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Abstract

Digital communication using multiple-input multiple-output (MIMO) wireless links has re-
cently emerged as one of the most significant technical breakthroughs in modern communi-
cations. This thesis presents an overview of some important theoretical concepts of MIMO
systems. After describing the basic ideas of MIMO transmissions in the introduction, we
mainly focused on information theoretical concepts and investigated the system capacity and
the mutual information for finite symbol alphabets of some prominent MIMO ST designs. Fur-
thermore, the error performance is studied, in order to derive a more complete understanding
of MIMO system parameters. All analyses were performed under ideal identical independent
fading conditions. At the end of this thesis, we related the system capacity and the error
performance of MIMO systems to the framework of the diversity-multiplexing tradeoff. Each
chapter is rounded by a number of simulations to deepen the understanding of the derived
theoretical concepts.
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1. Introduction

Wireless communications undergoes a dramatically change in recent years. More and more
people are using modern communication services, thus increasing the need for more capacity
in transmissions. Since bandwidth is a limited resource, the strongly increased demand in
high transmission capacity has to be satisfied by a better use of existing frequency bands and
channel conditions. One of the recent technical breakthroughs, which will be able to provide
the necessary data rates, is the use of multiple antennas at both link ends. These systems
are referred to as multiple-input multiple-output (MIMO) wireless systems. Initial theoretical
studies from Foschini [1] and Telatar [2], as well as other pioneer works, have shown the
potential of such systems.

Such MIMO systems are capable of realizing higher throughput without increasing bandwidth
or transmit power. It is obvious that such a gain in transmissions rates and reliability comes
at the cost of higher computational requirements. Fortunately, the feasibility of implement-
ing the necessary signal processing algorithms is enabled by the corresponding increase of
computational power of integrated circuits.

1.1. Why is MIMO Beneficial?

Motivated by these promising improvements, one question remains: why and how are these
gains in rate and reliability possible? Basically, it turns out that there are two gains that can
be realized by MIMO systems. They are termed as diversity gain and spatial multiplexing
gain. First, to investigate the diversity gain in an introductory form, we take a look at the
single input single output (SISO) system.

In the context of wireless transmissions, it is common knowledge that depending on the sur-
rounding environment, a transmitted radio signal usually propagates through several different
paths before it reaches the receiver, which is often referred to as multipath propagation. The
radio signal received by the receiver antenna consists of the superposition of the various mul-
tipaths. If there is no line-of-sight (LOS) between the transmitter and the receiver, the atten-
uation coefficients corresponding to different paths are often assumed to be independent and
identically distributed (iid). In this case the central limit theorem applies and the resulting
path gain can be modeled as a complex Gaussian variable (which has an uniformly distributed
phase and a Rayleigh distributed magnitude).

Due to this statistical behavior, the channel gain can sometimes become very small so that
a reliable transmission is not always possible. To deal with this problem, communication
engineers have thought of many possibilities to increase the so-called diversity. The higher the
diversity is, the lower is the probability of a small channel gain.

1



1. Introduction

Some common diversity techniques are time diversity and frequency diversity, where the same
information is transmitted at different time instants or in different frequency bands, as well as
spatial diversity, where one relies on the assumption that fading is at least partly independent
between different points in space.

The concept of spatial diversity leads directly to an expansion of the SISO system. This en-
hancement is denoted as single-input multiple-output (SIMO) system. In such a system, we
equip the receiver with multiple antennas. Doing so usually can be used to achieve a consid-
erable performance gain, i.e. better link budget, but also co-channel interference can be better
combatted. At the receiver, the signals are combined (i.e. if the phases of the transmission are
known, in a coherent way) and the resulting advantage in performance is referred to as the di-
versity gain obtained from independent fading of the signal paths corresponding to the different
antennas. This idea is well known and is used in many established communication systems, for
example in the Global System for Mobile communications (GSM). It is clear that in the above
described way, a base station can improve the uplink reliability and signal strength without
adding any cost, size or power consumption to the mobile device.

As far as the ability to achieve performance in terms of diversity is concerned, system improve-
ments are not only limited to the receiver side. If the transmitter side is also equipped with
multiple antennas, we can either be in the multiple-input single-output (MISO) or multiple-
input multiple-output (MIMO) case. A lot of research has been performed in recent years to
exploit the possible performance gain of transmit diversity. The ways to achieve the predicted
performance gain due to transmit diversity are various. Most of them are, loosely speaking,
summarized under the concept of space-time coding (STC).

Besides the advantages of spatial diversity in MIMO systems, they can also offer a remarkably
gain in terms of information rate or capacity [2]. This improvement is linked with the afore
mentioned multiplexing gain. In fact, the advantages of MIMO are far more fundamental as
it may have appeared to the reader so far. The underlying mathematical nature of MIMO
systems, where data is transmitted over a matrix rather than a vector channel, creates new and
enormous opportunities beyond the just described diversity effects. This was initially shown
in [1], where the author points out how one may, under certain conditions, transmit a number
of independent data streams simultaneously over the eigenmodes of a matrix channel, created
by several transmit and receive antennas.

The gains achievable by a MIMO system in comparison to a SISO one can be described
rigorously by information theory. A lot of research in the area of MIMO systems and STC is
based on this mathematical framework introduced by Shannon [3]. The fundamental result of
error free communication below a specific rate (depending on the actual signal-to-noise ratio
(SNR)) in the limit of infinite length codes is also in the MIMO case an upper bound to all
communication schemes. It can be used as a design criterion for transmission schemes as well
as for comparison of different MIMO communication systems.

Overall, the potential increase in data rates and performance of wireless links offered by MIMO
technology has proven to be so promising that we can except MIMO systems to be the cor-
nerstone of many future wireless communication systems [4].
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1.2. Topics Covered by This Diploma Thesis

1.2. Topics Covered by This Diploma Thesis

As indicated by the title of this diploma thesis, MIMO communication systems will be investi-
gated with special attention on information theoretic aspects. We tried to develop an objective
look at the various different aspects of MIMO communication and it turned out that infor-
mation theory is an appropriate tool with which an objective investigation of these systems is
possible.

There has been a wide research in the area of MIMO with very different approaches. This work
represents the topics we have investigated, and the basis literature therefore may be found in
the bibliography.

To give a short overview, the thesis will start in Chapter 2 by discussing the MIMO sys-
tem model, the channel capacity, and we will give a short introduction to maximum likeli-
hood (ML) receivers. In Chapter 3, we investigate a very simple ST structure, the so-called
spatial-multiplexing (SM) design, under the constraint of finite symbol alphabets. Chapter
4 introduces the theory of linear STBC and investigates how these systems behave in terms
of system capacity and diversity gain. Finally, Chapter 5 treats the inherent tradeoff be-
tween the two performance measures: diversity and spatial-multiplexing gain. Additional
material regarding proofs of different theorems or necessary definitions may be found in the
Appendix.
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2. MIMO Basics

The statistical nature of wireless communications and its various forms of appropriate descrip-
tion confronts us in the case of MIMO systems with an even more difficult problem. To be able
to do a stringent analysis of MIMO systems and/or to make statements about performance
gains, we need an adequate description of the underlying channel and its properties in terms of
fading, time variance, linearity, correlation, etc. An adequate description of a MIMO channel
is a research area of itself (see for example [5, 6]), and many publications have investigated the
classification and description of MIMO transmission phenomena and their impact on MIMO
performance parameters.

In this thesis, we are not interested in finding an optimal description for the MIMO chan-
nel in different scenarios, but we merely want to identify and analyze the key performance
parameters of MIMO systems. To simplify matters, we will chose a very basic MIMO trans-
mission model, which is not always satisfied in practice, but is strong enough to provide basic
insights into MIMO communications while being sufficiently simple in its analytical represen-
tation.

This chapter explains the chosen MIMO transmission model, its analogies to a real com-
munications environment, and the necessary assumptions to verify the choice of this repre-
sentation. Furthermore, we investigate basic statistical properties of this model and derive
necessary properties for a basic information theoretic analysis of MIMO systems. In addi-
tion, we can study fundamental issues of mutual information, and, of course, channel capac-
ity.

With this first results in mind, we will take a closer look at the already mentioned diversity
and multiplexing gain. The derived results will provide a basis for the MIMO system analysis
in the subsequent chapters.

2.1. MIMO Transmission Model

We focus on a single-user communication model and consider a point-to-point link where
the transmitter is equipped with nT antennas and the receiver employs nR antennas (see
Figure 2.1). Next to the single user assumption in the depiction as point-to-point link, we
suppose that no intersymbol interference (ISI) occurs. This implies that the bandwidth of the
transmitted signal is very small and can be assumed frequency-flat (narrowband assumption),
so that each signal path can be represented by a complex-valued gain factor. For practical
purposes, it is common to model the channel as frequency-flat whenever the bandwidth of the
system is smaller than the inverse of the delay spread of the channel; hence a wideband system
operating where the delay spread is fairly small (for instance indoor scenes) may sometimes

5
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Figure 2.1.: A MIMO channel with nT transmit and nR receive antennas.

be considered as frequency-flat [7, 8]. If the channel is frequency selective, one could use an
OFDM (orthogonal frequency-division multiplexing) system, to turn the MIMO channel into
a set of parallel frequency-flat MIMO channels (see, e.g. [6, 9]), of which each obeys our stated
assumptions.

In addition to these restrictions, we will further assume, that we are operating in a time-
invariant setup. These assumptions allow us to use the standard complex-valued baseband
representation of narrowband signals [10, 11] that can be written in a discrete form (omitting
the dependency on time).

Now let hi,j be the complex-valued path gain from transmit antenna j to receive antenna i
(the fading coefficient). If at a certain time instant the complex-valued signals {s1, . . . , snT }
are transmitted via the nT antennas, respectively, the received signal at antenna i can be
expressed as

yi =
nT∑

j=1

hi,jsj + ni,

where ni represents additive noise, which will be treated later in this chapter. This linear
relation can be easily written in a matrix framework. Thus, let s be a vector of size nT

containing the transmitted values, and y be a vector of size nR containing the received values,
respectively. Certainly, we have s ∈ CnT and y ∈ CnR . Moreover, if we define the channel
transfer matrix H as

H =




h1,1 h1,2 · · · h1,nT

h2,1 h2,2 · · · h2,nT

...
...

. . .
...

hnR,1 hnR,2 · · · hnR,nT


 ,

we obtain
y = Hs + n. (2.1)

6



2.1. MIMO Transmission Model

This is the same matrix notation as it is used in the majority of the publications in this field,
e.g. [2]. This relation, denoting a transmission only over one symbol interval, is easily adapted
to the case that several consecutive vectors {s1, s2, . . . , sL} are transmitted (here, L denotes the
total number of symbol intervals used for transmission) over the channel. Therefore, we arrange
the transmitted, the received and the noise vectors in the matrices

S = [s1, s2, · · · , sL] , Y = [y1,y2, · · · ,yL] , N = [n1,n2, · · · ,nL] ,

respectively. The associated block transmission model is



y1,1 · · · y1,L

y2,1 · · · y2,L

...
. . .

...
ynR,1 · · · ynR,L


 =




h1,1 · · · h1,nT

h2,1 · · · h2,nT

...
. . .

...
hnR,1 · · · hnR,nT







s1,1 · · · s1,L

s2,1 · · · s2,L

...
. . .

...
snT ,1 · · · snT ,L


+




n1,1 · · · n1,L

n2,1 · · · n2,L

...
. . .

...
nnR,1 · · · nnR,L


 ,

or equivalently,
Y = HS + N.

2.1.1. Noise

After stating the general linear input-output relation of the MIMO channel under more or less
general assumptions, we will now go a little bit into detail on the noise term of the transmission
model (2.1).

In this thesis, the noise vectors {nl} will be assumed to be spatially white circular Gaus-
sian random variables with zero-mean and variance σ2

N per real and imaginary component.
Thus,

nl ∼ NC(0, 2σ2
NI),

where NC stands for a complex-valued multivariate Gaussian probability density function. Be-
cause we will need an exact definition of the complex-valued multivariate Gaussian probability
density function, we will restate it here (compare [12, 11, 10]).

Definition 2.1.1 (Complex-valued Gaussian distribution). Let x ∈ CM , then the probability
density function (pdf) fx(ξ) of x is given by

fx(ξ) =
1

det(πCn)
exp

[
− (ξ − µx)H C−1

x (ξ − µx)
]
,

where Cx , E
{

(ξ − µx) (ξ − µxk)H
}

denotes the covariance matrix of x, µx = E{ξ} de-

notes the mean vector of x and (·)H stands for the complex conjugate (Hermitian transpose).
Compactly, we write x ∼ NC (µx,Cx).

There are at least two strong reasons for making the Gaussian assumption of the noise. First,
Gaussian distributions tend to yield mathematical expressions that are relatively easy to deal
with. Second, a Gaussian distribution of a disturbance term can often be motivated via the
central limit theorem.

7



2. MIMO Basics

Throughout this thesis, we will also model the noise as temporally white. Although such an as-
sumption is customary as well, it is clearly an approximation. In particular, N may contain in-
terference consisting of modulated signals that are not perfectly white.

To conclude our examination of the noise term in our channel model, we summarize the statisti-
cal properties of the set of complex Gaussian vectors {nl}, l = 1, . . . , L:

E
{
nlnH

l

}
= 2σ2

NI,

E
{
nlnH

k

}
= 0, for l 6= k.

2.1.2. Fading

The elements of the matrix H correspond to the complex-valued channel gains between each
transmit and receive antenna. For the purpose of assessing and predicting the performance
of a communication system, it is necessary to postulate a statistical distribution of these
elements [13]. This is also true to some degree for the design of well performing receivers, in
the sense that knowledge of the statistical behavior of H could potentially be used to improve
the performance of receivers.

Throughout this thesis, we will assume that the elements of the channel matrix H are zero-
mean complex-valued Gaussian random variables with unit variance. This assumption is made
to model the fading effects induced by local scattering in the absence of line-of-sight compo-
nents. Consequently, the magnitudes of the channel gains hi,j have a Rayleigh distribution, or
equivalently, |hi,j |2 are exponentially distributed [8, 14]. The presence of line-of-sight compo-
nents can be modeled by letting hi,j have a Gaussian distribution with a non-zero mean (this
is also called Ricean fading).

After having identified the possibilities to model the complex-valued channel path gains, it re-
mains to check a possible correlation between these entries. In this work, we make a commonly
made assumption on H, i.e. that the elements of H are statistically independent. Although
this assumption again tends to yield mathematical expressions that are easy to deal with, and
allows the identification of fundamental performance limits, it is usually a rough approxima-
tion. In practice, the complex path gains {hi,j} are correlated by an amount that depends
on the propagation environment as well as the polarization of the antenna elements and the
spacing between them.

The channel correlation has a strong impact on the achievable system performance. Neverthe-
less, throughout this thesis, we will think of a rich scattering environment with enough antenna
separation at the receiver and the transmitter, so that the entries of H can be assumed to be
independent zero-mean complex Gaussian random variables with unit variance. This model
is often popularly referred to as the iid (identically and independently distributed) Rayleigh
fading MIMO channel model.

The fading itself will be modeled as block-fading, which means that the elements of H stay
constant during the transmission of L data vectors s (or equivalently: during the whole trans-
mission duration of S) and change independently to another realization for the next block of
L symbol periods. In practice, the duration L has to be shorter than the coherence time of

8



2.1. MIMO Transmission Model

the channel, although in reality the channel path gains will change gradually. Nevertheless,
we will use the block fading model for its simplicity.

2.1.3. Power Constraints, SNR Definition

The stated MIMO transmission model is now nearly ready to be investigated. What is still
missing are declarations about the transmit power. Furthermore, we would like to derive
expressions as a function of the signal-to-noise ratio (SNR) at the receiver, so we have to
define it in terms of the already introduced quantities.

In the theoretical literature of MIMO systems, it is common to specify the power constraint
on the input power in terms of an average power over the nT transmit antennas. This may be
written as

1
nT

nT∑

i=1

E
{
|si,l|2

}
= Es, for l = 1, . . . , L, (2.2)

so that on average, we spend Es in power at each transmit antenna. Here Es denotes the
mean symbol energy, as defined for example in [10], i.e. Es = E

{∣∣s(i)
∣∣2

}
(here, i denotes the

time index of the sent symbol), where the expectation is carried out over the symbol sequence
(i.e. over i), which in case of a white symbol sequence reduces to an averaging over the symbol
alphabet (see for example [11]).

Although this power constraint is a very common one, there is a variety of similar constraints
that lead to the same basic information theoretic conclusions on MIMO transmission sys-
tems [15]. Since we will need other power constraints within this thesis, we will briefly restate
them now. The power constraints can be written as

1. E
{
|si,l|2

}
= Es, for i = 1, . . . , nT and l = 1, . . . , L, where no averaging over the transmit

antennas is performed.

2. 1
L

∑L
l=1 E

{
|si,l|2

}
= Es, for i = 1, . . . nT , what is quite similar to the power con-

straint (2.2), but here averaging is performed over time instead of space.

3. 1
nT ·L

∑L
l=1

∑nT

i=1 E
{
|si,l|2

}
= Es, where we average over time and space. This can

equivalently be expressed as 1
nT ·LE

{
trSSH

}
= Es.

Since in most of our investigations, we want to derive expressions or curves depending on
the SNR at a receive antenna, we will use a slightly adapted MIMO transmission model,
in which we are using a redefinition of the power constraint. To motivate this, we would
like to express the average signal-to-noise ratio at an arbitrary receive antenna. Because we
transmit a total power of nT Es over a channel with an average path gain of magnitude one1

and a total noise power of 2σ2
N at each receive antenna, we could state the SNR at a receive

antenna as % = nT Es/(2σ2
N ). This would have the negative aspect, that our total transmitted

power (and thus the receive SNR) is dependent on the number of transmit antennas. So, if we
normalize the transmitted power by the number of transmit antennas nT , we remove this small

1Because we defined our channel matrix H in the way that E
n
|hi,j |2

o
= 1.

9



2. MIMO Basics

inconsistency. This also motivates a slightly different description of our MIMO transmission
model:

Y =
√

%

nT
HS + N. (2.3)

In this context, we have following constraints on our elements of the MIMO transmission
model:

1. average magnitude of the channel path gains E
{
trHHH

}
= nRnT ,

2. average transmit power E
{
trSSH

}
= nT L and

3. average noise variance E
{
trNNH

}
= nRL.

If these constraints are fulfilled, the factor
√

%/nT ensures that % is the average SNR at a receive
antenna, independent of the number of transmit antennas (see for example also [16]).

2.2. Information Theoretic Background

Within this section we want to derive a basic understanding of the information theoretic
theorems we need for an analysis of our MIMO transmission model. These findings are the basis
for the identification of some of the performance gains already mentioned in the introduction.
Furthermore, the explained concepts are crucial for the understanding of the investigations
performed throughout the whole thesis.

We will not state any of the proofs of the following concepts and definitions. Some details
may be found in the Appendix. For the proofs we refer to information theoretic works like [17,
18].

2.2.1. Introduction to Information Theory

Information theory is a very broad mathematical framework, which has its roots in communi-
cation theory, as founded by Shannon2 in his well known paper [3]. An adequate description
of all of the manifold applications of information theory would surely go beyond the scope of
this diploma thesis. Nevertheless, it is of a great importance to define the basic concepts of
information theory and explain its basic results in communication theory as they are needed
throughout this work.

Within communication theory, information theory answers two fundamental questions: what
is the ultimate data compression, and what is the ultimate transmission rate of any commu-
nications system [17]. Since a complete explanation of the basic definitions required for the
subsequent development of the theory would again go beyond the scope of this thesis, we will
only recapitulate the most important definitions. For the in communication theory educated
reader, a repeat of those definitions would be rather uninformative, so we consequently moved
them into the appendix, Section A.1.

2A popular scientific introduction to information theory and its applications is for example [19].

10



2.2. Information Theoretic Background

x ymessage

estimated

message

decoderchannelencoder

Figure 2.2.: A general communication system.

We will only work out the concept of capacity, which answers the second fundamental question
concerning the ultimate transmission rate of any communications system. Therefore, we need
to abstract the physical process of communication, as it can be seen in Figure 2.2. A sequence
of source symbols (denoted as message in Figure 2.2) from some finite alphabet is mapped via
an encoder on some sequence x of channel symbols, which then produces the output sequence
y of the channel. The output sequence is random but has a distribution that depends on the
specific input sequence. From the output sequence, we attempt to recover the transmitted
message via a decoder.

Each of the possible input sequences induces a probability distribution on the output sequences.
Since two different input sequences may give rise to the same output sequence, the inputs
are confusable. By mapping the source messages into appropriate “widely spaced” input
sequences to the channel, we can transmit a message with very low probability of confusion
(or equivalently, error) at the decoder and reconstruct the source message at the output via
the decoder. The maximum rate at which this can be done is called the capacity of the
channel.

Definition 2.2.1 (Channel capacity). Let x and y be the input and output of a discrete vector
channel with input alphabet X and output alphabet Y, respectively. If the probability distribution
of the output depends only on the input at that time, and is conditionally independent of
previous channel inputs or outputs, the channel is said to be memoryless. This let us define
the channel capacity of a discrete memoryless channel as

C = max
p(ξ)

I(x;y),

where the maximum is taken over all possible input distributions p(ξ).

Relying on this definition, we will recapitulate Shannon’s second theorem, which gives an
operational meaning to the definition of capacity as the number of bits we can transmit reliably
over the channel. To do so, we need some basic definitions, which are (for the interested reader)
given in the Appendix (Subsection A.1.5), so that a communication engineer does not have to
read over them.

Nevertheless, for convenience, we repeat the definition of the code rate, because it is needed
in a very direct sense for Shannon’s second law.

Definition 2.2.2 (Rate of a (M, n) code). The rate R of an (M,n) code is

R =
log M

n
[bits]

per channel use.

11



2. MIMO Basics

Using this definition, we can relate codes of a given rate with their probability of error. In this
context, we say that a rate R is achievable if there exists a sequence of (d2nRe, n) codes3 such
that the maximal probability of error ε tends to 0 as n →∞.

Following this concept, we can describe the capacity of a discrete memoryless channel as
the supremum of all achievable rates. Thus, rates less than capacity yield arbitrarily small
probability of error for sufficiently large block lengths. This leads directly to Shannon’s second
law, which is perhaps the most important theorem of information theory - the channel coding
theorem.

Definition 2.2.3 (The channel coding theorem). All rates below capacity C are achievable.
Specifically, for every rate R < C, there exists a sequence of (d2nRe, n) codes with maximum
probability of error ε → 0. Conversely, any sequence of (d2nRe, n) codes with ε → 0 must have
R ≤ C.

To summarize the famous insights of the channel coding theorem, we can say that if one tries
to transmit over a channel with capacity C with a rate R ≤ C, there exists a code, such that
ε → 0 for n → ∞. In contrast, if one tries to transmit with a rate R ≥ C, the probability of
error is bound away from zero, i.e. ε > 0, for any code.

2.3. MIMO Information Theory

After having recapitulated the basic concepts of information theory, we now want to see how
these can be applied to the analysis of a MIMO system. We will obtain expressions for the
capacity of a MIMO channel and study its properties. Our intention is to offer a brief but
consistent introduction into this topic.

2.3.1. Capacity of Deterministic MIMO Channels

We now study the capacity of a MIMO channel in the case that the channel matrix H
is deterministic. Furthermore, we assume that the channel has a bandwidth of 1 Hz and
fulfills all constraints of Section 2.1. Thus, we are investigating the vector transmission
model

y =
√

%

nT
Hs + n. (2.4)

In the following, we assume that the channel H is known to the receiver. This is a very common
assumption, although in practice hard to realize. Channel knowledge at the receiver may be
maintained via training and tracking, but time-varying environments can make it difficult to
estimate the channel sufficiently exact.

The capacity of the MIMO channel is defined similar to Definition 2.2.1 as

C = max
p(s)

I(s;y). (2.5)

3Here, d·e denotes the ceiling operation.
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2.3. MIMO Information Theory

We start by using Equation (A.2) written as

I(s;y) = H(y)−H(y|s), (2.6)

where H(·) denotes the entropy, as defined in the Appendix4. Because y is specified through our
linear MIMO transmission model, we can use the identity H(y|s) = H(n|s) (for the according
theorem and proof, see Subsection A.1.4). Since according to our premises, the noise n and
the transmit vector s are statistically independent, we can further write H(y|s) = H(n).
Therefore, Equation (2.6) simplifies to

I(s;y) = H(y)−H(n).

By our assumptions about the noise term n, the entropy H(n) can be evaluated (see, e.g. [17,
18], or Subsection 3.1.1) as

H(n) = ln det (πeCn) = ln det (πeI) .

Thus, the maximization of the mutual information I(s;y) reduces to a maximization of
H(y). To derive an expression for the entropy of y, we first investigate its covariance ma-
trix.

The covariance matrix of y, Cy satisfies

Cy = E
{
yyH

}
= E

{(√
%

nT
Hs + n

)(√
%

nT
Hs + n

)H
}

=
%

nT
E

{
HssHHH

}
+ E

{
nnH

}
,

which can be further simplified to

Cy =
%

nT
HE

{
ssh

}
HH + E

{
nnH

}
=

%

nT
HCsHH + Cn,

where Cs is the covariance matrix of s. To evaluate the maximization of H(y), we need the
following theorem [2].

Theorem 2.3.1 (Entropy-maximizing property of a Gaussian random variable). Suppose the
complex random vector x ∈ Cn is zero-mean and satisfies E

{
xxH

}
= Cx. Then the entropy of

x is maximized if and only if x is a circularly symmetric complex Gaussian random variable
with E

{
xxH

}
= Cx.

Proof. Let fx(ξ) be any density function satisfying
∫
Cn fx(ξ)ξiξ

∗
j dξ = (Cx)i,j , 1 ≤ i, j ≤ n.

Furthermore, let

fx,G(ξ) =
1

π detCx
exp

[−ξHC−1
x ξ

]

denote a joint complex Gaussian distribution with zero-mean. Now, we can observe that∫
Cn fx,G(ξ)ξiξ

∗
j dξ = (Cx)i,j , and that log fx,G(ξ) is a linear combination of the terms ξiξ

∗
j .

4For notational simplicity, we will not distinguish between the differential entropy h(·) and the entropy H(·)
as defined in the Appendix, because they share the same interpretation and the appliance of the correct
entropy definition follows without confusion from the given random variable. This notation will be kept
throughout all information theoretic analyses in this thesis.
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2. MIMO Basics

This means that by the construction of fx,G(ξ), the integral
∫
Cn fx,G(ξ) log fx,G(ξ)dξ can be

split up in integrals
∫
Cn fx,G(ξ)ξiξ

∗
j dξ, of which each yields the same as

∫
Cn fx(ξ)ξiξ

∗
j dξ. There-

fore, by construction, we have the identity
∫
Cn fx,G(ξ) log fx,G(ξ)dξ =

∫
Cn fx(ξ) log fx,G(ξ)dξ.

Then,

H(fx(ξ))−H(fx,G(ξ)) = −
∫

Cn

fx(ξ) log fx(ξ)dξ +
∫

Cn

fx,G(ξ) log fx,G(ξ)dξ

= −
∫

Cn

fx(ξ) log fx(ξ)dξ +
∫

Cn

fx(ξ) log fx,G(ξ)dξ

=
∫

Cn

fx(ξ) log
fx,G(ξ)
fx(ξ)

dξ ≤ 0,

with equality if and only if fx(ξ) = fx,G(ξ). Thus H(fx(ξ)) ≤ H(fx,G(ξ)), which concludes
the proof5.

Accordingly, the differential entropy H(y) is maximized when y is zero-mean circularly sym-
metric complex Gaussian (ZMCSCG) [6]. This, in turn implies that s must be a ZMCSCG
vector, with distribution that is completely characterized by Cs. The differential entropy H(y)
is thus given by

H(y) = log det (πeCy) .

Therefore, the mutual information I(s;y), in case of a deterministic channel H, reduces
to

I(s;y) = log det
(
I +

%

nT
HCsHH

)
[bps/Hz].

This is the famous “log-det” formula, firstly derived by Telatar [2]. In principle, we could
denote the derived mutual information as a capacity since we maximized over all possible
input distributions. Nevertheless, the above derivation does not tell us how to choose the
covariance matrix of s to get the maximum mutual information. Therefore we keep the above
notation. Thus, following Equation (2.5) we write the capacity of the MIMO channel (within
our power constraint) as

C(H) = max
trCs=nT

log det
(
I +

%

nT
HCsHH

)
[bps/Hz]. (2.7)

2.3.2. Capacity of Random MIMO Channels

For a fading channel, the channel matrix H is a random quantity and hence the associated chan-
nel capacity C(H) is also a random variable. To deal with this circumstances, we define the er-
godic channel capacity as the average of (2.7) over the distribution of H.

Definition 2.3.2 (Ergodic MIMO channel capacity). The ergodic channel capacity of the
MIMO transmission model (2.4) is given by

CE = E
{

max
trCs=nT

log det
(
I +

%

nT
HCsHH

)}
. (2.8)

5For notational simplicity, we denote the differential entropy by H(·) instead of h(·).
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2.3. MIMO Information Theory

According to our information theoretic basics, this capacity cannot be achieved unless coding
is employed across an infinite number of independently fading blocks.

After having identified the channel capacity in a fading MIMO environment, it remains to
evaluate the optimal input power distribution, or covariance matrix Cs that maximizes Equa-
tion (2.8). The maximization depends on an important condition, we have not taken into
account yet. Before being able to compute the maximization, we have to clarify if the trans-
mitter, the receiver, or both have perfect knowledge of the channel state information (CSI).
This is equivalent to the constraint that the channel matrix H is perfectly known to any or
both sides of the communication system.

If the channel H is known to the transmitter, the transmit correlation matrix Cs can be
chosen to maximize the channel capacity for a given realization of the channel. The main tool
for performing this maximization is a technique, which is commonly referred to as “water-
filling” [8] or “water-pouring algorithm” [6, 20, 21, 22], which we will not restate here. Besides
the performance gain achievable, this method implicates a complex system, because the CSI
has to be fed back to the transmitter.

Therefore, we chose to focus on the case of perfect CSI on the receiver side and no CSI at
the transmitter. Of course, this implies that the maximization of Equation (2.8) is now more
restricted than in the previous case. Nevertheless, Telatar [2], among others showed that the
optimal signal covariance matrix has to be chosen according to

Cs = I.

This means that the antennas should transmit uncorrelated streams with the same average
power. With this result, the ergodic MIMO channel capacity reduces to

CE = E
{

log det
(
I +

%

nT
HHH

)}
. (2.9)

Clearly, this is not the Shannon capacity in a true sense, since as mentioned before, a genie
with channel knowledge can choose a signal covariance matrix that outperforms Cs = I.
Nevertheless, we shall refer to the expression in Equation (2.9) as the ergodic channel capacity
with CSI at the receiver and no CSI at the transmitter.

Now that we have specified our MIMO transmission system in a consistent way, and having
identified the corresponding ergodic MIMO channel capacity, we would like to derive another
notation of the capacity formula. Therefore, we take a closer look at the term HHH in
Equation (2.9).

The term HHH is a nR × nR positive semi-definite Hermitian matrix (compare [6, 23]). Let
the eigendecomposition of HHH be QΛQH , where Q is a nR × nR matrix satisfying QQH =
QHQ = I and Λ = diag{λ1, λ2, . . . , λnR

} with λi ≥ 0 denoting the ordered eigenvalues
(λi ≥ λi+1) of HHH . Then the channel capacity can be expressed as

CE = E
{

log det
(
I +

%

nT
QΛQH

)}
.
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Figure 2.3.: Ergodic MIMO channel capacity versus the SNR with no CSI at the transmitter
for various MIMO systems.

Using the identity det(I+AB) = det(I+BA) for matrices A of size (m×n) and B of size (n×
m), together with the relation QHQ = I, the above equation simplifies to

CE = E
{

log det
(
I +

%

nT
Λ

)}
= E

{
r∑

i=1

log
(

1 +
%

nT
λi

)}
, (2.10)

where r is the rank of the channel H. This expresses the capacity of the MIMO channel as the
sum of the capacities of r SISO channels, each having a gain of λi, i = 1, . . . , r.

Hence, the use of multiple antennas at the transmitter and receiver in a wireless link opens
multiple scalar spatial pipes (also known as modes) between the transmitter and the receiver.
This indicates the already mentioned multiplexing gain. To underline these insights, we did
some numerical simulations, in which, according to our iid MIMO transmission model, we
chose H to be formed by independent and Gaussian elements with unit variance. Figure 2.3
shows the ergodic MIMO channel capacity with no CSI at transmitter for various numbers
of transmit and receive antennas. From this, we can see that the gain in capacity obtained
by employing an extra receive antenna is around 3dB relative to the SISO system. This gain
can be viewed as a consequence of the fact that the extra receive antenna effectively doubles
the received power. The gain of a system with nT = 2, nR = 1 relative to the SISO system
is small. As far as the ergodic channel capacity is concerned there is practically no benefit in
adding an extra transmit antenna to the SISO system. Note also that the SIMO channel has
a higher ergodic channel capacity than the MISO channel. Finally, the capacity of a system
with nT = 2, nR = 2 is higher and faster growing with SNR than that of the SISO system.
The growth of the ergodic channel capacity as a function of the number of antennas, which we
observe in Figure 2.3, can be shown to obey a simple law. If we assume the channel H to be
full rank, Equation (2.10) indicates that when the number of transmit and receive antennas are
the same, the ergodic MIMO channel capacity increases linearly by the number of antennas.
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2.3. MIMO Information Theory

In general, the capacity increases by the minimum of the number of transmit and receive
antennas [20]. One can show that at high SNR, the ergodic channel capacity in terms of the
received SNR can be described as

CE ≈ min{nT , nR} log
(

%

nT

)
+

min{nT ,nR}∑

k=|nT−nR|+1

log(χk), (2.11)

where χk is a chi-squared random variable with 2k degrees of freedom [20]. Therefore, a 3dB in-
crease in SNR results in min{nT , nR} extra bits of capacity at high SNR.

To further clarify our observation that the adding of transmit antennas to a system with a fixed
number of receive antennas has a limited impact on the ergodic channel capacity, we investigate
the ergodic capacity behavior for a large number of transmit antennas (see, e.g. [21]). In the
mentioned case, using the law of large numbers, one can show that HHH/nT → I almost
surely. As a result, the ergodic channel capacity is nR log(1 + %) for large nT . This bound is
rapidly reached, thus explaining the limited gain of adding extra transmit antennas. Similar
investigations can be performed for a fixed number of transmit antennas, where the capacity
gain for adding one additional receive antenna also gets smaller if the number of receive
antennas gets large.

Now, it just remains to point out that a correlation of the entries of the channel matrix H,
as it might be induced by not well separated antennas at either the transmit or receiver side
or by not sufficiently “good” scatterers, can of course influence the shape of the presented
curves massively (see, e.g. [24], or [5]). In general, correlation of H reduces the gains obtained
in MIMO channels, as long as we are investigating a MIMO system with perfect CSI on the
receiver side. Recent research, as e.g. [25] show that if only partial CSI at the receiver is
available, correlation may be used to improve capacity gains.

2.3.3. Outage Capacity

Since the MIMO channel capacity (2.7) is a random variable, it is meaningful to consider
its statistical distribution. A particularly useful measure of its statistical behavior is the
so-called outage capacity. Outage analysis quantifies the level of performance (in this case
capacity) that is guaranteed with a certain level of reliability. In analogy to [6], we de-
fine:

Definition 2.3.3 (Outage MIMO channel capacity). The q% outage capacity Cout(q) is defined
as the information rate that is guaranteed for (100− q)% of the channel realizations, i.e.

Pr (C(H) ≤ Cout(q)) = q%.

The outage capacity is often a more relevant measure than the ergodic channel capacity,
because it describes in some way the quality of the channel. This is due to the fact that the
outage capacity measures how far the instantaneous rate supported by the channel is spread,
in terms of probability. So if the rate supported by the channel is spread over a wide range, the
outage capacity for a fixed probability level can get small, whereas the ergodic channel capacity
may be high. To get further insights, we performed some numerical simulations, again based
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Figure 2.4.: CDF of channel capacity for the iid MIMO channel model with nT = nR = 2 at a
SNR of 10dB.

on our iid channel model, as we did it in the simulations for Figure 2.3. Before showing an
ensemble of outage capacity curves, we want to note that the outage capacity may be seen in
the cumulative density function (cdf) of the instantaneous rate supported by the channel given
by Equation (2.7). Figure 2.4 shows the cdf of the MIMO channel capacity C(H) in the case
of perfect CSI only on the receiver side. Note that the ergodic capacity is the mean channel
capacity and is not necessarily equal to the median information rate. This figure shows that
if the outage capacity and the ergodic channel capacity are largely separated, the slope of the
cdf curve of the instantaneous rate will be small.

In the case of iid entries in H, the outage channel capacity shows the same behavior versus the
SNR, as the ergodic channel capacity does. To further investigate these relations, we simulated
the 1% outage channel capacity for different antenna arrangements. The results are shown in
Figure 2.5. Considering the outage capacity, a significant gain is obtained by employing an
extra receive or transmit antenna (compared to the SISO channel). This gain is much larger
than the corresponding gain in ergodic channel capacity.

2.3.4. Performance Limits

The previous capacity results can be illustrated in a variety of ways, but a particularly inter-
esting comparison is obtained when the outage probability is plotted as a function of SNR for
a given rate. If we consider a block-fading MIMO transmission model, we assume that the
channel is randomly drawn from a given distribution and is held constant during the transmis-
sion of one codeword [6]. Now this means that for any non-zero signaling rate there is always
a finite probability that the channel is unable to support it. If we use very large block size and
optimal coding, the packet error rate (PER) performance will be binary - the packet is always
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Figure 2.5.: 1% outage channel capacity versus the SNR for various antenna configurations.

decoded successfully if the channel supports the rate and is always in error otherwise. There-
fore, if the transmitter does not know the channel, the PER will equal the outage probability
for that signaling rate (outage capacity).

Hence, for a system with unity bandwidth transmitting packets with a bit rate R, the proba-
bility of a packet error can be lower bounded as

Pr(PE) ≥ Pr(C(H) < R) = Pr
[
log det

(
I +

%

nT
HHH

)
< R

]
.

To visualize these relations, we did some numerical simulations for different antenna constel-
lations. The results are plotted in Figure 2.6. Notice that these curves imply that the PER
cannot be zero and that it depends on the SNR much like bit error rate (BER) curves in
uncoded (or suboptimally coded) AWGN channels. The magnitude of the slope of the PER
curve has been shown to be nT nR for fixed rate transmission and at high enough SNR (com-
pare [26, 6], but also Chapter 5). To further clarify these coherences, we simulated the outage
probability versus the SNR for different rates in a nT = 2, nR = 2 MIMO transmission system.
The obtained surface (see Figure 2.7) is called the “signaling limit surface” [6] and represents
the fundamental limit of fading channels, assuming optimal coding and large enough block
size [14]. The region to the right of this surface is the achievable region, where practical sig-
naling and receivers operate. We have seen that with optimal coding, for a given transmission
rate, we can trade SNR for PER at nT nR slope (this is the already mentioned diversity gain),
and conversely for a fixed PER, we can trade SNR for transmission rate at min{nT , nR} slope
(denoting the also already mentioned multiplexing gain). Thus, if we hold the rate constant and
we increase SNR, the PER will decrease at nT nR slope, what is the equivalency to Figure 2.6.
On the other hand, if we fix the PER and increase SNR, in the limit of infinite SNR, the rate
will increase at min{nT , nR} slope. This corresponds to Equation (2.11) and to Figure 2.3.
These connections will be further investigated in Chapter 5.
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2.4. MIMO Systems

Throughout this thesis, we want to investigate different MIMO systems. To clarify our no-
tation, we now want to define what we understand under a so-called “MIMO system”. Fig-
ure 2.1 shows the basic MIMO channel, which can be seen as a spatial multiplexing (SM)
transmission system, since for a transmission, the source symbols are directly mapped in an
independent manner onto the nT transmit antennas. After passing the channel, the nT in-
dependent data streams result in a vector of nR complex receive symbols, which are used to
receive the transmitted data symbols (for example, by using an optimal maximum likelihood
(ML) receiver).

Having this in mind, one can ask the legitimate question, whether there exists a better way
to map the data symbols onto the transmit antennas. If such an arbitrary mapping is al-
lowed, our MIMO channel is enhanced by a so-called space-time encoder and a space-time
decoder, whereas the latter includes the detection of the data symbols (see Figure 2.8). The
term space-time results from the fact, that we allow the symbol mapping to act in the di-
mensions space and time, which means that each symbol can be spread over a number of
symbol times and over a number of transmit antennas. Such a space-time (ST) coded sys-
tem can be described by a number of performance parameters, which are summarized in the
following:

1. Parameters based on mutual information:

• Ergodic channel capacity,

• outage capacity,

• multiplexing gain.
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2. Parameters concerning the error performance:

• BER versus SNR performance,

• diversity gain.

3. Parameters concerning the MIMO channel structuring:

• Efficient encoding,

• efficient decoding.

4. Tradeoffs between diversity and multiplexing gain.

Throughout this thesis, we focuse on information theoretic aspects, and we will mostly use
the optimal ML receiver for decoding of the complex data symbols. Therefore, we will briefly
recapitulate this important receiver type.

2.4.1. ML Receiver

In Section 2.1, we stated the block-wise MIMO transmission model. This means that we encode
a number of data symbols into a block matrix S, which is then transmitted using L symbol
time instants. Beyond the scope of this thesis, there also exists another way of transmitting,
which is called space-time trellis coding (STTC), [27, 28, 29, 30].

The ML receiver of the MIMO block transmission model from Section 2.1 can be stated as
(see [22], but also [31]): Consider the MIMO block transmission model Y =

√
%/nT HS + N

and let S denote the codebook of S (i.e., S denotes the set of all possible transmit matrices).
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Figure 2.8.: A general MIMO system.

Then, the ML decision ŜML on the transmit matrix S with H perfectly known at the receiver
is given by

ŜML = arg min
S∈S

∥∥∥∥Y −
√

%

nT
HS

∥∥∥∥
2

,

where ‖·‖ denotes the Frobenius norm (see Subsection A.3.1).

For convenience, we present a short proof, which follows the way of arguing in [11]. According
to [11], the ML decision rule for H known at the receiver is given by

SML = arg max
S∈S

fY|S,H(η|σ,H0),

where fY|S,H(η|σ,H0) denotes the conditional pdf of Y given S and H.

With the assumption that N is independent of S and N, one can easily show that

fY|S,H(η|σ,H0) = fN

(
η −

√
%

nT
H0σ

)
.

Using the fact that the noise is spatially and temporally white, we obtain

fN(ν) =
L∏

i=1

fni(νi), (2.12)

where ni denotes the i-th column of N. The pdf fni(νi) has already been described in Def-
inition 2.1.1. Since all noise vectors ni are zero mean and have the same covariance matrix
Cni ≡ Cn = I, (2.12) reduces to

fN(ν) =
L∏

i=1

1
πnR

exp
[−nH

i ni

]
=

1
πnRL

exp

[
−

L∑

i=1

nH
i ni

]
.
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2.5. Diversity

By using the identity ‖N‖2 =
∑L

i=1 nH
i ni we obtain fN(ν) = 1/πnRL exp

[
−‖N‖2

]
. Thus,

the ML receiver may be written as

ŜML = arg max
S∈S

1
πnRL

exp

[
−

∥∥∥∥Y −
√

%

nT
HS

∥∥∥∥
2
]

= arg min
S∈S

∥∥∥∥Y −
√

%

nT
HS

∥∥∥∥
2

.

2.5. Diversity

So far, we studied how multiple antennas can enhance channel capacity. Now we discuss how
antennas can also offer diversity. Diversity provides the receiver with multiple (ideally in-
dependent) observations of the same transmitted signal [6]. Each observation constitutes a
diversity branch. With an increase in the number of independent diversity branches, the prob-
ability that all branches fade at the same time reduces. Thus, diversity techniques stabilize the
wireless link leading to an improvement in link reliability or error rate.

To clarify matters, we will have a closer look at a very simple example, following the argu-
mentation of [6]. Assume that we transmit a data symbol s drawn from a scalar constellation
with unit average energy. This symbol is now transmitted in a way that we can provide M
identically independently Rayleigh faded versions of this symbol to the receiver. If the fading
is frequency-flat, the receiver sees

yi =
√

%

M
his + ni, i = 1, . . . , M,

where % is the average SNR for each of the M diversity branches and yi is the received signal
corresponding to the ith diversity branch. Furthermore, hi denotes the channel path gain and
ni is additive ZMCSCG noise with variance 1 in the ith diversity branch, whereas the noise
from different branches is assumed to be statistically independent.

If we provide a receiver with multiple versions of the transmitted symbol s, it can be shown that
the post-processing SNR can be maximized by a technique called maximum ratio combining
(MRC). With perfect CSI at receiver, the M signals are combined according to z =

∑M
i=1 h∗i yi,

and thus the post-processing SNR η is given by η = 1/M
∑M

i=1 |hi|2 %.

With ML detection, the corresponding probability of symbol error is given by [11, 10]

PE ≈ N̄Q

(√
ηd2

min

2

)
,

where N̄ denotes the number of nearest neighbors, dmin labels the minimum distance in the un-
derlying scalar symbol constellation and Q(·) is the Q-function [10]. The error probability can
be further bounded applying the Chernoff bound Q(x) ≤ exp

(−x2/2
)
:

Pe ≤ N̄ exp

[
−%d2

min

4M

M∑

i=1

|hi|2
]

.
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By averaging this instant error probability with respect to the fading gains hi, i = 1, . . . , M ,
the upper bound [7, 6]

E{Pe} ≤ N̄
M∏

i=1

1
1 + %d2

min/(4M)

is obtained. In the high SNR regime, the preceding equation may be further simplified
to

E{Pe} ≤ N̄
(

%d2
min

4M

)−M

,

which makes it absolutely clear that diversity effects the slope of the symbol error rate (SER)
curve. The slope of the SER curve on a log-log scale, compared to the slope of a SISO system
terms the mentioned diversity gain. Clearly, multiple antennas on the transmitter and/or
receiver side can lead to this kind of performance gain.

The answer to the question how we can achieve the maximum diversity gain nT nR in a MIMO
system is, among other related topics, part of the following chapters.
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3. SM under Finite Symbol Alphabet
Constraint

In Chapter 2 we gave an overview over some of the most important topics concerning MIMO
transmission systems. Now we want to take a closer look at some of the introduced concepts
and extend the information-theoretic insights. The results stated here represent a detailed
derivation of a part of the work already performed in [32], or in [9].

A spatial multiplexing MIMO system describes a very simple, yet basic mapping method of
the complex data symbols onto the transmit antennas. Reconsidering Figure 2.8, the ST
encoder multiplexes the symbol stream onto the nT transmit antennas. Thus, using such
a transmission system, we are transmitting nT independent data symbols. The according
transmission relation can be written as

y =
√

%

nT
Hs + n,

where s denotes the vector of multiplexed data symbols. Looking at the above equation, we
can see that it is exactly the same relation, we presupposed in Subsection 2.3.1 to derive
the MIMO channel capacity. This implies that the channel capacity (as well as the ergodic
channel capacity) equals the system capacity. Unattached by this easy observation, it remains
of interest to examine the behavior of the mutual information in the case of constraints on
the symbol alphabet of the transmitted complex data symbols. In Subsection 2.3.1, we also
showed that the capacity achieving input distribution of the complex data symbols has to
be ZMCSCG. This implies that the symbols are drawn from an continuous constellation, i.e.
si ∈ C for i = 1, . . . , nT . Equivalently, we could say that the transmit vector s is drawn from
CnT . Throughout this chapter, we restrict the complex data symbols to be drawn from a finite
symbol alphabet. This can be stated as

si ∈ A, i = 1, . . . , nT ,

where A denotes the symbol alphabet (like QAM or PSK, see e.g. [10]). The associated
constraint on the transmitted data vector s can thus be written as

s ∈ AnT = S.

For sake of notational simplicity, we drop the factor
√

%/nT and operate only on the transmis-
sion relation y = Hs + n. This implies that we allow an arbitrary noise variance σ2

N and an
arbitrary symbol energy Es as also mentioned in the beginning of Subsection 2.1.3. Besides
its notational benefit, we achieve a better comparability of our obtained result with the one
derived in [32].
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3. SM under Finite Symbol Alphabet Constraint

3.1. Evaluating the Mutual Information

The mathematical concepts used in this section belong to the basic ideas of information theory.
Since we do not want to stress the patience of the information theory versed reader, we collected
the necessary definitions in the Appendix, Section A.1.

The main goal of the current section is to derive an expression for the mutual information
between the input s and the output y of the SM-MIMO system under the constraint s ∈ S as
defined above. We try to obtain a relation, which we can use to perform numerical simulations,
as also done in [32, 9]. In our described MIMO transmission model, we assume that the receiver
has perfect knowledge about the realization of H. This knowledge can be analytical expressed
in the way that the channel output consists of the pair (y,H). Accordingly, the relevant
mutual information between input s and output (y,H), we are trying to find, is I (s; (y,H)).
To derive analytical expressions, we first try to rewrite the mutual information I (s; (y,H)) in
a way that we can identify terms which can be evaluated more easily. Therefore, we use the
chain rule for mutual information (Definition A.1.11) to obtain

I(s; (y,H)) = I((y,H); s) = I(y; s|H) + I(H; s) = I(s;H) + I(y; s|H), (3.1)

where we used the symmetric property of the mutual information. Certainly, the result can
also be obtained by using the entropy description of the mutual information and applying the
chain rule for entropy (Definition A.1.10). By using relation (A.3), and taking into account
that the transmit vector s and the channel matrix H are statistically independent, the mutual
information I(s;H) can be simplified to

I(s;H) = H(s)−H(s|H) = H(s)−H(s) = 0,

where the statistical independence of s and H is a direct consequence of our assumption that
the transmitter has no CSI at all. Thus, following the arguments given in Subsection 2.3.2, we
obtain

I(s; (y,H)) = I(y; s|H).

Using Relation A.1, we get

I(s;y|H) = H(s|H)−H(s|y,H).

Using a straightforward combination of Definition A.1.6 and Definition A.1.5, we obtain

I(s;y|H) =
∫

Ω

fH(H0)H(s|H = H0)dH0 −
∫

Ω

fH(H0)H(s|y,H = H0)dH0,

where Ω denotes the support set of the channel matrix H, and H0 denotes a specific channel
realization. This can be further simplified to

I(s;y|H) =
∫

Ω

fH(H0) [H(s|H = H0)−H(s|y,H = H0)] dH0

=
∫

Ω

fH(H0)I(s;y|H = H0)dH0.
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3.1. Evaluating the Mutual Information

Following the notation in [32] (compare also [17]), we express the mutual information I(s;y|H)
in terms of an expectation, since the integral over p(H0) may be interpreted as such, i.e.:

I(s;y|H) = E{I(s;y|H = H0)} ,

where the expectation is performed with respect to H. Finally, we can write I(s; (y,H))
as

I(s; (y,H)) = E{I(y; s|H = H0)} = E{H(y|H = H0)} − E{H(y|s,H = H0)} , (3.2)

and it remains to evaluate the terms E{H(y|s,H = H0)} and E{H(y|H = H0)}.

3.1.1. Evaluation of E{H(y|s,H = H0)}
To obtain an useable expression for E{H(y|s,H = H0)}, let us first of all drop the expectation
(and thus the integral over fH(H0)) and consider the term H(y|s,H = H0). By a straight-
forward use of Definition A.1.2 we obtain the conditional differential entropy H(y|s,H = H0)
as

H(y|s,H = H0) = −
∫∫

Ωy,s

fy,s|H(y, s|H) log fy|s,H(y|s,H)dyds,

where Ωy,s denotes the support region of the conditional pdf1 fy,s|H(y, s|H). Unfortunately,
an analytical expression for the conditional pdf f(y, s|H) cannot be derived. Therefore, we
use Definition A.1.5 to rewrite

H(y|s,H = H0) =
∑

s∈S
ps(s)H(y|s = s0,H = H0),

with S = AnT denoting the set of all possible transmitted data vectors s. The occurring
conditional entropy, with s and H already being observed as s0 and H0 respectively, H(y|s =
s0,H = H0), is defined similar as in A.1.6, i.e.

H(y|s = s0,H = H0) = −
∫

Ωy

fy|s,H(y|s,H) log fy|s,H(y|s,H)dy,

where Ωy denotes the support region of fy|s,H(y|s,H). Similar to the arguments concerning the
mutual information, the above integral can be interpreted as expectation over y, although the
expectation is not performed by integrating over fy(y), but instead over fy|s,H(y|s,H). Never-
theless, for notational comparability to [32], we keep this notation, and write

H(y|s = s0,H = H0) = −E{log f(y|s,H)} .

Having identified these relations, it remains to compute the conditional pdf fy|s,H(y|s,H). For-
tunately, this can be easily done within our MIMO transmission model assumptions (see Sec-
tion 2.1). The conditional probability density function can be reformulated as

fy|s,H(y|s,H) = fHs+n|s,H(y|s,H) = fn|s,H(y −Hs|s,H) = fn(y −Hs), (3.3)

1For notational simplicity, from now on we dropped the distinction between the random variable and the
dependent variable of its pdf, e.g. fx(ξ) is written as fx(x). This only limits the amount of variables
needed but does not lead to any confusion.
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3. SM under Finite Symbol Alphabet Constraint

where we used the fact that the noise n and the transmitted vector s are statistically indepen-
dent. According to our premises in Section 2.1, n is a joint complex Gaussian random variable
(as in Definition 2.1.1), and we can write

H(y|s = s0,H = H0) = −
∫

Ωy

fy|s,H(y|s,H) log fy|s,H(y|s,H)dy

= −
∫

Ωy

fn(y −Hs) log fn(y −Hs)dy.

By a simple variable change u = y −Hs, with ∂y/∂u = 1, we obtain

H(y|s = s0,H = H0) = −
∫

Ωu

fn(u) log fn(u)du = −E{log fn(u)} ,

where we again used the notation in terms of an expectation over u. Using Definition 2.1.1,
this can be simplified to

H(y|s = s0,H = H0) = −E{log fn(u)} = ln det(πCn) + E
{
uHC−1

n u
}

.

By using the identity xHC−1
n x = tr(xxHC−1

n ) and using the fact that E{·} and tr(·) commute,
we obtain

H(y|s = s0,H = H0) = ln det(πCn) + E
{
tr(uuH)C−1

n

}
= ln det(πCn) + tr(E

{
uuH

}
C−1

n ).

Now, remembering that u = y−Hs and taking into account that we are momentarily consider-
ing H and s as deterministic variables, by following similar arguments as in [18], it follows that
E

{
uuH

}
carried out with respect to u, and thus representing the covariance matrix Cu, is equal

to Cn. This finally results in the well-known entropy (see e.g. [18, 17])

H(y|s = s0,H = H0) = ln det(πCn) + tr I = ln det(πeCn) = H(n).

This result is rather intuitive, since it corresponds directly to Theorem A.1.12 and reflects the
fact that the uncertainty about y given s and H just depends on the noise vector n.

Since n is iid Gaussian with variance 2σ2
N per component, we have Cn = 2σ2

NI and

detCn =
nR∏

i=1

2σ2
N = (2σ2

N )nR .

Taking into account that det(αX) = αN detX for any square matrix X ∈ CN×N , we ob-
tain

H(y|s = s0,H = H0) = H(n) = ln
[
πnRenR

(
2σ2

N

)nR
]

= nR ln
(
2πeσ2

N

)
.

Hence, we can state our result as

E{H(y|s,H = H0)} = E

{∑

s∈S
ps(s)H(y|s = s0,H = H0)

}
= E

{∑

s∈S
ps(s)nR ln

(
2πeσ2

N

)
}

,

where the expectation is carried out with respect to H, but can certainly be simplified
to

E{H(y|s,H = H0)} = nR ln
(
2πeσ2

N

)
.
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3.1. Evaluating the Mutual Information

To express the result in bits and not in nats, one has to change the base of the logarithm,
i.e. Hb(x) = logb(a)Ha(x), where the subindex denotes the basis of the used logarithm in the
calculation of the entropy, and thus

E{H(y|s,H = H0)} = log2(e)nR ln
(
2πeσ2

N

)
[bits]. (3.4)

3.1.2. Evaluation of E{H(y|H = H0)}
After having computed the first term E{H(y|s,H = H0)} of the mutual information in Equa-
tion (3.2), we now evaluate the second term E{H(y|H = H0)}. Similar as in Subsection 3.1.1,
we firstly concentrate on H(y|H = H0).

According to our Definition A.1.6 and Definition A.1.5, H(y|H = H0) is given by

H(y|H = H0) = −
∫

Ωy

fy|H(y|H) log fy|H(y|H)dy = −E{
log fy|H(y|H)

}
, (3.5)

where Ωy denotes the support set of the conditional pdf fy|H(y|H) and the expectation is
carried out with respect to y, given H. With the total probability theorem, the unknown
probability density function fy|H(y|H) can be expressed as

f(y|H) =
∑

s∈CnT

ps(s)fy|H,s(y|H, s),

so that we can use fy|H,s(y|H, s) = fn(y −Hs) (see Equation 3.3).

Now, it seems appropriate to specify the properties of the generation of s, the pmf ps(s).
In our simulations, the marginal probability mass function ps(s) is chosen uniformly, so that
all possible transmit vectors s ∈ S are drawn equally likely. Using nT transmit antennas,
the symbol vector s has to be of size nT × 1. Assuming symbol alphabet sizes of power
two (e.g. QAM constellations), there are 2Ma constellation points (i.e. the cardinality of
the symbol alphabet is |A| = 2Ma), so that for each symbol (constellation point), Ma bits
are assigned. This means that there are (2Ma)nT = 2ManT = |S| possible signal vectors.
Thus

ps(s) =
1

2ManT
, s ∈ AnT = S.

Using

fn(n) =
1

(2πσ2
N )nR

exp

[
−‖n‖

2

2σ2
N

]

(compare Definition 2.1.1), we obtain

fy|H(y|H) =
∑

s∈CnT

ps(s)fn(y −Hs) =
1

2McnT

1
(2πσ2

N )nR

∑

s∈S
exp

[
−‖y −Hs‖2

2σ2
N

]
.

Taking this result, we are able to evaluate H(y|H = H0)

H(y|H = H0) = −E{
log fy|H(y|H)

}

= −E
{

log

{
1

2McnT

1
(2πσ2

N )nR

∑

s∈S
exp

[
−‖y −Hs‖2

2σ2
N

]}}
,

29



3. SM under Finite Symbol Alphabet Constraint

where the expectation is taken over y given H as in Equation (3.5). Finally, we can use this
expression to calculate E{H(y|H = H0)}

E{H(y|H = H0)} = −E
{
E

{
log

{
1

2McnT

1
(2πσ2

N )nR

∑

s∈S
exp

[
−‖y −Hs‖2

2σ2
N

]}}}
, (3.6)

where the outer expectation with respect to H and the inner expectation is with respect to y
given H.

3.1.3. Result: Mutual Information for Finite Symbol
Alphabets

The resulting mutual information I(s; (y,H)) can accordingly be calculated by using Equa-
tion (3.2) together with results (3.4) and (3.6):

I(s; (y,H)) = E{H(y|H = H0)} − E{H(y|s,H = H0)}

= −E
{
E

{
log

{
1

2McnT

1
(2πσ2

N )nR

∑

s∈S
exp

[
−‖y −Hs‖2

2σ2
N

]}}}

− log2(e) nR ln
(
2πeσ2

N

)
.

(3.7)

In general, Equation (3.7) has no closed form expression. It may nevertheless be evaluated
using numerical methods (like Monte Carlo simulations).

3.2. Numerical Simulations

To visualize the result (3.7), we did some Monte Carlo simulations by drawing a sufficient
number of independent channel and noise realizations. Within Equation (3.7), we sum up
different results of the Frobenius norm ‖y −Hs‖2 for all possible values of s. If the number
|S| is not too large, we can simulate the mutual information by averaging over all possible
transmit vectors s. The numerical complexity is very high, so that we wrote a distributed
simulation in MATLAB. The computation over the SNR range from 0 to 30dB was performed
on a cluster of five PCs. Since the simulations took on average between two and six days, we
ask the reader to excuse the not perfectly smooth curves.

3.2.1. Simulation Results

We present two figures for a nT = nR = 2 (Figure 3.1) and a nT = nR = 4 (Figure 3.2) MIMO
system, respectively. The ergodic channel capacity is also shown for comparison. It can be seen
that the mutual information curves huddle against the ergodic channel capacity curve at low
SNR, whereas they saturate in the high SNR region. The reason for this saturation is rather
obvious, since in the high SNR region the influence of noise on the receiver gets arbitrarily
low, so that the mutual information equals the entropy of the source times the number of
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Figure 3.1.: Mutual information curves for finite symbol alphabets compared to the ergodic
channel capacity for a nT = 2, nR = 2 system.

independently transmitted symbols nT . Given a fixed symbol alphabet A with cardinality
|A| = 2Ma and with equally likely drawn symbols, this amounts to be nT · log |A| = nT Ma.
The equivalence of the mutual information curves to the ergodic channel capacity in the low
SNR region also provides an indication to the already mentioned equality of the MIMO system
capacity of the investigated SM system and the ergodic MIMO channel capacity. This provides
an alternative proof of the conclusion that a SM design2 is able to achieve capacity (the ergodic
channel capacity and the MIMO system capacity for Gaussian inputs are coinciding). We
summarize our finding of the saturating mutual information for finite symbol alphabets in the
following subsection.

3.2.2. Bound for Mutual Information in the % →∞
Case

Theorem 3.2.1 (Saturation value of mutual information in case of finite symbol alphabets).
Let our MIMO transmission model be given by y = Hs+n (compare beginning of this chapter),
and let s be drawn uniformly from a vector symbol alphabet S = AnT . Then the mutual
information saturates for % →∞ to

lim
%→∞

I(s; (y,H)) = ManT .

Proof. Let us assume that we adjust the SNR solely by scaling the signal energy of the transmit
vector s. Therefore, we can exchange the limit % → ∞ by Es = E

{
‖s‖2

}
→ ∞. Because of

this restriction, we only have to look at the term ‖y −Hs‖2 and how it behaves as Es → ∞
2We sometimes use the term “design” to denote a specific ST system, as often done in literature.
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Figure 3.2.: Mutual information curves compared to the ergodic channel capacity of a nT =
4, nR = 4 system for a 4-PSK symbol alphabet.

(compare Equation (3.7)). If we assume an arbitrary vector s0 to be transmitted, the received
vector gets y = Hs0 + n. Thus, we can write

lim
Es→∞

‖y −Hs‖2 = lim
Es→∞

‖H(s0 − s) + n‖2 =

{
∞, for s0 6= s,
‖n‖2 , for s0 = s.

Thus, the sum over s ∈ S in Equation (3.7) is equal to

∑

s∈S
exp

[
− 1

2σ2
N

‖y −Hs‖2
]

= exp

[
−‖n‖

2

2σ2
N

]
.

To compute the two expectations, we note that with a fixed transmit vector s0 (thus s as-
sumed to be given), the inner expectation with respect to y reduces to an expectation over n.
According to our presumptions, the expectation of ‖n‖2 is E

{
‖n‖2

}
= nR · 2σ2

N , and thus we
obtain

lim
Es→∞

I(s; (y,H)) = −E


log

1
2ManT

1
(2πσ2

N )nR
exp


−

E
{
‖n‖2

}

2σ2
N






− nR log(2πeσ2

N )

= ManT + nR log(2πeσ2
N )− nR log(2πeσ2

N ) = ManT ,

where we used the logarithm to base 2. This concludes the proof.
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3.3. Error Performance

We now investigate the SM-based MIMO design with respect to error performance. Is SM
capable of realizing the full diversity gain nT nR? The answer to this question will give us
insight into the motivation of space-time coding (STC). We will introduce a general framework
of STC error analysis, as introduced in [29] (compare also [28]). We present this theory in
the general context of arbitrary ST block transmissions, which can be easily simplified to fit
the SM design. As we want to derive expressions for the general case of MIMO ST block
transmissions, we now rely on the MIMO block transmission model of Equation (2.3), i.e.
Y =

√
%/nT HS + N.

To derive an upper bound on the error probability, we investigate the pairwise error probability
(PEP) of the ML receiver. This is the probability that the receiver mistakes the transmitted
codeword S(i) for another codeword S(j). According to [6, 10], the PEP of the ML receiver
with perfect CSI, is given by

Pr
(
S(i) → S(j)|H

)
= Q




√
%

∥∥H(S(i) − S(j))
∥∥2

2nT


 .

According to [29], we can apply the Chernoff bound to obtain

Pr
(
S(i) → S(j)|H

)
≤ exp

[
− %

4nT
‖H∆i,j‖2

]
,

where we define ∆i,j = S(i) − S(j) to be the nT × L codeword difference matrix. In [29], it is
further shown that the PEP averaged over all iid channel realizations (Rayleigh distributed),
may be upper-bounded by

Pr
(
S(i) → S(j)

)
≤

r(Γi,j)∏

k=1

(
1 +

%λk(Γi,j)
4nT

)−nR

,

where in analogy to [6], we introduced the matrix Γi,j = ∆i,j∆H
i,j . The terms r(Γi,j) and

λk(Γi,j), denote the rank and the k-th non-zero eigenvalue of Γi,j respectively. In the high
SNR regime, this may further be simplified to

Pr
(
S(i) → S(j)

)
≤




r(Γi,j)∏

k=1

λk(Γi,j)



−nR (

%

4nT

)−r(Γi,j)nR

. (3.8)

From the above analysis, we obtain two famous criteria for ST codeword construction, namely
the rank criterion and the determinant criterion. To identify their meaning, we restate them
in a compact form and point out their connection to the diversity gain:

1. Rank criterion: The rank criterion refers to the spatial diversity extracted by a ST code
(and thus the diversity gain). In Equation (3.8), it can be seen that the ST code extracts
a diversity of r(Γi,j)nR (the slope of the BER curve versus the SNR). Clearly, it follows
that in order to extract the full spatial diversity of nRnT , the code should be designed
such that the difference matrix ∆i,j between any pair i 6= j of codeword matrices has
full rank, and thus r(Γi,j) = nT .
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Figure 3.3.: BER curves of SM design over a nT = 2, nR = 2 channel with ML decoding for
two different rates.

2. Determinant criterion: In contrast to the rank criterion, the determinant criterion op-
timizes the so-called coding gain. This can be visualized as a shift of the BER curve
to the left and is a common terminus in the coding literature. If an error correcting
code (e.g. turbo code) is used, the BER curve of the overall system will be shifted to
the left and this is denoted as coding gain. From Equation (3.8) one sees that the term∏r(Γi,j)

k=1 λk(Γi,j) shifts the error probability (if plotted versus the SNR). This behavior
can be seen as a coding gain, although no error correcting code is used. For a high coding
gain in this context, one should maximize the minimum of the determinant of Γi,j over
all possible pairs of codewords.

After having identified the rank criterion as the important criterion for achieving full diversity,
we are now able to evaluate the diversity gain of our SM MIMO system. Equivalently to our
used vector notation we can describe the system in terms of transmit block matrices S(i), where
all entries of S(i) are independent. Then, the minimum distance pair of codeword matrices is
given by a difference in only one entry. Clearly, the difference matrix ∆i,j for this codeword
pair is a matrix containing only one non-zero element. This implies that the matrix Γi,j is
rank one. Therefore, a SM design is only able to achieve a diversity gain of nR instead of the
full nT nR diversity. Equivalently, the SM design only achieves a transmit diversity of 1. This
observation motivates to search for ST coding schemes which are able to achieve full transmit
diversity. Chapter 4 will discuss two important and well-known ST codes and analyzes them
in terms of system capacity and diversity.

3.3.1. Numerical Simulations

To conclude this chapter, we will present a BER simulation of the SM design in a 2×2 MIMO
channel for different rates, using a ML receiver. Figure 3.3 shows the obtained BER versus
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3.3. Error Performance

SNR results for rate 4 (4-QAM) and 8 (16-QAM) respectively. We can observe that the slope
of both curves achieve an order of two what equals the derived diversity gain of nR = 2.
Certainly the BER also depends on the size of the symbol alphabet, since in a larger symbol
alphabet, the probability of confusing two codewords is larger - thus explaining the shift to
the right of the rate 8 curve compared to the rate 4 curve.
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4. Analysis of Space-Time Coded Systems

From our observations at the end of Chapter 3 it seems intuitive to spread our data symbols
over time and space to achieve a higher transmit diversity (and accordingly a higher total
diversity gain). The question of how to spread the data symbols in an efficient manner, such
that transmit diversity is achieved, is the basis of ST coding. Of course, the rate should be
kept as large as possible. Furthermore, simple receive processing can be seen as an additional
design criterion.

In this chapter, we present a selection of well-known STC techniques. The range of results in
this research area is certainly much broader than revealed in this thesis. Therefore, we refer
the interested reader to [4, 33] and references therein. In particular, we will introduce the
very universal class of linear space-time block codes (STBC). Within this class of STCs, we
will investigate the special cases of orthogonal space-time block codes (OSTBC) and linear
dispersion (LD) codes. An information theoretic analysis will be performed to identify the
corresponding system capacities and analytical as well as numerical evaluations will be carried
out to obtain measures of the associated error performance.

4.1. STBCs

Before we step into the detailed analysis of the mentioned STC techniques, we want to
introduce a formal treatment of the already illustrated ST block transmission from Chap-
ter 2.

Space-time block coding can be seen as a way of mapping a set of nS complex data symbols
{s1, . . . , snS} : sn ∈ A, onto a matrix S of dimension nT × L that is transmitted as described
in Section 2.1 (see also [8]). In general, the mapping

{s1, . . . , snS} → S (4.1)

has no specific form (and can thus be nonlinear in general). For such a coding scheme, in
which we transmit nS complex symbols over L time intervals, we can define a transmission
rate (in means of a symbol code rate) as:

Definition 4.1.1 (STBC transmission rate). Consider a STBC which transmits nS complex
data symbols during L symbol time instants. Then we define the STBC transmission rate as

RS , nS

L
[symbols/channel use].

A code is named “full-rate” if and only if RS = 1.
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4. Analysis of Space-Time Coded Systems

Later throughout this chapter, we will need this definition for our information theoretic in-
vestigations. To narrow our focus throughout this thesis, we restrict ourselves to the case
of linear STBC. These are relatively easy to treat and let us gain further insights in MIMO
system design.

4.1.1. Linear Space-Time Block Codes

Linear STBCs are an important subclass of ST codes. In the case of linear STBCs, we choose
the mapping (4.1) to be linear in the symbols {sn} ∈ A. Specifically, we define a linear STBC
as:

Definition 4.1.2 (Mapping of a linear STBC). Let {An,Bn}, n = 1, . . . , nS form a set of
matrices of size nT × L with domain CnT×L, respectively. Then the transmission matrix S of
a linear STBC is formed according to

S =
nS∑

n=1

(Re{sn}An + j Im{sn}Bn) .

This definition was introduced in [16]. The set of matrices {An} and {Bn} can be interpreted
as modulation matrices, because they “modulate” the real and imaginary part of the complex
data symbols onto the transmitted matrix S. Definition 4.1.2 could of course be written in
other ways (compare [8]).

4.2. Orthogonal STBC

Orthogonal STBCs (OSTBCs) are an important subclass of linear STBCs. The underlying
theory started with the famous work of Alamouti [34], which was extended to the general
class of OSTBCs by Tarokh, et. al. (see [35]). An OSTBC is a linear STBC (as introduced in
Definition 4.1.2) that has the following unitary property [8].

Definition 4.2.1 (OSTBC unitary property). Let the matrices S be MIMO block transmission
matrices that are formed according to Definition 4.1.2. Then we define an OSTBC to be a ST
code that fulfills

SSH =
nS∑

n=1

|sn|2 I.

To explain the introduced relations, we stress a very popular example, the Alamouti code for
the case of two transmit antennas as introduced in [34]. This code is given by

S =
[
s1 s∗2
s2 −s∗1

]
. (4.2)

One easily verifies that the stated code matrix (or block transmission matrix) S fulfills the
OSTBC unitary property from Definition 4.2.1. Furthermore, the Alamouti code can be
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4.2. Orthogonal STBC

explained from the notation of linear STBC given in Definition 4.1.2. The modulation matrices
{An} and {Bn} can be identified to be

A1 =
[
1 0
0 −1

]
, A2 =

[
0 1
1 0

]
, B1 =

[
1 0
0 1

]
, B2 =

[
0 −1
1 0

]
.

The STBC transmission rate of the Alamouti code is RS = nS/L = 2/2 = 1, which means
that with this ST design we are able to transmit one symbol at each time instant on average.
The question how to construct orthogonal STBCs for a larger number of transmit antennas
than two (nT > 2) is rather difficult. One of the basic findings of Tarokh in [35] is that
the construction of linear OSTBC is related to the theory of amicable orthogonal designs.
This means that we relate our unitary property (Definition 4.2.1) to the set of modulation
matrices.

Theorem 4.2.2 (OSTBC and amicable orthogonal designs). Let S be a matrix with structure
given in Definition 4.2.1. Then

SSH =
nS∑

n=1

|sn|2 InT

holds for all complex {sn} if and only if {An,Bn} is an amicable orthogonal design, satisfying

AnAH
n = InT

, BnBH
n = InT

,

AnAH
p = −ApAH

n , BnBH
p = −BpBH

n , for n 6= p,

AnBH
p = BpAH

n ,

(4.3)

for n, p = 1, . . . , nS.

Proof. Is given in the Appendix (Subsection A.2.1).

Although a very interesting field, the treatment of the theory of amicable orthogonal designs
goes far beyond the scope of this thesis. For our analyses it is sufficient to restate one of the
basic insights gained by the research performed in this field.

Theorem 4.2.3 (Nonexistence of full-rate OSTBC for nT > 2). A full-rate (RS = 1) OSTBC
design for complex symbols exists only for nT = 2.

Proof. The proof is far from trivial. It is related to the Hurwitz-Radeon family of matrices
and we do not state it here because it would give us no further insights. The interested reader
is referred to [8] and references therein.

4.2.1. Capacity Analysis of OSTBCs

After having introduced the important class of OSTBCs, we now analyze them in an infor-
mation theoretic sense. The question we are asking is: Are OSTBC capable of achieving the
ergodic channel capacity? Or equivalently: Equals the system capacity of OSTBCs the ergodic
channel capacity?
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4. Analysis of Space-Time Coded Systems

Our derivations follow the arguments in [36], although we try to present a more detailed and
contiguous analysis of the topic than performed in the mentioned paper. To find the system
capacity of OSTBC MIMO systems, we first investigate how an OSTBC influences the effective
channel (see also [8]). The effective channel Heff is constructed in a way that we are able to
rearrange the MIMO block transmission model from Equation (2.3) in a form that the data
symbols appear in an unmodulated form in the relation, i.e. y′ =

√
%/nT Heffs′+n′. Naturally,

the effective channel will reflect the modulation structure of the linear STBC (i.e. the choice of
modulation matrices {An} and {Bn}). In case of OSTBC MIMO systems, we already showed
that the modulation matrices have to satisfy the constraints in Equation (4.3). Let us stay
as general as possible and consider S only to be constructed as an arbitrary linear STBC. We
write

y′ = vec(Y)

= vec
(√

%

nT
HS + N

)
=

√
%

nT
vec

(
H

nS∑
n=1

(Re{sn}An + j Im{sn}Bn)

)
+ vec(N)

=
√

%

nT
(Heff,a Re{s}+ Heff,b Im{s}) + vec(N) ,

where we used the fact that vec(A + B) = vec(A)+vec(B) and we defined

Heff,a , [vec(HA1) , · · · , vec(HAnS
)] , Heff,b , j · [vec(HB1) , · · · , vec(HBnS

)]

and s , [s1, . . . , snS
]T .

The vectorized MIMO transmission model in the above relation can further be simplified
to

y′ =
√

%

nT
Heffs′ + n′,

where we defined

Heff , [Heff,a,Heff,b] , s′ ,
[

Re{s}
Im{s}

]
and n′ , vec(N) .

Having identified a possible representation of the MIMO block transmission model in case
of a linear STBC by means of an effective channel, we are able to look at the consequences
regarding the effective channel in case of an OSTBC. The result is stated in the following
theorem.

Theorem 4.2.4 (Effective channel decoupling property of OSTBC). A linear code as in
Definition 4.1.2 is an OSTBC if and only if the effective channel Heff satisfies

HH
effHeff = ‖H‖2 · I,

for all channels H.

Proof. The proof is equivalent to the one in [8]. We just adapted it to our notation. We start
by evaluating the Frobenius norm (see Subsection A.3.1)

‖Heffs′‖2 = tr
{

(Heffs′)
H Heffs′

}
= tr

{
s′T HH

effHeffs′
}

= s′T HH
effHeffs′,
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4.2. Orthogonal STBC

where we used the fact that since Heffs′ = vec(HS) by construction, the trace operation can
be dropped. Furthermore it follows that ‖Heffs′‖2 = ‖vec(HS)‖2 = ‖HS‖2. This can be
easily shown by using Definition A.3.1. The next step is to include our knowledge about the
structure of OSTBC (see Definition 4.2.1). Again using the definition of the Frobenius norm,
we obtain

‖HS‖2 = tr
{
HS (HS)H

}
= tr

{
HSSHHH

}
,

and by usage of Definition 4.2.1 the above equation simplifies to

‖HS‖2 = tr

{
H

(
nS∑

i=1

|sn|2 I

)
HH

}
=

nS∑

i=1

|sn|2 tr
{
HHH

}
= ‖s‖2 ‖H‖2 .

Since due to our premises, one easily verifies that ‖s‖2 = ‖s′‖2 and that ‖s′‖2 = s′T s′. With
these insights we are able derive the following relation

‖Heffs′‖2 = s′T HH
effHeffs′ = ‖HS‖2 = ‖s′‖2 ‖H‖2 = s′T ‖H‖2 s′.

This implies that HH
effHeff must be equal to ‖H‖2 I, which concludes the proof.

Theorem 4.2.4 shows that by using an orthogonal STBC the effective channel will be orthogo-
nal, irrespective of the channel realization. Thus, if the receiver knows the channel realization
H, it can form the effective channel and consequently use the effective transmission model
y′ =

√
%/nT Heffs′ + n′. Because of the orthogonality of the effective channel, we will see in

Subsection 4.2.2 that the ML receiver decouples into nS independent scalar decisions for which
we have to form a data vector estimate ŝ′ = ‖H‖−2 Re

{
HH

effy
′}. The multiplication of the

received vector y′ with HH
eff can be seen as maximum ratio combining. Taking this first step

of the receiver, we obtain

HH
effy

′ =
√

%

nT
HH

effHeffs′ + HH
effn

′ =
√

%

nT
‖H‖2 s′ + HH

effn
′, (4.4)

where we used Theorem 4.2.4. Due to the fact that we are using an OSTBC, one can show
that the elements of the noise after MRC (i.e. HH

effn
′) are iid with variance ‖H‖2 (com-

pare [36] and [37]). By using the vectorized channel model, the receiver effectively uses
2nS virtual antennas (since the vector s′ has length 2nS). The effective transmit power af-
ter MRC can be obtained by calculating the covariance matrix of the MRC signal output√

%
nT
‖H‖2 s′

E
{

%

nT
‖H‖4 s′s′T

}
=

%

nT
‖H‖4 E{

s′s′T
}

=
%

nT
‖H‖4 1

2
I,

where we assumed that real and imaginary parts of the data symbols are uncorrelated and
have an equal variance of 1/2. Thus, if the receiver combines two virtual antennas (the real
and imaginary part of each data symbol contained in s) respectively, we obtain the effective
SNR at the receiver by

2 · %/nT ‖H‖4 (1/2)
‖H‖2 =

%

nT
‖H‖2 .
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4. Analysis of Space-Time Coded Systems

The main observation here is that (4.4) is effectively a set of nS parallel independent Rayleigh
fading channels with a SNR of %

nT
‖H‖2 in each channel respectively. Since in each effective

channel we are transmitting one data symbol for the duration of L time instances, the MIMO
transmission rate is equal to RS = nS/L. Knowing these coherences, we can state our result on
the derivation of the OSTBC MIMO system capacity (compare [36, 38]).

Theorem 4.2.5 (OSTBC MIMO system capacity). The MIMO system capacity of an arbi-
trary OSTBC design is given by

COSTBC =
nS

L
log2

(
1 +

%

nT
‖H‖2

)
,

where the term nS/L denotes the MIMO transmission rate RS.

Proof. The proof follows the derivation of the nS effective channels and their associated SNRs
of %

nT
‖H‖2. Since the capacity (in bits) of an AWGN channel is given by C = log2 (1 + SNR)

(see [17]) and considering that the capacity of nS parallel independent channels is nS times the
capacity of one channel, it follows that the capacity in bits per channel use (thus motivating
the division by L) is C = nS/L log2 (1 + SNR). This concludes the proof.

After we have obtained the desired result, we can ask, whether an OSTBC is able to achieve
the ergodic channel capacity. The answer to this question is given in the following theo-
rem.

Theorem 4.2.6 (Capacity order of orthogonal STBC). Let H be an iid channel matrix ac-
cording to our MIMO transmission model introduced in Section 2.1. Then

C(H) ≥ COSTBC(H).

The given inequality also holds in the ergodic case, i.e. CE = E{C(H)} ≥ CE,OSTBC =
E{COSTBC(H)}.

Proof. First we reformulate the expression for the channel capacity of a given channel realiza-
tion. Let the singular value decomposition (SVD) of H be UΣVH (see Section A.3.2). Then
the capacity can be written as

C(H) = log2 det
(
InR +

%

nT
HHH

)
= log2 det

(
InR +

%

nT
UΣΣHUH

)
.

Since U is an unitary matrix, thus obeying UHU = I, we do not change the above relation if
we multiply it with det(UHU) = detUH detU = 1. Thus it follows that

C(H) = log2 detUH det
(
InR

+
%

nT
UΣΣHUH

)
detU = log2 det

(
InR

+
%

nT
ΣΣH

)
.

By taking into account that Σ is diagonal, containing the singular values of H, we obtain

C(H) = log2

r∏

i=1

(
1 +

%

nT
λ2

i

)
,
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4.2. Orthogonal STBC

where r denotes the rank (and thus the number of non-zero singular values). Continuing our
evaluation, the product can be expanded to

C(H) = log2


1 +

%

nT

r∑

i=1

λ2
i +

%2

n2
T

i1<i2∑

i1 6=i2

λ2
i1λ

2
i2 +

%3

n3
T

i1<i2<i3∑

i1 6=i2 6=i3

λ2
i1λ

2
i2λ

2
i3 + · · ·+ %r

nr
T

r∏

i=1

λ2
i


 .

By considering the definition of the Frobenius norm (see Definition A.3.1), which states that
‖H‖2 =

∑r
i=1 λ2

i and defining det
(
HHH

)
r

to be the product of non-zero squared singular
values, we finally obtain

C(H) = log2

(
1 +

%

nT
‖H‖2 + · · ·+ %r

nr
T

det
(
HHH

)
r

)
. (4.5)

Next, by using Equation (4.5) it follows that

C(H) = log2

(
1 +

%

nT
‖H‖2 + · · ·+ %r

nr
T

det
(
HHH

)
r

)

≥ log2

(
1 +

%

nT
‖H‖2

)
≥ nS

L
log2

(
1 +

%

nT
‖H‖2

)
= COSTBC(H).

The expansion to the ergodic case follows directly by considering C to be ≥ 0. This concludes
the proof.

We have seen so far that the instantaneous system capacity of OSTBC is in general suboptimal
in terms of the channel capacity, and so is the ergodic OSTBC system capacity. Neverthe-
less our initial question is not fully answered, since we have not investigated under which
conditions we can reach the equality in Theorem 4.2.6. Let us compute the capacity differ-
ence ∆C(H) = C(H) − COSTBC(H) (compare [36]). By using the previous result, we can
write

∆C(H) = log2

(
1 +

%

nT
‖H‖2 + S

)
− nS

L
log2

(
1 +

%

nT
‖H‖2

)
,

where we set S to be S ,
(

%
nT

)2 ∑i1<i2
i1 6=i2

λ2
i1

λ2
i2

+ · · ·
(

%
nT

)r ∏r
i=1 λ2

i . Straightforward manip-
ulation leads to

∆C(H) = log2




1 + %
nT
‖H‖2 + S

(
1 + %

nT
‖H‖2

)nS/L




= log2

[(
1 +

%

nT
‖H‖2

)1−nS/L
(

1 +
S

1 + %
nT
‖H‖2

)]
,

which can be further simplified to

∆C(H) =
L− nS

L
log2

(
1 +

%

nT
‖H‖2

)
+ log2

(
1 +

S

1 + %
nT
‖H‖2

)
. (4.6)

43



4. Analysis of Space-Time Coded Systems

This result shows us that the difference is a function of the channel realization and thus
is a random variable. Since this capacity difference is a function of the channel singular
values, it can be used to answer the question when the OSTBC system capacity coincides
with the channel capacity. The conclusion on this is summarized in the following theorem (see
also [36]).

Theorem 4.2.7 (Capacity optimality of OSTBC). An OSTBC is optimal with respect to
channel capacity when it is rate one and it is used over a channel of rank one.

Proof. Assume that the channel is nontrivial and bounded, i.e., 0 < ‖H‖2 < ∞. Consider
the capacity difference in (4.6). By inspection, the first logarithm term is zero if the code is
rate one (i.e. nS = L). The second logarithm term is zero if and only if S = 0. Since for
‖H‖2 > 0 all quantities are positive, S = 0 implies that each constituent sum-of-product term∑i1<i2···<ik

i1 6=i2···6=ik
λ2

i1
λ2

i2
· · ·λ2

ik
(2 6= k 6= r) in the expression for S is zero. This follows directly by

the following. Assume that all singular values except λ1 are zero, thus describing a channel
of rank one. By definition of the Frobenius norm, λ2

1 = ‖H‖2. Then each sum-of-products
term

∑i1<i2···<ik

i1 6=i2···6=ik
λ2

i1
λ2

i2
· · ·λ2

ik
= 0 because each product λ2

i1
λ2

i2
· · ·λ2

ik
consists of two or more

singular values, at least one of which is zero. Therefore S is zero. If H is of rank 2, then
S = λ2

1λ
2
2 + 0, which is non-zero. It follows, that S = 0 if and only if H is of rank 1. This

concludes the proof.

Despite the pleasing property that OSTBCs decouple the space-time channel into parallel
independent AWGN channels, we showed that the structure imposed by orthogonal STBCs
generally limits the maximal error free output (this is the obtained OSTBC system capacity)
that can be achieved, regardless of the amount of outer channel coding that is employed.
Theorem 4.2.7 describes the cases in which we could achieve channel capacity by an OSTBC
system. Unfortunately the restriction of Theorem 4.2.3 (nonexistence of full-rate OSTBC for
nT > 2), reduces the cases in which OSTBC are optimal. The consequence of the combination
of both theorems is that OSTBC can only achieve channel capacity in case of two transmit
antennas and a rank 1 channel matrix. To visualize the obtained insights, some numerical
simulations of the OSTBC system capacity are presented below.

Numerical Simulations

As mentioned before, we did some numerical simulations to visualize the difference between
the OSTBC system capacity and the ergodic channel capacity. As an OSTBC we used the
Alamouti design and H was assumed to be iid Gaussian. The curves represent results for
the ergodic channel capacity and the OSTBC system capacity in the case of nT = 2 transmit
antennas and nR = 1, 2 receive antennas. For these cases we used the Alamouti design given
in Equation (4.2). The results of our simulations are plotted in Figure 4.1. It can be seen
that the OSTBC design is optimal in terms of ergodic channel capacity in the case of nR = 1.
This corresponds to the unique case of nT = 2, RS = 1 and rank(H) equals to one, in which
OSTBC is capacity optimal. This is because in the case of one receive antenna, the channel H
is of rank one. In the case of nR = 2 receive antennas, the picture changes dramatically. The
curves of OSTBC system capacity and ergodic channel capacity do not coincide anymore, and
even more, the OSTBC system capacity has a much lower slope. This reflects the fact that
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Figure 4.1.: Comparison of OSTBC system capacity with ergodic channel capacity for different
antenna constellations.

OSTBCs have a smaller multiplexing gain. This also implies that OSTBC are not well suited
for transmissions at high rates.

Finally, we computed the mutual information in case of finite symbol alphabets and OSTBC
Alamouti coding. Therefore we used the equivalent transmission model from Subsection A.2.3.
The results are plotted in Figure 4.2. In principle, we can identify the same properties as in
the SM case (compare Figure 3.1). We note that the mutual information curves again huddle
against the OSTBC system capacity curve at low SNR.

4.2.2. Error Performance of OSTBCs

After we had a close look on the system capacity of OSTBCs, we want to investigate how
good or bad an OSTBC design behaves in terms of error performance (and thus diversity).
Again, we rely on the usage of an optimal ML receiver. Besides the analysis of diversity, we
will derive an alternative expression of the ML receiver, which shows clearly that in the case of
OSTBC designs the ML decoding is very simple and efficient. We will conclude our analysis of
OSTBC designs by providing some numerical BER simulations. First, we want to investigate
the diversity gain of OSTBC designs.

Theorem 4.2.8 (Diversity gain of OSTBC systems). OSTBC systems achieve full diversity
(i.e. a diversity gain of nT nR).

Proof. Let us use the notation of Section 3.3. In [6] it is shown that the difference between
two codewords S(i) and S(j) for sn ∈ A is an orthogonal matrix ∆i,j in the case of an OSTBC
design. Thus r(Γi,j) = nT , and accordingly a diversity gain of nT nR is achieved. Further
details may be found in [6].
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Figure 4.2.: Mutual information curves for OSTBC Alamouti coding and different sizes of
symbol alphabets in the case of a nT = 2, nR = 1 channel.

ML Decision Decoupling

After having evaluated the diversity gain of OSTBC designs, we will now concentrate on the
ML receiver. For OSTBCs, we show that the ML detector decouples into nS scalar decisions,
thus significantly reducing the computational complexity.

Reconsidering that the MIMO block transmission model Y =
√

%/nT HS + N (see Equa-
tion (2.3)) can equivalently be written as y′ =

√
%/nT Heffs′ + n′, one can easily show that∥∥∥Y −

√
%/nT HS

∥∥∥
2

equals to
∥∥∥y′ −

√
%/nT Heffs′

∥∥∥
2

. Accordingly, the ML receiver can choose
which of these two metrics to minimize. Furthermore, in the case of OSTBCs the metric de-
couples (compare [8]). Following the notation in Subsection 2.4.1, the ML decision rule can
thus be written as

ŝML = arg min
s′∈S

∥∥∥∥y′ −
√

%

nT
Heffs′

∥∥∥∥
2

= arg min
s′∈S

‖H‖2
∥∥∥∥s̃′ −

√
%

nT
s′

∥∥∥∥
2

, (4.7)

where s̃′ = 1/ ‖H‖2 Re
{
HH

effy
}

is a scaled version of the MRC receive vector. This implies
that the ML detection is equivalent to solve nS scalar detection problems, one for each symbol
sn.

To validate the above simplified ML decision rule, let us write the ML metric mentioned above
as ∥∥∥∥y −

√
%

nT
Heffs′

∥∥∥∥
2

= ‖y‖2 +
%

nT
‖H‖2 ‖s′‖2 − 2

√
%

nT
Re

{
yHHeffs′

}
, (4.8)

where we used the ‖Heffs′‖2 = ‖H‖2 ‖s′‖2 from the Proof of Theorem 4.2.4. Now, let us single
out the term ‖H‖2 and let us disregard the term ‖y‖2, since it does not depend on s′. Then,
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we obtain

arg min
s′∈S

∥∥∥∥y −
√

%

nT
Heffs′

∥∥∥∥
2

= arg min
s′∈S

‖H‖2
(

%

nT
‖s′‖2 − 2

√
%

nT

1
‖H‖2 Re

{
yHHeff

}
s′

)
.

If we identify s̃′ as 1/ ‖H‖2 Re
{
HH

effy
}
, one easily verifies that we can write1

arg min
s′∈S

∥∥∥∥y −
√

%

nT
Heffs′

∥∥∥∥
2

= arg min
s′∈S

arg min
s′∈S

‖H‖2
∥∥∥∥s̃′ −

√
%

nT
s′

∥∥∥∥
2

.

Equation 4.7 shows a very important property of OSTBC designs. Here, the ML receiver can
be implemented in a very efficient way. For the sake of completeness, we note that a detailed

evaluation of the ML metric
∥∥∥Y −

√
%/nT HS

∥∥∥
2

and its decoupling in the case of OSTBC is
given in the Appendix, Subsection A.2.2.

Numerical Simulations

After we have derived a basic understanding of the error performance behavior of OSTBC,
we want to show some simulations we performed. The simulations given in Subsection 4.2.1
represent the performance of OSTBCs in terms of system capacity, whereas we now present
some BER versus SNR results. We performed simulations for the Alamouti scheme from
Equation (4.2) and for the SM design. The results are plotted in Figure 4.3. Since the
Alamouti code is full-rate in this case (nT = 2), we chose A to be a 16-QAM for the Alamouti
code and a 4-QAM for the SM design. Thus, both schemes have a rate of 4 bits/channel
use.

It can be seen that in the low SNR regime both systems have the same performance. However,
in the high SNR regime, the Alamouti scheme performs much better than the SM design,
which is due to the difference in the diversity gain.

4.3. Linear Dispersion Codes

The OSTBCs we investigated in the previous section gave us a first impression about how
a MIMO system can improve the error performance. But, we also observed that its system
capacity may be inferior to the corresponding ergodic channel capacity.

Hassibi and Hochwald showed in [16], among the introduction of the general class of linear
STBC, that it is possible to construct a linear STBCs that achieves the ergodic channel ca-
pacity. In this Section, we want to have a closer look at these LD codes2 and investigate how
they perform in terms of system capacity and diversity.

1This can be seen by adding a constant term ‖Re{Heffy}‖2 / ‖H‖2 (not depending on s′).
2We refer to this MIMO code design as “LD codes”, although the term originally refers to the whole class

of linear STBCs. Nevertheless, the proposed techniques in [16] leads to a specific code structure, which is
commonly referred to as LD-codes. This justifies our notation.
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Figure 4.3.: BER comparison of the orthogonal Alamouti design and a SM design in case of a
nR = 2, nT = 2 channel and a rate of 4.

4.3.1. Definition and Capacity Analysis

A LD code is given by the linear mapping of Definition 4.1.2, i.e.

S =
nS∑

n=1

(Re{sn}An + j Im{sn}Bn) .

Thus, the associated rate of the LD code is given by R = RS log2 Ma = nS/L log2 Ma, where
Ma denotes the size of the symbol alphabet. The design of the LD code depends crucially on
the choices of the parameters L, nS and the modulation matrices {An,Bn}. If we constrain the
STBC block matrix to fulfill Definition 4.2.1, the mapping results in an orthogonal structure,
as we investigated in Section 4.2. Nevertheless, this is only one possible way of choosing
the modulation matrices. The question is, whether we can choose them in a way that the
modulation matrices (or also sometimes called dispersion matrices) transmit some combination
of each symbol from each antenna at every channel use, and therefore leading to desirable gains
in terms of system capacity.

For the construction of the LD codes, Hassibi and Hochwald propose to choose the modulation
matrices {An,Bn} in a way to optimize a nonlinear information-theoretic criterion: the mutual
information between the transmitted signal and the received signal. This criterion is very
important for achieving high spectral efficiency with multiple antennas. The maximization of
the mutual information is a problem which has to be done once for a given antenna constellation
and desired rate once. To be able to optimize the modulation matrices, we have to derive an
equivalent representation of the MIMO block transmission model

Y =
√

%

nT
HS + N
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in a similar way to Subsection 4.2.1. Because we want to obtain an expression that can be
optimized in an efficient manner by means of numerical tools, we search for a real representation
of the effective MIMO transmission model in that subsection. Therefore, let us transpose the
MIMO block transmission model (this will result in a favorable expression of the resulting
effective relation) and decompose the matrices into their real and imaginary parts. Doing so,
we first obtain the transposed system equation

YT =
√

%

nT
ST HT + NT ,

and dropping the (·)T by simply redefining the affected matrices (they now have transposed
dimensions) and performing the mentioned decomposition, we get

YR + jYI =
√

%

nT

nS∑
n=1

[sR,n (AR,n + jAI,n) + jsI,n (BR,n + jBI,n)] (HR + jHI)+NR + jNI ,

where we denoted the real (Re{·}) and imaginary ( Im{·}) part of the matrices by (·)R and
(·)I respectively.

Now let us denote the columns of YR, YI , HR, HI , NR and NI by yR,m, yI,m, hR,m, hI,m,
nR,m and nI,m respectively, where m = 1, . . . , nR. With

An ,
[
AR,n −AI,n

AI,n AR,n

]
, Bn ,

[−BI,n −BR,n

BR,n −BI,n

]
, hm ,

[
hR,m

hI,m

]
,

we can form the system of real equations:



yR,1

yI,1

...
yR,nR

yI,nR




=
√

%

nT




A1h1 B1h1 · · · AnSh1 BnSh1

...
...

. . .
...

...
A1hnR

B1hnR
· · · AnS

hnR
BnS

hnR
,







sR,1

sI,1

...
sR,nS

sI,nS




+




nR,1

nI,1

...
nR,nR

nI,nR




.

Accordingly, the input-output relation of the MIMO channel using a linear STBC can be
represented by

yLD =
√

%

nT
HLDsLD + nLD, (4.9)

where

yLD ,




yR,1

yI,1

...
yR,nR

yI,nR




, sLD ,




sR,1

sI,1

...
sR,nS

sI,nS




, nLD ,




nR,1

nI,1

...
nR,nR

nI,nR




,

and

HLD ,




A1h1 B1h1 · · · AnS
h1 BnS

h1

...
...

. . .
...

...
A1hnR

B1hnR
· · · AnS

hnR
BnS

hnR


 .
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This linear relation between the modulated data symbols (contained in sLD and the complex
receive symbols (rearranged in yLD) implies that we can draw two essential conclusions. First,
we note that the relation from Equation (4.9) shows that the receiver has to solve a number
of real equations with nRL observations of the transmission (these are the entries of Y or
equivalently of yLD) to obtain 2nS values (the transmitted data symbols). Since we assume
perfect channel knowledge at the receiver (from which we can build the effective channel
HLD since the receiver also knows the set of modulation matrices {An,Bn}), the system of
equations between transmitter and receiver is not undetermined as long as nS ≤ nRL. The
second conclusion is that it is possible to derive the mutual information of an arbitrary linear
STBC in terms of the effective channel HLD. This can be used to derive the system capacity
of the proposed LD codes, which is the maximization of the mutual information with respect
to the modulation matrices.

The mutual information of the effective input-output relation from Equation (4.9) can be easily
derived following the arguments in Subsection 2.3.1. The obtained mutual information can
thus be stated as

ILD(yLD; sLD) =
1

2L
log det

(
I2nRL +

%

nT
HLDCsLDHT

LD

)
,

where CsLD denotes the covariance matrix of sLD and we used the subscript 2nRL to denote
the size of the identity matrix. The term 1/(2L) ensures that the mutual information is in
bits per channel use (since the effective channel is real valued and spans L channel uses).
To proceed in the arguments of Subsection 2.3.1, assuming no CSI at the transmitter, the
mutual information can be maximized by choosing CsLD = I2nS . At this point we can use the
same arguments as in Subsection 2.3.2 to obtain the ergodic mutual information. In terms
of the maximization over all possible input distributions, it remains to maximize over the
modulation matrices An and Bn. Therefore, the system capacity of LD codes can be stated
as following:

Theorem 4.3.1 (System capacity of LD codes). Consider the effective channel represen-
tation from Equation (4.9). Then the system capacity of the proposed LD code is given by
(compare [16])

CLD = max
An,Bn,n=1,...,nS

1
2L
E

{
log det

(
I2nRL +

%

nT
HLDHT

LD

)}
.

Proof. The proof is implicitly done following the arguments to derive the mutual information
of arbitrary linear STBC in the previous paragraph.

The question now is whether the system capacity of LD codes can be equal to the ergodic
channel capacity. Since we constrained the number of complex data symbols nS to fulfill
nS ≤ nT L it is clear that CLD ≤ CE , because in terms of capacity, we would have to transmit
nT L independent Gaussian data symbols to achieve the ergodic capacity (as shown in Subsec-
tion 2.3.2), but if we choose nS to be less than nT L, we will not be able to reach the ergodic
capacity. How near we can reach the ergodic channel capacity depends on the specific choice
of the modulation matrices. As an example, by choosing a system with an equal number of
transmit and receive antennas (nR = nT ), therefore setting nS = nRL and fixing the mod-
ulation matrices to form a transmission block matrix S according to a subsequent use of the
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channel by means of a SM design, we would achieve the ergodic channel capacity. Nevertheless,
there may exist other solutions to the maximization problem that will have a desirable gain
in terms of error performance, mentioned in the beginning of this section. According to [16],
the number of complex data symbols nS should be chosen according to nS = min{nT , nR}L
because (compare Subsection 2.3.2) in the high SNR regime the ergodic channel capacity scales
effectively with the number min{nT , nR}L of degrees of freedom.

To completely specify the maximization problem it remains to rewrite the power constraint on
S in terms of the modulation matrices {An,Bn}. To do so, we use the definition of our linear
STBC structure (Definition 4.1.2) and insert it in the power constraint E

{
trSSH

}
= nT L. If

we assume the real and imaginary parts of the complex data symbols sn to be independent with
variance 1/2 respectively, one can easily show that the power constraint on the modulation
matrices is given by

nS∑
n=1

[
tr

(
AnAH

n

)
+ tr

(
BnBH

n

)]
= 2LnT .

According to [16], the above power constraint can be replaced with the stronger constraint

AH
n An = BH

n Bn =
L

nS
I,

for n = 1, . . . , nS . This constraint forces the real and imaginary parts of the complex data
symbols to be dispersed with equal energy in all spatial and temporal dimensions. Furthermore,
the corresponding maximum mutual information (and thus the LD system capacity) will be
less or equal to the system capacity for the original power constraint. Concerning this point,
Hassibi and Hochwald found out that the more stringent constraint generally imposes only a
small information-theoretic penalty while having the advantage of better gains in term of error
performance (or diversity).

Optimization of the modulation matrices

After identifying the important issues concerning the maximization in Theorem 4.3.1 we now
work out the details. In general, no closed expression can be pronounced for the modulation
matrices. Thus, we are forced to use numerically methods. In literature a variety of methods
exists (see, e.g. [39]) but we choose a gradient based method (like in [16]). The basics concerning
this numerical method may be found in [40]. Basically, gradient methods try to find a local
optimum by taking steps proportional to the gradient of the goal function at the current point
of the iteration. This sort of algorithm is very simple and furthermore has the advantage
that MATLAB provides a toolbox for the application of such a maximization. The success
of a gradient based maximum search is generally limited if the underlying goal function is
not convex. Unfortunately this applies to our goal function from Theorem 4.3.1 so that it
cannot be guaranteed that we found the global maximum. Nevertheless we (in compliance
with [16]) observed that the non-convexity of the system capacity does normally not cause
much problems.

To use the gradient based methods, it remains to derive an analytical expression for the
gradient. Our result is stated in the following theorem:
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Theorem 4.3.2 (Gradient of LD system capacity). The gradients of the LD system capacity
from Theorem 4.3.1 with respect to the real and imaginary parts of the modulations matrices
An and Bn are given by

[
∂C(AR,n)

∂AR,n

]

i,j

=
%

nT L
E

{
tr

(
MA,RZ−1

)}
,

[
∂C(AI,n)

∂AI,n

]

i,j

=
%

nT L
E

{
tr

(
MA,IZ−1

)}
,

[
∂C(BR,n)

∂BR,n

]

i,j

=
%

nT L
E

{
tr

(
MB,RZ−1

)}
,

[
∂C(BI,n)

∂BI,n

]

i,j

=
%

nT L
E

{
tr

(
MB,IZ−1

)}
,

where the matrices MA,R, MA,I , MB,R and MB,I are defined as

MA,R = InR
⊗ (

I2 ⊗
(
ξiη

T
j

))
vec(H′) vec(H′)T [InR ⊗An]T

MA,I = InR
⊗

([
0 −1
1 0

]
⊗ (

ξiη
T
j

))
vec(H′) vec(H′)T [InR

⊗An]T

MB,R = InR
⊗

([
0 −1
1 0

]
⊗ (

ξiη
T
j

))
vec(H′) vec(H′)T [InR

⊗Bn]T

MB,I = InR ⊗
([−1 0

0 −1

]
⊗ (

ξiη
T
j

))
vec(H′) vec(H′)T [InR ⊗Bn]T ,

and H′ is given by H′ = [HR,HI ]T .

Proof. The proof is given in the Appendix, Subsection A.2.4.

Using gradient based optimization, we were able to compute a maximization for the case of
nR = nT = 2, L = 2, R = 4 and % = 20dB. Our obtained result is given in Table 4.1. Because
of the non-convexity of the goal function, we cannot guarantee that the found solution is
optimal. Nevertheless, we observe in the following subsection that our solution achieves the
ergodic channel capacity. Furthermore, the obtained solution is highly nonunique: Simply
reordering the modulation matrices with respect to n gives another solution, as does pre- or
post-multiplying all the matrices by the same unitary matrix. However, there is also another
source of nonuniqueness. If we multiply our transmit vector sLD in the effective input-output
relation from Equation (4.9) by a 2nS × 2nS orthogonal matrix ΦT to obtain a new vector
s′LD = ΦT sLD with entries that are still independent and have the same variance as sLD. Thus
we can write the effective input-output relation as

yLD =
√

%

nT
HLDΦΦT sLD + nLD =

√
%

nT
H′

LDs′LD,

where we set H′
LD = HLDΦ. Since the entries of sLD and s′LD have the same joint distribution,

the maximum mutual information obtained from the channels HLD and H′
LD are the same.
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n An Bn

1
[−0.6237 + j0.2313 −0.2237 + j0.0859

0.0123− j0.2394 −0.0266 + j0.6647

] [
0.2274 + j0.0879 0.0766− j0.6593
0.4673− j0.4713 0.2106 + j0.1228

]

2
[−0.4074 + j0.0036 0.1405 + j0.5606
−0.5245 + j0.2426 −0.2531− j0.3194

] [−0.0533 + j0.1833 −0.6672− j0.1355
0.4217 + j0.5346 0.1396− j0.1302

]

3
[−0.4524− j0.6371 0.1788− j0.1972

0.1303− j0.2321 −0.6526 + j0.0577

] [−0.5742 + j0.3630 0.1425− j0.1364
0.0145− j0.1956 −0.0858− j0.6736

]

4
[−0.2723− j0.0259 −0.6185− j0.1254

0.3985 + j0.5161 −0.1721− j0.2684

] [
0.3757 + j0.4191 −0.3660− j0.2267
−0.4053− j0.1377 −0.5605− j0.0221

]

Table 4.1.: Optimized LD code for nR = nT = 2, L = 2 at % = 20 dB.

So, if we write

CLD = max
An,Bn,n=1,...,nS

1
2L
E

{
log det

(
I2nRL +

%

nT
H′

LDH′T
LD

)}

= max
An,Bn,n=1,...,nS

1
2L
E

{
log det

(
I2nRL +

%

nT
HLDΦΦT HT

LD

)}
,

one easily sees that since ΦΦT = I, the multiplication by Φ does not influence the mu-
tual information. Furthermore, since HLD includes the modulation matrices {An,Bn}, we
could redefine them in a way that the entries of Φ are only contained in these redefined
modulation matrices {A′

n,B′
n}. Thus, the transformation is another source of nonunique-

ness.

Nevertheless, the mentioned transformation can be used to change the obtained dispersion code
in a way that it satisfies other criteria (such as diversity) without sacrificing mutual system ca-
pacity. An example of a promising choice for Φ will be given in Subsection 4.3.3.

4.3.2. Capacity Comparison

After we have defined the structure of LD codes and found a way to find good solutions for the
modulation matrices to maximize the mutual information, we want to investigate how good
the obtained code behaves compared to the ergodic channel capacity. Therefore we did some
numerical simulations with the code given in Table 4.1, by numerically evaluating its system
capacity and compare it to the ergodic channel capacity of a nT = nR = 2 MIMO channel.
Our results are plotted in Figure 4.4. To emphasize the benefit of the optimized LD code
compared to the Alamouti OSTBC code from Equation 4.2, we also plotted the Alamouti
OSTBC system capacity curve.

The curves clearly show that the found LD code is able to achieve the ergodic capacity,
although we optimized it just for a fixed SNR of 20dB. Furthermore, the benefit of the

53



4. Analysis of Space-Time Coded Systems

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

SNR at receive antenna in dB

C
a
p
a
c
it

y
 i
n
 b

it
s
 p

e
r
 c

h
a
n
n
e
l 
u
s
e

C
OSTBC

C
E

C
LD

Figure 4.4.: Comparison of ergodic channel capacity in the nT = nR = 2 case with the system
capacity of our optimized LD Code and the system capacity of the Alamouti
OSTBC code.

proposed LD code in comparison to the Alamouti OSTBC in terms of capacity is under-
lined.

4.3.3. Error Performance of LD Codes

The result of the previous subsection showed the impressive advantage of LD codes in terms of
capacity. Nevertheless, it remains to investigate the error performance of LD codes to give an
objective answer to the question, whether the proposed LD code is superior to the Alamouti
OSTBC.

Because of the nonuniqueness of the solutions found by the maximization so far, we are not
able to present a general solution concerning the error performance and the diversity. But we
want to point out an interesting aspect of codes for high rate transmissions (for which LD codes
are more interesting, since the SNR gap to achieve the desired rate between OSTBCs and LD
codes is large). Usually STC design is based on the rank criterion as stated in Section 3.3.
This criterion only depends on matrix pairs and therefore does not exclude matrix designs with
low spectral efficiencies. At high rates, the number of code matrices S in the constellation S is
roughly exponential in the channel capacity at a given SNR. This number can be vary large, for
example a R = 16 code for a nR = nT = L = 4 system effectively has |S| = 2RL ≈ 18.447 ·1018

different code matrices. So even if the rank r(Γi,j) is equal to one for many codeword pairs, the
probability of encountering one of these matrix pairs may still be exceedingly small and thus
the constellation performance may still be excellent. This reverses in the high SNR regime,
since according to our mutual information simulations in Chapter 3, the mutual information
saturates for a fixed symbol alphabet (thus reducing the relative spectral efficiency of the code
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Figure 4.5.: BER performance comparison for a nT = nR = 2 MIMO channel at a rate of
R = 4 bits/channel use.

compared with the channel capacity) and making a decoding error to a near neighbor more
important.

Nevertheless we did some numerical simulations of the BER performance of our optimized LD
code to visualize its error performance. Our first simulation is performed over a nT = nR = 2
MIMO channel with L = 2 channel uses. We are comparing the performance of three MIMO
systems at R = 4bits/channel use. The results are plotted in Figure 4.5, where we chose a 16-
QAM symbol alphabet for the OSTBC system and a 4-QAM symbol alphabet for the SM and
the LD system respectively. We can draw the following conclusions from this result. First, the
BER performance of the LD code is intersecting with the BER curve of the OSTBC. Second,
the LD code always performs better than the SM system. The reason for the first observation is
that in the medium SNR regime (approximately between 8 and 13dB), the BER performance
of the codes is determined by the ability of the system to support the given rate. In this
medium SNR region, it seems that we are discovering the gap between the OSTBC system
capacity and the ergodic channel capacity. Furthermore, because we are transmitting two
data symbols per channel use, we can use a smaller symbol alphabet to achieve the same rate.
In the high SNR regime however, the pairwise error probability is the limiting factor of the
BER performance and concerning this criterion (as we mentioned in the previous paragraph),
the OSTBC is better designed, thus explaining the intersection. Nevertheless, the LD code is
superior to the SM design. This can be explained because in the optimized LD design the data
symbols are spread over space and time thus allowing a small coding gain (as defined in the
discussion of the determinant criterion in Section 3.3). Finally, the proposed LD code seems
to achieve a diversity gain of 2, which is equal to the diversity gain of the SM design. Thus,
OSTBCs can exploit more diversity.

Our second example treats the same MIMO channel as before (nT = nR = 2), but at a different
rate of R = 8bits/channel use. In this case we chose a 256-QAM as symbol alphabet for the
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Figure 4.6.: BER performance comparison for a nT = nR = 2 MIMO channel at a rate of
R = 8 bits/channel use.

OSTBC, and a 16-QAM symbol alphabet for the SM and the LD system, respectively. The
results of our simulation are plotted in Figure 4.6. These curves support our observations
from the last example, although they are much more pronounced. In the high rate regime, the
limiting factor of the BER performance (in case of the ML receiver) is the spectral efficiency
of the system. The difference between the SM and the optimized LD code is much smaller,
thus indicating that the LD code is not able to realize a big coding gain in this case. Also, like
observed in the previous example, the optimized LD code performs worse than the OSTBC in
the high SNR regime, which is due to the lower diversity gain.

4.3.4. Number Theory Extension

After having identified the main drawback of the optimized LD code in terms of error perfor-
mance, we investigate a special extension which can be used to improve the diversity gain of
LD codes.

The main indication for doing so has been already observed by investigating the equality of
the system capacity for a data symbol modulation by an orthogonal matrix ΦT . In [41], the
problem of ST diversity gain is related to algebraic number theory and the coding gain opti-
mization to the theory of simultaneous Diophantine approximation in the geometry of numbers
for the case of a nT = L = 2 STBC. To relate their findings to the proposed LD codes, we first
note that another solution to the maximization of the system capacity in Theorem 4.3.1 in the
case of nT = nR = L = 2 with Q chosen to be four, is (compare [16])

A2(k−1)+l = B2(k−1)+l =
1√
2
Dk−1Πl−1, (4.10)
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where we defined

D ,
[
1 0
0 −1

]
, Π ,

[
0 1
1 0

]
.

According to Definition 4.1.2, this results in a transmission block matrix structure of

S =
1√
2

[
s1 + s3 s2 + s4

s2 − s4 s1 − s3

]
. (4.11)

As mentioned above, in [41] another STBC structure is proposed, which has been optimized
based on number theory. The explanation of the corresponding theoretical fundament is be-
yond the scope of this thesis, but we would like to give an idea of the basics. Therefore we
repeat the following proposition from [41].

Theorem 4.3.3 (Number theory diversity gain optimum). If a STBC code structure

S =
1√
2

[
s1 + φs3 θ(s2 + φs4)

θ(s2 − φs4) s1 − φs3

]
,

with θ2 = φ is used, the corresponding diversity gain is maximized if φ is an algebraic number
of degree ≥ 4 over Q[j] for all symbol constellations carved from Z[j]. Here Z[j] denotes the
ring of complex integers and Q[j] the field of complex rational.

Proof. Can be found in [41].

If we consider a code structure as in Theorem 4.3.3, we can write the coding gain of the STBC,
δ(φ), given by the determinant criterion of Subsection 3.3 as (compare [41]):

δ(φ) = inf
s6=(0,0,0,0)T∈Z[i]4

(
det

(
SSH

))1/2
,

where we defined s = (s1, . . . , s4)T to be the vector of the transmitted complex data symbols
and we defined Z[i] to be the ring of complex integers. In the case of four transmitted symbols,
s is accordingly defined over the ring Z[i]4. In the case of finite symbol alphabets, the above
equation simplifies to

δ(φ) = min
s=s1−s2,s1 6=s2∈S

∣∣s2
1 − s2

2φ− s2
3φ

2 + s2
4φ

3
∣∣ ,

where s1 and s2 denote a pair of possible transmit symbol vectors s, drawn from the con-
stellation S. The main finding of [41] is that if φ is an algebraic number of degree ≥ 4 over
Q[i], then one guarantees the maximum transmit diversity over all constellations carved from
Z[i]4. Here, we denoted the ring of complex rational by Q[i]. Without going to far into detail,
we note that for φ to be algebraic, there exists an unique irreducible polynomial of degree n,
which has φ as a root. Now if φ is an algebraic number of degree ≥ 4 (and thus the polynomial
is of degree ≥ 4) over Q[i], then {1, φ, φ2, φ3} is a so-called “free set”, if

∑3
j=0 ajφ

j = 0 (with
aj ∈ Q[i]) results in a0 = a1 = a2 = a3 = 0. This guarantees that δ(φ) 6= 0 for all constel-
lations carved from Z[i]4 and thus leads to the maximum transmit diversity. Furthermore,
in [41], it is shown that if φ is an algebraic number of degree 2 over Q[i] and if φ2 ∈ Q[i], then
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Figure 4.7.: BER performance comparison of the number theory optimized LD code at a rate
R = 4 in a nR = nT = 2 MIMO channel.

one can also guarantee the maximum transmit diversity over all constellations carved from
Z[i]4, which leads to the proposed code design.

Using the above STBC structure and comparing it with our structure of the LD code, one
may see that these two merge in case of the following redefinition of the modulation matri-
ces.

Theorem 4.3.4 (Number theory optimized LD code for nR = nL = L = 2). The modulation
matrices of the LD code which corresponds to the number theory optimized STBC structure
from Definition 4.3.3 are given by

Aopt,1 = Bopt,1 = A1, Aopt,2 = Bopt,2 = θA2,

Aopt,3 = Bopt,3 = φA3, Aopt,4 = Bopt,4 = θφA4,

where the An, n = 1, . . . , nS are defined as in Equation 4.10.

Proof. The proof follows directly by inspection of the structure in Equation (4.11) and the one
in Definition 4.3.3.

Furthermore one may show that the new modulation matrices can be rewritten in a way that
the effective channel (Equation (4.9)) can be rewritten in the form yLD =

√
%/nT HLDΦΦT sLD+

nLD with Φ being unitary. Thus according to our already stated arguments, the system ca-
pacity of the LD codes stays the same, though improving its diversity performance. The proof
is given in the Appendix, Subsection A.2.5. According to [41], the algebraic number φ is
optimized according to the used symbol alphabet. For the case of a 4-QAM, φ is given by
φ = exp(j/2).
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4.3. Linear Dispersion Codes

With these insights we performed another numerical simulation of the BER performance of the
LD code for the case nR = nT = L = 2 with nS = 4 and using a 4-QAM symbol alphabet, thus
resulting in a rate of R = 4bits/channel use. The obtained results are plotted in Figure 4.7. For
comparison we also plotted the curves from the basic LD code and the curve of the Alamouti
OSTBC for the same rate. We can clearly see that the LD code optimized by means of number
theory performs equally well in terms of diversity as the OSTBC does (which means that it
achieves full diversity), but offering the big advantage of a system capacity equally to the
ergodic channel capacity.

To conclude this chapter we want to note that the optimization of the LD codes was al-
ways performed assuming an iid Gaussian model for the channel H. If a correlated chan-
nel is assumed, the solution no longer is optimal in terms of system capacity. The inter-
ested reader may find additional information regarding the modified optimization for example
in [42].
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5. Diversity-Multiplexing Tradeoff

In the previous chapters we have discussed that different systems perform differently well
in terms of system capacity (or equivalently multiplexing gain) and error performance (or
equivalently diversity gain). Although we encountered that the LD system which is able
to achieve the ergodic channel capacity has in general a bad error performance and that a
OSTBC system performs vice versa, the question if there exists a tradeoff between these two
performance measures remained unanswered.

In [26], Zheng and Tse established that there is a tradeoff between these two types of gains (mul-
tiplexing and diversity), i.e., how fast error probability can decay and how rapidly data rate can
increase with SNR. To relate the notation of the cited paper, we note that the term scheme cor-
responds somehow to the term system used in the context of this thesis.

In this chapter we will show a short derivation of the optimal tradeoff (based on the proofs
given in [26]) and its connection to the outage probability as well as the error probability.
Furthermore we will try to establish a way to visualize the tradeoff by means of the outage
probability (as also done in [43] and [44]). We then evaluate the tradeoffs achieved by OSTBC
systems and LD systems treated in this thesis. We will conclude this chapter by providing
an interesting connection of the diversity-multiplexing tradeoff to the theory of asymptotic-
information lossless designs.

5.1. The Optimal Tradeoff

Within this section we provide the optimal tradeoff for a given MIMO channel (i.e. determined
by the number of receive (nR) and transmit (nT ) antennas), which is the upper bound achiev-
able by any ST system. To do so, we formally follow the arguments given in [26], although only
presenting the basic steps since a complete treatment of the underlying theory goes beyond the
scope of this thesis. At the beginning, let us define the diversity gain d and the multiplexing
gain r.

Definition 5.1.1 (Diversity gain and multiplexing gain). For a given SNR %, let R(%) be the
transmission rate and let Pe(%) be the packet error probability at that rate. Then a MIMO
system achieves a spatial multiplexing gain r if

r , lim
%→∞

R(%)
log %

,

and a diversity gain d if

d , − lim
%→∞

log Pe(%)
log %

.
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5. Diversity-Multiplexing Tradeoff

These definitions are motivated by two observations we already made in this thesis. Since the
performance gain at high SNR is dictated by the SNR exponent of the error probability, the
above definition somehow “extracts” its exponent, which is the diversity gain we always referred
to. Furthermore, in Subsection 2.3.2 we described the ergodic channel capacity behavior in
the high SNR regime. The result suggests that the multiple-antenna channel can be viewed as
min{nT , nR} parallel spatial channels - hence the number min{nT , nR} is the total number of
degrees of freedom to communicate. The idea of transmitting independent information symbols
in parallel through the spatial channels is called spatial multiplexing. Now let us think of a
system for which we increase the data rate with SNR (for example by simply changing the size
of the symbol alphabet depending on the SNR). Then we can write R(%) as the actual rate of
the system at the given SNRs. Certainly, the maximum achievable rate R(%) of a system is
its system capacity. So we can interpret the maximum spatial multiplexing gain rmax as the
slope of the system capacity in the limit of % →∞.

After having stated the two performance gains in terms of rate (or system capacity) and error
probability (or diversity), we can investigate the optimum tradeoff between these two gains.
Therefore let us denote d∗(r) to be the optimal tradeoff achievable. It seems intuitive to define
d∗(r) to be the supremum of the diversity advantage at a given multiplexing gain r over all
schemes, i.e.

d∗(r) , sup d(r).

With this in mind, the maximum achievable diversity gain and the maximum achievable spa-
tial multiplexing gain in a MIMO channel can be denoted as d∗max = d∗(0) and r∗max = sup{r :
d∗(r) ≥ 0}. For the derivation of the optimal tradeoff d∗(r) we want to use a special no-
tation also used by Zheng and Tse to denote an exponential equality, i.e., f(x) .= xb de-
notes

lim
x→∞

log f(x)
log x

= b.

With this notation, diversity gain can also be written as Pe(%) .= %−d. The notations
.≤ and

.≥ are defined similarly.

Before going into detail on the derivation of the optimal tradeoff, we want to note some
important facts. The diversity gain defined for the optimal tradeoff differs from the one derived
in Section 3.3, because the diversity gain defined there is an asymptotic performance metric
of a system with a fixed rate. To be specific, until now, the speed that the error probability
(of the ML detector) decays as SNR increases at a specific (but fixed) rate has been called the
diversity gain. Now we relax the definition and allow a change of the rate of the transmission.
This is done, because in the formulation of the diversity-multiplexing tradeoff, the ergodic
channel capacity (or the system capacity) increases linearly with log % and hence, in order
to achieve a nontrivial fraction of the capacity at high SNR, the input data rate must also
increase with SNR. Accordingly, this implies that for a given system, the symbol alphabet of
the transmitted data symbols has to increase. Under this constraint, any fixed code (a system
with fixed number of data symbols and symbol alphabet size) has a spatial multiplexing gain
of 0. To see this, compare our results from Chapter 3, which show that the mutual information
(or the actual data rate) for a fixed symbol alphabet saturates, thus in the limit of % → ∞
showing a slope of 0, which would be the associated multiplexing gain. On the other hand,
if we fix the rate, the system could realize the maximum possible diversity gain (compare
also Subsection 2.3.4). Over all, this means that in the context of the diversity-multiplexing
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tradeoff, we operate with non-fixed rates of transmission and allow a trading of the decay of
the error probability for a non-vanishing multiplexing gain.

Having gained a basic understanding of the used terminology, we can proceed in deriving the
optimal tradeoff d∗(r). A complete (and formally clean) derivation may be found in [26], but
to gain a basic understanding of the tradeoff itself, we will state the important steps of the
derivation. We start by noting that the probability of a packet error in a MIMO transmission
may be upper bounded by the outage probability derived from the MIMO channel capacity
(see Subsection 2.3.4 for details).

Theorem 5.1.2 (Outage probability bound on error rate). For any coding (or system) the
average (over the channel realizations) probability of a packet error at rate R = r log % is
lower-bounded by

Pe(%) ≥ pout(R).

Proof. Let the transmitted block matrix S be ∈ CnT×L, which is uniformly drawn from a
codebook S. Since we assume the channel fading coefficients of H to be unknown at the
transmitter, we assume that S is independent of H. Conditioned on a specific channel real-
ization H = H0, we write the mutual information of the channel as I(S;Y|H = H0), and
the probability of an error as Pr(error|H = H0). Then by the usage of Fano’s inequality (see
Subsection A.1.6), we get

1 + Pr(error|H = H0) log |S| ≥ H(S|H = H0)− I(S;Y|H = H0)
= H(S)− I(S;Y|H = H0).

Since our rate is fixed by R bits per channel use, the size of S is |S| = 2RL, and we assumed
S to be drawn uniformly from S (which implies that H(S) = log |S|), the above equation
simplifies to

1 + Pr(error|H = H0)RL ≥ RL− I(S;Y|H = H0),

which can be rewritten to

Pr(error|H = H0) ≥ 1− I(S;Y|H = H0)
RL

− 1
RL

.

Now average over H to get the average error probability Pe(%) = E{Pr(error|H = H0)}. Then,
for any δ > 0, and any H0 in the set Dδ , {H0 : I(S;Y|H = H0) < R − δ} (which is exactly
the definition of the outage event at rate R−δ and thus Pr(Dδ) denotes the outage probability),
the probability of error is lower bounded by

Pe(%) ≥
(

1− R− δ

RL
− 1

RL

)
Pr(Dδ). (5.1)

By taking δ → 0, Pr(Dδ) gets pout(R) and in the case of indefinitely long coding (L →∞), we
obtain Pe(%) ≥ pout(R), which concludes the proof.

With the outage probability as a lower bound on the error probability, Zheng and Tse showed
in [26] that the outage probability at a given rate is exponentially equivalent to

pout(R) .= Pr
[
log det

(
I +

%

nT
HHH

)
< R

]
.= Pr

[
n∏

i=1

(1 + %′λi) < %′r
]

.
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Let λi = %′−αi . Then, at high SNR, we have (1 + %′λi)
.= %′(1−αi)

+
, and thus we can

write

pout(R) .= Pr

[
n∑

i=1

(1 + αi)+ < r

]
,

where %′ = %/nT (we will drop the (·)′ in the following) and λi, i = 1, . . . , n denote the ordered
singular values of HHH . Furthermore, the rate R is expressed by R = r log % and (x)+ denotes
max{0, x}. By evaluating the probability density of α and taking the limit % →∞, they showed
that the outage probability is exponentially equal to

pout(R) .= %−dout(r),

as long as 0 ≤ r ≤ min{nT , nR}. The obtained diversity curve dout(r) is denoted by the
subscript out since it refers to an upper bound on the optimal diversity-multiplexing trade-
off.

To further deepen our understanding of the tradeoff, we want to investigate its connection to
the pairwise error probability (PEP). Without going too far into detail, we just want to state
that Zheng and Tse showed in [26] that the PEP is exponentially equal to

Pr
(
S(i) → S(j)

)
.= %−nR

PnT
i=1(1−αi)

+
.

The quantity
∑nT

i=1(1 − αi)+ is implicitly a function of the multiplexing gain r. As the rate
R increases with SNR, the codebook and therefore the matrix ∆i,j changes, which in turn
affects the αi. The diversity curve obtained by the analysis of the PEP can be denoted by
dG(r) and provides a lower bound on the optimal diversity-multiplexing tradeoff. Zheng and
Tse showed that for block lengths L ≥ nT +nR−1 the lower and upper bound always coincide.
Nevertheless, throughout this thesis, we will refer to the upper bound dout(r) if we talk about
the optimal diversity-multiplexing tradeoff (as it is done, e.g. in [43]) even in the case of
L < nT + nR − 1.

With this insight, the average error probability can be exponentially bounded by %−dout(r), but
in addition, there is one more interesting fact to discover. Take Equation (5.1) and substitute
R by r log %. Then in the limit of % →∞, the bound holds even if we choose to code over a finite
block length L < ∞. Thus, the optimal tradeoff curve gets tight for % →∞ even for L < ∞.
Thus, we can use the outage probability of the system capacity to derive the tradeoff curve
achieved by a given MIMO system. In the case that we derive the outage probability from
the ergodic channel capacity, dout(r) is the optimum tradeoff curve d∗(r) (strictly speaking for
L ≥ nT + nR − 1), and by a consequent analysis of the αi in the case of an iid channel H,
Zheng and Tse were able to compute d∗(r).

Theorem 5.1.3 (Optimal diversity-multiplexing tradeoff). The optimal tradeoff curve d∗(r) is
given by the piece-wise linear function connecting the points (k, d∗(k)), k = 0, . . . , min{nT , nR}
and

d∗(k) = (nT − k)(nR − k).

Proof. Is given in [26].
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Figure 5.1.: Optimal diversity-multiplexing tradeoff curve for a nT = nR = 2 and a nT = nR =
4 MIMO channel.

In Figure 5.1, the optimal tradeoff curves of two different MIMO channels are depicted. In
the case of the nT = nR = 2 MIMO channel, we can clearly see that the maximum achievable
diversity gain d∗max is four, which corresponds to the full diversity of nRnT we mentioned
in the previous chapters. Furthermore, we see that the maximum spatial multiplexing gain
r∗max is two, which corresponds to a simultaneous transmission of two symbols per channel
use. In general, the tradeoff curve intersects the r axis at min{nT , nR}. This means that
the maximum achievable spatial multiplexing gain r∗max is the total number of degrees of
freedom provided by the channel. On the other hand, the curve intersects the d axis at the
maximal diversity gain d∗max = nRnT corresponding to the total number of independent fading
coefficients.

To conclude, we want to note that the optimal tradeoff bridges the gap between the two design
criteria diversity and spatial multiplexing we were talking about in the preceding chapters of
this thesis. The tradeoff curve provides a more complete picture of the achievable performance
over MIMO channels.

5.1.1. Visualizing the Tradeoff

To visualize the optimal tradeoff for the nR = nT = 2 MIMO channel depicted in Figure 5.1, we
show the relationship between SNR, rate and outage probability by plotting pout as functions
of SNR for various rates. The result is plotted in Figure 5.2. Each curve represents how outage
probability decays with SNR for a fixed rate R. As R increases, the curves shift to higher SNR.
To see the diversity-multiplexing tradeoff for each value of r, we evaluate pout as a function
of SNR and R = r log2 % for a sequence of increasing SNR values and plot pout(r log2 %) as
a function of SNR for various r values. In Figure 5.3, several such curves are plotted for
various values of r; each is labeled with the corresponding r and dout(r) values. Figure 5.2 is
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Figure 5.2.: Family of outage probability curves as functions of SNR for target rates of R =
1, 2, . . . , 40 bits per channel use for the nT = nR = 2 MIMO channel.

overlaid as grey lines. For comparison purpose, we draw dashed lines with slopes d∗(r) for the
according multiplexing gain r values. According to Theorem 5.1.3, the solid and dashed curves
have matching slopes for high SNR. We see that when R increases faster with SNR (i.e. r is
larger), the corresponding outage probability decays slower over the SNR (i.e. d decreases).
This is the fundamental diversity-multiplexing tradeoff.

To obtain further intuition, we perform the following approximation. Instead of pout(R) .=
%−dout(r), we replace the asymptotic equality .= with an exact =. This approximation turns
the smooth pout(R) curves into piecewise linear lines, since for growing SNR and a fixed rate,
the multiplexing gain r decreases and thus, the exponent dout(r) is 3r−4 for r < 1 and r−2 for
r ≥ 1. This results in the two different slopes of the outage probability curve. Figure 5.4 shows
the linearized outage probability curves (solid black). For comparison (and as a visual proof to
that the approximation is valid) we overlaid Figure 5.2 (dotted magenta). We observe that the
SNR-pout(R) plane now has two distinct regions, each having a set of parallel lines. The upper-
right half has denser lines, while the lower-left half has more sparse and steeper lines. These
two regions correspond to the two linear pieces of the diversity-multiplexing tradeoff curve for
the nR = nT = 2 MIMO channel. The boundary is the line pout = %−1, which is the point
labeled r = 1, d = 1 in the optimal tradeoff curve (compare Figure 5.1).

The slopes and gaps between the curves in Figure 5.4 lead to a concept called local diversity-
multiplexing tradeoff, which is different from the global scale tradeoff we have defined. If
we are operating at a certain (R, %, pout) point, and we increase the SNR, the local tradeoff
characterizes the relationship between the incremental increase in rate and reduction of pout.
Thus, if we are in the upper-right region of Figure 5.4, and we spend all extra SNR on increasing
rate and keep pout constant, we can get 2 extra bits per channel use for every additional 3dB
in SNR. If, on the other hand, we spend all the SNR on the reduction of pout and keep the rate
constant, we can get 2 orders of magnitude reduction for every additional 10dB in SNR. We
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Figure 5.3.: Family of outage probability tradeoff curves pout(r log2 %) as functions of SNR %
for various multiplexing gains r for a nR = nT = 2 MIMO channel (for a SM
system).

can also get any linear combination of those two extremes because the lines are parallel. This
corresponds to a straight line connecting the two points (r, d) = (0, 2) and (2, 0), which is the
lower piece of the global tradeoff d∗(r) from Figure 5.1 extended to r = 0. Similar arguments
can be given for the lower left region of Figure 5.4, which results in a local tradeoff of a straight
line connecting (r, d) = (0, 4) and (4/3, 0). Note that the maximum multiplexing gain of 2 is
not achieved. Thus, for the system designer, different segments of the diversity-multiplexing
tradeoff curve are important, depending at which SNR level and which target error rate the
system operates (see also [43]).

5.2. Tradeoffs of STBCs

After we had a close look at the optimal tradeoff and its implications on system design, we
want to investigate how well the already treated systems behave in terms of the diversity-
multiplexing tradeoff. In the case of OSTBCs, the problem of the tradeoff curve can be solved
analytically [26], whereas in the case of the LD system, only a numerical solution in analogy
to Figure 5.3 can be pronounced.
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Figure 5.4.: Family of linearized outage probability curves as functions of SNR % at various
rates for the nT = nR = 2 MIMO channel.

5.2.1. Orthogonal STBCs

We are investigating the Alamouti OSTBC for nT = 2 transmit antennas. As described in
Section 4.2, the effective input output relation can be written as

y′ =
√

%

2
Heffs′ + n′,

which after MRC reduces to two independent channels with path gain
√

%/2 ‖H‖2 respectively.
As shown in [26], ‖H‖2 is chi-square distributed with 2nT nR degrees of freedom. Furthermore,
it is shown that for small ε, Pr(‖H‖2 ≤ ε) ≈ εnT nR . As also mentioned in Section 4.2,
conditioned on any realization of the channel matrix H = H0, the Alamouti design has a
system capacity of log(1 + % ‖H0‖2 /2). The outage event for this channel at a given rate R
may thus be defined as {

H0 : log
[
1 +

%

2
‖H0‖2

]
< R

}
.

Using the outage probability as lower bound on the error probability, one may see that (com-
pare [26])

pout(R) = Pr
(
log

[
1 +

%

2
‖H‖2

]
< R

)
= Pr

(
1 +

%

2
‖H‖2 < %r

)

.= Pr
(
‖H‖2 ≤ %−(1−r)+

)
.= %−nRnT (1−r)+ .

Following the arguments of [26], this defines the tradeoff curve dAlamouti(r) = dout(r) =
nRnT (1− r)+ = nR2(1− r)+.

Figure 5.6 shows the obtained tradeoff curve in comparison to the optimal tradeoff for the nT =
nR = 2 MIMO channel. We can observe that the Alamouti OSTBC system is in general not
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Figure 5.5.: Outage probability curves and limiting slopes of the LD system for a nT = nR = 2
MIMO channel.

r 1.75 1.5 1.25 1.0
d̃ 0.23 0.45 0.74 1.0

Table 5.1.: Measured values of the diversity gain from Figure 5.5 for the optimized LD code
of Table 4.1.

optimal. It achieves the maximum diversity gain, but falls below the optimum tradeoff curve for
positive values of r. The maximum spatial multiplexing gain of rAlamouti,max = 1 corresponds
to the slope of the system capacity curve obtained in Section 4.2.

5.2.2. LD Code

We now investigate the diversity-multiplexing tradeoff of LD codes. Unfortunately, an analyt-
ical analysis of the tradeoff is far from trivial. Therefore, we base the evaluation of the tradeoff
curve on numerical simulations in analogy to Figure 5.3, where we compute the outage proba-
bilities of the LD system capacity. If drawn as a function of % with r log % increasing rates, we
get an approximate tradeoff curve. Figure 5.5 shows our simulation results. From measuring
the slopes of the drawn tangents, we obtain the values, which are pronounced in Table 5.1.
The diversity gain values for r < 1 seem hard to measure correctly, thus we are not relying
on them, but we propose another argument. We know from our previous investigations that
the maximum diversity gain achievable by the LD codes in a nT = nR = 2 MIMO channel
is approximately 2. If we round the diversity values obtained by measurement to the values
denoted by d̃ in Table 5.1, we obtain a realistic tradeoff curve for the optimized LD system
of Table 4.1. The obtained curve is shown in Figure 5.6 in comparison to the tradeoff of the
Alamouti OSTBC and the optimal tradeoff. We can see that the tradeoff curve of the pro-
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Figure 5.6.: Diversity-multiplexing tradeoff curve for the standard Alamouti design (compare
Equation 4.2) and the optimized LD system (compare Table 4.1) for a nT = nR = 2
MIMO channel.

posed LD system coincides with the lower piece of the optimal tradeoff curve. Nevertheless,
the maximum possible diversity gain of 4 is not achieved.

The fact that LD codes are able to achieve the maximum spatial multiplexing gain can be
summarized in the so-called theory of asymptotic-information-lossless designs (see [45]). Here,
a STBC design SX is defined to be an asymptotic-information-lossless (AILL) design for nR

receive antennas, if

lim
%→∞

C(%)
CX(%)

= 1,

where CX(%) denotes the system capacity of the design “X” (for example LD).

Obviously, OSTBCs are not AILL, since for nT > 2 or nR ≥ 2 the system capacity has a
lower slope and thus the above limit tends to infinity. In case of the LD codes however, one
can see that they are AILL designs (compare [45]), since although we could not guarantee a
system capacity that coincides with the ergodic channel capacity, the slope of the LD system
capacity can be shown to be equal to the slope of the ergodic channel capacity. Thus, in
the limit of % → ∞, the difference between the ergodic channel capacity and the LD system
capacity vanishes, thus showing that LD systems are in fact AILL. In case of the number theory
extended LD code from Definition 4.3.3, one may even be able to check that this system is
information-lossless (ILL), what implies that the fraction C(%)/CLD,number theory(%) is equal
to 1 for all %. This has been shown in [16], by proofing that the basic LD code structure of
Equation (4.11) that is extended by Φ to fulfill the error performance criteria, is an analytically
optimal solution of the maximization problem.

Finally, we want to note that the STBC structure from Definition 4.3.3 (which in fact is
a transformed LD system) can achieve the optimal tradeoff curve for all values of r. The
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proof would go beyond the scope of this thesis, so we refer the interested reader to [41]. In
addition recent, papers concerning the construction of ST systems are merely relying on the
reachability of the optimal tradeoff curve instead of optimizing either the diversity or the
spatial multiplexing gain. Examples therefore may be [46] or [33].
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A. Appendix

A.1. Basic Definitions of Information Theory

The basic definitions given within this section are merely based on [17] and [18].

A.1.1. Entropy

We will first introduce the concept of entropy, which is a measure of uncertainty of a random
variable.

Definition A.1.1 (Entropy of a discrete random vector). Let x be a discrete random vector
with alphabet X and probability mass function px(ξ) = Pr(x = ξ), ξ ∈ X . Then, the entropy
H(x) of a discrete random vector x is defined as

H(x) , −
∑

ξ∈X
px(ξ) log px(ξ).

If the logarithm is chosen to have base 2, the entropy is expressed in bits. If the base of
the logarithm is e, then the entropy is measured in nats. This disposition keeps valid for
all following definitions. If x is not a discrete, but a continuous vector, we can define the
differential entropy:

Definition A.1.2 (Entropy of a continuous random vector (differential entropy)). Let x be
a random continuous vector with cumulative distribution function Fx(ξ) = Pr(x ≤ ξ). If x is
continuous, then Fx(ξ) has to be continuous too. Furthermore let fx(ξ) = ∂

∂ξFx(ξ) when the
derivative is defined. If

∫∞
−∞ fx(ξ)dξ = 1, then fx(ξ) is called the probability density function

for x. The set, where fx(ξ) > 0 is called the support set Ω of x:

fx(ξ) =

{
> 0, ξ ∈ Ω,

= 0, ξ 6∈ Ω.

The differential entropy h(x) of a continuous random vector x with pdf f(ξ) is defined as

h(x) , −
∫

Ω

fx(ξ) log fx(ξ)dξ.

After we have defined the entropy of a single random vector, we will now extend the definition
to a pair of random vectors. There is nothing really new in this definition because (x,y) can
be considered to be a single random vector with larger size, but for the sake of completeness,
we will state this definition too.

73



A. Appendix

Definition A.1.3 (Joint entropy of a pair of discrete random vectors). Let, in analogy to
Definition A.1.1, X and Y be the alphabets of x and y respectively. Furthermore, let px,y(ξ, η)
be the joint probability mass function (compare e.g. [12]). Then, the joint entropy H(x,y) of
a pair of discrete random vectors (x,y) is defined as

H(x,y) , −
∑

ξ∈X

∑

η∈Y
px,y(ξ, η) log px,y(ξ, η).

And as in the discrete case, we can extend the definition of the differential entropy of a single
random vector to several random vectors.

Definition A.1.4 (Joint differential entropy). Let fx,y(ξ, η) be the joint probability density
function (compare, e.g. [12]) of the pair of continuous random vectors (x,y). Furthermore, let
(in analogy to Definition A.1.2) Ωξ,η be the support set of the joint probability density function:

fx,y(ξ,η) =

{
> 0, (ξ, η) ∈ Ωξ,η,

= 0, (ξ, η) 6∈ Ωξ,η.

Then the differential entropy of this vector pair is defined as

h(x,y) , −
∫

Ωξ,η

fx,y(ξ,η) log fx,y(ξ,η)dξdη.

We also define the conditional entropy of a random vector given another random vector as the
expected value of the entropies of the conditional distributions, averaged over the conditioning
random variable.

Definition A.1.5 (Conditional entropy of discrete random vectors). If, in analogy to Defini-
tion A.1.3, the joint probability mass function of (x,y) is given by px,y(ξ,η), with X and Y
defining the alphabets of x and y, respectively, then the conditional entropy H(y|x) is defined
as

H(y|x) ,
∑

ξ∈X
px(ξ)H(y|x = ξ) = −

∑

ξ∈X

∑

η∈Y
px,y(ξ, η) log py|x(η|ξ).

This definition includes the description of a slightly modified version of the conditional entropy
of discrete random vectors. The term H(y|x = ξ) denotes the entropy of y given that x = ξ
(i.e., x was already observed to be ξ [18]). This conditional entropy with already observed
condition vector may be written as

H(y|x = ξ) , −
∑

η∈Y
py|x(η|ξ) log py|x(η|ξ).

The Definition A.1.5 can of course be extended (in an equivalent manner as already twofold
done) to the continuous case.

Definition A.1.6 (Conditional differential entropy of continuous random vectors). If (x,y)
has a joint density function fx,y(ξ, η) with a support set, equally defined as in Definition A.1.4,
we can define the conditional differential entropy h(y|x) as

h(y|x) , −
∫

Ωξ,η

fx,y(ξ,η) log fy|x(η|ξ)dξdη.
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A.1.2. Mutual Information

The entropy of a random variable is a measure of the uncertainty of a random variable. It is
a measure of the amount of information required on average to describe the random variable.
Now we want to introduce a related concept: Mutual information.

Mutual information is a measure of the amount of information that one random variable con-
tains about another random variable. It is the reduction of uncertainty of one random variable
due to the knowledge of the other. Without going further into details on the interpretation of
the mutual information, we specify its definition (compare also [47]):

Definition A.1.7 (Mutual information of discrete random variables). Consider two random
variables x ∈ X and y ∈ Y, with X and Y denoting the alphabet of x and y, respectively.
If px,y(ξ, η) denotes the joint probability mass function and px(ξ) and py(η) denoting the
marginal probability mass functions of x and y, respectively, then the mutual information
I(x;y) is defined as

I(x;y) ,
∑

ξ∈X

∑

η∈Y
px,y(ξ, η) log

px,y(ξ,η)
px(ξ)py(η)

.

In the case of continuous random vectors, we can define the mutual information as:

Definition A.1.8 (Mutual information of continuous random variables). Let x and y denote
two random vectors with joint pdf fx,y(ξ,η). Furthermore, let Ωξ,η be the support set of the
joint pdf, as already introduced in Definition A.1.4 and let fx(ξ) and fy(η) denote the marginal
pdfs of x and y, respectively. Then the mutual information is defined as

I(x;y) ,
∫

Ωξ,η

fx,y(ξ, η) log
fx,y(ξ, η)
fx(ξ)fy(η)

dξdη.

With these definitions in mind, we can rewrite the mutual information in terms of entropies
(for an intuitive interpretation see for example [12]). These relations are very important and
often used in information theoretic analysis. For the case of discrete random vectors, we can
write

I(x;y) = H(x)−H(x|y) = H(y)−H(y|x), (A.1)

where the second equation follows directly be using the symmetry property I(x;y) = I(y;x) of
the mutual information. Thus x says as much about y as y says about x.

With these relations, it is easy to state the last definition in this subsection, the conditional
mutual information:

Definition A.1.9 (Conditional mutual information). Consider the three random vectors x,
y and z drawn either from a discrete or a continuous alphabet. The conditional mutual infor-
mation in terms of entropy is defined as

I(x;y|z) , H(x|z)−H(x|y, z). (A.2)

In the case of continuous random vectors we have to exchange the entropy H(·) with the
differential entropy h(·).
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A.1.3. Chain Rules for Entropy and Mutual Information

We now want to restate the chain rules for entropy and mutual information. These relations
show a possibility for expressing the entropy or the mutual information respectively. We first
state the chain rule for the entropy of discrete random variables.

Definition A.1.10 (Chain rule for entropy of discrete random variables). Let x1,x2, . . .xn

be drawn according to the joint probability mass function px1,x2,...,xn
(ξ1, ξ2, . . . , ξn). Then the

chain rule for entropy is given by

H(x1,x2, . . . ,xn) =
n∑

i=1

H(xi|xi−1, . . . ,x1).

The chain rule for entropy of continuous random variables can be stated fully equivalent. We
only have to replace H(·) with h(·).
A similar chain rule can also be stated for the mutual information. Because the notation of the
mutual information does not distinguish between discrete and continuous random variables,
we again state the chain rule only once, since it applies in both cases.

Definition A.1.11 (Chain rule for mutual information). Consider a set of random variables
x1,x2, . . . ,xn and y. Then the mutual information can be written as

I(x1,x2, . . . ,xn;y) =
n∑

i=1

I(xi;y|xi−1, . . . ,x1).

A.1.4. Relations of Entropy and Mutual Information

By using the chain rule for entropy from Definition A.1.10, we can derive another expression
for the mutual information. It turns out that we can write

I(x;y) = H(x) + H(y)−H(x,y). (A.3)

Another very useful relation in the context of the analysis of MIMO systems is the follow-
ing:

Theorem A.1.12 (Entropy of the sum of two random variables). Let x and y be random
variables that are drawn from alphabet X and Y respectively. Furthermore, let z = x + y.
Then the following holds

H(z|x) = H(y|x).

Proof. First, let us indicate the probability mass functions of the random variables by px(ξ),
py(η) and pz(ζ). By using the definition of the conditional entropy A.1.5, we write

H(z|x) = −
∑

ξ∈X
px(ξ)

∑

ζ∈Z
pz|x(ζ|ξ) log pz|x(ζ|ξ).
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Now, we take a closer look at the conditional pmf

pz|x(ζ|ξ) = px+y|x(ζ|ξ),

where x can be treated as a deterministic value. Thus

pz|x(ζ|ξ) = py|x(ζ − x|ξ),

and
H(z|x) = −

∑

ξ∈X
px(ξ)

∑

ζ∈Z
py|x(ζ − x|ξ) log py|x(ζ − x|ξ).

Within this equation, we can identify the following equality:
∑

ζ∈Z
py|x(ζ − x|ξ) log py|x(ζ − x|ξ) = H(y|x = ξ),

which immediately results in

H(z|x) = −
∑

ξ∈X
px(ξ)H(y|x = ξ) = H(y|x).

This concludes the proof.

A.1.5. Definitions Needed for Shannon’s Second
Theorem

We have to introduce the definition of a (M,n) code and a basic definition of the probability
of error. To start with, we state the code definition:

Definition A.1.13 ((M,n) code). A (M, n) code for the channel (X , py|x(η|ξ),Y) consists of
the following

1. An index set {1, 2, . . . , M}.
2. An encoding function xn : {1, 2, . . . ,M} → Xn, yielding codewords xn(1),xn(2), . . . ,xn(M).

Here (·)n denotes that the channel is used n successive time instances for transmission
(and thus, coding is performed over n time instances). The set of codewords is called the
codebook.

3. A decoding function g : Yn → {1, 2, . . . ,M}, which is a deterministic rule which assigns
a guess to each possible received vector.

Next, we repeat a definition of the probability of error:

Definition A.1.14 (Probability of error). Let εi , Pr(g(yn) 6= i|xn = xn(i)) be the condi-
tional probability of error given that index i was sent.

And in addition to the preceding definition, we state the maximal probability of error as:

Definition A.1.15 (Maximal probability of error). The maximal probability of error ε for a
(M,n) code is defined as ε , maxi∈{1,2,...,M} εi.
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A.1.6. Fano’s Inequality

Suppose we wish to estimate a random variable x with a distribution px(ξ) by using an observa-
tion of a random variable y which is related to y by the conditional distribution py|x(η|ξ). From
y, we calculate a function g(y) = x̂, which is an estimate of x. We now wish to bound the prob-
ability that x̂ 6= x. The answer to this question is Fano’s inequality.

Theorem A.1.16 (Fano’s inequality). Let Pe = Pr(x̂ 6= x), and let X denote the alphabet of
x. Then Fano’s inequality is given as

H(Pe) + Pe log(|X | − 1) ≥ H(x|y).

This inequality can be weakened to

1 + Pe log |X | ≥ H(x|y).

Proof. Is given in [17].

A.2. Further Details on some Evaluations

A.2.1. Proof of Theorem 4.2.2

Considering the unitary property of OSTBCs (Definition 4.2.1), we have

SSH =
nS∑

n=1

nS∑
p=1

(Re{sn}An + j Im{sn}Bn) ( Re{sp}Ap + j Im{sp}Bp)
H

=
nS∑

n=1

(
Re{sn}2 AnAH

n + Im{sn}2 BnBH
n

)

+
nS∑

n=1

nS∑
p=1,p>n

(
Re{sn} Re{sp}

(
AnAH

p + ApAH
n

)
+ Im{sn} Im{sp}

(
BnBH

p + BpBH
n

))

+ j

nS∑
n=1

nS∑
p=1

Im{sn} Re{sp}
(
BnAH

p −ApBH
n

)
.

With this equation, one can easily see that Theorem 4.2.2 holds, whenever Equation (4.3) is
satisfied, which concludes the proof.

A.2.2. OSTBC ML Detection Decoupling

We want to show that the ML metric ‖Y −HS‖2 can be decoupled in a way that the ML
decision rule can be performed in a linear way and each symbol sn can be decided independently
of the other symbols sp for an arbitrary p 6= n. The derivation is based on the results stated
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in [35], which was the original work performed in the field of OSTBC, but also uses [8], as well
as [11] and [23].

First, we start by using an extension of a norm relation, well known in literature

‖Y −HS‖2 = ‖Y‖2 + ‖HS‖2 − 2 Re
{
tr

{
YHHS

}}
,

where, by use of Definition 4.2.1, one easily sees that ‖HS‖2 = ‖s‖2 ‖H‖2 (see also the proof
of Theorem 4.2.4). The vector of transmitted symbols sn, n = 1, . . . , nS is denoted by s.
Through usage of Definition 4.1.2, we obtain

2 Re
{
tr

{
YHHS

}}
= 2 Re

{
tr

{
YHH

nS∑
n=1

(Re{sn}An + j Im{sn}Bn)

}}

1= 2 tr

{
Re

{
YHH

nS∑
n=1

(Re{sn}An + j Im{sn}Bn)

}}

= 2 tr

{
Re

{
nS∑

n=1

Re{sn}YHHAn + j

nS∑

i=1

Im{sn}YHHBn

}}

2= 2 tr

{
nS∑

n=1

Re{sn} Re
{
YHHAn

}−
nS∑

n=1

Im{sn} Im
{
YHHBn

}
}

3= 2 Re

{
tr

{
nS∑

n=1

Re{sn}YHHAn

}}
− 2 Im

{
tr

{
nS∑

n=1

Im{sn}YHHBn

}}

4= 2
nS∑

n=1

Re
{
tr

{
YHHAn

}}
Re{sn} − 2

nS∑
n=1

Im
{
tr

{
YHHBn

}}
Im{sn} ,

where equality 1 holds, because Re{·} and tr {·} commute, equality 2 uses the fact that
Re{ja} = − Im{a} for an arbitrary complex number (or matrix) a and equality 3 and 4 use
the fact that the trace operation is linear.

Now, we are able to reformulate the ML metric as

‖Y −HS‖2

= ‖Y‖2 − 2
nS∑

n=1

Re
{
tr

{
YHHAn

}}
Re{sn}+ 2

nS∑
n=1

Im
{
tr

{
YHHBn

}}
Im{sn}+ ‖H‖2 ‖s‖2

=
nS∑

n=1

(
−2Re

{
tr

{
YHHAn

}}
Re{sn}+ 2 Im

{
tr

{
YHHBn

}}
Im{sn}+ |sn|2 ‖H‖2

)
+ const.

= ‖H‖2
nS∑

n=1

(
−2

Re
{
tr

{
YHHAn

}}

‖H‖2 Re{sn}+ 2
Im

{
tr

{
YHHBn

}}

‖H‖2 Im{sn}+ |sn|2
)

+ const.,

and by amending the complete square in the brace by

Re
{
tr

{
YHHAn

}}

‖H‖2 +
Im

{
tr

{
YHHBn

}}

‖H‖2 ,

79



A. Appendix

which does not depend on sn and can therefore be accumulated with the const. term, we can
write

‖Y −HS‖2 = ‖H‖2
nS∑

n=1

∣∣∣∣∣sn −
Re

{
tr

{
YHHAn

}}− j Im
{
tr

{
YHHBn

}}

‖H‖2
∣∣∣∣∣

2

+ const.

A.2.3. Effective Channels for Alamouti STC (nT = 2)

For the sake of completeness, we state that in case of using the Alamouti OSTBC design
of Equation (4.2), an equivalent effective channel for nR = 1 receive antennas may be given
by

H = [h1, h2] → Heff =
[
h1 h2

h∗2 −h∗1

]
,

where we used an equivalent MIMO transmission relation y =
√

%/nT Heffs + n. For nR = 1
we have, s = [s1, s2]T and n = [n1, n

∗
2]

T . In the case of nR = 2 receive antennas, the effective
channel may be written as

H =
[
h1,1 h1,2

h2,1 h2,2

]
→ Heff =




h1,1 h1,2

h2,1 h2,2

h∗1,2 −h∗1,1

h∗2,2 −h∗2,1


 ,

where in contrast to the nR = 1 case, we set n = [n1,1, n2,1, n
∗
1,2, n

∗
2,2]

T .

A.2.4. Proof of Theorem 4.3.2

Let us define H′ to be

H′ ,
[
HR

HI

]
.

Then, the system capacity of the LD codes (Theorem 4.3.1), which is our goal function, can
be rearranged to

C =
1

2L
E

{
log det

(
I2nRL

+
%

nT

nS∑
n=1

(InR ⊗An) vec(H′) vec(H′)T (InR ⊗An)T + (Bn ← An)
)}

,

(A.4)

with (Bn ← An) denoting the first term of the sum with An replaced by Bn. To compute the
gradient, we state the definition (i.e. for AR,n) of the differential quotient

[
∂C(AR,n)

∂AR,n

]

i,j

= lim
δ→0

C(AR,n + δξiη
T
j )− C(AR,n)

δ
, (A.5)

80



A.2. Further Details on some Evaluations

with ξi ∈ ZL and ηj ∈ ZnT denoting vectors filled with zeros except of position i, respectively
j, where it is set to one. Furthermore, we define

Z , I2nRL +
%

nT

nS∑
n=1

(InR ⊗An) vec(H′) vec(H′)T (InR ⊗An)T + (Bn ← An) ,

which is a function of AR,n, AI,n, BR,n and BI,n. If we exchange AR,n by AR,n + δξiη
T
j , we

simply denote this by

Z(AR,n + δξiη
T
j ) = I2nRL

+
%

nT

nS∑
n=1

InR
⊗ (An + I2 ⊗ (δξiη

T
j )

)
vec(H′) vec(H′)T [

InR
⊗ (An + I2 ⊗ (δξiη

T
j )

)]T

+ (Bn ← An)old ,

where the subindex old in (Bn ← An)old denotes that the terms with replaced An by Bn

are still the same as in (A.4). Straightforward manipulation with the usage of the asso-
ciative property of the Kronecker product (i.e., A ⊗ (B + C) = A ⊗ B + A ⊗ C) leads
to

Z(AR,n + δξiη
T
j ) = I2nRL +

%

nT

nS∑

n′=1,n′ 6=n

(InR
⊗An′) vec(H′) vec(H′)T (InR

⊗An′)
T

+
%

nT
InR ⊗

(An + I2 ⊗ (δξiη
T
j )

)
vec(H′) vec(H′)T [

InR ⊗
(An + I2 ⊗ (δξiη

T
j )

)]T

+ (Bn ← An)old .

(A.6)

Now we define some matrices to simplify the notation. The middle term in the preceding
formula may be written as

%

nT

[
InR

⊗An + InR
⊗ (

I2 ⊗
(
δξiη

T
j

))]
vec(H′) vec(H′)T [

InR
⊗An + InR

⊗ (
I2 ⊗

(
δξiη

T
j

))]T

=
%

nT
[X1 + X2]Y [X1 + X2]

T
,

with X1 , InR
⊗An, X2 , InR

⊗ (
I2 ⊗

(
δξiη

T
j

))
and Y , vec(H′) vec(H′)T . Again, straight-

forward algebra leads to

%

nT
[X1Y + X2Y] [X1 + X2]

T =
%

nT
[X1Y + X2Y]

[
XT

1 + XT
2

]

=
%

nT

[
X1YXT

1 + X2YXT
1 + X1YXT

2 + X2YXT
2

]
.

Now because X1YXT
1 = (InR ⊗An) vec(H′) vec(H′)T (InR ⊗An)T is exactly the missing part

in the sum of Equation (A.6), the problem reduces to

Z(AR,n + δξiη
T
j ) = Z +

%

nT

[
X2YXT

1 + X1YXT
2 + X2YXT

2

]
.

Here, it is interesting to see that X1YXT
2 =

(
X2YXT

1

)T , which is a direct consequence of the
symmetry of Y = YT . Now we can express the nominator C(AR,n + δξiη

T
j ) − C(AR,n) of
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Equation (A.5) by

C(AR,n + δξiη
T
j )− C(AR,n)

=
1

2L
E

{
log det

(
Z +

%

nT

[
X2YXT

1 +
(
X2YXT

1

)T
+ X2YXT

2

])}
− 1

2L
E{Z} .

The linearity of the expectation operator together with the identity log det(·) = tr log(·) allows
us to state

C(AR,n + δξiη
T
j )− C(AR,n)

=
1

2L
E

{
tr log

(
Z +

%

nT

[
X2YXT

1 +
(
X2YXT

1

)T
+ X2YXT

2

])
− tr log (Z)

}
,

where log(·) denotes the generalized matrix logarithm. The commutativity of the trace oper-
ator tr (A + B) = tr A + tr B results in

C(AR,n + δξiη
T
j )− C(AR,n)

=
1

2L
E

{
tr

[
log

(
Z +

%

nT

[
X2YXT

1 +
(
X2YXT

1

)T
+ X2YXT

2

])
− log (Z)

]}

=
1

2L
E

{
tr

[
log

(
Z +

%

nT

[
X2YXT

1 +
(
X2YXT

1

)T
+ X2YXT

2

])
Z−1

]}

=
1

2L
E

{
tr log

[
I2nRL +

%

nT

[
X2YXT

1 +
(
X2YXT

1

)T
+ X2YXT

2

]
Z−1

]}
.

Now we focus again on the terms X2YXT
1 and X2YXT

2 . Because of the linearity of the matrix
multiplications, we can write these terms as

δ ·M1 , X2YXT
1 = δ · InR ⊗

(
I2 ⊗

(
ξiη

T
j

))
vec(H′) vec(H′)T [InR ⊗An]T

δ2 ·M2 , X2YXT
2 = δ2 · [InR ⊗

(
I2 ⊗

(
ξiη

T
j

))]
vec(H′) vec(H′)T [

InR ⊗
(
I2 ⊗

(
ξiη

T
j

))]T
,

which leads us to

C(AR,n + δξiη
T
j )− C(AR,n) =

1
2L
E

{
tr log

[
I2nRL +

%δ

nT

[
M1 + MT

1 + δM2

]
Z−1

]}
.

Finally, using the identity log (I + A) = A− 1
2A

2 + · · · , together with the linearity of the trace
operator, i.e. tr (cA) = c tr A, we can write

C(AR,n + δξiη
T
j )− C(AR,n)

=
1

2L

%δ

nT
E

{
tr

[(
M1 + MT

1 + δM2

)
Z−1 − %δ

2nT

(
M1 + MT

1 + δM2

)2
Z−2 + · · ·

]}
.

In the differential quotient, all terms with δ of order higher than one will vanish because of
the limit, thus leading to

[
∂C(AR,n)

∂AR,n

]

i,j

= lim
δ→0

C(AR,n + δξiη
T
j )− C(AR,n)

δ
=

%

2nT L
E

{
tr

[(
M1 + MT

1

)
Z−1

]}
,
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with M1 = InR
⊗(

I2 ⊗
(
ξiη

T
j

))
vec(H′) vec(H′)T [InR

⊗An]T . By using the identity (X−1)T =
(AT )−1 and the symmetry of Z, i.e. ZT = Z, we can simplify our result to

[
∂C(AR,n)

∂AR,n

]

i,j

=
%

nT L
E

{
tr

(
M1Z−1

)}
.

Now this is exactly the same as stated in Theorem 4.3.2. The derivation of the other gradients
is performed in complete analogy.

A.2.5. Proof of Presentability and Orthogonality of Φ

The proof is straightforward. Let us use the definition of the new modulation matrices
from Theorem 4.3.4. Furthermore, bring the linear STBC mapping from Definition 4.1.2
back in mind. Then, for example the second symbol s2 is modulated via the linear rela-
tion

A2θs2,R + jB2θs2,I = A2θs2,R + jA2θs2,I .

Now let us decompose the complex number θ into its real and imaginary parts and rearrange
the above relation to

A2(θR + jθI)s2,R + jA2(θR + jθI)s2,I = A2(θRs2,R − θIs2,I) + jA2(θIs2,R + θRs2,I).

Similar relations can be easily obtained for n = 1, 3 and 4. Using these, one easily sees that the
matrix Φ that transforms the original sLD into the corresponding s′LD so that the above relation
(among the others obtainable for n = 1, 3, 4) is fulfilled, is given by

ΦT = diag
(
I2,

[
θR −θI

θI θR

]
,

[
φR −φI

φI φR

]
,

[
(θφ)R −(θφ)I

(θφ)I (θφ)R

])
.

This proves the presentability by Φ. To prove its orthogonality, we note that the transpose
diag(X1, . . . ,XM )T equals diag(XT

1 , . . . ,XT
M ) for any set of block matrices Xi, i = 1, . . . ,M .

Thus, ΦΦT is orthogonal if and only if all block matrices inside the diag(·) operator are
orthogonal. This can easily be verified by the fact that φ is always chosen to be of unit
magnitude (see [41]). This concludes the proof.

A.3. Review of some Mathematical Concepts

A.3.1. Frobenius Norm of a Matrix

Definition A.3.1 (Frobenius norm). The Frobenius norm of a matrix X with size m × n is
defined as (see [23])

‖X‖2 ,
m∑

i=1

n∑

j=1

|xij |2 = tr
{
XXH

}
= tr

{
XHX

}
=

min{m,n}∑

i=1

λ2
i , (A.7)

where we used the cyclic property of the trace and λi denotes the i-th singular value of X.
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A.3.2. Singular Value Decomposition

Suppose M being a m×n matrix with elements from R or C. Then there exists a factorization
of the form [23]

M = UΣVH ,

where V is a m × m unitary matrix over Rm×m or Cm×m, describing the rows of M with
respect to the base vectors associated with the singular values, Σ is a m × n matrix with
singular values on the main diagonal, all other entries zero and VH denotes the complex
transpose of V ∈ Rm×m or Cm×m, an n× n matrix, which describes the columns of M with
respect to the base vectors associated with the singular values.
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