
Data mining strategies

in large–scale agent–based models

with applications in econophysics

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur/in

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Werner Bayer
Matrikelnummer 0225629

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung:

Betreuer: Univ.–Prof.Mag.DDr. Stefan Thurner, Medizinische Universität Wien

Wien, 16. 12. 2009

(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

 

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 



Werner Bayer

Ludwig Hinnerthstrasse 5

3021 Pressbaum

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-

wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen

der Arbeit — einschließlich Tabellen, Karten und Abbildungen —, die anderen Werken

oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter

Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Pressbaum, 16. Dezember 2009

(Unterschrift)



Kurzfassung

Agentenbasierte Modelle haben sich als unschätzbares Werkzeug in einer breiten Palet-

te an Forschungsfeldern erwiesen — trotz der einhergehenden Nachteile von oft komple-

xer und modellabhängiger Programmierung der Agenten. Die Verwendung eines Mas-

sive Multiplayer Online Games (MMOG) mit Menschen als Teilnehmern anstelle von pro-

grammierten Agenten beseitigt viele dieser Nachteile und gibt Forschern zusätzlich die

Gewissheit, dass sie echtes menschliches Verhalten studieren.

Das MMOG Pardus generiert täglich Millionen an Datensätzen und zeichnet dabei je-

de relevante Aktion eines jeden Spielers auf. Diese Aufzeichnungen sind in Form von

täglichen Datenbank Sicherungen verfügbar. Es muss ein System konzipiert und imple-

mentiert werden, das alle Daten anonymisiert und vereint. Forscher müssen umfassende

Abfragen auf den gesamten Zeitraum der gesammelten Daten tätigen können.

Data Mining Strategien werden evaluiert und in mehreren Bereichen wie Speicher Effi-

zienz, Sicherheit, Geschwindigkeit und Fähigkeit zur simultanen Benutzung verglichen.

Schließlich wird ein relationales Datenbank Management System (RDBMS) aufgrund sei-

ner Überlegenheit in allen Gebieten als Daten Back–End verwendet. Ein Datenbank De-

sign wird so entworfen, dass es den enormen Fluss an Daten aufnehmen kann. Eine Ap-

plikation bestehend aus einem Kommandozeilen Programm und einem Web Front–End

wird implementiert. Das Kommandozeilen Programm enthält Funktionen zur Extrahie-

rung relevanter Daten der Sicherungen, zur Anonymisierung und zur Integration in das

neue System. Das Web Front–End kann sowohl von Forschern für den Zugriff zu den Da-

ten im System, als auch von Administratoren verwendet werden um neue Sicherungen

zu importieren, Sicherungen vom System selbst anzulegen oder zur automatischen Aus-

führung zu planen.

Eine erste Verwendung der Applikation zeigt vielversprechende Resultate, die namhaf-

te sozialwissenschaftliche Hypothesen erfüllen, und folglich auch die Realisierbarkeit

von Data Mining in menschlichen agentenbasierten Modellen in großem Umfang wie

in MMOGs untermauern.

i



Abstract

Agent–based models have proven to be a unique and valuable tool in a wide range of re-

search areas, despite the inherent drawbacks of complex, large–scale, and often model–

specific programming of agents. The use of a massive multiplayer online game (MMOG),

with real human participants in place of programmed agents, eliminates many of those

drawbacks and allows researchers to confidently read data as accurately reflecting gen-

uine human behavior.

The MMOG Pardus generates millions of data sets each day, logging each and every rel-

evant user action including various social and economic engagements. These data sets

are available in form of daily database backups. A system must be designed and im-

plemented to combine and anonymize all data while keeping all correlations intact. Re-

searchers need extensive querying capabilities on any and all timeframes of the data.

Data mining strategies are evaluated and compared in regards to storage size, practi-

cality, security, speed and ability for concurrent usage. Eventually a relational database

management system (RDBMS) is used as data storage back–end due to its superiority in

all areas. Subsequently a database layout is designed to accommodate the huge input

of data. An application consisting of a command–line tool and a web front–end is imple-

mented. The command–line tool contains functions for extracting the data from backups,

anonymizing it and integrating it into the new system. The web front–end is both used by

researchers accessing the data, and by administrators creating schedules for or manually

exporting and importing data.

First usage of the application shows promising results, supporting famous social sci-

ence hypotheses and thus confirming the feasibility of data mining in large–scale human

agent–based models like MMOGs.

ii



Contents

Kurzfassung i

Abstract ii

1. Introduction 1

2. Description of the Data Set 7
2.1. The Pardus Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1. Hardware Deployment . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3. Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1. Relevant Data Subsets . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2. Database Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4. Intermittent Changes and Outages . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1. Past Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.2. Future Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.3. Outages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5. Legal Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3. Aim 23

4. Data Mining 25
4.1. Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1. Flat Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.2. XML Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.3. Object-oriented Database . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.4. Relational Database . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2. Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1. Database Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iii



Contents

4.3. Technical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1. Shared Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.2. Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.3. Anonymization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.4. Data Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.5. Web Front–end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5. Application 60
5.1. General Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1. Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.2. Administration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2. Scientific Routines: An example . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1. Preferential Attachment . . . . . . . . . . . . . . . . . . . . . . . . . 65

6. Concluding Remarks 69
6.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2. Scientific Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3.1. New Virtual Environment . . . . . . . . . . . . . . . . . . . . . . . . 70

A. Acknowledgements 72

B. Bibliography 73

iv



Glossary

Notation Description

ACID Atomicity Consistency Isolation Durability. Ensures

transactions in a database are atomic, consistent, iso-

lated and durable. 27, 28, 30, 31, 36

ANSI American National Standards Institute. Oversees

standardization in the U.S. and is a member of the ISO.

29, 30

class diagram Visualizes a system’s classes, their attributes and

methods as well as the relations between them. 13

CLI Command–Line Interface. In contrast to a graphical

user interface, commands are given by textual input

only in a command–line interface. 37, 57, 62, 64

Crow’s Foot This notation is used in Entity-Relationship Models.

The “to–many” end of a relation resembles a crow’s

foot. 32

cryptographic hash function Outputs a string of fixed size from an input of vari-

able length. To classify as cryptographic hash func-

tion among others there must be no easy way to find

the input data from the returned string nor to find mul-

tiple input values resulting in the same output. 48

CSV Comma Separated Values. A text file format storing

data values separated by commas. 24, 55, 62

deployment diagram Displays physical pieces of a model, “Artifacts”, at-

tached to hardware “nodes”. 11

v



Glossary

Notation Description

ERD Entity–Relationship Diagram. A diagram visual-

izing database structures created through entity-

relationship modeling, a software engineering. 6, 32,

53

FCGI Fast Common Gateway Interface. An interface usu-

ally connecting a web server with external programs.

Contrary to CGI, FastCGI handles several requests

over a single process eliminating the overhead for

creating new processes. 37, 52

GPL GNU General Public License. License dedicated to

promoting free software. 30

GUI Graphical User Interface. A graphical user interface

offers visual methods to control a program. 37

HTML Hyper Text Markup Language. The standard markup

language for web documents. 11, 64

index Used in database systems to store the byte offset at

which to find a record. 26–29

ISO International Organization for Standardization. A non-

governmental organization setting international stan-

dards. 29

MD5 Message-Digest algorithm 5. A cryptographic hash

function that returns a 128–bit string. 36, 48, 53

MVC Model View Controller. A pattern in software engi-

neering to isolate the presentation layer from busi-

ness logic. 52

OODBMS Object–Oriented Database Management System. An

OODBMS stores objects persistently. 28, 29

OQL Object Query Language. A language to query object

database systems. 28

vi



Glossary

Notation Description

package diagram Gives an overview of packages and their dependen-

cies. 37

PHP Hypertext Preprocessor. A scripting language sup-

porting the object-oriented programming paradigm.

11, 37, 46

RAID 1 A redundant array of inexpensive disks mirroring all

content in real time. 21

RDBMS Relational Database Management System. An

RDBMS stores data in form of tables consisting of rows

and columns. ii, 29–31, 69

salt In cryptography a salt is a value that is used as ad-

ditional input for a cryptographic hash function. This

measure substantially complicates dictionary attacks.

48

serializable A serializable mode of transaction isolation ensures

that transactions cannot affect each other, as if they

were executed after each other. This is done

by range–locking queries, even SELECTs, on the

WHERE clause. 52

SQL Structured Query Language. A language to query re-

lational database systems. 24, 27–31, 45–47, 49–53,

55, 60, 62

SQL injection Malicious SQL queries can be executed when user

input is not correctly escaped. 41, 55

SQL/PSM SQL/Persistent Stored Modules. Standard to add pro-

cedural programming features to SQL. 29

surrogate key A primary key in a database table that is not related

to any user data — visible or invisible to the user. 36

UML Unified Modeling Language. A graphical modeling

language to create visual software engineering mod-

els. 11

vii



Glossary

Notation Description

use case diagram Shows how a task is executed in terms of actors con-

trolling processes. 15

XML Extensible Markup Language. A markup language

defining rules of how to encode information in text

files. 24, 26–28, 55, 62

viii



List of Figures

2.1. The virtual environment of Pardus. . . . . . . . . . . . . . . . . . . . . . . . 8

2.2. A sampling of the Pardus production–tree. . . . . . . . . . . . . . . . . . . 10

2.3. Deployment Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4. Wealth Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5. Trading Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6. Trading Use Case Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7. Alliance Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8. Diplomacy / Message Class Diagram . . . . . . . . . . . . . . . . . . . . . 19

2.9. Relevant Tables Entity-Relationship Diagram . . . . . . . . . . . . . . . . . 20

4.1. Database Layout of the Extracted Table Subset. . . . . . . . . . . . . . . . 33

4.2. Database Layout of the ID Mapping. . . . . . . . . . . . . . . . . . . . . . . 34

4.3. Main Data Mining Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4. Database Layout of the User Credentials. . . . . . . . . . . . . . . . . . . . 37

4.5. Package Diagram of the Data Mining Suite. . . . . . . . . . . . . . . . . . . 38

4.6. Settings Class Diagram (get/set operations hidden). . . . . . . . . . . . . . 40

4.7. Database Class Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.8. Record Class Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.9. Class Diagram of the backup package. . . . . . . . . . . . . . . . . . . . . 44

4.10. Logic Class Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.11. Extraction Class Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.12. Anonymization Class Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.13. Integration Class Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.14. Class Diagram of the www package. . . . . . . . . . . . . . . . . . . . . . 54

4.15. Wrapper Class Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1. Screenshot of the web application: Query view. . . . . . . . . . . . . . . . 61

5.2. Screenshot of the web application: Export view. . . . . . . . . . . . . . . . 63

5.3. (a) PM networks, (b) Friend/foe networks. . . . . . . . . . . . . . . . . . . 67

ix



List of Figures

5.4. Probability of newcomers connecting to nodes. . . . . . . . . . . . . . . . 68

x



List of Tables

2.1. Size of relevant tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2. Missing database backups . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1. Table columns to anonymize . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1. Cron syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2. Command–line parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xi



Listings

4.1. Settings::getInstance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2. Logic->process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3. Snippet of Dir->scanDir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4. Logic->mineDirectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5. Extraction SQL Code: trade_log_eq . . . . . . . . . . . . . . . . . . . . . . 46

4.6. Extraction->moveRelevant . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.7. Anonymization SQL Code: player_id . . . . . . . . . . . . . . . . . . . . . 49

4.8. Anonymization->updateValues . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.9. Integration SQL Code Snippet . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.10. Controller->getQueryResult . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.11. Controller->clearBackupSchedule . . . . . . . . . . . . . . . . . . . . . . . 56

4.12. Template->import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.13. Wrapper->addUpdateSchedule . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1. SQL queries to retrieve preferential attachment data . . . . . . . . . . . . 65

xii



Chapter 1.

Introduction

Agent–based Models

The use of agent–based models has been growing at a phenomenal rate since the 1990s

in nearly every field of study. The potential offered by agent–based models for both

learning and extracting data with practical, real–world use has already been demon-

strated by researchers around the globe [Buc09], in everything from studying the spread

of pathogens to social sciences to stock market analysis.

Concepts

An agent–based model is an evolving system which contains a number of autonomous

agents in a virtual environment. The model’s outcome depends on the decisions, inter-

actions and other activities of the agents within. Though they share some similarities,

agent–based models differ from the more traditional particle systems in that agents may

dynamically learn and modify their behavior through interactions with their environment

and each other.

In an agent–based model, an agent is an entity that behaves in a certain way based on

a set of assumptions or rules the agent has been given. The rules dictating an agent’s

behavior are typically defined with the creation of the model and may range from the

simplistic to the very complex depending on purpose of the model. In models focusing

on sentient entities, such as human beings, agents may be designed to act with self–

interest in mind; for example the need for food or evasion of danger, or the desire for

socialization or the accumulation of wealth [AAS].

1



Chapter 1. Introduction

Agent–based models offer a means to simulate large–scale, complex phenomena, such

as financial markets, while agents within the model make only minimal assumptions

or decisions on a small, local scale. This process of emergence demonstrates how

very small, relatively simplistic decisions on the part of individual agents can generate a

widespread, complex system [Bon02].

Unlike traditional analytical methods, which only characterize elements of a system or

scenario — such as equilibrium — agent–based models can actually produce those el-

ements, or fail to do so if the system does not compel the agents to act in a way that

produces them [Art05]. Agent interactions and decisions can be tracked so it is possible

to see when, how and why changes or events took place. Modelers can then explore

alternative outcomes by introducing new or different elements to the scenario.

Difficulties

Despite their usefulness in many applications, standard agent–based models do present

some obstacles.

Agents rely on the pre–defined set of behaviors granted to the agents to produce output.

If the behavior is modeled to mimic human behavior, for example, the results of an agent–

based model scenario will only accurately reflect similar circumstances in the real world

if the agents act with similar variety, complexities and idiosyncrasies [dSGL09].

Another difficulty is the actual programming of the agents; whether agent behavior is

being modified or is being written from scratch, this process can be lengthy and ar-

duous depending on the complexity of the agents [Ric05]. In most situations in which

using agent–based models is beneficial, be it for business usage or pure research, time

and technical difficulties often add undesirable, inefficient and costly elements to any

project.

A related issue is in programming itself; as with any human endeavor, it is prone to er-

ror. Programming sophisticated agent behavior quickly becomes complex and “bugs”

are almost a certainty, some of which may be nearly undetectable but can considerably

bias the evolution of events within the model [Ehr02]. Of course bugs are a possibility

in any program, simple or not, but as the complexity grows so does the likelihood of

encountering bugs and the difficulty of removing them.

Replication of human behavior, such as one might need in a large–scale economic model,

requires a wide variety of very sophisticated agents. Humans make decisions based on a

2



Chapter 1. Introduction

large number of factors; education, access to and understanding of available information

and social networking just to name a few [KN01]. While this has been done with some

success, the difficulties in replicating human behavior are an ongoing issue [FF09].

Agent–based Models as Socio–economic Systems

A practical solution for the previously mentioned drawbacks of the agent–based model is

replacing the computerized agents with real human beings. Instead of making assump-

tions about likely responses in agents, the variety, complexity and occasional irrational-

ity present in real-world human decision making would automatically be represented

[Bon02]. Results of the model could be viewed confidently as accurately reflecting the

behavior of real human beings.

Real humans in place of agents would also considerably reduce time spent working on

the model and, as a likely result, cost of the project. Both creating and modifying the the

model would require attention only to the environment, completely eliminating a consid-

erable amount effort and time put into the project.

A significant reduction of time spent as well as quantity of actual programming also log-

ically leads to a reduction in the number of bugs present in the overall model, and time

spent rectifying any such errors.

Using real human beings in place of agents presents particular benefits to the study of

socio–economic systems, such as financial markets. A controlled model environment

using real human agents allows the ability to track both decisions and the factors that

influence them, such as social and economic status within the model.

An obvious difficulty in using human beings in place of computerized agents is acquir-

ing cooperative human beings to participate. A solution presents itself in the use of Mas-

sively Multiplayer Online Games (MMOGs), in which people from all parts of the world

can participate. In addition to providing a pool of participants, the use of a game pro-

vides compensation to users in that it brings them enjoyment, a condition which both

invokes a willingness to participate and eliminates any need for financial compensation

of a participant’s time.

3



Chapter 1. Introduction

Massive Multiplayer Online Games (MMOGs)

Remarkably, one of the largest collective human activities on the planet is the playing of

online games [IBM07, Cas05], which are currently played by more than a hundred million

people worldwide.

In online games all information about all actions taken by all players can be easily recorded

and stored in log files at practically no cost1. The quantities of the available data is highly

impressive and has previously been unthinkable in the traditional social sciences. There

sample sizes often do not exceed several dozens of questionnaires, school classes or

social science students in behavioral experiments. In MMOGs not only the actions of

the individual players are known, but — most importantly — also the surroundings (of

the given players) under which a particular action (or decision) was taken, are available.

This offers the unique opportunity to study a complex social system: conditions under

which individuals make decisions can in principle be controlled, the outcomes of deci-

sions can be measured. In this respect social science is on the verge of becoming a fully

experimental science, which should increasingly become capable of making repeatable

and falsifiable statements of collective human behavior, be it in a social or economical

context.

Another advantage over traditional methods of data acquisition in the social sciences

is that in MMOGs players do not consciously notice their actions are monitored and

recorded; thereby avoiding aberrent behaviors resulting from “observer effect” or “reac-

tivity”, longstanding complications in the classic natural sciences [Hol97]. These games

do not only offer a way to explore sociological questions, but — if economic aspects are

part of the game (as it is in modern complex games) — also to study economical behav-

ior of groups. Here again it is of great importance to mention that not only economical

actions (decisions) can be monitored for a huge number of individual players but also

the (social and economical) circumstances affecting the players and their decision mak-

ing are known.

This means that MMOGs offer an environment to perform behavioral economics exper-

iments, which have been of great interest recently in a number of small-scale experi-

ments, e.g. [GF99, HBB+05]. These experiments have demonstrated that man — as an

economic being — does not behave rationally and is definitely not a homo oeconomi-

cus. These experiments and their underlying concepts have led to the Nobel prizes of D.

Kahneman and V.L. Smith in 2002.

1given the consent of the player, which happens usually at the beginning of her participation in the game.

4



Chapter 1. Introduction

Another intriguing feature of online game data is that — again only for several complex

games — there is data available on both, social and economic behavior at the same time,

within one coherent setup. This finally presents an opportunity to systematically study

economic and social behavior and its interconnections, which are practically unexplored:

it becomes possible to study the socio–economic unit of a human online game society.

Problem Statement

In order to further explore the intruiging possibilities of using humans in place of agents,

log files of the massive multiplayer online game Pardus have been made available. Par-

dus offers its more than 300,000 registered players a wide variety of virtual economic

possibilities, as well as an array of social engagements and networking opportunities.

All player data has been recorded since 2005 and now comprises about 3,300 database

backups for a total amount of over 1,000 GB (see section 2.1).

However, a system must be designed and implemented to enable research of the existing

game data. All personal information of players has to be anonymized. Researchers need

instant access to any and all timeframes of the data. A client supporting routines for the

following purposes has to be developed (see chapter 3):

∙ Calculate price formation and wealth distribution to compare with real world data

and establish further evidence that online game communities serve as a good

model for certain real world communities.

∙ Quantitatively and experimentally explore a series of long standing scientific ques-

tions regarding social network dynamics, group formation and dynamics, including

the explicit “experimental” testing of several famous social science hypotheses.

∙ Quantify economic “indices” such as productivity, trading, price formation for goods

and services in the game.

∙ Relate network structures with economic performance of players and groups of

them, including exploring gender and country specific differences in social net-

work dynamics.

The minimum data subsets that need to be prepared for the listed purposes are de-

scribed in subsection 2.3.1.

5



Chapter 1. Introduction

The author of this thesis and the research institution are the sole owners of mentioned

data and are not limited by data transfer restrictions, see section 2.5 on legal issues.

Overview

Chapter 2
describes the existing game Pardus and gives an overview of its data structure. This

includes Entity–Relationship Diagrams (ERDs), class diagrams, use case diagrams

and descriptions. Various difficulties regarding the data set and data mining are

examined.

Chapter 3
explicitly lists the aims of the thesis.

Chapter 4
evaluates data mining strategies. Next the used data structure is described in de-

tail. The process of compiling data for this structure is documented by giving in-

formation about the code, data structures, and algorithms used to solve the stated

problems. A client for scientific queries is developed and seamless updates to the

data are enabled.

Chapter 5
explains the general usage of the program and shows the information gained by

selected routines.

Chapter 6
summarizes the work and its results, and gives an outlook for future research.

6



Chapter 2.

Description of the Data Set

2.1. The Pardus Game

Computer games can be categorized into single-player and multi–player games. Online

games of the latter category are often referred to as “massive”, meaning a large number

of users play and interact together in the same virtual environment. Pardus [OEG04], like

the well-known game World of Warcraft, is a massive multiplayer online game (MMOG).

However, Pardus is browser-based, allowing easy accessibility due to platform indepen-

dence; whereas games like World of Warcraft require software installation in order to

play.

Pardus is an open–ended massive multiplayer online game with a worldwide player base

of more than 300,000 people. The virtual game setting is a futuristic universe, popu-

lated with planets, varying topology, resources, game controlled enemies, player-created

structures and of course players themselves. Each player is represented by a graphical

spacecraft; depending on the wealth and skills a player accumulates in the game the

spacecraft may be upgraded. The game’s environmental topology is basically fixed but

can be manipulated by the players to some extent, such as constructing buildings that

prevent other players from entering an area of the universe.

Figure 2.1 displays the virtual world of Pardus; a player’s spacecraft in the center sur-

round by various player–owned buildings, a resource field and a planet.

Since the game is open-ended players set their own goals; typically goals are oriented to-

wards accumulation of in-game wealth, power, or fame — positive or negative — among

their peers. Pardus does have a few fixed game rules, primarily concerning behavioral

7



Chapter 2. Description of the Data Set

Figure 2.1.: The virtual environment of Pardus.

8



Chapter 2. Description of the Data Set

etiquette. Most players invent and develop their virtual social lives without any constraints

or guidance by the game system.

Observation of players in Pardus has shown an astonishing amount of self-organization

emerging within the player community, without any influence by game mechanics. Play-

ers demonstrate consistent tendencies to self-organize into groups and subgroups; groups

of players may work cooperatively to benefit the entire group, such as claiming territories

or attempting to improve their local economy. Frequently hostilities will develop between

groups, sometimes leading to full–scale war.

Because Pardus implements an “Action Point” system which restricts the amount of ac-

tions a player may perform in a day, many group activities in the game require consider-

able planning and cooperation. Though it is possible for a player to develop an advanced,

powerful character without support from other players, it is generally easier and faster to

accomplish goals with teamwork — as is often the case in real–world situations. Some

large–scale actions — such as building spacecraft or keeping a starbase operational —

require an extensive network of commodities, more than one player could reasonably

supply single–handedly. Since no game mechanics exist to replicate this chain, it is en-

tirely up to players to determine need and cooperate to produce supply in a way that all

parties involved will generate some degree of profit. Figure 2.2 presents the production–

tree of Pardus.

2.2. Hardware

At present Pardus operates three separate universes; the universes are carbon copies

of each other and differ only in ways players have influenced the environments. The

original universe, Orion, was founded on September 14th, 2004. The other two, Artemis

and Pegasus, were opened June 10th 2007.

Each player is permitted to have one character in each universe, though some players

choose to devote all their energy to only one or two universes. At the peak of every day’s

activities, there are over 1,000 players online at the same time. Players are automatically

deleted after an inactivity period of 120 days.

Daily database backups are available starting 2005-09-09, in total making up about 3,300

databases, each containing data of size about 300 MB. Data sets within each database

are organized in about 200 tables of varying size holding up to 60 fields. The game is

9



Chapter 2. Description of the Data Set

Figure 2.2.: A sampling of the Pardus production–tree.

10



Chapter 2. Description of the Data Set

programmed in Hyper Text Markup Language (HTML), Hypertext Preprocessor (PHP)

and C/C++, using MySQL-databases. Several tables exist, some created for logging

purposes only, which trace almost all of the hundreds of possible player actions. Most are

provided with a timestamp (the temporal resolution is one second).

2.2.1. Hardware Deployment

The data structure can be split into three conceptual work units, making it easy to dis-

tribute the work load among several connected servers (see Figure 2.3 for an Unified

Modeling Language (UML) deployment diagram).

A game server handles all game data and workflow of a specific universe. There are three

game servers in total, one for each universe. They make up the biggest part of the data

size and contain most of the information of importance for socio–economic research.

There is one community server hosting all chats and forums, which are seamlessly inte-

grated into the game areas.

The account server is responsible for logins and account-wide settings. Data from this

area is sometimes private or personal and will not be used in any type or research or for

any other purpose.

For the scope of this thesis only data of the game servers is relevant. Further work could

also include activity logs in forums and chats.

2.3. Data Structure

2.3.1. Relevant Data Subsets

Income and Wealth Distributions

In Pardus each player must pursue an economic activity in order to advance their charac-

ter. Money in the game is represented by “credits” and may be acquired in a variety of

ways. Daily income is known for all players and can be aggregated to weekly, monthly or

yearly timescales. This data can then be straightforwardly compared to income distribu-

tions for real world economies.

11



Chapter 2. Description of the Data Set

Figure 2.3.: Deployment Diagram
Game Server: Orion

Universe data, Player data, Logs

Web Server
Cron 

Daemon

PHP Scripts, C/

C++ Executables

FCGI

DB Library Functions

Game Server: Artemis

Universe data, Player data, Logs

Web Server
Cron 

Daemon

PHP Scripts, C/

C++ Executables

Game Server: Pegasus

Universe data, Player data, Logs

Web Server
Cron 

Daemon

PHP Scripts, C/

C++ Executables

Account Server

Account data, Account-wide settings

Web Server
Cron 

Daemon

PHP Scripts, C/C++ 

Executables

Community Server

Chats, Forums

Web Server
Cron 

Daemon

PHP Scripts, C/

C++ Executables

FCGI

DB Library Functions

FCGI

DB Library Functions

FCGI

DB Library Functions

FCGI

DB Library Functions

12



Chapter 2. Description of the Data Set

Figure 2.4.: Wealth Class Diagram

+...()

+getProperty()

+getCredits()

+...()

-...

-credits

-...

Player

+...()

+getOwner()

+getCredits()

+...()

-...

-credits

-...

Starbase

-Owner

1

-Property

0..1

Daily backups of classes as in the class diagram in Figure 2.41 allow calculation of wealth

as well as daily income.

As previously mentioned, Pardus has a production–tree for commodities from the sim-

ple to the complex. The simplest commodities are produced directly from harvestable

resources, making buildings which produce simple commodities ideal for newer play-

ers with little financial resources. More advanced buildings require simple commodities

in order to produce more complex goods. At the highest level, advanced commodities

are required to produce spacecraft, building and ship defenses, and various enhancing

equipment. In addition to upgrading spacecraft, equipment and buildings, players need

credits and resources to repair their ships and structures damaged in combat or deteri-

orating over time.

The Pardus virtual environment is quite large. Commodities produced, bought and sold

in one area will have little or no effect on the economy of distant areas. As a whole, the Par-

dus economy is comprised of many local micro–economies. With the dynamic, player–

driven market structure, local economies are constantly changing and evolving. Thriving

communities may draw in players until the market is saturated and the economy begins

to stagnate; enterprising players may try to establish new markets in low populated areas

or revive languishing economies. Player approaches to economic development are often

creative and cooperative.

1Non-relevant attributes and operations are not displayed.

13



Chapter 2. Description of the Data Set

Figure 2.5.: Trading Class Diagram

+...()

+getTradeLogs()

+getTradeLogsBuilding()

+getTradeLogsEquipment()

+getTradeLogsEquipmentBuilding()

+getSentMessages()

+getReceivedMessages()

+...()

Player

-...

+...()

+getBuildingOwner()

+getTrader()

+getAmount()

+getPrice()

+getTotal()

+getKind()

+getBlackmarket()

+...()

-...

-amount

-price

-total

-kind

-blackmarket

-...

TradeLog

-TradeLogBuilding0..*

-BuildingOwner

1

-TradeLog

0..*

-Trader

1

+...()

+getBuildingOwner()

+getTrader()

+getPrice()

+getKind()

+...()

-...

-price

-kind

-...

TradeLogEquipment

-TradeLogEquipmentBuilding0..*

-BuildingOwner1

-TradeLogEquipment

0..*

-Trader

1

+...()

+getSender()

+getReceiver()

+getSubject()

+getMessage()

+getMsgType()

+...()

-...

-subject

-message

-msg_type

-...

Message

-SentMessage0..*

-Sender

1

-Receiver1

-ReceivedMessage

0..*

14



Chapter 2. Description of the Data Set

Figure 2.6.: Trading Use Case Diagram

System

Player

Trader

Building Owner

Transfer Credits

Transfer Goods

Order Goods

{if enough goods in building; enough room and credits in trader's ship}

«extends»

«uses»

place order

receive order Generate TradeLog

«uses»

Price Formation

An important component of economic activity in the game is the trade of raw materials

(commodities) and manufactured goods. For these products there exists a market among

players, leading to a dynamic price for goods. The price formation follows a double

auction mechanism, see e.g. [SFGK03], which is a standard trading technique in many

real-world stock exchanges. Therefore, it allows direct comparisons between online data

and data obtained from large real–world groups.

Figure 2.5 visualizes the classes responsible for saving information about any and all

trade transactions. Upon trading with a building, for example an Asteroid Mine or a Smelt-

ing Facility, both buyer and seller receive a TradeLog entry for each traded good. The

same happens with TradeLogEquipment entries when equipment is bought or sold at a

starbase. Credit transactions are logged as Message object with msg_type “system”. A

typical use case is displayed in the use case diagram in Figure 2.6.

Private trade is also frequent between players, in which players communicate privately

and arrange to trade directly without using the building, starbase or planet interface. In

these cases the value of the commodities may deviate widely from the general market

price. The Direct transfer of credits and/or commodities is also logged and easily traced.

15



Chapter 2. Description of the Data Set

Exchanges of commodities or credits between individual players carries with it the risk

that one party will not uphold his end of the agreement and may effectively steal from the

other player; such conduct has particularly interesting ramifications in future social and

economic interactions with the offending player and his recognized friends or alliance.

A market also exists in the game for information and services. It is not uncommon for

a player with a spacecraft ill–equipped for battle to pay another player a considerable

amount of credits to seek out and destroy an enemy. Likewise players will sometimes pay

a large sum for information as to the whereabouts of an enemy or an enemy’s buildings.

Prices for services such as these are typically negotiated on a case–by–case basis and

vary widely.

Communication Networks

Socializing is an important part of Pardus. Players may communicate with each other

via public outlets such as Pardus chat rooms or forums, or they may send each other

private messages. Most communication between players in the game happens through

the exchange of private messages through a system–wide email service that is specifi-

cally provided by the Pardus game. Every message sent from one player to another is

recorded with a time–stamp, which allows the mapping of communication networks of

players with a precision of seconds. These networks can be characterized by a number

of network measures which can be directly compared with real world communication

networks.

As in many real–world social settings, players place a lot of importance on rising in social

status. The acquisition and display of status symbols is not only frequent but also an

important psychological driving force for many players; a great deal of energy is devoted

to gaining recognition of status by peers.

Pardus offers players the ability to publicly display some types of status symbols; such

as in–game news entries for certain feats and medals won for defeating enemies or war

efforts. A player’s ship is the most universal status symbol in the game — high-end ships

represent a large investment of time and credits by the player; it therefore naturally follows

that the player has considerable experience and knowledge about the game, as well as

a firmly established network of friends and supporters, which itself elevates the player’s

status in the eyes of others.

16



Chapter 2. Description of the Data Set

Figure 2.7.: Alliance Class Diagram

+...()

+getAllianceMembership()

+...()

Player

-...

+...()

+getMembers()

+getLeader()

+getFunds()

+getTax()

+getMemberCount()

+...()

-...

-leader

-funds

-tax

-member_count

-...

Alliance
-Member

1..*

-Membership

0..1

Group Formation

Players have the option to create or join “alliances” in the game. Alliances are entities

with the purpose of combining groups of individual players, allowing them to operate as

a team with ease. In general players form or join alliances with a group of players who

share similar goals; for example one alliance may focus on developing local economies

and expanding wealth, while another alliance may put its collective energy into building

a fighting force to destroy enemies.

Alliances vary from just a few individuals to hundreds of players. Belonging to an alliance

can be a status symbol in and of itself; players belonging to a very large and powerful

alliance may have less concern for the consequences of their actions, knowing that their

alliance will support them if needed — be it financially or with firepower. Conversely,

most alliances have a general ideology of how its members should behave and individ-

uals not conforming to that ideology risk being rejected and removed from the alliance.

Being forcibly removed from a well–known and respected alliance can have longstanding

social consequences for a player.

The Alliance class is shown in Figure 2.7.

17



Chapter 2. Description of the Data Set

Table Size (MB)
player 2
alliance 1.5
diplomacy 1.5
message 65
starbase 0.1
trade_log 68.5
trade_log_eq 11.5
7 tables 150.1MB

Table 2.1.: Size of relevant tables

Social Networks

On a smaller scale than alliances, players have the ability to mark other individual players

as friends or foes, links which can be changed or removed at any time. These networks

can be analyzed on a daily basis, or accurate to the second2, enabling the research of

friend and enemy evolution over time.

Interestingly some players choose to socially ostracize themselves by consistently engag-

ing in undesirable conduct; such as repeatedly destroying other players’ ships or build-

ings, sometimes causing considerable financial losses. These players, typically referred

to as “pirates” in the game, often unwittingly stimulate local economies. An otherwise

stagnant economy will see markedly increased activity if one or more pirates are in the

area, as victims purchase additional commodities to rebuild, repair, or increase defenses

in the area. Social stimulation is also a frequent side effect in such situations, as players

with buildings or other concerns in the area that previously displayed no interest in each

other may unite to face the common enemy of the pirate.

2.3.2. Database Layout

Seven tables of the overall amount of 2303 are relevant for above–mentioned research.

The combined size of data and indices of these tables makes up about 50% of the orig-

inal single database size — 150MB of 300MB. The resulting database is visualized in

Figure 2.9.

2The time–stamp can be found in the message (datetime field) informing about the friend or foe setting
(see Figure 2.8).

3as of December 16, 2009

18



Chapter 2. Description of the Data Set

Figure 2.8.: Diplomacy / Message Class Diagram

+...()

+getDatetime()

+getSubject()

+getMessage()

+getMsgType()

+getSender()

+getReceiver()

+...()

-...

-datetime

-subject

-message

-msg_type

-...

Message

+...()

+getFriends()

+getFoes()

+getSentMessages()

+getReceivedMessages()

+...()

-...

Player

+getDiplType()

-dipl_type

Diplomacy

* *

-SentMessage

0..*

-Sender

1

-ReceivedMessage0..*

-Receiver 1

19



Chapter 2. Description of the Data Set

Figure 2.9.: Relevant Tables Entity-Relationship Diagram
Relevant Tables

player

player_id MEDIUMINT UN NN AI

alliance_id INT UN NN

credits INT UN NN

sex ENUM('female','male') NN

user_type ENUM(...) NN

turns_used MEDIUMINT UN NN

experience INT UN NN

faction_id TINYINT UN NN

syndicate_id TINYINT UN NN

rep1 MEDIUMINT NN

rep2 MEDIUMINT NN

rep3 MEDIUMINT NN

last_online INT UN NN

removed TINYINT UN NN

alliance

alliance_id INT UN NN AI

funds BIGINT UN NN

tax FLOAT UN NN

member_count SMALLINT UN NN

diplomacy

player_id MEDIUMINT UN NN

player_dipl_id MEDIUMINT UN NN

dipl_type ENUM('friend','foe') NN

message

message_id INT UN NN AI

recp_id MEDIUMINT UN NN

sender_id MEDIUMINT UN NN

sent INT UN NN

subject VARCHAR(250) NN

message TEXT NN

msg_type ENUM('private','system') NN

starbase

player_id MEDIUMINT UN NN

credits INT UN NN

population INT UN NN

trade_log

trade_id INT UN NN AI

player_id MEDIUMINT UN NN

owner_id MEDIUMINT UN NN

object_id MEDIUMINT UN NN

resource_id SMALLINT UN NN

kind ENUM('purchase','sale') NN

amount MEDIUMINT UN NN

price MEDIUMINT UN NN

total INT UN NN

blackmarket TINYINT UN NN

date INT UN NN

trade_log_eq

trade_id INT UN NN AI

player_id MEDIUMINT UN NN

owner_id MEDIUMINT UN NN

object_id MEDIUMINT UN NN

kind ENUM('purchase','sale','repair') NN

price INT UN NN

repair_profit INT UN NN

date INT UN NN

player

player_id MEDIUMINT UN NN AI

alliance_id INT UN NN

credits INT UN NN

sex ENUM('female','male') NN

user_type ENUM(...) NN

turns_used MEDIUMINT UN NN

experience INT UN NN

faction_id TINYINT UN NN

syndicate_id TINYINT UN NN

rep1 MEDIUMINT NN

rep2 MEDIUMINT NN

rep3 MEDIUMINT NN

last_online INT UN NN

removed TINYINT UN NN

alliance

alliance_id INT UN NN AI

funds BIGINT UN NN

tax FLOAT UN NN

member_count SMALLINT UN NN

diplomacy

player_id MEDIUMINT UN NN

player_dipl_id MEDIUMINT UN NN

dipl_type ENUM('friend','foe') NN

message

message_id INT UN NN AI

recp_id MEDIUMINT UN NN

sender_id MEDIUMINT UN NN

sent INT UN NN

subject VARCHAR(250) NN

message TEXT NN

msg_type ENUM('private','system') NN

starbase

player_id MEDIUMINT UN NN

credits INT UN NN

population INT UN NN

trade_log

trade_id INT UN NN AI

player_id MEDIUMINT UN NN

owner_id MEDIUMINT UN NN

object_id MEDIUMINT UN NN

resource_id SMALLINT UN NN

kind ENUM('purchase','sale') NN

amount MEDIUMINT UN NN

price MEDIUMINT UN NN

total INT UN NN

blackmarket TINYINT UN NN

date INT UN NN

trade_log_eq

trade_id INT UN NN AI

player_id MEDIUMINT UN NN

owner_id MEDIUMINT UN NN

object_id MEDIUMINT UN NN

kind ENUM('purchase','sale','repair') NN

price INT UN NN

repair_profit INT UN NN

date INT UN NN

20



Chapter 2. Description of the Data Set

2.4. Intermittent Changes and Outages

2.4.1. Past Changes

Database backups are available since 2005-09-09, a time when Pardus was still in an

alpha stage and under heavy development. For example, the Payment Log, a log record-

ing various expenses that were previously stored as messages, was only introduced on

2008-09-14. A holiday charity was held in December 2008, allowing players to donate for

the poor, in–game. Until 2007-06-09 only one game universe existed, with the account

server being integrated into the game server on a single machine. Aside from ramifi-

cations for extracting information, additional/missing tables have to be considered when

pruning old data. The data structure and client to be developed have to take all of these

matters into account.

2.4.2. Future Changes

Even though the game is considered stable, minor changes and readjustments still occur.

The new data structure must be designed with keeping future modifications in mind,

allowing easy adaption and expansion.

2.4.3. Outages

In the past several server and backup outages have happened, due to hard disk failures,

broken connections and failed server migrations. When analyzing the data, the client

must allow excluding and interpolating certain dates (see Table 2.2). Future outages

are possible but less probable — backups are triple–saved and all servers including all

services and hard disk RAID 1 arrays are constantly monitored.

2.5. Legal Issues

All research data will be fully anonymized. Players’ identities must not be known by the

researchers. All players are aware and agree that their actions are recorded and may

be used for scientific work in an anonymized form. The Medical University is informed

about the study and has stated in a document that there are no conflicts with the federal

21



Chapter 2. Description of the Data Set

Date Server Amount of days
2006-03-24 Orion 31
2006-04-28 Orion 3
2006-10-24 Orion 3
2007-03-20 Orion 1
2007-05-10 Orion 1
2007-09-21 All 1
2008-02-09 Orion 1
2008-03-25 Pegasus 1
2008-06-09 Orion 1

43

Table 2.2.: Missing database backups

act concerning the protection of personal data, Austrian Federal Law Gazette part I No

165/1999.

22



Chapter 3.

Aim

The data set described in the previous chapter in its current form of about 3,300 single

database backups is the basis for socio-economic research. A system must be designed

to provide researchers with instant access and the capability for complex queries on any

and all data. In particular, the following points need to be addressed:

1. Data Mining Strategies

a) Evaluation

Data mining strategies have to be evaluated and compared with regard to

storage size and practicality, security, speed and ability for concurrent usage.

b) Data Structure

A system capable of containing all relevant data must be designed in a way to

make efficient research possible.

2. Technical Implementation

a) Data Extraction

Relevant information of the data set must be extracted and prepared for anonymiza-

tion and integration.

b) Anonymization

Before any data is made available, all personal information has to be anonymized

while keeping all correlations and network structures intact.

c) Data Integration

The anonymized data set must be shaped to integrate with the new data struc-

ture.

3. Client

23



Chapter 3. Aim

a) Routines

The client must support scientific routines as specified in the problem state-

ment in chapter 1.

b) Export / Backups

Researchers need to be able to export the complete data set in Extensible

Markup Language (XML), Structured Query Language (SQL) or Comma Sep-

arated Values (CSV) syntax, manually and by setting an automated schedule.

c) Import / Updates

Pardus steadily generates information in form of database backups. It must be

possible to manually and automatically import and integrate these backups

(updates).

24



Chapter 4.

Data Mining

4.1. Strategies

The existing data set in the form of several thousand daily database backup files must

be aggregated to form a unique system providing efficient data mining capabilities. In

particular, the following key aspects have to be taken into account:

Completeness
The data structure to be developed must contain all relevant data, allowing any data

that exists in the source to be found in the new data set.

Querying
Sorting, ordering and filtering the data set will be a main task of researchers and

must be a built–in feature as such.

Speed
While updating plays only a minor role, queries must be handled in an efficient way

guaranteeing fast response times.

Storage size
As new data is generated on a daily basis the size of the data set will regularly

increase. Care must be taken to avoid any overhead or redundancy; compression

to some extent may be desirable.

Safety
The data must be safe from any unwanted modification, anomalies and hardware

failures.

25



Chapter 4. Data Mining

Security
The data needs to be appropriately secured against intruders.

Concurrency
Multiple reading as well as writing requests need to proceed in a parallel fashion

while not interfering with each other.

Consistency
Failed updates must not leave the data in an inconsistent state.

In the following sections the quality of the different storage systems — flat files, XML stor-

age, object-oriented database and relational database — is measured for the described

aspects.

4.1.1. Flat Files

The simplest form of storage is saving information in text files. The most common method

of structuring information in a file is using spreadsheets — usually comma or tab delim-

ited values as certain attributes, one row representing one object. Many standard UNIX

files, like /etc/passwd containing user data delimited by colons, are stored using this for-

mat.

There exist many tools in the Single UNIX Specification [IEE02] such as sh, grep, awk

and perl that can be used to retrieve rows matching certain patterns, although many

tasks that play a major role in data mining, like sorting the data set, require programming

skills. There also exists a query language that tries to simplify such tasks by providing

C style query expressions [Fow94]. This approach still requires knowledge of C for the

definition of the attributes and lacks support for updates.

The speed is highest for read operations that do not need to sort, order or filter any data.

Operations needing to look for specific records must make use of indices to be efficient.

Indices could be created dynamically and be held completely in memory, or stored and

updated in external files. External tools like cql can add indexing and thus support fast

filter and sort operations. As this tool does not support updating of records, this speed

improvement is again lost in write operations.

The use of storage size in flat text files is not optimal. Since no typing is possible, any

character including the delimiter takes up one byte or more depending on the used

26



Chapter 4. Data Mining

character set. For example, boolean values needing only one bit in typed environments

require at least one byte in text files.

Data safety and security can easily be established by traditional means of securing the

files and file system.

Concurrency and consistency can only be maintained by the use of an interface through

which the files are accessed. The interface must make use of file byte range locking to

allow simultaneous access.

As shown, the advantage of using plain files as storage method lies in simplicity. To make

this method an option for our purposes, the use of external tools would be mandatory,

critically dampening the reason to use flat files in the first place.

As a final note it should be mentioned that there is a relational database which can use

flat files as storage while providing SQL syntax for queries [Sch06]. However, this kind

of storage engine does not support indexing and lacks Atomicity Consistency Isolation

Durability (ACID) compliance.

4.1.2. XML Storage

Files in the XML format contain both data and metadata describing it. Due to its flexibility

and simplicity it is frequently used by programs as a method of storing or transmitting

data.

There is a wide range of software products that support the XQuery language, a rec-

ommendation (“standard”) of the World Wide Web Consortium (W3C). It is a funtional

programming language with extensive querying abilities. Lacking support for modify-

ing the XML source file several extensions have been developed [SHS04] to also provide

update functionality.

While XML query tools can make use of indices, their speed is dramatically decreased

by the additional need to parse each file’s structure [NJ03].

XML storage size is considerably bigger than in all other discussed methods. Most im-

portantly, all structure is defined within the XML file leading to a large amount of redun-

dant metadata. Also, since XML files are normal text files, a value of any data type cannot

be smaller than the size of one character of the used character set the file is encoded in.

Help is provided through queryable compression engines which can compress both tags

27



Chapter 4. Data Mining

and textual content [TH02] and even eliminate the redundant structure [ABMP07] while

improving performance under certain conditions.

As with flat files, safety and security can simply be established on the file system level by

backups, failsafe hard drive systems and restrictive file permissions.

There are multiple native XML – ACID compliant – databases providing highly config-

urable modes of locking and isolation [HH04]. Performance penalties vary from 25% to

>300% depending on the selected isolation level [HH04].

Interoperability and flexibility are the key advantages of XML storage. The XML format is

often used as transmission medium, thus the use of native XML as database saves unnec-

essary data conversions at servers and clients. On the other hand, the price for flexibility

comes in form of a considerable overhead in both storage size and performance.

4.1.3. Object-oriented Database

Object–oriented database management systems (OODBMSs) store objects without the

need for a mapping layer as in other methods. The OODBMS generally uses the same

model as the programming language. Subclassing, inheritance and other complex con-

structs are possible without additional effort.

OODBMSs do not necessarily need a query language, they rather use the means the

object-oriented programming language has to offer. However, several products also offer

Object Query Language (OQL) and even SQL syntax [HLW94].

Querying complex objects in OODBMSs is efficient as connected objects are stored by

pointers that can easily be followed. This kind of path is called navigational query. Op-

posed to that, the broad search for any objects with specified attributes is cumbersome.

Searching without indices would require creation and destruction of all objects that are

being compared. Creation and use of an index becomes complex because properties

of objects can not only be primitive values but objects as well [Ber94]. Several strategies

exist for indices to parse through hierarchies of nested classes [CC04].

Persisting objects can differ from one OODBMS to another. For example, an object can be

serialized into XML format or binary format. In each case not only the raw data but also

all methods and class metadata is stored as well, leading to an unnecessary overhead

compared to saving just the data.

28



Chapter 4. Data Mining

Several commercial and free object-oriented database products exist, offering configu-

ration of access security, persistence strategy and different levels of transaction isolation.

While speed is also based on the level of isolation or locking, OODBMSs generally scale

worse than relational databases under high load [Lea00].

An OODBMS can save the effort of mapping between raw data and objects and can even

be of superior performance when used in connection with highly complex classes. In

most data mining scenarios however, simple but millions of data sets are dominant. An

actual object representation is not needed but instead the support of complex and fast

queries, making an OODBMS not a promising choice.

4.1.4. Relational Database

In RDBMSs data is divided into relations, usually called tables, consisting of rows and

columns. Columns define attributes and their data types – one row is made up of the

attributes’ values. Tables can be further divided into separate namespaces, schemas,

and databases. Many RDBMSs however avoid the use of explicit namespaces and imply

databases with schemas.

A query language, SQL, exists which is an International Organization for Standardization

(ISO) and American National Standards Institute (ANSI) standard and implemented in all

major RDBMS products. It allows complex sorting, ordering, filtering as well as modify-

ing of data sets. While SQL is a declarative language, there are several procedural exten-

sions, even object-oriented ones [Kul94]. SQL/Persistent Stored Modules (SQL/PSM) is a

standardized extension adding features for defining procedure calls.

RDBMSs have been in use for over 30 years and are highly developed in terms of indexing

and general performance. Several indexing algorithms are in use, the most popular be-

ing B+ Trees. The same kind of tree is used for organizing metadata in many file system.

Various adaptions and enhancements exist, reducing cache misses [HP03], improving

update performance [DR01] and speeding up the creation of indices [Kim02].

Although RDBMSs perform best when row sizes are static, they also support dynamic

size for character type columns and the NULL type for no data. Storage of indices is

the real overhead which does not seem to be avoidable with a system that needs to sup-

port fast query operations. Transparent compression is implemented for several RDBMSs

products, in some areas even contributing to performance by decreasing disk seeks

[TLGXYJX06].

29



Chapter 4. Data Mining

Most modern relational database engines are transactional and write logs to record all

queries that could potentially modify data. In case of a hardware failure the log can be

used to restore the database to a valid backup point – all considering the file system is

also properly configured, i.e. write barriers must be enabled. The same holds true for

data security, which is a matter of correct configuration. All major RDBMSs offer a user

account system, different sets of permissions as well as selective access locations, for

example only local access.

Transactional RDBMSs support row–level locking ensuring good performance even un-

der a high number of concurrent users. The most popular relational databases are ACID

compliant but give the possibility to loosen the ACID conformance in exchange for less

locks and thus higher speed.

In comparison to other discussed methods, RDBMSs are capable of all kinds of high–

speed read and write queries and offer the most efficient data storage with compression

capabilities. RDBMSs also fulfill the requirements of fully isolated simultaneous access,

a secure access model, recovery from hardware failures and consistency through ACID

compliance.

4.2. Data Structure

As a consequence of the strategies evaluation a relational database is used as the data

storage back–end. MySQL is a GNU General Public License (GPL) and commercially

dual-licensed RDBMS. It adheres to ANSI standard SQL and in large part to SQL3.

Among its features are in particular:

∙ Replication over several systems running MySQL server

∙ User access and permission matrix

∙ Stored procedures for imperative programming support

∙ Cursors — enable walking through record sets in an iterative way

∙ Triggers — actions that are automatically executed when events happen

∙ Nested queries — queries that use data from included queries

∙ Views — dynamic tables based on queries

30



Chapter 4. Data Mining

∙ Query optimization

∙ Query caching

∙ Customizable partitioning to group rows and split tables

∙ Hot backup — saving a consistent backup while the server is running

∙ Several types of indices

∙ Data and network–protocol level compression

∙ Architecture to allow plugins

∙ Different database engines selectable per table

∙ InnoDB engine providing row–level locking and fully ACID compliant transaction

management

Unlike other RDBMSs like PostgreSQL or the MySQL Archive engine, the InnoDB plugin

offers compression of not only user data but also indices. As this project relies heavily on

indices they can make a big part of the overall storage size. Compression and decom-

pression are done on–the–fly using the zlib library implementing the LZ77 algorithm.

Aside from a multitude of server variables, compressed tables can be further tuned by

setting table–specific page sizes.

4.2.1. Database Design

Since the game’s three universes are completely seperated and a query always only

concerns a single one, each of them receives its own data structure. In the course of this

thesis a “single” database always refers to one for each of the three universes.

The original data source is a set of several thousand database backups. Their layout

is shown in Figure 2.9. To enable efficient querying over all data of all backups they

are merged into a single database. This method also allows the removal of redundant

information. Much of the information is going to be doubled or tripled in subsequent

backups, for example messages and trade logs that are not yet deleted. This kind of

information is static, as opposed to player information that is changing over time.

Care is taken to ensure referential integrity. One DELETE or UPDATE SQL query leads to

the deletion or update of all fields referencing it (“cascading foreign keys”), or fails.

31



Chapter 4. Data Mining

While researchers will need special compilations of data, the system also has to remain

flexible for changes to the game or future research. The solution is to fully store the

master data and create views to extract data compilations as needed. Views behave

like normal tables – only queries will dynamically pull information from other tables as

specified with the creation of the view. The advantages are:

∙ an easy interface to get data that normally requires a complex query

∙ always up–to–date information

∙ no waste of storage space

∙ easy to create new views for new tasks

∙ easy to modify views after there have been changes to the source tables

Subsequently four databases are designed. The first one needed is of temporary na-

ture; it is the relevant table subset extracted from the original backup. It includes various

changes due to anonymization. The second database maps IDs to new randomized ones.

The mapping must be saved to maintain correlations through all backups. Its access

permissions are restricted to the importing process only. The third stage is the destina-

tion database for all anonymized data. While the previous databases were needed only

for the import, this one is the single database used by researchers. It also contains the

aforementioned views. The last database contains user and group information including

permission levels for the web client.

A high level of normalization is maintained for all non–temporary databases. To guaran-

tee a logical, redundancy–free and anomaly–free layout they are in at least “projection–

join normal form” (PJ/NF), also referred to as the 5th normal form [Fag79].

The databases are visualized with MySQL Workbench as ERDs using Crow’s Foot notation.

Abbrevations:

∙ UN — unsigned

∙ NN — not null

∙ AI — auto increment

The key icon next to fields indicates a primary key. Several key icons in the same table

stand for a primary key made up of those fields. The red diamonds signify a foreign key

and an index while the blue diamonds are non-prime values.

32



Chapter 4. Data Mining

Figure 4.1.: Database Layout of the Extracted Table Subset.
Extracted Table Subset

player

player_id MEDIUMINT UN NN AI

alliance_id INT UN NN

character_name VARCHAR(30) NN

credits INT UN NN

sex ENUM('female','male') NN

user_type ENUM(...) NN

turns_used MEDIUMINT UN NN

experience INT UN NN

faction_id TINYINT UN NN

syndicate_id TINYINT UN NN

rep1 MEDIUMINT NN

rep2 MEDIUMINT NN

rep3 MEDIUMINT NN

last_online INT UN NN

removed TINYINT UN NN

alliance

alliance_id INT UN NN AI

funds BIGINT UN NN

tax FLOAT UN NN

member_count SMALLINT UN NN

diplomacy

player_id MEDIUMINT UN NN

player_dipl_id MEDIUMINT UN NN

dipl_type ENUM('friend','foe') NN

message

message_id INT UN NN AI

recp_id MEDIUMINT UN NN

sender_id MEDIUMINT UN NN

sent INT UN NN

subject VARCHAR(250) NN

message TEXT NN

msg_type ENUM('private','system') NN

starbase

player_id MEDIUMINT UN NN

credits INT UN NN

population INT UN NN

trade_log

trade_id INT UN NN AI

player_id MEDIUMINT UN NN

owner_id MEDIUMINT UN NN

object_id MEDIUMINT UN NN

resource_id SMALLINT UN NN

kind ENUM('purchase','sale') NN

amount MEDIUMINT UN NN

price MEDIUMINT UN NN

total INT UN NN

blackmarket TINYINT UN NN

date INT UN NN

trade_log_eq

trade_id INT UN NN AI

player_id MEDIUMINT UN NN

owner_id MEDIUMINT UN NN

object_id MEDIUMINT UN NN

kind ENUM('purchase','sale','repair') NN

price INT UN NN

repair_profit INT UN NN

date INT UN NN

gift

gift_id INT UN NN

player_id_from MEDIUMINT UN NN

player_id_to MEDIUMINT UN NN

date INT UN NN

gift_content

gift_id INT UN NN

resource_id SMALLINT UN NN

amount INT UN NN

player

player_id MEDIUMINT UN NN AI

alliance_id INT UN NN

character_name VARCHAR(30) NN

credits INT UN NN

sex ENUM('female','male') NN

user_type ENUM(...) NN

turns_used MEDIUMINT UN NN

experience INT UN NN

faction_id TINYINT UN NN

syndicate_id TINYINT UN NN

rep1 MEDIUMINT NN

rep2 MEDIUMINT NN

rep3 MEDIUMINT NN

last_online INT UN NN

removed TINYINT UN NN

alliance

alliance_id INT UN NN AI

funds BIGINT UN NN

tax FLOAT UN NN

member_count SMALLINT UN NN

diplomacy

player_id MEDIUMINT UN NN

player_dipl_id MEDIUMINT UN NN

dipl_type ENUM('friend','foe') NN

message

message_id INT UN NN AI

recp_id MEDIUMINT UN NN

sender_id MEDIUMINT UN NN

sent INT UN NN

subject VARCHAR(250) NN

message TEXT NN

msg_type ENUM('private','system') NN

starbase

player_id MEDIUMINT UN NN

credits INT UN NN

population INT UN NN

trade_log

trade_id INT UN NN AI

player_id MEDIUMINT UN NN

owner_id MEDIUMINT UN NN

object_id MEDIUMINT UN NN

resource_id SMALLINT UN NN

kind ENUM('purchase','sale') NN

amount MEDIUMINT UN NN

price MEDIUMINT UN NN

total INT UN NN

blackmarket TINYINT UN NN

date INT UN NN

trade_log_eq

trade_id INT UN NN AI

player_id MEDIUMINT UN NN

owner_id MEDIUMINT UN NN

object_id MEDIUMINT UN NN

kind ENUM('purchase','sale','repair') NN

price INT UN NN

repair_profit INT UN NN

date INT UN NN

gift

gift_id INT UN NN

player_id_from MEDIUMINT UN NN

player_id_to MEDIUMINT UN NN

date INT UN NN

gift_content

gift_id INT UN NN

resource_id SMALLINT UN NN

amount INT UN NN

Extracted Table Subset Temporary Database

Besides extraction of the relevant fields several more changes are done in Figure 4.1. All

datetime or timestamp types are changed to simple int only counting the elapsed seconds

since January 1st 1970. It is done for both smaller size and safer handling reasons –

timestamps are usually updated with any modification of any field of the same row. Also

noticeable is the existence of a new gift table and a gift_content table. These do not

exist in the master data but are implicitly stored as system messages. When all data

is extracted, messages must be parsed for this information. Once the gift tables are

populated the character_name field in the player table and the subject and message fields

33



Chapter 4. Data Mining

Figure 4.2.: Database Layout of the ID Mapping.
ID Mapping

player_id_map

player_id MEDIUMINT UN NN

mapped_to INT UN NN

alliance_id_map

alliance_id SMALLINT UN NN

mapped_to MEDIUMINT UN NN

ship_id_map

ship_id MEDIUMINT UN NN

mapped_to INT UN NN

player_id_map

player_id MEDIUMINT UN NN

mapped_to INT UN NN

alliance_id_map

alliance_id SMALLINT UN NN

mapped_to MEDIUMINT UN NN

ship_id_map

ship_id MEDIUMINT UN NN

mapped_to INT UN NN

in the message table have to be dropped as anonymization measure. This leaves the

externally visible player_ids and alliance_ids as identifying components. With help of

the tables described in the next section their values can be randomized while keeping

relations intact.

Tables in this database use the MyISAM engine to support faster and lock–free creation

and population of all tables without any foreign key constraints. It is programmatically

ensured that several extractions can be processed simultaneously.

ID Mapping Database

The tables in Figure 4.2 save a random unique value an ID is mapped to. The anonymiza-

tion process goes through all IDs in the original table, retrieves the new mapping and

then changes the ID in all relevant tables accordingly.

The tables are in InnoDB format to support row–level transactions as many processes

may query this database simultaneously. Due to the small size of the tables they remain

uncompressed in favor of speed.

Main Database

Once the extracted data set has been anonymized it is prepared for integration with the

final data structure as shown in Figure 4.3. First, an entry in the record table is created.

The date and the time of the backup as well as the amount of days since the first backup

are stored along with the primary key record_id. A unique index is built on the columns

record_date and record_time. This index ensures the same backup is not added multiple

times and also allows faster queries for certain records. The rest of the tables can be

divided into two categories: Dynamic Record Details and Static Logs.

34



Chapter 4. Data Mining

Figure 4.3.: Main Data Mining Layout.

35



Chapter 4. Data Mining

The tables player, diplomacy, alliance and starbase form the Dynamic Record Details.

Entries in these tables change with each backup. It is important that these changes are

stored so they can be visualized. Thus they include the record_id of the entry in the

record table that was created for that backup. Together with the original primary key it

forms the new primary key. All foreign keys referencing the player or the record tables

feature the “ON UPDATE CASCADE” and “ON DELETE CASCADE” triggers. That way

whole records or all information about a specific player can be removed with a single

DELETE query.

Static Logs consist of the tables message, gift, gift_content, trade_log and trade_log_eq.

An entry with a certain ID that is stored in one of these tables remains the same in each

backup. Accordingly, the record_id does not need to be included in the primary key. If

an entry is trying to be imported and its ID already exists in the target table, it can be

safely ignored because the information does not change. This eliminates a considerable

amount of storage space required by the original backups as logs are only deleted after

a number of days. During that time they are redundantly saved in all backups.

Since most of the tables are referencing the player table through its primary key consist-

ing of record_id and player_id, a surrogate key of int would remove the multi–valued

foreign key indices. This way the referencing indices would become smaller and a

faster in JOIN operations. On the other hand it would be impossible to deduce either

the record_id or the player_id. Thus queries that work with these values would require

an additional JOIN operation with the player table, making queries more expensive and

complex again. Due to research concentrating on such queries a surrogate key for the

player table is not used.

All tables use the InnoDB engine to guarantee full ACID compliance. Additionally they

use the transparent compression capability of both user data and indices provided by

the InnoDB plugin.

Client User Database

The database visualized in Figure 4.4 handles access to the web client. A user is identi-

fied by the primary key user_id and the unique index user_name. The password is saved

as Message-Digest algorithm 5 (MD5) hash, as is the dynamically created session ID. A

user is part of exactly one group that defines various permissions.

The tables are stored in uncompressed InnoDB format.

36



Chapter 4. Data Mining

Figure 4.4.: Database Layout of the User Credentials.
Client User Credentials

user

user_id SMALLINT

group_id TINYINT

user_name VARCHAR(30)

user_password CHAR(32)

session_id CHAR(32)

full_name VARCHAR(100)

group

group_id TINYINT

group_name VARCHAR(100)

query BOOL

create_view BOOL

import BOOL

export BOOL

user

user_id SMALLINT

group_id TINYINT

user_name VARCHAR(30)

user_password CHAR(32)

session_id CHAR(32)

full_name VARCHAR(100)

group

group_id TINYINT

group_name VARCHAR(100)

query BOOL

create_view BOOL

import BOOL

export BOOL

4.3. Technical Implementation

The program to integrate the backups into the newly created database is a Command–

Line Interface (CLI) tool. A web interface serves as Graphical User Interface (GUI) front–

end for authorized remote users. It handles integrating Pardus backup files (updates),

exporting the database (backups), querying and creating views.

Both programs are written in PHP. PHP is an object–oriented programming language with

support for namespaces, anonymous functions and closures in its version 5.3. A multitude

of libraries exist, among others a MySQL connector supplying functions for the access of

MySQL databases.

Source code is interpreted by the PHP binary. By default PHP comes with both a CLI

and a Fast Common Gateway Interface (FCGI) interpreter. The FCGI binary allows easy

integration with a web server. The web server forwards requests of certain files to the

FCGI binary which interprets the requested file and sends the output back to the web

server.

The entry point for the CLI program is class AbsMain in package main. The root for

requests from the web server is package www. All requests are handled through the file

index.php. The rest of the packages are shared by both the CLI and the GUI client. A

high–level overview of the architecture is shown in the package diagram in Figure 4.5.

37



Chapter 4. Data Mining

Figure 4.5.: Package Diagram of the Data Mining Suite.

backup

database

main

mining

settings

www

«call»

38



Chapter 4. Data Mining

4.3.1. Shared Mechanisms

Configuration

The application can be configured through command–line parameters as well as through

modification of the Settings object or Constants file. The Settings class implements

the Singleton programming pattern, only allowing one object of the class to be instanti-

ated. The object can only be created through the static getInstance function as shown in

the code snippet in Listing 4.1. If it already exists, a reference to the instance is returned.

The standard constructor of the class is made private to avoid accidental invocations.

Listing 4.1: Settings::getInstance

1 /∗ ∗
2 ∗ Gets s i n g l e i n s t a n c e

3 ∗ @return S e t t i n g s

4 ∗ /

5 publ ic s t a t i c f u n c t i o n g e t I n s t a n c e ( )

6 {

7 i f ( ! i s s e t ( s e l f : : $ i n s t a n c e ) ) {

8 $c = __CLASS__ ;

9 s e l f : : $ i n s t a n c e = new $c ;

10 }

11 r e t u r n s e l f : : $ i n s t a n c e ;

12 }

Attributes of the Settings object – the configuration – can be retrieved and set using

the appropriate get/set operations, see Figure 4.6. The default configuration is changed

when command–line parameters are present. The default values of some attributes are

constants defined in the Constants file. Constants are replaced with their actual val-

ues by the preprocessor. The purpose of the constants is to define system–wide default

values once, saving the need to add them as command–line parameters with each in-

vocation. For example, constants are used for the location of logging facilities, database

authorization, the path to commands and the maximum int value.

Command–line parameters are parsed in the Logic->process() : void method using

the operating–system dependent getopt function. Parameters are checked for validity

as in Listing 4.2 line 7 and eventually saved in the Settings object.

39



Chapter 4. Data Mining

Figure 4.6.: Settings Class Diagram (get/set operations hidden).

Settings

- dirName : string =  '.'

- pattern : string =  '\d{6}\-\d{4}'

- universe : string =  'path-dependent'

- universes : array =  array('artemis', 'orion', 'pegasus')

- recursive : bool =  false

- fileRemoval : bool =  false

- ignoreFiles : array =  array('.', '..')

- tempSqlDir : string =  TEMPDIR

- exportDir : string =  'export'

- logDir : string =  'logs'

- tarExec : string =  TAREXEC

- dbName : string =  'datamining'

- mapDbName : string =  'datamining_map'

- tempDbName : string =  'datamining_tmp'

- userDbName : string =  'datamining_usr'

- mysqladminExec : string =  MYSQLADMINEXEC

- mysqlExec : string =  MYSQLEXEC

- mysqldumpExec : string =  MYSQLDUMPEXEC

- mysqlHost : string =  MYSQLHOST

- mysqlPort : int =  MYSQLPORT

- mysqlUser : string =  MYSQLUSER

- mysqlPassword : string =  MYSQLPASSWORD

- playerIdLimit : int =  175

- webMaxResults : int =  1000

- cronFile : string =  '/etc/cron.d/datamining'

- user : string =  'wwwrun'

- phpExec : string =  '/usr/local/bin/php'

- instance : Settings

+ getMysqlHostPortString() : string

+ getMysqlAuthString() : string

+ getRandomString() : string

- __construct() : void

+ getInstance() : Settings

40



Chapter 4. Data Mining

Listing 4.2: Logic->process

1 $params = getopt ( $op t ions ) ;

2 $ s e t t i n g s = S e t t i n g s : : g e t I n s t a n c e ( ) ;

3 $ s e t t i n g s −>setDirName ( $params [ ’d’ ] ) ;

4 $ s e t t i n g s −>s e t P a t t e r n ( ’/(?Ui)’ . $params [ ’p’ ] . ’/’ ) ;

5 i f ( a r r a y _ k e y _ e x i s t s ( ’u’ , $params ) ) {

6 $params [ ’u’ ] = s t r to lower ( $params [ ’u’ ] ) ;

7 i f ( ! in_array ( $params [ ’u’ ] , $ s e t t i n g s −>getUniverses ( ) ) &&

8 $params [ ’u’ ] != ’path -dependent’ ) {

9 throw new Except ion ( ’Invalid universe parameter’ ) ;

10 }

11 $ s e t t i n g s −>setUn iverse ( $params [ ’u’ ] ) ;

12 } else {

13 $ s e t t i n g s −>setUn iverse ( ’path -dependent’ ) ;

14 }

15 $ s e t t i n g s −>setRecurs ive ( a r r a y _ k e y _ e x i s t s ( ’r’ , $params ) ) ;

16 $ s e t t i n g s −>setF i leRemova l ( a r r a y _ k e y _ e x i s t s ( ’R’ , $params ) ) ;

17 $ s e t t i n g s −>setTempDbName ( $ s e t t i n g s −>getTempDbName ( ) .

18 $ s e t t i n g s −>getRandomString ( ) ) ;

Database Abstraction

The connection to the database is maintained through the Database class. The construc-

tor of the class takes the database server’s information as parameters and connects to it.

The connection ID is saved in a private attribute. All subsequent method calls use this ID

to direct queries to the connection associated with the object. This enables connecting

to several databases in a parallel fashion by instantiating a Database object for each.

The class includes functions for escaping strings to prevent SQL injection attacks, starting

and ending transactions, getting the last inserted ID and the number of rows affected by

a query (Figure 4.7). There are two separate functions for writing and reading queries.

Database->query returns a boolean value indicating the success of a writing query un-

less an exception is thrown. The function for reading queries, Database->execute, re-

turns an instance of the Record class containing the result set. The returned object allows

iterating over all rows, selecting specific fields and generating associative arrays (Fig-

ure 4.8).

41



Chapter 4. Data Mining

Figure 4.7.: Database Class Diagram.

Database

- connectionId : int

- dbName : string

+ __construct(dbHost : string, dbUser : string, dbPass : string, persistent : bool) : void

+ begin() : void

+ commit() : void

+ rollback() : void

+ query(sql : string, throwException : bool) : bool

+ execute(sql : string, throwException : bool) : Record

+ getInsertId() : int

+ getAffectedRows() : int

+ disconnect() : void

+ setDbName(dbName : string) : void

+ escape(string : string) : string

+ getDbName() : string

Figure 4.8.: Record Class Diagram.

Record

- result : resource

- position : int =  0

+ numRows : int

+ fields : array =  array()

+ EOF : bool =  false

+ __construct(result : resource) : void

+ moveNext() : void

+ moveFirst() : void

+ moveLast() : void

+ move(i : int) : void

+ getArray() : array

+ getAssoc() : array

42



Chapter 4. Data Mining

Data Aggregation

Data is mined from backup files that are defined in the settings directory, file pattern and

recursive. A directory can be given in absolute form or relative to the application’s root

directory. The file pattern is a perl–compatible regular expression. File names matching

the pattern are included. Recursive is a boolean value which decides if sub–directories

should be parsed as well.

The backup package contains the File class as well as several subclasses, see Figure 4.9.

The Directory class is a special type of File inheriting the name, path and fullPath

attributes but also storing a list of files and directories. These lists are populated in

Dir->scanDir as shown in Listing 4.3. The list of files is filled with instances of the File

class or any of its subclasses. Line 10 fills the array of directories with new Dir objects if

recursive parsing is configured.

Listing 4.3: Snippet of Dir->scanDir

1 $dirConten t = scandi r ( $ t h i s −>f u l l P a t h ) ;

2 foreach ( $d i rConten t as $key => $con ten t ) {

3 $path = $ t h i s −>f u l l P a t h . DIRECTORY_SEPARATOR . $con ten t ;

4 i f ( i s _ f i l e ( $path ) ) {

5 i f ( preg_match ( $ t h i s −>pat tern , $con ten t ) ) {

6 . . .

7 $ t h i s −> f i l e s [ ] = $ f i l e ;

8 }

9 } e l s e i f ( $ t h i s −>recurs ive && i s _ d i r ( $path ) ) {

10 $ t h i s −>d i r e c t o r i e s [ ] = new Dir ( $path , $ t h i s −>recurs ive ,

11 $ t h i s −>p a t t e r n ) ;

12 }

13 }

The Logic class coordinates the whole data mining operation (Figure 4.10). After pro-

cessing any command–line parameters a Dir object is instantiated. Its constructor then

calls the scanDir method to populate its attributes. This object is subsequently passed on

to the Logic->mineDirectory function. This function starts the mining process on each of

the directory’s files and calls itself recursively on any directories it finds — see Listing 4.4

line 16.

Listing 4.4: Logic->mineDirectory

43



Chapter 4. Data Mining

Figure 4.9.: Class Diagram of the backup package.

Dir

- files : array

- directories : array

- recursive : bool

- pattern : string

+ __construct(fullPath : string, recursive : bool, pattern : string) : void

+ scanDir() : void

+ parseUniverse() : string

+ setRecursive(recursive : bool) : void

+ setPattern(pattern : string) : void

+ getFiles() : array

+ getDirectories() : array

+ getRecursive() : bool

+ getPattern() : string

File

# path : string =  ''

# name : string =  ''

# fullPath : string =  ''

# fileType : string =  'file'

+ __construct(fullPath : string) : void

+ delete() : bool

+ retrieveDate() : string

+ getFileEnding(name : string) : string

+ setPath(path : string) : void

+ setName(name : string) : void

+ setFullPath(fullPath : string) : void

+ setFileType(fileType : string) : void

# constructFullPath() : void

# removeTrailingChars(subject : string, char : string) : string

+ getPath() : string

+ getName() : string

+ getFullPath() : string

+ getFileType() : string

SqlFile

- dbName : string

+ __construct(fullPath : string) : void

+ writeToDb(dbName : string, dropAndCreate : ) : void

+ dropDatabase() : void

+ createDatabase() : void

+ setDbName(dbName : string) : void

+ getDbName() : string

TarFile

- tarType : string

- sqlFile : SqlFile

+ __construct(fullPath : string) : void

+ extract() : void

- replaceFileEnding(name : string, newEnding : string) : string

+ setTarType(tarType : string) : void

+ setSqlFile(sqlFile : SqlFile) : void

+ getTarType() : string

+ getSqlFile() : SqlFile

44



Chapter 4. Data Mining

Figure 4.10.: Logic Class Diagram.

Logic

- db : Database

+ process(argc : int, argv : array) : void

+ mine() : void

- mineDirectory(dir : Dir) : void

+ mineFile(file : File, dbName : string, mapDbName : string, tempDbName : string, tempDbNameRel : string, removeFile : bool) : void

+ setDb(db : Database) : void

+ getDb() : Database

1 /∗ ∗
2 ∗ Processes f i l e s f o r data mining r e c u r s i v e l y

3 ∗ @param Di r $ d i r

4 ∗ /

5 p r i v a t e f u n c t i o n mineDirectory ( $ d i r )

6 {

7 . . .

8 foreach ( $ f i l e s as $ f i l e ) {

9 $ t h i s −>mineFi le ( $ f i l e , . . . ) ;

10 }

11 / / r e c u r s i v e l y do the same f o r s u b d i r e c t o r i e s

12 $ d i r e c t o r i e s = $dir−>g e t D i r e c t o r i e s ( ) ;

13 foreach ( $ d i r e c t o r i e s as $ d i r e c t o r y ) {

14 $ t h i s −>mineDirectory ( $ d i r e c t o r y ) ;

15 }

16 }

4.3.2. Data Extraction

The backup files are daily database dumps from Pardus in SQL format. The data mining

application supports both raw SQL files as well as gzip, bzip2 and lzma compressed tar

archives. In case of an archive the SQL file is temporarily extracted. The original or

extracted SQL file is then written to a temporary database. The name of the database is

randomly generated. Care is taken that it constitutes a unique identifier to support several

mining operations simultaneously. The data extraction from that database is handled by

the Extraction class displayed in Figure 4.11.

To remain flexible and adapt to database changes easily SQL code is put in external

files wherever possible. This way database changes only require simple SQL file adjust-

45



Chapter 4. Data Mining

Figure 4.11.: Extraction Class Diagram.

Extraction

- srcDbName : string

- destDbName : string

- date : string

+ __construct(srcDbName : string, destDbName : string, date : string) : void

+ moveRelevant() : void

+ setSrcDbName(srcDbName : string) : void

+ setDestDbName(destDbName : string) : void

+ setDate(date : string) : void

+ getSrcDbName() : string

+ getDestDbName() : string

+ getDate() : $date

ments instead of a manipulation of the PHP code. Such an SQL file is used to transfer the

relevant data set to a new temporary database. Listing 4.5 illustrates the transfer of the

trade_log_eq table. Upper–case strings preceded and followed by __ are replaced by

the application. The modified SQL code is saved in a new file and executed by MySQL

to fill the new database. Listing 4.6 shows the PHP code responsible for the process.

Replacing the __ placeholders sets the correct source and destination database and also

allows to be considerate of intermittent database changes as mentioned in section 2.4.

Listing 4.5: Extraction SQL Code: trade_log_eq

1 __TRADE_LOG_EQ__ INSERT INTO ‘ __DEST_SCHEMA__ ‘ . ‘ trade_log_eq ‘

2 SELECT ‘ t rade_id ‘ , ‘ p layer_ id ‘ , ‘ owner_id ‘ , ‘ kind ‘ , ‘ price ‘ ,

3 __REPAIR_PROFIT__ , UNIX_TIMESTAMP ( ‘ date ‘ ) AS ‘ date ‘

4 FROM ‘ __SRC_SCHEMA__ ‘ . ‘ trade_log_eq ‘

5 WHERE ‘ p layer_ id ‘ > __PLAYERID_LIMIT__

6 AND ( ‘ owner_id ‘ > __PLAYERID_LIMIT__

7 OR ‘ owner_id ‘ I S NULL ) ;

8 −− The index i s crea ted l a t e r so i t does not need t o be updated

9 −− w i t h each new row i n s e r t e d above .

10 ALTER TABLE ‘ __DEST_SCHEMA__ ‘ . ‘ trade_log_eq ‘

11 ADD PRIMARY KEY ( ‘ t rade_ id ‘ ) ;

Listing 4.6: Extraction->moveRelevant

1 /∗ ∗
2 ∗ Moves r e l e v a n t data t o new schema

46



Chapter 4. Data Mining

3 ∗ /

4 publ ic f u n c t i o n moveRelevant ( )

5 {

6 $recordTimestamp = s t r t o t i m e ( $ t h i s −>date . ’ ’ . ’00:00:00’ ) ;

7 $ s e t t i n g s = S e t t i n g s : : g e t I n s t a n c e ( ) ;

8 / / prepare the SQL s t a t e m e n t s

9 $sq l = f i l e _ g e t _ c o n t e n t s ( ’sql/extract.sql’ ) ;

10 $sq l = s t r _ r e p l a c e ( ’__DEST_SCHEMA__’ , $ t h i s −>destDbName ,

11 $sq l ) ;

12 . . .

13 / / t rade_ log_eq i s empty u n t i l November 13 t h 2005

14 $tradelogeqImpl = s t r t o t i m e ( ’2005-11-13 05:30:00’ ) ;

15 i f ( $recordTimestamp <= $tradelogeqImpl ) {

16 $sq l = s t r _ r e p l a c e ( ’__TRADE_LOG_EQ__’ , ’--’ , $sq l ) ;

17 } else {

18 $sq l = s t r _ r e p l a c e ( ’__TRADE_LOG_EQ__’ , ’’ , $sq l ) ;

19 }

20 . . .

21 / / save the modi f ied SQL f i l e

22 $tempSqlF i le = $ s e t t i n g s −>getTempSqlDir ( )

23 . ’/’ . $ t h i s −>destDbName . ’.sql’ ;

24 f i l e _ p u t _ c o n t e n t s ( $ tempSqlFi le , $sq l ) ;

25 / / execute SQL

26 $ s q l F i l e = new S q l F i l e ( $ tempSqlF i le ) ;

27 $ s q l F i l e −>writeToDb ( $ t h i s −>destDbName , t rue ) ;

28 $ s q l F i l e −>delete ( ) ;

29 }

Execution of the SQL code is done by an external call to the mysql binary, redirecting the

SQL file’s content to mysql as input. The data mining application blocks until an exit status

code is returned. If the exit code is anything other than zero an exception is thrown and

the application aborts. If the call was successful the database now containing the relevant

data set is passed on to the anonymizing facility.

4.3.3. Anonymization

The extracted data set presented in Figure 4.1 includes identifying elements listed in

Table 4.1.

47



Chapter 4. Data Mining

Table Field
message message
message subject
player character_name
player player_id
alliance alliance_id

Table 4.1.: Table columns to anonymize

There are two types of messages, private messages and automatically generated system

messages. A private message is sent from one person to another, while a system mes-

sage has a sender value of NULL. The latter is important because gifts are logged only

by the receipt of system messages. Such a message includes the the donor’s character

name and the contents of the gift. To anonymize that data the gift table shown in Figure 4.1

is created and populated by parsing the message table. This first step of the anonymiza-

tion process is followed by dropping all system messages and clearing the messages’

contents in the message and subject fields. The relevant information for network research

remains, namely who sent a message to who and at what time. The character_name field

of the player table was used to retrieve a donor’s player_id and can simply be dropped

as well.

The integer fields player_id and alliance_id must be anonymized while keeping both

relations between the tables and between different backups intact.

One way would be using a cryptographic hash function on an ID. However, this could

be easily traced back when the function is found out, simply by using the function on all

integer numbers. This problem would be eliminated by adding salt to the cryptographic

hash function. To make it more secure a different salt would have to be used for each

ID. Two problems arise from that method. First, the salt would have to be safely stored

for each value. Second, the value returned from the hash function would have to be

sufficiently big to contain only unique values. In case of MD5, this would result in a 128–

bit value used as primary key and foreign key in many tables. Besides the additional

storage space required, JOIN operations on character fields are far more expensive.

A better way is to use a completely random mapping between integer values. The tables

storing the original IDs and their mapped values are kept in a private database illustrated

in Figure 4.2. Only the anonymization process has access to this database. There is a

primary key on the original value to prohibit multiple mappings of the same ID. Another

unique index is set for the mapped value to prevent more than one ID being mapped to

48



Chapter 4. Data Mining

Figure 4.12.: Anonymization Class Diagram.

Anonymization

- db : Database

- dbName : string

- mapDbName : string

+ __construct(db : Database, dbName : string, mapDbName : string) : void

+ anonymizeFull() : void

+ parseGifts() : void

+ clearMessages() : void

+ clearCharacterNames() : void

+ anonymizePlayerIds() : void

+ anonymizeAllianceIds() : void

+ updateValues(field : string, mapping : array) : void

+ getMappingTable(field : string, values : array, max : int) : array

+ getMapping(field : string, value : int, max : int) : int

- generateMapping(field : string, value : int, max : int) : int

+ setDb(db : Database) : void

+ setDbName(dbName : string) : void

+ setMapDbName(mapDbName : string) : void

+ getDb() : &Database

+ getDbName() : string

+ getMapDbName() : string

the same random value.

All of that is implemented in the Anonymization class (Figure 4.12). An Anonymization

object is instantiated with parameters containing the name of the table holding the ex-

tracted data and the name of the private mapping database. The SQL commands respon-

sible for changing all primary keys according to the mapping lie in external files again,

one for the player_id and one for the alliance_id. The content of the file for anonymizing

the player_id is shown in Listing 4.7.

Listing 4.7: Anonymization SQL Code: player_id

1 UPDATE ‘ player ‘ SET ‘ p layer_ id ‘ = __MAPPED_TO__

2 WHERE ‘ p layer_ id ‘ = __ORIGINAL__ ;

3 UPDATE ‘ diplomacy ‘ SET ‘ p layer_ id ‘ = __MAPPED_TO__

4 WHERE ‘ p layer_ id ‘ = __ORIGINAL__ ;

5 UPDATE ‘ diplomacy ‘ SET ‘ p l a y e r _ d i p l _ i d ‘ = __MAPPED_TO__

6 WHERE ‘ p l a y e r _ d i p l _ i d ‘ = __ORIGINAL__ ;

7 UPDATE ‘ message ‘ SET ‘ recp_id ‘ = __MAPPED_TO__

8 WHERE ‘ recp_id ‘ = __ORIGINAL__ ;

49



Chapter 4. Data Mining

9 UPDATE ‘ message ‘ SET ‘ sender_id ‘ = __MAPPED_TO__

10 WHERE ‘ sender_id ‘ = __ORIGINAL__ ;

11 . . .

12 UPDATE ‘ trade_log_eq ‘ SET ‘ p layer_ id ‘ = __MAPPED_TO__

13 WHERE ‘ p layer_ id ‘ = __ORIGINAL__ ;

14 UPDATE ‘ trade_log_eq ‘ SET ‘ owner_id ‘ = __MAPPED_TO__

15 WHERE ‘ owner_id ‘ = __ORIGINAL__ ;

16 UPDATE ‘ g i f t ‘ SET ‘ p layer_id_from ‘ = __MAPPED_TO__

17 WHERE ‘ p layer_id_from ‘ = __ORIGINAL__ ;

18 UPDATE ‘ g i f t ‘ SET ‘ p layer_ id_ to ‘ = __MAPPED_TO__

19 WHERE ‘ p layer_ id_ to ‘ = __ORIGINAL__ ;

As explained in section 4.2.1 foreign keys do not formally exist in the database that is

operated on. This is why the single query on the player table does not suffice and all

tables referring to the ID have to be modified accordingly. Also, in contrast to the previous

SQL files, this one’s content has to be executed for each ID that is anonymized. The

implementation is shown in the code snippet in Listing 4.8.

Listing 4.8: Anonymization->updateValues

1 /∗ ∗
2 ∗ Updates database f i e l d s according t o a given mapping

3 ∗ @param s t r i n g $ f i e l d

4 ∗ @param array $mapping

5 ∗ /

6 publ ic f u n c t i o n updateValues ( $ f i e l d , $mapping )

7 {

8 / / use SQL f i l e as templa te f o r each update

9 $ p a t t e r n = f i l e _ g e t _ c o n t e n t s ( ’sql/anonymize_’ . $ f i e l d

10 . ’.sql’ ) ;

11 $sq l = ’’ ;

12 foreach ( $mapping as $ o r i g i n a l => $mapped_to ) {

13 $updateS t r ing = $ p a t t e r n ;

14 $updateS t r ing = s t r _ r e p l a c e ( ’__MAPPED_TO__’ , $mapped_to ,

15 $updateS t r ing ) ;

16 $updateS t r ing = s t r _ r e p l a c e ( ’__ORIGINAL__’ , $ o r i g i n a l ,

17 $updateS t r ing ) ;

18 $sq l .= $updateS t r ing ;

19 }

20 / / save the modi f ied SQL f i l e

21 $ s e t t i n g s = S e t t i n g s : : g e t I n s t a n c e ( ) ;

50



Chapter 4. Data Mining

Figure 4.13.: Integration Class Diagram.

Integration

- db : Database

- srcDbName : string

- destDbName : string

- recordDate : string

- recordTime : string

+ __construct(db : Database, srcDbName : string, destDbName : string, recordDate : string, recordTime : string) : void

+ integrate() : int

+ executeSqlStatements(sql : string, delimiter : string) : array

- getCumulativeDays() : int

+ recalculateCumulativeDays(minRecordDate : string) : void

+ setDb(db : Database) : void

+ setSrcDbName(srcDbName : string) : void

+ setDestDbName(destDbName : string) : void

+ setRecordDate(recordDate : string) : void

+ setRecordTime(recordTime : string) : void

+ getDb() : &Database

+ getSrcDbName() : string

+ getDestDbName() : string

+ getRecordDate() : string

+ getRecordTime() : string

22 $tempSqlF i le = $ s e t t i n g s −>getTempSqlDir ( ) . ’/’ .

23 $ t h i s −>dbName . ’_anonymize_’ . $ f i e l d .

24 ’.sql’ ;

25 f i l e _ p u t _ c o n t e n t s ( $ tempSqlFi le , $sq l ) ;

26 / / execute SQL

27 $ s q l F i l e = new S q l F i l e ( $ tempSqlF i le ) ;

28 $ s q l F i l e −>writeToDb ( $ t h i s −>dbName, f a l s e ) ;

29 $ s q l F i l e −>delete ( ) ;

30 }

Anonymization of the alliance_id is handled using the same function, only substituting the

included SQL file and using its own mapping table.

4.3.4. Data Integration

The final step consists of creating a new record in the researcher’s database and transfer-

ring the data. This is done in the Integration class (Figure 4.13). A new Integration ob-

ject is instantiated with the database connection object, the names of the source and des-

51



Chapter 4. Data Mining

tination databases as well as the backup’s date and time as parameters. Its integrate()

: int method starts the integration. Again an external SQL file is used to allow easy

adaption to any database changes, see Listing 4.9.

Listing 4.9: Integration SQL Code Snippet

1 INSERT INTO ‘ __DEST_SCHEMA__ ‘ . ‘ player ‘

2 SELECT __RECORD_ID__ AS ‘ record_id ‘ , ‘ p layer_ id ‘ ,

3 I F ( ‘ a l l i a n c e _ i d ‘ I S NULL , NULL , __RECORD_ID__ )

4 AS ‘ a l l i a n c e _ r e c o r d _ i d ‘ , ‘ a l l i a n c e _ i d ‘ ,

5 ‘ c r e d i t s ‘ , ‘ sex ‘ , ‘ user_type ‘ , ‘ turns_used ‘ ,

6 ‘ experience ‘ , ‘ f a c t i o n _ i d ‘ , ‘ synd ica te_ id ‘ ,

7 ‘ rep1 ‘ , ‘ rep2 ‘ , ‘ rep3 ‘ , ‘ l a s t _ o n l i n e ‘ , ‘ removed ‘

8 FROM ‘ __SRC_SCHEMA__ ‘ . ‘ player ‘ ;

9 INSERT IGNORE INTO ‘ __DEST_SCHEMA__ ‘ . ‘ t rade_log ‘

10 SELECT ‘ t rade_id ‘ , __RECORD_ID__ AS ‘ p layer_record_id ‘ ,

11 ‘ p layer_ id ‘ , I F ( ‘ owner_id ‘ IS NULL , NULL , __RECORD_ID__ )

12 AS ‘ owner_record_id ‘ , ‘ owner_id ‘ , ‘ resource_id ‘ ,

13 ‘ kind ‘ , ‘ amount ‘ , ‘ pr ice ‘ , ‘ t o t a l ‘ , ‘ blackmarket ‘ , ‘ date ‘

14 FROM ‘ __SRC_SCHEMA__ ‘ . ‘ t rade_log ‘ ;

15 . . .

The __RECORD_ID__ placeholder is substituted with the record ID of the newly created

record. Static logs like the trade_log are only inserted if the corresponding ID is not

yet in the database, as seen in line 9 of Listing 4.9. To ensure all operations including the

creation of the record entry as well as the commands in the SQL file are done fully isolated

in one atomic action, this file is not just forwarded to the mysql binary. A transaction is

started with the creation of the record entry. Each query is then extracted from the file

and executed directly through the Database object. If no errors occur the transaction is

committed. During the integration process — which can take several minutes — the new

record and all of its data is invisible to any other transactions. This level of consistency is

realized through a serializable mode of isolation.

4.3.5. Web Front–end

The web application can be used in combination with any FCGI enabled web server. Its

code follows the Model View Controller (MVC) software pattern to isolate the presenta-

tion layer from business logic. The database itself and the User class serve as model,

the Template class exclusively returns output while the Controller class handles input

52



Chapter 4. Data Mining

(Figure 4.14). All incoming requests go through index.php which uses the view GET pa-

rameter to decide which data to forward to the Template and Controller objects.

As can be seen in the ERD in Figure 4.4 access is permission–based. A user has to

authenticate by providing a correct user name / password combination. The password is

saved as 32 bytes MD5 hexadecimal character string. Upon logging in the MD5 function

is used on the entered password and compared with the value stored in the database.

Once logged in the user is authorized to use certain sections. The level of authorization

depends on the user’s group. Access permissions can be configured for the querying,

views, import and export sections.

For users to stay logged in a random 32–bytes session ID is created and stored both in the

database and as a session cookie. The session cookie expires as soon as the browser is

closed. By reading the value of the session cookie the user can be identified transparently

with each request.

The web server is run under the same user as the owner of the source files. Directories

for log files and exported files are created. Their permissions are 0700 equaling read,

write and execution rights for the owner. Any critical operations like failed login attempts

are logged. Database access of the web application is limited to the main and user

databases. The latter connection is dropped after logging in.

Routines

A Query section exists, supporting all kinds of SELECT SQL queries on the tables and

any existing views. Submitted input is handled by the Controller object which discards

anything but a single SELECT query. Even though the database user’s permissions are

only valid for the main database, it is checked again if only this database is queried. If

any checks fail the request is ignored. In case the SQL syntax is incorrect an exception

including the MySQL error message is thrown in the Database object. If the query is

successful the result set is printed in a sortable table. The controller function handling

input in the Query tab is shown in Listing 4.10.

Listing 4.10: Controller->getQueryResult

1 /∗ ∗
2 ∗ Executes SELECT query and r e t u r n s r e s u l t s i f any

3 ∗ @return ar ray

4 ∗ /

53



Chapter 4. Data Mining

Figure 4.14.: Class Diagram of the www package.

Controller

- settings : Settings

- db : Database

- user : User

- universe : string

- userLog : string

- execLog : string

+ __construct() : void

+ getLoginStatus() : bool

+ getQueryResult() : array

+ getTables() : array

+ handleViewsInput() : array

+ handleExportInput() : array

+ handleImportInput() : array

+ getExportedFiles() : array

+ getSchedule(type : string) : string

+ getRunning(type : string) : int

- importUpload(file : array) : bool

- importLocal(dirName : string, pattern : string, delete : bool) : bool

- scheduleUpdate(dirName : string, pattern : string, schedule : string) : bool

- clearUpdateSchedule(dirName : , pattern : , schedule : ) : bool

- clearBackupSchedule() : bool

- scheduleFullBackup(schedule : string) : bool

- downloadFile(fileName : ) : void

- deleteFile(fileName : ) : bool

- exportTables(fileName : string, tables : array, incStructure : bool, incData : bool, incDrop : bool) : bool

- checkTableName(name : string) : bool

- checkFileName(name : string) : bool

- checkDirName(name : string) : bool

- createView(viewName : string, select : string) : bool

- dropView(viewName : string) : bool

- logUser(details : string) : void

- getSingleSelectQuery(sql : string, limit : bool) : string

+ setSettings(settings : Settings) : void

+ setDb(db : Database) : void

+ setUser(user : User) : void

+ setUniverse(universe : string) : void

+ setUserLog(userLog : string) : void

+ setExecLog(execLog : string) : void

+ getSettings() : Settings

+ getDb() : Database

+ getUser() : User

+ getUniverse() : string

+ getUserLog() : string

+ getExecLog() : string

Template

- universe : string

+ header(loggedIn : bool, view : string, statusMsg : string, mayQuery : bool, mayCreateView : bool, mayExport : bool, mayImport : bool) : string

+ footer(loggedIn : bool, userName : string, fullName : string, view : string, time : ) : string

+ statusMsg(status : array) : string

+ home(fullName : string) : string

+ login() : string

+ query(result : array, tables : array) : string

+ views(tables : array) : string

+ export(tables : array, files : array, schedule : string, running : int) : string

+ import(schedule : string, running : int) : string

- running(running : int, page : string) : string

- schedule(schedule : string, page : string) : string

- files(files : array) : string

- tables(tables : array, type : string, showCheckboxes : bool, showColumns : bool) : string

- queryResult(result : array) : string

- getStringColumns() : array

- heading(title : string) : string

- menu(view : string, mayQuery : bool, mayCreateView : bool, mayExport : bool, mayImport : bool) : string

- universeSwitcher(view : string) : string

- loggedInText(userName : string, fullName : string) : string

+ setUniverse(universe : string) : void

+ getUniverse() : string

User

- userId : int

- userName : string

- userPassword : string

- sessionId : string

- fullName : string

- groupId : int

- groupName : string

- query : bool

- createView : bool

- import : bool

- export : bool

+ __construct(user : array)

+ mayQuery() : bool

+ mayCreateView() : bool

+ mayImport() : bool

+ mayExport() : bool

+ getUserId() : int

+ getUserName() : string

+ getUserPassword() : string

+ getSessionId() : string

+ getFullName() : string

+ getGroupId() : int

+ getGroupName() : string

54



Chapter 4. Data Mining

5 publ ic f u n c t i o n getQueryResul t ( )

6 {

7 i f ( ! i s s e t ( $_POST [ ’query’ ] ) ) {

8 r e t u r n NULL ;

9 }

10 $sq l = $ t h i s −>getS ing leSe lec tQuery ( $_POST [ ’query’ ] ) ;

11 i f ( ! $sq l ) {

12 r e t u r n NULL ;

13 }

14 $ t h i s −>logUser ( ’query: ’ . $sq l ) ;

15 $ t h i s −>db−>setDbName ( $ t h i s −>s e t t i n g s −>getDbName ( ) .

16 ’_’ . $ t h i s −>universe ) ;

17 $records = $ t h i s −>db−>execute ( $sq l ) ;

18 $ r e s u l t = $records−>getArray ( ) ;

19 r e t u r n $ r e s u l t ;

20 }

In the Views section views can be created and dropped, provided the user is permitted

to. Creating a view works almost the same as before — a SELECT SQL statement and

a name for the view are specified. The statement is again checked by the getSingle-

SelectQuery(sql : string, limit : bool) : string method. The name of the

view must be clean of “;” characters since they can provide a way for an SQL injection

attack by interrupting a valid statement and starting a new malicious one. If all checks

are successful the view is created and can immediately be used for querying.

Export

The Export section offers functions to export the whole database or subsections of it. Ex-

ports, or “backups”, can be made in SQL, CSV and XML format. To create the backup

the web front–end calls the mysqldump executable in a non–blocking fashion. Its param-

eters make sure the exported data set is consistently done within a single transaction.

The resulting backup file is created and written to in a temporary location. Once finished

it is moved to the export directory and listed on the Export page. It can then be either

downloaded or deleted again.

The user is also able to define a schedule for automatic exports. These are scheduled

by the application by using a crontab. Crontabs are files that are parsed by cron, a Unix

job scheduler. Commands specified in the crontabs are executed by cron according to

55



Chapter 4. Data Mining

Figure 4.15.: Wrapper Class Diagram.

Wrapper

- settings : Settings

- returnCode : int =  1

- execLog : string

+ __construct(argc : , argv : ) : void

+ removeBackupSchedule(universe : string) : void

+ addBackupSchedule(universe : string, schedule : string) : void

+ removeUpdateSchedule(universe : string, schedule : string, dirName : string, pattern : string) : void

+ addUpdateSchedule(universe : string, schedule : string, dirName : string, pattern : string) : void

- prepareCronFile(cronFile : ) : void

- verifySchedule(schedule : string) : string

+ setSettings(settings : Settings) : void

- setReturnCode(returnCode : int) : void

- setExecLog(execLog : string) : void

+ getSettings() : Settings

+ getReturnCode() : int

- getExecLog() : string

the parsed schedules. The web application uses /etc/cron.d/datamining to specify any

scheduled exports (or imports). However, this file has to be owned by root. To provide

a secure solution to writing this file as root a command wrapper with sudo permission is

used. The sudo command lets users execute certain permitted commands as root. The

wrapper is implemented as standalone program in the class Wrapper (Figure 4.15) in the

package main.

When a schedule is entered, the wrapper command along with the schedule is used as

parameter for the sudo binary. The sudo program verifies that the web server’s user is

allowed to run the wrapper as root. The wrapper then runs under root permissions. It

verifies the given schedule again, builds the export command and eventually modifies

the crontab accordingly. If the verification fails an exit code not equaling zero is returned.

The exit code is waited for and used by the web application to inform the user of success

or failure. Clearing the schedule is done the same way, only supplying the wrapper with

different parameters — the corresponding code segment is shown in Listing 4.11.

Listing 4.11: Controller->clearBackupSchedule

1 /∗ ∗
2 ∗ C a l l s e x t e r n a l wrapper t o c l e a r backup Cron j o b s

3 ∗ @return bool

56



Chapter 4. Data Mining

4 ∗ /

5 p r i v a t e f u n c t i o n clearBackupSchedule ( )

6 {

7 $srcDir = realpath ( ’./main/’ ) ;

8 $cmd = ’cd ’ . $s rcDi r . ’ && ’ .

9 ’sudo ’ . $ t h i s −>s e t t i n g s −>getPhpExec ( ) .

10 ’ -f Wrapper.php -H -- backup remove ’ .

11 $ t h i s −>universe ;

12 system ($cmd , $ r e t v a l ) ;

13 i f ( $ r e t v a l == 0) {

14 $ t h i s −>logUser ( ’clear export schedule’ ) ;

15 r e t u r n t rue ;

16 }

17 r e t u r n f a l s e ;

18 }

Import

The Import section serves as graphical front–end for the CLI data mining tool. Files can

be imported in two ways. First, Pardus backups residing on the web host can be directly

imported by calling the CLI binary. Second, a Pardus backup file can be uploaded from

the remote computer. The directory and escaped name of the uploaded file is used as

directory and pattern parameters for the CLI tool to match exactly that single file. After

the file is imported it is removed again.

The typical code structure used to generate the output for web pages in the Template

class is shown for the Import section in Listing 4.12.

Listing 4.12: Template->import

1 /∗ ∗
2 ∗ D i s p l a y s the impor t page

3 ∗ @param s t r i n g $schedule

4 ∗ @param i n t $ runn ing

5 ∗ @return s t r i n g

6 ∗ /

7 publ ic f u n c t i o n import ( $schedule , $running )

8 {

9 $scheduleS tr = $ t h i s −>schedule ( $schedule , ’import’ ) ;

10 $ r u n n i n g S t r = $ t h i s −>running ( $running , ’import’ ) ;

57



Chapter 4. Data Mining

11 $dirName = i s s e t ( $_POST [ ’dirname’ ] ) ? $_POST [ ’dirname’ ] :

12 ’/backups/pardus/’ . $ t h i s −>universe ;

13 $ p a t t e r n = i s s e t ( $_POST [ ’pattern’ ] ) ? $_POST [ ’pattern’ ] :

14 ’\d{6}\-\d{4}’ ;

15 $when = i s s e t ( $_POST [ ’when’ ] ) ? $_POST [ ’when’ ] : ’55 7 * * *’ ;

16 $out = $ t h i s −>heading ( ’IMPORT’ ) ;

17 $out .= <<<TEMPLATE

18 . . .

19 TEMPLATE ;

20 r e t u r n $out ;

21 }

Automatic imports at scheduled times are possible through this interface as well. A path

to import backups from, a pattern and a schedule have to be provided. All parameters

are again verified and set with the use of the external wrapper. Listing 4.13 shows the

wrapper function adding an import entry to the schedule.

Listing 4.13: Wrapper->addUpdateSchedule

1 /∗ ∗
2 ∗ Adds cron schedule e n t r y f o r updates

3 ∗ @param s t r i n g $ u n i v e r s e

4 ∗ @param s t r i n g $schedule

5 ∗ @param s t r i n g $dirName

6 ∗ @param s t r i n g $ p a t t e r n

7 ∗ /

8 publ ic f u n c t i o n addUpdateSchedule ( $universe , $schedule ,

9 $dirName , $ p a t t e r n )

10 {

11 $schedule = $ t h i s −>ver i fySchedu le ( $schedule ) ;

12 i f ( $schedule == NULL ) {

13 $ t h i s −>setReturnCode ( 1 ) ;

14 r e t u r n ;

15 }

16 $dirName = escapeshellarg ( $dirName ) ;

17 $ p a t t e r n = escapeshellarg ( $ p a t t e r n ) ;

18 $importCmd = ’./run.sh -d ’ . $dirName .

19 ’ -p ’ . $ p a t t e r n .

20 ’ -u ’ . $universe . ’ -R’ ;

21 $cmd = ’bash -c "cd ’ . realpath ( ’.’ ) . ’; ’ .

22 $importCmd . ’" >>’ . $ t h i s −>execLog .

58



Chapter 4. Data Mining

23 ’ 2>&1 &’ ;

24 $user = $ t h i s −>s e t t i n g s −>getUser ( ) ;

25 $ c r o n F i l e = $ t h i s −>s e t t i n g s −>getCronFi le ( ) ;

26 $ t h i s −>prepareCronFi le ( $ c r o n F i l e ) ;

27 / / add e n t r y

28 $cronEntry = "\n" . $schedule . ’ ’ . $user .

29 ’ ’ . $cmd . "\n" ;

30 f i l e _ p u t _ c o n t e n t s ( $cronF i le , $cronEntry , FILE_APPEND ) ;

31 $ t h i s −>setReturnCode ( 0 ) ;

32 }

59



Chapter 5.

Application

5.1. General Usage

5.1.1. Research

The Query tab of the web application forms the basis of access to the research data. It

is illustrated in Figure 5.1. The query box supports any kind of SELECT statement that is

supported by MySQL1, inluding nested queries, joins and unions. Below the query box

extensible shortcuts for the most common queries can be found.

On the left side available tables, views and their fields are listed in a dynamic tree struc-

ture. The tree can be browsed and any value can be copied into the query box by a

double–click. Results of the query are shown in a table below. The resulting rows can be

sorted without the need for a page reload or modifying the SQL code, simply by clicking

on a column heading. Failed queries result in an exception containing a detailed SQL

error message.

The View tab offers advanced functionality for senior researchers. Again, available tables,

views and their fields are displayed on the left side. In addition views can be removed.

On the right side, text fields for the creation of a new view exist. A view is defined by

its name and an SQL query that determines its content. Newly created views are ready

for use in the Query tab immediately. Views help breaking down complexity and having

certain forms of the result set available in an up to date fashion at all times. Views can also

work as pre–created queries for junior researchers with little or no SQL experience.

1Version 5.4 is used in this implementation.

60



Chapter 5. Application

Figure 5.1.: Screenshot of the web application: Query view.

61



Chapter 5. Application

Minute Hour Day of Month Month Day of Week
0–59 0–23 1–31 1–12 0–6

Values are separated by one or more white–spaces.
“*” fits any value.
Day of Week starts with Monday (0).
Values are connected by logical AND operators to determine execution.

Table 5.1.: Cron syntax

In the top right corner of all pages the selected universe is represented by its symbol.

The bottom of a page offers any debugging information as well as links to switch the

selected universe or to log out.

5.1.2. Administration

The data set can be administered through the web front–end by users with export / import

permissions, or directly through the CLI tool if shell access is present.

Like in the previous sections, the Export tab shows a list of the available tables and views

on the left side. Below exported files can be downloaded and deleted. The tables and

views do not include fields as in the previous sections but feature checkboxes to select

them for exporting. They can be exported into SQL, CSV and XML format. Only data,

only structure or both may be included. Optionally, DROP TABLE SQL statements can

be added. Once started the exporting process runs in the background. Several export

processes can run simultaneously. The user is notified of how many are running at a

time.

Figure 5.2 shows an exported file and one process still running. It also displays the

schedule of automatic database backups. The schedule is defined using Cron syntax

as explained in Table 5.1. A full database backup will be initiated at each time matching

the schedule.

The Import tab allows the integration of new Pardus backups into the research database.

The first item on the left side makes it possible to upload and integrate single Pardus

backup files stored on the client machine. The second option is specifying a path on the

web server’s host and a pattern of files to match. The default pattern is \d{6}\-\d{4}. It

would include files of any format as long as a 6–digits long date and a 4–digits long time

62



Chapter 5. Application

Figure 5.2.: Screenshot of the web application: Export view.

63



Chapter 5. Application

Switch Value Description Example Required
-d directory path Directory to parse /datamining X
-p pattern File pattern to search for \.sql X
-u universe Backup’s universe orion X
-r Search directories recursively
-R Remove parsed files

Table 5.2.: Command–line parameters

is part of the file name. The specified directory is searched for matching files in a non–

recursive way. An option exists to delete any successfully integrated backup files after

the operation.

The right side of the page displays the currently configured schedule as well as an in-

terface to set a new schedule for automated import processes. Like previously, besides

the schedule in Cron syntax a path and a pattern have to be specified. This function es-

pecially makes sense with an automatic retrieval of new backups. Successfully imported

files are automatically deleted to avoid attempts of importing the same backups multiple

times.

For further control the CLI tool can be called directly, assuming shell access to the data

mining server is present. The available command–line parameters are listed in Table 5.2.

If the recursive option is specified and the univere’s value is set to “path–dependent”,

backups of all universes that are sorted in accordingly named directories can be inte-

grated at once.

Aside from the command–line parameters system–wide configuration constants can be

edited in settings/Constants.php. Default values as well as more advanced settings can be

adjusted in the Settings class. HTML documentation of all classes and their members

is found in the doc directory. The documentation is generated directly from the source

code and can be refreshed or exported into a different format by the use of phpdoc.

5.2. Scientific Routines: An example

First research using the implemented data mining application has been done in [ST09].

An excerpt of some of the findings along with the process of getting these results is pre-

sented next.

64



Chapter 5. Application

5.2.1. Preferential Attachment

One hypothesis of social network dynamics is that the higher the degree of a node, the

higher the probability of a “newcomer” to attach to the network through it than through

lower–degree nodes. The degree is the amount of links connecting a node. A “new-

comer” is considered a node attaching to the network for the first time. This model is

called preferential attachment (PA) [BA99].

A node can be represented by a player. Links can either be private messages sent

between two players, or the marking of a friend or foe. The steps to retrieve the required

information using the data mining front–end are shown in Listing 5.1. The returned result–

set can either be directly utilized through a MySQL library, for example in Matlab, or

exported to a universally usable format. The networks in Figure 5.3 have been created

using Pajek.

Listing 5.1: SQL queries to retrieve preferential attachment data

1 −− A l l o f the f o l l o w i n g can be done i n the web c l i e n t ’ s query tab .

2 −− Random p l a y e r s e x i s t i n g a t a l l t imes are chosen .

3 −− For r e p e t i t i v e use o f random IDs a view can be crea ted .

4 SELECT p1 . p layer_ id FROM player p1 JOIN player p2 ON

5 ( p1 . p layer_ id = p2 . p layer_ id ) WHERE p1 . record_id =

6 (SELECT record_id FROM record WHERE day_cumulat ive = 1)

7 AND p2 . record_id = (SELECT record_id FROM record

8 WHERE day_cumulat ive = 445) AND p2 . removed = 0

9 ORDER BY RAND( ) LIMIT 78 ;

10 −− ( a ) Weighed PM communication between them i s c a l c u l a t e d .

11 SELECT DATE_FORMAT(FROM_UNIXTIME(m. sen t ) , ’%Y-%m-%d’ ) AS

12 ’day’ , m. sender_id , m. recp_id , COUNT(m. sender_id ) AS

13 ’messages_sent’ FROM message m WHERE m. sen t >=

14 (SELECT UNIX_TIMESTAMP ( record_date ) FROM record

15 WHERE day_cumulat ive = 1) AND m. sen t <=

16 (SELECT UNIX_TIMESTAMP ( record_date ) FROM record

17 WHERE day_cumulat ive = 445) AND m. sender_id IN

18 ( r e s u l t from previous query d e l i m i t e d by commas) AND

19 m. recp_id IN ( . . . )

20 GROUP BY day , m. sender_id ORDER BY day ASC

21 −− (b) A l l f r i e n d s h i p ( / foe ) r e l a t i o n s between them are s e l e c t e d .

22 SELECT r . day_cumulat ive , d . p layer_ id , d . p l a y e r _ d i p l _ i d

23 FROM diplomacy d JOIN record r ON ( d . record_id =

24 r . record_id ) WHERE d . p layer_ id IN ( r e s u l t from previous

65



Chapter 5. Application

25 query d e l i m i t e d by commas) AND d . p l a y e r _ d i p l _ i d IN ( . . . )

26 AND r . day_cumulat ive >= 1 AND r . day_cumulat ive <= 445

27 AND d . d i p l _ t y p e = ’friend’ ( / ’foe’ )

28 ORDER BY r . day_cumulat ive ASC , d . p layer_ id ASC ;

[ST09] concludes with the following findings:

“In the classic model of PA it is assumed that the probability P of a newcomer

connecting to an existing node ni with in-degree kin
i is P(kin) ∝

(
kin

)α
with

α = 1. Figure 5.4 shows P(kin) versus kin for friend and enemy networks; all

link events between newcomers and their destinations have been used from

day 200 to 400. Least squares fits in double-logarithmic scale yield an ex-

ponent of α = 0.62 for friend markings with kin < 30, and α = 0.90 for all en-

emy markings. We observe an increased upward bending for players having

in-degrees larger than about 100, i.e. for very popular players. These find-

ings are fully consistent with other game universes and other time ranges (not

shown).”

66



Chapter 5. Application

Figure 5.3.: Figures and description retrieved from [ST09]:
“(a) Accumulated PM communications over all 445 days between 78 randomly
selected individuals who existed on the first and last day. Link colors of light gray, gray,
and black correspond to 1–10, 11–100 and 101–1000 PMs sent, respectively.
(b) Friend (green, solid) and enemy (red, dashed) relations on
day 445 between the same individuals. See our Youtube channel
http://www.youtube.com/user/complexsystemsvienna for animated time evolu-
tions of these networks.”

(a)
Pajek

(b)
Pajek

67

http://www.youtube.com/user/complexsystemsvienna


Chapter 5. Application

Figure 5.4.: Figure and description retrieved from [ST09]:
“Empirical probability P(kin) for newcomers connecting to nodes with in-degree kin.
Data is used between days 200 and 400. The black line depicts slope α = 1 and indi-
cates the linear dependence assumption needed in the PA model. Green lines denote
least squares fits. Values for enemies are vertically displaced by a factor 0.1 for better
visibility.”

10
0

10
1

10
2

10
−7

10
−5

10
−3

10
−1

α = 0.62

α = 0.90

α = 1.00

kin

P
(k

in
)

 

 
Friends
Enemies

68



Chapter 6.

Concluding Remarks

6.1. Conclusion

Complications of gathering, storing and querying large volumes of data have been ana-

lyzed and addressed using data gathered over several years from the massive multiplayer

online game Pardus.

Due to its high level of development and thus superiority in all evaluated areas, an RDBMS

was chosen to serve as data back–end. Its ability to compress data and indices on–

the–fly additionally reduced the hardware storage requirements. Outages and regular

changes to the game and its data structure were addressed by outsourcing all direct

database manipulations into external files. Backups were merged into a single database,

allowing efficient querying as well as easy removal of duplicate information. To keep the

possibility of researching unforeseen areas all relevant impersonal data was extracted

from the backups practically unchanged. Views can be dynamically created, changed

and removed at any time to provide special data compilations on an upper abstraction

level — without changing the master data and without any waste of storage space.

In addition to the command–line extraction and integration tool a web front–end was de-

veloped. It offers researchers permission–based access to the database and administra-

tive functions including manual as well as scheduled imports/updates and exports/back-

ups of all or specified data.

Successful usage of the application is presented in [ST09]. This demonstrates large–scale

and simultaneous usage of the high volume and variety of data output from a massive

multiplayer online game is both possible and feasible.

69



Chapter 6. Concluding Remarks

6.2. Scientific Research

Use of this or similar data is valuable in nearly every field of study concerned with behav-

ioral, social or group dynamics. Though the focus of this thesis has been slanted toward

financial networking, even a first look at the existing Pardus data shows intriguing ele-

ments of group formation and evolution, social, financial and behavioral tendencies and

patterns, friend and enemy networks, and much more — in both the game as a whole

and in numerous micro–groups within.

In recent years there have been many efforts to gather varieties of this type of data us-

ing modern technology; including various social networking websites such as Facebook

([GWH07]) and cell phone networks ([OSH+07]). The Pardus data contains these same

networks as they have evolved over years, and this data can continue to be gathered in-

definitely with relatively little effort or expense; presenting a number of clear advantages

over more traditional methods of data gathering. Data from an environment such as Par-

dus also provides researchers with a complete view of every aspect influencing players’

virtual lives on a scale rarely seen in real–world studies.

6.3. Outlook

As technology, access to internet and popularity of multiplayer games grows steadily

around the world, so does the opportunity to gather valuable data. A unique and im-

portant aspect of using a game environment, often lacking in the real world, is that the

game environment can be manipulated to trigger specific events or phenomena, such as

inflation, and the resulting behavior can easily be observed.

Along these same lines, the virtual environment as well as the overall design of the game

can be specifically engineered to produce and record behavior, networks and patterns.

Though Pardus provides a large volume of interesting data relevant to many fields of

study, Pardus was not designed a priori with data mining in mind as the game’s ultimate

purpose.

6.3.1. New Virtual Environment

A massive multiplayer online game designed to replicate real–world systems could open

up research in these areas to a degree never before imagined, with only a fraction of

70



Chapter 6. Concluding Remarks

the time and expense involved in real–world studies on a similar scale. Game mechanics

could allow players to open banks, provide goods and services in dynamic, player–driven

markets, trade stocks and other such real–world activities. Additionally anonymized data

gathered about players when they sign up for the game could be expanded to include

details such as level of education, average income, marital status and so forth.

A large virtual environment, such as exists now in Pardus, encourages natural grouping

of players into micro communities and economies, allowing for study on both a macro

and micro scale. This tendency could be further encouraged by providing players with

similar ties to their community as can be found in the real world; such as dwellings and a

localized trade which brings in income.

With data mining in mind as the game is developed, recording of all actions and inter-

actions, both social and economic, in the game could be streamlined to be even more

concise and efficient than the current Pardus system, along with ease of access to and

protection of the data.

In closing, while existing methods such as agent–based models and massive multiplayer

online games such as Pardus provide a wealth of valuable scientific data, a game de-

signed from conception upward with data mining and subsequent research activities in

mind could offer possibilities too great to ignore.

71



Appendix A.

Acknowledgements

I would like to thank Prof. Thurner for his guidance throughout the creation of this the-

sis.

I would also like to express my gratitude to Michael Szell for introducing me into the field

of social network dynamics and providing me with data from his research.

72



Appendix B.

Bibliography

[AAS] Robert L. Axtell, Clinton J. Andrews, and Mitchell J. Small. Agent-based

models of industrial ecosystems,

http://policy.rutgers.edu/andrews/projects/abm/

abmarticle.htm, retrieved in September 2009.

[ABMP07] Andrei Arion, Angela Bonifati, Ioana Manolescu, and Andrea Pugliese.

Xquec: A query-conscious compressed xml database. ACM Trans. In-

ternet Technol., 7(2):10, 2007.

[Art05] W. Brian Arthur. Out-of-equilibrium economics and agent-based model-

ing. Handbook of Computational Economics, 2:1551–1564, 2005.

[BA99] A.L. Barabási and R. Albert. Emergence of scaling in random networks.

Science, 286(5439):509, 1999.

[Ber94] Elisa Bertino. Index configuration in object-oriented databases. The VLDB

Journal, 3(3):355–399, 1994.

[Bon02] Eric Bonabeau. Agent-based modeling: Methods and techniques for sim-

ulating human systems. PNAS, 99:7280–7287, May 2002.

[Buc09] Mark Buchanan. Meltdown modeling. Nature, 460:680–682, 2009.

[Cas05] Edward Castronova. Synthetic Worlds : The Business and Culture of Online

Games. University Of Chicago Press, 2005.

[CC04] Yangjun Chen and Yibin Chen. Signature file hierarchies and signature

graphs: a new index method for object-oriented databases. In SAC ’04:

Proceedings of the 2004 ACM symposium on Applied computing, pages

724–728, 2004.

73



Appendix B. Bibliography

[DR01] Kurt W. Deschler and Elke A. Rundensteiner. B+ retake: sustaining high

volume inserts into large data pages. In DOLAP ’01: Proceedings of the 4th

ACM international workshop on Data warehousing and OLAP, pages 56–63,

2001.

[dSGL09] M. de Smith, M. Goodchild, and P. Lenglay. Geospatial Analysis. Matador,

2nd edition, 2009.

[Ehr02] Norman Ehrentreich. The santa fe artificial stock market re-examined –

suggested corrections, September 2002.

[Fag79] Ronald Fagin. Normal forms and relational database operators. In SIG-

MOD ’79: Proceedings of the 1979 ACM SIGMOD international conference

on Management of data, pages 153–160, 1979.

[FF09] J. Doyne Farmer and Duncan Foley. The economy needs agent-based

modelling. Nature, 460:685–686, 2009.

[Fow94] Glenn Fowler. cql - a flat file database query language. In USENIX Winter

1994 Conference, 1994.

[GF99] S. Gächter and E. Fehr. Collective action as a social exchange. Journal of

Economic Behavior and Organization, 39:341–369, 1999.

[GWH07] S. Golder, D. Wilkinson, and B. Huberman. Rhythms of social interaction:

Messaging within a massive online network. In Communities and Technolo-

gies 2007: Proceedings of the Third Communities and Technologies Confer-

ence, 2007.

[HBB+05] J. Henrich, R. Boyd, S. Bowles, C. Camerer, E. Fehr, H. Gintis, R. McElreath,

M. Alvard, A. Barr, J. Ensminger, et al. “economic man” in cross-cultural

perspective: Behavioral experiments in 15 small-scale societies. Behav-

ioral and Brain Sciences, 28:795–815, 2005.

[HH04] M. P. Haustein and T. Härder. Adjustable transaction isolation in xml

database management systems. In Database and XML technologies: Sec-

ond International XML Database Symposium, XSym 2004, pages 176–187,

2004.

[HLW94] Uwe Hohenstein, Regina Lauffer, and Petra Weikert. Object-oriented

database systems: How much sql do they understand? In DEXA ’94:

74



Appendix B. Bibliography

Proceedings of the 5th International Conference on Database and Expert

Systems Applications, pages 15–26, 1994.

[Hol97] I. Holloway. Basic Concepts for Qualitative Research. Wiley-Blackwell, 1st

edition, January 1997.

[HP03] Richard A. Hankins and Jignesh M. Patel. Effect of node size on the perfor-

mance of cache-conscious b+-trees. In SIGMETRICS ’03: Proceedings of

the 2003 ACM SIGMETRICS international conference on Measurement and

modeling of computer systems, pages 283–294, 2003.

[IBM07] IBM. Innovation outlook 2007: Virtual worlds, real leaders,

http://www.ibm.com/ibm/gio/media/pdf/

ibm_gio_gaming_report.pdf, 2007.

[IEE02] The Open Group / IEEE. The single unix specification,

http://www.unix.org/single_unix_specification/, January 2002.

[Kim02] Sang-Wook Kim. On batch-constructing b+-trees: algorithm and its per-

formance evaluation. Information Sciences, 144:151–167, July 2002.

[KN01] Tomas B. Klos and Bart Nooteboom. Agent-based computational transac-

tion cost economics. Journal of Economic Dynamics & Control, 25:503–526,

2001.

[Kul94] Krishna G. Kulkarni. Object-oriented extensions in sql3: a status report. In

SIGMOD ’94: Proceedings of the 1994 ACM SIGMOD international confer-

ence on Management of data, page 478, 1994.

[Lea00] Neal Leavitt. Whatever happened to object-oriented databases? Com-

puter, 33(8):16–19, 2000.

[NJ03] Matthias Nicola and Jasmi John. Xml parsing: a threat to database perfor-

mance. In CIKM ’03: Proceedings of the twelfth international conference on

Information and knowledge management, pages 175–178, 2003.

[OEG04] Bayer & Szell OEG. Pardus,

http://www.pardus.at, 2004.

[OSH+07] J.P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, M.A. de Menezes, K. Kaski,

A.L. Barabási, and J. Kertész. Analysis of a largescale weighted network of

one-to-one human communication. New Journal of Physics, 9:179, 2007.

75



Appendix B. Bibliography

[Ric05] Kurt Richardson. Managing organizational complexity: philosophy, theory

and application. Information Age Publishing, 2005.

[Sch06] Robin Schumacher. A look at the mysql csv storage engine,

http://dev.mysql.com/tech-resources/articles/

csv-storage-engine.html, May 2006.

[SFGK03] E. Smith, J. Farmer, L. Gillemot, and S. Krishnamurthy. Statistical theory of

the continuous double auction. Quantitative Finance, 3:481–514, 2003.

[SHS04] Gargi M. Sur, Joachim Hammer, and Jerome Simeon. An xquery-based

language for processing updates in xml. In PLAN-X 2004 - Programming

Languages Technologies for XML, 2004.

[ST09] Michael Szell and Stefan Thurner. Measuring social dynamics in a massive

multiplayer online game. Arxiv preprint 0911.1084v1, November 2009.

[TH02] Pankaj M. Tolani and Jayant R. Haritsa. Xgrind: A query-friendly xml com-

pressor. In ICDE ’02: Proceedings of the 18th International Conference on

Data Engineering, page 225, 2002.

[TLGXYJX06] Hu Tian-Lei, Chen Gang, Li Xiao-Yan, and Dong Jin-Xiang. Automatic re-

lational database compression scheme design based on swarm evolution.

Journal of Zhejiang University - Science A, 7(10):1642–1651, October 2006.

76


	Kurzfassung
	Abstract
	1 Introduction
	2 Description of the Data Set
	2.1 The Pardus Game
	2.2 Hardware
	2.2.1 Hardware Deployment

	2.3 Data Structure
	2.3.1 Relevant Data Subsets
	2.3.2 Database Layout

	2.4 Intermittent Changes and Outages
	2.4.1 Past Changes
	2.4.2 Future Changes
	2.4.3 Outages

	2.5 Legal Issues

	3 Aim
	4 Data Mining
	4.1 Strategies
	4.1.1 Flat Files
	4.1.2 XML Storage
	4.1.3 Object-oriented Database
	4.1.4 Relational Database

	4.2 Data Structure
	4.2.1 Database Design

	4.3 Technical Implementation
	4.3.1 Shared Mechanisms
	4.3.2 Data Extraction
	4.3.3 Anonymization
	4.3.4 Data Integration
	4.3.5 Web Front–end


	5 Application
	5.1 General Usage
	5.1.1 Research
	5.1.2 Administration

	5.2 Scientific Routines: An example
	5.2.1 Preferential Attachment


	6 Concluding Remarks
	6.1 Conclusion
	6.2 Scientific Research
	6.3 Outlook
	6.3.1 New Virtual Environment


	A Acknowledgements
	B Bibliography

