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Introduction

Loop quantum gravity (LQG) is one of the most promising enterprises towards a quantum

theory of gravity. The search for a theory of quantum gravity is motivated by the belief

that such a framework may solve most of the inconsistencies of the two today’s accepted

and prominent models of nature - general relativity (GR) and the standard model of

particle physics, which is described by quantized field theories. Both of them suffer from

difficulties which can be separated into two kinds. On the one hand, there are the inherent

ones: the spacetime singularities of GR and the UV divergences of quantum field theory

(QFT). On the other hand both frameworks neglect to incorporate the essential features

of each other.

In QFT the dynamical entities can be regarded as actors on a “stage” which is provided

by the fixed spacetime background. The Einstein field equations, however tell us that

the local metric configuration is determined by the energy content in that very region.

This corresponds to Mach’s principle, which states that geometry is a dynamical field

itself. Both fields, geometry and matter should act on a “stage” represented by a four

dimensional differential manifold. As a classical theory general relativity is deterministic

whereas the quantum principle in its København interpretation teaches us that a good

theory of nature should be intrinsically probabilistic and has to reflect the fact that in

measurements the measuring apparatus becomes entangled with the measured system1.

Nature displays an intrinsic discreteness, which for instance can be seen from the following

observation: the values of angular momentum/spin of elementary particles differ by integer

multiples of Planck’s constant ~ and take values half integer times Planck’s constant. With

simple dimensional considerations one can derive a fundamental length starting with the

three fundamental constants ~, G and c

`P =

√
~8πG

c3

(0.0.1)

which is called the Planck length. It turns out that this is the minimal interval in which

one can locate a massless particle. Due to the momentum uncertainty the dynamical

1See [1] for an interesting relational interpretation of quantum mechanics.

vi



INTRODUCTION vii

mass increases until the measuring uncertainty of location reaches the corresponding

Schwarzschild radius. At this point, physical predictability comes to an end. These

heuristic considerations suggest that spacetime might be discrete at the Planck level.

Such ideas were, for instance, incorporated in Wheeler’s spacetime-foams [2] or Penrose’s

spin-networks [3]. If the theory provides a picture of a discrete space, this could be un-

derstood as a natural cut-off preventing UV-divergences.

It is believed that quantum gravity, once a fusion of the quantum principle with general

covariance is achieved, will solve the inherent problems of each of the two frameworks, in

which we describe large scale and small scale physics respectively. Indeed, LQG seems

to support this hope to some extend: First, on a kinematical level, geometrical operators

such as length, area and volume do have a discrete spectrum. However, [4] expressed

doubts if this holds on the physical Hilbert space, too. Second, in a symmetry reduced

model, Ashtekar, Bojowald and Lewandowsky [5] tackled the Big Bang singularity2 as

well as the Schwarzschild singularity [6]3 and found that the spectra of curvature and

energy density are bounded. Third LQG passes one of the main “reality checks” any can-

didate of a quantum theory of gravity has to undergo: loop quantum gravity calculations

reproduce the Hawking-Bekenstein formula up to a dimensionless constant, the so-called

Barbero-Immirzi parameter, which is of the same numerical value for a variety of black

holes. In this way, it explains the celebrated formula and the entropy interpretation of the

area of a black hole horizon in terms of state counting. Another reality check, however, –

having a well understood semiclassical limit – is still an open issue4.

According to this list of topics, I will focus on the second one. This thesis aims at working

out the classical part of symmetry reduction used in LQG in general and at presenting

a spherically symmetric model and its quantization inspired by LQG. Furthermore, it

presents the loop quantized version of gravity coupled to Yang Mills fields in general and

spherically symmetric LQG coupled to (loop quantum) electrodynamics in particular.

The thesis is structured as follows: In chapter 1 I will derive the formulas needed for the

initial value formulation of GR. Chapter 2 discusses the symplectic framework of GR. In

chapter 3 I will depart from the metric formulation of GR. Thereby, I am interested in a

tetrad formulation of GR, perform a 3 + 1 split of spacetime and establish a relation to

the ADM formalism. Afterwards, I analyze connections on principal fiber bundles, since

they provide the fundamental variables of LQG. Furthermore, this analysis furnishes the

tools which are needed for the general formalism of symmetry reduction based on invari-

ant connections on invariant principal fiber bundles presented in chapter 5. Chapter 6 is

disigned to provide the necessary notions of the symmetry group, on which the spherical

symmetry reduction scheme is based on, as well as to give a more detailed presentation of

2Within the model of a homogeneous and isotropic universe.
3In the LQG model of the Kantowski-Sachs spacetime, i.e. the interior of a Schwarzschild black hole.
4Actually this is, together with finding the true Hamiltonian, the main problem of LQG.
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the gauge group of LQG, by discussing the group of rotations ∼ SO(3) and its universal

cover. Since LQG is formulated in terms of so-called spin connections I devolop a geomet-

rical picture of spinors, the spin group and its relation to SU(2) using the Clifford algebra

on three dimensional Euclidean space in chapter 7. This procedure covers the basic tools

needed to proceed to the development of a connection dynamics for general relativity and

its symmetry reduction on the classical phase space in chapter 8. In the following chapter

9 we work out the connection dynamical formulation of Yang-Mills theory and apply the

symmetry reduction framework as well. In chapter 10 the presentation of the Reissner-

Nordström solution, i.e. the spherically symmetric metric of a charged static black hole,

is derived from the constraint equations of symmetry reduced Einstein-Maxwell theory

in terms of connections. Finally I come to the quantization of full Einstein-Yang-Mills

theory and its symmetry reduced version in chapter 11. Chapter 12 presents a summary

and a discussion of the issues presented in the thesis. Furthermore, it provides an outlook

for future research.



Chapter 1

Initial value formulation of general

relativity

Loop quantum gravity is a canonically quantized theory, i.e. that the quantization starts

from a Hamiltonian formulation of the theory. In order to obtain such a formulation from

the Lagrangean formulation via a Legendre transformation one needs to split spacetime

into space and time (3+1 split). This procedure also allows for setting up an initial value

formulation of GR, which will be shown in this chapter.

For the sake of simplicity we assume a four dimensional globally hyperbolic spacetime

M = R×Σ1 and, for later convenience choose Σ being compact. Such a topology admits

a foliation in Cauchy surfaces Σt labeled by the so-called timefunction t. Let na be the

unit normal to the spatial hypersurface. Given a foliation, consider the tangential vector

field ta with affine parameter t. We perform a orthogonal decomposition of ta into timelike

and spatial components

ta = Nna +Na.

N , the so-called lapse function and Na the so-called shift are completely arbitrary since

the foliation of M is not fixed. The flow identifies the points of the spatial slices and its

generator can therefore be interpreted as flow of time. Note, that ta is not necessarily

timelike.

On each slice the spacetime metric gab induces a spatial metric hab, which gives rise to

gab = −nanb + hab.

1See [7] for a short discussion of this somewhat restrictive assumption and and more general ap-
proaches. This first step, necessary for the canonical quantization, is also a very problematic one. Clearly
it spoils manifest general covariance but we will see that the spatial diffeomorphism constraint together
with the relativistic Hamiltonian generate the desired four diffeomorphisms.

1



CHAPTER 1. INITIAL VALUE FORMULATION OF GENERAL RELATIVITY 2

Figure 1.1: Foliation of spacetime with equal time slices.

The surface normal of a t = const. slice is given by na = f∇at. Therefore, we obtain

tana = −N = fta∇at = f. (1.0.1)

Of course a specification of the 3-metric as configuration variableis not enough information

to determine its evolution. We also need its variation under evolution, i.e. its spatial

velocity moving along integral curves of ta or the embedding data of the slice, which is

equivalent as will be shown immediately. Geometrically the latter is captured by the

notion of the extrinsic curvature. Let ξa be the unit futurepointing tangent of a geodetic

timelike congruence. A congruence is a family of curves, such that through each point

p ∈ M there passes precisely one curve. Since ξa is geodetic we have (ξ∇)ξa = 0. We

define

Bab := ∇bξa

⇒ ξaBab = Babξ
b = 0 hence is purely spatial. (1.0.2)

Let ηa be an orthogonal Lie-dragged (Jacobi) vector field, then (ξ∇)ηa = Ba
bη
b is the rate

of change of a displacement to a nearby geodesic. Via geodesic deviation one would obtain

the well known Raychaudhuri equations. We define the spatial metric hab = gab+ξaξb and

split Bab in its trace (expansion), symmetric (shear) and antisymmetric (vorticity) part.

Bab =
1

3
θhab + σab + ωab

Via the Frobenius’ theorem Bab is symmetric, iff ξa is hypersurface orthogonal. In this

case, we will refer to Bab as extrinsic curvature Kab = h c
a ∇cξb of the so determined
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hypersurface.

Now let ξa and na coincide on Σt, then Kab = h c
a ∇cnb describes the extrinsic curvature

of Σt. To firstly show that Kab is a symmetric tensor we refer to the fact na = −N∇at,

see app. A.1. This allows for showing that the extrinsic curvature is proportional to the

Lie-derivative with respect to na, see app. A.2.

Kab =
1

2
£nhab (1.0.3)

Since we aim at interpreting this expression as the time derivative of hab, ḣab := h c
a h

d
b £thcd,

we use the relation between the Levi-Civita connection Da associated with hab and its

four dimenional analogue

DaTb1...bn = h c
a h

d1
b1
. . . h dn

bn
∇cTd1...dn ,

where Tb1...bn ∈
∏n

i=1 T ∗i M2. App. A.3 shows that Da meets all conditions for being a

Levi-Civita connection.

Using

na =
1

N
(ta −Na)

we can rewrite (1.0.3) (see app. A.4)

Kab =
1

2N
(ḣab − h c

a h
d
b £Nhcd) =

=
1

2N
(ḣab −DaNb −DbNa) (1.0.4)

The last ingredients to complete the 3+1 split are the curvature tensors. The Riemannian

of the connection Da is defined analog to the Lorentzian case

(3)Rd
cabv

c := [Da, Db]v
d, va ∈ T Σ, (1.0.5)

and the calculation of the commutator (app. A.5) gives us the first Gauß relation between

the intrinsic curvature (3)Rd
cab and the projected part of Rd

cab. As expected the relation

is coded by products of the extrinsic curvature.

(3)Rd
cab = h e

a h
f
b h

g
c h

d
hR

h
gef −K d

a Kbc +K d
b Kac

2Of course this generalizes to tensors of arbitrary valence.
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The rest of the Gauß relations is obtained by tracing the Riemannian

(3)Rcb = g a
d

(3)Rd
cab = h a

d
(3)Rd

cab =

= h f
b h

g
c h

e
hR

h
gef −K a

a Kbc +K a
b Kac (1.0.6)

(3)R = hcbh f
b h

g
c h

e
hR

h
gef +KabKab − (K a

a )2 = (1.0.7)

= R + 2nanbRab +KabKab − (K a
a )2. (1.0.8)

In (1.0.5) we only considered vector fields in T Σ. The missing data of the behavior of a

vector field na in TM along a closed curve in Σ projected to Σ are given by the Codazzi

relation. By a slight abuse of notation

[Da, Db]n
d = DaK

d
b −DbK

d
a = h e

a h
f
b h

d
hR

h
gefn

g (1.0.9)

d and a contracted yields

DaK
a
b −DbK

a
a = h f

b Rfgn
g

At this point, it is necessary to spotlight the action of Da on a general element in TM.

This suggestive form is for notational simplicity only, saying: Act with h b
a ∇b on an

arbitrary tensorfield overM,i.e. ∈ XM, and project all indices to Σ3. Now we can finish

the initial value formulation by splitting the Einstein field equations into evolution and

initial value constraints. In the next chapter, it will be shown how all this translates

into the canonical (ADM) formulation, which provides a better view on the physical

significance of the constraints and a quite different interpretation of “evolution”.

From Gab = Rab − 1
2
Rgab = κTab we obtain

2Gabn
anb = 2Rabn

anb +R =

= (3)R−KabKab + (K a
a )2 = 2κTabn

anb =: 2κρ

using (1.0.8) and with (1.0.9)

h c
a Gcbn

b = h c
a Rcbn

b = DbK
b
a −DaK

b
b =

= Db(K
b
a − h b

a K
c
c ) = κTcbh

c
a n

b =: −κJa

where ρ denotes the energy density and Ja denotes the momentum density. These equa-

tions are the constraints for the initial data: hab and Kab.

Equation (1.0.4) is one of the evolution equations. To obtain the complete set of evolution

3As was shown in (1.0.2) Kab = h c
a ∇cnb = h c

a h
d
b ∇cnd =“Danb” is ∈ T Σ and therefore the rest of

(1.0.9) is well defined.
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equations we need the time derivative of Kab (see app. A.6)

ḣab = 2NKab + 2D(aNb), (1.0.10)

K̇ab = 2K e
(a Db)Ne +N eDeKab −N

(
(3)Rab +KabK − 2K c

a Kcb

)
+

+ 8π
(
Jab −

1

2
Jhab +

1

2
ρhab

)
+DaDbN, (1.0.11)

with Jab := hcah
d
bTcd and J := habJab

It can be shown that these equations are consistent, i.e. the constraints propagate.



Chapter 2

Canonical general relativity:

geometrodynamics

“There is no spacetime, there is no time, there is
no before, there is no after. The question of what
happens ‘next’ is without meaning.”[2]

In the last century the action principle was the most often used path towards a quan-

tization of field theories. Quantum mechanics demands that the quantum of the action

exchange is a multiple of ~. Once the classical action is found it is used to quantize the

theory via several methods. Two important methods are the path integral formulation

and the canonical formulation. The latter passes via a Legendre transformation from

the Langrangean to a Hamiltonian formulation. Therefore one defines the configuration

space, derives the conjugate momenta (and possibly constraints) and finally arrives at

Hamilton’s equations. For constraint systems one applies the so-called Dirac formalism.

Then in the quantization procedure one has to translate the Poisson bracket structure

into a commutator algebra. In the loop quantum gravity context this program is called

refined algebraic quantization.

The classical action functional is given by the expression

S[gab] =

∫
R
L[gab],

where gab is the 4-metric and L[gab] is the Lagrangean scalar density1. Hence, the action is

manifestly invariant under 4-diffeomorphisms. ∂R is assumed to be nowhere null and gab

1It is a 4-form and therefore proportional to the volume form ωg =
√
−det gd4x

6
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is held fixed there2. Furthermore we have to demand £tωg = 0 and define ωg = −Ndt∧ωh.
After the variation of the action functional the principle of minimal action gives us the

Euler-Lagrange equations which, in case of GR are the Einstein equations.

δS = −
∫
R
L(gab) =

∫
R
ωgδg

ab
(1

κ
Gab − Tab

)
= 0

Solving for L(gab) yields the Einstein-Hilbert-Hawking action (here without matter) (see

app. A.7)

S[gab] = −1

κ

∫
R
ωgR−

2

κ

∫
∂R
ωhK.

If matter is to be taken into account, it is more elegant to obtain the energy momentum

tensor from a variational principle, too. We write for the complete action

S = SG + αMSM .

The energy momentum tensor density is given by

ωgT
ab = αM

δSM
δgab

.

For electromagnetism one chooses αM = e2/2π such that the equations of motion take

the form ∇aF
ab = −4πjb (jb denoting the 4-current).

For the sake of simplicity, let us assume that the region R is bounded by two oriented

and compact constant time surfaces Σ0 and Στ
3. With this choice of boundary, the trace

of the extrinsic curvature of the spatial slices discussed in the preceeding chapter and the

trace of the extrinsic curvature of the boundary of M coincide.

In the following the action will be expressed as a functional of quantities intrinsic to the

spatial slices Σ. Therefore we use the Gauß-Codazzi relation (1.0.8) together with

nanbRab = ∇d((n∇)nd)−∇b(n
b(∇n))−K b

d K
d
b +K2,

to obtain

(3)R = R−KabKab +K2 + 2∇d((n∇)nd)− 2∇b(n
b(∇n)). (2.0.1)

2See [8] for a discussion about boundary conditions. There Wald argues that it suffices to fix the
induced metric, since one can find a gauge transformation that fixes gab.

3See [8] for generalizations to variations that respect asymptotic flat spacetimes. Usually one omits
all boundary terms from the beginning and ends up with (2.0.2).
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This is inserted in the action functional

S[gab] = −1

κ

∫
dt

∫
Σ

ωhN [ (3)R +KabKab −K2]. (2.0.2)

Note, how nicely the boundary terms of the Einstein-Hilbert-Hawking action and the

second total divergence in (2.0.1) cancel due to the choice of boundary, while the first one

does not contribute since∫
R
ωg∇d((n∇)nd) = −

∫
∂R
ωhnd((n∇)nd) = 0. (2.0.3)

Formula (2.0.2) is the point of departure for the ADM approach to canonical general

gelativity. As the coordinates of configuration space C we choose the field variables hab,

N and Na. Hence, we start with 20 phase space degrees of freedom4 per spacetime point.

C is a Lagrangean submanifold of the phase space Γ, i.e. in each point p of C, TpC = TpC⊥,

where TpC⊥ is the symplectic complement, which is the space of Hamiltonian vector fields

annihilating the vector fields of TpC with respect to the symplectic structure at that point.

Their respective conjugate momenta are given by the variations of the action with respect

to the configuration variables

κδhL =

∫
Σ

Πabδhab

κδNL =

∫
Σ

ΠδN

κδ ~N =

∫
Σ

ΠaδN
a

4A priori the spacetime metric has 10 degrees of freedom.
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Since in case of GR the configuration variables appear algebraically (Πh denoting Πabhab)

the momenta are given by

Πab =
∂

∂ḣab
ωhN [ (3)R +Kab 1

2N
(ḣab − 2D(aNb))−Khab(ḣab − 2D(aNb))] =

= ωh(K
ab −Khab)

⇒Kab = ω−1
h [Πab − 1

2
Πhh

ab]

ḣab = Nω−1
h [2Πab − Πhhab] + 2D(aNb)

Π =
κ∂L
∂Ṅ

= 0

(2.0.4)

Πa =
κ∂L
∂Ṅa

= 0

(2.0.5)

It can be seen that the conjugate momenta are tensor densities of weight one, i.e. tensor

valued 3-forms. The equations (2.0.4) and (2.0.5) show that the matrix of second func-

tional derivatives of S with respect to the generalized positions is singular - we say the

Lagrangean and therefore the Legendre transform is singular, i.e. not all velocities can

be expressed in terms of conjugated momenta. These equations put us in the realms of

a constraint Hamiltonian system. The physical significance of constraints of dynamical

systems lies in the fact that the respective variations of the dynamical variables are not

independent, i.e. we started with too many degrees of freedom. In the symplectic picture,

constraints define a so-called constraint surface S in the infinite dimensional phase space

Γ coordinatized by (hab, N,N
a; Πab,Π,Πa). Π = 0 and Πa = 0 are called the primary con-

straints, since they come directly from the Langrangean. In order to treat systems with

singular Lagrangean using Dirac’s procedure [9] which is a self-consistent algorithm that

incorporates the constraints via Lagrange multiplier fields, which are (partly) specified

upon the demand of the preservation of the constraints under time evolution. Thereby

one has to pass from the Hamiltonian to the total Hamiltonian by adding the primary

constraints multiplied by Lagrange multipliers, i.e. completely unspecified fields. Then

one has to check the consistency conditions, i.e. the evolution of the constraints should

vanish weakly. This means that after computing the Poisson brackets of the constraints

with the Hamiltonian, the result vanishes as one sets the constraints to be zero. In the

geometrical picture, this means that the conditions have to hold on the constraint surface

(which is usually dubbed “on shell”). If these conditions are not met, they yield further

(secondary) constraints, which then will also be added to the total Hamiltonian and will

have to be checked with regard to the vanishing of their evolution. Once all constraints

are met, one analyzes the Poisson brackets among them. This is the so-called hypersur-
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face deformation algebra. All brackets having vanished weakly - the algebra closes on

shell - is referred to as constraints forming a first class constraint system, as will be the

case here. The constraint surface is then said to be a coisotropic submanifold which is

defined by TpS⊥ ⊂ TpS. Thus, the induced symplectic form on S is degenerate5. Here,

the Hamiltonian vector fields associated with the constraint functions act within the con-

straint surface, which is why they are regarded as generators of gauge transformations.

For this reason these vector-fields sometimes are regarded as the characteristic null di-

rections of the induced symplectic form, and TpS⊥ being referred to as its characteristic

distribution completely spanned by the Hamiltonian vector-fields. The Lie brackets of

the vector-fields also vanish weakly6, i.e. they are surface forming according to Frobenius’

theorem. Hence, TpS⊥ is called an integrable distribution or foliation then, and the max-

imal connected integral manifolds of the foliation are being referred to as leaves of K. If

the factor space S/K is Hausdorff one can factor out gauges and end up with the reduced

symplectic phase space Γ′ [10]. Thus, each first class constraint decreases the number of

degrees of freedom by 2 per spacetime point. The remainder has to be divided by 2 to

give the physical configuration degrees of freedom.

Extending the Hamiltonian gives (see app. A.8)

HT =

∫
Σ

NC +NaVa + λΠ + λaΠa.

C = ω−1
h (ΠabΠab −

1

2
Π2
h)− ωh (3)R (2.0.6)

Va = −2hacDbΠ
cb (2.0.7)

(2.0.6) and (2.0.7) are exactly the initial value constraints derived in the previous section.

Here, the consistency conditions show that C and Va are secondary constraints

0 ≈ Π̇ = −δHT

δN
= −C

0 ≈ Π̇a = −δHT

δNa
= −Va

⇒ HT =

∫
Σ

NC +NaVa + λΠ + λaΠa + γC + γaVa.

We define the constraint functionals

C[N ] =

∫
Σ

CN, V [Na] =

∫
Σ

VaN
a

(2.0.8)

5Lorentzian null surfaces provide an analogous situation, since the induced metric is degenerate because
the surface normal is null and therefore, lies tangential to the surface.

6They are involutive.
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to calculate the so-called hypersurface deformation algebra (see app. A.11) and the new

consistency conditions in one step

{V [ ~N ], V [ ~N ′]} = V [£ ~N
~N ′] ≈ 0

{V [ ~N ], C[N ]} = C[£ ~NN ] ≈ 0

{C[N ], C[N ′]} = V [h−1(NdN ′ −N ′dN)] ≈ 0,

showing that all constraints are first class. Hence, we arrive at a Hamiltonian constrained

to vanish completely as it is supposed to in a general covariant canonical theory [1].

Calculating the equations of motions for N and Na we obtain

Ṅ =
δHT

δΠ
= λ

Ṅa =
δHT

δΠa

= λa

which tell us that lapse as well as shift are completely arbitrary, i.e. they are Lagrange

multipliers reflecting the freedom in foliating spacetime and should not be regarded as

dynamical variables. The (reduced) Hamilton functional reads

HE =

∫
Σ

NC +NaVa. (2.0.9)

The analysis of the action of the Hamiltonian on arbitrary fields tab ∈ XΓ, carried out in

detail in app. A.10

{V (N), tab}EOM = £Natab

{C(N), tab}EOM = £Nnatab. (2.0.10)

shows that it generates spacetime diffeomorphisms only on shell, i.e. if the Einstein vac-

uum equations hold Gab = 0 and on the constraint surface7. V generates spatial diffeo-

morphisms (tangential to Σt), while C generates diffeomorphisms “perpendicular” to Σt.

Inserting hab or Πab in 2.0.10 yields the evolution equations of the previous section. Due to

the arbitrariness of the respective parameters N and Na they have to be regarded as pure

gauge - time translation is pure gauge. “Dynamics is not about time evolution, it is about

relations between partial observables”[1]. Thus, general covariance is implemented in the

canonical formalism of general relativity and its dynamics (the field equations) is covered

by the evolution equations together with the constraints. We obtained 8 constraints and

and since they are first class we have to fix 8 gauge parameters. Thus, the true dynamical

7Otherwise one has terms proportional to C and Rab in 2.0.10 for tab = Πab[11].
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degrees of freedom of pure gravity are

20− 8− 8

2
= 2 (2.0.11)

which is exactly the desired result for a graviton8.

Finally we want to make some excurse into Hamilton-Jacobi theory of gravity for a mo-

ment, since it provides the starting point for a possible quantization9. Another reason is to

shed some light on spatial diffeomorphism invariance of the Hamilton principal function.

The Hamilton principal function, obtained by taking the extremal form of ADM-action

and fixing the spatial metric on the initial slice and on the final slice, is always a (special)

solution to the Hamilton-Jacobi equations. The principal function is therefore a func-

tional of the elements of boundary states on ∂R. In the relativistic case the Hamilton

Jacobi equations read

C(hab,
δSHpf
δhab

) = 0

SHpf (h
′′
ab) =

∫ h′′ab

h′ab

Πabḣab

Now varying the final metric gives

δSHpf =:

∫
Σ′′

Πabδh′′ab

Let ξa be a spatial vector-field then

h̃ab = hab + £ξhab = hab + 2D(aξb).

With regard to the variation of SHpf follows

δSHpf =

∫
Σ′′

δSHpf
δh′′ab

δh′′ab =

=

∫
Σ′′

δSHpf
δh′′ab

(2D(aξb)) = −2

∫
Σ′′
Da

δSHpf
δh′′ab

ξb,

since Σ is compact and hab is symmetric. It can be seen immediately that the first term in

the integrand is just the diffeomorphism constraint which has to vanish. Thus, the phase

function is independent of the specific spatial metric components and depends only on the

8This can be seen e.g. from the Weyl curvature in spinor theory, too.
9See mechanics textbooks for discussions about the relation of Hamilton-Jacobi and the eikonal equa-

tion of geometrical optics and its generalization to finite particle wavelength, which is nothing else but the
Schrödinger equation. This is why the Hamilton principal function is sometimes referred to as the phase
function or dynamical path length. It is the classical analogue of the quantum mechanicle wavefunction
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3-geometry10 of a compact spatial hypersurface. The totality of 3-geometries constitutes

the superspace, i.e. the dynamical arena of general relativity. One leaf of history of 3-

geometry in superspace is a classical 4-geometry.

The uncertainty principle completely spoils the notion of a classical spacetime (at least in

the 3+1 picture): It is not possible to specify all the initial data on the initial slice with

arbitrary precession for hab and Πab in their operator version do not commute. 3-geometry

is the primary concept [2]. From Wheeler’s point of view each 3-geometry will be assigned

a probability amplitude and its phase is given by the Hamilton principal function. The

Hamilton-Jacobi equations become the Wheeler-DeWitt equation

Cψ = 0

The considerations presented so far appear to be quite natural, and the development

of a quantum theory of gravity seems to be straightforward. General solutions of the

Wheeler-DeWitt equation, however, could not be found. Only with regard to symmetry

reduced situations, so-called minisuperspace models, interesting results could be achieved.

The major obstacle to a solution of the Wheeler-DeWitt equation cintinues to be the

nonpolynomial form of the Hamiltonian constraint. The program of quantizing gravity

via geometrodynamics got stuck in the ’70s of the last century.

In the 1980s 11 Abhay Ashtekar gave new life to the canonical approach. He turned

attention to connection dynamics instead of geometrodynamics. General relativity was

cast in a gauge theoretic (Yang-Mills) form. Ashtekar used the so-called Sen connection as

new configuration variable and found that the Hamiltonian could be written in polynomial

form. With this, a rigorous solution to the dynamics seemed to be within the reach.

103-geometry is the equivalence class of 3-metrics modulo active diffeomorphisms.
11See [11] for a historical overview of LQG.



Chapter 3

Vierbein formalism

“[. . . ] the gravitational field can be viewed as the
field that determines, at each point of spacetime,
the preferred frames in which motion is inertial.”[1]

To each point in spacetime one can assign a Lorentz frame1, i.e. a tetrad eaI and its

dual/inverse eIa, such that

gab = ηIJe
I
ae
J
b . (3.0.1)

eaIe
J
a = δJI (3.0.2)

Here I, J are Lorentz algebra (SO(1, 3) or SL(2,C) respectively) indices. By virtue

of (3.0.1) the cotetrad eIa provides an isomorphism between the tangent space at each

spacetime point and the internal space with the (kinematic) Minkowski metric ηIJ . The

cotetrad contains the information to determine an inertial frame at any point in the man-

ifold, which is the frame of a freely falling observer. Its matrix of components is the

Jacobian matrix of the change of coordinates from arbitrary coordinates to inertial ones.

Of course, due to Lorentz invariance (local equivalence principle) no inertial frame is pre-

ferred. Hence, the equivalence class of Lorentz frames with respect to (proper) Lorentz

transformations describes the gravitational field. In return, each inertial frame at a given

point p determines a system of Riemannian normal coordinates in a neighborhood of that

point, sometimes also called inertial coodinate system[12] {xI}. The doublet (p, eaI) serves

as initial datum for geodesics through p, which are treated as coordinate lines. In such a

coordinate system, the metric at p is flat, and if torsion vanishes, the Christoffel standard

symbols vanish, too.

1See [1] page 59 ff. for a discussion of why one should regard the tetrad as the gravitational field
rather than its metric form.

14
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At this point we again encounter Mach’s principle or, in Wheeler’s terminology, “Iner-

tia here is determined by energy and matter there” [2]. This argument is enforced by a

gedanken-experiment invented by Einstein: the hole argument. It reveals that a generally

covariant theory can only remain deterministic, if we remove any physical significance

from the spacetime point. Only spacetime coincidences, i.e. intersections of particle

worldlines, have a physical meaning. 2

Cartan’s theory of moving frames provides an efficient framework to calculate spin coef-

ficients, i.e. the analogue of Christoffel symbols and curvature quantities. Let d denote

the exterior derivative and y the interior product (antiderivative). The exterior deriva-

tive acting on forms is independent of a specific choice of a torsion free, i.e. symmetric

covariant derivative. Its action is then extended to a linear operator ∇ on vector-fields va

(∇va)b := ∇bv
a (3.0.3)

. For this purpose, we regard a vector-field as a vector-valued 0-form. Obviously due

to the interplay of the several directional derivatives in tangent space ∇2va 6= 0 in general.

This expression captures the notion curvature. We may write

∇2va = Ra
bv
b

where Ra
b is a tensor-valued 2-form. Any tensor quantity can now be decomposed in terms

of the tetrad. Therefore, we expand the action of the exterior derivative on a tetrad field

in the tetrad

∇eaI = ωJIe
a
J

ωJI is a (SO(1, 3)-valued) matrix of 1-forms called the spin connection. From this relation,

it follows that

∇2eaI = Ra
be
b
I = RJ

Ie
a
J

(3.0.4)

and calculated explicitly

∇(ωJIe
a
J) = (dωJIe

a
J + ωJK ∧ ωKI)eaJ

RJ
I = dωJI + ωJK ∧ ωKI . (3.0.5)

2See [1] for a discussion about the Global Positioning System as a technical manifestation of exactly
these ideas.
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Equation (3.0.5) is Cartan’s second structure equation. In the notation presented here

the Kronecker-δ can be regarded as a vector valued 1-form which is annihilated by the

exterior derivative (provided the derivative is symmetric) then we have

∇δa = ∇(eaIe
I) = eaJω

J
I ∧ eI + eaJde

J = 0

deJ = −ωJI ∧ eI , (3.0.6)

where the last equation actually determines a so-called gauge covariant exterior derivative

D compatible with the cotetrad. The torsion 2-form is defined via the first structure

equation

T I = DeI = deI + ωJI ∧ eI .

Hence, here (3.0.6) is the condition for a torsion free spin connection, which has been

implemented from the beginning.

Again, due to the above made choice of the metric compatible covariant derivative we

obtain another important relationship

∇gab = 0 = ∇(ηIJeaIe
b
J) = ωKJeaKe

b
J + ωKIeaIe

b
K

ωIJ = −ωJI , (3.0.7)

which tells us that ωJI belong to the Lie algebra SO(1, 3) The vacuum Einstein field

equations are then given by

GI = RI − 1

2
eIR = 0.

where

RI = eJyR
IJ

denotes the Ricci 1-form and

eIyR
I

denotes the curvature scalar.
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3.1 The 3 + 1 split for vierbeins

As a natural extension of the above procedure we perform the 3 + 1 for tetrads3. For this

it is used the same notation as for the metric formulation before.

To each point in space one can assign an SO(3) frame4, i.e. a triad eai and its dual eia

hab = δije
i
ae
j
b.

Here i, j are SO(3) indices. While the metric is obviously invariant under proper rota-

tions5, the triad is not, i.e. the degrees of freedom are increased. It is convenient to

choose the simply connected double cover SU(2) instead of SO(3), which does not alter

the Lie algebra, since SO(3) and SU(2) are isomorphic. This choice allows us further to

incorporate spinors6 which will be relevant with regard to quantum theory.

Let us calculate dna

(dn)ba = 2∇[bna] = 2δc[b∇cna] = 2h c
[b ∇cna] − n[bn∇na] =

= 2B[ba] − n[bn∇na] = (BJ ∧ eJ + (n∇)n ∧ n)ba, (3.1.1)

then perform the pull back to Σ for example denoted by ↓ eIa = h b
a e

I
b . Furthermore we

define K :=↓ B, e0
a := nIe

I
a = −na and Γi j :=↓ ωij

↓ (de0) = −KI∧ ↓ eI = − ↓ ω0
J∧ ↓ eJ ,

since with KI
anI = 0 and (3.0.7) ω0

0 = 0 all internal indices take effectively the values

1, 2, 3

↓ (de0) = −Ki ∧ ei = − ↓ ω0
j ∧ ej.

Therefore, the pull back of the 4-curvature 2-form is

↓ (4)RI
J =↓ dωIJ+ ↓ ωIk∧ ↓ ωkJ +KI ∧KJ .

(3.1.2)

3For a rigorous derivation of the triad representation of general relativity via an action principle see
[13] and [14].

4Remark: SO(3) is the subgroup of SO(1, 3) leaving na invariant.
5Actually it is invariant under the action of O(3).
6In the pure gravity context the internal gauge group of connection dynamics is SO(3), but as one

introduces (half integer) spinorial matter fields the group gets enlarged to SU(2) (see chapter 7). Another
advantage of using SU(2) is that it is well suited for the spinor formulation of connection dynamics [13].
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The (i, j)-th component is given by

Ri
j +Ki ∧Kj,

where Ri
j = dΓi j + Γik ∧ Γkj denotes the intrinsic curvature 2-form. The vacuum initial

value constraints are given by

G0 = 0

A short calculation shows that the scalar constraint is given by G0
0 = −1/2ejy(eiy ↓

(4)Rij) = 0 which in the 3 + 1-split reads

−R−K2 +Ki
jK

j
i = −R− ejy(eiyK

i ∧Kj). (3.1.3)

If (3.1.3) is multiplied by ωh, we obtain the scalar constraint of the ADM formalism

(compare equation (1.0.7)). The volume form is absorbed into the Lie algebra valued

vector density

Ẽi := ωhei,

which will serve as the momentum variable canonically conjugated to the configuration

variable Ki (This can be motivated from cotangent bundle constructions, since the canon-

ically given one form on the contangent bundle is given by Θ =
∫
ẼyδK.). Using it allows

to rewrite (3.1.3)

C = −ωhR− ω−1
h Ẽjy(Ẽiy(Ki ∧Kj)).

The diffeomorphism constraint is obtained by calculating the pull back of G0 to Σ

↓ G0 =↓ (4)R0 =↓ (eJy
(4)R0J)) =↓ (ejy

(4)R0j =

= eiy ↓ (dω0i + ω0
k ∧ ωki) = eiy(dKi + Γik ∧Kk) =

= eiy(DKi), (3.1.4)

where D is the gauge covariant exterior derivative in Σ. It now has to be checked if the

Poisson algebra of the triad formulation is equivalent to the one of the ADM formulation,

i.e. if

{Ẽa
i (x), Kj

b (y)} =
κ

2
δab δ

j
i δ(x, y) (3.1.5)

is the only nonvanishing Poisson bracket. Πab and hcd expressed in the new variables then

would have the same Poisson bracket as in the ADM formulation. Obviously this cannot
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be the case, as there are 18 phase space degrees of freedom and the constraints leave 10.

The root of the problem can be found in (3.1.1), where the symmetry condition has not

been imposed on the Kab. This condition is known as the Gauß constraint for reasons

which will be explained later 8

Gik = Ka[i Ẽ
a
j].

Its smeared version where Λi
j is an antisymmetric matrix

G[Λ] =

∫
Σ

ẼiyK
jΛi

j

generates exactly the before mentioned redundant rotations.

E[λ] =

∫
Σ

Ẽiyλ
i

{E[λ], G[Λ]} =
κ

2

∫
Σ

Λk
iẼkyλ

i.

So far, no drastic simplifications have been achieved. The previous procedure has just

been an intermediate step towards one of the most important conceptual and, in the

author’s point of view, also phenomenological changes (see ch. 11.4) within canonical and

non-perturbative gravity of the last decades.

Furthermore, note that the Poisson structure (3.1.5) is invariant with respect to the

following rescaling:

Ẽa
i →

Ẽa
i

γ

Ki
a → γKi

a.

This invariance, which seems to be quite trivial, but has important consequences with

regard to quantization will be discussed later in chapter 8.

All these notions presented so far will become more clear in the bundle formalism which

is also essential to construction of invariant fiber bundles developed by [15] and presented

in ch. 5. This should therefore be explained before we continue. For the section about

symmetry reduction in LQG developed by Bojowald and Kastrup it actually is essential.

This will allow a closer look on the one form eia, the frame, the group structure7 and the

connection between points on our “stage” with respect to their respective eqivalence class

of inertial frames.

7The indices i, I were called Lie algebra indices. As introduced here they were only used as names for
distinct orthogonal directions.



Chapter 4

Fiber bundle theory

4.1 A short introduction to fiber bundle theory

A fiber bundle consists of [16]

� three topological spaces, called total space E, base space B and the standard fiber

F

� a surjection π : E → B, called the projection. F is homeomorphic to the fiber over

x Fx := π−1(x), ∀x ∈ B displayed in figure 4.1

� the structure group G of homeomorphisms of the fiber F acting effectively from the

left.

� a local trivialization that is a cover {Uα} of B together with homeomorphisms Φα

∀ Uα

Φα : π−1(Uα)→ Uα × F

such that

πΦ−1
α (x, f) = x, x ∈ Uα, f ∈ F.

This means that locally the total space is a Cartesian product and that we can

coordinatize it by collections (x, f).

The doublet (π−1Uα,Φα) is a chart. To obtain an atlas we need transition functions, i.e.

a kind of translation rule in the overlap region of two open sets:

Considering two charts (π−1Uα,Φα), (π−1Uβ,Φβ) with non-empty overlap, then the map

Φα ◦ Φ−1
β : Uα × F → Uα,Φα × F

20
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Figure 4.1: The fiber bundle and the projection to the base space.

is also a homeomorphism. Keeping a point x fixed, Φα ◦ Φ−1
β maps the standard fiber

bijectively to itself via the structure group, and we call Φα ◦ Φ−1
β the transition function.

gαβ(x) := Φα ◦ Φ−1
β |x : {x} × F → {x} × F

(4.1.1)

Since {x} × F ∼ F we have

gαβ : Uα ∩ Uβ → G

The transition functions satisfy the consistency conditions

gαα = 1

g−1
αβ = gβα

gαβ ◦ gβγ = gαγ.

Actually, the single cocycle condition gαβ◦gβγ = gαγ, which has to be met by the transition

functions, suffices to determine all of these three properties.

A fiber bundle can always be reconstructed given B, F , G and gαβ. To construct another

bundle, called the associated principal bundle P (B,G), it is necessary to choose the fiber
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Figure 4.2: On the trivialization of fiber bundles.

to be the structure group and additionally define a free right action of the structure group

on the resulting fiber bundle. Given the set

Ẽ =
⋃
α

Uα ×G. (4.1.2)

we can define the equivalence relation for two coordinates (x, g) ∈ Uα × G and (x′, g′) ∈
Uβ ×G

(x, g) ∼ (x′, g′) (4.1.3)

iff x = x′ and gβα(x)g = g′. Then the total space P is given by

P = Ẽ/ ∼

which is the set of equivalence classes [(x, g)]. The bundle projection is just

π : P → B, [(x, g)]→ x.

At last we describe the homeomorphism φα by its inverse

Φ−1
α (x, g) = [(x, g)].

Let us now introduce the notion of a cross section of a bundle: It is a continuous map

s : B → E, which meets (π ◦ s)(x) = x, ∀x ∈ B.
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To each point p ∈ P we assign a tangent space TpP . The lift of a curve is simply

γ : R→ B t→ γ(t)

γ̂ : R→ P t→ γ̂(t) : π ◦ γ̂ = γ

Consider a flow

Φt : B → B.

A flow is generated by a vector-field on B. The flow and the generator can then be lifted

to objects on P . This is called the complete lift of a field.

(̃) : X (B)→ X (P )

We can also think of a flow which leaves the base point invariant. Therefore, its lift lies

tangent to the fiber in that point.

Now we define the action of G on the manifold P from the right. Given the point p ∈ P ,

the right action

Rg : P ×G→ P, p 7→ pg (4.1.4)

is such that if φα(p) = (x, hα), then

φα(Rgp) = (x, hαg), ∀Uα. (4.1.5)

Hence, the canonical right action moves a point p on the principle fiber bundle only within

the fiber over π(p), i.e. vertically.

Consider a vertical flow induced by the action of a one parameter subgroup gt = exp(tA),

where A is an element of the Lie algebra G isomorphic to TeG1. It induces a vector-field

Ã ∈ TpP called the fundamental vector-field. If G acts freely on P the map f : G → TpP
is a Lie algebra isomorphism and for nonvanishing A, Ã is nonvanishing, too. This poses

the question, of which Lie algebra element corresponds to the fundamental vector-field

Rg∗Ã with p = p′g−1.

Ã is tangent to the curve γ̂(t) induced by Rgt at γ̂(0) = p. Then for γ̂g(t) with γ̂g(0) = p′

we have

γ̂g(t) = γ̂(t)g = pgtg = p′g−1gtg

1Some detailed comments on Lie algebras and the exponential map can be found in ch. 6
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and is therefore induced by Radg−1gt . Thus, Rg∗Ã corresponds with the Lie algebra ele-

ment Adg−1A, i.e. the adjoint representation of G. Such objects pushed forward to T B
are projected to the zero vector. Due to the isomorphism f : G → Vp ⊂ TpP Vp has the

same dimension as the standard fiber G and is called the vertical subspace of TpP , which

is canonically given on a principal fiber bundle. This leads to the question of what can

we find out about the horizontal subspace.

4.2 Connection on a principle fiber bundle

The connection Γ gives a correspondence of points in any two fibers over a curve γ(t)

in B. As physicists we are, for instance, interested in parallely transporting the frame

of reference, i.e. laboratories with three possibly orthonormal directions, the electrical

reference potential etc., from one point to the other. The connection is an assignment of

the horizontal subspace Hp ⊂ TpP such that

� TpP = Vp ⊕Hp

� Hpg = (Rg)∗Hp with Rgp = pg

� Hp depends differentially on p, i.e. given a differentiable vector-field ũ ∈ TpP , its

horizontal ũH as well as its vertical ũV component is differentiable.

We define the horizontal lift of γ(t) through x with tangent u as the curve γ̂(t) with tangent

ũ which is horizontal and projects to π∗ũ = u. Since the projection is an isomorphism of

Hp onto Tπ(p)B (same dimension) the lift is unique and Hp is invariant by G.

This notion can be captures via a G-valued 1-form ω on P called the connection 1-form

with the properties

� ω(ũV = Ã) = A

� ω(ũH) = 0

Its pull back, with respect to a group action g, is given by

R∗gωp(ũ) = ωpg(Rg∗ũ)

Rg∗ũ = ũH +Rg∗ũV

R∗gωp(ũ) = 0 + Adg−1A = Adg−1ωp(ũ).

Next we describe the connection in local trivializations: Consider the local (canonical)

section σ(x) = Φ−1 ◦ Id(x), where x ∈ U and Id(x) = (x, e) ∈ U ×G where e the identity

element of G. With the help of σ we can pull back ωp to Uα with π(p) = x, Φ(p) =
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(x, g(x)). For a vector-field ṽ ∈ T (π−1U) tangent to the curve γ̂(t) with π(γ̂(t)) = x(t) at

p and π∗ṽ = v ∈ TxB. The corresponding tangent vector in T(x,g)U ×G can be identified

with an object (v, w) ∈ TxU ⊕ TgG, which is given by

v + g′(x)v.

Thus, on π−1U using the right action on P

ṽ = Rg∗σ∗(v) + Φ−1
∗ g

′(x)v

and acting with the connection on it yields

ω(ṽ) = Adg−1σ ∗ ω(v) + Φ−1∗ω(g′(x)v).

Since Φ−1
∗ g

′(x)v is vertical Φ−1∗ω(g′(x)v) gives the corresponding Lie algebra element.

Therefore, we can write

ω(ṽ) = Adg−1A(v) + ΘMC(g′(x)v).

ΘMC is the Maurer-Cartan form on G defined by the mapping ΘMC : TgG → TeG ' G2

and determined ΘMC(A) = A for A ∈ G. A := σ∗ω ∈ Λ1 ⊗ G is called gauge potential.

Accordingly one refers to the local trivialization as the local gauge. In our case G ⊂
GL(n), one can use the explicit form of ΘMC = g−1dg

ω(ṽ) = g−1A(v)g + g−1dg(v).

In another local gauge Û the same bundle point p is given by Φ̂(p) = (x, ĝ). The transition

function is then defined by hĝ = Φ ◦ Φ̂−1ĝ = g and the action of the connection on ṽ is

given by

ω(ṽ) = Adĝ−1Â(v) + Φ−1∗ω(ĝ′(x)v) = (4.2.1)

= Ad(hĝ)−1A(v) + ΘMC((hĝ)′(x)v) =

= Adĝ−1Adh−1A(v) + ΘMC(ĝ′(x)v) + Adg−1ΘMC(h′(x)v)

⇒ Â = Adh−1A(v) + ΘMC(h′(x)v)

In some of the major the LQG references (e.g. [11]) the trivializations are defined as

Φα : Uα × G → π−1(U). Thus, under local gauge transformations the gauge potential

2Sometimes one writes ΘMC(Ã) = Lg−1∗Ã
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transforms according to

gA = AdgA+ gd(g−1) = AdgA− dgg−1. (4.2.2)

Before we proceed, we will discuss briefly a different point of view on gauge transforma-

tions. Changing trivializations can be regarded as a change of (fibre-) coordinates, hence

as a passive transformation. The active gauge transformations are described via vertical

automorphisms of the bundle. Roughly speaking generic automorphisms are diffeomor-

phisms on P mapping fibres into fibres and inducing diffeomorphisms of the base manifold.

In addition automorphisms commute with the right action of the structure group on the

principal bundle. Vertical automorphisms leave the base point invariant. For details the

reader is referred to [17].

4.3 Pseudotensorial and tensorial forms

Let ρ be a representation of the structure group on a finite dimensional vector space V ,

where ρ(a) is a linear transformation of V and we have ρ(ab) = ρ(a)ρ(b). A pseudotenso-

rial r-form ϕ on P of type (ρ, V ) is a V -valued r-form that meets

R∗aϕ = ρ(a−1)ϕ.

For instance, let ρ be the adjoint representation of G in G, then R∗aϕ = Ada−1ϕ. Thus, the

connection 1-form is a pseudotensorial 1-form of type (Ad,G). If such a form additionally

satisfies ϕ(X1, · · · , Xr) = 0, whenever one of the Xi’s is vertical, then it is being referred

to as a tensorial form of degree r on P of type (ρ, V ). Having fixed a connection we can

define a special tensorial form: the covariant derivative of a pseudotensorial form. Let

h denote the projection of TuP to the horizontal subspace Hu, then Dϕ := (dϕ)h is a

tensorial form if ϕ is pseudotensorial, since the projection as well as the exterior derivative

commute with the right action of G and hXi vanishes if Xi is vertical. The tensorial form

Ω := Dω, which is of type AdG is called curvature form of ω. It satisfies Cartan’s second

structure equation

dω(X, Y ) = −[ω(X), ω(Y )] + Ω(X, Y )

and the Bianchi identity DΩ = 0. Moreover, for any tensorial 1-form ψ on P of type AdG

we obtain

Dψ(X, Y ) = dψ + [ψ(X), ω(Y )] + [ω(X), ψ(Y )].
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4.4 The frame bundle

The past chapters covered the general framework needed for the classical part of LQG

or any kind of Yang-Mills theory. In the case of GR the bundles of interest are already

determined by the (differential) basmanifold Σ. We can construct the tangent bundle (a

special vector bundle), where the fiber Fx is the set TxΣ of all tangent vectors of curves

through x diffeomorphic to Rd. Thus, locally the tangent bundle has the trivialization

Rd ×Rd. The general linear group GL(d,R) acts on Rd in a natural manner. It acts on

Rd via linear operators represented on Rd as regular d × d matrices as follows way: for

ξi ∈ Rd and for a ∈ GL(d,R) with ρ(a) = ai j we have ξ̃i = ai jξ
j. Hence, the transition

functions of the tangent bundle are the Jacobians of the vector space transformations.

Next we choose the set of all ordered bases (linear frames) of TxΣ as a fiber of the so-

called frame bundle L(Σ). A basis we denote by u = (X1, · · · , Xd) ∈ L(Σ). Introducing

a local coordinate system in an open neighborhood U of x ∈ Σ allows us to express the

basis in the form Xi = Xj
i
∂
∂xj

. To ensure completeness of u the d× d matrix Xj
i has to

be regular, which shows that the fiber of L(Σ) is in 1 : 1 correspondence with the group

GL(d,R). We regard u as a non-singular linear mapping u : Rd → TxΣ: a vector in ξi

in Rd is mapped to ξ = ξiXi ∈ TxΣ. With the natural basis of Rd 3 we define u by

ubi = Xi. Then a linear transformation of Rd by a ∈ GL(d,R), bi → ajibj is mapped

to a transformation of TxΣ by the composite map ua which is the desired (free) right

action on L(Σ). Thus, the frame bundle is an example of a principal GL(d,R)-bundle

associated with T Σ. Furthermore, Σ is a Riemannian manifold, i.e. equipped with a

metric. Hence, each tangent space is an inner product space. The metric defines which

frames are orthonormal. So the structure group can be reduced to O(d,R). If Σ is

orientable, i.e. it is equipped with a volume form, we can select the oriented orthonormal

frames, and the structure group is reduced to SO(d) represented by orthogonal matrices

with unit determinant. The principal SO(d,R)-bundle is a subbundle of the principal

GL(d,R)-bundle.

On L(Σ) there exists a canonical Rn-valued 1-form of type (GL(n,R),Rn) called the

soldering form given by

θ(X) = u−1(π(X)), X ∈ TuL(Σ)

i.e. it is a map from T L(Σ) to Rn and therefore solders the tangent bundle with the

Euclidean vector bundle P×GRn associated to the frame bundle P . It is clearly horizontal

due to the bundle projection in the argument of u−1 and behaves under the right action

3b1 = (1, 0, · · · , 0) etc.
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of G as follows:

R∗aθ(X) = θ(Ra∗X) (4.4.1)

Ra∗X is a tangent vector at ua and thus we have

(ua)−1(π(Ra∗X)) = a−1u−1(π(X)) = a−1θ(X)

(4.4.2)

which is the desired property of a tensorial form, where a is the matrix representation of

GL(n,R) on Rn.

A connection on the bundle of linear frames is called linear connection. We use the

linear connection to define the tensorial form Θ of type (GL(n,R),Rn), called torsion, by

Θ = Dθ. It satisfies Cartan’s first structure equation

dθ = −(ω(X)θ(Y )− ω(Y )θ(X)) + Θ(X, Y ).

We can now decompose the structure equations with respect to the basis (ei, E
j
i ) of

(Rn,GL(n,R)) to obtain

dθi = −ωi j ∧ θj + Θi

dωi j = −ωi k ∧ ωk j + Ωi
j.

Since we are dealing with a Riemannian manifold, one can show [12] that there exists a

unique torsion free metric connection, i.e. a connection that defines parallel displacements

which preserves the fiber and has vanishing torsion. Then the two structure equations

reduce to the equations (3.0.6) and (3.0.5) in the discussion about the vielbein formalism.



Chapter 5

Invariant connections

According to the aim to construct symmetry reduced models, such as spherical symmetric

(Reissner-Nordström) solutions, in this chapter we discuss invariant connections. At this

point we will follow closely the discussions in [12], [18] and [15]. The application to

LQG was done in [19]. Since this thesis has a particular interest in rotational symmetry,

this example will be considered within every intermediate step of the general symmetry

reduction formalism.

We consider a compact Lie group K acting on the principal fiber bundle P (Σ, G) via

automorphisms and via the projection every element of K induces a transformation on Σ

in a natural manner1. The differentiable manifold Σ as well as P together with the action

of K are called a differentiable K-manifolds. u0 ∈ P and x0 = π(u0) ∈ Σ will serve as

a reference points. The curve induced by the action of one parameter subgroups of K

starting at u0 ∈ P will be denoted by ut, while the projected curve on the base manifold

will be denoted by xt.

Let us first concentrate on the base manifold Σ. Jx0 is the so-called isotropy subgroup of

K with respect to x0 = π(u0), i.e. the elements of K leaving x0 invariant.

Jx0 = {k ∈ K | kx0 = x0}

E.g. for K = SU(2) we have Jx0 = U(1), i.e. the rotations for which x0 lies on the

rotation axis of Jx0 but not in the symmetry center that is stabilized by all elements of

K. The action of K decomposes the base manifold into orbits. An orbit with reference

point x0 is defined as

Ox0 = Kx0 = {x ∈ Σ : ∃k ∈ K, kx0 = x}.

The so-called orbit space will be denoted by Σ/K. The group K itself is decomposed into

orbits with respect to the isotropy subgroup Jx0 . The coset space K/Jx0 is a homogeneous

1Here the action of an element k on the manifold Σ will be denoted by the same letter.

29
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space. If Jx0 is not a normal subgroup of K, i.e. an invariant subgroup with respect to

the adjoint action of K, then OkOk′ = Okk′ does not induce a group structure on the

homogeneous space K/Jx0 , as is the case for K = SU(2) and Jx0 = U(1).

The isotropy groups of different points in the orbit are conjugate to each other, i.e.

y = gx0 ∈ Ox0 entails

Jy = Jgx0 = {k ∈ K | kgx0 = gx0}

→ g−1kg ∈ Jx0 → Jy = gJx0g
−1

The conjugacy class [Jx0 ] is called isotropy type. Furthermore, we show that the map

q : K → Σ, g → gx with x ∈ Σ and g ∈ K is constant on the cosets kJx and that it

induces an injective map qx : K/Jx → Σ; [k] 7→ kx, where the image is Ox. The last

assertion is trivial. For the first one we have

∀g = kj ∈ kJx, q(g) = gx = kjx = kx

Assume for gJx, g̃Jx ∈ K/Jx; g 6= g̃ that qx(gJx) = qx(g̃Jx), then

gx = g̃x

x = g−1g̃x, → g−1g̃ ∈ Jx contradiction. (5.0.1)

Thus one can construct an x-dependent bijection between the orbit and K/Jx.

Let J := Jx0 , then the set of points whose isotropy type is [J ], which is called the orbit

bundle Σ[J ]

Σ[J ] = {x ∈ Σ | [Jx] = [J ]},

is a submanifold of Σ. Furthermore, if the orbit space Σ/K is connected, then one can

show [20] that there exists a unique isotropy type [J ], such that Σ[J ] is open and dense in

Σ and that the space B := Σ[J ]/K is connected. The space K/J is called principal orbit

type of Σ and the submanifold Σ[J ] is the so-called principal orbit bundle. It is a fiber

bundle with base B standard fiber K/J and NJ/J is the structure group, where NJ is the

normalizer of J in K. Thus, locally we have Σ[J ] ' B×K/J . Orbits with dimension less

than the dimension of the principal orbit are called singular orbits. For example, in case

of spherical symmetry, the orbit of the symmetry center is a single point. Orbits which

are not of the principal orbit type but have same dimension are called exceptional orbits.

Elsewhere, we require that there is only one isotropy type isomorphic to U(1). Hence, the

principal orbit type is SU(2)/U(1), which in turn can be shown to be isomorphic to the

2-sphere S2 [21]. For our purposes here Σ[U(1)]/SU(2) we will take to be R or R+.

Let us now return to the symmetric principal G-bundle. We restrict P to the bundle P |B
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over B. For j ∈ J , ju0 lies in the same fiber as u0, since B ' B×{eJ} is a fixed point set

of J . Now we define λ(j) = a, a ∈ G by ju0 = u0a in order to construct a homomorphism

λ : J → G. Let j, j′ ∈ J then

u0λ(jj′) = (jj′)u0 = j(u0λ(j′)) = (ju0)λ(j′) = (u0λ(j))λ(j′) = u0λ(j)λ(j′)

using commutativity of K ⊂ Aut(P ) with the right action of G. Thus, λ preserves the

multiplicative structure. It is important to note that the homomorphism is only defined

with respect to a certain reference point and therefore will be labeled by the reference

point λu0 . The homomorphisms with respect to different reference points in the same

fibre u′0 = u0a, are related via conjugation

ju′0 = u′0λu′0(j) = u0aλu′0 = ju0a = u0λu0(j)a

λu0a = Ada−1λu0

Thus, for points in the same fiber, all corresponding homomorphisms belong to the same

conjugacy class [λ]. Points p, whose corresponding homomorphisms are the same repre-

sentative, have to be related by elements of the centralizer Zλ of λ(J) ⊂ G

Zλ = {g ∈ G | λ(J)g = gλ(J)}.

Since G acts transitively in the fiber, each point u ∈ Gx, x ∈ B, can be characterized by

u = pa, where φα(p) = z =: φQα (p) ∈ Zλ. Thus, the transition functions of P |B only take

values in Zλ.

φβ ◦ φ−1
α = φQ βa ◦ a−1φ−1

Q α =

= φQ β ◦ φ−1
Q α

Due to proposition 5.3 of chapter I in [12] we can construct the reduced bundle Q(B,Zλ) =

{p ∈ P |B: λp = λ} 2. Therefore, a K-symmetric fiber bundle P (Σ, G) can be classified by

the conjugacy class [λ] and the reduced bundle Q(B,Zλ). Conversely P can be recovered

from the classifying pair (Q, [λ]) as will be done below[15]. The K-invariant connection

on P induces a connection ω̃ on Q.

We define a linear mapping Λ between the Lie algebras Λ : K → G by

Λp(X) = ωp(X̃),

2This is understood in the same sense as the SO(3) bundle is the reduced bundle of the GL(3) bundle,
if there exists a fiber metric.
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where X̃ ∈ TpP is the vector-field induced by X ∈ K and ω is a K-symmetric connection

1-form on P . Clearly for X ∈ J the induced vector-field is vertical, i.e.

Λp(X) = dλ(X), ∀X ∈ J (5.0.2)

is a Lie algebra homomorphism. If X ∈ K the adjoint representation of J in K is mapped

to

Λp(AdjX) = Adλp(j)Λp(X)∀X ∈ K (5.0.3)

In the following, we assume that the Lie algebra K can be decomposed into the vector

space direct sum K = J ⊕ J ⊥, such that adJJ
⊥ ⊂ J⊥. K is then said to be reductive.

If we keep λ constant on B3 the remaining components Λp |J⊥ together with ω̃ contain

all the information about the invariant connection on ω. More precisely, the invariant

connections on P are determined by a scalar field Λ on Q meeting the equations (5.0.2)

and (5.0.3) together with a connection ω̃ in Q. This is the so-called generalized Wang

Theorem. It is generalized allowing the action of K on Σ to be intransitive. Otherwise,

the set of invariant connections in P is in 1 : 1-correspondence with the set of linear maps

Λ |J⊥ [12]. Λp |J⊥=: Φ̃ we will call the Higgs field.

In order to prove this theorem we will follow the hints given in [15], orienting ourselves

by the detailed and transparent calculations in [18] and using the same notation as [12]4.

The first step consists in showing that we can reconstruct the original fiber bundle from

the classifying pair (Q, [λ]). We define the principal G′-bundle by

P ′(Σ, G′) = Q(B,Z)×K(K/J, J) (5.0.4)

with structure group G′ = Z × J and base Σ = B × K/J . We can extend the homo-

morphism λ to a homomorphism ρ : G′ → G given by ρ(g′) = zλ(j) with z ∈ Z. We

then construct the trivial principal G-bundle P ′×G. Since the second factor in (5.0.4) is

K-symmetric so is P ′. Using the extended homomorphism, the left action of G′ on G is

given by ρ̃ : G′ ×G→ G, (g′, g)→ ρ(g′)g. The right action of G′ on P ′ ×G is defined by

(p′, g) → (p′g′, ρ(g′)−1g). For points on P ′ × G (p′, g) we define the equivalence relation

(p′, g) ∼ (p′g′, ρ(g′)−1g) and obtain the set of the so defined equivalence classes denoted

by P ′ ×G′ G, which is also a K-invariant principal G-bundle associated with P ′. The

projection Ψ : P ′ × G → P ′ ×G′ G is K-equivariant. The bundle P ′×G′ G is equivalent

with the original K-invariant G-bundle via an K- and G-equivariant bundle isomorphism.

3See [18] for a discussion on those properties B has to fulfill in order to keep λ constant.
4A geometric interpretation of this scheme, in particular an interpretation of the Higgs, field can be

found in [22].
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We use Ψ to prove the assertion given above. For a K-invariant connection 1-form ω on

P ′×G′G, Ψ∗ω is a K-invariant connection on P ′×G. This is determined by a K-invariant

G-valued 1-form on the base P ′ = Q × K, which can be proven analog to the proof of

existence and uniqueness for connections in e.g. [12]. A G-valued 1-form given in a patch

Uα suffices to determine the connection. Using triviality of P ′×G Ψ∗ωα can be extended

to Ψ∗ω. A K-invariant 1-form on Q is just the connection ω̃. A K-invariant 1-form on

K is the canonical K-valued 1-form (the Maurer Cartan form) on K. We use the linear

map Λ to map this form to a G-valued form.

Thus, we can decompose the invariant connection 1-form in the following way

ω = ω̃ + Λ ◦ ι∗K/JΘK
MC

where σQ is a section in Q and ΘK
MC is the Maurer-Cartan form on K.



Chapter 6

Rotations and the Peter-Weyl

theorem

In order to obtain a spherically symmetric gauge potential we will concentrate in the

following on the group K = SU(2) and its relation to rotations. For the Ashtekar variables

this is the gauge as well as the symmetry group.

Rotations are operations on an Euclidean vector space preserving angles and the Euclidean

norm. General rotations can be parametrized by three numbers (φ, θ, ψ) called Euler

angles, which give a chart of SO(3), with the range 0 < θ < π, 0 < φ < 2π and

0 < ψ < 2π. In order to rotate a vector we write in accordance with [17]

V ′ = R(φ, θ, ψ)V,

R(φ, θ, ψ) = r3 ◦ r2 ◦ r1.

r1 describes the rotation about the z-axis by the angle φ, r2 rotates about the x′-axis

(the r1 rotated x-axis) by θ and r3 is the rotation about the z′-axis by ψ, the situation is

visualized in figure 6.1. These fundamental rotations are important in classical mechanics,

describing the angular momentum in a principal axis coordinate system and are known

as precession, nutation and proper rotation. Two parameter sets are called equivalent

if R(φ, θ, ψ) = R(φ̄, θ̄, ψ̄). The operator group of rotations acting on R3 is then the

quotient with respect to this equivalence relation R3/ ∼. In order to represent R(φ, θ, ψ)

explicitly as a matrix the well known fundamental rotation matrices for the rotation

about the (fixed) z- and x-axis, r̃z and r̃x respectively have to be introduced. Then we

have r1 = r̃z(φ), r2 = r̃z(φ)r̃x(θ)r̃z(φ)−1 and r3 = r̃z(φ)r̃x(θ)r̃z(ψ)r̃x(θ)
−1r̃z(φ)−1, hence,

R̃(φ, θ, ψ) = r̃z(φ)r̃x(θ)r̃z(ψ). The set of matrices {R̃(φ, θ, ψ)} form the group SO(3).

34
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Figure 6.1: The action of the rotation group on an orthonormal basis.

6.1 The group of unimodular unitary 2x2 matrices

Now consider the group of unitary matrices with unit determinant, SU(2). A general

element g ∈ SU(2) is of the form

g =

(
a− ib −c− id
c+ id a+ ib

)

with the condition

a2 + b2 + c2 + d2 = 1.

Thus, we establish a mapping f : SU(2)→ S3 ⊂ R4.

The Lie algebra G of a Lie group G is the Lie algbra of left invariant vector-fields on G.

We denote a tangent vector in TgG by vg then given a left translation Lh together with

its differential L′h : TgG→ ThgG a left invariant vector-field v satisfies

L′hvg = vhg. (6.1.1)

In particular we have L′hve = vh. Therefore, we have established a bijective correspondence

between the left invariant vector-fields and the vectors of tangents to G at e [17].

The exponential map maps the line tve, t ∈ R onto the one parameter subgroup gve(t),
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i.e. a curve tangent to ve and is defined by

exp : TeG→ G, ve 7→ exp(ve) = gve(1) (6.1.2)

The name “exponential mapping” results from the property gve(t)gve(s) = gve(s + t)

(composition of curves).

The integral curve γ(t) of vector-fields w is given by the unique solution to the ordinary

differential equation

d

dt
γ(t) = wγ(t) (6.1.3)

more generally for a function f : G→ K

d

dt
f(γ(t)) = wf(γ(t)). (6.1.4)

Accordingly, the vector-field w is the generator of the one parameter group γ(t) uniquely

defined by the equation

w(γ(0)) =
d

dt
γ(t)

∣∣∣
t=0

(6.1.5)

Now we can show that a left invariant vector-fields v are generators of right translations

Rγ(t), since

d

dt
Rγ(t)h

∣∣∣
t=0

=
d

dt
Lhγ(t)

∣∣∣
t=0

= L′hve (6.1.6)

Hence, we can define a left invariant vector-field on G from now on denoted by Lv via the

differential equation

Lvf(g) =
d

dt
f(g exp(tv))

∣∣
t=0
. (6.1.7)

The very same can be done with right invariant vector-fields

Rvf(g) =
d

dt
f(exp(tv)g)

∣∣
t=0
. (6.1.8)

If G is a subgroup of GL(n) the exponential map is explicitly given by the series expansion

exp(v) =
∞∑
n=0

1

n!
vn (6.1.9)

Using the exponential map and the identity det(exp(A)) = exp(trA) we can analyze the

Lie algebra SU(2) of SU(2). The matrix A has to be antihermitean, A† = −A, traceless
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and hold the form

A =

(
− i

2
z 1

2
y − i

2
x

−1
2
y − i

2
x i

2
z

)
. (6.1.10)

SU(2) is a 3 dimensional vectorspace. We cast A in a form that simplifies identifying the

basis. A expanded in this basis is

A = xτ1 + yτ2 + zτ3 = V iτi, V ∈ R3.

That this is really a basis of SU(2) can be shown by calculating the commutator among

the basis elements. Indeed,

[τi, τj] = εijkτk

τ 2
i = −1

4
1

{τi, τj} = −1

2
δij1

τiτjτk = −1

4
(
1

2
εijk1+ δijτk − δkmij τm)

with the structure constants ckij = εijk. The last three identities are needed for following

calculations. Exponentiation yields a general element of SU(2) (in a neighborhood of the

identity). As already mentioned, in case of a matrix group one can Taylor-expand the

exponential function, to find (nini = 1, ω ∈ R)

(niτi)
2 = −1

4
1 ⇒ (niτi)

2n =
(−1)n

22n
1,

(niτi)
2n+1 = 2

(−1)n

22n+1
niτi

g = exp(ωniτi) =
∞∑
n=0

1

n!
(ωniτi)

n =

=
∞∑
n=0

[(−1)n

(2n)!

(ω
2

)2n
1+ 2

(−1)n

(2n+ 1)!

(ω
2

)2n+1
niτi
]

=

= 1 cos(
1

2
ω) + 2niτi sin(

1

2
ω).

Consider (6.1.10) as a map h : R3 → SU(2), V 7→ A, with det(A) =|| V ||. Then one

can show that there is a 2:1 correspondence F : SU(2)→ SO(3) between rotations in R3

and the adjoint representation of SU(2) in SU(2), i.e. between V ′ = R(g)V and h(V ′) =

Mh(V )M−1. It can be easily checked that h(V ′) is traceless and antihermitean and,

furthermore that the determinant is invariant under that operation, which corresponds

with the invariance of the Euclidean norm. Thus, anyM determines a rotation. Obviously,
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M and −M determine the same R(g). What remains to be shown is that F−1(Id) =

{−1, 1} [17]: In order to meet the condition h(V ′) = h(V ), M has to commute with

all SU(2)-matrices which are traceless and antihermitian. M clearly commutes with

all imaginary multiples of 1. Hence M commutes with all imaginary matrices, hence

also with all real matrices, hence with all complex matrices and is therefore ±1. This

homomorphism restricted to a neighborhood of any point on the manifold of SU(2) is a

homeomorphism, i.e. a bicontinuous bijection. This determines SU(2) as a double cover

of SO(3). Since the group manifold of SU(2) is isomorphic to the 3-sphere which is simply

connected1, SU(2) is the universal cover of SO(3).

In order to present the concrete relation of rotations with the adjoint representation of

SU(2) explicitly, we show that if we calculate h(V ′) = Mh(V )M−1, we can identify τ1, τ2

and τ3 as the generators of rotations about the x-, y- and z-axis respectively.

h(V ′) = V iτi cosω + sinωniV jεijkτk + 2 sin2 ω

2
V inin

jτj (6.1.11)

For ω = φ, V = (x, y, z), ni = eiz and V ′ = (x′, y′, z′) this yields x → cosφx − sinφy,

y → sinφx + cosφy and z → z. Hence, we can use the Euler angles to parametrize

elements in SU(2). For a general element g ∈ SU(2) we write, according to the order of

fundamental rotations,

g = exp(φτ3) exp(θτ1) exp(ψτ3) =

= cos
θ

2
cos

1

2
(ψ + φ)1+ 2 sin

θ

2
cos

1

2
(ψ − φ)τ1−

− 2 sin
θ

2
sin

1

2
(ψ − φ)τ2 + 2 cos

θ

2
sin

1

2
(ψ + φ)τ3 (6.1.12)

We can now compare this expression with the one above for SU(2) elements. This allows

us to use the Euler chart of the S3 imbedded in R4 with coordinates

a = cos
θ

2
cos

1

2
(ψ + φ) =: x0

b = cos
θ

2
sin

1

2
(ψ + φ) =: x3

c = − sin
θ

2
sin

1

2
(ψ − φ) =: x2

d = sin
θ

2
cos

1

2
(ψ − φ) =: x1

The inverse g−1 is given by (ψ, θ, φ) → (−φ,−θ,−ψ). Fixing the value of ψ amounts to

restricting oneself to the 2-sphere, i.e. a point on the free z′-axis has the isotropy group

J = U(1) and the φ and θ rotations generate the S2.

We use this coordinates to caclulate the adjoint representation of a general SU(2) element

1Actually any n-sphere, n > 1, is simply connected
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given by (6.1.12).

g(φ, θ, ψ)τjg
−1(φ, θ, ψ) =

= x2
0τj + 2x0xiεijkτk + 2xjxkτk − xkxkτj =

= (x2
0 −

3∑
k=1

xkxk + 2xjxj)τj +
∑
k 6=j

(2x0xiεijk + 2xjxk)τk

=



(cosψ cosφ− sinψ sinφ cos θ)τ1 + (sinψ cosφ cos θ + cosψ sinφ)τ2+

+(sin θ sinψ)τ3

(cosψ cosφ cos θ − sinψ sinφ)τ2 + (− sinψ cosφ− cosψ sinφ cos θ)τ1+

+(sin θ cosψ)τ3

(cos θ)τ3 + (sin θ sinφ)τ1 + (− sin θ cosφ)τ2

(6.1.13)

This expression allows for reading off the general SO(3) matrix cosψ cosφ− sinψ sinφ cos θ − sinψ cosφ− cosψ sinφ cos θ sin θ sinφ

sinψ cosφ cos θ + cosψ sinφ cosψ cosφ cos θ − sinψ sinφ − sin θ cosφ

sin θ sinψ sin θ cosψ cos θ

 .

(6.1.14)

Finally we also establish the isomorphism F : SU(2)→ SO(3) which is the differential of

the adjoint representation of SU(2), i.e. it is the adjoint representation of SU(2). SO(3)

is the algebra of traceless antisymmetric real 3 × 3 matrices. From the commutation

relations of SU(2) we have F : τi 7→ ckijτk. Thus, we obtain a matrix representation of

the SU(2) generators τi 7→ ckij = εk ij =: (γi)
k
j. We defined the (k, j)-th component of

the SO(3)-generator γi. Due to the properties of the permutation symbol εkij it follows

immideately that the γ’s also satisfy the commutation relations [γi, γj] = εk ijγk.

6.2 The Maurer Cartan form on SU(2)

For the sake of completeness, we first caclulate the full Maurer-Cartan form on SU(2),

Θ
SU(2)
MC = g−1dg, using the parametrization introduced above. A tedious but straight

forward calculation2 gives

Θ
SU(2)
MC = (τ1 sin θ sinψ + τ2 sin θ cosψ + τ3 cos θ)dφ+

+ (τ1 cosψ − τ2 sinψ)dθ + τ3dψ.

2At this point it is convenient to choose different coordinates for the intermediate steps of the calcu-
lation: u := ψ + φ, v = ψ − φ.
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Based on this expression we calculate the Maurer-Cartan form restricted to S2 ' SU(2)/U(1),

ι∗S2g−1dg, which is the pull back to a ψ = const.-surface.

ι∗S2Θ
SU(2)
MC = (τ1 sin θ sinψ + τ2 sin θ cosψ + τ3 cos θ)dφ+

+ (τ1 cosψ − τ2 sinψ)dθ.

Then we choose ψ = 0 which yields

(τ2 sin θ + τ3 cos θ)dφ+ τ1dθ. (6.2.1)

6.3 Haar measure, representations and Peter Weyl

theorem

In order to provide the necessary tools for the loop quantization of GR this thesis strives

for demands an excurse to representation theory. Therefore we will state some very

important theorems and properties of representations of compact finite dimensional Lie

groups, such as SU(2). We follow closely the tremendously useful introductory chapter

on mathematical physics in [11] and also [17]. We will use the following theorem:

On a compact, finite-dimensional Lie group, G, there exists a measure, invariant under left

and right translations, which is unique if fixed to be a probability measure. Furthermore

it is invariant under inversions. The measure, denoted by µH , is called Haar measure. By

left invariance we mean ∫
G

dµH(g)f(hg) =

∫
G

µH(g)f(g)

A proof can be found in [11]. At this point, we give the concrete forms of the measures

on the compact Lie groups we are concerned with; SU(2) and U(1).

Given the left invariant Maurer-Cartan form ΘMC , we can build a metric on the group

manifold given by

g = − 1

N
Tr(ΘMC ⊗ΘMC), (6.3.1)

where N is the normalization of the Lie algebra generators. In case of SU(2) we use N =

1/2. Due to the trace the metric is invariant under inversion, left and right translations.

Consequently, we find a volume form given by

dµH =
1

G

√
det g d3x (6.3.2)
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In case of SU(2) this procedure yields

gab = dφadφb + 2 cos θdφ[adψb] + dψadψb + dθadθb

dµH =
1

(4π)2
sin θdψdθdφ,

∫
SU(2)

dµH = 1.

Using the pull back ιS2 we can also obtain the well known volume form on the homogeneous

space, i.e. the 2-sphere (omitting the normalization constant):

dΩ = sin θdθdφ

In case of U(1) all this becomes trivial. The metric and normalized Haar measure read3

g = dψadψb

dµH =
1

4π
dψ (6.3.3)

The existence of such a Haar measure allows for equipping a finite linear representation

space V with an inner product such that the representation is unitary. Let the representa-

tion be denoted by ρ : G→ B(V ). By definition, the carrier space is a Hilbert space, i.e. a

complete inner product space. B(V ) denotes the bounded linear operators on V . The map

ρ is a homomorphism. An inner product satisfies the property 〈u, ρ(g)v〉 = 〈ρ†(g)u, v〉,
where † denotes the adjoint w.r.t. the inner product. A representation is called unitary

if ρ†(g) = ρ−1(g) = ρ(g−1). Then define

〈u, v〉′ :=
∫
dµH(g)〈ρ(g)u, ρ(g)v〉. (6.3.4)

If we calculate 〈ρ(h)u, ρ(h)v〉′. We find

〈ρ(h)u, ρ(h)v〉′ =
∫
dµH(g)〈ρ(gh)u, ρ(gh)v〉 = 〈u, v〉′ (6.3.5)

due to right invariance of the Haar measure, and we conclude that the representation is

unitary.

Furthermore, we show that a finite dimensional unitary representation is either irreducible

or completely reducible, i.e. the representation decomposes into a direct sum of irreducible

representations. A representation is called irreducible, if there does not exist any non-

trivial invariant subspace. By an invariant subspace W we mean ρ(g)W ⊂ W ∀g ∈ G.

To prove the assertion above suppose that there exists an invariant subspace V1 ⊂ V ,

3The factor 4π is due to the fact that we considered U(1) as a subgroup of SU(2), where the range of
ψ is [0, 4π).
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which is invariant and choose one element u. Then choose any v ∈ V ⊥1 . We find that

0 = 〈ρ(g−1)u, v〉 = 〈u, ρ(g)v〉 (6.3.6)

Hence, V ⊥1 is invariant too. Now upon iteration this process terminates, since V is finite

dimensional.

Proving the theorem, which is to be presented in the following requires Schur’s Lemma: If

an intertwiner A : V1 → V2 between two finite dimensional irreducible representations, ρ1

and ρ2, commutes with the representations, Aρ1(g) = ρ2(g)A ∀g ∈ G, then either A = 0

or the representations are equivalent.

First, from the commutation property it follows that the kernel and the image of A are

an invariant. From the irreducibilty, it follows that either Ker(A) = V1, from which we

conclude that A = 0, or Ker(A) = {0} and Im(A) = V2, and we conclude that A is

invertible. If an intertwiner is invertible the representations are called equivalent. We

could now choose an other intertwiner B, then the combination C = A − zB, z ∈ C is

again an intertwiner. We may choose z such that C is not invertible, but then C = 0. If

ρ1 = ρ2 we may choose A = λ1.

In the following we will prove parts one of the most important theorems used in the de-

velopment of loop quantum gravity - the Peter Weyl theorem. It providesa decomposition

of the representation space of infinte dimensional unitary representations of compact Lie

groups into a direct sum of finite dimensional irreducible representations. Furthermore

it equips us with an orthonormal and complete basis for the Hilbert space L2(G, dµH),

namely the suitably normalized coefficients of the representation matrices. Choose one

representative ρj out of each of the equivalence classes of ∞ > dj-dimensional unitary

irreducible representations. Denote the normalized martix coefficients of the m’th row

and n’th column

g 7→ b(j)
mn(g) :=

√
djρj(g)mn

and consider the (k, l) coefficient of the matrix Ajj
′,(n0n′0) defined by

A
jj′,(n0n′0)
kl =

∫
G

dµH(g)b
(j)
kn0

(g)b
(j′)
n′0l

(g−1) =

=

∫
G

dµH(g)b
(j)
kn0

(g)b̄
(j′)
ln′0

(g) = (6.3.7)

= 〈b(j′)
ln′0
b

(j)
kn0
〉

Obviously, Ajj
′,(n0n′0) is an intertwiner between the j’th and j′’th representation. By

Schur’s lemma we can conclude that it either vanishes or j = j′ andA
jj′,(n0n′0)
kl = λj,(n0n′0)δkl.
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We rewrite equation (6.3.7) in the form

λj,(n0n′0)δkl =

∫
G

dµH(g)djρ
−1
n′0l

(g)ρkn0(g).

Multiplying both sides with δkl (tracing) yields

λj,(n0n′0)dj = djδn′0n0
. (6.3.8)

Hence, we can summarize the results in the orthonormality condition

〈b(j′)
m′n′b

(j)
mn〉 = δjj′δmm′δnn′ . (6.3.9)

Showing completeness involves more effort. We will only sketch the proof. One has to

utilze utilize the generalization of Weierstraß’ result that on an compact intervall any

continuous function can be approximated by linear combinations of polynomials, which is

known as the Stone-Weierstraß theorem. It generalizes the result to compact Haussdorff

spaces and more general algebras 4.

For our purpose to construct a spherically symmetry reduced sector of loop quantum

gravity, we will need the unitary irreducible representations of U(1). The basis of the

Abelian Lie algebra U(1) is given by the imaginary unit. An arbitrary element of U(1) ∼
S1 is given using the exponential map

g(φ) = exp(iφ) (6.3.10)

On the n-dimensional complex vector space V g is represented as an unitary element of

GL(n,C) given by

ρ(g) = exp(Tφ),

where T is a diagonal and antihermitean. In order to ensure periodicity g(2π) = 1 we

conclude that the diagonal entries of T are given by im, m ∈ Z5, and further that ρ(g)

is diagonal with entries given by exp(imφ). This representation is clearly reduible and

decomposes into a direct sum of one dimensional unitary irreducible representations. The

orthogonal basis is given by the functions

ρrs = exp imφ∫
1

2π
exp−im′φ exp imφ = δmm′ . (6.3.11)

4See [11] for detials.
5Alternatively we can have m ∈ 1

2Z if we are interested in representations up to phase.



Chapter 7

Spin structure

As already mentioned in the beginning it is necessary to incorporate spinors in a complete

quantum theory of gravity. Spinors turn out to be a (geo-)metrical concept as can be seen

from {γµ, γν} = −2ηµν which involves the metric. This leads to the question of how to

generalize the concept to arbitrary manifolds and if there are any mathematically founded

obstructions with regard to this concern. In particular it has to be clarified, given a tangent

bundle over an n-dimensional paracompact differential manifold and its associated O(n)-

principal bundle, which additional structure is needed in order to construct a spinor

bundle and its associated Spin(n)-principal bundle from the given data. The spin group

Spin(n) is defined as the double cover of SO(n). For n > 2 it is the universal cover. In the

cases which are of interest for LQG and symmetry reduction we have Spin(3) = SU(2)

and Spin(2) = U(1).

The most intuitive and beautiful approach to spinor formalism is via Clifford algebras

[23]. Given the Euclidean vectorspace F = R3, isomorphic to the fibers of our tangent

bundle over the 3-dimensional paracompact differential, hence Riemannian, manifold Σ.

As discussed in ch 4, the fiber is an inner product space, i.e. equipped with a metric

defined by

(x|y) = xiyigij,

x, y ∈ F, gij = δij

The components of x and y are given with respect to an orthonormal frame ei.

Now we will introduce an associative product on F which is distributive with respect to

addition. The new product shall incorporate both, the notion of the inner as well as the

exterior product. Given a vector x the square with respect to the new multiplication

equals to its length squared,

x2 = xieix
jej =

1

2
xixj(eiej + ejei) = (x|x)

44
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from this equation we deduce the defining equation for the Clifford algebra C(F ) associated

with the metric on F

(eiej + ejei) = 2δij. (7.0.1)

In particular, this implies

(ei)
2 = 1

eiej = −ejei, i 6= j. (7.0.2)

The Clifford algebra over the reals is then the linear span of dimension 23 of the basis

elements

B = {1, e1, e2, e3, e1e2, e1e3, e2e3, e1e2e3}, (7.0.3)

referred to as Pauli algebra. The elements of the 1-dimensional subspace spanned by

ι = e1e2e3 are called pseudoscalars and share the following property with purely imag-

inary numbers (αι)2 = −a2, α ∈ R, since in particular ι2 = −1. The Pauli-number ι

is called unit right handed pseudoscalar. Therefore, the Clifford numbers are sometimes

called hypercomplex numbers. Note that they already apear in Clifford algebras over the

reals [24]. We denote the linear subspaces spanned by products of p ≤ 3 ei’s with Cp.
The elements ι and 1 commute with all Pauli-numbers. Thus, in general, the center of

the Clifford algebra associated to an n odd dimensional Euclidean vector space is C0⊕Cn.

Note that this subalgebra is isomorphic to the field of complex numbers C.

Elements of C0, C1 and C2 are called scalars, vectors and pseudovectors respectively, due

to their behavior under involution defined below. There are two important linear trans-

formations of C(F ) to itself and a duality rotation:

� the main automorphism called involution denoted by ∗: for u ∈ Cp, we have u∗ =

(−1)u. It can be interpreted as space reflection. The even elements are invariant

under this operation.

� The main antiautomorphism called reversion denoted by †: (ei1 · · · eip−1eip)
† =

eipeip−1 · · · ei1 . The invariant elements in this case are scalars and vectors.

� The two main (anti-) automorphisms are sometimes combined to an antiautomor-

phism, called Clifford conjugation, denoted by an overbar .̄ In the Pauli algebra

only scalars and pseudoscalars are invariant.

� duality rotation: for u ∈ Cp, we have ιu ∈ Cn−p. For the example presented here
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this implies

ιe1 = e2e3

ιe2 = e3e1

ιe3 = e1e2

The reversion operation is used to define a scalar product for Clifford numbers u, v ∈
C(F ) by

〈u, v〉 := (u†v)S, (7.0.4)

where the subscript S denotes the restriction to the scalar part of the product u†v. Obvi-

ously this coincides with the usual inner product for vectors. It is symmetric and positive

definite in the Euclidean case [24].

The even subalgebra C+ = ⊕p evenCp of a Clifford algebra is again a Clifford algebra iso-

morphic to a Clifford algebra over a vectorspace with dimension lowered by 1. In case of

the Pauli algebra C+ is spanned by

{1, e1e2, e1e3, e2e3}, (7.0.5)

with the following beautiful properties:

j := −e2e3, k := −e3e1, l := −e1e2

j2 = k2 = l2 = −1

jkl = −1

jk = l, kl = j, lj = k (7.0.6)

Thus, we found the algebra of quaternions H2. Furthermore, we recover the SU(2)-like

algebra

τi := −1

2
ιei

[τi, τj] = ε k
ij τk.

Finally, we take a different and very fruitful look upon Pauli-numbers. The relations we

presented above show that any Pauli number can be decomposed in a sum of a formally

complex scalar and a complex vector

u = α + ιβ + a+ ιb (7.0.7)
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where α, β ∈R and a, b ∈ C1. Complex conjugation is realized by the reversion operation †.
Later we will introduce the notion of spinors, which is usually done via a complexification

of the vectorspace F . At this point this becomes completely unnecessary, because the

complex structure is already built in.

7.1 Reflections and rotations

The considerations presented in the following trace back to Hamilton’s idea, namely to

represent isometries of a vector space as successive actions of reflections. Every (non-

isotropic) vector in C1 determines a reflection. First we define the inverse of vectors by

u−1 :=
u

(u|u)
.

Any vector v can be decomposed into a part parallel v‖ and perpendicular v⊥ to u, where

the first commutes and the latter anticommutes with u. We then have

v′ = −uvu−1 = −v‖ + v⊥,

hence we observe that v is reflected with respect to the (hyper)-plane perpendicular to u.

Furthermore, this determines an isometry, since

(v′|w′) =
1

2
(v′w′ + w′v′) =

1

2
(uvu−1uwu−1 + uwu−1uvu−1) = u

1

2
(vw + wv)u−1 = (v|w).

We generalize this result to the theorem [23]: Any isometry of C1 can be written in the

equivalent form

v 7→ (−1)ru1 · · ·urvu−1
r · · ·u−1

1 = u1 · · ·urv[(u1 · · ·ur)−1]∗, (7.1.1)

with r 6 n. The elements in C(F ) leaving C1 invariant, when acting as above, constitute

the so-called Clifford group. The subgroup of elements Λ in C(F ) with the properties

(−1)rΛrvΛ−1
r ∈ C1

ΛΛ† = 1

is called Pin(n). From these properties it follows that any Λr can be written in the form

Λr = u1 · · ·ur,

u2
i = 1. (7.1.2)
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In the following, we restrict ourselves to this form of the operators Λ, by which the

transformation formula (7.1.1) gets the remarkable simple and beautiful form using the

Clifford conjugation

v 7→ ΛvΛ̄

The subgroup of even elements is called Spin(n) and their respective actions are called

rotations. Here the (anti-) automorphisms reversion and Clifford conjugation coincide.

The action of odd elements is called reflections.

In our particular case n = 3, the ei determine reflections with respect to planes perpen-

dicular to ei, while the elements −ιei determine rotations in planes perpendicular to ei

and ι determines a space reflection.

Let us put more emphasis on the rotations in 3 dimensions1. Choose any two unit vec-

tors b and a, and denote the enclosed angle by α. Denote the vector perpendicular to

a1 in the plane S spanned by a and b by a⊥. Then we decompose b w.r.t. a and a⊥:

b = cosαa + sinαa⊥. Now choose an arbitrary vector v in C1 ' F which can be decom-

posed into a part perpendicular with respect to S and a part parallel to S, v = v0+vt. The

component v0 is invariant with respect to the action of Λ = ba = cosα − sinαaa⊥, since

it anticommutes with a as well as b. Hence, we can restrict the discussion of rotations to

the plane S 2. Further we decompose vt with respect to a, vt = v1a+ v2a⊥. Then

ΛvtΛ
† = (cosα− aa⊥ sinα)vt(cosα + aa⊥ sinα) =

= cos(2α)(v1a+ v2a⊥) + sin(2α)(v1a⊥ − v2a) = cos(2α)vt + sin(2α)v⊥t .

Therefore, the the successive reflection determined by two unit vectors rotates any vector

by the doubled enclosed angle and about an axis (right oriented) perpendicular to these

two unit vectors. Using the expansions of the cosinus and sinus together with I := −aa⊥,

I2 = −1 gives the remarkable formula

vrot = e
α
2
I v e−

α
2
I .

The Pauli-bivector 1/2I = R, i.e. the generator of the rotation, is called rotor. Hence,

for example, if a = e1, R = τ3. Note that in three dimensions any bivector is necessarily

a simple bivector [23], i.e. it can be decomposed in an antisymmetric product of two

vectors I = 1/2(ab− ba) =: a ∧ b3.

1In higher dimension it can be shown [23] that any “rotation” can be decomposed in rotations with
respect to mutually orthogonal 2 dimensional planes.

2We choose the order of the reflections such that we the first reflection is with respect to a, and the
second with respect to b. This also corresponds to the sign of the elementary generators τi. Acting on
vectors this choice is without any effect, but is important in case of spinors.

3Remark: Here we also made contact with the Grassmann-algebra.



CHAPTER 7. SPIN STRUCTURE 49

As a side result we obtained a matrix representation of Spin(3) corresponding to the

defining representation of SO(3) and, therefore, also established a 2:1 homomorphism

F : Spin(3) → SO(3)4. Hence, it is a univeral cover of SO(3) and since all universal

covers are isomorphic, we obtain the isomorphism Spin(3) ' SU(2). Furthermore, the

induced map F ′ : Spin(3) → SO(3) is an isomorphism. One might wonder, what the

considerations have to do with spinors. Regarding the isomorphism of Spin(3) ' SU(2),

we know, of course that the natural representation space is C2, whose elements are called

spinors. But Clifford algebras can do more.

7.2 Spinors

We now aim representing the Clifford algebra on one of its subagebras. In doing so, we

will encounter an entirely geometric definition of spinors in three dimensions. Therefore

we need to find the (one-sided) proper minimal ideals of the Clifford algebra5. As we have

already seen in eq. (7.0.7), a general element of the Pauli algebra can be written in the

compact form

Φ = Φ0 + Φiei,

where Φ0 and Φi are elements of the center. We can immideatly find an nilpotent element

of the Pauli algebra as follows: Choose two orthogonal elements u, v ∈ C1, with u2 = v2

and define the element w = u+ ιv. Then we have

w2 = (u+ ιv)(u+ ιv) = u2 − v2 + ι(u|v) = 0.

In the above described complexified vectorspace terminology we found a so-called isotropic

vector. For convenience we choose u = e1 and v = e2 and rescale by a factor 1/2, i.e.

w = 1/2(e1+ιe2). Furthermore we define a complementary isotropic vector w′ by ww′ = 1,

which yields

w′ =
1

2
(e1 − ιe2) = w†

These two independent isotropic vectors span the two isotropic (complex) vectorspaces

W and W ′. Finally, we find a unit vector u orthogonal to W ⊕ W ′ spanning the one

dimensional vectorspace U . Clearly, with our choice u = e3. From the two nilpotent

Clifford numbers, we construct idempotents, i.e. projection operators P+
3 = we1 and

P−3 = w′e1.

4Of course, for the same reason, we see that Pin(3) is a double cover of O(3)
5Remark: The Pauli algebra does not admit a two-sided proper ideal.
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Now the set of all Pauli numbers of the form Φ+ = ΦP+
3 and Φ− = ΦP−3 , called (left)6

spinors, form two independent minimal left ideals I± as we will show now7. We find

Φ+ =
1√
2

(Φ0 + Φ3)
1√
2

(1 + e3) +
1√
2

(Φ1 + ιΦ2)
1√
2

(e1 − ιe2)

Φ− =
1√
2

(Φ1 − ιΦ2)
1√
2

(e1 + ιe2) +
1√
2

(Φ0 − Φ3)
1√
2

(1− e3)

and define the two basis spinors u1+ = 1/
√

2(1 + e3) and u2− = 1/
√

2(e1− ιe2) in I+ and

u1− = 1/
√

2(e1+ιe2) u2− = 1/
√

2(1−e3) in I−, such that they obey the completeness and

orthonormality conditions with respect to the above defined scalar product for arbitrary

Clifford numbers (7.0.4):

〈ua±, ub±〉 = δab
2∑

a=1

ua±u
†
a± = 2.

(7.2.1)

Furthermore, we have

〈ua∓, ub±〉 = 0.

Their behavior under multiplication by vectors from the left is

e1u1± = u2±, e1u2± = u1±,

e2u1± = ιu2±, e2u2± = −ιu1±,

e3u1± = u1±, e3u2± = −u2±,

.

Since all other basis objects of Pauli algebra are generated by multiplication of vectors and

since vectors multiplication from the left leaves I± invariant, we have indeed, constructed

two minimal ideals, which serve as equivalent representations of our Pauli algebra. I±

is isomorphic to C2. The last line in eq. (8.0.1 is an a posteriori justification for the

enumeration chosen for the basis spinors, according to the splitting of I± into eigenspaces

with respect to the left action of e3 with positiv and negative eigenvalues, i.e. up and

down spinors in the usual sense. The above table also allows us to read off the matrix

representations of the Clifford numbers Φab = 〈ub,Φua〉, which is independent of the

choice of the minimal ideal. For example, we find that the basis vectors ei are represented

by the Pauli matrices. The corresponding minimal right ideals I †
± are simply found by

6The notion of left spinors is not to be confused with the notion of left handed spinors, introduced
below.

7Here we could have used the two nilpotent elements to generate the minimal ideals. The advantage
of using the pojection operators is that they allow to write any Pauli number as a sum Φ = Φ+ + Φ−.
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reversion. Their elements are called right or conjugate spinors.

7.3 Obstructions

In the following we will extend the notion of spin-soace to spinor fields. For this purpose,

we first have to construct a spinor bundle Spin(Σ) together with a 2:1-bundle morphism

F : Spin(Σ)→ SO(Σ) out of the O(Σ) bundle associated to the tangent bundle T Σ over

a differential paracompact 3-dimensional manifold Σ. The pair [Spin(Σ), F ] is called spin

structure. Completely analogous to the soldering form on frame bundles, we will define a

spinor field as a tensorial scalar on Spin(Σ) of type (ρ,C2)8. Parallel transport of spinors

is given by the so-called spin connection on the spin bundle.

Certainly, given a spin structure allows for reconstructing an SO(3) bundle, but the re-

verse, starting from a tangent bundle, is possible only under certain restrictions. We saw

that the notion of an oriented frame in the vector space isomorphic to the tangent space

over a point in Σ is mandatory for obtaining spinors. Hence additionally to requiring

that Σ is a paracompact manifold, which allows for obtaining an O(3) bundle, Σ must

be orientable, i.e. the O(3) bundle must be reducible to a SO(3) bundle. Furthermore,

we know from the discussion on the group SO(3) (ch 6) that the group manifold is not

simply but doubly connected. A rotation about 2π is not homotopic to the trivial path,

i.e. no rotation. One could imagine that if the bundle SO(Σ) is simply connected a 2π

rotation within a fiber over a point x can be undone by transporting the triad along a

one parameter sequence of closed curves through x [8]. In order to ensure that this is

impossible, the fundumanetal group of SO(Σ) has to be isomorphic to Z2, i.e. SO(Σ)

has to be doubly connected. Only then we can consistently assign a change of sign of a

spinor under a 2π rotation. The bundle Spin(Σ) is then the double (universal) cover of

SO(Σ).

In order to adress these issues we make use of sheaf cohomology. For giving an exhaustive

introduction to cohomology theory would go beyond the scope of this thesis, we will intro-

duce the necessary notions only exemplarily9. Roughly speaking, in our case the sheaves

are cartesian products of the multiplicative Abelian group Z2 and the base manifold Σ.

Choose a locally finite cover U of Σ. A n-simplex σ is a collection of n+1 Uα with nonvan-

ishing intersection, denoted by |σ|, which is called support of σ. The β’th partial boundary

∂βσ of σ is the same collection as before, but with Uβ being omitted. A n-cochain with

values in Z2 assigns to each n-simplex an element Z2(|σ|). The set of n-cochains forms an

Abelian group, denoted by Cn(Σ,Z2) with respect to pointwise multiplication. We define

8Alternatively we could have defined a spinor field as a section of the associated spinor bundle
Spin(Σ)×Spin(3) C

2.
9A comprehensive introduction to sheaf cohomology can be found in [25].
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a nilpotent map, called the differential, d : Cn(Σ,Z2)→ Cn+1(Σ,Z2), by

(dτ)(|σ|) =
n∏

α=0

[τ(|∂ασ|)](−1)n .

The obtained (n+ 1)-chain is called n+ 1-coboundary ∈ Bn+1(Σ,Z2). The kernel of d is

called n-cocycle ∈ Zn(Σ,Z2). Of course, a coboundary is always a cocycle. Finally, we

define the n’th cohomology group as the quotient Hn(Σ,Z2) = Zn(Σ,Z2)/Bn+1(Σ,Z2).

We will motivate now that questions about orientability and the possibilty of constructing

Spin(Σ) can be answered affirmatively if the so-called first and second Stiefel-Whitney

classes of H1(Σ,Z2) and H2(Σ,Z2) are trivial.

Let us discuss orientability: Choose an orthonormal frame eα over each Uα ∈ U . Changing

the orientation of eα 7→ ωαeα
10 gives rise to the 0-chain ω. By using the differential d we

obtain the 1-coboundary dω. For Uα and Uβ, with Uα ∩ Uβ 6= �, we write according to

the local definition for the differential

(dω)(Uα ∩ Uβ) = ωβωα,

which indicates wether we changed the orientation in Uα and Uβ in in both neighborhoods

or only in one of them.

In the overlaps Uα∩Uβ the frames change via the transition functions gαβ in O(3), therefore

ταβ := det(gαβ) = ±1. The 1-chains ταβ tell us if the orientation changes in the transi-

tion from one to another trivialization. Since the gαβ satisfy the compatibility condition

gβγg
−1
αγ gαβ = 1 in the triple overlap Uα ∩ Uβ ∩ Uγ, τ turns out to be a 1-cocycle:

(dτ)(Uα ∩ Uβ ∩ Uγ) = τβγτ
−1
αγ ταβ = 1.

If we change orientation in Uα and Uβ seperately ταβ maps to ωαταβωβ and therefore

changes by a coboundary. The set of equivalence classes [τ ] under this action is the

cohomology group. If this class is trivial we have ταβ = ωαωβ. Consequently, we could

choose the 0-chains such that all ταβ = 1. This corresponds to a global choice of orientation

and consequently Σ is orientable and, therefore, we reduce the O(3) bundle to an SO(3)

bundle.

From the bundle SO(Σ) we construct the bundle Spin(Σ) by choosing one of the two

preimages of gαβ ∈ SO(3) denoted by Λαβ ∈ Spin(3). These should also – but will not do

so in general – satisfy the compatibility condition, which actually can be seen as a cocycle

condition, ΛβγΛ
−1
αγΛαβ = ζαβγ1. This defines a 2-cochain ζαβγ = ±1. Again, ζ is actually

10This is can be done via a ωα = ±id ∈ O(3).



CHAPTER 7. SPIN STRUCTURE 53

a 2-cocycle:

ΛγδΛ
−1
δαΛαγ = ζαγδ1

→ Λ−1
αγ = ζ−1

αγδΛγδΛδα

ΛγδΛδβΛβγ = ζβγδ1

→ ΛβγΛγδ = ζβγδΛβδ

ΛβδΛ
−1
αδΛαβ = ζαβδ1

ΛβγΛ
−1
αγΛαβ =

= Λβγζ
−1
αγδΛγδΛ

−1
αδΛαβ =

= ζβγδζ
−1
αγδΛβδΛ

−1
αδΛαβ =

= ζβγδζ
−1
αγδζαβδ1 = ζαβγ1

This leads to the conclusion that

(dζ)(Uα ∩ Uβ ∩ Uγ ∩ Uδ) =

ζβγδζ
−1
αγδζαβδζ

−1
αβγ = 1.

If, instead of Λαβ, we choose its negative in the overlap Uα∩Uβ, this gives rise to a 1-cochain

ω, from which we build a 2-coboundary. The 2-cocycles ζ change by that coboundary. If

the equivalence class [ζ] is trivial we can choose the 1-cochain such that we obtain ζ = 1

globally.

Now, having established

ΛβγΛ
−1
αγΛαβ = 1,

we can deduce the relations

Λγγ = 1

and

Λβα = Λ−1
αβ ,

by setting β = γ and γ = α, respectively. Now we can construct the Spin(Σ) bundle from

a given Σ with vanishing first and second Stiefel Whitney class, Spin(3) and Λαβ as was

shown in section 4.1.



Chapter 8

Gravitational connection dynamics

The main ingredient in loop quantum gravity is the passage from geometrodynamics

to spin-connection dynamics. Instead of describing the dynamical gravitational field by

means of metrics, one passes to a formulation of canonical GR using connections. Thereby

also the “fourth” fundamental interaction is cast in a gauge theory. In order to do so we

now define a new canonical pair of variables: (Aia, Ẽ
a
i ). The configuration variable is a

Spin(3)-valued gauge potential coming from a connection 1-form on a Spin(3)-bundle

over Σ

A := Γ + γK. (8.0.1)

Γ = Γiτi is a Spin(3)-gauge potential defined by

Γi j = εi kjΓ
k

where ωi j is the unique, torsion free and metric compatible SO(3)-valued gauge potential.

In this step the dimension of Σ was crucial. Only in three dimensions is it possible to

include the spacetime information into a spatial connection. This uses the duality of

the generator of rotations and the axis of rotation. We encounter the same duality in

the context of Pauli algebra. The subspace of the generators of rotations, the rotors, is

spanned by τi, generating rotations about the ei. The rotors could be obtained via the

duality rotation τi = −1/2ιei. This allows to incorporate the C1 valued field K = Kiei

into a Spin(3)-connection, as a difference tensor, which can be identified with the exterior

curvature after imposing the Gauß constraint. From that point of view it could be assumed

that γ ∈ C3, e.g. γ = −1/2ι, since then

Aiτi = Γiτi +Ki
(
− 1

2
ιei

)

54
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If we instead take γ ∈ C0, A becomes a so-called paravector valued 1-form. In geometric

algebra, paravectors are used to generate proper Lorentz transformations, the vector part

generating boosts, while, as discussed before, the pseudovectors generate the rotations.

Hence, we obtain a Spin(1, 3)-connection.

The discussion presented here differs from the conventions in the LQG literature so far as

one uses K = Kiτi in the definition of A. In the following we will refrain from taking this

more geometrically motivated approach for reasons of better compatibility with the liter-

ature and beyond use the LQG conventions. We will proceed with a Spin(3)-connection.

The factor γ is the already mentioned Barbero-Immirzi parameter.

The geometrical operators of the quantized theory contain the Barbero-Immirzi param-

eter, as will be shown later, which therefore has a nontrivial effect on their spectra. In

symplectic geometry the rescaling with γ is a symplectomorphism, i.e. a canonical trans-

formation. The crucial point is that it “cannot be implemented unitarily in the quantum

theory” as a consequence of the choice of configuration space, which is an affine space

[26]. It can be interpreted as an quantization ambiguity similar to the so-called Θ-angle

in QCD. In the case of LQG the parameter enters via a topological term called the Holst

modification of the Palatini action [14]. In general it takes values in C \ {0}. At the

beginning of LQG the theory was formulated in terms of selfdual connections, i.e. γ was

chosen to be the positive or the negative imaginary unit, in the signature convention used

here. It can then be interpreted as the pull back of the selfdual SL(2,C) connection of

complexified general relativity to Σ. The drawback of this choice is, firstly that the gauge

group is noncompact, which is crucial for the quantization scheme favored nowadays. Sec-

ondly, the reality conditions are extremely difficult to control. The advantage, however,

is the simple polynomial form of the constraints.

The Poisson bracket now reads

{Ea
i (x), Ajb(y)} =

κ

2
δji δ

a
b δ

(3)(x, y) (8.0.2)

Here the Gauß constraint takes the form to which its name traces back1

Gi = DaẼa
i = ∂aẼ

a
i − ω

j
iẼ

a
j + γεj ikK

k
a Ẽ

a
j . (8.0.3)

The curvature of A is denoted by F = dA+ 1/2[A,A].

The corresponding “curvature scalar” is

β2Ẽjy(ẼiyF i
j)

ωh
= ω

(3)
h R + γ2ωh(K

abKab −K2) + P(Gi)

1Note that Ẽ is a vector-valued density thus, ∇aẼai = ∂aẼ
a
i .
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For γ = ±i and on the Gauß constraint surface this is exactly the Hamiltonian constraint.

For an arbitrary value of γ we therefore have the following form of the (on G-shell)

Hamiltonian constraint

C =
1

ωh
Ẽjy(Ẽiy(εij kF

k − (1 + γ2)(Ki ∧Kj))) (8.0.4)

Finally, the (on G-shell) diffeomorphism constraint reads

V = −2ẼiyF
i (8.0.5)

At least at the moment only a partial spacetime interpretation of the Ashtekar connection

in the case of a real valued parameter can be found using the so-called Holst approach.

As shown in the discussion of the vielbein formalism, the SO(3)-valued 1-form Ki can be

regarded as the projection of a partially (temporal) gauge fixed connection component.

In that discussion we stated that the Barbero-Immirzi parameter would not alter the

equations of motion of the classical theory. This is only true if there is no matter that

couples to the connection in a first order action principle, as it is the case for fermions [27]

in Einstein-Cartan theory. Then the spin-density gives rise to a connection component

with nonvanishing torsion, which in turn implies that the Holst term in the action does

not vanish, because the Bianchi identity is modified. This has physical effects: a weak

four fermion interaction, well known from Einstein-Cartan theory, comes into play with

a coupling constant depending on the Barbero-Immirzi parameter that spoils the inter-

pretation of the (inverse) γ-parameter in analogy with the Θ-angle. This effect has been

the starting point for [28], who got rid of this spurious four fermion interaction, using a

modification of the fermion part of Palatini-Holst action coupled to fermions. The Holst

term can be seen as part of a term called the Nieh-Yan invariant. The other part modifies

the fermionic action after using the equantions of motion of the connection. This idea has

then been further developed for any kind of matter coupled to (Einstein-Cartan) gravity,

yielding the most general first order covariant approach to LQG. These approaches to an

formulation of an action principle for LQG support my point of view that the notions of

spinors and gravitation are linked.

We have now reached the realm of a gravitational Yang-Mills theory.

8.1 Spherically symmetric gravitational connection

dynamics

Let us again turn to the main focus of this thesis: tracing the formulation of spherically

symmetric models in LQG.

Before we make use of the linear map Λ to map ι∗S2Θ
SU(2)
MC to values in G we rewrite
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equation (5.0.3) in its infinitesimal version and choose J = U(1) = exp〈τ3〉

j = exp(tτ3)

d

dt
|t=0 AdjX = [τ3, X] = adτ3X

Λ ◦ adτ3 = addλ(τ3) ◦ Λ

For an arbitrary X = a0τ1 + b0τ2 ∈ J ⊥ we have

adτ3X = a0τ2 − b0τ3

Λ(a0τ2 − b0τ3) = addλ(τ3)Λ(a0τ1 + b0τ2). (8.1.1)

Now the question arises if and how we can find all possible conjugacy classes of the

homomorphisms λ : J → G. This boils down to the question if and how we can determine

all conjugacy classes of G, if we identify the homomorphisms with their images. Indeed,

this is possible due to the notion of the torus. At this point, we will only motivate the

useful relation

hom(J,G)/AdG ∼= hom(J, T (G))/W, (8.1.2)

where T (G) is the maximal torus of G and W is the Weyl group with respect to the

torus2. The maximal torus of a compact connected Lie group (which is the case for the

gauge group of LQG) is a Lie group T ⊂ G which is isomorphic to Rk/Zk. It is the

same thing as the maximal Abelian subgroup of G which in our case is just U(1). Let

S∆(2) ⊂ SU(2) be the subgroup of diagonal matrices(
z 0

0 z−1

)
z ∈ U(1)

The normalizer N of T (G) consists of those elements out of G which do not lead out of

the torus when acting on it via conjugation. The Weyl group of T (G) is N/T , which can

be shown to be compact and discrete, and therefore finite. For SU(2) the Weyl group

is the symmetric group S(2) which is the group of permutations of two elements, hence

acting on T gives (
z 0

0 z−1

)
→

(
z−1 0

0 z

)
2For detailed proofs of the involved theorems and lemmas see [29] chapter IV.
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The argument for equation (8.1.2) is based on three facts: The maximal tori cover G, the

maximal tori are all conjugate and if two elements of a maximal torus are conjugate in G,

they lie on the same orbit under the action of the Weyl group. Hence, there is a canonical

homeomorphism3

κ : T/W → Con(G).

The homomorphisms hom(U(1), T (SU(2)) are then given by

λ̃k : z → diag(zk, z−k),

with k ∈ Z, since z = exp(2πiφ), φ ∈ R/Z. Due to the equivalence with respect to the

Weyl group diag(zk, z−k) ∼ diag(z−k, zk) we have k ∈ N0.

For the sake of simplicity we make a partial gauge choice called the τ3-gauge, i.e. λk(exp(tτ3)) =

exp(ktτ3), which in the group theoretical terminology amounts to choose a specific maxi-

mal torus. It follows that dλ : τ3 → kτ3, and we can continue with calculating (8.1.1).

a0Λ(τ2)− b0λ(τ3) = k(a0[τ3, λ(τ1)] + b0[τ3,Λ(τ2)]) (8.1.3)

We formulate the ansatz

Λ(τi) = aiτ1 + biτ2 + ciτ3

and find the equations

c1 = c2 = 0, a1 = kb2, b1 = −ka2

a2 = −kb1, b2 = ka1

which have non-trivial solutions - hence non-vanishing Higgs field components - iff k = 1,

a1 =: A1, b1 =: A2

a2 = −A2, b2 = A1

The centralizer of λk is U(1).

Therefore we finally arrive at a connection which in the τ3-gauge and with k = 1 can be

gauged to

A = ω̃ + Λ ◦ ι∗S2Θ
SU(2)
MC =

= Ax(x)dxτ3 + (A1(x)τ1 + A2(x)τ2)dθ + (A1(x)τ2 − A2(x)τ1) sin θdφ+ τ3 cos θdφ.

3proposition IV,(2.6) in [29]
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The invariant densitized triad can be found by imposing the symplectic structure of the

full theory

2

κγ

∫
Σ

dAia ∧ dẼa
i (8.1.4)

From the tangent bundle construction we find

Ẽa = Ẽx(x)∂axτ3 + (Ẽ1(x)τ1 + Ẽ2(x)τ2)∂aθ + (Ẽ1(x)τ2 − Ẽ2τ1)
1

sin θ
∂aφ

which gives the symplectic structure

2

κγ

∫
Σ

dAx ∧ dẼx + 2dA1 ∧ dẼ1 + 2dA2 ∧ dẼ2.

We can write the densitized scalars ẼI as

ẼI = ĒI ∧ (dθ ∧ sin θdφ) = ĒI ∧ d2Ω (8.1.5)

which yields the following reduced symplectic structure

8π

κγ

∫
B

(dAx ∧ dĒx + 2dA1 ∧ dĒ1 + 2dA2 ∧ dĒ2).

Thus, the Poisson structure of the configuration variables (Ax, A1, A2) and their respective

conjugate momenta (Ēx, Ē1, Ē2) is4

{Ax, Ēx(y)} =
κγ

8π
δ̄(x, y), {Aα(x), Ēβ(y)} =

κγ

16π
δ̄(x, y)δαβ α, β = 1, 2

For the reduced quantized theory it will be crucial to undo the partial gauge fixing we

performed before by choosing an arbitrary element out of the conjugacy class [λ1], i.e.

dλ1(τ3) = gτ3g
−1 with g ∈ SU(2). Again we parametrize SU(2) with the Euler angles

g = exp(−φτ3)exp(−θτ1)exp(−ψτ3).

dλ(τ3) = sin θ sinφτ1 + sin θ cosφτ2 + cos θτ3 =: niτi (8.1.6)

In the λ1-gauge the U(1)-connection on B is Ai := Axn
idx and the conjugate momentum

is Ēi = Ēxni∂x with the Poisson structure

{Ai, Ēj} =
κγ

8π
δ̄(x, y)δji

4Note that the delta function is a density of weight one with respect to the one dimensional base
manifold B. The same is true for the triad, i.e. we could write ĒI(x) = EI(x)dx.
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8.1.1 Spherically symmetric geometric objects

Let us now present several geometric objects of the symmetry reduced model: volume,

area, triad, extrinsic curvature and curvature.

The volume form is given by the formula5

ωh =

√
|∗Ẽ1 ∧ Ẽ2 ∧ Ẽ3| (8.1.7)

In the spherically reduced context this gives

ωh = {|Ex|[(E1)2 + (E2)2](∂x ∧ ∂θ ∧
1

sin θ
∂φ)y(dx ∧ dθ ∧ sin θdφ)3

} 1
2 =

=
√
|Ex|(Et)2dx ∧ ωS2

which can be reduced upon integration over S2 to a 1-form on B

ωB = 4π
√
|Ex|Etdx. (8.1.8)

The volume form now allows us to read off the SU(2) triad

Ea
1 =

1√
|Ex|Et

(E1∂aθ − E2 1

sin θ
∂aφ),

Ea
2 =

1√
|Ex|Et

(E2∂aθ + E1 1

sin θ
∂aφ),

Ea
3 = sgn(Ex)

√
|Ex|
Et

∂ax. (8.1.9)

which by being orthonormal parametrizes the metric

ds2 =
(Et)2

|Ex|
dx2 + |Ex|(dθ2 + sin2 θdφ2). (8.1.10)

The area of an arbitrary 2-surface S is given by the formula

Ar(S) =

∫
S

√
∗Ẽ · ∗Ẽ

The area of the 2-sphere generated by the orbits of the symmetry group therefore is

Ar(S2, x) = 4π|Ex(x)|

5See app. A.14 for the definition of the ∗ operation for densitized tensorfields.
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The calculations can be drastically simplified by using polar like phase space coordinates.

To that end, we define the angle coordinates η and β

sin η =
E1

Et
, cos η = −E

2

Et

sin β =
A1

At
, cos β = −A2

At

In the new coordinates the co-triad with respect to (8.1.9) read

e1 =
√
|Ex|(sin ηdθ + cos η sin θdφ)

e2 =
√
|Ex|(− cos ηdθ + sin η sin θdφ)

e3 = sgn(Ex)
Et√
|Ex|

dx. (8.1.11)

Starting from this expression we obtain the spin connection using the relation Γi j = εikjΓ
k,

where the prime denotes the derivative w.r.t. x

Γ2
1 = −η′dx+ cosθdφ = Γ3

Γα3 =
Ex′

2
√
|Ex|Et

eα (8.1.12)

In addition, we introduce an adapted, rotated internal SU(2) basis, which allows us to

write A, E and Γ in a compact form.

Λ1
η = τ 1 sin η − τ 2 cos η,

Λ2
η = τ 1 cos η + τ 2 sin η,

Λ3
η ≡ Λ3 = τ 3,

(8.1.13)

with

[Λi
η,Λ

j
η] = εij kΛ

k
η

Λ1
η · Λ

β
1 = cos(η − β) =: cosα.
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We end up with the following results:

Γ = −η′Λ3dx−
Ex′

2Et
(−Λη

2dθ + Λη
1 sin θdφ) + cos θΛη

3dφ

Ẽ = ẼxΛ3∂x + Ẽt(Λ1
η∂θ + Λ2

η

1

sin θ
∂φ)

A = AxΛ3dx+ At(Λ
β
1dθ + Λβ

2 sin θdφ) + cos θΛ3dφ =

= AxΛ3dx+ cos θΛ3dφ+ At cosα(Λη
1dθ + Λη

2 sin θdφ)+

+At sinα(−Λη
2dθ + Λη

1 sin θdφ).

Looking at the internal directions of A and E we see that Et is not the conjugate momen-

tum to At. This results from the internal directions of Γ being perpendicular to the ones

of E, while those of the extrinsic curvature K are parallel, as is shown by the following

calculation. We start with equation (1.0.4) and use (8.1.10).

ḣab
2N

=N−1
[(

sgn(Ex)
Et√
|Ex|

)̇ Et√
|Ex|

dxadxb + (
√
|Ex|)̇

√
|Ex|(dΩ)2

ab

]
(8.1.14)

The reduced shift is tangential to B (see (8.1.18)), Na = Nx∂ax.

DaNb =Da(N
x sgn(Ex)

Et√
|Ex|

e3
b) = (Nx sgn(Ex)

Et√
|Ex|

)′dxae
3
b−

− (Nx sgn(Ex)
Et√
|Ex|

)Γ3
aie

i
b =

=
(
Nx sgn(Ex)

Et√
|Ex|

)′
dxae

3
b +Nx(

√
|Ex|)′(e1

ae
1
b + e2

ae
2
b)

Then we find for Ki
ae
i
b = Kab

K =N−1
{[(

sgn(Ex)
Et√
|Ex|

)̇
−
(
Nx sgn(Ex)

Et√
|Ex|

)′]
Λ3dx+

+ [(
√
|Ex|)̇−Nx(

√
|Ex|)′](Λ1

ηdθ + Λ2
η sin θdφ)

}
Since A = Γ + γK we find the following relations between the spin connection, the

Ashtekar connection and the extrinsic curvature:

Ax = −η′ + γKx (8.1.15)

At cosα = γKt

At sinα = Γt
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The reduced symplectic form now reads

Ω =
1

Gγ

∫
B

δAx ∧ δĒx + δAt ∧ δP̄ t + δβ ∧ δP̄ β,

P̄ t = 2Ēt cosα, P̄ β = 2AtĒ
t sinα

or

Ω =
1

Gγ

∫
B

δAx ∧ δĒx + 2γδKt ∧ δĒt + δη ∧ δP̄ η,

P̄ η = P̄ β

depending on which of the following two options we choose:

� Connection representation: Configuration variables (Ax, At, β).

� Triad representation: Momentum variables (Ēx, Ēt, P̄
η).

Clearly, the first choice would be much closer to the full theory. The advantage of the

second, however, is that geometric operators and the constraints are more compact and

easier to quantize in this representation. This can be seen for for instance from the form

of the volume element, which plays an important role in the Hamiltonian, One might

object that - from the full theory’s perspective - holonomies are built using connections

instead of the extrinsic curvature. From the reduced theory’s viewpoint the connection

components A1 and A2 are Higgs scalars. There are no edges but those in the reduced

basis manifold B.

Finally, in order to be able to treat the constraints we need the curvature 2-form.

F =dA+
1

2
[A,A] =

=[A′tΛ
β
1 + At(β

′ + Ax)Λ
β
2 ]dx ∧ dθ + [A′tΛ

β
2 + At(β

′ + Ax)Λ
β
1 ]dx ∧ sin θdφ+

+ (A2
t − 1)Λ3dθ ∧ sin θdφ =

={[γK ′t + Γt(η
′ + Ax)]Λ

η
1 + [−Γ′t + γKt(η

′ + Ax)]Λ
η
2}dx ∧ dθ

+ {[γK ′t + Γt(η
′ + Ax)]Λ

η
2 − [−Γ′t + γKt(η

′ + Ax)]Λ
η
1}dx ∧ sin θdφ

+ (Γ2
t + γ2K2

t − 1)Λ3dθ ∧ sin θdφ (8.1.16)
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8.1.2 The spherically symmetric constraints

Let us begin with the simplest of the three first class constraints of connection dynamics

- the Gauß constraint:

G[λ] =
1

κγ

∫
Σ

λ · G

G = D ∗ Ẽ = (Ẽx′ + P̃ η)Λ3 + Ẽt cot θΛ1
η

G[λ] =
1

2Gγ

∫
B

λ3(Ēx′ + P̄ η) (8.1.17)

Next, let us turn to the diffeomorphism constraint.

D[S] =
1

κγ

∫
Σ

SyD

D = −2(Ẽ·yF ) =

= 2(η′P̃ η − AxẼx′ + 2γẼtK ′t)dx (8.1.18)

D[S] =
1

Gγ

∫
B

Sx[2γĒtK ′t − (η′ + Ax)Ē
x′ + η′G3]

Finally, we have to compute the scalar constraint.

C[N ] =
1

κ

∫
Σ

NH

H =
ω−1
h

2
[Ẽ, Ẽ]·y(F − 1 + γ2

2
[K,K]) =

= −2|Ex|−
1
2 [ẼtK2

t +
2

γ
ẼxKt(η

′ + Ax) + 2ẼxΓ′t − Ẽt(Γ2
t − 1)]

C[N ] = − 1

G

∫
B

N |Ex|−
1
2 [ẼtK2

t +
2

γ
ẼxKt(η

′ + Ax) + 2ẼxΓ′t − Ẽt(Γ2
t − 1)] (8.1.19)



Chapter 9

Yang-Mills connection dynamics

Now we will start to incorporate matter fields in our model. Before turning to spherically

symmetric Maxwell theory we will discuss the general framework of gauge field theories;

Yang-Mills theory. The action for Yang-Mills fields is defined by

S[A] = − 1

2g2

∫
M
F ? F ,

F = dA+A2

where the star denotes the hodge dual as well as contraction of the internal indices1 and

g denotes the coupling constant. The constants are chosen such that the Hamiltonian

density will coincide with the energy density in the case of Maxwell theory. We choose

the normalization of the Yang-Mills gauge-generators in the same fashion as for the grav-

itational sector

T a† = −T a antihermitean, [T a, T b] = fabcT
c,

tr(T aT b) = −1

2
δab,

We will now perform the 3+1-split. To that aim we first split-off terms containing n ∝ dt.

A = −Φdt+ A

−Φ = NnyA

F = F − n ∧ nyF (9.0.1)

On a t = const folium the pullback F of F is the curvature of the pullback A of A, i.e.

F = (3)dA+ A2

1The definition can be found in app. A.14.
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Now let us take a closer look at on the second term in (9.0.1),

nyF =
1

N
dΦ + nydA+

1

N
[A,Φ] =

1

N
(dΦ + [A,Φ]) + £nA

£nA =
1

N
£NnA =

1

N
(£tA−£VA)

⇒ n ∧ nyF = n ∧ 1

N
(DΦ + Ȧ− (3)£VA),

where in the last step we used the definitions

n ∧£tA := n ∧ Ȧ

∀ ψ ∈ ΛpM, with nyψ = 0, p 6 dim(M)− 2; n ∧ dψ := (3)dψ

D := (3)d ·+[A, ·]

In order to be able to vary with respect to the shift V in our expressions we rearrange

some terms:

DΦ = −D(tyA) +D(V yA) = −D(tyA) + (3)d(V yA)− V yA2.

Thus, we obtain

DΦ− (3)£VA = −D(tyA)− V yF. (9.0.2)

For the 3 + 1-split of the field strenght we obtain

F = dt(Ȧ−D(tyA)− V yF ) + F (9.0.3)

and this result we insert into the action functional.

S[A, tyA, N, V ] = − 1

2g2

∫
M

[dt(Ȧ−D(tyA)− V yF ) + F ] ? F =

=
1

2g2

∫
I
dt

∫
Σ

N−1[(Ȧ−D(tyA)− V yF ) ∗ (Ȧ−D(tyA)− V yF )]−NF ∗ F =

=

∫
dtL[A, tyA, N, V ; Ȧ, (tyA)̇, Ṅ , V̇ ],

where in the second line the new star operation with respect to ΛpΣ is understood and

we used the 3 + 1-split of the Hodge star (see. app. A.14). The momenta conjugate to
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the configuration variables are given by

g2δL

δȦ
= Π̃

g2δL

δ(tyA)̇
= 0

g2δL

δṄ
= 0

g2δL

δV̇
= 0.

Hence we have 3 primary constraints. We define the momentum conjugate to A as the

Hodge dual of a vector and Lie algebra valued density

∗Π̃ =: Σ = ∗N−1(Ȧ−D(tyA)− V yF ) ≡ − ∗ Ẽ ,

where Ẽ is the Yang-Mills electric field. In analogy with the connection formulation of

general relativity we call Σ the Yang-Mills-Plebanski 2-form [1]. The momentum conjugate

to A is then defined as the 1-current Π̃ associated to Σ via the star operation extended

to densitized vector-fields (see A.14).

Then we rearrange the action functional in the form S =
∫
dt
∫

Σ
q̇p − H and add the

primary constraints with some auxilliary multipliers

S =
1

g2

∫
I
dt

∫
Σ

{ȦΣ + (tyA)̇P̃φ + ṄP̃N + V̇ yP̃V−

−[(tyA)DΣ− V y(Π̃yF ) +N
1

2
(Σ ∗ Σ + F ∗ F ) + λP̃N + γyP̃V + χP̃φ]} (9.0.4)

where we assumed suitable fall off conditions for the fields in order to shift the covariant

derivative via partial integration and used the identity V yFΣ = −V y(Π̃yF ).

The consistency conditions for the time evolution of the primary constraints yield the

secondary constraints

C =
1

2g2
(Σ ∗ Σ + F ∗ F ) ≈ 0, (9.0.5)

G =
1

g2
DΣ ≈ 0,

V =
1

g2
Π̃yF ≈ 0.

These terms are again added to the Hamiltonian with Lagrange multipliers. The equations

of motion for V , N and tyA tell us that their velocities are proportional to Lagrange

multipliers and are hence Lagrange multipliers themselves. Their respective consistency

conditions do not yield any secondary constraints and the constraint algorithm stops.
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In order to facilitate compareability with the main LQG references, we formulate the

constraints in a way known from Yang-Mills theory.

C[N ] =

∫
Σ

N
hab

2g2ωh
(Ẽai Ẽbi + B̃ai B̃bi ) (9.0.6)

D[V ] = − 1

g2

∫
Σ

V bẼai F i
ab (9.0.7)

G[φ] = − 1

g2

∫
Σ

φiDaẼai . (9.0.8)

The Yang-Mills magnetic field, B̃, is the 1-current associated to the field strength F via

the star operation. Note that we used the electric field in these equations, which is the

negative of the momentum conjugate to A.

The vector constraint D[V ] in that form is often being reffered to as the diffeomorphism

constraint, but in fact the generator of diffeomorphisms is the combination D′[V ] =

D[V ]−G[V yA] [13] and we obtain

D′[V ] = − 1

g2

∫
Σ

£VAΣ. (9.0.9)

This, however, is exactly the expression we would have directly obtained, if we did not use

the r.h.s. of (9.0.2). Therefore, the diffeomorphism constraint arises completely naturally

in our 3 + 1 split of the action. So while isolating V in the above procedure was necessary

to identify it as a Lagrange multiplier, the constraint which acts via Poisson brackets is

the smeared version anyway. Furthermore, the Lagrange multiplier of the Gauß law now

becomes the component of the connection A proportional to the hypersurface 1-form n

and no terms proportional to A appear as is implicitly the case in tA. Omitting the

redundant constraint terms we end up with the following form of the action

S =

∫
dt

∫
Σ

ȦΣ− [C[N ] +G[Φ] +D′[V ]]. (9.0.10)

One can check that the diffeomorphism and Gauss constraints are first class.

9.1 Spherically symmetric Maxwell theory

Maxwell’s theory of electromagnetism can be cast into Yang-Mills form with (Abelian)

structure group U(1). The associated bundle is the complex line bundle, the sections of

which are the wave functions describing a charged quantum particle, subject to internal

U(1) rotations. According to the symmetry reduction scheme we first have to look for all

possible group homomorphisms λ : J → U(1) up to conjugation, which of course is trivial

in U(1) and J = U(1) in our case. Thus, the homomorphisms are classified by an integer
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n ∈ Z, λn : z 7→ zn with z ∈ C, |z| = 1. The centralizer for any value of n is U(1) again.

Now, the remaining information about the reduced connection can be found in the linear

map Λ : SU(2) → U(1), Λ(X) = ω(X̃). Λ|J is already determined by the differential of

the group homomorphism (5.0.2) Λ(cτ3) = in/2c, where the 1/2 comes from the spinorial

origin of the isotropy subgroup, such that for n = 1 the homomorphism is id. Since U(1)

is Abelian the right hand side of equation (5.0.3) always gives Λ(X). Making an ansatz

for X ∈ J ⊥, X = aτ1 + bτ2 and for j = exp(cτ3) (5.0.3) yields an equation independent

of n

(a cos2(
c

2
)− 2b sin(

c

2
) cos(

c

2
) + 4a sin2(

c

2
))Λ(τ1)+

+(b cos2(
c

2
) + 2a sin(

c

2
) cos(

c

2
) + 4b sin2(

c

2
))Λ(τ2) = aΛ(τ1) + bΛ(τ2),

which has to be met for all values of a and b. This can only be the case if J ⊥ lies in the

kernel of Λ. Hence we find for the symmetric magnetic potential

A(x) = iϕ(x)dx+ i
n

2
cos θdφ, (9.1.1)

where the second term stems from (6.2.1). The conjugate momentum is given by

Ẽ = −ip(x)∂xωh =: −iq̃(x)∂x, (9.1.2)

where (−i) denotes the generator dual to i such that the Cartan Killing metric is k = 1.

The symplectic form reads (with e denoting the Maxwell coupling constant, i.e. the

elementary charge)

1

e2

∫
σ

dA(x) ∧ ∗dE =
4π

e2

∫
B

dφ ∧ dq

Note that the connection is not well defined on whole of the z-axis. This second term

is often being referred to as the monopole connection for the following reason. If we

calculate the field strength, we find

F = −in
2

sin θdθdφ, (9.1.3)

which is closed but not exact, since (9.1.1) is not defined everywhere.

Let us disregard gravity for a moment and discuss spherically symmetric electro mag-

netism in Euclidean space. Therefore the volume element in symmetry adapted coordi-

nates reads ωh = x2 sin θdxdθdφ. From (9.1.3) we calculate the (dual) densitized magnetic
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vector-field

B̃ = −i n
2x2

∂xωh. (9.1.4)

The magnetic field is the radially symmetric field of a Dirac monopole of (quantized)

charge n/2, as can be seen from calculating the divergence of the field.

〈iψ, d ∗ B̃〉 = −i〈dψ, ∗B̃〉 = −i
∫
R3

dψF =

= −i lim
ε→∞

∫
R3\Bε

dψF = −i lim
ε→∞

∫
R3\Bε

[d(ψF )− 0] =

= i lim
ε→∞

∫
∂\Bε

(ψ(0) + ε∂xψ(0) +O(ε2))F = iψ(0)

∫
S2

F

= 4π
n

2
〈ψ(x), δ̃(3)(x)〉 (9.1.5)

where we introduced the (dual) U(1)-valued test scalar field iψ and Bε is a ball of radius

ε around the origin. Outside Bε the divergence of magnetic field vanishes. The additional

sign in the third line stems from the orientation of the boundary ∂(R3\Bε) compared to the

opposite orientation of ∂Bε. From the third line, we can see that we calculated a quantity

which is proportional to the integrated first Chern class. Chern classes are topological

invariants, i.e. a gauge invariant polynomials, sometimes called characteristic polynomials

in F , used to classify the fiber bundle. Of course, in our U(1)-case the simplest gauge

invariant polynomial is the curvature itself, which is also the highest Chern class in three

dimensions.

In the discussions on the Dirac monopole [16] the quantization of the charge is found

by defining two new gauge potentials, singular only on the upper or lower half z-axis

respectively, by transforming the original potential given in (9.1.1) with exp(∓in/2φ) and

a priori n ∈ R. The gauge transformation relating these two gauge potentials is given by

h = exp(inφ). This gauge transformation is only well defined if it is single valued, i.e.

exp(∓in2π) = 1, from which follows that n is integer. The quantization found here is a

remarkable result, since the topological charge is quantized from the outset due to our

reduction scheme and justifies the identification of different classes of homomorphisms λ

with different topological charges.

Finally, we compute the matter part of the constraints for canonical “vacuum” Einstein-
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Maxwell theory from equations (9.0.6) to (9.0.8)

GM = − i

e2
q̃′ = 0, (9.1.6)

VM ≡ 0, (9.1.7)

CM =
ωh
2e2

(
p2 (Et)2

|Ex|
+

n2

4|Ex|2
)
. (9.1.8)

If we again neglect the gravity-matter coupling, equation (9.1.6) allows the calculation of

the electric field of a point charge.

(px2)′ = p′x2 + 2xp = 0

p′

p
=
−2

x
→ p = qx−2 → E =

q

x2
∂x

〈ψ, d ∗ E〉 = 4πq〈ψ, δ̃(3)(x)〉. (9.1.9)

We generalize this result to Einstein-Maxwell theory: Apart from some possibly isolated

singular points on the reduced base manifold B, for example a center of symmetry that

was excluded from the outset, the quantity p
√
|Ex|Et is a constant which we call the

electric charge q (density). Using the charge in the expression for the elctric field, we

rewrite the Maxwell Hamiltonian (9.1.8)

CM =
Et

2
√
|Ex|e2

( q2

|Ex|
+

n2

4|Ex|

)
. (9.1.10)



Chapter 10

The Reissner-Nordström solution

In this chapter the knowledge of the sections above will be used to obtain the classical

spherically symmetric solution to the coupled initial value formulation of Einstein-Maxwell

theory. The initial data have to meet the following constraints:

� Gauß constraints:

GG[λ] =
1

2Gγ

∫
B

λ3(Ēx′ + P̄ η) = 0

GM [Λ = iα] = 4π

∫
B

αq̃′ = 0

� Vector constraints:

V G[S] =
1

2Gγ

∫
B

Sx[2γĒtK ′t − (η′ + Ax)Ē
x′ + η′G3] = 0

V M [S] ≡ 0

� Scalar constraints:

C[N ] :=CG[N ] +
e2

2π
CM [N ] =

− 1

G

∫
B

N |Ex|−
1
2 [ĒtK2

t +
2

γ
ĒxKt(η

′ + Ax) + 2ĒxΓ′t−

− Ēt(Γ2
t − 1)− Ēt G

|Ex|
(
q2 +

n2

4

)
] = 0

We choose the Lagrange multipliers conveniently to simplify the equations of motion. Let

us set Sx, λ3 and α to zero. The matter part of the scalar constraint suggests the choice

N =
|Ex| 12
Et

,
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which, of course, forces us to exclude all points in the phase space where Ex = 0 and

Et = 0, which in turn will have a certain physical interpretation.

By doing so we find the equations of motion for the momentum coefficients, where the dot

denotes the derivative with respect to “time” T , i.e. the parameter of the Hamiltonian

flow in phase space,

Ṗ η = −GγδC[N ]

δη
= −

(2KtE
x

Et

)′
, (10.0.1)

Ėx = −GγδC[N ]

δAx
=

2KtE
x

Et
, (10.0.2)

Ėt = −G
2

δC[N ]

δKt

= Kt +
(η′ + Ax)E

x

γEt
, (10.0.3)

ėt = −δC[N ]

δφ
= 0, (10.0.4)

and for the connection coefficients

η̇ = Gγ
δC[N ]

δP η
= 0 (10.0.5)

Ȧx = Gγ
δC[N ]

δEx
=

= −2Kt(η
′ + Ax)

Et
− γE

x(Et)′′

(Et)3
+ γ

3(Ex)′′

2(Et)2
− γ 3(Ex)′(Et)′

(Et)3
−

+ γ
3Ex[(Et)′]2

(Et)4
− γ G

|Ex|2
(θ(Ex)− θ(−Ex) + 2Exδ(Ex))

(
q2 +

n2

4

)
(10.0.6)

K̇t =
G

2

δC[N ]

δEt
=
Kt(η

′ + Ax)E
x

γ(Et)2
− Ex(Ex)′′

2(Et)3
+

((Ex)′)2

4(Et)3
(10.0.7)

ϕ̇ =
δC[N ]

δq
=

2q

|Ex|
. (10.0.8)

Now, we use the Gauß constraint to find P η = −(Ex)′, which makes (10.0.1) redundant.

Due to equation (10.0.5) we can replace Ȧx by γK̇x and with equation (8.1.15) we can

replace η′ + Ax with γKx everywhere. The delta function in (10.0.6) has support at the

point which we excluded and we can drop this term. The combination of the Heaviside

functions in (10.0.6) is simply the signum function sgn(Ex) which drops out of the equa-

tion. This is because – by the same argument as before – the derivative with respect to

x of the signum function in the other terms in this equations has only support on the

excluded points.

If we require the triads to be stationary Ėi ≡ 0 we find from (10.0.2) that Kt = 0 and

then from (10.0.3) Kx = 0. The remaining equation, obtained from (10.0.7), reads

−Ex(Ex)′′ +
((Ex)′)2

2
= 0 (10.0.9)
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which yields the solution Ex = cx2, c ∈ R. The constant c now carries the signum of Ex.

Next, by the substitution Et = x√
F (x)

we obtain from (10.0.6) the equation

− c
2
F ′′ − cF ′

x
+
Q2G sgn(c)

c2x4
= 0.

Q2 = q2 +
n2

4
(10.0.10)

Replacing F ′(x) by H(x) gives

−1

2
H ′x4 −Hx3 +

Q2G

|c|3
= 0,

where we solve the homogeneous equation via a the separation of variables

1

2

H ′

H
+

1

x
= 0

We find

H(x) =
k

x2

Now, we use the method of variation of constants to obtain the full solution

H(x) =
k̃

x2
− 2Q2G

|c|3x3
,

or

F (x) =
(
b− k̃

x
+

Q2G

|c|3x2

)
(10.0.11)

respectively. Finally, we can write the spatial metric as

hab =
1

|c|
(
b− k̃

x
+ Q2G
|c|3x2

)dxadxb + |c|x2(dΩ2
S2)ab =

=
|c|

b|c|2 − k̃|c|2
x

+ Q2G
|c|x2

dxadxb + |c|x2(dΩ2
S2)ab (10.0.12)

We define r :=
√
|c|x and 2MG = k̃|c|5/2. Furthermore, we require the metric to be

asymptotically flat, i.e. lim
r→∞

hab = δab.

hab =
1

1− 2MG
r

+ Q2G
r2

dradrb + r2(dΩ2
S2)ab. (10.0.13)
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We also rescale the evolution parameter T by T/
√
|c| = t to obtain the full Lorentzian

metric

gab = −
(

1− 2MG

r
+

(
q2 + n2

4

)
G

r2

)
dtadtb +

1

1− 2MG
r

+

(
q2+n2

4

)
G

r2

dradrb + r2d2ΩS2 ,

(10.0.14)

which is exactly the well known Reissner-Nordström solution. Note that we could have

also used the Newtonian limit to determine k̃|c|2. The classical singulatrity occurs at

r = 0, while there exist two horizons at r± = GM ±G
√
M2 − q2.

For densitized triad

Ex = sgn(r)r2 (10.0.15)

Et =
√
|c|
√

r4

r2 − 2MGr +G(q2 + n2

4
)

(10.0.16)

Ẽ =
(

sgn(r)r2∂rΛ
3
η +

√
r4

r2 − 2MGr +G(q2 + n2

4
)
(Λ1

η∂θ + Λ2
η

1

sin θ
∂φ)
)
drdθ sin θdφ

(10.0.17)

Note that the local frame is smooth everywhere and does not diverge at the singularity,

it only degenerates at this location and changes orientation.



Chapter 11

Quantum theory

Finally, let us pass to the quantization of the classical theories presented in the previous

chapters. First, we introduce further notions known from fiber bundle theory – parallel

transport – and discuss its physical significance by means of the Aharonov effect. Fur-

thermore we present the quantization scheme of LQG and carry out the quantization of

several classical quantities.

11.1 Parallel transport

Let x(t), 0 ≤ t ≤ 1, be a piecewise differentiable curve of class C1 in B and u(t) its

horizontal lift and let us denote the tangent vectors to curves by a dot, e.g. u̇(t). Now

consider a general lift w(t) of the curve x(t) with πw(t) = x(t) and w(0) = u(0), which

must be of the form u(t) = w(t)a(t), where a(0) = e. We look for a condition for a(t) to

make u(t) a horizontal curve. Due to the Leibniz formula we have

u̇(t) = ẇ(t)a(t) + w(t)ȧ(t)

ω(u̇(t)) = Ada(t)−1ω(ẇ(t)) + a(t)−1ȧ(t) = 0

where the last term of the second equation is a curve Y (t) in G. The condition for a(t)

making u(t) a horizontal curve then is

ȧ(t) = −ω(ẇ(t))a(t) (11.1.1)

for every t.

Now we define the parallel displacement along the curve x(t) as the map τ : π−1(x(0))→
π−1(x(1)). The horizontal lift starts at u(0) ∈ π−1(x(0)) and ends at u(1) ∈ π−1(x(1)).

The mapping is an isomorphism since it commutes with the right action on P which leaves

horizontal vectors invariant. In a local trivialization the parallel transport along xt with

76
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the tangent vector-field vt is given defined by the initial value problem

AdhtA(vt)− ḣth−1
t = 0,

htA(vt) = ḣt. (11.1.2)

h0 = e (11.1.3)

by virtue of (4.2.2). The G element ht is called the parallel transport along xt. We denote

the parallel transport along the full curve c with respect to the gauge potential A by

hc(A).

Finally we can define a equivalence relation for points on P , which can be joined by a

horizontal curve, u ∼ v.

11.1.1 Solution of the parallel transport equation

In the following we will show that there exists a unique solution of equation (11.1.2)

and demonstrate how we can construct it. For this purpose, we require that ht is are

continuous on [0, 1] ⊂ R, hence it is bounded on that intervall with respect to some

suitable norm. Furthermore, we restrict ourselves to subgroups of GL(n,R), so that we

can choose any submultiplicative matrix norm, e.g. the norm ‖·‖M induced by the Hilbert-

Schmidt inner product 〈A,B〉 = tr(A†B). The set of continuous bounded functions ht ∈
C([0, 1], GL(n,R), ‖ · ‖∞ = supt ‖ · ‖M) is a complete metric space. Choose once and for

all one gauge potential A on P .

Integration of (11.1.2) yields the fixed point problem

ht = e+

∫ t

0

dt′ht′A(vt′) =: Tht. (11.1.4)

The integrand in (11.1.4) is Lipschitz continuous, i.e. ∃ L > 0 ∈ R s.t.:

‖(ht − h′t)A(vt)‖M 6 ‖(ht − h′t)‖M · ‖A(vt)‖M
6 sup

t

{
‖A(vt)‖M

}
· ‖(ht − h′t)‖M = L‖(ht − h′t)‖M . (11.1.5)

In particular, it is continuous and hence is also bounded, i.e. ‖htA(vt)‖M 6 Λ, for some

fixed number Λ, ∀ t ∈ [0, 1]. Therefore, we can show that the operator is indeed a well

defined map T : C([0, 1], GL(n,R))→ C([0, 1], GL(n,R)), i.e. it is continuous in t

‖Tht − Tht̃‖M = ‖
∫ t

0

dt′ht′A(vt′)−
∫ t̃

0

dt′ht′A(vt′)‖M

= ‖
∫ t

t̃

dt′ht′A(vt′)‖M 6 Λ|t− t̃| (11.1.6)
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and hence also bounded. The map T is also Lipschitz continuous with respect to the

uniform norm

‖Th− Th′‖∞ = ‖
∫ t

0

dt′(ht′ − h′t′)A(vt′)‖∞

6 sup
t

{∫ t

0

dt′‖(ht′ − h′t′)A(vt′)‖M
}

6 sup
t

{∫ t

0

dt′L‖ht′ − h′t′‖M
}

6 sup
t

{
Lt‖ht′ − h′t′‖M

}
= L · 1‖h− h′‖∞

Then we prove by induction that ‖T nh− T nh′‖∞ = Ln/n!‖h− h′‖∞. We show that it is

true for n = 21

‖T 2h− T 2h′‖∞ 6 ‖
∫ t

0

dt′(Tht′ − Th′t′)A(vt′)‖∞

6 sup
t

{∫ t

0

dt′‖(Tht′ − Th′t′)A(vt′)‖M
}

6 sup
t

{∫ t

0

dt′L‖Tht′ − Th′t′‖M
}

6 sup
t

{∫ t

0

dt′L2t′‖ht′ − h′t′‖M
}

6 sup
t

{(Lt)2

2
‖ht′ − h′t′‖M

}
=
L2

2
‖h− h′‖∞

and the case n + 1 is shown similarily using the induction hypothesis. This qualifies TN

being a contraction for a sufficiently high value of N , since2

∣∣∣Ln+1/(n+ 1)!

Ln/n!

∣∣∣ =
∣∣∣ L

n+ 1

∣∣∣ < 1, for n+ 1 > L (11.1.7)

Next we prove an extension of Banach’s fixed point theorem. Consider the sequence

{h(n)}n∈N with h(n+1) = Th(n) and h(0) = e. We use

‖h(n+1) − h(n)‖∞ = ‖T nh(1) − T nh(0)‖∞ 6
Ln

n!
‖h(1) − h(0)‖∞,

1We chose the case n = 2 also to motivate that formula.
2This can also be seen from the fact that Ln/n! is the n-th term in the Taylor series of the exponential

function exp(L).
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to show that this sequence is Cauchy:

‖h(m) − h(n)‖∞ 6 ‖h(m) − h(m−1)‖∞ + · · ·+ ‖h(n+1) − h(n)‖∞

6 ‖h(1) − h(0)‖∞
m−1∑
k=n

Lk

k!
= ‖h(1) − h(0)‖∞

Ln

n!

m−n−1∑
k=0

Lk

k!

6 ‖h(1) − h(0)‖∞
Ln

n!

∞∑
i=0

Lk

k!
=6 ‖h(1) − h(0)‖∞

Ln

n!
eL, (11.1.8)

hence for any ε > 0 ∈ R ∃ M ∈ N given by the equation ‖h(1) − h(0)‖∞LM

M !
eL < ε, such

that for ∀m,n > M ‖h(m) − h(n)‖∞ < ε holds.

Since C([0, 1], GL(n,R), ‖ · ‖W ) is complete, the sequence cornverges and we denote the

limit by h∗t . We show that h∗t is the unique fixed point of T :

� Fixed point:

lim
n→∞

‖h(n+1) − Th∗‖∞ = lim
n→∞

‖Th(n) − Th∗‖∞ 6 lim
n→∞

L‖h(n) − h∗‖∞ = 0

� Uniqueness: Suppose ∃ h̃∗ 6= h∗, s.t. T h̃∗ = h̃∗, then we obtain the contradiction

‖h̃∗ − h∗‖∞ = ‖T h̃∗ − Th∗‖∞

= ‖TN h̃∗ − TNh∗‖∞ 6
LN

N !
‖h̃∗ − h∗‖∞ →N→∞ 0

Finally, we construct the solution employing the iteration utilized for the proof above.

ht = e+
∞∑
n=1

∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtnA(vtn) · · ·A(vt2)A(vt1) (11.1.9)

Based on the following observation with respect to double integrals in the sum above we

will rewrite (11.1.9) as a so-called path ordered exponential. Using the Heaviside step

function Θ(t− t′) we rewrite the double integral∫ t

0

dt1

∫ t1

0

dt2A(vt2)A(vt1)

=
1

2

∫ t

0

dt1

∫ t

0

dt2[A(vt2)A(vt1)Θ(t1 − t2) + A(vt1)A(vt2)Θ(t2 − t1)]

=
1

2

∫ t

0

dt1

∫ t

0

dt2P [A(vt2)A(vt1)] (11.1.10)
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and define the path ordering, i.e. we order the connection with the lowest value of the

curve parameter to the left. This we generalize to all multi integrals and obtain

ht = Pe
∫
c A :=

∞∑
n=0

1

n!

∫ t

0

dt1

∫ t

0

dt2 · · ·
∫ t

0

dtnP [A(vtn) · · ·A(vt2)A(vt1)] (11.1.11)

11.1.2 Paths and graphs

We define the beginning point, final point and range of a (continuous) curve c : [0, 1] ↪→ B

(where c is an embedding) respectively by b(c) := c(t), f(c) := c(1) and r(c) := c([0, 1])

[11]. We can now introduce the composition and inversion of curves.

c1 ◦ c2 :=

{
c1(2t), t ∈ [0, 1/2]

c2(2t− 1), t ∈ [1/2, 1]
if f(c1) = b(c2)

c−1(t) := c(1− t) (11.1.12)

The composition c(t) ◦ c−1(t) is called a retracing, but one has to keep in mind that this

is not a simply single point.

As can be seen from the defining equation of the parallel transport or equivalently from

(11.1.11), we have

hc1◦c2(A) = hc1(A)hc2(A), (11.1.13)

hc−1(A) = hc(A)−1. (11.1.14)

Furthermore, it will be shown later that the parallel transport is invariant under reparametriza-

tions of curves.

This suggests to introduce an equivalence relation of curves c (with the same initial and fi-

nal points) modulo a finite number of retracings and reparametrizations. The equivalence

classes will be called paths [c] = pc ∈ P , where the operations defined above introduce a

so-called groupoid structure on P , therefore it is natural to consider category theory. A

groupoid structure differs from a group structure by not having a natural identity element

and not defining composition for all elements. The category under consideration here is

the base manifold, which is a collection (in our case it is even a set) of objects, namely

the points together with morphisms, the paths, for each ordered pair of points, which we

denote by hom(x, y). The compostion defined for the morphisms has to be associative,

which is obviously the case. Beyond identities idx ∈ hom(x, x) need to exist, which in our

case are the trivial paths p ◦ p−1. Since we also defined inversion, all the morphisms are

automatically isomorphisms. Note that the closed paths with respect to a certain base

point form a group called the hoop group.

As we saw from the definition of the parallel transport we need curves which are piecewise
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Figure 11.1: An example of a graph.

differentiable. For later convenience, we will restrict the set of curves from class C1 to

the semianalytic class in the following. Roughly speaking, these are curves which are

piecewice analytic, i.e. a compostion of analytic curves for which the intersection points

of the analytic pieces they are at least C1. Compostion of such curves could lead out

of these class since the composite object is a priori only C0 at the intersection point.

Therefore, we introduce the notion of edges, which are paths with at least one entirely

semianalytic representative.

The union of ranges of finitely many edges {e1, . . . , en}, which intersect at most at their

endpoints 3 is called a graph γ = ∪i = 1nr(ei) with the sets E(γ) = {e1, . . . , en} and

V (γ) = {b(e), f(e)|e ∈ E(γ)}, where the latter is called the vertex set. The set of graphs

is denoted by Γ.

We equip Γ with an order relation denoted by ≺ which makes Γ a directed set. We say

that γ ≺ γ′ iff every edge e ∈ E(γ) is a finite composition of the e′ ∈ E(γ′) and their

inverses. For any pair γ, γ′ one can find a γ′′ such that γ, γ′ ≺ γ′′. If γ and γ′ are disjoint

then simply γ′′ = γ ∪ γ′. The same is true if the two graphs intersect. The piecewise

analycity requirement is crucial here, since the edges can either intersect in finitely many

points or the analytic pieces overlap. In such a case we break the edges of the union graph

into smaller pieces.

3The set of such edges is said to be independent.
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11.1.3 Gauge transformations and variations

Under a local gauge transformation A → gtA we have

gtḣt = gtht
gtA = gtht(gtAg−1

t + gt(g
−1
t )̇) =

= gtht(gth
−1
t htAg−1

t + gt(g
−1
t )̇) =

= gtht(gth
−1
t ḣtg

−1
t + gt(g

−1
t )̇)

gt h−1
t

gtḣt = (htg
−1
t )−1(htg

−1
t )̇− gt(g−1

t )̇ + gt(g
−1
t )̇

gth−1
t

gtḣt = (htg
−1
t )−1(htg

−1
t )̇. (11.1.15)

Since g0h0 = h0 = 1 the transformation property of the parallel transport is

gtht = g0htg
−1
t . (11.1.16)

Obviously, for matrix groups the so-called Wilson line tr(hc(A)), where c is a loop, is

invariant under gauge transformations.

The variation of the parallel propagator can be calculated via its defining equation (11.1.2)

δḣt − δhtA(vt) = htδA(vt).

This equation can be seen as an inhomogeneous first order differential equation in the vari-

able δh since the derivation with respect to the curve parameter and functional variation

commute. The initial value is δh0 = 0. The homogeneous part of the equation

(δht)
−1(δht)̇ = h−1

t ḣt.

is solved by δh = Ch. Now, we find the following solution of the inhomogeneous equation

via the method of variations of the constant

Ċ = htδA(vt)h
−1
t

δht =

∫ t

0

ht′δA(vt′)h
−1
t′ dt

′ht + C0

δh0 = 0 → C0 = 0

Using the composition and inversion properties of the parallel transport we find

δht =

∫ t

0

ht′δA(vt′)ht−t′dt
′
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For the variation w.r.t. the connection the variation of the parallel transport along the

full curve h1 := h(c) reads

δh(c)

δAia(y)
=

∫ t

0

dt′ht′τiv
a
t′h1−t′δ

(3)(x(t′), y) (11.1.17)

The variation of the path is only slightly more difficult. Here we use the notation vt = ẋ(t)

and ht−t′ = h(x(t′), x(t)) denoting the tangent vector-field to the curve and the parallel

transport from the point x(t′) to the point x(t). Furthermore, we writeA(vt) = ẋyA(x(t)),

and (ẋyd)A(x(t)) =: Ȧ(x(t))

δxh(x(t)) =

∫ t

0

h(x0, x(t′))[δẋyA(x(t′)) + ẋy(δxyd)A(x(t′))]h(x(t′), x(t))dt′ (11.1.18)

Next we focus on the term in parenthesis

δẋyA(x(t′)) + ẋy(δxyd)A(x(t′)) =

= (δxyA(x(t′)))̇− δxyȦ(x(t′)) + ẋy(δxyd)A(x(t′) =

= (δxyA(x(t′)))̇ + ẋy(δxydA).

The first term inserted in (11.1.18) gives∫ t

0

h(x0, x(t′))(δxyA(x(t′)))̇h(x(t′), x(t))dt′ =

=

∫ t

0

{[h(x0, x(t′))δxyA(x(t′))h(x(t′), x(t))]̇ + h(x0, x(t′))ẋyδxy[A ∧A]h(x(t′), x(t))}dt′

(11.1.19)

using the defining equation (11.1.2) several times. In order to obtain the A2 part, we

used the following trick: From h(x(t′), x(t)) = h−1(x(t), x(t′)) we find ḣ(x(t′), x(t)) =

−ẋyA(x(t′))h(x(t′), x(t)). Collecting all pieces of the calculation yields

δxh(c) =

∫ 1

0

h(x0, x(t′))ẋy(δxyF)(x(t′))h(x(t′), x1)+

+ h(c)δxyA(x1)− δxyA(x0)h(c), (11.1.20)

where F is the field strength (local curvature, see chapter 4.3) of the gauge potential A.

11.2 Holonomy

Next, we analyze special curves: the loop space, i.e. Ck curves in B where the starting

and end point are the same. Then the parallel displacement provides an isomorphism
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of the fiber to itself. The set of these isomorphisms is called the holonomy group Φ(x)

with reference point x and the subgroup Φ0(x) corresponding to loops homotopic to zero

is called restricted holonomy group. We understand them as subgroups of the structure

group G. For a point u in the fiber π−1(x) we can write τ(u) = ua, a ∈ G. Say another

loop µ determines the element b ∈ G, then µ ◦ τ(u) = µ(ua). Since parallel displacement

and right action of G commutes, we have

µ ◦ τ(u) = uba

Since the inverse and multiplication of parallel displacement is defined, the elements of

G corresponding to the parallel displacements form a subgroup of G called the holonomy

group Φ(u) of Γ with reference point u. The same is true in the restricted case. For

two points u and v = ua, a ∈ G, in a fiber the holonomy groups are conjugate in G.

Say b ∈ Φ(u), then u ∼ ub and u ∼ va−1b, hence, v ∼ va−1ba and it follows that

Φ(v) = ada−1Φ(u). For two points u and v in different fibers joined by a horizontal curve

we have u ∼ v, which implies ub ∼ vb. Since the equivalence relation is transitive, we

conclude u ∼ ub iff v ∼ vb and therefore Φ(u) = Φ(v). If B is connected, i.e. all pairs of

points in B can be joined by a differentiable curve, all holonomy groups are isomorphic

to each other, since for all pairs of lifts u and v in P there exists an element a in G such

that v ∼ ua. Furthermore, if B is paracompact4 one can show [12] that Φ(u) is a Lie

subgroup of G with identity component Φ0(u).

11.3 Variations of the curve and the Ambrose Singer

theorem

We can consider a reparametrization of the curve as a variation with δx and ẋ collinear

and δx(x0) = δx(x1) = 0. Then we can see that the parallel transport is invariant with

respect to the reparametrization of the curve. If we choose an arbitrary variation of the

path and keep the initial and final points fixed, then as expected curvature comes into

play.

Let us now consider the expansion of the parallel transport and a holonomy with respect

to a “small” curve or loop respectively. For this purpose we consider a one parameter

family of curves and loops (cε and αε). Furthermore, we require x0(t) = x0 for all t, i.e.

for vanishing ε our curves shrink to a single point and then also the tangent vector shall

vanish ẋ0(t) = 0. For the variation of the curve we can write

δx =
∂xε(t)

∂ε
ε

4as it is the case for every metrizable space.
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Accordingly we trade the formula (11.1.20) for

∂h(cε)

∂ε
=

∫ 1

0

h(xε0, x
ε(t′))ẋεy(

∂xε(t)

∂ε
yF)(xε(t′))h(xε(t′), xε1)+

+ h(c)
∂xε(t)

∂ε
yA(xε1)− ∂xε(t)

∂ε
yA(xε0)h(c) (11.3.1)

Next, we expand the parallel transport such that we keep the initial point of the curve

fixed, i.e. b(xε(t)) = x0 for all ε, and vary the length of the curve, i.e. we shift the end

point of the curve along the curves tangent. Then we obtain

h(cε) = 1 + ε
∂h(cε)

∂ε

∣∣∣
ε=0

+O(ε2) =

= 1 + ε
∂xε(t)

∂ε
yA(xε1)

∣∣∣
ε=0

+O(ε2), (11.3.2)

In the calculation the second boundary term in (11.3.1) vanishes, since the variation of

the curve vanishes in the limit.

The variation of the holonomy reads

∂h(αε)

∂ε
=

∫ 1

0

h(xε0, x
ε(t′))ẋεy(

∂xε(t)

∂ε
yF)(xε(t′))h(xε(t′), xε0)+

+ [h(αε),
∂xε(t)

∂ε
yA(xε0)]

Expanding a holonomy

h(αε) = 1 + ε
∂h(αε)

∂ε

∣∣∣
ε=0

+
ε2

2

∂2h(αε)

∂ε2

∣∣∣
ε=0

+O(ε3) (11.3.3)

all terms to first order in ε vanish, since in the curvature term the tangent vector is

the zero vector, while the boundary commutator vanishes up to third order. Finally, we

obtain

h(αε) = 1 +
ε2

2

(∂ẋε
∂ε

∣∣∣
ε=0

y
∂xε

∂ε

∣∣∣
ε=0

yF
)

(x0) +O(ε3) (11.3.4)

This is essentially the core of the Ambrose-Singer theorem: Roughly speaking, the Lie

algebra of the holonomy group Φ(u), where u ∈ P (M,G) is some refence point, is spanned

by the elements Ωv(X, Y ) where Ω is the curvature 2-form and X, Y are arbitrary hori-

zontal vectors at v ∈ P , v ∼ u.

In the following these considerations are illustrated with some examples.
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11.3.1 Examples for variations of the holonomy along special

paths

First consider a loop which in a coordinate neighborhood of a pointM can be parametrized

as

xε(t) = ε(cos(2πt)u+ sin(2πt)v)

where u, v, are some arbitrary orthogonal unit vectors at x0. Then (11.3.4) yields up to

second order

h(αε) ≈ 1 + ArεvyuyF(x0),

where we used the abbreviations Arε = ε2π (the coordinate area bounded the loop).

Finally, we present a loop most frequently used in loop quantum gravity: the triangle. In

a coordiante neighborhood we parametrize the triangle with

xε(t) = x0 + ε


3tu, t ∈ [0, 1/3]

u+ (3t− 1)(v − u), t ∈ [1/3, 2/3]

(3− 3t)v, t ∈ [2/3, 1]

The only nonvanishing contributions are coming from the second egde, where the variation

vector of the curve and the variation of the tangent vector are not colinear.

∂ẋε(t)

∂ε

∣∣∣
ε=0

= 3(v − u)

∂xε(t)

∂ε

∣∣∣
ε=0

= u+ (3t− 1)(v − u) (11.3.5)

Again we find

h(αε) ≈ 1 + ArεvyuyF(x0), (11.3.6)

with Arε = ε2/2 in this case.

11.4 The Aharonov-Bohm effect

This subsection will show that fiber bundle theory provides the most complete picture in

which the physics of Yang-Mills theories can be described and understood. The Aharonov-

Bohm effect will serve as a guidance.

Consider the following gedankenexperiment: We perform the double slit experiment with

(positively) charged particles in non-relativistic quantum mechanics and observe the typ-
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ical interference fringes due to the superposition of the coherent wave function ψ1 and ψ2

originateing in slit 1 and slit 2, respectively. In the next step we introduce a infinitesimal

thin and infinitely long solenoid along the z-axis behind the wall between the two slits. In

this idealized situation the magnetic field will be completely confined within the solenoid.

The stationary magnetic flux through an arbitrary surface transversal to the solenoid will

be denoted by ϕM , then the magnetic field strength is F = dA = ϕMδ
(2)(x, y)dx ∧ dy

which implies a singular gauge potential.

Denote by τ = τzdz a test 1-form of compact support and by Zε a cylindrical region

around the z-axis, then∫
R3

ϕMτz(0, 0, z)dz =< F, τ >=

∫
R3

ϕMδ
(2)(x, y)dx ∧ dy ∧ τz(x, y, z)dz =< A, dτ >=

= lim
ε→0

∫
R3\Zε

A ∧ dτ = lim
ε→0

∫
R3\Zε

−d(A ∧ τ) + dA ∧ τ = lim
ε→0
−
∫
∂Zε

−A ∧ τ.

(11.4.1)

Using cylindrical symmetry and symmetry adapted coordinates and the Taylor expansion

of the test 1-form τ(εeρ, z) = τ(0, z) + O(ε), we find A = ϕM
2π
dφ, which in Cartesian

coordinates reads A = ϕM
2π(x2+y2)

(xdy−ydx). We can regard the space that our experiment

takes place in as the doubly connected manifold Σ ∼= R2 × S1 with first homotopy group

π1(Σ) = Z, i.e. the set of winding numbers of loops around the solenoid. Outside the

solenoid the gauge potential is closed, and locally we can write A = dΛ, where Λ = ϕM
2π
φ,

which is a multi-valued function. Thus, A is a gauge transformed of A = 0 with the gauge

group element g = exp[−iΛ].

Now, let us consider the principal U(1)-bundle over Σ and its associated complex line

bundle. A section ψ of this line bundle is interpreted as the wave function describing a

charged particle, which is parallel transported along a path p from a to b in the base space

according to the rules derived above (In the caclulation we use −i for the generator of

U(1) with the minus sign for the negatively charged electrons, α = e/(~c) and ψ denotes

the wave function in case of a vanishing magnetic flux)

ψtrans(b) = exp
[ ∫

p

−iαA
]
ψ(b) (11.4.2)

The wave function transported along a loop γ in the base space, winding around the

solenoid n-times, is given with respect to the wave function for vanishing magnetic flux

by the expression

ψtrans(x0) = exp
[ ∮

γ

−iαA
]
ψ(x0) = exp

[
− iαΛ

∣∣φ=2πn

φ=0

]
ψ(x0) =

= exp
[
− inαϕM

]
ψ(x0). (11.4.3)
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Thus, a loop around the solenoid lifted to the bundle does not close and the holonomy

group is given by the set of elements Φ(p) = {exp
[
− inΦM

]
}, with x0 = π(p) being the

base point of the loops.

In our experiment the wavefunction at the point x0 at the detector is given by the super-

position of the wavefunctions parallel transported along a curve through slit 1 and one

through slit 2:

ψtrans
1 (x0) + ψtrans

2 (x0) =

= exp
[ ∫

1

−iαA
]
ψ1(x0) + exp

[ ∫
2

−iαA
]
ψ2(x0) =

= exp
[ ∫

2

−iαA
](

exp
[ ∮

γ

−iαA
]
ψ1(x0) + ψ2(x0)

)
(11.4.4)

Hence, the interference pattern will be influenced by the phase factor [30]

exp
[
− inαϕM

]
. (11.4.5)

Note that the parallel transport, for which the name non-integrable phase factor was

coined in [30], is not observable – only the holonomy, i.e. the relative phase factor,

is. Classically, only the field strength could have an measureable effect governed by the

Lorentz force. For a quantum mechanical particle there is a measureable effect, although

the particles never enter the region where the field strength is nonvanishing.

The main conclusion of [30] is, “[w]hat provides a complete description [of electromag-

netism] that is neither too much nor too little is the phase factor”, while the field strength

underdescribes electromagnetism and the gauge potential overdescribes it.

The Aharonov-Bohm effect has been confirmed several times. A broad overview on the

experiments and also on the long standing debates about the theoretical explanation can

be found in [31]. A. Tonomura performed experiments of high precesion which are in

principle designed like our Gedanken experiment above. He used the at that time newly

developed technique called electron holography.

11.5 Elementary variables - the Poisson *-algebra

If we take a look at the commutation relation (8.0.2), we can see that it is distributional.

In order to circumvent this difficulty one usually smears the coordinates of phase space

with test fields of compact support. In the sections discussing parallel transport (ch.

11.1) we showed that the connection couples to a curve in a natural way without using

a metric and/or smearing fields, which might have awkward transformation properties

under gauge transformation, yielding a well defined operator. Of course, this smearing

is distributional. Since we are interested in gauge invariant information, i.e. physical
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information, the transformation rule (11.1.16) behaves nicely in contrast to the inhomo-

geneous transformation (4.2.2) of the connection itself. From a physically motivated point

of view, the parallel transport along a closed curve, the holonomy carries exactly the rel-

evant physical information as the Aharonov-Bohm effect reveals 11.4. In the procedure

of quantizing a classical theory, we will be interested in square integrable function on the

configuration space. In our case this is the space of smooth connections, which is infinite

dimensional. At this point the question arises of how to build an infinite dimensional

integration theory. Following the ideas of Kolmogorov, one builds such a theory from a

finite dimensional one [32]. The edges and graphs will serve as probes, extracting a small

amount of information of the connection.

An analogous natural smearing has to be done with the densitized triad.

Ẽi = ωhei.

We define the operation ∗ as

∗Ẽi = eiyωh

which is a Lie algebra valued 2-form that can be naturally integrated over a surface S

Ei(S) =

∫
S
∗(Ẽa

i ). (11.5.1)

It is known as the gravitational electric flux through S. This particular smearing has

important consequences: It allows for calculating a well defined Poisson bracket

−{Ei(S), h(c)} (11.5.2)

using equation (11.1.17).

−{Ei(S), h(c)} =
κγ

2

∫
c

∫
S
h(x0, x(t))τi(x(t))h(x(t), x1)dt ẋyδ̃3(x, x(t)) (11.5.3)

Here, the δ̃3 denotes a scalar density that has support at intersection points of the (ori-

ented, analytic, open) surface (with compact support) S with the (oriented, piecewise

analytic) curve c. Analycity of S and piecewise analycity of c ensures that there are only

finitely many intersection points or some analytic pieces of c lie entirely in S. Subdivide

c and S if necessary such that the intersection is of definite type. In case of no inter-

section points the integral vanishes. For the sake of simplicity we assume that there is

a single intersection point, which is the starting point x0 of the curve. As long as there

exists a nonvanishing derivative of the curve along a direction transversal to the surface

in its Taylor expansion around x0, the integral has a nonvanishing value (see app. A.13),
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Figure 11.2: The possible types of intersections of edges with surfaces.

namely

−{Ei(S), h(c)} =
κγ

4
τih(c). (11.5.4)

The factor 1/2 has its origin in the regularization used for delta function, since it is

evaluated at the boundary of the integral. In order to show this one can apply Colombeau

theory (see [33] for a short introduction and a generalization to paracompact manifolds).∫ 1

0

δ(t)dt =

∫ 1

−∞
Θ(t)Θ′(t)dt =

1

2

∫ 1

−∞
(Θ2)′(t) ≈

≈ 1

2
Θ(1) =

1

2
.

A further motivation for that choice of the numerical prefactor is a physical one. Only if

this integral gives 1/2 the area operator of LQG is invariant under the flip of orientation

of the surface [11].

We will now distinguish between different cases of the possible relations of c and S: The

case we already discussed we will be called “outgoing/above”, which means the egde lies

transversal above S and punctures the surface in b(c), i.e. it is oriented in the direction

of the surface normal. According to that, we generalize the result from above

−{Ei(S), h(c)} =

{
σ(S,c)κγ

4
τih(c) outgoing: c ∩ S = b(c)

−σ(S,c)κγ
4

h(c)τi incoming c ∩ S = f(c)
,

σ(S, c) =


+1 above

0 tangential or nonintersecting

−1 below

.

The possible types of intersections can be seen from figure 11.2. Usually the types “outgo-
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ing/above” and “incoming/below” are subsumed in the type “up” and “incoming/above”

and “outgoing/below” in the type “down”. Hence

−{Ei(S), h(c)} =
σ(S, c)κγ

4
(δc∩S=b(c)τih(c) + δc∩S=f(c)h(c)τi)

σ(S, c) =


+1 up

0 tangential or nonintersecting

−1 down

In the following considerations we adopt the convention, used by the loop quantum gravity

community, employing the terminus holonomy when actually speaking of the parallel

transport.

Remark: All what was said here applies to any Yang Mills field theory.

11.5.1 Spherically symmetric holonomies and fluxes

In the symmetry reduction scheme developed in the preceding chapter we arrived at

connection dynamics with a U(1) fiber bundle over a one dimensional manifold, which we

choose to be R or R+. For the U(1) gauge potential we can proceed as shown above and

construct a U(1) ⊂ SU(2) the parallel transport

h3(e) = exp
(

Λ3

∫
e

A
)

=

= cos(
1

2

∫
I
Ax(x)dx

)
1 + 2Λ3 sin(

1

2

∫
I
Ax(x)dx

)
,

where I denotes a finite interval of R and e denotes an edge in the one dimensional base

manifold B. For the intrinsic U(1) parallel transport we write

h3(e) = exp
( i

2

∫
I
Ax(x)dx

)
.

Additionally, we obtained scalar fields called the Higgs fields, originating from the gauge

potential components in the homogeneous directions of the orbits (S/J ∼ S2). These

Higgs fields will be treated like matter scalar fields in the full LQG theory, using point

holonomies [34], i.e. via exponentiation. In the reduced picture there are no edges which

could couple to the connection components in homogeneous direction, the spheres are

represented by points/vertices in the radial manifold, in the following denoted by v. The

neighboring vertices will be denoted by v+ and v− respectively. Nevertheless we will

entertain the point of view that the field Kt is integrated over edges, which are parts of

great circles on S2 having parameter length δ. In order to provide for the edges which

meet in v to be loops, we could choose δ = 2π. We choose the circles to be the equator
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for the integration of the φ coordinate and the meridians for the θ coordinate. Thus, we

confine ourselves to a situation, where the radial line cuts the spheres in the equatorial

plane, with coordinates (v, π/2, 0) with respect to the background structure. For the

configuration variable η such interpratation is not available, but also not necessary, since

it is only a U(1) scalar even in the three dimensional picture. Therefore, we have use a

point holonomy, too.

h1(v) = exp
(
γδKt(v)Λ1

)
=

= cos(γδ/2Kt(v))1+ 2Λ1 sin(γδ/2Kt(v))

h2(v) = exp
(
γδKt(v)Λ2

)
=

= cos(γ
δ

2
Kt(v))1+ 2Λ2 sin(γ

δ

2
Kt(v))

hη(v) = exp(iη(v))

Analogous to the full LQG theory we smear the dualized momenta ∗Ẽ over two dimen-

sional surfaces. We will choose a plaquette in the symmetry orbit S2
ε bounded by four

great circles. Furthermore choose a plaquette in the equatorial plane bounded by two

radial edges and two congruent equatorial great circles, denoted by Sθ,
5. Analogously

define a plaquette bounded by meridian lines, denoted by Sφ. Each boundary curve in

the homogeneous directions has parameter length ε. All the plaquettes are oriented in

the directions ∂x, ∂θ and ∂φ, respectively according to the subscript. The situation is

displayed in figure 11.3. The momentum conjugate to η(x) has a special role and we

smear it over a box Vε bounded by pairs of the plaquettes S2
ε , Sθ, Sφ. We can consider

P η(x) = 2 sinαAt(x)Et(x) as a 3-form P̃ η = 2 sinαAtE
tdxdΩS2 . For the symmetric fluxes

we then obtain6

E3[S2
ε ] =

∫
S2
ε

∗Ẽ3 = Ar(S2
ε )E

x

E1[Sθ] = ε

∫
I
Etdx

E2[Sφ] = ε

∫
I
Etdx

Eη[Vε] =

∫
Vε
P̃ η = Ar(S2

ε )

∫
I
P ηdx (11.5.5)

5A special case would be the ring bounded by two such great circles. In general we could, at least in
the three dimensional picture, allow the boundary curves to be lines of latitude connected by two radial
edges. In such a case we would obtain Eθ[Sθ] =

∫
Sθ
∗Ẽ1 =

∫
Sθ
−Et sin θdxdφ = ε sin θ

∫
I Etdx.

6The minus sign in the expression of Eθ[Sθ] was absorbed such that the plaquette is oriented in the
direction of ∂θ.
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Figure 11.3: Triangulation for spherically symmetric LQG

For the calculation of the flux holonomy algebra we choose a setting where all edges

tangential to S2 are centered at the vertex v. A radial edge starts at v and ends at the

vertex v+. Each of the regularizing surfaces is centered at v. In the following calculation

we synchronize δ = ε

−{E3[S2
v ], h3(ev

+

v )} =Gγ Ar(S2
ε )

∫
R

dzδ(v, z)h3(ev
+

v )

∫ v+

v

dxΛ3δ(x, z) =

=
κS

2
ε γ

4
Λ3h3(ev

+

v ), (11.5.6)

where we abreviated κS
2
ε = 2 Ar(S2

ε )G and Λ3 is either i/2 or the full SU(2) generator.

−{E1/2[Sθ/φ], h1/2(v)} =
Gε

2

∫
R

dz

∫
I
dxδ(x, z)Λ1/2γεδ(v, z)h1/2(v) =

=
κεγ

4
Λ1/2h1/2(v), (11.5.7)

with κε = 2ε2G.

Finally we find

−{Eη[Vε], hη(v)} =GAr(S2
ε )

∫
R

dz

∫
I
dxδ(x, z)iδ(v, z) =

=
κS

2
ε γ

2
ihη(v) (11.5.8)
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Note that because of the particular choices of the parametrization and the imbedding of

the edges and surfaces we obtain the holonomy flux algebra of full loop quantum gravity

in the limit Ar(S2
ε )→ 4π.

For the spherically symmetric Maxwell connection dynamics developed in section 9.1 we

proceed analogously. We introduce the holonomies along a radial edge e and along an

arbitrary edge in the symmetry orbit S2 denoted by et.

gx(e) = ei
∫
I φdx

gφ(v) = e
i
2
n
∫
et

cos θ(φ)dφ = βnet .

We see that the holonomy corresponding to the monopole connection part simply gives

a U(1)-phase, depending only on the geometry of et, which for example for an eqautorial

edge gives 1. This phase is analogous to the Aharanov Bohm phase discussed in section

11.4. The densitized electric vector-field can again be smeared over a 2-surface

E [S2
ε ] =

∫
S2
ε

∗Ẽ = Ar(S2
ε )q, (11.5.9)

which we recognize as the litaral electric flux through the surface Ar(S2
ε ). Clearly, for

Ar(S2
ε ) = 4π one recovers the classical result for the electric flux of a point charge in the

center of a 2-sphere. The Maxwell holonomy flux algebra reads

−{E [S2
ε ], gx(e)} =

q2 Ar(S2
ε )

8π
igx(e). (11.5.10)

11.5.2 Cylindrical functions and vector-fields

In order to define Cylindrical functions first notice, that each graph defines a map from

the space of smooth connections into the Cartesian product of G. We define the map

with respect to some graph γ

pγ : A → G|E(γ)|; A 7→ {h(e)e∈E(γ)},

where A denotes the set of smooth connections and |E(γ)| the number of edges in E(γ).

Given a C∞ function ψ : G|E(γ)| → C we can define function Ψγ : A → C said to be

cylindrical over γ such that Ψγ = ψ ◦ pγ. We will sometimes use the notation

Ψγ(A) = ψ(h(e1), . . . , h(en))

The set of functions cylindrical over γ is denoted by Cyl∞γ . The space of all infinitly

differentiable cylindrical functions (i.e. cylindrical with respect to some graph) will be

denoted by Cyl∞ = ∪γ∈Γ Cyl∞γ . They form an Abelian algebra with respect to the Poisson



CHAPTER 11. QUANTUM THEORY 95

bracket.

The action of fluxes on cylindrical functions Ψγ cylindrical over the graph γ is given by

− {Ei(S), Ψγ}(A) =

=
∑
e∈E(γ)

[∂ψ({h(e′)})
∂h(e)AB

σ(S, e)κγ
4

(δe∩S=b(e)τihAB(e) + δe∩S=f(e)hAB(e)τi)
]
.

Now recall formulas the (6.1.7) and (6.1.8), where we defined left and right invariant

vector-fields on a Lie group. According to them we can rewrite the above formula in the

compact form

−{Ei(S), Ψγ}(A) =
∑
e∈E(γ)

σ(S, e)κγ
4

{[
δe∩S=b(e)R

i
e + δe∩S=f(e)L

i
e

]
ψ({h(e′)})

}
,

where Ri
e is the right invariant vector-field on the copy of Ge.

Based on this expression, we can define vector-fields on Cyl∞

Y i
S[f ] := −{Ei(S), Ψ}(A). (11.5.11)

This completes our search for the elementary variables. The so-called Poisson ∗-algebra

B ⊆ V ∞×Cyl∞ a subset of smooth cylindrical functions and smooth vector-fields thereon

will serve as the algebra to be quantized. The algebra is defined by the Lie algebra relations

[(Ψ, Y i
S), (Ψ ′, Y ′

j
S′)] = (Y i

S [Ψ ′]− Y ′jS′ [Ψ ], [Y i
S , Y

′j
S′ ])

and the (∗) involution operation is given by complex conjugation. Note that the “mo-

mentum” variables no longer commute, as one would expect from the Poisson brackets

we started with. This results from the distributional smearing we used7.

Now recall our discussion on Haar measures. We can define an inner product on the space

Cyl∞γ .

〈Ψγ, Φγ〉 :=

∫
G|E(γ)|

dµ
|E(γ)|
H ψ̄ ◦ φ({h(ei)}), (11.5.12)

where µ|E(γ)| denotes the Haar measure on G|E(γ)|.

11.6 Quantum configuration spaces

We aim at the Cauchy-completion of the space (Cyl∞γ , dµ
|E(γ)|
H ) in order to obtain a Hilbert

space. In infinite dimensional theories, i.e. field theories, in performing the Cauchy

7For a detailed discussion on this new feature see [35].
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completion one obtains states that cannot be realized as function on the configuration

space, which in our case is A. For example, in scalar field theory on Minkowski space the

quantum states are tempered distributions, living in the topological dual to the space of

probes (Schwartz space) [32].

First, let us confine ourselves to one single graph and later extend the discussion to

all graphs. The crucial point is the huge redundancy of gauge transformations acting

on connections. The parallel transport is only sensitive to gauge transformations G/G0

which are nontrivial at the end points of the edge. We therefore arrive at the configuration

space Āγ and the residual quantum gauge group Ḡγ given by

Āγ := Aγ/G0
γ

Ḡγ := Gγ/G
0
γ. (11.6.1)

The advantage of this construction is that the elements of Āγ can now be identified with

G elements given by the parallel transport.

Recall now what has been shown on paths and graphs in the terminology of category

theory (ch. 11.1.2): Since the group G is, of course, also a groupoid we consider the

connection groupoid homomorphism, which maps a path to an element of G via the par-

allel transport. The equations (11.1.13) and (11.1.14) qualifies this map homomorphism.

Hence, due to the identifications discussed before, we can consider the space of generalized

connection over the graph γ as the set hom(γ,G|E(γ)|).

The Hermitian inner product is invariant with respect to the change of orientation of edges

(inversion) and to generalized gauge transformations (left and right translations), due to

the properties of the Haar measure. The space of quantum states is denoted by Hγ =

L2(Āγ, dµ|E(γ)|
H ), which has the product structure L2(Āγ, dµ|E(γ)|

H ) ∼ L2(G, dµH)⊗|E(γ)|.

Utilizing the Peter-Weyl theorem we can decompose this Hilbert space into the direct

sum

Hγ = ⊕~j,~lHγ,~j,~l, (11.6.2)

where ~j = (je1 , . . . , je|E(γ)|) labels the irreducible representations of G on the edges and
~l = (lv1 , . . . , lv|V (γ)|) labels the irreducible representations of residual gauge transformations

at the vertices. The gauge invariant subspace of Hγ is given by ⊕~jHγ,~j,~l≡0. A basis of the

space Hγ is provided by the so-called spin-network function defined by

Ts =
∏

e∈E(γ)

b(je)
mn (h(e)) (11.6.3)

Consider now different graphs γ and γ′ and a cylindrical functions Ψγ and Φγ′ . Since Γ is

a directed set, we can find a graph γ′′ which contains the other two graphs. Automatically
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Ψγ and Φγ′ are also cylindrical with respect to the bigger graph, they are simply constant

on the additional edges. In order to obtain a well defined inner product the value of the

inner product of the two functions need to be independent of the larger graph chosen. This

is, indeed, the case due to the properties of the normalized Haar measure. In particular,

the constant function is cylindrical over all graphs, and we see that the family of measures

µ
|E(γ)|
H,γ is consistent, i.e. ∫

Āγ
dµ
|E(γ)|
H,γ ψ =

∫
Āγ′′

dµ
|E(γ)|
H,γ′′ ψ. (11.6.4)

Let us now turn to the space Ā. It is defined as the set Ā := hom(P , G) of all algebraic,

arbitrarily non-continuous groupoid morphisms, which we can consider, analogously to

the case of scalar field theory on Minkowski space, as a distributional extension of A.

The elements of Ā satisfy relations similar to (11.1.13) and (11.1.14). For regularizations

used later it is important to note, that for any generalized connection Ā restricted to the

graph γ, there exists a smooth connection A on γ such that hA(e) = hĀ(e). Now the set

Ā has to be equipped with a topology. This is done in detail in [11] here we only sketch

the procedure.

Basically, one uses Tychnov’s theorem to equip the set

X∞ :=
∏
γ∈Γ

Āγ (11.6.5)

with a compact Hausdorff topology. Then one identifies Ā with the so-called projective

limit X̄ of the Āγ. Finally, one makes use of the fact that X̄ is a closed subset of X∞,

which therefore is also a compact Hausdorff space. Having equipped Ā with a compact

Hausdorff topology one can make use of a very important theorem, which is called the

Riesz representation theorem. It states that there is a 1:1 correspondence between the

positive linear functionals on such spaces and regular Borel probability measures thereon

via the formula

Λ(f) :=

∫
Ā
fdµ. (11.6.6)

Thus, we define the so-called Ashtekar-Lewandowski measure µ0 on Ā by the positive

linear functional via the spin network basis

Λ(Ts) :=

{
1 s = (γ = Ø,~j = 0)

0 otherwise.
(11.6.7)

Note that this is consistent with the consistent family of Haar measures introduced before.

Remark: The Hilbert space H = L2(Ā, dµ|E(γ)|) is non-separable, since we have uncount-
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ably many graphs and therefore the basis is also uncountable.

It is convenient to introduce a decomposition of H into mutually orthorgonal Hilbert sub-

spaces H′γ. The Hilbert spaces Hγ cannot be mutually orthogonal, since a function over

γ is also cylindrical over every larger graph. Therefore one introduces the Hilbert spaces

H′γ, which are subspaces of Hγ, and are orthogonal w.r.t. Hγ̃ ⊂ Hγ, where γ̃ is strictly

contained in γ. This can be achieved by assigning a nontrivial labeling to all the edges

of γ and for any two valent vertex v2 the label lv2 must be nontrivial. Hence, in a spin

net work decomposition of a function in H′γ, only basis elements in which none of the

factors b
(je)
mn (h(e)) equals 1 ∀e ∈ E(γ) appear. The nontrivial labeling of the two valent

vertices distinguishes functions over γ from functions over γ′, where γ′ is obtained from

γ′ by simply splitting edges.

11.6.1 Gauge transformations and diffeomorphisms

We have already examined the behavior of the parallel transport under local gauge trans-

formations. This simply extends to the generalized connection. We define the quantum

gauge group as the set of local gauge transformations without any continuity requirement

Ḡ := Fun(Σ, G). For a cylindrical function the action of Ḡ is represented by

[Û(g)Ψγ](Ā) = ψ({g(b(ei))h̄(ei)g
−1(f(ei))}) (11.6.8)

We choose the group of diffeomorphisms to be a subgroup of the differentiable diffeo-

morphism Diffn(Σ), which maps a graph to a so-called permissible graph, i.e. again a

collection of piecwise analytic edges. Loosely speaking, we have something like piecewise

analytic diffeomorphisms in mind. Its action on H is given by

[V̂ (ϕ)Ψγ](Ā) = ψ({h̄(ϕ(ei))}) (11.6.9)

Again the inner product on H is left invariant by the action of diffeomorphisms. It is

important to point out that due to this fact the so-called kinematic symmetry group is

unitarily represented on H.

11.6.2 Solving the kinematical constraints

The solution space to the Gauß constraint is given by the gauge invariant subspace HG =

⊕~jH′γ,~j,~l≡0
.

Finding the solution space to the diffeomorophism constraint requires more effort. We only

can implement finite diffeomorphisms because the infintesimal operators φ̂t representing

the one parameter subgroup φt fail to exist. This is due to the fact that they are not

weakly continuous, since the spaces Cylγ and Cylφt(γ) are orthogonal for any nonvanishing
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value of the parameter t.

The solutions to the constraint can be constructed via group averaging, and will in general

not belong to Cyl but to a subspace of the algebraic dual Cyl∗, which is the space of linear

functionals on Cyl with the topology of pointwise convergence [7].

For our discussion, consider some graph γ and the associated Hilbert space H′γ. First, we

average over the diffeomorphisms which map γ to itself, but are not trivial on γ. They

can exchange edges and their orientation. Denote the subgroup leaving γ invariant by

Diffγ, the sub group with trivial action by TDiffγ, the coset space by GSγ and its volume

by Nγ. We define the projection operator P̂GSγ , which maps H′γ to the sub space invariant

under the induced action of GSγ by

P̂GSγΨ
′
γ :=

1

Nγ

∑
φ∈GSγ

V̂ (φ)Ψ ′γ.

Now we can associate to any element Ψ ′γ an element η(Ψ ′γ) of Cyl∗ defined by its linear

action on arbitrary elements Φβ of Cyl

(η(Ψ ′γ)|Φβ〉 =
∑

ϕ∈Diff /Diffγ

〈V̂ (ϕ)P̂GSγΨ
′
γ, Φβ〉.

Since the inner product on the right hand side is invariant under diffeomorphisms, η(Ψ ′γ)

is invariant under the action of Diff(Σ). It was crucial here that we used elements of H′γ,
since only then the right hand side consists of a finite number of terms. Consider the spin

network decomposition of Φβ. The right hand side of this equation is only nonvanishing

for terms in this decomposition which belong to a decomposition of an element in H′
β̃

for

which β̃ lies in the same generalized knot class as γ. Two graphs are members of the

same knot class if the number of vertices and (nontrivially labeled) edges are equal and

they are knotted in the same way.

This construction allows for introducing an inner product on the solution space by lin-

early extending the map to arbitrary cylindrical functions in the following way: First,

decompose an arbitrary function Ψγ ∈ Hγ

Ψγ =
∑

γ̃≺γ;Ψγ̃∈H′γ̃

Ψγ̃

Then using this decomposition we define the inner product via the action of an element

of Cyl∗ associated with an arbitrary element of Cyl.

(η(Ψ)|η(Φ)) := (η(Ψ)|η(Φ〉 :=
∑

γ̃≺γ;Ψγ̃∈H′γ̃

∑
φ∈Diff /Diff γ̃

〈V̂ (ϕ)P̂GSγ̃Ψγ̃, Φβ〉 (11.6.10)
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11.7 Represention of the Poisson *-algebra

Now we turn to the represention of P on H8. We represent a cylindrical function f ∈
Cyl(A) by a multiplication operator

[π(f)Ψ ](Ā) = f((Ā))Ψ(Ā)

The action of vector-fields is implemented as a derivative operator

[π(Y i
S)Ψ ](Ā) :=

~
i
Y i
S [Ψ(Ā)] = −~

i
{Ei(S), Ψ}(Ā) =

=:
`2
Pγ

4

∑
v∈S

[J i(v,up) − J i(v,down)]Ψ(Ā), (11.7.1)

where we defined the “angular momentum” operators

J i(v,x) :=
∑
e at v

J i(e,x) :=

1

i

∑
e at v

(δe∩S=b(e)R
i
(e,x) + δe∩S=f(e)L

i
(e,x)) (11.7.2)

The uncountable sum over all points in S does not cause any troubles, since acting on

a cylindrical function over some graph that intersects S, there are only finitely many

nonvanishing contributions.

11.8 Spherically symmetric spin-networks and vector

fields

Coming from the full theory one would like to understand how to obtain a symmetric

state from a generic quantum states, by means of pull backs of functions on the space of

generalized G connections to functions on the space of Z[λ] connections and Higgs fields.

Symmetric states have to be considered as generalized states, which can be understood

due to the fact that they have only singular support on invariant connections, i.e. a

symmetric state is an element of Cyl∗. [19] provides proof of the fact that the symmetric

states on generalized connections modulo generalized gauge transformations can be iden-

tified with cylindrical functions on the space on generalized connections restricted the the

orbit space B times restricted Higgs fields modulo the generalized gauge transformations

restricted to B. This important statement is known as the quantum symmetry reduction

theorem.

8For the sake of simplicity, we will not take a detour using an abstract quantum *-algebra, which
would be necessary for rigorously quantize the Poisson *-algebra.
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A graph γ of the reduced theory consists only of the collections of nonoverlapping egdes

immersed in the one dimensional basis manifold B, whose orientation agrees with the

one of B. Let the orientation of B coincide with the direction ∂x. Thus, we exclude the

down case in the action of momentum operators on cylindrical functions. A spherically

symmetric spin network is a labeling of such graphs with irreducible representations of

U(1), i.e. by integers as we have seen in chapter 6.3. Since we also discuss Maxwell theory

we introduce also a charge network, by assigning a charge quantum number to each edge.

At the vertices we insert point holonomies of the Higgs field and the new angular variable

η.

The smooth angular variables η are generalized as usual to the set hom(V (γ), U(1)) with-

out any continuity requirements. Hence, we also label the vertices with integers. The

handling of the Higgs fields is more tricky. The quantum configuration space for Higgs

fields which are R fields is given by the so-called Bohr compactification RB of the real

line. Hence, we assign also a continuous label to the set of vertices of the reduced graph,

which can be considered as subsuming the continuous label - the edge length δ and the

discrete SU(2) label of the full theory. This continuous label is problematic and we will

postpone its discussion for the time being 12.

We conclude that spherically symmetric spin-charge network functions are given by

Ts,~m,~l,~µ;~k =

=
∏

e∈E(γ)

∏
v∈V (γ)

e
ime
2

∫
I Ax(x)dxeiµvγKt(v)eilvη(v) ⊗

∏
e∈E(γ)

∏
v∈V (γ)

eike
∫
I φdxβnet . (11.8.1)

For the action of momentum operators we find

[Ŷ 3
S2
ε2
Ts,~m,~l,~µ;~k] =

`2
Pγ

32π
(me+ +me−)Ts,~m,~l,~µ;~k

[Ŷ
1/2
Sθ/φ

Ts,~m,~l,~µ;~k] =
`2
Pγ

16π

∑
v∈I

µvTs,~m,~l,~µ;~k

[Ŷ η
VεTs,~m,~l,~µ;~k] =

`2
Pγ

8π

∑
v∈I

lvTs,~m,~l,~µ;~k

[ŶS2
ε2
Ts,~m,~l,~µ;~k] =

αe
8π

(ke+ − ke−)Ts,~m,~l,~µ;~k,

where αe denotes the fine structure constant.
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11.9 Spherically symmetric solutions of the reduced

Gauß and diffeomorphism constraints

Recall the form of the spherically symmetric Gauß constraint given in ch. 8.1.2. In

the reduced theory its explicit quantization becomes considerably simple. It is only the

function
∫
B
λ3(Ex)′dx which turns out to be problematic. Let us examine the action of

its quantum analog on cylindrical functions:∫
B

λ3 d

dx
ŶS2

x,ε2
Ψγ =

`2
Pγ

16π

∫
B

λ3 d

dx

∑
e∈E(γ)

∫
e

dtė(t)δ(x, e(t))h(e)AB
∂

∂h(e)AB
Ψγ =

− `2
Pγ

16π

∑
e∈E(γ)

∫
e

dt

∫
B

(ė(t)
d

dx
λ3)δ(x, e(t))h(e)AB

∂

∂h(e)AB
Ψγ =

− `2
Pγ

16π

∑
e∈E(γ)

∫
e

dt
d

dt
λ3(e(t))h(e)AB

∂

∂h(e)AB
Ψγ =

− `2
Pγ

16π

∑
e∈E(γ)

(λ3(e(1))Re − λ3(e(0))Re)Ψγ. (11.9.1)

Therefore, the complete Gauß constraint acting on a spin network basis function yields

the eigenvalues

`2
Pγ

16π

[
−
∑
e∈E(γ)

(λ3(v+)me − λ3(v)me) + 2
∑
v∈V (γ)

λ3(v)lv

]
=

`2
Pγ

16π

∑
v∈V (γ)

λ3(v)(me+ −me− + 2lv),

which are constrained to vanish.

Hence, we can replace the vertex labels lv by −1/2(me+ − me−). This relation reveals

that the difference of two adjacent edges has to be even because lv is integer. For the

matter part, we conclude that the charge labels must be the same on every edge, which is

intutively clear, since there are no vertex insertions, i.e. Higgs fields in the U(1) matter

sector. Therefore, gauge invariant spin network functions read

T inv
s,~m,~l,~µ;~k

=
∏

e∈E(γ)

∏
v∈V (γ)

e
ime
2

∫
I [Ax(x)+η′(x)]dxeiµvγKt(v)eike

∫
I φdxβnet . (11.9.2)

The remaining diffeomorphisms of the reduced theory shift vertices in the manifold B.

Thus, their position is not physically relevant. The solution space is again a subspace of

the algebraic dual of the cylindrical functions on generalized U(1) connections and Higgs

fields.
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11.10 The area operator

The classical area functional is given by the formula

Ar[S] =

∫
S

√
∗Ei ∗ Ejδij, (11.10.1)

which we approximate by ∑
I

√
Ei[SI ]Ej[SI ]δij (11.10.2)

in so far as by sending the number of the partitions SI of S to infinity their coordinate

size shrinks to zero. Then we replace the momenta by the quantum analogs, which yields

an operator defined with respect to a graph9. The important point here is that we have to

refine the partition of the surface only until that very point where every SI is punctured

at most once by the graph possibly by a vertex with any valence. Further refinements

would not alter the result of the action of the operator:

Âr[S]γ =
∑
v∈S

√
[̂Y ]iS,v [̂Y ]jS,vδij =

=
`2
Pγ

4

∑
v∈S

√
(J iv,up − J iv,down)(J jv,up − J jv,down)δij =

=
`2
Pγ

4

∑
v∈S

√
J2
v,up + J2

v,down − Jv,up · Jv,down − Jv,down · Jv,up =

=
`2
Pγ

4

∑
v∈S

√
2J2

v,up + 2J2
v,down − (Jv,up + Jv,down)2. (11.10.3)

Recall the definition of the angular momentum operators and of the right invariant vector-

fields 11.7.2. In the (2j + 1) dimensional representation of SU(2) we have

δik
1

i
τ

(j)
i

1

i
τ

(j)
k = j(j + 1)12j+1. (11.10.4)

Therefore, the area operator has a discrete spectrum of eigenvalues:

`2
Pγ

4

∑
v

√
2jv,up(jv,up + 1) + 2jv,down(jv,down + 1)− jv,up+down(jv,up+down + 1). (11.10.5)

9One can show that the family of operators is consistent and therefore one obtains a well defined area
operator on H.
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It is bounded from below and has the lowest eigenvalue, the so-called area gap:

amin =
`2
Pγ
√

3

8
. (11.10.6)

Due to the Clebsch Gordan decomposition the eigenvalues jv,up+down are constrained to

lie in the set

{|jv,up − jv,down|, |jv,up − jv,down|+ 1, . . . , jv,up + jv,down}. (11.10.7)

This is one of the most famous results in loop quantum gravity: The quantization of area

pointing at the discreteness of space.

Let us briefly look at the analogous expression of the area operator of a sphere in the

reduced theory: There we find

Ar(S2) = 4π|Ex| →

aS2 =
`2
Pγ

8
|(me+ +me−)| (11.10.8)

11.11 Quantizing the Hamiltonian constraints

11.11.1 The Thiemann trick

In the expression of the scalar constraint10

C =
1

κωh
Ẽa
i Ẽ

b
jε
ij

k(F
k
ab − (1 + γ2)εklm(K l

aK
m
b )) (11.11.1)

a major difficulty occurs. Quantizing the inverse volume form is particularily problematic

if the eigenvalue zero is in the spectrum of the volume operator. In the early LQG

literature one absorbed the inverse density weight into the lapse function and used γ2 = −1

in order to obtain a polynomial expression. This simple form of the constraint gave hope

that the quantization of the dynamics of GR could be successful. As already mentioned

the self-dual connection formulation is not favoured nowadays. Furthermore it turned out

that the density weight 1 of the constraint is actually crucial in order to obtain a well

defined UV-finite operator. In section 11.3 we saw that we can approximate the gauge

potential and the field strength with parallel transport and holonomy respectively, while

the densitized triads can be approximated with fluxes. Thus, they will not be problematic

in the quantization and give well defined operators. Now we have to look for a possibility

to express the inverse volume form with the help of the well defined operators and possibly

10Here we use abstract and internal index notation again because this renders the following calculation
much simpler.
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commutators of these. This is indeed possible and was done by Thiemann in the QSD

series [36]. The crucial observation is the following: In the classical regime the volume of

a region R is given by

V (R) =

∫
R

√
| 1
3!
εabcεijkẼa

i Ẽ
b
j Ẽ

c
k|.

We have to take the absolute value of the trivector under the squareroot, since we allow

the triad to have both orientations. In the classical regime we ignore the possibility that

the orientation could change. The variation of the Volume gives

δV (R)

δẼc
k(x)

=
2

κγ
{Akc (x), V (R)} =

=
1

4

sgn(E)

ωh
εijkẼa

i (x)Ẽb
j (x)εabc =

=
1

2
ekc , (11.11.2)

where x ∈ R. Therefore, we can rewrite the field strength part of the scalar constraint,

which now reads (again without indices11)

CE = sgn(E)
2

γ

(
2

κ

)2

F ∧ ·{A, V (R)}. (11.11.3)

Here we adopt the usual convention of LQG to order geometrical operators to the right12.

For the treatment of the second part of the constraint, sometimes called the kinetic part

of the scalar constraint, we define a new quantity

K :=

∫
Σ

Ẽ·yK,

K =
2

κγ
{A,K}.

Starting from this we find for the expression of the second part of the scalar constraint

−2 sgn(E)
1 + γ2

γ

(
2

κ

)4

{A,K} ∧ {A,K} ∧ ·{A, V (R)}. (11.11.4)

The expression still contains the smeared densitized trace of the extrinsic curvature K,

which has to be replaced. To that end, we first compute the variation of the gravitational

11Note that in [11] there is a factor 2 missing, which comes from F ∧A = 1/2εabcFabAc.
12Remark: The field strength part of the Hamiltonian is ususally called the Euclidean constraint, since

it would be the only contribution to the scalar constraint in Euclidean GR. Note that the Euclidean
constraint differs here from the one defined in equation (10.3.3) of reference [11] with regard to a sign,
which is not visible here due to a different Poisson bracket convention.
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field F strength w.r.t. A and use A = Γ+γK and Dv = dv+[Γ, v] for v ∈ Λ1(Σ)⊗SU(2)

δAF = δA(dA+
1

2
[A,A]) = dδA+ [A, δA] = dδA+ [Γ, δA] + γ[K, δA]

= DδA+ 2γK ∧ δA. (11.11.5)

Taking into account that K = £nωh we calculate (again using index notation)

{CE[1], V (Σ)} = {2 sgn(E)

κ
F ∧ ·e, V (Σ)}

=
γ

2

∫
Σ

sgn(E)γKi
[aδ

d
b]εkijδ

j
l e
k
cε
abceld =

= γ2

∫
Σ

Ki
a

sgn(E)

2
εabcεijke

j
be
k
c = γ2

∫
Σ

Ki
aẼ

a
i = γ2K, (11.11.6)

where the intrinsic covariant derivative in (11.11.5) can be dropped after partial integra-

tion – ignoring surface contributions – since it annihilates eia.

This leads to the conclusion that having control over the part CE[N ] of the scalar con-

straint implies having control over the whole constraint.

For the Yang-Mills sector a similar preparation has to be done. The Yang Mills scalar

constraint in the form of (9.0.5) as well as in the form of (9.0.6) involves the metric which

has to be taken care of. We will derive an expression valid as a starting point for regular-

ization, which is a kind of admixture of these two forms of the Yang Mills Hamiltonian,

namely

CYM [N ] =
2

g2

∫
Σ

N

[
e

2
√
ωh
∧ Σ · e

2
√
ωh
∧ Σ

]
+ (Σ↔ F ), (11.11.7)

where we used

e ∧ Σ = Ẽye.

We can reexpress the problematic terms in the numerator of (11.11.7) by the same trick

shown above, which gives

CYM [N ] =
32

κ2γ2g2

∫
Σ

N
[{A, V (R)}

2
√
ωh

∧ Σ · {A, V (R)}
2
√
ωh

∧ Σ
]

+ (Σ↔ F ). (11.11.8)

The problematic ωh in the denominator has to be replaced by well defined expressions

in a second step: We approximate the integrals of (11.11.3) and (11.11.8) by a Riemann

sum by utilizing a triangulation T ε of Σ.
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Figure 11.4: Triangulation of Σ with tetrahedra, here adapted to a graph and its completion
to a octahedron.

11.11.2 Regularization

By triangulating the base manifold Σ we fill Σ with tedrahedra, denoted by ∆, with edge

coordinate length ε. The intersection point of each ordered triple of edges eI , I = {1, 2, 3},
a so-called vertex, is denoted by v13(Compare with figure 11.4.). The orientation of all

edges is chosen to be outgoing from v. The length of the edges of the triangulation is

“small”14. Furthermore, we introduce loops αIJ starting at v along eI and ending at v

along e−1
J . The arc connecting the endpoints of eI and eJ is denoted by aIJ . Now, we can

use the results of section 11.3, 11.5.1 and the triangulation to approximate the coefficients

of the connection and the curvature in order to write the Hamiltonian constraint in terms

of the elementary variables. We abbreviate h(eI) with hI and, accordingly, the holonomy

along the loop αIJ = eI ◦ aIJ ◦ e−1
J by hIJ . With

1− h−1
K

ε
= (ėKyA)(v) +O(ε),

hIJ − h−1
IJ

ε2
= ėJyėIyF +O(ε) (11.11.9)

13Of course the whole construction of the triangulation of Σ is analogous to the construction of our
probes of space, the graphs. Later on we will adapt the triangulation to the graphs.

14Speaking of “small” edges in a background independent theory seems to be without meaning at
first glance. Of course, we still have to speak of smallness with respect to a metric. We will remove
the regularizing triangulation by perfoming the limit ε → 0 and the vertex number goes to infinity. In
performing the limit the length of the edges will become small w.r.t. any metric on Σ.
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we replace

F ∧ ·{A, V (R)}

by

Tr
(
εIJK

hIJ − h−1
IJ

ε2
1

ε
hK{h−1

K , V (R(∆)}
)

=

=
2

ε3
Tr
(
εIJKhIJhK{h−1

K , V (R(∆)}
)
. (11.11.10)

Finally, we replace the integral by a Riemann sum over ∆ ∈ T ε and use
∫

Σ
F ≈ ε3/6

∑
∆∈T ε F (v)

and obtain the regulated expression for the Euclidean part of the Hamiltonian constraint

Cε
E[N ] =

2

3

1

γ

(
2

κ

)2 ∑
∆∈T ε

N(v) Tr
(
εIJKhIJhK{h−1

K , V (R(∆)}
)
. (11.11.11)

Let us turn to the regularization of the Yang-Mills Hamiltonian. In equation (11.11.8) we

are now able to replace the 1/
√
ωh. We first introduce a coordinate system. For each of

the three regulization edges eI at v we attach their mirror edges at v such that we obatin

an octahedron made of six tetrahedra with center vertex v and choose for the region Rε
v

in the volume expressions this octahedron. The parameter volume of the octahedron is

4ε3/3. Futhermore, we perform a point splitting for the similar contributions in (11.11.8).

Therefore, we introduce a so-called characteristic function of the octahedron, denoted by

χε,v(y), with the following property

lim
ε→0

3

4ε3
χε,v(y) = δ(v, y).

Hence, we also have

lim
ε→0

3

4ε3
V (Rε

v) =
√

deth. (11.11.12)

For any integrable function we define

f(v, ε) :=

∫
Σ

χε,v(y)f(y)

lim
ε→0

3

4ε3
f(v, ε) = f(v). (11.11.13)
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This we use in (11.11.8) and obtain

CYM [N ] = lim
ε→0

3

4ε3
8

κ2γ2g2

∫
Σ

d3xN(x)
[
εIJK

{AK(x), V (x, ε)}
2 4
√

deth(x)
ΣIJ(x)·

·
∫

Σ

d3yχε,v(y)εLMN {AN(y), V (y, ε)}
2 4
√

deth(y)
ΣLM(y)

]
+ (Σ↔ F ). (11.11.14)

Now we use (11.11.12) and with

{AK(x),
√
V (x, ε)} =

{AK(x), V (x, ε)}
2
√
V (x, ε)

(11.11.15)

we find

CYM [N ] = lim
ε→0

8

κ2γ2g2

∫
Σ

d3xN(x)
[
εIJK{AK(x),

√
V (x, ε)}ΣIJ(x)·

·
∫

Σ

d3yχε,v(y)εLMN{AK(y),
√
V (y, ε)}ΣLM(y)

]
+ (Σ↔ F ). (11.11.16)

Finally, we replace the integral with a Riemann sum over the tetrahedra (with volume

ε3/6) and replace the connections, the Yang-Mills electric and magnetic fields with ele-

mentary variables, i.e. holonomies and electric fluxes. To that end, we first observe that

via

E [SIJ ] :=

∫
SIJ

Σ =
ε2

2
ėIyėJyΣ +O(ε3) (11.11.17)

we can approximate the dual electric field with electric fluxes. SIJ is the triangular basis

of a tetrahedron. For the Yang-Mills magnetic field we write

εIJKFIJ ≈ εIJK
BIJ − B−1

IJ

ε2
=

2

ε2
εIJKBIJ , (11.11.18)

where BIJ is a Yang-Mills holonomy along the boundary of the surface SIJ .

As in the gravitational Hamiltonian, regulator volume terms are exactly of the same

order as the regulator terms coming from the replacement of phase space coordinates

with their elementary variables. The final expression15, which serves as a starting point

15Again the expression here differs the in [34] due to two reasons: First, the Poisson bracket there
differs from the one used here by the factor 1/2, which on the one hand is important to reproduce the
ADM algebra and on the other to be consistent with the Holst approach. Second, the key identity of the
[36] was cited wrong in [34], by a factor 4.
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for quantization, reads

Cε
Y M [N ] =

(
1

3

)2
32

γ2g2

(
2

κ

)2 ∑
∆∈T ε

∑
∆′∈T ε

χε,v(v
′)N(v)εIJKεL

′M ′N ′×

× Tr(τihK{h−1
K ,
√
V (v, ε)}) Tr(τihN ′{h−1

N ′ ,
√
V (v′, ε)})×

×
[

tr(T aE [SIJ ]) tr(T aE [S ′L′M ′ ]) + tr(T aBIJ) tr(T aBL′M ′)
]
. (11.11.19)

It is important to note that both expressions give rise to well-defined operators on Cyl

due to the presence of the volume operator, which only acts on nodes of the underlying

graphs and therefore contains only finitely many terms.

11.11.3 Regularization for the spherically symmetric Einstein-

Maxwell Hamiltonian

In this section we will derive the regularized expression for the spherically symmetric

gravitational and electromagnetic Hamiltonian constraint. We will follow partly [37], but

in some minor issues there will be differences, which are due to the concern to keep as

close as possible to the full theory of LQG.

Let us now investigate what the relations examined above imply for the symmetric theory.

In the following, we will use the edges and surfaces introduced in section 11.5.1, i.e. we

only use radial edges and edges in the homogeneous directions. For that reasons we will

not use the triangular loops to approximate the field strength. In that case we have,

instead of (11.3.6),

h(αε) ≈ 1 + ε2vyuyF. (11.11.20)

The parameter length of edges in homogeneous dirctions is δ, while the parameter for

radial edges is denoted by ε. First, we check that equation (11.11.2) yields (8.1.11):

e
!

=2
1

Gγ
{A(x), V } =

=2
1

Gγ

∫
B

dzδ(x, z)
[ Gγ

2
√
|Ex|

sgn(Ex)EtΛ3 +
Gγ

2

√
|Ex|(Λ1dθ + Λ2dφ)

]
= e. (11.11.21)

In this calculation we depart from the discussion given in [37] where the functional

V (R(∆)) given by equation (8.1.8) is used, which is certainly not the volume of our

regularizing box, i.e. V (R(∆)) =
∫
I×S2

ε

√
|Ex|Ẽt. From the full three dimensional point

of view, in the Poisson bracket {·, ·}Σ, there appears a δ(3)(x, v)-distribution, setting also

the spherical coordinates to those, of the vertex point v on the equator, which, due to

our choice, is regular. Thus, in the reduced theory, where one uses the bracket {·, ·}B one
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should therefore use V =
∫
I

√
|Ex|Ēt. Note that only with this form of the volume we

arrive at the correct result.

A small loop on the symmetry orbit S2 is given by

α12 = h1h2h
−1
1 h−1

2 =

= 1
[
1− 2 sin4

(1

2
γδKt

)]
+ sin2(γδKt)Λ3 + 2 sin(γδKt) sin2

(1

2
γδKt

)
(Λ1 − Λ2).

In this expression any corrections coming from the intrinsic curvature of the 2-sphere have

been neglected. For small egdes we assume that a square approximates the loop, which

is made of great circles, sufficiently. In order to obtain the loop α21 we simply change the

sign of the SU(2)-generators. Hence,

α12 − α21

2
= sin2(γδKt)Λ3 + 2 sin(γδKt) sin2

(1

2
γδKt

)
(Λ1 − Λ2) =

= γ2δ2K2
t Λ3 +O(δ3) ≈ Fθφ − (Γt − 1)Λ3,

where we used

sin(γδKt) ≈ γδKt (11.11.22)

to first order in δ.

Next, we consider the loop16

α31 = h3h1(v+)h−1
3 h−1

1 (v) =

(11.11.24)

= 1
[

cos
(∫
Iε
Axdx

)
sin
(1

2
γδKt(v

+)
)

sin
(1

2
γδKt(v)

)
+

+ cos
(1

2
γδKt(v

+)
)

cos
(1

2
γδKt(v)

)]
+

+ Λ32 sin
(∫
Iε
Axdx

)
sin
(1

2
γδKt(v

+)
)

sin
(1

2
γδKt(v)

)
+

16The following relations might be helpful for understanding this loop calculation:

Λ1(v+)Λ1(v) = Λ2(v+)Λ2(v) = −1
4
1 cos(η+ − η)− 1

2
Λ3 sin(η+ − η)

Λ1(v+)Λ2(v) = −Λ2(v+)Λ1(v) = −1
4
1 sin(η+ − η) +

1
2

Λ3 cos(η+ − η) (11.11.23)
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+ Λ1(v+)2 cos
(∫
Iε
Axdx

)
sin
(1

2
γδKt(v

+)
)

cos
(1

2
γδKt(v)

)
− Λ1(v)2 cos

(1

2
γδKt(v

+)
)

sin
(1

2
γδKt(v)

)
+

+ 2Λ2(v+) sin
(∫
Iε
Axdx

)
sin
(1

2
γδKt(v

+)
)

cos
(1

2
γδKt(v)

)
(11.11.25)

In order to show that this expression indeed approximates Fxθ(v) we first establish some

useful results:

η(v+)− η(v) =: ∆η ≈ εη′(v)

Λ1(v+) = Λ1(v) cos(∆η) + Λ2(v) sin(∆η) = Λ1(v) + εη′(v)Λ2(v) +O(ε2)

Λ2(v+) = Λ2(v)− εη′(v)Λ1(v) +O(ε2)

Kt(v
+) ≈ Kt(v) + εK ′t(v)∫

Iε
Axdx ≈ εAx(v)

cos
(1

2
γδKt(v)

)
≈ 1− 1

8
γ2δ2Kt(v)2.

Only first order terms have to be considered (except for the last line), since in all contri-

butions above there is at least one order of δ involved.

Let us begin with terms proportional to 1

cos
(∫
Iε
Axdx

)
sin
(1

2
γδKt(v

+)
)

sin
(1

2
γδKt(v)

)
+

+ cos
(1

2
γδKt(v

+)
)

cos
(1

2
γδKt(v)

)
=

≈ 1− 1

8
γ2δ2(K2

t (v+)− 2Kt(v
+)Kt(v) +K2

t (v)) ≈ 1.

The Λ3 coefficient is of order O(εδ2) and higher. The Λ1(v+) together with the Λ1(v)

coefficients approximately give

γδεK ′tΛ1 + γδεη′(v)Kt(v)Λ2.

Finally, let us expand the Λ2(v+) coefficient

Λ2(v+) sin
(∫
Iε
Axdx

)
sin
(1

2
γδKt(v

+)
)

cos
(1

2
γδKt(v)

)
≈ γεδAx(v)Kt(v)Λ2.
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After synchronizing δ = ε we hence find in the limit

lim
ε→0

α31 − α13

2ε2
= γK ′tΛ1 + γKt(v)

(
η′(v) + Ax(v)

)
Λ2 =

= Fxθ + Γ′tΛ2 − Γt
(
η′(v) + Ax(v)

)
.

Now we analyze the terms coming from the Thiemann trick:

h3{h−1
3 , V } ≈ −GΛ3γ sgn(Ex)ε

Et

2
√
|Ex|

h2{h−1
2 , V } ≈ −GΛ2γδ

√
2|Ex|.

Additionally, we also take radial edges starting at v and going to v− into account, e.g.

the holonomies h3(ev
−
v ), which in the classical approximation doubles each constribution

to the final expression. Furthermore, we also take into account the loops εij1αij, which

doubles the θ-φ terms once more. Then, the regularized integrand of gravitational scalar

constraint reads

Cε =− sgn(Ex)

G2γ3δ2ε
N(v)

∑
σ=±

σ×

tr
{[
εijkαij,σ − 2γ2[δ2(Γ2

t − 1)Λ3 − δ
∫ vσ

v

Γ′t(Λ
1 + Λ2)]

]
hk,σ{h−1

k,σ, V }
}
.

Note that εij3αij,σ ≡ εij3αij, as well as εij3hi,σ ≡ εij3hi.

Now, let us reestablish the 3 dimensional expressions, firstly by observing the correspon-

dences

1

G
{·, ·}B ↔

2

κ
{·, ·}Σ (11.11.26)

1

G

∫
B

↔ 2

κ

∫
B×S2

.

Hence we replace G by κ/2 in the integrand above. This is because of esthetical reasons as

well as for reasons of better agreement with the regulated Hamiltonian of the full theory.

If we again replace the integral
∫
B×S2 by the Riemann sum

∑
∆∈T ε,δ εδ

2 we find

Cε[N ] =− 4

κ2γ3

∑
∆∈T ε,δ

N(v)
∑
σ=±

σ×

tr
{[
εijkαij,σ − 2γ2δ

(
δ(Γ2

t − 1)Λ3 −
∫ vσ

v

Γ′tΛ
IδkI
)]
hk,σ{h−1

k,σ, V }
}
,

where I = 1, 2 and we absorbed the sign of Ex in the lapse function.

This form of the constraint looks like the Euclidean Hamiltonian of full LQG, except for
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the factor 2/3 coming from using tetrahedron above, the factor 1/γ2, which is due to the

choice of phase space variables, and the Γt contributions, which we put in by hand. The

most important difference is that the expression at hand is already the complete scalar

constraint of spherically symmetric Einstein theory, not the Euclidean part. We could

even manage to absorb the regularization parameters again. Unfortunately the δ is still

present, not surprisingly exactly appearing together with the Γt, which we put in by hand.

This problem, however, can be circumvented. For this purpose Γt has to be expressed via

flux variables. This results in the δ parameter appearing exactly to those powers needed

to obtain the fluxes E3[S2
δ ] and E[Sθ/φ]. We use

Γt = −(Ex)′

2Et
= −1

4

(Ex(v+)− Ex(v)∫ v+
v

Et
− Ex(v−)− Ex(v)∫ v−

v
Et

)
+O(ε)

and we write

Γ′t = Γt(v
σ)− Γt(v).

Now, observe that with

δΓt = −1

8

2∑
I=1

∑
σ=±

E3[S2
δ ](v

σ)− E3[S2
δ ](v)

E[SσI ]
+O(ε), (11.11.27)

where S1/2 ≡ Sθ/φ, we can get rid of all the regularization parameters. Now, it is only the

inverse fluxes are left to be handled. This has to be done analogously to the Thiemann

trick.

We proceed with the matter part. This time, we will start right away from the full LQG

expression modulo the regularization form factor (1/3)2, since we do not use tetrahedra.

Hence, this a opportunity to check our numerical prefactors. Since we have a U(1) gauge

group, we have to replace −2 tr by −1. Furthermore, we replace, as before, the factor

2/κ with 1/G. Again we also want to account for the different orientations of the radial

edges, which gives another factor 1/4 due to the point splitting. Thus, collecting all the

factors, implies that the prefactor in (11.11.19) gives

2

G2γ2
. (11.11.28)
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Due to the ε-tensors we get four contributions of each summand. Then the regularized

Maxwell Hamiltonian of the spherically symmetric theory on B reads

Cε,δ
M [N ] =

2

G2γ2e2δ4

∑
v

∑
v′

χε,v(v
′)N(v)

∑
σ=±

∑
σ′=±

σσ′×

× Tr(τ3h3,σ{h−1
3,σ,
√
V (v)}) Tr(τ3h3,σ′{h−1

3,σ′ ,
√
V (v′)})×

×
[
4E [S2

δ ]E [(S2
δ )
′] + ε3ijε3i′j′BijBi′j′

]
. (11.11.29)

Let us compute the parts of the summand in (11.11.29):

Tr(Λ3hx,σ{h−1
x,σ,
√
V }) =

σGγ
√
ε
√
Et sgn(Ex)

8 4
√
|Ex|

√
|Ex|

+O(ε2)

E [S2
δ ] = δ2q2 +O(δ3)

B12 = 1 · e
in
2
δ cos

(
π
2

+δ

)
· 1 · 1 = 1 + i

n

2
δ2 +O(δ4)

B12 − B21

2
= i

n

2
δ2 +O(δ4).

Collecting all pieces we find

lim
ε→0

Cε,δ
M [N ] =

2

G2γ2e2δ4

1

ε

∫
I

∫
I
δ(v, v′)N(v)4 ·

G2γ2ε
√
Et(v)

√
Et(v′)

64 4
√
|Ex(v)|3 4

√
|Ex(v′)|3

· 4 · δ4
[
q(v)q(v′) +

n2

4

]
=

=
1

2e2

∫
I

Et√
|Ex||Ex|

(
q2 +

n2

4

)
, (11.11.30)

showing that the regularized expression yields the correct classical limit.

11.11.4 The volume operator

The quantization of the volume operator which is obviously essential for the loop quanti-

zation of the dynamics of all matter-gravitation coupled systems17. The volume functional

of some region R written in terms of traids reads

Vol[R] =

∫
R

√
|∗Ẽ1 ∧ Ẽ2 ∧ Ẽ3|. (11.11.31)

We partition this regions adapted to some graph using cubes C of coordinate volume ε3,

which we subdive into eight cells using three non-coplanar surfaces {SI}. We choose the

three perpendicualar squares that half the cube with coordinate area ε2. It is necessary

17The rigorous treatment can be found in [38]
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that the if a cube contains a vertex, it should be positioned in the unique intersection

point of the three surfaces. The edges of the graph at this vertex must not intersect the

surfaces except in v or lie in a surface. Furthermore, if a cube does not contain a vertex,

the graph punctures the triplet of surfaces at most in two points.

Now, we can proceed in the meanwhile familiar way to replace the integral with a Rie-

mannian sum and use the electric fluxes instead of the densitized triads.

Volε[R] =
∑
C⊂R

√
| 1
3!
εijkεIJKEi[SI ]Ej[SJ ]Ek[SK ]|. (11.11.32)

After replacing the elementary variables with operators in this expression we obtain

V̂ol[R] =
(`2

Pγ

4

)3/2∑
v∈R

∑
e,e′,e′′ at v

√
| 1
3!
εijkσ(e, e′, e′′)J i(v,e)J

j
(v,e′)J

k
(v,e′′)|. (11.11.33)

The factor σ(e, e′, e′′) is an orientation factor, which vanishes whenever two edges have

colinear tangents at v and equals a number ≷ 0 according to their orientation compared

to the one chosen classically in Σ. If a cube does not contain any vertex, the eigenvalue

of the Volume operator is zero, since we required that the triplet is punctured at most

twice. However, this orientation factor inherits a problem: it carries some memory of

the regularization we used. Therefore, one averages over the background structures used,

basically one uses the orientation preseving group GL+ = (3) in order to tilt the surfaces

and averages over the orientation factors. This yield an orientation factor up to an

arbitrary constant

σav(e, e′, e′′) = σ0ε(e, e
′, e′′)

ε(e, e′, e′′) =


1

0

−1

,

and we obtain the final expression for the volume operator18

V̂ol[R] =
( `P√

2

)3

γ3/2
∑
v∈R

∑
e,e′,e′′ at v

√
| 1

48
εijkε(e, e′, e′′)J i(v,e)J

j
(v,e′)J

k
(v,e′′)|. (11.11.34)

18In order to compare the result at hand with the ones given LQG literature e.g. [38], we put some
of the numerical factors under the square root. The factor 1/48 is the familiar one, while the overall
factor 1/

√
2 comes from a different numerical factor in the definition of the Poisson bracket used here in

order to agree with the ADM Poisson bracket, when ADM variables are expressed in terms of Ashtekar
variables. For a comparison with the formula given in [11] note that one uses a different convention for
the SU(2) generators and consequently for the angular momentum operators there.
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Note that unexpectedly the action volume operator on gauge invariant trivalent vertices

gives zero due to the constraint (J i(v,e) + J i(v,e′) + J i(v,e′′))Ψ
inv = 0, because

εijkJ
i
(v,e)J

j
(v,e′)J

k
(v,e′′) = −εijkJ i(v,e)J

j
(v,e′)(J

k
(v,e) + Jk(v,e′))Ψ

inv =

= iεijk(ε
iklJ l(v,e)J

j
(v,e′) + J i(v,e)ε

jklJ l(v,e′))Ψ
inv =

= 2i(J(v,e) · J(v,e′) − J(v,e) · J(v,e′))Ψ
inv = 0. (11.11.35)

In the symmetry reduced context the volume functional of some region reads

Vol[R] =

∫
R

√
|Ex|EtdxdΩ. (11.11.36)

This time, we choose the partition similarily to the one chosen for regularizing the Hamil-

tonian constraint and find

Vol[R] =
∑
v∈R

Ar[S2
v,ε2 ]
√
|ŶS2

v,ε2
|[Ŷ 1

Sθ
], (11.11.37)

with eigenvalues

V =
( `P√

2

)3γ3/2 Ar[S2
v,ε2 ]

(8π)3/2

∑
v∈R

√
1

2
|me+ +me− ||µv|. (11.11.38)

11.11.5 The quantized Einstein-Yang-Mills Hamiltonian

What remains to be done is to write down the quantized expressions of the Hamiltonians

involved in Einstein-Yang-Mills theory. Therefore, one uses the correspondence

{·, ·} → 1

i~
[·, ·],

Ea[S]→ ~g2

2

∑
v∈S

[J a
(v,up) − J a

(v,down)].

Following Thiemann let us now adapt the regularization to the underlying graph in the

following way: Every vertex of the graph coincides with vertices of thetrahedrons. For each

triple of edges at a vertex of the graph, introduce one tetrahedron such that the segments

of the tetrahedron coincide with the three edges. The arcs of the tetrahedron connecting

pairs of edges intersect the edges in points within the range of the edges. Thus, there are

no further vertices of the graph between this intersection point and the vertex. Complete

each tetrahedron for one triple of edges to an octahedron in the same way described

above. The volume of a neighborhood of the vertex of the graph is approximated by these

octahedra.
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Then the Hamiltonian operators read

ĈE[N ] =
2

3

1

γ

(
4mP

i`3
P

) ∑
v∈V (γ)

8N(v)

E(v)

∑
v(∆)=v

Tr
(
εIJKhIJhK [h−1

K , V̂ (v, ε)]
)

(11.11.39)

ĈYM [N ] = −
(

1

3

)2
128

γ2

αgmP

`3
P

∑
v∈V (γ)

N(v)

(
8

E(v)

)2 ∑
v(∆)=v

∑
v′(∆′)=v

×

×Tr(τihK [h−1
K ,

√
V̂ (v, ε)]) Tr(τihN ′ [h

−1
N ′ ,

√
V̂ (v′, ε)])×

×
[ 1

16
δIKδJ

′N ′δabJ a
eI
J b
eJ′

+
1

α2
g

εIJKεL
′M ′N ′ tr(T aBIJ) tr(T aBL′M ′)

]
(11.11.40)

We introduced the correction factor

E(v) =

(
n(v)

3

)
(11.11.41)

where n(v) is the valence of v, giving the number of tetrahedra at v, one for each triple of

edges. It prevents from overcounting the volume. The factor 8 accounts for the volume

of the octahedron consisting of 8 tetrahedra.

Furthermore, we used the Planck mass defined by

mP :=
`P
κ

=

√
~
κ

and the fine structure constant defined by

αg = ~g2.

Note that the factor 1/`3
P cancels the dimensionality of the volume operators, such that

the all Hamiltonians have mass dimension 1 (αg is dimensionless). The action of the

Euclidean Hamiltonian can be visualized as follows (see also figure 11.5):

Due to the volume operator the whole operator can only have nontrivial action on vertices

where the volume is nonvanishing. Since the volume operator appears in a commutator

with a holonomy, the action is also nontrivial on noncoplanar trivalent vertices because

the intermediate holonomy breaks gauge invariance. The loop in the Hamiltonian adds

(or removes) an edge with color 1/2 connecting two existing edges incident at the vertex.

Now, the important point is that although the operator still carries a memory of the
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Figure 11.5: The action of the “Euclidean” part of the Hamiltonian constraint.

triangulation used, the quantity

(η(Ψ)|ĈE[N ]Φ〉, ∀Φ, Ψ ∈ D ⊆ H,

D denoting the domain of the operator, is insensitive to the value of the regulator ε. At

this point, background independence is essential!

In the reduced theory the Hamiltonians read

CG[N ] =− mP

γ3`3
P δ

2

∑
v

N(v)
∑
σ=±

σ×

tr
{[
εijkαij,σ − 2γ2[δ2(Γ̂2

t − 1)Λ3 − δ
∫ vσ

v

Γ̂′t(Λ
1 + Λ2)]

]
hk,σ{h−1

k,σ, V̂ }
}

(11.11.42)

CM [N ] =
2

γ2

αemp

`3
P δ

4

∑
v

N(v)
∑
σ=±

∑
σ′=±

σσ′×

× Tr(τ3h3,σ{h−1
3,σ,
√
V (v)}) Tr(τ3h3,σ′{h−1

3,σ′ ,
√
V (v′)})×

×
[
Jv,σJv,σ′ +

1

α2
e

ε3ijε3i′j′BijBi′j′
]

(11.11.43)



Chapter 12

Conclusion

12.1 Summary

Let us summarize the major steps of a loop quantization of GR and symmetry reduction:

Starting from the so-called ADM decomposition of spacetime into spacelike hypersurfaces

we examined the corresponding initial value formulation of GR. We were able to find evo-

lution equations for the intrinsic metric on the slices and the extrinsic curvature, which

described the embedding of the slices. Furthermore, we found two equations constraining

the initial data consisting of the intrinsic metric and the extrinsic curvature.

In Chapter 2 we approached the initial value formulation of GR from a somewhat different

less (spacetime) geometrical point of view and cast the theory into a symplectic frame-

work. This shed some light on the constraints found before. Actually, we saw that GR is a

completely constraint Hamiltonian system. There does not exist any “true” Hamiltonian

it is constrained to vanish, which is to be expected since there is no preferred notion of

time. Apart from the Hamiltonian constraint, which is also called scalar constraint, we

found a second constraint also called the vector constraint.

Both constraints were shown to be first class, which roughly means that the correspond-

ing Poisson algebra closes on shell. This told us that we started with too many degrees

of freedom, namely ten instead of two, and that physical solutions are located on the

constraint surfaces in phase space. In particular, the corresponding Hamiltonian vector

fields generate spatial diffeomorphisms and diffeomorphisms in the direction of the surface

normal of the equal time slice (on shell). Therefore, the foliation is completely arbitrary,

thereby recovering the full symmetry group of GR.

Then we geared the formulation of GR towards a gauge theory by introducing further

“unphysical” degrees of freedom, the vielbeins. Instead of the metric encoding length

and angles, we chose the inertial frames, which could be considered as our laboratories in

space (-time). Of course, physics should be insensitive to the posture of the laboratory,

nevertheless the physicist chooses some reference directions, most conveniently orthogo-
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nal ones and thus fixes the gauge in mathematical terms. We showed that we can also

formulate GR in terms of densitized triads as momentum variables and their configura-

tion variables, which we found to be specific components of the Lorentz connection. Due

to the enlarged degrees of freedom an additional first class constraint appeared called

the Gauß constraint, which generates rotations between the different frames. Solving the

Gauß constraint forces the components of the configuration variable to be symmetric,

which reveals that the configuration variable on the gauge invariant subspace actually is

the extrinsic curvature. In addition vielbeins provide a natural means for incoorporating

spinors in the theory.

Next, we made the notion of gauge theory mathematically more precise in terms of fiber

bundle theory. Having triads located in space, we were interested in how they are con-

nected, i.e. how to parallel transport them. At this point, we developed the basic building

blocks of gauge theory: connection and curvature or accordingly - formulated in some

local trivialization - gauge potential and field strength.

By using this theory we were then able to implement a symmetry reduction of a gauge

theory in a definite way. We started with an action of some symmetry group acting via

bundle automorphisms and projected its action to the base space. Then we discussed

the decomposition of the base manifold into orbits and concentrated on the orbit space.

We restricted the bundle over that space and reduced the structure group. Finally, we

could derive an explicit formula for an (gauge fixed) invariant connection on an invariant

principal fiber bundle, which gives rise to a connection on the reduced bundle and to

scalar fields, the latter being remnants of the full connection.

After these quite general description we made things more concrete and analyzed the

structure of the group of rotations. The purpose of this analysis was twofold: On the one

hand, the symmetry group generating the transformation under which the connection (or

any other field) is said to spherically symmetric is the group of rotations in space which

is isomorphic to SO(3). On the other hand, as was shown later, the group SU(2) – the

universal cover of SO(3) – is the gauge group from which the most successful aproach of

quantum gravity based on the Ashtekar formulation of GR so far, starts. Furthermore, we

devoloped some Lie algebra notions. In particular, we discussed the left (right) invariant

vector fields and the canonical left invariant Maurer Cartan form on the group SU(2). We

proved that SU(2) is the universal (double) cover of SO(3) and showed some properties

of the adjoint and fundamental representations of SU(2). Finally, we discussed briefly

some notions of representation theory. In particular we derived the explicit form of the

Haar measure on SU(2) and U(1). Most important for the development of LQG in this

section was the Peter - Weyl theorem, which we could partly prove. It states that we

can use the matrix elements of the irreducible (unitary) representations of a compact Lie

group to approximate every continuous function on the group and that they provide an

orthogonal basis, which we also normalized. This was made explicit in the example of
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U(1).

Since the formulation of connection variables due to Ashtekar in terms of spin connec-

tions, which was needed in the later construction, we discussed some properties of Clifford

algebras in chapter 7, particularly the Pauli algebra. This analysis revealed that the no-

tion of spinors is intimately tied to geometry of space. We rediscovered ideas by Clifford,

Grassmann and Hamilton. The algebra we set up naturally incorporates the isometries of

the underlying vector space, generated by subsequent reflections. One of the subgroups

we found was Spin(3), generating rotations up to phase. Spinors where then found to be

the elements of the representation space, which we constructed as ideals of the Clifford al-

gebra. In the matrix representation automatically SU(2) ∼ Spin(3) reappeared. Finally

we derived the necessary and sufficient conditions for a construction of a spin bundle out

of a frame bundle. A spin connection describes parallel transport of spinors, which via

the 2-1 covering induces parallel transport of vectors.

Equipped with all necessary tools we introduced the Ashtekar connection. It combines

the intrinsic SU(2) connection of the frame bundle over the base manifold Σ and the

conjugate configuration variables to the densitized triads multiplied with a parameter

called the Immirzi parameter. The classical purely gravitational theory is invariant un-

der the choice of this, in general complex, parameter. By using the Ashtekar connection

we were able to recast the Gauß constraint into a form which justifies its naming. We

mentioned the attemps to find a action yielding the Ashtekar variables directly that go

under the name Holst action. Again its analysis showed that spinors are intimately tied

to geometry, i.e. gravitation. Clearly, from the spin bundle approach one could say that

spinors configure in the gauge group of gravity. The Holst modification has a nontrivial

effect in the spinor sector. In the framework of the Ashtekar connection we performed the

spherical symmetry reduction of GR. Chapter 9 is devoted to an analogous description

for Yang-Mills theories and electodynamics in particular.

In chapter 10 we applied the connection dynamics of Einstein-Maxwell theory to station-

ary solutlions. We solved the partial differential evolution equations, i.e. the Hamilton

equations of the densitzed triad, the symmetry reduced Ashtekar connection and the

scalar fields. The solution was adapted to asymptotic freedom and we found the so-called

Reisner-Nordström solution, i.e. the spherically symmetric metric of a charged static

black hole, to Einstein field equations. We could then see how the densitized triads be-

have at the locations of the classical singularity and the event horizons.

Chapter 11 focused on the quantization of Einstein-Yang-Mills connection dynamics. We

put emphasis on the parallel transport, again using the general framework of fiber bundle

theory. First, we rigorously solved the defining equation of the parallel transport, yielding

a path ordered exponential. The notion of parallel transport is connected to the notion

of paths, equivalence classes of curves along which the parallel transport takes place un-

der reparametrizations and retracings. Gauge transformations act homogeneously on the



CHAPTER 12. CONCLUSION 123

parallel transport. This transformation property is a mathematical motivation to choose

the parallel transport as elementary variable for the quantization. We also examined a

physical motivation for that choice, the Aharonov-Bohm effect and its fiber bundle theo-

retic interpretation. It is the holonomy (along loops) - an observable phase shift, which

incorporates exactly the physical information of a quantum mechanical system interacting

with a gauge field. After this short excursus we completed the set of elementary vari-

ables with the “electric” fluxes, which are the dualized densitized triads integrated over

surfaces, constituting a so-called Poisson *-algebra. The Poisson bracket of elementary

variables has very nice properties: A flux acting on holonomies gives a holonomy again,

but at the price of having non-commutating fluxes, due to the distributional smearing.

We then briefly discussed the construction of the representation space, introducing cylin-

drical functions over graphs. By using the Haar measure the space of cylindrical functions

was eqipped with the diffeomorphism and gauge invariant Ashtekar Lewandowski mea-

sure. The completion of the cylindrical functions w.r.t. to this inner product yielded a

(non-separable) Hilbert space. The discussion of the Peter-Weyl theorem in 6.3 provided

the basic building blocks of an orthonormal basis of this Hilbert space called spin network

basis. This construction furnishes the basis for the quantization of the constraints as

operators on the kinematical Hilbert space. Also the solutions to the Gauß and diffeo-

morphism constraint were presented, as well as an inner product on the solution space. It

turned out that generically the solutions to the diffeomorphism constraint, except for the

constant function, are elements of the algebraic dual to the space of cylindrical functions.

After motivating a representation of the Poisson *-algebra we applied the general quanti-

zation scheme to spherically reduced Einstein-Maxwell theory and wrote down the explicit

expressions for spherically symmetric spin-charge networks. As an example of how LQG

supports a discrete picture of space, at least on a kinematical level, we constructed the

area operator and its spectrum. The final section was concerned with the quantization of

the dynamics of LQG. Apart from several ambiguities, which one always encounters in a

quantization of a field theory, one is able to find a version of the quantum Hamiltonian.

The extension to Yang-Mills matter is straight forward. In the construction of these oper-

ators another geometric operator, namely the volume operator became prominent and we

also derived its quantized version. Finally, the finding of the loop quantized versions of

the Einstein and Maxwell Hamiltonians concluded the analysis of spherically symmetric

loop quantum gravity in this thesis.

12.2 Discussion and outlook

For the major part, this thesis reviewed the approach to symmetry reduction developed

by A. Ashtekar, M. Bojowald, H.A. Kastrup, J. Lewandowski and R. Swiderski. As it
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was shown, the reduction scheme relies heavily on the notion of invariant connections and

the definition of symmetric states. The symmetric states have support only on invariant

connections and are therefore to be considered as distributions on the space of cylindrical

functions. Of course, the spin networks are not symmetric under a continuous symmetry

group. Thus, it is not really surprising that difficulties arise. They arose in the form of

the continuous parameter labeling the Higgs vertex. Usually this is interpretated as a

merging of the continuous edge length and the discrete spin label into one parameter. We

lost one of the most intriguing features of loop quantum gravity - discreteness of space:

quanta volume and area. The drawback is then circumvented by carrying over results

from the full theory to the symmetry reduced one. For example in homogeneous cos-

mological models the invariant connection is completely determined by the Higgs fields

and therefore no discrete label survives. The parameter carries area and from the full

theory one knows that there is an area gap. This result has to be imposed by hand in

the reduced sector. In the case of spherically symmetry reduced theory the discreteness

only in radial directions remains. Higgs fields represent the whole 2-sphere. Furthermore,

only diffeomorphisms acting on the radial submanifold remain. We have seen that for

the well-posedness of the Hamiltonian constraint diffemorphisms are crucial to obtain an

action of the constraint, which is insensitive to a (sufficiently small) regularization param-

eter. In the reduction process we have also lost these diffeomorphisms acting transversal

to the orbit space. Note that it is not the explicit dependence on the parameter length of

regularization edges in the homogeneous directions, which is problematic. By reinstating

three dimensional Riemannian sums via geodesic cubes as regulators, instead of edges in

the radial direction only, we can absorb these parameters.

Let us turn now to another subtlety in the reduction scheme which we blithely ignored

up to now. This is related to the specific choice of the phase space coordinates, some-

times referred to as polar coordinates. One makes use of a rotated internal SU(2) basis

and introduces the gauge invariant fields Ẽt and At and the angle fields η and β. Un-

fortunately the fields Ẽt and At do not constitute a conjugate pair. The reason for that

we traced back to the internal directions of the intrinsic connection 1-form, which where

“orthogonal” to those of the densitized triad field. If one wants to stick to these variables

one has to choose between the flux and the connection representation. In view of the spe-

cific form of the volume functional the flux representation seems to be more convenient.

From the general discussion of the vielbein formalism it is well known that the field Ẽa
i

is canocically conjugate to Ki
a which is part of the Ashtekar connection. This is still true

here; γKt = At − Γt = At cosα, where α = η − β is conjugate to Ẽt. But the argument

in [37] goes further. They conclude from the form of the extrinsic curvature of the equal

time slices, which has internal directions alligned with those of the densitized triad that

At sinα = Γt. This conclusion is false. Despite the intriguing notation used for the object

Ki
a appearing in the Ashtekar connection, it is not identically to the extrinsic curvature,
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this is only true on the Gauß constraint surface in phase space. The Gauß constraint in

the vielbein formalism is a symmetry requirement imposed on Ki
a, which in case of spher-

ical symmetry alligns the internal directions with those of the triad. Thus, from that

point the reduction process always uses the gauge invariant subspace implicitely. This

led to the much simpler form of the Hamiltonian. Making the steps, carried out for the

kinetic part of the Hamiltonian, unnecessary. Actually, that choice of variables renders

these steps impossible.

Of course, one can say that in the final picture one is only interested in physical, i.e.

gauge invariant states. Furthermore, there can always arise ambiguities when defining

constraints up to terms proportional to the Gausß constraint, as we have seen in the

relation of the vector and the diffeomophism constraint in Yang-Mills theory or in the

relation of ADM theory and Ashtekar’s connection dynamics. Apart from that, one re-

duced the full spin-networks to networks immersed in a one dimensional manifold with

Higgs vertices. Thus, this procedure is consistent with the general quantum reduction

schmeme developed in [19]. The symmetric states were characterized as cylindrical func-

tions on generalized connections restricted to B times equivalence classes of generalized

Higgs fields w.r.t. gauge.

On the other hand, in my opinion the above mentioned problems with the continuous

label can only be solved, if the full three dimensional picture is reinstated and the defini-

tion of symmetric states is changed. Of course, development of symmetry reduced models

is of great importance, since these models render calculations more manageable than in

the full theory. The theory of gravitation ows its success to such models since Newton,

in particular the spherically symmetric ones, which are designed to describe the gravi-

tational field of astrophysical objects, such as planets, stars of all kinds, and blackholes.

If the angular momentum of such objects is sufficiently small calculations fit extremely

well to observational data. Another example for the success of symmetry reduced models

is, of course, the FRW model. It is argueable, however, whether the use of a continuous

symmetry group is appropiate in the quanum theory presented here.

What I have in mind here is the following: In the quantum regime the connection looses

importance. What is important are the spin-networks, labeling graphs with spin quantum

numbers. We could equivalently describe spherical symmetry via measurements. For ex-

ample, in the vincinity of a point charge measurements of the electric flux through some

small reference plaquette will yield the same signal at any point on a sphere centered at

the point charge. Applying this idea to a spin network one could require that the area

operator on some plaquette “tangential to a sphere” gives the same eigenvalue whenever

an edge punctures it. Futhermore, the eigenvalue of the volume operator acting on dif-

ferent vertices on the sphere should be the same. At this point I have to specify the term

“sphere”, without using background structure: Consider a subnet of the spinnetwork,

consisting of equally valent vertices, and the incident edges should carry the same label.
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The number of vertices of this subnet is finite. If there exist edges, which do not link two

such equivalent vertices, similar links, i.e. with the same labels, exists at all the vertices

connecting them with another subnet characterized in the same way. If the vertices of

subnets are linked, the links must not be knotted if the vertices are immersed in some

two dimensional surface diffeomorphic to the 2-sphere. One can visualize such an object

as stacked fullerenes, but one has to be careful with this picture, since the vertices of the

subnets need not to be linked to each other at all. Furthermore, a subnet could consist of

one single vertex. In order to get more control over these objects, introduce some back-

ground structure given by the rotation group and distribute the vertices of the subnets

on the orbits uniformly. One can then classify these networks with graph symmetries,

which are discrete subgroups of SO(3). For example, the subnet with the lowest number

of vertices togehter with the valence of these vertices determines the degree of symmetry

of the graph. Then one would have average over these discrete graph symmetries.

The action of the Hamiltonian constraints break the symmetry of single networks, but

yield a linear combinations of networks. Measuring the volume of some region centered at

some vertex still yields the same result irrespective of the position on the sphere. Further-

more, one should also apply these constructions to the entropy counting of black holes.

An extension of this framework using spinorial matter leads to an interesting and rela-

tively simple homogeneous toy model. Three valent spin-networks with spinors located

at some vertices carry nontrivial volume. Due to the matter spin the gravitational Gauß

constraint does in general not vanish, the matter spin gives a source term, in a similar

fashion as charges serve as sources for the electric field. As above we start with networks

where edges are all labeled equally, e.g. j = 1/2 and where matter is located at every ver-

tex. Acting with the Hamiltonian again yields a three valent spinnetwork, only volumes,

egde labels and excitations of spinors are changed.

Making these ideas more precise and more mathematically rigorous is a work in progress.
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A.1 Symmetry of the extrinsic curvature

Kab = −h c
a h

d
b ∇c(N∇dt) = −h c

a h
d
b ∇cN∇dt−Nh c

a h
d
b ∇c∇dt =

= h c
a h

d
b ∇cN

1

N
nd − fh c

a h
d
b ∇c∇dt = −Nh c

a h
d
b ∇d∇ct =

= −h c
a h

d
b ∇d(N∇ct) + h c

a h
d
b ∇dN∇ct = h c

a h
d
b ∇dnc =

= h d
b ∇dna = Kba

A.2 The relation of the extrinsic curvature and the

Lie-derivative of the instrinsic metric along the

surface normal

Kab =
1

2
(Kab +Kba) =

1

2
(h c

a hbd∇cn
d + h c

b had∇cn
d) =

=
1

2
[hbd∇an

d + hbdna(n∇)nd + had∇bn
d + hadnb(n∇)nd] =

=
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2
[hdb∇an
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[hdb∇an

d + had∇bn
d + (n∇)(nanb)] =

=
1

2
[hdb∇an

d + had∇bn
d + (n∇)hab] =

1

2
£nhab
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A.3 The covariant derivative associated with the spa-

tial metric

DaTb1...bn := h c
a h

d1
b1
. . . h dn

bn
∇cTd1...dn

� Linearity:

Da(αTb1...bn + βUb1...bn) = αh c
a h

d1
b1
. . . h dn
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a h
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� Leibniz rule
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h e1
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h e1
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� Symmetry

DaDbf = h c
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e
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d
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e
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e
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� annihilates the intrinsic metric
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c [∇d(gef − nenf )] = 0



APPENDIX A. APPENDIX 129

A.4 Time derivative of the intrinsic metric

1

2
£nhab =

1
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1

2
h f
a h

g
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Note that none of the terms of the second line are simply the projected of the correspond-

ing ones in the first line, but that all additional terms cancel. Then we use

h f
a h

g
b (N∇)hfg = h f

a h
g
b (N∇)(nfng) = 0.

A.5 Curvature of the 3-d intrinsic connection
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A.6 Time derivative of the extrinsic curvature

K̇ab = h c
a h

d
b £tKcd = h c

a h
d
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d
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(A.6.2)

The three terms in brackets:
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with (1.0.6) Nh e
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Thus, we find for (A.6.1)
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Collecting all terms:
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A.7 The Einstein Hilbert Hawking action

The following relations will be used quite often:

δgab |∂R= 0

δ(gab) ≡ δgab

δ(gab) = δ(g−1)ab = −δgab

δωg = ωg
1

2
gabδgab (A.7.1)
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where for the last equation we used (the λi are the eigenvalues of gab)

δ
√
−g =

√
−gδ ln(

√
−g) =

1

2

√
−gδ ln(

∏
i

λi) =
√
−gδ

∑
i

ln(λi) =

=
√
−g
∑
i

1

λi
δλi =

1

2

√
−ggabδgab.

For the calculation of the curvature quantities we need the the variation of the difference

tensor. Let gab and g̃ab = gab + δgab be two “neighboring” metrics and ∇a and ∇̃a their

respective Levi-Civita connections, then the action of ∇̃a − ∇a on some vector field is

given by a unique tensor-field of valence [1, 2], where the lower two indices are symmetric.

∇av
b = ∇̃av

b + Cb
acv

c = ∇av
b v fixed

∇ag̃bc = ∇̃ag̃bc − Ck
abg̃kc − Ck

acg̃bk (A.7.2)

The same is true for the last equation with cyclic permuted indices. Adding two equations

and subtracting the third gives the expression for the difference tensor.

Cb
ac =

1

2
g̃bd(∇cg̃ad +∇ag̃cd −∇dg̃ac)

Reinserting g̃ab = gab + δgab gives to first order in δgab

δCb
ac =

1

2
(∇cδg

b
a +∇aδg

b
c −∇bδgac).

Then for the curvature tensors follows

R̃a
bcd = Ra

bcd +∇cC
a
bd −∇dC

a
bc + Ca

mcC
m
bd + Ca

mdC
m
bc

δ(Ra
bcd) = ∇cδC

a
bd −∇dδC

a
bc

δ(Rbd) = ∇aδC
a
bd −∇dδC

a
ba = ∇aδC

a
bd −

1

2
∇d∇bδg

gbdδ(Rbd) = ∇a∇bδg
ab −∇2δg (A.7.3)

It should be noted that in general ∂R is not the union of hypersurfaces Σ bounding

M. We compute habδ(Kab) for later convenience. h and K are the induced metric and

extrinsic curvature on ∂R.

habδ(Kab) = habδ(h c
a ∇cnb) = hcbδ(∇cnb) =

= −hcbndδCd
cb =

1

2
hcb(n∇)δgcb
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Now let us turn back to the action:

δS =
1

κ

∫
R
ωgδg

abGab =
1

κ

∫
R
ωgδg

ab(Rab −
1

2
gabR) =

=
1

κ

∫
R
ωg(−δ(gab)Rab −

1

2
δgabgabR) =

=
1

κ

∫
R
ωg(−δ(gabRab) + gabδ(Rab)−

1

2
δgabgabR) =

=
1

κ

∫
R
ωg(−δ(R) + gabδ(Rab)− ω−1

g δ(ωg)R) =

= −1

κ
δ

∫
R
ωgR +

1

κ

∫
M

ωgg
abδ(Rab)

The first term is the well known Einstein-Hilbert action, the second is a contribution of

the boundary hypersurface.∫
R
ωgg

abδ(Rab) =

∫
R
ωg∇a∇bδg

ab −∇2δg =

∫
∂R
ωhna(∇bδg

ab −∇aδg) =

=

∫
∂R
ωhnagbd(∇dδgab −∇aδgbd) =

∫
∂R
ωhnahbd(∇dδgab −∇aδgbd)

∫
R
ωgg

abδ(Rab) = −
∫
∂R
ωhhbd(n∇)δgbd = −2δ

∫
∂R
ωhK

A.8 The Hamiltonian

H =

∫
Σ

Πabḣab − ωhN [ (3)R +KabKab −K2] =

=

∫
Σ

2Nω−1(ΠabΠab −
1

2
Π2
h) + 2ΠabDaNb − ωhN [ (3)R + ω−2(ΠabΠab −

1

2
Π2
h)] =

=

∫
Σ

Nω−1(ΠabΠab −
1

2
Π2
h)− ωhN (3)R− 2NahacDbΠ

cb + 2Da(NbΠ
ab) (A.8.1)

=

∫
Σ

NC +NaVa

The last term in (A.8.1) gives a boundary term, which vanishes if we assume that Na has

compact support. See [8] for the case of asymptotically flat boundary conditions where

as r →∞ Na → 0.

A.9 Tensorial densities

The momentum Πab conjugate to the intrinsic metric hab is a symmetric tensor of density

weight one. Here we will show a useful property of the divergence of such quantities. and
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their variantions. Consider 2 valent tensor T ab of density weight one

DaT
ab = Da(ωhω

−1
h T ab) = ωhDa(ω

−1
h T ab)

The term in paranthesis is a tensor of density weight zero, therfor

ωhDa(ω
−1
h T ab) = ωhD̃aω

−1
h T ab + D̃aT

ab + Ca
acT

cb + Cb
acT

ac =

= D̃aT
ab + Cb

acT
ac + Ca

acT
cb − 1

2
hcdD̃ahcdT

ab,

where we have used (A.7.1). Now we use

Ca
ac =

1

2
had(D̃ahdc + D̃chad − D̃dhac) =

1

2
hadD̃chad,

to obtain

DaT
ab = D̃aT

ab + Cb
acT

ac. (A.9.1)

Hence we see that the difference tensor is only involved for the noncontracted indices.

In particular for vectorial densities J a, sometimes referred to as de Rham currents we

find that the divergence is completely independent of the covariant derivative, i.e. one

could use the partial derivative

DaJ
a = ∂aJ

a

Now we will use the result (A.9.1) to compute the variation of DaΠ
ab with respect to the

intrinsic metric needed in the next section.

δh

∫
Σ

fb(DaΠ
ab) = δh

∫
Σ

fbδhC
b
acΠ

ac = δh

∫
Σ

fb
1

2
(Daδh

b
f +Dfδ

b
a −Dbδhaf )Π

fa =

= δh

∫
Σ

fb(Daδh
b
f −

1

2
Dbδhaf )Π

fa (A.9.2)

A.10 Constaints as generators of spacetime diffeo-

morphisms

Befor we start with the variation of the constraints I want to state some important rela-

tions of the constraints used in the very elegant derivation of the hypersurface deformation

algebra given in [11]. Their form are better suited for a geometric interpretation of them.
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After a partial integration of the diffeomorphism constraint we find

V [ ~N ] =− 2

∫
Σ

N chcbDaΠ
ab = 2

∫
Σ

ΠabN chcbDaNb =

∫
Σ

ΠabN chcb(DaNb +DabNa) =

=

∫
Σ

Πab£ ~Nhab (A.10.1)

On the other hand we have∫
Σ

Πab£ ~Nhab =

∫
Σ

[£ ~NΠ− hab£ ~NΠab],

where the trace of the momentum Π is a scalar density, which can be seen as a form of

highest degree. The formula for Lie derivatives of forms is given by

£ ~NΠ = d(NyΠ) +NydΠ = d(NyΠ),

and thus by Stokes theorem, and omiting boundary contributions we end up with

V [ ~N ] = −
∫

Σ

hab£ ~NΠab. (A.10.2)

From this form of the constraint it becomes clear that V [ ~N ] is the generator of spatial

diffeomophisms and therefore is called diffeomophism constraint. The variations then

yield

δhV [ ~N ] = −
∫

Σ

δhab£ ~NΠab (A.10.3)

and

δΠV [ ~N ] =

∫
Σ

δΠab£ ~Nhab. (A.10.4)

For the variations of the diffeomorphism constraint, we will use its explicit form with the

use of (A.9.2):

δhV [ ~N ] =− 2δh

∫
Σ

hcbDaΠ
abN c =

=− 2

∫
Σ

[δhcb(DaΠ
abN c) +Nb(Daδh

b
f −

1

2
Dbδhaf )Π

fa] =

=

∫
Σ

δhac[2ΠabDbN
c −Db(Π

acN b)] (A.10.5)
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δΠV [ ~N ] =

∫
Σ

δΠac(DaNc +DcNa) (A.10.6)

The necessary compuations for the variation of the Hamiltonian constraint have been

already performed in section A.7. We omit all boundary terms:

δhC[M ] =

∫
Σ

δhac

{
− 1

2
hacMC + ω−1

h M(2Πa
bΠ

bc − ΠacΠ)−

− ωhM(hacR−Rac)− ωhDaDcM + ωhD
2Mhac

}
(A.10.7)

δΠC[M ] =

∫
Σ

δΠac
[
2Mω−1

h (Πac −
1

2
hacΠ)

]
(A.10.8)

Again we will write δΠC[M ] in a form which allows for more geometrical insight. We

recognize the term in brackets as 2MKac. The intrinsic curvature was the half of Lie

derivative of hac with respect to the hypersurface normal. Note that spatial co-tensors tab

satisfy

(4)£M~ntab = M (4)£~ntab.

Therefor we obtain

δΠC[M ] =

∫
Σ

δΠac(4)£M~nhab. (A.10.9)

Hence for functionals on the phase space depending on the spatial metric only, the Hamil-

tonian constraint generates diffeomorphisms in direction of the hypersurface normal. Note

that all indices are projected to Σ, hence the total Hamiltonian indeed generates a time

evolution via the Hamiltonian equations

ḣab =
δ(C[M ] + V [ ~N ])

δΠab
= ⊥(4)£M~nhab + £ ~Nhab, (A.10.10)

which is exactly equation (1.0.10) As already mentioned in the main text, this is not the

case for functions depending on Πab in general, but only on the constraint surface and if

the vacuum Einstein equations hold. To see this we compute £M~nΠab, using the result

(A.6.3), (A.7.1) and

hach
b
d£M~nh

cd = hach
b
d[M(n∇)hcd − hcg∇g(Mnd)− hgd∇g(Mnb)] =

= Mhach
b
d[−hcg∇gn

d − hgd∇gn
b] = −2MKab
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.

£M~nΠab =£M~n

[
ωh
(
hachbd − habhcd

)
Kcd

]
=

=Mωh
{
K
(
Kab − habK

)
+ 2
(
− 2KacKb

c +KabK + habKcdKcd

)
+

+
(
hachbd − habhcd

)[
−
(

(3)Rcd +KcdK − 2K e
c Ked

)
+

+ 8π
(
Jcd −

1

2
Jhcd +

1

2
ρhcd

)
+

1

M
DcDdM

]}
=

=Mωh
[(

(3)Rhab − (3)Rab
)

+DaDbM −D2M −M
]
−

−Mω−1
h

(
2ΠacΠb

c − ΠabΠ
)

+ κ(Jab − ρhab) (A.10.11)

This we insert into (A.10.7) to obtain

δhC[M ] =

∫
Σ

δhac

{
− 1

2
hacMC + κ(Jab − ρhab)−£M~nΠab

}
, (A.10.12)

which proves our assertion.

A.11 The hypersurface deformation algebra

Now we are ready to check the Dirac algebra relations.

{V [N ], V [Ñ ]} =κ

∫
Σ

δV [N ]

δhac

δV [Ñ ]

δΠac
− (N ↔ Ñ) =

=κ

∫
Σ

−2DbΠ
b
c(£ ~NÑ

c)− 2Πac(NdDaDbÑc − ÑdDaDbNc)+

+ 2Πac(NdDbDaÑc − ÑdDbDaNc) =

=κ

∫
Σ

Vc(£ ~NÑ
c) + 2Πac(NdRdcbaÑ

d − ÑdRdcbaN
d) =

=κ

∫
Σ

Vc(£ ~NÑ
c) = κV [£ ~NÑ ] (A.11.1)
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{V [N ], C[M ]} =κ

∫
Σ

[
2ΠabDbN

c −Db(Π
acN b)

][
2Mω−1

h (Πac −
1

2
hacΠ)

]
−

− 2DaNc

{
− 1

2
hacMC + ω−1

h M(2Πa
bΠ

bc − ΠacΠ)−

− ωhM(hacR−Rac)− ωhDaDcM + ωhD
2Mhac

}
=

κ

∫
Σ

−(ND)Πac
[
2Mω−1

h (Πac −
1

2
hacΠ)

]
−

− (DN)
[
2Mω−1

h

(
ΠacΠac −

1

2
Π2
)]

+

+ (DN)MC+

+ 2ωhM((DN)R−DaNcR
ac) + 2ωhDaNcD

cDaM − 2ωh(DN)D2M
}

=

κ

∫
Σ

−2Mω−1
h (ND)(Πac − 1

2
hac)Π

ac

− (DN)MC

− 2ωhMDaNcR
ac − 2ωhDcDaN

cDaM + 2ωhDaDcNcD
aM =

κ

∫
Σ

−2Mω−1
h (ND)(Πac − 1

2
hac)Π

ac

+ (ND)MC +M(ND)2(Πac − 1

2
hac)Π

ac −Mωh(ND)R

− 2ωhMDaNcR
ac − 2RdaN

dDaM =

κ

∫
Σ

(ND)MC −Mωh(ND)R

− 2ωhMDaNcR
ac + 2DaNdRdaM + 2MDaRdaN

d =

κ

∫
Σ

£ ~NMC + 2MωhN
dDa(Rda −

1

2
hdaR)

The last term in the last line is the contracted Bianchi identity

DaRda −
1

2
DdRabcehachbe = DaRda −

1

2
(−DaRbdce −−DbRdace)hachbe

= DaRda −DaRda = 0, (A.11.2)

thus we obtain

{V [N ], C[M ]} = κC[£ ~NM ] (A.11.3)

Finally we need the Poisson bracket of two scalar constraints. We can make use of the fact

that due to the commutator, all terms where no derivative acts on the the lapse functions,
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cancel:

{C[N ], C[M ]} =κ

∫
Σ

2(Πac −
1

2
hacΠ)[N(DaDc − hacD2)M − (N ↔ Ñ)] =

κ

∫
Σ

2ΠacNDaDcM − (N ↔ Ñ)

κ

∫
Σ

−2DaΠadhdeh
ec(NDcM −MDcN) =

V [h−1(NdM −MdN)] (A.11.4)

A.12 Notes on the Reissner Nordström solution

From the equations of motion we obtain:

Kt =
EtĖx

2Ex

Kx =
EtĖt

Ex
− (Et)2Ėx

2(Ex)2
=

(
(Et)2

2Ex

)̇

and thus their time derivatives read

K̇t =
ĖtĖx

2Ex
+
EtËx

2Ex
− Et(Ėx)2

2(Ex)2

K̇x =
(Ėt)2

Ex
+
EtËt

Ex
− 2EtĖtĖx

(Ex)2
− (Et)2Ëx

2(Ex)2
+

(Et)2(Ėx)2

(Ex)3

inserted in the vector constraint:

Ex(ĖxEt)′ − (Ex)′(ExEt)̇ = 0

and in the scalar constraint:

ĖxEtĖt

Ex
− (Ėx)2(Et)2

4(Ex)2
+ 1− GQ2

|Ex|
− ((Ex)′)2

4(Et)2
− Ex(Ex)′′

(Et)2
+
Ex(Ex)′(Et)′

(Et)3
= 0

The equation of motion for Kt then becomes

(Et)4

(Ex)2
(2ExËx − (Ėx)2) = −(2Ex(Ex)′′ − ((Ex)′)2)



APPENDIX A. APPENDIX 140

The equation of motion for Kx then becomes

(Ėt)2

Ex
+
EtËt

Ex
− ĖxĖtEt

(Ex)2
− (Et)2Ëx

2(Ex)2
+

(Et)2(Ėx)2

2(Ex)3
=

=
3(Ex)′′

2(Et)2
− 3(Ex)′(Et)′

(Et)3
+

3Ex((Et)′)2

(Et)4
− Ex(Et)′′

(Et)3
− GQ2

|Ex|Ex
(A.12.1)

We use the scalar constraint to rewrite this equation in the form:

(Ėt)2 + EtËt − (Et)2Ëx

2(Ex)
+

(Et)2(Ėx)2

2(Ex)2
=

=
5Ex(Ex)′′

2(Et)2
− 4Ex(Ex)′(Et)′

(Et)3
+

3(Ex)2((Et)′)2

(Et)4
−

− (Ex)2(Et)′′

(Et)3
− 1 +

((Ex)′)2

4(Et)2

This we can rewrite again as using the equation of motion for Kt

1

2
((Et)2)̇ =

2Ex(Ex)′′

(Et)2
− 4Ex(Ex)′(Et)′

(Et)3
+

3(Ex)2((Et)′)2

(Et)4
−

− (Ex)2(Et)′′

(Et)3
− 1 +

((Ex)′)2

2(Et)2

The equation of motion for Kt suggests a variable substitution:

Ex = sgn(R)R2(t, r), for which we find

R̈ = − R4

(Et)4
R′′ (A.12.2)

We rewrite the r.h.s. (A.12.1) with the substitution Et =
√
Ex/F

F ′′

2
+

(Ex)′F ′

2Ex
+
F [2Ex(Ex)′′ − ((Ex)′)2]

2(Ex)2
− GQ2

|Ex|Ex
=

(F ′Ex)′

2Ex
+
F [2Ex(Ex)′′ − ((Ex)′)2]

2(Ex)2
− GQ2

|Ex|Ex

and the l.h.s.

Ḟ 2

F 3
− F̈

2F 2
− ĖxḞ

2ExF 2

thus

Ḟ 2

F 3
− F̈

2F 2
− ṘḞ

RF 2
=
F ′′

2
+
R′F ′

R
+

2FR′′

R
− GQ2

sgn(R)R4
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while for (A.12.2) we find

R̈ = −F 2R′′ (A.12.3)

A.13 The Poisson bracket of the holonomy with the

gravito-electric flux:

For this calculation we introduce a local coordinate system xα in a neighborhood U ⊂ Σ

of x, u1, u2 on S and u3 on the curve c. The surface S is then defined by S : (u1, u2) →
xα(u1, u2, 0) = xα(u1, u2) and the curve by c : t → xα(0, 0, t) = xα(t). Actually we

constructed a congruence (2-parameter family) of curves cu1,u2(t) filling U and a foliation

St of U . The integral in this coordinate formulation reads∫ 1

0

∫
S
du1du2dtεαβγ

∂xα

∂u1

∂xβ

∂u2

∂xγ

∂t
fi(t)δ

3(x(u1, u2), x(t))

Using analycity we expand xα(u1, u2, t) = xα(u1, u2)+xα(t) around the single intersection

point S ∩ c with coordinates xα(0, 0, 0) = 0

xα(u1, u2, t) = 0 + ui
∂xα

∂ui
+O(ui) +

tn

n!

dnxα

dtn
(0) +O(tn) =

=: Mα
i u

i +O(ui) + u3Mα
3 +O((u3)) (A.13.1)

−Mα
3 is the first vector appearing in the expansion of xα(t) that is not tangential to S.

We introduced the coordinate transformation

tn

n!
=: u3,

tn−1

(n− 1)!
dt = du3 (A.13.2)

The components vectorial 1-form ẋa(t)dt expanded (omiting the part tangential to S) are

∂xα

∂t
dt = (−Mα

3

tn−1

(n− 1)!
+O(u3))dt =

= (−Mα
3 +O((u3)

1
n ))du3 (A.13.3)

Then we can rewrite the integral∫ 1

0

∫
S
du1du2du3(− detM +O((u)

1
n ))fi(

n
√
n!u3)δ3(uνMα

ν +O(u)) (A.13.4)
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with

δ3(uνMα
ν +O((u)

1
n )) =

1

| detM |
δ3(uν) (A.13.5)

we end up with∫ 1

0

∫
S
du1du2du3 (− detM +O((u)

1
n ))

| detM |
fi(

n
√
n!u3)δ3(uν) =

fi(0)

2
(A.13.6)

A.14 Differential forms

Differential forms on an n-dimensional manifold with metric hab: An m-form expanded

in a coordinate basis reads

ω =
1

m!
ωµ1...µmdx

µ1 . . . dxµm (A.14.1)

where dxµ1 . . . dxµm denotes the wedge product

dxµ ∧ dxν ≡ dxµdxν = dxµ ⊗ dxν − dxν ⊗ dxµ (A.14.2)

which we will suppress in the following.

The volume form:

ωh =
1

n!
εµ1...µndx

µ1 . . . dxµn =
√
|h|dx1 . . . dxn (A.14.3)

Hodge dual for differential forms

∗ω =
1

m!

1

(n−m)!
εµ1...µm

µm+1...µn
ωµ1...µmdx

µm+1 . . . dxµn . (A.14.4)

The components of the (metric) volume-form in some basis are normalized by the condition

εI1....InεI1....In = (−1)sn!

whith s = 1 for Lorentzian manifolds. In a orthonormal basis we have

ε0123 = 1

Using the Hodge star we can define the inner product of two p-forms as

〈ω, ψ〉 =

∫
ω ∗ ψ, (A.14.5)
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which for example could be used to write the Yang-Mills action in four dimensions as

follows

S = −1

2

∫
M
F ? F =

= −1

2

∫
M

1

2
Fµνeµeν

1

2
Fρσ

1

2
ερσ τλe

τeλ =

= − 1

16

∫
M
FµνFρσερστλeµeνeτeλ =

= − 1

16

∫
M
FµνFρσερστλ(−1)εµντλe0e1e2e3 =

=
1

16

∫
M
FµνFρσωg(−2)δµνρσ =

= −1

4

∫
M
FµνFµνωg

m-currents (m-vector valued density):

ṽ =
1

m!
vµ1...µm∂µ1 . . . ∂µnωh (A.14.6)

We define the ∗-operation on m-currents as follows

∗ṽ =
1

m!
vµ1...µm

1

m!
(∂µ1 . . . ∂µn)yωh (A.14.7)

The hodge dual for the m + 1 split: For a form G ∈ Λp(M) with dim(M) = n, p < n,

dt ∧G 6= 0 we find

dtG ? dtG = dtG ?
1

N
e0G = −dt 1

N
G ∗G (A.14.8)

and for a form F ∈ Λp(M) with dim(M) = n, p = 2m < n, dt ∧ F = 0 we find

F ? F = NdtF ∗ F (A.14.9)

In the main text one encounters Lie algebra valued objects several times. Here I define

some useful abbreviations. Consider the Lie algebra valued differential form ϕ = ϕaTa,

where T a denotes a Lie algebra basis element. Instead of writing −2 Tr(ϕ ∧ ψ) I denote

the contraction with ·, i.e.

ϕ ∧ ·ψ := −2 Tr(ϕ ∧ ψ) = ϕa ∧ ψbkab,
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where k denmotes the Cartan-Killing metric.

The commutator of two Lie algebra valued forms is defined by

[ϕ, ψ] := [Ta, Tb]ϕ
a ∧ ψb = f cabTcϕ

a ∧ ψb (A.14.10)

If all indices of Lie algebra valued p-forms are contracted I simply write

ϕ ∗ ψ (A.14.11)
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