
Magisterarbeit

Meta-Learning:
Machine Learning with No Idea?

Ausgeführt am Insitut für

Statistik und Wahrscheinlichkeitstheorie
der Technischen Universität Wien

unter der Anleitung von

Univ.-Prof. Dipl.-Ing. Dr.techn. Friedrich Leisch

durch

Manuel J. A. Eugster, Bakk.techn.
Columbusgasse 41/9

1100 Wien

Wien, Jänner 2007

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Master Thesis

Meta-Learning:
Machine Learning with No Idea?

Performed at the Departement of

Statistics and Probability Theory
Vienna University of Technology

advised by

Univ.-Prof. Dipl.-Ing. Dr.techn. Friedrich Leisch

by

Manuel J. A. Eugster, Bakk.techn.
Columbusgasse 41/9

1100 Vienna

Vienna, January 2007

Acknowledgement

Now as almost everything is in place and the thesis is on the home stretch, I will take the
time to thank the people that helped me in one or the other way.

First of all I would like to thank Professor Friedrich Leisch for accepting me as graduand
and just let me freely think about my chosen thesis topic. Then I thank Dr. David Meyer
to give me his results about his benchmark studies to shorten my computation time. And I
thank Dr. Torsten Hothorn to explain me, in spite of the useR! 2006 conference stress, the
theory of benchmark studies and the therefor used statistical tests in detail.

A big thank you to Theresia Ledinegg for her english proofreading and thanks to Stefan
Schnabel and Jürgen Schatzmann for reading through the thesis and giving general hints.

A really really big thank you to my girlfriend Sarah, my parents Hartwig and Maria and
my sister Carola. Thanks for supporting me in all my ingenious and less ingenious ideas,
this is for you!

i

Abstract

The goal of this thesis is to provide an answer to a question, which came to my mind in
different lectures about machine learning, data mining and neural networks:

“And how do I now choose the right method for a new learning problem?”

Meta-Learning provides a possible answer. Thereby the idea is, to use the quality information
of machine learning methods on already treated learning problems and generate a suggestion
for the new learning problem.

The considered learning problems are restricted to classification problems. The quality
and the consequent ranking of different classification methods on a learning problem are
determined with benchmark experiments. Concrete quality measurements are the misclas-
sification rate and the time of a benchmark experiment. To relate different problems, a
characterisation with statistical and information-theoretic measures is defined, and a simi-
larity measures with attention to the specialties of the characterisation is introduced.

On the basis of these data a new problem is defined, which answers the initially placed
question. There exist three different methods in the literature. The first two methods define
the problem as classification respectively as regression problem with most different possibil-
ities for the response variable. The third method uses similarities between problems and a
schema to cause the ranking. All three approaches are introduced, a concrete formulation
is done for a regression problem with the Nadaraya-Watson estimator, and for the third
method with the average ranks, success rate ratios and adjusted ratio of ratios schemata.

The practical implementation of the theoretical elucidations takes place with the R system
for statistical computing and a case study with 21 learning problems and 6 methods shows
the concrete usage.

ii

Zusammenfassung

Das Ziel dieser Masterarbeit ist es, eine Antwort auf die Frage zu finden, die sich mir in
verschiedenen Vorlesungen über Machine Learning, Data Mining und Neuronale Netzwerke
gestellt hat:

“Und wie entscheide ich mich jetzt für die richtige Methode bei einem neuen
Lernproblem?”

Eine mögliche Antwort liefert meta-learning. Dabei wird das Wissen bezüglich der Qualtität
verschiedener Machine Learning-Methoden aus schon behandelten Lernproblemen für einen
Vorschlag für das neue Lernproblem verwendet.

Die betrachteten Probleme beschränken sich auf Klassifikationsprobleme. Die Qualität
und die daraus resultierende Reihenfolge verschiedener Klassifikationsmethoden für ein Lern-
problem wird mittels Benchmark-Experimenten bestimmt. Maße für die Qualität sind die
Missklassifikationsrate und die Zeit welche ein Benchmark-Experiment benötigt. Um die
verschiedenen Probleme in Relation bringen zu können, wird eine Charakterisierung mittels
statistischen und informationstheoretischen Maßen definiert. Ebenso wird ein Ähnlichkeits-
maß mit Behandlung der speziellen Eigenschaften der Charakterisierung eingeführt.

Auf Basis dieser Daten wird ein neues Problem definiert, welches eine Antwort auf die ein-
gangs gestellte Frage liefert. In der bestehenden Literatur existieren dazu drei verschiedene
Methoden. Die ersten beiden Methoden formulieren das Problem als Klassifikations- bzw.
Regressionsproblem mit unterschiedlichsten Möglichkeiten für die abhängige Variable. Die
dritte Methode verwendet die Ähnlichkeit von Problemen und ein Schema für die Reihen-
folgebestimmung. Alle drei Ansätze werden einführend erklärt, eine konkrete Formulierung
wird für ein Regressionsproblem mittels Nadaraya-Watson-Schätzer und der dritte Methode
mit den average ranks, success rate ratios und adjusted ratio of ratios Schemata angegeben.

Die praktische Umsetzung der theoretischen Erläuterungen erfolgt mit dem R-System für
statistische Berechnungen und ein Fallbeispiel mit 21 Lernproblemen und 6 Methoden zeigt
eine konkrete Anwendung.

iii

Contents

Acknowledgement i

Abstract ii

Zusammenfassung iii

1 Introduction 1
1.1 Machine Learning . 2

1.1.1 Theoretical Remarks about Classification 3
1.2 Meta-Learning . 6
1.3 The Framework . 7

1.3.1 Implementation . 8
1.4 The dataset Package . 9

1.4.1 Concept . 9
1.4.2 Machine Learning related Extensions 9
1.4.3 Usage Example . 10

Case Study: Starting Shot . 13

2 Machine Learning 15
2.1 Classification Algorithms . 16

2.1.1 Linear Discriminant Analysis . 16
2.1.2 Naive Bayes Classifiers . 16
2.1.3 k-Nearest Neighbour Classifiers . 17
2.1.4 Recursive Partitioning Trees . 17
2.1.5 Support Vector Machines . 18
2.1.6 Neural Networks . 19

2.2 Comparison and Selection of Methods . 21
2.3 The bench Package . 22

2.3.1 Machine Learning Algorithms . 22
2.3.2 Benchmark Experiments . 23
2.3.3 Usage Example . 24

Case Study: “True” Ranking . 30

3 Characterisation of Learning Problems 34
3.1 Introduction . 35

3.1.1 Aggregation of Characteristics . 35
3.2 Problem Characteristics . 38

3.2.1 General Description . 38
3.2.2 Description of the Attributes . 38
3.2.3 Attribute Associations . 41
3.2.4 Associations with the Class Attribute 44

iv

3.3 Distance Measure . 48
3.4 The latem Package, Part 1 . 49

3.4.1 Characterisation . 49
3.4.2 Usage Example . 50

Case Study: The Meta-Knowledge Base . 53

4 Meta-Learner 57
4.1 Introduction . 58

4.1.1 Classification-Based . 58
4.1.2 Regression-Based . 58
4.1.3 Other Local Methods . 58

4.2 Local Methods . 59
4.2.1 Zoomed Ranking . 59
4.2.2 Nadaraya-Watson-Epanechnikov Ranking 60

4.3 The latem Package, Part 2 . 62
4.3.1 Meta-Knowledge Base . 62
4.3.2 Meta-Learner . 62
4.3.3 Usage Example . 62

Case Study: Suggestions . 65

Summary & Conclusion 69

Additional Benchplot Examples 70

Bibliography 74

List of Figures 75

List of Tables 76

Index 77

v

Chapter 1

Introduction

The goal of this chapter is to point out the idea of my master thesis. Therefor I give a rough
overview about machine learning and meta-learning with its various techniques. Then I
point out my framework and explain the case study, which I will use through the whole
thesis.

1

1.1 Machine Learning

The aim of machine learning is to construct algorithms which are able to learn to solve a
problem given some prior knowledge about it. Mitchell (1997) defines a well-posed learning
problem as follows:

“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at tasks in T , as
measured by P , improves with experience E”.

A first rough division of the tasks T is based on their goals. In supervised learning ,
the goal is to predict the value of an outcome measure given a number of input measures.
Unsupervised learning is the task to describe associations and patterns among a set of input
measures. Furthermore, supervised learning tasks are classified based on the type of their
outputs: regression when it is a quantitative and classification when it is a qualitative ouput
(Hastie et al., 2001). One typical unsupervised learning task is cluster analysis.

The experience E is given in most cases with a set of samples of the concrete problem.
Figure 1.1 shows such a set of samples for simple example problems of all three named tasks.

The performance measure P expresses the “how good has a computer program learned
the problem” as a number. Typical measures are misclassification using a confusion matrix
for classification problems, and the mean-squared error for regression problems. For a formal
definition of these performance measures see Hastie et al. (2001, Section 2.4). Other per-
formance measures are the time an algorithm needs to learn a model or the time a learned
model needs to predict data.

Figure 1.1: A classification problem with two classes red and green. A regression
problem and a cluster analysis problem.

Statistics and machine learning offer a lot of algorithms to tackle these problems given in
figure 1.1. Meyer et al. (2003), for example, specify sixteen classification and nine regression
algorithms in their paper. Each of them yields a different result, and the data analyst has
to decide on the strength of his preferences, experiences and background knowledge about
the data which algorithm is the right one. A possible choice and the resultant solution is
given in the following figure 1.2:

2

Figure 1.2: Classification: k-nearest-neighbour with 15 neighbours. Regression:
quadratic regression. Cluster analysis: k-means with 5 cluster centres.

Let us focus on the task of classification . If the data analyst had made another
decision the result would be different (see figure 1.3). And as we can see in the plots, all
three methods make misclassifications. So, how do we decide?

Figure 1.3: Another two results for the classification
problem. The right one is obtained with linear dis-
criminant analysis and the left one with classification
trees.

One possibility to make a decision, without depending on the preferences and experiences
of the analyst, is to learn the problem with all available methods and then use the one with
the highest performance measure. This is a very time consuming process, especially if one
uses benchmarking methods to ensure the statistical correctness of the decision and after
determining the best algorithm, all other benchmark results are not used anymore.

Now, Meta-Learning is the idea to collect these results and use them for the next problem.
A new problem is compared with the known ones and the performance measures of similar
problems are used as suggestion. Therefor, meta-learning is just machine learning with
another level of scope (Vilalta and Drissi, 2002). According to the learning problem definition
of Mitchell the task T is to give method suggestions for a problem, and the experience E
consists of the methods performance measures on old problems. The performance measure
P is the difference between a suggestion and the true performance measure.

To clarify that this approach works, one has to look into the theoretical background of
machine learning methods. I use the framework of computational learning theory (chapter
7 in Mitchell, 1997; Angluin, 1992) to explain the coherences.

1.1.1 Theoretical Remarks about Classification

Classification is defined (according to Mitchell, 1997, chapter 7) by a set X of all possible
input tuples, a set Y of all possible nominal outputs and the target function f : X → Y .

3

This function associates each input tuple with a class, i.e. the class label of an input tuple
x ∈ X is f(x) ∈ Y .

The problem is that normally we do not know the target function f , but have a finite set
of training samples D = {〈x, f(x)〉|x ∈ X} available. Based on this knowledge, one would
like to approximate the target function f by a hypothesis h : X → Y as well as possible.
The hypothesis function h is element of a hypothesis space H which is a set of functions
from X to Y , where each function could approximate f .

The hypothesis space H is defined through a learning algorithm l. This function maps
the training examples D to a hypothesis h ∈ H . As one can imagine, different learning
algorithms describe different classes of functions and make different assumptions to generalize
the examples given. This is called the inductive bias and this is the reason why an algorithm
is better than the rest for specific types of problems. Figure 1.4 is an attempt to visualize
this.

Universe of all classification problems:

T1

T2

T3

T4

l1

l2

Figure 1.4: (Idea from Vilalta and Drissi, 2002) Visualisation of two
learning algorithms, their hypothesis space (dashed lines) and their fa-
vored hypothesis space (solid lines). T1 and T2 are best learned by l1. T2

could also be learned by l2 but the result would be bad, because through
the inductive bias. T3 is best learned by l2 and no algorithm can learn
T4.

Additional to the inductive bias, no “super” algorithm exists which performs better on
all possible problems than all others. This is a result of the “no free lunch theorems” (see
Wolpert, 2001), for a visualisation see the following figure 1.5. It shows two algorithms,
one specialized and one general-purpose. The first one is specialised on a specific problem
class and achieves very high performances on these problems, but low performances on
problems of other classes. On the other hand, the general-purpose algorithm achieves similar
performances on all problems. But its performances are, of course, not as high as the
performances of the specialised algorithm on its problem class.

4

problems

pe
rf

or
m

an
ce

average
general−purpose algorithm
specialized algorithm

Figure 1.5: Visualisation of the “no free lunch theorem” with a general-
purpose algorithm and an algorithm which is specialised on a specific
problem class.

Referring to those two facts the decision of the right algorithm proves a difficult problem.
There is no “super” algorithm and by reaching a selection the hypothesis space is fixed
without having a hint, whether the problem can be best explained through the hypothesis
in the fixed space.

5

1.2 Meta-Learning

The theoretical idea behind meta-learning is best explained with figure 1.4 about the induc-
tive bias of algorithms. Through the selection of an algorithm, the hypothesis space, where
to search for a good approximation of the problem, is fixed. Now, meta-learning is the task
to choose the hypothesis space, and hence the corresponding best algorithm or best combi-
nation of algorithms (which is called a composite classifier), based on the experience gained
on other problems. Therefor, for a given set of candidate algorithms L and with respect to
performance measure P , the three central questions meta-learning can give answers to, are
(after Giraud-Carrier et al., 2004):

1. Which one is the best algorithm l ∈ L?

2. Which is the preferred ordering l1 ≤ l2 ≤ . . . ≤ ln, li ∈ L?

3. What is the form of the composite classifier?

Various techniques have been developed to answer the above questions. A detailed list
is given in Vilalta et al. (2004), this is a short overview of the main directions :

Meta-Learning for machine learning The characterization of datasets can be performed
using a variety of statistical, information-theoretic, and model-based approaches. Match
meta-features to algorithms and use this information for model selection or ranking.

Combining algorithms Information collected from the performance of a set of learning
algorithms at the base level can be combined through a meta-learner.

Inductive transfer and learning to learn Within the learning-to-learn paradigm, a con-
tinuous learner can extract knowledge across domains or tasks to accelerate the rate
of learning convergence.

Dynamic bias selection The learning strategy can be modified in an attempt to shift this
strategy dynamically. A meta-learner in effect explores not only the space of hypothe-
ses within a fixed family set, but, in addition, the space of families of hypotheses.

The goal of this thesis is, to use the meta-learning for machine learning approach to an-
swer question number one and two. I use statistical and information-theoretic measures (the
meta-features) to characterize a dataset. Together with the benchmark results of candidate
algorithms on a dataset, is this the experience E or the meta-knowledge base.

Designated to this approach, the second important point is the interpretation of the meta-
knowledge base. The issue is how to estimate the performance measures of the candidate
algorithms for a new unknown problem and derivate the best algorithm or a ranking of them.

There are different approaches. In Brazdil and Soares (2000) the authors compare rank-
ing methods which only use the performance measures. In Soares and Brazdil (2000) the
same authors introduce a method called zooming which uses the meta-features to use only
performance measures of the k-nearest datasets. Köpf et al. (2000) and Bensusan and
Kalousis (2001) solve the meta-learning problem as regression and Kalousis (2002) uses a
very highly sophisticated approach “which closely simulates the evaluation and comparison
process followed by an analyst when he has to select among a set of inducers the one that
achieves the best accuracy” (meta-learning as classification).

I introduce the three main approaches and show a solution for the meta-learning as
regression problem approach and the zoomed ranking approach.

6

1.3 The Framework

In this section I want to centralise the above said and establish a concrete framework . Vilalta
et al. (2004) and Kalousis (2002) each describe one in their paper. I combine ideas from
both and adapt them to my idea of meta-learning. Figure 1.6 illustrates the architecture of
my framework.

Meta-Knowledge
Base

Problems

Meta-Feature
Generator

Base-Learner

Performance
Measures

Performance
Evaluation

New
Problem

Meta-Feature
Generator

Meta-Learner

Suggestion

Figure 1.6: The meta-learning framework. The conceptional main parts are performance
evaluation, meta-feature generation and meta-learning.

Conceptually, the framework (and the following chapters of this thesis) splits into three
parts:

Performance evaluation Define some candidate algorithms (or base-learner) and perfor-
mance measures. Evaluate the performance on a set of problems (chapter 2).

Meta-Feature generation Generate a characterisation of a problem using statistical and
information-theoretic measures (chapter 3). Together with the performance evaluation
results this is the meta-knowledge base (the experience E).

Meta-Learning Use the meta-knowledge base to give algorithm suggestions (in form of
the best or a ranking) for a new problem (chapter 4).

Additionally, an important point is the description of the problems. In this thesis, a
problem is given in table form. The rows are the samples, one column is the response
and the other columns are the attributes (or input) of the problem. But a simple table,
matrix or data frame cannot express this relation of the attributes. Therefor, I developed
an abstraction of the dataset concept, with optimisation for machine learning methods and
benchmark experiments, see section 1.4.

7

1.3.1 Implementation

The implementation of the framework is done using the R language and environment1 and
the S4 classes and methods mechanism (Chambers, 1998). I use this environment because
it provides all the machine learning algorithms and statistical tests I need, therefor I can
focus on writing the framework and the meta-learning parts.

The implementation splits into three packages, dataset, bench and latem. The first one
is the extension of the data set concept as annotated above. It is excluded into a separate
package because both other packages need this concept. bench contains the performance
evaluation parts and latem the meta-feature generation and meta-learning methods.

The idea and the design of the packages are explained at the end in the corresponding
chapters. I use simple UML notation to show interesting parts of the classes. The R im-
plementation is presented in short usage examples. Documentation of the classes, methods
and functions, and more information like vignettes, examples and demos can be found in
each package. At the present time they are available at http://mjae.net/mlnoi/, but the
idea is to make them available at CRAN2, whereas then some structural changes will be
accomplished.

1Version 2.3.1, http://www.r-project.org/.
2The Comprehensive R Archive Network, http://cran.r-project.org/.

8

1.4 The dataset Package

Data can be available in many forms. The simplest one is data in table form (rows are
samples and columns are attributes), but it can also be a data generating process which
gives you an example every time you ask. This package abstracts the data concept and
defines an interface how a dataset has to look like, never mind in which form the data are
available. Once this interface is defined, it is quite plain to simplify the handling with data
for machine learning methods and benchmark experiments.

1.4.1 Concept

Data make no sense until the attributes are related together. You have to define the semantic
of the data, i.e. at minimum which ones are the input attributes and which one is the
response attribute. This description is interpreted and the two basic aspects, input and
response, are defined. Of course, a lot of other aspects of the data could be interesting, e.g.
the design matrix, all attributes of nominal type or a scaled view of data, thus the DataSet
implementation of the IDataSet interface allows to set own aspects.

In short, a dataset must allow access to all data (dataset()) and to different aspects
(get(. . .)). Furthermore, there must be some basic operations, like dimension() and com-
pleteCases(), which provide some information about the encapsulated data. Figure 1.7
shows the R related interface definition in simple UML notation:

dataset(): data.frame
name(): character
description(): formula
aspects(): list
has(): logical
dimension(): numeric
completeCases(): logical
...

IDataSet
{virtual}

Figure 1.7: The IDataSet interface definition.

As said above, the DataSet class is an implementation of the interface which encap-
sulates data of the type data.frame. The concrete R implementation uses ideas from the
modeltools package from Torsten Hothorn, Friedrich Leisch, and Achim Zeileis.

1.4.2 Machine Learning related Extensions

Because of the topic of this thesis, I thought about an optimisation of the dataset concept
for benchmark experiments and machine learning methods.

Simplified, the benchmark process splits the dataset into pieces, e.g. learning and testing
set, and passes them to the candidate algorithms. From the point of view of the benchmark
process the splitting is a restriction of the view of the dataset with respect to the samples
(rows). The candidate algorithms do not know anything about the restriction, for them this
is the whole information about the problem.

On the other hand, a candidate algorithm has to ensure that it can work with the
data. This means for example, that there are no incomplete cases, or all attribute types are
processable. The first one is again a restriction of the samples view (rows) and the second
one is a change in the view of an attribute (column).

9

In short, a dataset optimised for machine learning must allow to change the view of the
data in respect to the samples and attributes without alter the original data, and look like
a normal dataset from outside. The following figure 1.8 shows two implementations of the
IDataSet interface, whereby the first one allows sample and the second one column related
view changes:

...

dataSet: IDataSet
get: function
set: function
naOmit: logical
rowFilter: integer

DataSetRowView

IDataSet

...

dataSet: IDataSet
get: function
set: function
columnFilter: integer
columnApply: function

DataSetColumnView

IDataSet

Figure 1.8: Two implementations of the IDataSet in-
terface, DataSetRowView allows changes in the view
of rows and DataSetColumnView allows changes in the
view of columns.

Since this implementations encapsulate a IDataSet and both views implement this in-
terface, it is possible to create a chain of views and this is exactly what happens in the above
described benchmark process.

1.4.3 Usage Example

> library(dataset)

To demonstrate the usage of this package, I use the Feldmaus dataset. This is the result
of an analysis of two kinds of field mice. The dataset consists of 5 input attributes (length,
width, height, weightclass, species) and the response sex.

> data(Feldmaus2)

> str(Feldmaus2)

�data.frame�: 40 obs. of 6 variables:
$ length : num 13 14 14 16 15 13 13 15 14 12 ...
$ width : num 9 NA 7 8 7 8 9 7 10 9 ...
$ height : num 3 2 4 5 3 3 5 3 3 4 ...
$ weightc: Ord.factor w/ 3 levels "low"<"medium"<..: 1 1 3 3 1 2 2 2 3 3 ...
$ species: Factor w/ 2 levels "californicus",..: 2 2 2 2 2 2 2 2 2 2 ...
$ sex : Factor w/ 2 levels "man","woman": 1 1 1 1 1 1 1 1 1 1 ...

Create a DataSet object which encapsulates the original data.frame. Additionally to the
data, it knows some semantic of the data (through the formula) and its name:

> ds = dataSet(sex ~ ., data = Feldmaus2, name = "Feldmaus2")

Feldmaus2: DataSet
sex ~ length + width + height + weightc + species
with 40 samples,
and the aspects input, response.

10

As you can see, the DataSet constructor interprets the formula and prepares two aspects
input and response. One can access aspects with the get method. The result is the aspect
definition interpreted on the encapsulated data:

> str(ds@get("input"))

�data.frame�: 40 obs. of 5 variables:
$ length : num 13 14 14 16 15 13 13 15 14 12 ...
$ width : num 9 NA 7 8 7 8 9 7 10 9 ...
$ height : num 3 2 4 5 3 3 5 3 3 4 ...
$ weightc: Ord.factor w/ 3 levels "low"<"medium"<..: 1 1 3 3 1 2 2 2 3 3 ...
$ species: Factor w/ 2 levels "californicus",..: 2 2 2 2 2 2 2 2 2 2 ...

With the set method, one can define one’s own aspects. At this time the definitions can be
of the type formula or function.

Suppose we want to benchmark some machine learning algorithms A1 and A2 with this
dataset. First we have to split the dataset into a training and testing set. The split is done
using various methods (e.g. cross-validation), the sample indices for the training set are
given in train.in. In the sense of the dataset package, this is a restriction of the row view:

> ds.train = dataSetRowView(ds, rowFilter = train.in)

Feldmaus2: DataSetRowView -> DataSet
sex ~ length + width + height + weightc + species
with 30 samples,
and the aspects input, response.

The benchmark process hands over the training dataset to the algorithms. Each algo-
rithm can have its own view of the data. A1, for example, cannot handle NA values. Hence,
it has to ensure that the data does not contain incomplete samples. Again, in the sense of
the package, this is a restriction of the row view. A1 encapsulates the training data and
omits incomplete samples:

> A1.ds = dataSetRowView(ds.train, naOmit = TRUE)

Feldmaus2: DataSetRowView -> DataSetRowView -> DataSet
sex ~ length + width + height + weightc + species
with 29 samples,
and the aspects input, response.

Algorithm A2 cannot handle ordinal attributes. In this case, A2 has to ensure that all
ordinal attributes are converted to, for example, a numeric representation. In terms of the
dataset package, this means that we change the view of a column:

> A2.ds = dataSetColumnView(ds.train, columnApply = function(x) {

+ if (is.ordered(x))

+ return(as.numeric(x))

+ else return(x)

+ })

Feldmaus2: DataSetColumnView -> DataSetRowView -> DataSet
sex ~ length + width + height + weightc + species
with 30 samples,
and the aspects input, response.

11

If we request for data, the function is applied to all columns, and so we achieve that all
columns of type ordered are converted to a numeric representation, i.e. columns of type
numeric:

> str(A2.ds@get("input"))

�data.frame�: 30 obs. of 5 variables:
$ length : num 13 14 14 16 15 13 13 15 14 12 ...
$ width : num 9 NA 7 8 7 8 9 7 10 9 ...
$ height : num 3 2 4 5 3 3 5 3 3 4 ...
$ weightc: num 1 1 3 3 1 2 2 2 3 3 ...
$ species: Factor w/ 2 levels "californicus",..: 2 2 2 2 2 2 2 2 2 2 ...

12

Case Study: Starting Shot

The case study is based on the article The support vector machine under test by Meyer
et al. (2003). In this article, the authors benchmark a popular support vector machine im-
plementation (libsvm) to 16 classification methods on 21 datasets and 9 regression methods
on 12 datasets. The datasets are available from http://www.ci.tuwien.ac.at/~meyer/
benchdata/.

I use the classification datasets to successively explain each part of the meta-learning
framework. The datasets contain real and artificial problems of all sizes, table 1.1 shows a
short summary .

Problem #Attributes #Samples Class distribution
nominal continuous complete incomplete (%)

promotergene 57 106 50.00/50.00
hepatitis 13 6 80 75 20.65/79.35
Sonar 60 208 53.37/46.63
Heart1 8 5 296 7 54.46/45.54
liver 6 345 42.03/57.97
Ionosphere 1 32 351 35.90/64.10
HouseVotes84 16 232 203 61.38/38.62
musk 166 476 56.51/43.49
monks3 6 554 48.01/51.99
Cards 9 6 653 37 44.49/55.51
BreastCancer 9 683 16 65.52/34.48
PimaIndiansDiabetes 8 768 65.10/34.90
tictactoe 9 958 34.66/65.34
credit 24 1000 70.00/30.00
Circle (*) 2 1200 50.67/49.33
ringnorm (*) 20 1200 50.00/50.00
Spirals (*) 2 1200 50.00/50.00
threenorm (*) 20 1200 50.00/50.00
twonorm (*) 20 1200 50.00/50.00
titanic 3 2201 67.70/32.30
chess 36 3196 47.78/52.22

Table 1.1: The 21 problems used in the case study. Problems marked with (*) are artificially
created. The list ist sorted by the number of samples.

I decided to use six different classification algorithms, namely Linear Discriminant Anal-
ysis, Naive Bayes Classifier, K-Nearest Neighbour Classifier, Classification Trees, Support
Vector Machines and Neural Networks. Although this selection defines the methodology
some details of the algorithms are specific to their implementation, therefore table 1.2 lists
the R functions and the corresponding package with the version number. Chapter 2 explains
each of the methods theoretically and the usage example of the “The bench Package”section
shows how they are integrated into my framework.

13

Algorithm R Function R Package Version
Linear Discriminant Analysis lda MASS 7.2-27.1
Naive Bayes Classifier naiveBayes e1071 1.5-13
K-Nearest Neighbour Classifier knn class 7.2-27.1
Classification Trees rpart rpart 3.1-29
Support Vector Machines svm e1071 1.5-13
Neural Networks nnet nnet 7.2-27.1

Table 1.2: Classification methods used in the case study. The coloured rectangles are
the colour codes for plots which deal with the algorithms. The R function names are
also used as abbreviations for the algorithms.

My packages are available in version 1.0. R has version number 2.3.1. The experiments
run on a workstation with a AMD Sempron 3400+ (2.00 gigahertz) processor and 1 gigabyte
main memory.

The complete case study with all algorithm and benchmark definitions and their results
are available in the cs621 package, also at http://mjae.net/mlnoi/.

14

Chapter 2

Machine Learning

In this chapter, I explain the machine learning parts I need for my thesis in detail. I discuss
the basic ideas of the six classification methods and the benchmarking of them. Then I
outline my implementation of this machine learning part in the R implementation of the
S4-class system and use it to determine the “true” ranking of the methods on each dataset
of the case study.

15

2.1 Classification Algorithms

Classification algorithms predict the qualitative value of an outcome attribute given a num-
ber of input attributes. Formally, the problem can be stated as follows: given is a finite set
of training samples D = {(x1, y1), . . . , (xn, yn)|xi ∈ X, yi ∈ Y }, X is the set of all possible
input tuples defined by the attributes 〈X1, . . . , Xattr〉 and Y is the set of all possible nominal
outputs {C1, . . . , Ccl}. For simplification we assume Xi of continuous nature.

Decision theory for classification tells us that we need to know the class posteriors p(y|x)
for optimal classification (see Hastie et al., 2001, section 2.4). The posterior distribution of
the classes after observing x is defined by the Bayes rule

p(y|x) =
πyp(x|y)

p(x)
,

where πy denotes the prior probabilities of the classes, p(x|y) the densities of distributions
of the observations for each class and p(x) the probability of the observations. We classify
a observation by the class with maximal p(y|x).

Classification algorithms now model the posterior with different assumptions or approx-
imate the posterior directly.

2.1.1 Linear Discriminant Analysis

Linear discriminant analysis divides the problem space with linear decision functions into
seperate regions that are classified as classes C1, C2, . . . , Ccl. The decision boundaries are
hyperplanes and one familiar possibility to get them is by modeling the class posterior
p(y|x), i.e. by modeling each class density p(x|y) with the assumptions of multivariate
normal distributions and equal covariance matrices Σ:

C1 ∼ N(μ1, Σ)
...

Ccl ∼ N(μcl, Σ)

With this assumptions, we can simplify the comparison between two classes using the
Bayes rule and define an equivalent description of this decision boundary, the linear discrim-
inant function for each class:

δk(x) = xT Σ−1μk − 1
2
μT

k Σ−1μk + log πk

μk and Σ are estimated with the sample mean and the within-class covariance matrix.
This term measures the distance of the observation to the class mean according to the

Mahalanobis distance, which is basically proportional (not exactly) to the probability that a
observation belongs to a particular class. The observation x is classified with the class with
the smallest distance.

An example of a linear discriminant analysis solution for a two-class problem is given
in section 1.1, figure 1.1 (left panel) shows the problem and figure 1.3 (left panel) is the
solution, which shows the linear decision boundary through the problem space.

2.1.2 Naive Bayes Classifiers

The naive Bayes classifier models the class posterior with the assumption that the attributes
are conditionally independent in each class. This means for the class densities that:

p(x|y = k) =
attr∏
i=1

p(xi|y = k)

16

Although this “naive” assumption is not always accurate, it does simplify the classifica-
tion task, since it allows the class conditional densities to be calculated separately for each
attribute, i.e. it reduces a multidimensional density estimation problem to a number of
one-dimensional kernel density estimation ones.

2.1.3 k-Nearest Neighbour Classifiers

The k-nearest neighbour classifier is memory-based (or instance-based) and requires no
model to be fit. Given an observation x, the classifier finds the k nearest samples in the
training set according to a distance measure d and takes a majority vote among the classes
of these samples. This is equivalent to estimating the posterior probabilities p(y|x) by the
proportions of the classes in the neighbourhood.

The best choice of k depends upon the data. Generally, larger values of k reduce the
effect of noise on the classification, but make boundaries between classes less distinct. The
parameter k is determined with cross-validation between 1 and

√
n.

The k-nearest neighbour solution of the classification problem in figure 1.1 is shown in
figure 1.2 (left panel) with 15 neighbours.

2.1.4 Recursive Partitioning Trees

Tree-based methods partition the problem space into a set of rectangles, and then fit a simple
model in each one. In the task of classification each rectangle is a probability distribution over
the classes and the assigned class is the one with the highest probability, thus a classification
tree directly models the posterior p(y|x).

The decision tree is created with a recursive procedure of binary splits of the form Xj ≤ s
versus Xj > s. The algorithm starts with all data and has to find the best splitting variable
j and split point s. This is done by calculating a node impurity measure and taking the
split with the minimum impurity over all allowed splits. The split partitions the data into
two resulting regions and the algorithm repeats the splitting process on each of the two
regions. Then this process is repeated on all of the resulting regions until some stopping
rule is applied.

The node impurity is defined with the probability distributions pik over the classes k
at each node i. As a node represents a rectangle Ri of the partitioned problem space
containing ni samples (nik random samples from the multinomial distribution of each class),
the proportion of class k at node i can be estimated by

pik =
1
ni

∑
xj∈Ri

I(yj = k)

and the observations are classified to class k(i) = argmaxk(pik). Then, we can define
different measures of node impurity:

Misclassification error:
1
ni

∑
xj∈Ri

I(yj 	= k(i)) = 1 − pik(i)

Gini index:
∑
k �=k′

pikpik′ =
cl∑

k=1

pik(1 − pik)

Cross-entropy or deviance: −
cl∑

k=1

pik log pik

17

The tree construction takes the split with the minimum impurity and continues until the
number of samples reaching each leaf is small or the leaf is homogeneous enough, but one
should see the effective tree size as the tuning parameter of this algorithm. A large tree
might overfit the data, while a small tree might not capture the important structure. Thus
the gained tree T0 is pruned.

The established methodology is cost complexity pruning (Hastie et al., 2001). Pruning
considers rooted subtrees of the tree T0. The cost complexity criterion for a given α, a node
impurity measure C (typically the misclassification error) and a tree T with size |T | is

Cα(T) = C(T) + α|T |.

It can be shown that for each tuning parameter α ≥ 0 there is a smallest subtree Tα that
minimizes the cost complexity criterion Cα(T). To find this tree, the internal nodes that
produce the smallest per-node increase in C(T) are successively collapsed, until the single
root node is gained. This sequence of subtrees contains the tree Tα. The parameter α is the
tradeoff between tree size and its goodness off fit to the data and the best value is achieved
by k-fold cross-validation.

The classification tree solution of the classification problem in figure 1.1 is shown in figure
1.2 (right panel) where we see the decision boundaries and the indicated rectangles.

2.1.5 Support Vector Machines

Support vector machines are a generalization of linear decision boundaries, they produce
nonlinear boundaries by constructing a linear boundary in a high-dimensional, transformed
version of the problem space. The following introduction reduces the classification problem
to a two-class problem with yi ∈ {−1, 1}, the generalization is done with solving a two-class
problem for each pair of classes and the majority vote amongst these results.

Assume the linear separability of the training data. The data are separable by a hyper-
plane

{x|f(x) = w · x + b = 0}
with b ∈ R and w ∈ Rattr a unit vector, thus ‖w‖ = 1. An observation is classified with
k(x) = sign(w ·x + b). Normally there are infinitely many separating hyperplanes, so which
one is the best? The idea is to use that one that separates the data with equal distance from
both classes and has a maximal margin. The margin is the distance between the closest
points of both classes. This hyperplane is called the maximum-margin hyperplane.

Since f(x) = w · x + b returns the distance from the hyperplane f(x) = w · x + b = 0 the
maximum margin search can be defined as optimization problem:

max
w,b,‖w‖=1

C

subject to yi(xi · w + b) ≥ C, i = 1, . . . , n

C is the distance from the hyperplane to the first sample on each side, thus the margin is
2C wide.

Suppose now the classes overlap in the problem space. To tackle this problem, we
allow some points to be on the wrong side of the margin, i.e. we introduce slack variables
ξ = (ξ1, . . . , ξn). The constraints then are modified to

yi(xi · w + b) ≥ C(1 − ξi), ∀i

with ξi ≥ 0 and
∑n

i=1 ξi ≤ constant. Is a sample xi on the wrong side or within the
distance C, then the slack variable ξi has an amount proportional to the distance to the
right side. Through the constraint

∑n
i=1 ξ ≤ constant the number of misclassifications

18

is bounded. To simplify the computation, it is possible to re-formulate the problem as
equivalent minimization problem:

min
w,b

1
2
‖w‖2 + γ

n∑
i=1

ξi

subject to ξi ≥ 0
yi(xi · w + b) ≥ 1 − ξi, i = 1, . . . , n

Where the constant for the bounding of the misclassifications is replaced by the tuning
parameter γ.

The solution of this quadratic programming problem is gained using Lagrange multipliers
and the Karush-Kuhn-Tucker conditions (see Hastie et al., 2001, page 374). It provides an
estimator for w and b. The w estimator has the form

ŵ =
n∑

i=1

αiyixi,

with 0 ≤ αi ≤ γ. For the solution only the samples with nonzero αi contribute to, hence
they are called the support vectors. All in all the solution of the optimization problem is
f̂(x) =

∑n
i=1 αiyixi + b̂ and the decision function is k(x) = sign(f̂(x)).

So far the decision boundaries are linear in the problem space. The generalization to
non-linear decision boundaries follows the idea to map the samples to a higher dimensional
space, linearly separate them, and translate the solution back to non-linear boundaries in
the original space.

The enlargement of the problem space is done by applying basis expansions hm(x), m =
1, . . . , M on the samples h(xi) = (h1(xi), h2(xi), . . . , hM (xi)). This results in the adapted
non-linear solution function

f̂(x) = (ŵ · h(x)) + b̂,

which we can rewrite using inner products:

f̂(x) =
n∑

i=1

αiyi〈h(x), h(xi)〉 + b̂

In fact, the transformation h(x) is not specified at all, the only requirement is the knowl-
edge of the kernel function

K(x, x′) = 〈h(x), h(x′)〉
that computes the inner product in the transformed space (what is called the kernel trick).
A popular kernel for support vector machines is the radial basis kernel:

K(x, x′) = exp
−‖x − x′‖2

c

This approach has two tuning parameters, the cost of constraints violation γ and the
kernel parameter c. Following Meyer et al. (2003) the best choices are determined with a
grid search over the two-dimensional parameter space (γ, c), γ ranges from 2−5 to 212 and
c from 2−10 to 25.

2.1.6 Neural Networks

The central idea of neural network classifiers is to extract linear combinations of the problem
attributes as derived features, and then model the posterior p(c|x) as a non-linear function
of these features.

19

A typical (feed-forward) neural network consists of three layers: input x, hidden h and
output y. In each layer are a number of units, the input layer has as much units as the
problem attributes (attr), the number of hidden units M is the tuning parameter and the
number of output units is the number of different classes cl. Each input unit is weighted
connected with each unit of the hidden layer and each hidden unit is weighted connected
with each output unit. Sometimes there is an additional bias unit feeding into every unit in
the hidden and output layer with constant “1” as input which captures the intercepts of the
statistical model.

Statistically neural networks are modeled in the following way: the hidden units hm are
created from linear combinations of the inputs x,

hm = σ(α0m + αT
m(x1, . . . , xattr)), m = 1, . . . , M ,

then the target yk is modeled as a function of linear combinations of the hm,

tk = β0k + βT
k (h1, . . . , hM), k = 1, . . . , cl

yk(x) = gk(t1, . . . , tk), k = 1, . . . , cl.

α0m and β0k are the intercepts and represent the bias. αm is the vector of the weights
between the hidden unit hm and the input units, respective βk is the vector of the weights
between the output unit tk and all hidden units. The activation function σ(v) is usually
chosen to be the sigmoid

σ(v) =
1

1 + e−v

and the output function gk(t1, . . . , tk) is the softmax function

gk(t1, . . . , tk) =
etk∑cl
i=1 eti

.

To make a neural network model fit the training data well, the parameters {α0m, αm|m =
1, . . . , M} and {β0k, βk|k = 1, . . . , cl}, often called the weights, need to be determined with
the two-pass back-propagation procedure. The idea of this algorithm is that in the forward
pass the current weights are fixed, the predicted values are computed and the error of the
network is calculated. And in the backward pass each weight is adapted with respect to the
current effect of the unit on the error. The concrete derivation can be found in Hastie et al.
(2001, section 11.4).

As mentioned above the tuning parameter of this classifier is the number of hidden units.
The best value is searched between 1 and log(n) (again following Meyer et al., 2003).

20

2.2 Comparison and Selection of Methods

What we now need is the possibility to check how good an algorithm is on a specific learning
problem and which algorithm is the best amongst a set of candidate algorithms.

Commonly used techniques are cross-validation or resampling to derive point estimates of
the performances which are compared to identify algorithms with good properities. However,
the problem of identifying a superior algorithm is structurally different from the performance
assessment task, because the comparison of raw point estimates in finite sample situations
does not take their variability into account, thus leading to uncertain decisions without
controlling any error probability.

A framework which takes this variability into account is introduced in the paper The
Design and Analysis of Benchmark Experiments by Hothorn et al. (2005) . The authors
show“how one can sample from a well defined distribution of a certain performance measure,
conditional on a data generating process, in an independent way”. Thus, standard statistical
test procedures can be used to test many hypotheses of interest without any restrictions or
additional assumptions, neither to the candidate algorithms nor to the data generating
process.

The benchmark situation is the following: given is a data generating process DGP from
which B independent and identically distributed training datasets haven been drawn:

Db = {(x1, y1)b, . . . , (xn, yn)b} ∼ DGP , b = 1, . . . , B

There are K > 1 two-step candidate algorithms, whereas for each algorithm the function
lk(·|Db) is the fitted model based on the observations Db. This function itself has a distri-
bution Lk as it is a random variable depending on Db:

lk(·|Db) ∼ Lk(DGP), k = 1, . . . , K

The performance of the candidate algorithm lk when provided with the training data Db is
measured by a scalar function p:

pkb = p(ak, Db) ∼ Pk = Pk(DGP)

pkb is a random variable and follows a distribution function Pk which again depends on the
data generating process. These performance distributions of the candidate algorithms can
be used to compare the algorithms by formulating a hypothesis test:

H0 : P1 = · · · = PK

HA : ∃i, j ∈ {1, . . . , K} : Pi 	= Pj

Often in practical situations (real-world problems) the data generating process is un-
known, but a single training dataset D ∼ Zn of n observations from some distribution
function Z is available. The data generating process then is mimicked by the empirical
distribution function of the training dataset: DGB = Zn. B independent training datasets
are drawn by bootstrapping D1, . . . , DB ∼ Zn, and the test dataset T is defined in terms of
the out-of-bootstrap observations:

T b = D \ Db, b = 1, . . . , B

Thus the models are fitted on the training dataset Db and their performance is evaluated
on the corresponding test dataset T b.

The above described benchmark experiments are block-design procedures and a global
test for the null hypothesis H0 : Pi 	= Pj for any i, j can be done with the Friedman test.
To discover the algorithms i, j which are responsible for the rejection of the global null
hypothesis one can use the the Wilcoxon-Nemenyi-McDonald-Thompson test (see Hollander
and Wolfe, 1999).

21

2.3 The bench Package

The bench package implements the benchmark process described in the last section. For
this purpose, I first define my view of a machine learning algorithm and then explain the
implementation of the benchmarking.

2.3.1 Machine Learning Algorithms

My point of view of a machine learning algorithm in one sentence: it is a template, that,
instantiated with data, creates a model after a specific method. Therefor, the algorithm
object has to know how to create a model, how to predict new data, how to adapt hy-
perparameters, and what the data the algorithm can work with are. Figure 2.1 shows the
corresponding class:

fit(…): Model
adjust(…): data.frame
view(…): IDataSet
...

algorithm: character
modelFunction: ModelFunction
tuneFunction: TuneFunction
predictFunction: PredictFunction
viewFunction: ViewFunction

Algorithm

Figure 2.1: The Algorithm class with all necessary
functions to be an machine learning algorithm in my
point of view.

The modelFunction is the implementation of the “how to create a model for specific
data” method (e.g. support vector machine classifier, neural network classifier, . . .). It is
used by the fit(. . .) method and returns an object of the class Model. The Model knows
for which data it is model, based on which method, and it knows how to predict new data.
Figure 2.2 shows the class.

predict(…): ANY
view(…): IDataSet
...

model: ANY
predict: PredictFunction
view: ViewFunction

Model

Figure 2.2: The Model class with all necessary func-
tions to be a machine learning model in my point of
view.

22

The tuneFunction knows for concrete data how to adjust hyperparameters if the method
has one. It is used by the function adjust(...). For example, for support vector machines
this could be the implementation of a grid search over (C, γ).

The predictFunction knows how to predict the response for new data. Since the Al-
gorithm is just the template for new models it cannot predict, so this function is passed to
the Model object by the fit method.

The viewFunction implements the algorithm’s view of the data. The function gets
an IDataSet object and can encapsulate it in more dataset views (see section 1.4 about
the DataSet package) to ensure that the algorithm only sees data it can work with. The
important thing is, that this function is used every time the other functions are called, hence
the model, tune and predict function only see data through this specified view.

The algorithm property specifies the name of the algorithm.

ModelFunction
IN: IDataSet, data.frame

OUT: Model

TuneFunction
IN: Algorithm, IDataSet

OUT: data.frame

PredictFunction
IN: Model, IDataSet

OUT: ANY

ViewFunction
IN: IDataSet

OUT: IDataSet

Figure 2.3: The signatures of the functions of an Al-

gorithm object. IN specifies the type of the function
arguments, and OUT the type of the return value.

2.3.2 Benchmark Experiments

The implementation of the benchmark experiment framework is straight after the section
2.2 and the therein named paper The Design and Analysis of Benchmark Experiments from
Hothorn et al. (2005).

run(): BenchmarkResult
...

candidateAlgorithms: list
B: integer
errorFunction: ErrorFunction

Benchmark
{virtual}

SimulationProblem

CompetitionProblem

learningSample: IDataSet

RealWorldProblem
{virtual}

RealWorldProblemCV

RealWorldProblemOOB

Figure 2.4: The class hierarchy of possible kinds of benchmark experiments. The gray
ones are not implemented yet, because this thesis treats all learning problems as real-
world problems.

23

A benchmark experiment is basically described by a Benchmark object. It consists of a
list of candidate algorithms of the type Algorithm, a number B which specifies the drawn
learning samples from the data generating process, and the error function.

The next hierarchy layer describes the kind of the data generating process for train-
ing and testing samples. Since my case study only deals with real-world problems, I only
implemented this class and the “out-of-bootstrap strategy” specialisation of it.

An experiment is started with the run method which returns a BenchmarkResult object.
This contains the error values, and various time measures of the B passes (see figure 2.5
for class diagram). Based on this result the ranking of the candidate algorithms can be
determined. Additionally, I developed the benchplot and pooledbenchplot to visualise
the results of one and many benchmark experiments. They are explained in the usage
example and in the case study.

performances(): matrix
comparisons(); matrix
ranking(): matrix
...

errorDescription: character
candidateAlgorithms: character
error: matrix
tuneTime: matrix
learnTime: matrix
predictTime: matrix

BenchmarkResult

Figure 2.5: The BenchmarkResult class diagram.

2.3.3 Usage Example

> library(bench)

Algorithms

I demonstrate the R implementation of my algorithm idea on the basis of the support vector
machine classifier and the classification tree method. As I want to use as much existing soft-
ware as possible, both Algorithm objects wrap the corresponding functions. A standalone
implementation of an algorithm can be found in the package (knnS4).

Let’s start with the support vector machines. I use the svm function from the e1071 pack-
age. In point of view of the Algorithm object, this is the ModelFunction. The svm function,
and most of the other existing machine learning functions, have the signature (formula,
data=. . ., list of parameters, . . .). So, if you want to wrap a existing function you do
not have to implement the ModelFunction, just set the algorithm property to the name of
the existing function and the fit method calls it:

> svm_algorithm = "svm"

The package also defines a predict function, which I want to use, so the PredictFunction
implementation looks like:

> svm_predict = predictFunction("svm_predict",

+ function(model, data) {

+ return(predict(model, newdata = data))

+ })

24

The method cannot work with NA values, hence I fade them out:

> svm_view = viewFunction("svm_view",

+ function(dataSet) {

+ return(dataSetRowView(dataSet,

+ naOmit = T))

+ })

And the tuning of the hyperparemeter C and γ is done with the tune function from the
same package:

> svm_tune = tuneFunction("svm_tune",

+ function(algorithm, dataSet) {

+ tuned = tune.svm(description(dataSet),

+ data = dataset(dataSet),

+ gamma = 2^(-10:5),

+ cost = 2^(-5:12), tunecontrol = tune.control(sampling = "cross",

+ cross = 10, best.model = F,

+ performances = F))

+ return(tuned$best.parameters)

+ })

Now, putting all together, the definition of the support vector machine algorithm is the
following:

> svm_algorithm = algorithm(svm_algorithm,

+ tuneFunction = svm_tune, predictFunction = svm_predict,

+ viewFunction = svm_view)

svm: Algorithm
with no specific model function,
hyperparameter tuning with the svm_tune function,
the predict function svm_predict, and
restrictions of the data through the view function svm_view.

An example of where to implement a ModelFunction is the classification tree method
because I want to prune a fitted tree with the 1-SE rule (see Venables and Ripley, 2002,
page 260). The basic model function is rpart from the rpart package:

> rpart_model = modelFunction("1-SE-rule-model",

+ function(dataSet, parameters) {

+ m = rpart(description(dataSet),

+ data = dataset(dataSet),

+ cp = 0, method = "class")

+ p = m$cptable

+ xstd = p[, 5]

+ xerror = p[, 4]

+ cp0 = p[, 1]

+ minpos = min(seq(along = xerror)[xerror ==

+ min(xerror)])

+ rule = (xerror + xstd)[minpos]

+ cp = sqrt(cp0 * c(Inf,

+ cp0[-length(cp0)]))

+ pcp = cp[which(xerror <

+ rule)[1]]

+ return(prune(m, cp = pcp))

+ })

25

Again, I use the predict function from the package, but I’m only interested in the class
labels:

> rpart_predict = predictFunction("rpart_predict",

+ function(model, data) {

+ return(predict(model, newdata = data,

+ type = "class"))

+ })

There are no hyperparameters to tune and the method can handle all types of data, so the
classification tree algorithm definition is:

> rpart_algorithm = algorithm("rpart",

+ modelFunction = rpart_model,

+ predictFunction = rpart_predict)

rpart: Algorithm
with 1-SE-rule-model as model function,
no hyperparameter tuning,
the predict function rpart_predict, and
no restrictions of the data.

Now, I use the Feldmaus dataset from the dataset package usage example to demon-
strate the working with the Algorithm objects:

> data(Feldmaus)

> ds = dataSet(Feldmaus, sex ~ .,

+ name = "Feldmaus")

Using the view method we can see the data through the “algorithms eyes”. For the
support vector machine you see that there is one sample fewer because it is incomplete, the
classification tree sees all samples:

> view(svm_algorithm, ds)

Feldmaus: DataSetRowView -> DataSet
sex ~ length + width + height + species
with 39 samples,
and the aspects input, response.

> view(rpart_algorithm, ds)

Feldmaus: DataSet
sex ~ length + width + height + species
with 40 samples,
and the aspects input, response.

The fit method creates a model for the data. The support vector machine model
function has hyperparameters, hence we first adjust them to the dataset and then fit the
model using them:

> svm_hp = adjust(svm_algorithm,

+ ds)

gamma cost
1 0.5 16

26

> svm_model = fit(svm_algorithm,

+ ds, svm_hp)

svm model of the Feldmaus dataset:
with the the hyperparameters gamma=0.5, cost=16.

And the classification tree model of the Feldmaus data:

> rpart_model = fit(rpart_algorithm,

+ ds)

rpart model of the Feldmaus dataset:
with no hyperparameters.

The prediction of a class for new input data is done with the predikt method (no, the
k is no mistake, it is written this way because I don’t want to overwrite the S3 predict
function). As an example, the prediction of the sample s1:

length width height species sex
1 13 9 3 ochrogaster man

> predikt(svm_model, s1)

[1] man
Levels: man woman

> predikt(rpart_model, s1)

[1] man
Levels: man woman

Benchmark Experiments

I use the tictactoe benchmark experiment from the case study to show the usage. The can-
didate algorithms are svm_algorithm and rpart_algorithm from above and the following
four:

> lda_algorithm

lda: Algorithm
with no specific model function,
no hyperparameter tuning,
the predict function lda_predict, and
restrictions of the data through the view function lda_view.

> naiveBayes_algorithm

naiveBayes: Algorithm
with no specific model function,
no hyperparameter tuning,
the predict function naiveBayes_predict, and
no restrictions of the data.

> knn_algorithm

27

knn: Algorithm
with knn_model as model function,
hyperparameter tuning with the knn_tune function,
the predict function knn_predict, and
restrictions of the data through the view function knn_view.

> nnet_algorithm

nnet: Algorithm
with nnet_model as model function,
hyperparameter tuning with the nnet_tune function,
the predict function nnet_predict, and
restrictions of the data through the view function nnet_view.

The benchmark experiment is formulated as real-world problem with the out-of-bootstrap
strategy to draw a learning and testing sample and 250 passes, the error function is misclas-
sification:

> bench = rw_oob(candidateAlgorithms = list(lda_algorithm,

+ naiveBayes_algorithm, knn_algorithm,

+ rpart_algorithm, svm_algorithm,

+ nnet_algorithm), B = 250, errorFunction = misclassification,

+ learningSample = tictactoe)

RealWorldProblemOOB:
with 250 passes,
and the candidate algorithms lda, naiveBayes, knn, rpart, svm, nnet.

And GO:

> bench_result = run(bench)

The result is an object of the class BenchmarkResult which contains all time measures and
error values per pass:

> bench_result

Result of an benchmark experiment (RealWorldProblemOOB):
with the candidate algorithms lda, naiveBayes, knn, rpart, svm, nnet,
the error function misclassification,
and 250 passes, whereof 0 failed.

And with the ranking method, on can estimate the ranking of the algorithms according to
a performance measure and a p value:

> ranking(bench_result, p = 0.05,

+ y = "error")

error ranking
svm 0.006493132 1
lda 0.016518527 2
nnet 0.069185581 3
rpart 0.097929701 4
knn 0.171104030 5
naiveBayes 0.294405950 6

To visualize the benchmark result, I developed a plot called benchplot:

28

> benchplot(bench_result, y = "error")

m
is

cl
as

si
fic

at
io

n

0.
0

0.
1

0.
2

0.
3

0.
4

lda

naiveBayes

knn

rpart

svm

nnet

1. 2. 3. 4. 5. 6.

Podium

Figure 2.6: Benchplot of the benchmark result of the six candidate algorithms on the
tictactoe dataset.

The idea is based upon the parallel coordinate plot. The x-axis is the podium, with places
from 1 to the number of candidate algorithms (6), a place is always between two ticks. The
y-axis is the performance measure, in this case the misclassification, and each pass of the
benchmark experiment is on line. The performance measures per pass are sorted and printed
on the left tick of each podium place, then they are linked together and the colour of the
line from the left tick to the right tick is the algorithm’s colour. Additionally, the barplots
at the bottom show the appearance of each algorithm at the corresponding podium place.
Some other benchplots can be seen in the appendix 4.3.3 and all benchplots of the case study
experiments can be seen in demo(benchplot).

29

Case Study: “True” Ranking

This part of the case study defines the “true” ranking of the candidate algorithms on each
dataset concerning some performance measures. As one goal of meta-learning is the es-
timation of the “true” ranking, these results are the reference results in later case study
parts.

For each dataset a real-world benchmark experiment with 250 (bootstrap) runs is speci-
fied. The observed performance measures are misclassification, time of tuning hyperparam-
eters for a dataset, time of learning a model for a specific dataset with the tuned hyperpa-
rameter and prediction time of a complete dataset. As one can imagine, the misclassification
is the most interesting one, but there may be situations where the creation time of a model
(the sum of all three time measures) is of importance too. Moreover, the accumulated cre-
ation time, the benchmark time, is interesting, because this is the time meta-learning should
shorten (see the case study section about suggestions).

The hyperparamter estimation for (knn, svm, and nnet) and the rpart algorithm are
as defined in the corresponding sections above. Some definitions of the algorithms in my
framework are shown in the usage example of the bench package, the others are analogous.

All individual benchmark results are available in the in the cs621 package. I present
some pooled results which are interesting with respect to to meta-learning.

tit
an

ic

P
im

aI
nd

ia
ns

D
ia

be
te

s

C
ar

ds

H
ou

se
V

ot
es

84

liv
er

cr
ed

it

tw
on

or
m

H
ea

rt
1

B
re

as
tC

an
ce

r

rin
gn

or
m

m
us

k

S
on

ar

C
irc

le

S
pi

ra
ls

tic
ta

ct
oe

he
pa

tit
is

th
re

en
or

m

pr
om

ot
er

ge
ne

ch
es

s

m
on

ks
3

Io
no

sp
he

re

1.

2.

3.

4.

5.

6.

P
od

iu
m

Figure 2.7: Pooled benchplot showing the ranking corresponding to the misclassification
with p-value 0.05. The colour codes are lda, naiveBayes, knn, rpart, svm,
and nnet.

30

Figure 2.7 shows the answer to the most interesting question, the ranking regarding to
the misclassification. For each dataset the algorithm performances are sorted in an ascend-
ing way. The corresponding podium place is stained with the algorithms colour and the
performance value is expressed as a percentage with the darker bar.

Furthermore, the results of the significance test (with p-value 0.05) of the performance
differences per dataset are shown as pooling of podium places with borders. Pooled podium
places indicate that the performance value is different but not significantly different, hence
the corresponding algorithms have the same podium place.

As an example, the algorithms performances on the monks3 dataset are:

svm rpart nnet knn lda naiveBayes
0.01095148 0.01163782 0.02932404 0.03444507 0.03522340 0.03526528

But the significance test says, that the difference is not significant for some places and the
correct ranking is:

rpart svm nnet lda naiveBayes knn
1 1 2 3 3 3

Thus, the first two and the last three places are pooled.
To visualize some trends, the datasets in the benchplot are sorted after their 1., 2., . . .

algorithm. One question is, if the clusters of the winner algorithms are also seen in the
clustering of the characteristics of the datasets (see the next case study part, 3.4.2).

Additional to the above plot, the plot 2.8 about the benchmark time per algorithm and
dataset is interesting.

31

B
re

as
tC

an
ce

r

C
ar

ds

ch
es

s

C
irc

le

cr
ed

it

H
ea

rt
1

he
pa

tit
is

H
ou

se
V

ot
es

84

Io
no

sp
he

re

liv
er

m
on

ks
3

m
us

k

P
im

aI
nd

ia
ns

D
ia

be
te

s

pr
om

ot
er

ge
ne

rin
gn

or
m

S
on

ar

S
pi

ra
ls

th
re

en
or

m

tic
ta

ct
oe

tit
an

ic

tw
on

or
m

T
im

e
in

 s
ec

on
ds

5 e+01

1 e+02

5 e+02

1 e+03

5 e+03

1 e+04

5 e+04

1 e+05

Figure 2.8: Benchmark time per algorithm and dataset. The y-axis scale is logarithmic.
The colour codes are the same as in the figure above.

Figure 2.7 shows that support vector machines often are the best algorithm. But the
additional time information in figure 2.8 shows that they need a lot of time (because of
the huge hyperparameter search space). Now, using the information of the two plots for
a specific dataset, say monks3, svm has the lowest performance value but the difference is
not significant to the second algorithm rpart. However, the benchmark time differences are
significant, svm needs 3056 seconds and rpart 14 seconds. So, if we just wanted the best
algorithm, we could say, that we have wasted a lot of time with benchmarking the support
vector machines on this dataset. To overcome this problem, some meta-learners use both,
time and accuracy information to generate a suggestion.

To complete this case study part and to demonstrate how much time these benchmark
experiments took, I present figure 2.9, which shows the total time in hours per dataset.

32

liv
er

he
pa

tit
is

C
irc

le
S

pi
ra

ls
m

on
ks

3
H

ea
rt

1
pr

om
ot

er
ge

ne
P

im
aI

nd
ia

ns
D

ia
be

te
s

B
re

as
tC

an
ce

r
H

ou
se

V
ot

es
84

tit
an

ic
tic

ta
ct

oe
C

ar
ds

Io
no

sp
he

re
S

on
ar

cr
ed

it
rin

gn
or

m
th

re
en

or
m

tw
on

or
m

m
us

k
ch

es
s

T
im

e
in

 h
ou

rs

0

5

10

15

20

Figure 2.9: Distribution of the 231 hours of benchmarking. The datasets
are sorted after their size, i.e. the product of the number of samples and
the number of attributes.

33

Chapter 3

Characterisation of Learning
Problems

This chapter explains the statistical and information-theoretic measures I use for the char-
acterisation of a problem. To use them efficiently, I introduce a method to aggregate part
results. Then I explain the distance measure and outline the corresponding part of the
latem package. The case study shows some clustering aspects of the characterisations of the
problems and relates them to the performance measures gained in the last case study.

34

3.1 Introduction

In the past, there were some projects which defined problem characteristics and related them
with machine learning methods. One very important one was the StatLog project and their
resulting book Michie et al. (1994). Another interesting one is the METAL project. In my
thesis I refer to the PhD thesis by Alexandros Kalausis (Kalousis, 2002). He extends the
characteristics from the StatLog project and defines an aggregation for one kind of these
characteristics. I introduce this representation in the next section and then explain each
characteristic theoretically and with some examples. But first, we have to make clear what
a dataset in this case is.

In case of classification, a dataset D consists of attributes X1, . . . , Xattr and one nominal
class attribute C with cl different class labels (levels). The nature of the attributes Xi can
be continuous or nominal, other levels of measurement are not supported by now. A nominal
attribute Xi has I categories. Having another nominal attribute Xj with J categories, one
can represent the joint distribution with a contingency table. πi+ describes the marginal
distribution p(Xi = xk) of Xi, and analogy π+j describes the marginal distribution p(Xj =
xk) of Xj. The range of a continuous attribute X is from −∞ to ∞.

Hence, a characterisation of a dataset has to describe nominal and continuous attributes
and their relation to each other. If a characteristic is not applicable to a dataset, the return
value is “not available”.

3.1.1 Aggregation of Characteristics

Some of the later defined characteristics can only be calculated for single attributes, but
the result of a characteristic must have a fixed number of values for all datasets. Hence,
we have to aggregate these values. One possibility to aggregate is to calculate the mean,
thereby we often lose a lot of information. To overcome this problem, Kalousis uses a so
called histogram representation for characteristics whose return values are in a fixed range.
The fixed range is split into n bins and each bin contains the number of the attributes with
values in this bin (or the percentage amount).

Using this kind of representation, we do not lose as much information as if using the
mean. The next example shows the advantages of this method.

Example (histogram representation) This example shows the difference between the ag-
gregation with mean and with the histogram method by means of the correlation coefficient
ρ which ranges between −1 and 1. The theoretical explanation of this measure follows in
the next chapter.

Given are two datasets red, with three attributes, and green with two attributes. Figure
3.1 shows the coherence of the attributes for each dataset.

35

x

y

−1.0 0.0 0.5 1.0

−
1.

0
0.

0
0.

5
1.

0

x

z

−1.0 0.0 0.5 1.0

−
1.

0
0.

0
1.

0

y

z

−1.0 0.0 0.5 1.0

−
1.

0
0.

0
1.

0

x

y

−2 −1 0 1 2

0
1

2
3

Figure 3.1: Scatterplots to show the coherences of datasets red and
green attributes.

The correlation coefficients of the red dataset are

ρxy = 0.986, ρxz = −0.748, ρyz = −0.751

and of the green dataset
ρxy = −0.183.

If we now calculate the mean ρ̂ of both datasets, we see that they have similar mean corre-
lation coefficients:

ρ̂red = −0.171 and ρ̂green = −0.183

The difference between the two numbers is not high, so based on the correlation coefficients,
one could say that the two datasets are similar.

Using the histogram representation with n = 3 bins the aggregated ρ values of the dataset
looks as follows. For the red dataset

ρ̄1,red = 0.667, ρ̄2,red = 0.000, ρ̄3,red = 0.333

and for the green dataset

ρ̄1,green = 0.000, ρ̄2,green = 1.000, ρ̄3,green = 0.000.

Figure 3.2 is the visualisation of them.

36

F
re

qu
en

cy

[−1,−0.3] [−0.3,0.3] [0.3,1]

0.
0

0.
2

0.
4

0.
6

F
re

qu
en

cy

[−1,−0.3] [−0.3,0.3] [0.3,1]

0.
0

0.
4

0.
8

Figure 3.2: Histogram representation of the correlation coefficients of
dataset red and green.

Based on this knowledge we would say that the datasets are totally different. Of course,
if we choose a higher value for n, we get a better view of the distribution of the correlation
coefficients of a dataset, up to the exact values for n = ∞.

37

3.2 Problem Characteristics

3.2.1 General Description

The most general characteristics are the number of attributes attr, the number of samples
n and the number of class labels cl.

One important factor in learning problems is the dimensionality. If the number of at-
tributes increases, the number of samples must increase exponentially. The problem is known
as the curse of dimensionality and is described in detail in Hastie et al. (2001). As a measure
of the dimensionality we define

dim =
attr

n
.

Another measure of the dimensionality could be attr
log n . The idea is based on the Bayesian

information criterion (BIC) (see Hastie et al., 2001, section 7.7), where the number of samples
contributes in a logarithmic way.

The performance of a learning method is influenced by incomplete samples (or cases). As
different learning methods handle missing values differently, we also measure this character-
istic. The characteristics are the total number of missing values mvals and the percentage

pmvals =
mvals

attr ∗ n
.

Additionally, the distribution of the missing values among the attributes is important
for some learning methods (see Kalousis and Hilario, 2000). Hence, Kalousis proposes to
calculate the percentage of missing values for each attribute and then create a histogram
with 10 bins. The first bin contains the number (or frequency) of attributes with less than
10%, the next with 10% . . . 20%, and so on, missing values.

3.2.2 Description of the Attributes

A dataset consists of nominal and continuous attributes. Again, different learning methods
can handle these types of attributes differently well. To consider this, we measure the
number of nominal (nom) and continuous (con) attributes and their percentage from the
total number of attributes

%nom =
nom

attr
respectivly %con =

con

attr
.

Nominal Attributes

bin is the number of binary-coded attributes when we represent all nominal attributes with
“local binary encoding”. Many machine learning methods handle nominal attributes in this
way. The problem thereby is, that the dimension increases but the number of samples is the
same.

Some general characteristics are calculated from the integer representation of the nominal
attributes. There are the maximum max.nom, the minimum min.nom, the mean value
mean.nom and the standard deviation std.nom.

The entropy H(X) of a nominal attribute is a measure for the amount of randomness of
the categories . It is defined by

H(X) = −
∑

i

πi+ log2 πi+.

The value of the entropy is always greater equal than 0. It is maximal if all categories are
equally likely, and zero if the categories are certainty. The maximal value depends on the
number of categories. The interpretation of the entropy is, that the higher the value, the

38

more uniform is the distribution of the categories. Because of the possible different ranges
no histogram representation is possible, hence we use the mean entropy:

Ĥ(X) =
1

nom
∗

nom∑
i=1

H(Xi)

Example (Entropy) Given is the titanic dataset, it consists of three nominal attributes.
The following figure shows the distribution of categories per attribute:

1s
t

2n
d

3r
d

cr
ew

cabin class

0

200

400

600

800

ad
ul

t

ch
ild

age

0

500

1000

1500

2000

fe
m

al
e

m
al

e

sex

0

500

1000

1500

Figure 3.3: Nominal attributes of the titanic dataset.

The entropy of the single attributes are

H(socialclass) = 1.844, H(age) = 0.284, H(sex) = 0.748

and the characterisation of the dataset through the mean entropy is

Ĥ = 0.959.

Continuous Attributes

To describe continuous attributes, we use skewness and kurtosis from the descriptive statis-
tics. Both measures describe deviances from the normal distribution. We characterise a
dataset with these measures because some learning methods are based upon the assumption
of normally distributed samples per class. So, based on the response classes, the attributes
are split and the kurtosis and skewness are calculated.

The skewness describes the missing symmetry of a distribution. A positive skewness
means that there is an asymmetry tail towards the positive numbers and if the value is
negative, the asymmetry is towards the negative numbers. It is defined as

γ =
E(X − μX)3

σ3
X

.

The kurtosis describes how “fat” the tails are in comparison with a normal distribution
with the same standard deviation. It is defined as

β =
E(X − μX)4

σ4
X

.

As both measures are unbounded, we use the mean values γ̂ and β̂ for the characterisa-
tion.

39

Example (Skewness and Kurtosis) Given is an artifficially created attribute attrwith val-
ues from two classes red and green. The values of the class red are normal distributed with
N(0, 1) and the values of the green class are drawn from a exponential distribution with
λ = 1. Figure 3.4 shows a jitter plot.

at
tr

0.0 0.1 0.2 0.3 0.4 0.5
−

2
0

1
2

3
4

Figure 3.4: Jitter plot of the attribute attr with the
separation into the two classes red and green.

The skewness and kurtosis per classes are:

γ(red) = 0.383, β(red) = 3.278

γ(green) = 1.443, β(green) = 4.956

The resulting mean values are

γ̂(attr) = 0.913 and β̂(attr) = 4.117.

If one uses learning methods with discriminant functions for classification, the equality
of the covariance matrices of the different class samples play an important role. A measure,
which can be used to test equality is the Box’s M statistic . M is zero if all covariance
matrices Sci are equal to the pooled covariance matrix S = 1

n−cl

∑cl
i=1 Sci . We use this

statistic M to calculate the quotient SD.ratio of the pooled standard deviation and the
standard deviations of the classes:

SD.ratio = exp(
M

con ∗∑cl
i=1(ni − 1)

)

SD.ratio is 1 if M = 0, otherwise it is strict greater than 1.

Example (SD.ratio) Given are the two datasets a and b from figure 3.5 with each two
classes. The samples from both datasets are drawn from a multivariate normal distribution.
In case of dataset a, the covariance matrices of both classes are equal:

Σ1 = Σ2 =
(

1 0
cr0 1

)
For dataset b the covariance matrices are different:

Σ1 =
(
1 0}0 1

)
, Σ2 =

(
10 3
3 2

)

40

x

y

−2 0 1 2 3

−
2

−
1

0
1

2
3

x

y

0 5 10

−
2

0
1

2
3

4

Figure 3.5: Datasets with same respective different covariance matrices.

The values of the Box’s M statistic are

Ma = 0.764 and Mb = 39.040,

hence the corresponding quotients are

SD.ratioa = 1.004 and SD.ratiob = 1.220.

Class Attribute

An interesting characteristic of the class attribute is the distribution of the samples in respect
to the categories. One possibility to measure this, is the entropy H(C) . The theoretical
explanation is the same as above, and the interpretation is: the higher the value, the more
uniform is the distribution of the samples.

3.2.3 Attribute Associations

To measure associations between two nominal attributes X , Y with I respectively J different
categories, one can use the concentration coefficient (or Goodman and Kruskal’s τ)

τXY =

∑I
i=1

∑J
j=1

π2
ij

πi+
−∑J

j=1 π2
+j

1 −∑J
j=1 π2

+j

.

This coefficient describes “the proportional reduction in the probability of an incorrect guess
predicting Y using X” (Kalousis, 2002). It ranges between [0, 1] and the higher the value the
better we can predict Y , if we know X . Therefore X is assumed as independent and Y as
dependent. Hence the concentration coefficient is not symmetric and we have to calculate it
for all possible combinations of the nominal attributes of a dataset. The results are reported
in a histogram.

Another, more popular, measure is the chi-squared statistic (for the Definition see Ven-
ables and Ripley, 2002, page 64) from the chi-squared test of independence. But as Kalousis
does not use it in his dataset characterisation, I won’t use it too.

Example (concentration coefficient) Given are data from a survey. The interviewer asked
2619 persons about their favorite fruit (apple, banana, cherry or orange) and their favorite
color (blue, green or red). The following table lists the absolute frequency of the survey:

41

Fruit Color
blue green red

apple 42 694 748
banana 66 474 87
cherry 123 266 21
orange 21 67 10

Table 3.1: Contingency table of the survey.

Now, is there an effect in predicting the favorite color (Y) if we know the favorite fruit
(X)? And in the other direction?

In the first case, the concentration coefficient τXY is 0.118. This means that the percent-
age rate of a wrong favorite color prediction is reduced by 11.818%, if we additionally know
the distribution of the favorite fruits. In the other direction, the coefficient τY X is 0.130.

Associations between two continuous attributes X and Y are measured with the corre-
lation coefficient ρXY . It is a measure for the linear dependence of the two attributes and
defined through:

ρXY =
Cov(X, Y)√

V ar(X)V ar(Y)

The correlation coefficient ranges between [−1, 1] and is symmetric. 1 indicates a perfectly
positive, and −1 a perfectly negative linear dependence. 0 means that there is no linear
dependence. The characterisation is done with a histogram.

Example (correlation coefficient) The following figures show two dependent variables x
and y and their correlation coefficient.

42

x

y

−1.0 0.0 0.5 1.0

−
3

−
1

0
1

2
3

x

y

−1.0 0.0 0.5 1.0

−
6

−
2

0
2

4
6

x

y

−1.0 0.0 0.5 1.0

0.
0

1.
0

2.
0

3.
0

x

y

−1.0 0.0 0.5 1.0

−
3

−
1

1
2

3

Figure 3.6: The correlation coefficients are ρ = 0.992, ρ = 0.513, ρ =
0.0519 and ρ = −0.994.

Another description of associations between continuous attributes is the multiple cor-
relation coefficient . This coefficient describes the correlation between each attribute and
the linear combination of the remaining ones. Are X1, X2, . . . , Xcon continuous attributes,
then the multiple correlation coefficient Ri between Xi and the multivariate variable Zi =
(X1, . . . , Xi−1, Xi+1, . . . , Xcon) is given through the maximal correlation coefficient between
Xi and a linear function (from Zi) Zi ∗ α. Hence, Ri is given through:

Ri = argmaxα�=0
Cov(Xi, Ziα)√

V ar(Xi)V ar(Ziα)

Ri ranges between [0, 1]. 1 means, that Xi is a linear combination of Zi and 0 means, that
both variables are independent. So, this coefficient answers the question, if the prediction
of an attribute Xi improves, when Xi does not only depend on one other attribute Xj but
is seen as dependent attribute of Xj1 , . . .Xjk

.
What we need yet, is a possibility to describe associations between continuous and nom-

inal attributes. For this case, Kalousis uses the F-distribution, similar to the ANOVA. He
uses the p-value as indicator, whether a continuous attribute affects a nominal attribute. A
p-value near 0 rejects the assumption of the equality of the group mean values, a value near
1 accepts this assumption. Since the p-value is a probability it ranges between [0, 1].

The problem with this proposed usage of the p-values is, that they are equally distributed
in the interval [0, 1] under the null hypothesis, i.e. we can not really talk about good or bad
values, but the distance function uses them in a linear way. A better way is to report the
rejection of the null hypothesis for different significance levels and use that for the distance
calculation between two datasets.

43

Example (p-value) The following figure 3.7 shows a box plot of two datasets a and b.
Both have one attribute and three classes.

blau gruen rot

0
2

4
6

8

blau gruen rot

0.
0

0.
5

1.
0

1.
5

2.
0

Figure 3.7: Boxplots of the classes for each dataset a and b. Dataset a

is produced with different class means, b with equal class means.

The p-value for dataset a is 4.75e-36 (that is numerically 0) and the p-value for dataset
b is 0.989.

3.2.4 Associations with the Class Attribute

Probably the most important aspect in classification is the amount of information an at-
tribute provides about the class. It seems reasonable, that the higher an attribute’s infor-
mation content about the class is, the easier is the classification. Different learning methods
are differently robust against irrelevant attributes.

A frequently used measure for the mutual dependency of two attributes X and Y , is
the transinformation or mutual information . It measures how much knowing one of these
attributes reduces the uncertainty about the other. It is defined through

MI(X, Y) = H(Y) − H(Y |X).

H(Y |X) is the conditional entropy of Y given X . The mutual information is symmetric
and ranges between [0, min(H(X), H(Y))]. The value 0 indicates, that the attributes are
independent. If one attribute totally explains the other then the maximum is taken. This
measure is also known as “information gain” and plays an important role on decision trees.

To characterise a dataset, we calculate the mutual information for each attribute Xi

together with the class attribute C and average out:

M̂I(C, X) =
1

nom
∗

nom∑
i=1

MI(C, Xi)

We can further use this value to give an estimation about the common number of needed
attributes to describe the class attribute. This is known as equivalent number of attributes:

EN.attr =
H(C)

M̂I(C, X)

And we can estimate the amount of non-useful information of a dataset, the noise-to-signal
ratio

NS.ratio =
Ĥ(X) − M̂I(C, X)

M̂I(C, X)
.

44

Example (mutual information) Figure 3.8 completes the dataset titanic (see figure 3.3)
with the corresponding class attribute.

no ye
s

class

0

200

400

600

800

1000

1200

1400

Figure 3.8: Class attributes of the titanic dataset.

The mutual information between this class attribute and each nominal attribute is

MI(C, socialclass) = 0.0593, MI(C, age) = 0.00641 and MI(C, sex) = 0.142,

with the corresponding entropies

H(socialclass) = 1.844, H(age) = 0.284, H(sex) = 0.748 and H(C) = 0.908.

The resulting mean transformation is

M̂I(C, X) = 0.0694,

and furthermore:
EN.attr = 13.085 and NS.ratio = 12.824

As another characterisation, the concentration coefficient τXiC between the class at-
tribute and each nominal attribute is used. This value ranges between [0, 1], hence we can
use the histogram representation.

Let us turn to continuous attributes. Again, an indication of associations between con-
tinuous attributes and the class attribute is described with the p-value of the F-distribution.
We determine for each continuous attribute Xi, whether the class C affects a grouping of
the attribute or not. Is this the case, the attribute is good to describe differences between
categories. As mentioned above, the p-value is a probability and ranges between [0, 1]. So,
we can us the histogram representation for the characterisation.

To get a real description of associations of continuous attributes, we have to use the theory
of discriminant analysis and especially the canonical correlation analysis . The canonical
correlation analysis tries to find and quantify associations between groups of attributes.
Assume, A and B are distinct sets of attributes, B is seen as the set of dependent ones.
Now, the analysis compares the correlation between linear combinations of both sets.

The calculation is based on the calculation of the eigenvalue λi for each linear discrim-
inant function. A high eigenvalue signifies, that the corresponding discriminant function
explains a lot of the variance. We can use the eigenvalue as quality measure, but it is not
bounded to range, so, for this reason, we use the canonical correlation coefficient:

ρi =

√
λi

1 + λi

45

Since the eigenvalues are non-negative and sorted (λ1 ≤ . . . ≤ λattr−1), it is imperative that
0 ≤ ρi ≤ 1 and the ρi are sorted too.

For the characterisation of a dataset, Kalousis only uses the first canoncial correlation
coefficient between all continuous attributes (the set A) and the local-binary encoded class
attribute (the set B):

ρmax =
√

λ1

1 + λ1

Back to the linear discriminant functions. The total variation of them is the sum of
the eigenvalues. The proportion of variation explained by the first linear discriminant, and
hence the fraction of the first canonical correlation coefficient, is computed as

frac1 =
λ1∑
i λi

.

Example (first canonical correlation coefficient) Given are the following two two-dimensional
datasets from figure 3.9:

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−2 0 2 4 6 8 10

−
4

−
2

0
2

4

Figure 3.9: Datasets a and b, whereby b is and a is not linear separable.

Both datasets only have one linear discriminant function, the following figure shows the
transformed attributes with a jitter plot:

first linear discriminant

−2 −1 0 1 2

−
1

0
1

2

first linear discriminant

−4 −2 0 2 4 6

−
4

−
2

0
2

4

Figure 3.10: Jitter plots of first linear discriminants of datasets a and b.

As we can see, the first linear discriminant of dataset a is not linear separable, hence the
eigenvalue and the first linear correlation coefficient are near 0:

λa = 0.00196 and ρmaxa = 0.0442

46

On the other hand, the first linear discriminant of dataset b is linear separable, the eigenvalue
is high and the first linear correlation coefficient is near 1:

λb = 10.382 and ρmaxb
= 0.955

47

3.3 Distance Measure

With the above defined measures we can characterise all datasets and get a “normalized”
form of them. Now, to put them in relation, we have to define similarity. Kalousis (2002)
and Soares and Brazdil (2000) define distance measures in their papers. The idea behind
both definitions is the same, they just normalize the characterisation values differently. I
explain and use the one from Kalousis.

As mentioned in the introduction of this chapter, if a characteristic is not applicable to a
dataset, the return value is “not available” (NA). But in this special case, this does not mean
that there is no information available, in comparison with other datasets, this NA is really
important.

Considering, there are two datasets D and D′. If we characterise both datasets and
one specific character measure mi is not applicable on both, then the two are equal at this
measure mi. Hence the distance between them should be zero. On the other hand, if mi

is applicable on dataset D and not on dataset D′ then the distance should be as large as
possible.

With this consideration, we define the distance measure d: D and D′ are datasets,
〈m1, . . . , mc〉 and 〈m′

1, . . . , , m
′
c〉 the corresponding sorted and normalized to [0, 1] charac-

terisations. The distance measure d is defined as:

d =
c∑

i=1

d2
ii

with

dii =

⎧⎪⎨⎪⎩
mi − m′

i, if mi, m′
i ∈ R

1, if one of mi or m′
i is NA

0, if both mi and m′
i are NA

48

3.4 The latem Package, Part 1

This first part of the latem package description shows the implementation and usage of the
theoreticaly defined characteristics and distance measures.

3.4.1 Characterisation

A character measure is implemented with the CharacteristicFunction class. The function
has one argument of type IDataSet and the return value is a numeric vector. One must
specify the length of the return vector, i.e. one value or the number of histogram bins.

A CharacteristicList contains the wanted characteristics. The characterisation of a
datasets is done with the characterise(...) method. This method takes a list of DataSet
objects and returns a Characterisation object. This object extends the matrix class and
provides some methods like add(...), which adds a new dataset, and distance(...), which
calculates the distance matrix with respect to a distance function.

characterise(): Characterisation
...

...

CharacteristicList

returnLength: numeric

CharacteristicFunction
IN: IDataSet
OUT: vector

add(DataSet): Characterisation
distance(DistanceFunction): stat:dist (S3)
...

...

Characterisation

Figure 3.11: A CharacteristicList contains various Character-

isticFunctions. The result of a characterisation is a Character-

isation object.

A distance measure is implemented with the class DistanceFunction. The input argu-
ments are two numeric vectors of the same length. Normally they are the result vectors of
the characterise(...) method. The DistanceFunction return value is a dist class from
the package stat (this is a S3 package).

Additional, the distance measure needs normalized values, hence we need the possibility
to process the Characterisation object. This offers the CharacterisationProcessing-
Function class. The input argument and the return value are Characterisation objects.

CharacterisationProcessingFunction
IN: Characterisation

OUT: Characterisation

DistanceFunction
IN: vector, vector

OUT: stat::dist (S3)

Figure 3.12: The CharacterisationProcessingFunction

and DistanceFunction classes.

49

3.4.2 Usage Example

> library(latem)

I use two datasets from the case study to show some aspects of the dataset characterisa-
tion. Heart1 is a real-world problem and Spirals a artificially created one:

> Heart1

Heart1: DataSet
Class ~ age + sex + pain + trestbps + cholesteral + sugar + ecg +

rate + angina + oldpeak + slope + vessels + thal
with 303 samples,
and the aspects input, response.

> Spirals

Spirals: DataSet
Class ~ X1 + X2
with 1200 samples,
and the aspects input, response.

The characters are the one from Kalousis, there is a function which returns the corre-
sponding list with these characteristics:

> chars = kalousisList()

Kalousis character list: CharacteristicList
with 32 characters and 95 values.

> names(chars)

[1] "n" "attr" "cl" "dim" "nas" "pnas"
[7] "nom" "max.nom" "min.nom" "mean.nom" "sd.nom" "con"
[13] "pcon" "pnom" "bin" "skew" "kurt" "hc"
[19] "hx" "mi" "en.attr" "ns.ratio" "tauxy" "tauxc"
[25] "rhoxy" "nasx" "r" "pvalsxy" "pvalsxc" "rho.max"
[31] "frac1" "sd.ratio"

As an example of an implementation of such a character, I show the “number of samples”
character:

> n.char = characteristicFunction("n", 1, function(dataSet) {

+ n = nrow(dataSet@get("input"))

+ names(n) = "n"

+ return(n)

+ })

Characterise both datasets, the return value is a Characterisation object:

> c = characterise(chars, list(Heart1, Spirals), "usex")

usex: Characterisation
2 datasets characterised
with the Kalousis character list characteristics.

To calculate the distance matrix between the datasets, we have to say, how to calculate
the distance between two of them:

50

> kalousis.dist = distanceFunction("kalousis distance", function(x,

+ y) {

+ nas = union(which(is.na(x)), which(is.na(y)))

+ if (length(nas) != 0) {

+ x = x[-nas]

+ y = y[-nas]

+ }

+ d = sum((x - y)^2)

+ n = union(setdiff(xnas, ynas), setdiff(ynas, xnas))

+ return(d + length(n))

+ })

This distance measure needs a normalized form (to range [0, 1]) of the characterisation values,
hence we have to implement such a preprocessing function:

> normalize.cproc = characterisationProcessingFunction("normalize [0,1]",

+ function(characterisation) {

+ r = range(characterisation, na.rm = T)

+ return((characterisation - r[1])/sum(abs(r)))

+ })

Now we can calculate the distance:

> distance(normalize.cproc(c), kalousis.dist)

[1] 39.55892

Let us change the Heart1 dataset and watch the distance. First modification is the
simulation of a measurement error in the attribute cholesteral:

> h2 = dataset(Heart1)

> h2$cholesteral = 0.1 * h2$cholesteral + 17

> c = add(c, dataSet(h2, Class ~ ., "Heart1-2"))

> distance(normalize.cproc(c), kalousis.dist)

Heart1 Spirals
Spirals 3.955892e+01
Heart1-2 4.159648e-08 3.955892e+01

The distance grows just a little bit. Second modification is deletion of the attributes age
and sex:

> h3 = h2[, -(1:2)]

> c = add(c, dataSet(h3, Class ~ ., "Heart1-3"))

> distance(normalize.cproc(c), kalousis.dist)

Heart1 Spirals Heart1-2
Spirals 3.955892e+01
Heart1-2 4.159648e-08 3.955892e+01
Heart1-3 7.527692e-06 3.955888e+01 7.487502e-06

Now the modified dataset has moved more away from the original one. The last modification
is the generation of incomplete cases, therefor I insert NA values at various positions:

51

> h4 = h3

> h4[sample(1:303, 10), sample(1:12, 10)] = NA

> c = add(c, dataSet(h4, Class ~ ., "Heart1-4"))

> distance(normalize.cproc(c), kalousis.dist)

Heart1 Spirals Heart1-2 Heart1-3
Spirals 3.955892e+01
Heart1-2 4.159648e-08 3.955892e+01
Heart1-3 7.527692e-06 3.955888e+01 7.487502e-06
Heart1-4 5.640068e-03 3.956538e+01 5.640028e-03 5.630328e-03

52

Case Study: The Meta-Knowledge Base

The idea of this case study is, that maybe I could find clusters in the characterisation of the
datasets and these clusters would be similar to the indicated clusters in the pooled benchplot
from figure 2.7.

The characterisation is done with all characteristics described in the section 3.2 above .
I call this the Kalousis’ list, because these are the ones he defined in his paper (Kalousis,
2002). Other characterisation lists are the METAL and StatLog lists, both are also defined
in the last named paper. They are subsets of the Kalousis list and without the histogram
representation of some results. I do not use them for this case study. The distance function
is the one I defined in the section 3.3.

I take a look at the hierarchical cluster dendrogram with complete linkage (figure 3.13).
In association with multidimensional scaling (see Venables and Ripley, 2002, pages 302-306)
of the distance matrix to the two-dimensinal space, I decide to use 7 different clusters.

tic
ta

ct
oe

B
re

as
tC

an
ce

r

m
on

ks
3

H
ou

se
V

ot
es

84

pr
om

ot
er

ge
ne

ch
es

s

tit
an

ic

m
us

k

liv
er

S
on

ar

P
im

aI
nd

ia
ns

D
ia

be
te

s

cr
ed

it

rin
gn

or
m

th
re

en
or

m

tw
on

or
m

C
irc

le

S
pi

ra
ls

Io
no

sp
he

re

C
ar

ds

H
ea

rt
1

he
pa

tit
is

H
ei

gh
t

0
10

20
30

40
50

60

Figure 3.13: Hierarchical cluster dendrogram of the dataset characterisations. The
coloured borders indicate the different clusters.

The visualisation of the multidimensional scaling should explain why I use this clustering:
As we can see in figure 3.14 three big clusters exist, but if we take a closer look we see that in
each of these clusters most datasets are exactly on the same position and only one or two are
not. With regard to the relation with the benchmark results from the last case study part,
I want to be as sensitive as possible concerning dissimilarities between the characterisations
and take a look at their impact on the methods performances. Thus I treat them at the
moment as own clusters and compare them with their corresponding big cluster.

53

−20 0 10 20 30 40

−
20

−
10

0
5

Figure 3.14: Plot of the distance matrix of the char-
acterisations, scaled into the two-dimensional space.
The colours indicate the same clusters as in the figure
above.

As we can see, there are three clearly separated clusters, but each of these three clusters
has some one-member clusters. Now I want to bring in the benchmark experiment results.
My idea is to split the pooled benchplot from 2.7 into pieces, whereas each plot contains
the datasets corresponding to one cluster. The following figures show the clusters with more
than one member together with their nearest one-member clusters.

The top-right cluster: The support vector machines (blue) dominate this cluster, four
times in first and two times in second place.

H
ou

se
V

ot
es

84

B
re

as
tC

an
ce

r

tic
ta

ct
oe

pr
om

ot
er

ge
ne

m
on

ks
3

1.

2.

3.

4.

5.

6.

P
od

iu
m

ch
es

s

1.

2.

3.

4.

5.

6.

P
od

iu
m

tit
an

ic

1.

2.

3.

4.

5.

6.

P
od

iu
m

Figure 3.15: Rankings of the top-right cluster: the big
black cluster with the green and yellow one-member clus-
ters.

The top-left cluster: With regard to the benchmark results, this cluster splits into two
parts. Again, support vector machines (blue) dominate one part, but k-nearest neighbours

54

classification (green) is also not so bad. In the second part, linear discriminant analysis (red)
is in front.

aI
nd

ia
ns

D
ia

be
te

s

liv
er

cr
ed

it

tw
on

or
m

rin
gn

or
m

S
on

ar

C
irc

le

S
pi

ra
ls

th
re

en
or

m

1.

2.

3.

4.

5.

6.

P
od

iu
m

m
us

k

1.

2.

3.

4.

5.

6.

P
od

iu
m

Figure 3.16: Rankings of the top-left cluster: the big blue
cluster with the yellow one-member cluster.

The bottom cluster: In this cluster, three algorithms are equally often in front, linear
discriminant analysis (red), support vector machines (blue) and naive bayes (yellow).

C
ar

ds

H
ea

rt
1

he
pa

tit
is

1.

2.

3.

4.

5.

6.

P
od

iu
m

Io
no

sp
he

re

1.

2.

3.

4.

5.

6.

P
od

iu
m

Figure 3.17: Rankings of the bottom cluster: the big
red cluster with the cyan one-member cluster.

All in all, the result is not as clear as I thought, but I think some trends are visible. One
cause may be the small number of datasets. Kalousis, for example, used 47 initial datasets

55

and then generated 1035 new datasets by deleting a given percentage of attribute values and
creating new attributes whose values were generated in a purely random fashion.

56

Chapter 4

Meta-Learner

In this chapter, I explain the last part of the framework, the meta-learner. There are different
approaches, I introduce all ideas and explain their differences, then I point out two meta-
learner in detail and outline their implementation in the corresponding second part of the
latem package. The case study shows their practical usage.

57

4.1 Introduction

By now we have the possibilities to benchmark a set of candidate algorithms on a set of
datasets, characterise these datasets and relate them using a distance measure. As shown in
the last case study, if we associate both data, some trends come to the fore concerning the
clustering of the datasets and the ranking of the candidate algorithms. Now we want to use
this knowledge and apply it to new problems . There exist three different kinds of methods
(Kalousis, 2002). The two main approaches see meta-learning as classification respective as
regression problem, the third approach includes methods which produce rankings but do not
fit into the classification or regression attempt.

In the following the meta-knowledge base kb = (CDj , ER
Dj

li
, T

Dj

li
) is given. It contains

information about M datasets (j = 1, . . . , M) and N candidate algorithms (i = 1, . . . , N).
CDj is the characterisation 〈m1, . . . , mc〉 of the dataset Dj , ER

Dj

li
and T

Dj

li
are the error

rate and the benchmark time of algorithm li on dataset Dj.

4.1.1 Classification-Based

In this approach meta-learning problems are formulated as classification problems. The
instances of these classification problems consist of the characterisation of the datasets and
the class label. Depending on the class label, different suggestions are possible.

The class label can take, for example, one of the values appl and non-appl, depending
whether the algorithm exhibits high or low performance on the specific dataset (Michie
et al., 1994). In this case the meta-learner constructs N classification problems, one for each
candidate algorithm. The suggestion is a prediction of possible algorithms.

Another possibility is to create pairwise comparisons of the algorithms for each dataset,
the class label indicates the winner of the pair (Pfahringer et al., 2000). This results in

(
N
2

)
different classification problems, and the suggestion is a partial ordering.

The simplest formulation of a meta-learner is to construct one classification problem with
a class label which indicates the best algorithm for the corresponding problem (Bensusan
and Giraud-Carrier, 2000). The suggestion contains the best algorithm.

4.1.2 Regression-Based

In this approach, the goal is to predict some performance measure of an algorithm from
the characterisation of the dataset. A regression problem is formulated for each algorithm,
hence the meta-learner constructs N regression problems. To solve the regression problems,
one can use every existing algorithm. To make better use of the semantics of the “not-
available” values that occur in the datasets characterisation, one has to change the distance
measure or to recode the values to new ones that lie outside the domain (Bensusan and
Kalousis, 2001). The suggestion consists of the prediction of the performance measure
for each algorithm. Based on this, a ranking can be established or the best algorithm
determined. The visualisation of this idea is, in principle, figure 1.5 about the “no free-lunch
theorem”

4.1.3 Other Local Methods

There are some methods which cannot be classified in the above approaches. These methods
use a combination of the nearest neighbour method and some ranking schemas. With the
first part a set of similar datasets (based on the characterisation) is established, then the
performance information of these datasets are used to construct a relative ranking of the
algorithms.

58

4.2 Local Methods

The assumption that I take is that no global model exists for that kind of problem, Thus
I only consider local methods. Both methods follow a similar idea, but the the first one,
the zoomed ranking meta-learner, generates a relative ranking and the second one, the
Nadaraya-Watson-Epanechnikov meta-learner, estimates a classifier’s performance measure.

4.2.1 Zoomed Ranking

The idea behind this method, introduced by Soares and Brazdil (2000), is that algorithms
perform similar on similar datasets. The method consists of two distinct phases. The first
phase is called zooming and identifies a subset of similar datasets. This subset is used to
construct a relative ranking of the algorithms on the basis of the performance information
in the second phase.

Zooming

The selection of relevant datasets is based upon the k-nearest neighbour method (introduced
in section 2.1.3) . This method is employed on the characterisation of the datasets, using
the distance measure defined in section 3.3 and returns a list of k datasets which are in the
neighbourhood of a new problem .

Ranking

Now, we want to use the performance information from the neighbourhood to generate a
ranking of the algorithms for a new problem. Several schemata can be used for that purpose
(see Soares and Brazdil, 2000; Brazdil and Soares, 2000), the following sections explain some
of them.

Average Ranks (AR): This is a simple ranking method which only uses the information
about the error rate . For each dataset the algorithms are ordered according to the misclas-
sification error and ranks are assigned. The best algorithm has rank 1, the second has rank
2, and so on. Generally, R

Dj

li
is the rank of algorithm li on dataset Dj , hence the average

rank for each algorithm is

ARli =
1
N

∑
Dj

R
Dj

li
.

The final ranking is obtained by sorting ARli ascending, whereas the algorithm with the
smallest value is the suggestion for the best.

Success Rate Ratios (SRR): Again, this method only uses the error information . First
step is to calculate the success rate ratio for each pair of algorithms li, li′ on each dataset
Dj :

SRR
Dj

li,li′
=

1 − ER
Dj

li

1 − ER
Dj

li′

Second step is to aggregate the values and calculate the pairwise mean success rate ratio

SRRli,li′ =
1
M

∑
Dj

SRR
Dj

li,li′
,

59

for each pair of algorithms. This represents an estimate of the general advantage/disadvantage
of algorithm li over algorithm lj . Last step is the calculation of the overall mean success
rate ratio for each algorithm,

SRRli =
1

N − 1

∑
lj′

SRRli,li′

The ranking of the algorithms is derived directly from this measure, the higher the value
the higher the corresponding rank.

Adjusted Ratio of Ratios Ranking (ARR): The steps of this method are equal to
the steps of the last method, the difference is the calculation of the first measure . This one
uses the information about the error and the total execution time. The adjusted ratio of
ratios for each pair of algorithms li, li′ on each dataset Dj is defined as

ARR
Dj

li,li′
=

(
SR

Dj

li

SR
Dj

li′

)
∗

⎛⎜⎜⎜⎝1 +

log(
T

Dj
li

T
Dj
l
i′

)

KT

⎞⎟⎟⎟⎠
−1

.

SRDk

li
is the success rate and is calculated by 1 − ERDk

li
, KT is a user-defined value that

determines the relative importance of time. The ratio of the success rates can be seen as
advantage of algorithm li relative to algorithm li′ , hence it can be considered as benefit.
Respectively, the ratio of times can be seen as disadvantage of algorithm li relative to li′

and hence as cost.
The logarithm of the time ratio is used, because the range of this ratio is much wider then

the range of the success rate ratio and it would dominate the result. Using the logarithm
results in values around 1, as happens with the success rate ratio.

The KT parameter is interpreted as an estimate of how much accuracy (in percent)
one is willing to trade for a 10 times speedup or slowdown, i.e. 10x speedup/slowdown ∼=
X% accuracy. For example, the user is willing to trade 10% of accuracy for a 10 times
speedup/slowdown, then KT = 1/10% = 1/0.1 = 10.

The second step aggregates the values to the pairwise mean adjusted ratio of ratios

ARRli,li′ =
1
M

∑
Dk

ARRDk

li,li′

And the ranking ist obtained by calculating the the overall mean adjusted ratio of ratios

ARRli =
1

N − 1

∑
li′

ARRli,li′

for each algorithm and sort them in ascending way.

4.2.2 Nadaraya-Watson-Epanechnikov Ranking

To gain an estimation of a performance measure of a classifier, we can use a similar idea to
the zoomed ranking method. Again we look at the neighbourhood, but instead of using a
schema to calculate a ranking score for each method, we perform regression on the data and
obtain the ranking according to these values.

I decided to use the Nadaraya-Watson regression method with the Epanechnikov quadratic
kernel because this is a simple method and easy to implement.

60

Nadaraya-Watson Regression

The Nadaraya-Watson estimator is member of a class of nonparametric regression techniques
that gain flexibility in estimating the continuous regression function by fitting a different
but simple model separately at each query point. This is done by using only those obser-
vations close to the query point, which is achieved by using a kernel function to weight the
training samples based on its distance from the query point. As the model is the entire
training dataset, this method is known as memory-based, other synonyms are kernel-based
or instance-based method.

The estimator is defined (following Hastie et al., 2001) as

f̂(x0) =

∑M
j=1 Kλ(x0, xj) ∗ yj∑M

j=1 Kλ(x0, xj)
,

with the Epanechnikov quadratic kernel

Kλ(x0, x) = D

(
d(x0, x)

λ

)
,

with

D(t) =

{
3
4 (1 − t2), if |t| ≤ 1
0, otherwise

and λ is the width of the local neighbourhood.
A generalisation of the kernel and its fixed neighbourhood width is to use a function

hλ(x0) and determine the width for each x0:

Kλ(x0, x) = D

(
d(x0, x)
h�(x0)

)
Examples for h�(x0) are the constant function hλ(x0) = λ or the k-nearest neighbourhoods
function hk(x0) = d(x0, x[k]) where x[k] is the kth closest xi to x0.

In all cases the selection of the width is subject to the bias-variance tradeoff. If the
width is too small, the estimator is an average of a small number of yi close to x0, hence
its variance is relatively large and the bias tend to be small. On the other hand, is the
width large, the variance of the estimator is small but the bias is high, because it uses xi

with the corresponding yi further from x0. A lot of methods exist to overcome this problem,
examples are cross-validation or so-called plug-in methods (see Loader, 1999, section 6 about
local regression).

Ranking

In our case, d is the distance measure defined in section 3.3. x0 is the characterisation of the
new dataset and xj is the characterisation CDj of the dataset Dj . The corresponding yi is,
for a fixed candidate algorithm li, the error rate ER

Dj

li
or the benchmark time T

Dj

li
of the

this algorithm on the dataset. The ranking then is obtained by estimating the performance
measure NWEli for each algorithm li and sort them in ascending order.

61

4.3 The latem Package, Part 2

This second part of the latem package description shows the classes and methods of the
meta-knowledge base and of the meta-learner.

4.3.1 Meta-Knowledge Base

A meta-knowledge base consists of the Characterisation object and a list of arbitrary
knowledge about some performance measures of each algorithm on each dataset. The struc-
ture of the knowledge is not defined, because different meta-learners need different structures.

...

characterisation: Characterisation
knowledge: list
...

MetaKnowledgeBase

Figure 4.1: The MetaKnowledgeBase class.

4.3.2 Meta-Learner

As there are a lot of possibilities to implement such a meta-learner, this is just an interface
definition. An implementation of a meta-learner has a method suggest which takes a
MetaKnowledgeBase and a DataSet object and returns a Suggestion. I introduced the
Suggestion class to present the results of a meta-learner in a correct context, e.g. relative
ranking or prediction of performance measure.

suggest(MetaKnowledeBase, DataSet): Suggestion

...

MetaLearner
{virtual}

Suggestion

Figure 4.2: The MetaLearner and Suggestion interfaces.

The package contains the concrete implementations of the meta-learners introduced in the
last section, MetaLearningZooming and MetaLearnerNwreg. Both need a DistanceFunc-
tion and a CharacterisationProcessingFunction. The implementation of the Nadaraya-
Watson-Epanechnikov ranking is working with the k-nearest neighbourhood method for de-
termining the kernel width, hence one have to define the number of neighbours k. Also, the
zoomed ranking method needs the number of neighbours neighbours to zoom into and a
ZoomingRankingFunction with its parameters.

The following example shows the usage of both meta-learners on the basis of the usage
example from part one of the latem package description.

4.3.3 Usage Example

> library(latem)

62

Meta-Knowledge Base

This usage example is the continuation of the latter one. First, we build up the meta-
knowledge base, and collect everything we know about the two datasets Heart1 and Spirals.
The main part is the characterisation c:

usex: Characterisation
2 datasets characterised
with the Kalousis character list characteristics.

In this case, our knowledge consists of the performance measures p of the six candidate
algorithms:

lda naiveBayes knn rpart svm nnet
Heart1 0.1676137 0.1668039 0.4247871106 0.2367657 0.207225334 0.4503889
Spirals 0.4992615 0.5005232 0.0009292269 0.0319588 0.000734557 0.1108002

And the mean benchmarking time t in seconds for each experiment:

lda naiveBayes knn rpart svm nnet
Heart1 0.09564 0.29588 1.13440 0.07792 43.72036 4.61660
Spirals 0.07424 0.48108 2.90628 0.06148 46.01156 6.27024

> kb = metaKnowledgeBase(c, list(error = p, time = t), "usex")

usex: MetaKnowledgeBase
with knowledge of error, time
about 2 datasets.

Meta-Learner

To show the usage of the different meta-learners and their settings, I use the most modified
Heart1 dataset from the last usage example:

Heart1-4: DataSet
Class ~ pain + trestbps + cholesteral + sugar + ecg + rate +

angina + oldpeak + slope + vessels + thal
with 303 samples,
and the aspects input, response.

Zoomed Ranking: A meta-learner of this type is created using the zooming function.
We have to define the number of neighbours, the distance with its preprocessing function
and the ranking function with its parameters. In this usage example I use one neighbour and
the previous defined kalousis.dist and normalize.cproc functions. A zoomed ranking
meta-learner with the adjusted ratio of ratios ranking function is created in the following
way:

> z.arr1 = zooming(kalousis.dist,

+ 1, normalize.cproc, rankingFunction = arr.zoom,

+ rankingFunctionParams = list(K = 1))

Zoomed Ranking: MetaLearner
Suggests ranking based on 1 neighbours,
the distance function kalousis distance
with normalize characterisation,
and the ranking function adjusted ratio of ratios (K=1).

63

The meta-learners z.ar and z.srr with the ranking functions ar.zoom (average ranks) and
srr.zoom (success rate ratios) are created in the same way.

Of course the Heart1 dataset is the nearest neighbour (independently from the ranking
function)

> neighbours(z.arr1, kb@characterisation, h4)

Heart1 Spirals
0.00564081 39.56538189

and the different suggestions for the ranking of the candidate algorithms are:

> suggest(z.arr1, kb, h4)

lda < naiveBayes < rpart < knn < nnet < svm

> suggest(z.ar, kb, h4)

naiveBayes < lda < svm < rpart < knn < nnet

> suggest(z.srr, kb, h4)

naiveBayes < lda < svm < rpart < knn < nnet

When we compare these suggestions with our knowledge about the Heart1 dataset, they
absolutely make sense.

Nadaraya-Watson-Epanechnikov Ranking: To create a meta-learner of this type one
can use the function nwe. Again, the distance with its preprocessing function must be defined
and the number of neighbours to determine the kernel width:

> n = nwe(kalousis.dist, normalize.cproc, k = 1)

Nadaraya-Watson-Epanechnikov Ranking: MetaLearner
Suggests ranking based on 1 neighbours
and the distance function kalousis distance
with normalize characterisation

The kernel width for the Heart1-4 dataset is:

> b = kbandwidth(n, kb@characterisation, h4)

bandwidth
19.78551

The resulting kernel weights for each dataset from the meta-knowledge base are:

> kweights(n, kb@characterisation, h4, b)

Heart1 Spirals
0.75 0.00

The suggestions for the ranking of the candidate algorithms based on the misclassification
error and the benchmark time are:

> suggest(n, kb, h4, knowledge = "error")

naiveBayes lda svm rpart knn nnet
0.1668039 0.1676137 0.2072253 0.2367657 0.4247871 0.4503889

> suggest(n, kb, h4, knowledge = "time")

rpart lda naiveBayes knn nnet svm
0.07792 0.09564 0.29588 1.13440 4.61660 43.72036

64

Case Study: Suggestions

The idea of this case study is to use the results of the previous case studies and show the
practical usage of meta-learning.

The setup is the following: The meta-knowledge base consists of the characterisation of
the 21 datasets and the misclassification error and benchmark time of each of the 6 candidate
algorithms on the datasets. The meta-learners are the zoomed ranking and the Nadaraya-
Watson-Epanechnikov ranking methods. From the class of zoomed ranking methods I use the
ones with the adjusted ratio of ratios ranking method (ARR) with the relative importance
of time of 1, the success rate ratios method (SRR) and the average ranks method (AR). In
all cases I use 3 as the number of neighbours, because the last case study showed that the
smallest cluster with more than one member has this size.

Using this setup I predict for each of these datasets their rankings with the rest of the
meta-knowledge base. The following are some selected cases by which I explain the gained
results and then I show that the individual ranking suggestions are better than a global
ranking.

Selected Suggestions

Circle dataset: This dataset is member of the top-left cluster (see figure 3.16), the can-
didate algorithms’ true misclassification errors and benchmark times are the following:

Rank Error Time
1 svm 0.007443 rpart 0.06952
2 knn 0.02458 lda 0.07548
3 nnet 0.03869 naiveBayes 0.4771
4 rpart 0.05626 knn 2.894
5 naiveBayes 0.0667 nnet 9.533
6 lda 0.4902 svm 51.05

Table 4.1: True rankings of the algorithms on the Circle dataset.

The three neighbours of this dataset are Spirals, ringnorm and threenorm, in ascending
order considering their distances. If we focus on the ranking with respect to the misclas-
sification error and compare their true rankings with the algorithm ranking on the Circle
dataset, we see (figure 3.16) that the Spiral dataset has nearly the same ranking, but the two
others are more differently. The suggestions of both meta-learners are given in the tables
4.2 and 4.3.

Rank Error Time
1 svm 0.0009418 rpart 0.06554
2 knn 0.003749 lda 0.0765
3 rpart 0.03324 naiveBayes 0.4882
4 nnet 0.1120 knn 2.966
5 naiveBayes 0.4968 nnet 6.45
6 lda 0.4981 svm 47.54

Table 4.2: Nadaraya-Watson-Epanechnikov ranking sugges-
tions of the algorithms on the Circle dataset.

The ranking suggestions of the Nadaraya-Watson-Epanechnikov meta-learner are almost
correct, Spearman’s rank correlation coefficient is 0.9429 for the error ranking and 1 for
the time ranking. The concrete time value estimation is also closely to the true values, the

65

absolute deviation is 6.677, but the error value estimation is poor, the absolute deviation
is 0.5265. The reason is the big impact of the Spiral dataset, with kernel weight 0.75, and
totally different error values. The ringnorm dataset has kernel weight 0.005337 and the
threenorm dataset kernel weight 0.000588.

Rank ARR1 AR SRR
1 knn svm svm
2 lda nnet rpart
3 naiveBayes naiveBayes nnet
4 nnet lda knn
5 svm rpart naiveBayes
6 rpart knn lda

Table 4.3: Zoomed ranking suggestions of the algo-
rithms on the Circle dataset.

The comparison of the zoomed ranking meta-learner suggestions shows that from the
error-only based ranking methods the success rate ratios ranking is better than the average
ranks ranking, Spearman’s rank correlation coefficients are 0.7714 (SRR) and 0.2571 (AR).
The comparison of the adjusted ratio of ratios ranking method is not so easy, but if we do
it in an informal way, we see that the ranking definitely makes sense.

BreastCancer dataset: This is an example where we get no useful suggestions concerning
the misclassification error. The dataset is member of the top-right cluster (see figure 3.15)
and the true rankings are:

Rank Error Time
1 naiveBayes 0.027 rpart 0.09266
2 svm 0.03101 lda 0.2555
3 knn 0.04005 naiveBayes 0.5515
4 lda 0.04442 knn 4.34
5 nnet 0.04835 nnet 34.23
6 rpart 0.06405 svm 133.4

Table 4.4: True rankings of the algorithms on the BreastCancer
dataset.

The three nearest neighbours are monks3, tictactoe and HouseVotes84, but their dis-
tances to the BreastCancer dataset are high, 0.002611 (monks3), 0.007781 (tictactoe),
0.020999 (HouseVotes84), in contrast with the latter example where the distance of the
farthest neighbour is 0.00006406. And if we compare the algorithm rankings (figure 3.15)
we see that the one on the BreastCancer dataset is quite unique.

Rank Error Time
1 svm 0.01687 rpart 0.09356
2 lda 0.02686 lda 0.09953
3 nnet 0.05063 naiveBayes 0.5262
4 rpart 0.0526 knn 2.808
5 knn 0.09663 nnet 12.20
6 naiveBayes 0.1483 svm 28.11

Table 4.5: Nadaraya-Watson-Epanechnikov ranking sugges-
tions of the algorithms on the BreastCancer dataset.

66

Rank ARR1 AR SRR
1 knn nnet svm
2 lda svm lda
3 nnet naiveBayes nnet
4 rpart lda rpart
5 naiveBayes rpart knn
6 svm knn naiveBayes

Table 4.6: Zoomed ranking suggestions of the algo-
rithms on the BreastCancer dataset.

Both meta-learners provide bad suggestions. The Nadaraya-Watson-Epanechnikov meta-
learner ranking has a Spearman’s rank correlation coefficient of −0.2 and an absolute devi-
ation of 0.1655. The zoomed ranking provides suggestions with a coefficient of −0.2 (SRR)
and 0.1429 (AR) and if we compare the ARR1 suggestion we see that for example the naive-
Bayes algorithm is in the true ranking first (error) and third (time) but in the suggestion
next to the last.

Suggestions vs. Global Ranking

A ranking method is then interesting if it performs better than a general global ranking.
This global ranking is computed on the basis of the mean misclassification error over all the
datasets and similar for the benchmark time:

Rank Error Time
1 svm lda
2 rpart rpart
3 nnet naiveBayes
4 naiveBayes knn
5 knn nnet
6 lda svm

Table 4.7: Global ranking.

For the benchmark time the global ranking is the correct one but also almost all meta-
learners provide the right ranking, because the benchmark time induced ranking does not
relatively vary a lot over the different datasets. For the error-induced rankings I take the
Spearman’s rank correlation coefficient as index for the quality of the ranking, the nearer
at 1 the better the ranking. Using this interpretation, I can determine the best and worst
ranking method for each dataset:

67

Dataset Best Method Worst Method
BreastCancer AR NWE
Cards AR *
chess NWE AR
Circle NWE AR
credit AR NWE
Heart1 NWE *
hepatitis NWE AR
HouseVotes84 AR NWE
Ionosphere * AR
liver SRR *
monks3 * AR
musk NWE AR
PimaIndiansDiabetes NWE SRR
promotergene * AR
ringnorm AR SRR
Sonar AR NWE
Spirals NWE AR
threenorm AR SRR
tictactoe SRR *
titanic NWE AR
twonorm NWE SRR

Table 4.8: The best and worst ranking method considering the
error for each dataset, whereas * denotes the global ranking.

We see that the global ranking is only three times the best suggestion. Overall the
Nadaraya-Watson-Epanechnikov meta-learner provides the most usable suggestions. Thus,
if we believe in the Nadaraya-Watson-Epanechnikov meta-learner and use its ranking sug-
gestions to benchmark the methods in this order, the truly best method is benchmarked as
the second one on average:

Suggested Number of
Rank Suggestions

1 9
2 6
3 1
4 2
5 1
6 2

Table 4.9: Nadaraya-Watson-Epanechnikov rank sug-
gestion for the truly best method per dataset. Calcu-
lated with 10-fold cross-validation and majority vote.

68

Summary & Conclusion

In this thesis I investigated the topic of meta-learning, especially the meta-learning for ma-
chine learning approach. I explained this approach theoretically, showed an implementation
for each part using the R system for statistical computation and used a case study with 21
classification learning problems and 6 classification methods to show the concrete usage.

Following the case study, I first benchmarked each method on all learning problems. As
quality measures I used the misclassification rate and the benchmark time. Firstly, these
experiments provided one part of the meta-knowledge base, and secondly, I used them to
relate the problems in a clustering based on the rankings of the methods. The clustering
pointed out that there are groups of problems with different best methods.

The second part of the meta-knowledge base, the characterisation of the problems, was
obtained with various statistical and information-theoretical measures. Again, I clustered the
problems based on their characterisation and this showed the separation of the 21 problems
into three big clusters. The relation of these three clusters with the benchmarking results
denoted some trends, but was not as clear as I assumed. The most likely reason is the small
number of problems.

Each dataset characterisation and its according benchmark result form the basis for the
meta-learning for machine learning approach. I applied two meta-learners, the Nadaraya-
Watson-Epanechnikov meta-learner as regression-based approach and zoomed ranking with
the average ranks, success rate ratios and adjusted ratio of ratios schemata. I compared the
suggestions with the “true” rankings using the Spearman’s rank correlation coefficient, the
Nadaraya-Watson-Epanechnikov meta-learner provided the best suggestions.

The introduced methods produced workable suggestions, but of course there are a lot of
possibilities to improve. Simplest improvements are the usage of more learning problems and
more sophisticated meta-learners. The first one could be done either by altering the existing
ones or by collecting real new data, but one should do both to cover most of the problem
space. Then, the Nadaraya-Watson regression estimator is a really simple one, there exist a
lot of more sophisticated methods, particularly for such a high-dimensional problem. Using
such methods and some dimension reduction techniques may improve the suggestions.

Improvements also can be made in the meta-knowledge base. Maybe there are better
ways to describe a problem and more information from the benchmark process should be
used. In this thesis I simply aggregated the performance measures and did not use the
produced empirical performance distributions or the significance results from the rankings.

Another interesting problem, in my opinion, is the estimation of hyperparameters. In
mostly all cases the search for the best hyperparameters caused the long benchmark times,
and maybe it is possible to use meta-learning to reduce the method’s hyperparameter search
space for a new problem based on familiar problems.

The R framework can also be extended, especially the meta-learner part could be extended
to a better Lego-like framework.

69

Additional Benchplot Examples

m
is

cl
as

si
fic

at
io

n

0.
0

0.
1

0.
2

0.
3

0.
4

lda

naiveBayes

knn

rpart

svm

nnet

1. 2. 3. 4. 5. 6.

Podium

Figure 1: Benchplot of the benchmark result of the six candidate algorithms on the hep-
atitis dataset.

70

m
is

cl
as

si
fic

at
io

n

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

lda

naiveBayes

knn

rpart

svm

nnet

1. 2. 3. 4. 5. 6.

Podium

Figure 2: Benchplot of the benchmark result of the six candidate algorithms on the monks3
dataset.

71

m
is

cl
as

si
fic

at
io

n

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

lda

naiveBayes

knn

rpart

svm

nnet

1. 2. 3. 4. 5. 6.

Podium

Figure 3: Benchplot of the benchmark result of the six candidate algorithms on the Spirals
dataset.

72

Bibliography

Dana Angluin. Computational learning theory: survey and selected bibliography. In STOC
’92: Proceedings of the twenty-fourth annual ACM symposium on Theory of computing,
pages 351–369. ACM Press, 1992.

Hilan Bensusan and Christophe Giraud-Carrier. Discovering task neighbourhoods through
landmark learning performances. In Proceedings of the 4th European Conference on Prin-
ciples and Practice of Knowledge Discovery in Databases. Springer-Verlag, 2000.

Hilan Bensusan and Alexandros Kalousis. Estimating the predictive accuracy of a classifier.
In EMCL ’01: Proceedings of the 12th European Conference on Machine Learning, pages
25–36. Springer-Verlag, 2001.

Pavel Brazdil and Carlos Soares. A comparison of ranking methods for classification al-
gorithm selection. In Machine Learning: ECML 2000, 11th European Conference on
Machine Learning, Barcelona, Catalonia, Spain, May 31 - June 2, 2000, Proceedings,
volume 1810, pages 63–74. Springer-Verlag, 2000.

John M. Chambers. Programming with Data. Springer-Verlag, 1998.

Christophe Giraud-Carrier, Ricardo Vilalta, and Pavel Brazdil. Introduction to the special
issue on meta-learning. Machine Learning, 54(3):187–193, 2004.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Element of Statistical Learn-
ing. Springer-Verlag, 2001.

Myles Hollander and Doublas Wolfe. Nonparametric Statistical Methods. Wiley, 1999.

Torsten Hothorn, Friedrich Leisch, Achim Zeileis, and Kurt Hornik. The design and analysis
of benchmark experiments. Journal of Computational and Graphical Statistics, 14(3):675–
699, 2005.

Alexandros Kalousis. Algorithm Selection via Meta-Learning. PhD thesis, University Of
Geneva, 2002. Thesis Number 3337.

Alexandros Kalousis and Melanie Hilario. Supervised knowledge discovery from incomplete
data. In Proceedings of the second International Conference on Data Mining 2000. WIT
Press, 2000.

Christian Köpf, Charles Taylor, and Jörg Keller. Meta-analysis: From data characterisation
for meta-learning to meta-regression. In International Symposium on Data Mining and
Statistics, 2000.

Clive Loader. Bandwidth selection: classical or plug-in? Annals of Statistics, 27(2):415–438,
1999.

David Meyer, Friedrich Leisch, and Kurt Hornik. The support vector machine under test.
Neurocomputing, 55:169–186, September 2003.

73

Donald Michie, David Spiegelhalter, Charles Taylor, and John Campell, editors. Machine
learning, neural and statistical classification. Ellis Horwood, 1994. URL http://www.
amsta.leeds.ac.uk/~charles/statlog/.

Tom Mitchell. Machine Learning. McGraw Hill, 1997.

Bernhard Pfahringer, Hilan Bensusan, and Christophe Giraud-Carrier. Tell me who can
learn you and i can tell you who you are: Landmarking various learning algorithms. In
Proceedings of the 17th International Conference on Machine Learning. Morgan Kaufman,
2000.

Carlos Soares and Pavel Brazdil. Zoomed ranking: Selection of classification algorithms
based on relevant performance information. In Principles of Data Mining and Knowledge
Discovery, pages 126–135, 2000.

William Venables and Brian Ripley. Modern Applied Statistics with S. Springer-Verlag,
fourth edition, 2002.

Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial
Intelligence Review, 18(2):77–95, 2002.

Ricardo Vilalta, Christophe Giraud-Carrier, Pavel Brazdil, and Carlos Soares. Using meta-
learning to support data mining. International Journal of Computer Science and Appli-
cations, 1(1):31–45, 2004.

David Wolpert. The supervised learning no-free-lunch theorems. In Proceedings of the 6th
Online World Conference on Soft Computing in Industrial Applications, 2001.

74

List of Figures

1.1 Three typical machine learning problems . 2
1.2 Results for the three typical machine learning problems 3
1.3 Different results for the classification problem 3
1.4 Visualisation of the inductive bias . 4
1.5 Visualisation of the “no free lunch theorem” 5
1.6 The meta-learning framework . 7
1.7 UML diagram: IDataSet . 9
1.8 UML diagrams: DataSetRowView, DataSetColumnView 10

2.1 UML diagram: Algorithm . 22
2.2 UML diagram: Model . 22
2.3 UML diagrams: the Algorithm functions classes 23
2.4 UML diagrams: the Benchmark hierarchy . 23
2.5 UML diagram: BenchmarkResult . 24
2.6 A benchplot example (tictactoe) . 29
2.7 True ranking corresponding to the misclassification error 30
2.8 Benchmark time per algorithm and dataset 32
2.9 Distribution of the total benchmark time . 33

3.1 Example, histogram representation: scatterplots of datasets red and green . 36
3.2 Example, histogram representation: histograms 37
3.3 Example, entropy: nominal attributes of the titanic dataset 39
3.4 Example, skewness and kurtosis: jitter plot of the attribute 40
3.5 Example, SD.ratio: datasets with same respective different covariance matrices 41
3.6 Example, correlation: dependent variables and their correlation coefficient . . 43
3.7 Example, p-value: boxplots of the datasets 44
3.8 Example, mutual information: class attributes of the titanic dataset 45
3.9 Example, fist canonical correlation coefficient: datasets 46
3.10 Example, fist canonical correlation coefficient: first linear discriminants . . . 46
3.11 UML diagrams: Characterisation related classes 49
3.12 UML diagrams: Characterisation processing function classes 49
3.13 Hierarchical cluster dendrogram of the dataset characterisations 53
3.14 Plot of the scaled characterisations distance matrix. 54
3.15 Rankings of the top-right cluster . 54
3.16 Rankings of the top-left cluster . 55
3.17 Rankings of the bottom cluster . 55

4.1 UML diagram: MetaKnowledgeBase . 62
4.2 UML diagrams: MetaLearner, Suggestion 62
1 Additional benchplot example (hepatitis) . 70
2 Additional benchplot example (monks3) . 71
3 Additional benchplot example (Spirals) . 72

75

List of Tables

1.1 Problems used in the case study . 13
1.2 Classification methods used in the case study 14

3.1 Example, concentration coefficient: contingency table of the survey 42

4.1 True rankings of the algorithms on the Circle dataset 65
4.2 Nadaraya-Watson-Epanechnikov ranking suggestions of the algorithms on the

Circle dataset . 65
4.3 Zoomed ranking suggestions of the algorithms on the Circle dataset 66
4.4 True rankings of the algorithms on the BreastCancer dataset 66
4.5 Nadaraya-Watson-Epanechnikov ranking suggestions of the algorithms on the

BreastCancer dataset . 66
4.6 Zoomed ranking suggestions of the algorithms on the BreastCancer dataset . 67
4.7 Global ranking . 67
4.8 Best and worst ranking method . 68
4.9 Best method rank suggestion by Nadaraya-Watson-Epanechnikov 68

76

Index

Adjusted ratio of ratios, 60
AR, see Average ranks
ARR, see Adjusted ratio of ratios
Average ranks, 59

Bayes rule, 16
Benchmark Experiments, 21
Box’s M statistic, 40

Canonical correlation analysis, 45
Case study learning problems, 13
Classification, 3–5
Classification trees, 13, 17
Classification-Based meta-learner, 58
Combining algorithms, see Meta-Learning ap-

proaches
Composite classifier, 6
Concentration coefficient, 41, 45
Correlation coefficient, 42

Distance measure, 48
Dynamic bias selection, see Meta-Learning

approaches

Entropy, 38, 41
Epanechnikov kernel, 61

Framework, 7
Implementation, 8

Goodman and Kruskal’s τ , see Concentra-
tion coefficient

Histogram representation, 35

Inductive bias, 4, 6
Inductive transfer and learning to learn, see

Meta-Learning approaches

K-Nearest neighbour classifier, 13, 17, 59
knn, see K-Nearest neighbour classifier
Kurtosis, 39

lda, see Linear discriminant analysis
Learning problem, 2

Supervised, 2
Unsupervised, 2

Linear discriminant analysis, 13, 16

Machine learning, 2
Meta-Learner, 58
Meta-Learning, 6

Approaches, 6
Meta-Learning for machine learning, see Meta-

Learning approaches
Multiple correlation coefficient, 43
Mutual information, 44

Nadaraya-Watson estimator, 61
Nadaraya-Watson-EpanechnikovRanking, 60
Naive bayes classifier, 13, 16
naiveBayes, see Naive bayes classifier
Neural networks, 13, 19
nnet, see Neural networks
No free lunch theorems, 4

Package
bench, 22
dataset, 9
latem, 49, 62

Real-World problems, 21
Regression-Based meta-learner, 58
rpart, see Classification trees

Skewness, 39
SRR, see Success rate ratios
Success rate ratios, 59
Support vector machines, 13, 18
svm, see Support vector machines

Zooming, 59

77

