

A Formal Model of the Extensible
Virtual Shared Memory (XVSM) and

its Implementation in Haskell
Design and Specification

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Stefan Craß
Matrikelnummer 0325656

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuerin: A.o. Univ. Prof. Dr. Dipl.-Ing. eva Kühn
Mitbetreuer: A.o. Univ. Prof. Dr. Dipl.-Ing. Gernot Salzer

Wien, 05.02.2010 _______________________ ______________________
 (Unterschrift Verfasser) (Unterschrift Betreuerin)

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at�

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

ERKLÄRUNG ZUR VERFASSUNG DER ARBEIT

Stefan Craß, Bründlfeldweg 63/1/6, 7000 Eisenstadt

”
Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-

deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der

Arbeit — einschließlich Tabellen, Karten und Abbildungen —, die anderen Werken oder

dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter

Angabe der Quelle als Entlehnung kenntlich gemacht habe.“

Wien, 05.02.2010

(Unterschrift)

I

ABSTRACT

Abstract

The development of distributed applications is a complex task that requires ef-

ficient communication and coordination between all participants. The space-based

computing paradigm (SBC) enables simple collaboration between different peers

due to a data-driven interaction style. This thesis describes the formal specifica-

tion of XVSM (eXtensible Virtual Shared Memory), which represents a flexible and

extensible SBC middleware that allows loosely coupled systems to coordinate them-

selves efficiently. Based on a simple algebraic foundation and an expressive query

language, the semantics of the middleware’s core functionality are defined via the

specification of modules for basic data access, transactions, coordination and the

runtime machine. A meta model is defined for XVSM to bootstrap the behavior

of the space with own mechanisms. It is also shown how the middleware can be

adapted to support arbitrary coordination laws that exceed the default semantics.

The XVSM specification has been used to implement an executable prototype with

the functional programming language Haskell. The feasibility of the formal model is

proven with this XVSM prototype, for which the architecture and implementation

are described in this thesis.

Kurzfassung

Die Entwicklung verteilter Applikationen ist eine komplexe Aufgabe, die ei-

ne effiziente Kommunikation und Kollaboration aller Beteiligten erfordert. Das

Space-Based-Computing-Paradigma (SBC) ermöglicht die einfache Zusammenar-

beit verschiedener Peers durch einen datengetriebenen Interaktionsstil. Diese Di-

plomarbeit beschreibt die formale Spezifikation von XVSM (eXtensible Virtual

Shared Memory), einer flexiblen und erweiterbaren SBC-Middleware, die die ef-

fiziente Koordination von lose gekoppelten Systemen ermöglicht. Ausgehend von

einer einfachen algebraischen Basis und einer ausdrucksstarken Abfragesprache wird

die Semantik der Grundfunktionalität der Middleware beschrieben. Dies geschieht

durch die Spezifikation der Module für grundlegenden Datenzugriff, Transaktionen,

Koordination und die Runtime-Maschine. Für XVSM ist ein Meta-Modell defi-

niert, das es ermöglicht, das Verhalten des Spaces mit eigenen Mechanismen zu

erklären. Zusätzlich wird beschrieben, wie beliebige Koordinationsformen, die über

das Standardverhalten hinausgehen, in die Middleware integriert werden können.

Die XVSM-Spezifikation wurde benutzt um einen lauffähigen Prototyp in der funk-

tionalen Programmiersprache Haskell zu implementieren. Durch die Entwicklung

dieses XVSM-Prototyps, dessen Architektur und Implementierung in dieser Arbeit

beschrieben wird, wird die Realisierbarkeit des formalen Modells gezeigt.

II

ACKNOWLEDGEMENTS

The specification of XVSM described in this thesis would not have been possible

without the help of several people that have worked or currently work on the concepts of

the XVSM technology.

I would like to thank my supervisor, eva Kühn, and Gernot Salzer, who have developed

the basics of the formal model with me in numerous meetings and helped me to resolve

several open issues.

I also want to thank the members of the Space Based Computing Group and the

XVSM Technical Board, who have given valuable feedback to my work, especially Richard

Mordinyi, Laszlo Keszthelyi, Christian Schreiber, Martin Barisits, Alexander Marek and

Tobias Dönz.

III

CONTENTS

Contents

1 Introduction 1

1.1 XVSM Basics . 4

1.2 Motivation for a Formal Model . 6

1.3 Related Work . 7

2 XVSM Algebra 10

3 XVSM Query Language 13

3.1 Query Structure . 13

3.2 Predefined Queries . 14

3.2.1 Predefined Selectors . 15

3.2.2 Predefined Matchmakers . 17

3.2.3 Combined Queries . 20

3.3 Analysis and Comparison . 20

4 XVSM Core API 24

4.1 CAPI-1: Basic Operations . 26

4.2 CAPI-2: Transactions . 29

4.2.1 Transaction model . 29

4.2.2 Locking semantics . 32

4.2.3 Transaction logging . 34

4.2.4 Transactional operations . 35

4.3 CAPI-3: Coordination . 38

4.3.1 Coordinator interface . 40

4.3.2 Container operations . 42

4.3.3 Predefined coordinators . 48

4.3.4 Custom Coordination . 52

4.4 CAPI-4: Runtime model . 52

4.4.1 Request scheduling . 55

4.4.2 Aspects . 62

4.4.3 CAPI-4 operations . 63

4.5 XVSMP and Language Bindings . 65

5 Application scenario 66

6 Haskell XVSM Prototype 69

6.1 Introduction to Haskell . 69

6.2 Implementation . 71

IV

CONTENTS

6.2.1 Architecture . 73

6.2.2 Basic data access . 75

6.2.3 CAPI-1 and query evaluation . 75

6.2.4 CAPI-2 . 78

6.2.5 CAPI-3 and coordinators . 79

6.2.6 Runtime machine and API . 82

6.3 Example . 85

6.4 Results . 89

7 Future Work 91

8 Conclusion 93

References 94

A XVSM meta model specification I

V

LIST OF FIGURES

List of Figures

1 Layered architecture of XVSM . 24

2 User and sub transactions . 32

3 Writing entries with write3 . 44

4 Taking entries with take3 . 46

5 XVSM runtime structure . 53

6 Race conditions when using simple event processing 57

7 Event processing logic . 61

8 Haskell XVSM prototype architecture . 74

VI

LIST OF TABLES

List of Tables

1 Operations on multiset and sequences . 11

2 CAPI-1 operations . 27

3 Locking compatibility for locks of foreign transactions 33

4 CAPI-2 operations . 36

5 Coordinator functions . 41

6 CAPI-3 operations . 42

7 CAPI-4 operations . 64

VII

LIST OF LISTINGS

List of Listings

1 Definition of writeL1 . 27

2 Definition of take1 . 28

3 A simple Haskell function (snippet) . 70

4 Creation and destruction of runtime threads 72

5 Usage of STM . 73

6 XTree data type . 75

7 Signatures of Capi1 functions . 76

8 Query functions . 77

9 Query execution . 77

10 Query if xtree can be read . 78

11 Committing a transaction . 78

12 Selector chain evaluation . 79

13 Container read access for coordinators 80

14 KeyCoordinator functions . 81

15 Request execution (simplified) . 82

16 Example aspect . 83

17 Event logic functions . 84

18 Auction seller logic . 86

19 Auction bidder logic . 87

VIII

LIST OF ABBREVIATIONS

List of Abbreviations

2PL Two-phase locking

API Application programming interface

CAPI Core application programming interface

CoXT Coordination Xtree

CSP Communicating Sequential Processes

EBNF Extended Backus-Naur Form

FIFO First-in-first-out

GHC Glasgow Haskell Compiler

JMS Java Messaging Service

LIFO Last-in-first-out

P2P Peer-to-peer

RMI Remote Method Invocation

RPC Remote Procedure Call

SBC Space-Based Computing

SOS Structural Operational Semantics

SQL Structured Query Language

STM Software Transactional Memory

SXQ Simple XVSM Query

TLA Temporal Logic of Actions

TP Timeout processor

URI Uniform Resource Identifier

XML Extensible Markup Language

XP XVSM core processor

XQ XVSM Query

XVSM Extensible Virtual Shared Memory

XVSMP Extensible Virtual Shared Memory Protocol

XVSMQL Extensible Virtual Shared Memory Query Language

IX

1 INTRODUCTION

1 Introduction

The internet enables its users to acquire information and communicate with people all over

the world. Using this infrastructure, sophisticated software applications can be built that

allow various software processes on distributed peers to collaborate with each other in a

highly dynamic manner. The coordination of these processes is a complex task that can be

mastered by an intelligent utilization of available resources and efficient communication

among peers, together with an easily adaptable programming model. Classical client-

server architectures, where one central host carries out most computations, usually do

not offer the necessary flexibility and scalability to compete in dynamic scenarios because

the limited computing capacity and network bandwidth of the server create a bottleneck

for the whole application. Therefore, the peer-to-peer paradigm (P2P) [1] was invented

that allows every peer to act as a client and as a server at the same time. Peers can

be seen as nodes of a network that allows ad-hoc connections between arbitrary users,

which enables direct collaboration between peers that do not need to know each other

beforehand. Additionally, complex tasks can be split up among several peers to make

efficient use of available computing power.

The coordination of multiple peers is a sophisticated task. Problems like concur-

rent access, synchronization, heterogeneous systems and the cognition of network failures

should not be solved by application programmers. Instead, middleware systems are used

that hide low-level communication mechanisms, allowing the programmer to focus on the

content of the sent data as well as the business logic without having to think about how

the communication is established. With the help of an appropriate middleware, easily

adaptable distributed applications can be created in an efficient way. Beside remote com-

munication and data access, a middleware may also support further functionality that

simplifies the programming effort, e.g. transactions, automatic replication, persistency,

recovery after crashes and dynamic lookup of peers via names or certain properties.

Middleware systems like RPC [46] and RMI [49] are based on the ability to call a

method on a remote computer similar to a local method invocation. Message-oriented

middleware adds an additional layer between two communicating peers in the form of

message queues. Both peers can send and receive messages that may contain data or

requests. The messages are buffered in the message queue, so temporal decoupling is

achieved as both peers need not be online at the same time for a successful interaction.

However, both middleware approaches have in common that they favor the client-server

paradigm, where the clients need to register to a well-known server that executes their

requests. When using one of these middleware systems, P2P applications would need a

non-scalable amount of bidirectional connections between every peer, which would have

to be established and synchronized by the programmer. If additional peers are added

1

1 INTRODUCTION

to fulfill a task, a high programming overhead would be needed to balance the load of

incoming requests appropriately. A feasible solution to these problems is a paradigm

change from message-based communication to data-driven applications. Instead of send-

ing requests to known peers, they are written to a common blackboard, a so-called virtual

shared memory or space. The participating processes, which may run on the same or

on different machines, do not need to know each other and may wait for particular re-

quests, responses and other data, which can be provided by other peers via the space.

Thus, an application only needs to communicate with a single space, similar to a simple

client-server architecture. However, the data-driven approach enables the asynchronous

coordination of autonomous peers without any central server application that must be

aware of all clients, thus enabling the temporal, referential and spatial decoupling of peers.

Therefore, peers of a distributed application can dynamically join and leave without any

problem, and they can coordinate themselves in a P2P style without any direct commu-

nication. The space itself may run on a single machine but it could also be distributed

on several peers to gain the performance advantages of P2P. This behavior, however,

remains transparent to the developer, as it does not matter where the space is located

physically. The data-driven approach allows the design of P2P architectures without the

need to manage communication between peers directly. Therefore, a shared blackboard

combines the flexibility of P2P systems with the simplicity of a single interaction partner

for each peer.

The space-based computing paradigm (SBC) was introduced by David Gelernter in

the form of the Linda tuple space [13]. In this model, information is shared via the

space in the form of tuples, which are sequences of typed fields. Tuples can be written

to the space as well as read or consumingly read from it by providing a template that is

compared to existing tuples in the space. The read operations may optionally block while

no appropriate tuple can be found. All fields defined in the template must match exactly

with the corresponding fields in the tuple, but some fields may be undefined, which are

interpreted as wildcards that allow any value. In case that more than one tuple is found,

one is selected indeterministically. This mechanism named template matching allows for a

simple coordination among peers by reading a particular tuple with a template that leaves

the needed data fields undefined. If the tuple is provided by a peer, the read operation

succeeds and the first peer gets its requested data. A well-known representative of the

Linda model is JavaSpaces [12], which is defined as a Java language binding. Instead

of tuples, a JavaSpace stores entry objects, which correspond to Linda tuples that are

automatically derived from the public member variables of the respective entry class. The

basic operations are read, its consuming variant take, write and notify, which can be

seen as an asynchronous query on future write operations, where a callback method is

called as soon as a matching entry is written to the space. The read and take methods

2

1 INTRODUCTION

contain a timeout parameter that specifies how long the call may block until it returns

with an error. JavaSpaces also allows transactions for its operations, which enables the

programmer to encapsulate several space operations into a single atomic action. With

this coordination model, an effective collaboration between several autonomous peers can

be established in a simple way, but nevertheless JavaSpaces and its Linda foundation have

various drawbacks:

• If several entries match a template, subsequent reads cannot guarantee that all

matching entries are retrieved eventually. Due to the indeterministic matching

mechanism, the read operation could also return the same entry every time, al-

though the application might be interested in all relevant entries. To solve this

problem, the programmer has to issue several take operations until no matching

entries are found, thus preventing other processes from accessing these data.

• The selection of entries is based on the exact matching of the fields’ values. A query

on a certain range of allowed values for a field is therefore not possible.

• No information about the chronology of write operations is stored, so a simple first-

in-first-out ordering of tuples can only be generated by adding and managing own

sequence numbers.

• Complex coordination laws that cannot easily be mapped to template matching

must be enforced by the application programmer, so that fields with user and co-

ordination data are mixed together in entries, accompanied by several extra entries

that are just used for coordination purposes. E.g., the implementation of a simple

producer/consumer pattern requires sequence numbers for all written entries and

separate counter tuples for the highest sequence number and the number of the

entry that should be consumed next.

• Entries may only match a template of the same type (or of a super type), so they

must have the same count and order of fields. It is not possible to search for entries

with a particular value that can occur in several different entry types. Instead the

read operation must be issued for every entry type with separate templates.

• JavaSpaces can only be used for Java applications. GigaSpaces [9], which is a

wide-spread JavaSpaces implementation, offers also language bindings for C++ and

.NET, but no open protocol has been published that would allow interoperability

between arbitrary language adapters.

Over the past years, several space-based computing technologies based on the origi-

nal Linda model have evolved, which try to overcome the mentioned disadvantages. A

3

1 INTRODUCTION

different space-based middleware approach has been established with the virtual shared

memory model of Corso [23], developed at the Institute of Computer Languages of the

Vienna University of Technology. In contrast to Linda, shared objects are identified via

unique identifiers called OIDs that can be found via well-known names. These OIDs

can be linked together, which enables complex and highly concurrent coordination pat-

terns. Furthermore, Corso supports distributed transactions, replication, persistency and

notifications.

Based on the experiences with Linda-like tuple spaces and Corso, the concept of

XVSM1 [27] (eXtensible Virtual Shared Memory) has been developed at the Institute

of Computer Languages of the Vienna University of Technology. This thesis provides

a formal definition of this system as a foundation for further research and development.

The specification is also implemented in a functional language as an executable prototype,

which serves both as a reference for developers of further XVSM implementations and as

starting point for formal verification of the model.

The rest of this introduction covers the basic concepts of XVSM and the current

status of its implementation as well as the reasons for the development of a formal model

and related work. Section 2 explains the basic algebraic data types and operations that

are used in the description of the XVSM model. Section 3 introduces the basic query

language to select elements within the space. The actual formal specification of XVSM is

shown in Sect. 4, where the space operations are bootstrapped in a layered architecture

consisting of several core APIs. Section 5 presents an example for the efficient utilization

of XVSM in complex scenarios. In Sect. 6, the prototype implementation in the functional

programming language Haskell is presented. Section 7 describes the influence of the

formal model on future implementations of the XVSM middleware and outlines open

issues and topics for further research. Finally, Sect. 8 gives a conclusion of this thesis.

1.1 XVSM Basics

The main objective of the XVSM middleware is to provide a flexible, extensible and

easy-to-use platform for the collaboration of processes, which are dynamically joining

and leaving, on heterogeneous platforms. The space holds shared data of these processes

which can be used to exchange information, to issue a request for a certain task and

provide the corresponding reply, or for synchronization purposes. An XVSM space may

run in embedded mode within a peer application or as a stand-alone server. For the

application programmer, however, there should be no difference between access to a local

or a remote space, as the XVSM core hides the network communication.

Data is encapsulated in entries that are grouped in containers, which can be seen

1http://www.xvsm.org

4

http://www.xvsm.org

1 INTRODUCTION

as sub spaces with own coordination mechanisms. Similar to JavaSpaces, it is possible

within a container to write, read and take entries and set notifications on future events.

The coordination law for extracting entries from a container is however flexible and not

limited to simple template matching like in the Linda model. Each container can be

associated with one or more coordinators that are responsible for the bookkeeping of

the entries. When a read or take request is issued, the involved coordinators select the

resulting entries. Depending on the coordinator, the selection could be based on a FIFO

queue, a certain key value given by the user, the order of entries regarding a given data

field, or template matching. Also, more complex coordination mechanisms can be defined

by the user and even a combination of several coordinators is possible for a single query.

As in JavaSpaces, any read or take operation may block until the respective query is

fulfilled or the specified timeout is expired. In XVSM, however, also write can block, e.g.

when a bounded container is full.

Transactions enable the programmer to combine several space operations to a single

atomic action, which is helpful for complex concurrent applications. It is also possible

to alter the semantics of any operation by dynamically adding aspects that are executed

before or after each invocation, respectively. These aspects may change the operation’s

parameters, manipulate its return values, execute accompanying tasks like logging the

operation to a special container or to an external file, or even skip the original operation.

With these mechanisms, additional profiles can be added to the space implementation,

which fulfill tasks like lookup, security, monitoring, persistency and replication.

In contrast to JavaSpaces, the XVSM middleware is not defined as a language binding,

but instead as a language independent XML protocol called XVSMP. The protocol sup-

ports synchronous operations as well as asynchronous variants where the result is given

to a callback method or written to an answer container that the caller can access at a

later time. Entities in a space like containers, transactions and aspects are referenced via

a unique URI consisting of the space URI and a local identifier. On top of this protocol,

language bindings for arbitrary platforms can be developed quickly, so that applications

written in different programming languages may access the same space. Due to the stan-

dardized protocol, different XVSM core implementations can also interoperate with each

other.

The original design of XVSM was created in 2005 by Kühn et al. [27]. Since then,

a lot of effort has been made to enhance this middleware architecture and to develop

stable and efficient implementations of the XVSM core and of additional profiles. Sev-

eral use cases for the application of the XVSM middleware have been presented since its

introduction, like in the production automation domain [24, 25] or in rescue scenarios

[28]. Currently, there exist two implementations of XVSM: The open-source Java imple-

5

1 INTRODUCTION

mentation MozartSpaces2 [44, 42], and XcoSpaces [43, 22], which is written for the .NET

platform in C#. These versions are used in several educational and commercial projects

and are also able to interoperate with each other with some restrictions. XVSM versions

for other platforms are also in development, like for the .NET Micro Framework3, which

is used in small embedded devices [30]. With the development of the XVSM formal model

presented in this thesis, it is necessary to adapt current implementations to the modi-

fications in the design of the middleware while simultaneously improving performance,

stability and usability. Therefore, a new version of MozartSpaces is currently in devel-

opment, which should allow the testing of the improved architecture in real scenarios.

Subsequently, implementations on other platforms will be updated to reflect the new

semantics.

1.2 Motivation for a Formal Model

The goal of this work is to develop a formal model of XVSM that specifies its behavior

in a detailed way. Otherwise, different XVSM implementations would behave differently

under some circumstances, especially in concurrent situations and in the case of errors.

This would complicate the development of portable and interoperable applications with

the space middleware. Therefore, the formal model should serve as an unambiguous ref-

erence for implementations of XVSM on various platforms and in different programming

languages. The formalization process is also helpful in the design phase of the middle-

ware architecture because conceptual errors can be recognized earlier if the middleware’s

behavior can be analyzed exactly before the actual implementation. The model should

provide clear semantics of all of the middleware’s operations and also describe their limi-

tations. However, this foundation does not cover implementation issues like performance

optimizations or how data is stored internally. These problems are left to the developers

of XVSM implementations that may exploit special techniques available on their plat-

forms. The formal model gives a definition of how the middleware reacts to a certain

input in a given scenario, which must be followed by all XVSM implementations. Al-

though the model also offers a complete specification of the data structure of the space

and its internal operations (see Sect. 4), the middleware developers are not forced to

obey this reference as long as their implementation has the same semantics as the formal

model.

The reference model can not only be used as a basis for developers of XVSM imple-

mentations, but also as a foundation for theoretical research on the middleware’s traits.

It should be an origin for verification of certain properties of the space, which is needed

for the standardization and certification of XVSM. Only if it is possible to prove the

2http://www.mozartspaces.org
3http://www.microsoft.com/netmf/

6

http://www.mozartspaces.org
http://www.microsoft.com/netmf/

1 INTRODUCTION

correctness of the middleware’s key concepts, it will be accepted by industrial partners

in safety-critical scenarios.

The focus of this thesis is to specify the semantics of the XVSM core, which executes

user operations on a single space and communicates with other cores for remote inter-

actions. The exact definition of aspects, the XML protocol and profiles with additional

features is out of scope of this work, thus only an outline of these components is given.

The formal model is specified as a hierarchy of core API (= CAPI) layers (see Sect. 4)

based on a simple algebra described in Sect. 2. The CAPI operations are specified as

a combination of textual definitions and pseudo-code. Operational semantics that use

mathematical formalism, however, might be used in future work to enable easier verifica-

tion of XVSM. As a proof of concept of the XVSM definition, a prototype of the XVSM

core has been written in the functional programming language Haskell (see Sect. 6), which

complies with the formal model as much as possible. This enables the immediate testing

of changes to the model in a practical environment.

The basic outline of the XVSM formal model has been published in [26] and [10].

This thesis continues the research on this topic and elaborates the concepts given in

these papers, as well as introducing the Haskell reference implementation of the XVSM

core.

1.3 Related Work

Formalization is widely used to model software architectures for complex distributed ap-

plications. Especially for middleware systems, it must be ensured that developers can

rely on well-defined semantics. In [6] and [5], which specify core concepts of JavaSpaces,

the authors use formal methods to remove ambiguity from the informal semantics defi-

nition, to analyze the expressiveness of the middleware compared to similar systems and

to enable verification of programs using JavaSpaces. The analysis of a formal model may

also lead to improvements and extensions for already-in-use systems, as described in [31]

for the implementation of a Web Coordination Service based on JavaSpaces. According

to [41], the static parts of a system can be expressed with algebraic data types, while for

the dynamic behavior, several different formal approaches are feasible, including process

algebras and temporal logic.

With process algebras, also known as process calculi, concurrent systems can be spec-

ified in a formal way. They describe the interaction of independent processes using a

limited amount of primitives. Algebraic laws are used to transform these specifications

into different expressions, thus allowing for formal reasoning. One widely used process

calculus is CSP (Communicating Sequential Processes) [17] by C. A. R. Hoare. The

abstract interaction between systems and their environments is described with a math-

7

1 INTRODUCTION

ematical formalism. Processes, which may run sequentially or in parallel, communicate

by exchanging messages. By using recursion, the calculus is able to describe processes

that run infinitely. A similar approach is used by Robin Milner’s π-calculus [32], which

relies on names and a very small set of operators to model concurrent computations. An-

other possibility to define the semantics of programs is with the Structural Operational

Semantics (SOS) [40] invented by Gordon Plotkin. Based on the abstract syntax of a

program, this method specifies its behavior with inference rules that define the possible

transitions for a program from the valid transitions of its syntactical components. Thus,

the rules specify how a complex program must react when some part of the program

fulfills a certain condition for a specific program state. A different approach to express

the semantics of concurrent systems is via temporal logic, as shown with TLA (Temporal

Logic of Actions) [29], which was developed by Leslie Lamport. Temporal logic com-

bines ordinary logical operators like conjunction, negation and implication with modal

operators that specify the temporal relations between the conditions. In TLA, both the

algorithm and the program properties that need to be verified are specified in a single

logic formalism, which is then used for reasoning.

Also some work has been published on the formalization of space-based computing

middleware. The operational semantics of the classical Linda model can be expressed

with a process algebra using traces [14], which are sequences of valid Linda actions.

The formal model enables the specification of the communication mechanisms and the

blocking behavior of Linda in an unambiguous way. In [4] and [3], a simple process

calculus termed LinCa is used to show that the expressiveness of the Linda model can

be extended if tuples include quantitative labels for probabilities and priorities. The

authors of [6] and [5] develop a process algebra for Linda and then extend it to depict

the semantics of notifications, timeouts and leasing, thus incrementally creating a formal

model for an abstract language similar to JavaSpaces.

Another space-based coordination model defined via a formal model is PoliS [7]. In Po-

liS, a space can contain sub spaces that include ordinary data as well as program tuples.

The programs within the space can modify this tree data structure when their corre-

sponding precondition is fulfilled, thus the structure of the space is constantly changing.

A program includes a rule that specifies how the tuples of the space shall be rewritten.

The formalism used to define the operational semantics is SOS, whereas TLA is applied

for the reasoning on the coordination architectures that are modeled with PoliS.

The KLAIM system [35] provides a programming language for mobile processes, re-

alized via multiple Linda tuple spaces and an additional operation set that supports the

management of processes. Mobile agents can be moved within the KLAIM net from one

system node to another, just like ordinary data. The integrated type system enforces

security properties by checking that processes do not violate any access rights. The pro-

8

1 INTRODUCTION

gramming language syntax itself is based on process algebras, thus KLAIM presents an

asynchronous higher-order process calculus. The operational semantics of KLAIM are

defined using Plotkin’s SOS approach.

In [34], a knowledge-based coordination model for subscriptions on a semantic repos-

itory is presented. Using temporal logic, the semantics of the notification mechanism

is defined with the help of safety and liveness conditions. The safety condition specifies

when a notification may be fired, while the liveness condition guarantees that a subscriber

must eventually receive a notification if a matching event occurs.

The XVSM middleware itself remains without a formal foundation until now. A

comparison to JavaSpaces, however, shows the necessity of a formal model. The concise

JavaSpaces specification [47] is not able to cover all semantic details. Such informal

definitions are usually too ambiguous and leave much freedom in implementation choices,

which leads to different implementations with varying semantics [6, 5]. Therefore, this

thesis presents a detailed specification for XVSM, which can later be transformed into a

strictly formal model using process calculi, temporal logic or similar approaches.

9

2 XVSM ALGEBRA

2 XVSM Algebra

The formal description of XVSM is based on a simple algebraic foundation [10] that

defines the middleware’s basic data structures and how they can be accessed and manip-

ulated. In general, the space consists of a nested hierarchy of data collections that contain

objects like strings or integers, as well as other collections. These data items, which can

be arranged in a sequential list or in an unordered bag, have a label to identify them.

Sets, which require all members to be distinct, are not used in the formal model because

they would need complex equality checks if items are added to them. Instead, sequences

(= lists) are used if the ordering of the labeled values is important, and multisets (=

bags), which are basically sets that allow duplicates, otherwise. Thus, the basic data

structure is a tree of labeled multisets and sequences with labeled values as leaves. This

structure is called an xtree, which can be defined recursively as follows:

Definition: An xtree is either a sequence or a multiset of labeled xtrees, or an unstruc-

tured value like a string or an integer.

A multiset xtree can be written as [l1:x1, l2:x2, . . .], where the ls are labels and the

xs are xtrees. Similarly, a sequence xtree is represented as 〈l1:x1, l2:x2, . . .〉. If an xtree

does not have to be accessed directly, it does not need an explicit label, thus the empty

or anonymous label can be used. As a matter of convenience, :x may be abbreviated as

x if the xtree cannot be mistaken as a label. Another possible shortcut is to write only

the label l instead of l:true. As an example, consider the following sequence:

X = 〈abc, a:24, a:42, b:[pi:3.14, e:“text”], []〉

This xtree consists of an implicit Boolean value true labeled with abc, two integer

values with the same label a, a multiset b containing a float (pi) and a string (e), and

an empty multiset implicitly tagged with the anonymous label. To navigate within an

xtree, the labels of the xtrees are used. The path identifying a sub xtree consists of

all xtree labels from the root to the searched xtree. The labels within an xtree do not

necessarily have to be distinct, but the navigation becomes indeterministic if they are

not. For sequence xtrees, the index number can also be used for accessing a child xtree

instead of using a label. Formally, a path is a sequence of labels or indices separated by

slashes. To access a substructure of an xtree, a period and the path to the searched xtree

are appended to it. The xtree selected by a path is recursively defined as follows, where

10

2 XVSM ALGEBRA

notation meaning
[] empty multiset
B tB′ union
B = B′ multiset equality
B v B′ submultiset relation
a ∈ B multiset membership
|B| cardinality
any(B) element selection
B −B′ multiset difference

notation meaning
〈 〉 empty sequence
C · C ′ concatenation
C = C ′ sequence equality
a ∈ C sequence membership
|C| length
first(C) first element
rest(C) all except first
nth(n,C) n-th element of sequence

Table 1: Operations on multiset and sequences

ε denotes the empty element that implicitly terminates each path:

x.ε = x

[. . . , l:x, . . .].(l/p) = x.p for any label l

〈. . . , l:x, . . .〉.(l/p) = x.p for any label l

〈l1:x1 . . . , li:xi, . . .〉.(i/p) = xi.p for any valid index number i

For example, the following expressions are valid for the xtree defined above: X.b =

X.4 = [pi:3.14, e:“text”], X.(b/pi) = 3.14 and X.5 = []. The expression X.a may either

be 24 or 42, of which one is chosen indeterministically. The evaluation of the access based

on the previous definition is shown in the following:

X.(b/e) = X.(b/e/ε) = [pi:3.14, e:“text”].(e/ε) = “text”.ε = “text”

For a meaningful usage of this data structure for the definition of the XVSM formal

model, it is necessary to also specify operations on xtrees. Basically, all functions on

multisets and sequences, like union, difference or cardinality, can be used. Table 1 shows

examples for possible operations.

This basic data structure is used to define the XVSM formal model. Basically, a space

is a multiset xtree that comprises all containers located at a single site, together with

their unique labels that serve as their references. A container is itself a multiset xtree

containing user-generated entries with unique labels. Entries consist of labeled values

called properties, which have a well-defined label and a value that can either be an un-

structured value like an integer or string, or a more complex xtree. Properties correspond

to the attributes of the object represented by the entry. An entry may represent a real-life

object, a message with header and payload attributes, or a command with the arguments

and quality parameters modeled as properties. An entry depicting a book might look as

11

2 XVSM ALGEBRA

follows:

[title:“JavaSpaces”, author:“Freeman”, author:“Hupfer”, author:“Arnold”,

date:1999, publisher:“Addison-Wesley”, nPages:368]

As seen in the example, properties with the same label are allowed within entries. How-

ever, the book entry could also be modeled with unique labels if this is more appropriate:

[title:“JavaSpaces”, author:〈a1:“Freeman”, a2:“Hupfer”, a3:“Arnold”〉,

date:1999, publisher:“Addison-Wesley”, nPages:368]

As explained above, the XVSM space and all of its components can be seen as xtrees.

When formalizing the interaction between several spaces, the set of all existing spaces can

be modeled in one single xtree called the universe. Therein the space xtrees are labeled

with their unique URI.

For the rest of this thesis, labeled values within xtrees will be called properties, even

outside of user entries. Beside the actual user data stored in the entries of a container,

there are also meta properties in the XVSM data structure that are accessed by different

CAPI layers as an internal storage to bootstrap the behavior of the space. Meta data

can be stored in simple meta properties at space, container and entry level, or in dedi-

cated meta containers. Examples for meta properties are transaction locks, coordinator

information like a key or a vector position of an entry, or the sequence of scheduled re-

quests within the runtime machine. Meta data are identified by labels starting with an

underscore (). Together, meta and user data form an xtree that depicts the complete

state of an XVSM space during runtime. The data structure of this xtree is defined in

the so-called XVSM meta model. Each CAPI layer accesses different meta properties via

their well-known path. Meta data can be manipulated by the same mechanisms as regular

user data, namely with read, take and write operations. The exact structure of the meta

model is defined in Appendix A, while the usage of the meta properties is explained in

Sect. 4.

12

3 XVSM QUERY LANGUAGE

3 XVSM Query Language

3.1 Query Structure

To utilize the algebraic data structure for modeling the whole space functionality in an

efficient way, there must be more advanced access mechanisms than selection by name

or by position. Therefore, a basic query language is used that enables the selection and

reordering of specific xtrees. This XVSM Query Language (XVSMQL) can be applied by

the user of the space to select entries from a container, but it is also used on arbitrary

xtrees of the XVSM meta model for the bootstrapping of the core API specification. The

following paragraphs describe the general semantics of the query language when applied

on a given sequence or multiset xtree, while Sect. 4.1 describes how a query is evaluated

when used as an argument of a read or take operation.

An XVSM Query (XQ) consists of one or more predicates called Simple XVSM

Queries (SXQ) that are chained via the pipe operator. Therefore, the query has the

following general form:

SXQ1|SXQ2| . . . |SXQn

A query evaluation on a given xtree is started by applying the first SXQ on the whole

xtree, which yields a multiset or sequence xtree of properties fulfilling the predicate. This

resulting xtree is then used as an input for the next SXQ and so forth, until the last SXQ

returns the result xtree of the entire query. From stage to stage, the cardinality of the

result can only decrease or stay the same, as the predicates may only select or reorder the

properties but may not add further data. An XVSM query can thus be seen as a filter

mechanism that only allows those properties to pass through that fulfill all predicates

specified by the SXQs.

An SXQ can be classified into two basic categories, which are matchmakers and selec-

tors. A matchmaker is a predicate that can be tested for each single element of the given

xtree and evaluates unambiguously to either true or false. The properties that fulfill the

predicate remain in the result xtree whereas the others are cut out, while the relative

order of the remaining xtrees stays the same in case of a sequence. A selector, on the

other side, is always evaluated on the whole input xtree because the function may not

only filter certain elements but also change their order, thus it must be able to compare

all existing elements. Selectors can also change an unordered multiset input xtree into

a sequence result xtree and vice versa. To start evaluation of a selector SXQ, the entire

input xtree must be available while matchmakers could be applied on partly existent in-

puts because they are evaluated on the properties one by one. Consecutive matchmaker

SXQs are therefore commutative and can be evaluated in any order and even in paral-

13

3 XVSM QUERY LANGUAGE

lel, which offers possibilities for optimizations. However, when a selector SXQ occurs in

a filter chain, the computation of all previous SXQs must be finished as the selector’s

evaluation depends on the entire xtree and cannot be started with incomplete input.

Formally, a matchmaker function is a mapping from the set of all valid properties to a

Boolean value. A selector function transforms a sequence or multiset xtree into another

sequence or multiset xtree, whereas the set of properties within the result xtree must be

a subset of the properties occurring in the input. Both function types may optionally

also have arguments of arbitrary types which specify how the concrete SXQ should be

applied to the input. In contrast to a matchmaker, a selector function may also fail with

a well-defined error if its selection criteria or order preconditions are not fulfilled for the

given input. As long as a function complies with this specification, it can be used as an

SXQ, making this query language extensible. In general, however, most queries consist

only of a limited amount of predefined query predicates, which are introduced in Sect. 3.2.

Additionally, more specialized matchmaker and selector functions will be specified in this

thesis when needed.

3.2 Predefined Queries

Using only the predefined query elements presented in this section, it is already possible to

express many different selection conditions. In the following, the selector and matchmaker

functions of XVSMQL will be described by specifying their syntax and semantics. To

illustrate the behavior of these query predicates, suitable examples are given using the

following example entries representing books:

E1 = [title:“JavaSpaces”, author:“Freeman”, author:“Hupfer”, author:“Arnold”,

publication:[date:1999, by:“Addison-Wesley”], nPages:368]

E2 = [title:“Virtual Shared Memory for Distributed Architectures”, author:“Kühn”,

publication:[date:2001, by:“Nova Science Pub Inc”], nPages:112]

E3 = [title:“JavaSpaces in Practice”, author:“Bishop”, author:“Warren”,

publication:[date:2002, by:“Addison-Wesley”]]

E4 = [title:“JavaSpaces Example by Example”, author:“Halter”,

publication:[date:2002, by:“Prentice Hall PTR”], nPages:400]

E5 = [title:“How to write parallel programs: a first course”, author:“Carriero”,

author:“Gelernter”, publication:[date:1990, by:“MIT Press”]]

14

3 XVSM QUERY LANGUAGE

These entries contain a title, a variable amount of author properties, a publication prop-

erty containing a nested multiset with date and publisher information and optionally also

a property with the number of pages. The variables E1 to E5 are used to abbreviate the

representation of the container. There are two different versions of the input xtree that

contains these five entries, namely one multiset XMs and one sequence XSeq:

XMs = [E1, E2, E3, E4, E5]

XSeq = 〈E1, E2, E3, E4, E5〉

If both xtrees return the same result for a query, they are simply abbreviated with X.

3.2.1 Predefined Selectors

Count operator

• cnt(n)

The cnt predicate takes the first n entries of the input, if it is a sequence, else n entries

are selected from the multiset arbitrarily. The given argument must be an integer value

greater than 0. If there are not enough entries available, the query fails.

Examples:

XSeq | cnt(3) = 〈E1, E2, E3〉

XMs | cnt(1) = [E3]

X | cnt(9) = ERROR!

Note: For multisets, the selection of entries is indeterministic, so instead of E3, any other

entry could be selected.

Sorting

• sortup(p)

• sortdown(p)

• reverse()

• id()

The sortup and sortdown filters sort the entries in ascending or descending order of the

property values at the specified relative path p within the entry as defined in Sect. 2.

15

3 XVSM QUERY LANGUAGE

The path may contain wildcards (*) matching all labels, so a value of */date would

match the relative path publication/date as well as any other nested date values in

one of the entry’s properties. The sorting is stable and entries without the property are

appended at the end. If an entry has several properties at the given path, one is chosen

indeterministically for sorting. It is assumed that the compared values have a natural

order, otherwise the function returns an error. The sorting functions always return a

sequence xtree as result, even if the input is a multiset. The reverse function inverts

the internal order of the input sequence and returns an error if used on a multiset xtree,

while the id selector simply returns the input xtree without any changes.

Examples:

X | sortup(*/date) = 〈E5, E1, E2, E3, E4〉

X | sortup(author) = 〈E3, E5, E1, E4, E2〉

X | sortdown(nPages) = 〈E4, E1, E2, E3, E5〉

X | sortdown(publication/by) = 〈E4, E2, E5, E1, E3〉

XSeq | reverse() = 〈E5, E4, E3, E2, E1〉

XMs | reverse() = ERROR!

XMs | id() = [E1, E2, E3, E4, E5]

Note: As the author property is ambiguous for some entries, the corresponding sorting

query may also have different solutions, dependent on the indeterministically chosen

property used for comparison.

Uniqueness

• distinct(p)

This filter creates an output xtree that has unique values for properties at the specified

relative path p within the entry, which may also contain wildcards. In case that more

than one entry has the same property value, the first one is taken for sequences, or any

one in case of a multiset input xtree. If an entry has several properties at the given path,

one is chosen indeterministically for comparison. Entries that do not have a property at

the given path are not included in the result.

16

3 XVSM QUERY LANGUAGE

Examples:

XSeq | distinct(publication/date) = 〈E1, E2, E3, E5〉

XMs | distinct(publication/by) = [E1, E2, E4, E5]

XSeq | distinct(nPages) = 〈E1, E2, E4〉

Note: For multisets, the selection of entries is indeterministic, so E3 could also be included

in the result instead of E1 when selecting unique publishers.

3.2.2 Predefined Matchmakers

Property predicates

• p ∈ {rangeExpr}

• p /∈ {rangeExpr}

• ∀p ∈ {rangeExpr}

• ∀p /∈ {rangeExpr}

Every property can be checked against a set of allowed or forbidden values by using a

filter of the form p ∈ rangeExpr and p /∈ rangeExpr, respectively. It is assumed that

all values have a predefined ordering, so that rangeExpr can be any set of values or

intervals. The specified path p denotes which (sub) xtree of the given entry is actually

compared to the range. In contrast to the relative entry paths used for the previously

defined selectors, the path is relative to the whole input xtree and not the child xtrees,

so that the labels of the entries can also be involved in the query. This allows selecting

meta properties with a certain name from an xtree. E.g., a path of l1 denotes the entry

with the corresponding label itself. Usually, queries are issued on properties of an entry,

which is written as */propLbl1, meaning that for any entry (with arbitrary label) the

query must look at the property labeled with propLbl1. It is also possible to query

sub properties, so */*/subLbl1 or */propLbl2/subLbl2 are valid paths. The expression

rangeExpr has the following syntax, specified in EBNF notation [21]:

rangeExpr = “..” | expr {“,” expr}

expr = val | lower “..” upper | lower “..” | “..” upper

lower = val | val “>”

upper = val | “<” val

In this description, val stands for any valid value of the property. It is possible to select

any value ({..}), a set of values (e.g. {v1, v2, v3}) or a set of intervals like {..4, 7..11, 13..},

17

3 XVSM QUERY LANGUAGE

which denotes any values less than or equal 4, greater than or equal 13 or between 7

and 11 whereas both boundaries are included. Also, a combination of single values and

intervals is allowed. For open intervals, the predecessor (< val) and successor (val >)

are used. A range expression like {12 > .. < 24} includes any values greater than 12 and

less than 24, so the boundaries are not included here.

The matchmaker selects all entries with at least one property at path p with a value

that is (not) contained in the given range. Due to duplicate labels and the use of wild-

cards, a path can determine several different properties. For the evaluation of the pred-

icate, it is only necessary to find one property value that fulfills the expression. So, to

determine that a property does not fulfill the matchmaker, all fitting properties must be

examined. If, however, a universal quantifier (∀) is used with the path, all properties at

the given path must comply with the expression, otherwise the entry is not included in

the result xtree. If no property at path p exists, the entry is also not included.

There are also some convenience operators defined which are based on the preceding

predicates:

• p = val, p 6= val

• p ≤ val, p < val, p ≥ val, p > val

• ∀p = val, ∀p 6= val

• ∀p ≤ val, ∀p < val, ∀p ≥ val, ∀p > val

• p

All of these predicates can be easily transformed into the previously defined extensive

syntax. E.g., p = val corresponds to p ∈ {val}, whereas p < val is equivalent to

p ∈ {.. < val}. If a predicate only consists of the path p, all entries containing a

property with arbitrary value at the given path are selected. In the extensive syntax, this

corresponds to p ∈ {..}.
It must be noted that with these semantics, certain conflicting operators are not mu-

tually exclusive when used with the same arguments. E.g., p = val and p 6= val, or

p < val and p > val can be true for an entry at the same time if the path denotes several

different properties. To guarantee that at most one of these predicates is true at any

time, the universally quantified versions must be used.

18

3 XVSM QUERY LANGUAGE

Examples:

(XSeq | */author = “Gelernter”) = 〈E5〉

(XSeq | */author 6= “Gelernter”) = 〈E1, E2, E3, E4, E5〉

(XSeq | ∀ */author 6= “Gelernter”) = 〈E1, E2, E3, E4〉

(XMs | ∀ */author ≥ “C”) = [E2, E4, E5]

(XMs | * = E1) = [E1]

(XSeq | */publication/date ∈ {1990 > ..1995}) = 〈 〉

(XSeq | */publication/by /∈ {“Addison-Wesley”, “MIT Press”}) = 〈E2, E4〉

(XMs | */nPages) = [E1, E2, E4]

Logical operations

• A ∧B

• A ∨B

• ¬A

All matchmakers can be combined with logical conjunction, disjunction and negation.

When using more than one logical operator in an expression, the following precedence

rules hold: Negation has higher precedence than conjunction, which has higher prece-

dence than disjunction. To change this default behavior, parentheses must be used. A

property predicate using a range expression can also be written as a disjunction. E.g.,

*/author ∈ {“Gelernter”, “Kühn”} is equivalent to */author = “Gelernter” ∨ */author =

“Kühn”. Two consecutive matchmaker functions in the query filter chain could always

be replaced by a single matchmaker formed by the conjunction of both SXQs. Formally,

the logical operations are higher-order functions that take one or two other matchmak-

ers as arguments to form a new matchmaker function that can be evaluated on the entries.

Examples:

(XSeq | */author = “Gelernter” ∧ */author = “Carriero”) = 〈E5〉

(XSeq | */nPages ∨ */publication/date < 1999) = 〈E1, E2, E4, E5〉

(XSeq | ¬ */author = “Gelernter”) = 〈E1, E2, E3, E4〉

(XMs | (*/nPages < 400 ∨ */author = “Bishop”) ∧

¬ (*/publication/by = “Addison-Wesley”)) = [E2]

19

3 XVSM QUERY LANGUAGE

3.2.3 Combined Queries

The previously defined SXQs can be combined in an arbitrary way to form a complex

query, as shown in the following examples:

Get all books from publisher “Addison-Wesley” sorted by publication date:

(X | */publication/by = “Addison-Wesley” | sortup(publication/date)) = 〈E1, E3〉

Get the newest book that has over 300 pages:

(X | */nPages > 300 | sortdown(publication/date) | cnt(1)) = 〈E4〉

Of all the books published in 2002, get the one with the second title in lexicographical

order:

(X | */publication/date = 2002 | sortup(title) | cnt(2) | reverse() | cnt(1) = 〈E3〉

3.3 Analysis and Comparison

Initially, the query language was planned to be used only on entries within user containers.

This implies that for access and manipulation of the meta model, separate methods would

have to be introduced to read, set and delete meta properties by specifying their unique

path. To simplify the formal model, XVSMQL has been defined for all xtrees instead of

only for user containers. Thus, every operation on the space can be mapped internally

to a series of simple read, take and write operations on the meta model, as described in

Sect. 4. This decision to use the query language also for the bootstrapping of the XVSM

runtime has influenced the specifications of the predefined SXQs. The use of wildcards

in the path is usually not necessary for user entries as these have a well-defined structure

and the leading wildcard indicating an arbitrary label can be implicitly assumed. In this

case, the matchmaker */nPages > 300 would simply be written as nPages > 300. To

retrieve arbitrary data within the meta model hierarchy, however, it is feasible to allow

wildcards because many labels in this model are auto-generated and it would be tedious

to issue a query to determine the property labels before the actual query can be executed.

Therefore, the introduction of wildcards allows for more flexibility and easier queries on

the meta model.

The XVSMQL is loosely based on a subset of SQL SELECT statements, which are

used for queries in relational databases. An input xtree in XVSM can be compared

to a single table in a database, as both contain structured data. The main differences

are that database tables have records with a flat structure and fixed fields, while xtrees

may inhibit inhomogeneous and possibly nested data. For the definition of the query

language, however, this is not a big issue because the nested structure can simply be

20

3 XVSM QUERY LANGUAGE

expressed by paths instead of names, and entries that do not contain a certain property

are treated as if the property implicitly has the value null. In contrast to SQL, where

joins between different tables are possible, XVSMQL only works on a single input data

structure. As XQs only filter entries without changing their appearance, projections

(i.e. only returning certain properties of matching entries) and aggregate functions that

return values computed from the result (like sum, average or count) are not possible.

Basically, an XQ can be compared to an SQL query of the form "SELECT * FROM xt

WHERE ... ORDER BY ...", where xt is either the identifier of the original input data or

a nested subselect statement of the same form. The operators within a WHERE clause are

very similar to the predefined matchmakers in XVSMQL: If compared with literal values

(i.e. no comparison with other data fields or subselect results), the SQL predicates IN,

BETWEEN, IS NULL as well as the common comparison operators =, <>, >, >=, < and <=

can be directly mapped to XVSMQL property predicates. Also, the logical predicates

are semantically equivalent. Only the LIKE predicate, which determines if a string fits

a certain pattern, is not supported in XVSMQL. The ORDER BY clause, which sorts the

result set by one or more fields, corresponds to a combination of one or more XVSMQL

sorting selectors. The distinct selector, however, has a slightly different meaning as the

corresponding keyword in an SQL SELECT clause. In SQL, only the column marked as

distinct can be displayed in the result set, whereas XVSMQL returns the whole entries

with all properties. A possible counterpart of the cnt selector in SQL is the non-standard

LIMIT clause, which allows to specify a maximum amount of returned rows. There is,

however, no error message if not enough elements are found.

Another query language that has comparable expressiveness is the one used by JMS

message selectors [48]. With JMS, Java applications can send and receive messages in

a message queue provided by a Message Oriented Middleware. As message queues are

based on first-in-first-out order, no reordering of the incoming message stream can take

place. It is, however, possible to set a message selector that specifies which messages the

client is interested in. Only these messages are then selected from the queue while the

others are ignored. This mechanism allows simple queries on the header of JMS messages

that are based on the conditional expressions of the SQL WHERE clause described above

and use a similar syntax. Thus, a JMS message selector is also roughly equivalent to a

single XVSMQL matchmaker function, while XVSMQL selectors and filter chains enable

improved query capabilities compared to JMS.

Queries on structured data can also be found for XML documents, where XPath 1.0 [8]

is a common language to extract information. An XPath expression consists of a sequence

of location steps that contain an axis, a node test and a predicate. Starting from a given

context node, the axis determines the navigation direction, e.g. direct children, ancestors

or descendents can be examined. A node test specifies the name or type of nodes that are

21

3 XVSM QUERY LANGUAGE

included in the result set, whereas predicates compare certain attributes of a node similar

to XVSMQL matchmakers. These predicates include comparisons, Boolean functions and

simple arithmetic operators on any sub node, as specified by a path that may itself contain

several location steps. For each location step of an XPath query, all nodes of the given

axis that fulfill the node test and the predicate are selected and used as starting point

for the next location step, until the result of the last location step is finally returned

to the user. XVSMQL does not support the axis concept because queries are always

evaluated on a single multiset or sequence of xtrees. Node tests and simple predicates

that only use the child axis within their path and do not compare the values of multiple

attributes, however, basically correspond to the capabilities of XVSMQL matchmaker

functions. Moreover, the selector functions of XVSMQL have no equivalency in XPath,

which may only return an unordered node set as a result.

Compared to Linda template matching [13], XVSMQL offers much more possibilities

for querying data in the space. In Linda, it is not possible to retrieve tuples in a sorted

way or to compare if a certain property is higher or lower than a specified value. This

query mechanism only allows checking for exact equality of a field compared to a single

value, while the matchmaker functions of XVSMQL enable more powerful comparisons.

With XVSMQL, it is also possible to retrieve several entries at once, whereas Linda tuple

spaces may only return one matching tuple per read operation. Template matching allows

checking if a tuple has a specific cardinality. As XVSMQL permits access to properties

via their position, the only way to test if an xtree has a particular count n of properties is

to check that the property at path n exists and the one at path n+1 does not. A simpler

way would be to define an own matchmaker testing for the size of an xtree.

The analysis of the XVSM Query Language has shown that the presented approach

is feasible because other well established query languages that operate on structured

data use similar mechanisms to select data. Instead of using one of these existing query

languages for queries on xtrees, the XVSM Query Language has been defined to retain

control on the exact semantics of queries on the space. Other query mechanisms are not

designed for the use in SBC middleware or offer insufficient expressive power like Linda

template matching. Therefore, an own approach is used while useful features of other

query languages are incorporated.

The XVSMQL definition is subject to change, as features that appear useful in the

future might be included in the set of predefined query selectors and matchmakers. In

the following, some possible extensions are listed:

• a matchmaker based on the size of a sequence or multiset xtree at a given path

• a variant of cnt(n) returning all, but at least n entries (otherwise the query fails)

• a variant of cnt(n) limiting the maximum number of returned entries to n

22

3 XVSM QUERY LANGUAGE

• allowing comparison between two or more different properties of an entry in a single

property predicate, including simple arithmetic expressions for numerical values

• a matchmaker for string properties based on the SQL LIKE operator or on regular

expressions in general

23

4 XVSM CORE API

Figure 1: Layered architecture of XVSM

4 XVSM Core API

The semantics of the XVSM middleware are defined via a language-independent protocol

called XVSMP, which is itself bootstrapped by several Core API layers. Each of these

CAPI layers mainly uses functionality of the tier directly underneath, while every layer

may use the algebraic foundation described in Sect. 2. Figure 1 outlines this architecture

and shows its main elements, which are described in detail in sections 4.1 to 4.5.

The basic operations of CAPI-1 enable the creation of a simple space that can store

all data necessary for higher CAPI layers to bootstrap themselves. This layer is a data

storage that does neither support transactions nor any other form of coordination than

using simple atomic write, read and take operations with explicit path specification and

the query possibilities of XVSMQL. The higher CAPI layers use this storage provided

by CAPI-1 for user data as well as for meta data that they need to fulfill their tasks.

CAPI-2 adds transactional access to the space by aggregating several basic operations to

a single atomic action, while CAPI-3 introduces the container concept with coordinators

that enable data extraction mechanisms exceeding the query possibilities of XVSMQL.

Since one single CAPI-3 operation consists of several accesses to the XVSM meta model

and its effects must remain atomic, it relies on internal transactions provided by CAPI-

2. The XVSM runtime model is specified with CAPI-4, which is responsible for the

initialization of the meta model and for the scheduling and execution of user requests.

24

4 XVSM CORE API

Furthermore, aspects that may enhance the semantics of CAPI-3 operations are defined at

this level. The XVSMP layer maps the XML protocol to the internal xtree representation

of requests and invokes the runtime in an asynchronous way. On top of the protocol,

arbitrary language bindings can be built that send and receive XVSMP messages and

thus can communicate with the space core.

The CAPI layers 1 to 3 are all synchronous and non-blocking, so they return imme-

diately with a result after they have been called by an above layer, even if they currently

cannot fulfill their task. This behavior guarantees that a CAPI-3 operation can never

block the whole runtime by waiting possibly infinitely for some kind of event. Thus, the

runtime machine keeps complete control over the chronology of its requests.

To bootstrap the scheduling of requests with CAPI-4, the non-blocking CAPI layers

are not sufficient. Therefore, a variant of CAPI-1 called CAPI-B is introduced, which

extends the basic operation set with additional functions that may block until they are

successful. CAPI-B is used by the runtime machine to access special runtime containers

that are part of the XVSM meta model and temporarily store active requests and sup-

plementary information. For the execution of the actual requests on user containers, the

runtime machine uses the non-blocking CAPI-3.

All CAPI operations return an xtree containing a status code together with the actual

result if applicable. The possible status codes are defined as follows:

• OK: Operation successfully completed.

• DELAYABLE (only CAPI-1, 2 and 3): The operation cannot be executed at the

moment, but it should be retried in the future. This happens, for example, if a

read operation tries to read one entry from an empty container.

• LOCKED (only CAPI-2 and 3): One or more data structures needed for the execution

are locked by another transaction. The operation should be retried when the locks

are released.

• NOTOK: The operation cannot succeed and should raise an error to the caller.

If the status is not OK, a status information property indicating the reason why the

operation is not able to finish is given instead of the result. Functions of CAPI-2 and 3

check the result status of any invoked lower level CAPI method. If an error message is

received, the function usually also returns immediately with the obtained error status.

In contrast to the lower layers, CAPI-4 is able to block until a request can be fulfilled

within a given timeout. As long as the runtime machine receives a DELAYABLE or LOCKED

result from a call to the corresponding CAPI-3 operation, the request can be rescheduled

and thus has the chance to be fulfilled at a later time. When a timeout or a result

25

4 XVSM CORE API

with status OK or NOTOK occurs, an answer entry is generated for the protocol layer that

includes the request result or error message, respectively.

4.1 CAPI-1: Basic Operations

All functionality of the XVSM core is based on the simple data access mechanisms of

CAPI-1. It is possible to write specified xtrees into the space at a certain position and to

read and take xtrees — fulfilling a given XVSMQL query — from the space. Thus, the

access possibilities at this lowest level already resemble the write, read and take operations

of the user API, enabling a clean bootstrapping process of the core functionality with a

minimum of basic operations. At this layer, user and meta data are not distinguished,

so it is not only possible to read entries, but also the content of whole containers or

of a certain meta property at a well-known path. It must be noted that the available

operation set does not include an operation to update a property at a given path, but

this can be easily simulated by a take followed by a write operation on the same path. Of

course, it would be possible to define separate data manipulation operations to get, set,

update and delete properties of the meta model that have a fixed path and need not be

queried by XVSMQL. However, to keep the model simple such methods are omitted in

favor of the supported operations write1, writeBulk1, writeL1, read1 and take1. With

write1 and writeBulk1, one or more xtrees, respectively, are written at a certain path of

the space with automatically generated labels that are also returned in the result, while

writeL1 uses a specifically declared label, which is useful for writing meta properties

located at a fixed position within the meta model. The read1 and take1 operations

support XVSMQL queries on a specified sub xtree of the space.

CAPI-1 operations are considered to run as atomic operations, so at any time only

one CAPI-1 operation may access the same data structure. As mentioned in Sect. 4, all

CAPI-1 operations return an xtree containing a status code and potentially also a result

or a status information property in case of errors. Table 2 shows the arguments and

return values of all CAPI-1 operations with the types of all parameters in brackets. In the

following, the exact semantics of the individual functions are specified, broken up into the

two categories of write and query operations, accompanied by a simple implementation

in pseudo code syntax, using the algebraic facilities defined in Sect. 2.

26

4 XVSM CORE API

Arguments Result
writeL1 Root (Sequence/Multiset xtree), Path

(String), Label (String), Value (XTree)
-

write1 Root (Sequence/Multiset xtree), Path
(String), Value (Xtree)

Label (String)

writeBulk1 Root (Sequence/Multiset xtree), Path
(String), Values ([Xtree])

Labels ([String])

read1 Root (Sequence/Multiset xtree), Path
(String), Query (String)

Query result (Sequence/
Multiset xtree)

take1 Root (Sequence/Multiset xtree), Path
(String), Query (String)

Query result (Sequence/
Multiset xtree)

Table 2: CAPI-1 operations

Basic write operations

1 writeL1 (xt , path , l b l , va l)

2 parent := xt . path

3 i f (parent = undef)

4 return [statuscode:“NOTOK”, info:“InvalidPath”]

5 else

6 parent := parent t [l b l : va l]

7 return [statuscode:“OK”]

Listing 1: Definition of writeL1

The three write operations of CAPI-1 are defined in a very similar manner. As an

example, Listing 1 shows the definition of writeL1 for parent xtrees that are multisets,

whereas the definition for sequence xtrees is analogous. Starting from the root xtree xt,

this operation tries to write a property with specified label lbl and xtree value val into

a child xtree of the root specified by the path argument. The path may not include

wildcards, but can be ambiguous due to duplicate labels. In this case, only one xtree is

chosen indeterministically for the write operation. If no xtree at the given path exists,

an error is indicated. The write operation itself is realized via a multiset union (or a

sequence concatenation, respectively) on the target xtree. In contrast to writeL1, the

write1 function does not require a label as a parameter. Instead, an automatically

created label is used when writing the value xtree to the space. To enable higher-level

CAPIs to access the written xtree after the operation completes, the label is returned

in the result xtree. This label is unique within its parent xtree to avoid indeterministic

behavior when accessing the property via its path. The writeBulk1 operation is defined

like write1 with the difference that a list of value xtrees is given as an argument instead

of just a single value. All of these xtrees are written to the given path with separate

unique labels, which are also returned as a list in the result xtree, using the same order

for the labels as for their corresponding value xtrees in the argument list.

27

4 XVSM CORE API

Basic query operations

1 take1 (xt , path , query)

2 parents := {x | x = xt . path}
3 i f (query = ε)

4 f o ra l l p ∈ parents

5 xt := removeXtree (xt , p)

6 r e su l tX t r e e := bu i ldResu l tXtree (parents)

7 return [statuscode:“OK”, result:resultXtree]

8 else

9 searchXT := createSearchXtree (parents)

10 (en t r i e s , errXT) := applyQuery (searchXT | query)

11 i f (errXT = [])

12 f o ra l l e ∈ e n t r i e s

13 xt := removeXtree (xt , e)

14 r e su l tX t r e e := bu i ldResu l tXtree (e n t r i e s)

15 return [statuscode:“OK”, result:resultXtree]

16 else

17 return [statuscode:“DELAYABLE”, info:errXT]

Listing 2: Definition of take1

The query operations read1 and take1 return xtrees in a specified area that match a

given XVSMQL query. Both return equal results when used with the same parameters.

The only difference is that take1 has the additional side effect of removing the found

xtrees from the space, therefore the implementation of take1 shown in Listing 2 can be

easily adapted for read1. In contrast to the write operations, wildcards within paths are

possible to extend the search area. In line 2, all xtrees of the root xt with matching path

are stored in the parents variable. Two query modes are supported: If an empty query is

specified, the xtrees in parents are directly returned. For take1, these xtrees are removed

from their own parent xtrees in this case with the removeXtree function. This mode is

useful when accessing a property directly by its full path similar to the previously defined

writeL1. It must be noted, however, that there is no guarantee that the result contains

exactly one xtree value, as there could be any number of xtrees at the given path or none

at all. In all cases the query operation returns with an OK status. If the specified query

is non-empty, it is applied to a single search xtree which is generated from the contents

of the xtrees in the parents variable (line 9). Properties of multiset xtrees are put into

a single multiset, while properties of sequence xtrees are put into a single sequence if the

parent xtrees themselves have an unambiguous order. If sequence and multiset xtrees are

mixed or if the order of several sequence xtrees is not defined (e.g. when they are located

in the same parent multiset xtree), the structure of the resulting search xtree remains

unspecified. Other xtrees in the parents variable that are not sequences or multisets (like

simple values) do not influence the search xtree as they do not contain any child xtrees.

For retrieving all entries of this search xtree, a query consisting only of the id selector

can be used. The applyQuery function invokes the XVSMQL query on the search xtree

and returns either the result entries or an error. In the latter case, the query operation

28

4 XVSM CORE API

returns with a DELAYABLE status together with the error message. Otherwise, an OK status

is returned together with the result and, for take1, the matching entries are also removed

from their respective parent xtrees. For both modes, the result entries are prepared by

the buildResultXtree function before the operation returns, as the property consisting

of label and value is not sufficient to identify the location of a found entry because the

path may contain wildcards that need to be resolved. This is done by enriching the result

entries with the declaration of their complete path within the root xtree. The result

of a read1 or take1 operation is therefore a sequence or multiset of entries like in the

following example: 〈[path:“a/b/c”, value:E1], [path:“a/d/c”, value:E2]〉

4.2 CAPI-2: Transactions

The basic operations specified in the previous section are defined to be atomic but the

transactional safety of an action consisting of several CAPI-1 operations cannot be guar-

anteed. Therefore, it becomes necessary to group these actions into transactions.

4.2.1 Transaction model

In database theory, transactions are usually described with the so-called ACID properties

[15]. This definition, which is an acronym for the terms atomicity, consistency, isolation

and durability, can also be applied to spaces [47]:

• Atomicity: Either all operations of a transaction occur in an atomic way or none

of them do.

• Consistency: The space must be in a consistent state after the transaction com-

pletes.

• Isolation: Concurrent transactions should not affect each other.

• Durability: Changes made by transactions must be permanent.

CAPI-2 ensures these properties by using a pessimistic locking model on the xtrees of

the space, although durability can only be guaranteed as long as the core is running. Each

CAPI-2 operation tries to lock the data structures it accesses with adequate locks. If a lock

cannot be acquired because an incompatible lock of another transaction already exists,

the whole operation returns with status LOCKED. Although both status values LOCKED

and DELAYABLE indicate that the corresponding request needs to be rescheduled, they are

distinguished because the runtime handles these types of requests slightly differently (see

Sect. 4.4). The process of acquiring a lock has to occur atomically, so that two parallel

CAPI-2 operations may not set an exclusive lock on a previously unlocked entity in a

concurrent way.

29

4 XVSM CORE API

The influence of concurrent transactions on each other cannot be completely elimi-

nated if they try to invoke conflicting operations on the same data structure, as only one

transaction may succeed while the others must wait until this transaction completes. In

some cases, it is beneficial to use a strict isolation policy that forbids changes or even read

access by other transactions until commit or rollback, while in other cases, a maximum of

concurrency is sought at the expense of a clean isolation between transactions. Therefore,

the ANSI/ISO SQL standard defines four different isolation levels for databases [20]:

• Read uncommitted: Uncommitted changes can be seen by other transactions,

so dirty reads are possible.

• Read committed: Only committed data can be read by other transactions, but

there is no guarantee that the records retrieved within a transaction are still avail-

able when it commits, thus allowing non-repeatable reads. Data changed within

a transaction cannot be accessed by other transactions until the first transaction

commits or rollbacks, which is achieved with write locks.

• Repeatable read: In addition to the exclusive write locks, also read locks are

introduced which guarantee that read values remain valid for the whole transac-

tion. It is, however, still possible within a transaction that consecutive queries with

the same parameters return different results, as additional values added by other

transactions could influence the query (phantom reads).

• Serializable: This strictest isolation level avoids the previously mentioned isolation

problems by letting each transaction work on a completely isolated view of the data.

The effects of the transactions must appear as if they are executed in some sequential

order.

Spaces have slightly different isolation requirements than databases, as no update op-

eration is supported. On the other hand, the blocking behavior of space operations may

lead to prolonged transactions. For spaces, the isolation level “serializable” is too strict

because blocking read and take operations within a transaction need to wait for data

written by other transactions to allow a meaningful coordination. Therefore a complete

isolation of transactions is not feasible. With “read uncommitted”, no isolation between

transactions is ensured, which is usually not viable for the coordination of concurrent pro-

cesses, as one peer may see inconsistent data that is currently processed by another trans-

action. However, this mode enables the best performance when transactional integrity

is not required. The isolation level “read committed” offers more practical semantics for

the use in a space if read operations are still allowed to read entries that are currently

being taken by another open transaction. This behavior can be useful for a value that

30

4 XVSM CORE API

often needs to be updated, which is modeled with a take and a write operation within a

transaction. In this case, a concurrent read always retrieves a matching value, either the

old entry or the new one, while a transaction using “repeatable read” would not allow

the read operation until the transaction invoking the update finishes. “Read committed”

lacks, however, the possibility to prevent access to an entity by applying a lock on it. As

a result, the default transaction model of CAPI-2 supports “repeatable read”, which also

corresponds to the isolation level used in JavaSpaces [47]. Due to the query semantics

of XVSM, however, read and take operations are not really repeatable as the xtrees are

not referenced directly but only by a combination of a possibly ambiguous path and a

query chain. The transaction model only guarantees that the results of the first query are

still available when the second query occurs, but phantom reads might lead to a different

result for the second query if new entries are written to the space that affect the outcome

of the XQ. In the future, modes for “read committed” and “read uncommitted” may also

be added to extend the possible semantics of XVSM operations.

In XVSM, two kinds of transactions are distinguished: User transactions can be cre-

ated and committed or rollbacked via the user API, while sub transactions are needed

for internal use within the runtime to encapsulate a single operation during execution. A

sub transaction is linked to a user transaction and has access to all of its locked data, but

a sub transaction can also acquire its own locks. Figure 2 depicts the relation between

user and sub transactions. A runtime operation, which corresponds to the execution of a

user request by the runtime, uses a single sub transaction for its calls to CAPI-3. Due to

aspects, one runtime operation may consist of multiple CAPI-3 operations (see Sect. 4.4).

The CAPI-3 methods themselves call several CAPI-2 operations to realize their behavior.

Within a user transaction, several runtime operations and thus sub transactions can be

issued. If a runtime operation fails or must be rescheduled, all changes to the space that

have been made by this operation must be revoked, so the sub transaction is rollbacked

by the runtime. The surrounding user transaction, however, is not affected by this partial

rollback of its changes and remains active. If the request succeeds, the sub transaction

commits and transfers all of its locks to its parent user transaction. Multiple sub transac-

tions of the same user transaction may be executed concurrently, but one sub transaction

may not access data that is locked by another one until it finishes and transfers the lock

to the user transaction, thus making the change visible. Sub transactions must treat locks

of other active sub transactions of the same parent user transaction like locks of foreign

user transactions because otherwise they could read changes of a concurrent operation

that is later rollbacked. The transactional CAPI-2 operations need to be called with

parameters for the user transaction and the sub transaction; the latter one is provided

by the runtime to encapsulate a single request execution.

31

4 XVSM CORE API

Figure 2: User and sub transactions

4.2.2 Locking semantics

There are three main lock types in the model, corresponding to the three basic operations:

• insert lock: These xtrees were newly created and should be invisible for other

transactions.

• delete lock: These xtrees will be deleted, so other transactions that try to access

them should wait until the transaction that holds the locks rollbacks or commits.

This is an exclusive lock, so locks of other transactions must not exist on xtrees

with delete locks.

• read lock: These xtrees are read by one or more transactions and must not be

deleted. An xtree can have read locks of multiple transactions, so this is a shared

lock.

A take operation does not remove the xtrees from the space immediately, it just marks

them as deleted via the delete lock. Read locks can be upgraded to delete locks if no

other reading transaction is present. If an xtree has both an insert lock and a delete

lock, the xtree is invisible to other transactions, as it only temporarily exists within one

transaction. An exclusive read lock can also be set manually on an xtree by invoking a

special CAPI-2 method. This lock has the same meaning as a delete lock when checking

32

4 XVSM CORE API

Lock type Lock position write X take X read X
insert lock on parent of X - - -

on X - not visible not visible
on child of X - locked not visible

delete lock on parent of X locked locked locked
on X - locked locked
on child of X - locked locked

read lock on parent of X OK locked OK
on X - locked OK
on child of X - locked OK

Table 3: Locking compatibility for locks of foreign transactions

lock compatibility but the xtree will not be deleted from the space. On commit, all locks

of a transaction are removed along with all xtrees marked as deleted. On rollback, the

same is done except that all xtrees with an insert lock are removed instead of the deleted

ones.

In contrast to database tables, data in an XVSM space are not stored in flat tuples

but in hierarchic xtrees. Therefore the transaction model has to consider locks on parent

and child xtrees of an accessed entity as well. A write operation is only possible if no

parent xtree is locked for delete by any other transaction. Similarly, a take operation is

not allowed if any parent or child xtree has a foreign read or delete lock. Also, no child

xtree may have a write lock. An xtree can also only be read when no parent or child

xtree are exclusively locked by another transaction. However, not only direct children

and the parent of an accessed xtree have to be examined but also all of its ancestors and

descendants by recursively following the parent and the children, respectively, of the xtree.

These indirect parents and children share the same locking semantics as direct parent and

child xtrees. The compatibility of locks with operations of a foreign transaction are also

shown in Table 3. An entry of “not visible” in the table means that the operation may

succeed but the locked xtrees are ignored and not included in the result. If no entry

exists, the combination of lock type and operation is not possible, e.g. a child xtree of an

xtree that is just being written to the space cannot be locked yet by another transaction

because only the own transaction is able to see it.

This pessimistic locking strategy is a variant of strict Two-Phase locking (2PL) pro-

tocol [2] because it uses exclusive locks (for take) and shared locks (for read). Xtrees

with insert locks (for write) can usually be ignored because they are invisible to other

transactions until commit. During every CAPI-2 operation, locks are acquired, whereas

these locks are released when a sub transaction fails to acquire all needed locks during

its execution and the corresponding request needs to be rescheduled. At user transaction

commit or rollback, all locks set by all of the transaction’s operations are released at

33

4 XVSM CORE API

once. Due to the pessimistic approach, a commit must never fail, as conflicts are already

recognized beforehand. The main difference to classic 2PL is that a runtime operation is

not blocked when it finds a non-compatible lock. Instead it is rollbacked and rescheduled

by the runtime machine, so a classic deadlock cannot occur. It is, however, possible to get

stuck in a livelock when two requests from different transactions are getting rescheduled

constantly due to locks held by the other transaction. In this case, one transaction must

be aborted by the runtime.

In the meta model, all locks are stored as lock entries in a special container locks.

They contain the lock type (READ, EXCL, DELETE or WRITE), the complete path to the

locked xtree, the transaction id and the operation id that identifies the sub transaction,

as shown in the following example:

[type:“READ”, path:“containers/e1/entries/e3”, tx:12, op:1]

When the sub transaction commits, the operation id is removed from the lock, indi-

cating that the lock is now valid for all sub transactions of the specified transaction. It

is necessary that each locked xtree has a unique path, otherwise it cannot be determined

which entity should actually be locked. Therefore, CAPI-2 offers no equivalency for the

writeL1 operation which is used for updating meta properties. When such a property is

taken from the space with CAPI-2, the old xtree still exists in the space until the transac-

tion commits, even though it is no longer accessible via the own or foreign transactions.

If a write operation would write a new value at the same path, there would be two lock

entries for the same path, one with a delete lock and one with an insert lock, and it would

be impossible to determine which of the two xtrees is the new one.

The concept of a central lock container requires that every CAPI-2 operation needs

exclusive access to the container for a short time while it tries to acquire its locks. It eases,

however, the management of locks in the meta model. If the locks were attached directly

to the locked entities, it would be necessary to recursively lock the whole hierarchy from

the root xtree to the xtree that needs to be accessed. With the locks container, the

parents and children need not be explicitly locked. When acquiring a lock, incompatible

locks on parent and child xtrees are simply identified by comparing the paths. In an actual

XVSM implementation, more sophisticated strategies for applying locks can be used, but

for the specification of the formal model this simple centralized lock management is

sufficient.

4.2.3 Transaction logging

To enable a simple commit or rollback of a (sub) transaction, every locking action is

logged in the meta transaction container txC. This structure contains an entry for every

34

4 XVSM CORE API

transaction, identified via a label that represents its id. This entry consists of a log

for each sub transaction and a transaction status property, which can be any of the

values RUNNING, COMMITTING, COMMITTED, ABORTING and ABORTED. The sub transaction

log, which is labeled with its operation id, contains a property that specifies the type

of the operation, a status property (ACTIVE, FINISHED or CANCELLED) and a log listing

all locking actions. The log entries contain a type and a path property and simplify the

commit or rollback process. Each set lock in the locks container is referenced directly

with type LOCK-INSERTED, while the path of inserted or deleted properties is listed with

PROP-INSERTED and PROP-DELETED entries, respectively. A simple example transaction

entry in the txC container might look as follows:

tx9 : [status:“RUNNING”,

log : [op1 : [capiName:“take”,

status:“CANCELLED”,

operationLog : 〈

[type:“LOCK-INSERTED”, path:“ locks/e1”],

[type:“LOCK-INSERTED”, path:“ locks/e2”],

[type:“PROP-DELETED”, path:“containers/e1/entries/e3”]

〉],

op2 : [capiName:“write”,

status:“FINISHED”,

operationLog : 〈

[type:“LOCK-INSERTED”, path:“ locks/e3”],

[type:“PROP-INSERTED”, path:“containers/e1/entries/e4”]

〉]]]

4.2.4 Transactional operations

Similar to CAPI-1, all CAPI-2 methods return an xtree containing one of the status codes

OK, NOTOK, LOCKED and DELAYABLE, as well as the actual result. The function parameters

and their types are listed in Table 4. All transactional methods require transaction and

operation parameters, which must at first be initialized via createTransaction2 and

startOperation2. Internally, CAPI-1 operations are used to manipulate the txC and

locks meta containers and to invoke the actual data access. In the following, the exact

semantics of the CAPI-2 operations are specified.

35

4 XVSM CORE API

Arguments Result
createTransaction2 Space (Space) Transaction Id

(String)
commitTransaction2 Space (Space), Transaction Id (String) -
rollbackTransaction2 Space (Space), Transaction Id (String) -
startOperation2 Space (Space), Transaction Id (String),

Operation name (String)
Operation Id
(String)

finishOperation2 Space (Space), Transaction Id (String),
Operation Id (String)

-

cancelOperation2 Space (Space), Transaction Id (String),
Operation Id (String)

-

write2 Space (Space), Path (String), Value
(Xtree), Transaction Id (String), Op-
eration Id (String)

Label (String)

writeBulk2 Space (Space), Path (String), Values
([Xtree]), Transaction Id (String), Op-
eration Id (String)

Labels ([String])

read2 Space (Space), Path (String), Query
(String), Transaction Id (String), Op-
eration Id (String)

Query result
(Sequence/
Multiset xtree)

take2 Space (Space), Path (String), Query
(String), Transaction Id (String), Op-
eration Id (String)

Query result
(Sequence/
Multiset xtree)

setExclusiveLock2 Space (Space), Path (String), Transac-
tion Id (String), Operation Id (String)

-

getReadable2 Space (Space), Path (String), Transac-
tion Id (String), Operation Id (String)

Result paths
([String])

getTakeable2 Space (Space), Path (String), Transac-
tion Id (String), Operation Id (String)

Result paths
([String])

Table 4: CAPI-2 operations

36

4 XVSM CORE API

Transaction management operations: The createTransaction2 operation gen-

erates and returns a unique transaction id while it initializes a new transaction entry

with status RUNNING at the path txC/id . A new sub transaction is created with the

startOperation2 command for a transaction tx, which writes an empty operation log

entry with status ACTIVE into the meta model at position txC/tx /log/opid , where

opid is a unique identifier within the transaction. A sub transaction can be committed

via finishOperation2, which removes the operation id properties from all locks listed

in the operation log corresponding to the specified transaction and operation id and

thus transfers the locks to the parent transaction. It also sets the operation status to

FINISHED. A rollback on a sub transaction is invoked with cancelOperation2, setting

the operation status to CANCELLED. This operation removes all locks that are found via

the operation log and also takes all properties from the space that are referenced by

a PROP-INSERTED entry. When commitTransaction2 or rollbackTransaction2 are in-

voked, the transaction status is immediately set to COMMITTING or ABORTING, respectively,

which prevents new operations from being started, while currently active ones are still

allowed to finish before the transaction ends. All entries within operation logs with status

FINISHED are then processed: Locks referenced via LOCK-INSERTED entries are removed

in both cases. For commitTransaction2, properties that are registered in PROP-DELETED

entries are definitely deleted from the space, whereas for rollbackTransaction, newly

created properties referenced with PROP-INSERTED in the log are removed. Finally, the

transaction status is set to COMMITTED or ABORTED, respectively, and the log entry can be

deleted if needed.

Transactional space operations: The operations write2, writeBulk2, read2 and

take2 have the same functionality as their CAPI-1 equivalents, while they additionally

try to acquire appropriate locks on the data they access. If a conflicting lock is found,

the operation returns with status LOCKED. Additionally, the returned xtree contains a

lockType property that indicates if the sub transaction that holds the lock has already

committed or if it is still active, which is necessary for the scheduling semantics of the

runtime (see Sect. 4.4.1). The lock types can be distinguished by looking at the op

property of the lock entry. If it exists, the associated sub transaction is still active,

otherwise it has already transfered its locks to the parent user transaction.

The write2 and writeBulk2 operations must check at first if the requested path is

visible for the given sub transaction, meaning that no foreign write lock or own delete

lock must be active on any parent xtree of the entries that should be written, otherwise

status NOTOK is returned. Then, the operation must verify that no foreign delete lock

is active on any parent xtree, which would yield a result of status LOCKED. If these

preconditions are fulfilled, the specified entries are written to the space together with

37

4 XVSM CORE API

write lock entries in the locks container as well as LOCK-INSERTED and PROP-INSERTED

entries in the operation log. When invoking read2 or take2, a copy of the search path

is generated where all invisible xtrees with foreign write locks or own delete locks are

removed. The copy is needed because a CAPI-1 query that uses the space directly

would include the invisible xtrees and thus distort the result. Therefore, a CAPI-1 read

operation is issued on the modified copy and the resulting entries are locked for read or

delete, respectively, with corresponding locks container entries, if no conflicting locks

appear. Additionally, for each lock a LOCK-INSERTED entry is added to the operation

log, as well as PROP-DELETED entries in the case of take2. A read operation is valid if

neither the found entries nor their ancestors or descendants are locked by a foreign delete

lock, while for a take operation also foreign insert or read locks are disallowed. Otherwise

status LOCKED has to be returned.

Explicit locking operations: The setExclusiveLock2 method locks an xtree for

exclusive access and thus guarantees that no other transaction may access it until commit

or rollback. This function enables a transaction to exclusively access an xtree without

the interference of any other transactions because only the own transaction may read or

take the xtree or any of its direct or indirect child xtrees. Also, other transactions may

not write anything into the xtree. This behavior can be useful to ensure that only one

transaction modifies a certain data structure at once. In contrast to read2 and take2,

no query can be specified, so the exact path of the xtree to lock must be known. The

locking semantics of this operation are very similar to those of take2 with the difference

that no PROP-DELETED entry is added to the log and that an exclusive lock is used instead

of a delete lock. In contrast to xtrees locked for delete, xtrees with exclusive locks are

still visible by the own transaction. Therefore, these xtrees are not removed from the

space on commit, but otherwise the two lock types are the same. With getReadable2

and getTakeable2, all properties of an xtree at the specified path that could be locked

successfully for read or take, respectively, are determined. These functions return a list

of the paths of all these entries without actually locking the corresponding xtrees. This

behavior is useful for indeterministic coordinators that try to preferably pick unlocked

entries. All three explicit locking operations allow wildcards in their path argument,

which enables them to access multiple xtrees at once.

4.3 CAPI-3: Coordination

While CAPI-1 and 2 control the access on arbitrary xtrees within the XVSM meta model,

the focus of CAPI-3 lies on user containers and their entries. Therefore, the operations

of this layer resemble the functionality of the user API with the exception of aspects

and timeouts that are introduced in CAPI-4. A container in CAPI-3 consists of a name,

38

4 XVSM CORE API

user data in the form of entries and several coordinators that manage these entries.

Entries are xtrees of arbitrary structure although some coordinators may require a special

entry structure. A coordinator is an exchangeable module consisting of several functions

that control how entries are written to and retrieved from a container. There exist

several predefined coordinators for FIFO queues, Linda template matching, access via

keys and other coordination forms but arbitrary modules can be added to the space that

support more sophisticated patterns. A coordinator must define so-called accountant

functions that are invoked whenever an entry is written, read, taken or deleted within

a container. For each write operation, the corresponding coordinators can update their

internal meta data which reflect how the entry can be retrieved again via the coordinators’

query functions. These meta data are stored in coordination xtrees (CoXT), which exist

for every coordinator of a container. Coordinators may also directly attach meta data

to entries by writing into their so-called entry CoXTs. A coordinator can also decide if

an operation on a specific entry should be allowed or if a coordinator-specific constraint

is violated so that it must fail. The capabilities of accountant functions are, however,

limited. A coordinator only has full access to its own private container CoXT as well as to

its own entry CoXT for each user entry. These entry CoXTs, however, may not be changed

after the entry is initially inserted into the container. Additionally, the data of user

entries may be read but not changed, while the CoXTs of other coordinators or further

locations of the space may not be accessed at all. The write3, read3, take3 and delete3

operations of CAPI-3 are responsible for calling the accountant functions of all registered

coordinators in the correct order. Thus, the coordinators are running in a sandbox that

only allows limited access to the space, which prevents them from interfering with each

other and makes them easily exchangeable. To realize the described functionality, all

CAPI-3 operations use the transactional CAPI-2 methods. The coordinator’s accountant

and query functions also have access to CAPI-2 with the restrictions mentioned above.

When a new container is created, the user may specify several coordinators that man-

age the entries. A coordinator can either be declared as obligatory or optional for this

container. The accountant functions of an obligatory coordinator must be called for every

operation on this container, so that such a coordinator always has a complete view of

all entries. An optional coordinator, however, only manages entries that are explicitly

written with this coordinator, while other entries of the container remain invisible. Every

coordinator may have an arbitrary number of arguments that are used for correct ini-

tialization of the CoXT. Some coordinators also require additional information whenever

an entry needs to be written using this coordinator. In this case, the arguments are

encapsulated in a so-called write selector. When the user wants to read, take or delete

entries from the container using the coordination mechanism of a specific coordinator, a

read selector is used to pass the arguments. An additional way to pass information to

39

4 XVSM CORE API

the coordinator functions is via the context xtree, which contains meta data that can be

subsequently enriched with arbitrary properties by the user, the runtime and the CAPI-3

operation that calls the coordinator. This context could, for instance, include information

from the runtime about the current time or the name of the user invoking a request. Some

coordinators may rely on particular well-defined context properties to be able to work

properly, whereas others do not access the context xtree at all. Coordinators of the same

type can be defined more than once for a container as long as they are distinguished via

a unique id that is specified when the container is created. For example, it could be fea-

sible to define two optional FIFO coordinators which are alternately invoked on written

entries, depending on their meaning. Thus, entries can be retrieved via two independent

queues. E.g., in a container of book entries, one queue can be used as a reading list for

user A, whereas another queue represents the reading list of user B. Every container has

an implicit obligatory coordinator called SystemCoordinator, which guarantees that a

container never exceeds its bounds of maximum allowed entries, as specified at creation

time of the container. This coordinator also allows simple random access on available

entries via read and take queries.

4.3.1 Coordinator interface

As usual, the operations of a coordinator return an xtree containing the status code and

potential errors. The parameters of these methods and their types are shown in Table

5. The methods have access to the context xtree of the enclosing CAPI-3 operation,

which may include relevant meta data, and to the transaction and operation ids that are

necessary to ensure the transactional integrity of the operation.

Init function: When a new container is created, this method initializes the internal

data structures of the coordinator using the available parameters. This information is

then returned in the form of a container CoXT that can later be used by the accountant

and query functions.

Accountant functions: Each of the four accountant functions onInsert, onRead,

onRemove and onDataReturn is called on single entries of a container. To decide if an op-

eration is allowed by the coordinator so that status OK should be returned, these functions

may access the container CoXT located at containerPath /coxts/coordinatorID and

the entry CoXT of the coordinator included in the specified entry. The entry argument is

given as a property instead of an xtree. Thus, the entry’s label is also available to allow

its use as a reference in the internal lists and indices of the coordinator. The onInsert

accountant function is used whenever a new entry is written to the container. The write

selector indicates how the coordinator should store the entry, e.g. a vector coordinator

40

4 XVSM CORE API

Arguments Result
init Coordinator arguments (Xtree), Context (Xtree) Container

CoXT
(Xtree)

onInsert Space (Space), Container path (String), En-
try (Property), Write selector (Xtree), Context
(Xtree), Transaction Id (String), Operation Id
(String)

Entry CoXT
(Xtree)

onRead Space (Space), Container path (String), En-
try (Property), Context (Xtree), Transaction Id
(String), Operation Id (String)

-

onRemove Space (Space), Container path (String), En-
try (Property), Context (Xtree), Transaction Id
(String), Operation Id (String)

-

onDataReturn Space (Space), Container path (String), En-
try (Property), Context (Xtree), Transaction Id
(String), Operation Id (String)

Meta proper-
ties (Xtree)

query Space (Space), Container path (String), Read se-
lector (Xtree), inEntries (XTree), Context (Xtree),
Transaction Id (String), Operation Id (String)

outEntries
(Xtree)

Table 5: Coordinator functions

requires a position to be specified. The method may return an entry CoXT that has to be

added to the entry by the write operation for later uses of this coordinator. The onRead

method, which is called for every read or taken entry, is usually only useful for special

coordinators that depend on the order in which entries are accessed within a container,

like a coordinator returning entries that were least recently used. With the onRemove

accountant function, the coordinator has the possibility to clear a removed entry from its

internal data structures, while the onDataReturn method returns special meta properties

of the coordinator that should be attached to the entry before it is returned to the user,

like, e.g., the position of an entry using vector coordination. In contrast to the other

accountant functions, the onDataReturn method may not change the CoXT.

Query function: Analogous to the query mechanism of XVSMQL, the coordinator

query functions can be invoked in a chain. Each query function may take an arbitrary

number of arguments given in the read selector parameter as well as a list of incoming

entries that were selected by the previous coordinator. For the first coordinator, all

entries of the container are eligible, but further coordinators may only select and return

entries that are listed in their inEntries argument. Query functions may only read the

entry data as well as the entry and container CoXTs but they are not allowed to change

any of the CoXTs, as this is the task of the accountant functions which are called on the

41

4 XVSM CORE API

Arguments Result
createContainer3 Space (Space), Container name (String),

Size (Integer), Obligatory Coords ([(Coord,
String, Xtree)]), Optional Coords ([(Coord,
String, Xtree)]), Context (Xtree), Transac-
tion Id (String), Operation Id (String)

ContainerRef
(String)

destroyContainer3 Space (Space), ContainerRef (String), Con-
text (Xtree), Transaction Id (String), Oper-
ation Id (String)

-

lookupContainer3 Space (Space), Container name (String),
Context (Xtree), Transaction Id (String),
Operation Id (String)

ContainerRef
(String)

setContainerLock3 Space (Space), ContainerRef (String), Con-
text (Xtree), Transaction Id (String), Oper-
ation Id (String)

-

write3 Space (Space), ContainerRef (String), En-
tries with write selectors ([(XTree, [(String,
Xtree)])]), Context (Xtree), Transaction Id
(String), Operation Id (String)

-

take3 Space (Space), ContainerRef (String), Read
selectors ([(String, Xtree)]), Context (Xtree),
Transaction Id (String), Operation Id
(String)

Result entries
(Xtree)

read3 Space (Space), ContainerRef (String), Read
selectors ([(String, Xtree)]), Context (Xtree),
Transaction Id (String), Operation Id
(String)

Result entries
(Xtree)

delete3 Space (Space), ContainerRef (String), Read
selectors ([(String, Xtree)]), Context (Xtree),
Transaction Id (String), Operation Id
(String)

-

Table 6: CAPI-3 operations

final result entries. Only entries that are managed by the corresponding coordinator are

visible for a query function. Therefore, entries that are not registered for the coordinator

are filtered out before the actual selection criteria are applied.

4.3.2 Container operations

Table 6 shows the operations of CAPI-3, which are called directly from the runtime to

execute user requests on the space and return the same status codes as CAPI-2. Beside the

transactional parameters, all of these methods also have access to the runtime context of

the respective operation although not every CAPI-3 operation actually uses this context.

42

4 XVSM CORE API

createContainer3: This method creates a new container with specified name and size

by initializing the container meta structure in the containers xtree of the space. The

automatically generated label of the newly created container within this structure can be

used as a unique reference and is therefore returned to the caller. If no name is given,

the container remains anonymous so that it cannot be found via lookupContainer3. In

this case, the only way of accessing it is by using the returned container reference. The

size of the container depicts the maximal number of entries that can be stored in it,

which is ensured by the SystemCoordinator that is initialized with the given bounds

parameter. If the constant value INFINITE is used, the container remains unbounded.

The obligatory and optional coordinators are given as list of triples that include the

coordinator, its unique id within the container and the arguments for the coordinator’s

init function. A container with name “c1” has the following initial representation in the

meta model:

[name:“c1”, entries:[], coordinators:[], coxts:[]]

For each specified coordinator as well as for the implicitly added SystemCoordinator,

a registration entry is added in the coordinators property, which includes the coordina-

tor reference, its id and a flag indicating if it is obligatory or optional. Then, the initial

container CoXTs, which are obtained by calling the coordinators’ init functions with

the specified arguments, are added at the relative path coxts/coordinatorID for each

coordinator.

destroyContainer3: With destroyContainer3, a container specified by its reference

is completely removed from the space. Due to the locking semantics of CAPI-2 this is

not possible if other transactions still access this container. Conversely, other CAPI-

3 operations cannot use this container any more after this method is called unless the

operation is rollbacked.

lookupContainer3: This method finds a container by its name and returns its refer-

ence if successful. This is achieved by issuing a query on the name property of all container

entries of the space’s containers xtree.

setContainerLock3: An exclusive lock can be set on the entries property of the

specified container by using the setExclusiveLock2 operation, which prevents any read,

take or write operations on this container for other transactions. A lookup on this con-

tainer, however, is still valid as it does not access any entries. E.g., this behavior can

be useful if an application must guarantee that no additional entries are written to a

container during a transaction.

43

4 XVSM CORE API

Figure 3: Writing entries with write3

44

4 XVSM CORE API

write3: The arguments for write3 contain a list of entries including write selector

information that should be added to the specified container. The write selectors are

given as a list of tuples with the coordinator id and the arguments to the coordinator’s

onInsert accountant function. Figure 3 shows how this function is implemented. At

first, it must check that all specified coordinators are indeed registered on the container,

otherwise an error is indicated. For obligatory coordinators, a write selector must only

be specified if arguments are required, otherwise an empty argument xtree is implicitly

used. Optional coordinators that should manage the written entries must be explicitly

specified, even if their onInsert accountant functions do not take any arguments. If an

obligatory or optional coordinator requires arguments that are not specified by the user,

the accountant function indicates an error by returning status NOTOK. For each entry E,

the following data structure is written into the container’s entries property:

[data:E, coordinators:[], coxts:[]]

The actual user entry is included in the data property, while the names of the oblig-

atory and all specified optional coordinators are registered in the coordinators xtree.

For each of these coordinators, the onInsert accountant function is called, which may

access the corresponding CoXT with several CAPI-2 read, take and write operations.

The returned entry CoXT is stored in the coxts property using the coordinator id as

label. If any accountant function returns a status other than OK, the execution stops and

the status of that coordinator is returned to the runtime, which does a rollback of the

sub transaction and possibly reschedules the corresponding request.

take3: Similar to the write selectors for write3, the read selectors used for this method

are given as a tuple list of coordinator ids and arguments to the coordinators’ query

functions. The implementation of take3 is shown in Fig. 4. If all specified coordinators

are registered on the container, the query evaluation is started by calling the coordinator

query function associated with the first read selector. The returned entries are then used

as input for the second query function, which returns a subset of the original result and so

forth. The last query function finally returns the result entries of the query. For each of

these entries, the onRead, onDataReturn and onRemove accountant functions are called in

the mentioned order for all coordinators that are registered in the entry’s coordinators

property. Thus, every coordinator that has been used to write an entry also gets informed

when this entry is removed from the space. Similar to the onInsert method for write

operations, these accountant functions may access the CoXTs of their coordinators via

CAPI-2, but these calls are omitted in the figure due to limited space. The entries that are

finally returned are enriched with the meta data supplied by the onDataReturn function,

which are stored in a separate meta property for each coordinator per entry. Before

45

4 XVSM CORE API

Figure 4: Taking entries with take3

46

4 XVSM CORE API

take3 returns, the result entries are finally removed from the space with take2 because

the query function has only acquired read locks on them. If this take operation fails due

to locks or if any of the accountant functions indicate an error, the corresponding result

xtree is returned to the runtime which handles this error.

Due to the use of CAPI-2 methods in the implementation of take3 as well as in

the coordinators’ query and accountant functions, the locking behavior of this operation

has to be examined closely. Each coordinator may access its own container CoXT as

needed, but to allow maximal concurrency all accountant functions should only read and

change as small parts of the CoXT as possible for each invocation. If a coordinator has to

replace the whole CoXT every time an entry is written or taken, other transactions may

not use this coordinator on the given container concurrently as any read access on the

coordination data would lead to status LOCKED. For some coordinators, this is necessary

to guarantee their integrity, e.g. concurrent access on a vector coordinator should be

prohibited because otherwise duplicate or missing indices could occur. However, often

it is sufficient to only lock a child xtree of the CoXT associated with a special entry,

allowing the concurrent use of the coordinator at least on different entries of the container.

Finally, some coordination mechanism like random or label access do not require changes

in the common container CoXT and enable full concurrent access as long as the entries

themselves are not yet locked by another take3 operation. The access on the container

entries within the coordinators’ query functions is limited to read2. This means that

the first coordinator puts read locks on all entries selected by its query function, and

even though subsequent coordinators remove some of these entries from the result set

the locks remain. The current transaction model does not allow locks to be removed

before commit and the possibly complex query semantics of coordinators disallow that the

whole coordinator chain is executed in a single CAPI-2 query. Therefore, often occurring

combinations of coordinators could be integrated in a single composite coordinator if

better concurrency is required. Another solution would be to redesign the coordinator

semantics, so that they may only access their container CoXT directly with CAPI-2

methods but not the actual entries. Instead, the retrieved data from the CoXT and the

arguments of the query function are used to form an XVSM query, which is then returned

to the CAPI-3 method. After all coordinators have been called, CAPI-3 could concatenate

the results to issue a single CAPI-2 query. These modified semantics, however, restrict

the capabilities of coordinators, as any query must be independent of the actual data.

E.g., it would not be possible to look for entries with a special property in their entry

CoXT, then read the container CoXT using a query that depends on the first result and

finally select a subset of the found entries according to the result of this query.

47

4 XVSM CORE API

read3: This operation has very similar semantics to take3 and also uses the same

parameters. The only differences are that the onRemove accountant function is not called

and that the result entries are only read but not removed from the container.

delete3: Like take3, this function removes selected entries from the space, but the

entries are not returned. Therefore, the onRead and onDataReturn accountants are not

called. Apart from that, delete3 has the same semantics as take3.

4.3.3 Predefined coordinators

SystemCoordinator: This coordinator, which is implicitly added to all user contain-

ers, monitors the boundedness feature of the container and enables query access on an

optionally definable amount of entries. Its CoXT is initialized with a bounds property

that stores the specified container limit and a size property with value 0. However, if

the container is unlimited, the size does not have to be stored. For bounded containers,

the onInsert accountant function takes the size entry from the CoXT and compares

it to the bounds entry. If the current size is equal to the container limit, the accoun-

tant function returns a result with status DELAYABLE indicating that the container is full.

Otherwise, a new size entry is written with an incremented integer value. Similarly, the

onRemove accountant function decrements this property. In both cases, the delete locks

on the size entry, which are created by take2, prevent other transactions from writing or

removing entries concurrently for bounded containers. Without this practice, however,

it could not be guaranteed that the limits are never exceeded. For better concurrency,

unbounded containers should be used whenever possible. A simple implementation ap-

proach that allows for more concurrency would just count the current number of entries

in the container as returned by a read2 query. However, for two uncommitted write

operations in separate transactions, the respective accountant functions would not be

able to see the entries written by each other. If the current container size is one less

than the limit, both accountant functions would allow the operation. Thus, when both

transactions commit, the container would exceed its bounds by one, which is not correct.

The query function defined by the SystemCoordinator requires one integer argument

that specifies the number of arbitrary entries that should be returned. Apart from any

positive integer, the constants COUNT ALL and COUNT MAX are allowed values. If a specific

number n is given, the coordinator tries to retrieve n arbitrary unlocked entries using the

query cnt(n) on a filtered version of the container that only contains entries included in

the result of getReadable2 or getTakeable2, respectively. The query function can de-

termine which of these functions should be invoked by accessing the queryType property,

which is added to the operation context by the read3, take3 and delete3 methods that

call the coordinator’s query function. If this query on the filtered container fails because

48

4 XVSM CORE API

not enough entries are found, a second query is invoked on the entire container includ-

ing locked entries, which of course also fails. However, this procedure is necessary to

determine if the function result should be LOCKED or DELAYABLE. When using COUNT ALL

as parameter, all currently visible entries of the container are returned, which of course

does not include entries that have been written in a concurrent uncommitted transaction

because of the transaction semantics of CAPI-2. If any of the entries cannot be accessed

due to a lock, an error is indicated with result status LOCKED. For a container without

any entries, an empty result set is returned. Similarly, the COUNT MAX argument value

indicates that all available entries should be retrieved. This means that all locked entries

are filtered out with the help of getReadable2 or getTakeable2.

QueryCoordinator: Using this coordinator, a user can directly issue XVSMQL queries

on the container. As the query function does not require any additional data apart from

the container content, the accountant functions do not have to perform any actions. The

query is carried out by invoking a read2 operation on all container entries. The user

query may, however, only access the actual user entries contained in the entries’ data

properties and no coordinator meta data. Therefore, the actually applied query is created

by implicitly prepending */data to all paths included in the query. E.g., the user query

publication/date > 2000 | cnt(1) gets mapped to */data/publication/date >

2000 | cnt(1).

FifoCoordinator: With this coordinator, first-in-first-out (FIFO) queues as well as

last-in-first-out stacks (LIFO) are supported. A precise order is achieved by attaching

a consecutive number to each written entry that indicates the sorting of the container.

To prevent concurrent transactions from writing an entry with the same index to the

container, the CoXT consists of a nextIndex property which initially has a value of 1 and

is incremented for each written entry by the onInsert accountant function. The obtained

value is then used to attach a writeIndex property to the entry CoXT. Concurrent write

operations are not possible with this implementation because of the delete lock on the

nextIndex property needed for this update. The removal of entries, however, does not

block other transactions because the relative order stays the same even if the sequence

of indices contains gaps. A completely concurrent alternative could be implemented by

using a timestamp parameter which is passed to the coordinator by the runtime via the

context. The timestamps, which could also be stored in the entry CoXTs, indicate an

order too. However, this order is not unambiguous as two entries A and B could be

written at the same time. In this case, entry A might be returned before entry B in FIFO

mode as well as in LIFO mode, which is not feasible because LIFO should use the reverse

order of FIFO.

49

4 XVSM CORE API

The query function of this coordinator takes two arguments. A mode parameter

specifies if FIFO or LIFO order should be applied, while a count parameter specifies

the number of elements that should be returned. In FIFO mode, the sortup predicate is

used in a query on the writeIndex property of each entry, while in LIFO mode sortdown

is applied. The count parameter specifies how many entries should be returned in the

specified order using the cnt selector. If COUNT ALL is specified, all managed entries are

returned. Unlike the SystemCoordinator, locked entries are never filtered from the input

entries because otherwise a strict FIFO or LIFO order cannot be guaranteed. This means

that two concurrent take operations using the same mode are not possible because both

transactions try to lock the same entries exclusively. However, one FIFO and one LIFO

take operation might be able to be executed in parallel if the result set is not overlapping.

A variant of this coordinator could be built that only selects unlocked entries, which could

mean that in FIFO mode an entry B is selected even though another (locked) entry A

written before B exists in the container. However, if the transaction that has locked entry

A performs a rollback, the first transaction might read entry A after entry B and thus in

the wrong order.

KeyCoordinator: This coordinator uses a unique key to retrieve an entry. The CoXT

stores xtrees for each entry containing the key and the label of the entry within the

container, which is used as a reference. The onInsert accountant requires a string

argument specifying the key for the entry. It checks whether this key already exists in

the CoXT and if such an entry is found, a DELAYABLE result is returned. Concurrent

write access on this CoXT must be prevented because otherwise duplicate keys could be

established. However, concurrent access via read, take or delete should be possible while

new entries are written to the container. Therefore, a special writeLock property exists

in the CoXT which must be locked by the onInsert function with setExclusiveLock2.

The onRemove accountant takes the xtree associated with the deleted entry from the

container CoXT via a matchmaker comparison of the entry’s label with the references in

the CoXT. Similarly, the onDataReturn accountant reads the key of an entry from the

coordinator’s data structure and adds it to the meta data that are returned to the user.

The query function, which requires a string parameter representing the key, retrieves

an entry in two steps. At first, the CoXT is queried for an xtree with the specified key

value. If none is found, the function returns DELAYABLE. Otherwise, the entry reference

given in the retrieved xtree is used for a second query on the actual container and the

entry with the corresponding label is returned.

LabelCoordinator: Similar to the KeyCoordinator, entries are accessible via a special

label which, however, does not have to be unique. Therefore, multiple entries can be

50

4 XVSM CORE API

stored using the same label. As the check for duplicates is omitted, the coordinator does

not require a central data structure to synchronize write access. Instead, the onInsert

accountant attaches the label directly to the entry CoXTs in a property named lbl,

which allows full concurrent access. Therefore, removing an entry does not require any

action by the coordinator, whereas the onDataReturn accountant adds the label to the

entry’s meta data.

For queries, the label and a count parameter must be specified. Then, as many entries

with this label as specified are selected, which is achieved via a matchmaker comparison

on the lbl property of the corresponding entry CoXTs. The semantics of the count

parameter are the same as for the SystemCoordinator, thus the filtering of locked entries

is possible.

LindaCoordinator: The Linda template matching mechanism is supported by this

coordinator. The accountant functions do not require any additional meta data apart

from the actual data fields. Nevertheless, the onInsert accountant function has to check

if the written entry has the correct format for this coordinator, which basically is a

sequence xtree with arbitrary content. The query function matches the specified template

sequence with the managed entries and returns as many fitting entries as specified by the

count parameter, which has the same meaning as in the SystemCoordinator. Thus, in

contrast to the classical Linda model, more than one entry can be read at once. An entry

matches the template if both have the same number of properties and if every property

not marked with a wildcard in the template has an equal value in both sequences. For

this coordinator, only the position of the properties within the sequence is relevant and

the property label is ignored, although different versions could be built that also compare

the labels. For comparison, the following recursive matchmaker function is used on the

value of the entry data property (E) with template tmpl:

lindaMatchmaker(tmpl, E) :=

|tmpl| = |E| ∧ (|tmpl| = 0 ∨ ((tmpl.1 = “*” ∨ tmpl.1 = E.1)

∧ lindaMatchmaker(rest(tmpl), rest(E))))

VectorCoordinator: This coordinator presents its managed entries as vector that can

be accessed via index positions starting with 0. As each written or removed entry may

shift the positions of other entries, any operation other than read must lock the whole

coordinator. This is done with take2 and write2 operations on the positions property

in the CoXT. This data structure models the vector by storing the entry labels used

to reference the actual entries in a sequence xtree. The entry corresponding to the first

reference in this sequence has vector position 0, the second reference corresponds to index

51

4 XVSM CORE API

1 and so forth. The onInsert function requires an argument specifying the position of the

new entry within the vector. The constant value APPEND as position argument indicates

that the entry should be added at the end of the sequence. If an invalid index is specified

as parameter, the result status NOTOK is returned. The entry reference is inserted at

the corresponding index of the positions sequence, which is then written back to the

CoXT. Similarly, the onRemove accountant function updates this xtree by deleting the

entry label of the removed entry. The onDataReturn function retrieves the current vector

index of the entry by searching for the label in the positions sequence.

The query function uses the XVSMQL query cnt(i+1) | reverse() | cnt(1) at

the positions xtree of the CoXT to get the reference at the index i, which is specified

as a parameter. Then, the found label is used in a query on the actual container to get

the searched entry. As for write, an invalid index leads to a NOTOK error.

4.3.4 Custom Coordination

Apart from the predefined coordinators, user applications may use custom coordinators

that are specifically designed for a particular use case [24]. These user coordinators can

be invoked just like the predefined ones, as long as their implementation is registered

on the runtime in the coordinatorDefs xtree. This possibility enables the developer

to strictly separate the application logic from coordination mechanisms and therefore

encourages a clean design [33]. By using CAPI-2, the coordinator does not have to handle

transactional integrity by itself, as all actions are automatically logged in a transaction.

To allow optimal concurrency, however, a coordinator developer should be familiar with

the locking semantics of CAPI-2, so that parallel transactions using the same coordinator

are only blocked if required by the coordination semantics.

One example for this flexible coordination mechanism is a priority queue for entries

corresponding to tasks, as described in [24]. There, the entries are managed by a special

PrioFifoCoordinator which sorts the tasks by priority, whereas for equal priority a

FIFO order is used. It has been shown that such a coordinator greatly simplifies the data

access compared to the classical Linda template matching approach.

4.4 CAPI-4: Runtime model

The XVSM runtime, also known as CAPI-4, represents a single XVSM core that can

be accessed by any kind of language API, either directly in embedded mode or over a

network using the XVSMP layer. Each core corresponds to one XVSM space which is

used to bootstrap the runtime. Within the meta model of the runtime, operations that

should be invoked on the space are embodied as request xtrees consisting of the operation

name and arguments as well as meta information added by the runtime and the URI of

52

4 XVSM CORE API

Figure 5: XVSM runtime structure

the caller. Figure 5 shows the basic architecture of a single XVSM core, which consists

of several runtime threads and meta containers. Each request is initially put into the

request container, either directly via the embedded API or after the receiver process has

received a remote XVSMP message, which is then transformed into a request xtree. For

each new request, a unique id is generated and returned to the invoking process, which

is used to retrieve the result. The most important part of the runtime are the XVSM

core processors (XP), which are concurrently executing active requests and writing their

results into the response container. From there, the embedded API may get the result

either by waiting synchronously on an xtree with fitting id or by polling for the result

asynchronously. Similarly, the sender process may wait for any result dedicated to a

remote caller, which is then marshalled into XVSMP format and sent to the specified

address. Thus, there are three possibilities how a request passes through the runtime:

• For local requests on the own space, the embedded API is used directly, which

writes a request into the request container and retrieves the result from the response

container.

• When the embedded API invokes a remote space, the sender process takes the

request from the request container, whereas the receiver writes the remote XVSM

core’s answer to the response container (blue arrows). From there, the embedded

53

4 XVSM CORE API

API can take the result.

• When a remote API calls the local runtime, the receiver puts the request into the

request container, while the sender waits for any response dedicated to a remote

peer and then sends it to the specified URI (green arrows).

The core processor executes the request by calling the appropriate CAPI-3 function

and the associated aspects and analyzing the result. Aspects can be executed either

before the call to the actual CAPI-3 operation (pre aspects) or afterwards (post aspects).

They are able to modify parameters, including the context xtree, and return values and

may invoke own actions on the space or on other available resources. If the core processor

obtains a result with status OK or NOTOK, the result xtree is immediately written to the

response container. After the actual execution of the request, the core processor invokes

the event processing logic. If status LOCKED or DELAYABLE is returned, the runtime may

reschedule the request by putting it into the wait container. For any of these result

status codes, the event processing logic checks the wait container if the events generated

by the current request invocation are able to wake up sleeping requests. In contrast to

earlier versions of the XVSM runtime [43, 44], the events need not be stored in an own

container because the wait and event containers are combined in a single wait container

(see Sect. 4.4.1).

If a request is rescheduled, it is put back into the request container so that the

core processors are able to process it again. The timeout processor (TP) periodically

checks the wait container and removes requests with expired timeouts. These requests

are also rescheduled and reprocessed by a core processor, but the timeout is immediately

recognized so that an error message is generated before any actual call to CAPI-3 or any

of the aspects. The status code for this request result is INVALID, which has the same

meaning as NOTOK, except that requests marked as INVALID cannot trigger any events

because they do not invoke any CAPI-3 method. Thus, the result xtree for a timed out

request is also written to the response container by the core processor.

The meta data structure of the runtime is accessed directly via a blocking variant of

CAPI-1 called CAPI-B. Basically, this CAPI uses the same operations as the original data

access layer but offers the additional blocking versions of read1 and take1, which are

named readB and takeB and use the same parameters. The semantics of these versions

are to block until the operation yields a return status of either OK or NOTOK. If the status

would be DELAYABLE, the operation is simply retried when something changes within

the accessed data structure. This allows the core processor to wait for new tasks in the

request container by using a blocking take query on it instead of constantly polling the

container with take1.

54

4 XVSM CORE API

4.4.1 Request scheduling

The processing of a request starts when the writeRequest method of the runtime is

called which writes the specified request xtree into the request container at location

reqC within the meta model and returns a unique request id that is also added to the

request xtree. All idle core processors use a takeB query on this container to fetch a new

request for execution. The XP that gets the request then adds a timestamp property to

the xtree using the current system time if it is entering the core for the first time, i.e. it

was not yet rescheduled by the runtime. Depending on the value of the request’s timeout

parameter, also the expireTime property may be set which determines when the request

should expire. Following values are valid timeouts, with TRY-ONCE used as default if no

timeout is specified:

• Integer > 0: Any positive value can be defined, which specifies the minimum

amount of milliseconds the request remains valid after it enters the core for the first

time. The expire time is set to timestamp + timeout and if this point of time is

exceeded when the entry is fetched, the request fails and an INVALID response xtree

is generated which indicates the timeout. There is, however, no guarantee that the

timeout occurs exactly after the specified time as the timeout processor only checks

periodically for expired entries and the core processors may be busy which might

delay the response.

• INFINITE: This constant indicates that the request should never expire, so it

should always be rescheduled if the result is DELAYABLE or LOCKED.

• TRY-ONCE: This value specifies that the operation should have the opportunity

to acquire all necessary locks and check if this request is currently satisfiable or

not. As long as the operation yields a LOCKED result, it should be rescheduled. If,

however, status DELAYABLE is returned, an error response is generated.

• ZERO: This constant indicates that the request must never be rescheduled and

is only tried to process once. Any result status other than OK leads to a NOTOK

response.

Additionally, a lastExecutionTime timestamp is updated every time the request

enters the core, which is later needed by the event processing logic that handles the

rescheduling of waiting requests. If the request has not yet expired, the actual request

execution can start. It must be noted that for this check as well as for the mentioned

timestamps the time value obtained when fetching the request from the request container

is used. Therefore, a request that exceeds its timeout during execution is still valid.

55

4 XVSM CORE API

The core processor distinguishes between operations called within a transaction and

the control operations createTransaction, commitTransaction, rollbackTransaction,

addAspect and removeAspect. These control operations do not support a transactional

context, while the remaining tasks require a transaction and operation id. The transac-

tion id is usually given by the user but it can be omitted, which indicates an implicit

transaction for this single request. In this case, a new transaction is created by the

runtime with createTransaction2 and it is committed after the request execution has

completed. The operation id is always supplied by the runtime, which opens a new sub

transaction for the given user transaction by calling startOperation2. Depending on

the result of the request execution, the operation is completed. If status OK is returned,

the runtime invokes finishOperation2 and thus commits the sub transaction. For any

other result status, cancelOperation2 is called which rollbacks all changes made to the

space during the execution of the request.

The request is executed by calling all pre aspects of the operation, then the corre-

sponding CAPI-3 operation itself and finally the associated post aspects. The result xtree

of this invocation includes a subOps property that lists all used CAPI-3 operations as the

aspects may have called arbitrary CAPI-3 operations different from the one listed in the

request. If the result status is LOCKED or DELAYABLE, an additional property waitForOp

is needed that indicates the CAPI-3 operation that has failed and thus led to the abor-

tion of the operation. Both properties are later used for the event processing logic that

needs to know which operations were executed and why a request must wait. If the result

status is OK or NOTOK, the response xtree, which consists of the request id, the URI of the

caller and the operation result, is written to the response container at location respC,

from where it can be retrieved either synchronously with takeB or asynchronously via

the non-blocking take1.

In the following example, a request xtree for a take operation on container C using

a FifoCoordinator read selector is shown, as well as its corresponding response xtree.

The missing properties for the URIs of the caller and the space indicate that the local

embedded API has issued this request on the local space, which means that receiver and

sender processes are not involved.

Request : [id:76, op:“take”, cref:C , selectors:〈fifo(1)〉, txid:4,

timeout:10, timestamp:126, lastExecutionTime:131, expireTime:136]

Response : [id:76,

result:[status:“OK”, entries:〈E1 〉, subOps:〈[op:“take”, cref:C , txid:4]〉]]

After the actual result execution, the event processing logic is invoked by the XP unless

the request result is INVALID. The basic idea of this routine is that any time a request

56

4 XVSM CORE API

Figure 6: Race conditions when using simple event processing

has been executed, all waiting requests that can be possibly woken up by the performed

changes are rescheduled. So, if the result is DELAYABLE, a read, take or delete operation

must wait until new entries are written to the corresponding container, whereas a write

operation should be rescheduled when something is taken or deleted from the container

because entries that are in conflict with the write operation could have been removed.

For results with status LOCKED, the request has to wait until some other request releases

the locks, which usually happens at transaction commit or rollback. Waiting requests

are stored in the wait container (waitC) and every operation result is compared with

these sleeping requests to check if something has to be rescheduled. In this case, the

requests are taken from the wait container and written to the request container. There

are, however, some problems with this simple approach that need to be solved:

• First of all, events can be lost if two or more requests are processed concurrently

by different core processors. This problem is illustrated in Fig. 6, where a take

and a write request on the same container are executed in parallel by the core

processors XP1 and XP2. A request X may access the space and obtain a DELAYABLE

or LOCKED result before another request Y invokes changes on the space but the event

processing logic of Y might be called before X is written to the wait container. Thus,

the event generated by Y is not aware of X, even though the changes might enable its

successful execution. When X is finally put into the wait container, the event related

to Y has already been processed and therefore the request sleeps although it should

be rescheduled. To solve this problem, not only the waiting requests must be stored

57

4 XVSM CORE API

but also the events generated by completed requests. However, to prevent that the

list grows infinitely, events must be removed from the space after they cannot wake

up requests any more. This garbage collection implies additional complexity and

therefore a different approach is used. Instead of storing the events individually,

categories are created that store timestamps for when an event of a specific type on

a particular container has occurred the last time. Each waiting request is put into

a queue in exactly one of these categories, while any completed request execution

leads to an update of one or more event timestamps.

• It is further necessary to distinguish between committed events and those that are

still part of an open user transaction. In the latter case, only waiting operations of

the same transaction should be woken up as the others cannot yet see the changes

made by the operation that has caused the event.

• Usually, only successful requests with status OK lead to events that are able to wake

up waiting requests. Any operation accessing the space, however, may set volatile

locks within its sub transaction before the operation is cancelled and the locks are

released. These locks may hinder concurrently executing operations from fulfilling

their task and therefore also an event must be generated for unsuccessful requests

to wake up those requests with status LOCKED. If a successful request Z, which is

part of an active transaction, holds a lock that is also needed by several other

requests, these requests are all put into the wait container waiting for an unlock

event. If the requests are later rescheduled and executed concurrently, they may

also acquire locks before they fail due to the lock held by Z. Therefore, they invoke

an unlock event after the operation is rollbacked, while waiting themselves for an

unlock event. To prevent that the requests wake up each other every time their

execution fails, causing a possibly endless chain of mutual rescheduling, the event

processing logic should distinguish between short-term locks that are part of an

active sub transaction and long-term locks, which are valid until the user transaction

commits or rollbacks. The runtime can differentiate these lock types by looking at

the lockType property that CAPI-2 adds to its result xtree, which indicates if a

result status LOCKED was caused by a short-term lock of a still active sub transaction

or by a long-term lock that is directly held by the user transaction. In the mentioned

example, the blocked requests would wait for an unlock event on long-term locks,

while they generate an unlock event for short-term locks themselves. Therefore, they

are not able to wake up each other and busy waiting is avoided. However, it could

occur that two requests are blocked on different short-term locks when one of these

acquires a lock that the other one needs and vice versa. If the requests are always

started simultaneously, they both return with status LOCKED and generate an unlock

58

4 XVSM CORE API

event for short-term locks so that they wake up each other again. Therefore, the

requests waiting in this category are not executed in parallel but only rescheduled

as a sequential list.

For each new user container with reference cref, the following data structure is gen-

erated in the meta model:

cref : [insert:[lastCommittedTime:0, uncommittedTime:[], waitingRequests:〈 〉],

remove:[. . .],

lt unlock:[. . .],

st unlock:[. . .]]

For status DELAYABLE, write operations are associated with the remove category, while

read, take and delete operations use the insert category. The lt unlock and st unlock

categories are used for tasks that are locked on a long-term or short-term lock, respec-

tively. As long-term locks always evolve from short-term locks, any event triggering a

lt unlock event must also trigger st unlock. Otherwise, a request that tries to acquire

a lock before the corresponding sub transaction has committed and therefore waits on a

st unlock event would not be notified about the freed data structure. Whenever a re-

quest execution is finished with result status LOCKED or DELAYABLE, the event processing

logic performs the following steps:

1. Read the waitForOp property which contains the operation type, the container and

the transaction of the CAPI-3 operation that has led to this result.

2. For the thereby obtained category, read the lastCommittedTime timestamp and, for

transactions that are not implicit, also the timestamp of the operation’s transaction

in the uncommittedTime multiset.

3. If any of these timestamps is greater than the lastExecutionTime of the request,

the request is immediately rescheduled because an event exists that was fired after

the execution of the request has been started. Thus, the operation might have been

executed before the changes associated with the event were made to the space.

Otherwise, the request is put into the waitingRequests xtree of the corresponding

category.

Then, for any result status, the appropriate events are triggered for all operations

that are part of the request, as specified in the subOps property:

1. For all categories that are affected by the operation, update the timestamp entry

for the specified transaction in the uncommittedTime multiset with the current

59

4 XVSM CORE API

time, using the transaction id as property label. If the operation status is not OK

and thus a generally visible st unlock event must be triggered or if the operation

uses an implicit transaction that automatically commits, the lastCommittedTime

timestamp is changed instead. When the request contains a commitTransaction2

operation, all timestamps of this transaction in the uncommittedTime xtrees of all

categories are removed and the corresponding lastCommittedTime properties are

updated with the current time. For rollbackTransaction2, a similar strategy

is used, but only for the categories of type st unlock and lt unlock because the

effects of insert and remove events are revoked. Additionally, all currently waiting

requests of a completed transaction must be rescheduled, as their transaction is now

invalid.

2. For all changed timestamps, check the lastExecutionTime of waiting requests

in the corresponding categories. If the new event timestamp is greater than the

timestamp of the request and if the event is visible for the request’s transaction,

the request is rescheduled.

Figure 7 shows an example for the functionality of the event processing logic. A take

request X on container C1 is not able to succeed and is therefore put into the C1/insert

category of the wait container. The attempted execution triggers an st unlock event,

which does not wake up any request. The subsequent request Y, which depicts a write

operation on the same container with an implicit transaction, is executed successfully

and X is rescheduled because the event timestamp for the insert category is updated.

Due to the non-blocking semantics of CAPI-2 and 3, this runtime machine may never

run into a deadlock. It is, however, possible to get stuck in a livelock when two trans-

actions require locks that have been mutually acquired by previous operations of these

transactions. The current solution to this problem are transaction timeouts. The user

can specify how long a transaction is valid. Upon creation of the transaction, the runtime

writes the expiration time into a special runtime container called txTimeoutC. The time-

out processor checks periodically if any transaction is expired. In this case, the transaction

is rollbacked and all sleeping requests of this transaction are invalidated. The second task

of the timeout processor is to reschedule requests with expired request timeout. This is

also done periodically by issuing a query on the entries of the waitingRequests xtree of

all categories.

The presented approach for the semantics of the event processing logic is only one of

many possible solutions. On the one hand, requests should not be woken up if they cannot

be fulfilled, but on the other hand, the decision whether a request should be rescheduled

should not require extensive computations. Therefore, a balance must be found between

accuracy and fast decisions to achieve optimal performance. Any feasible approach must

60

4 XVSM CORE API

Figure 7: Event processing logic

61

4 XVSM CORE API

reschedule requests immediately when they are able to execute, but requests could also

be woken up if there is only a chance that they can be fulfilled. Requests that are

unnecessarily woken up do only affect performance and not the semantics of the runtime,

as they are just put back into the wait container when their execution fails again. A

very simple event processing logic would just reschedule all requests of a container after

an operation on this container has been processed. The specified semantics offer a more

appropriate behavior by introducing categories for requests that wait for insert, remove

or unlock events, without requiring complex computations or extensive storage. Another

possible solution would be to split the events into even more categories, so that the event

logic can determine more exact preconditions for a request to be satisfiable. E.g., for a

take request with status DELAYABLE, the corresponding coordinator could be specified,

so that the request is only woken up if new entries are written to the container using

this coordinator. Furthermore, a locked request could include data on the transaction

that holds the conflicting lock, so that the request is only rescheduled if the related (sub)

transaction commits or rollbacks. It must, however, be examined if the added accuracy

outweighs the higher computational overhead, which will be researched in future work.

4.4.2 Aspects

Aspects can dynamically change the semantics of operations. Pre aspects may change the

request xtree and thus the arguments of an operation, while post aspects can manipulate

the result xtree. They can also access the space directly via own calls to CAPI-3 and may

have additional side effects like access to IO or databases. Aspects can be used for tasks

like notifications, logging, security [42] or replication [26]. It is possible for aspects to use

the same sub transaction as the actual operation so that the changes are automatically

rollbacked when the operation fails. This is enabled by the runtime, which adds the id of

the active operation to the context xtree that is passed to the aspects. It must be noted,

however, that changes outside of the XVSM core are not transactionally safe, so aspects

should invoke proper compensation if an operation fails or a transaction rollbacks. Also,

the transaction and aspect control commands do not support a transactional context for

their aspects because they do not use own sub transactions.

Aspects are added to the runtime via so-called interception points. These interception

points are either before or after any CAPI-4 operation. So-called local aspects can be

defined for write, read, take and delete operations, which are only valid on a certain

container. In contrast, global aspects are always invoked when the associated CAPI-

4 operation is called. An aspect is registered on an interception point by adding an

entry with its code to the appropriate interception point sequence of the aspectDefs

meta container. The aspect is specified via a simple scripting language, which allows

easy access to the request and result parameters as well as to the space. This scripting

62

4 XVSM CORE API

language, however, is out of scope of this thesis and will be specified in future work.

For every runtime operation, the pre and post aspects are called in the defined order.

Their return values can have the same status codes as the CAPI-3 operations but pre

aspects may have an additional status SKIP. This code means that all following pre

aspects as well as the actual operation should be skipped and the core processor should

resume with the post aspects. If no post aspect exists, status OK is returned for the whole

operation. If any pre or post aspect or the actual operation return a status of NOTOK,

LOCKED or DELAYABLE, the execution is immediately stopped and this value is returned as

the operation result. Otherwise, the operation result of the last post aspect is used unless

there are no registered post aspects, in which case the result of the actual operation is

returned.

Beside the request xtree for pre aspects, and the request and result xtrees for post

aspects, the context parameter is used as an additional argument that can also be modified

by all aspects. This aspect context is originally provided by the user, who may pass any

kind of information to the aspects. Before invoking the aspects, the runtime may also

add meta data to this context. This aspect context can then be used to pass information

between aspects and between a pre aspect and a coordinator which also has access to

this parameter.

The aspect mechanism allows any user to enrich the space with arbitrary behavior.

Profiles are used to add a particular functionality to the space, which may include security,

replication or notifications. These profiles are implemented via a combination of aspects

and are an example for the extensibility of XVSM.

4.4.3 CAPI-4 operations

In contrast to the lower CAPI layers, the methods of CAPI-4 shown in Table 7 are not

called directly but invoked via the runtime machine by putting a corresponding request

into the request container. The result which is finally put into the response container

has the status OK, NOTOK or INVALID. All operations have a SpaceURI parameter that

determines the XVSM core on which the request should be performed. If this value is

null, the local runtime is used. Otherwise, the sender process takes the request from the

request container and sends it to the appropriate core. The context parameter is used to

pass special information to aspects and coordinators. Most of the operations also use a

transaction id as an argument. A null value in this case indicates an implicit transaction

created by the runtime that should be automatically committed.

Transaction management: For creating, committing or rollbacking a transaction,

the corresponding CAPI-2 methods are called. The transaction timeout specified for

createTransaction may have any value greater than 0 for a period in milliseconds or

63

4 XVSM CORE API

Arguments Result
createTransaction SpaceURI (String), Context (Xtree), Trans-

action timeout (Integer)
Transaction
Id (String)

commitTransaction SpaceURI (String), Context (Xtree), Trans-
action Id (String)

-

rollbackTransaction SpaceURI (String), Context (Xtree), Trans-
action Id (String)

-

addAspect SpaceURI (String), IPoint (Interception
Point), Code (Aspect), Context (Xtree)

Aspect Id
(String)

removeAspect SpaceURI (String), Aspect Id (String), Con-
text (Xtree)

-

createContainer SpaceURI (String), Container name (String),
Size (Integer), Obligatory Coords ([(Coord,
String, Xtree)]), Optional Coords ([(Coord,
String, Xtree)]), Context (Xtree), Transac-
tion Id (String)

ContainerRef
(String)

destroyContainer SpaceURI (String), ContainerRef (String),
Context (Xtree), Transaction Id (String)

-

lookupContainer SpaceURI (String), Container name (String),
Context (Xtree), Transaction Id (String)

ContainerRef
(String)

setContainerLock SpaceURI (String), ContainerRef (String),
Context (Xtree), Transaction Id (String)

-

write SpaceURI (String), ContainerRef (String),
Entries with write selectors ([(XTree,
[(String, Xtree)])]), Context (Xtree), Trans-
action Id (String), Timeout (Integer)

-

take SpaceURI (String), ContainerRef (String),
Read selectors ([(String, Xtree)]), Context
(Xtree), Transaction Id (String), Timeout
(Integer)

Result entries
(Xtree)

read SpaceURI (String), ContainerRef (String),
Read selectors ([(String, Xtree)]), Context
(Xtree), Transaction Id (String), Timeout
(Integer)

Result entries
(Xtree)

delete SpaceURI (String), ContainerRef (String),
Read selectors ([(String, Xtree)]), Context
(Xtree), Transaction Id (String), Timeout
(Integer)

-

Table 7: CAPI-4 operations

64

4 XVSM CORE API

the constant value INFINITE for a transaction that should never time out.

Aspect management: As described in Sect. 4.4.2, aspects can be dynamically added

to an interception point with addAspect. The returned unique aspect id can then be

used to delete the aspect with removeAspect.

Container operations: The remaining operations on containers and their entries are

executed by calling the corresponding CAPI-3 methods. The timeout parameter, which is

only available for read, take, delete and write, specifies how long the execution should

be tried, as described in Sect. 4.4.1.

Management API: Beside the actual CAPI-4 operations, there is also the possibility

for a privileged user to directly access the XVSM meta model. This is done by allowing

special requests for debug operations that essentially comply with the basic methods of

CAPI-1.

4.5 XVSMP and Language Bindings

The XML based protocol that enables the interaction between different XVSM peers is

called XVSMP. Within the runtime, the sender and receiver processes form the protocol

layer that transforms XVSMP into the internal xtree representation and vice versa. The

intermediate protocol allows XVSM implementations in different programming languages

to communicate with each other, thus enabling platform interoperability. There are two

types of language bindings: An embedded API as described in Sect. 4.4 communicates

directly with the XVSM core via the request and response container. If a request is issued

for a remote space, the runtime uses the protocol layer to obtain the result, but this

remains transparent to the API. A standalone API without own XVSM runtime can also

be implemented. This language binding uses XVSMP directly by sending appropriate

XML messages to the URI of the space. In this case, an answer container must be

specified where the request result and its status information is written to. Usually,

this answer container remains virtual, which means that the protocol layer sends the

response directly to the URI of the calling language adapter. However, it is possible

to specify a particular user container located at an XVSM core. This could be useful

for mobile devices that do not have a permanent connection to the space. Language

adapters on these devices can issue a request that may require some time to execute

and then disconnect immediately. Later, they can poll the specified answer container for

the actual result. XVSM language adapters may provide synchronous access to space

methods or asynchronous invocation of XVSM operations via callback functions. The

protocol supports both approaches, thus allowing for maximal flexibility.

65

5 APPLICATION SCENARIO

5 Application scenario

As a use case scenario for the application of the XVSM middleware, a simple auction

system is presented in this section, similar to the example described in [10]. Multiple peers

should be able to buy and sell books over the internet in an ad-hoc way. The participants

do not have to know each other in advance. Instead, the entire collaboration between

peers is accomplished via a common XVSM space. It should be possible to dynamically

create auctions, search for them and make bids. Moreover, the implementation and

adaptation of the individual applications should be possible with minimal effort, so that

different policies for peers can be established easily. In the following, a possible design

for this use case is shown; a concrete implementation of this scenario using the XVSM

Haskell prototype is described in Sect. 6.3.

A single container holds all entries used for the coordination of the processes. For each

auction, four different kinds of entry types are needed. An auction entry with a specified

starting bid is created for every book that needs to be sold, while bid entries store one bid

of a potential buyer for a particular active auction. Shortly before an auction is closed,

the seller may specify a countdown entry to notify potential bidders. When an auction

ends, all related entries are cleared and an acceptance entry, which specifies the winner of

the auction, is inserted into the container. Auctions, sellers and bidders are all identified

via a unique id. The purpose of an entry is determined by a separate field specifying the

type. This property contains the strings “auction”, “bid”, “countdown” or “accept” for

the respective entry types. Example entries for this scenario look as follows:

[type:“auction”, auctionId:“a42”, startingBid:10, sellerId:“seller1”,

book:[title:“JavaSpaces Example by Example”, author:“Halter”]]

[type:“bid”, auctionId:“a42”, bid:12, bidderId:“bidder1”]

[type:“countdown”, auctionId:“a42”]

[type:“accept”, auctionId:“a42”, bid:12, bidderId:“bidder1”]

For the management of these entries, the QueryCoordinator and a special Auction-

Coordinator are used as obligatory coordinators. Similar to the KeyCoordinator, this

user-defined coordinator prevents auctions with identical ids from being created. Addi-

tionally, it checks for bid entries that the corresponding auction still exists in the space

when the bid is issued and that each bid has at least the value of the starting bid. The

coordinator, however, does not check if the bid is higher than the current maximum bid

because bidders can withdraw their offers so that lower bids might win too. Therefore, the

CoXT only needs to store the id and starting bid for each auction and every action beside

the creation of auctions may be invoked in concurrent transactions. The query function

66

5 APPLICATION SCENARIO

determines if the auction is still active by checking its internal auction list because deleted

auctions are also removed from the CoXT by the onRemove accountant function. If it can-

not be found, a NOTOK error must be raised. Otherwise, the function selects a winning bid

of an auction according to the following policy: As long as a specified number of distinct

bidders are involved in the auction with active bids, the highest bid should be selected.

This behavior can be described with the XVSMQL query type="bid" | auctionId=id
| sortdown(bid) | distinct(buyerId) | cnt(k) | cnt(1), where k is the number of

distinct bidders required, given as an argument to the query function, which also requires

the auction id.

Sellers create auctions by writing auction entries into the container. Then, they can

wait until a defined number of different bidders has issued offers by invoking a read

operation using an auction selector that includes this number. The exact conditions for

the acceptance of a bid can be easily adapted for each seller individually. In this example,

the seller application waits until either a minimum number of bidders has issued bids

or a maximum wait time has passed. This is achieved with a blocking read operation

using the maximum wait time as timeout. If this operation fails, a non-blocking read

is invoked where k is set to 1 so that there is no restriction on the number of bidders

as long as at least one bid exists. Then, a countdown is started for the auction in both

cases and a countdown entry is written to the space using a KeyCoordinator with the

auction id. After a specified amount of time, another non-blocking read operation is called

with k=1. If the retrieved bid is higher than the previously read one, the countdown is

restarted. Otherwise, the auction is closed and the buyer with the highest bid wins.

At the end of an auction, the garbage collection is invoked which deletes all entries with

auctionId=id via the QueryCoordinator, using the same transaction as the most recent

AuctionCoordinator read operation. In this transaction, also an acceptance entry for the

auction is written to the container with the KeyCoordinator. The transaction is needed

to guarantee that bidders cannot withdraw the bid after they are selected as winners.

Also, the update of the auction status with the KeyCoordinator and the removal of

the auction appear atomically. Alternative semantics for the seller can be implemented

without changing the coordinator. E.g., a seller could just wait for a fixed time and then

use a non-blocking AuctionCoordinator query with k=1 to get the highest bid, before

an optional countdown is started. Arbitrary conditions for the end of an auction can also

be specified with special QueryCoordinator read operations on all bids of an auction.

Bidders can search for auctions of books with particular title or authors by apply-

ing a read operation on the container with the QueryCoordinator. Then, they can

issue bids on these auctions by writing bid entries to the space. Bids can be cancelled

before the given auction ends with a delete operation using the query type="bid" |
auctionId=myAuctionId | bidderId=myId . A bidder can dynamically react to the

67

5 APPLICATION SCENARIO

progression of an auction by starting two listener threads. The first listener waits for

any bid that is higher than the highest own bid by blockingly reading the container with

the combination of an AuctionCoordinator query with k=1 and a query selector with

parameter bidderId 6= myId | cnt(1). Thus, this function allows bidders to wait un-

til someone outbids them, so that they can react by placing another bid. The second

listener function waits for status updates on the auction, which can be either countdown

or acceptance messages. These can simply be retrieved by a blocking read query with

a key selector that uses the auctionId as parameter. After the countdown has been

started, the listener may add a query selector to the read operation specifying that only

acceptance entries should be found. Otherwise the countdown message would be returned

constantly.

For this auction scenario, the XVSM model provides high flexibility with minimal ef-

fort for the developers of seller and bidder applications. In contrast, a database solution

would be less reactive as it would require polling to wait for bids. Moreover, database

systems are usually not well suited for ad-hoc coordination because they must be in-

stalled and maintained by an administrator, whereas spaces can be created dynamically

in a simpler way. Compared to a JavaSpaces implementation, XVSM supports much

better coordination mechanisms. Simple template matching does only allow equality

checks, thus it is not possible with the classical Linda model to search for a higher bid.

Therefore, coordination and business logic have to be mixed in the application, which

reduces maintainability, while an XVSM based approach separates coordination from

computation.

68

6 HASKELL XVSM PROTOTYPE

6 Haskell XVSM Prototype

In the previous sections the formal model of XVSM has been presented. Based on this

model a reference implementation in the functional programming language Haskell [19]

has been created for various reasons. It should help to detect design flaws in the formal

specification, enable extensive tests of the formal model in various use cases and define

clear semantics in every situation. Further XVSM implementations can use this Haskell

prototype as a reference for the semantic behavior of the XVSM core in ambiguous cases,

which should help to create interoperable versions of XVSM on various platforms. The

focus of the Haskell prototype is clearly on the semantics of a single XVSM core in highly

concurrent situations whereas performance issues and usability are only of second priority,

as the intended users are developers of XVSM runtimes and not application programmers.

The use of Haskell, one of the most common functional programming languages nowa-

days, was a logical choice because the functional programming paradigm [18] tends to

map formal specifications more clearly than imperative languages like Java. In this pro-

gramming style, which is based on lambda calculus introduced by Alonzo Church, the

result of a program is computed by evaluating mathematical functions instead of perform-

ing a series of actions like in imperative programming. A function’s result only depends

on its input because the program does not have any inner state. Destructive updates of

variables like in imperative languages are not possible and thus side effects, which change

the values of other computations and are the cause of many programming errors, are pre-

vented. Instead of loops, recursion must be used for iterations. Higher-order functions

enable programmers to use other functions as input or output of their own computations.

All these properties allow the programmer to create short and readable code despite the

lack of destructive updates.

6.1 Introduction to Haskell

The programming language Haskell, which was originally created in 1990 as a common

foundation for research on functional programming, is widely used in research and also in

commercial applications in its current standardized form, Haskell 98 [37]. For the XVSM

formal model prototype, the Glasgow Haskell Compiler4 (GHC), which is the de-facto

reference implementation of Haskell 98, is used.

As a purely functional programming language, Haskell forbids side effects in its func-

tions. The result of any function depends only on the values of its input parameters

and not on the history of prior calls. Haskell is a non-strict language, meaning that

expressions need not be evaluated if they are not necessary for the computation of the

function result. Therefore, Haskell applies a lazy evaluation strategy which does not

4http://www.haskell.org/ghc/

69

6 HASKELL XVSM PROTOTYPE

compute the results of expressions until they are needed. A strong static type system

is used, so that every variable has a definite immutable type that can be determined

at compile time. The types of input parameters and return values are usually explicitly

defined by the programmer whereas the types of other variables can be implicitly inferred

by the compiler as long as they are not ambiguous. However, Haskell also allows type

variables symbolizing arbitrary types, which enables the programmer to create generic

functions. Furthermore, type classes are supported that declare a set of functions that

must be defined by member types. Type classes are used to support ad-hoc polymor-

phism so that generic functions can be defined with input variables that need to have a

certain function, like e.g. an equality check defined in the type class Eq. Haskell supports

higher-order functions, i.e. functions can be used as input parameters or return values

and stored in data structures like any other variable type. Functions in Haskell are often

found in their curried version, which means that instead of taking a list of its arguments

as input, a function only takes its first input parameter and returns another function that

requires the second argument of the original function and so forth. When all arguments

of a function are given, both versions return the same result, but currying enables partial

evaluation of a function when not all arguments are available.

1 getXTree0 : : XTree −> St r ing −> XTree

2 getXTree0 (Ms []) = Ni l

3 getXTree0 (Ms (x : xs)) l b l

4 | i s Lb l l b l x = getVal x

5 | otherwise = getXTree0 (Ms xs) l b l

6 . . .

Listing 3: A simple Haskell function (snippet)

Listing 3 shows a code snippet of a simple function which takes an xtree and a string

as arguments and returns a child xtree with the given label or Nil if none is found. The

first line specifies the signature of the function. Strictly speaking, it is a function that

takes an XTree and returns another function that takes a String and returns an XTree.

However, informally all but the last element of the signature can be considered as the

function’s arguments, while the last one is the return value. Lines 2 and 3 show two

different definitions for getXTree0, depending on the form of the given arguments. In

the example snippet, the function is only defined for multisets which are identified by

their constructor Ms. Empty multisets use the first definition, while for non-empty ones,

which can be described as a composition of a head element x and the tail xs, the second

definition applies. This approach is called pattern matching. Any function is executed

by using the first function definition that matches the given arguments, which are then

bound to variable names that are used in the function’s body to compute the result. If

an argument is not required for the computation of the result, a wildcard that matches

any argument () can be used as a pattern. A function can be defined with guards like in

70

6 HASKELL XVSM PROTOTYPE

lines 4 and 5. It is evaluated by returning the first right-hand expression for which the

Boolean expression of a guard is true. For the example function, this means that if the

first property’s label is equal to the specified string, the value xtree of this property is

returned, otherwise a recursive call to getXTree0 with the remaining multiset properties

as argument continues the search. The helper functions isLbl and getVal are defined

elsewhere.

Other important language features are where and let clauses within function defi-

nitions that allow local variable bindings, a module concept that enables separation of

code, the ability to define anonymous functions as arguments for other functions, and a

powerful way to generate lists of data via list comprehension. Furthermore, conditional

expressions can be formed via case and if-then-else constructs. In contrast to many other

languages, the layout in Haskell actually matters, as the indentation determines the scope

of blocks. Lines with the same starting column belong to the same block, whereas an

expression can be extended to multiple lines by an additional indentation of the extra

lines.

A further distinguishing feature of Haskell are monads, which allow the use of side

effects in programs without eliminating the language’s purely functional character. A

monad can be viewed as an abstract data type that allows the programmer to specify a

chain of actions in an imperative style, which can be useful for interacting with the user

(e.g. via the IO monad) or for storing a global state. Monadic functions support a special

syntax: A basic block starts with the do keyword, followed by a sequence of actions that

must be executed. Monadic values can be bound to variables via the bind operator (<-)

and reversely, monadic values can be created from normal ones via return. Exceptions

can also be raised within monads with fail. The last action of a do-sequence must be

an expression that returns a monadic value.

Other advantages of Haskell are the big variety of powerful built-in functions and

the extensive standard and non-standard libraries. Especially the built-in generic list

functions help to keep the code short and simple. For example, the function map applies

a function to each element of a list and returns the result list, while filter extracts all

elements from a list that fulfill a certain predicate. Further information on Haskell and

a detailed description of the language’s syntax and semantics together with a wide range

of tutorials can be found on the official project site5.

6.2 Implementation

The prototype focuses on a single XVSM core, thus the protocol layer with sender and re-

ceiver processes is omitted. The space can be directly accessed by using the synchronous

5http://haskell.org

71

http://haskell.org

6 HASKELL XVSM PROTOTYPE

embedded API interacting with the runtime’s request and response container. For sim-

ulation of the XVSM space and its runtime machine, the capabilities of Haskell 98 are

not sufficient. Therefore, two non-standard extensions are used. Concurrent Haskell

[39, 36] offers the possibility to create concurrent threads, which is needed to implement

the different runtime processes. Using the primitive forkIO, which takes a function of

the IO monad as an argument, a new process is started within the Haskell runtime while

the parent function continues with the next action. A ThreadId is returned that can

be later used to stop the thread with killThread. Another method that is used in

the XVSM implementation is threadDelay, which forces the own thread to sleep for a

specified time. This is used for the timeout processor to periodically poll for expired

requests and transactions. Listing 4 shows how the XVSM runtime can be initiated with

startRuntimeThreads by forking three core processors and one timeout processor. The

returned ThreadIds can later be used to kill the processes with stopRuntimeThreads.

1 startRuntimeThreads : : TVar Space −> IO [ThreadId]

2 startRuntimeThreads s r e f =

3 do xp1 <− forkIO (coreRout ine s r e f)

4 xp2 <− forkIO (coreRout ine s r e f)

5 xp3 <− forkIO (coreRout ine s r e f)

6 tp <− forkIO (tpRoutine s r e f)

7 return [xp1 , xp2 , xp3 , tp]

8

9 stopRuntimeThreads : : [ThreadId] −> IO ()

10 stopRuntimeThreads threads = mapM k i l lThread threads

Listing 4: Creation and destruction of runtime threads

In this example, the space is stored in a variable of type TVar Space, which is pro-

vided by the second used Haskell extension, namely Software Transactional Memory

(STM) [16, 11, 38]. The STM concept, which was originally proposed in [45], allows to

group several actions on a shared data structure into one atomic operation. Instead of

locking, an optimistic approach is used to avoid conflicts when concurrent threads access

the same variable. The STM monad in Haskell provides mutable variables of type TVar

a, which can be modified within transactions, where “a” stands for an arbitrary type.

For the XVSM implementation, STM offers two main features: It guarantees the atomic

space access of CAPI-1 and parts of CAPI-2 via the atomically primitive and it helps to

simulate the blocking behavior of CAPI-B with the retry function. With atomically,

which is used within the IO monad, a series of STM actions can be executed within a

transaction. Possible actions include the creation of a new mutable space variable with

newTVar and a read operation readTVar that returns the currently stored space from

a TVar variable. On the retrieved space variable, any non-monadic transformation can

be applied, before the thereby changed space is written back to the global TVar with

writeTVar. For simplicity, the XVSM prototype only uses a single TVar for the whole

space, which is accessed by all internal methods that require direct interaction with the

72

6 HASKELL XVSM PROTOTYPE

space. Listing 5 shows a typical usage of STM within the XVSM implementation. The

example function takes a space reference as argument and performs an atomic and possi-

bly blocking update operation on it. On the space variable retrieved from the reference,

some sort of conditional check is invoked. If it returns True, a modified space variable s’

is created which is then written into the TVar, replacing the original space. Otherwise,

the retry function is invoked, which blocks the thread until another thread changes the

transactional variable sref and the execution of the current memory transaction can be

retried.

1 exampleSTM : : TVar Space −> IO ()

2 exampleSTM s r e f =

3 a tomica l l y (do s <− readTVar s r e f

4 i f doSomeCheck s

5 then do let s ’ = updateSomething s

6 writeTVar s r e f s ’

7 else r e t r y)

Listing 5: Usage of STM

The transactions provided by STM could be applied to simulate the transactions of

XVSM, but in the current prototype STM is only used for the synchronized data access.

The Haskell implementation should serve as a reference for the formal model described

in the previous sections and therefore STM is not used for the higher CAPI layers as it

would hide complex parts of the program logic and allow less control on the semantics of

transactions in XVSM. Thus, CAPI-1 methods can be called within STM transactions but

all functions of higher CAPI layers are only invoked as IO actions. The IO monad enables

an imperative style for these layers which is necessary to comply with the formal model

specification in Sect. 4. Purely functional code is still used for the algebraic foundation,

the query language and the methods of CAPI-1, as well as for various helper methods.

6.2.1 Architecture

The XVSM prototype is split up into modules that resemble the structure of the formal

model. The basic data types are defined in the Types module, while the algebraic access

to xtrees is defined in Capi0. These modules are used by all other program parts. In

Queries, which is used by the runtime and all lower CAPI layers, the XVSMQL is mod-

eled. CAPI-1 is broken up into three modules: The purely functional methods of Capi1

are invoked directly by the runtime within STM actions and by the other CAPI layers

to issue a query on xtrees that are not located in the space. Capi1STM encapsulates the

functions of Capi1 into atomically blocks and is used for simple access to the space

by Capi2, while Capi1Debug maps the methods to corresponding versions that can be

invoked by user requests via the management API. The Capi3 module uses the trans-

actional operations of Capi2 and the generic coordinator functions of Coordinators as

73

6 HASKELL XVSM PROTOTYPE

Figure 8: Haskell XVSM prototype architecture

well as the actual coordinator implementations. These predefined coordinator modules

also use the Coordinators module which provides limited access to CAPI-2. CAPI-4 is

implemented via the Runtime module that internally uses Capi1 together with STM to

simulate the possibly blocking behavior of CAPI-B. To fulfill user requests, the appropri-

ate operations of Capi2, Capi3 and Capi1Debug are called. The predefined coordinator

implementations and the dynamically added aspects, which have direct access to Capi2

and Capi3, are also registered here. The EmbeddedApi module, which accesses the run-

time, finally allows applications to use the XVSM space.

Figure 8 shows the modules and their dependencies. The arrows indicate which mod-

ules call functions of other modules directly, whereas several modules are grouped together

to simplify the relations. E.g., changes to the Types module would require adaptations in

all other parts of the implementation because every module depends on the definitions of

this module. However, modifications to the runtime may only affect the embedded API

and therefore indirectly also user applications.

74

6 HASKELL XVSM PROTOTYPE

6.2.2 Basic data access

Listing 6 shows the definition of the XTree data type, which is either a multiset (Ms), a

sequence (Seq) or a value. For simplicity, only strings, integers and Boolean values as well

as coordinator and aspect definitions are supported. The Nil value is used in functions

that use xtrees as argument or return value to indicate that the xtree does not exist. To

allow comparison between two xtrees, the data type is defined as instance of the type

classes Eq and Ord. Both multisets and sequences are defined as lists of properties, which

are themselves tuples of a label string and an xtree. The types Space, Container and

Entry are used as synonyms for XTree if applicable.

1 data XTree = Ms [Property]

2 | Seq [Property]

3 | Str S t r ing

4 | Int In t eg e r

5 | Bool Bool

6 |Co Coordinator

7 |Asp Aspect

8 | Ni l deriving (Eq , Ord)

9

10 type Property = (Str ing , XTree)

11

12 type Space = XTree

13 type Container = XTree

14 type Entry = XTree

Listing 6: XTree data type

Various basic functions are defined that depict the possibilities of the XVSM algebra

outlined in Sect. 2 and allow the usage of XTrees in the XVSM implementation. With

getXTree0 and getXTreeByPos0, a child xtree of a sequence or multiset can be retrieved

via its label or index position, respectively, which enables the selection of an xtree via its

path. Similarly, the updateXTree0 and updateXTreeByPos0 functions allow write access

on any child xtree. The addXTree0 function can be interpreted as a union operator for

multisets and as concatenation for sequences, while deleteXTree0 allows the removal of a

child xtree from its parent. With getSize, the cardinality of the xtree can be computed.

Capi0 further includes methods to extract the labels and values of properties as well as

type checks and conversion functions that are used when an xtree of a specific type is

expected, e.g. an integer value. Additionally, several convenience methods are provided

that ease the manipulation of multiset and sequence xtrees.

6.2.3 CAPI-1 and query evaluation

As shown in Listing 7, all CAPI-1 functions require an xtree argument specifying the root

and a path given as a list of strings. In contrast to the formal model, the return value is

not a single xtree. Instead, the result is split into tuples or triples, so that the caller does

75

6 HASKELL XVSM PROTOTYPE

not need to extract the needed data from an xtree. The result includes the changed root

xtree (except for read1), the actual outcome of the operation (except for writeL1) and

the status xtree that contains the status code and possible error details.

1 writeL1 : : XTree −> [S t r ing] −> St r ing −> XTree −> (XTree , XTree)

2 wr i te1 : : XTree −> [S t r ing] −> XTree −> (XTree , Str ing , XTree)

3 writeBulk1 : : XTree −> [S t r ing] −> [XTree] −> (XTree , [S t r ing] , XTree)

4 read1 : : XTree −> [S t r ing] −> [QueryFunc] −> (XTree , XTree)

5 take1 : : XTree −> [S t r ing] −> [QueryFunc] −> (XTree , XTree , XTree)

Listing 7: Signatures of Capi1 functions

The read and take operations use a list of QueryFunc objects as parameters. Each of

these functions corresponds to an SXQ of the query language described in Sect. 3. Listing

8 shows the definition of the data type as well as examples for query function implementa-

tions. A query function can either be a selector with constructor Sel or a matchmaker as

indicated by Mm. A matchmaker is simply a function that returns True or False for any

specified property. E.g., the matchmaker used for testing a specific xtree of a property

according to a given predicate can be defined via qTest. By specifying the path of the

(sub) xtree that should be examined and a function that takes this xtree as an argument

and returns a Boolean value, a matchmaker query function is created. By using partly

evaluated functions, a wide range of matchmakers can be derived from this definition.

For example, the XVSMQL matchmaker */author = "Gelernter" can be expressed

with the query function Mm (qTest ["*", "author"] (== Str "Gelernter")). The

implementation of qTest uses a helper method to retrieve all sub xtrees of the property

that match the given path. On these xtrees, the specified comparison predicate is ap-

plied using the predefined any function, which returns True if the comparison predicate

is fulfilled by at least one matching xtree. Selector functions use a list of indexed xtrees

as argument that represents a sequence or multiset container. The query execution logic

requires that each property must be uniquely identifiable within the root xtree, which

is achieved with a integer list representing the index positions of each parent xtree in

its own parent xtree. Additionally, the full path of the property is needed. Therefore,

the container on which the selector function should be applied is represented by a list

of triples with index list, path and value as well as a Boolean flag that indicates if the

input container is a sequence or a multiset. This data structure is also returned after the

selector function has changed it, together with an xtree that contains possible errors. As

an example for a selector, the qCnt function can be used with an integer argument, e.g.

qCnt 3 corresponds to cnt(3). For any specified positive integer n, this function simple

takes the first n properties and returns the reduced list. If not enough properties are

available, an error is returned.

76

6 HASKELL XVSM PROTOTYPE

1 data QueryFunc = Se l ([([I n t eg e r] , [S t r ing] , XTree)] −> Bool

2 −> ([([I n t e g e r] , [S t r ing] , XTree)] , Bool , XTree))

3 |Mm (Property −> Bool)

4

5 qTest : : [S t r ing] −> (XTree −> Bool) −> Property −> Bool

6 qTest compPath pr prop = any pr xts

7 where

8 xts = getQueryPathXTs (Ms [prop]) compPath

9

10 qCnt : : I n t eg e r −> [([I n t e g e r] , [S t r ing] , XTree)] −> Bool

11 −> ([([I n t e g e r] , [S t r ing] , XTree)] , Bool , XTree)

12 qCnt cnt ixProps i sSeq

13 | cnt <= 0 = ([] , i sSeq , Str ” InvalidArgument ”)

14 | cnt > toInteger (length ixProps) = ([] , i sSeq , Str ”CountNotMet”)

15 | otherwise = (take (fromInteger cnt) ixProps , i sSeq , Ni l)

Listing 8: Query functions

When using read1 or take1, initially all xtrees in the search path specified by the

path argument are retrieved with attached index lists that serve as references. If the list

of query functions is empty, these xtrees represent the result. Otherwise, the child xtrees

of all these xtrees are aggregated in a single multiset or sequence, which is then used as

input for the queryExecution method shown in Listing 9. This recursive function applies

selector functions directly on the input container structure, while matchmaker functions

are invoked via a special matchmaker method that executes the given predicate on all

available properties. The indices of the result properties are finally used to remove the

correct properties in the case of take1, while the property path and the value xtree are

included in the function’s result xtree.

1 queryExecution : : [([I n t e g e r] , [S t r ing] , XTree)] −> Bool −> [QueryFunc]

2 −> ([([I n t e g e r] , [S t r ing] , XTree)] , Bool , XTree)

3 queryExecution xt i sSeq [] = (xt , i sSeq , Ni l)

4 queryExecution xt i sSeq ((Se l q) : qs)

5 | e x i s t s errorXT = re s

6 | otherwise = queryExecution qResult qIsSeq qs

7 where

8 res@ (qResult , qIsSeq , errorXT) = q xt i sSeq

9 queryExecution xt i sSeq ((Mm q) : qs)

10 | e x i s t s errorXT = (qResult , i sSeq , errorXT)

11 | otherwise = queryExecution qResult i sSeq qs

12 where

13 (qResult , errorXT) = matchmaker q xt

14

15 matchmaker : : (Property −> Bool) −> [([I n t e g e r] , [S t r ing] , XTree)]

16 −> ([([I n t eg e r] , [S t r ing] , XTree)] , XTree)

17 matchmaker mmFunc props = (f i l t e r (\ (, path , xt) −> mmFunc (last path , xt)) props , Ni l)

Listing 9: Query execution

77

6 HASKELL XVSM PROTOTYPE

6.2.4 CAPI-2

In contrast to Capi1, the operations of the Capi2 module only return one xtree as de-

scribed in the formal model. The atomic access on the locks and txC container is

achieved with the help of STM by setting special lock xtrees on which a blocking take

is issued. As these locks are always acquired and released in the same order, they block

an operation only for a very limited time and no deadlocks can occur, so this does not

contradict the non-blocking behavior defined for CAPI-2 in the formal model.

The transactional operations of Capi2 use various lock check methods that help to

decide if an access to a specific xtree is allowed or not. If these checks succeed, a lock is

written to the locks container and corresponding entries are created for the log of the

involved operation, as described in Sect. 4.2. The query used for the canBeRead function,

which uses the atomicRead1 read method defined in Capi1STM, is shown in Listing 10.

According to the lock compatibility defined in Table 3, any foreign delete or exclusive

read lock on either a parent xtree, the examined xtree itself or a child xtree leads to a

denial of the read access. The query on the locks meta container of the given space

consists of two matchmaker functions. The first one is a test on the path property of a

lock. The isChildOrParentOrExactPath predicate compares the path of the xtree that

should be read with the path of the lock. If the paths are equal or any of the paths is a

parent xtree of the other, the entry is included in the intermediate result that is passed

to the second matchmaker. This function checks if the lock is indeed a delete or exclusive

read lock and that it is not held by the own operation, which is specified via the tx and op

parameters. If this query returns a non-empty result, the canBeRead function indicates

an incompatible lock, otherwise this check succeeds.

1 atomicRead1 s r e f [” l o c k s ”] [Mm (qTest [”∗” , ”path ”] (isChildOrParentOrExactPath path)) ,

2 Mm (qAnd (qOr (qTest [”∗” , ” type ”] (== Str ”DELETE”))

3 (qTest [”∗” , ” type ”] (== Str ”EXCL”)))

4 (qOr (qTest [”∗” , ” tx ”] (/= Str tx))

5 (qTest [”∗” , ”op ”] (/= Str op))))]

Listing 10: Query if xtree can be read

When committing, the commitTransaction2 function extracts the logs of all finished

operations within the specified transaction and passes them to the commitLogs method

shown in Listing 11, which invokes the commitLogEntry function on all log entries for

each of the operation logs. This method retrieves the type and path properties of the

entry and then removes the specified inserted lock or deleted property from the space

with a take operation, while log entries of type PROP-INSERTED are ignored.

1 commitLogs : : TVar Space −> [XTree] −> IO ()

2 commitLogs [] = return ()

3 commitLogs s r e f (l g : l g s) = do mapM (commitLogEntry s r e f) (getValues l g)

4 commitLogs s r e f l g s

5

78

6 HASKELL XVSM PROTOTYPE

6 commitLogEntry : : TVar Space −> XTree −> IO ()

7 commitLogEntry s r e f entry = do let entryType = getSt r ingVa l (getXTree0 entry ” type ”)

8 let path = getSt r ingVa lue s (getXTree0 entry ”path ”)

9 case entryType of

10 ”LOCK−INSERTED” −> do atomicTake1 s r e f path []

11 return ()

12 ”PROP−DELETED” −> do atomicTake1 s r e f path []

13 return ()

14 −> return ()

Listing 11: Committing a transaction

6.2.5 CAPI-3 and coordinators

The functions defined in Capi3 enable the access on containers with the help of coordi-

nators, as described in Sect. 4.3. Listing 12 shows how the coordinator implementations

are incorporated into this module using the example of the evalSelectorChain method

which is used by read3, take3 and delete3 to get the query result for a given chain of

read selectors. The method is called recursively for every read selector specified by its

id (coordId) and its arguments (argsXT), whereas the current result set stored in the

inEntries parameter is used to pass the input entries to the next coordinator in the

chain. If all read selectors are processed, these entries are returned in the method’s result

(line 4). The coordImpls argument contains a previously retrieved list of coordinator

implementations, which is used to find the appropriate query function for the current read

selector (lines 7–10). This function is then called and for result status OK, the recursion

is invoked with the output entries of the current coordinator as input for the next one.

If an error occurs, the corresponding status xtree is forwarded instead.

1 eva lSe l e c to rCha in : : TVar Space −> [S t r ing] −> [(Str ing , Coordinator)] −> XTree

2 −> [(Str ing , XTree)] −> XTree −> Operat ionId −> IO XTree

3 eva lSe l e c to rCha in s r e f conta inerPath coordImpls i nEn t r i e s [] contextXT opid =

4 return (Ms [(” s t a tu s ” , Str ”ok ”) , (” r e s u l t ” , i nEn t r i e s)])

5 eva lSe l e c to rCha in s r e f conta inerPath coordImpls i nEn t r i e s

6 ((coordId , argsXT) : s e l s) contextXT opid =

7 do let lookupRes = lookup coordId coordImpls

8 i f i s J u s t lookupRes

9 then do let coordImpl = fromJust lookupRes

10 let queryFunc = getQueryFunction coordImpl

11 queryXT <− queryFunc argsXT s r e f coordId conta inerPath

12 i nEn t r i e s contextXT opid

13 i f isOkCapi2 queryXT

14 then do let re su l tEntr i e sXT = getXTree0 queryXT ” r e s u l t ”

15 eva lSe l e c to rCha in s r e f conta inerPath coordImpls

16 re su l tEntr i e sXT s e l s contextXT opid

17 else return queryXT

18 else return (Ms [(” s t a tu s ” , Str ”notok ”) , (” d e t a i l s ” , Str ”UnknownCoordinator ”)])

Listing 12: Selector chain evaluation

79

6 HASKELL XVSM PROTOTYPE

The coordinators themselves do not access the functions of Capi2 directly to in-

teract with the container. Instead, the Coordinators module provides common helper

functions that map the functionality of CAPI-2 with the restrictions applicable to coordi-

nator functions. With readCoXT, takeCoXT, writeCoXT, writeBulkCoXT and lockCoXT,

the corresponding Capi2 functions are invoked on the CoXT of the calling coordinator.

Listing 13 shows the queryEntries function, which is used within coordinator query

functions to select entries from the container. The method adds a matchmaker to the

given query that removes entries which are not managed by the calling coordinator (line

7). Additionally, only the entries included in the input may be visible for the query.

Therefore, a special selector qLabelRef is used that only selects entries with a property

label included in the argument list, while preserving the sorting of the entries according

to the label list. For the first coordinator of the query chain, the inEntries parameter

is Nil. Therefore, the whole container is visible. Subsequent query functions obtain a

list of input entries from the evalSelectorChain function. The extracted labels of these

entries are then used for the qLabelRef selector that is also prepended to the query,

which is finally invoked on the container entries via read2.

1 queryEntr i e s : : TVar Space −> [S t r ing] −> XTree −> St r ing

2 −> [QueryFunc] −> Operat ionId −> IO XTree

3 queryEntr i e s s r e f conta inerPath i nEnt r i e s coordId query opid =

4 do let f i l t e rQue r y = i f e x i s t s i nEn t r i e s

5 then [S e l (qLabelRef (ge tLabe l s i nEn t r i e s))]

6 else []

7 let query ’ = [Mm (qTest [”∗” , ” coo rd ina to r s ” , ”∗” , ” id ”] (== Str coordId))]

8 ++ f i l t e rQue r y ++ query

9 readXT <− read2 s r e f (conta inerPath ++ [” e n t r i e s ”]) query ’ opid

10 i f isOkCapi2 readXT

11 then do let e n t r i e s = getQueryXTree (getXTree0 readXT ” r e s u l t ”)

12 return (Ms [(” s t a tu s ” , Str ”ok ”) , (” r e s u l t ” , e n t r i e s)])

13 else return readXT

14

15 qLabelRef : : [S t r ing] −> [([I n t e g e r] , [S t r ing] , XTree)] −> Bool

16 −> ([([I n t eg e r] , [S t r ing] , XTree)] , Bool , XTree)

17 qLabelRef l b l s ixProps i sSeq =

18 (concatMap (\ l b l −> f i l t e r (\ (, p ,) −> last p == l b l) ixProps) l b l s , i sSeq , Ni l)

Listing 13: Container read access for coordinators

Each of the predefined coordinators is specified in an own module. Listing 14 shows

the most important parts of the KeyCoordinator as an example. As shown in lines 1–3,

any coordinator implementation is stored in a 7-tuple including a unique reference as

well as the init, accountant and query functions. Basically, the coordinator functions use

the parameters specified in the formal model with some minor adaptations: Instead of

a single entry parameter, the accountant functions use separate arguments for the entry

label, its user data and the appropriate entry CoXT, which is more practical because the

coordinators do not have to extract these data manually. The transaction and operation

80

6 HASKELL XVSM PROTOTYPE

ids are combined in a single parameter opid because the coordinator itself need not

distinguish them as they are just passed to the Capi2 methods via the interface functions

provided by the Coordinators module. Additionally, a coordId is necessary for the

accountant and query functions because in Haskell, coordinators cannot be seen as object

instances that are able to store their id in a member variable. Instead the coordId is

used to enable the association of a coordinator function with the corresponding entry and

container CoXTs.

1 keyCoordinator : : Coordinator

2 keyCoordinator = Coord (”KEY” , keyIn i t , keyInser t , keyRemove , keyRead ,

3 keyDataReturn , keyQuery)

4

5 key In s e r t : : WriteAccountantFunc

6 key In s e r t key@(Str) s r e f coordId conta inerPath e l b l entry context opid =

7 do lockXT <− lockCoXT s r e f coordId conta inerPath [”∗” , ”writeLock ”] opid

8 i f isOkCapi2 lockXT

9 then do keyCheckXT <− readCoXT s r e f coordId conta inerPath []

10 [Mm (qTest [”∗” , ”key ”] (== key))] opid

11 i f isOkCapi2 keyCheckXT

12 then do let keyCheckResult = getXTree0 keyCheckXT ” r e s u l t ”

13 i f g e tS i z e keyCheckResult > 0

14 then return (Ms [(” s t a tu s ” , Str ”wait ”) ,

15 (” d e t a i l s ” , Str ”DuplicateKey ”)])

16 else writeCoXT s r e f coordId conta inerPath []

17 (Ms [(” key ” , key) , (” entryRef ” , Str e l b l)]) opid

18 else return keyCheckXT

19 else return lockXT

20

21 keyRemove : : AccountantFunc

22 keyRemove s r e f coordId conta inerPath entryCoXT e l b l entry context opid =

23 takeCoXT s r e f coordId conta inerPath []

24 [Mm (qTest [”∗” , ” entryRef ”] (== Str e l b l))] opid

25

26 keyQuery : : Se lectorFunc

27 keyQuery (Str key) s r e f coordId conta inerPath i nEnt r i e s context opid =

28 do keyXT <− readCoXT s r e f coordId conta inerPath []

29 [Mm (qTest [”∗” , ”key ”] (== Str key)) , Se l (qCnt 1)] opid

30 i f isOkCapi2 keyXT

31 then do let keyEntry = (getQueryValues (getXTree0 keyXT ” r e s u l t ”)) ! ! 0

32 let entryRef = getXTree0 keyEntry ” entryRef ”

33 let query = [Mm (qLabel [ge tSt r ingVa l entryRef])]

34 queryEntr i e s s r e f conta inerPath i nEnt r i e s coordId query opid

35 else return keyXT

Listing 14: KeyCoordinator functions

The keyInsert function locks the writeLock property to avoid concurrent inserts

and then checks if the specified key already exists in the CoXT. If a duplicate key is

encountered, a result xtree with status code “wait” is returned, which corresponds to

status DELAYABLE in the formal model. The keyRemove accountant simply takes the

key entry from the CoXT with given user entry reference, while the keyQuery function

searches for one entry in the CoXT with given key. If such an entry exists, the entry

81

6 HASKELL XVSM PROTOTYPE

reference entryRef is extracted from it. The matchmaker query in line 33 finally selects

the entry with the found property label from the container.

6.2.6 Runtime machine and API

The runtime machine consists of two main routines: The coreRoutine, which can be

started in multiple threads concurrently, implements the XVSM core processor, while the

tpRoutine includes the timeout processor logic. Additionally, a shutdown listener thread

is started, which waits for a special token in the space and then kills all runtime threads.

Requests are fetched in the coreRoutine with the help of a blocking take opera-

tion realized with the STM retry primitive. After the timestamps on a request are

updated, the corresponding operation is executed and the result is possibly written to

the response container, depending on the status code. Finally, the event logic method

rescheduleProcess is invoked, before the XP loop is restarted with a new request. List-

ing 15 shows a simplified version of the execOperation method, which is responsible

for the execution of a transactional operation. In the shown code, the handling of the

event logic properties subOps and waitForOp is omitted and only the segment related to

the read operation is listed. An operation is started by invoking the startOperation2

function and retrieving the operation id, which is also added to the context for the us-

age within aspects. Then, the global and local pre aspects of the operation are invoked

(lines 9–10). The invokeContainerPreAspects function returns the modified request

and context xtree as well as the status of the aspect execution. If the status equals SKIP,

the operation’s post aspects are called immediately. For status LOCKED, DELAYABLE or

NOTOK, the status xtree of the failed aspect is stored in the result variable. However, if

the pre aspects return OK, the actual operation is called. The read3 operation uses the

selectors argument that is retrieved from the modified request xtree as well as the pos-

sibly changed context xtree. If this invocation succeeds, the post aspects can be executed,

otherwise the corresponding status xtree is used as result. The result status of the entire

operation is finally examined in lines 29–34. If it is OK, the sub transaction is committed

via finishOperation2, otherwise a rollback is issued with cancelOperation2.

1 execOperat ion : : TVar Space −> XTree −> St r ing −> St r ing −> XTree −> IO XTree

2 execOperat ion s r e f requestXT opName txStr origContextXT =

3 do s t a r tRe su l t <− s ta r tOperat ion2 s r e f txStr opName

4 let opid = getSt r ingVa l (getXTree0 s t a r tRe su l t ” opid ”)

5 let origContextXT ’ = addXTree0 origContextXT ”opid ” (Str opid)

6 r e s u l t <− i f opName == ” wr i t e ” | | opName == ” read”

7 | | opName == ” take ” | | opName == ” de l e t e ”

8 then do let c r e f = getXTree0 requestXT ” c r e f ”

9 (reqXT , contextXT , aspec tSta tus) <−
10 invokeContainerPreAspects s r e f c r e f opName requestXT origContextXT ’

11 case getXTree0 aspec tSta tus ” s t a tu s ” of

12 Str ” sk ip ” −>
13 invokeConta inerPostAspects s r e f c r e f opName reqXT

82

6 HASKELL XVSM PROTOTYPE

14 (Ms [(” s t a tu s ” , Str ”ok ”)]) contextXT

15 Str ”ok” −>
16 do resultXT <− case opName of

17 ” read” −>
18 do let s e l s = getXTree0 reqXT ” s e l e c t o r s ”

19 opResult <− read3 s r e f (ge tSt r ingVa l c r e f) (getProps s e l s)

20 contextXT (txStr , opid)

21 return opResult

22 . . . (code f o r write , take , d e l e t e)

23 i f isOkCapi2 resultXT

24 then invokeConta inerPostAspects s r e f c r e f opName reqXT

25 resultXT contextXT

26 else return resultXT

27 −> return aspec tSta tus

28 else . . . (code f o r conta ine r and management ope ra t i on s)

29 let r e s u l t S t a t u s = getXTree0 r e s u l t ” s t a tu s ”

30 i f r e s u l t S t a t u s == Str ”ok”

31 then do f i n i shOpe ra t i on2 s r e f (txStr , opid)

32 return r e s u l t

33 else do cance lOperat ion2 s r e f (txStr , opid)

34 return r e s u l t

Listing 15: Request execution (simplified)

An example for a post aspect is presented in Listing 16. This simple filter can be

registered at the interception points postRead and postTake to hide xtrees from the user

that do not contain a special flag at path entries/*/data/visible of the result xtree.

These entries are removed from the result by the aspect function and the modified version

is returned.

1 postQueryFi l t e r : : AspectFunc

2 postQueryFi l t e r s r e f reqXT resultXT contextXT =

3 do let e n t r i e s = getXTree0 resultXT ” e n t r i e s ”

4 let f i l t e r e d E n t r i e s =

5 Ms (f i l t e r (\ xt −> (getXTree0 (getXTree0 (getVal xt) ”data ”) ” v i s i b l e ”)

6 == Bool True)

7 (getProps e n t r i e s))

8 let newResultXT = updateXTree0 resultXT ” e n t r i e s ” f i l t e r e d E n t r i e s

9 return (addXTree0 newResultXT ”contextXT” contextXT)

Listing 16: Example aspect

If the status of a request result is LOCKED or DELAYABLE, the implementation of the

event processing logic calls the scheduleWaitingRequest function for a specific event

category, which checks if the request should be rescheduled or put into the waiting queue.

Then, the events generated by the request are determined and processed. An event that

is generally visible by all transactions can be evaluated by the invokeGeneralEvent

method. Both of these event logic helper functions are shown in Listing 17. For the given

container and category, the scheduleWaitingRequest method reads the timestamps of

the last event visible only to the specified transaction and of the last generally visible

event. The evalX methods are thereby convenience operators that raise an exception

if the status xtree returned by a Capi1 function indicates an error, while otherwise the

83

6 HASKELL XVSM PROTOTYPE

result of the function is forwarded without the status xtree. If the more recent of these two

events has been triggered after the lastExecutionTime of the request, this method writes

the request into the request container. Otherwise, it is placed into the corresponding

waitingRequests queue. In the invokeGeneralEvent function, the lastCommittedTime

timestamp of the given container and category is updated with the current event time.

Then, waiting requests that are affected by this event are rescheduled. The request that

triggers the event must not wake up itself. Therefore the request id is compared within

the take query.

1 scheduleWait ingRequest : : Space −> XTree −> St r ing −> St r ing −> St r ing

2 −> I n t eg e r −> I n t eg e r −> STM Space

3 scheduleWait ingRequest s reqXT c category tx lastExecut ionTime eventTime =

4 do utResul t <− evalOp (read1 s [” waitC ” , c , category , ”uncommittedTime ” , tx] [])

5 let l a s tTransact ionEvent = i f g e tS i z e utResu l t == 1

6 then get IntVal ((getQueryValues utResu l t) ! ! 0)

7 else 0

8 l c tRe su l t <− evalOp (read1 s [” waitC ” , c , category , ” lastCommittedTime ”] [])

9 let lastCommittedEvent = i f g e tS i z e l c tRe su l t == 1

10 then get IntVal ((getQueryValues l c tRe su l t) ! ! 0)

11 else 0

12 let lastEventTime = max l a s tTransact ionEvent lastCommittedEvent

13 i f lastExecut ionTime <= lastEventTime

14 then do (newS ,) <− evalWrite (wr i t e1 s [” reqC ”] reqXT)

15 return newS

16 else do (newS ,) <−
17 evalWrite (wr i t e1 s [” waitC ” , c , category , ” wait ingRequests ”] reqXT)

18 return newS

19

20 invokeGeneralEvent : : Space −> XTree −> St r ing −> St r ing −> I n t eg e r −> STM Space

21 invokeGeneralEvent s reqId c category eventTime =

22 do (, s1) <− evalTake (take1 s [” waitC ” , c , category , ” lastCommittedTime ”] [])

23 s2 <−
24 evalOp (writeL1 s1 [” waitC ” , c , category] ” lastCommittedTime” (Int eventTime))

25 (wakeupResult , s3) <−
26 evalTake (take1 s2 [” waitC ” , c , category , ” wait ingRequests ”]

27 [Mm (qTest [”∗” , ” lastExecut ionTime ”] (<= Int eventTime)) ,

28 Mm (qTest [”∗” , ” id ”] (/= reqId))])

29 let wakeupRequests = getQueryValues wakeupResult

30 (s4 ,) <− evalWriteBulk (writeBulk1 s3 [” reqC ”] wakeupRequests)

31 return s4

Listing 17: Event logic functions

The XVSM core can be invoked by user applications via the EmbeddedApi module

that provides functions to create and shutdown the runtime as well as equivalents for all

CAPI-4 operations. These functions are implemented in the following way:

1. A request xtree is built using the operation name and the specified arguments.

2. The runtime function writeRequest is called with the request xtree as parameter.

This method writes the xtree into the request container and returns a unique id.

84

6 HASKELL XVSM PROTOTYPE

3. This id is then used as an argument to waitForResponse, which performs a blocking

take query on the response container and waits for the response with the specified

id, using the retry function of STM.

4. The operation result is extracted from the response xtree and returned to the user

application.

The runtime also provides various hooks that can be used for internal analysis and

debugging. At any time, debug requests can be issued using the management API func-

tions of Capi1Debug, which allows arbitrary access to user and meta containers. These

requests are handled like normal CAPI-4 operations but they do not trigger any event

processing. Additionally, special print commands are available that allow the output of

specific parts of the meta model to the console. Finally, all important runtime actions

are always stored directly to the space in a special runtime log meta container. Thus, it

is possible to trace a request while it is executed by the runtime machine.

6.3 Example

As an example for the usage of the Haskell XVSM prototype via the embedded API,

the implementation of the scenario described in Sect. 5 is explained here. The Auction-

Coordinator accountant functions are implemented similar to the KeyCoordinator in

case that the corresponding entry is an auction entry. Otherwise the onInsert accountant

only checks for bid and countdown entries if the related auction is still valid and, for

bids, if it has at least the value of the starting bid. The query function checks if the

auction exists before it retrieves the best bid by using the readEntries method of the

Coordinators module with a query corresponding to the specified coordinator policy.

To initialize the scenario, a new container is created with obligatory coordinators for

auction and query access as well as an optional KeyCoordinator. The reference of this

container (cref), which also includes the space reference sref, is then passed to the

methods that implement the seller and bidder logic. Container operations are called with

the EmbeddedApi functions writeEntries, readEntries and deleteEntries, which in-

voke the corresponding CAPI-4 operations via the space runtime. These methods require

a container reference and read selectors or entries with write selectors, respectively, as

well as a possibly empty transaction id, a timeout parameter and the user context, which

is always empty in this example. The read selector of the QueryCoordinator is currently

represented by a special structured xtree format instead of a simple XVSMQL string.

This eases the parsing of the query in the coordinator’s query function at the cost of

readability. The createTransaction method requires the space reference, the transac-

tion timeout and the context, whereas commitTransaction uses the space reference, the

85

6 HASKELL XVSM PROTOTYPE

transaction id and the context as parameters. Listing 18 shows the functions available

for a seller application.

1 s ta r tAuct ion : : ContainerRef −> St r ing −> St r ing −> XTree −> I n t eg e r −> IO ()

2 s ta r tAuct ion cref@ (s r e f ,) s e l l e r id book s t a r t i ngB id =

3 do let auct ionEntry = Ms [(” type ” , Str ” auct ion ”) , (” auct ionId ” , Str id) ,

4 (” s t a r t i ngB id ” , Int s t a r t i ngB id) , (” s e l l e r ” , Str s e l l e r) ,

5 (” book ” , book)]

6 wr i t eEn t r i e s c r e f [(auctionEntry , [])] N i l tryOnce Ni l

7

8 endAuction : : ContainerRef −> St r ing −> I n t eg e r −> I n t eg e r −> Int −> IO XTree

9 endAuction cref@ (s r e f ,) auct ionId k maxWaitTime countdownTime =

10 do es <− r eadEnt r i e s c r e f [(” auct ion ” , Ms [(” auct ionId ” , Str auct ionId) ,

11 (” d i s t i n c tB i dd e r s ” , Int k)])]

12 Ni l maxWaitTime Ni l

13 ‘ catch ‘ (\ e −> r eadEnt r i e s c r e f [(” auct ion ” , Ms [(” auct ionId ” , Str auct ionId) ,

14 (” d i s t i n c tB i dd e r s ” , Int 1)])]

15 Ni l tryOnce Ni l)

16 let cntdwnEntry = Ms [(” type ” , Str ”countdown ”) , (” auct ionId ” , Str auct ionId)]

17 wr i t eEn t r i e s c r e f [(cntdwnEntry , [(” key ” , Str auct ionId)])] N i l tryOnce Ni l

18 auctionCountdown c r e f auct ionId (es ! ! 0) countdownTime

19

20 auctionCountdown : : ContainerRef −> St r ing −> XTree −> Int −> IO XTree

21 auctionCountdown cref@ (s r e f ,) auct ionId maxBidEntry countdownTime =

22 do threadDelay (countdownTime ∗ 1000000)

23 tx <− c r ea t eTransac t i on s r e f 10 Ni l

24 es <− r eadEnt r i e s c r e f [(” auct ion ” , Ms [(” auct ionId ” , Str auct ionId) ,

25 (” d i s t i n c tB i dd e r s ” , Int 1)])]

26 tx tryOnce Ni l

27 let newBidEntry = es ! ! 0

28 let oldBid = get IntVal (getXTree0 (getXTree0 maxBidEntry ”data ”) ”bid ”)

29 let newBid = get IntVal (getXTree0 (getXTree0 newBidEntry ”data ”) ”bid ”)

30 i f newBid > oldBid

31 then do commitTransaction s r e f tx Ni l

32 auctionCountdown c r e f auct ionId newBidEntry countdownTime

33 else do let winnerData = getXTree0 maxBidEntry ”data”

34 let winnerId = getXTree0 winnerData ” b idder Id ”

35 let winnerBid = getXTree0 winnerData ”bid ”

36 let acceptanceEntry =

37 Ms [(” type ” , Str ” accept ”) , (” auct ionId ” , Str auct ionId) ,

38 (” bid ” , winnerBid) , (” b idder Id ” , winnerId)]

39 d e l e t eEn t r i e s c r e f [(” query ” ,

40 Seq [(” ” , Ms [(” func ” , Str ”eq ”) ,

41 (” args ” ,

42 Seq [(” ” ,

43 Seq [(” ” , Str ” auct ionId ”)]) ,

44 (”” , Str auct ionId)])])])]

45 tx tryOnce Ni l

46 wr i t eEn t r i e s c r e f [(acceptanceEntry , [(” key ” , Str auct ionId)])]

47 tx tryOnce Ni l

48 commitTransaction s r e f tx Ni l

49 return maxBidEntry

Listing 18: Auction seller logic

With startAuction, a new auction is created and written to the container, whereas

endAuction determines the winner of the auction according to the policy described in

86

6 HASKELL XVSM PROTOTYPE

Sect. 5. The first readEntries call waits for enough distinct bidders and returns the

best bid entry. If, however, a timeout occurs, an exception is raised by the API, which

is handled in the catch block by issuing a second non-blocking query without a required

number of bidders. If a valid bid is found, the countdown is started by writing a count-

down entry to the container followed by a call to the auctionCountdown method, which

sleeps for a specified amount of time and then checks within a transaction if a higher

bid has been placed for this auction. If not, the auction is closed and the countdown

message is replaced by an acceptance entry, using the same transaction. Otherwise, the

countdown continues with the recursive call to auctionCountdown.

The functions that are used by bidder applications are shown in Listing 19. The

searchBookAuction method enables a user to find an auction with a given title using

the query book/title=myTitle . With makeBid, a new bid is written to the auction

container, while cancelBid deletes all entries of the bidder for a given auction. The

waitForHigherBid function implements the listener function which waits for a bid higher

than the own bid, whereas the auctionNotification listener returns when any count-

down or acceptance messages are available for the specified auction. The waitForAccept

method can be invoked after the countdown for an auction has started to wait for the

acceptance message.

1 searchBookAuction : : ContainerRef −> St r ing −> IO [XTree]

2 searchBookAuction c r e f t i t l e =

3 do es <− r eadEnt r i e s c r e f [(” query ” , Seq [(” ” , Ms [(” func ” , Str ”eq ”) ,

4 (” args ” ,

5 Seq [(” ” ,

6 Seq [(” ” , Str ”book ”) ,

7 (”” , Str ” t i t l e ”)]) ,

8 (”” , Str t i t l e)])])])]

9 Ni l tryOnce Ni l

10 let auctionData = map (\ e −> getXTree0 e ”data ”) es

11 return auctionData

12

13 makeBid : : ContainerRef −> St r ing −> St r ing −> I n t eg e r −> IO ()

14 makeBid c r e f auct ionId bidder bid =

15 do let bidEntry = Ms [(” type ” , Str ” bid ”) , (” auct ionId ” , Str auct ionId) ,

16 (” bid ” , Int bid) , (” b idder Id ” , Str b idder)]

17 wr i t eEn t r i e s c r e f [(bidEntry , [])] N i l tryOnce Ni l

18

19 cance lB ids : : ContainerRef −> St r ing −> St r ing −> IO ()

20 cance lB ids c r e f auct ionId bidder =

21 do d e l e t eEn t r i e s c r e f [(” query ” , Seq [(” ” , Ms [(” func ” , Str ”eq ”) ,

22 (” args ” ,

23 Seq [(” ” , Seq [(” ” , Str ” type ”)]) ,

24 (”” , Str ” bid ”)])]) ,

25 (”” , Ms [(” func ” , Str ”eq ”) ,

26 (” args ” ,

27 Seq [(” ” ,

28 Seq [(” ” , Str ” auct ionId ”)]) ,

29 (”” , Str auct ionId)])]) ,

30 (”” , Ms [(” func ” , Str ”eq ”) ,

87

6 HASKELL XVSM PROTOTYPE

31 (” args ” ,

32 Seq [(” ” , Seq [(” ” , Str ” b idder Id ”)]) ,

33 (”” , Str b idder)])])])]

34 Ni l tryOnce Ni l

35

36 waitForHigherBid : : ContainerRef −> St r ing −> St r ing −> I n t eg e r −> IO In t eg e r

37 waitForHigherBid c r e f auct ionId bidder maxWaitTime =

38 do es <− r eadEnt r i e s c r e f [(” auct ion ” , Ms [(” auct ionId ” , Str auct ionId) ,

39 (” d i s t i n c tB i dd e r s ” , Int 1)]) ,

40 (” query ” , Seq [(” ” , Ms [(” func ” , Str ”neq ”) ,

41 (” args ” ,

42 Seq [(” ” ,

43 Seq [(” ” , Str ” b idder Id ”)]) ,

44 (”” , Str b idder)])]) ,

45 (”” , Ms [(” func ” , Str ” cnt ”) ,

46 (” args ” , Seq [(” ” , Int 1)])])])]

47 Ni l maxWaitTime Ni l

48 let higherBid = getXTree0 (getXTree0 (es ! ! 0) ”data ”) ”bid ”

49 return (get IntVal higherBid)

50

51 au c t i o nNo t i f i c a t i o n : : ContainerRef −> St r ing −> I n t eg e r −> IO XTree

52 au c t i o nNo t i f i c a t i o n c r e f auct ionId maxWaitTime =

53 do n o t i f <− r eadEnt r i e s c r e f [(” key ” , Str auct ionId)] Ni l maxWaitTime Ni l

54 let not i fData = getXTree0 (n o t i f ! ! 0) ”data”

55 return not i fData

56

57 waitForAccept : : ContainerRef −> St r ing −> I n t eg e r −> IO XTree

58 waitForAccept c r e f auct ionId maxWaitTime =

59 do accept <− r eadEnt r i e s c r e f [(” key ” , Str auct ionId) ,

60 (” query ” , Seq [(” ” , Ms [(” func ” , Str ”eq ”) ,

61 (” args ” ,

62 Seq [(” ” ,

63 Seq [(” ” , Str ” type ”)]) ,

64 (”” , Str ” accept ”)])]) ,

65 (”” , Ms [(” func ” , Str ” cnt ”) ,

66 (” args ” ,

67 Seq [(” ” , Int 1)])])])]

68 Ni l maxWaitTime Ni l

69 let acceptData = getXTree0 (accept ! ! 0) ”data”

70 return acceptData

Listing 19: Auction bidder logic

The presented functions enable the implementation of interactive seller and buyer ap-

plications. A seller may have to enter information about the book and the starting bid as

well as the required configuration parameters for the acceptance condition. When the user

confirms these data, the application forks a new thread and calls startAuction followed

by endAuction. When this function returns, the user is informed about the winning bid-

der. The bidder application may provide a search interface that calls searchBookAuction

or similar methods. By calling the waitForHigherBid method with a maxWaitTime

of 0, the currently best bid can be found. If this invocation returns an error be-

cause no bids exist for the auction, the starting bid indicates the minimum bid. The

user can issue a bid with makeBid and fork listener threads for waitForHigherBid and

88

6 HASKELL XVSM PROTOTYPE

auctionNotification so that an immediate reaction to a future event is possible. When

a countdown event occurs, the application can call waitForAccept to enable an imme-

diate notification on the auction’s end. The bidding process could also be automated.

E.g., the bidder application could automatically bid for an auction when a countdown

message occurs and then outbid other bidders until either the auction is won or a previ-

ously specified price limit is reached. By using parallel threads, sellers and bidders are

able to process different auctions concurrently.

6.4 Results

The implementation of the formal model in Haskell proves that the specification is well-

defined and accurate. Extensive tests with the prototype have shown that the XVSM

core behaves as expected and that user applications and additional core features can be

implemented with reasonable overhead. As far as possible, the XVSM prototype depicts

the semantics defined in Sect. 4. However, some adaptations have been necessary to

reflect the functional character of the programming language. The implementation only

uses a single global variable that stores the entire space, but apart from this STM value no

objects or references exist. In object-oriented programming languages, space elements like

containers, transaction or coordinators could be passed to CAPI methods by reference,

which enables them to manipulate the data structures directly. In Haskell, however, all

parameters beside the space reference are given by value, which means that any time a

function needs to change an xtree within the space, it must know the exact path of this

entity and then traverse the entire space to access the data structure. Therefore, the

XVSM prototype is slower than comparable imperative or object-oriented approaches.

However, the purpose of the Haskell XVSM prototype is not to provide an efficient space

implementation that is used by user applications. Instead, it should serve as a reference

for the design of actual XVSM implementations and thus simplicity is given precedence

over performance. The functional approach helps to understand the exact behavior of

the space core just by reading the code instead of having to run extensive tests because

side effects, which might lead to unexpected behavior as in object-oriented languages, are

prevented. Also, many parts of the prototype are designed in a much simpler way than

any object-oriented language would allow. E.g., the query language can be implemented

with minimal amount of code due to the combination of higher-order functions.

During the implementation, a lot of open questions have occurred that have forced

design decisions and thus led to a more precise definition of the formal model, like, for

instance, issues regarding the locking behavior or race conditions within the runtime.

Also, the requirement of an effective memory management has been discovered, as the

xtrees in the XVSM meta model grow very rapidly at runtime, especially due to extensive

89

6 HASKELL XVSM PROTOTYPE

data on transactions and events. Therefore, an intelligent garbage collection mechanism

is required and efficient data structures must be used that allow fast access to meta data

with minimal memory consumption. Future changes to the XVSM formal model should

also be applied to the prototype, so that the reference for XVSM core developers is kept

up-to-date. Additionally, the prototype can be extended with modules representing the

XVSMP layer as soon as a detailed specification of the protocol exists, which would allow

to test the network behavior of the space. On top of this layer, a Java API is planned

that would allow to compare the behavior of the XVSM specification with an actual Java

implementation of the middleware core where the same test classes can be used.

90

7 FUTURE WORK

7 Future Work

Based on the presented XVSM formal model and its Haskell implementation, a new Java

implementation of the XVSM middleware is currently in development. Compared to

the actual MozartSpaces version [44, 42], the general performance and scalability will be

optimized and several improvements inspired by the formal model are planned:

• Users will be able to issue XVSMQL queries on entries, which enables more flexible

coordination.

• With the enhanced event processing logic, waiting requests will be rescheduled in

a more efficient way, while race conditions within the runtime are prevented.

• The core implementation will consist of several modules that are easily exchange-

able, which corresponds to the CAPI layer architecture of the formal model.

• Application developers should be able to develop own coordinators in a simpler way.

• The direct access to the standardized XVSM meta model via the management API

allows for better logging and debugging capabilities.

Nevertheless, the work on the formal model is far from being finished and it will be

constantly improved to factor in requirements of new use cases. Thus, the specification of

all CAPI layers will be revised and adapted if necessary. The ultimate goal is to achieve

certification for the XVSM technology, so that it could be established as an accepted

industrial standard for coordination middleware in the future. One possible research

field that requires unambiguously specified and verified semantics is the usage of XVSM

for embedded systems and robots, as unexpected behavior of the middleware may lead to

costly hardware defects or safety risks. To enable extensive analysis and correctness proofs

for important parts of the middleware, the presented specification should be modeled in a

more formal way by using some sort of process calculus or logic-based methods. Further

important issues subject to future research work are outlined in the following:

• Fairness: If several requests are waiting for the same entry of a container, the

current runtime model does not specify which operation may execute first and

possibly remove the entry after it has been written to the space. Thus, other

concurrent operations may not be able to read the entry even if they are waiting

longer than the successful operation. A fair runtime must ensure that an older

request is always given precedence over a newer one if both are able to execute.

This, however, might lead to reduced concurrency.

91

7 FUTURE WORK

• Deadlock detection: If two concurrent transactions hold exclusive locks that are

also required by operations of the other transaction, a deadlock occurs. Currently,

the corresponding operations are blocked until one of the transactions times out

and is therefore rollbacked. However, a more efficient mechanism could be designed

that detects such conflicts immediately.

• Aspect semantics: The concrete semantics of aspects need to be specified, es-

pecially what kind of actions an aspect may perform. It must also be determined

how aspects may access remote XVSM cores. A scripting language will be defined

that allows the cross-platform usage of aspects on local and remote spaces. The

aspect control commands that enable the user to add and remove aspects could

also gain an additional transaction parameter, so that aspects can be managed in

a transactionally safe way. Also, aspects that are invoked by the runtime in an

asynchronous way could be defined.

• Isolation levels: For transactions, additional isolation levels like “read commit-

ted” could be supported in the future to enable alternative semantics for certain

operations.

• Shift operation: Similar to the write operation, a shift method can be defined

which writes entries to the space but does not block if the container is full or another

coordinator constraint is violated. Instead, all conflicting entries of the container

are removed before the given entry is written. It must be specified clearly how the

coordinator logic chooses the entries that have to be deleted.

• XVSMP specification: The protocol layer, which is responsible for the commu-

nication with remote XVSM APIs and runtimes, as well as the used XML com-

munication protocol must be adapted to enable the interaction of different XVSM

implementations.

• Profile definitions: Several important features of XVSM that are not directly

included in the core, like notifications, replication, persistency and security can be

specified.

92

8 CONCLUSION

8 Conclusion

Complex distributed applications can be designed in an efficient way by applying space-

based computing middleware. The XVSM technology follows this paradigm and enables

ad-hoc collaboration between distributed and possibly inhomogeneous peers using a flex-

ible and extensible coordination model and a language independent protocol. In XVSM,

peers may write user data into shared containers and access information according to

one of many possible coordination laws, which are defined by so-called coordinators. The

space further supports blocking behavior, transactions and aspects that enable applica-

tion developers to enrich space operations with additional semantics. Although a lot of

previous work on this middleware was published in the past [44, 42, 43, 22], a formal

model of the space’s behavior has not been defined yet. Such a formal foundation is

required to enable the interoperability of different XVSM implementations and to verify

the correct behavior of the system in critical scenarios. Therefore, this thesis provides a

specification of the middleware’s semantics.

In this model, the shared space that stores application data is represented by a nested

data structure called xtree. The functionality of the XVSM core can be bootstrapped

with own mechanisms as all meta data needed for the realization of the runtime machine

can be stored in the space itself, thus forming the XVSM meta model. The architecture of

the middleware is described via several Core API layers. The basic data access operations

of CAPI-1 make use of a special extensible query language called XVSMQL that applies

a filter chain of selector and matchmaker functions on the content of an xtree. While

CAPI-2 realizes transactions, CAPI-3 introduces the container concept and specifies the

behavior of coordinators, which decide how entries can be written and queried within a

container. The runtime machine, which executes CAPI-4 requests from local and remote

peers, reschedules blocked requests when corresponding events occur in the space and it

is also responsible for the invocation of user-defined aspects.

As a proof of concept, a prototype of this XVSM specification has been built in

the functional programming language Haskell, which serves developers of XVSM core

implementations as a reference. This prototype shows that the specification is accurate

and enables fast testing of the behavior of XVSM according to arbitrary use cases. As

an example, a simple auction scenario has been presented that utilizes many of the

middleware features described in this thesis.

93

REFERENCES

References

[1] S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-to-peer content distri-

bution technologies. ACM Comput. Surv., 36(4):335–371, 2004.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery

in Database Systems. Addison-Wesley, 1987.

[3] M. Bravetti, R. Gorrieri, R. Lucchi, and G. Zavattaro. On the expressiveness of

probabilistic and prioritized data-retrieval in Linda. Electr. Notes Theor. Comput.

Sci., 128(5):39–53, 2005.

[4] M. Bravetti, R. Gorrieri, R. Lucchi, and G. Zavattaro. Quantitative information in

the tuple space coordination model. Theor. Comput. Sci., 346(1):28–57, 2005.

[5] N. Busi, R. Gorrieri, and G. Zavattaro. On the semantics of JavaSpaces. In Scott F.

Smith and Carolyn L. Talcott, editors, FMOODS, volume 177 of IFIP Conference

Proceedings, pages 3–19. Kluwer, 2000.

[6] N. Busi, R. Gorrieri, and G. Zavattaro. Process calculi for coordination: From Linda

to JavaSpaces. In AMAST ’00: Proceedings of the 8th International Conference on

Algebraic Methodology and Software Technology, pages 198–212, London, UK, 2000.

Springer-Verlag.

[7] P. Ciancarini, M. Mazza, and L. Pazzaglia. A logic for a coordination model with

multiple spaces. Sci. Comput. Program., 31(2-3):231–261, 1998.

[8] J. Clark and S. DeRose. XML path language (XPath) 1.0. W3C recommendation.

World Wide Web Consortium, http://www. w3. org/TR/xpath, 1999.

[9] U. Cohen. Inside GigaSpaces XAP. Technical White Paper, GigaSpaces Technolo-

gies, 2009.

[10] S. Craß, E. Kühn, and G. Salzer. Algebraic foundation of a data model for an

extensible space-based collaboration protocol. In Thirteenth International Database

Engineering & Applications Symposium (IDEAS), 2009.

[11] A. Discolo, T. Harris, S. Marlow, S. L. Peyton Jones, and S. Singh. Lock free data

structures using STM in Haskell. In Masami Hagiya and Philip Wadler, editors,

FLOPS, volume 3945 of Lecture Notes in Computer Science, pages 65–80. Springer,

2006.

[12] E. Freeman, K. Arnold, and S. Hupfer. JavaSpaces Principles, Patterns, and Prac-

tice. Addison-Wesley Longman Ltd., Essex, UK, 1999.

94

REFERENCES

[13] D. Gelernter. Generative communication in Linda. ACM Trans. Program. Lang.

Syst., 7(1):80–112, 1985.

[14] D. Gelernter and L. D. Zuck. On what Linda is: Formal description of Linda as a

reactive system. In David Garlan and Daniel Le Métayer, editors, COORDINATION,

volume 1282 of Lecture Notes in Computer Science, pages 187–204. Springer, 1997.

[15] T. Haerder and A. Reuter. Principles of transaction-oriented database recovery,

volume 15. ACM, New York, NY, USA, 1983.

[16] T. Harris, S. Marlow, S. L. Peyton Jones, and M. Herlihy. Composable memory

transactions. In Keshav Pingali, Katherine A. Yelick, and Andrew S. Grimshaw,

editors, PPOPP, pages 48–60. ACM, 2005.

[17] C. A. R. Hoare. Communicating sequential processes. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1985.

[18] P. Hudak. Conception, evolution, and application of functional programming lan-

guages. ACM Comput. Surv., 21(3):359–411, 1989.

[19] P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler. A history of Haskell: being

lazy with class. In Proceedings of the third ACM SIGPLAN conference on History

of programming languages, pages 12–55. ACM, 2007.

[20] ISO. ISO/IEC 9075:1992, Database Language SQL. International Organization for

Standardization, 1992.

[21] ISO. ISO/IEC 14977:1996: Information technology — Syntactic metalanguage —

Extended BNF. International Organization for Standardization, 1996.

[22] M. Karolus. Design and implementation of XcoSpaces, the .Net reference implemen-

tation of XVSM – coordination, transactions and communication. Master’s thesis,

TU Vienna, Institute of Computer Languages, December 2009.

[23] E. Kühn. Fault-tolerance for communicating multidatabase transactions. In Pro-

ceedings of the 27th Hawaii International Conference on System Sciences (HICSS),

Wailea, Maui, Hawaii. ACM, IEEE., volume 2, pages 323–332, January 1994.

[24] E. Kühn, R. Mordinyi, L. Keszthelyi, and C. Schreiber. Introducing the concept of

customizable structured spaces for agent coordination in the production automation

domain. The 8th International Conference on Autonomous Agents and Multiagent

Systems, 2009.

95

REFERENCES

[25] E. Kühn, R. Mordinyi, M. Lang, and A. Selimovic. Towards zero-delay recovery

of agents in production automation systems. 2009 IEEE/WIC/ACM International

Conference on Intelligent Agent Technology, IAT, 2009.

[26] E. Kühn, R. Mordinyi, and C. Schreiber. An extensible space-based coordination

approach for modeling complex patterns in large systems. 3rd International Sym-

posium on Leveraging Applications of Formal Methods, Verification and Validation,

Special Track on Formal Methods for Analysing and Verifying Very Large Systems,

2008.

[27] E. Kühn, J. Riemer, and G. Joskowicz. XVSM (eXtensible Virtual Shared Mem-

ory) architecture and application. Technical report, Space-Based Computing Group,

Institute of Computer Languages, Vienna University of Technology, November 2005.

[28] E. Kühn, J. Riemer, R. Mordinyi, and L. Lechner. Integration of XVSM spaces

with the web to meet the challenging interaction demands in pervasive scenarios.

Ubiquitous Computing And Communication Journal (UbiCC), special issue on ”Co-

ordination in Pervasive Environments”, 3, 2008.

[29] L. Lamport. The temporal logic of actions. ACM Transactions on Programming

Languages and Systems (TOPLAS), 16(3):872–923, 1994.

[30] A. Marek. Design and implementation of TinySpaces, the .NET Micro Framework

based implementation of XVSM for embedded systems. Master’s thesis, TU Vienna,

Institute of Computer Languages (in preparation), 2010.

[31] E. J. Mata, P. Álvarez, J. A. Bañares, and J. Rubio. Formal modelling of a coordi-

nation system: From practice to theory, and back again. In Gregory M. P. O’Hare,

Alessandro Ricci, Michael J. O’Grady, and Oguz Dikenelli, editors, ESAW, volume

4457 of Lecture Notes in Computer Science, pages 229–244. Springer, 2006.

[32] R. Milner. The polyadic pi-calculus: a tutorial. Technical report, Logic and Algebra

of Specification, 1991.

[33] R. Mordinyi, E. Kühn, and A. Schatten. Space-based architectures as abstraction

layer for distributed business applications. Accepted for International Complex, In-

telligent and Software Intensive Systems Conference (CISIS), 2010.

[34] M. Murth and E. Kühn. Knowledge-based coordination with a reliable semantic

subscription mechanism. In Sung Y. Shin and Sascha Ossowski, editors, SAC, pages

1374–1380. ACM, 2009.

96

REFERENCES

[35] R. De Nicola, G. L. Ferrari, and R. Pugliese. KLAIM: a kernel language for agents

interaction and mobility. Software Engineering, IEEE Transactions on, 24(5):315–

330, May 1998.

[36] S. Peyton Jones. Tackling the awkward squad: monadic input/output, concurrency,

exceptions, and foreign-language calls in Haskell. In Engineering theories of software

construction, pages 47–96. Press, 2002.

[37] S. Peyton Jones. Haskell 98 Language and Libraries: The revised report. Cambridge

University Press, 2003.

[38] S. Peyton Jones. Beautiful concurrency. In Andy Oram and Greg Wilson, edi-

tors, Beautiful Code: Leading Programmers Explain How They Think. O’Reilly and

Associates, 2007.

[39] S. L. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In POPL, pages

295–308, 1996.

[40] G. D. Plotkin. A structural approach to operational semantics. J. Log. Algebr.

Program., 60-61:17–139, 2004.

[41] P. Poizat, J.-C. Royer, and G. Salaün. Formal methods for component description,

coordination and adaptation. In In WCAT ’2004 - Int. Workshop on Coordination

and Adaptation Techniques for Software Entities, pages 84–688, 2004.

[42] M. Pröstler. Design and implementation of MozartSpaces, the Java reference imple-

mentation of XVSM - timeout handling, notifications and aspects. Master’s thesis,

TU Vienna, Institute of Computer Languages, 2008.

[43] T. Scheller. Design and implementation of XcoSpaces, the .Net reference imple-

mentation of XVSM – core architecture and aspects. Master’s thesis, TU Vienna,

Institute of Computer Languages, September 2008.

[44] C. Schreiber. Design and implementation of MozartSpaces, the Java reference imple-

mentation of XVSM - custom coordinators, transactions and XML protocol. Master’s

thesis, TU Vienna, Institute of Computer Languages, September 2008.

[45] N. Shavit and D. Touitou. Software transactional memory. In Proc. of the 14th ACM

Symp. on Principles of Distributed Computing (PODC), pages 204–213, 1995.

[46] Sun Microsystems. RPC: Remote Procedure Call protocol specification: Version 2.

RFC 1057 (Informational), 1988.

[47] Sun Microsystems. JavaSpaces specification, 1999.

97

REFERENCES

[48] Sun Microsystems. Java Message Service (the Sun Java Message Service (JMS) 1.1

specification), 2002.

[49] A. Wollrath, R. Riggs, J. Waldo, and Sun Microsystems Inc. A distributed object

model for the Java system. USENIX Computing Systems, 9, 1996.

98

A XVSM META MODEL SPECIFICATION

A XVSM meta model specification

In the following, the XVSM meta model is specified in EBNF syntax [21]. All mandatory

properties are defined, whereas additional properties might be added by implementations

to extend the functionality or to ease computations. In the following rules, basic value

types that are not defined here are italicized.

Xtree data structure:

xtree = xMultiset | xSequence | xValue;

xMultiset = "[]" | "[" properties "]";

xSequence = "〈〉" | "〈" properties "〉";

xValue = string | integer | float | bool (* or any other object *);

properties = property {"," property};

property = label ":" xtree | label | xMultiset | xSequence;

label = string ;

XVSM spaces:

universe = "[" "spaces" ":" xSpaces {"," property} "]";

xSpaces = "[]" | "[" spaceProperty {"," spaceProperty} "]";

spaceProperty = spaceURI ":" space;

spaceURI = label;

space = "[" "URI" ":" spaceURI ","

"containers" ":" xContainers ","

"coordinatorDefs" ":" xCoordDefs ","

"aspectDefs" ":" xAspectDefs ","

" reqC" ":" xRequestC ","

" respC" ":" xResponseC ","

" waitC" ":" xWaitC ","

" txTimeoutX" ":" xTxTimeoutC ","

" txC" ":" xTransactions ","

" locks" ":" xLocks

{"," property} "]";

I

A XVSM META MODEL SPECIFICATION

User containers:

xContainers = "[]" | "[" containerProperty {"," containerProperty} "]";

containerProperty = cref ":" container;

cref = label;

container = "[" ["name" ":" string ","]

"entries" ":" xEntries ","

"coordinators" ":" xCoords ","

"coxts" ":" xCoxts

{"," property} "]";

xEntries = "[]" | "[" entryProperty {"," entryProperty} "]";

entryProperty = label ":" entry;

entry = "[" "data" ":" xtree ","

"coordinators" ":" xEntryCoords ","

"coxts" ":" xEntryCoxts

{"," property} "]";

xEntryCoords = "[]" | "[" entryCoordProperty {"," entryCoordProperty} "]";

entryCoordProperty = label ":" entryCoordRegistration;

entryCoordRegistration = "[" "id" ":" coordId {"," property} "]";

coordId = string ;

xEntryCoxts = "[]" | "[" entryCoxtProperty {"," entryCoxtProperty} "]";

entryCoxtProperty = label ":" "[" coordId ":" xtree "]";

xCoords = "[" coordProperty {"," coordProperty} "]";

coordProperty = label ":" coordRegistration;

coordRegistration = "[" "id" ":" coordId "," "coord" ":" coordinator ","

"obligatory" ":" bool {"," property} "]";

xCoxts = "[]" | "[" coxtProperty {"," coxtProperty} "]";

coxtProperty = coordId ":" xtree;

II

A XVSM META MODEL SPECIFICATION

Coordinator and aspect definitions:

xCoordDefs = "[" "SYSTEM" ":" SystemCoordinator ","

"FIFO" ":" FifoCoordinator ","

"KEY" ":" KeyCoordinator ","

"LABEL" ":" LabelCoordinator ","

"LINDA" ":" LindaCoordinator ","

"QUERY" ":" QueryCoordinator ","

"VECTOR" ":" VectorCoordinator

{"," coordName ":" Coordinator } {"," property} "]";

coordName = label;

xAspectDefs = "[" "read" ":" cAspectDefs ","

"take" ":" cAspectDefs ","

"delete" ":" cAspectDefs ","

"write" ":" cAspectDefs ","

"createTransaction" ":" aspectDefs ","

"commitTransaction" ":" aspectDefs ","

"rollbackTransaction" ":" aspectDefs ","

"createContainer" ":" aspectDefs ","

"destroyContainer" ":" aspectDefs ","

"lookupContainer" ":" aspectDefs ","

"setContainerLock" ":" aspectDefs ","

"addAspect" ":" aspectDefs ","

"removeAspect" ":" aspectDefs {"," property} "]";

cAspectDef = "[" "pre" ":" cAspectList "," "post" ":" cAspectList "]";

cAspectList = "〈 〉" | "〈 cAspectProp {"," cAspectProp} "〉"";

cAspectProp = "[" "id" ":" aspectId "," "global" ":" Bool ","

"aspect" ":" aspectCode

["," "cref" ":" cref] {"," property} "]";

aspectId = label;

aspectDef = "[" "pre" ":" aspectList "," "post" ":" aspectList "]";

aspectList = "〈 〉" | "〈 aspectProp {"," aspectProp} "〉"";

aspectProp = "[" "id" ":" aspectId ","

"aspect" ":" aspectCode {"," property} "]";

III

A XVSM META MODEL SPECIFICATION

Runtime meta containers:

xRequestC = "〈 〉" | "〈" request {"," request} "〉";

request = "[" "id" ":" requestId "," "op" ":" string

["," "context" ":" xtree] ["," "spaceURI" ":" spaceURI]

["," "callerURI" ":" spaceURI]

["," "timestamp" ":" time "," "lastExecutionTime" ":" time

["," "expireTime" ":" time]] {"," property} "]";

requestId = string ;

xResponseC = "[]" | "[" response {"," response} "]";

response = "[" "id" ":" requestId "," "result" ":" resultXT

["," "callerURI" ":" spaceURI] "]"

resultXT = "[" "status" ":" string ["," "details" ":" xtree]

["," "subOps" ":" eventXTs] ["," "waitForOp" ":" eventXT]

{"," property}"]";

eventXTs = "〈 〉" | "〈" eventXT {"," eventXT} "〉";

eventXT = "[" "op" ":" string ["," "cref" ":" cref]

["," "tx" ":" txRef] "]";

txRef = label;

xWaitC = "[]" | "[" cWaitC {"," cWaitC} "]";

cWaitC = cref ":" "[" "insert" ":" waitC "," "remove" ":" waitC ","

"st unlock" ":" waitC "," "lt unlock" ":" waitC "]";

waitC = "[" "lastCommittedTime" ":" time "," "uncommittedTime" ":"

txEvts "," "waitingRequests" ":" waitQueue "]";

txEvts = "[]" | "[" txEvt {"," txEvt} "]";

txEvt = txRef ":" time ;

waitQueue = "〈 〉" | "〈" request {"," request} "〉";

xTxTimeoutC = "[]" | "[" txToEntry {"," txToEntry} "]";

txToEntry = "[" "tx" ":" txRef ["," "expireTime" ":" time] "]";

IV

A XVSM META MODEL SPECIFICATION

Transaction meta containers:

xTransactions = "[]" | "[" txProp {"," txProp} "]";

txProp = txRef ":" "[" "status" ":" string "," "log" ":" txLog "]";

txLog = "[]" | "[" opProp {"," opProp} "]";

opProp = opRef ":" "[" "capiName" ":" string "," "status" ":" string ","

"operationLog" ":" opLog "]";

opRef = label;

opLog = "〈 〉" | "〈" logProp {"," logProp} "〉";

logProp = label ":" "[" "type" ":" string "," "path" ":" path "]";

path = label {"/" label};

xLocks = "[]" | "[" lockProp {"," lockProp} "]";

lockProp = label ":" "[" "type" ":" string "," "path" ":" path ","

"tx" ":" txRef ["," "op" ":" opRef] "]";

V

	Introduction
	XVSM Basics
	Motivation for a Formal Model
	Related Work

	XVSM Algebra
	XVSM Query Language
	Query Structure
	Predefined Queries
	Predefined Selectors
	Predefined Matchmakers
	Combined Queries

	Analysis and Comparison

	XVSM Core API
	CAPI-1: Basic Operations
	CAPI-2: Transactions
	Transaction model
	Locking semantics
	Transaction logging
	Transactional operations

	CAPI-3: Coordination
	Coordinator interface
	Container operations
	Predefined coordinators
	Custom Coordination

	CAPI-4: Runtime model
	Request scheduling
	Aspects
	CAPI-4 operations

	XVSMP and Language Bindings

	Application scenario
	Haskell XVSM Prototype
	Introduction to Haskell
	Implementation
	Architecture
	Basic data access
	CAPI-1 and query evaluation
	CAPI-2
	CAPI-3 and coordinators
	Runtime machine and API

	Example
	Results

	Future Work
	Conclusion
	References
	XVSM meta model specification

