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Abstract

Today it is widely believed that space-time has to be quantized at very small
scales down to the Planck length, which represents a lower bound for distances.
All theories of the standard model with the exception of gravity are quantum �eld
theories (QFT), more precisely gauge theories. One mathematical framework
to bring together QFT with the quantized space-time is the non-commutative
quantum �eld theory (NCQFT), where the concept of sharply de�ned points
in space-time is abandoned. In the simplest form of this framework products
are replaced by the Moyal-Weyl star product, which incorporates all aspects of
the deformed space-time. But if this is done in the most basic QFT, the scalar
quantum �eld theory on Euclidean space, one �nds that divergences occur in
the ultraviolet limit, which is known from commutative QFT, as well as in the
infrared limit and those divergences cannot be absorbed with a renormalization
procedure. Recently, it was found that a tweaked theory can be renormalized
to all orders of perturbation theory [1]. This thesis aims at calculating explicit
results for �rst and higher orders of perturbation for the two and four point
function, as well as at exercising a renormalization procedure for the �rst order.
Furthermore, the β functions that indicate the behavior of the parameters for a
change of scales of the new theory will be calculated.
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Kurzfassung

Eine weit verbreitete Vorstellung heutzutage ist, dass die Raumzeit auf sehr klei-
nen Skalen bis hinunter zur Plancklänge, die eine untere Schranke für Abstände
darstellt, quantisiert sein muss. Alle im Standardmodell enthaltenen Theorien mit
Ausnahme der Gravitation sind Quantenfeldtheorien, genauer gesagt Eichtheo-
rien. Ein mathematischer Rahmen, um die Quantenfeldtheorien mit der quanti-
sierten Raumzeit zu vereinen, ist die nichtkommutative Quantenfeldtheorie, kurz
NCQFT, bei der das Konzept scharf de�nierter Punkte in der Raumzeit auf-
gegeben wird. Im einfachsten Fall wird dabei das Produkt zweier Funktionen
durch das sogenannte Moyal-Weyl Sternprodukt ersetzt, welches alle Aspekte
der verzerrten Raumzeit beinhaltet. Wird dies allerdings in der einfachsten Form
einer Quantenfeldtheorie, nämlich einer skalaren QFT im Euklidischen Raum ge-
macht, so �nden sich Divergenzen im ultravioletten Grenzfall, welche schon von
der kommutativen QFT bekannt sind, aber auch im infraroten Grenzfall. Diese
Divergenzen können nicht im Zuge einer Renormierungsprozedur zum Verschwin-
den gebracht werden. Kürzlich wurde jedoch eine verbesserte Theorie gefunden,
die für alle Ordnungen einer Störungstheorie renormiert werden kann [1]. Das Ziel
dieser Diplomarbeit ist die Berechnung von expliziten Resultaten für die erste und
für höhere Ordnungen der Störungsreihe der Zwei- und Vierpunktfunktionen, so-
wie die Durchführung einer Renormierung für die erste Ordnung. Des Weiteren
wird die β Funktion, die Aufschluss über das Verhalten der Parameter bei einer
Änderung der Gröÿenordnungen gibt, berechnet.
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Chapter 1

Introduction

1.1 The General Idea

We have come a long way in how much we know of the world we live in from the
�rst observations of our ancestors to the data gained by the sophisticated meth-
ods of our time. These days, we know the age and size of our universe quite well
as 13.7 billion years and a radius of 4.4 × 1026m. This estimation is supported
by the data of the WMAP spacecraft surveying the microwave background of the
universe [2] and, in the future, by the measurements from the Planck spacecraft
started in August 2009. On the other side of the scale there are fundamental
physical constants like the speed of light c, Planck's constant ~ and Newton's
gravitational constant G, which together, form a smallest length called Planck
length lP =

√
~G/c3 = 1.6 × 10−35m. We believe that at that scale gravity has

the same strength as the other forces and therefore a quantum theory of grav-
ity is needed. This implies that space-time itself has to be quantized at that
length. So the scale of our universe spreads over about 61 powers of ten meters.
With our advanced telescopes we are able to observe the universe almost to its
full extent but on the other end of the scale in the tiny realms we are not that
lucky. The best microscopes we have built produced energies of about 1 TeV
so far and even our newest gadget, the LHC, will increase this number only by
one power of ten. One TeV corresponds to a length of about 10−19m and on the
16 scales which are smaller than that we have to speculate mostly, although we
can detect particles with higher energies in cosmic rays. But those particles are
to rare to form a good picture of what happens [3]. There are several uncon-
�rmed theories for a quantum gravity from which string theory gets the most
attention. In certain e�ective regimes one can �nd non-commutative aspects of
the string [4]. Other theories are loop quantum gravity and non-commutative
geometry itself. A more mathematical point of view for non-commutative geom-
etry laying the basis for non-commutative physics can be found in the work of
A. Connes [5, 6]. Another motivation for non-commutative geometry comes from

1



2 CHAPTER 1. INTRODUCTION

the physics of high external �elds and here, especially, from the quantum Hall
e�ect which resists a commutative explanation and therefore it is hoped, that
non-commutative methods help solving the problem here [7]. Finally, it should
be said that even when one quantizes the Landau problem of a point-like charged
particle in an external magnetic �eld one encounters a non-commutative structure
of the spatial operators and the momentum operators respectively. This shows
that non-commutativity is more common than may be thought in the �rst place.

Our current standard model is a quantum theory of �elds or quantum �eld
theory (QFT) and is able to explain most of the e�ects of three of the four
fundamental forces in nature with one theory. The lack of gravitational e�ects
and several other problems such as the up to now only postulated Higgs boson or
the matter-antimatter asymmetry in the universe show, that this model is not the
theory of everything (ToE) we are looking for, nor the grand uni�ed theory (GUT)
which should explain all the e�ects of the strong, weak and electromagnetical
interaction and give an explanation for the parameters now only measurable
in experiments. Nevertheless, the QFT we use today to describe one of the
fundamental interactions at a time work quite well but have some problems too.
They predict a lot of di�erent particles and one gets the impression that there have
to be some more basic building blocks beneath. Another major problem are the
ultraviolet divergences which emerge in the calculations of loop corrections due
to the integrations over inner momenta. To overcome this problem, one idea was
to introduce a non-commutative space-time. It was hoped that non-commuting
coordinates would avoid the UV divergences. But it got even worse because in
addition to the UV divergences already present, unexpected divergences occurred
at the other end of the spectrum at very small momenta. So from the UV problem
in commutative QFT one got to the UV/IR mixing problem in non-commutative
(NC)QFT. The theory is not renormalizable because the IR divergence is of a
non-renormalizable type. This leads to the question why the whole attempt was
not considered a failure and �led and forgotten. As said earlier, the arguments
for further investigations where strong because non-commutativity emerged in
several di�erent �elds and so people where looking for a way to work around the
divergences and the non-renormalizability.

Then came the breakthrough of Grosse and Wulkenhaar who added an ad-
ditional term to the non-commutative action which had the form of a harmonic
oscillator. Therefore, they got a di�erent propagator which was essentially the
so-called Mehler kernel. They could proof in the matrix base that the new action
leads to a renormalizable theory [8]. Now this proof has been con�rmed with sev-
eral other methods [9, 10]. But the renormalizability came with a price, namely
that they had to give up translation invariance. Even though the potential is
very small on physical grounds (it has not been measured yet) the theory can
still not be considered a free theory anymore. Furthermore, in the limit of a
commutative theory (θ → 0) the theory is singular. This model is now called the
Grosse-Wulkenhaar (GW) model and it was showed that its β function vanishes
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to all orders [11].
The idea of adding an extra term to the action to get a renormalizable theory

was taken over by Gurau et al. [1]. They came up with the solution to implant
the IR divergent behavior in the action and added a 1

p2 term to the action which
led to a propagator which goes to zero for very high and very low momenta. This
new theory does not destroy translation invariance like the GW model but it is
non-local. With the method of multiscale analysis they were able to prove that
their model is renormalizable to all orders of perturbation theory. However, it
does not show a Langmann-Szabo symmetry.

The goal of this diploma thesis is to calculate the lowest loop corrections
for the 1

p2 model with the standard methods using Feynman path integrals to
get real results for the perturbation theory. With these results a renormaliza-
tion to the �rst order is performed and the β functions of the parameters are
calculated. Furthermore, some thoughts regarding higher loop orders and the
principal mechanism of how the model produces �nite graphs is added. Major
parts of this thesis are included in a paper published in the �Journal of High
Energy Physics� (JHEP) together with Daniel Blaschke, François Gieres, Erwin
Kornberger, Manfred Schweda and René Sedmik [12].

There have been recent attempts, amongst others here at the Vienna Univer-
sity of Technology (VUT), to transfer both theories, the GW and the 1

p2 model,
to gauge theories. The many �elds necessary make this a rather di�cult task
since there are many vertices and even to one loop order an almost overwhelming
number of corrections. Other occurring problems are the vacua which are not
zero because the tadpole graphs do not vanish. Many of the calculations were
done with the help of a computer algebra system to reduce the workload and
avoid errors. See [13, 14, 15, 16, 17, 18] for more informations.

1.2 Conventions

The main subject of this thesis is a four dimensional scalar theory (φ4 theory)
in an Euclidean space. Greek indices run from one to four if not speci�ed oth-
erwise explicitly. As usual, the Einstein summation convention is used for the
calculations if not stated otherwise. In Euclidean space, there are no co- and
contravariant vectors and, therefore, the position of the indices is not important

4∑
µ=1

AµB
µ ≡ AµBµ ≡ AµBµ . (1.1)

The di�erential operator is written in the form

∂µ ≡ ∂

∂xµ

. (1.2)
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Furthermore, the quabla sign is used for a double di�erentiation regardless if it
is in Euclidean or Minkowski space

� := ∂µ∂µ . (1.3)

If an integral sign with no interval is given, it is meant to be on an interval from
−∞ to +∞. Otherwise the interval is written as usual. In this work a system
of natural units is chosen where c = ~ = 1. This leads to a theory where energy
and mass have the same units.

1.3 Organization of this Thesis

In the �rst part of this thesis the framework of NCQFT is explained and the rules
for calculations are introduced. The next part deals with the naive model deriving
the propagator and vertex as well as showing an example of UV/IR mixing. After
that, the new model is introduced and the Feynman rules are calculated. The
next chapter brings the one loop corrections and the renormalization to the �rst
order including the β function and renormalization group, followed by a chapter
where higher loop orders are considered. Detailed calculations can be found in
the appendix.
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Chapter 2

Non-Commutative Quantum Field

Theory

2.1 Algebra

In standard quantum �eld theory it is well known that the operators for coordi-
nates and momenta do not commute. Non-commutative QFT pushes this further
and states that di�erent coordinate operators and di�erent momentum operators
do not commute, contrary to the commutative QFT where [x̂µ, x̂ν ] = [p̂µ, p̂ν ] = 0.
As a consequence of this, an object like a point does not exist anymore and one
can think of a box or cube as the smallest object in existence, although, of course,
the geometrical form is not speci�ed exactly. Hence this non-commutativity de-
forms space in Euclidean, or space-time in Minkowski space itself. The simplest
possible deformation in Euclidean space is described by the algebra

[x̂µ, x̂ν ] = iθµν ,

[θµν , x̂ρ] = 0 . (2.1)

The x̂ are the non-commutating coordinate operators and θµν is a constant, anti-
symmetric matrix of mass dimension −2 that de�nes the deformation. A common
choice in four dimensions is

θµν =


0 θ 0 0
−θ 0 0 0
0 0 0 θ
0 0 −θ 0

 , with θ ∈ R . (2.2)

Others forms of deformation are the so-called Lie-case

[x̂µ, x̂ν ] = iCµν
ρ x̂ρ , with Cµν

ρ ∈ C , (2.3)

or the quantum group space

[x̂µ, x̂ν ] = iR̂µν
ρσ x̂

ρx̂σ , with R̂µν
ρσ ∈ C . (2.4)

In this work only the simplest form of deformation (2.1) will be used.

5
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2.2 The Moyal-Weyl Star Product

Since it is more convenient to use �elds instead of operators, it seems like a good
idea to look for a �eld representation of the commutation relation (2.1). To �nd
this one has to �nd a substitution for the multiplication of �elds. This is the
Moyal-Weyl star product with the operator ?, which makes it possible to handle
the equations more or less in the same way as in commutative QFT. What is
needed is a correspondence

φ̂(x̂) ⇐⇒ φ(x) . (2.5)

The operator valued objects φ̂ can be written as

φ̂(x̂) =

ˆ
dα eiαµx̂µ

φ(α) ,

φ(α) =

ˆ
dx e−iαxφ(x) , (2.6)

with the Fourier integral theorem. Here α and x are real variables. For the
product of two operator valued objects one gets

φ̂1(x̂)φ̂2(x̂) =

ˆ
dα

ˆ
dβ eiαx̂eiβx̂φ1(α)φ2(β) . (2.7)

Since the exponents are operator valued one has to apply the Baker-Campbell-
Hausdor� formula to bring them together

eAeB = eA+B+ 1
2
[A,B] , if [A, [A,B]] = [B, [A,B]] = 0 . (2.8)

The commutator of the spatial operators is in this case a complex constant (2.1)
and, therefore, the precondition is always ful�lled. With the Baker-Campbell-
Hausdor� formula and inserting Eqn. (2.1) the result is

φ̂1(x̂)φ̂2(x̂) =

ˆ
dα

ˆ
dβ ei(α+β)x̂− i

2
αµβνθµν

φ1(α)φ2(β) . (2.9)

With this the next step is to de�ne the star product of two �elds and show that
it is the same as the multiplication of two operator valued objects

φ1(x) ? φ2(x) : = e
i
2
θµν∂x

µ∂y
νφ1(x)φ2(y)

∣∣∣
x=y

= e
i
2
θµν∂x

µ∂y
ν

ˆ
dα

ˆ
dβ ei(αx+βy)φ1(α)φ2(β)

∣∣∣∣
x=y

=

ˆ
dα

ˆ
dβ

(
1 +

i

2
θµν∂x

µ∂
y
ν + · · ·

)
ei(α+β)xφ1(α)φ2(β)

∣∣∣∣
x=y

=

ˆ
dα

ˆ
dβ ei(α+β)x− i

2
θµναµβνφ1(α)φ2(β) . (2.10)
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In comparing this with Eqn. (2.9) one can see the correspondence of those two
equations

φ̂1(x̂)φ̂2(x̂) ⇐⇒ φ1(x) ? φ2(x) . (2.11)

The result is a representation of the commutator (2.1) in normal commutative
space-time coordinates but with a deformed product

[xµ ?, xν ] = xµ ? xν − xν ? xµ = iθµν . (2.12)

For later calculations it is good to know what the star product of two exponentials
is.

eikx ? eik′x = e
i
2
θµν∂x

µ∂y
ν eikxeik′y

∣∣∣
x=y

=

(
1 +

i

2
θµν∂x

µ∂
y
ν + · · ·

)
eikxeik′y

∣∣∣∣
x=y

= ei(k+k′)x − i

2
θµνkµk

′
νe

i(k+k′)x + · · ·

= ei(k+k′)x

(
1 − i

2
θµνkµk

′
ν + · · ·

)
= ei(k+k′)xe−

i
2
kµθµνk′

ν . (2.13)

Triple and higher products can be derived in the following way

(φ1 ? φ2 ? φ3)(x) =

ˆ
dα

ˆ
dβ

ˆ
dγ
(
eiαx ? eiβx ? eiγx

)
φ1(α)φ2(β)φ3(γ) . (2.14)

The star product of the exponentials gives1

eiαx ? eiβx ? eiγx =
(
ei(α+β)xe−

i
2
αθβ
)
? eiγx

= e−
i
2
αθβ
(
ei(α+β)x ? eiγx

)
= ei(α+β+γ)xe−

i
2
αθβe−

i
2
(α+β)θγ , (2.15)

and this leads to

(φ1 ? φ2 ? φ3)(x) =

ˆ
dα1

ˆ
dα2

ˆ
dα3 ei(α1+α2+α3)xe

− i
2

3
P

i<j
αiθαj

φ1(α1)φ2(α2)φ3(α3).

(2.16)
Without proof the formula for higher products is

φ1(x) ? · · · ? φn(x) =

ˆ
dα1 · · ·

ˆ
dαn e

i
n

P

i
αix

e
− i

2

n
P

i<j
αiθαj

n∏
i=1

φi(αi) (2.17)

as can be veri�ed easily.

1The short form αθβ stands for αµθµνβν .



8 CHAPTER 2. NON-COMMUTATIVE QUANTUM FIELD THEORY

Properties of the Star Product

kµθ
µνk′ν is often written in the short form kθk′, k×k′ or kk̃′ where k̃µ = θµνk

ν . A
very important feature of the star product is that one can replace one star by an
ordinary multiplication under an integral. This has the e�ect that every bilinear
expression in the action is exactly the same as in standard commutative QFT.
The propagators of NCQFT are the same as the propagators of commutative
QFT. The di�erence between the two theories arises only from the vertices

ˆ
dnx φ1(x) ? φ2(x) =

ˆ
dnx φ1(x)φ2(x) . (2.18)

Proof:
ˆ

dnxφ1(x) ? φ2(x) =
1

(2π)2n

ˆ
dnx

ˆ
dnk1

ˆ
dnk2 ei(k1+k2)xφ̃1(k1)φ̃2(k2)e

− i
2
k1θk2

=
1

(2π)n

ˆ
dnk1

ˆ
dnk2 δ

(n)(k1 + k2)φ̃1(k1)φ̃2(k2)e
− i

2
k1θk2

=
1

(2π)n

ˆ
dnk1 φ̃1(k1)φ̃2(−k1)e

i
2
k1θk1

=
1

(2π)n

ˆ
dnk1 φ̃1(k1)φ̃2(−k1) .

k1θk1 vanishes because it represents a multiplication of a totally antisymmetric
matrix with a symmetric one which is always zero. Using again Fourier analysis
one gets from the last expression

ˆ
dnxφ1(x) ? φ2(x) =

1

(2π)n

ˆ
dnk1

ˆ
dnx

ˆ
dnx′ e−ik1(x−x′)φ1(x)φ2(x

′)

=

ˆ
dnx

ˆ
dnx′ δ(n)(x− x′)φ1(x)φ2(x

′)

=

ˆ
dnx φ1(x)φ2(x) , (2.19)

which �nishes the proof.
Furthermore, associativity also holds for the star product

[(f ? g) ? h] = [f ? (g ? h)] . (2.20)

Proof:

l.h.s:
ˆ

dα

ˆ
dβ

ˆ
dγ f(α)g(β)h(γ)ei(α+β+γ)xe−

i
2
αθβe−

i
2
(α+β)θγ ,

r.h.s:
ˆ

dα

ˆ
dβ

ˆ
dγ f(α)g(β)h(γ)ei(α+β+γ)xe−

i
2
βθγe−

i
2
(β+γ)θα . (2.21)
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Comparing the left with the right hand side �nishes the proof.
Another useful feature is that one can perform cyclic permutations under the
integral as can be showed with

ˆ
dx (f ? g) =

ˆ
dx fg =

ˆ
dx gf =

ˆ
dx (g ? f) . (2.22)

From this and with Eqn. (2.20) one can proof that cyclic permutations are al-
lowed. ˆ

dx ((f1 ? · · · ? fn−1) ? fn) =

ˆ
dx (fn ? (f1 ? · · · ? fn−1)) . (2.23)

The complex conjugation for the star product is de�ned as

(f ? g)∗ = g∗ ? f ∗ . (2.24)

For the calculations it is necessary to substitute every multiplication between
�elds in the commutative action with a star product. In bilinear terms under the
integral one can leave the multiplication as it is due to Eqn. (2.18).
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Chapter 3

The Naive Model

To get a non-commutative scalar quantum �eld theory in its easiest form one
simply takes the most basic commutative quantum �eld theory and makes the
necessary changes to incorporate the non-commutative formalism. This is done
by substituting the multiplications of the �eld operators with the star product
(2.10). Therefore, the transition to non-commutativity is easily done. The reason
that this simple non-commutative model is here referred to as the naive model
is that in this new model some new problems arise which are unknown in the
commutative theory. These problems make the theory non-renormalizable in
contrary to the standard scalar theory which, for example, is renormalizable. A
non-renormalizable theory with its divergences is pretty useless for tackling phys-
ical problems and, therefore, one has to modify the scalar theory when one wants
to work in a non-commutative environment. In this chapter the naive model is
treated to show the principal ways of calculating functions in a non-commutative
theory which leads to the reason of non-renormalizability, the notorious UV/IR
mixing.

3.1 The Action

The easiest way to get a non-commutative �eld theory is to simply take the
standard commutative action and substitute the multiplications of the �elds with
the star product (2.10). The action of this theory in coordinate space has the
form

S[φ] =

ˆ
d4x

(
1

2
∂µφ ? ∂µφ+

1

2
m2φ ? φ+

λ

4!
φ ? φ ? φ ? φ

)
. (3.1)

In the bilinear terms one can drop the star product and use a normal product as
shown in Eqn. (2.19). This gives

S[φ] =

ˆ
d4x

(
1

2
∂µφ∂µφ+

1

2
m2φ2 +

λ

4!
(φ ? φ)(φ ? φ)

)
. (3.2)

11



12 CHAPTER 3. THE NAIVE MODEL

3.2 General Remarks on Calculating Propagators

For calculating scattering amplitudes of interacting particles in a perturbation
theory one uses Feynman diagrams as an intuitive picture of the processes that
happen in a certain order. Feynman diagrams are constructed using so-called
propagators which represent a moving particle and vertices which stand for inter-
actions between particles. Out of these building blocks one can construct more
and more complicated graphs for corrections to the unperturbed propagator or
vertex, which generally means that the graphs have a rising number of inner loops.
For this scalar theory there are only two building blocks, namely one propagator
and one vertex, from which every graph is constructed.

The propagator which is the free two point Green function is de�ned [19, 20]
as the time ordered vacuum expectation value of two free �elds,

∆ab(x, y) = 〈0|Tφa(x)φb(y)|0〉(0) . (3.3)

Here, φ stands for an arbitrary �eld and in this case even a free �eld as the
subscript (0) suggests. a and b are two generic quantum con�gurations and T
is the time ordering operator which ensures that the �eld with the later time
coordinate is left of the one with the earlier time

TA(t1)B(t2) =

{
A(t1)B(t2) , t1 > t2 ,

B(t2)A(t1) , t2 > t1 .
(3.4)

A and B are arbitrary time dependent operators in this case. The time ordering
operator is not necessary in Euclidean space but only in Minkowski space and so
it is omitted in the following equations. There exists a generating functional for
all Green functions in Euclidean space which is de�ned as the vacuum to vacuum
transition amplitude

Z[J ] = 〈0|e−
´

d4xJa(x)φa(x)|0〉 , (3.5)

where J(x) is the classical unquantized source of the �eld operator φ(x). The
sources are Schwartz fast decreasing C∞ test functions. This functional can also
be written as

Z[J ] =

´
D[φ]e−S−

´
d4xJa(x)φa(x)´

D[φ]e−S
. (3.6)

The denominator in this equation is used to get rid of the unphysical vacuum
graphs with no external legs. It is therefore a normalization factor. By varying
Eqn. (3.5) twice with respect to the sources and then setting them equal to zero
one gets

δ2Z[J ]

δJa(x)δJb(y)

∣∣∣∣
J=0

= 〈0|φa(x)φb(y)|0〉 . (3.7)

With the generating functional Z[J ] one gets not only results describing propa-
gating and interacting particles but also unphysical, so-called disconnected graphs
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which are, for example, closed loops. These disconnected graphs would also lead
to divergences and to avoid this one introduces the generating functional for the
connected Green functions by

Z[J ] = e−Zc[J ] =

ˆ
D[φ]e−S[φ]+

´
d4xJa(x)φa(x) . (3.8)

With the generating functional for the connected Green functions one can make
a Legendre transformation

Γ[φcl] =

(
Zc[J ] −

ˆ
d4xJa(x)φ

cl
a (x)

)∣∣∣∣
Ja=Ja[φcl]

, (3.9)

with the inverse transformation

Zc[J ] =

(
Γ[φcl] +

ˆ
d4xJa(x)φ

cl
a (x)

)∣∣∣∣
φcl

a =φcl
a [J ]

. (3.10)

The classical �elds are Schwartz fast decreasing C∞ test functions just like the
sources. They are the vacuum expectation values of the �eld operators and
de�ned as

φcl
a =

δZc[J ]

δJa(x)
, with φcl

a (x) = 〈0|φ(x)|0〉 . (3.11)

When one makes the functional derivative of the vertex functional Γ[φcl] with
respect to the �eld one gets

δΓ[φcl]

δφcl(y)
=

ˆ
d4x

δZc

δJ(x)

δJ(x)

δφcl(y)
−
ˆ

d4x

(
δJ(x)

δφcl(y)
φcl(x) + J(x)δ4(x− y)

)
=

ˆ
d4x

(
δZc[J ]

δJ(x)
− φcl(x)

)
δJ(x)

δφcl(y)
− J(y) .

The argument of the integral is zero due to the de�nition of the �eld and so one
gets the �nal result

δΓ[φcl]

δφcl(y)
= −J(y) . (3.12)

Written as a formal power series in ~ the vertex functional Γ is expanded into
the contributions from the di�erent loop orders n

Γ(φ) =
∞∑

n=0

~nΓ(n)(φ) . (3.13)

The tree level (zeroth) order of this expansion Γ(0) is equal to the classical action
S[φ] and thus it is possible to calculate the sources from it

δS

δφcl
a

= −Ja(x) . (3.14)
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For the calculation of the propagators it is possible to show that instead of Z[J ]
one can use the generating functional of the connected Green functions with a
changed sign,

∆ab(x, y) =
δ2Z[J ]

δJa(x)δJb(y)

∣∣∣∣
J=0

=
δ2e−Zc[J ]

δJa(x)δJb(y)

∣∣∣∣
J=0

=
δ

δJa(x)

(
− Zc[J ]

δJb(y)
e−Zc[J ]

)∣∣∣∣
J=0

= − δ2Zc

δJa(x)δJb(y)
e−Zc[J ]

∣∣∣∣
J=0

+
δZc[J ]

δJa(x)

δZc[J ]

δJb(y)
e−Zc[J ]

∣∣∣∣
J=0

. (3.15)

The second part of this expression leads to unphysical one point functions called
tadpoles. The contributions of those are normally set to zero and, therefore, the
term is dropped at this point. The normalization of Zc together with the fact
that the sources are set to zero kills the exponential and what is left is the desired
result

∆ab(x, y) = − δ2Zc

δJa(x)δJb(y)
= −δφ

cl
b (y)

δJa(x)
. (3.16)

To calculate the propagator one starts with the bilinear action and varies it with
respect to the �elds in order to get an equation for the source. This equation
is then furthermore varied with respect to the source and gives the propagator.
Working with a scalar theory this is pretty simple in this thesis as there is only
one type of �eld and one corresponding source. In gauge theories with many
di�erent �elds and sources this task can become rather complex.

3.2.1 Propagator

The bilinear part of the action gives the propagator. Due to the feature of the
star product that one can drop one star under the integral the propagator in
the non-commutative theory is the same as in commutative theory. The starting

p

Figure 3.1: The propagator in momentum space.

point is the bilinear part of the action

Sbi[φ] =

ˆ
d4x

(
1

2
∂µφ ? ∂µφ+

1

2
m2φ ? φ

)
=

ˆ
d4x

(
1

2
∂µφ∂µφ+

1

2
m2φ2

)
. (3.17)
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By a Fourier transformation one gets the bilinear action in momentum space,1

Sbi[φ] =

ˆ
d4x

ˆ
d4p

(2π)4

ˆ
d4p′

(2π)4

(
1
2
∂µ

(
φ(p)eipx

)
∂µ

(
φ(p′)eip′x

)
+ m2

2
φ(p)φ(p′)ei(p+p′)x

)
= −
ˆ

d4x

ˆ
d4p

(2π)4

ˆ
d4p′

(2π)4

(
pp′

2
φ(p)φ(p′) +

m2

2
φ(p)φ(p′)

)
ei(p+p′)x

= −
ˆ

d4p

(2π)4

ˆ
d4p′

(2π)4

(
pp′

2
φ(p)φ(p′) +

m2

2
φ(p)φ(p′)

)
δ(4)(p+ p′)

=

ˆ
d4p′

(2π)4

(
p′2

2
φ(p′)φ(−p′) +

m2

2
φ(p′)φ(−p′)

)
. (3.18)

To get the propagator one has to vary the bilinear action with respect to the
�elds,

δSbi

δφ(p)
=

δ

δφ(p)

ˆ
d4p′

(2π)4

(
p′2

2
φ(p′)φ(−p′) +

m2

2
φ(p′)φ(−p′)

)
=

ˆ
d4p′

(2π)4 δ
(4)(p− p′)

(
p′2φ(−p′) +m2φ(−p′)

)
=
(
p2 +m2

)
φ(−p) = −j(−p) . (3.19)

From this one gets φ(−p) = − j(−p)
p2+m2 and with a second variation, this time with

respect to the source, the propagator,

∆(p, p′) = − δφ(−p)
δj(−p′)

=
1

p2 +m2
δ(4)(p− p′) . (3.20)

The delta functional is dropped at this time as it only represents the momentum
conservation, which is understood, and what is left is the propagator

G(p) =
1

p2 +m2
. (3.21)

3.3 General Remarks on Calculating Vertices

Given their existence, aside from two point functions one can also calculate n
point functions with n > 2. When one does that, one gets the unconnected
functions, where not all the external points are somehow connected with each
other and the connected functions, which are of interest as the so-called vertices.
An unconnected four point function would be, for example, built up from two
two point functions shown left in Fig. 3.2. Using the generating functional for

1Note that here the same symbol is used for the �eld in momentum as well as in coordinate
space.
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p2

p1

p4

p3p2

p1

Figure 3.2: An unconnected and a connected 4-point function.

the connected functions Zc[φ] one gets only the connected functions. For a four
point function this would be only the vertex shown right in Fig. 3.3. When one
is just interested in the vertex itself without the external propagators one has to
�nd a mechanism to amputate them. Following [19], this is done by introducing
an expression which can be seen as an inverse of a propagator so thatˆ

dz∆c(x, z)K(z, y) = δ(x− y) . (3.22)

K is called the kernel and is de�ned as

K(x, y) =
δ2Γ[φcl]

δφcl(x)δφcl(y)
. (3.23)

Hence, one can proof Eqn. (3.22)ˆ
d4z∆(x, z)K(z, y) = −

ˆ
d4z

δ2Zc[J ]

δJ(x)δJ(z)

δ2Γ[φcl]

δφcl(z)δφcl(y)

=

ˆ
d4z

δφcl(x)

δJ(z)

δJ(z)

δφcl(y)

= δ4(x− y) . (3.24)

This equation will now be varied with respect to J(x′′) with the rewritten operator

δ

δJ(x′′)
=

ˆ
d4z′′

δφcl(z′′)

δJ(x′′)

δ

δφcl(z′′)
= −
ˆ

d4z′′∆(x′′, z′′)
δ

δφcl(z′′)
, (3.25)

to get
ˆ

d4z
δ3Zc[J ]

δJ(x′′)δJ(x)δJ(z)
K(z, y)

−
ˆ

d4z

ˆ
d4z′′

δ2Zc[J ]

δJ(x)δJ(z)
∆(x′′, z′′)

δ3Γ[φcl]

δφcl(z′′)δφcl(z)δφcl(y)
= 0 . (3.26)

Inserting the propagator gives
ˆ

d4z
δ3Zc[J ]

δJ(x′′)δJ(x)δJ(z)
K(z, y)

+

ˆ
d4z

ˆ
d4z′′∆(x, z)∆(x′′, z′′)

δ3Γ[φcl]

δφcl(z′′)δφcl(z)δφcl(y)
= 0 . (3.27)
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When one inserts a propagator ∆(x′, y) on both sides of this equation and inte-
grates over y one gets
ˆ

d4y

ˆ
d4z

δ3Zc[J ]

δJ(x′′)δJ(x)δJ(z)
∆(x′, y)K(z, y)

+

ˆ
d4y

ˆ
d4z

ˆ
d4z′′∆(x′, y)∆(x, z)∆(x′′, z′′)

δ3Γ[φcl]

δφcl(z′′)δφcl(z)δφcl(y)
= 0 ,

(3.28)

and this gives with Eqn. (3.22)

δ3Zc[J ]

δJ(x′′)δJ(x)δJ(x′)
=

= −
ˆ

d4y

ˆ
d4z

ˆ
d4z′′∆(x′, y)∆(x, z)∆(x′′, z′′)

δ3Γ[φcl]

δφcl(z′′)δφcl(z)δφcl(y)
. (3.29)

This is the desired result, namely that a connected three point function is the
same as a vertex function with external propagators. The inverse of this function
has the form

δ3Γ[φcl]

δφcl(z′′)δφcl(z)δφcl(y)
=

= −
ˆ

d4x

ˆ
d4x′
ˆ

d4x′′K(x′, y)K(x, z)K(x′′, z′′)
δ3Zc[J ]

δJ(x′′)δJ(x)δJ(x′)
. (3.30)

This result then states that the vertex is a connected three point function without
the external propagators. For the scalar model there exist no three point functions
but only one connected four point function. It is easy to see that a four vertex
can be generated in the same manner as shown by just one additional derivative.
Generally, one can create n-point functions by variating enough times with respect
to the sources and the general formula for the vertex function is

V = − δnΓ[φcl]

δφcl(x1) . . . δφcl(xn)
. (3.31)

As already mentioned in the section of the propagator, Γ can be substituted by
the action. Here it is su�cient to use the interaction part of the action as it is the
only one which contains enough �elds for the number of variations. The result
for the vertex in the scalar model is therefore

V φ4

= − δ4Sint

δφ(x1)δφ(x2)δφ(x3)δφ(xn)
, (3.32)

or in momentum space

V φ4

(p1, p2, p3, p4) = −(2π)16 δ4Sint

δφ̃(−p1)δφ̃(−p2)δφ̃(−p3)δφ̃(−p4)
. (3.33)
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3.3.1 Vertex

p4

p3p2

p1

Figure 3.3: The vertex.

The interaction of �elds can be calculated from the higher than bilinear parts
of the action. Here this is just one term,

Sint[φ] =

ˆ
d4x

λ

4!
φ ? φ ? φ ? φ

=

ˆ
d4x

λ

4!
(φ ? φ) (φ ? φ)

=
λ

4!

ˆ
d4x

ˆ
d4k1..4

(2π)16
ei(k1+k2+k3+k4)xφ̃(k1)φ̃(k2)e

−i
k1×k2

2 φ̃(k3)φ̃(k4)e
−i

k3×k4
2

=
λ

4!(2π)12

ˆ
d4k1..4 δ(k1 + k2 + k3 + k4)

× φ̃(k1)φ̃(k2)φ̃(k3)φ̃(k4)e
− i

2
(k1×k2+k3×k4) . (3.34)

Taking the functional derivatives of this part of the action gives the vertex. It
is not necessary to symmetrize the action when one makes every permutation
during the derivation. Due to the four functional derivations the calculation is
rather lengthy and can be found in the Appendix A.1. The result for the vertex
is

V φ4

(p1, p2, p3, p4) = − δ

δφ̃(−p1)

δ

δφ̃(−p2)

δ

δφ̃(−p3)

δ

δφ̃(−p4)
(2π)16Sint[φ̃]

= − δ
δφ̃(−p1)

δ
δφ̃(−p2)

δ
δφ̃(−p3)

δ
δφ̃(−p4)

λ
4!
(2π)4

ˆ
d4k1..4 δ

4(k1 + k2 + k3 + k4)

φ̃(k1)φ̃(k2)φ̃(k3)φ̃(k4)e
− i

2
(k1×k2+k3×k4)

= −λ
3
(2π)4δ4(p1 + p2 + p3 + p4)(

cos p1×p2

2
cos p3×p4

2
+ cos p1×p3

2
cos p2×p4

2
+ cos p1×p4

2
cos p2×p3

2

)
. (3.35)

The delta functional in this result ensures the momentum conservation. If one lets
|θ| go to zero the vertex looses its phase factors and one recovers the commutative
vertex.
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3.4 UV/IR Mixing

The naive non-commutative model has a problem not known in commutative
QFT. In standard QFT a loop graph shows a quadratic UV divergent behavior
and has to be renormalized. This is not possible in NCQFT because of the fact
that not only is there a term with UV divergence as in standard QFT but also
a term with an IR divergence which does not appear in the normal theory. A
good method to show this is to calculate the one loop correction for the two
point function of the model. The graph without external legs is composed from
a vertex and a propagator connecting two legs of the vertex (see Fig. 3.4),

p p

k

p

k

Figure 3.4: The planar and non-planar one loop two point functions.

Π(p) = −1

2

ˆ
d4k

λ

3

1

(2π)4

1

k2 +m2

(
cos

p× (−k)
2

cos
k × (−p)

2

+ cos
p× k

2
cos

(−k) × (−p)
2

+ cos
p× (−p)

2
cos

(−k) × k

2

)
.

The factor 1
2
is a symmetry factor necessary because of the mirror symmetry

of the graph. The last term gives one because k × k is a multiplication of a
symmetric and an antisymmetric matrix which is zero. The other two terms can
be added because the cosine is a symmetric function. This leads to

Π(p) = − λ

6(2π)4

ˆ
d4k

1

k2 +m2

(
2 cos2 p× k

2
+ 1

)
.

The square of the cosine can be split up in two terms using cos2 p×k
2

= cos2 k×p
2

=
1
2
cos kp̃+ 1

2
with p̃ = θµνp

ν and leads to the result

Π(p) = − λ

6(2π)4

ˆ
d4k

1

k2 +m2
(cos kp̃+ 2) .

Writing the cosine with the help of exponential functions, that means with
cos kp̃ = 1

2

(
eikp̃ + e−ikp̃

)
, one arrives at the �nal result

Π(p) = − λ

12(2π)4

ˆ
d4k

∑
η=±1

eiηkp̃

k2 +m2
− λ

3(2π)4

ˆ
d4k

1

k2 +m2
. (3.36)
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The second term is just the same as in commutative theory and known to be UV
divergent. It is called the planar graph. The �rst term is called the non-planar
graph because it has an exponential factor which is expected to act as a damping
for high momenta because of fast oscillations. This indeed works but it is also
responsible for the IR divergent behavior of the theory. Both graphs are depicted
in Fig. 3.4. The generic integral which will be solved now has the form

I(p) =

ˆ
d4k

1

(2π)4

eiηkp̃

k2 +m2
. (3.37)

The �rst step is to use Schwinger parameterization to get rid of the fraction and
replace it by something which can be integrated more easily. On the downside
one gets a second integral to solve instead.

1

A
=

∞̂

0

dα e−αA , ∀A 6= 0 . (3.38)

With the Schwinger parameterization the integrand becomes an all exponential
expression.

I(p) =
1

(2π)4

ˆ
d4k

∞̂

0

dα e−α(k2+m2)+iηkp̃

=
1

(2π)4

ˆ
d4k

∞̂

0

dα e−αk2+iηkp̃−αm2

.

The exponent can be written as a full square with the goal of substituting the
integration variable and one gets (with η2 = 1)

I(p) =
1

(2π)4

ˆ
d4k

∞̂

0

dα e
−α

„

k2− iηkp̃
α

− p̃2

4α2

«

− p̃2

4α
−αm2

.

Substituting k′ = k − iηp̃
2α

leaves the di�erential unchanged as dk′ = dk and
the resulting Gaussian integral can be solved leaving only the integral over the
Schwinger parameter α.

I(p) =
1

(2π)4

∞̂

0

dα

ˆ
d4k′e−αk′2− p̃2

4α
−αm2

=
1

(4π)2

∞̂

0

dα
1

α2
e−

p̃2

4α
−αm2

. (3.39)
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A solution for this integral can be found, for example, in the book of Gradshteyn
[21] on p.340 (3.471/9),

∞̂

0

xν−1e−
β
x
−γxdx = 2

(
β

γ

) ν
2

Kν

(
2
√
βγ
)

with Re β > 0, Re γ > 0 . (3.40)

The Kν are the modi�ed Bessel functions of the second kind and given as (Grad-
shteyn p.961 (8.446) [21])

Kν(z) =
1

2

ν−1∑
k=0

(−1)k (ν − k − 1)!

k!
(

z
2

)ν−2k

+ (−1)ν+1

∞∑
k=0

(
z
2

)ν+2k

k!(ν + k)!

[
ln
z

2
− 1

2
ψ(k + 1) − 1

2
ψ(ν + k + 1)

]
, (3.41)

where the ψ(ν + 1) are Euler-Psi functions given as ([21] p.945 (8.365/4))

ψ(ν + 1) = −γE +
ν∑

k=1

1

k
, (3.42)

with γE = 0.5772 · · · the Euler-Mascheroni constant. The Bessel functions are
symmetric which means K−ν = Kν . Here ν is −1 and thus K1 is used,

K1(z) =
1

z
+

∞∑
k=0

(
z
2

)2k+1

k!(k + 1)!

[
ln
z

2
+ γE −

k∑
l=1

1

l
− 1

2(k + 1)

]

=
1

z
+
z

2

(
ln
z

2
+ γE − 1

2

)
+
z3

16

(
ln
z

2
+ γE − 5

4

)
+ O

(
z5
)
. (3.43)

The result for the generic integral is

I(p) =
2

(4π)2

(
4m2

p̃2

) 1
2

K1

(
2

√
p̃2

4
m2

)
=

1

(2π)2

m

p̃
K1(p̃m) . (3.44)

Inserting the expansion for small arguments of the Bessel functions to the �rst
order (3.43) gives

I(p) ≈ 1

(2π)2

m

p̃

[
1

p̃m
+
p̃m

2

(
ln
(

p̃m
2

)
+ γE − 1

2

)]
=

1

(2π)2

[
1

p̃2
+
m2

2

(
ln
(

p̃m
2

)
+ γE − 1

2

)]
. (3.45)

This expression has a mass dimension of two which normally indicates a quadratic
divergence but the exponential phase factor made it �nite. However, if one looks
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at small external momenta (that is p̃→ 0), one �nds that the �rst term diverges.
The planar graph, on the other hand, is UV divergent as already mentioned. So
the one loop correction for the two point graph is UV as well as IR divergent. In
addition to the UV divergence already present in commutative theories, new di-
vergences emerge coming from the non-planar graph. This is the famous UV/IR
mixing problem of this theory which makes it not renormalizable. The IR singu-
larity is a problem for higher order calculations because of the integrations of the
inner loops which include the value p = 0. When one looks at the exponential fac-
tor of the non-planar graph responsible for the damping of the UV divergences one
can see that these divergences are mapped to the infrared region because when
|θ| or p2 go to zero the exponential factor vanishes and leaves a planar graph
which is UV divergent. A physical interpretation of the whole problem can be
found when looking at what non-commutativity means. The non-commutativity
relation between spacial directions or between di�erent momenta represents an
uncertainty relation which leads to a mixing of long and short distances or high
and low momenta because whenever a very long or short distance occurs in one
direction, another direction inevitably has to have a distance opposite to the �rst.
The same happens for momenta where a high momentum is accompanied by a
low momentum and hence the UV/IR mixing arises.



Chapter 4

The 1
p2 Model

4.1 Renormalizable Models

The naive model is not renormalizable and, therefore, some e�ort was put in the
search of an extension of the model to a renormalizable one. Recently, there have
been three such models proven to be renormalizable. One was put forward by
Grosse and Wulkenhaar [22, 23] who added a term

Sosc[φ] =

ˆ
d4x

Ω2

2
(x̃µφ) ? (x̃µφ) , with x̃µ = 2θ−1

µν xν , (4.1)

to the action (3.2). This additional oscillator potential, with Ω being a dimen-
sionless constant parameter, renders the theory renormalizable. The propagator
is essentially the Mehler kernel which is described in [24] and [25] for one dimen-
sion and in [26] for more than one dimension. However, the extension has the
major problem that it obviously breaks translation invariance, although only by
a tiny bit as the oscillator potential is very weak. Another extension has been
proposed by Grosse and Vignes-Tourneret [27]. They added a non-local term

SGV [φ] =
µ

θ4

ˆ
d4xφ(x)

ˆ
d4x′φ(x′) , (4.2)

with µ being a parameter of mass dimension −2, to the action (3.2). This gives
a translation invariant φ4 theory but it is only renormalizable in one direction
which makes it not very useful for physical models. Gurau, Magnen, Rivasseau
and Tanasa [1] made the third proposal which consists of adding another non-local
term

S1/p2 [φ] = −1

2

ˆ
d4x φ ?

a′2

θ2�φ , (4.3)

to the action of the naive model (3.2) with the intention that this term acts as
a, sort of, counterterm for the IR divergence. This new theory is also translation
invariant and will be investigated in more detail in the following chapters.

23
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4.2 The Action

To avoid problems with the UV/IR mixing one adds an additional term to the
action. This term is basically a 1

�̃ with �̃ = θ2�. At this point it seems odd to
put a derivation in the denominator as this operation seems to be not de�ned1.
The Fourier transformation of the expression gives some clari�cation here as the
quabla operator becomes a squared momentum which is known how to handle.
The action of the new model is2 [1]:

S[φ] =

ˆ
d4x

(
1

2
∂µφ ? ∂

µφ+
1

2
m2φ ? φ− 1

2
φ ?

a′2

θ2�φ+
λ

4!
φ ? φ ? φ ? φ

)
. (4.4)

As is known already the star in the bilinear terms can be dropped,

S[φ] =

ˆ
d4x

(
1

2
∂µφ∂

µφ+
1

2
m2φ2 − 1

2
φ
a′2

θ2�φ+
λ

4!
φ ? φ ? φ ? φ

)
. (4.5)

Here, a′ is just a dimensionless parameter and to shorten the notation a′ and θ
are combined to a new parameter a = a′

θ
. When looking at the additional term

in momentum space one �nds

S1/p2 [φ] = −1

2

ˆ
d4x

ˆ
d4p

(2π)4

ˆ
d4p′

(2π)4
φ(p)eipxa

2

�
(
φ(p′)eip′x

)
=

1

2

ˆ
d4x

ˆ
d4p

(2π)4

ˆ
d4p′

(2π)4
φ(p)

a2

p′2
φ(p′)ei(p+p′)x

=
1

2

ˆ
d4p

(2π)4

ˆ
d4p′

(2π)4
φ(p)

a2

p′2
φ(p′)δ(4)(p+ p′)

=
1

2

ˆ
d4p

(2π)4
φ(p)

a2

p2
φ(−p) . (4.6)

In Table 4.1 the mass dimensions of the coe�cients are listed. The new term

φ m a θ a′

1 1 2 -2 0

Table 4.1: Mass dimensions.

contains 1
p2 which happens to be also a result of the one loop correction for the

1The derivation in the denominator is seen here as an inverse of the usual derivation which
means �x

1
�x′

∝ δ(4)(x − x′).
2It has to be mentioned at this point that, as terms with ��̃ have mass dimension zero, it

is in principle possible to add such terms with arbitrary powers of the operator to the action.
However, they are usually forbidden by power counting or renormalization conditions.
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propagator of the naive model (3.2). Thus, it is hoped that, with a proper value
for the parameter a, this inconvenient behavior, namely the IR divergence of
the propagator, can be suppressed and that the action gives a renormalizable
theory. This has been proved by Gurau et al. in [1] to arbitrary orders with the
so-called Multiscale Analysis which looks at di�erent energy scales of the graph
and �slices� it in a way that the separate parts are all �nite. For each slice an
upper bound can be found and with it a general bound for the amplitudes of
arbitrary Feynman graphs can be derived. With a recursive scheme starting at
the highest energies one can get the �eld of the next lower energy level at any
recursion step and �nally arrives at the renormalized e�ective action. More on
the topic of Multiscale Analysis can be found in the books of Rivasseau [3, 28]
and, specially for the 1

p2 model, in the paper of Gurau et al. [1]. Letting θ go
to zero to get a commutative limit is possible but not trivial as one has to add
several auxiliary terms to the commutative action which vanish for θ 6= 0 [29].

4.3 Feynman Rules

In this work a more traditional form of renormalization than the Multiscale Anal-
ysis is used by calculating loop graphs order by order and then renormalizing
them. But before one can start with the loops one has to have the Feynman rules
of the model �rst. As it is a scalar model there is only one propagator and one
vertex to calculate. Details on deriving propagators and vertices can be found in
the Sections 3.2 and 3.3.

4.3.1 Propagator

p

Figure 4.1: The propagator.

The extra term in the action gives a di�erent propagator as in the naive model
(3.2) and, therefore, also as in the commutative theory. The bilinear part of the
action, which is responsible for the better behavior of the model, reads

Sbi[φ] =

ˆ
d4x

(
1

2
∂µφ∂

µφ+
1

2
m2φ2 − 1

2
φ
a2

�φ

)
. (4.7)

From this the further calculation is done like in the normal case. The source is
gained by a variation with respect to φ of the action Sbi which at tree level is the
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same as Γ,

δSbi

δφ(p)
=

δ

δφ(p)

ˆ
d4p′

(2π)4

(
p′2

2
φ(p′)φ(−p′) +

m2

2
φ(p′)φ(−p′) +

1

2
φ(p)

a2

p2
φ(−p)

)
=

ˆ
d4p′

(2π)4
δ(4)(p− p′)

(
p′2φ(−p′) +m2φ(−p′) +

a2

p′2
φ(−p′)

)
=

(
p2 +m2 +

a2

p2

)
φ(−p) = −j(−p) . (4.8)

This is then solved for the �eld φ(−p) = − j(−p)

p2+m2+a2

p2

and the propagator is calcu-

lated with a second variation with respect to the source,

∆(p, p′) = − δφ(−p)
δj(−p′)

=
1

p2 +m2 + a2

p2

δ(4)(p− p′) . (4.9)

As a last step the delta functional representing the momentum conservation can
be dropped giving the propagator

G(p) =
1

p2 +m2 + a2

p2

. (4.10)

The propagator is the only di�erence between the new model with the 1

�̃ term
and the naive model. It is therefore the reason for the better UV/IR behavior of
the theory and for its renormalizability. One can see that the propagator becomes
zero for p → 0 as well as for p → ∞ and it even stays �nite for vanishing mass
m. For later calculations it will be useful to write the propagator in a di�erent
form,

1

p2 +m2 + a2

p2

=
p2

p4 +m2p2 + a′2

θ2

=
p2

p4 +m2p2 + m4

4︸ ︷︷ ︸
“

p2+m2

2

”2

−

m4

4
− a′2

θ2︸ ︷︷ ︸
M4


=

p2(
p2 + m2

2
−M2

) (
p2 + m2

2
+M2

)
=

1

2

[
1

p2+m2

2
−M2

+ 1

p2+m2

2
+M2

−m2 1
“

p2+m2

2
−M2

”“

p2+m2

2
+M2

”

]
. (4.11)

The third term can be rewritten furthermore as

=
1

2

[
1

p2+m2

2
−M2

+ 1

p2+m2

2
+M2

+
m2

2M2

(
1

p2+m2

2
+M2

− 1

p2+ m2

2
−M2

)]
=

1

2

∑
ζ=±1

1 + ζ m2

2M2

p2 + m2

2
+ ζM2

. (4.12)
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Here the new mass M4 = m4

4
− a2 is introduced. M4 can be either positive or

negative depending on the value of a and, therefore, M2 is either real or purely
imaginary. In this form the propagator looks like the propagator from the naive
model with a squared momentum and a mass term in the denominator so one can
expect the calculation of the generic integrals for loop calculations to be pretty
similar to the naive model.

4.3.2 Vertex

p4

p3p2

p1

Figure 4.2: The vertex.

The part of the action which gives the vertex is exactly the same as in the
naive φ4 theory (3.2) and, therefore, gives the same vertex. The interaction part
of the action is

Sint[φ] =

ˆ
d4x

λ

4!
φ ? φ ? φ ? φ . (4.13)

The vertex has already been calculated (A.1) and is

V φ4

(p1, p2, p3, p4) = −λ
3
(2π)4δ4(p1 + p2 + p3 + p4)(

cos p1×p2

2
cos p3×p4

2
+ cos p1×p3

2
cos p2×p4

2
+ cos p1×p4

2
cos p2×p3

2

)
. (4.14)
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Chapter 5

One Loop Corrections and

Renormalization

5.1 One Loop Correction for the Propagator

The one loop propagator correction depicted in Fig. 5.1 is the easiest correction
with mass to calculate. It consists of the planar and the non-planar part. To
build it one needs one vertex (4.14), which is the same in the naive and the new
model and one propagator (4.10). The external propagators are amputated which
is depicted by the crossed out external lines. The left graph in Fig. 5.1 shows

p p

k

p

k

Figure 5.1: The planar and non-planar one loop graphs.

the planar graph and the right graph is the non-planar graph. Without external
propagators (external legs) the one loop function has the form

Π(p) = −
ˆ

d4k
1

2

λ

3(2π)4

1

k2 +m2 + a2

k2

(
cos

p× (−k)
2

cos
k × (−p)

2

+ cos
p× k

2
cos

(−p) × (−k)
2

+ cos
p× (−p)

2
cos

(−k) × k

2

)
.

29
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λ is the coupling constant and the factor 1/2 comes from the mirror symmetry of
the graph. All the other symmetries are already incorporated in the vertex. A
similar calculation as in the naive model (3.36) gives

Π(p) = − λ

6(2π)4

ˆ
d4k

1

k2 +m2 + a2

k2

(
2 cos2 p× k

2
+ 1

)
,

and with cos2 p×k
2

= cos2 kp̃
2

= 1
2
cos kp̃+ 1

2
one gets

Π(p) = − λ

6(2π)4

ˆ
d4k

1

k2 +m2 + a2

k2

(cos kp̃+ 2) .

As in the naive model, the term with the cosine is called non-planar and is the
cause of the IR divergences whereas the other is called planar and behaves like
in the commutative case. Expanding the cosine in exponential functions gives

Π(p) = − λ

12(2π)4

ˆ
d4k

∑
η=±1

eiηkp̃

k2 +m2 + a2

k2

− λ

3(2π)4

ˆ
d4k

1

k2 +m2 + a2

k2

.

(5.1)

The more interesting term of the two is the �rst one because the second one
is just the same as in commutative space and it is well known that it can be
handled with an ultraviolet cuto� parameter as is done later. The �rst term,
however, has the additional damping factor in it which should be responsible for
the suppression of the mixing problem. The next step is to write the propagator
in the form of Eqn. (4.12) because this has the advantage that there is no 1

k2

term in the denominator and one can solve the integral in a similar way to the
commutative theory.

Non-Planar One Loop Function

The non-planar term looks like

Πn−pl(p) = − λ

24(2π)4

ˆ
d4k

∑
η,ζ=±1

1 + ζ m2

2M2

k2 + m2

2
+ ζM2

eiηkp̃ . (5.2)

The denominator has been expanded like in Eqn. (4.11) in the previous chapter1.
To shorten the calculations only the generic integral of the non-planar graph is
used. It has the form

I(p) =

ˆ
d4k

(2π)4

eηikp̃

k2 + m2

2
+ ζM2

.

1M2 =
√

m4

4 − a2
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The �rst step is to use the Schwinger parameterization (3.38) and complete the
exponent to a full square where one can drop the η2 because it is always one.

I(p) =

∞̂

0

dα

ˆ
d4k

(2π)4
e
−α

“

k2+m2

2
+ζM2

”

+iηkp̃

=

∞̂

0

dα

ˆ
d4k

(2π)4
e
−α

„

k2− iηkp̃
α

− p̃2

4α2

«

− p̃2

4α
−α

“

m2

2
+ζM2

”

=
1

(4π)2

∞̂

0

dα
1

α2
e
− p̃2

4α
−α

“

m2

2
+ζM2

”

.

With the substitution k′ = k − iηp̃
2α

and the integration over a Gauss function.
This integral can be solved with the tables from Gradshteyn [21] from which
the suitable one can be found under Eqn. (3.40) and involves a modi�ed Bessel
function,

I(p) =
2

(4π)2

(
m2

2
+ ζM2

p̃2

4

) 1
2

K1

(√
p̃2

(
m2

2
+ ζM2

))

=
1

(2π)2

√
1

p̃2

(
m2

2
+ ζM2

)
K1

(√
p̃2

(
m2

2
+ ζM2

))
. (5.3)

This result corresponds to the result of the naive model (3.44) for a → 0. To
investigate the interesting IR behavior of this graph the Bessel function in it is
expanded for small arguments,

K1(z) =
1

z
+

∞∑
k=0

(
z
2

)2k+1

k!(k + 1)!

[
ln
z

2
+ γE −

k∑
l=1

1

l
− 1

2(k + 1)

]

=
1

z
+
z

2

(
ln
z

2
+ γE − 1

2

)
+
z3

16

(
ln
z

2
+ γE − 5

4

)
+ O

(
z5
)
, (5.4)

where γE is the Euler-Mascheroni constant. Only the �rst two terms of the
expansion are of interest and, thus, the rest is neglected. Inserting this in the
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calculation one gets

I(p) ≈ 1

(2π)2

√
1

p̃2

(
m2

2
+ ζM2

)[(
p̃2

(
m2

2
+ ζM2

))− 1
2

+
1

2

√
p̃2

(
m2

2
+ ζM2

)(
ln

√
p̃2

4

(
m2

2
+ ζM2

)
+ γE − 1

2

)]

=
1

(4π)2

[
4

p̃2
+

(
m2

2
+ ζM2

)(
ln

(
p̃2

4

(
m2

2
+ ζM2

))
+ 2γE − 1

)]
.

(5.5)

With this result it is possible to build the complete non-planar graph but one has
to be careful because even though there is no η in the generic result anymore the
sum over η has still to be performed and this leads to an additional factor two,

Πn−pl(p) = − λ

48π2

∑
ζ=±1

(
1 + ζ

m2

2M2

)
1

p̃

√
m2

2
+ ζM2K1

(
p̃

√
m2

2
+ ζM2

)
.

(5.6)
This result is �nite for p̃2 6= 0, i.e. if p 6= 0 and θ 6= 0. For p̃2 � 1 the Bessel
function is expanded and leads to

Πn−pl(p) = − λ

12(4π)2

∑
ζ=±1

(
1 + ζ

m2

2M2

)
×
[

4

p̃2
+

(
m2

2
+ ζM2

)(
ln

(
p̃2

4

(
m2

2
+ ζM2

))
+ 2γE − 1

)]
+ O(1) .

The �nal step is to sum over ζ

= − λ

6(4π)2

[
4

p̃2
+m2 ln

(
p̃2

4

√
m4

4
−M2

)

+

(
M2 +

m4

4M2

)
ln

√
m2 + 2M2

m2 − 2M2

]
+ O(1) . (5.7)

One can see that this result has a quadratic IR divergence and, furthermore, a
logarithmic IR divergence. So, on one loop level, no IR damping takes place.
This is only achieved at higher orders as can be seen in Chapter 6 but the result
at one loop order is very important for the behavior of higher loop orders since
they consist of one loop graphs.
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Planar One Loop Function

The planar one loop function has no phase factor. Therefore, it is UV divergent
as will be shown here. The equation looks like

Πpl = − λ

6(2π)4

ˆ
d4k

∑
ζ=±1

1 + ζ m2

2M2

k2 + m2

2
+ ζM2

. (5.8)

To solve the generic integral for the graph it has to be regularized with an ul-
traviolet cuto� Λ with the limit Λ → ∞. With the Schwinger parameterization
(3.38) as a �rst step one can solve the integral over k,

I =

ˆ
d4k

(2π)4

1

k2 + m2

2
+ ζM2

=

∞̂

0

dα

ˆ
d4k

(2π)4
e
−α

“

k2+m2

2
+ζM2

”

,

IΛ(Λ) =
1

(4π)2

∞̂

0

dα
1

α2
e
− 1

4αΛ2 −α
“

m2

2
+ζM2

”

.

To solve the integral over α it is necessary to introduce a cuto� term − 1
4αΛ2 in

the exponential as has been done above. The integral can be found in [21] and
gives a modi�ed Bessel function like showed in Eqn. (3.40),

IΛ(Λ) =
2

(4π)2

(
m2

2
+ ζM2

1
4Λ2

) 1
2

K1

(√
1

Λ2

(
m2

2
+ ζM2

))
. (5.9)

With the expansion for small arguments like in Eqn. (5.4) the result is

IΛ(Λ) ≈ Λ

(2π)2

√
m2

2
+ ζM2

×

[√
Λ2

m2

2
+ζM2

+
1

2

√
m2

2
+ζM2

Λ2

(
ln

√
m2

2
+ζM2

4Λ2 + γE − 1

2

)]

=
1

(4π)2

[
4Λ2 +

(
m2

2
+ ζM2

)(
ln

(
m2

2
+ζM2

4Λ2

)
+ 2γE − 1

)]
. (5.10)

The regularized graph is then

Πpl(Λ) = − λ

48π2

∑
ζ=±1

(
1 + ζ

m2

2M2

)
2Λ

√
m2

2
+ ζM2K1

(
1

Λ

√
m2

2
+ ζM2

)
.

(5.11)
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For large values of Λ the modi�ed Bessel function can be expanded according to
Eqn. (5.4) and gives

Πpl(Λ) = − λ

6(4π)2

∑
ζ=±1

(
1 + ζ

m2

2M2

)
×
[
4Λ2 +

(
m2

2
+ ζM2

)(
ln

(
m2

2
+ζM2

4Λ2

)
+ 2γE − 1

)]
.

When one carries out the last summation one �nally gets

Πpl(Λ) = − λ

3(4π)2

[
4Λ2 +m2 ln

(
1

4Λ2

√
m4

4
−M2

)

+

(
M2 +

m4

4M2

)
ln

√
m2 + 2M2

m2 − 2M2

]
+ O(1) . (5.12)

Performing the limit Λ → ∞ the known UV divergences of the commutative
theory are encountered again.

5.2 One Loop Function in the Massless Case

p p

k

p

k

Figure 5.2: The planar and non-planar one loop functions.

For the massless case the action has the form

S[φ] =

ˆ
d4x

(
1

2
∂µφ∂µφ− 1

2
φ
a′2

θ2�φ+
λ

4!
φ ? φ ? φ ? φ

)
. (5.13)

The propagator to this action is, with the abbreviation a = a′

θ
and a′ being a

dimensionless constant like in the massive case,

G(p) =
1

p2 + a2

p2

. (5.14)

It can be achieved by letting the mass m go to zero in the massive propagator
(4.10) and, like in the massive case, the denominator is split up for easier in-
tegrability. In contrary to the massive case one gets only two terms instead of
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four
1

p2 + a2

p2

=
p2

p2
(
p2 + a2

p2

) =
1

2

(
1

p2 + ia
+

1

p2 − ia

)
. (5.15)

The generic integral of the non-planar part of the function is built from a prop-
agator and a vertex like in the massive case and gives with the Schwinger pa-
rameterization and a completion to a full square of the exponent the result (see
Appendix B.1 for details)

I(p) =

ˆ
d4k

e±ikp̃

k2 + a2

k2

=
1

2

ˆ
d4k e±ikp̃

(
1

k2 + ia
+

1

k2 − ia

)

= 2π2

∞̂

0

dα

α2
cos (αa) e−

p̃2

4α . (5.16)

The integral over the Schwinger parameter can be solved with the formula (Grad-
shteyn p.497 (3.957/2) [21])

∞̂

0

xµ−1e−
β2

4x cos ax dx =
βµ

2µ
a−

µ
2

[
e−i µπ

4 Kµ

(
βei π

4
√
a
)

+ ei µπ
4 Kµ

(
βe−i π

4
√
a
)]
,

with Re β > 0, Reµ < 1, a > 0 . (5.17)

The Kµ are the modi�ed Bessel functions of the second kind already used in the
naive and the massive model (3.41). This gives for the generic non-planar one
loop function

I(p) =
4π2

p̃

√
a
[
ei π

4K1

(
p̃ei π

4
√
a
)

+ e−i π
4K1

(
p̃e−i π

4
√
a
)]

=
4π2

p̃

√
a

[
1 + i√

2
K1

(
1 + i√

2
p̃
√
a

)
+

1 − i√
2
K1

(
1 − i√

2
p̃
√
a

)]
. (5.18)

In the last step the exponential function was split up in its trigonometric form
which could be solved for the given argument2. The logarithmic divergence
present in the massive case, coming from the second term in the expansion for
small arguments of the Bessel function, does not occur in the massless case since
most of the term cancels and only a constant factor remains. The �nal result is

I(p) =
8π2

p̃2
− π3a− π2a2p̃2

2

(
ln
p̃2a

4
+ 2γE − 5

2

)
+ O

(
p̃3
)
. (5.19)

For a detailed calculation see Appendix B.1. The fact that a limit m → 0
is possible is of importance for a later generalization of the action to a gauge
theory. This generalization is currently a work in progress at the Institute for
Theoretical Physics of the VUT but will not be covered here any further.

2e±i π
4 = cos π

4 ± i sin π
4 =

√
2

2 ± i
√

2
2
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5.3 One Loop Vertex

To construct the one loop correction for the vertex, two vertices and two propa-
gators connecting them in the right way are required. There are three possible
ways to do that and every one has a symmetry factor 1/2. Because of momentum
conservation the sum of all momenta entering the vertex has to be zero,

p4

p3

p2

p1

k
p2

p4p1

p3

k

p2

p3p1

p4

k

Figure 5.3: The three vertices.

p1 + p2 + p3 + p4 = 0 . (5.20)

The equation for the one loop vertex depicted on the left in Fig. 5.3 is with the
coupling constant λ

V (p) =

ˆ
d4k

(2π)4

λ2

9

1

k2 +m2 + a2

k2

1

(p1 + p2 − k)2 +m2 + a2

(p1+p2−k)2

×
(

cos
p1 × p2

2
cos

k × (k − p1 − p2)

2

+ cos
p1 × (k − p1 − p2)

2
cos

p2 × k

2

+ cos
p1 × k

2
cos

p2 × (k − p1 − p2)

2

)
×
(

cos
k × (p1 + p2 − k)

2
cos

(−p3) × (−p4)

2

+ cos
(k − p1 − p2) × (−p3)

2
cos

k × (−p4)

2

+ cos
(k − p1 − p2) × (−p4)

2
cos

k × (−p3)

2

)
.

(5.21)

This can be rewritten without most of the brackets in the cosines because the
cosine function is even. With the fact that a×a = 0 and momentum conservation
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(5.20) and, furthermore, employing the expansion from Eqn. (4.12) one gets

V (p) =
λ2

36

∑
ζ,χ=±1

ˆ
d4k

(2π)4

(
1 + ζ m2

2M2

)
k2 + m2

2
+ ζM2

(
1 + χ m2

2M2

)
(p1 + p2 − k)2 + m2

2
+ χM2(

cos p1×p2

2
cos k×(p1+p2)

2
+ cos p1×(k−p2)

2
cos p2×k

2
+ cos p1×k

2
cos p2×(k−p1)

2

)
(
cos k×(p3+p4)

2
cos p3×p4

2
+ cos (p4+k)×p3

2
cos k×p4

2
+ cos (p3+k)×p4

2
cos k×p3

2

)
.

(5.22)

The multiplication of the two brackets enveloping the cosines gives for small
external momenta (See Appendix B.2.1 for a detailed calculation)(

cos p1×p2

2
cos k×(p1+p2)

2
+ cos p1×(k−p2)

2
cos p2×k

2
+ cos p1×k

2
cos p2×(k−p1)

2

)
(
cos k×(p3+p4)

2
cos p3×p4

2
+ cos (p4+k)×p3

2
cos k×p4

2
+ cos (p3+k)×p4

2
cos k×p3

2

)
= 2 +

1

2

4∑
i=2

eik×(p1+pi) +
4∑

i=1

eik×pi +
3

2
eik×(p1+p2) . (5.23)

For the other two graphs the result is the same with p2 ↔ p3 and p2 ↔ p4

respectively,

2 +
1

2

4∑
i=2

eik×(p1+pi) +
4∑

i=1

eik×pi +
3

2
eik×(p1+p3) , (5.24)

and

2 +
1

2

4∑
i=2

eik×(p1+pi) +
4∑

i=1

eik×pi +
3

2
eik×(p1+p4) . (5.25)

These three graphs are then added with a symmetry factor of 1
2
giving

V (p) = V1(p) + V2(p) + V3(p)

=
λ2

72

∑
ζ,χ=±1

ˆ
d4k

(2π)4

(
1 + ζ m2

2M2

)(
1 + χ m2

2M2

)
k2 + m2

2
+ ζM2

×

[(
2 +

1

2

4∑
i=2

eik×(p1+pi) +
4∑

i=1

eik×pi

)

×
(

1

(p1+p2−k)2+ m2

2
+χM2

+ 1

(p1+p3−k)2+m2

2
+χM2

+ 1

(p1+p4−k)2+m2

2
+χM2

)
+3

2
eik×(p1+p2)

(p1+p2−k)2+m2

2
+χM2

+ 3
2

eik×(p1+p3)

(p1+p3−k)2+m2

2
+χM2

+ 3
2

eik×(p1+p4)

(p1+p4−k)2+m2

2
+χM2

]
.

(5.26)
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This is the equation to be solved for the one loop vertex correction in the limit
of small external momenta. The generic integral of this expression has the form

I(p) =

ˆ
d4k

(2π)4

eik(p̃+q̃)(
k2 + m2

2
+ ζM2

) (
(p− k)2 + m2

2
+ χM2

)
=

∞̂

0

dα

∞̂

0

dβ

ˆ
d4k

(2π)4 e
−α

“

k2+ m2

2
+ζM2

”

−β
“

(p−k)2+m2

2
+χM2

”

+ik(p̃+q̃)

=

∞̂

0

dα

∞̂

0

dβ

ˆ
d4k

(2π)4

(
e
−(α+β)

„

k2− 2βkp+ik(p̃+q̃)
α+β

+
(2βp+i(p̃+q̃))2

4(α+β)2

«

+
(2βp+i(p̃+q̃))2

4(α+β)

e−(α+β)m2

2
−αζM2−β(p2+χM2)

)
. (5.27)

The combination of p̃ and q̃ is capable of mimicking any combination of p̃1 + p̃i

in Eqn. (5.26). To get the planar graph p̃ = −q̃ is inserted and the exponential
vanishes. With the substitution k′ = k − 2βp+i(p̃+q̃)

2(α+β)
it is possible to solve the

integration over d4k

I(p) =
1

(4π)2

∞̂

0

dα

∞̂

0

dβ
1

(α+ β)2
e

4iβp(p̃+q̃)−(p̃+q̃)2−4αβp2

4(α+β)
−(α+β)m2

2
−αζM2−βχM2

.

(5.28)

In order to tackle the remaining integrals new variables are introduced:

α = λ ξ ,

β = (1 − ξ)λ ,

dα dβ = λ dλ dξ . (5.29)

With the new variables the generic integral has a simpler form. The rule p× p =
pp̃ = 0 has to be used for the last term in the exponential and the next step is to
introduce a cuto� term − 1

4Λ2λ
which is needed for the calculation of the planar

part.

I(p) =
1

(4π)2

1ˆ

0

dξ

∞̂

0

dλ
1

λ
e
− (p̃+q̃)2

4λ
−λ

“

m2

2
+ξζM2+(1−ξ)χM2+ξ(1−ξ)p2− i(1−ξ)

λ
pq̃

”

,

(5.30)

IΛ(p) =
1

(4π)2

1ˆ

0

dξ

∞̂

0

dλ
1

λ
e
− 1

4λ((p̃+q̃)2+ 1
Λ2 )−λ

“

m2

2
+ξζM2+(1−ξ)χM2+ξ(1−ξ)p2

”

+i(1−ξ)pq̃

(5.31)
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The integral over λ can be solved with the formula [21]
∞̂

0

xν−1e−
β
x
−γxdx = 2

(
β

γ

) ν
2

Kν

(
2
√
βγ
)
, with Re β > 0, Re γ > 0 . (5.32)

The Kν are the modi�ed Bessel functions of the second kind. Here K0 has to be
used and this gives the result

IΛ(p) =
2

(4π)2

1ˆ

0

dξ

K0

([(
(p̃+ q̃)2 +

1

Λ2

)(
m2

2
+M2(χ+ (ζ − χ)ξ) + ξ(1 − ξ)p2

)] 1
2

)
ei(1−ξ)pq̃ .

(5.33)

The Bessel function can be expanded for small arguments with K0(z) ∼ − ln z
2
−

γE for z → 0 leading to3

IΛ(p) ≈ − 2

(4π)2

1ˆ

0

dξ

[
ln

(
1

2

[(
(p̃+ q̃)2 +

1

Λ2

)

×
(
m2

2
+M2(χ+ (ζ − χ)ξ) + ξ(1 − ξ)p2

)] 1
2

)
+ γE

]
ei(1−ξ)pq̃ .

(5.34)

This result contains a planar and a non-planar part. For the planar part p̃ = −q̃
which kills the exponential as pp̃ = 0, and this leads to

Ipl
Λ ≈ − 1

(4π)2

1ˆ

0

dξ

×
[
ln
(

1
4Λ2

[
m2

2
+M2(χ+ (ζ − χ)ξ) + ξ(1 − ξ)p2

])
+ 2γE

]
, (5.35)

and for the non-planar part the cuto� factor is not needed but the exponential
factor has to be kept

In−pl(p) ≈ − 1

(4π)2

1ˆ

0

dξ

×

[
ln
(

(p̃+q̃)2

4

(
m2

2
+M2(χ+ (ζ − χ)ξ) + ξ(1 − ξ)p2

))
+ 2γE

]
ei(1−ξ)pq̃ .

(5.36)

3γE = 0.5772 · · · is again the Euler-Mascheroni constant.
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The integral of the non-planar part is not solvable because of the exponential but
with the assumption of small momenta p an approximation of the exponential
with 1 is possible. Furthermore, the term with the p2 can be neglected as it
is considered to be small in comparison with the others. When the remaining

sums over χ and ζ with the factors
(
1 + ζ m2

2M2

)(
1 + χ m2

2M2

)
are performed (see

Appendix B.2.2 for details) the �nal result is∑
χ,ζ=±1

(
1 + ζ m2

2M2

)(
1 + χ m2

2M2

)
In−pl(p) ≈

1
(2π)2

(
ln (p̃+q̃)2

4

√
m4

4
−M4− 1

2

(
1 − m4

4M4

)
+2γE− m2

4M2

(
3 − m4

4M4

)
ln
√

m2−2M2

m2+2M2

)
.

(5.37)

The absolute value of this expression can be seen as an upper limit for the integral
of the non-planar part of the vertex. To get the limit for the planar part one has
to replace (p̃+ q̃)2 with 1

Λ2 where Λ is the cuto�.

5.4 Renormalization

As proven by Gurau et al. [1] the new model with the additional term 1
p̃2 is renor-

malizable. For the explicit calculation one starts with the dressed propagator at
one loop level

p p

Figure 5.4: The dressed propagator.

∆′(p) ≡ 1

A
+

1

A
Σ(Λ, p)

1

A

with A = p2 +m2
0 +

a2

p2
, and Σ(Λ, p) := Πpl(Λ) + Πn−pl(p) . (5.38)

A dressed propagator is a propagator with external legs and all quantum correc-
tions. The terms of Σ are given in Eqns. (5.12) and (5.7). Since A 6= 0, it is
possible to use the well known expansion

1

A+B
=

1

A
− 1

A
B

1

A+B
=

1

A
− 1

A
B

1

A
+ O

(
B2
)
. (5.39)

For the dressed propagator this gives

∆′(p) =
1

p2 +m2
0 + a2

p2 − Σ(Λ, p)
. (5.40)
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Σ(Λ, p) is expanded to the order p4 or 1
Λ4 respectively as the momentum in the

denominator is also of quadratical order. For the calculation it is su�cient to
write only constant factors in the expansion. One gets

Σ(Λ, p) = − λ

6(4π)2

[
4

p̃2
+m2

0 ln
(
|a|p̃2

)
+ γ + αp̃2 + βp̃4 + · · ·

]
− λ

3(4π)2

[
4Λ2 +m2

0 ln

(
1

Λ2

√
m4

0

4
−M4︸ ︷︷ ︸

√
a2=|a|

)
+ γΛ + αΛ

1
Λ2 + βΛ

1
Λ4 + · · ·

]

= − 2λ

3(4π)2θ2

1

p2
− λm2

0

6(4π)2
ln
(
|a|θ2p2

)
+ λγ′ + λα′θ2p2 + λβ′θ4p4

− λ

3(4π)2

[
4Λ2 + · · ·

]
. (5.41)

Here the γ and γΛ are constant terms not depending on p or Λ. α and β as well
as αΛ and βΛ are the factors for the higher orders in p and 1

Λ
respectively. The

primed variables have the form

γ′ = − γ

6(4π)2
, α′ = − α

6(4π)2
and β′ = − β

6(4π)2
. (5.42)

With this one can regroup the terms and de�ne new variables,

1

∆′(p)
= p2 +m2

0 +
a2

p2
− Σ(Λ, p)

= p2 − λα′θ2p2︸ ︷︷ ︸
p2(1−λα′θ2)

+m2
0 +

λ

3(4π)2

[
4Λ2 + · · ·

]
− λγ′︸ ︷︷ ︸

m̃2
r

+
a2

p2
+

2λ

3(4π)2θ2

1

p2︸ ︷︷ ︸
1

p2 ã2
r

+
λm2

0

6(4π)2
ln
(
|a|θ2p2

)
− λβ′θ4p4 − · · ·

=
(
1 − λα′θ2

) [
p2 +

m̃2
r

1 − λα′θ2︸ ︷︷ ︸
=:m2

r

+
1

p2

ã2
r

1 − λα′θ2︸ ︷︷ ︸
=:a′2

r

+
λm2

0

6(4π)2 (1 − λα′θ2)
ln
(
|a|θ2p2

)
− λβ′θ4

1 − λα′θ2
p4 − · · ·︸ ︷︷ ︸

=:f(p2)

]
. (5.43)

And thus the dressed propagator is

∆′(p) =
1

1 − λα′θ2

1

p2 +m2
r + a′2

r

p2 + f (p2)
. (5.44)
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For small λ an expansion of the �rst part is performed as 1
1−λα′θ2 = 1 + λα′θ2 +

O (λ2). Only small λ are of interest and, therefore, terms which are of order λ2

or higher are neglected. This gives

m2
r =

[
1 + λα′θ2 + O

(
λ2
)]
m̃2

r

=
[
1 + λα′θ2 + O

(
λ2
)] [

m2
0 +

λ

3(4π)2

(
4Λ2 +m2

0 ln
|a|
Λ2

)
−λγ′ + λα′

Λ

1

Λ2
+ λβ′

Λ

1

Λ4
+ · · ·

]
= m2

0 +
λ

3(4π)2

(
4Λ2 +m2

0 ln
|a|
Λ2

)
+ regular term (for Λ → ∞) + O

(
λ2
)
. (5.45)

The regular term contains all terms which behave nicely for Λ → ∞ and which
are of order λ.

a′2r =
[
1 + λα′θ2 + O

(
λ2
)]
ã2

r

=
[
1 + λα′θ2 + O

(
λ2
)] [

a2 +
2λ

3(4π)2θ2

]
= a2 +

2λ

3(4π)2θ2
+ λα′θ2a2 + O(λ2) , (5.46)

f
(
p2
)

=
[
1 + λα′θ2 + O

(
λ2
)] [ λm2

0

6(4π)2
ln
(
|a|θ2p2

)
− λβ′θ4p4 −O

(
p6
)]

= λ

[
m2

0

6(4π)2
ln
(
|a|θ2p2

)
+ O

(
p4
)]

+ O
(
λ2
)
. (5.47)

So as a �nal result for the renormalization of the one loop propagator to order λ
and after dropping the prime on the factor α′ one gets

∆′(p) =
Z

p2 +m2
r + a2

r

p2

, (5.48)

with

Z = 1 + λαθ2 , (5.49)

m2
r = m2

0 +
λ

3(4π)2

(
4Λ2 +m2

0 ln
|a|
Λ2

)
+ regular term (for Λ → ∞) , (5.50)

a2
r = a2 + λ

(
2

3(4π)2θ2
+ αθ2a2

)
+ p2f

(
p2
)
, (5.51)

f
(
p2
)

= λ

(
m2

0

6(4π)2
ln
(
|a|θ2p2

)
+ O

(
p4
))

. (5.52)
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The numerator Z is the wave function renormalization which is �nite because of
its Λ-independence and the same is true for a2

r. Contrary to the commutative
scalar theory the wave function renormalization factor is not 1 in this model.
f(p2) shows a logarithmic divergence and it is not quite clear how to handle it.
The argument of Gurau et al. in [1] is that the logarithmic divergence represents
a type of �mild� divergence that has no e�ect on the physical amplitudes in the
limit of small external momenta p because, for vanishing external momenta, the
term f(p2) in the denominator of the dressed propagator is surely smaller than
the rest.
To determine what the constant α is one has to look at the expansion of the
Bessel function at order z2 in

1

z
K1(z) =

1

z2
+

1

2
ln z +

1

2

(
γE − ln 2 − 1

2

)
+
z2

16

(
ln
z

2
+ γE − 5

4

)
+ O

(
z4
)
,

(5.53)
and insert this in Eqn. (5.6)

Πn−pl(p) = − λ
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2
+ ζM2
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. (5.54)

The order p̃2 without the logarithm is then

− λ
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]
=
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)(
3m4
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,

and with M4 ≡ m4
0

4
− a2 one gets

2λp̃2

3 (16π)2

(
ln 2 +

5

4
− γE

)(
m4

0 − a2
)

= λαp̃2 . (5.55)

As a last step one uses a′2 = θ2a2 and arrives at the �nal result

αθ2 =
2

3 (16π)2

(
ln 2 +

5

4
− γE

)(
θ2m4

0 − a′2
)
. (5.56)
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Hence, α is positive for θ2m4
0 > a′2. However, it is no problem if α < 0 as long

as the one loop renormalized parameter a′2r is positive. With the abbreviations
A = 2

3(4π)2
and B = 16

ln 2+ 5
4
−γE

one writes

a′2r ≡ a′2 + λ
(
A+ αθ2a′2

)
> 0 ,

a′2 + λ
A

B

(
θ2m4

0 − a′2
)
a′2 > −Aλ ,

a′4 −
(
B

λA
+ θ2m4

0

)
a′2 −B < 0 . (5.57)

This inequality has two bounds between which it is true. As a′2 should be positive
only the upper bound is needed and the lower one is zero because the calculated
lower bound is negative which is not in the possible range since no negative values
are allowed. The result is

a′2 <
1

2

(
B

λA
+ θ2m4

)
+

√
1

4

(
B

λA
+ θ2m4

0

)2

+B . (5.58)

B
A

= 2774.6 and θ is quite small on physical grounds. That makes 1
λ
the domi-

nating factor in the inequality. So, a′2r is positive for small values of λ even for
m0 = 0. More precisely if a′2 . 103

λ
.

The renormalized coupling constant λr at one loop order is obtained by con-
sidering the planar part of the one loop vertex correction from Section 5.3. The
non-planar part is not needed because the momentum is set to be greater than
zero and, therefore, the exponential factor prevents divergences. The integral for
the planar part is (planar part from Eqn. (5.26))

V pl(p) =
λ2

36

4∑
n=2

∑
ζ,χ=±1

ˆ
d4k

(2π)4

(
1 + ζ

m2
0

2M2

)(
1 + χ

m2
0

2M2

)
(
k2 +

m2
0

2
+ ζM2

) [
(p′n − k)2 +

m2
0

2
+ χM2

] .
(5.59)

The p′n stands for p′n = p1 + pm with m = n = 2, 3, 4 and the result for the planar
part is the sum over those three momenta. The integral has the result (5.35)

V pl(p) = − λ2

36(4π)2

4∑
n=2

∑
ζ,χ=±1

(
1 + ζ

m2
0

2M2

)(
1 + χ

m2
0

2M2

)

×
1ˆ

0

dξ

[
ln

[
m2

0

8Λ2

(
1 +

2M2

m2
0

(χ+ (ζ − χ)ξ) + ξ(1 − ξ)
2p′2n
m2

0

)]
+ 2γE

]
. (5.60)
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Expanding the logarithm one can get the Λ dependent term out of the integral
and solve the sums. After that the solution has the form

V pl(p) = − λ2

36(4π)2

[
12

(
− ln

8Λ2

m2
0

+ 2γE

)
+

4∑
n=2

∑
ζ,χ=±1

(
1 + ζ

m2
0

2M2

)(
1 + χ

m2
0

2M2

)

×
1ˆ

0

dξ ln

(
1 +

2M2

m2
0

(χ+ (ζ − χ)ξ) + ξ(1 − ξ)
2p′2n
m2

0

)]
.

(5.61)

Performing the sum over ζ and χ in the last term gives

(
1 +

m2
0

2M2

)2
1ˆ

0

dξ ln

(
1 +

2M2

m2
0

+ ξ(1 − ξ)
2p′2n
m2

0

)

+

(
1 − m4

0

4M4

) 1ˆ

0

dξ ln

(
1 +

2M2

m2
0

(2ξ − 1) + ξ(1 − ξ)
2p′2n
m2

0

)

+

(
1 − m4

0

4M4

) 1ˆ

0

dξ ln

(
1 +

2M2

m2
0

(1 − 2ξ) + ξ(1 − ξ)
2p′2n
m2

0

)

+

(
1 − m2

0

2M2

)2
1ˆ

0

dξ ln

(
1 − 2M2

m2
0

+ ξ(1 − ξ)
2p′2n
m2

0

)
. (5.62)

These integrals can be solved for certain combinations of m0 and M . This has
been done with the help of Mathematica and the results contain a term with an
arctangent in it which is then expanded in a Taylor series for further calculations.
To get the renormalized coupling constant one now substitutes the parameters
m0 and a with their renormalized ones and sorts the result in terms of order of
λ. The lowest order is λ2 and any higher order plays no role at this level. This
means that only terms which are independent of λ have to be kept in the result
of the integration. For the calculation the renormalized version of M2 is needed.
This is simply done by inserting the renormalized m2

r and a2
r in the de�nition of

M2 and gives

M2
r =

[
1

4

(
m2

0 +
λ

3(4π)2

(
4Λ2 +m2

0 ln |a|
Λ2

)
+ reg

)2

− a2 − λ

(
2

3(4π)2θ2
+ αrθ

2a2

)] 1
2

.
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Here reg stands for the regular term ofmr for Λ → ∞ and αr for the renormalized
version of α,4

M2
r =

[
1

4

((
m2

0 + reg
)2

+
(
m2

0 + reg
) 2λ

3(4π)2

(
4Λ2 +m2

0 ln |a|
Λ2

)
+ λ2

9(4π)4

(
4Λ2 +m2

0 ln |a|
Λ2

)2
)
− a2 − 2λ

3(4π)2

[
1

θ2
+
θ2a2

16

(
ln 2 +

5

4
− γE

)
((
m2

0 + λ
3(4π)2

(
4Λ2+m2

0 ln |a|
Λ2

)
+ reg

)2

− a2− λ
(

2
3(4π)2θ2 + αθ2a2

))]] 1
2

=

[(
m2

0 + reg

2

)2

− a2 +
2λ

3(4π)2

[
m2

0 + reg

4

(
4Λ2 +m2

0 ln |a|
Λ2

)
− 1

θ2

− θ2a2

16

(
ln 2 +

5

4
− γE

)((
m2

0 + reg
)2 − a2

)]

+
λ2

9(4π)4

[(
4Λ2 +m2

0 ln |a|
Λ2

)2

4
− θ2a2

4

(
m2

0 + reg
)(

ln 2 +
5

4
− γE

)
×
(
4Λ2 +m2

0 ln |a|
Λ2

)
+
θ2a2

4

(
ln 2 +

5

4
− γE

)(
1

θ2
+
θ2a2

16

(
ln 2 +

5

4
− γE

)(
m4

0 − a2
))]

− λ3θ2a2

216(4π)6

(
ln 2 +

5

4
− γE

)(
4Λ2 +m2

0 ln |a|
Λ2

)2
] 1

2

. (5.63)

Since the relevant Mr are present in the denominators of the prefactors of the
integrals in Eqn. (5.62) one has to use the series expansions

1√
c+ x

=
1√
c
− x

2c3/2
+ O

(
x2
)
,

1

c+ x
=

1

c
− x

c2
+ O

(
x2
)
. (5.64)

The two factors are m2
r

M2
r
and m4

r

M4
r
and with the expansion from above they have

4From Eqn. (5.56): α = 2
3(16π)2

(
ln 2 + 5

4 − γE

) (
m4

0 − a2
)
.
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the form

m2
r

M2
r

=

(
m2

0 +
λ

3(4π)2

(
4Λ2 +m2

0 ln |a|
Λ2

)
+ reg

)

×

 2√
(m2

0 + reg)
2 − 4a2

− 4λA(
(m2

0 + reg)
2 − 4a2

)3/2
+ O

(
λ2
)

=
2 (m2

0 + reg)√
(m2

0 + reg)
2 − 4a2

+ λ

 8Λ2 + 2m2
0 ln |a|

Λ2

3(4π)2

√
(m2

0 + reg)
2 − 4a2

− 4 (m2
0 + reg)A(

(m2
0 + reg)

2 − 4a2
)3/2

+ O
(
λ2
)
,

(5.65)

and

m4
r

M4
r

=

(
m2

0 +
λ

3(4π)2

(
4Λ2 +m2

0 ln |a|
Λ2

)
+ reg

)2

×

 4

(m2
0 + reg)

2 − 4a2
− 16λA(

(m2
0 + reg)

2 − 4a2
)2 + O

(
λ2
)

=
4 (m2

0 + reg)
2

(m2
0 + reg)

2 − 4a2

+ λ

(m2
0 + reg)

(
4Λ2 +m2

0 ln |a|
Λ2

)
6π2

(
(m2

0 + reg)
2 − 4a2

) − 16 (m2
0 + reg)A(

(m2
0 + reg)

2 − 4a2
)2

+ O
(
λ2
)
.

(5.66)

Here, A is an abbreviation for the factor of the term of order λ in M2
r in

Eqn. (5.63)5. The zeroth order is independent of Λ and, therefore, behaves just
like a factor. The same is true for the results of the integrals with the expanded
arctangent. This was checked with Mathematica. Therefore, the whole integral
is just a �nite term in the limit Λ → ∞ and, as such, of no signi�cance for
the renormalized coupling constant because the behavior is determined by the

5A = 2
3(4π)2

[
m2

0+reg
4

(
4Λ2 + m2

0 ln |a|
Λ2

)
− 1

θ2 − θ2a2

16

(
ln 2 + 5

4 − γE

) ((
m2

0 + reg
)2 − a2

)]
.
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logarithmic divergence. Thus it is possible to write

V pl(p) =
λ2

36(4π)2

[
12

(
ln

8Λ2

m2
0

− 2γE

)
+ �nite term for Λ → ∞

]
=

λ2

3(4π)2

[
ln

Λ2

m2
0

+ �nite term for Λ → ∞
]
. (5.67)

And the renormalized coupling constant which has to correct this term then has
the form

λr = λ

[
1 − λ

3(4π)2

(
ln

Λ2

m2
0

+ �nite

)]
. (5.68)

5.5 The Renormalization Group and the β Func-

tion

A renormalization group is a set of transformations of the renormalization pa-
rameter, in this case Λ, which does not change the n-particle function. This
means

Λ
d

dΛ
Γ(n) = 0 . (5.69)

Here, Γ(n) is the bare n-particle function and Λ the cuto� parameter. In order to
get a dimensionless operator the derivative is multiplied by Λ. The renormalized
and bare n-point functions are connected by a factor called the wave function
renormalization Zφ which depends on the coupling constant and the cuto�,

Γ(n)
r (p, λr,mr, ar,Λ) = Z

n/2
φ (λ,Λ)Γ(n)(p, λ,m0, a) . (5.70)

Bringing the wave function renormalization on the other side gives

Γ(n)(p, λ,m0, a) = Z
−n/2
φ (λ,Λ)Γ(n)

r (p, λr,mr, ar,Λ) . (5.71)

When inserted in Eqn. (5.69) this means that the combination of wave function
renormalization and renormalized n-point function does not depend on the cuto�.
As the renormalized parameters λr , mr and ar all depend on the cuto� Λ the
derivative takes the form

Λ
d

dΛ

[
Z

−n/2
φ (λ,Λ)Γ(n)

r (p, λr,mr, ar,Λ)
]

= 0 , (5.72)

[
Z−n/2

(
Λ
∂

∂Λ
+ Λ

∂λ

∂Λ

∂

∂λ
+

Λ

m2
0

∂m2
0

∂Λ

∂

∂m2
0

+ Λ
∂a2

∂Λ

∂

∂a2

)
+ Λ

∂

∂Λ
Z−n/2

]
Γ(n)

r = 0 .
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The last term can be written as Λ ∂
∂Λ
Z−n/2 = −Λn

2
Z−n/2

Z
∂

∂Λ
Z = −Λn

2
Z−n/2 ∂

∂Λ
lnZ

and so the equation is[
Λ
∂

∂Λ
+ Λ

∂λ

∂Λ

∂

∂λ
+

Λ

m2
0

∂m2
0

∂Λ

∂

∂m2
0

+ Λ
∂a2

∂Λ

∂

∂a2
− Λ

n

2

∂

∂Λ
lnZ

]
Γ(n)

r = 0 . (5.73)

With the abbreviations

β := Λ
∂λ

∂Λ
, (5.74)

βm :=
1

m2
0

Λ
∂m2

0

∂Λ
, (5.75)

βa := Λ
∂a2

∂Λ
, (5.76)

γ := Λ
∂

∂Λ
lnZ , (5.77)

this gives the so called renormalization group equation[
Λ
∂

∂Λ
+ β

∂

∂λ
+ βm

∂

∂m2
0

+ βa
∂

∂a2
− n

2
γ

]
Γ(n)

r = 0 . (5.78)

The β functions show how the parameters are a�ected by a change of the cuto�.
Of special interest is of course the behavior of the β functions in the limit Λ → ∞
because this is what is done after renormalization.

To calculate the β functions one has to express the bare constants in terms of
the renormalized constants. In the following this is done for the coupling constant
starting from Eqn. (5.68)6

λr = λ− λ2

3(4π)2

(
ln Λ2 + �nite

)
. (5.79)

This can be written as

λ = λr +
λ2

3(4π)2

(
ln Λ2 + �nite

)
= λr +

λ2
r

3(4π)2

(
ln Λ2 + �nite

)
+

λ4

9(4π)4

(
ln Λ2 + �nite

)2
+ O

(
λ6
)

= λr +
λ2

r

3(4π)2

(
ln Λ2 + �nite

)
+ O

(
λ4
)
. (5.80)

6In contrary to Eqn. (5.68) the mass is put in the ��nite� term which leaves the remaining
logarithm with the dimension a�icted argument Λ2.
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The calculations for the bare mass and the constant a work just the same. For
the mass one starts with the renormalized mass from Eqn. (5.50)

m2
r = m2

0 +
λ

3(4π)2

(
4Λ2 +m2

0 ln

(
|a|
Λ2

))
. (5.81)

This can be written as

m2
0 = m2

r −
λr

3(4π)2

(
1 +

λr

3(4π)2

(
ln Λ2 + �nite

))(
4Λ2 +m2

0 ln

(
|a|
Λ2

))
.

With the expansion of the logarithm ln(a+x) = ln a− x
a
− x2

2a2 +O (x3) this gives

= m2
r −

λr

3(4π)2

(
4Λ2 +m2

r ln

(
|ar|
Λ2

))
+ O

(
λ2

r

)
. (5.82)

For a2 one has to start from the renormalized constant (5.51)

a2
r = a2 + λ

(
2

3(4π)2θ2
+ αθ2a2

)
, (5.83)

and gets for a2

a2 = a2
r − λr

(
1 +

λr

3(4π)2

(
ln Λ2 + �nite

))
× 2

3(4π)2

(
1

θ2
+ θ2

(
m4

0 − a2
)
a2

(
ln 2 +

5

4
− γE

))
= a2

r − λr
2

3(4π)2

(
1

θ2
+ θ2

(
m4

r − a2
r

)
a2

r

(
ln 2 +

5

4
− γE

))
+ O

(
λ2

r

)
. (5.84)

After these preparations the β functions can be calculated (see also [30]):

β = Λ
∂λ

∂Λ
= Λλ2

r

2

3(4π)2Λ
=

λ2
r

24π2
, (5.85)

βa = Λ
∂a2

∂Λ
= 0 , (5.86)

βm =
1

m2
0

Λ
∂m2

0

∂Λ
= − 1

m2
0

Λ
λr

3(4π)2

(
8Λ − 2m2

r

1

Λ

)
=

2λrm
2
r

3(4π)2m2
0

− 8λrΛ
2

3(4π)2m2
0

=
2λr

3(4π)2

m2
r − 4Λ2

m2
r − λr

3(4π)2

(
4Λ2 +m2

r ln |ar|
Λ2

)
=

2λr

3(4π)2

 m2
r

m2
r−

λr
3(4π)2

„

4Λ2+m2
r ln

|ar|
Λ2

« − 4
m2

r
Λ2 − λr

3(4π)2

„

4+
m2

r
Λ2 ln

|ar|
Λ2

«

 . (5.87)
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To get the limit Λ → ∞ an expansion of the denominator is made with the second
formula from Eqn. (5.64) giving

βm =
2λr

3(4π)2

(
1 − 4Λ2

m2
r

)
+ O

(
λ2

r

)
, (5.88)

and it can be seen that in the limit Λ → ∞, βm diverges at the lowest order of
the renormalized coupling constant. The �rst term of Eqn. (5.88) is proportional
to the one from the commutative model but the divergent second one does not
appear in that model. It is possible though, that, when one replaces m2

r in the
denominator with Eqn. (5.50) and then makes an expansion of the fraction in
terms of λr, one �nds that, in the �rst order of λr, the divergences of the bare
mass and the Λ cancel and leave a constant factor.

For the calculation of the γ function one needs the logarithm of the wave
function renormalization constant

Z = 1 + λαθ2 = 1 + αθ2

(
λr +

λ2
r

3(4π)2

(
ln Λ2 + �nite

))
, (5.89)

lnZ = ln

[
1 + αθ2

(
λr +

λ2
r

3(4π)2

(
ln Λ2 + �nite

))]
, (5.90)

γ = Λ
∂

∂Λ
lnZ

= −Λ
2θ2λ2

r

3(16π)2

(
ln 2 +

5

4
− γE

) 2
3(4π)2

(
8m2

rΛ − 2m4
r

1
Λ

)
− 2(m4

r−a2
r)

3(4π)2Λ

1 + αθ2
(
λr + λ2

r

3(4π)2
(ln Λ2 + �nite)

)
= − θ2λ2

r

32210π4

(
ln 2 +

5

4
− γE

)
8m2

rΛ
2 − 3m4

r + a2
r

1 + αθ2
(
λr + λ2

r

3(4π)2
(ln Λ2 + �nite)

) . (5.91)

To get this result one has to insert the factor α from Eqn. (5.56):

α =
2

3(16π)2

(
ln 2 +

5

4
− γE

)(
m4

0 − a2
)
. (5.92)

As can be seen, the essential part of α is the factor m4
0 −a2. Up to the �rst order

of λr this factor is

m4
0 − a2 = m4

r − a2
r − λr

2

3(4π)2

[
4m2

rΛ
2 +m4

r ln

(
|ar|
Λ2

)
− 1

θ2

− θ2a2
r

16

(
m4

r − a2
r

)(
ln 2 +

5

4
− γE

)]
+ O

(
λ2

r

)
. (5.93)
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To get the limit Λ → ∞ of Eqn. (5.91) one makes a series expansion with the
formula from Eqn. (5.64) giving

γ = − θ2λ2
r

32210π4

(
ln 2 +

5

4
− γE

)(
8m2

rΛ
2 − 3m4

r + a2
r

)
+ O

(
λ3

r

)
. (5.94)

This diverges quadratically as can be seen easily but it is quite possible that
there is another contribution to this order from higher loops which renders it
�nite. Therefore, the γ function, in agreement with [30], is written as

γ = 0 + O
(
λ2
)
. (5.95)



Chapter 6

Higher Loop Orders

The goal of this chapter is to show the improvements of the IR behavior of the
1
p̃2 model by looking at non-planar two point correction graphs with higher loop
orders. Two of these n-point graphs are shown in Fig. 6.1. Only the IR behavior

k

p

q1

p

q1

q2

q3

p

k

p

Figure 6.1: A non-planar 2 loop and 4 loop graph.

is part of the investigation here and the �rst order approximation of the one loop
correction for the propagator Πn−pl, which is proportional to 1

k̃2 , is su�cient. A
graph with n non-planar insertions then has the form

Πn−ins(p) ≡ λ2
∑
η=±1

ˆ
d4k

(2π)4

1

k̃2n

eiηkp̃(
k2 +m2 + a2

k2

)n+1 (6.1)

= λ2
∑
η=±1

Jn(p) . (6.2)
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The denominator can be written as

1(
k2 +m2 + a2

k2

)n+1 =

(
1

2

∑
ζ=±1

1 + ζ m2

2M2

k2 + m2

2
+ ζM2

)n+1

=
1

2n+1

∑
ζ1,...,ζn+1=±1

n+1∏
i=1

(
1 + ζi

m2

2M2

k2 + m2

2
+ ζiM2

)
. (6.3)

The generic integral for an arbitrary number of insertions is

Jn(p) =
1

2n+1θ2n

∑
ζ1...ζn+1=±1

ˆ
d4k

(2π)4

eiηkp̃

k2n

n+1∏
i=1

1 + ζi
m2

2M2

k2 + m2

2
+ ζiM2

, (6.4)

and for the integration of these integrals one needs n+ 2 Schwinger parameters

1

k2 + m2

2
+ ζiM2

=

∞̂

0

dαi e
−αi

“

k2+ m2

2
+ζiM

2
”

, with i ∈ {1, . . . , n+ 1} , (6.5)

and the formula for higher order Schwinger parameterization

1

k2n
=

1

Γ(n)

∞̂

0

dαn+2 (αn+2)
n−1 e−αn+2k2

, with k2 > 0 . (6.6)

With this it is possible to solve the integral. First one starts with the integration
over k,

Jn(p) =
1

2n+1θ2nΓ(n)

∑
ζ1...ζn+1=±1

ˆ
d4k

(2π)4

∞̂

0

dαn+2 (αn+2)
n−1 e−αn+2k2

×
n+1∏
i=1

(1 + ζi
m2

2M2

) ∞̂

0

dαi e
−αi

“

k2+m2

2
+ζiM

2
”

 eiηkp̃

=
1

2n+1θ2nΓ(n)

∑
ζ1...ζn+1=±1

ˆ
d4k

(2π)4

n+1∏
i=1

 ∞̂

0

dαi

(
1 + ζi

m2

2M2

)
×

∞̂

0

dαn+2 (αn+2)
n−1 e

−
n+2
P

i=1
αik

2+iηkp̃−
n+2
P

i=1
αi

“

m2

2
+ζiM

2
”

. (6.7)
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The integral over k can be solved by completing the square in the exponential

exp

− n+2∑
i=1

αik
2 + iηkp̃+

p̃2

2
n+1∑
i=1

αi

− p̃2

2
n+2∑
i=1

αi

−
n+2∑
i=1

αi

(
m2

2
+ ζiM

2

)
= exp

− n+2∑
i=1

αi

k2 − iηkp̃
n+1
P

i=1
αi

− p̃2

4

„

n+2
P

i=1
αi

«2

− p̃2

4
n+2
P

i=1
αi

−
n+2∑
i=1

αi

(
m2

2
+ ζiM

2

) .

(6.8)

With

k′ = k − iηp̃

2
n+2∑
i=1

αi

, and d4k = d4k′ . (6.9)

one gets

Jn(p) =
1

2n+1θ2n(4π)2Γ(n)

∑
ζ1...ζn+1=±1

n+1∏
i=1

 ∞̂

0

dαi

(
1 + ζi

m2

2M2

)

×
∞̂

0

dαn+2
(αn+2)

n−1(
n+2∑
i=1

αi

)2 exp

− p̃2

4
n+2∑
i=1

αi

−
n+1∑
i=1

αi

(
m2

2
+ ζiM

2

) . (6.10)

The next step is to change the variables (α1, . . . , αn+2) → (ξ1, . . . ξn+1, λ). This
works like in Eqn. (5.29) for two variables only here more are needed:

α1 = λ
n+1∑
i=1

ξi ,

α2 = λ (1 − ξ1)
n+1∏
i=2

ξi ,

...

αk = λ (1 − ξk−1)
n+1∏
i=k

ξi ,

...

αn+2 = λ (1 − ξn+1) . (6.11)

This implies
n+2∏
i=1

dαi = λn+1

n∏
l=1

(ξl+1)
l dλ

n+1∏
j=1

dξj and
n+2∑
i=1

αi = λ , (6.12)
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where

ξi ∈ [0, 1] ,

λ ∈ [0,∞) . (6.13)

With the new variables the equation has the form

Jn(p) =
1

2n+1θ2n(4π)2Γ(n)

∑
ζ1...ζn+1=±1

n+1∏
i=1

(
1 + ζi

m2

2M2

) ∞̂

0

dλλ2n−2

×
n+1∏
j=1

1ˆ

0

dξj

n∏
l=1

(ξl+1)
l (1 − ξn+1)

n−1 exp

(
− p̃2

4λ
− λξn+1

m2

2
−

n+1∑
1

ζiαiM
2

)
.

With the sum over ξi and the exponential representations of the hyperbolic func-
tions sinh x = 1

2
(ex − e−x) and coshx = 1

2
(ex + e−x) one gets

Jn(p) =
1

θ2n(4π)2Γ(n)

∞̂

0

dλλ2n−2

n+1∏
j=1

1ˆ

0

dξj

n∏
l=1

(ξl+1)
l (1 − ξn+1)

n−1 e−
p̃2

4λ
−λξn+1

m2

2

×
n+1∏
i=1

[
cosh

(
λ (1 − ξi−1)

n+1∏
k=i

ξkM
2

)
− m2

2M2
sinh

(
λ (1 − ξi−1)

n+1∏
k=i

ξkM
2

)]
.

(6.14)

For a graph with one non-commutative insertion this integral looks like

J1(p) =
1

θ2(4π)2

∞̂

0

dλ

1ˆ

0

dξ1

1ˆ

0

dξ2 ξ2e
− p̃2

4λ
−λξ2

m2

2

×
[
cosh

(
λξ1ξ2M

2
)
− m2

2M2
sinh

(
λξ1ξ2M

2
)]

×
[
cosh

(
λ (1 − ξ1) ξ2M

2
)
− m2

2M2
sinh

(
λ (1 − ξ1) ξ2M

2
)]

. (6.15)

As a �rst step one solves the integral over ξ1. There are four di�erent types of
integrals to solve here. They can be found in Appendix B.3.1 and inserting their
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results leaves

1ˆ

0

dξ2 ξ2e
−λξ2

m2

2

[
1

2
cosh

(
λξ2M

2
)

+
sinh (λξ2M

2)

2λξ2M2
− m2

2M2
sinh

(
λξ2M

2
)

+
m4

4M4

(
1

2
cosh

(
λξ2M

2
)
− sinh (λξ2M

2)

2λξ2M2

)]

=
1

2

1ˆ

0

dξ2 e−λξ2
m2

2

[
ξ2 cosh

(
λξ2M

2
)(

1 +
m4

4M4

)

+ sinh
(
λξ2M

2
)( 1

λM2

(
1 − m4

4M4

)
− ξ2m

2

M2

)]
=

1

2

e−λ m2

2

λ2

[
−λ m2

2M4
coshλM2 +

(
λ

M2
+

m2

2M6

)
sinhλM2

]
. (6.16)

To solve the integral over ξ2 one has to solve three di�erent types of integrals
which is done in Appendix B.3.1. With this result one is now ready for the �nal
integration,

J1(p) =
1

2θ2(4π)2

∞̂

0

dλe−
p̃2

4λ
−λ m2

2

×
[(

1

λM2
+

m2

2λ2M6

)
sinhλM2 − m2

2λM4
coshλM2

]
=

1

4θ2(4π)2

∞̂

0

dλe−λ p̃2

4λ
−λ m2

2

×
[(

1

λM2
+

m2

2λM6

)(
eλM2 − e−λM2

)
− m2

2λM4

(
eλM2 − e−λM2

)]
=

1

4θ2(4π)2M2

∞̂

0

dλ
1

λ
e−λ p̃2

4λ
−λ m2

2

×
[(

1 − m2

2M2
+

m2

2λM4

)
eλM2 −

(
1 +

m2

2M2
+

m2

2λM4

)
e−λM2

]
. (6.17)

The integrals can be solved with [21] and give

∞̂

0

dλ
1

λ
e
− p̃2

4λ
−λ

“

m2

2
±M2

”

= 2K0

(√
p̃2

(
m2

2
±M2

))
, (6.18)
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and

∞̂

0

dλ
1

λ2
e
− p̃2

4λ
−λ

“

m2

2
±M2

”

= 4

(
m2 ± 2M2

2p̃2

) 1
2

K1

(√
p̃2

(
m2

2
±M2

))
. (6.19)

Hence, one arrives at

J1(p) =
1

2θ2(4π)2M2

[(
1 − m2

2M2

)
K0

(√(
m2

2
−M2

)
p̃2

)

−
(

1 +
m2

2M2

)
K0

(√(
m2

2
+M2

)
p̃2

)

+
m2

M4

√
m2

2
−M2

p̃2
K1

(√(
m2

2
−M2

)
p̃2

)

− m2

M4

√
m2

2
+M2

p̃2
K1

(√(
m2

2
+M2

)
p̃2

)]
,

and with the abbreviation m2
± = m2

2
±M2 this gives

J1(p) = − 1

32π2θ2M6

[
M2m2

+K0

(√
m2

+p̃
2

)
+M2m2

−K0

(√
m2

−p̃
2

)

+m2

√
m2

+

p̃2
K1

(√
m2

+p̃
2

)
−m2

√
m2

−

p̃2
K1

(√
m2

−p̃
2

)]
. (6.20)

Finally, one gets the result

Π1−ins(p) = λ2
∑
η=±1

J1(p)

= − λ2

16π2θ2M6

[
M2m2

+K0

(√
m2

+p̃
2

)
+M2m2

−K0

(√
m2

−p̃
2

)

+m2

√
m2

+

p̃2
K1

(√
m2

+p̃
2

)
−m2

√
m2

−

p̃2
K1

(√
m2

−p̃
2

)]
. (6.21)

Expanding the modi�ed Bessel functions for small external momentum p̃2 leads
to (see Appendix B.3.2)

Π1−ins(p) =
λ2

16π2θ2M6

[(
M4 − m4

4︸ ︷︷ ︸
−a2

)
ln

√
m2

+

m2
−

+M2m
2

2

]
+ O

(
p̃2
)
. (6.22)
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One can see that the result has no IR divergence. This has been a very lengthy
calculation already and there was only just one non-commutative insertion in-
volved. With two or more insertions this is soon to long to calculate by hand but
one can use the help of a computer to get to the result. The emerging integrals
should be solvable for any given order n. In the following a calculation for n = 2
with Mathematica starts with:

J2(p) =
1

θ4(4π)2

∞̂

0

dλλ2

1ˆ

0

dξ1

1ˆ

0

dξ2

1ˆ

0

dξ3 ξ2ξ
2
3 (1 − ξ3) e−

p̃2

4λ
−λξ3

m2

2

×
[
cosh

(
λξ1ξ2ξ3M

2
)
− m2

2M2
sinh

(
λξ1ξ2ξ3M

2
)]

×
[
cosh

(
λ (1 − ξ1) ξ2ξ3M

2
)
− m2

2M2
sinh

(
λ (1 − ξ1) ξ2ξ3M

2
)]

×
[
cosh

(
λ (1 − ξ2) ξ3M

2
)
− m2

2M2
sinh

(
λ (1 − ξ2) ξ3M

2
)]

. (6.23)

The integration is performed with Mathematica whereas the order of the inte-
gration is ξ1, ξ2, ξ3, λ. A di�erent integration order can result in a much longer
calculation time because the subintegrations are getting very complicated. The
result is

J2(p) =
1

16 θ4(4π)2M10

×
[
M2(3m2 + 2M2)K0

(√
m2

+p̃
2

)
+M2(3m2 − 2M2)K0

(√
m2

−p̃
2

)
+
√
p̃2

(
6m2

p̃2
+M4

)(√
m2

+K1

(√
m2

+p̃
2

)
−
√
m2

−K1

(√
m2

−p̃
2

))]
.

(6.24)

For small p̃2 this can be expanded to

J2(p) ≈
1

512π2θ4

[
3m4 − 4M4

M10
ln

√
m2

+

m2
−
− 6m2

M8

]
+ O

(
p̃2
)
. (6.25)

Thus, for the non-planar tadpole with two insertions one gets

Π2−ins(p) =
λ2

256π2θ4

[
3m4 − 4M4

M10
ln

√
m2

+

m2
−
− 6m2

M8

]
+ O

(
p̃2
)
. (6.26)

Like the graph with one insertion this graph also has no IR divergence and it is
expected that higher order graphs behave in a similar way. The reason for the
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IR-�niteness to every order can be found in the propagators between the non-
planar insertions. If one looks at the denominator of the generic integral (6.1)
for n non-planar insertions and considers the limit k2 → 0 one sees that because
of the n+ 1 propagators in the graph the integrand behaves like

1(
k̃2
)n (

a2

k2

)n+1
=

k̃2

(a′2)n+1 , (6.27)

and is, therefore, independent of the loop order. If, by letting a go to zero, one
lets the new model go to the naive model, this equation (6.26) diverges since the
propagators do not regularize the graph anymore. This holds for every graph
with n ≥ 2.
For a massless �eld, that is for m → 0, the results for one and two insertions
from the Eqns. (6.22) and (6.26) become

Π1−ins(p)
∣∣∣
m=0

=
λ2

32πθ2|a|
+ O

(
p̃2
)
, (6.28)

Π2−ins(p)
∣∣∣
m=0

=
λ2

128πθ4|a3|
+ O

(
p̃2
)
. (6.29)

So, contrary to the naive model the higher loop graphs do not diverge even for
vanishing mass which is important for a generalization to gauge �elds.



Chapter 7

Conclusion

7.1 Summary

The model introduced by Gurau et al. [1] is a non-commutative scalar φ4 the-
ory with an additional term in the form of an inverse squared momentum in
the otherwise from commutative theory straight forward adapted action. This
additional term changes the propagator of the theory in a way that the theory
becomes renormalizable in contrary to the so-called naive model not containing
the term. This was proved to all orders in the above mentioned paper with
the powerful tool of multiscale analysis. However there were no explicit calcu-
lations for the factors so far. This was a goal of this work. In this work the
naive model was revised �rst in Chapter 3 by calculating Feynman rules and
giving an example for the notorious UV/IR mixing which is a problem of most
non-commutative theories. In Chapter 4 the new model was presented and its
Feynman rules were calculated �nding that the vertex function was not changed
compared to the naive model, which is quite clear since the terms in the action
are identical. The propagator on the other hand gained an additional term in the
denominator rendering it convergent for very high as well as very low momenta
even when the mass was going to zero. The next Chapter 5 dealed with the
one loop corrections for the two and four point function and the renormalization
to �rst order as well as an attempt to calculate the β function of the theory.
The result of the one loop correction for the two point function showed that a
quadratic infrared divergent term still remained as well as a logarithmic diver-
gence in the next higher order. A reason for this behavior was the splitting of
the graph in a planar part identical up to a factor with the classical graph and
a non-planar part bringing the non-commutative e�ects in the theory. Despite
the IR divergent term a renormalization procedure was still possible. The IR
divergent term also occurred in the massless case treated in Section 5.2 but the
logarithmic divergence was canceled. For the one loop correction of the four point
function a distinction between a planar and a non-planar part of the graph could
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also be made. The non-planar part led to an integral which was not solvable
analytically and an approximation for small momenta was made resulting in an
expression with a logarithmic divergence as the leading order. Gurau et al. did
proof the renormalizability but did not calculate explicit coe�cients. This was
done in Section 5.4 for the one loop order revealing the renormalized mass and
the renormalized parameter controlling the non-local insertion as well as a func-
tion which is singular for vanishing external momentum. But this divergence is
called only a �mild� divergence which has no catastrophic e�ects on the physical
amplitudes as it is smaller than the other terms in the denominator in the limit of
small momenta. Another oddity is that a wave function renormalization di�erent
from one was found. The renormalized coupling constant was found to have a
logarithmic divergence for the regulator parameter. Investigating the β function
it was found that the parameter controlling the non-locality does not depend on
the regulator whereas the mass parameter shows a divergent behavior for the
regulator going to in�nity. The coupling constant was found to evince the same
characteristics as in commutative theory. Higher order loops where investigated
in Chapter 6 particularly by looking at non-planar two point graphs with one or
more non-planar insertions as shown in Fig. 6.1. Only the �rst order approxima-
tions where looked at because the interest lied on the IR behavior and also only
the �rst order of the one loop correction was inserted in the higher order graphs
due to that reason and to keep the calculation complexity down. Nevertheless
the equations became very large for a higher number of insertions and the help
of a computer algebra system was needed. The result was that the propagator
between the insertions signi�cantly improved the behavior of the whole graph by
e�ciently damping the IR divergences and thus rendered the whole graph �nite
for small external momenta. It was also possible to set the mass to zero and get
the results for a massless �eld which were �nite as well.

7.2 Outlook

Higher loop graphs were treated exemplarily in this work by picking one type of
graphs out (the pearl necklace graph in Fig. 6.1) and perform the calculations on
it, but of course there are other types of graphs which deserve attention. For ex-
ample, the two loop correction for the propagator already consists of �ve di�erent
graphs when one distinguishes between planar and non-planar ones. Also higher
order four point functions would be an interesting area for explicit calculations
but it is known already that all the higher graphs have to be renormalizable be-
cause the proof of Gurau et al. [1] covers them all. The calculations for higher
than �rst order graphs in this work where all done with the tree level propagators
but actually one should do the renormalization up to one level below �rst and
use the renormalized results for the calculation of the desired level. This model
as it is a scalar model on Euclidean space cannot be considered as a physically
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relevant one and is merely a toy model to investigate the principal aspects of
renormalizable non-commutative models on a relatively simple basis. Since the
ultimate goal is always to describe real world physics which is mostly done by
gauge theories nowadays it is naturally the next step to look for a renormalizable
non-commutative gauge theory. By looking at the behavior of the massless limit
of the scalar theory in this work a �rst step in that direction has been made.
René Sedmik and Arnold Rofner form the Institute for Theoretical Physics of the
VUT both worked on the problem of �nding renormalizable non-commutative
gauge theories based on an action similar to the one used here on their PhD
theses [31, 32]. Their work led to the so-called BRSW model [33] which seems
to be a promising candidate for a renormalizable non-commutative gauge theory.
Another attempt in this direction is to �nd a gauge theory based on the scalar
GW model which is also currently a work in progress at this department [13, 34].
For a more detailed insight on the topic of non-commutative gauge theories see
[17] and references therein. The models mentioned above are all on Euclidean
space and a further task will be to transform them to Minkowski space where
one has to pay special attention to causality problems that may arise due to the
theories non-commutative characters.
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Appendix A

The Naive Model

A.1 Vertex

V φ4

(p1, p2, p3, p4) = − δ

δφ̃(−p1)

δ

δφ̃(−p2)

δ

δφ̃(−p3)

δ

δφ̃(−p4)
(2π)16Sint[φ̃]

= − δ
δφ̃(−p1)

δ
δφ̃(−p2)

δ
δφ̃(−p3)

δ
δφ̃(−p4)

λ(2π)4

4!

ˆ
d4k1..4 δ

4(k1 + k2 + k3 + k4)

φ̃(k1)φ̃(k2)φ̃(k3)φ̃(k4)e
− i

2
(k1×k2+k3×k4)

= −λ(2π)4

4!
δ

δφ̃(−p2)
δ

δφ̃(−p3)
δ

δφ̃(−p4)

ˆ
d4k1..4 δ

4(k1 + k2 + k3 + k4)e
− i

2
(k1×k2+k3×k4)(

φ̃(k2)φ̃(k3)φ̃(k4)δ
4(k1 + p1) + φ̃(k1)φ̃(k3)φ̃(k4)δ

4(k2 + p1)

+ φ̃(k1)φ̃(k2)φ̃(k4)δ
4(k3 + p1) + φ̃(k1)φ̃(k2)φ̃(k3)δ

4(k4 + p1)
)

= −λ(2π)4

4!
δ

δφ̃(−p3)
δ

δφ̃(−p4)

ˆ
d4k1..4 δ

4(k1 + k2 + k3 + k4)e
− i

2
(k1×k2+k3×k4)[ (

φ̃(k3)φ̃(k4)δ
4(k2 + p2) + φ̃(k2)φ̃(k4)δ

4(k3 + p2) + φ̃(k2)φ̃(k3)δ
4(k4 + p2)

)
× δ4(k1 + p1)

+
(
φ̃(k3)φ̃(k4)δ

4(k1 + p2) + φ̃(k1)φ̃(k4)δ
4(k3 + p2) + φ̃(k1)φ̃(k3)δ

4(k4 + p2)
)

× δ4(k2 + p1)

+
(
φ̃(k2)φ̃(k4)δ

4(k1 + p2) + φ̃(k1)φ̃(k4)δ
4(k2 + p2) + φ̃(k1)φ̃(k2)δ

4(k4 + p2)
)

× δ4(k3 + p1)

+
(
φ̃(k2)φ̃(k3)δ

4(k1 + p2) + φ̃(k1)φ̃(k3)δ
4(k2 + p2) + φ̃(k1)φ̃(k2)δ

4(k3 + p2)
)

× δ4(k4 + p1)
]
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V φ4

= − λ

4!
(2π)4 δ

δφ̃(−p4)

ˆ
d4k1..4 δ

4(k1 + k2 + k3 + k4)e
− i

2
(k1×k2+k3×k4){[(

φ̃(k4)δ
4(k3 + p3) + φ̃(k3)δ

4(k4 + p3)
)
δ4(k2 + p2)

+
(
φ̃(k4)δ

4(k2 + p3) + φ̃(k2)δ
4(k4 + p3)

)
δ4(k3 + p2)

+
(
φ̃(k2)δ

4(k3 + p3) + φ̃(k3)δ
4(k2 + p3)

)
δ4(k4 + p2)

]
δ4(k1 + p1)

+
[ (
φ̃(k4)δ

4(k3 + p3) + φ̃(k3)δ
4(k4 + p3)

)
δ4(k1 + p2)

+
(
φ̃(k4)δ

4(k1 + p3) + φ̃(k1)δ
4(k4 + p3)

)
δ4(k3 + p2)

+
(
φ̃(k3)δ

4(k1 + p3) + φ̃(k1)δ
4(k3 + p3)

)
δ4(k4 + p2)

]
δ4(k2 + p1)

+
[ (
φ̃(k4)δ

4(k2 + p3) + φ̃(k2)δ
4(k4 + p3)

)
δ4(k1 + p2)

+
(
φ̃(k4)δ

4(k1 + p3) + φ̃(k1)δ
4(k4 + p3)

)
δ4(k2 + p2)

+
(
φ̃(k2)δ

4(k1 + p3) + φ̃(k1)δ
4(k2 + p3)

)
δ4(k4 + p2)

]
δ4(k3 + p1)

+
[ (
φ̃(k3)δ

4(k2 + p3) + φ̃(k2)δ
4(k3 + p3)

)
δ4(k1 + p2)

+
(
φ̃(k3)δ

4(k1 + p3) + φ̃(k1)δ
4(k3 + p3)

)
δ4(k2 + p2)

+
(
φ̃(k2)δ

4(k1 + p3) + φ̃(k1)δ
4(k2 + p3)

)
δ4(k3 + p2)

]
δ4(k4 + p1)

}
= − λ

4!
(2π)4

ˆ
d4k1..4 δ

4(k1 + k2 + k3 + k4)e
− i

2
(k1×k2+k3×k4){[ (

δ4(k4 + p4)δ
4(k3 + p3) + δ4(k3 + p4)δ

4(k4 + p3)
)
δ4(k2 + p2)

+
(
δ4(k4 + p4)δ

4(k2 + p3) + δ4(k2 + p4)δ
4(k4 + p3)

)
δ4(k3 + p2)

+
(
δ4(k2 + p4)δ

4(k3 + p3) + δ4(k3 + p4)δ
4(k2 + p3)

)
δ4(k4 + p2)

]
δ4(k1 + p1)

+
[ (
δ4(k4 + p4)δ

4(k3 + p3) + δ4(k3 + p4)δ
4(k4 + p3)

)
δ4(k1 + p2)

+
(
δ4(k4 + p4)δ

4(k1 + p3) + δ4(k1 + p4)δ
4(k4 + p3)

)
δ4(k3 + p2)

+
(
δ4(k3 + p4)δ

4(k1 + p3) + δ4(k1 + p4)δ
4(k3 + p3)

)
δ4(k4 + p2)

]
δ4(k2 + p1)

+
[ (
δ4(k4 + p4)δ

4(k2 + p3) + δ4(k2 + p4)δ
4(k4 + p3)

)
δ4(k1 + p2)

+
(
δ4(k4 + p4)δ

4(k1 + p3) + δ4(k1 + p4)δ
4(k4 + p3)

)
δ4(k2 + p2)

+
(
δ4(k2 + p4)δ

4(k1 + p3) + δ4(k1 + p4)δ
4(k2 + p3)

)
δ4(k4 + p2)

]
δ4(k3 + p1)

+
[ (
δ4(k3 + p4)δ

4(k2 + p3) + δ4(k2 + p4)δ
4(k3 + p3)

)
δ4(k1 + p2)

+
(
δ4(k3 + p4)δ

4(k1 + p3) + δ4(k1 + p4)δ
4(k3 + p3)

)
δ4(k2 + p2)

+
(
δ4(k2 + p4)δ

4(k1 + p3) + δ4(k1 + p4)δ
4(k2 + p3)

)
δ4(k3 + p2)

]
δ4(k4 + p1)

}
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V φ4

= − λ

4!
(2π)4δ4(p1 + p2 + p3 + p4)(

e−
i
2
(p1×p2+p3×p4) + e−

i
2
(p1×p2+p4×p3) + e−

i
2
(p1×p3+p2×p4)

+ e−
i
2
(p1×p4+p2×p3) + e−

i
2
(p1×p3+p4×p2) + e−

i
2
(p1×p4+p3×p2)

+ e−
i
2
(p2×p1+p3×p4) + e−

i
2
(p2×p1+p4×p3) + e−

i
2
(p3×p1+p2×p4)

+ e−
i
2
(p4×p1+p2×p3) + e−

i
2
(p3×p1+p4×p2) + e−

i
2
(p4×p1+p3×p2)

+ e−
i
2
(p2×p3+p1×p4) + e−

i
2
(p2×p4+p1×p3) + e−

i
2
(p3×p2+p1×p4)

+ e−
i
2
(p4×p2+p1×p3) + e−

i
2
(p3×p4+p1×p2) + e−

i
2
(p4×p3+p1×p2)

+ e−
i
2
(p2×p3+p4×p1) + e−

i
2
(p2×p4+p3×p1) + e−

i
2
(p3×p2+p4×p1)

+ e−
i
2
(p4×p2+p3×p1) + e−

i
2
(p3×p4+p2×p1) + e−

i
2
(p4×p3+p2×p1)

)
= −2λ

4!
(2π)4δ4(p1 + p2 + p3 + p4)

(
e−i

p1×p2
2 cos

p3 × p4

2

+ e−i
p1×p3

2 cos
p2 × p4

2
+ e−i

p1×p4
2 cos

p2 × p3

2
+ e−i

p2×p1
2 cos

p3 × p4

2

+ e−i
p3×p1

2 cos
p2 × p4

2
+ e−i

p4×p1
2 cos

p2 × p3

2
+ e−i

p1×p4
2 cos

p2 × p3

2

+ e−i
p1×p3

2 cos
p2 × p4

2
+ e−i

p1×p2
2 cos

p3 × p4

2
+ e−i

p4×p1
2 cos

p2 × p3

2

+ e−i
p3×p1

2 cos
p2 × p4

2
+ e−i

p2×p1
2 cos

p3 × p4

2

)
= −λ

3
(2π)4δ4(p1 + p2 + p3 + p4)(

cos
p1 × p2

2
cos

p3 × p4

2
+ cos

p1 × p3

2
cos

p2 × p4

2
+ cos

p1 × p4

2
cos

p2 × p3

2

)
(A.1)
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Appendix B

Loop Corrections

B.1 Correction for the Massless Propagator

The �rst step is to use the propagator in the expanded form (5.15) and perform
a Schwinger parameterization,

I(p) =

ˆ
d4k

e±ikp̃

k2 + a2

k2

=
1

2

ˆ
d4k e±ikp̃

(
1

k2 + ia
+

1

k2 − ia

)
(B.1)

=
1

2

ˆ
d4k

∞̂

0

dα e±ikp̃
(
e−α(k2+ia) + e−α(k2−ia)

)
.

In order to shorten the notation summations over +1 and −1 are introduced
and the exponent is completed to a full square in order to do a substitution of a
variable later on,

I(p) =
1

2

∑
η=±1

∑
ξ=±1

ˆ
d4k

∞̂

0

dα eiηkp̃e−α(k2+iξa)

=
1

2

∑
η=±1

∑
ξ=±1

ˆ
d4k

∞̂

0

dα e−αk2+iηkp̃+ η2p̃2

4α
− η2p̃2

4α
−iξαa .

As η has only the value ±1, η2 is always 1, giving

I(p) =
1

2

∑
η=±1

∑
ξ=±1

ˆ
d4k

∞̂

0

dα e−α(k−i ηp̃
2α)

2

e−
p̃2

4α
−iξαa .
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With the substitution k′ = k − i ηp̃
2α

one gets a Gaussian integral which can be
solved easily

I(p) =
1

2

∑
η=±1

∑
ξ=±1

∞̂

0

dα

ˆ
d4k′e−αk′2

e−
p̃2

4α
−iξαa

= π2
∑
ξ=±1

∞̂

0

dα

α2
e−

p̃2

4α
−iξαa .

Summing over η gives a factor 2 in the equation above,

I(p) = π2

∞̂

0

dα

α2
e−

p̃2

4α

(
eiαa + e−iαa

)
= 2π2

∞̂

0

dα

α2
cos(αa) e−

p̃2

4α . (B.2)

The expansion for small arguments of the modi�ed Bessel function K1 gives

I(p) =
4π2

p̃

√
a

[
1 + i√

2

(
1

(1 + i)p̃

(
2

a

) 1
2

+
(1 + i)p̃

2

(a
2

) 1
2

(
ln

(1 + i)p̃

2

(a
2

) 1
2

+ γ − 1

2

)
+

(1 + i)3p̃3

16

(a
2

) 3
2

(
ln

(1 + i)p̃

2

(a
2

) 1
2

+ γ − 5

4

))

+
1 − i√

2

(
1

(1 − i)p̃

(
2

a

) 1
2

+
(1 − i)p̃

2

(a
2

) 1
2

(
ln

(1 − i)p̃

2

(a
2

) 1
2

+ γ − 1

2

)

+
(1 − i)3p̃3

16

(a
2

) 3
2

(
ln

(1 − i)p̃

2

(a
2

) 1
2

+ γ − 5

4

))]
+ O

(
p̃3
)

=
8π2

p̃2
+ π2a

[
(1 + i)2

(
ln

(1 + i)p̃

2

(a
2

) 1
2

+ γ − 1

2

)

+ (1 − i)2

(
ln

(1 − i)p̃

2

(a
2

) 1
2

+ γ − 1

2

)]

+
π2a2p̃2

16

[
(1 + i)4

(
ln

(1 + i)p̃

2

(a
2

) 1
2

+ γ − 5

4

)

+ (1 − i)4

(
ln

(1 − i)p̃

2

(a
2

) 1
2

+ γ − 5

4

)]
+ O

(
p̃3
)
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I(p) =
8π2

p̃2
+ 2iπ2a

(
ln

(1 + i)p̃

2

(a
2

) 1
2 − ln

(1 − i)p̃

2

(a
2

) 1
2

)
− π2a2p̃2

2

(
ln

(1 + i)p̃

2

(a
2

) 1
2

+ ln
(1 − i)p̃

2

(a
2

) 1
2

+ 2γ − 5

2

)
+ O

(
p̃3
)

=
8π2

p̃2
+ 2iπ2a ln i− π2a2p̃2

2

(
ln
p̃2a

4
+ 2γ − 5

2

)
+ O

(
p̃3
)

=
8π2

p̃2
− π3a− π2a2p̃2

2

(
ln
p̃2a

4
+ 2γ − 5

2

)
+ O

(
p̃3
)
. (B.3)

B.2 Correction for the One Loop Vertex

B.2.1 Multiplication of the Two Brackets

Multiplication of the two brackets of the vertices in the integral:(
cos p1×p2

2
cos k×(p1+p2)

2
+ cos p1×(k−p2)

2
cos p2×k

2
+ cos p1×k

2
cos p2×(k−p1)

2

)
(
cos k×(p3+p4)

2
cos p3×p4

2
+ cos (p4+k)×p3

2
cos k×p4

2
+ cos (p3+k)×p4

2
cos k×p3

2

)
= cos

p1 × p2

2
cos2 k × (p1 + p2)

2
cos

p3 × p4

2

+ cos
p1 × p2

2
cos

k × (p1 + p2)

2
cos

(p4 + k) × p3

2
cos

k × p4

2

+ cos
p1 × p2

2
cos

k × (p1 + p2)

2
cos

(p3 + k) × p4

2
cos

k × p3

2

+ cos
p1 × (k − p2)

2
cos

p2 × k

2
cos

k × (p3 + p4)

2
cos

p3 × p4

2

+ cos
p1 × (k − p2)

2
cos

p2 × k

2
cos

(p4 + k) × p3

2
cos

k × p4

2

+ cos
p1 × (k − p2)

2
cos

p2 × k

2
cos

(p3 + k) × p4

2
cos

k × p3

2

+ cos
p1 × k

2
cos

p2 × (k − p1)

2
cos

k × (p3 + p4)

2
cos

p3 × p4

2

+ cos
p1 × k

2
cos

p2 × (k − p1)

2
cos

(p4 + k) × p3

2
cos

k × p4

2

+ cos
p1 × k

2
cos

p2 × (k − p1)

2
cos

(p3 + k) × p4

2
cos

k × p3

2
(B.4)
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(B.4) =
1

2
cos p1×p2

2
cos p3×p4

2
[1 + cos(k × (p1 + p2))]

+
1

4
cos p3×p4

2

[
cos p1×(k−p2)+p2×k+k×(p1+p2)

2
+ cos p1×(k−p2)+p2×k−k×(p1+p2)

2

+ cos p1×(k−p2)−p2×k+k×(p1+p2)
2

+ cos p1×(k−p2)−p2×k−k×(p1+p2)
2

+ cos p1×k+p2×(k−p1)+k×(p1+p2)
2

+ cos p1×k+p2×(k−p1)−k×(p1+p2)
2

+ cos p1×k−p2×(k−p1)+k×(p1+p2)
2

+ cos p1×k−p2×(k−p1)−k×(p1+p2)
2

]
+

1

4
cos p1×p2

2

[
cos −k×(p3+p4)+(p4+k)×p3+k×p4

2
+ cos −k×(p3+p4)+(p4+k)×p3−k×p4

2

+ cos −k×(p3+p4)−(p4+k)×p3+k×p4

2
+ cos −k×(p3+p4)−(p4+k)×p3−k×p4

2

+ cos −k×(p3+p4)+(p3+k)×p4+k×p3

2
+ cos −k×(p3+p4)+(p3+k)×p4−k×p3

2

+ cos −k×(p3+p4)−(p3+k)×p4+k×p3

2
+ cos −k×(p3+p4)−(p3+k)×p4−k×p3

2

]
+

1

2

[
cos p1×(k−p2)

2
cos p2×k

2
+ cos p2×(k−p1)

2
cos p1×k

2

]
[
cos (p4+k)×p3+k×p4

2
+ cos (p4+k)×p3−k×p4

2

+ cos (p3+k)×p4+k×p3

2
+ cos (p3+k)×p4−k×p3

2

]
. (B.5)

This last term of this expression can be written as

1

4

(
cos

−p3 × p4 + k × (p3 + p4)

2
+ cos

−p3 × p4 + k × (p3 − p4)

2

+ cos
p3 × p4 + k × (p3 + p4)

2
+ cos

p3 × p4 − k × (p3 − p4)

2

)
(

cos
p2 × k − p1 × (k − p2)

2
+ cos

p2 × k + p1 × (k − p2)

2

+ cos
p1 × k − p2 × (k − p1)

2
+ cos

p1 × k + p2 × (k − p1)

2

)
=

1

2

(
cos

p3 × p4 − k × (p3 − p4)

2
+ cos

p3 × p4

2
cos

k × (p3 + p4)

2

)
(

cos
p1 × p2 + k × (p1 − p2)

2
+ cos

−p1 × p2 − k × (p1 + p2)

2

+ cos
−p1 × p2 − k × (p1 − p2)

2
+ cos

p1 × p2 − k × (p1 + p2)

2

)
=

(
cos

p1 × p2 + k × (p1 − p2)

2
+ cos

p1 × p2

2
cos

k × (p1 + p2)

2

)
×
(

cos
p3 × p4 − k × (p3 − p4)

2
+ cos

p3 × p4

2
cos

k × (p3 + p4)

2

)
. (B.6)
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From this result follows for the whole multiplication

(B.5) =
1

2
cos

p1 × p2

2
cos

p3 × p4

2
[1 + cos(k × (p1 + p2))]

+
1

4
cos

p3 × p4

2

[
2 cos

p1 × p2

2
+ cos

(
p1 × p2

2
− k × (p1 + p2)

)
+ cos

(
p1 × p2

2
+ k × (p1 + p2)

)
+ 2 cos

(
k × p2 −

p1 × p2

2

)
+ 2 cos

(
−k × p1 −

p1 × p2

2

)]
+

1

4
cos

p1 × p2

2

[
2 cos

p3 × p4

2
+ cos

(
p3 × p4

2
− k × (p3 + p4)

)
+ cos

(
p3 × p4

2
+ k × (p3 + p4)

)
+ 2 cos

(
k × p3 −

p3 × p4

2

)
+ 2 cos

(
−k × p4 −

p3 × p4

2

)]
+

(
cos

p1 × p2 + k × (p1 − p2)

2
+ cos

p1 × p2

2
cos

k × (p1 + p2)

2

)
×
(

cos
p3 × p4 − k × (p3 − p4)

2
+ cos

p3 × p4

2
cos

k × (p3 + p4)

2

)
. (B.7)

Remembering that p1 + p2 = −p3 − p4 this can be written as

=
1

2
cos

p1 × p2

2
cos

p3 × p4

2
[1 + cos(k × (p1 + p2))]

+
1

2
cos

p3 × p4

2

[
cos

p1 × p2

2
+

1

2

∑
±

cos

(
p1 × p2

2
± k × (p1 + p2)

)
+ cos

(
k × p2 −

p1 × p2

2

)
+ cos

(
−k × p1 −

p1 × p2

2

)]
+

1

2
cos

p1 × p2

2

[
cos

p3 × p4

2
+

1

2

∑
±

cos

(
p3 × p4

2
± k × (p3 + p4)

)
+ cos

(
k × p3 −

p3 × p4

2

)
+ cos

(
−k × p4 −

p3 × p4

2

)]
+ cos

k × (p1 + p2)

2
cos

k × (p3 + p4)

2
cos

p1 × p2

2
cos

p3 × p4

2

+ cos
p1 × p2

2
cos

k × (p1 + p2)

2
cos

p3 × p4 − k × (p3 − p4)

2

+ cos
p3 × p4

2
cos

k × (p3 + p4)

2
cos

p1 × p2 + k × (p1 − p2)

2

+ cos
p1 × p2 + k × (p1 − p2)

2
cos

p3 × p4 − k × (p3 − p4)

2
. (B.8)
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With cos2 x = 1
2
(1 + cos 2x) and cos a cos b = 1

2
cos(a+ b) + cos(a− b) this gives

(B.8) = cos p1×p2

2
cos p3×p4

2
[1 + cos(k × (p1 + p2))]

+
1

2
cos p3×p4

2

[
cos p1×p2

2
+ cos

(
k × p2 − p1×p2

2

)
+ cos p1×p2

2
cos(k × (p1 + p2))

+ cos
(
−k × p1 − p1×p2

2

)
+ 2 cos k×(p3+p4)

2
cos p1×p2+k×(p1−p2)

2

]
+

1

2
cos p1×p2

2

[
cos p3×p4

2
+ cos

(
k × p3 − p3×p4

2

)
+ cos

(
−k × p4 − p3×p4

2

)
+ cos p3×p4

2
cos(k × (p3 + p4)) + 2 cos k×(p1+p2)

2
cos p3×p4−k×(p3−p4)

2

]
+

1

2

[
cos p1×p2−p3×p4+k×(p1−p2+p3−p4)

2
+ cos p1×p2+p3×p4+k×(p1−p2−p3+p4)

2

]
= 2 cos p1×p2

2
cos p3×p4

2
[1 + cos(k × (p1 + p2))]

+
1

2
cos p3×p4

2

[
cos
(
k × p2 − p1×p2

2

)
+ cos

(
k × p1 + p1×p2

2

)
+ cos p1×p2+k×(p1−p2−p3−p4)

2
+ cos p1×p2+k×(p1−p2+p3+p4)

2

]
+

1

2
cos p1×p2

2

[
cos
(
k × p4 + p3×p4

2

)
+ cos

(
−k × p3 + p3×p4

2

)
+ cos p3×p4+k×(−p3+p4−p1−p2)

2
+ cos p3×p4+k×(−p3+p4+p1+p2)

2

]
+

1

2

[
cos
(

p1×p2−p3×p4

2
+ k × (p1 + p3)

)
+ cos

(
p1×p2+p3×p4

2
+ k × (p1 + p4)

)]
= 2 cos p1×p2

2
cos p3×p4

2
[1 + cos(k × (p1 + p2))]

+ cos p1×p2

2

[
cos
(

p3×p4

2
− k × p3

)
+ cos

(
p3×p4

2
+ k × p4

)]
+ cos p3×p4

2

[
cos
(

p1×p2

2
+ k × p1

)
+ cos

(
p1×p2

2
− k × p2

)]
+

1

2

[
cos
(

p1×p2−p3×p4

2
+ k × (p1 + p3)

)
+ cos

(
p1×p2+p3×p4

2
+ k × (p1 + p4)

)]
.

(B.9)
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To �nd a simpler form of this result it is written in its exponential form,

(B.9) =
1

4

(
e

i
2
(p1×p2+p3×p4) + e−

i
2
(p1×p2+p3×p4) + e

i
2
(p1×p2−p3×p4) + e−

i
2
(p1×p2−p3×p4)

)
×
(
2 + eik×(p1+p2) + e−ik×(p1+p2)

)
+

1

4

(
e

i
2
p1×p2 + e−

i
2
p1×p2

)
×
(
ei( p3×p4

2
−k×p3) + e−i( p3×p4

2
−k×p3) + ei( p3×p4

2
−k×p4) + e−i( p3×p4

2
−k×p4)

)
+

1

4

(
e

i
2
p3×p4 + e−

i
2
p3×p4

)
×
(
ei( p1×p2

2
+k×p1) + e−i( p1×p2

2
+k×p1) + ei( p1×p2

2
−k×p2) + e−i( p1×p2

2
−k×p2)

)
+

1

4

(
ei( p1×p2−p3×p4

2
+k×(p1+p3)) + e−i( p1×p2−p3×p4

2
+k×(p1+p3))

+ ei( p1×p2+p3×p4
2

+k×(p1+p4)) + e−i( p1×p2+p3×p4
2

+k×(p1+p4))
)

=
1

2

(
e

i
2
(p1×p2+p3×p4) + e−

i
2
(p1×p2+p3×p4) + e

i
2
(p1×p2−p3×p4) + e−

i
2
(p1×p2−p3×p4)

)
+

1

4

(
ei( p1×p2+p3×p4

2
+k×(p1+p2)) + e−i( p1×p2+p3×p4

2
+k×(p1+p2))

+ ei( p1×p2−p3×p4
2

+k×(p1+p2)) + e−i( p1×p2−p3×p4
2

+k×(p1+p2))
)

+
1

4

(
ei( p1×p2+p3×p4

2
−k×(p1+p2)) + e−i( p1×p2+p3×p4

2
−k×(p1+p2))

+ ei( p1×p2−p3×p4
2

−k×(p1+p2)) + e−i( p1×p2−p3×p4
2

−k×(p1+p2))
)

+
1

4

(
ei( p1×p2+p3×p4

2
+k×p1) + e−i( p1×p2−p3×p4

2
+k×p1)

+ ei( p1×p2+p3×p4
2

−k×p2) + e−i( p1×p2−p3×p4
2

−k×p2)
)

+
1

4

(
ei( p1×p2−p3×p4

2
+k×p1) + e−i( p1×p2+p3×p4

2
+k×p1)

+ ei( p1×p2−p3×p4
2

−k×p2) + e−i( p1×p2+p3×p4
2

−k×p2)
)

+
1

4

(
ei( p1×p2+p3×p4

2
−k×p3) + ei( p1×p2−p3×p4

2
+k×p3)

+ ei( p1×p2+p3×p4
2

−k×p4) + ei( p1×p2−p3×p4
2

+k×p4)
)

+
1

4

(
e−i( p1×p2−p3×p4

2
+k×p3) + e−i( p1×p2+p3×p4

2
−k×p3)

+ e−i( p1×p2−p3×p4
2

+k×p4) + e−i( p1×p2+p3×p4
2

−k×p4)
)

+
1

4

(
ei( p1×p2−p3×p4

2
+k×(p1+p3)) + e−i( p1×p2−p3×p4

2
+k×(p1+p3))

+ ei( p1×p2+p3×p4
2

+k×(p1+p4)) + e−i( p1×p2+p3×p4
2

+k×(p1+p4))
)

(B.10)
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(B.10) = 1
4
ei

p1×p2+p3×p4
2

(
2 + eik×(p1+p2) + e−ik×(p1+p2) + eik×p1 + e−ik×p2 + e−ik×p3

+ e−ik×p4 + eik×(p1+p4)
)

+ 1
4
e−i

p1×p2+p3×p4
2

(
2 + e−ik×(p1+p2) + eik×(p1+p2)

+ e−ik×p1 + eik×p2 + eik×p3 + eik×p4 + e−ik×(p1+p4)
)

+ 1
4
ei

p1×p2−p3×p4
2

(
2 + eik×(p1+p2) + e−ik×(p1+p2) + eik×p1 + e−ik×p2 + eik×p3

+ eik×p4 + eik×(p1+p3)
)

+ 1
4
e−i

p1×p2−p3×p4
2

(
2 + e−ik×(p1+p2) + eik×(p1+p2)

+ e−ik×p1 + eik×p2 + e−ik×p3 + e−ik×p4 + e−ik×(p1+p3)
)
. (B.11)

The interesting result of the graphs is the one for small external momenta meaning
pi → 0. For this case terms with pi × pj will be neglected and this means that it
is possible to set the overall exponential of the four terms to one and sum over
them. The result is

2 +
1

4

4∑
i=2

eik×(p1+pi) +
1

4

4∑
i=2

e−ik×(p1+pi) +
1

2

4∑
i=1

eik×pi+

1

2

4∑
i=1

e−ik×pi +
3

4
eik×(p1+p2) +

3

4
e−ik×(p1+p2) ,

and as the result of the vertex does not depend on the sign of the exponential
one can simply write

2 +
1

2

4∑
i=2

eik×(p1+pi) +
4∑

i=1

eik×pi +
3

2
eik×(p1+p2) . (B.12)

B.2.2 Approximation for Small Momenta

The integral to solve is Eqn. (5.36) with the factors
(
1 + ζ m2

2M2

)
and

(
1 + χ m2

2M2

)
.

That is

−

(
1 + ζ m2

2M2

)(
1 + χ m2

2M2

)
(4π)2

1ˆ

0

dξ ei(1−ξ)pq̃

×

[
ln

[
(p̃+ q̃)2

4

(
m2

2
+M2(χ+ (ζ − χ)ξ) + ξ(1 − ξ)p2

)]
+ 2γE

]
. (B.13)

With the assumption of small momenta p one can solve this integral when the
exponential is approximated with 1 and the term with the p2 is neglected as it is
considered to be small in comparison with the others. Performing the sum over
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χ and ζ �nally gives

− 1

(4π)2

1ˆ

0

dξ

[(
1 +

m2

2M2

)2
(

ln

[
(p̃+ q̃)2

4

(
m2

2
+M2

)]
+ 2γE

)

+

(
1 − m2

2M2

)2
(

ln

[
(p̃+ q̃)2

4

(
m2

2
−M2

)]
+ 2γE

)

+

(
1 − m4

4M4

)(
ln

[
(p̃+ q̃)2

4

(
m2

2
+ (1 − 2ξ)M2

)]
+ 2γE

)

+

(
1 − m4

4M4

)(
ln

[
(p̃+ q̃)2

4

(
m2

2
− (1 − 2ξ)M2

)]
+ 2γE

)]

= − 1

(4π)2

1ˆ

0

dξ

[(
1 +

m4

4M4

)(
ln

[
(p̃+ q̃)2

4

(
m2

2
+M2

)]

+ ln

[
(p̃+ q̃)2

4

(
m2

2
−M2

)]
+ 4γE

)
− m2

M2
ln

(
m2 − 2M2

m2 + 2M2

)

+

(
1 − m4

4M4

)(
ln

[
(p̃+ q̃)2

4

(
m2

2
+ (1 − 2ξ)M2

)]

+ ln

[
(p̃+ q̃)2

4

(
m2

2
− (1 − 2ξ)M2

)]
+ 4γE

)]

= − 1

(4π)2

1ˆ

0

dξ

[(
1 +

m4

4M4

)(
ln

[
(p̃+ q̃)4

16

(
m4

4
−M4

)]
+ 4γE

)

− m2

M2
ln

(
m2 − 2M2

m2 + 2M2

)
+

(
1 − m4

4M4

)(
ln

[
(p̃+ q̃)2

4

(
m2

2
+ (1 − 2ξ)M2

)]

+ ln

[
(p̃+ q̃)2

4

(
m2

2
− (1 − 2ξ)M2

)]
+ 4γE

)]
. (B.14)

The �rst two terms of the integral don't contain ξ and are therefore easy to solve.
For the third one the formula [21]

1ˆ

0

dx ln(a+ bx) =
a+ b

b
ln(a+ b) − a

b
ln a− 1 , (B.15)
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is used with a = m2

2
∓M2 and b = ±2M2 and this leads to

1ˆ

0

dξ
[
ln
[

(p̃+q̃)2

4

(
m2

2
+ (1 − 2ξ)M2

)]
+ ln

[
(p̃+q̃)2

4

(
m2

2
− (1 − 2ξ)M2

)]]

=

1ˆ

0

dξ

[
ln

(p̃+ q̃)4

16
+ ln

(
m2

2
+M2 − 2ξM2

)
+ ln

(
m2

2
−M2 + 2ξM2

)]

= ln
(p̃+ q̃)4

16
+

m2

2
−M2 + 2M2

2M2
ln

(
m2

2
+M2

)
−

m2

2
−M2

2M2
ln

(
m2

2
−M2

)
− 1 +

m2

2
+M2 − 2M2

−2M2
ln

(
m2

2
−M2

)
−

m2

2
+M2

−2M2
ln

(
m2

2
+M2

)
− 1

= ln
(p̃+ q̃)4

16
+

(
m2

2
+M2

)
+
(

m2

2
+M2

)
2M2

ln

(
m2

2
+M2

)

−

(
m2

2
−M2

)
+
(

m2

2
−M2

)
2M2

ln

(
m2

2
−M2

)
− 2

= ln
(p̃+ q̃)4

16
+

(
m2

2M2
+ 1

)
ln

(
m2

2
+M2

)
−
(
m2

2M2
− 1

)
ln

(
m2

2
−M2

)
− 2

= ln

[
(p̃+ q̃)4

16

(
m4

4
−M4

)]
+

m2

2M2
ln
m2 + 2M2

m2 − 2M2
− 2 . (B.16)

With this result the complete integral (B.14) gives

− 2

(4π)2

[(
1 +

m4

4M4

)
ln

(p̃+ q̃)2

4

√
m4

4
−M4

+

(
1 − m4

4M4

)
ln

(p̃+ q̃)2

4

√
m4

4
−M4 +

(
1 − m4

4M4

)
m2

2M2
ln

√
m2 + 2M2

m2 − 2M2

−
(

1 − m4

4M4

)
+ 4γE − m2

M2
ln

√
m2 − 2M2

m2 + 2M2

]

=
1

(2π)2

(
ln

(p̃+ q̃)2

4

√
m4

4
−M4 − 1

2

(
1 − m4

4M4

)
+ 2γE

− m2

4M2

(
3 − m4

4M4

)
ln

√
m2 − 2M2

m2 + 2M2

)
. (B.17)
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B.3 Correction for Higher Loop Orders

B.3.1 Integrals

The integral formulas for theses integrals can be found in [21].

1ˆ

0

dξ1 cosh
(
λξ1ξ2M

2
)
cosh

(
λξ1ξ2M

2 − λξ2M
2
)

=

[
ξ1
2

cosh
(
λξ2M

2
)

+
1

4λξ2M2
sinh

(
2λξ1ξ2M

2 − λξ2M
2
)]∣∣∣∣1

0

=
1

2
cosh

(
λξ2M

2
)

+
1

2λξ2M2
sinh

(
λξ2M

2
)
, (B.18)

1ˆ

0

dξ1 sinh
(
λξ1ξ2M

2
)
cosh

(
λξ1ξ2M

2 − λξ2M
2
)

=

[
ξ1
2

sinh
(
λξ2M

2
)

+
1

4λξ2M2
cosh

(
2λξ1ξ2M

2 − λξ2M
2
)]∣∣∣∣1

0

=
1

2
sinh

(
λξ2M

2
)
, (B.19)

−
1ˆ

0

dξ1 cosh
(
λξ1ξ2M

2
)
sinh

(
λξ1ξ2M

2 − λξ2M
2
)

=

[
ξ1
2

sinh
(
λξ2M

2
)
− 1

4λξ2M2
cosh

(
2λξ1ξ2M

2 − λξ2M
2
)]∣∣∣∣1

0

=
1

2
sinh

(
λξ2M

2
)
, (B.20)

−
1ˆ

0

dξ1 sinh
(
λξ1ξ2M

2
)
sinh

(
λξ1ξ2M

2 − λξ2M
2
)

=

[
ξ1
2

cosh
(
λξ2M

2
)
− 1

4λξ2M2
sinh

(
2λξ1ξ2M

2 − λξ2M
2
)]∣∣∣∣1

0

=
1

2
cosh

(
λξ2M

2
)
− 1

2λξ2M2
sinh

(
λξ2M

2
)
. (B.21)
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Integral formulas for the integration over ξ2 (from [21]) are

1ˆ

0

dx eax sinh (bx) =
eax

a2 − b2
[a sinh (bx) − b cosh (bx)]|10

=
ea

a2 − b2
[a sinh b− b cosh b] +

b

a2 − b2
, (B.22)

1ˆ

0

dx xeax sinh (bx) = eax

a2−b2

[(
ax− a2+b2

a2−b2

)
sinh (bx) −

(
bx− 2ab

a2−b2

)
cosh (bx)

]∣∣∣1
0

= ea

a2−b2

[(
a− a2+b2

a2−b2

)
sinh b−

(
b− 2ab

a2−b2

)
cosh b

]
− 2ab

(a2−b2)2
,

(B.23)

1ˆ

0

dx xeax cosh (bx) = eax

a2−b2

[(
ax− a2+b2

a2−b2

)
cosh (bx) −

(
bx− 2ab

a2−b2

)
sinh (bx)

]∣∣∣1
0

= ea

a2−b2

[(
a− a2+b2

a2−b2

)
cosh b−

(
b− 2ab

a2−b2

)
sinh b

]
+ a2+b2

(a2−b2)2
.

(B.24)

Inserting theses three integrals in the calculation gives

1

2

1ˆ

0

dξ2 e−λξ2
m2

2

[
ξ2 cosh

(
λξ2M

2
)(

1 +
m4

4M4

)

+ sinh
(
λξ2M

2
)( 1

λM2

(
1 − m4

4M4

)
− ξ2m

2

M2

)]
=

1

2

[(
1 +

m4

4M4

)[
e−λ m2

2

λ2
(

m4

4
−M4

)((−λm2

2
− m4 + 4M4

m4 − 4M4

)
coshλM2

−
(
λM2 +

4m2M2

m4 − 4M4

)
sinhλM2

)
+

m4

4
+M4

λ2
(

m4

4
−M4

)2
]

+
1 − m4

4M4

M2

[
e−λ m2

2

λ2

„

m4

4
−M4

«

(
−m2

2
sinhλM2 −M2 coshλM2

)
+ M2

λ2

„

m4

4
−M4

«

]

− m2

M2

[
e−λ m2

2

λ2
“

m4

4
−M4

”

((
−λm

2

2
− m4 + 4M4

m4 − 4M4

)
sinhλM2

−
(
λM2 +

4m2M2

m4 − 4M4

)
coshλM2

)
+

m2M2

λ2
(

m4

4
−M4

)2
]]
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=
1

2

[
1

λ2
(

m4

4
−M4

) ((1 +
m4

4M4

)
m4 + 4M4

m4 − 4m4
+

(
1 − m4

4M4

)
− 4m4

m4 − 4M4

)
+ e−λ m2

2
coshλM2

λ2
(

m4

4
−M4

)[(1 +
m4

4M4

)(
−λm

2

2
− m4 + 4M4

m4 − 4M4

)
− 1 +

m4

4M4
+
m2

M2

(
λM2 +

4m2M2

m4 − 4M4

)]
− e−λ m2

2
sinhλM2

λ2
(

m4

4
−M4

)[(1 +
m4

4M4

)(
λM2 +

4m2M2

m4 − 4M4

)
+

m2

2M2

(
1 − m4

4M4

)
− m2

M2

(
λ
m2

2
+
m4 + 4M4

m4 − 4M4

)]]

=
1

2

1

λ2
(

m4

4
−M4

)2
[
m4

4
+M4 +

m8

16M4
+
m4

4
+
m4

4
−M4 − m8

16M4
+
m4

4
−m4

+ e−λ m2

2

(
coshλM2

(
− λ

m6

8
+ λ

m2M4

2
− m4

4
−M4 − λ

m10

32M4
+ λ

m6

8

− m8

16M4
− m4

4
− m4

4
+M4 +

m8

16M4
− m4

4
+ λ

m6

4
− λm2M4 +m4

)
− sinhλM2

(
λ
m4M2

4
− λM6 +m2M2 + λ

m8

16M2
− λ

m4M2

4
+

m6

4M2

+
m6

8M2
− m2M2

2
− m10

32M6
+

m6

8M2
− λ

m8

8M2
+ λ

m4M2

2
− m6

4M2
−m2M2

))]

=
1

2

e−λ m2

2

λ2
(

m4

4
−M4

)2[λ(m6

4
− m2M4

2
− m10

32M4

)
coshλM2

−
(
λ

(
− m8

16M2
−M6 +

m4M2

2

)
− m2M2

2
− m10

32M6
+

m6

4M2

)
sinhλM2

]
=

1

2

e−λ m2

2

λ2

[
−λ m2

2M4
coshλM2 +

(
λ

M2
+

m2

2M6

)
sinhλM2

]
. (B.25)

B.3.2 Expansion of the Bessel Function

The integration over λ gives

Π1−ins(p) = − λ2

16π2θ2M6

[
M2m2

+K0

(√
m2

+p̃
2

)
+M2m2

−K0

(√
m2

−p̃
2

)

+m2

√
m2

+

p̃2
K1

(√
m2

+p̃
2

)
−m2

√
m2

−

p̃2
K1

(√
m2

−p̃
2

)]
, (B.26)
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and expanding the modi�ed Bessel functions for small external momentum p̃2

leads to

Π1−ins(p) = − λ2

16π2θ2M6

[
−M2m2

+ ln

√
m2

+p̃
2

2
−M2m2

− ln

√
m2

−p̃
2

2
−m2M2γE

+m2

√
m2

+

p̃2

(
1√
m2

+p̃
2

+

√
m2

+p̃
2

2

(
ln

√
m2

+p̃
2

2
+ γE − 1

2

))

−m2

√
m2

−

p̃2

(
1√
m2

−p̃
2

+

√
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