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Abstract und Kurzfassung

Abstract

In the present diploma thesis the thermoelectric properties of cubic type I Ba-Ge-based

clathrates are studied, where Ge in Ba8Ge43�3 (� is a vacancy) is substituted by

Ag → Ba8AgxGe46−x x = 2, 3, 4, 5
Pd & Zn → Ba8PdxZnyGe46−x−y
Cu & Zn → Ba8CuxZnyGe46−x−y
Si & Zn → Ba8SixZnyGe46−x−y.

The speci�c compositions discussed in this diploma thesis are summarised in the Table

on page iii. The synthesis of these materials as well as the structural investigations were

conducted by Navida Nasir and Isolde Zeiringer at the Institute of Physical Chemistry,

University of Vienna.

The structural investigations in all cases con�rmed cubic primitive symmetry consistent

with the space group type Pm3̄n of a typical type I clathrate structure with lattice

parameters ranging from a ≈ 1.05 nm to a ≈ 1.08 nm. Thermoelectric properties

(electrical resistivity, thermal conductivity and Seebeck coe�cient) were measured in

a broad temperature range from 4.2 to about 800 K, demonstrating that substitution

allows �ne tuning of the charge carrier density, shifting the materials into the proximity

of a metal-to-insulator transition. This is evidenced from giant thermopower reaching

values of about 400µV/K in the case of Ba8Cu5.2Zn0.8Ge40.0 at temperatures well below

room temperature (T Smax ≈ 150 K).
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Kurzfassung

In der vorliegenden Diplomarbeit wurden die thermoelektrischen Eigenschaften von auf

Ba-Ge-basierenden kubischen Clathraten des Typs I untersucht. Ge wurde in Ba8Ge43�3

(� bedeutet eine Lücke im Kristallgitter) durch Ag sowie jeweils durch die beiden Ele-

mente Pd und Zn, Cu und Zn und Si and Zn ersetzt

Ag → Ba8AgxGe46−x x = 2, 3, 4, 5
Pd & Zn → Ba8PdxZnyGe46−x−y
Cu & Zn → Ba8CuxZnyGe46−x−y
Si & Zn → Ba8SixZnyGe46−x−y.

Die in dieser Diplomarbeit behandelten Zusammensetzungen werden in Tabelle auf

Seite iii aufgelistet. Die Herstellung dieser Materialien sowie die Strukturuntersuchungen

erfolgten am Institut für Physikalische Chemie der Universität Wien durch Navida Nasir

und Isolde Zeiringer.

Die Strukturuntersuchungen aller Zusammensetzungen ergaben eine einfache kubische

Struktur mit der Raumgruppe Pm3̄n, welche für Typ I Clathrate charakteristisch ist. Die

Gitterparameter variieren von a ≈ 1.05 nm bis a ≈ 1.08 nm. Die thermoelektrischen Ei-

genschaften (elektrischer Widerstand, thermische Leitfähigkeit und Seebeck Koe�zient)

wurden über einen weiten Temperaturbereich (von 4.2 bis 800 K) gemessen. Die Ergeb-

nisse belegen, dass Substituierung von Ge eine Feinabstimmung der Ladungsträgerdichte

und damit eine Verschiebung der Materialeigenschaften in die Nähe eines Metall-Isolator

Überganges erlaubt. O�ensichtlich wird diese Grenze für Ba8Cu5.2Zn0.8Ge40.0 erreicht,

sodass sie einen auÿerordentlich groÿen Seebeck-Koe�zienten von etwa 400µV/K bei

T Smax ≈ 150 K aufweist.
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Table: Investigated compostions / Untersuchte Zusammensetzungen
nominal composition accepted composition
Nominalzusammensetzung Akzeptierte Zusammensetzung

Ba8Pd2.4Zn3.3Ge40.3 Ba8Pd2.3Zn3.6Ge40.1
Ba8Cu5.2Zn0.8Ge40 Ba8Cu5.2Zn0.8Ge40.0
Ba8Zn8Ge10Si28 Ba8Zn7.3Ge10.6Si28.1
Ba8Zn8Ge19Si19 Ba8Zn7.4Ge19.8Si18.8
Ba8Zn8Ge19Si19 Ba8Zn7.2Ge19.9Si18.9
Ba8Zn8Ge28Si10 Ba8Zn7.6Ge29.3Si9.1
Ba8Ag2Ge44 not �nalised yet / noch nicht bekannt
Ba8Ag3Ge43 not �nalised yet / noch nicht bekannt
Ba8Ag4Ge42 not �nalised yet / noch nicht bekannt
Ba8Ag5Ge41 not �nalised yet / noch nicht bekannt
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1. Introduction

What are clathrates?

Clathrates are crystalline materials with an internal cage structure (see Fig. 1.1). Cla-

thrate (from Latin clatratus = encaged): an inclusion complex in which (neutral) mole-

cules of one substance are completely enclosed in cavities formed by the crystal lattice,

or are present in large molecules of another substance, i.e., the crystal accommodates in

foreign molecules during growth, which cannot escape until the crystal is decomposed.

In other words, the free aperture of the faces of the polyhedral void is too small to let

the enclosed guests species pass. (cit. from [29])

Figure 1.1.: Typical structure of type I clathrates - with cubic unit cell

Why "novel" clathrates?

The novelty of the investigated compositions in this thesis is that the frameworks atoms

Germanium are substituted by both Cu and Zn, Pd and Zn as well as Si and Zn. On the
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1. Introduction

other hand, there are no publications known - to the best of our knowledge - discussing

Ba8Ge46−x-based clathrates where Ge atoms (and frameworks) are substituted by Ag.

Why investing clathrates?

In this thesis type I clathrates containing transition metal elements are discussed

(Ba8TMxGe46−x, TM=transition metal). The implementation of transition metals is

promising, regarding the type and concentration of charge carriers as well as a modi�-

cation of the electronic density of states at the Fermi energy. Cage forming clathrates

provide an almost ideal starting point to satisfy the requirements of the PGEC (phonon

glass, electron crystal) concept of G. Slack. (For further details see [29])

What is the usefulness of thermoelectricity?

Thermoelectricity is the possibility of metals and intermetallic compounds to convert a

temperature gradient (via the Seebeck-e�ect) in an electrical potential gradient. With

closing an electric circuit, electrical current is �owing and electrical power is generated.

Also the other way around is possible, absorbing heat at one side and refrigerating at

the other side can be activated with an electric current passing through the thermoelec-

tric generator. Thermoelectric materials (as the investigated materials are) are used as

principal elements in thermoelectric generators. Thermoelectric generators can be used

for converting (high-temperature) solar energy, waste heat of industrial processes, waste

heat in the car as well as from chimneys. The dimensions of thermoelectric generators

vary with the purpose. Today this technology is rapidly developing. [29]

What are thermoelectric properties?

Thermoelectric properties are the electric resistivity ρ [µΩcm], the thermal conductivity

λ
[
mW

cmK

]
, the Seebeck coe�cient (also: thermopower) S [µ V/K] as well as Hall coe�cient

RH [Kcm3c−1].1 [29]

What is the thermoelectric performance?

The thermoelectric performance (�gure of merit) links the Seebeck coe�cient S, ther-

mal conductivity λ and electric resistivity ρ in a simple manner by S2

λρ
. Consequently,

while searching for materials with large S-values, λ and ρ should be as small as possible.

1c...atomic concentration of an alloy component
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Nature, however, does not favor such a combination, since a large thermopower requires

usually materials with low charge carrier concentration. In the simplest model, the elec-

tronic structure of clathrates can be understood in terms of the Zintl concept: Binary

Ba8Ge43�3 with three framework defects can be formulated as
[
Ba+2

]
8

[
Ge0
]
43

[� -4]
3

yielding an electron surcharge of 4 electrons per formula unit. This simple concept

was proven successful in previous substitution and doping studies carried out on binary

Ba8Ge43�3 [9, 10, 12, 20, 21, 22, 23]. Substitution and doping turned out as a fruitful

and promising tool to arrange the charge carrier concentration of clathrates in an optimal

manner to tailor the highest possible thermoelectric performance. (cit. from [4])

The aim of the present work is a study of transport properties on type I clathrates

Ba8Ge43�3 where the charge carrier density is �ne-tuned by substituting Ge by both Cu

and Zn, Pd and Zn, Si and Zn as well as Ag. In each case, the substitution causes the

vacancies to become occupied [4].

3



2. Theoretical Aspects

2.1. Transport Phenomena

1 In physics, chemistry, biology and engineering, transport phenomena are mechanism by

which particles or quantities move from one place to another. This movement requires

a "motive force". In solid-state physics transport phenomena of interest are:

transport phenomenon driving force
electrical resistivity external �eld (electrical)
thermal conductivity temperature gradient
Seebeck coe�cient temperature gradient
magnetoresistance external �eld (electrical + magnetic)
Hall coe�cient external �eld (electrical + magnetic)

For theoretical explanation of the electrical resistivity ρ, the thermal conductivity λ and

the thermopower (Seebeck coe�cient) S (which are the transport coe�cients appearing

in this thesis) the linearised Boltzmann equation 2.1 has to be derived.(
∂

∂t
+ ~̇r · 5r + ~̈r · 5~̇r

)
f(ν, ~r, t) =

(
∂f(ν, ~r, t)

∂t

)
coll

(2.1)

The bracket term with subscript coll (meaning collision term) represents scattering pro-

cesses which can be equalized with a �eld term (external �elds and temperature gradients

are the driving forces) because of the assumption of a steady state

(
df

dt
= 0

)
. The func-

tion f(ν, ~r, t) is the probability distribution function of a conduction electron, depending

on its position vector ~r and wave vector ~k; the quantum number ν includes the wave

vector, the band index and the spin direction.

The behaviour of electrons in solids is described by the Fermi-Dirac distribution func-

1References: [5, 3, 16, 17, 28, 26, 29, 1, 32, 34]
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2.1. Transport Phenomena

tion:

f0(Eν) =
1

e
Eν−µ
kBT + 1

(2.2)

where kB = 1.38 × 10−23J/K is the Boltzmann constant, µ is the chemical potential

which equals at T = 0 the Fermi-energy EF . For free electrons EF (energy of the

highest occupied state of the ground state) reads

µ(T = 0) = EF =
h2

2me

(
3nπ2

V

)2/3

. (2.3)

Only electrons in the proximity of the Fermi-energy are able to move and therefore

to transport energy (mass, charge). This movement is limited by scattering events

like scattering on impurities, imperfections of the lattice, phonons, other electrons and

because of magnetic moments. To solve the Boltzmann equation (2.1) the collision

term is substituted by a term which describes the collision events with a relaxation time

τν(~r,~v): (
∂f

∂t

)
coll

= −f − f0(Eν)

τν
(2.4)

f0(E) is the Fermi-Dirac distribution function. Particles move freely within a charac-

teristic time τ before being scattered. The relaxation of the distribution function to

equilibrium is
∂(f − f0(Eν))

∂t
= −f − f0(Eν)

τν
(2.5)

and the solution of this equation reveals an exponential dependence:

(f − f0(Eν))t = (f − f0(Eν))t=0 exp

{
− t

τν

}
. (2.6)

.

Every individual scattering mechanism can be described by a distinct relaxation time

τi. Matthiessen�s rule assumes that the scattering mechanisms are independent and so

they can be added together:

τ−1 =
∑ 1

τi
. (2.7)

Provided that in a parabolic conduction band only one type of charge carriers is responsible

for transport phenomena it is possible to deduce the transport coe�cients from the

5



2. Theoretical Aspects

linearised Boltzmann equation (Eqn. 2.1) with applying the transport integrals,

Kn = − 1

(2π)3

∫
τν ~vν · ~vν(Eν − µ)n

(
−∂f0(Eν)

∂Eν

)
d3k (2.8)

with γ = ~k, ~r.

The electrical current density

~j = e2K0
~E − e

T
K1

~∇T (2.9)

compared with Ohm�s law ~j = σ ~E leads to the electric conductivity

σ =
1

ρ
= e2K0, (2.10)

with the requirements of ~E 6= 0, ~T = 0 and ~B = 0.

Comparing the density of heat �ow

~q = eK1
K1

eTK0

− 1

T
K2

~∇T (2.11)

with the de�nition

~q = −λ~∇T (2.12)

the thermal conductivity results to

λ =
1

T

[
K2 −

K2
1

K0

]
, (2.13)

with the requirements of ~j = 0, ~T 6= 0 and ~B = 0.

With ~j = 0, ~T 6 =0 and ~B = 0 follows with the electrical current density

~j = e2K0
~E − e

T
K1

~∇T = 0 (2.14)

and the de�nition
~E = S~∇T (2.15)

for the electrical �eld intensity
~E =

1

eT

K1

K0

~∇T. (2.16)
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2.1. Transport Phenomena

Comparison with the de�nition leads to

S =
1

eT

K1

K0

. (2.17)

symbol meaning
~k wave vector
~r position vector
~vγ velocity of the electron at the γ state
~E electrical �eld
σ electrical conductivity
ρ electrical resistivity
S Seebeck coe�cient
λ thermal conductivity
λe electronic contribution to λ
e electronic charge
T temperature
µ chemical potential
Kn transport integrals

m∗e =
(

1
~2

d2E
dk2

)
e�ective mass

N(E) electronic density of states
τe relaxation time for electron-scattering process

Electrical Resistivity ρ [µΩcm], thermal conductivity λ
[
mWcm−1K−1

]
and Seebeck co-

e�cient S
[
µVK−1

]
are necessary to describe the electronic and thermal transport an thus

the thermoelectric performance of a distinct material in terms of the �gure of merit. Each

material has its own characteristics and already small variations in composition or ma-

nufacturing can change/shift physical properties; so it is possible to obtain unexpected

results of speci�cally designed materials.

To investigate the materials manufactured for this project, the electrical resistivity, the

thermal conductivity and the Seebeck coe�cient were measured in a broad temperature

range (∼ 4 K to ∼ 800 K).

2.1.1. Electrical Resistivity

2 The characteristics of the electrical resistivity as a function of temperature de�nes the

nature of a material. The electrical resistivity of metals increases with rising tempera-

2References: [5, 21, 11, 3, 28, 33]

7



2. Theoretical Aspects

ture; it decreases for semiconductors [33]. Also superconductors can be identi�ed easily.

The scattering of electrons limits the mean free path and thus determines the absolute

resistivity. The relaxation time τi, describing the average time between two scattering

events, links the electron velocity and the mean free path. Using Matthiessens rule, Eqn.

2.7, simple metals are described by

1

τ
=

1

τ0

+
1

τph
, (2.18)

where τ0 is the time between two scattering events of electrons and imperfections and

τph accounts for scattering between electrons and phonons. The Drude formula provides

a relation between electrical resistivity and the total relaxation time τ :

ρ =
me

ne2τ
(2.19)

with me the electron mass, n the electron density and |e| the electron charge. In Eqn.

2.19 the relaxation time is the only variable, so it is obvious that this is the parameter

responsible for the magnitude and temperature dependence of ρ(T ). A modi�ed version

of Eqn. 2.19 takes into account an e�ective mass of the charge carriers instead of the

free electron mass.

According to Matthiessen�s rule the temperature dependent electrical resistivity of

simple metals follows than from

ρ(T ) = ρ0 + ρph(T ). (2.20)

ρ0 is the residual resistivity resulting from scattering on static imperfections, such as

impurities, which is usually temperature independent. ρph(T ) accounts for scattering

on phonons - which is temperature dependent. The former term can be determined by

measurements at temperatures near to absolute zero, the latter can also be calculated

by theoretical concepts such as the Bloch-Grüneisen formula, which is derived from the

linearised Boltzmann equation (Eqn. 2.1).

ρph = R
(
T

θD

)5 ∫ θD
T

0

z5

(ez − 1) (1− e−z)
(2.21)

R (which is temperature independent) describes the strength of interaction between the

conduction electrons and the thermally excited phonons. For low temperatures ρph(T ) is

8



2.1. Transport Phenomena

proportional to T 5

ρph ≈
R
θD

(
T

θD

)5

... for T � θD, (2.22)

whereas for higher temperatures simple metals display an almost linear temperature de-

pendence

ρph ≈
R
4
T... for T � θD. (2.23)

The parameters θD and R are derived via �tting the actual experimental data.

To explain the behaviour of more complicated metals, like materials near a metal-to-

insulator transition, a model regarding the temperature dependent electrical resistivity

was developed by Stefan Berger [5, 21], combining the Bloch-Grüneisen law with a tem-

perature dependent charge carrier density n(T ) (also called 'two-band model').

ρ(T ) =
ρ0n0 + ρph
n(T )

(2.24)

The charge carrier density is calculated employing statistical mechanics, taking into ac-

count the Fermi-Dirac distribution function and using a density of states such as it is

sketched in Fig. 2.1. The variation of the width and the location (regarding to the Fermi-

Figure 2.1.: Gap in the electronic density of states near to Fermi-energy

energy EF ) of the band gap Eg explains the di�erent behaviour of materials. Basically, a

gap well above the Fermi-energy is consistent with a metal-like behaviour of the electrical

resistivity. For semiconductors, small gaps in narrow distance to EF are explaining the

behaviour of decreasing resistivity with rising temperature. At higher temperatures, elec-

trons cross the band gap into a largely unoccupied band, thus, �nding a new amount of

9



2. Theoretical Aspects

free states. The charge carrier density increases and therefore the resistivity decreases.

With varying the location of the energy gap according to the Fermi-energy and its gap

width a further description is possible and metallic-like resistivity features may be followed

by semiconducting temperature dependences of the electrical resistivity in a single piece of

material. A material with a behaviour near a metal-to-insulator transition meaning a high

resistivity even at low temperatures is described by a gap slightly above the Fermi-energy.

A further development of the discussed model gives the implementation of the Mott-

Jones term AT 3 [11] where the dependence of scattering processes on narrow features

of the DOS in the proximity of EF is taken into account3:

ρ(T ) =
ρ0n0 + ρph
n(T )

+
AT 3

n(T )
. (2.25)

Another model was developed by Matthias Ikeda [13], using also the formula as it is

derived from Fig. 2.1, introducing a rectangular band into the gaps as shown in Fig. 2.2.

Figure 2.2.: Three-band model - sketch

2.1.2. Thermal Conductivity

4 The total thermal conductivity can be written as a sum of two parts: the lattice ther-

mal conductivity λph (index ph for phonons) and the electronic contribution to thermal

conductivity λe:

λ = λph + λe (2.26)

3Idea from Leonid Salamakha, private conversation on October 13, 2009
4References: [8, 7, 22, 28, 32, 24]
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2.1. Transport Phenomena

Electronic Contribution to Thermal Conductivity

Employing the Wiedemann-Franz law the electronic thermal conductivity can be calcula-

ted from the electrical resistivity via

λe =
L0T

ρ
, (2.27)

with the Lorenz number L0 = 2.45 · 10−8 WΩ
K2 . Although this model is valid in extended

temperature ranges only for free electron systems, it is widely used even for complex

materials such as skutterudites or clathrates. (cit. from [22])

Lattice Contribution to Thermal Conductivity

λph follows from the kinetic gas theory from λ = 1
3
cvvl with cv as the heat capacity of

the system, v is the particle velocity and l the mean free path. According to [7, 8] λph is

given by

λph =
kB

2π2 vs

(
kB
~

)3

T 3

∫ θD/T

0

[
τcx

4ex

(ex − 1)2
+
I1

I2

]
dx, (2.28)

with the velocity of sound

vs =
kBθD

~(6π2n)1/3

and x = ~ω/kBT , as well as

I1 =

∫ θD

0

τc
τN

x4ex

(ex − 1)2
dx (2.29)

I2 =

∫ θD

0

1

τN
(1− τc

τN
)

x4ex

(ex − 1)2
dx, (2.30)

where n is the number of atoms per unit volume and ω the phonon frequency.

τ−1
c means the sum of reciprocal relaxation times:

τ−1
c = τ−1

N + τ−1
U + τ−1

D + τ−1
B + τ−1

E , (2.31)
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2. Theoretical Aspects

τN
−1 = BNT

3ω2

τU
−1 = BUT

3ω2

τD
−1 = Aω4

τB
−1 =

vs
L

τE
−1 = BEω

with the following abbreviations

symbol meaning
N normal three phonon scattering
U umklapp processes
D point defect / impurity scattering
B boundary scattering
E scattering of phonons by electrons
BN a temperature independent factor

BU a material constant, containing e
−θD
aT - characteristic of the vibrational spectrum

L some length characteristic of the material

In Chapter 4.2 the term I1
I2
in Eqn. 2.28 is omitted. Such an approach is justi�ed if the

impurity level is signi�cant and all phonon branches are scattered by resistive processes.

This means that the relaxation time of normal processes is much larger than that of

the other scattering processes τN � τU,B,E. The �rst integral in Eqn. 2.28 therefore

predominates; the second term ( I1
I2
) can be ignored. Since the experimental data (see

Chapter 4.1) show quite large resistivity values (as usual for clathrates) this simpli�cation

(Eqn. 2.32) is appropriate.

λph =
kB

2π2 vs

(
kB
~

)3

T 3

∫ θD/T

0

τcx
4ex

(ex − 1)2
dx (2.32)

To account for radiation losses, an additional T 3 term to Eqn. 2.32 is used in the

least-squares �ts in Chapter 4.2.
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2.1. Transport Phenomena

2.1.3. Thermopower

5 The thermopower of a material, represented by its Seebeck coe�cient, is a conse-

quence of the movement of the charge carriers due to a temperature gradient. (cit.

from [28]) If a temperature gradient is exposed to a conducting solid, electrical charge

carriers are moving - this e�ect is called thermodi�usion. The thermodi�usion causes a

temperature-dependent and therefore position-dependent velocity distribution of charge

carriers. (literal interpretation from [27])

In the presence of a temperature gradient along a conductor the thermodi�usion of

charge carriers causes di�usion electricity, therefore an electric �eld is generated which

involves a drift current.

With a voltmeter the di�erence between the electrochemical potentials ϕe−ch of the

exits is measured (see Fig. 2.3), the resulting voltage follows as integral within the

integration limits a and b

U =

∫ b

a

~ds · ~∇ϕe−ch. (2.33)

No contribution from the junctions occurs, because the electrochemical potential is conti-

nuous at the connection of two metals and the temperature is constant. The thermoe-

lectric potential is expressed by

U = −
∫ b

a

SdT = −
∫ b

a

S~∇T · ~ds (2.34)

If the Seebeck coe�cients are temperature independent, Eqn. 2.34 reduces to

U = (SA − SB)(T1 − T2). (2.35)

Comparing the integrands of the path integrals leads to

− ~∇ϕe−ch = S · ~∇T. (2.36)

Eqn. 2.36, the local form for thermoelectric voltages, results from the thermodi�usion

of the conduction electrons which is valid for both, metals and semiconductors.

The test setup for thermopower consists of two conductors (A and B) with di�erent

5References: [3, 28, 27, 14, 6, 2, 31]
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2. Theoretical Aspects

V

T1

+ -A A

B

T2

Figure 2.3.: Thermoelectric circuit - test setup for thermopower

temperatures T1 and T2 at the soldering points (see Fig. 2.3)

U = (SA − SB)(T1 − T2). (2.37)

U = −
∫ b

a

SdT = −
∫ b

a

S~∇T · ~ds (2.38)

If T1 6= T2 an open-circuit voltage ∆V is generated; if the circuit is closed, a thermoe-

lectric circular current is �owing. Since the Ohmic current is proportional to a potential

di�erence and the thermodi�usion current is proportional to a temperature di�erence, a

proportionality between potential and temperature di�erence results, which corresponds

to Eqn. 2.35 [...] Here SA and SB denote the Seebeck coe�cient (thermoelectric power)

of conductor A and B. [...] If a temperature dependence of S is taken into account, Eqn.

2.35 for the thermoelectric potential needs to be replaced by a path integral (Eqn. 2.38),

taken along the pieces of metal between the exits a and b of the voltmeter in the circuit

shown in Fig. 2.3. (cit. from [14]) Expression of the Seebeck coe�cient in terms of the

Peltier-heat Π leads to

Π = T · S =

∑
i hivi(x)

e
∑

i vi(x)
, (2.39)

where the velocity vi(x) of the ith electron occurs. Assuming the thermal heat is the

di�erence between the discrete electron energies Ei to EF , the Fermi-energy, hi = Ei −
EF , results to

S =
1

eT

∑
i(Ei − EF )vi(x)∑

i vi(x)
=

1

eT

∑
i(Ei − EF )ji(x)∑

i ji(x)
. (2.40)

Association of the electrical current ji = e · vi with electrons having energies between E

14



2.1. Transport Phenomena

and E + dE leads to

S =
1

eT

∫
(Ei − EF )jx(E)dE∫

jxdE
, (2.41)

with the current density in x-direction jx =
∑
i

evi(x) (belonging to an electric �eld applied

in positive x-direction εx). The charge current density in the scope of the linearised

Boltzmann equation 2.1 is expressed as

jx = −εx
∫
σx(E)

df0

dE
dE (2.42)

with the partial electrical conductivity σx with integration over constant energies E in

the ~k space:

σx =
e2

4π3~

∫
τ
v2
x

v
dS. (2.43)

So a general expression for the thermopower (of isotropic materials) can be written as

S =
1

eT

∫∞
0
σx(E − EF )df0

dE
dE∫∞

0
df0
dE
dE

. (2.44)

With further assumptions (df0/dE has noticeable values only in the range kBT above

EF , E = EF and only elastic scattering are taken into account) the thermopower reads

S =
π2

3

kB
e
kBT

∂ lnσ(E)

∂E
. (2.45)

The thermopower can be split to several contributions: Due to the fact that the drag

S = Se + Sg + Sm. (2.46)

symbol meaning
Se di�usion term, temperature gradient causes electron movement
Sg phonon drag term, phonons causes electron drag
Sm magnon drag term, magnons causes electron drag

terms are second order e�ects they are often ignored. The di�usion term Se is dominated

by scattering events of the conduction electrons while moving along the temperature

gradient in the material. With the Kohler rule, the di�erent contributions

Se ·We = Se,0 ·We,0 + Se,ph ·We,ph + Se,mag ·We,mag (2.47)
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2. Theoretical Aspects

can be taken into account with We representing the thermal resistivity for electrons. A

�rst order approximation, the Nordheim-Gorter rule, employs the Wiedemann-Franz law

(see Chapter 2.1.2), thus,

Se · ρe = Se,0 · ρe,0 + Se,ph · ρe,ph + Se,mag · ρe,mag. (2.48)

symbol meaning
index e, 0 electron-impurity scatter
index e, ph electron-phonon scatter
index e,mag electron-magnon scatter

From

S =
π2k2

BT

3e

[
∂ lnσ(E)

∂E

]
EF

(2.49)

where σ is the electrical conductivity, the application of the free electron gas model for

simple metals yields:

S(T > θD) =
π2k2

BT

eEF
(2.50)

S(T � θD) =
π2k2

BT

3eEF
=

1

3
× S(T > θD). (2.51)

For free electrons, the Fermi energy is interrelated with the charge carrier density n by

EF =
h2

2m

(
3

8π
· n
)2/3

. (2.52)

and n = N/V as the charge carrier density in the Fermi-Gas model.

With σ = 1
ρ
and the Drude-formula (Eqn. 2.19) the following relation results:

σ ∝ n (2.53)

with n, the charge carrier density. According to Eqn. 2.49

S ∝ ∂ lnσ(E)

∂E
(2.54)

results. Within the free electron gas model, the number of occupied states is equal to

the number of electrons, so

σ ∝ N(E)|E=EF (2.55)
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2.2. Speci�c heat

leads to

S ∝ 1

N(E)

∂N(E)

∂E
|E=EF , (2.56)

with N(E) as the density of states.

2.1.4. Figure of Merit

6 To characterize a material owing its thermoelectric performance, the �gure of merit is

used. In the previous chapters a dependence of the thermoelectric properties constituting

the thermoelectric performance was already discussed. Generally, the �gure of merit is

expressed as

Z =
S2

ρλ

[
1

K

]
. (2.57)

To get a dimensionless �gure, the �gure of merit is often multiplied by T .

ZT =
S2 · T
ρλ

[1] (2.58)

To obtain a high �gure of merit, the material should exhibit a large Seebeck coe�cient

and small electrical resistivity as well as small thermal conductivity. Materials usually do

not provide such a combination - compare Eqn. 2.48. With a small electrical resistivity

also the thermopower will be small.

A high Seebeck coe�cient provides a large potential di�erence between two junctions, if

the thermal conductivity is high, the temperature gradient will decrease and therefore the

potential di�erence between the two junctions will decrease. Additional, a high electrical

resistivity is causing Joule heating and a decrease of voltage output caused by the high

internal resistance occurs.

Creating materials with a high �gure of merit for a required temperature range is an

aim of contemporary research.

2.2. Speci�c heat

7 Speci�c heat, describing the ability to absorb heat, belongs to the fundamental charac-

teristics of solids. A variety of thermodynamic variables can then be calculated employing

6References: [29]
7References: [18, 25, 6, 19, 22]
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2. Theoretical Aspects

the speci�c heat. The heat capacity follows from

C =
Q

∆T
, (2.59)

with ∆T → 0.

c =
1

mol
lim

∆T→0

Q

∆T
(2.60)

The speci�c heat can be de�ned as the molar heat capacity at constant volume

cV =

(
(∂′Q)

∂T

)
V

=

(
(∂U)

∂T

)
V

(2.61)

or as the molar heat capacity at constant pressure

cP =

(
(∂′Q)

∂T

)
P

=

(
∂(U + pV )

∂T

)
P

=

(
∂H

∂T

)
P

, (2.62)

with ∂′Q an in�nitesimal heat transfer, U , the total energy and H = U+pV , the enthalpy.

The entropy S as well as the free energy F can be derived within the temperature

dependent speci�c heat.

S(T ) =

∫ T

0

cV (T ′)

T ′
dT ′ (2.63)

F (T ) =

∫ T

0

∫ T ′

0

cV (T ′′)

T ′′
dT ′′dT ′ (2.64)

Experimental measurements are usually restricted to the determination of cP . The di�e-

rence of cP and cV is negligible for solids; at low temperatures it tends to zero.

cP − cV =
Tvα2

κT
, (2.65)

with v, the molar volume, α = ( 1
V

)(∂V
∂T

)P , the thermal expansion coe�cient and

κ = −( 1
V

)(∂V
∂P

)T , the isothermal compressibility. The most principal contributions to

the speci�c heat of simple metals are thermal excitations of the conduction-electrons

and the contributions of the lattice vibrations (phonons)

c = cel + cph. (2.66)
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2.2. Speci�c heat

2.2.1. Lattice contribution to speci�c heat

The following discussion is based on the harmonic approximation where the 3N vibration

modes of a solid (consisting of N atoms) are represented by a set of 3N linear harmonic

oscillators with frequencies νi (i = 1, . . . , 3N).

Generally, the phonon contribution to speci�c heat is

Cph(T ) = R

∞∫
0

F (ω)
4 ·
(

ω
2kBT

)
exp

{
ω

kBT

}
+ exp

{
− ω
kBT

}
− 2

dω = R

∞∫
0

F (ω)

(
ω

2kBT

)
sinh2

(
ω

2kBT

)dω,
(2.67)

with F (ω) as the energy dependent phonon density of states.

F (ω) can be approximated, the Debye model sets for acoustic phonons F (ω) ∼ ω2 to

an upper frequency limit of ωD, respectively a characteristic temperature ΘD = ~ωD/kB.
The Einstein model for optical phonons sets the density of states to F (ω) ∼ δ(ω −
ωE), with the characteristic temperature of ΘE = ~ωE/kB. For low temperatures the

Debye model provides a T 3-dependence while the Einstein model provides an exponential

dependence of temperature to the speci�c heat. At high temperatures both models

deliver the Dulong-Petit value of 3R. (literal interpretation from [19])

2.2.2. Contribution of the conduction electrons to speci�c heat

The heat capacity of the conduction electrons is determined similar to the lattice contribu-

tion to speci�c heat but for electrons the Fermi-Dirac distribution function f(E, T ) has to

be used instead of the Bose-Einstein distribution function. The density of states N(EF )

is proportional to
√
E within the free electron gas model (non-interacting electron-gas).

The relation for speci�c heat of electrons and temperature is

ceV = γT (1 + bT 2) (2.68)

with

γ =
π2k2

B

3
N(EF ) (2.69)

where bT 2 is a term for high-temperature correction, b depends on the shape of the density

of states. To include band e�ects or electron-phonon interactions, further corrections

are necessary. (literal interpretation from [19])
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3. Experimental Design

1 A series of type I clathrates (Ba8ZnxGe46-x-ySiy, x = 8, y = 10, 19, 28;

Ba8Pd2.3Zn3.6Ge40.1 and Ba8Cu5.2Zn0.8Ge40.0) was prepared with a weight of 2-4 grams

from elemental ingots (Ba 99.9, Zn, Cu, Pd 99.99, Ge and Si 99.999 mass.% ) by reac-

tion in vacuum-sealed quartz tubes at T = 800◦C for 4 days followed by quenching in

cold water. The reaction products were pulverized2 and compacted in cylinders with dia-

meter 10 mm and height 6 mm by hot pressing. Samples were analysed by x-ray powder

di�raction and electron probe micro analysis (EPMA). (cit. from [4])

Another series of type I clathrates, Ba8AgzGe46-z (z=2, 3, 4, 5), was prepared with a

weight of 1.5 g/sample from elemental ingots (Ba and Ag 99.9, Ge 99.999 mass.%) by

arc melting followed by annealing at T = 800◦ C for 5 days and quenching in cold water.

The alloys were powderized by ball milling and then compacted in cylinders with a volume

of 1 cm3 (≈ 6 g) by hot pressing. Afterwards the samples were annealed at T = 800◦C

again for 3 days.

The samples were cut into parallelepipeds with approximate dimensions 1.5×1.5×6.5 mm
and cylinders with a diameter of 6 mm and a height of ∼0.9 mm with diamond and wire

saw as well as with an ultrasonic driller.

To physically characterize the samples, the temperature dependent resistivity, thermal

conductivity and Seebeck coe�cient were investigated.

3.1. Electrical Resistivity

The temperature dependent resistivity was measured in a standard technique above room

temperature employing a four-terminal DC measurement system. Below room tempe-

rature both a DC technique and also an AC bridge was used. (cit. from [4]) The

samples analysed are bar-shaped with a length of about 5-8 mm and a cross section of

ca. 1-2 mm×1.5 mm.

1References: [4, 17, 28]
2all samples were hand milled except Ba8Zn7.4Ge19.8Si18.8 which is ball milled
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3.1. Electrical Resistivity

3.1.1. ρ below room temperature

The temperature dependent electrical resistivity below room temperature was obtained

with a home-made standard four-terminal AC and DC measuring technique. The principle

is shown in Fig. 3.1.

I [A]

U [V]

Figure 3.1.: Principle of the standard four-terminal DC technique to measure electrical
resistivity; the grey bar illustrates the sample

The four point technique is realised by four gold needles which are pressed to the sample

by springs or for small samples by adhesive bonding of wires. Via the outer contacts the

current is applied, at the inner contacts the voltage is measured - the resulting resistivity

is calculated by Ohm�s law

R =
U

I

[
V

A
= Ω

]
(3.1)

R = ρ
l

A

[
Ωm · m

m2
= Ω

]
. (3.2)

A is the cross section and l the length along the voltage drops - the speci�c resistivity is

obtained by

ρ =
U

I
· A
l

[
V

A
· m

2

m
= Ωm

]
. (3.3)

In the DC-mode the current direction is switched back and forth at every measured

point to avoid errors in the measurement because of any thermo voltages. To measure

the temperature in the DC-mode a AuFe0.07% / Chromel thermocouple was used; the
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3. Experimental Design

reference temperature was obtained by using a thermos bottle with sludge. The AC-

equipment uses resistive sensors of Ge (T<30K) and Pt (T>30K) for the temperature

measurement and an AC resistance bridge 370 by LakeShore with an additional low

resistance scanner (Model 3716L). After the cool down with liquid 4He in a cryostat the

temperature dependent electrical resistivity is automatically measured by a PC while the

reheating. (For further details see [28].)

3.1.2. ρ above room temperature

The temperature dependent electrical resistivity above room temperature was taken em-

ploying a ZEM3 Unit (Ulvac, Japan) which also uses the four point technique. The

sample, which is bar-shaped (as mentioned before), is �xed vertically between two bra-

ckets which provide the contacts for the current. To measure the voltage, two horizon-

tally probes are pressed on the sample using a micrometer. After entering the needed

parameters the measuring process is computer-operated.

3.2. Thermal Conductivity

3.2.1. λ below room temperature

Thermal conductivity below room temperature was obtained by a steady state heat �ow

method on rectangular shaped samples with a typical cross section of 1-2 mm2 and a

length of about 7 mm. (cit. from [4]) The principle is facing reality in Fig. 3.2 vs. Fig.

3.3.

The test setup as it is shown in Fig. 3.3 is enclosed by two radiation shields and a

�nal cylindrical cover and evacuated. The block where the bottom of the sample is �xed

and so in thermal contact with the heat sink is cooled by a �ow of 4He. The �ow of He

is automatically regulated but can be overruled by hand. After stabilising at a certain

temperature the sample is heated from the top using a strain gauge (called heater in Fig.

3.2). At the bottom the sample is still on the set-temperature. After reaching a constant

heat �ux (which is detected by two thermocouples along the sample and a third one at

the heat sink providing a reference), the thermal conductivity is obtained by the average

of three measurements. The measured data are attached to a middle temperature Tm
calculated by

Tm = T0 +4TB +
4TS

2
. (3.4)
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3.2. Thermal Conductivity

Figure 3.2.: The principle of measuring
thermal conductivity

Figure 3.3.: The reality of measuring
thermal conductivity

symbol meaning
T0 temperature of the heat sink
4TB temperature di�erence between heat sink and lower thermocouple
4TS temperature di�erence between the thermocouples alongside the sample

The thermal conductivity λ can be derived from the Fourier law

~q = −λ∇T =
1

A

dQ

dt
=

1

A
Q̇ (3.5)

symbol meaning
∇T temperature gradient
λ thermal conductivity
~q heat �ux density
A cross section
Q amount of heat which can be transported
4T temperature di�erence

with an approximation of ∇T by

∇T =
dT

dl
≈ T2 − T1

l
=
4T
l
, (3.6)

while l is the distance between the copper wires spooled around the sample to function

as thermal contact and to clamp the thermocouples - see Fig. 3.3. With the modulus
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3. Experimental Design

of ~q: (|~q| = λ |∇T |) the thermal conductivity reads

λ =
l

A

Q̇

4T

[
mW

cmK

]
. (3.7)

.

This measuring process includes errors of heat losses at elevated temperatures. To cal-

culate this radiation losses a black body radiation is assumed. With the Stefan-Boltzmann

equation the heat loss can be calculated:

Q = εσSBA
(
T 4
S − T 4

0

)
. (3.8)

symbol meaning
TS sample temperature
T0 temperature of the heat sink and surrounding radiation shield
A sample surface
σSB Stefan-Boltzmann constant: σSB = 5.7× 10−8

[
W

m2K4

]
ε emissivity 0 ≤ ε ≤ 1

It follows that

Qrad = 2εσSBAT
3
S 4 TS = aT 4

S . (3.9)

Because of λ ∝ Q̇
∆T

(see eqn. (3.7)) the heat loss due to radiation has a T 3-dependence.

(For further details see [28].)

3.2.2. λ above room temperature

Thermal conductivity above room temperature was obtained by a �ash method (Flash-

line3000, Anter, USA) while NIST stainless steel served as reference material. To be

measured with the Flashline the samples have to be cylindrical shaped with a diameter

of d = 6 mm and a thickness of ∼ 1 mm. The equipment provides two parts: one part

to measure consecutively four samples from room temperature up to 1000◦C and the

second part to measure one sample from -100◦C to 200◦C - the cooling is maintained by

using liquid nitrogen. Also this equipment is computer-operated.
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3.3. Thermopower

3.3. Thermopower

The Seebeck coe�cient below room temperature was derived from an (home-made) AC-

like heating technique of the samples, using Ni/Cr-Ni as electrodes. The high temperature

data were taken employing a ZEM3 Unit (Ulvac, Japan). (cit. from [4])

The analysed samples are bar-shaped with a length of about 5-8 mm and a cross

section of ca. 1-2 mm×1.5 mm.

3.3.1. S below room temperature

The AC-like heating technique to measure the Seebeck coe�cient mentioned before

works as follows: The specimen holder consists of two blocks with strain gauges glued

on top with superglue (see �g. 3.4). The bar shaped sample was �xed to this blocks with

an ethanol soluble glue so that the strain gauges have contact near top and bottom of

the sample. A temperature gradient can be obtained in two directions (AC-like heating

technique). On the sample - localised between the strain gauges - the two thermocouples

are �xed with silver conductive paste to measure the voltages caused by the temperature

gradients (in both directions), the results are averaged.

Figure 3.4.: Device for Seebeck-measurements

The assembly is encased in a vacuum-sealed measuring chamber, which was inserted

in a 4He bath cryostat. The measuring process is computerised. (For further details see
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[28, 17].)

3.3.2. S above room temperature

The temperature dependent thermopower above room temperature was obtained by a

ZEM3 Unit (Ulvac, Japan) which is using the four probe point technique. The sample

which is bar-shaped as mentioned before is �xed vertically between two brackets which

provide the temperature gradient. To measure the voltage, two horizontally probes are

pressed on the sample using a micrometer. After entering the needed parameters the

measuring process is computer-operated.

3.4. Speci�c heat

3.4.1. cP below room temperature

3 The speci�c heat measurement in the temperature range between 3 K and 100 K was

taken in an automated calorimeter using a quasi adiabatic step heating technique. The

sample holder consists of a sapphire plate with a strain gauge acting as pulse heater and

a Cernox temperature sensor and is �xed by nylon wires. This assembly is surrounded by

a radiation shield. Samples, plain polished at the bottom, with a weight of 2 − 3 g are

glued to the sapphire plate with Apiezon grease to establish thermal contact. Further

details of this experimental setup provides the diploma thesis (1991) and thesis (1995)

of G. Schaudy, TU Vienna and the diploma thesis of H. Michor, TU Vienna, 1993.

3.4.2. cP above room temperature

The experimental data of speci�c heat above room temperature was received simul-

taneously while thermal conductivity measurements by a �ash method (Flashline3000,

Anter, USA). For determination of the speci�c heat the temperature dependent density

of the investigated material is needed. The density at room temperature was measured

and linear approximated to higher and lower temperatures. NIST stainless steel served as

reference material. To be measured with the Flashline the samples have to be cylindrical

shaped with a diameter of d = 6 mm and a thickness of ∼ 1 mm. The equipment provides

two parts: one part to measure simultaneously four samples from room temperature up

3References: [5]
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3.4. Speci�c heat

to 1000◦C and the second part to measure one sample from -100◦C to 200◦C - the

cooling is maintained by using liquid nitrogen, the equipment is computer-operated.
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4. Measurement Results and Analyses

The measured data were obtained by the measurement equipments described in chapter

3. The materials can be classi�ed in two series: �rst the Pd, Cu, Si - Zn series (row 1-6

in table 4.1) and the Ag-series (row 7-10 in table 4.1). Consequently mentioning the Si

- Zn series the Ba8ZnxGe46−x−ySiy series is meant (row 3-6 in table 4.1). The atoms per

unit cell, the lattice parameter a and the resulting atoms per unit cell N are indicated in

table 4.1 The lattice parameters of the Ag-series increase with the amount of Ag in the

composition N [1] lattice parameter [nm]

Ba8Pd2.3Zn3.6Ge40.1 54 1.07664
Ba8Cu5.2Zn0.8Ge40.0 54 1.06994
Ba8Zn7.3Ge10.6Si28.1 54 1.05278
Ba8Zn7.4Ge19.8Si18.8 54 1.06086
Ba8Zn7.2Ge19.9Si18.9 54 1.06026
Ba8Zn7.6Ge29.3Si9.1 54 1.06833

Ba8Ag2Ge44 54 1.0742
Ba8Ag3Ge43 54 1.078
Ba8Ag4Ge42 54 1.0814
Ba8Ag5Ge41 54 1.0842

Table 4.1.: Atoms per unit cell, N and lattice parameter of all compounds

composition.To keep the survey of the measured data, �rst the results of the Pd, Cu, Si

- Zn series will be shown, then the results of the Ag-series.
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4.1. Resistivity

Pd, Cu, Si - Zn series
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Figure 4.1.: Temperature dependent resistivity ρ of Ba8TxT'yGe46-x-y for various values
of x and y - Overview.

4.1. Resistivity

4.1.1. Temperature dependent electrical resistivity of

Ba8TxT'yGe46-x-y

Fig. 4.1 summarizes the temperature dependence of the electrical resistivity of the Pd,

Cu, Si - Zn series. Obviously two compounds are semiconductors: Ba8Cu5.2Zn0.8Ge40.0
and Ba8Pd2.3Zn3.6Ge40.1. To achieve a closer look to the remaining four compounds

in Fig. 4.2 the two semiconductors are omitted. A further very interesting point

is the diverse behaviour of the slightly di�erent compositions Ba8Zn7.4Ge19.8Si18.8 and

Ba8Zn7.2Ge19.9Si18.9. The di�erence resulted from the preparation (as it is pointed out

in Fig. 4.3), where one material was ball milled and the other one hand milled.

To describe the experimental data (see overview in Fig. 4.1 and Fig. 4.2) theoretically,

the Bloch-Grüneisen model (Eqn. 2.21), the two-band model (Eqn. 2.1), the two-band

model with Mott-Jones term (Eqn. 2.25) and the three-band model (for semiconductors

respectively for metals) are applied with least-squares �ts to the measurement results of
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4. Measurement Results and Analyses

Pd, Cu, Si - Zn series
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Figure 4.2.: Temperature dependent resistivity ρ of Ba8TxT'yGe46-x-y for various values
of x and y - without semiconductors.
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Figure 4.3.: Temperature dependent resistivity ρ of Ba8Zn7.4Ge19.8Si18.8 which is ball mil-
led and Ba8Zn7.2Ge19.9Si18.9 which is hand milled.
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4.1. Resistivity

Figure 4.4.: Temperature dependent resistivity ρ of Ba8Zn7.4Ge19.8Si18.8 and
Ba8Zn7.2Ge19.9Si18.9 below room temperature. The solid lines are the
�ts of the modi�ed Bloch-Grüneisen formula. The inset displays the energy
dependent electronic density of states as explained in the text.

the compositions of the Pd, Cu, Si - Zn series.

To explain the di�erent behaviour of Ba8Zn7.4Ge19.8Si18.8 (semiconductor-like beha-

viour) and Ba8Zn7.2Ge19.9Si18.9 (metal-like behaviour) as it is shown in Fig. 4.3 the

Bloch-Grüneisen formula with a temperature dependent charge carrier concentration n(T )

(two-band model) was used to �t the results below room temperature - see Fig. 4.4.

The solid curves in Fig. 4.4 represent modi�ed Bloch-Grüneisen (two-band model) �ts.

Also two sketches are drawn in the picture showing qualitatively the density of states with

respect to energy for both compositions. If the density of states N0(E) is relatively low

(as it is appropriate for Ba8Zn7.4Ge19.8Si18.8) the general resistivity is higher - especially

in comparison with the resistivity of Ba8Zn7.2Ge19.9Si18.9 where a larger density of states

would provide an explanation for the generally smaller resistivity.

Both the position and the width of the band gap di�ers for the two mate-

rials. A small gap with a larger E1 (describing the position of the gap) as it

is shown for Ba8Zn7.4Ge19.8Si18.8 n(T ) implies semiconducting-like behaviour. For
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4. Measurement Results and Analyses

Ba8Zn7.4Ge19.8Si18.8
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Figure 4.5.: Temperature de-
pendent resistivity ρ of
Ba8Zn7.4Ge19.8Si18.8. The
�lled black circles represent
the experimental data. The
pale solid and dash-dot lines
represent the �ts as explained
in the text.
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Figure 4.6.: Temperature de-
pendent resistivity ρ of
Ba8Zn7.2Ge19.9Si18.9. The
�lled black circles represent
the experimental data. The
three pale solid, dash-dot and
dashed lines represent the �ts
as explained in the text.

Ba8Zn7.2Ge19.9Si18.9 the modi�ed Bloch-Grüneisen model results in an extremely large

gap located slightly above the Fermi Energy EF . This evidences the proximity of these

materials to a metal-to-insulator transition.

Further investigations on the temperature dependent electrical resistivity of

Ba8Zn7.4Ge19.8Si18.8 and Ba8Zn7.2Ge19.9Si18.9 with regard also to higher temperatures

up to 800 K are displayed in Fig. 4.5 and in Fig. 4.6. For both compositions the

two-band model with the Mott-Jones term is the best choice, although in the case of

Ba8Zn7.4Ge19.8Si18.8 the two-band model even with the Mott-Jones term describes the

experimental data only rawly.

Both Ba8Pd2.3Zn3.6Ge40.1 and Ba8Cu5.2Zn0.8Ge40.0 exhibit high resistivities at low tem-

peratures.

With decreasing temperatures the resistivity of Ba8Pd2.3Zn3.6Ge40.1 is rising, between

∼ 300 and ∼ 550 K the dependence of resistivity to temperature is almost linear, beyond

that, the resistivity is again decreasing with rising temperature. ρ(T ) appears like applying

two semiconductors in a raw being a the motivation for applying the three-band model
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4.1. Resistivity

Ba8Pd2.3Zn3.6Ge40.1
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Figure 4.7.: Temperature de-
pendent resistivity ρ of
Ba8Pd2.3Zn3.6Ge40.1, the
�lled black circles represent
the experimental data. The
three pale solid, dash-dot and
dashed lines represent the �ts
as explained in the text.
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Figure 4.8.: Experimental data of the tem-
perature dependent resistivity
ρ of Ba8Cu5.2Zn0.8Ge40.0.

(see Fig. 4.7). The decrease from ∼ 550 K is not explained by both theoretical models

used, but, like for the Zn-Si series, the two-band model is describing the semiconducting-

like behaviour with unusual characteristics best.

Ba8Cu5.2Zn0.8Ge40.0 exhibits semi-conducting behaviour with very high values of

the electrical resistivity but unfortunately, �tting of the experimental data of

Ba8Cu5.2Zn0.8Ge40.0 was not possible.

Ba8Zn7.6Ge29.3Si9.1 exhibits a metal-like behaviour, at very low temperatures the resis-

tivity is rising with decreasing temperature, which is described by both two-band models,

as it is shown in Fig. 4.9.

Also Ba8Zn7.3Ge10.6Si28.1 behaves metal-like up to 300 K, then saturation is followed by

a slight decrease; �nally, there is a ρ(T ) rise again, starting at ∼ 500 K, which seems like

applying two metals in a raw. Therefore, the three-band model was taken to �t the data

(see Fig. 4.10). Surprisingly the model for semiconductors �ts (until room temperature)

better than the one for metals (see Fig. 4.10). The best qualitatively description of

the behaviour ofρ(T ) provides the two-band model. The model represents the saturation
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4. Measurement Results and Analyses

Ba8Zn7.6Ge29.3Si9.1
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Figure 4.9.: Temperature dependent resis-
tivity ρ of Ba8Zn7.6Ge29.3Si9.1.
The �lled black circles re-
present the experimental data.
The three pale solid, dash-dot
and dashed lines represent �ts
as explained in the text.
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Figure 4.10.: Temperature de-
pendent resistivity ρ of
Ba8Zn7.3Ge10.6Si28.1. The
�lled black circles represent
the experimental data. The
�ve pale solid, dash-dot and
di�erent dashed lines re-
present the �ts as explained
in the text.

and the rise starting at ∼ 500 K, but not the slight decrease of ρ(T ) from ∼ 350 to

∼ 550 K, which leads to the association that this model is slightly too simple to explain

this behaviour properly.

4.1.2. Temperature dependent electrical resistivity of Ba8AgxGe46-x

In Fig. 4.11 the experimental results of the electrical resistivity of the Ag - based - series

are plotted. All of the compositions showing a metal-like behaviour. From ∼ 4.2 K to

∼ 20 K a small decrease of resistivity is observed. With an increasing amount of Ag the

resulting minimum in ρ(T ) becomes more distinct.

All compositions of the Ag-series exhibit a maximum at high temperatures: For

Ba8Ag3Ge43 at ∼ 708 K the resistivity is ρ ∼ 1935 µΩcm, for Ba8Ag4Ge42 at ∼ 708 K

with ρ ∼ 2418 µΩcm and for Ba8Ag5Ge41 at ∼ 609 K with ρ ∼ 4162 µΩcm.

A theoretically description of the experimental data (see overview in Fig. 4.11) is done
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4.1. Resistivity

Ba8AgxGe46-x - series
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Figure 4.11.: The temperature dependent resistivity ρ of Ba8AgxGe46-x, for various values
of x

with applying the Bloch-Grüneisen model (Eqn. 2.21), the two-band model (Eqn. 2.1)

and the two-band model with a Mott-Jones term (Eqn. 2.25) with least-squares �ts to

the experimental data of all the compositions of the Ag-series.

Because the resistivity of the Ag-series builds a maximum at higher temperatures

(see Fig. 4.11), this leads to the idea of superposing the metal-like behaviour with

a semiconducting behaviour at higher temperatures. Such a superposing would mean

at least three bands for a simple theoretical model where at low temperatures a semi-

conducting like behaviour and at medium temperatures metal behaviour occurs. Upon

a certain temperature a crossing of the second gap is possible which leads to semi-

conducting like behaviour at high temperatures. The band gap as well as the dimensions

of the bands change with the amount of Ag (compare Fig. 4.11).

For Ba8Ag2Ge44, a metal-like material, the low temperature behaviour and applied

models are displayed in Fig. 4.13, where a rise in resistivity at decreasing temperature

also results from the two-band models but the experimental data are not behaving exactly

this way. Globally, over the temperature range of 4.2 K to 300 K the data are described

best by the two-band model with the Mott-Jones term.
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4. Measurement Results and Analyses

Ba8Ag2Ge44
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Figure 4.12.: Temperature dependent
resistivity ρ of Ba8Ag2Ge44,
the �lled black circles re-
present the experimental
data. The three pale so-
lid, dash-dot and dashed
lines represent the �ts as
explained in the text
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Figure 4.13.: Temperature dependent re-
sistivity ρ of Ba8Ag2Ge44 up
to 100 K for comparison
of the di�erent �ts at low
temperatures

Ba8Ag3Ge43
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Figure 4.14.: Temperature dependent
resistivity ρ of Ba8Ag3Ge43,
the �lled black circles re-
present the experimental
data. The three pale so-
lid, dash-dot and dashed
lines represent the �ts as
explained in the text
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Figure 4.15.: Temperature dependent re-
sistivity ρ of Ba8Ag3Ge43 up
to 100 K for comparison
of the di�erent �ts at low
temperatures
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4.1. Resistivity

Ba8Ag4Ge42
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Figure 4.16.: Temperature dependent
resistivity ρ of Ba8Ag4Ge42,
the �lled black circles re-
present the experimental
data. The three pale so-
lid, dash-dot and dashed
lines represent the �ts as
explained in the text

Ba8Ag4Ge42

T [K]
0 20 40 60 80 100

ρ  
[µ
Ω

cm
]

850

900

950

1000

1050

1100

1150

1200

measured data
Bloch-Grüneisen
2-Band model
2-Band model with
Mott-Jones

Figure 4.17.: Temperature dependent re-
sistivity ρ of Ba8Ag4Ge42 up
to 100 K for comparison
of the di�erent �ts at low
temperatures

The high temperature maximum of the resistivity of Ba8Ag3Ge43 is described rawly by

the two-band model with the Mott-Jones term, also at low temperatures this model is

the best choice (see Fig. 4.14 and Fig. 4.15).

With higher amount of Ag the description of ρ(T ) with the two band model with the

Mott-Jones term becomes better (compare Fig. 4.16, Fig. 4.17, Fig. 4.18 and Fig.

4.19).

Looking like an error in measurement at a �rst glance, the whole Ag-series display an

increase of resistivity strongly localized at 27 to 30 K (see Fig. 4.13, Fig. 4.15, Fig.

4.17 and Fig. 4.19). With increasing amount of Ag this characteristics becomes worse

observable maybe because of the general rise of overall values of the resistivity. Such a

discontinuity exhibits the complexity of the band structure.
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Ba8Ag5Ge41
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Figure 4.18.: Temperature dependent
resistivity ρ of Ba8Ag5Ge41.
The �lled black circles
represent the experimental
data. The three pale so-
lid, dash-dot and dashed
lines represent the �ts as
explained in the text
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Figure 4.19.: Temperature dependent re-
sistivity ρ of Ba8Ag5Ge41 up
to 100 K for comparison
of the di�erent �ts at low
temperatures

4.2. Thermal Conductivity

4.2.1. Temperature dependent thermal conductivity of

Ba8TxT'yGe46-x-y

In Fig. 4.20 the data of temperature dependent thermal conductivity taken at low tem-

peratures (4.2 K - room temperature) for all compositions of the Pd, Cu, Si - Zn series

are compared. In Fig. 4.20 two di�erent types of low temperature features are evident:

Ba8Cu5.2Zn0.8Ge40.0 exhibits a maximum at low temperatures, which is a signature of re-

duced phonon scattering on point defects and grain boundaries, while Ba8Pd2.3Zn3.6Ge40.1
does not show such a maximum.The temperature dependent thermal conductivities of

Ba8Zn7.4Ge19.8Si18.8 and Ba8Zn7.2Ge19.9Si18.9 are dissimilar as the former shows no peak

at low temperatures while the latter does.

The overall values of λ(T ) as shown in Fig. 4.20 are rather small, which is expectable

for cage forming compounds �lled by loosely bound electro-positive elements. According
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Figure 4.20.: Temperature dependent thermal conductivity λ of Ba8TxT'yGe46-x-y below
room temperature for various values of x and y.

to the Wiedemann-Franz law (Eqn. 2.27) the electronic contribution to thermal conduc-

tivity is small for materials with high resistivity - consequently the phonon scattering on

electrons is noticeably reduced. Further inspection of the experimental data is done by

�tting the lattice contribution to the low temperature thermal conductivity (λph) by the

Callaway-model (see Chapter 2.1.2).

As already mentioned, the low temperature thermal conductivity measurement of

Ba8Cu5.2Zn0.8Ge40.0 shows a maximum at ∼ 14 K which is a signature of reduced pho-

non scattering on point defects and grain boundaries while Ba8Pd2.3Zn3.6Ge40.1 does not

exhibit such a maximum. The disorder owing to the twofold substitution of Ge by Pd and

Zn appears to be quite e�cient in scattering phonons compared to the case of Cu and

Zn. At a �rst glance, this might result from a combination of the heavy mass element

Pd and the substantial mass di�erence of Pd and Zn, which is signi�cantly larger than

that of Cu and Zn.

It is not possible to explain the behaviour of Ba8Cu5.2Zn0.8Ge40.0 completely employing

the Callaway model as it is displayed in Fig. 4.21. The sharpness of the maximum
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Ba8Cu5.2Zn0.8Ge40.0
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Figure 4.21.: Temperature dependent thermal conductivity λ of Ba8Cu5.2Zn0.8Ge40 (�lled
black circles - nearly covered by the green �lled circles, representing λph+ ra-
diation losses); the lattice contribution λph and the electronic part λe are
shown as yellow �lled triangles and grey solid line, respectively; the pink
solid line is a least squares �t as explained in the text.
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4.2. Thermal Conductivity

Ba8Pd2.3Zn3.6Ge40.1
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Figure 4.22.: Temperature dependent thermal conductivity λ of Ba8Pd2.3Zn3.6Ge40.1
(�lled black circles); the lattice contribution λph and the electronic part
λe are shown as yellow �lled triangles and grey solid line, respectively; the
pink solid line is a least squares �t as explained in the text.
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 Ba8Zn7.2Ge19.9Si18.9
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Figure 4.23.: Temperature dependent thermal conductivity λ of Ba8Zn7.2Ge19.9Si18.9
(�lled black circles); the lattice contribution λph and the electronic part
λe are shown as yellow �lled triangles and grey solid line, respectively; the
pink solid line is a least squares �t as explained in the text.

observed cannot be reached within this model. At temperatures above ∼ 150 K it seems

that failures of the measurement, speci�cally the radiation losses, are not behaving as

predicted by the model described in Eqn. 2.28. The �t-parameter describing the slope

at higher temperatures (above 150 K) was �xed to a value such that the model-curve

is parallel to the measured values. This was necessary to obtain reasonable results after

subtracting the radiation loss contribution (solid curve ∝ T 3).

The Callaway model describes the λph curve of Ba8Pd2.4Zn3.3Ge40.3
Ba8Pd2.3Zn3.6Ge40.1 well at temperatures below 150 K. Above this temperature a

proper description of the measured data is not possible. Like for Ba8Cu5.2Zn0.8Ge40.0 a

compromise was selected such that the model curves shapes parallel to λph.

The measurement results of the thermal conductivity of Ba8Zn7.4Ge19.8Si18.8
(Fig. 4.24) and Ba8Zn7.2Ge19.9Si18.9 (Fig. 4.23) are nearly as di�erent as the

measurement results of Ba8Pd2.3Zn3.6Ge40.1 and Ba8Cu5.2Zn0.8Ge40.0. Similar to
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Ba8Zn7.4Ge19.8Si18.8
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Figure 4.24.: Temperature dependent thermal conductivity λ of Ba8Zn7.4Ge19.8Si18.8
(�lled black circles); the lattice contribution λph and the electronic part
λe are shown as yellow �lled triangles and grey solid line, respectively; the
pink solid line is a least squares �t as explained in the text.
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Ba8Pd2.3Zn3.6Ge40.1, Ba8Zn7.4Ge19.8Si18.8 exhibits (almost) no maximum at low tem-

peratures while Ba8Zn7.2Ge19.9Si18.9 does - like Ba8Cu5.2Zn0.8Ge40.0. The maximum at

∼ 13 K has not the same sharpness - but is comparable. An argument about heavier

elements in the cage cannot be taken into account at �rst sight.

With the fact that a larger molecular mass, in general, favours decreasing ove-

rall values of thermal conductivity (see [22]) and the comparison of the results of

Ba8Zn7.2Ge19.9Si18.9 and Ba8Zn7.4Ge19.8Si18.8 with results from [21], where a suppression

of the λ(T ) maximum at low temperatures is attributed to the occurrence of vacan-

cies, owning to a decreasing amount of Zn in Ba8ZnxGe46-x-y�y, a similar explanation

of the behaviour at low temperatures of Ba8Zn7.2Ge19.9Si18.9 and Ba8Zn7.4Ge19.8Si18.8
can be found. Because Ge is substituted by both Zn and Si, in Ba8Zn7.2Ge19.9Si18.9 and

Ba8Zn7.4Ge19.8Si18.8, both contributions to the molecular mass have to be taken into ac-

count. The molecular mass of Ba8Zn7.4Ge19.8Si18.8 is slightly higher than the molecular

mass of Ba8Zn7.2Ge19.9Si18.9 which explains, in a �rst approximation, the slightly smaller

overall values of Ba8Zn7.4Ge19.8Si18.8 (Fig. 4.20).

Another e�ect provides a better explanation for the suppression of the λ(T ) maxi-

mum in Ba8Zn7.4Ge19.8Si18.8, than the slightly di�erent amount of Zn in the two similar

compositions.

Generally, smaller particles of the alloy can cause smaller grain sizes in the prepa-

red material which is responsible for di�erent mechanical as well as for thermoelec-

tric properties. The two compositions are characterised by di�erences in preparation

- Ba8Zn7.2Ge19.9Si18.9 was hand milled, while Ba8Zn7.4Ge19.8Si18.8 was ball milled before

melting. With ball milling, particles with grain size in the µm-scale can be reached;

hand milling usually causes larger particles than ball milling. In Ref. [22] the initial rise

of λph(T ) is referred to boundary and point defect (defects comprise also vacancies)

scattering; it becomes large when both quantities are small. If the strength of umklapp

scattering increases, λph starts to strongly decrease, thereby forming a maximum at lower

temperatures. (cit. from [22]) Smaller grain sizes provide more scattering on boundaries,

therefore a suppression of the maximum at low temperatures for Ba8Zn7.4Ge19.8Si18.8 -

which is ball milled - can be explained.

The Callaway model describes the thermal conductivity of Ba8Zn7.3Ge10.6Si28.1 (Fig.

4.25) and Ba8Zn7.6Ge29.3Si9.1 (Fig. 4.26) reasonably well from 4.2 K to ∼100 K. In the
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4.2. Thermal Conductivity

Ba8Zn7.3Ge10.6Si28.1
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Figure 4.25.: Temperature dependent thermal conductivity λ of Ba8Zn7.3Ge10.6Si28.1
(�lled black circles); the lattice contribution λph and the electronic part
λe are shown as yellow �lled triangles and grey solid line, respectively; the
pink solid line is a least squares �t as explained in the text.
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Ba8Zn7.6Ge29.3Si9.1
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Figure 4.26.: Temperature dependent thermal conductivity λ of Ba8Zn7.6Ge29.3Si9.1
(�lled black circles); the lattice contribution λph and the electronic part
λe are shown as yellow �lled triangles and grey solid line, respectively; the
pink solid line is a least squares �t as explained in the text.
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Thermal Conductivity
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Figure 4.27.: Temperature dependent thermal conductivity λ within the temperature
range of ∼ 4 to ∼ 800 K of Ba8TxT'yGe46-x-y for various values of x and y.

temperature region above∼100 K the model reveals a di�erent radiation loss compared to

the experimental data. While comparing the results of Ba8Zn7.3Ge10.6Si28.1 (Fig. 4.25)

and Ba8Zn7.6Ge29.3Si9.1, it is obvious that Ba8Zn7.6Ge29.3Si9.1 - which is the one with

the considerable higher molecular weight - shows smaller overall values of the thermal

conductivity. But comparing the whole Zn-Si-series the described e�ect of the di�erent

molecular masses on the overall values of the thermal conductivity is not con�rmed.

Rather, scattering on various static imperfections seem to be predominant.

Also high temperature experimental data of λ(T ) were determined. In Fig. 4.27 λ(T )

above room temperature, obtained by the �ash method (see Chapter 3), is compared with

the radiation-corrected data of λ(T ), determined with the low temperature equipment.

In principle the Flash data �ts good with the low temperature experimental data as

shown in Fig. 4.27. A detailed view is shown in Fig. 4.28. It displays the overlap at

∼ 170−290 K between the low temperature experimental data (from∼ 4 to∼ 300 K) with

the data obtained with the Flash method. Additionally, a comparison is possible between

the results obtained from the two units of Flashline3000. For Ba8Pd2.3Zn3.6Ge40.1 the
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Thermal Conductivity
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Figure 4.28.: Temperature dependent thermal conductivity λ of Ba8TxT'yGe46-x-y for va-
rious values of x and y at the temperature range from ∼ 150 to ∼ 800 K.

data displays a step from ∼ 15 mW/cmK at∼ 470 K to ∼ 24 mW/cmK at∼ 570 K.

Because already minor di�erences in preparation, as for example the constancy in graphite

layering, can provoke very di�erent measurement results. This step is not seen as a

signi�cantly change of thermal conductivity rather as a random error.

4.2.2. Temperature dependent thermal conductivity of

Ba8AgxGe46-x

In Fig. 4.29 the temperature dependent thermal conductivity λ of all compositions of the

Ag-series at low temperatures (4.2 K to ∼ 300 K) is illustrated. The overall values of

λ(T ) of Ba8Ag4Ge42 and Ba8Ag5Ge41 are similar, Ba8Ag3Ge43 exhibits a generally larger

thermal conductivity.

Cage forming compounds usually exhibit small overall values of thermal conducti-

vity, the overview in Fig. 4.29 con�rms this also for the Ag-series. According to the
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4.2. Thermal Conductivity

Ba8AgxGe46-x - series
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Figure 4.29.: The temperature dependent thermal conductivity λ of Ba8AgxGe46-x below
room temperature for various values of x.

Wiedemann-Franz law (Eqn. 2.27) the electronic contribution to thermal conductivity is

more signi�cant for materials with lower resistivity (compare with Chapter 4.2.1)- conse-

quently the phonon scattering on electrons may become important. Again �tting the

lattice thermal conductivity (λph) with the Callaway-model (see Chapter 2.1.2) was done

for further investigation.

In Fig. 4.30 the model �ts λph(T ) reasonably well up to ∼ 100 K. Above this tempe-

rature, experimental λ(T ) data do not follow strictly the expected power law proposed

by Eqn. 2.28.

The initial rise of λph(T) of Ba8Ag4Ge42 at low temperatures is not well described by

Eqn. 2.28 (see Fig. 4.31), but it �ts well from ∼ 37 K to ∼ 100 K.

Also for Ba8Ag5Ge41 the model is not able to describe the initial rise starting at ∼ 4.2 K

as it is displayed in Fig. 4.32, but it �ts the lattice contribution to the thermal conductivity

well from ∼ 20 K until ∼ 130 K.

With decreasing amount of Ag the overall values of the temperature dependent thermal
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 Ba8Ag3Ge43
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Figure 4.30.: Temperature dependent thermal conductivity λ of Ba8Ag3Ge43 (�lled black
circles); the lattice contribution λph and the electronic part λe are shown
as yellow �lled triangles and grey solid line, respectively; the pink solid line
is a least squares �t as explained in the text.
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 Ba8Ag4Ge42
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Figure 4.31.: Temperature dependent thermal conductivity λ of Ba8Ag4Ge42 (�lled black
circles); the lattice contribution λph and the electronic part λe are shown
as yellow �lled triangles and grey solid line, respectively; the pink solid line
is a least squares �t as explained in the text.

51



4. Measurement Results and Analyses

 Ba8Ag5Ge41
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Figure 4.32.: Temperature dependent thermal conductivity λ of Ba8Ag5Ge41 (�lled black
circles); the lattice contribution λph and the electronic part λe are shown
as yellow �lled triangles and grey solid line, respectively; the pink solid line
is a least squares �t as explained in the text.
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4.2. Thermal Conductivity

Ba8AgxGe46-x - series

T [K]
0 100 200 300 400 500

λ  
[m

W
/c

m
K

]

0

5

10

15

20

25

Ba8Ag3Ge43 λ phonon + λ electron

Ba8Ag3Ge43 with Flashline

Ba8Ag4Ge42 λ phonon + λ electron

Ba8Ag4Ge42 with Flashline

Ba8Ag5Ge41 λ phonon + λ electron

Ba8Ag5Ge41 with Flashline

Figure 4.33.: Temperature dependent thermal conductivity λ within the temperature
range of ∼ 4 to ∼ 470 K of Ba8AgxGe46-x for various values of x.

conductivity are rising (see Fig. 4.29).

The high temperature experimental data of λ(T ) as determined by the �ash method,

is compared with the radiation-corrected data of low temperature λ(T ) (see Fig. 4.33).

The low temperature data of Ba8Ag4Ge42 and Ba8Ag5Ge41 achieve only 70 % and 63%,

respectively, of the values obtained with the Flashline equipment, but the low and high

temperature experimental data of Ba8Ag3Ge43 �ts well as it is displayed in Fig. 4.33.

A deviation in values of experimental data usually is explained with geometric irregu-

larity, but such a large di�erence can not result only from a shift of the soldered wires

(compare Chapter 3, Fig. 3.3) while �xing the sample to the low temperature device,

moreover this would have been noticed. Giving a reason for this relative error is not

possible without further investigations which had to be omitted due to time constraints.
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Figure 4.34.: Temperature dependent Seebeck coe�cient S of Ba8ZnxGe46−x−ySiy with
various values of x and y

4.3. Thermopower

4.3.1. Temperature dependent thermopower of Ba8TxT'yGe46-x-y

The temperature dependent Seebeck coe�cients of the Ba8ZnxGe46−x−ySiy series be-

have linearly and exhibit negative thermopower values (see Fig. 4.34). S(T ) of

Ba8Zn7.4Ge19.8Si18.8 and Ba8Zn7.2Ge19.9Si18.9, although the similar composition is ob-

vious1, is very di�erent for these two compositions. While Ba8Zn7.4Ge19.8Si18.8 @

T ' 763 K has a Seebeck coe�cient of S ' −109 µV/K the thermopower of

Ba8Zn7.2Ge19.9Si18.9 @ T ' 765 K is S ' −189 µV/K.

On the other hand, the thermopower of Ba8Zn7.6Ge29.3Si9.1 and Ba8Zn7.3Ge10.6Si28.1
is almost similar with S(T ' 765 K) ' −160 µV/K although the di�erent composition

would not lead to such an expectation.

1remember the di�erent preparation method, Ba8Zn7.4Ge19.8Si18.8 is ball milled, Ba8Zn7.2Ge19.9Si18.9 is
hand milled
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Figure 4.35.: Temperature dependent Seebeck coe�cient S of Ba8Cu5.2Zn0.8Ge40.0 and
Ba8Pd2.3Zn3.6Ge40.1

The temperature dependent thermopower of Ba8Cu5.2Zn0.8Ge40.0 and

Ba8Pd2.3Zn3.6Ge40.1 (both semiconductors - see Fig. 4.1) is more complex than

that of the Si - Zn series (see Fig. 4.35). S(T ) of Ba8Cu5.2Zn0.8Ge40.0 varies from

−2.38 µV/K @ T = 5 K via 386 µV/K @ T ' 146 K and ' −121 µV/K @ ' 501 K to

' 12.8 µV/K @ ' 764 K - compare Fig. 4.35. The thermopower of Ba8Pd2.3Zn3.6Ge40.1
shows a sharp rise until T = 24 K with S = 123 µV/K followed by a smooth increase up

to T ' 418 K where S reaches ' 198 µV/K.

S(T ) of Ba8Cu5.2Zn0.8Ge40.0 and Ba8Pd2.3Zn3.6Ge40.1 does not exhibit a linear tem-

perature dependence. The thermopower, however, as it is expressed in Eqn. 2.56, can

be written as a function of the density of states N(E) and the derivative of density of

states with respect to the energy. A change from positive to negative values of thermo-

power can occur when the slope of ∂N(E)
∂E

changes from positive to negative with rising

temperature / energy as it is shown in Fig. 4.36 and Fig. 4.37.

The thermopower of Ba8Cu5.2Zn0.8Ge40.0 between ∼ 15 K and 146 K is positive and

increasing, that is followed by the consideration of meeting a positive slope of ∂N(E)
∂E

as

it is sketched in Fig. 4.36. Negative values of S(T ) are referred to a negative slope of

55



4. Measurement Results and Analyses

Figure 4.36.: example for a derivative of
density of states at low
temperatures

Figure 4.37.: example for a derivative of
density of states at high
temperatures

∂N(E)
∂E

as shown in Fig. 4.37.

The behaviour of S(T ) of Ba8Pd2.3Zn3.6Ge40.1 can be explained with a variation of

the positive slope of density of states with temperature as S(T ) is positive all over the

temperature range observed.

4.3.2. Temperature dependent thermopower of Ba8AgxGe46-x

The experimental results of the temperature dependent thermopower S of the Ag -

series exhibit an interesting behaviour. S(T ) behaves almost linearly before reaching a

minimum at high temperatures. The minimum varies both in position and magnitude from

S ∼ −108 µV/K at T ∼ 758 K for Ba8Ag3Ge43 via S ∼ −129 µV/K at T ∼ 758 K for

Ba8Ag4Ge42 to S ∼ −163 µV/K at T ∼ 609 K for Ba8Ag5Ge41 as it is illustrated in Fig.

4.38. As the thermopower above room temperature had been measured simultaneously

with the resistivity (see chapter 3) the extrema deduced are compared in Table 4.2.

composition T of maximal resistivity [K] T of minimal thermopower [K]
Ba8Ag3Ge43 ∼ 708 ∼ 758
Ba8Ag4Ge42 ∼ 708 ∼ 758
Ba8Ag5Ge41 ∼ 609 ∼ 609

Table 4.2.: Comparison of occurring extrema in temperature dependent Seebeck and
resistivity measurements above room temperature
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Ba8AgxGe46-x - series
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Figure 4.38.: Temperature dependent thermopower of Ba8AgxGe46-x with various values
of x

It is noticeable that the extrema of Ba8Ag3Ge43 and Ba8Ag4Ge42 are located virtually

at the same temperatures, but the temperatures of thermopower and resistivity extrema

di�er from each other by ∆T = 50 K. For Ba8Ag5Ge41 both extrema occur at ∼ 610 K.

According to Eqn. 2.56, where S is related to the derivative of density of states with

respect to the energy, the temperature dependent thermopower of Ba8AgxGe46-x can be

explained with a change of this derivative. As S(T ) is negative for the whole Ag - series,

the derivative ∂N(E)
∂E

is negative, but varies with temperature - therefore changes in the

temperature dependence of S occur.
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Figure of Merit ZT [1]
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Figure 4.39.: Temperature dependent �gure of merit ZT of Ba8TxT'yGe46-x-y for various
values of x and y

4.4. Figure of Merit

4.4.1. Temperature dependent Figure of Merit of Ba8TxT'yGe46-x-y

The �gure of merit is calculated according to Eqn. 2.58 with DATAP, Version 3.0,

(c) H. Müller, TU Vienna, November 21, 1991, a program which allows mathematical

operations with experimental data. The data have to be arranged in columns, the x-data

in the �rst, the y-data in the second column then it is (among other things) possible

to execute mathematical operations like +,−, ∗,÷ with two di�erent �les, even if the

x-data are not conform. To calculate the �gure of merit, the radiation corrected values

of low temperature thermal conductivity were used.

Although Ba8Cu5.2Zn0.8Ge40.0 exhibits promising huge thermopower values (compare

Fig. 4.35), the �gure of merit reaches a maximum ZT ∼ 8.9 · 10−3 at ∼ 530 K. The

interesting shape with three minima result from the thermopower values crossing the

x-axis. The largest thermopower values obtained within the Pd, Cu, Si - Zn series show

Ba8Pd2.3Zn3.6Ge40.1 with ZT ∼ 0.15 at 467 K, Ba8Zn7.2Ge19.9Si18.9 with ZT ∼ 0.27
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Figure of Merit ZT [1]
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Figure 4.40.: Temperature dependent �gure of merit ZT of Ba8AgxGe46-x for various
values of x

at ∼ 764 K and Ba8Zn7.4Ge19.8Si18.8 with ZT ∼ 0.4 at ∼ 765 K. Comparing these

values with other type I clathrates [20, 21, 22, 23], where the maximal �gure of merit is

predicted for Ba8Zn7.7Ge38.3 with ZT = 0.42 at 700 K, the maximal �gure of merit based

to experimental data is ZT = 0.15 at 600 K for Ba8Pt2.7Ge41.8�1.5. ZT does not reach

the predicted values of ZT = 1.7 @ 800 K (see Nolas, in [30]) for optimised compositions

by far.

4.4.2. Temperature dependent Figure of Merit of Ba8AgxGe46-x

The two compositions Ba8Ag4Ge42 and Ba8Ag5Ge41 display an unsteadiness around room

temperature (see Fig. 4.40) which results from a deviation in experimental data obtained

with di�erent devices, as discussed in Chapter 4.2.2. These two compounds exhibit

ZT (463 K) = 0.11 for Ba8Ag4Ge42 and ZT (462 K) = 0.14 for Ba8Ag5Ge41.

The same is it for Ba8Ag3Ge43, the maximum �gure of merit reaches ZT ∼ 0.05 at

∼ 463 K, as it is shown in Fig. 4.40. As already mentioned, Nolas predicts in [30] a

�gure of merit of ZT = 1.7 @ 800 K for optimized compositions.
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Figure 4.41.: Temperature dependent speci�c heat of Ba8AgxGe46-x, plotted as cP
[
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]
vs T [K]

Ba8Ag2Ge44 exhibits the smallest electrical resistivity of the Ag-series, further investi-

gation on this composition had, unfortunately, to be omitted within this diploma thesis

due to time constraints but a signi�cantly higher �gure of merit is not to expect.

4.5. Speci�c heat

4.5.1. Temperature dependent speci�c heat of Ba8TxT'yGe46-x-y

Fig. 4.44 displays the high temperature speci�c heat of the Ag-series, determined with

the Flash method.
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Figure 4.42.: Temperature dependent speci�c heat cP of Ba8Ag3Ge43, plotted as cP/T
vs T

4.5.2. Temperature dependent speci�c heat of Ba8AgxGe46-x

Speci�c heat at low temperatures was investigated only for Ba8Ag3Ge43, the results are

displayed in Fig. 4.5.2, the analyse in Fig. 4.5.2.

Signi�cant deviations from the simple Debye model indicate a rather complicated pho-

non spectrum for this family of clathrates. The spectrum is supposed to be composed of

background vibrations originating from the cage like structure - represented by a Debye

spectrum - and, additionally, from the rattling modes of the loosely bound electropositive

Ba atoms. (cit. from [22]) The model used in Fig. 4.5.2 was developed by Junod et

al. [15]. Besides a background composed by a Debye spectrum, two Einstein modes

are used to describe the behaviour of the phonon part of speci�c heat. The frequencies

ωE1 = 50 K and ωE2 = 81 K are derived from the least-squares �t together with res-

pective widths of ωE1 ≈ 4.4 K and ωE2 ≈ 3.6 K. The cut of frequency is 213.6 K. In

comparison with the Debye temperature derived from the Callaway model (see A.2.1) -

for Ba8Ag3Ge43 θ
Callaway
D = 53 K - this result is more realistic.
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Figure 4.43.: Temperature dependent speci�c heat cP of Ba8Ag3Ge43, plotted as
(cP − γT )/T 3 vs lnT . The dashed line is a least-squares �t of the expe-
rimental data using the model described in the text with two Einstein-like
modes (ωE1 = 50 K and ωE2 = 81 K). The narrow, red solid line is the
simple Debye function with θLTD = 260 K. The broad, blue line (referring to
the right axis) sketch the phonon spectral function F(ω) plotted as ω/4.93
vs (5/4)Rπ4ω−22F (ω) for which ω is given in Kelvin.
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Ba8AgxGe46-x - series
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Figure 4.44.: Temperature dependent speci�c heat of Ba8AgxGe46-x, plotted as cP
[
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]
vs T [K]

Fig. 4.44 displays the high temperature speci�c heat of the Ag-series, determined with
the Flash method.
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5. Conclusion

Intermetallic type I clathrates are ideally suited to match those condition required by

G. Slack�s concept of a phonon glass and an electron crystal to generate an optimum

thermoelectric output. Thus Ba-Ge based type I clathrates have been prepared and

studied with respect to their thermoelectric properties.

Substitutions and various routes of synthesis allow to �ne-tune the electronic structure

of these materials such that extremely high values of the Seebeck e�ect are obtained

as a signature of the closeness to a metal-to-insulator transition. Such an electronic

state can even provoke a temperature driven change from hole to electron dominated

electronic transport when proceeding from very low to very high temperatures.

Similarity in composition of materials does not de�nitely imply a similarity in measu-

rement results (compare the results of Ba8Zn7.4Ge19.8Si18.8 and Ba8Zn7.2Ge19.9Si18.9) as

shown in Chapter 4.

The thermoelectric performance, as it is expressed by the �gure of merit reaches ZT =

0.42 at T = 765 K for Ba8Zn7.4Ge19.8Si18.8, while Ba8Ag5Ge41 approaches ZT = 0.14 at

T = 462 K.
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A. Fitting procedure of the transport

properties

1 Theoretical models were adjusted to the experimental data of temperature dependent

electrical resistivity and thermal conductivity with least squares �ts, as described in Chap-

ter 2 and displayed in Chapter 4. With TableCurve 2D Version 5.01 so called user de�ned

functions (*.udf) can be programmed which include the possibility to limit the �t para-

meter between two values.

A.1. Electrical Resistivity

The experimental data of the electrical resistivity ρ(T ) in units of [µΩcm] were �tted

over the whole temperature range available - mostly 4 K to 800 K.

A.1.1. Bloch-Grüneisen

The temperature dependent resistivity follows from Matthiessen�s rule to

ρ(T ) = ρ0 + ρph(T ) (A.1)

with the Bloch-Grüneisen formula2

ρph = R
(
T

θD

)5 ∫ θD
T

0

z5

(ez − 1) (1− e−z)
. (A.2)

1References: [17, 13, 28, 5]
2The user de�ned function di�ers from Eqn. A.2 with a factor 4, this does not in�uence the result
because R is a �t parameter.
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A. Fitting procedure of the transport properties

User de�ned function corresponding to Eqn. A.1

#F1=$^5/(EXP(-$)+EXP($)-2)

#F2=#A2/X

Y=#A0+4*#A1*QIN(1,0.01,#F2,12)/#F2^5

Variables and Fit parameters for the Bloch-Grüneisen model

$ ... dummy variable of integration
#F1 ... integrand of Bloch-Grüneisen formula
#F2 ... θD

T

X ... temperature
Y ... resistivity ρ(T ) [µΩcm] according to Eqn. A.1
#A0 ... residual resistivity ρ0 [µΩcm]
#A1 ... electron-phonon interaction constant R [µΩcm/K]
#A2 ... Debye temperature θD [K]

Table A.1.: Fit parameter Bloch-Grüneisen Fit

composition #A0 #A1 #A2

Ba8Zn7.3Ge10.6Si28.1 10300 1987 237.9
Ba8Zn7.2Ge19.9Si18.9 709 542.6 493.3
Ba8Zn7.6Ge29.3Si9.1 2697 399 216.7

Ba8Ag2Ge44 325.6 202.7 224.9
Ba8Ag3Ge43 557.5 559.8 353.8
Ba8Ag4Ge42 893.9 1274.5 554.5
Ba8Ag5Ge41 1786.3 1719.9 553.9
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A.1. Electrical Resistivity

A.1.2. Two-band model

An advancement of the Bloch-Grüneisen law is to apply a temperature dependent charge
carrier density n(T ), so that

ρ(T ) =
ρ0n0 + ρph
n(T )

(A.3)

using the Bloch-Grüneisen formula (Eqn. A.2) for ρph.

User de�ned function corresponding to Eqn. A.3

#F7=1.381*10^(-23)

#F1=$^5/(EXP($)-1)/(1-EXP(-$))

#F2=4*#A*(X/#F)^5*AI(1,1E-10,#F/X)

#F3=#F7*(-#B+X*LN(2)-X*LN(1+EXP(#G/X))+X*LN(1+EXP((#G+#B)/X)))

#F4=#D*SQRT(#F3*X*F7*LN(2))+#C

Y=(#C*#E/#F4)+(#F2)/#F4

Variables and Fit parameters for the two-band model

$ ... dummy variable of integration
#F7 ... Boltzmann's constant kB
#F1 ... integrand of Bloch-Grüneisen formula
#F2 ... Bloch-Grüneisen formula
#F3 ... number of electrons per density of states ne(T )

N(T )

#F4 ... total charge carrier density n(T )
X ... temperature
Y ... resistivity ρ(T ) [µΩcm] according to Eqn. A.3
#A ... electron-phonon interaction constant R [µΩcm/K]
#B ... energy gap Eg [K]
#C ... residual charge carrier density n0

#D ... density of states N(E) [1/J]
#E ... residual resistivity ρ0 [µΩcm]
#F ... Debye temperature θD [K]
#G ... energy di�erence between EF and the lower band edge (E − EF ) [K]

Table A.2.: Fit parameter 2-band model

composition #A #B #C #D #E #F #G

Ba8Pd2.3Zn3.6Ge40.1 9900 159 0.00625 3.5e+22 1.6e+08 1.6e+15 8.56e-08
Ba8Zn7.3Ge10.6Si28.1 790.2 17470 1.306 6.9e+17 10300 118.60 1.40e-05
Ba8Zn7.4Ge19.8Si18.8 4965 36150 0.0663 1.6e+22 3665 6915 3.53e-05
Ba8Zn7.2Ge19.9Si18.9 590 32470 1.786 6.9e+17 708 357 1.25e-05
Ba8Zn7.6Ge29.3Si9.1 418 3615 0.625 7.5e+21 2698 170 10e-05

Ba8Ag2Ge44 291 6665 1.51 7.9e+19 325 215 0.07908
Ba8Ag3Ge43 591 19660 1.511 5.2e+20 560 248 0.0789
Ba8Ag4Ge42 590 32470 1.295 9.7e+19 888 225 0.1248
Ba8Ag5Ge41 590 32470 1.323 9.7e+19 1766 218 0.1248
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A. Fitting procedure of the transport properties

A.1.3. Two-band model with Mott-Jones term

A further development of the Bloch-Grüneisen law with temperature dependent charge
carrier density n(T ) is to add a term ∝ T 3

ρ(T ) =
ρ0n0 + ρph
n(T )

+
AT 3

n(T )
(A.4)

while using the Bloch-Grüneisen formula (Eqn. A.2) for ρph.

User de�ned function corresponding to Eqn. A.4

#F7=1.381*10^(-23)

#F1=$^5/(EXP($)-1)/(1-EXP(-$))

#F2=4*#A*(X/#F)^5*AI(1,1E-10,#F/X)

#F3=#F7*(-#B+X*LN(2)-X*LN(1+EXP(#G/X))+X*LN(1+EXP((#G+#B)/X)))

#F4=#D*SQRT(#F3*X*F7*LN(2))+#C

Y=(#C*#E/#F4)+(#F2)/#F4+#H*X^3/#F4

Variables and Fit parameters for the two band model with Mott-Jones term -

additional to the two-band model

Y ... resistivity ρ(T ) according to Eqn. A.4
#H ... Mott-Jones prefactor A

Table A.3.: Fit parameter 2-band model with Mott-Jones

composition #A #B #C #D #E #F

Ba8Zn7.3Ge10.6Si28.1 1004 1949 1.055 1.4e+21 10308 216
Ba8Zn7.4Ge19.8Si18.8 6.014 43684 0.2438 3.4e+22 3686 240
Ba8Zn7.2Ge19.9Si18.9 117 27998 0.4581 6.9e+21 709 286
Ba8Zn7.6Ge29.3Si9.1 176 13170 0.4511 4.5e+21 2703 196

Ba8Ag2Ge44 86.6 15170 0.4488 4.5e+21 326 206
Ba8Ag3Ge43 103 7264 0.4457 5e+21 560 180
Ba8Ag4Ge42 132 8294 0.4149 5.6e+21 892 198
Ba8Ag5Ge41 245 6941 0.4353 6.6e+21 1776 324

composition #G #H

Ba8Zn7.3Ge10.6Si28.1 7.96e-07 1.348e-04
Ba8Zn7.4Ge19.8Si18.8 1.9e-04 4.34e-07
Ba8Zn7.2Ge19.9Si18.9 5.37e-05 3.56e-07
Ba8Zn7.6Ge29.3Si9.1 3.543e-05 4.62e-06

Ba8Ag2Ge44 2.866e-04 1e-07
Ba8Ag3Ge43 1.99191e-04 1.76e-06
Ba8Ag4Ge42 3.24e-11 1.31e-06
Ba8Ag5Ge41 1.89e-10 5.25e-06
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A.1. Electrical Resistivity

A.1.4. Three-band model

This is another model using also the formula as it is plotted in Eqn. A.3 but with a much

more complicated relation for the charge carrier density n(T ).

User de�ned function corresponding to Eqn. A.3 with another n(T ) for metals

K=8.617343*10^-5

#F1=$^5/(EXP($)-1)/(1-EXP(-$))

#F2=4*#A*(X/#F)^5*AI(1,1E-10,#F/X)

#F3=K*((#I/20-1)*#H+X*LN(2)+X*LN(1+EXP((#B+#H)/(X)))

-X*LN(1+EXP((#B)/(X)))+#I*X*LN(1+EXP((#B+#G)/(X)))

-#I*X*LN(1+EXP((#B+#G+1/20*#H)/(X))))

#F4=K*X*LN(2)

#F5=#D*SQRT(#F3*#F4)+#C

Y=(#C*#E/#F5)+(#F2)/#F5

'BOLTZMANNKONSTANTE

'[J/K]

'INTEGRAND

'BLOCH-GRÜNEISEN

'ELEKTRONENZAHL/DOS

'

'

'LÖCHERZAHL/DOS

'LADUNGSTRÄGERZAHL

'WIDERSTAND

User de�ned function corresponding to Eqn. A.3 with another n(T ) for

semiconductors

K=8.617343*10^-5

#F1=$^5/(EXP($)-1)/(1-EXP(-$))

#F2=4*#A*(X/#F)^5*AI(1,1E-10,#F/X)

#F3=K*(#B*1/20*#H+#G/2-#H+X*LN(1+EXP((#H-#G/2)/(X)))

+#B*X*LN(1+EXP((#G/2)/(X)))

-#B*X*LN(1+EXP((#G/2+1/20*#H)/(X))))

#F4=K*X*LN(1+EXP((-#G/2)/(X)))

#F5=#D*SQRT(#F3*#F4)+#C

Y=(#C*#E/#F5)+(#F2)/#F5

'BOLTZMANNKONSTANTE

'[J/K]

'INTEGRAND

'BLOCH-GRÜNEISEN

'ELEKTRONENZAHL/DOS

'

'

'LÖCHERZAHL/DOS

'LADUNGSTRÄGERZAHL

'WIDERSTAND
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A. Fitting procedure of the transport properties

Variables and Fit parameters for the three-band model

$ ... dummy variable of integration
#F1 ... integrand of Bloch-Grüneisen formula
#F2 ... Bloch-Grüneisen formula
#F3 ... number of electrons per density of states ne(T )

N(T )

#F4 ... number of holes per density of states n(T )−ne(T )
N(T )

#F5 ... number of charge carriers n(T )
X ... temperature
Y ... resistivity ρ(T ) [µΩcm] according to Eqn. A.3
#A ... electron-phonon interaction constant R [µΩcm/K]
#B ... lower band edge E1 [K]
#C ... residual charge carrier density n0

#D ... density of states N(E) [1/J]
#E ... residual resistivity ρ0 [µΩcm]
#F ... Debye temperature θD [K]
#G ... �rst gap width Eg1 [K]
#H ... second gap width Eg2 [K]
#I ... factor for density of states of the impurity band

Table A.4.: Fit parameter 3-band model, parameter #I for metal-UDF

composition #A #B #C #D #E #F

Ba8Pd2.3Zn3.6Ge40.1 0.1 0.9598 2.893e-05 16.52 1.4e+08 250
Ba8Zn7.3Ge10.6Si28.1 1466 1.153e-05 0.4969 166 10350 323
Ba8Zn7.3Ge10.6Si28.1 17600 2000 27.87 81.28 10320 117

composition #G #H #I

Ba8Pd2.3Zn3.6Ge40.1 169 99770 -
Ba8Zn7.3Ge10.6Si28.1 0.069 4892.0 -
Ba8Zn7.3Ge10.6Si28.1 450 2288 2.519
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A.1. Electrical Resistivity

A.2. Lattice Contribution to Thermal Conductivity

A.2.1. Callaway-model

The lattice contribution λph to the thermal conductivity with radiation loss (term F ·T 3)
is given by

λph =
kB

2π2 vs

(
kB
~

)3

T 3

∫ θD/T

0

[
τcx

4ex

(ex − 1)2

]
dx+ F · T 3. (A.5)

User de�ned function corresponding to Eqn. A.5

F = 1640516349

F1=#A*$^4*X^4

F2=#B*$^2*X^3*EXP(-#E/(3*X))

F3=#C

F4=#D*X*$

F5=1/(F1+F2+F3+F4)

F9= ($^4*EXP($)/(EXP($) - 1)^2)*F5

Y=(F*X^3/#E)*AI(9, 0, (#E/X))+#F*X^3

'
(*POINT DEFECT SCATTERING*)
(*UMKLAPP - PROCESSES*)
(*BOUNDARY SCATTERING*)
(*ELECTRON SCATTERING*)
'
'
'

Variables and Fit parameters for the Callaway model

$ ... dummy variable of integration
F ... prefactor to integral [mW/cmK] according to Eqn. A.6
F1 ... point defect scattering τ−1

D

F2 ... umklapp processes τ−1
U

F3 ... boundary scattering τ−1
B

F4 ... scattering of phonons by electrons τ−1
E

F5 ... sum of reciprocal relaxation times τ−1

F9 ... integrand of Callaway equation according to Enq. A.5
Y ... thermal conductivity λph according to Eqn. A.3 + radiation losses
#A ... parameter for scattering processes on defects [K−4s−1]
#B ... parameter for umklapp-processes [K−3s−1]
#C ... parameter for scattering on boundaries [s−1]
#D ... parameter for scattering of phonons by electrons [K−1s−1]
#E ... Debye temperature θD [K]
#F ... parameter for correction of radiation losses
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A. Fitting procedure of the transport properties

Calculation of the prefactor to the Callaway-�t:

F = K ·
(
N

V

)(1/3)

· 10 (A.6)

with K = 0.046729, a factor using Callaway and Debye.

Table A.5.: Atoms per unit cell, lattice parameter and prefactor to the integral in the
Callaway model - for all compounds

composition N [1] lattice parameter [nm] prefactor Callaway [mW/cmK]

Ba8Pd2.3Zn3.6Ge40.1 54 1.07664 1640516349
Ba8Cu5.2Zn0.8Ge40.0 54 1.06994 1650789317
Ba8Zn7.3Ge10.6Si28.1 54 1.05278 1677696691
Ba8Zn7.4Ge19.8Si18.8 54 1.06086 1664918578
Ba8Zn7.2Ge19.9Si18.9 54 1.06026 1665860753
Ba8Zn7.6Ge29.3Si9.1 54 1.06833 1653277098

Ba8Ag2Ge44 54 1.0742 1644242713
Ba8Ag3Ge43 54 1.078 1638446681
Ba8Ag4Ge42 54 1.0814 1633295286
Ba8Ag5Ge41 54 1.0842 1629077220

Table A.6.: Fit parameter Callaway model

composition #A #B #C #D #E #F

Ba8Pd2.3Zn3.6Ge40.1 735 628 3.9e+07 3.3e+09 54.54 8.598e-07
Ba8Cu5.2Zn0.8Ge40.0 519 266100 6.972e+09 51000 24.73 8.997e-07
Ba8Zn7.3Ge10.6Si28.1 4222 150500 2.8e+10 1.4e+08 40 6.792e-07
Ba8Zn7.4Ge19.8Si18.8 8370 318500 1.1e+09 1.7e+08 296 8.5e-07
Ba8Zn7.2Ge19.9Si18.9 62566 629919 2.4e+09 1.2e+07 51 7.4e-07
Ba8Zn7.6Ge29.3Si9.1 4016 457900 3e+08 9.6e+08 28.98 6.262e-07

Ba8Ag3Ge43 36700 332100 4.5e+09 3.9e+08 53 6.699e-07
Ba8Ag4Ge42 19950 701600 3.7e+10 9.1e+08 71 7.73e-07
Ba8Ag5Ge41 4000 488300 7.9e+10 5e+07 50 7.057e-07

Debye temperatures below 200 K are not realistic, therefore the validity of the Cal-
laway model is to scrutinize, particularly due to the fact that the Callaway-�t of
Ba8Zn7.4Ge19.8Si18.8 (the only (!) composition investigated in this diploma thesis which
was ball milled while preparation) results in a realistic Debye temperature above 200 K.
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