurable. We denote ∆ := {(s, u) ∈ R+ × R+|0 ≤ s ≤ u ≤ T ∗}. Then

• If (t, T ) /∈ ∆ we have α(t, T ) = δ(t, x, T ) = 0 and σ(t, T ) = (0, 0, . . . , 0)T .

• For all (t, T ) ∈ ∆ there holds ∫ T

0

∫ T

t

|α(s, u)|duds <∞ (1.47)

∫ T

0

∫ T

t

|σ(s, u)|2duds <∞ (1.48)

∫ T

0

∫
R

∫ T

t

|δ(s, x, u)|2duν∗(ds, dx). (1.49)

• We denote

A(t, T ) := −
∫ T

t

α(t, u)du S(t, T ) := −
∫ T

t

σ(t, u)du

D(t, x, T ) = −
∫ T

t

δ(t, x, u)du

• We get two conditions for P∗ to be a martingale measure. The first∫ t

0

∫
Rr
eD(s,x,T ) − 1−D(s, x, T )F (s, dx)ds <∞ ∀(t, T ) ∈ ∆ (1.50)

• The second

A(t, T ) +
1
2
|S(t, T )|2 +

∫
Rr

(eD(t,xT ) − 1−D(t, x, T ))F (t, dx) = 0 [dP∗ × dt] (1.51)

From the forward rate process we calculate the bond price processes through

B(t, T ) = exp(−
∫ T

t

f(t, u)du) (1.52)

resulting in

B(t, T ) = B(0, T ) exp
(∫ t

0

(f(s, s)+A(s, T ))ds+
∫ t

0

S(s, T )>dW ∗+
∫ t

0

∫
Rr
D(s, x, T )(µ−ν∗)(ds, dx)

)
.

(1.53)
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In this context the bank account is given by

B(t) = exp(
∫ t

0

f(s, s)ds). (1.54)

Calculating the discounted bond prices Z(t, T ) under the riskneutral measure (Z(t, T ) := B(t,T )
B(t) )

we get

Z(t, T ) = Z(0, T ) exp
(∫ t

0

S(s, T )T dW ∗s −
1
2

∫ t

0

|S(s, T )|2ds+∫ t

0

∫
Rr
D(s, x, T )(µ− ν∗)(ds, dx)−

∫ t

0

∫
Rr

(eD(s,x,T ) − 1−D(s, x, T ))F (s, dx)ds
)
. (1.55)

Using the forward-rate process

FB(t, T, U) :=
B(t, T )
B(t, U)

. (1.56)

we derive the dynamics of the LIBOR-rate process under the risk neutral measure

Theorem 3 If f(., T ) satisfies the conditions stated above including the martingale conditions
under P∗, then the dynamics of L(., T ) under P∗ are given by

δ

1 + δL(t−, T )
dL(t, T ) = (S(t, T + δ)− S(t, T ))TS(t, T + δ)dt+∫
Rr

(eD(t,x,T )−D(t,x,T+δ) − 1 + eD(t,x,T+δ) − eD(t,x,T ))ν∗(dt, dx)+

(S(t, T )− S(t, T + δ))T dW ∗t +
∫

Rr
(eD(t,x,T )−D(t,x,T+δ) − 1)(µ− ν∗)(dt, dx) (1.57)

We rewrite this, to suit our purposes later on and to be in conformity with the BGM approach

S(t, T ) =: −c(t, T ) D(t, x, T ) := −h(t, x, T )

we then get

δ

1 + δL(t−, T )
dL(t, T ) = −(c(t, T )− c(t, T + δ))T c(t, T + δ)dt+∫
Rr

(e−h(t,x,T )+h(t,x,T+δ) − 1 + e−h(t,x,T+δ) − e−h(t,x,T ))ν∗(dt, dx)+

(c(t, T + δ)− c(t, T ))T dW ∗t +
∫

Rr
(e−h(t,x,T )+h(t,x,T+δ) − 1)(µ− ν∗)(dt, dx). (1.58)

We want our LIBOR-dynamics to be of the form

dL(t, T ) = . . . dt+ L(t−, T )
(
λ(t, T )c

1
2
s dW

∗
t +

∫
R
(e(λ(t,T )x) − 1)(µ− νT )(dt, dx)

)
(1.59)

under the risk neutral-measure and remember that under its proper forward measure it has to
be a martingale.
In this form, martingality is equivalent to the disappearance of the drift term.
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Comparing to our assumed form in the case d = 1(one-dimensional driving process), we get
relations between the coefficients:

c(t, T + δ)− c(t, T ) = `(t−, T )λ(t, T )c
1
2
s . (1.60)

Concerning the jump-part we derive by comparison

(1 + δL(t−, T ))
δ

(e−h(t,x,T )+h(t,x,T+δ) − 1) = L(t−, T )(eλ(t,T )x − 1) (1.61)

which gives

(e−h(t,x,T )+h(t,x,T+δ) − 1) =
δ

1 + δL(t−, T )
L(t−, T )(eλ(t,T )x − 1) (1.62)

we proceed to
e−h(t,x,T )+h(t,x,T+δ) = `(t−, T )(eλ(t,T )x − 1) + 1 (1.63)

which finally yields

−h(t, x, T ) + h(t, x, T + δ) = log(`(t, T )(e(λ(t,T )x) − 1) + 1) (1.64)

with initial conditions
c(t, T ) = 0 ∀T ∈ [t, t+ δ)

and
h(t, x, T ) = 0 ∀T ∈ [t, t+ δ)

Furthermore we define a function i : R+ → N through

i(x) := n+ 1 ∀x ∈ (n, n+ 1], n ∈ N (1.65)

From this we calculate

c(t, T ) =
[δ−1T ]∑
k=i(t)

δL(t, T − kδ)
1 + δL(t, T − kδ)

c
1
2
t ∀t ≤ T (1.66)

and

eh(t,x,T ) =
[δ−1T ]∏
k=i(t)

(
`(t−, T − kδ)(eλ(t,T )x − 1) + 1

)
∀t ≤ T (1.67)

where [δ−1T ] denotes the Gauss-Bracket of δ−1T .
Thus uniquely defining our model

dL(t, T ) = (L(t−, T )c(t, T )c
1
2
t +

δL2(t−, T )
1 + δL(t−, T )

|c
1
2
t |2 +

L(t−, T )
1 + δL(t−, T )∫

R
(eλ(t,T )x−1)(1−e−h(t,x,T+δ))F (dx, t))dt+L(t−, T )c

1
2
t dW

∗
t +L(t−, T )

∫
R

(eλ(t,T )x−1)(µ−ν)(dx, dt)

for arbitrary semimartingales.
The equation above gives the continuously compounded LIBOR forward rate dynamics driven
by an arbitrary semimartingale under the risk neutral measure in standard parametrization.

Existence of such a term structure model (e.g. a solution to this system of SDEs), is more
difficult to prove than in the Brownian case.
However, as we will show below, there is a way of using finite dimensional methods, to provide
a proof of the existence of such models.
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1.4.3 Comparison For Log-Normal Rates

Suppose now, we wish to model the LIBOR-rates to be of the form

dL(t, T ) = . . . dt+ L(t, T )c
1
2
t dW

∗
t . (1.68)

Then we assume D(t, x, T ) = −h(t, x, T ) = 0 for T < δ. Our equation becomes

δ

1 + δL(t−, T )
dL(t, T ) = −(c(t, T )−c(t, T+δ))T c(t, T+δ)dt+(c(t, T+δ)−c(t, T ))T dW ∗t (1.69)

with L(t−, T ) = L(t, T ) due to the pathwise continuity now. We rewrite this equation again

dL(t, T ) = −1
δ

(
(1+δL(t, T ))(c(t, T )−c(t, T+δ))T c(t, T+δ)dt+(1+δL(t, T ))(c(t, T+δ)−c(t, T ))T dW ∗t

)
(1.70)

By comparison to our supposed dynamics we get the condition

c(t, T + δ)− c(t, T ) =
δL(t, T )

1 + δL(t, T )
c

1
2
t . (1.71)

we use this to rewrite

1
δ

(1 + δL(t, T ))
(
− (c(t, T )− c(t, T + δ))T c(t, T + δ)dt+ (c(t, T + δ)− c(t, T ))T dW ∗t

)
=

(L(t, T )c
1
2
t c(t, T ) +

δL2(t, T )
1 + δL(t, T )

|c
1
2
t |2)dt+ L(t, T )c

1
2
t dW

∗
t (1.72)

and get

dL(t, T ) = (L(t, T )c
1
2
t c(t, T ) +

δL2(t, T )
1 + δL(t, T )

|c
1
2
t |2)dt+ L(t, T )c

1
2
t dW

∗
t (1.73)

which almost looks like the equation in Musiela Parametrization.

1.5 Semimartingale Discrete Tenor Forward LIBOR Mod-
eling

This section is an adaptation of [6] for our purposes later on.
We start with a theorem summarizing our aims in this section

Theorem 4 (Forward LIBOR Market Model Existence) Given a discrete finite tenor struc-
ture {Ti}i∈I , positive deterministic functions {λ(t, Ti)}i∈I and a strictly decreasing strictly posi-
tive initial term structure (B(0, Ti))i∈I and a semimartingale Xt which is given as

Xt =
∫ t

0

b(s, Tn)ds+
∫ t

0

c
1
2
s dW

n+1
s +

∫ t

0

∫
R
x(µ− νn+1

t )(ds, dx) (1.74)

and for which it holds that ∫ t

0

(|b(s, Tn)|+ cs)ds <∞ (1.75)

as well as ∫ Tn+1

0

∫
|x|≥1

exp(ux)Fs(dx)ds <∞ u < M,M ≥
n∑
i=1

|λ(., Ti)| (1.76)
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and ∫ Tn+1

0

∫
R

(x2 ∧ 1)Fs(dx)ds <∞, (1.77)

there is a LIBOR Model L(t, Ti)t≤Ti,i∈I such that for all i ∈ I under PTi+1 there holds

dL(t, Ti) = L(t−, Ti)
(
λ(t, Ti)c

1
2
t dW

i+1
t +

∫
R

(eλ(t,Ti)x − 1)(µ− νi+1
t )(dt, dx)

)
(1.78)

For notational simplicity we will assume {Ti}i∈I to be equally spaced:

Ti − Ti−1 = δ > 0 ∀i

Note that the LIBOR rate is apriori modeled as driven by Xt and not derived from any HJM
context per se.
Proof:
We get initial values

L(0, Ti) =
1
δ

(
B(0, Ti)

B(0, Ti + δ)
− 1)

and model the rate L(t, Tn) under PTn+1 to be

L(t, Tn) = L(0, Tn) exp
(∫ t

0

λ(s, Tn)dXt

)
(1.79)

Since L(t, Tn) has to be a martingale under PTn+1 by definition of the forward measure, we make
L(t, Tn) into a martingale by choosing∫ t

0

λ(s, Tn)b(s, Tn)ds = −1
2

∫ t

0

csλ(s, Tn)2ds−
∫ t

0

∫
R

(eλ(s,Tn)x − 1− λ(s, Tn)x)νn+1
t (ds, dx)

(1.80)
Now L(t, Tn) is a positive martingale. We therefore can write it as a stochastic exponential of
the stochastic logarithm H(t, Tn) defined as

H(t, Tn) =
∫ t

0

λ(s, Tn)c
1
2
s dW

n+1
s +

∫ t

0

∫
R

(eλ(s,Tn)x − 1)(µ− νn+1
t )(ds, dx). (1.81)

So
L(t, Tn) = L(0, Tn)E(H(t, Tn)) (1.82)

and expressed in a SDE

dL(t, Tn) = L(t−, Tn)
(
λ(t, Tn)c

1
2
t dW

n+1
t +

∫
R

(eλ(t,Tn)x − 1)(µ− νn+1
t )(dt, dx)

)
. (1.83)

using FB(t, Tn, Tn + δ) = 1 + δL(t, Tn) we get

dFB(t, Tn, Tn+δ) = FB(t−, Tn, Tn+δ)
(
`(t−, Tn)c

1
2
s dW

n+1
t +

∫
R
`(t−, Tn)(eλ(t,Tn)−1)(µ−νn+1

t )(dt, dx)
)
.

(1.84)
Since FB(t, Tn, Tn+1) is a measure change between the forward measures PTn and PTn+1 , we want
to represent this as a stochastic exponential

dPTn
dPTn+1

=
FB(t, Tn, Tn+1)
FB(0, Tn, Tn+1)

E
(
M(t, Tn)

)
. (1.85)

Our result will be



1.5. SEMIMARTINGALE DISCRETE TENOR FORWARD LIBOR MODELING 17

Lemma 2 (Induction - Induction Start) Under the conditions of the theorem we get the
measure change between PTn and PTn+1 to be

dPTn
dPTn+1

= E(M(t, Tn)) (1.86)

with

M(t, Tn) =
∫ t

0

α(s, Tn, Tn+1)c
1
2
s dW

n+1
s +

∫ t

0

∫
R
(β(s, x, Tn, Tn+1)− 1)(µ− νn+1

t )(ds, dx). (1.87)

and as characteristics of Xt under PTn(henceforth denoted as Xn
t )

Wn
t = Wn+1

t −
∫ t

0

α(s, Tn, Tn+1)c
1
2
s ds (1.88)

and
νnt = β(t, x, Tn, Tn+1)νn+1

t (1.89)

where
α(s, Tn, Tn+1) = `(t−, Tn)λ(t, Tn)

and
β(s, x, Tn, Tn+1) = `(t−, Tn)(eλ(t,Tn)x − 1) + 1.

and the drift-condition from the martingality assumption on L(t, Tn−1) = L(0, Tn−1) exp(
∫ t
0
λ(s, Tn−1)dXn

s )
as∫ t

0

λ(s, Tn−1)b(s, Tn)ds = −1
2

∫ t

0

csλ(s, Tn−1)2ds−
∫ t

0

∫
R

(eλ(s,Tn−1)x−1−λ(s, Tn−1)x)νnt (ds, dx).

(1.90)

Since FB(t, Tn, Tn+1) is a positive martingale, it is possible to construct stochastic exponential
of the stochastic logarithm again, which yields

M(t, Tn) =
∫ t

0

α(s, Tn, Tn+1)c
1
2
s dW

n+1
s +

∫ t

0

∫
R

(β(s, x, Tn, Tn+1)− 1)(µ− νn+1
t )(ds, dx).

This yields as Brownian Motion under PTn under PTn+1

Wn
t = Wn+1

t −
∫ t

0

α(s, Tn, Tn+1)c
1
2
s ds

and as new compensator
νnt = β(t, x, Tn, Tn+1)νn+1

t .

The only thing we have not determined for our driving process Xt under PTn is the drift char-
acteristic b(t, Tn).
We model the next rate L(t, Tn−1) under PTn to be

L(t, Tn−1) = L(0, Tn−1) exp
(∫ t

0

λ(s, Tn−1)dXn
t

)
(1.91)

where Xn
t denotes Xt under PTn+1 and there holds

Xn
t =

∫ t

0

b(s, Tn−1)ds+
∫ t

0

c
1
2
s dW

n
s +

∫ t

0

∫
R
x(µ− νns )(ds, dx). (1.92)
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Since L(t, Tn−1) has to be a martingale under PTn we get a condition on the drift-characteristic∫ t

0

λ(s, Tn−1)b(s, Tn−1)ds = −1
2

∫ t

0

csλ(s, Tn−1)2ds−
∫ t

0

∫
R

(eλ(s,Tn−1)x−1−λ(s, Tn−1)x)νnt (ds, dx).

which concludes the proof of the lemma. �
Proceeding in our construction, we can again represent L(t, Tn1) as stochastic exponential of its
stochastic logarithm

H(t, Tn−1) =
∫ t

0

λ(s, Tn−1)c
1
2
s dW

n
s +

∫ t

0

∫
R

(eλ(s,Tn−1)x − 1)(µ− νnt )(ds, dx) (1.93)

and derive the dynamics

dL(t, Tn−1) = L(t−, Tn−1)
(
λ(t, Tn−1)c

1
2
t dW

n
t +

∫
R
(eλ(t,Tn−1)x − 1)(µ− νnt )(dt, dx)

)
. (1.94)

We proceed to give the general construction principle

Lemma 3 (Induction - Inductive Step) Under the conditions of the theorem, given a LIBOR-
rate process L(t, Ti+1) through

L(t, Ti+1) = L(0, Ti) exp(
∫ t

0

λ(s, Ti+1)dXi+2
s ) (1.95)

we can derive W i+1 and νi+1 in terms of W i+2 and νi+2 and we model L(t, Ti) it to be

L(t, Ti) = L(0, Ti) exp
(∫ t

0

λ(s, Ti)dXi+1
s

)
(1.96)

and it will be the solution of

dL(t, Ti) = L(t−, Ti)
(
λ(t, Ti)c

1
2
t dW

i+1
t +

∫
R

(eλ(t,Ti)x − 1)(µ− νi+1
s )(ds, dx)

)
(1.97)

for all i ∈ I.

Assuming we are given

L(t, Ti+1) = L(0, Ti+1) exp(
∫ t

0

λ(s, Ti+1)dXi+2
s )

we get as condition on the drift∫ t

0

λ(s, Ti+1)b(s, Ti+1)ds = −1
2

∫ t

0

csλ(s, Ti+1)2ds−
∫ t

0

∫
R
(eλ(s,Ti+1)x−1−λ(s, Ti+1)x)νi+2

t (ds, dx).

(1.98)
We represent L(t, Ti+1) = L(0, Ti+1)E(H(t, Ti+1)) with

H(t, Ti+1) =
∫ t

0

λ(s, Ti+1)c
1
2
s dW

i+2
s +

∫ t

0

∫
R

(eλ(s,Ti+1)x − 1)(µ− νi+2
t )(ds, dx). (1.99)

and get as dynamics

dL(t, Ti+1) = L(t−, Ti+1)
(
λ(t, Ti+1)c

1
2
t dW

i+2
t +

∫
R
(eλ(t,Ti+1)x − 1)(µ− νi+2

s )(ds, dx)
)
. (1.100)
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Through 1 + δL(t, Ti+1) = FB(t, Ti+1, Ti+2) we get

dFB(t, Ti+1, Ti+2) = FB(t−, Ti+1, Ti+2)
(
`(t−, Ti+1)c

1
2
s dW

i+2
t +

∫
R
`(t−, Ti+1)(eλ(t,Ti+1)x−1)(µ−νi+2

t )(dt, dx)
)
.

(1.101)
We have

dPTi+1

dPTi+2

=
B(0, Ti+2)
B(0, Ti+1)

B(t, Ti+1)
B(t, Ti+2)

=
FB(t, Ti+1, Ti+2)
FB(0, Ti+1, Ti+2)

= E(M(t, Ti+1)) (1.102)

with

M(t, Ti+1) =
∫ t

0

α(s, Ti+1, Ti+2)c
1
2
s dW

i+2
s +

∫ t

0

∫
R

(β(s, x, Ti+1, Ti+2)− 1)(µ− νi+2
t )(ds, dx).

(1.103)
where

α(t, Ti+1, Ti+2) = `(t−, Ti+1)λ(t, Ti+1) (1.104)

and
β(t, x, Ti+1, Ti+2) = `(t−, Ti+1)(eλ(t,Ti+1)x − 1) + 1. (1.105)

We get as Brownian Motion under PTi+1

W i+1
t = W i+2

t −
∫ t

0

α(s, Ti+1, Ti+2)c
1
2
s ds (1.106)

and as new compensator
νi+1
t = β(t, x, Ti+1, Ti+2)νi+2

t . (1.107)

Given those components we model the next rate L(t, Ti) under PTi+1 as

L(t, Ti) = L(0, Ti) exp(
∫ t

0

λ(s, Ti)dXi+1
s ) (1.108)

with

Xi+1
t =

∫ t

0

b(s, Ti)ds+
∫ t

0

c
1
2
s dW

i+1
s +

∫ t

0

∫
R
x(µ− νi+1

s )(ds, dx). (1.109)

We choose the drift-characteristic b(s, Ti) under PTi+1 to solve∫ t

0

λ(s, Ti)b(s, Ti)ds = −1
2

∫ t

0

csλ(s, Ti)2ds−
∫ t

0

∫
R
(eλ(s,Ti)x−1−λ(s, Ti)x)νi+1

t (ds, dx) (1.110)

since L(t, Ti) has to be a martingale under PTi+1 .
Being a positive martingale, we can represent L(t, Ti) = L(0, Ti)E(H(t, Ti)) with

H(t, Ti) =
∫ t

0

λ(s, Ti)c
1
2
s dW

i+1
s +

∫ t

0

∫
R

(eλ(s,Ti)x − 1)(µ− νi+1
t )(ds, dx). (1.111)

That implies for the dynamics of L(t, Ti)

dL(t, Ti) = L(t−, Ti)
(
λ(t, Ti)c

1
2
t dW

i+1
t +

∫
R

(eλ(t,Ti)x − 1)(µ− νi+1
s )(ds, dx)

)
. (1.112)

That concludes the proof of our lemma. �
It also concludes the proof of our theorem, if combined with the lemma before, which may

be seen as the inductions beginning and then the above lemma is the inductive step. �
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1.6 Spot-Modeling And Spot-LIBOR Modeling

We use the results of Jamshidian [11] to obtain a new approach to modeling of an unbounded
tenor term structure model.

1.6.1 The Spot Measure

A spot measure by the definition of [15], which we adopted, in discrete tenor LIBOR Market
Model theory is given by the choice of numeraire B(t, T1)/B(0, T1) for a given tenor structure.
We start from the dynamics under the proper forward-measure PTn+1 for a finite discrete tenor
model.(with tenor {Ti|i = 1, . . . , n, n+ 1})

dL(t, Tn) = L(t−, Tn)(λ(t, Tn)c
1
2
t dW

n+1
t +

∫
R

(eλ(t,Tn)x − 1)(µ− νn+1
t )(dt, dx))

and build the measure change as follows

(
dPT1

dPTn+1

)t =
B(0, Tn+1)B(t, T1)
B(0, T1)B(t, Tn+1)

=
FB(t, T1, Tn+1)
FB(0, T1, Tn+1)

=
n∏
j=1

FB(t, Tj , Tj+1)
FB(t, Tj , Tj+1)

(1.113)

yielding a Brownian Motion

W 1
t = Wn+1

t −
∫ t

0

n∑
j=1

`(s−, Tj)λ(s, Tj)c
1
2
s ds⇒Wn+1

t = W 1
t +

∫ t

0

n∑
j=1

`(s−, Tj)λ(s, Tj)c
1
2
s ds

and a compensator

ν1 =
n∏
j=1

β(t, x, Tj , Tj+1)νn+1
t ⇒ νn+1 =

n∏
j=1

1
β(t, x, Tj , Tj+1)

ν1
t .

Note that there is no LIBOR-rate to be modeled under PT1 in the usual forward modeling
approach, yet still we can define this forward-measure properly.
The dynamics of L(t, Tn) under that measure PT1 are then

dL(t, Tn) = L(t−, Tn)
( n∑
j=1

`(t−, Tj)λ(t, Tj)λ(t, Tn)ctdt+

∫
R

(eλ(t,Tn)x−1)(1−
n∏
j=1

1
β(t, x, Tj , Tj+1)

)ν1
t (dt, dx)+λ(t, Tn)c

1
2
t dW

1
t +
∫

R
(eλ(t,T )x−1)(µ−ν1

t )(dt, dx)
)

More generally starting from an arbitrary rate under its forward measure

dL(t, Ti) = L(t−, Ti)(λ(t, Ti)c
1
2
t dW

i+1
s +

∫
R
(eλ(t,Ti)x − 1)(µ− νi+1

t )(dx, dt))

The measure change becomes

(
dPT1

dPTi+1

)t =
B(t, T1)
B(t, Ti+1)

=
FB(t, T1, Ti+1)
FB(0, T1, Ti+1)

=
i∏

j=1

FB(t, Tj , Tj+1)
FB(0, Tj , Tj+1)

(1.114)
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and the dynamics therefore

dL(t, Ti) = L(t−, Ti)
( i∑
j=1

`(t−, Tj)λ(t, Tj)λ(t, Ti)ctdt+

∫
R

(eλ(t,Ti)x−1)(1−
i∏

j=1

1
β(t, x, Tj , Tj+1)

)ν1(dx, dt)+c
1
2
t λ(t, Ti)dW 1

t +
∫

R
eλ(t,Ti)x−1(µ−ν1

t )(dt, dx)
)

by the same arguments concerning W 1
t and ν1

t as above.
Then therefore there exists an equivalent measure PT1 to the other forward measures and the
risk neutral measure, such that LIBOR-dynamics are of the form

dL(t, Ti) = L(t−, Ti)
( i∑
j=1

λ(t, Tj)`(t−, Tj)λ(t, Ti)ctdt+

∫
R

(eλ(t,Ti)x−1)(1−
i∏

j=1

1
β(t, x, Tj , Tj+1)

)ν1
t (dx, ds)+λ(t, Ti)c

1
2
t dW

1
t +
∫

R
(eλ(t,Ti)x−1)(µ−ν1

t )(dx, dt)
)

where

νi+1
t = (

i∏
j=1

1
(`(t,Tj)(eλ(t,Tj)x − 1) + 1)

)ν1
t . (1.115)

So the LIBOR-rates in this case depend only on the rates modelled for shorter maturities.
Of course, a problem of this approach is, that B(t, T1) is essentially only defined on [0, T1] since
afterwards the bond has matured.
Therefore we have to extend B(t, T1) beyond T1 in such a way that it stays a semimartingale.
We will not go deeper into diverse possibilities for this, as we are primarily interested in an
particular extension, which was introduced explicitly by Jamshidian.

1.6.2 Spot-LIBOR Measure

Introduced by Jamshidian in [11], was the numeraire

B∗(t) =
B(t, Ti(t))
B(0, T1)

i(t)−1∏
j=1

B(Tj , Tj)
B(Tj , Tj+1)

(1.116)

with i(t) = min{i : t ≤ Ti}.
The idea behind this is the following: We wish to extend a given B(t, Ti) as explained above
to time intervals beyond [0, Ti]. We do this by making B(t, Ti) proportional to B(t, Ti+1) on
[Ti, Ti+1] , proportional to B(t, Ti+2) on [Ti+2, Ti+3] etc. That gives

B(t, Ti) = B(t, Tj+1)
j∏
k=i

B(Tk, Tk)
B(Tk, Tk+1)

, t ∈ [Tj , Tj+1), 1 ≤ i ≤ j ≤ n. (1.117)

For B(t, T1) this yields

B(t, T1) = B(t, Ti(t))
i(t)−1∏
j=1

B(Tj , Tj)
B(Tj , Tj+1)

= B(t, Ti(t))
i(t)−1∏
j=1

(1 + δjL(Tj , Tj)) ∀t ≤ Tn+1

(1.118)
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This can be interpreted as as the value of a bond from investing a given amount B(0, T1) at time
0 at spot LIBOR rate L(0, T1) and at T1 reinvesting the principal interest at the prevailing spot
LIBOR rate L(T1, T1) and so on.
The numeraire B∗(t) is then given through the extended B(t, T1) as

B∗(t) =
B(t, T1)
B(0, T1)

We will show the following

Theorem 5 (Spot-LIBOR Dynamics) There is a measure denoted by PLs given through the
numeraire B∗(t), equivalent to the forward-measures and the risk neutral measure such that the
dynamics of the LIBOR rates for a given tenor structure are

L(t, Ts) = L(t−, Ts)(
s∑

j=i(t)

`(t−, Tj)λ(t, Tj)λ(t, Ts)ctdt+
∫

R
(eλ(t,Ts)x − 1)

(1−
s∏

j=i(t)

1
β(t, x, Tj , Tj+1)

)νi(t)t (dx, dt) +λ(t, Ts)c
1
2
t dW

i(t)
t +

∫
R
(eλ(t,Ts)x− 1)(µ− νi(t)t )(dt, dx))

Proof:
To understand the LIBOR-market-model under the measure induced by that numeraire, we first
look at the first time interval under consideration [0, T1] and see our spot-measure as discussed
above. How to continue for the other time-intervals? To answer this, we look at the form of the
measure change for each time interval

dPLs
dPTs+1

=
B(t, Ti(t)−1)
B(0, T1)

i(t)−1∏
j=1

B(Tj , Tj)
B(Tj , Tj+1)

B(0, Ts+1)
B(t, Ts+1)

=

B(t, Ti(t))
B(t, Ts+1)

i(t)−1∏
j=0

B(Tj , Tj)
B(Tj , Tj+1)

=
FB(t, Ti(t), Ts+1)
FB(0, Ti(t), Ts+1)

i(t)−1∏
j=1

FB(Tj , Tj , Tj+1) =
FB(t, Ti(t), Ts+1)
FB(0, Ti(t), Ts+1)

C

So for each interval t ∈ (Ti, Ti+1] our numeraire is then B(t, Ti+1)C. We therefore can express
the Spot-LIBOR numeraire dynamics by a sequence of forward-measure dynamics.
We compute measure changes accordingly

(
dPLs
dPTs+1

)t =
s∏

j=i(t)

FB(t, Tj , Tj+1)FB(0, Tj , Tj+1) (1.119)

Inserting the resulting equation for the Brownian Motion

W s+1
t = W

i(t)
t +

∫ t

0

s∑
j=i(t)

λ(t, Tj)`(u−, Tj)c
1
2
u du (1.120)

and the compensator

νs+1
t =

s∏
j=i(t)

1
β(t, x, Tj , Tj+1)

ν
i(t)
t (1.121)
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into the forward dynamics

dL(t, Ts) = L(t−, Ts)
(
λ(t, Ts)c

1
2
t dW

s+1
t +

∫
R

(eλ(t,Ts)x − 1)(µ− νs+1
t )(dt, dx)

)
(1.122)

This yields then the following dynamics

L(t, Ts) = L(t−, Ts)(
s∑

j=i(t)

`(t−, Tj)λ(t, Tj)λ(t, Ts)ctdt+
∫

R
(eλ(t,Ts)x − 1)

(1−
s∏

j=i(t)

1
β(t, x, Tj , Tj+1)

)νi(t)t (dx, dt) + λ(t, Ts)c
1
2
t dW

i(t)
t +

∫
R
(eλ(t,Ts)x − 1)(µ− νi(t)t )(dx, dt)) ∀t ∈ [Ti(t)−1, Ti(t)] �

Those dynamics, where each rate is dependent only on finitely many( already calculated) rates,
form the basis for our extension of a given model to an infinite time horizon.
This is especially interesting since in an HJM framework we would assume models to be defined
for arbitrary large maturities.
For the time being we can only work on a discrete time-grid, but this problem can be solved by
”filling” the gaps as we show in the section on continuous tenors.

1.7 Extending The Tenor

We assume we are given a finite tenor-structure and we are working under the Spot-LIBOR
measure.
Say we add another point to the tenor structure Tn+2 > Tn+1 and Tn+2−Tn+1 = δn+1. We have
the following relation between Brownian Motion under PTn+2 for an arbitrary forward measure
and Brownian Motion for PLs :

Wn+2
t = W

i(t)
t +

∫ t

0

n+1∑
j=i(s)

δjL(u−, Tj)
1 + δjL(u−, Tj)

λ(u, Tj)c
1
2
u du u− ∈ [Ti(s)−1, Ti(s)) (1.123)

and the compensator

νn+2 =
n+1∏
j=i(t)

1
β(t, x, Tj , Tj+1)

ν
i(t)
t ∀t ∈ [Ti−1, Ti]. (1.124)

We can therefore write down a SDE for L(t, Tn+1) under PTn+2

dL(t, Tn+1) = L(t−, Tn+1)(
n+1∑
j=i(t)

`(t−, Tj)λ(t, Tj)λ(t, Tn+1)ctdt+ c
1
2
t dW

i(t)t+

∫
R

(eλ(t,Tn+1)x−1)(1−
n+1∏
j=i(t)

1
β(t, x, Tj , Tj+1)

)νi(t)(dx, dt)+
∫

R
(eλ(t,Tn+1)x−1)(µ−νi(t)t )(dx, dt))
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for a a priori unspecified positive bounded function λ(t, Tn+1)( to be determined through cali-
bration for instance).
Obviously we can repeat this procedure, choosing a positive function λ(t, Tn+2), a new point in
time Tn+3 > Tn+2 getting a well defined, solvable( finite-dimensional, with Lipschitz-Coefficients
if the λ(., Ti) are chosen that way) SDE for L(t, Tn+2).
Therefore, if we extend our tenor-structure, to an arbitrarily large (even countably infinite) set
of time points {Ti}∞i=1, we get for any possible rate

dL(t, Ts) = L(t−, Ts)(
s∑

j=i(t)

`(t−, Tj)λ(t, Tj)λ(t, Ts)csdt+ λ(t, Ts)c
1
2
t dW

i(t)
t +

∫
R
(eλ(t,Ts)x − 1)(1−

s∏
j=i(t)

1
β(t, x, Tj , Tj+1)

)νi(t)(dx, dt) +
∫

R
(eλ(t,Ts)x − 1)(µ− νi(t)t )(dt, dx))

which is a finite dimensional SDE, dependent only on already calculated rates and therefore
solvable with purely finite-dimensional methods. We sum all of the above up in

Theorem 6 (LIBOR-Extension) For any given finite tenor-structure {Ti}n+1
i=1 , strictly de-

creasing, positive initial term structure (B(0, Ti))n+1
i=1 and volatility functions {λ(., Ti)}ni=1 and a

corresponding LIBOR-Market-Model (L(., Ti))ni=1 we may choose positive functions {λ(., Ti)}∞i=n+1

and from that obtain a unique extension of our model {L(., Ti)}∞i=1 by demanding each of our
LIBOR-rate processes fulfills the finite dimensional SDE

dL(t, Ts) = L(t−, Ts)(
s∑

j=i(t)

`(t−, Tj)λ(t, Tj)λ(t, Ts)ctdt+ λ(t, Ts)c
1
2
t dW

i(t)
t +

∫
R
(eλ(t,Ts)x − 1)(1−

s∏
j=i(t)

1
β(t, x, Tj , Tj+1)

)νi(t)(dx, dt) +
∫

R
(eλ(t,Ts)x − 1)(µ− νi(t)t )(dt, dx))

given an initial condition L(0, Ts).

Since we know how to switch between forward and spot-LIBOR measures, it does not matter
under which measure we originally specify our LIBOR-Market-Model.
Such an infinite discrete tenor structure may serve as a skeleton for a full continuous tenor term
structure model. We would have to fill the gaps between the tenor points. We will address this
question in the section on continuous tenors.



Chapter 2

Continuous Tenor

We wish to extend the construction of Musiela and Rutkowski [15] to semimartingale driven
LIBOR-Models so as to get a ”full” tenor-structure in that case as well.

2.1 Construction Concept

In analogy to the work of Musiela and Rutkowski [15], we wish to ”fill the gaps” between the
discrete tenor dates {Ti}i∈1,...,n+1. For that we assume an equidistant tenor-time-grid.
We assume to be working up to a terminal maturity Tn+1 and wish to specify the dynamics of
L(t, T ) for all T ∈ [0, Tn+1].
As in [15] we use backward induction for this

1. First, we define a forward LIBOR-market model on a given equidistant discrete grid Ti = iδ.

2. Secondly, numeraires for the interval (Tn, Tn+1). We have values for the spot-LIBOR
numeraire at Tn and Tn+1, in short B∗(Tn) and B∗(Tn+1). Both B∗(Tn) and B∗(Tn+1)
are FTn measurable random variables.
We define a spot martingale measure through dPLs

dPTn+1
= B∗(Tn+1)B(0, Tn+1).

We attempt to satisfy intial conditions in our model for the interpolated rates via a function
γ : [Tn, Tn+1]→ [0, 1] such that γ(Tn) = 0 and γ(Tn+1) = 1 and the process

logB∗(T ) = (1− γ(T )) logB∗(Tn) + γ(T ) logB∗(Tn+1), ∀T ∈ [Tn, Tn+1],

satisfies B(0, t) = EPLs(1/B
∗
t ) for every T ∈ [Tn, Tn+1]. We have that 0 < B∗(Tn) <

B∗(Tn+1) and B(0, t), t ∈ [Tn, Tn+1] is assumed to be a strictly decreasing function, so
such a γ exists and is unique.

3. Thirdly, given the spot-LIBOR numeraires B∗(t) for all t ∈ [Tn, Tn+1] the forward measure
for any date T ∈ (Tn, Tn+1) can be defined by the formula

dPT
dPLs

=
1

B∗(T )B(0, T )
.

If we use this and the definition of our spot martingale measure, we get

dPT
dP

=
dPT
dPLs

dPLs
dP

=
B∗(Tn+1)B(0, Tn+1)

B∗(T )B(0, T )

25
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which gives for every T ∈ [Tn, Tn+1]

dPT
dP
|Ft = EP(

B∗(Tn+1)B(0, Tn+1)
B∗(T )B(0, T )

|Ft)

Using stochastic exponentials to describe this we get

dPT
dP
|Ft =

B(0, Tn+1)
B(0, T )

Et
(
−
∫ .

0

α(u, T, Tn+1)c
1
2
u dW

n+1
u +

∫ .

0

∫
R

(β(u, x, T, Tn+1)−1)(µ−νn+1
t )(dx, du)

)
which we use to describe the forward volatility α(t, T, Tn+1) for any maturity T ∈ (Tn, Tn+1).
We get a PT Wiener process WT and a PT compensator for the jump-part. Given those in-
gredients we define the forward LIBOR rate process L(t, T−δ) for arbitrary T ∈ (Tn, Tn+1)
by setting

dL(t, T − δ) = L(t−, T − δ)
(
λ(t, T − δ)c

1
2
t dW

T
t +

∫
R
(eλ(t,T−δ)x − 1)(µ− νTt )(dt, dx)

)
with usual initial condition

L(0, T − δ) = δ−1(
B(0, T − δ)
B(0, T )

− 1).

Finally we know
α(t, Tn, Tn+1) = `(t−, T )λ(t, Tn)

and
β(t, x, Tn, Tn+1) = `(t−, T )(e(λ(t,Tn)x) − 1) + 1

and thus we are able to define the forward measure for the date T .
To define forward probability measures PU and the corresponding driving processes for all
maturities U ∈ (Tn−1, Tn) we put

α(t, U, T ) = α(t, T − δ, T ) =
δL(t, T − δ

1 + δL(t, T − δ)
λ(t, T − δ)

and
β(t, x, U, T ) = β(t, x, T − δ, T ) = `(t−, T )(e(λ(t,T−δ)x) − 1) + 1

with U = T − δ such that T = U + δ belongs to (Tn, Tn+1).
The relations between those coefficients are derived from the necessary relations between
forward measure changes( see the section on forward modeling).
The coefficient α(t, U, Tn+1) is calculated through

α(t, U, Tn+1) = α(t, U, T )− α(t, T, Tn+1), ∀t ∈ [0, T − δ].

For the jump part, β(t, x, U, Tn+1) is calculated through

β(t, x, U, Tn+1) = β(t, x, U, T )β(t, x, T, Tn+1), ∀t ∈ [0, T − δ].

Continuing this Backward construction, we get a continuous tenor LIBOR model.
Since we construct a family of forward measures, we can construct a family of forward processes
F (t, Tn+1, T ) which fulfill the SDE

dF (t, T, Tn+1) = F (t−, T, Tn+1)(α(t, T, Tn+1)c
1
2
t dW

n+1
t +

∫
R
(β(t, x, T, Tn+1)−1)(µt−νn+1

t )(dx, dt)).

By construction we have that from those forward processes we get a family of bond prices B(t, T )
by B(t, T ) := F (t, T, t). The family of bond prices obtained thus always satisfies the weak no-
arbitrage condition.
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2.2 Spot-LIBOR Interpolation

Now we want to carry out interpolation for a model given under the spot-LIBOR measure.
We assume a finite equidistant tenor-structure and the spot-LIBOR dynamics

dL(t, Ts) = L(t−, Ts)
(
λ(t, Ts)

s∑
j=i(t)

λ(t, Tj)`(t−, Tj)ctdt+ λ(t, Ts)c
1
2
t dW

i(t)
t +

∫
R

(eλ(t,T )x − 1)(1−
s∏

j=i(t)

1
β(t, x, Tj)

)νi(t)t (dx, dt) +
∫

R
(eλ(t,T )x − 1)(µ− νi(t)t )(dx, dt)

)

for all Ts ∈ {Ti}n+1
i=1 .

We start in the interval (Tn, Tn+1). We define the spot-LIBOR numeraire process B(T ) for
all T ∈ (Tn, Tn+1) just as in the section on forward interpolation above and assume a positive
bounded function λ(t, Ts).
We can calculate a change of measure from PTn+1 to PT+δ as in the section above as well

dPT+δ

dPTn+1

= E(
∫ t

0

α(s, T + δ, Tn+1)c
1
2
t dW

n+1
s +

∫ t

0

∫
R

(β(s, x, T + δ, Tn+1)− 1)(µ− νn+1
s )(ds, dx))

(2.1)
We know therefore, that a Brownian Motion for the forward measure PT+δ is given as

WT+δ
t = Wn+1

t +
∫ t

0

λ(s, T )`(s, T )c
1
2
s ds ∀t ∈ [0, Tn+1]

in terms of PTn+1 with the compensator being

νT+δ
t = νn+1

t

1
β(t, x, Tn+1, T + δ)

= νn+1
t

1
`(t−, T )(eλ(t,T )x − 1) + 1

.

A forward LIBOR-rate for T ∈ (Tn, Tn+1] has to fulfill

dL(t, T ) = L(t−, T )
(
λ(t, T )c

1
2
t dW

T+δ
t +

∫
R
(eλ(t,T )x − 1)(µ− νT+δ

t )(dt, dx)
)

under its proper forward measure PT+δ.
Under PTn+1 we then get WT+δ

t = Wn+1
t +

∫ t
0
λ(t, T )`(s−, T )c

1
2
s ds and νTt = νn+1

t
1

β(t,x,Tn+1,T+δ) .
From this we get

dL(t, T ) = L(t−, T )
(
λ(t, T )c

1
2
t dW

n+1
t + λ(t, T )2ct`(t−, Tn+1)dt+∫

R
(eλ(t,T )x − 1)(1− 1

β(t, x, Tn+1, T + δ)
)νn+1
t +

∫
R

(eλ(t,T )x − 1)(µ− νn+1
t )

)
.



28 CHAPTER 2. CONTINUOUS TENOR

in terms of PTn+1 .
In terms of the spot-LIBOR measure we get

dL(t, T ) = L(t−, T )
( i(T )−1∑
j=i(t)

λ(t, Tj)λ(t, T )ct`(t−, Tj)dt+ `(t−, T )ctλ(t, T )2)dt+

∫
R

(eλ(t,T )x−1)(1−
i(T )−1∏
j=i(t)

1
β(t, x, Tj , Tj+1)

)νi(t)t (dt, dx)+
∫

R
(eλ(t,T )x−1)(1− 1

β(t, x, Tn+1, T + δ)
)νn+1
t (dt, dx)+

λ(t, T )c
1
2
t dW

n+1
t +

∫
R
(eλ(t,T )x − 1)(µ− νn+1

t )(dt, dx)
)

So the interpolation on the interval T ∈ (Tn, Tn+1] is well defined and we have that

WT
t = Wn+1

t +
∫ t

0

λ(s, T )`(s−, T )c
1
2
s ds = W

i(T )
t +

∫ t

0

λ(s, T )`(s−, T )c
1
2
s ds (2.2)

and
νTt = ν

i(T )
t

1
β(t, x, Ti(t), T + δ)

. (2.3)

Once we have the interpolated model for a whole interval, we use the relation

dPT−kδ
dPT−(k−1)δ

=
FB(t, T − kδ, T − (k − 1)δ)
FB(0, T − kδ, T − (k − 1)δ)

∀k ≤ i(T )

to get Brownian Motions

W
T−(k−1)δ
t = W

i(T−kδ)
t +

∫ t

0

λ(t, T − kδ)`(s, T − kδ)c
1
2
t ds ∀ −∞ < k ≤ i(T )− 1

and Compensators

νT−kδt = ν
i(T−kδ)
t

1
β(t, x, i(T − kδ), T − (k − 1)δ)

∀ −∞ < k ≤ i(T )− 1

for all remaining maturities T −kδ ∈ [Tn−kδ, Tn+1−kδ] and our interpolated processes become
solutions of

dL(t, T ) = L(t−, T )
( i(T )−1∑
j=i(t)

λ(t, T )λ(t, Tj)ct`(t−, Tj)dt+ `(t−, T )ctλ(t, T )2)dt+

∫
R
(eλ(t,T )x − 1)(1−

i(T )−1∏
j=i(t)

1
β(t, x, Tj , Tj+1)

)νi(t)t(dt, dx)+

∫
R

(eλ(t,T )x−1)(1− 1
β(t, x, i(T )− 1, T + δ)

)νi(T )
t (dt, dx)+λ(t, T )c

1
2
t dW

n+1
t +

∫
R
(eλ(t,T )x−1)(µ−νi(T )

t )(dt, dx)
)

For an arbitrary starting interval the procedure works as follows:

1. We look at T ∈ (Tk, Tk+1). We want to define the dynamics of L(t, T ) in an arbitrage-free
way for all T ∈ (Tk, Tk+1). For that, we interpolate between two spot-LIBOR numeraires.

logB(T )∗ = (1− γ(t)) logB∗Tk + γ(t) logB∗Tk+1
, ∀T ∈ [Tk, Tk+1],
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2. We determine the measure change between PTk+1and PT+δ.

dPT+δ

PTk+1

= E(
∫ t

0

α(s, T, Tk+1)c
1
2
t dW

k+1
s +

∫ t

0

∫
R
(eλ(s,T ) − 1)(µ− νk+1

s )(ds, dx)) (2.4)

3. We determine the Brownian Motion and the compensator for PT+δ in terms of the forward
measure PTk+1 :

WT
t = W k+1

t +
∫ t

0

λ(s, T )`(s−, T )c
1
2
s ds (2.5)

and
νTt = νk+1

t

1
β(t, x, Tk+1, T + δ)

. (2.6)

4. From this we can determine the dynamics of L(t, T ) under the spot-LIBOR measure:

dL(t, T ) = L(t−, T )
(
λ(t, T )(

k∑
j=i(t)

λ(t, Tj)`(t−, Tj)ct + `(t−, T )ctλ(t, T ))dt+

∫
R
(eλ(t,T )x−1)(1−

k+1∏
j=i(t)

1
β(t, x, Tj , Tj+1)

)νi(t)t (dt, dx)+
∫

R
(eλ(t,T )x−1)(1− 1

β(t, x, Tk+1, T + δ)
)νk+1
t (dt, dx)+

λ(t, T )c
1
2
t dW

i(t)
t +

∫
R

(eλ(t,T )x − 1)(µ− νi(t)t )(dt, dx)
)
.

From one fully determined interval we can determine the LIBOR-rate process dynamics of any
other by consequence of the forward measure changes to be

dL(t, T ) = L(t−, T )
(
λ(t, T )(

i(T )−1∑
j=i(t)

λ(t, Tj)ct`(t−, Tj) + `(t−, T )λ(t, T )ct)dt+

∫
R
(eλ(t,T )x − 1)(1−

i(T )−1∏
j=i(t)

1
β(t, x, Tj , Tj+1)

)νi(t)t (dt, dx)+

∫
R

(eλ(t,T )x−1)(1− 1
β(t, x, i(T ), T + δ)

)νi(T )−1
t (dt, dx)+λ(t, T )c

1
2
t dW

i(t)
t +

∫
R

(eλ(t,T )x−1)(µ−νi(t)t )(dt, dx)
)
.

Hereby we have also shown, that our method does not depend on the particular choice of the
starting interval( since every interval yields the same SDE). Also the restriction to a finite tenor
structure is not necessary.

2.3 Existence Of LIBOR-Term Structure Models

We use the results we have derived so far to prove the following theorem

Theorem 7 Given a equidistant discrete tenor structure {Ti}i∈I( I possibly infinite), volatility
functions {λ(t, Ti)}i∈N, an initial strictly positive, strictly decreasing term-structure

(
B(0, T )

)
and a driving process

Xt :=
∫ t

0

b(s, T1)ds+
∫ t

0

c
1
2
s dW

1
s +

∫ t

0

∫
R
x(µ− ν1

s )(ds, dx)
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fulfilling ∫ t

0

(|b(s, T1)|+ cs)ds <∞ ∀t ∈ R+ (2.7)

as well as ∫ ∞
0

∫
|x|≥1

exp(ux)Fs(dx)ds <∞ u < M,M ≥
∑
i∈N
|λ(., Ti)|,M <∞ (2.8)

and ∫ ∞
0

∫
R

(x2 ∧ 1)Fs(dx)ds <∞ (2.9)

then there is a LIBOR termstructe {L(t, T )}t≤T,T∈R+ fulfilling

dL(t, T ) = L(t−, T )
(
λ(t, T )(

i(T )−1∑
j=i(t)

λ(t, Tj)ct`(t−, Tj)dt+ `(t−, T )ctλ(t, T ))dt+

∫
R

(eλ(t,T )x−1)(1−
i(T )−1∏
j=i(t)

1
β(t, x, Tj , Tj+1)

)νi(t)t (dt, dx)+
∫

R
(eλ(t,T )x−1)(1− 1

β(t, x, Ti(T ), T + δ)
)νi(T )
t (dt, dx)+

λ(t, T )c
1
2
t dW

i(t)
t +

∫
R

(eλ(t,T )x − 1)(µ− νi(t)t )(dt, dx)
)
.

for all T ∈ R+.

Proof:

1. Start with a finite tenor structure {Ti}n+1
i=1 .

2. Define a LIBOR-Market-Model under the Spot-LIBOR measure PLs as solution to the
corresponding SDE’s.

dL(t, Ts) = L(t−, Ts)
(
λ(t, Ts)

s∑
j=i(t)

λ(t, Tj)`(t−, Tj)ctdt+ λ(t, Ts)c
1
2
t dW

i(t)
t +

∫
R
(eλ(t,Ts)x−1)(1−

s∏
j=i(t)

1
β(t, x, Tj , Tj+1)

)νi(t)t (dt, dx)+
∫

R
(eλ(t,Ts)x−1)(µ−νi(t)t )(dt, dx)

)
Since there are only finitely many factors entering into each equation, we have the usual
existence and uniqueness theorems in finite dimension.

3. Interpolate between every two tenor points. This is possible through arbitrage free inter-
polation under the spot-LIBOR measure.

4. Extend this LIBOR-Market-Model to an infinite tenor structure as in the LIBOR extension
theorem. This is well defined, as shown in the theorem.

5. Interpolate/extend for every extension for the tenor-grid, the LIBOR-rate dynamics in
between.
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6. Interpret the resulting family of LIBOR-rate processes {L(t, T )}t,T as a solution of an
infinite dimensional problem

dL(t, T ) = L(t−, T )
( i(T )−1∑
j=i(t)

λ(t, Tj)ct`(t−, Tj)dt+ `(t−, T )ctλ(t, T )2)dt+

∫
R

(eλ(t,T )x − 1)(1−
i(T )−1∏
j=i(t)

1
β(t, x, Tj , Tj+1)

)νi(t)t (dt, dx) +
∫

R
(eλ(t,T )x − 1)

(1− 1
β(t, x, Ti(T ), T + δ)

)νi(T )
t (dt, dx)+λ(t, T )c

1
2
t dW

i(t)
t +

∫
R

(eλ(t,T )x−1)(µ−νt)i(t))(dt, dx)
)
. ∀T ∈ R+�

That way, we get an existence result for a considerably big class of term structure models without
using a priori existence of an HJM model giving rise to the continuous (and unbounded) tenor
LIBOR-Market-Model.

Naturally we might ask, whether a surrounding HJM model exists and how limiting proce-
dures might work. Questions on the lines of [7] and [10] will be considered in future work.
There is another interpolation method by Schlögl in [17] pages 197-218, which is more flexible,
but does not lead to an SDE analogous to the continuously compounded risk neutrally modeled
rates of [3].
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Chapter 3

A Kou-type Model

Our goal is to implement a tractable Lévy LIBOR model along the lines of Eberlein and Özkan [6].
This is achieved by choosing a (possibly time-inhomogeneous) compound Poisson process as driv-
ing process for the LIBOR rates. Such processes are both simple and flexible: They move by
jumps only, and we have great freedom to choose the jump intensity and quite arbitrary distri-
butions for the jump sizes constrained only by some integrability conditions.
It follows from the central limit theorem, that such processes include as limiting case the tradi-
tional lognormal LIBOR models. Concerning calibration an interesting reference is [2].

3.1 Some notation

We fix a positive integer n ∈ N, a terminal horizon T ∗ > 0, choose a tenor structure

0 = T−1 < T0 < T1 < · · · < Tn < Tn+1 = T ∗,

and define δi = Ti − Ti−1 for i = 0, . . . , n+ 1. We set up a model for the LIBOR rates

L(t, Tk) =
1

δk+1

[
B(t, Tk)
B(t, Tk+1)

− 1
]
, (k = 0, . . . , n) (3.1)

with B(t, T ) denoting, as usual, zero-coupon bond prices. Thus L(t, Tk) is the simple interest
rate for [Tk, Tk+1] contracted at time 0 ≤ t ≤ Tk. The caplet mechanism is the following: Fixing
takes place at time Tk, and the corresponding caplet with strike K pays (L(Tk, Tk+1)−K)+ at
time Tk+1, where k = 0, . . . , n. Finally, the forward measure for time Tk is denoted by PTk .

3.2 Model ingredients

In setting up the model we use the following ingredients:

• For every tenor date Tk a ’volatility function’ is chosen, which is denoted1 by λ(t, Tk). In
our first implementation those functions will be piecewise constant,

λ(t, Tk) = λik, (Ti−1 ≤ t < Ti), (3.2)

1This function is denoted by λ(t, Tk) to distinguish it in a general Lévy LIBOR model from the ’Brownian
volatility’ σ(t, Tk), though the latter is not used in our pure jump model.

33
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see [4] for more details and other possibilities. The values λik are to be determined later
by calibrating the model to at-the-money caps and floors.

• We choose a time-dependent jump intensity γ(t), governing the frequency of jumps. In our
implementation those functions will be piecewise constant,

γ(t, ) = γi, (Ti−1 ≤ t < Ti). (3.3)

• We choose a time-dependent family G(t, dx) of probability distributions for the jump-
sizes. In our implementation it will be piecewise constant and admit probability densities.
In principle we are completely free to choose arbitrary distributions, as long they obey
sufficient integrability conditions. We choose a two-sided exponential distribution, as in
the Kou jump-diffusion model [14]. Namely

g(t, x) = piαie
−αixI(x>0) + (1− pi)βieβixI(x<0), (Ti−1 ≤ t < Ti). (3.4)

This means: If a jump occurs in the interval (Ti−1, Ti], then it is decided with probability
pi whether the jump is positive or negative. If positive the jump size is drawn from an
exponential distribution with parameter αi. If negative the modulus of the jump size
is drawn from an exponential distribution with parameter βi. This description is to be
understood under the terminal measure PTn+1 . The parameter αi determines the right
tail, the parameter βi the left tail. In that way we can model semi-heavy tails, excess
kurtosis, and skewness. The values of the parameters can be chosen from calibration to the
cap and floor smile, or calibration to further instruments, such as swaptions, for example.

3.3 Exact calculations

Let X(t) be the additive process driving the model, N(t) the associated counting process, and
Sj and Xj its j-th jump time and jump size. Below we show, that the LIBOR rates evolve
according to

L(t, Tk) = L(0, Tk) exp

−A(t, Tk) +
N(t)∑
j=1

λ(Sj , Tk)Xj

 . (3.5)

The ’logarithmic returns’ of the LIBOR rates move by jumps, compensated with an absolutely
continuous drift term. The jump term is fairly simple: If the j-th jump occurs at time t = Sj
the ’volatility’ function λ(t, Tk) is evaluated at t = Sj and multiplied with the jump size Xj

to produce the corresponding jump of L(t, Tk) at t = Sj . The drift A(t, Tk) must be chosen
to make L(t, Tk) a martingale under the forward measure PTk+1 . The form of the drift term is
computed from subsequent measure changes PTn+1 7→ PTn , . . . ,PTk+2 7→ PTk+1 and the demand
of martingality under the proper forward measure. Starting from the terminal measure PTn+1

we change to the forward measure for time Tn, then from Tn to Tn−1 and so on. Each time we
apply the Girsanov theorem. The calculations are given below, let us simply describe the result:
Firstly, since we work with piecewise constant quantities, we consider an interval of constancy,
say Ti−1 ≤ t < Ti. Then A(t, Tk) can be written as a sum of the drift at the beginning of the
interval, plus an integral over some cumulant process, cf. [12],

A(t, Tk) = A(Ti−1, Tk) +
∫ t

Ti−1

κTk+1(s, λik)ds Ti−1 ≤ t < Ti, (i = 0, . . . , k) (3.6)
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The drift at the interval boundaries is obtained by adding up the integrals over the intervals of
constancy,

A(Ti, Tk) =
i∑

j=0

∫ Tj

Tj−1

κTk+1(s, λjk)ds (i = 0, . . . , k) (3.7)

The ’cumulant process’ can be evaluated exactly. We have

κTk+1(t, θ) :=
2n−k∑
j=1

mkj(t)
[
κTn+1(t, θ + ψkj)− κTn+1(t, ψkj)

]
(3.8)

where

κTn+1(t, θ) = γi

[
pi

αi
αi − θ

+ (1− pi)
βi

βi + θ
− 1
]

Ti−1 ≤ t < Ti (3.9)

valid for −βi < <(θ) < αi ! We use this as definition of κTk for k < n+ 1 while the equation for
κTn+1 means just

κTn+1(t, θ) :=
∫ t

0

∫
R

(eθx − 1)νs(ds, dx). (3.10)

The coefficients mkj(t) and ψkj can be evaluated recursively with k going backwards from n
down to 1 as follows: Let

`(t, Tk) =
δk+1L(t, Tk)

1 + δk+1L(t, Tk)
. (3.11)

We start the recursion with
mn1(t) = 1, ψn1 = 0 (3.12)

and proceed by

mk−1,j(t) = (1− `(t−, Tk))mkj(t), ψk−1,j = ψkj (j = 1, . . . , 2n−k) (3.13)

and

mk−1,j(t) = `(t−, Tk)mk,j−2n−k(t), ψk−1,j = λik+ψk,j−2n−k (j = 2n−k+1, . . . , 2n−k+1).
(3.14)

All calculations so far are elementary and explicit, and they can be implemented directly in a
computer program, except for the integrals in (3.6) and (3.7). In principle, they are not difficult:
Inbetween two jumps, we have to integrate deterministic functions. Due to the recursive nature,
it is not clear, whether we can evaluate the integrals analytically. Even if so, we have to evaluate
about 2n terms, at each jump, which is too costly for an efficient implementation. Instead we
take up a suggestion from the literature based on the observation, that the time-dependent and
random components `(t, Tk) do not vary much, in comparison with all other quantities.

3.4 The Exact Calculations Yield A LIBOR Market Model

Before we come to approximation, it is important, that we see, that the above model constitutes
a LIBOR market model in the sense of [6].
We assume a LIBOR market model

L(t, Tj) = L(0, Tj) exp
(∫ t

0

λ(s, Tj)dY j+1
s

)
(3.15)
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with the same volatility structure as above, same initial values and Y n+1
s of the form

dY n+1
s = bn+1

s ds+
∫

R
x(µ− νn+1

s )(ds, dx) (3.16)

where
∫

R xµ(s, dx) = Xs with Xs denoting the same Kou-Process as described above and∫ t

0

λ(s, Tn)bn+1
s ds = −

∫ t

0

∫
R

(eλ(s,Tn)x − 1− λ(s, Tn)x)νn+1(ds, dx). (3.17)

Now with bs chosen as in the equation above, we have∫ t

0

λ(s, Tn)dY n+1
s = −

∫ t

0

∫
R
(eλ(s,Tn)x − 1)νn+1(ds, dx) +

∫
R
λ(s, Tn)xµ(ds, dx). (3.18)

Comparing with 3.5 for k = n we get

A(t, Tn) =
∫ t

0

∫
R

(eλ(s,Tn)x − 1)νn+1(ds, dx) (3.19)

which holds true by the definition of κ.
For the later rates, we have 3.5 in our model and

L(t, Tk) = L(0, Tk) exp(
∫ t

0

λ(s, Tk)dY k+1
s ) (3.20)

in the Eberlein Özkan approach. We have∫ t

0

λ(s, Tk)bk+1
s ds = −

∫ t

0

∫
R

(eλ(s,Tk)x − 1− λ(s, Tk)x)νk+1(ds, dx). (3.21)

for the later rates as well as

dY k+1
s = bk+1

s ds+
∫

R
x(µ− νk+1

s )(ds, dx). (3.22)

That combined gives us again∫ t

0

λ(s, Tk)dY k+1
s = −

∫ t

0

∫
R

(eλ(s,Tk)x − 1)νk+1(ds, dx) +
∫

R
λ(s, Tk)xµ(ds, dx). (3.23)

That means we would need

A(t, Tk) =
∫ t

0

∫
R

(eλ(s,Tk)x − 1)νk+1(ds, dx) (3.24)

to hold.
Concerning the concrete form of the cumulant process, we have the recursion for our compensators
in the Eberlein Özkan representation

νkt =
(
`(t−, Tk)(eλ(t,Tk)x − 1) + 1

)
νk+1
t =

(
`(t−, Tk)eλ(t,Tk)x + (1− `(t−, Tk))

)
νk+1
t . (3.25)

Combining this we get
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Lemma 4 The representation in (3.8) holds for k = n

Proof:
We start with κTn(t, λin)

κTn(t, λin) =
∫ ti

ti−1

∫
R
(eλi(n−1)x−1)νnt (dt, dx) =

∫ ti

ti−1

∫
R

(eλi(n−1)x−1)(`(t−, Tn)(eλinx−1)+1)νn+1
t (dt, dx).

(3.26)
Now ∫ ti

ti−1

∫
R

(eλi(n−1)x − 1)(`(t−, Tn)(eλinx − 1) + 1)νn+1
t (dt, dx) = (3.27)

∫ ti

ti−1

∫
R

(eλi(n−1)x − 1)(`(t−, Tn)eλinx + (1− `(t−, Tn)))νn+1
t (dt, dx) =

`(t−, Tn)
∫ ti

ti−1

∫
R
(e(λi(n−1)+λin)x − 1)νn+1

t (dt, dx)−

`(t−, Tn)
∫ ti

ti−1

∫
R
(eλinx − 1)νn+1

t (dt, dx) + (1− `(t−, Tn))
∫ ti

ti−1

∫
R

(eλi(n−1)x − 1)νn+1
t (dt, dx).

In terms of our assumed cumulant processes this means

κTn(t, λi(n−1)) = `(t−, Tn)κTn+1(t, λi(n−1))−`(t−, Tn)κTn+1(t, λin)+(1−`(t−, Tn))κTn+1(t, λi(n−1)).
(3.28)

Now we look at 3.8 again:

κTn(t, θ) =
2∑
j=1

m(n−1)j(t)
[
κTn+1(t, θ + ψ(n−1)j)− κTn+1(t, ψ(n−1)j)

]
and we have as values of m m((n − 1)1) = (1 − `(t−, Tn)) with corresponding ψ(n−1),1 = 0 and
m((n − 1)2) = `(t−, Tn) with ψ(n−1),2 = λin. Plugging this into 3.8 we get just our equation
above. �

We proceed to give an inductive step

Lemma 5 The equality 3.8 is true for any k provided it held for k + 1.

Proof:
We have∫ ti

ti−1

∫
R

(eλi(k−1)x−1)(`(t−, Tk)(eλikx−1)+1)νk+1
t (dt, dx) =

∫ ti

ti−1

∫
R

(eλi(k−1)x−1)(`(t−, Tk)eλikx+

(1− `(t−, Tk)))νk+1
t (dt, dx) = `(t−, Tl)

∫ ti

ti−1

∫
R
(e(λi(k−1)+λik)x − 1)νk+1

t (dt, dx)−

`(t−, Tk)
∫ ti

ti−1

∫
R

(eλikx − 1)νk+1
t (dt, dx) + (1− `(t−, Tk))

∫ ti

ti−1

∫
R
(eλi(k−1)x − 1)νk+1

t (dt, dx)

for a given time interval [ti−1, ti] with i ≤ k. So it holds that

κTk(t, λi(k−1)) = `(t−, Tk)κTk+1(t, λi(k−1))−`(t−, Tk)κTk+1(t, λik)+(1−`(t−, Tk))κTk+1(t, λi(k−1)).
(3.29)
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Now we use that 3.8 holds for k + 1:

κTk(t, λi(k−1)) = `(t−, Tk)
2n−k∑
j=1

m(k−1)j(κ(t, λi(k−1) + λik + ψk(j−1))−

κ(t, λkj+ψk(j−1)))+(1−`(t−, Tk))
2n−k∑
j=1

m(k−1)j(κTn+1(t, λi(k−1)+ψk(j−1))−κTn+1(t, ψk(j−1))).

Since m(k−1)j = (1 − `(t−, Tk))mkj and ψkj = ψk(j−1) for k ∈ {1, . . . , 2n−k} and m(k−1)j =
`(t−, Tk)mkj and ψkj = λik +ψk(j−1) for k ∈ {1, . . . , 2n−k}, we get that 3.8 holds for k. �.

This we we have shown that if we use 3.8 to define the κTk+1 , then is holds that

κTk+1(t, λik) =
∫ ti

ti−1

(eλikx − 1)νk+1
t (dt, dx) (3.30)

Which is also the final step in showing that our approach conforms to LIBOR market models as
constructed in [6]. �

3.5 The Piecewise Frozen Drift Approximation

The basic idea is to replace `(t−, Tk) by `(Ti−1, Tk) for Ti−1 ≤ t < Ti. This changes slightly the
dynamic structure of the model, so we give the complete description for the approximation. The
approximate LIBOR rates satisfy

L̃(t, Tk) = L(0, Tk) exp

−Ã(t, Tk) +
N(t)∑
j=1

λ(Sj , Tk)Xj

 . (3.31)

The approximate drift is

Ã(t, Tk) = Ã(Ti−1, Tk) + κ̃
Tk+1
i−1 (λik)(Ti−1 − t) Ti−1 ≤ t < Ti, (i = 0, . . . , k) (3.32)

The drift at the interval boundaries is obtained by adding up the integrals over the intervals of
constancy,

Ã(Ti, Tk) =
i∑

j=0

κ̃
Tk+1
j−1 (λjk)δj (i = 0, . . . , k) (3.33)

Now

κ̃
Tk+1
i (θ) =

2n−k∑
j=1

m̃kji

[
κTn+1(Ti, θ + ψ̃kji)− κTn+1(Ti, ψ̃kji)

]
(3.34)

Note, that the terminal cumulant process κTn+1(t, θ), is as given in (3.9) above, it is not affected
by the approximation. The coefficients m̃kji and ψ̃kji can be evaluated recursively with k going
backwards from n down to 1 as follows: We start the recursion with

m̃n1i = 1, ψ̃n1i = 0 (3.35)

and proceed by

m̃k−1,j,i(t) = (1− `(Ti−, Tk))m̃kji, ψ̃k−1,j,i(t) = ψ̃kji (j = 1, . . . , 2n−k) (3.36)
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and

m̃k−1,j,i = `(Ti−, Tk)m̃k,j−2n−k,i, ψ̃k−1,j,i = λik+ψ̃k,j−2n−k,i (j = 2n−k+1, . . . , 2n−k+1).
(3.37)

3.6 Completely Frozen Drift

In the former model the drift, though piecewise constant, is still a stochastic object in the sense
that it depends on L̃. Therefore calculating things like the variance of a given rate under the
terminal measure are fairly involved.
The Lévy-Khinchine formula on which most calculations concerning exponential Lévy-models
are based for instance would not be valid .
However if we freeze the drift for each rate at the very beginning of our considered time-span
then each process decomposes into a deterministic drift function and a (Lévy) jump part.
The formulae are as follows:

L̃(t, Tk) = L(0, Tk) exp

−Ã(t, Tk) +
N(t)∑
j=1

λ(Sj , Tk)Xj

 . (3.38)

There’s no principal difference in the form of the driving process and Ã(t, Tk) is still given by

Ã(Ti, Tk) =
i∑

j=0

κ̃
Tk+1
j−1 (λjk)δj (i = 0, . . . , k). (3.39)

κ̃ is given by our recursion and therefore we have that κ̃ is deterministic if λ is piecewise constant
and `(Ti, Tj) is constant for each j.
Now if κ̃ is deterministic then of course Ã is deterministic too.
Now since we have a deterministic drift our rate-process L̃ is a Lévy-process and we can apply
the Lévy-Khinchine formula and calculate

E(L̃(Ts, Tk)) = L(0, Tk) exp (−Ã(Ts, Tk)) exp (
s∑
i=1

κ̃Tn+1(λik)). (3.40)

So calculating Moments is well possible in this setting.

3.7 Pricing Caplets In The Frozen Drift Version

In order to calibrate to market data we need to be able to price caps in our model. In fact we
need a pricing formula for the caplets making up the concrete cap. We apply bilateral Laplace-
Transforms (see also [6] ) to obtain this.
The j-th caplet’s payoff (for strike K) can be expressed as

δj(L(0, Tj−1)e(−Ã(Tj−1,Tj−1)+
∑N(Tj−1)
z=1 λ(Sz,Tj−1)Xj−1)−K)+ (3.41)

From now on EPTj denotes the expectation w.r.t. PTj . For pricing we need

B(0, Tj)δTjEPTj (e(−Ã(Tj−1,Tj−1)+
∑N(Tj−1)
z=1 λ(Sz,Tj−1)Xj−1 −K)+.
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We do not attempt to calculate this expectation directly but instead calculate the Laplace-
transform

L[vK ](z) =
∫

R
e−zx(ex −K)+dx. z ∈ C (3.42)

Then we calculate the moment-generating function of L(Tj−1, Tj−1) under PTj :

m(u) = EPTj (e(−uÃ(Tj−1,Tj−1)+u
∑N(Tj−1)
z=1 λ(Sz,Tj−1)Xj−1)). (3.43)

Now Ã(t, Tk) is deterministic for frozen drift and the jump-part
∑N(t)
z=1 λ(Sz, Tk)Xz is time-

inhomogeneous Lévy. At least for every time-interval [Ti, Ti+1] we may apply the Lévy-Khinchine
formula to the jump-part. This yields

m(u) = e−uÃ(Tj−1,Tj−1)e
∑j−1
z=1

∫
R(euλ(z(j−1))−1)dνTj . (3.44)

Through Laplace-inversion we get the j-th Caplet-Price Vj(ζj ,K) at time 0, where ζj = − logL(0, Tj−1).
The concrete formula is( see [6])

Vj(ζj ,K) = δjB(0, Tj)
1

2π
lim
M→∞

∫ M

−M
L[vK ](R+ iu)m(R+ iu)du. (3.45)

Here R > 1 to ensure convergence of the integral.
All this works for frozen drift however we also aim to establish pricing rules for the piecewise-
constant version as well. Since ` is stochastic in this case, the expectation above gets a lot more
complicated.

3.8 Pricing Caplets In The Piece-Wise Model

So far we see only one option in pricing in the piece-wise model without freezing the drift. We
must use the driving-process-increments of the first modelled rate as independent variables( since
that is always a Lévy-Process) and explicitly write all functions in terms of those variables. In
principle this is possible and the expectation of the caplet pay-off then becomes a multidimen-
sional integral w.r.t the increment variables and their densities.
Let p1(x), . . . pn(x) denote the distributions functions of the respective driving process increments
X1, . . . , Xn. Then

L(Ti, Tk) = L(0, Tk)f(X1, . . . , Xi) (3.46)

hence
`(Ti, Tk) = g(X1, . . . , Xn). (3.47)

And therefore

E(`(Ti, Tk)) =
∫

R
. . .

∫
R

δL(x1, . . . , xi)
1 + δL(x1, . . . , xi)

p1(x1)p2(x2) . . . pi(xi)dx1dx2 . . . dxi. (3.48)

A bit more explicitly we look at the first ` term appearing in the first forward.
First we obviously have

L(Ti, Tn) = L(0, Tj)f(X1, . . . , Xi). (3.49)

Now with

`(Ti, Tn) =
δiL(Ti, Tn)

1 + δiL(Ti, Tn)
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we get

`(Ti, Tn) =
δL(0, Tn) exp(

∑i
l=1A(Xl) +

∑NTi
r=1 λr,nS(r))

1 + δL(0, Tn) exp(
∑i
l=1A(Xl) +

∑NTi
r=1 λr,nS())

(3.50)

so
`(Ti, Tn) = g(X1, . . . , Xi). (3.51)

While complicated in principle this can be calculated. For pricing we need a moment generating
function. We have to calculate the expectation of exp(κ(.)Ti)( given here for the k-th Rate )

E(exp(κ̃Tk+1
i (θ))) = E(exp(

2n−k∑
j=1

m̃kji

[
κTn+1(Ti, θ + ψ̃kji)− κTn+1(Ti, ψ̃kji)

]
)) =

∫
R
. . .

∫
R

exp(
2n−k∑
j=1

m̃kji(x1, . . . , xi)
[
κTn+1(Ti, θ + ψ̃kji)− κTn+1(Ti, ψ̃kji)

]
)p1(x1)p2(x2) . . . pi(xi)dx1dx2 . . . dxi

(3.52)

A Caplet-price for Tn−1 would then look like

E((L(Tn−1, Tn−1)−K)+) = δB(Tn)
1

2π

∫
R

∫
R
. . .

∫
R
L[vK ](θ)

exp(
2n−k∑
j=1

m̃kji(x1, . . . , xi)
[
κTn+1(Ti, θ + ψ̃kji)− κTn+1(Ti, ψ̃kji)

]
)dx1dx2 . . . dxidu θ = R+iu

(3.53)

The formulae look quite messy when written down explicitly but in theory everything is nice and
calculable analytically (though too costly in general).

3.9 Monte-Carlo-Simulation

3.9.1 Frozen Drift

For pricing complex path-dependent options or options in a more complicated model, Monte-
Carlo-Simulation is always an option. Assume for instance that we want to compare the results
of Monte-Carlo-Pricing to our analytical pricing formula in the frozen drift case.
We have to calculate

B(0, Tj)δTjEPTj (e(−Ã(Tj−1,Tj−1)+
∑N(Tj−1)
z=1 λ(Sz,Tj−1)Xj−1 −K)+. (3.54)

We do this by calculating paths of the respective rate under the forward measure PTj . In that
case, our jump-size distribution changes. We have the compensator n∏

k=j+1

β(t, x, Tj , Tj+1)

FTn+1(t, dx). (3.55)

This decomposes into a sum

νTj+1 =
2n−j∑
u=1

Au(n−j+1),tiBu(n−j+1),ti exp (Cu(n−j+1),tix)F (dx). (3.56)
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Where

A0,ti = 1 An,ti = c((1− `(ti, Tn))An−1,ti , An−1,ti)

B0,ti = 1 Bn,ti = c(Bn−1,ti , `(ti, Tn)Bn−1,ti)

C0,ti = 0 Cn,ti = c(Cn−1,ti , (ψin + Cn−1,ti).

So we see that the distribution of jump-sizes changes considerably with each rate. But its still a
mixture of exponential distributions since we assume our drift-frozen. ThenAu(n−j+1),tiBu(n−j+1),ti

is deterministic at all times. Au(n−j+1),tiBu(n−j+1),ti is also always positive( even in the stochas-
tic ` case). So we can directly simulate from two-sided exponential distributions with exponents
modified by (Cu(n−j+1),tix). The intensity of our Poisson-process changes, for instance to

γTj+1 = Au(n−j+1),tiBu(n−j+1),ti

γα

(α− Cu(n−j+1),ti)
(3.57)

and analogously for β.

3.9.2 Piece-Wise Frozen Drift

All the above equations hold, but Au(n−j+1),tiBu(n−j+1),ti is a stochastic term now and there-
fore the distribution need not be a sum of exponential random variables anymore. In fact the
distribution is almost certainly more complex.
It is still an open question if we can simulate random variables with the distribution of that
object and will be a topic for further research. A ”last resort” would of course be the ”increment
variable” approach presented in the pricing section.

3.9.3 Full Model

In the full model we would have to simulate the jump-times for the last rate and then recalculate
all process characteristics for the earlier rates at each jump.

3.10 Numerical Illustration

3.10.1 Caplet-Pricing

In view of calibrating our model to market-data we need to be able to calculate caplet-prices in
our models. At the moment our explicit formula relies on the completely frozen drift approxi-
mation. Though we hope to ease this restriction in the future for the time being we calculate in
the frozen-drift-approximation our caplet prices depending on strike and time to maturity.

We compare our approach through cumulant functions to values taken from the Dissertation
of Kluge [13].
Initial conditions are
µ α β δ
0 1.5 0 1.5

and
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λ9 0.2
λ8 0.19
λ7 0.18
λ6 0.17
λ5 0.16
λ4 0.15
λ3 0.14
λ2 0.13
λ1 0.12

The prices we obtain are
65.717 42.047 20.617 7.053 2.296 0.867 0.374 0.179 0.097 0.051
93.666 70.364 48.072 28.768 15.041 7.305 3.542 1.781 0.938 0.518
91.664 69.104 47.990 30.192 17.348 9.425 5.035 2.718 1.504 0.857
109.461 87.269 65.968 46.749 30.989 19.420 11.729 6.966 4.134 2.477
106.849 85.272 64.704 46.308 31.261 20.095 12.489 7.623 4.630 2.825
114.821 93.692 73.328 54.658 38.736 26.230 17.142 10.940 6.894 4.329
111.924 91.337 71.519 53.384 37.935 25.783 16.914 10.826 6.831 4.285
117.013 96.876 77.304 59.058 43.074 30.063 20.211 13.207 8.466 5.367
113.944 94.308 75.186 57.318 41.641 28.880 19.243 12.428 7.853 4.897

In implied Black volatilities we get
25.33 21.62 18.94 18.81 20.87 23.28 25.49 27.45 29.36 30.74
22.48 20.56 19.12 18.32 18.25 18.79 19.64 20.58 21.52 22.41
19.89 18.69 17.89 17.51 17.52 17.82 18.30 18.85 19.43 19.99
18.67 17.77 17.14 16.76 16.62 16.67 16.86 17.14 17.47 17.82
17.19 16.52 16.06 15.80 15.71 15.75 15.88 16.08 16.32 16.58
16.08 15.52 15.13 14.89 14.78 14.77 14.84 14.96 15.12 15.30
14.89 14.42 14.10 13.91 13.82 13.81 13.86 13.96 14.09 14.23
13.85 13.44 13.15 12.97 12.87 12.84 12.86 12.92 13.01 13.12
12.76 12.39 12.14 11.98 11.90 11.87 11.88 11.93 12.01 12.10

As the Table above shows our approach via calculation of the cumulant functions yields nearly
identical caplet prices and implied black volatilities as the implementation in [13] . Of course
our own finite variation models show different smiles.

3.10.2 Data And Models

We are given LIBOR rates and caplet-prices for a particular day.
Our tenor structure is

Tn = nY ∀n ∈ {1, 2, . . . , 10}

We are given an initial term structure
L(0, T10) 0.0407229153738
L(0, T7) 0.03626087939424
L(0, T5) 0.03189591283065
L(0, T3) 0.02621803947455
L(0, T2) 0.02306848307215
L(0, T1) 0.020769754278

and caplet prices given by implied black volatilities
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maturities strikes
15 17.5 20 22.5 25 30 35 40 50 60

1Y 27.1 24.9 23.9 24.7 25.2 25.5 25.9 26.3 27.0 27.5
2Y 35.2 32.4 30.6 30.2 30.2 30.5 30.6 31.0 31.7 32.3
3Y 36.9 34.0 31.8 30.5 29.6 28.1 26.9 26.3 26.5 27.5
4Y 36.7 33.9 31.6 30.1 28.8 26.6 24.8 23.7 23.3 24.1
5Y 36.0 33.3 31.1 29.4 28.0 25.5 23.4 22.0 21.0 21.5
6Y 34.9 32.4 30.3 28.6 27.1 24.5 22.3 20.8 19.4 19.5
7Y 33.8 31.4 29.4 27.7 26.3 23.7 21.5 19.8 18.1 17.9
8Y 32.8 30.6 28.6 27.0 25.6 23.0 20.8 19.2 17.3 16.9
9Y 31.9 29.7 27.9 26.4 25.0 22.4 20.2 18.6 16.6 16.0

We look at the smiles

Maturities 1Y (1) to 9Y (9), 10 Strikes

20 30 40 50 60

2
0

2
5

3
0

3
5

Strike

Im
p

lie
d

B
V

● 1
2
3
4
5
6
7
8
9

From that, we see that the behavior at 2Y and 1Y is significantly different from the behavior of
the other maturities.
Through a linear spline interpolation we calculate LIBOR-rates
L(0, T10) 0.0407229153738
L(0, T9) 0.03946148
L(0.T8) 0.03798937
L(0, T7) 0.03626087939424
L(0, T6) 0.03423581
L(0, T5) 0.03189591283065
L(0, T4) 0.02922813
L(0, T3) 0.02621803947455
L(0, T2) 0.02306848307215
L(0, T1) 0.020769754278

From this, we calculate bond-prices through

B(0, Ti+1) =
i∏

k=1

(
1

(L(0, Tk)
+ 1)) (3.58)

which yields
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B(0, T10) 0.7597843
B(0, T9) 0.7897666
B(0.T8) 0.8197693
B(0, T7) 0.8494948
B(0, T6) 0.8785780
B(0, T5) 0.9066010
B(0, T4) 0.9330993
B(0, T3) 0.9575633
B(0, T2) 0.9796529

We use yearly tenor structure and try 2 models empirically below. The Kou-type model and the
NiG-Lévy model as outlined in Wolfgang Kluge’s dissertation [13].
The cumulant of the Kou-type process is

κ(z) = µz + γ(p
η1

η1 − z
+ (1− p) η2

(η2 + z)− 1
). (3.59)

The cumulant of the NiG-Process is

κ(z) = µz + δ(
√

(α2 − β2)−
√

(α2 − (β + z)2)) (3.60)

however Kluge uses an approximation
Parameters are determined by calibration( see below)

3.11 Calibration

To calibrate our models to market data we use a non-linear minimizing procedure implemented
in R. Our targetfunction is

O =
k∑
j=1

n∑
i=1

(G[i, j]− V [i, j])2 (3.61)

where G denotes the empirical caplet prices in implied Black volatilities for the maturities
1Y, . . . , nY and k given strikes, V denotes the caplet prices implied by our model given in
implied Black volatilites and our input are the process parameter plus some starting values for
the volatilities λi.
We use the ”optim”-routine implemented in R, with box constraints. This method is due to [5]
and is implemented in the R ”stats” package.
It is not fast, but it works well otherwise, and for existence of the Laplace integral or even the
model itself, we require some boundary conditions.
We then proceed by using the result of this step as initial value and using as input in the next
step all parameters of the process plus the volatilities for the two longest rates.
We get as parameters for NiG
α β δ µ

0.67 −0.58 0.26 0
We get lambda coefficients
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λT9 0.3946148
λT8 0.3798937
λT7 0.3626087939424
λT6 0.3423581
λT5 0.3189591283065
λT4 0.2922813
λT3 0.2621803947455
λT2 0.2306848307215
λT1 0.20769754278

and smiles

Maturities 1Y (1) to 8Y (8) , 10 Strikes
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The concrete values of the implied Black-volatilities for the calculated prices are
maturities strikes

15 17.5 20 22.5 25 30 35 40 50 60
1 Y 31.87 25.64 19.95 16.82 17.93 22.03 25.5 28.32 32.67 36.11
2Y 39 35.35 32.24 29.78 28.13 27.35 28.41 29.92 32.83 35.29
3Y 37.88 35.13 32.72 30.63 28.88 26.45 25.48 25.52 26.69 28.13
4Y 36.23 33.98 31.99 30.21 28.66 26.1 24.36 23.41 23.11 23.68
5Y 34.52 32.58 30.86 29.31 27.92 25.54 23.68 22.32 20.99 20.82
6Y 33.09 31.37 29.84 28.46 27.21 25.02 23.21 21.76 19.86 19.08
7Y 31.83 30.27 28.88 27.62 26.47 24.45 22.73 21.28 19.14 17.93
8Y 31.03 29.59 28.3 27.14 26.08 24.19 22.57 21.17 18.94 17.47
9Y 29.39 28.05 26.86 25.78 24.79 23.03 21.49 20.15 17.94 16.35
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We get the relative error in volatilities in percent
maturities strikes

15 17.5 20 22.5 25 30 35 40 50 60
1Y 17.6 2.97 16.53 31.9 28.8 13.62 1.54 7.69 20.987 31.31
2Y 10.816 9.1 5.366 1.4 6.87 10.32 7.15 3.5 3.56 9.26
3Y 2.66 3.32 2.89 0.44 2.44 5.86 5.27 3 0.72 2.28
4Y 1.26 0.24 1.22 0.38 0.5 1.89 1.76 1.21 0.83 1.75
5Y 4.1 2.2 0.78 0.3 0.28 0.16 1.18 1.47 0.04 3.19
6Y 5.17 3.17 1.52 0.49 0.4 2.13 4.1 4.59 2.39 2.14
7Y 5.83 3.6 1.78 0.3 0.65 3.16 5.72 7.47 5.72 0.16
8Y 5.4 3.31 1.04 0.51 1.86 5.19 8.5 10.2 9.5 3.35
9Y 7.86 5.54 3.73 2.35 0.84 2.8 6.4 8.31 8.07 2.16

And in the Kou-case
γ η1 η2 p
1 48.2 5.2 0.9

We get λ coefficients
λT9 3
λT8 1
λT7 1

and smiles

Maturities 7Y (1) to 9Y (3), 10 Strikes
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The concrete values of the volatilities are
maturities strikes

15 17.5 20 22.5 25 30 35 40 50 60
7Y 38.41 36.09 34.1 32.34 30.75 27.9 25.33 23.12 20.16 18.67
8Y 31.28 29.74 28.36 27.09 25.92 23.75 21.72 19.93 17.58 16.46
9Y 26.5 25.39 24.36 23.4 22.48 20.73 19.05 17.56 15.64 14.77
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We get the relative Error in volatilities in percent
maturities Strikes

15 17.5 20 22.5 25 30 35 40 50 60
7Y 13.65 14.94 15.98 16.74 16.9 17.71 17.82 16.74 11.37 4.32
8Y 4.63 2.82 0.85 0.36 1.26 3.25 4.4 3.82 1.66 2.63
9Y 16.9 14.5 12.67 11.36 10.07 7.44 5.69 5.58 5.76 7.72

For the Kou-model the number of rates to be fitted has been reduced in order to obtain a better
result. Even for a very small model however, the NiG-model, at the moment seems to be better
than the Kou-Model. The fact that in the Kou model the parameters are close to the allowed
box-constraints indicates, that the optimization procedure will have to be improved in the future,
as there should be at least one local minimum of the problem besides the values at the boundary.

3.12 Remarks

It follows from (3.5) that all LIBOR rates jump simultaneously. This is clearly an oversimplifi-
cation. As [6] note, it is not difficult to extend the model to several driving processes, see also
[2]. Moreover, lognormal LIBOR models used in practice use two or more factors. The extension
to several driving processes will be addressed in future work.
Furthermore we are interested in extensions of pricing-formulae to more sophisticated `-approximations.
The main aim in that case being an analytically solvable model at all stages and a good fit in
both the pricing as well as the statistical properties of the model.
Multi-currency settings serve as a long time goal of those extensions at the single currency, single
factor level.



Chapter 4

The discrete timegrid
LIBOR-version

The aim of this Section is to develop a discrete LIBOR analogon( discrete in time and space).
The piece-wise frozen drift model is then to be situated in between a discrete time model and the
exact model. When the former converges to the later, so will the piece-wise drift approximation
as we shall see below.

4.1 The Model

Definition 15 (Discrete Forward LIBOR Model) Assume a given timegrid, say a finite
tenor structure like for continuous time LIBOR models:

0 = T−1 < T0 < T1 < · · · < Tn < Tn+1 = T ∗.

and a process build from positive discrete random variables (Ys)s

L̂(Ti, Tn) = L0

i∏
0

Ys (4.1)

in discrete time with
Ys = exp (λsn(Xs + bs)). (4.2)

Here (Xs)s is an i.i.d family of random variables (for notational simplicity. We will derive for-
mulae for the general case below), (bs)s and (λij)i,j are sequences of real numbers. (ti)i is a
sequence of times with {ti|i ∈ I} ⊃ {Ti|i = −1, . . . , n+ 1} However for notational simplicity we
assume {ti|i ∈ I} = {Ti|i = −1, . . . , n+ 1} and ∆ti = 1 for all i.

In order for L̂(ti, Tn) to be a martingale we need that

E(L̂(ti, Tn)|Fs) = L̂(ts, Tn) ∀s < i. (4.3)

Now written as a product there holds

E(L̂(0, Tn)
i∏
0

Yk|Fs) = E(L̂(0, Tn)
s∏
0

Yk

i∏
s+1

Yk|Fs). (4.4)

49
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Here L̂(0, Tn)
∏s

0 Yk is Fs-measurable and since the Yk are independent (which only holds for
the terminal rate), the conditional expectation becomes

L̂(0, Tn)
s∏
0

YkE(
i∏

s+1

Yk|Fs) = L̂(0, Tn)
s∏
0

YkE(
i∏

s+1

Yk). (4.5)

Things will be considerably more difficult for the earlier rates, since the random variables will
no longer be i.i.d.
By the tower law or projection property of the conditional expectation, we can look at the former
formula

L̂(0, Tn)
s∏
0

YkE(
i∏

s+1

Yk|Fs) = L̂(0, Tn)
s∏
0

YkE(
i∏

s+1

Yk|Fi−1|Fs). (4.6)

We see that it would be sufficient if

E(L̂(0, Tn)
i∏
0

Yk|Fi−1) = L̂(0, Tn+1)
i−1∏
0

Yk ∀i ≤ n (4.7)

held. We can write

L̂(0, Tn)
i∏
0

Yk = L̂(0, Tn)(
i−1∏
0

Yk)Yi (4.8)

which (by independence which only holds for the terminal rate) yields a martingale-condition on
the ”increments”

E(L̂(0, Tn)
i∏
0

Yk|Fi−1) = L̂(0, Tn)(
i−1∏
0

Yk)E(Yi) = L̂(0, Tn)
i−1∏
0

Yk. (4.9)

Therefore our condition becomes

E(exp (λsn(Xs + bs))) = 1 ∀s < n (4.10)

or
E(exp (λsn(Xs))) = E(exp (−λsnbs)) = exp−(λsnbs). (4.11)

4.1.1 Explicit Drift

Going on along the lines of the analogy to the continuous time model, we want to have some sort
of ”stochastic difference equation” for L̂(ti, Tn). Directly from the model assumptions we derive

∆L̂(ti, Tn) = L̂(ti, Tn)− L̂(ti−1, Tn) = L̂(ti−1, Tn)(exp (λsn(Xi + bi)))− 1). (4.12)

This has almost the form of the stochastic differential equation in the continuous time model,
except that the drift bi does enter in the equation. However, accepting that difference we may
write

∆L̂(ti, Tn) = L̂(ti−1, Tn)
∫

R
(exp (λin(x+ bi))− 1)d(µi − νn+1

i ). (4.13)

Where ∫
R
f(x)dµi = f(Xi) (4.14)
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(see the next chapter for the definition of µ and ν).
And νTni is the compensator of the discrete process

∑
iXi as defined for general semimartingales.

This also gives ∫
R

(exp (λinx)d(νn+1
i ) = exp (λinbi)

The last equation holds since∫
R

(exp (λin(x+ bi))− 1)d(µi) = exp (λin(Xi + bi))− 1

and

−
∫

R
(exp (λin(x+ bi))− 1)d(νn+1

i ) = − exp (λin(−bi + bi)) + 1 = 0.

We then proceed to look at the forward-rate process F (Ti, Tn, Tn+1) = 1 + δiL(Ti, Tn+1). The
dynamics are derived as

∆F̂ (Ti, Tn, Tn+1) =
δL̂(Ti, Tn)

1 + δL̂(Ti, Tn)
∆L̂(Ti, Tn).

We have described ∆L̂(ti, Tn) above. Therefore we get an analogy to the SDE of the forward
rate in continuous time

∆F̂ (ti, Tn, Tn+1) = F̂ (ti−1, Tn, Tn+1)
∫

R
`(ti−1, Tn)(exp (λin(x+ bi))− 1)d(µi − νn+1

i ). (4.15)

Here ` is completely analogous to continuous time:

`(ti−1, Tn) =
δL(ti−1, Tn)

1 + δL(ti−1, Tn)
.

Now we need a appropriate forward measure, fulfilling the same conditions as in the continu-
ous LIBOR-models. We choose as measure change the stochastic exponential derived from the
difference equation representation of the forward. This gives us

νni = (`(ti−1, Tn)(exp (λin(x+ bi))− 1) + 1)dνn+1
i (4.16)

See the next chapter on discrete grisanov procedures.

That way we guaranty that the martingality condition on the forward-rate-process is fulfilled.
Due to our difference-equation-representation, we can write the measure-change down as a change
in the compensator, as in the continuous time case. The difference however being, that the drift
bi appears explicitly in the measure change. This is due to the predictability of jump-times in
the time-discrete case, which does not allow for a complete analogy to Lévy-LIBOR-models.(the
reason being that the drift can not adapt continuously but has to compensate the coming jump
at ti already at ti−1)

For the next rate we have the dynamics

L̂(ti, Tn−1) = L̂(0, Tn−1) exp
i∑

s=1

λs(n−1)(Xn
s + bn−1

s ). (4.17)
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This looks completely analogous to before. However as in continuous time there is a serious
change in dependencies.
Concerning the distribution of Xn

s we know that the jump-sizes will remain unchanged. However
the jump-probabilities have to change to fulfill

EPTn (Xn
s |Fts−1) =

∫
R
xdνns . (4.18)

Now dνns is path dependent due to the ` term as described above. Therefore the random variables
(Xn

s )s are no longer i.i.d . This also has consequences for determining bns of course.
If we look at the martingale condition now

EPTn (L̂(ti, Tn−1)|Fs) = EPTn (L̂(ts, Tn−1)) (4.19)

we can use the tower-law to get

L̂(ts, Tn−1)EPTn (exp
i∑

u=s+1

λu(n−1)(Xn
u + bnu)|Fu) = L̂(ts, Tn−1)EPTn (exp

i∑
u=s+1

λu(n−1)(Xn
u + bnu)|Fi−1|Fs).

(4.20)
Now the drift bnti may always be chosen Fti−1-measurable. Therefore one condition we get if we
choose s = i− 1 is

exp (λi(n−1)b
n
i ) = EPTn (exp (λi(n−1)X

n
i )|Fi−1). (4.21)

We know that EPTn (exp (λi(n−1)X
n
i )|Fi−1) is pathdependent, so bni has to be as well.

Since we assume that condition to be fulfilled for every bnu with u ∈ {1, . . . , (n − 1)} and bnu is
Fu−1 measurable always by construction, we get that our martingale condition is fulfilled as long
as eq (4.21) holds for any u.
So the drift-characteristic is now a path-dependent function and conditional expectation does
not trivialise to simple expectation. We may still calculate everything explicitly(e.g. pathwise)
but calculations may easily get fairly complex.

Working with this stochastic drift now, everything else works analogously, so we can write down
formulae for an arbitrary rates and dependent, non-equally distributed random variables.

Theorem 8 (Discrete LIBOR Equations - Explicit Drift) We have derived the following
equations:

• The general dynamics

L̂(ti, Tj) = L̂(0, Tj) exp (
i∑
s=i

λsj(Xj+1
s + bj+1

s )). (4.22)

• The general drift condition

exp (λijb
j+1
i ) = EPTj+1

(exp−(λijX
j+1
i )|Fi−1). ∀i (4.23)

• The general forward

∆F̂ (ti, Tj , Tj+1) = F̂ (ti−1, Tj , Tj+1)
∫

R
`(ti−1, Tj)(exp (λijx)− 1)d(µi − νj+1

i ). (4.24)

• The general measure change

νji = (`(ti−1, Tj)(expλij(x+ b
Tj
i )− 1) + 1)dνj+1

i . (4.25)
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4.1.2 Implicit Drift

Another way to treat the discrete case is to include the drift in the random-jump-measure µ
which has the effect, the that the jump-measure changes for each rate - unlike the continuous
model - but in exchange the discrete girsanov (see the next chapter) looks exactly as in the
continuous time case.
We set

Xi + bi =: X̃i (4.26)

with bi determined from the martingale condition.
Then - for the terminal rate - ν̃n+1 is calculated through

E(X̃i) =
∫

R
(x)dν̃n+1 = E(Xi) + bi. (4.27)

With this notation our difference equation for ∆L(ti, Tn) becomes

∆L̂(ti, Tn) = L̂(ti−1, Tn)
∫

R
(exp (λinx)− 1)d(µ̃i − ν̃n+1). (4.28)

Thus we get our formula for the forward rate process

∆F̂ (ti, Tn, Tn+1) = F̂ (ti−1, Tn, Tn+1)
∫

R
`(ti−1, Tn)(exp (λinx)− 1)d(µ̃i − ν̃n+1) (4.29)

The measure change now is completely analogous to the continuous time case. Accordingly
our new νni is given as

νni = (`(ti−1, Tn−1)(exp(λinx)− 1) + 1)dν̃n+1
i (4.30)

The next rate is then given through

L̂(ti, Tn−1) = L̂(0, Tn−1) exp (
i∑

s=1

λs(n−1)X̃
n
s ) (4.31)

where
X̃n
s = bns +

∫
R
xd(µni − νni ) (4.32)

with µ̃ni given as ∫
R
xdµ̃ni = Xn

i + bni (4.33)

and the jump-probabilities of Xn
i calculated from νni given as

EPTn (Xn
i ) =

∫
R

(x(`(ti−1, Tn)(exp(λinx)− 1) + 1))dν̃ni . (4.34)

One should however remember, that concerning jump-sizes∫
R
xdµni = Xi + bi. (under PTn) (4.35)

Of course we might exclude the drift from the jump measure again by∫
R

(x(`(ti−1, Tn)(exp(λi(n+1)x)− 1) + 1))dν̃ni =
∫

R
(x(`(ti−1, Tn)(exp(λinx+ bi)− 1) + 1))dνni

(4.36)
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Then we manage to obtain the explicit drift jump-measure again. In the end both approaches
yield the same model after all but representations and interpretations are quite different( changing
jump-measure vs fixed jump-measure).

Theorem 9 (Discrete LIBOR Equations - Implicit Drift) We have obtained the follow-
ing formulae

•

L̂(ti, Tj) = L̂(0, Tj) exp(
i∑

s=1

λijX̃
j+1
i ). (4.37)

•
X̃j+1
i = Xj+1

i + bj+1
i =:

∫
R
xdµ̃j+1

i . (4.38)

•
bj+1
i = − 1

λij
log (L̂(0, Tj)EPTj+1

(exp (λijX
j+1
i )|Fi−1)). (4.39)

•
∆F̂ (ti, Tj , Tj) = F̂ (ti−1, Tj , Tj)

∫
R

(`(ti−1, Tj)(expλijx− 1))dν̃j+1
i (4.40)

•
ν̃ji = (`(ti−1, Tj)(expλijx− 1) + 1)dν̃j+1

i (4.41)

4.1.3 Conclusions and Comparison

Generally the inclusion of the Drift in the jump-measure seems more natural if we wish to stress
analogies between the continuous time and the discrete model. From the point of view of simply
considering discrete models, the explicit drift seems the more natural choice because it does not
involve changing the jump-sizes.
Compared to the continuous time models, measure change and LIBOR-dynamics change signifi-
cantly in the sense that either the drift characteristic of the driving process enters in the measure
change or the jump-measure changes( incorporating the drift characteristic then). This is due to
predictability of jump-times.

4.2 Approximation Property

We have restricted ourselves twofold in the above section. We assumed our random Variables to
be discrete in space and the process to be discrete in time.
In order to relate our piece-wise-frozen-drift approximation to the discrete model, we have to
consider a LIBOR-model which will be discrete in time, but not in space. However formulae
hold just the same, as we never used the actual form of the distribution. All we need is a certain
integrability to make sure everything exist properly( especially the exponentials). We demand

E(exp (
∑
i

λiXi)) <∞ ∀λi ∈ R (4.42)

for the terminal rate.
It is then also clear now, that the piece-wise frozen drift may be approximated again as a discrete-
time model, with a certain increment distribution.
The key to showing that our piece-wise-frozen-drift model converges to a LIBOR model is then
the following continuous mapping theorem
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Theorem 10 (Continuous Mapping Theorem) Assume (E1, d1) and (E2, d2) to be metric
spaces and φ : E1 → E2 Borel-measurable and Uφ be the set of discontinuouities of φ. Then

• If µ1, µ2, . . . is sequence of probability measures on E1 and there holds (µi) → µ weakly
with µ again a probability measure and µ(Uφ)) = 0. Then µi ◦ φ−1 → µ ◦ φ−1 weakly.

• If X,X1, X2, . . . are E1-valued rv’s with P[X ∈ Uφ] = 0 and Xn → X weakly then φ(Xn)→
φ(X) weakly.

Proof:
Standard text books on probability and/or stochastic processes. For instance Bauer [1]
Using this we get the main theorem of this chapter

Theorem 11 (Approximation Property) By the continuous mapping theorem if the termi-
nal rate of a discrete model converges weakly to a continuous time model, then the other rates
will converge weakly as well to the corresponding processes in the continuous time model.

Proof:
Assume as given an exact Lévy-LIBOR model L(t, Tn) with increments XTn

i as in [6] and discrete
Models (L̂(ti, Tn)(k))k∈N with increments X(k),n+1

i .
By assumption weaklyX(k),n+1

i → Xn+1
i so - by the continuous mapping theorem - expX(k),n+1

i →
expXn+1

i in the sense of weak convergence.
The drift parts converge as continuous functions of the jump-part (expectations of the exponen-
tial)
If we have the stochastic Difference Equation

∆L̂(k)(ti, Tn) = L̂(k)(ti−1, Tn)
∫

R
(exp (λin(x+ bn+1

i ))− 1)d(µi − νn+1,(k)
i ). (4.43)

we see that we can transform it into the corresponding stochastic integral equation

L̂(k)(ti, Tn) = L̂(k)(0, Tn) +
i∑

j=1

L̂(k)(tj−1, Tn)
∫

R
(exp (λjn(x+ bn+1

j ))− 1)d(µj − νn+1
j ) (4.44)

To see that this converges to the stochastic integral representation of L(t, Tn) we need conditions
on the convergence of stochastic Integrals in a general semimartingale setting. Such conditions
can be found for instance in Jacod,Shiryaev [9].
First we need certain existence and uniqueness results:
We use theorem 16 from the appendix B.
Now more specifically we have the following result from Jacod, Shiryaev [9]: Assume the following
setting:

• We are given an equation
Y = Z + f(Y−) ·X

as above

• For each n we have a stochastic basis Bn = (Ωn,Fn,Fn,Pn) and an equation

Y n = Zn + fn(Y n− ) ·Xn. (4.45)

• Xn is a d-dimensional semimartingale on that basis.
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• Zn is a q-dimensional cadlag adapted process.

• fn are functions Rq → Rq × Rd such that each equation above admits a unique solution.

Then there holds

Theorem 12 Assume the functions fn fulfill Lipschitz and linear boundedness with constants
not dependent on n and fn → f at least pointwise. Assume further that the sequence Xn is
P − UT . Then if Y n denotes the unique solution of the sequence of equations there holds
If (Xn, Zn)→ (X,Z) weakly, then (Xn, Zn, Y n)→ (X,Z, Y ) weakly.

(see also 17 in appendix B for a source for the proof)

Now we need the P-UT condition which is defined in 24 in appendix B.
Sufficient conditions on the sequence of processes are 18 in appendix B.

In our concrete case and using the notation from the appendix, we have that:

Y
(k)
t = L̂(k)(t, Tn) ∀k ∈ N

Z(k) = L̂(k)(0, Tn) ∀k ∈ N

f (k)(x) = x ∀k ∈ N

X
(k)
t = (exp (λin(x+ bn+1

i ))− 1)d(µ(k)
i − ν

n+1,(k)
i ) ∀k ∈ N.

and

• Our (X(k)
t )t is weakly convergent by assumption and the continuous mapping theorem.

Therefore certainly tight. In absence of a drift component, we automatically have that
V ar(Bn,i)t is tight. Therefore (Xk

t )k is P − UT .

• We have that f(x)k = x and therefore f is Lipschitz and linearly bounded.

• We have assumed Xk
t → Xt weakly and know that Zk = L(0, Tn) → L(0, Tn). Therefore

we have (Xn, Zn)→ (X,Z) weakly and by the theorem on weak convergence of solutions
of SDEs we have (Xn, Zn, Y n)→ (X,Z, Y ) weakly.

Those conditions fulfilled entail that the sequence of discrete processes converges weakly to a
weak solution of the proper SDE in continuous time. From that we get that ∆F̂ (ti, Tn, Tn+1)
also converges to the SDE of the forward in continuous time.
Therefore also the measure change converges to the proper one in continuous time by the contin-
uous mapping theorem since we can represent the exponential-change as stochastic exponential
of the integral

M
(k)
ti =

i∑
j=1

∫
R
`(tj−1, Tn)(exp (λjn(x+ bj))− 1)d(µ(k)

j − ν
n+1,(k)
j ). (4.46)

which means

E(M (k)
ti ) = 1 +

i∑
j=1

E(M (k)
tj−1

)∆(M (k)
tj ) (4.47)

Our situation with respect to our convergence theorems is

Y (k) = E(M (k)
ti )
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Z(k) = 1

f(x)(k) = x

X
(k)
t = M

(k)
ti

We have that M (k)
ti is weakly convergent to M

(k)
ti and a martingale and driftless in its SDE

representation, hence P −UT . With Z(k) independent of k and f clearly being linearly bounded
and smooth, we have all conditions for weak convergence of Y (k), hence the measure changes
converge properly.
So we have now that the forward measures P(k)

Tn
converge to the proper forward measure in

continuous time.
So, for modeling the next rate we have the compensator νTn,(k)j , of which we know that

ν
Tn,(k)
j → νTnt

The next rate is modelled as

L̂(k)(ti, Tn−1)(k) = L̂(k)(0, Tn−1) exp (
i∑

j=1

λj(n−1)X
n,(k)
j ) = L̂(k)(0, Tn−1) exp(

∫
R

i∑
j=1

λj(n−1)x(µj−νn,(k)j )+bn,(k)j )

(4.48)
and we derive the integral equation

L̂(k)(ti, Tn−1)(k) = L̂(k)(0, Tn−1)+
i∑

j=1

L̂(k)(tj−1, Tn−1)
∫

R
(exp (λj(n−1)(x+ b

n,(k)
j ))−1)d(µj−νn,(k)j )

(4.49)
With

Y
(k)
t = L(k)(t, Tn−1) ∀k ∈ N

Z(k) = L(0, Tn−1) ∀k ∈ N

f (k)(x) = x ∀k ∈ N

X
(k)
t = (exp (λi(n−1)(x+ bni ))− 1)d(µ(k)

i − ν
n,(k)
i ) ∀k ∈ N.

we can apply our convergence results from above and get again weak convergence. L̂(k)(tj , Tn−1)→
L(t, Tn−1) as well as the convergence of measure changes (through the forward) and compensator
νn−1,k
j → νn−1

tj .
We continue this procedure inductively until we get the convergence of every rate down to
L(t, T1). �
NOTE: This theorem only proves the convergence of an exact discrete model to an exact time
continuous model. All approximations affecting the measure change (especially freezing the drift)
need separate proofs. The case of the piece-wise constant approximation will be treated below.
In the above proof we have not actually needed the RV’s to be discrete in space. With some
adaptations the proof also holds for discrete models which are discrete only in time.

Corollary 1 The former theorem holds even if (Xk
i )k are not discretely distributed, but fulfill

the integrability conditions
E(exp (

∑
i

λiXi)) <∞ ∀λi ∈ R. (4.50)
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Proof:
The integrability is clearly necessary, to ensure everything, especially measure changes are well-
defined and our rates stay integrable.
We again have an exact Lévy-LIBOR model L(t, Tn) with increments Xn+1,(k)

i and discrete Mod-
els (L̂(ti, Tn)(k))k∈N with increments X(k),n+1

i .
exp(X(k),n+1

i ) is well-defined due to our integrability condition.
By assumption weaklyX(k),n+1

i → Xn+1
i so - by the continuous mapping theorem - expX(k),n+1

i →
expXn+1

i in the sense of weak convergence.
The drift parts converge as continuous functions of the jump-part( expectations of the exponen-
tial).
If we have the stochastic Difference Equation

∆L̂(k)(ti, Tn) = L̂(k)(ti−1, Tn)
∫

R
(exp (λin(x+ bi))− 1)d(µi − νn+1

i ). (4.51)

The P − UT condition and weak convergence follow by directly applying the same general
conditions used in the approximation theorem to our respective situation.
The model formulae and all theorems we used hold completely analogously and everything is
carried out as for space-discrete variables. �

Theorem 13 Given a Lévy-LIBOR-model as defined in [6] with driving process Xt fulfilling the
integrability condition and chosen to make L(t, Tn) a martingale already and subdivisions of [0, n]
into nk equidistant parts. We have a discretization of the driving process

Y
(k)
i := X i

k i
−X (i−1)

k
∀1 ≤ i ≤ nk (4.52)

as well as

λ
(k)
ij = λ(Ti, Tj) ∀i, i

k
≤ j − 1 (4.53)

in the terminal rate.
Then the conditions above are fulfilled and the model converges.

Proof:
We need to show

L̂(k)(ti, Tn) = L̂(k)(0, Tn) exp
( i∑
j=1

λ( jk ),nY jk

)
→ L(t, Tn) = L(0, Tn) exp

∫ i
k

0

λ(s, Tn)dXn+1
s .

(4.54)
For an additive driving process, it is clear, that Xk

i will converge weakly to Xt. For the whole∫ t
0
λ(s, Tn)dXn+1

s we have in this discretization essentially the definition of the stochastic inte-
gral as limit of sums, since our Y (k)

i are process increments of Xn+1
s . Therefore we also get

convergence of
∑i
j=1 λ( jk ),nY jk

→
∫ i
k

0
λ(s, Tn)dXn+1

s .
For weak convergence we need that the grid gets infinitely fine so that for the probability spaces
the approximations are defined on we have (Ωk,Fk,P(k)

Tn+1
)→ (Ω,F ,PTn+1). Convergence here is

ensured so long as the mesh of our grid tends to 0. With weak convergence in the terminal rate,
we have weak convergence for all rates by the approximation theorem 11 and its corollary. �
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4.3 Piece-Wise Frozen-Drift Model Convergence

Our piece-wise frozen drift model is certainly finer than a corresponding time discrete model.We
can show that if the time-discretized model converges weakly to a fully continuous model, then
the piece-wise frozen-drift model in continuous time will also converge to the same model.

Theorem 14 Assume piece-wise constant volatilities

λ(t, Tj) = λ(ti, Tj) ∀t ∈ [ti, ti+1). (4.55)

Then the piece-wise-frozen drift approximation {L̃(t, Tj)}j converges to the exact model {L(t, Tj)}j
as gridsize gets smaller.

Proof:
Given a Lévy-driven-exact model {L(t, Tj)}j . We move on to the piece-wise frozen drift approx-
imation {L̃(t, Tj)}(k)j for a certain equidistant time grid { ik |i ∈ 0, . . . , kn} .

Now we take a time discrete model {L̂(ti, Tj)}(k)j , which may be seen as a piece-wise approxi-
mation with everything fixed between the grid-points, on the same grid, build from the exact
model. We look at the defining quantities of the piece-wise frozen drift model( seen as a LIBOR
market model)

L̃(t, Tj)(k) = L̃(k)(0, Tj) exp(
∫ t

0

λ(s, Tj)dXj+1,(k)
s )

Xj+1,(k)(t) =
∫ t

0

bj+1,(k)(s) +
∫ t

0

∫
R
x(µ− νj+1,(k)

s )(dx, ds)

`(k)(t−, Tj) = `(k)(t i
k
, Tj) ∀t ∈ [ti, ti+1) ∀1 ≤ i ≤ nk, ∀j ∈ 1, . . . , n

and the discretization

L̂(k)(t, Tj) = L̂(k)(0, Tj) exp(
i∑

s=1

λsj∆Xj+1,(k)
s ) (4.56)

as well as

λ
(k)
ij = λ(Ti, Tj) ∀i, i

k
≤ j − 1. (4.57)

We already know that the discrete exact model converges to the continuous time exact model.
Let (Xn+1

s )s denote the random-variables driving the longest modelled LIBOR in the discrete
model.
We assume a sequence of equidistant time grids with mesh going to 0 as k →∞. From this we
get a sequence of models {L̂(k)(ti, Tj)}j and {L̃(k)(t, Tj)}j derived from discretizing and building
the piece.wise frozen drift approximation the exact model along the corresponding grid.
The drift in the piece-wise-frozen-drift approximation is a continuous compensation, given through
the same equation as in the exact LIBOR-market model

L̃(k)(u, Tn) = E(L̃(k)(t, Tn)|Fu) = L̃(k)(0, Tn)(exp(
∫ u

0

λ(r, Tn)dXn+1
r )E(exp(

∫ t

u

λ(r, Tn)dXn+1
r )))

= L̃(k)(0, Tn) exp(
∫ u

0

λ(r, Tn)dXn+1
r )



60 CHAPTER 4. THE DISCRETE TIMEGRID LIBOR-VERSION

which results in

E(exp(
∫ t

u

λ(r, Tn)dXn+1
r )) = 0 = E(exp(

∫ t

u

λ(r, Tn)bn+1
r )dr+

∫ t

u

∫
R
λ(r, Tn)x(µ−νn+1

r )(dr, dx))

(4.58)
or ∫ t

0

λ(s, Tn)bn+1
r dr = −

∫ t

0

∫
R
(eλ(r,Tn)x − 1− λ(r, Tn)x)νn+1.(dr, dx) (4.59)

The drift in the discrete model jumps at each grid point and is given through

E(exp (λsn∆Xn+1
s )) = E(exp (−λsnbn+1

s )) = exp−(λsnbn+1
s ) (4.60)

Now assume λ(s, T ) chosen piece-wise constant and (t− u) = 1. We integrate in the piece-wise
model to get

E(exp(λtnbn+1
r )dr + λtn∆Xn+1

t ) (4.61)

with ∆Xn+1
t a process increment of length 1.

Now if s in the equation for the discrete model is the index of the gridpoint coinciding with time
t, we see that the drift for the terminal rate is equal at the gridpoints in both models.
As a consequence for all refinements, the two models are perfectly equal in distribution at the
gridpoints for the terminal rate. This also implies equality of the forward rates distributionally

FB(t, Tn, Tn+1) = 1 + (Tn+1 − Tn)L(t, Tn)

and therefore of the measure changes at the gridpoints and the compensators for the next rate.
We proceed to the later rates:
Assume we have equal compensators at the grid points ν̃j+1,(k)

ti = ν̂
j+1,(k)
ti and piece-wise constant

volatilities λ(t, Tj) = λ[t]j ∈ R+ for rate L(t, Tj) and L̂(t, Tj).
Now since in the very first interval we have a de facto frozen drift model in the piece-wise frozen
drift approximation, we get

E(exp(
∫ t1

0

λ(r, Tj)bj+1
r )dr+

∫ t1

0

∫
R
λ(r, Tj)x(µ−νj+1

r )(dr, dx)) = 1 = E(exp (λ1j(X
j+1
1 ) + λ1jb

j+1
1 ))

(4.62)
and thus coincidence of the drifts bj+1

t1 and bj+1
1 for the first intervals.

Then inductively

E(exp(
∫ ti+1

ti

λ(r, Tj)bj+1
r )dr+

∫ ti+1

ti

∫
R
λ(r, Tj)x(µ−νj+1

r )(dr, dx)) = 1 = E(exp (λij∆(Xj+1
i+1 ) + λijb

j+1
i ))

(4.63)
since then

E(exp(
∫ ts

0

λ(tr, Tj)dXj+1
r )|Fts−1) = exp(

∫ ts−1

0

λ(tr, Tj)dXj+1
r )E(exp(

∫ ts

ts−1

λ(ts−1, Tj)dXj+1
r ))

= exp(
s−1∑
i=1

λij∆X
j+1
i )E(λ(s−1,j)∆Xj+1

s ).

So at the grid points the 2 drifts coincide.
Having this for all rates, we get that distributionally we have total equality between the piece-wise
frozen drift with piece-wise constant( at least for some grid refinement) volatilities λ(t, Tj) = λ[t]j

and the discrete exact models:
Since the later model converges weakly, we may now conclude by convergence of distribution
functions, for refining the grid, that the former model also converges weakly. �
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Corollary 2 The (weak) convergence of the piece-wise frozen drift model holds, even if the
volatilities {λ(t, Ti)}t,i are not piece-wise constant.

Proof:
The convergence of the discrete model is not affected. For the piece-wise frozen drift models:
choose a discretization of the volatility functions:

λ(t, Ti) = λ(
s

k
, Ti) ∀t ∈ [

s

k
,
s+ 1
k

), s ∈ 0, 1, . . . , ik. (4.64)

Then, if we build piece-wise frozen drift models L̃(k)(t, Ti) with those volatilities, we have distri-
butional equality at the gridpoints { sk |s ∈ 0, 1, . . . , nk} to the discrete models L̂(k)( sk , Ti) on the
same grid and therefore weak convergence. �
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Chapter 5

Discrete Measure Change

5.1 Implicit Drift

Suppose we are given a probability space (Ω,F , P ) with a sequence of random variables (X1, . . . , Xn)
and another probability measure P ′ � P . To describe the properties of (X1, . . . , Xn) under P ′

we introduce the following quantities: For k = 0, 1, . . . , n let Fk = σ(X1, . . . , Xk) and Pk resp.
P ′k denote the restrictions of P resp. P ′ to Fk.

For k = 1, . . . , n let gk(dx1, . . . , dxk) and g′k(dx1, . . . , dxk) denote the distributions of (X1, . . . , Xk)
under P and P ′, respectively. Let fk(x1, . . . , xk−1;xk) and f ′k(x1, . . . , xk−1;xk) denote the factor-
ized conditional distributions of Xk given X1, . . . , Xk−1 under P and P ′, respectively. Obviously
we have

gk(dx1, . . . , dxk) =
k∏
i=1

fk(x1, . . . , xi−1; dxi) (5.1)

and

g′k(dx1, . . . , dxk) =
k∏
i=1

f ′k(x1, . . . , xi−1; dxi). (5.2)

Let

Zk =
dP′k
dPk

, (5.3)

then (Z0, . . . , Zn) is the density process for the measure change P 7→ P ′. Let

zk(x1, . . . , xk) =
dg′k
dgk

(x1, . . . , xk), (5.4)

then we have
Zk(ω) = zk(X1(ω), . . . , Xk(ω)) (5.5)

for ω ∈ Ω. Next we define

yk(x1, . . . , xk−1;xk) =
df ′k
dfk

(x1, . . . , xk−1, xk), (5.6)

i.e., the derivative of the measure f ′k with respect to fk when the conditioning variables x1, . . . , xk−1

are treated as parameters. We obtain

zk(x1, . . . , xk) =
k∏
i=1

yi(x1, . . . , xi−1, xi). (5.7)

63
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We can introduce the predictable functions

Yk(ω, x) = yk(X1(ω), . . . , Xk−1(ω), x), (5.8)

then

Zk =
k∏
i=1

Yi(Xi). (5.9)

Let

Mk =
k∑
i=1

(Yi(Xi)− 1), (5.10)

then (M0, . . . ,Mn) is a martingale under P , and we have

Zk = E(M)k, (5.11)

in complete analogy with the continuous time notation, when considering the Girsanov Theorem
for a purely discontinuous process.

For applications we have the following: If we can write the density process in the form of the
stochastic difference equation for the stochastic exponential in discrete time,

∆Zk = Zk−1∆Mk, (5.12)

where
∆Mk = Yk(Xk)− 1 (5.13)

and Yk is of the form (5.8), we understand, in view of the above derivations, how the change of
measure P 7→ P ′ is reflected in a change of distributions gk 7→ g′k, respectively in a change of
conditional distributions fk 7→ f ′k.
We will see in the next section that the conditional distributions fk and f ′k correspond in discrete
time in a simple way to the compensated jump measures ν and ν′. Thus we can describe the
change ν 7→ ν′ induced by P 7→ P ′. This is exactly the content of the Girsanov Theorem for
discrete time, when the drift is included in the jump part.

5.2 Measure Change And Characteristics - Implicit Drift

We would like to formulate this in terms of the characteristics of a discrete process.
We assume a stochastic basis (Ω,F ,P), with Ω discrete.
We assume as given a discrete process (Xi)i∈N. We construct a decomposition of our process
into

Xi =
i∑

j=1

(bj + Vj) (5.14)

where (Vi)i is then a martingale with E(Vi) = 0 for all i. We get this by setting

bj := E(Xj |Fj−1) (5.15)

and
Vi := Xi − bi. (5.16)

In order to express this in terms of semimartingale characteristics we define:
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Definition 16 (Random Measure Of Jumps) We call∫
R
f(x)µi(dx) := f(Xi) µ := (µi)i (5.17)

our random measure of jumps.

and

Definition 17 (Compensator) We call our compensator the sequence νi for which it holds
that ∫

R
f(x)νi(dx) := E(f(Xi)|Fi−1). (5.18)

This also implies

bj =
∫

R
xνj(dx). (5.19)

Therefore
∫ t
0

∫
R f(x)(µs − νs)(ds, dx) will always yield a martingale, which is what the compen-

sated jump-measure should fulfill.
That way we have found a first characteristic (µ−ν). We assume that we do not have a diffusion
component. That determines a second characteristic D = 0.
So, Xi =

∑i
j=1 bj +

∑i
j=1

∫
R x(µj − νj).

Now concerning the measure change: Our Xi have the above representation. Under the new
measure P′ we know that we can also find a representation

Xi =
i∑

j=1

bP′
j +

i∑
j=1

∫
R
x(µj − νP′

j )(dx). (5.20)

with
bP′
j =

∫
R
xνP′

j (dx). (5.21)

So what we are looking for is νP′
j .

We have that the fk(x1, . . . , xk−1;xk) are the factorized conditional distributions of Xk given
X1, . . . , Xk−1 or in other words

fk(x1, . . . , xk−1;xk) = E(bk|Fk−1) + E(bk|
∫

R
x(µj − νj)(dx)|Fk−1) = bk =

∫
R
xνk(dx) (5.22)

and

f ′k(x1, . . . , xk−1;xk) = EP′(bP′
k |Fk−1)+ = EP′(

∫
R
x(µj − νP′

j )|Fk−1)(dx) = bP′k =
∫

R
xνP′(dx)

(5.23)
so

dfk(x1, . . . , xk−1;xk) = xνk (5.24)

and
df ′k(x1, . . . , xk−1;xk) = xνP′

k . (5.25)

This gives for our function yk defined above

yk(x1, . . . , xk−1;xk) =
df ′k
dfk

(x1, . . . , xk−1, xk) =
νP′
k

νk
. (5.26)
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In order to calculate this in practice we use the formulae from above:
If we can write the density process Zk as

∆Zk = Zk−1∆Mk, (5.27)

where
∆Mk = Yk(Xk)− 1 (5.28)

and understand Yk to be of the form (5.8), we understand, in view of the above derivations, how
the change of measure P 7→ P ′ is reflected in a change of distributions gk 7→ g′k, respectively in
a change of conditional distributions fk 7→ f ′k.

∆Mk = Yk(
∑
j

bj +
∑
j

∫
R
x(µ− ν)(dx))− 1

Below we give a (slight) reformulation, where the drift is treated explicitly.

5.3 Measure Change And Characteristics - Explicit Drift

We mimic the calculations above:
Suppose we are given a probability space (Ω,F ,P) with a discrete martingale (Xi)i, and a
sequence of variables (bi)i such that bi is Fi−1 measurable for all i, and another probability
measure P′ � P. We also assume a representation

Xi =
i∑

j=1

∫
R
x(µj − νj)(dx). (5.29)

We introduce sum variables Yi = Xi + bi, and immediately proceed to decompose Yi = Ỹi + b̃i
such that we have a sequence of ”drift” variables (b̃1, . . . , b̃n) defined as

b̃i := E(Yi|Fi−1) (5.30)

and therefore
Ỹi := Yi − E(Yi|Fi−1). (5.31)

and the Ỹi define a martingale.
Now for the Yi our measure change behaves just as above. In terms of characteristics we have∫

R
xµ̃i = Yi (5.32)

and ∫
R
xν̃i = E(Yi|Fi−1) = b̃i. (5.33)

This definition yields ∫
R
xµ̃i = Yi = Xi + bi =

∫
R
xνi(dx) + b (5.34)

We get our measure change through

ỹk(x1, . . . , xk−1;xk) =
df̃ ′k
df̃k

(x1, . . . , xk−1, xk) =
ν̃P′
k

ν̃k
. (5.35)
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Since ∫
R
f(x)ν̃k =

∫
R
f(x+ bi)νk (5.36)

we know how to calculate the measure change for Xk + bk:

z̃k(x1, . . . , xk) = zk(x1 + b, . . . , xk + b). (5.37)

5.4 Explicit Drift

We use the same notation as in the section on implicit drift. Suppose we are given a prob-
ability space (Ω,F , P ) with a sequence of random variables (X1, . . . , Xn) and a sequence of
drift-variables (b1, . . . , bn) with bi being Fi−1 measurable for all i and another probability mea-
sure P ′ � P .

Without restriction of generality we may assume E(Xi|Fi−1) = Xi−1 since we could include
the difference Xi − E(Xi|Fi−1) in the bi.

Assume we wish to know the distribution of Yi = Xi + bi under the new measure:
We use the variables with implicit drift Yi to compute a measure change Z̃k as outlined in the
section on implicit drift variables above. Then we use:

E(Yi|Fi−1) = bi (5.38)

EP′(Yi|Fi−1) = E(Yi
dP′

dP
|Fi−1) = E(YiZ̃i|Fi−1) = bP′

i (5.39)

and then from
Yi − bP′

i = Xi under P′ (5.40)

we get the distribution of Xi.
Defining an explicit drift is essentially only interesting, when we wish to work with the semi-
martingale analogy.
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Chapter 6

Comparison To Arbitrage-free
Euler-Discretization

6.1 Introduction

We operate in the following framework:
Our tenor structure is

0 = T0 < T1 < · · · < TN < TN+1

Define a right-continuous function η : [0, TN+1)→ {1, . . . , N+1} by taking η(t) to be the integer
satisfying

Tη(t)−1 ≤ t < Tη(t).

The forward LIBOR-rate for the accrual period [Ti, Ti+1], t ≤ Ti is

L(t, Ti) =
1
δ

(
B(t, Ti)
B(t, Ti+1)

− 1), i = 1, . . . , N.

From this follows, that the price of any bond B(t, Tn) that has not yet matured at time Ti is
given by

B(Ti, Tn) =
n−1∏
j=1

1
1 + δL(Ti, Tj)

, i < n

more generally, at an arbitrary time

B(t, Tn) = B(t, Tη(t))
n−1∏
j=η(t)

1
1 + δL(t, Tj)

.

Choosing as numeraire B(t, TN+1) we get as equations for our LIBOR rates

dL(t, Tn)
L(t, Tn)

= −
N∑

i=n+1

δλ(t, Tn)λ(t, Ti)′L(t, Ti)
1 + δL(t, Ti)

dt+ λ(t, Tn)dWt, n = 1, . . . , N. (6.1)
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6.2 Comparison to our Work

6.2.1 A Log-Normal Time-Discretization

Glassermann and Zhao in [8] present a straightforward Euler Discretization of a forward LIBOR
market model directly

L̂((j + 1)h, TN ) = L̂(jh, TN )µN (jh)h+ L̂(jh, TN )λ(jh, TN )[W(j+1)h −Wjh] (6.2)

or for logL(., TN )

L̂((j+1)h, TN ) = L̂(jh, TN )×exp
(

[µN (jh)−1
2
λ(jh, TN )>λ(jh, TN )]h+λ(jh, TN )[W(j+1)h−Wjh]

)
.

(6.3)
By comparison our approximation in the first interval gives

L̂(t1, TN ) = L(t0)
(
eλ(0,TN )Y+λ(0,TN )bN+1

0 − 1
)
. (6.4)

In order to get a martingale we need some drift adjustment in the direct approach.
Suggestions for the approach taken in [8] lead to

E
[ 1

(1 + δL(0, T1))(1 + µ̂1(0)h+
√
hλ(0, T1)ξ1)

]
=

1
1 + δL(0, T1)

ξ1 N(0, 1) (6.5)

which is never finite or, for the log-discretization to quantities of the form

E[
1

1 + expX
] X N(a, b)

which are complicated to calculate.
By comparison in our model, we have

bN+1
1 = − 1

λ(0, TN )
log E(exp(λ(0, TN )Y1)) Y1 N(0, 1) (6.6)

which is well-defined and very well calculable.
However, a priori our log-normal discrete time model differs from the Euler-Discretization only
by a drift adjustment, just as Glassermann and Zhao try in [8] . Why is our drift-condition so
much nicer then?
Essentially the difference is , that in equation 6.3 one would first have to summarize

µN (jh)− 1
2
λ(jh, TN )>λ(jh, TN ) = µ̂N jh (6.7)

and then determine the condition for martingality of L(., TN ) for µ̂N jh. Then the drift condition
becomes equal to ours. So our method is quite different from straightforward Euler discretization
(Weak Convergence therefore had to be proved separately and would not have followed from
convergence of the Eulerscheme).
How is the relation of our model then, to the suggested alternative discretization in [8]? We
wish to prove the following main result of this section

Theorem 15 The discretization of the logarithms of differences of discounted bond-prices under
the terminal measure

Xn(t) :=
1
δ

(D(t, Tn)−D(t, Tn+1)) = Ln(t)
N∏

i=n+1

(1 + δLi(t)). (6.8)
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implies the same dynamics for the implied discretized LIBOR rates (Ln(ti))i≤n as our discrete
LIBOR models (L̂(ti, Tn))i≤n for standard normal driving-process variables

L̂(ti, TN ) = L̂(ti−1, TN )eλ(ti,N)Y N+1
i−1 +bN+1

i Ys N(0, 1)∀s (6.9)

Proof:
How do differences of deflated bond-prices behave in our discrete model?
Here we have a priori the problem that (B(tj , Ti))j≤i were not defined originally for our discrete
LIBOR analog. However if we look closely at 6.8, we get a much clearer representation

1
δ

(Dn(t)−Dn+1(t)) =
1
δ

(B(t, Tn)−B(t, Tn+1)
B(t, TN+1)

)
=

1
δ

(B(t, Tn)−B(t, Tn+1)
B(t, Tn+1)

)B(t, Tn+1)
B(t, TN+1)

=

(6.10)

L(t, Tn)FB(t, Tn+1, TN+1) = L(t, Tn)
N∏

j=n+1

FB(t, Tj , Tj+1).

FB(t, Tj , Tj+1) is well defined in our discrete setting, as F̂B(ti, Tj , Tj+1).
We have equations for those processes

L(t, Tn) =
Xn(t)

1 + δXn+1(t) + · · ·+ δXN (t)
(6.11)

which also hold for the discretization by purely algebraic calculations from 6.8

L̂(t, Tn) =
X̂n(t)

1 + δX̂n+1(t) + · · ·+ δX̂N (t)
. (6.12)

Now we want to derive the dynamics of the (X̂n)n in our discrete LIBOR model. In [8] the
continuous time dynamics are derived, and the solution to their log-discretization is taken as
definition of the (X̂n)n

dXn

Xn
(ti) =

(
λ(ti, Tn) +

N∑
j=n+1

δXjλ(ti, Tj)
1 + δXj + · · ·+ δXN

)
dW (6.13)

and
∆X̂n

Xn
(ti) =

(
λ(ti, Tn) +

N∑
j=n+1

δX̂jλ(ti, Tj)
1 + δX̂j + · · ·+ δX̂N

)
dW. (6.14)

Lemma 6 The dynamics derived for X̂N from our discrete LIBOR dynamics with standard
normal driving variables coincide with the dynamics derived in [8] equation (24) for n = N .

Proof:
Suppose now, we have our discrete LIBOR analog (L̂(ti, Tj))ij . How would the dynamics of the
(X̂n)n defined through 6.8 look? We have XN = LN and therefore

∆X̂N (ts) = ∆L̂(ts, TN ) ∀s (6.15)

which means

∆X̂N (ts) = X̂(ts−1, TN )
∫

R
(eλ(s,TN )x+bN+1

s − 1)(µ− νN+1
s )(ds, dt) (6.16)
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The discretization of logXN (t) in [8] gives( with h = 1)

X̂N ((i+1)) = X̂N (i) exp
(
−1

2
λ(i, T)N

2+λ(i, TN )ξi+1

)
= X̂N (i) exp(− logm(λ(i, TN ))) expλ(i, TN )ξi+1

(6.17)
where m(.) denotes the moment generating function of ξi+1. Thus X̂N derived by discretizing the
logXN (t) is exactly the same as deriving X̂N from our L̂(ti, Tn) in our discrete LIBOR market
model. �

Lemma 7 The dynamics derived for X̂n from our discrete LIBOR dynamics with standard nor-
mal driving variables coincide with the dynamics derived in [8] equation (24) for all n.

Proof:
For the higher rates first of all we observe

λ(i, Tn) +
N∑

j=n+1

δXj(i)λ(i, Tj)
1 + δXj(i) + · · ·+ δXN (i)

= λ(i, Tn) +
N∑

j=n+1

`(ti, Tj)λ(i, Tj). (6.18)

Then we remember

X̂n(i) = L̂(ti, Tn)
N∏

j=n+1

FB(ti, Tj , Tj+1).

We proceed to use our discrete LIBOR model L̂(ti, Tn).
We know from the stochastic difference equation that

FB(ti, Tj , Tj+1) = FB(ti−1, Tj , Tj+1)E
(
λ(i, Tn)`(ti−1, Tj)Y

j+1
i

)
. (6.19)

Now we derive

X̂n(i) = X̂n(i−1)+∆X̂n(i) = X̂n(i−1) exp
(
λ(i, Tn)Y n+1

i +bn+1
i

) N∏
j=n+1

E
(
λ(i, Tj)`(ti−1, Tj)Y

j+1
i

)
(6.20)

So

X̂n(i) = X̂n(i− 1) exp
(
λ(i, Tn)Y n+1

i + bn+1
i

)
E
( N∑
j=n+1

λ(i, Tj)`(ti−1, Tj)Y N+1
i

)
. (6.21)

Now we know in our case of Y N+1
i being standard normally distributed

E
( N∑
j=n+1

λ(i, Tj)`(ti−1, Tj)Y N+1
i

)
= exp

( N∑
j=n+1

λ(i, Tj)`(ti−1, Tj)Y N+1
i −1

2
(

N∑
j=n+1

λ(i, Tj)`(ti−1, Tj))2
)
.

(6.22)
Furthermore we consider everything under the terminal measure. Therefore

λ(i, Tn)Y n+1
i = λ(i, Tn)Y N+1

i + λ(i, Tn)
N∑

j=n+1

λj`(ti−1, ) (6.23)

and our drift under the terminal measure

bn+1
i = λ(i, Tn)2. under PN+1 (6.24)
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Thus we can summarize

X̂n(i) = X̂n(i− 1) exp

(
− 1

2
σ2
n(i− 1) + σn(i− 1)Y n+1

i

)
(6.25)

with

σn(i− 1) = λ(i, Tn) +
N∑

j=n+1

λ(i, Tj)`(ti−1, Tj) (6.26)

and with 6.18 those are just equations (24) and (25) in [8]. �.

This lemma also concludes the proof of our theorem. �

6.2.2 Advantages Of Our Approach

Our Approach has several advantages

• The derivation of our drift-condition for (L(ti, Tj))i≤j is a straightforward adaptation of the
corresponding situation in Lévy LIBOR models or in fact general semimartingale driven
LIBOR market models, instead of a not so obvious consequence of a discretization of a
different quantity( which only holds in the special case of log-normal model).

• Having only the exponential moment condition on our variables in the discrete analogon,
we can model very different driving processes as well, without the need to derive a new
drift correction.

• We can develop all interesting notions for pricing, measures etc in a purely discrete context,
without the need to laboriously translate from the continuous time context.
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Appendix A

Essentials

We assume basic measure theoretic notions such as measure, σ-Algebra and elementary knowl-
edge of stochastic processes, such as filtrations and stopping times, and the stochastic integral
as known.
There are some notions however, we would like to state explicitly.

Definition 18 (Local Martingale) Assume as given a filtered probability space (Ω,F ,P) sat-
isfying the usual hypotheses.
An adapted cádlág process X is a local martingale is there exists a sequence of increasing stopping
times Tn with limn→∞ Tn =∞ a.s., such that XtT̂n

1{Tn>0} is a uniformly integrable martingale
for each n. Such a sequence (Tn) of stopping times is called a fundamental sequence.
The space of all local martingales on (Ω,F) for a given measure Q is called Mloc(Q).

We also need the property of predictable measurability.

Definition 19 (Predictably Measurable) Assume as given a filtered probability space (Ω,F ,P)
satisfying the usual hypotheses.
Let L denote the space of all adapted processes with caglad paths. The predictable sigma-algebra
P on R+ × Ω is the smallest σ-algebra making all processes in L measurable. We also let P
denote all processes that are predictably measurable.

75



76 APPENDIX A. ESSENTIALS



Appendix B

Weak convergence of processes

Definition 20 (Pathspace) Let

D(R) := {f function on R | f is cádlág}

be the vector space of cádlág-functions on R.

We then have a σ-Field generated by the evaluation functionals

Definition 21 (Measurability On Pathspace) The mappings t : D(R)→ R defined as t(f) :=
f(t) generate a σ-Field for t ≤ s, which we denote by D0

t (R). We further denote by D(R) :=
∪t≥0D0

t (R) the union of those σ-Fields.
We get a filtration on D(R) by taking D(R) := (Dt(R))t≥0 as said filtration.

We want D(R) to be the Borel-Field for our topology on D(R). To that end we define the
Skorokhod Topology via

Definition 22 (Skorohod Topology) A sequence (αn)n ∈ D(R) converges to α iff there is a
sequence λn of strictly increasing continuous functions with λn(0) = 0 and λ→∞ such that

sup
s
|λn(s)− s| → 0

sup
s≤N
|α ◦ λn(s)− α(s)| → 0 ∀N ∈ N

both hold.

This characterization of convergence of sequences suffices because there is a metrizable topol-
ogy bearing just this characterization of convergence on D(R).
The proof consist of defining the proper metric and calculating the properties.( See [9] )
Now we can define weak convergence of processes by a sort of convergence in a ”weak topology
on the pathspace”.

Definition 23 (Weak Convergence Of Processes) We say that a sequence of processes (Xn
t )t∈I

converges weakly to Y iff the paths of the Xn
t converge in D[I] to Y in the Skhorohod Topology.

A related concept is that of P-UT( predictable uniform tightness) which we will need latter for
the weak-convergence result on SDE’s.
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Definition 24 (Predictably Uniformly Tight) For each integer n let Bn = (Ωn,Fn,Fn,Pn)
be a stochastic basis. We denote by H the set of all predictable processes Hn on Bn having the
form

Hn
t = Y01(0) +

k∑
i=1

Yi1(si,si+1](t)

with k ∈ N, 0 = s0 < s1 < ... < sk < sk+1 and Yi is Fnsi-measurable with |Yi| ≤ 1.
We can define an elementary stochastic integral by

Hn ·Xn
t =

k∑
i=1

Yi(Xn
inf {t,si+1} −X

n
inf {t,si}).

Now a sequence (Xn) of adapted( on their respective Bases) cadlag d-dimensional processes is
P-UT if for every t > 0 the family of random variables (

∑
1≤i≤dH

n,i ·Xn,i
t : n ∈ N, Hn,i ∈ Hn)

is tight in R meaning

lim
a→∞

sup
Hn,i∈H

P(|
d∑
i=1

Hn,i ·Xn,i
t | > a) = 0.

Before we get to the 2 main results, a short reminder on Existence and Uniqueness in SDE’s

Theorem 16 (Existence And Uniqueness) Given an equation

Y = Z + f(Y−) ·X (B.1)

where

• The driving term is a d-dimensional semi-martingale X, given on a stochastic basis B =
(Ω,F ,F,P).

• The solution Y is a q-dimensional process.

• There is an ”initial condition” which is a q-dimensional cadlag adapted process Z

• There is a ”coefficient” function f : Rr → Rq × Rd which is locally Lipschitz und linearly
bounded.

then we know that we have locally a unique strong solution to the SDE.
If our f is timedependent, then we simply include time as an additional dimension in the Lipschitz
and linear-growth conditions.

Proof:
All proofs can be found in [9]. �

Now for the two main results.
Assume the following setting:

• We are given an equation
Y = Z + f(Y−) ·X

as above



79

• For each n we have a stochastic basis Bn = (Ωn,Fn,Fn,Pn) and an equation

Y n = Zn + fn(Y n− ) ·Xn. (B.2)

• Xn is a d-dimensional-semimartingale on that basis.

• Zn is a q-dimensional cadlag adapted process.

• fn are functions Rq → Rq × Rd such that each equation above admits a unique solution.

Then there holds

Theorem 17 (Weak Approximation) Assume the functions fn fulfill Lipschitz and linear
boundedness with constants not dependent on n and fn → f at least pointwise. Assume further
that the sequence Xn is P-UT. Then if Y n denotes the unique solution of the sequence of equations
there holds
If (Xn, Zn)→ (X,Z) weakly, then (Xn, Zn, Y n)→ (X,Z, Y ) weakly.

Proof:
All proofs can be found in [9]. �

In the case of our theorem in the mainwork on discrete approximation we need to show es-
pecially P − UT of the driving process of the SDE. However we have weak convergence of the
sequence of driving processes already and in that case there holds

Theorem 18 (Tightness And P-UT) Let (Xn)n be a sequence of d-dimensional semimartin-
gales with characteristics and second modified characteristics (Bn, Cn, νn) and C̃n.
If the sequence (Xn)n is tight, then the sequence is P − UT iff the sequence V ar(Bn,i)t is tight.

Proof:
All proofs can be found in [9]. �
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Appendix C

Variation and Increasing Process

Assume a fixed stochastic basis (Ω,F ,F,P).

Definition 25 (Bounded Variation Processes) We denote by V+(resp. V) the set of all
real-valued processes A that are cadlag, adapted with A0 = 0 and whose each path t → At(ω) is
non-decreasing(resp. has a finite variation over each finite interval [0, t])

We abbreviate calling a process A ∈ V+(resp. V) an adapted, increasing process(resp an adapted
process with finite variation).

Furthermore, we call A the set of processes which are both, of finite variation and predictably
measurable. In other words

A = V ∩ P. (C.1)

Definition 26 (Variation Process) We denote by V ar(A) the variation process of A, that is
the process such that V ar(A)t(ω) is the total variation of the function s→ As(ω) on the interval
[0, t]. Of course V ar(A) = A if A ∈ V+.

Theorem 19 (Decomposition) Let A ∈ V. There exists a unique pair (B,C) of adapted
increasing processes such that A = B−C and V ar(A) = B+C( hence V ar(A) ∈ V+). Moreover
if A is predictable, then B,C and V ar(A) are also predictable.

Proof:
All proofs can be found in [9]. �

81



82 APPENDIX C. VARIATION AND INCREASING PROCESS



Appendix D

Doob-Meyer Decomposition and
Compensators

In this section, we wish to give the basic facts about Doob-Meyer decompositions.

D.1 Doob-Meyer-Decomposition

We know that processes X of the form X = M + A with M a local martingale and A an FV
process are semimartingales. Those processes are called special semimartingales.
The question now is, which semimartingales are special martingales?
There’s a chain of results( found for instance in [16] chap. 3) of increasing generality. The results
culminate in the Bichteler-Dellacherie Theorem.

Theorem 20 (Bichteler-Dellacherie Theorem) An adapted, cadlag process X is a semi-
martingale if and only if it is a classical semimartingale.
That is: X is a semimartingale if and only if it can be written X = M + A, where M is a local
martingale and A is an FV-process.

Proof:
See [16] p.146 �

D.2 Compensator

What is a compensator?
Given a process of locally integrable variation X, we have that X = M + A with some local
martingale M and an FV process A in a unique way. In other words there is an unique FV process
A such that X − A is a local martingale. This is the defining property of the compensator and
very important for modeling purposes.

Definition 27 (Compensator) Given A an FV process with A0 = 0 with locally integrable
total variation. The unique FV process Ã such that A − Ã is a local martingale is called the
compensator of A.

The application of this concept lies mainly in studying jump-measures:
As will be seen in the next section on characteristics, the ”compensated jump-measure” is an
essential tool to represent a semimartingale or for that purpose a Lévy-process.
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Appendix E

Characteristics of
Semimartingales

What are the Characteristics?
The main idea stems from an observation on Lévy-processes:
Let X be a real valued process with independent increments with X0 = 0 and without fixed
times of discontinuity. It is well known, that Xt has a distribution that is infinitely divisible and
its characteristic function is of the form E(exp (iuXt)) = exp (ψt(u)), with

ψt(u) = iubt −
u2

2
ct +

∫
(eiux − 1− iuh(x))Ft(dx)

where bt ∈ R, ct ∈ R+ and Ft is a positive measure which integrates max{1, x2} and h is any
bounded Borel function with compact support which ”behaves like x” near the origin. Moreover
the property of independent increments immediately yields:

exp (iuXt)/ exp (ψt(u)) is a martingale.

Definition 28 (Truncation Function) We call Cdt ( for truncation function) the class of all
functions h : Rd → Rd which are bounded and satisfy h(x) = x in a neighbourhood U of 0.

Now we chose h ∈ Cdt . Since there is a symmetric open subset V ⊂ U where h(x) = x holds,
there exists a bound b ∈ R+ such that ∆Xs − h(∆Xs) 6= 0 if and only if |∆Xs| > b. In other
words we truncate the small jumps, which could possible constrain integrability of the RV’s of
the process by defining a new process

X̂(h)t =
∑
s≤t

[∆Xs − h(∆Xs)]

X(h) = X − X̂(h)

This Process is a special semimartingale since ∆X(h) = h(∆X) is bounded. Therefore we get
the canonical decomposition

X(h) = X0 +M(h) +B(h).

Now we can define our semimartingale characteristics

Definition 29 (Characteristics) Let h ∈ Cdt be fixed. We call characteristic of X the triplet
(B,C, ν) consisting in:
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• B = (Bi)i≤d is a predictable process in Vd, namely the process B = B(h) appearing in the
canonical decomposition.

• C = (Cij)i,j≤d is a continuous process in Vd × Vd, namely

Cij =< Xi,c, Xj,c >

• ν is a predictable random measure on R+ × Rd, namely the compensator of the random
measure µX associated to the jumps of X.

Essential is the following result on Characteristics:

Theorem 21 (Canonical Representation For Semimartingales] Let X be a d-dimensional semi-
martingale, with characteristics (B,C, ν) relative to a truncation function h ∈ Cdt , and with the
measure µX associated to its jumps. Then W i(ω, t, x) = hi(x) belongs to Gloc(µX) for all i ≤ d
and the following representation holds:

X = X0 +Xc + h ∗ (µX − ν) + (x− h(x)) ∗ µX +B.

where ”∗” denotes the integral to the respective measure.

Proof:
All proofs can be found in [9]. �
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