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Abstract

Organizations continuously increase their efforts to improve their project portfolio

management (PPM). As a consequence, software that supports the processes of PPM

is a standard application in organizations. Common PPM software provides various

methods to support the decision process, collecting informative data to do so. The lack

of data was in the past the main reason for the failure of mathematical optimization

methods in the area of PPM. Thus, the connection of mathematical optimization

methods with frequently used PPM software seems to be a promising approach to

enhance the applicability of mathematical optimization methods in the area of PPM.

Therefore, the first part of this work outlines how a mathematical optimization

model must be designed so that it can be embedded into existing PPM software. Based

on these requirements, a mathematical optimization model is formulated. Thereby,

the main focus lies on incomplete information as well as on optimal budget allocation

among strategic buckets. Incomplete information refers to vaguely formulated project

parameters due to prediction difficulties. To process vaguely formulated parameters,

robust optimization concepts are used. In the context of strategic buckets, we discuss

the divisibility of the entire portfolio into subportfolios so that every strategic bucket is

represented by a subportfolio. The main goal of strategic buckets is to enforce a certain

budget allocation among projects to implement the desired strategy. To support the

allocation of the budget among strategic buckets, we define their marginal values and

use those values as decision criteria.
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Chapter 1

Introduction

Project Portfolio Management (PPM) is a set of processes for the selection and main-

tenance of a set of projects. Usually there are more projects available for selection

than can be undertaken within the organization’s physical and financial constraints.

Thus, choices must be made in making up a suitable project portfolio (Archer and

Ghasemzadeh 1999a).

The aim of PPM is to select and maintain the set of projects which best supports

the corporation’s mission as described by a set of objectives. Typically, objectives

are efficient use of resources, financial values—e.g., return on investment (ROI), net

present value (NPV), and internal rate of return (IRR)—and ancillary nonfinancial

benefits, including ensuring a balance with respect to various key parameters and

market share among many more (see Levine 2005).

PPM is a highly dynamic process. On the one hand, this dynamic is caused by

uncertainty, stemming from both the determination of the corporation’s mission as

well as the implementation of projects. The determination of the mission is made

unpredictable by such external influences as market conditions and competitors’ ac-

tions. Even if the implementation of projects were not directly subject to external

influences, its result may be unpredictable. For instance, technical issues can occur

or the consumption of budget and resources may increase unexpectedly. On the other

hand, the dynamic is simply described by the life cycle of projects and new project

proposals. If a project has reached the end of its life cycle, resources become available

to be allocated to other projects. A new available project proposal, in contrast, needs

an accept or reject decision.

Thus, the environment of the project portfolio and the project portfolio itself are
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1. Introduction

constantly changing. This requires the selection of a new project portfolio at regular

intervals. Therefore, the corporation’s decision makers (DMs) meet periodically for so-

called portfolio reviews. Usually, portfolio reviews take place biannually or quarterly,

but emergency reviews may also occur. During a portfolio review, the corporation’s

mission, strategies, active projects, and new project proposals are evaluated so that

a new project portfolio can be selected.

For this purpose a DM can choose from various techniques that support the eval-

uation and selection process. Some of the earliest techniques of the 1960s and 1970s

were already based on mathematical optimization approaches to automatically select

the optimal project portfolio. However, mathematical approaches for project port-

folio selection largely failed to gain user acceptance. Reasons for their failure are

reported by Mathieu and Gibson (1993). Other techniques, such as financial models,

strategic approaches, scoring models, checklists, and the analytical hierarchy process

(AHP), have been developed and experienced more user acceptance. However, most

of those techniques address only some of the above issues. In contrast, a mathematical

approach is designable to address multiple issues simultaneously.

This thesis will pick up the mathematical approach again. The major obstacle for

the failure of mathematical approaches in PPM was the enormous amount of data

it required. However, since that failure almost every big corporation has begun us-

ing enterprise resource planning (ERP) software from such vendors as SAP, Oracle,

and others. Thus, the data required for a mathematical approach should be avail-

able, especially since vendors of ERP software also supply PPM products. In these

products, data are stored and visualized to give the DM immediate access to the in-

formation required for the selection decision. PPM software also supports the decision

techniques mentioned above. Furthermore, vendors of PPM software recently started

to implement a mathematical approach as an additional feature in their products—

e.g., HP Project and Portfolio Management: Portfolio Management Module. The

implementation of the mathematical approach into PPM software has several advan-

tages. First, available data about projects and resources are already connected with

the mathematical model. Second, the mathematical approach can be combined with

other features from the software like scoring models, presentation techniques, etc. Fi-

nally, it allows the integration of the mathematical model’s control into the existing

software, allowing DMs to feel comfortable with the mathematical approach from the

beginning.

2



1. Introduction

The aim of this thesis is to describe a mathematical decision-support framework

for PPM (MDSFPPM) that satisfies the needs of DMs and is easily embedded into

existing PPM software. Furthermore, we show how well current mathematical mod-

els actually meet the MDSFPPM. For the description of the MDSFPPM, Chapter 2

introduces the methods of PPM. This serves as basis for the formulation of numer-

ous requirements which must be met by the MDSFPPM. Chapter 3 then outlines

a mathematical approach for project portfolio selection. More precisely, the robust

portfolio modelling (RPM) approach from Liesiö et al. (2008) is described and a new

budget-dependent core index is introduced. Chapter 4 extends the RPM model so that

strategic buckets are supported. Chapter 5 explains the algorithm from Liesiö et al.

(2008) for the calculation of desirable portfolios, namely non-dominated portfolios. Fi-

nally, Chapter 6 discusses the applicability of the RPM model and the corresponding

algorithm by comparing it with the MDSFPPM.

3



Chapter 2

Project Portfolio Management

Background

The brief introduction of PPM in this chapter is intended to outline the background of

the Requirements for the MDSFPPM which are formulated in this chapter. Detailed

descriptions of PPM can be found in various textbooks, including Project Management

Institute (2006), Levine (2005) and Cooper et al. (2001b). A particularly valuable

work with respect to the description of the MDSFPPM is Archer and Ghasemzadeh

(1999a) in combination with Archer and Ghasemzadeh (2000).

Section 2.1 describes PPM and motivates its use. The split of the entire PPM

process into several phases is presented in Section 2.2 as well as a task summary of,

for our purposes, less significant phases. The remaining sections focus on the signif-

icant phases for the description of the MDSFPPM. Section 2.3 outlines the impact

of strategy on the selection process. Section 2.4 presents the critical factors of the

project selection phase itself, while Section 2.5 covers the DM’s need for interaction

features. Section 2.6 focuses on the effect of active projects on the project selection

phases. Finally, Section 2.7 summarizes the requirements for the MDSFPPM.

2.1 The Why and What of PPM

With growing competitive pressures in the global economy, effective PPM practices

is becoming increasingly critical to business corporations. All corporations, large and

small, must select and manage their investments wisely to reap the maximum benefit

from their investment decisions. To select and manage investments wisely means,
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2.1 The Why and What of PPM

in business terms, investing in the most promising projects and implementing them

prudently. A project is as a complex effort, usually less than three years in duration,

made up of interrelated tasks, performed by various organizations, with a well-defined

scope, time frame, and requirements on resources (Archibald 2003).

The difficulty is that there are usually much more projects available than can

be undertaken within resource constraints. If resources are unlimited, the decision

rule would be simple. Do every project whose impact on the portfolio is positive. In

reality, resources are limited, so decisions about resource distribution must be made.

This is already the first reason why we need PPM. In a business world where the

efficient use of resources is highly valued, allocating resources to low-value projects is

not advisable.

Another reason we need PPM is to identify the projects that are the tomorrow’s

new product winner. Only a project that will become tomorrow’s new product winner

can ensure high revenue, high market share, a desirable competitive position, cost

reduction, technical advantage and so on. Other specific reasons for the importance

of PPM, cited by managers in a survey of 205 firms, are set out in Table 2.1

Table 2.1: Key Reasons that PPM is vital

� To maximize return, maximize R&D productivity, and achieve financial goals.

� To maintain the competitive position of the business—to increase sales and
market share.

� To properly and efficiently allocate scare resources.

� To forge the link between project selection and business strategy. The portfolio
is the expression of strategy; it must support the strategy.

� To achieve focus—not doing too many projects for the limited resources available
and providing resources for the great projects.

� To achieve balance—the right balance between long- and short-term projects,
and high-risk and low-risk ones, consistent with the business’s objectives.

� To better communicate priorities within the organization vertically and horizon-
tally.

� To provide better objectives in project selection and weed out bad projects.

Source Cooper et al. (1999) and Cooper et al. (2001a).

Taken together, corporations practice PPM to better achieve their missions. No

matter how the mission of a corporation looks, it is only achieved if the entire project

5



2.1 The Why and What of PPM

portfolio as a whole, not only single projects, support it. A project portfolio is defined

as any subset of active projects and project proposals that are available for a corpo-

ration. Thus, DMs who are responsible for the selection of the project portfolio are

advised to identify the project portfolio that best suits the corporation’s mission.

During the selection of the best project portfolio, a DM has also to take into

account project-specific objectives that address the successful implementation of the

project. In the literature, these objectives are summarized as doing the project on

time, within resources, and on scope. Figure 2.1 illustrates these objectives as well as

the conflict between them.

Figure 2.1: Magic triangle of project objectives

A project within the project portfolio will only drive the corporation to its mission

if its own objectives about its implementation are met. For example, the scope of a

project is the project’s support for the corporation to meet its mission. Thus, any

change in the scope of a project endangers the achievement of the mission. Another

example of the interdependency between project objectives and the corporation’s mis-

sion is given by doing projects within resources. If a project’s resource consumption

exceeds the planned level, the implementation of the project itself and perhaps of

other projects is endangered. In the worst case, this leads to the termination of the

project and perhaps to the termination of other projects as well, which may lead to

the corporation not fulfilling its mission.

While the responsibility for project objectives belongs to the project management

(PM) group, the responsibility for the corporation and its mission belongs to the

operations management (OM) group. More generally, activities concerning the cor-

6



2.1 The Why and What of PPM

poration level are the responsibility of OM, activities concerning the project level are

the responsibility of PM. Table 2.2 outlines some activities for both groups.

Table 2.2: Specific roles of either side of the bridge

Operations Management Project Management

Strategies Schedule/time
Mission, objectives Project cost
Business performance Project performance
Stockholder satisfaction Stakeholder satisfaction
Project selection mix Scope/change control
Resource availability Resource utilization
Cash flow, income Cash usage

Source Levine (2005).

It is shown that in OM the mission is determined as well as strategies to achieve it.

Further, the OM group is responsible for the selection of the project portfolio as well

as for the available resources to implement projects within the project portfolio. In

short, in OM many effort goes into doing the right projects. In contrast, in PM many

effort goes into doing projects right. Since the only way for a successfully future of

a corporation is to do the right projects and to do them right, a strong connectivity

between PM and OM is fundamental. Now we are by the What of PPM. It is the

bridge between OM and PM. Hence, the basics of PPM aren’t new and consists of

already broad used techniques.

The importance of the bridge (PPM) is shown in a study undertaken by the

Standish Group. Their study shows that across industries, only 28 percent of IT

projects are successful on average and 23 percent fail outright. The remaining 49

percent are considered challenged based on the triple project objectives of being on

time, on resources, and on original scope (Figure 2.2).

Failed projects are those that are terminated before completion. Challenged

projects may be completed and operational, but they are either over resources, over

schedule, or delivered less than the originally specified functionality, or any combina-

tion of these triple project objectives (Levine 2005).

The violation of project objectives is characteristically for reasons of a poorly

practiced PPM. If the PPM is poorly practiced or not part of the business, the collab-

oration between OM and PM is weak. Thus, DMs in OM select the project portfolio

and determine the availability of resources without detailed knowledge about the de-
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2.2 Project Portfolio Selection Phases

Figure 2.2: Project Success Rates
Source: Standish Group International.

sign of projects and their resource needs. In contrast, the DMs of PM design projects

without detailed knowledge of the corporation’s mission and strategy.

2.2 Project Portfolio Selection Phases

The selection of the best project portfolio is a highly complex process. First, it requires

a panoply of preparation tasks. This includes the definition of project proposals and

the estimation of their key parameters (resource requirements, benefits, schedule plan,

etc.). Further preparation tasks are the evaluation of active projects as well as the

determination of the mission and strategies. Second, project portfolio selection is

a group decision process and requires perfect collaboration between different DM

groups such as PM and OM. Finally, in the project portfolio selection process, DMs

have to deal with multiple and often conflicting objectives, alignment of requirements

on resources and their availability, project interactions through direct dependencies

or resource competition, etc.

To simplify the project portfolio selection, it is suggested to decompose the selec-

tion process and also PPM into a series of discrete phases which progress from initial

broad strategy considerations toward the final solution (Archer and Ghasemzadeh

1999a). Figure 2.3 depicts a decomposition of PPM into several phases. It starts

with a set of project proposals, each of which must pass several screening, evaluation

and selection phases before it enters the development phase. During the development

phase, as each project reaches certain milestones it must pass the evaluation, screen-

ing, and selection phases again. Only projects that successfully pass these phases

repeatedly are successfully implemented.

8



2.2 Project Portfolio Selection Phases

Figure 2.3: Phases for Project Portfolio Management
Source Archer and Ghasemzadeh (1999a).

Proposals are the trigger of this process and can derive from different sources,

such as customers or employees. Prosperous corporations spend considerable effort

and resources receiving many new proposals. Thus, the assumption that the number

of available project proposals and active projects exceeds the number that can be

effectively executed in a reasonable time is appropriate.

The Prescreening phase ensures that all passing projects fulfill at least minimum

requirements, such as strategic fit and completeness. Essential requirements before

the project passes this phase should also include a feasibility analysis and estimates

of parameters needed to evaluate each project. Mandatory projects are also identified

at this point, since they will be included in the remainder of the portfolio selection

process. Mandatory projects are projects agreed upon for inclusion, including im-

provements to existing products no longer competitive, projects without which the

corporation could not function adequately, etc. For the MDSFPPM, this means that

mandatory projects must be scheduled subject to their time constraints. Further,

resources required by mandatory projects must be reserved for them.

Requirement 2.1 (Mandatory Projects). There must be functionality to flag projects

as mandatory.

9



2.2 Project Portfolio Selection Phases

In the Individual Project Analysis phase, a common parameter set is calculated

separately for every project. This parameter set serves as the decision base in the

next phases. The calculation is based on estimates available from feasibility studies

and from a database of previously completed projects. Common parameters are the

project’s benefits, budget and resource requirements over the project’s timeline, and

the project’s development schedule. See Figure 2.4.

Figure 2.4: Common Project Details

The estimation of these parameters is a difficult task even for highly experienced

DMs. The estimation of project parameters is nothing less than operating in a variable

environment where some conditions are beyond the direct control of DMs. A slight

delay, a change in an exchange rate, a failure of an experiment, an act of nature: Each

will change the values of project parameters so that the initial parameter prediction is

wildly inaccurate. Thus, information about project parameters must be considered as

incomplete, meaning that project parameters are estimated through lower and upper

bounds rather than through point estimates; see Figure 2.4. For instance, the net

present value (NPV) of a project is estimated to lie between 150 and 170 thousand

10



2.2 Project Portfolio Selection Phases

euros. As a consequence, the MDSFPPM must support project portfolio selection on

the basis of imprecise project parameters.

Requirement 2.2 (Imprecise project information). The estimation of project param-

eters shall be possible by using lower and upper bounds instead of point estimates.

Note, the concept of incomplete information also supports group-decision environ-

ments. For example, the estimation of a project’s NPV may differ among DMs since

they have different backgrounds (some DMs correspond to the OM group and some

DMs correspond to the PM group). The concept of incomplete information then al-

lows the system to account for the estimates of all DMs through corresponding lower

and upper bounds for the project’s NPV.

Requirement 2.2 is one of the most crucial requirements for the MDSFPPM. The

concept of incomplete information accounts for prediction errors in project parameters,

which are based on uncertainty. By allowing for imprecision, the portfolio-selection

procedure and also the finally selected project portfolio take prediction errors and

uncertainty into account. Cooper et al. (2001a) reported experiences of selection

techniques that do not take prediction errors into account (this includes conventional

mathematical approaches). It is stated that such selection techniques deliver the worst

performance and may be one of the main reasons for past failures of mathematical

methods in PPM.

In the Screening phase, project or interrelated families of projects are termi-

nated if they do not meet preset criteria such as estimated rate of return, except for

mandatory projects or those required to support other selected projects (Archer and

Ghasemzadeh 1999a). The phase is necessary to reduce the number of projects for

the following phases because the complexity of these phases increases exponentially

with the number of projects.

In the Optimal Portfolio Selection and Portfolio Adjustment phases and

during Project Portfolio Maintenance (shown in Figure 2.3 through the arrow

starting at the box Phase/Gate Evaluation and ending at the box Individual Project

Analysis), project proposals and active projects that have passed the foregoing screen-

ing and evaluation phases are considered simultaneously. These are the phases where

the MDSFPPM is used for project portfolio selection. Thus, these phases are the

main focus of the adaptation of the MDSFPPM to the needs of DMs. Therefore, we

describe these phases in Sections 2.4 to 2.6 explicitly.

11



2.3 Strategic Guidelines for the Project Portfolio Selection

Finally, Strategy Development is a preprocessing phase performed by the OM

group. As shown in Figure 2.3, Strategy development impacts the Optimal Portfolio

Selection phases as well as Portfolio Adjustment through high-level guidelines. These

guidelines are described in the next section.

The expectation of this phase approach is that proposals and projects should be

successively screened or culled out at each phase. Selecting only the best projects for

the project portfolio with a funneling approach. Once into development, most of the

poor projects have been weeded out, so the funnel begins to resemble a tunnel; see

Figure 2.5. The aim is to eliminate the need to terminate projects that are already

under development since a project’s resource requirements increase enormously at the

development phase.

Figure 2.5: A Funnel Leading to a Tunnel to Weed Out Poor Projects Early
Source Cooper and Edgett (2005).

2.3 Strategic Guidelines for the Project Portfolio

Selection

2.3.1 Strategy development

There are two main stages in the development of strategy. The first stage starts with

the strategic analysis to collect information and is divided into internal analysis and

external analysis. The internal analysis examines a corporation’s internal environ-

ment to establish the corporation’s strengths and weaknesses. The external analysis

examines the market and competitive environment in which the corporation operates.

The purpose of the external analysis is to establish opportunities and threats for the
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corporation. In the literature, this strategic analysis is often referred to as a SWOT

(Strengths, Weaknesses, Opportunities, Threats) analysis (see Bohlander and Snell

2009).

The information collected in the strategic analysis serves as the basis for the defini-

tion of the corporation’s mission. The mission just reflects the corporation’s targeted

future position, which can be characterized by such factors as size, market share,

market types, technologies, wealth, and product lines, among others. Usually, a cor-

poration’s mission is expressed by a set of quantifiable objectives. Examples of an

objective are become market leader in technology Y in the next two years and increase

market share to 50 percent in the next five years.

Once the corporation knows where to go in the future, a plan is established to fulfill

the mission in the second stage of the strategy development. Establishing such a plan

just means to establishing a strategy to fulfill the mission. Therefore, DMs start by

generating a list of strategies that are open to the corporation and that address the

mission. After this, each strategy is evaluated by the DMs using a number of criteria

so that finally the most appropriate strategic option is selected.

It is the projects that implement the strategy. Thus, strategic development must

take place before projects can be considered for a project portfolio (shown in Figure 2.3

by the oval form of the corresponding box). In the Individual Project Analysis phase,

DMs must then establish a project’s strategic fit. Later, in the Optimal Portfolio

Selection phase, the process selects the project portfolio that optimally supports the

strategy to ensure the mission is achieved. In the literature and in practice, this is

often referred to as the strategic alignment of the project portfolio and is a main goal

of PPM.

Figure 2.6 outlines the strategic development for a fictional corporation. It starts

with the collection of information and the definition of the corporation’s mission.

Next, for every objective, an appropriate strategy is established so that projects that

support the strategy can be identified. Note that a project is able to support multiple

strategies, as Figure 2.6 shows.

2.3.2 Strategic resources planning

Beside the strategy, DMs have to establish the resources that are available in pursuit

of the mission. Resources are the essential inputs for the normal functioning of the

organizational process: the inputs without which a corporation simply could not
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Figure 2.6: Strategic Linkage in Project Portfolio
Source Levine (2005); original Figure modified.

continue to exist or meet its mission since the implementation of any project is simply

not feasible without resources. Resources fall into three basic categories (see Campbell

et al. 2002):

1. Budget resources are money for capital investment and working capital. Sources

include shareholders, banks, and bond holders, among others.

2. Human resources are appropriately skilled employees to add value in operations

and to support those that add value (e.g., supporting employees in marketing,

accounting, personnel, etc.). Sources include the labor markets for the appro-

priate skill levels required by the organization.

3. Physical resources can be land, buildings (offices, warehouses, etc.), plants,

equipment, stock for production, and so on. Sources include real estate agents,

builders, and trade suppliers.
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In the strategic-development phase, DMs should identify the core competencies of

human resources the corporation needs to achieve its mission. Thus, human resources

are further classified into resource categories. A resource category is a collection of

one or more individual human resources with skills that are needed to support the

strategy. Most corporations have between 25 and 50 resource categories defined; see

Table 2.3. For every resource category, as well as for the budget, the available amount

Table 2.3: Example of Resource Capacities

Availability Availability Availability Availability
Capacity Group Total 1st Month 2nd Month 3rd Month

IT Design 264–301 hours 95–110 hours 86–97 hours 83–93 hours
IT Development 1278–1468 hours 450–530 hours 422–481 hours 406–447 hours
Fin. Analysis Eng. 280–315 hours 101 hours 86–97 hours 93–117 hours
Drawings 583–686 hours 203–240 hours 170–203 hours 210–343 hours
Industrial Eng. 870–1110 hours 311–401 hours 290–363 hours 269–336 hours
Production Process 2548–3050 hours 985–1187 hours 845–995 hours 718–868 hours
Production Mgmt. 120–153 hours 49–60 hours 33–44 hours 38–49 hours
Purchasing 245–282 hours 89–104 hours 85–97 hours 71–81 hours
Op. Analysis 223–253 hours 97–113 hours 81–88 hours 45–53 hours
Marketing 334–394 hours 120 hours 99–129 hours 115–145 hours
Sales 386–400 hours 148 hours 105 hours 133–147 hours

must be established. In many cases, the availability level is adjustable to some extent.

For instance, the available budget amount can be increased through outside capital

or a bank loan. In the opposite direction, a corporation has the opportunity to

save some budget along the planning horizon with what equates to a decrease of the

budget stock. The availability of human resources and their corresponding categories

is flexible through external personal or through recruiting arrangements.

So, the aim is to identify for each resource category, as well as for the budget, the

amount that will drive the corporation to its mission and that fits the available project

proposals and active projects. Since the determination of the optimal availability

amounts is associated with the selection of the optimal project portfolio, DMs here

confine themselves to formulate “loose” availability constraints for resource categories

and the budget; see Table 2.3. Based on these “loose” availability constraints, DMs of

the Optimal Portfolio Selection phase are encouraged to identify the best availability

amounts; see Section 2.4.1.
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2.3.3 Implementation of strategy using strategic buckets

The strategy is implemented by projects which in turn are implemented through the

consumption of resources. As a consequence, we can assume that the implementation

of strategy equates to spending resources on specific projects. The strategic buckets

approach operates exactly on this simple principle and is most popular among corpo-

rations. In Cooper (2003), it is reported that some 65 percent of corporations use it.

Consequently, strategic buckets are a basic feature in PPM software. Thus, it is vital

to design the MDSFPPM so that it supports the strategic-buckets approach.

The strategic-buckets approach starts with the classification of projects into dif-

ferent categories, the strategic buckets. The structure of strategic buckets is flexible

even into multilevel hierarchies and is frequently adjusted in practice. Common cat-

egories for strategic buckets are mission objectives, product lines, types of projects,

and technologies, among others. Figure 2.7 presents an example of a strategic bucket

structure with a multilevel hierarchy. Every project proposal, as well as every active

Figure 2.7: Strategic Buckets: Multilevel Structure of a Project Portfolio

project, is contained in exactly one strategic bucket, and, in the case of a multilevel

hierarchy, only strategic buckets at the lowest level contain projects. For instance, in

Figure 2.7, all project proposals and all active projects are contained in the shaded

buckets.
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The next step of the strategic-buckets approach is the allocation of resources among

strategic buckets. It begins with the top-level decision of how much resource funding

every top level bucket receives. For example, in Figure 2.7, a decision must be made

about how to split the resources between two buckets, North America and Europe.

Moving one level down, the same issue is faced again. Thus, the allocation of resources

across strategic buckets is continued until the lowest level is received. Every single split

decision must be aligned with the well-defined strategy so that the bucket structure

together with the resource allocation fits the corporation’s strategy. If each project is

only allowed to consume resources from the strategic bucket it belongs too, the final

selected project portfolio will implement the corporation’s strategy.

Requirement 2.3 (Strategic buckets and resources). There shall be a functionality

to define strategic buckets and to allocate the available resources among them. Each

project is stored in a unique strategic bucket and is only allowed to consume resources

from this strategic bucket.

In reality the resource allocation between buckets is often simplified since the

allocation of human resources may be too complex due to their classification into

resource categories. Since budget applies to every project, the simplification results

in a simple budget breakdown. Thus, only the overall budget stock is allocated across

strategic buckets while the availability of human resources for projects is independent

of strategic buckets. For corporations using the simplified strategic buckets approach

Requirement 2.3 is replaced by

Requirement 2.4 (Strategic buckets and budget). There shall be a functionality to

define strategic buckets and to allocate the available budget resources among them.

Each project is stored in a unique strategic bucket and is only allowed to consume

budget resources from this strategic bucket. The availability of human resources is

independent of the strategic buckets.

The allocation of (budget) resources among strategic buckets is a balancing act.

On the one hand, the allocation must ensure the implementation of the corporation’s

strategy. On the other hand, the (budget) resource allocation must not terminate

promising project proposals or active projects. As a consequence, the allocation of

(budget) resources across strategic buckets must not be rigid; rather, it must be ne-

gotiable to a certain degree. Since the information about promising project proposals
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and active projects is missed in the strategic-development phase, the MDSFPPM

should support the identification of the optimal (budget) resource allocation among

strategic buckets.

Requirement 2.5 (Strategic resource allocation). There shall be a functionality that

supports the allocation of (budget) resources across strategic buckets so that the imple-

mentation of strategy is ensured and promising project proposals and active projects

are taken into account.

In practice, the strategic bucket structure often equates to the corporation’s hi-

erarchy. Strategic buckets of the lowest level are then the smallest units for which a

project portfolio or rather a project subportfolio must be selected. The project port-

folio itself is obtained through the union of the project subportfolios. The selection of

project subportfolios does not necessarily take place at a single point in time. In some

cases DMs are just interested into the selection of project subportfolios of a single or

a few strategic buckets. For example, assume that in Figure 2.7, the DMs responsible

for Europe hold a portfolio review. They are interested in projects within the corre-

sponding branch in Figure 2.7. Thus, they select the strategic bucket Europe, which

includes the corresponding subbuckets, for the portfolio review. Strategic buckets and

projects within North America are not affected in this portfolio review.

Requirement 2.6 (Subportfolios). The MDSFPPM must support the selection of

project subportfolios based on strategic buckets.

Taken together, strategic buckets are constraints designed by upper management

for the project selection phase to guarantee that the final chosen project portfolio is

aligned with strategy.

2.4 Project Portfolio Selection

In the Project Portfolio Selection phase results from the foregoing phases are con-

sulted to identify the most valuable project portfolio for the corporation. The main

difference from the foregoing evaluation and screening phases is that at the project-

portfolio-selection phase all available project proposals and active projects are eval-

uated simultaneously (or all project proposals and active projects within strategic

buckets currently subject to the portfolio review). The simultaneous evaluation of all
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project proposals and active projects is responsible for the complexity of this phase.

It requires that the following factors be taken into account during the project portfolio

selection: implementation of the corporation’s strategy, the value of a project portfo-

lio, the balance of a project portfolio, the risk associated with a project portfolio, the

utilization of resources, scheduling of projects, and dependencies between projects.

The factors are interrelated and often conflict with each other, so attention must be

paid to each of them along the whole selection process. We examine the aims of every

factor in the subsections below. Since strategy implementation from the foregoing

section and utilization of resources are particularly closely interlinked, we will start

with resource utilization.

2.4.1 Resource planning

The realization of any project requires various resources. A project must be designed,

developed, tested, introduced into the market, maintained, and so on. Every single

stage requires special resources, and resource requirements usually reach their peaks

during the development stage. However, resources are limited for any corporation so

that the realization of all project proposals as well as active projects is not achievable

and projects must be selected. Thus, limited resources are the main reason that a

project portfolio must be selected and the PPM procedure is necessary.

Human Resources

For the project portfolio selection, DMs must be familiar with availability and skills

of their human resources. Thus, software for PPM is integrated into an ERP System

where information of every individual human resource is stored. An individual human

resource is either an internal employee or an external individual who is available to

the corporation. The information about an individual resource contains data about

his or her qualification, availability, working experiences, and so on.

In the same way, DMs must be familiar with human resource requirements of

available project proposals and active projects. Therefore, a project’s parameter set

contains an arbitrary number of parameters for the detailed description of its human

resource requirements. In practice such parameters are called roles. Similar to an

individual human resource, a role contains information about qualification criteria,

required capacities, required working experience, and so on. Since the information
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about required capacities is affected by estimation errors, Requirement 2.2 is relevant

for those parameters; see Figure 2.8.

Figure 2.8: Overview of a Common Role

In the context of project portfolio selection and human resource planning, the

information about time plays a key role. On the one hand, the information about

time is essential since the realization of a project corresponds to a time line and

resource requirements within this time line change in terms of qualification criteria

and capacity amounts. On the other hand, the information about time is essential

since the planning horizon for a project portfolio consists of a time interval (the time

between portfolio reviews) and availability of human resources fluctuates within the

planning horizon or can be adjusted through recruitment measures.

As a consequence, the information of roles and individual human resources must

contain appropriate time data. Therefore, a role is defined for a certain time frame.
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Figure 2.9: Project Portfolio Selection and Human Resource Planning. At the begin-
ning, the focus of DMs is on the level of resource categories and later switch to the
level of individual resources.

Either a total amount represents the required capacity for this time frame, or the

required capacity amount is further distributed into time periods so that for every

single time period a required amount can be defined; see Figure 2.8. The period

type as well as the capacity unit of a role is driven by the parent strategic bucket.

As a consequence, roles of projects with different parent strategic buckets may have

different period types as well as capacity units. For example, in strategic buckets

within North America, the period type week and the capacity unit hour are used

while in strategic buckets within Europe the period type month and the capacity unit

day are used.

In the description of an individual human resource, availability is denoted in hours

per business day. This description allows the DM to configure the availability of an

individual human resource into the time-period type and capacity unit of any role.

The information about human resources and about active projects’ and project

proposals’ human resources requirements serves as a foundation for human resource

planning. The process of human resource planning affects the strategic-development

phase, the optimal-portfolio-selection phase, and the implementation of the selected

project portfolio; see Figure 2.9. The process starts in the strategic-development phase

where resource categories are identified and the information about individual resources

is rolled up to the resource-category level so that “loose” availability constraints for

resource categories can be determined; see Section 2.3.2.
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The DM’s goal in the optimal-portfolio-selection phase is to identify the most ben-

eficial project portfolio with respect to resource guidelines of the strategy-development

phase and qualification criteria. Therefore, DMs focus on a few resource categories

which more than any others determine how many projects the corporation can imple-

ment (Kendall and Rollins 2003). It is assumed that those resource categories contain

the most valuable human resources and if the project portfolio’s human resource

requirements with respect to those resource categories are aligned with their avail-

abilities, the entire human resource requirements of the project portfolio are aligned

with the entire availability of human resources. Thus, the challenge for DMs is to

identify the most beneficial project portfolio for which the following conditions hold.

� total human resource requirements are aligned with “loose” total availability

guidelines

� period human resource requirements are aligned with “loose” period availability

guidelines

� human resource allocation across strategic buckets is satisfied

In other words, in the optimal-portfolio-selection phase, DMs are challenged to identify

the availability level of resource categories with the best ratio between benefit and

requirements from the project portfolio that is within availability constraints.

Requirement 2.7 (Human resource planning). There shall be a functionality to sup-

port the identification of the most beneficial and allowed human resource availability

level, based on multiple resource categories. This functionality must support time-

applied resource requirements and availability based on time periods and capacity units

that may differ between strategic buckets.

Note, the applicability of the condition about resource allocation among strategic

buckets depends on the corporation.

The reason for the detour across resource categories for the alignment of resource

availability and the project portfolio’s resource requirements is the long planning hori-

zon of the project portfolio; the planning horizon of the project portfolio is too long to

make plans for individual human resources (Levine 2009). For instance, an individual

human resource can resign, become ill, or worse. However, the project portfolio must

be robust against unpredictable events affecting individual human resources. The ap-

proach via resource categories provides this robustness and simultaneously considers

qualification criteria.
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The last step of human resource planning refers to the implementation of the

selected project portfolio. The aim here is to staff roles with the best-fitting individual

human resource and therefore considers a short-term planning horizon, in contrast to

the project-portfolio-selection planning horizon. For instance, the staffing of roles with

individual human resources may be adjusted daily or weekly while the project portfolio

itself may be selected biannually or annually. Although the first two stages of human

resource planning ensure that sufficient human resources are available, usually projects

compete for some individual human resources. This requires a compromise (postpone

a project until the resource becomes available, find the best substitute resource, etc.).

The complexity of this step motivates the use of mathematical features. However,

since the implementation of the selected project portfolio occurs after the phase and

the planning horizon of role staffing is different from the planning horizon of the

portfolio, the MDSFPPM should not directly support DMs in this issue. Rather, it

should allow the adoption of a mathematical optimizer that supports the staffing of

roles with individual human resources (for such mathematical optimizers, see Gutjahr

et al. 2008, Tereso et al. 2001). Thus, DMs can, in a first step, use the MDSFPPM to

select the optimal project portfolio with a planning horizon of, for instance, one year.

In the second step, they use the mathematical optimizer for role staffing, for instance,

at the begin of every business week to adjust the role staffing to unexpected events of

human resources (sick leave, increasing resource requirement, etc.) with the selected

project portfolio as input.

Requirement 2.8 (Role staffing). The MDSFPPM must allow for the adoption of a

mathematical optimizer for role staffing with individual human resources.

Budget resources

As with human resources, DMs must be familiar with budget availability and budget

requirements of project proposals and active projects—i.e., the costs of project pro-

posals and active projects. In contrast to human resource planning, however, budget

planning fully encapsulates the information about costs and availability of budget

since budget resources are not distinguished in terms of skills. As a consequence, the

parameter set of a project contains usual parameters, instead of complex roles, to

describe its costs. Common examples for cost parameters are launch costs, develop-

ment costs, personal costs, overhead, and so on. These parameters are easy used to

calculate the project’s total cost. Attention must be paid, however, because an exact
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estimation of cost parameters is not possible so that Requirement 2.2 must be taken

into account; compare with Figure 2.4.

The available budget may be decomposed into multiple sources: credits, provisions,

financial revenues of implemented projects, and so on. Some of those sources are

time sensitive. As a consequence, cost parameters of a project are distributed into

time periods so that, as with roles, they are adaptable to the availability of budget

resources. The period type of cost parameters as well as the currency are driven by the

project’s parent strategic bucket. Summarizing, the information about budget and

costs differs from the information about human resources in terms of qualifications.

The information about available budget and costs is used for the budget planning

process. Similar to the human resource planning process, the budget planning pro-

cess affects the optimal-portfolio-selection and strategy-development phases and the

implementation of the selected project portfolio; see Figure 2.10.

Figure 2.10: Project Portfolio Selection and Budget Planning

Budget planning starts at the strategic-development phase where “loose” avail-

ability constraints for the budget are determined; compare with Section 2.3.2.

In the optimal-portfolio-selection phase, one aim is to identify the most beneficial

project portfolio such that the following conditions apply.

� total costs do not exceed “loose” budget constraints

� period costs do not exceed “loose” period budget constraints
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� budget allocation across strategic buckets is satisfied

In other words, DMs of the optimal-portfolio-selection phase are challenged to identify

the budget level with the best cost–benefit ratio that is within the guidelines from

the strategic-development phase. Therefore, the MDSFPPM must support DMs in

identifying the most beneficial budget level for which the conditions above hold.

Requirement 2.9 (Budget resource planning). There shall be a cost–benefit analysis

functionality to support the identification of the most beneficial budget level. This

cost–benefit analysis must support time applied costs and budget availability based on

time periods and currencies which may differ between strategic buckets.

For the implementation of the selected project portfolio, it is necessary to fund

the selected projects with budgets according their costs. Since the first two steps of

budget planning ensure that sufficient budget is available to fund all selected projects,

the funding step should go smoothly as long as projects are within their planned costs.

2.4.2 The value of a project portfolio

The successful implementation of any project brings the corporation closer to its

mission. For example, it may drive the corporation closer to high financial revenues,

to a higher market share, or to more technical power. In short, it will support the

corporation’s successful implementation of its strategy. To estimate how well a project

drives the corporation to its mission, it is necessary to establish a set of evaluation

criteria. Evaluation criteria fall into three categories (Kleinmuntz and Kleinmuntz

1999):

1. Financial criteria

The most common financial criteria include net present value, expected com-

mercial value (ECV), productivity index (PI), and return on investment.

2. Strategic criteria

Strategic buckets are only one technique to implement the corporation’s strat-

egy. Another technique is to estimate a project’s strategic alignment so that

a project portfolio can be identified that implements the corporation’s strat-

egy. The approach is combinable with the strategic-buckets approach and their

combination is a common method in practice.
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Figure 2.11: Scoring Model to Evaluate a Project’s Strategic Fit
Source Cooper et al. (2001b).

3. Qualitative criteria

Common qualitative criteria include customer satisfactory, technical advantages,

and competitiveness.

In the Individual Project Analysis phase, every project must be rated with respect to

every evaluation criterion. Thus, for every project a set of values is estimated that

describes how well the project drives the corporation to its mission if successfully im-

plemented. In praxis, these values are often referred to as key performance indicators

(KPIs); see Figure 2.4.

In Cooper et al. (2001b), it is reported that it is common to use between two and

five evaluation criteria with different priorities. It is suggested that using more than

five evaluation criteria can cause the selection process to become confusing.

An important fact for the adoption of the MDSFPPM is that evaluation criteria

may vary between strategic buckets. Projects within different strategic buckets are

designed for different purposes so that it is not appropriate to compare them on the

same evaluation criteria. Consequently, a strategic bucket has its own set of evaluation

criteria and for every project a set of values corresponding to the evaluation criteria

(KPIs) of its strategic bucket must be estimated.

A common tool to estimate a project’s value for a certain evaluation criterion is

the scoring model. In a scoring model a list of attributes is created and it is assumed

that each attribute exhibits a correlation with at least one evaluation criterion. To

estimate a project’s value on this evaluation criterion, a DM just has to rate the

project on every attribute. The rating is then used to calculate the project’s value for

the corresponding evaluation criterion. Figure 2.11 outlines a simple scoring model

for the evaluation criterion Strategic Fit. The attributes are Congruence and Impact

and the scoring scale allows scores from 1 through 10.
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Although scoring models may help improve the quality of value estimates, they do

not replace Requirement 2.2. Whether or not a scoring model is used, the environment

of a corporation as well as the implementation of a project remains uncertain. To take

the uncertainty into account in the estimation of project values, one could create two

scoring models for every evaluation criterion. The first scoring model is then used to

calculate a project’s minimum performance. In contrast, the second scoring model is

used to calculate a project’s maximum performance.

The value of a project portfolio with respect to a certain evaluation criterion is

described by the projects it contains and their values associated with the evaluation

criterion. Thus, it is assumed that a project portfolio with the highest values at all

evaluation criteria drives the corporation most rapidly and most safely to its mission.

However, the identification of the project portfolio with the highest values at all

evaluation criteria is a complex task. First, evaluation criteria conflict with each other:

A high value at evaluation criterion X may include a low value at evaluation criterion

Y . Second, the evaluation criteria may have different priorities. Finally, to achieve the

corporation’s mission it may be necessary to ensure a minimum performance of the

project portfolio at every evaluation criterion (Edwards et al. 2007). As a consequence,

the process seeks the project portfolio with the best trade-off between the evaluation

criteria values with respect to their priorities.

Requirement 2.10 (Trade-off between portfolio values). There shall be a functional-

ity to support the identification of the project portfolio with the best trade-off between

evaluation criteria values based on different priorities. Additionally, the functionality

must ensure minimum performance restrictions. The MDSFPPM must support dif-

ferent sets of evaluation criteria between strategic buckets and it must be adaptable to

multiple scoring models.

2.4.3 Seeking the right balance for the project portfolio.

As with an investment portfolio, a project portfolio must be balanced. The concept

of balance in the project portfolio simply means that the overall portfolio should re-

flect some level of proportionality across certain dimensions. For instance, DMs may

prefer a project portfolio that balances the overall risk. Typically, a high risk project

will also have the greatest value and also the greatest potential to bring the corpo-

ration closer to its mission. A balanced portfolio might include a small investment
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in high-risk, high-value projects as well as investment in low-risk projects with more

modest expected values. A mixture of projects with different risks will allow a corpo-

ration to achieve acceptable results while taking on some risk in large, unstructured,

or relatively high-technology projects (Archer and Ghasemzadeh 1999b). Common

dimensions where balance is sought are

� Risk balance

� Strategic balance

� Product balance

� Market balance

� Geographic balance

� Time balance

� Technology balance

The desired proportionality for any dimension is driven by the corporation’s mission.

For instance, if a corporation’s mission includes becoming market leader in Technology

Y , the proportion for high-risk projects is large since technology projects are usually

subject to higher risk. In contrast, if the mission for a corporation is driven by

cost reduction, the proportion of high-risk projects is low since cost saving projects

are generally not affected by much risk. Since project portfolio balancing is driven

by the corporation’s mission, it is related with strategy alignment. As a matter of

fact, the strategic buckets approach benefits from the implementation of balance. To

realize this, note that dimensions for which a balance is sought and categories for

strategic buckets (see Section 2.3.3) overlap. The allocation of (budget) resources

across strategic buckets ensures that the selected project portfolio is balanced as

desired.

However, there may be some dimensions for which a certain balance is sought,

but which are not subject to the strategic-buckets approach. For those dimensions,

Archer and Ghasemzadeh (1999b) suggested enforcing a budget allocation between

projects, independent of strategic buckets, so that the desired balance is achieved. For

instance, DMs could agree that the budget amount consumed by high-risk projects

must not exceed 30 percent of the total budget. Another approach to implement a

desired balance for a certain dimension is to specify a relationship between projects.
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For instance, the number of low-risk projects should be at least twice the number of

high-risk projects.

Requirement 2.11 (Portfolio balancing). There should be a functionality that sup-

ports the balancing of the project portfolio for both approaches: project numbers and

budget allocation across projects.

Balancing a project portfolio as outlined above is not popular in reality. The for-

mulation of trade-offs in advance is too abstract. Instead, project-portfolio balancing

is done by adjustments once a first proposal for a project portfolio is available. The

project portfolio proposal allows DMs to use diagrams and charts for the visualization

of the proposal’s balance, allowing DMs to identify necessary adjustment steps. We

revisit this topic again in Section 2.5.

2.4.4 The impact of risk

Probably every project is affected by risk. On the one hand, risk is driven by uncer-

tainties in the implementation of a project. The successful implementation of a project

depends on many tasks whose outcomes are not predictable since they are influenced

by factors beyond the control of DMs. For instance, technical issues can occur, an

experiment can fail, or some necessary core resources can become unavailable. Thus,

in practice it is common to estimate the probability of the successful implementation

of a project in the individual-project-analysis phase. This probability is a standard

parameter of a project, so it is supported by PPM software and usually is referred to

as the probability of technical success.

On the other hand, risk is driven by uncertainties in the environment in which the

corporation operates. Projects are designed to drive the corporation to its mission.

The mission of a corporation is, among other things, based on the corporation’s oppor-

tunities (see Section 2.3). However, the opportunities may change while the project

is under construction so that its promised value does not manifest. Thus, although a

project may be successfully implemented, it still may not drive the corporation to its

mission since the position of the mission has changed.

For instance, look at a corporation producing cars which designed a project to

create a new car for its prestige collection since the corporation’s mission addresses

financiers as customers. However, an unexpected banking crises occurs so that the
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demand for such cars decreases. Additionally, the government launches a cash-for-

clunkers initiative to support the demand on economic, environmentally friendly cars.

As a consequence, the demand on cars from the prestige collection disappears entirely

so that the corporation must shift its mission towards economical cars to survive.

Even if the project to create a new car for its prestige collection was implemented

successfully, it no longer has any significant value for the corporation.

In practice it is common to estimate the probability that a project supports the

corporation’s mission in the individual-project-analysis phase. This probability is also

a standard project parameter supported by PPM software, where it is referred to as

the probability of commercial success.

Since the most valuable projects are usually affected with considerable risk, a

corporation may not achieve its mission with only low-risk projects in its project

portfolio. Hence, risk cannot and should not be avoided in most project portfolios.

Rather, it should be accepted and managed honestly so that the corporation drives

to its mission and drives safely (Levine 2005). Accepting and managing risk honestly

consist of three steps:

1. Define the risk of a project

2. Consider risk in the project portfolio selection

3. Monitor and maintain the project portfolio

The first step, define the risk of a project, just means that risk must influence

the description of a project. Since a project is described by a set of parameters,

this set must reflect the project’s risk. Therefore, the parameter set usually contains

some explicit risk parameters such as probability technical success and probability

commercial success. Apart from explicit risk parameters, a project’s risk is described

by fluctuation ranges for its parameters. Recall, project parameters are estimated

using upper and lower bounds based on a project’s risk level; see Requirement 2.2.

Thus, a high fluctuation range in a project’s parameters is associated with high risk

while a small fluctuation range in a project’s parameters is associated with low risk.

In the second step, consider risk in the project portfolio selection, explicit risk

parameters are used to select a risk-balanced project portfolio since they enable the

discrimination between high-risk and low-risk projects. Thus, explicit risk parame-

ters are the basis for the formulation of proportional ratios between project groups
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of different risk levels; see Requirement 2.11. In the same way they are used to visu-

alize projects risk levels in diagrams which are used for project portfolio balancing;

see Section 2.5. Fluctuation ranges of parameters are utilized to simulate different

scenarios about project outcomes. For instance, if the evaluation values for a project

are set to its lower bounds and the costs are set to its upper bounds, a DM can sim-

ulate the worst case for this project and its impact on the entire project portfolio. In

general, DMs are interested in various simulations characterized by specific scenarios

of parameters for some or all the projects. Through the extensive analysis of such

scenarios, DMs learn where the risks lie and where the opportunities are so that the

best project portfolio can be identified.

Requirement 2.12 (Risk analysis). The MDSFPPM shall provide a functionality

which calculates simulations of a project portfolio based on a specific scenario of project

parameters.

The last step, accepting and managing risk, monitors active projects as well as the

corporation’s environment with respect to critical risk indicators. Thus, this step is

not part of the optimal portfolio selection; rather, it is a part of the maintenance of

the project portfolio; see Section 2.6.

Finally we will remark that the collection of such project risk parameters as prob-

ability of technical success into a project portfolio risk parameter is inappropriate

since such a parameter does not have sufficient expressiveness (Levine 2006). Thus, a

functionality to minimize a certain project portfolio risk parameter in the MDSFPPM

is superfluous.

2.4.5 Project scheduling

Section 2.4.1 about resource planning is the foundation for project scheduling. There,

we have established that the implementation of a project corresponds to a time line

and the project’s resource requirements along this time line vary in terms of qualifica-

tions and capacity amounts. Further, we have seen that the availability of resources

may vary along the portfolio’s planning horizon. Thus, how many projects can be

selected into the project portfolio, and therefore are implemented, correlates with the

schedules of those resources. Since the schedule requirements of projects may be loose

with respect to the start date as well as task dates, DMs in the optimal-portfolio-

selection phase are challenged to schedule projects so that resources are optimally
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utilized, optimizing the portfolio with respect to the corporation’s mission.

We start our investigation with the schedule of a project. The schedule of a project

is a collection of tasks and dependencies between them. Based on these dependencies

and on the project’s delivery date start and end dates for every task can be calculated;

see Figure 2.12. From the structure of tasks and their resource requirements, the time-

dependent resource requirements of a project are calculated. The structure of tasks is

also the basis for the identification of the critical path. The critical path of a project

is the sequence of tasks that takes the longest time to complete. In other words, the

critical path determines the length of a project and is in practice often referred to

as the time to market. Every task which corresponds to the critical path cannot be

delayed without the length of the project increasing. Thus, if the start date of a project

is chosen in a way which does not allow any delays, start and end dates of a critical

path task are rigid to ensure that the project is delivered on time. On-time delivery of

projects is a main component of the corporation’s path to its mission since it is closely

linked with competitive advantages and market share (see Pfähler and Wiese 2008).

In contrast to critical path tasks, start and end dates of noncritical-path tasks may be

flexible to a certain degree which is recorded through earliest start date, latest start

date, earliest finish date, and latest finish date. The flexibility of noncritical-path

tasks can be used to optimize resource utilization through implementing them when

sufficient resources are available.

The project’s start date is not necessarily rigid, rather it is constrained by its

delivery date on one hand and by an earliest project start date on the other hand. The

project’s earliest start date results from preliminary work for the project which must

be completed before the project can start (e.g., dependency on the result of another

project). The delivery date of a project together with its critical path indicate the

latest possible start date of a project so that it is delivered on time. Thus, the start

date of a project can be chosen from a window in time. As a consequence, DMs in

the optimal-portfolio-selection phase are challenged to schedule project starts so that

resources are optimally utilized. Thereby, attention must be paid that the project

start date sets the general conditions for task schedules, even for critical path tasks.

Requirement 2.13 (Project scheduling). The MDSFPPM must support project sched-

uling based on the critical path so that projects are delivered on time and resources

are optimally utilized. For the utilization of resources, flexibilities of noncritical-path

tasks must be taken into account.
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Task
A1
A1A
A1B
A1C
A1D
A1E
A2
A2A
A2B
A2C
A2D
A2E
A2F
A3
A4
A4A
A4B
A5
A5A
A5B

C
C
C
C
C
C

CF
CF
CF
CF
CF
CF
CF

CF B
CF B
CF F
CF F

C
CF P
CF E

Gen C
Gen C
Gen C
Gen C
Gen C
Gen C
Found
Found
Found
Found
Found
Found
Found
Plumb
Plumb
Frame
Frame
Gen C
Plumb
Electric

Plan Development
Plan Selection
Plan Redraw with Modifications
Plumbing Plans
Electrical Plans
Obtain Permits
Foundation
Clear Site
Excavation
Pour Footers
Concrete Walls
Block Walls
Pour Concrete Slabs
In-Slab Rough Plumbing
Build Shell
Frame
Roof House
Rough Installs
Rough Plumbing
Rough Electrical

07/06/05–07/16/05
07/16/05–08/26/05
07/16/05–07/28/05
07/28/05–08/02/05
08/02/05–08/04/05
08/04/05–08/11/05
08/11/05–08/15/05
08/19/05–08/26/05
08/15/05–08/19/05
08/26/05–09/17/05
08/26/05–09/10/05
09/10/05–09/17/05
09/10/05–09/30/05
09/10/05–09/17/05
09/10/05–09/20/05

Description ORGNPerson Jun 05 Jul 05 Aug 05 Sep 05

Figure 2.12: Gantt Chart for the Project Built my House. Tasks within the critical
path are outlined in black. Tasks in grey can by delayed until the bracket without
endangering the delivery date of my dream house.

The scheduling of project tasks is already covered in great detail and is the purview

of the PM department. Therefore, in the optimal-portfolio-selection phase, DMs may

content themselves with scheduling the project start dates. When the implementation

of the selected project portfolio is in progress, the flexibility of noncritical-path tasks

can be used for the optimal staffing of roles with individual resources and therefore

corresponds to the competencies of the mathematical optimizer for role staffing; see

Section 2.4.1.

2.4.6 Project dependencies

Projects cannot always be considered in isolation. There are many possible depen-

dencies among projects that require the effects of one project on another to be taken

into account in the project portfolio selection procedure. We distinguish between

two categories of project dependencies. The first category is about technical project

dependencies, while the second category is about economic project interactions.

Technical project dependencies indicate that the implementation of a project, the

so called successor project, is dependent on the implementation of another project,

the so called predecessor project. In general, a successor project can have multiple
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predecessor projects and, conversely, a single project may be predecessor for multiple

successor projects. Technical project dependencies are supported by PPM software

where the following relations are allowed.

� The finish-to-start dependency states that the predecessor project must be com-

plete before the successor project can begin. For example, the predecessor

project represents the collection of data and the successor project represents

statistical analysis of this data.

� The start-to-start dependency states that the successor project may begin once

the predecessor project has begun. For example, as soon as the collection of data

has started, one could start entering data into the statistical analysis program.

� The start-to-finish dependency states that the predecessor project cannot be

finished sooner than the successor project has started. For example, suppose a

corporation has built a new information system. It does not want to eliminate

the legacy system until the new system is operational. When the new system

(the successor project) starts to work the old system (the predecessor project)

can be disconnected.

� The finish-to-finish dependency states that the successor project cannot finish

sooner than the predecessor project. For example, refer back to our data collec-

tion and analysis example. Data analysis (successor project) cannot finish until

data collection (predecessor project) has finished.

Requirement 2.14 (Technical project dependencies). The MDSFPPM must support

technical project dependencies based on various timing relations.

An economic project interaction addresses the interaction of projects with respect

to their support of the corporation’s mission. The support of the corporation’s mission

from project A may be different depending on whether project B is implemented or

not, and vise versa. An economic project dependency does not necessarily consist of

just two projects, rather it consists of a project family. According to which projects

out of the family are implemented, the effects of the economic project interaction

occur. The effects of an economic project interaction on the projects’ support of the

corporation’s mission can be synergistic, cannibalistic, or mutually exclusive. (Since

synergy and cannibalization effects are hard to predict, Requirement 2.2 is also valid

for parameters that describe those effects.)
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An economic project interaction with a synergy effect contains additional bene-

fit, or resource savings, or a combination of them. For an example, assume that the

implementation of four projects is based on the development of a certain technology.

As soon as one project out of this four is selected, the technology must be developed.

If DMs chose a second project out of these four for the project portfolio, they have

the choice to save development resources, take the resources to develop a better tech-

nology, or a combination of these choices. The same is true for the remaining two

projects.

An economic project interaction with a cannibalization effect contains benefit re-

duction, additional resource requirements, or a combination of these effects. For

example, assume two projects are designed for the same market using different tech-

nologies. If both projects are implemented, they may compete for the same customers

so that the benefit of the projects is reduced. Further, the resource requirements may

increase due to maintenance work for different technology types.

A special case of economic project interaction is given by mutually exclusive

projects. In the situation of mutually exclusive projects, the choice must be made

between two or more projects, each vying to meet same mission need. For instance,

assume that several different versions of a project are available. The most attractive

version should be selected, while the others should be rejected (Heerkens 2006).

Requirement 2.15 (Economical project interaction). The MDSFPPM must support

economic project interactions with synergy, cannibalization, and mutually exclusive

project effects. An economic project interaction can exists among an arbitrary number

of projects.

In reality some projects are so closely related that only their concurrent imple-

mentation is beneficial for a corporation. This may be due to technical dependencies

or synergy effects of this projects. Such a project family must managed in a coor-

dinated and logistically sound way called program management. Thus, a program

is a collection of projects with a common vision to support the corporation on its

way to the mission. Although projects within a program are strongly dependent, the

final composition of a program must be established by DMs at the optimal-portfolio-

selection phase. This is because more projects are usually submitted for a program

than are necessary for its implementation, or at least different versions of projects

within the program are available where choices must be made. Taken together, DMs
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are challenged to make a decision about whether the program is accepted or rejected,

and, for the case that the program is accepted, they must further establish the final

composition of the program. Program management is a standard feature in PPM

software where a program is referred to as an initiative. Therefore, it is essential that

the MDSFPPM support program management.

Requirement 2.16 (Program selection and composition). The MDSFPPM must

support the selection decision of programs (initiatives) as well as the decision about

program composition.

2.5 Portfolio Adjustment

2.5.1 Interaction features for decision makers

The initial project portfolio calculated in the optimal-portfolio-selection phase is prob-

ably not the final portfolio. Rather it is the root for an interactive adjustment process

that leads to the final portfolio. An adjustment process is necessary for several rea-

sons. First, some information is difficult to anticipate and to include in a mathematical

model, so its solution will require some modifications (see Archer and Ghasemzadeh

1999a). Second, for user acceptance, it is essential to include a controlling mechanism

where DMs can include their knowledge and experiences in the final solution (Baker

and Freeland 1975). Finally, with the initial project portfolio, new information that

was not available in advance may come to light and require some adjustments.

The first step for adjustments is to analyze the initial project portfolio to identify

its weaknesses. Therefore, PPM software includes a set of charts and tables in a

reporting cockpit functionality. In the reporting cockpit, DMs can start their analysis

at the portfolio level to drill down into the strategic bucket level or project level as

well as into any collection of projects.

In the second step, DMs can set adjustment actions to eliminate weaknesses of

the initial portfolio. The adjustment actions must be controlled via the correspond-

ing charts and tables to promote the identification of desirable project portfolios.

Common adjustment actions are addition and deletion of projects, shift of projects

between strategic buckets, adjustment of the trade-off between evaluation criteria,

changes in resource/budget availability levels, changes in the resource/budget alloca-

tion among strategic buckets, definition of project dependencies (e.g., identification of
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Figure 2.13: Risk–Reward Bubble Diagram with Circle Size as Annual Resource Needs
Source Cooper (2003).

extra mutually exclusive projects), rescheduling of projects, and portfolio balancing.

In the final step, the MDSFPPM is required to recalculate the new “optimal”

project portfolio based on the adjustment actions. It is crucial that the recalculation

be done in real time to facilitate an interactive adjustment process.

Requirement 2.17 (Portfolio adjustment features). The MDSFPPM must support

an interactive adjustment process. The controlling of the adjustment process must be

feasible via charts and tables from the reporting cockpit of the corresponding PPM

software to give DMs immediate feedback on the consequences of their adjustments.

For the sake of completeness, we must mention that achieving some form of balance

is a significant part of the adjustment process because portfolio balancing is done by

interactive charts, which are an information display rather than a decision model per

se; compare with Section 2.4.3. Figure 2.13 shows a representative bubble diagram,

one of the most frequently used charts. A bubble diagram shows projects on a two-

dimensional X–Y plot, for instance NPV versus probability technical success as in
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Figure 2.13. Due to the analysis of bubble diagrams, projects may be added or

deleted from the project portfolio. The MDSFPPM must then recalculate the new

“optimal” project portfolio to show DMs the impact of the adjustment actions with

regard to any parameters of interest (e.g., impact on budget/resource requirements

via tables and bar charts, or project schedules via Gantt charts).

2.5.2 What-if scenarios

What-if scenarios are very much a learning tool for DMs and therefore are a part of

the third reason for portfolio adjustment. The what-if scenario continues the idea of

new information in the initial project portfolio: Various project portfolio scenarios are

created and recorded to give the DM as much information as possible and to compare

alternative scenarios against each other. Scenarios are simply obtained through ad-

justments like those outlined above and the recalculation of the new “optimal” project

portfolio. In addition to the adjustment steps from above, DMs are also interested in

scenarios characterized by changes to project parameters.

The aim of all this analysis and comparing is to learn about opportunities and

risks facing the corporation; see Section 2.4.4. For learning purposes, it is especially

important to control the adjustments via corresponding interactive charts and tables

to immediately receive feedback about the changes. This is the main drawback of

current what-if scenarios in PPM software. Although PPM software vendors offer

the what-if-scenario feature, DMs do not receive a recalculated project portfolio or

anything else as feedback let alone interactive charts and tables. In present what-if-

scenario features, it is only possible to copy the current project portfolio into a virtual

offline scenario to make changes without modifying the real data. In other words,

current what-if-scenario features are useless until they are connected to a reasonable

mathematical model. Due to Requirements 2.12 and 2.17, the MDSFPPM provides

an excellent combination to present what-if scenarios since it addresses exactly this

drawback.

2.6 Maintaining the Project Portfolio

As mentioned in the foregoing chapter, PPM is a highly dynamic process due to

the environment of the project portfolio as well as its implementation. To address
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this dynamic, DMs must maintain the project portfolio with respect to both of its

sources. Maintaining the project portfolio with respect to the dynamic environment

means that DMs must periodically update or confirm the corporation’s mission and, if

necessary, adjust the project portfolio. Maintaining the project portfolio with respect

to its implementation means evaluating the status and performance of projects.

2.6.1 The stage–gate process: Monitor projects’ performance

The dynamic with respect to the project portfolio implementation is given by un-

certainties in the development of projects. Thus, maintaining the project portfolio

with respect to its implementation means monitoring project development and ad-

justing the project portfolio if some projects have performance deficits; compare with

Section 2.4.4. The most popular approach for performance monitoring of individual

projects is the stage–gate process, which is supported by common PPM software. In

the stage–gate process, the development of projects is decomposed into an arbitrary

number of development phases; see Figure 2.14. During any development phase,

project parameters are updated to, for example, indicate the remaining human re-

source requirements, schedule dates, and so on. (Attention should be paid that with

each successive development phase the uncertainty in parameter estimates decreases

so that their uncertainty intervals are smaller.) At the end of every development

phase a gate is placed where the updated parameters are used to evaluate whether

the project is progressing as assumed.

The stage–gate process is used to observe the developmental progress of individual

projects. Based on the received information, a confirm, on hold, or terminate decision

must be made. Although in some cases the decision about a project’s future may

be manageably isolated—i.e., just on the project’s parameters—its contribution to

the entire portfolio should be part of the decision as well. As a consequence, it is

common to merge portfolio reviews and the gate decisions of projects together. Thus,

the selection of new project proposals and the reevaluation of active projects must

work in harmony: The selection of a project portfolio consists of the selection of new

project proposals and the repeated reconfirmation of active projects (see the arrow

leading from the Phase/Gate Evaluation box to the Individual Project Analysis box

in Figure 2.3).

It is often assumed that projects at an advanced development stage have higher

priority than new project proposals. However, the priority of a project should be
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Figure 2.14: Stage–Gate Model with a Discovery Stage
Source (Cooper et al. 2002).

calculated independently of its development stage. An appropriate approach is given

by the concept of sunk costs. Sunk costs are unrecoverable past expenditures and

should not be taken into account in the decision of whether an active project is

confirmed or terminated (see Levine 2005).

In common PPM software, the stage–gate process provides information about

the development progress of individual projects. Nevertheless, it does not provide

any information on how the development progress of individual projects impacts the

entire project portfolio since the software lacks a mathematical approach. Further, the

software does not inform DMs how their potential project decisions (confirm, on hold,

or terminate) affect the portfolio. Thus, the MDSFPPM must be the counterpart to

the stage–gate process, informing DMs how the development progress of individual

projects impacts the entire portfolio. The MDSFPPM must additionally support

simulations of how potential project decisions affect the entire portfolio.

Requirement 2.18 (Project development progress evaluation). The MDSFPPM

must be compatible with the stage–gate process for project progress monitoring. It

must inform DMs how project development progresses and how it impacts the entire

portfolio, and it must simulate potential decisions. The MDSFPPM must also support

the simultaneous selection of new project proposals and confirmation of active projects.
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2.6.2 Project-portfolio environment

Probably every corporation deals in an uncertain environment. The choices of a

competitor or main customer, an actions of government, an economical crisis, all

of them can require the reevaluation of the corporation’s mission and may change

its position. Changes to the corporation’s mission may trigger adjustments in the

strategy, the structure of the strategic buckets, resource availability, the allocation

of resources among strategic buckets, or the evaluation criteria. No matter how the

change of the mission looks, it is necessary to put the project portfolio back on track.

Through the selection of new project proposals, termination of active projects, and

rescheduling of active projects, a new project portfolio must be selected to successfully

drive the corporation to its new mission.

Requirement 2.19 (Mission update and portfolio adjustment). The MDSFPPM

must support the adjustment of the ongoing project portfolio in case of changes in the

corporation’s mission.

Finally, one question continually comes up: If a hot new project proposal comes

up, what will its impact be on resources and the portfolio (see Kendall and Rollins

2003). The aim is to implement the hot new project proposal while limiting its

impact on resources and the remaining portfolio is as much as possible. Thus, the

MDSFPPM must support the smooth integration of the hot new project proposal

into the remaining portfolio through rescheduling or termination of active projects

as well as adjustments on the availability of resources. (Here, it may be difficult

to differentiate the competencies of the MDSFPPM and the competencies of the

mathematical optimizer for role staffing.)

Requirement 2.20 (Hot new project proposal). The MDSFPPM must support the

smooth integration of hot new project proposals into the ongoing portfolio.

2.7 Requirements Summary

For the purposes of a better overview, this section provides a table summarizing the

requirements of the MDSFPPM. The table also includes economic and mathematical

classifications of the requirements. The economic classification just outlines which

phase of PPM is affected by the requirement and therefore whether the competencies

are on the project or on the portfolio level.
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For a smooth crossover to the formulation of the mathematical model, the mathe-

matical classification states how a requirement influences the formulation. In addition

to the common classes, constraint and objective, we have the classes interface and sim-

ulation. While the class interface deals with the embedding of the MDSFPPM into

PPM software, the class simulation deals with the creation of portfolio scenarios and

sensitivity analysis. Note, some requirements are so comprehensive that they affect

multiple classes.

Table 2.4: Summary of Requirements for the MDSFPPM

Requirement Economic Mathematical
Number Requirement Name classification classification

Requirement 2.1 Mandatory projects Preselection Constraint

Requirement 2.2 Imprecise project information Preselection Interface, Simulation

Requirement 2.3 Strategic buckets and resources Strategy Constraint

Requirement 2.4 Strategic buckets and budget Strategy Constraint

Requirement 2.5 Strategic resource allocation Strategy Constraint, Objective

Requirement 2.6 Subportfolios Strategy Constraint

Requirement 2.7 Human resource planning Selection Objective

Requirement 2.8 Role staffing Maintain Interface, Objective

Requirement 2.9 Budget resource planning Selection Objective

Requirement 2.10 Trade-off between portfolio val-
ues

Selection Constraint, Objective

Requirement 2.11 Portfolio balancing Selection Constraint

Requirement 2.12 Risk analysis Selection Simulation

Requirement 2.13 Project scheduling Selection Constraint, Objective

Requirement 2.14 Technical project dependencies Selection Constraint

Requirement 2.15 Economic project interactions Selection Objective

Requirement 2.16 Program selection and composi-
tion

Selection Constraint, Objective

Requirement 2.17 Portfolio adjustment features Selection Interface, Simulation

Requirement 2.18 Project development progress
evaluation

Selection, Maintain Interface, Simulation

Requirement 2.19 Mission update and portfolio ad-
justing

Selection, Maintain Constraint, Objective

Requirement 2.20 Hot new project proposal Maintain Simulation
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Chapter 3

A Robust Model to Support

Portfolio Selection under

Incomplete Information

The literature about project portfolio optimization offers a broad body of different

mathematical models. Many of these models are formulated as multidimensional

knapsack problems. Archer and Ghasemzadeh (1999b) presented a multidimensional

knapsack model with a weighted multicriteria objective function. In this model, linear

constraints can easily be added to satisfy the underlying business case. A literature

review of the multidimensional knapsack problem is given in Freville (2004).

A different way is introduced in Eilat et al. (2006). They use a branch-and-bound

algorithm to generate the set of all feasible portfolios. Subsequently, they use data-

envelopment analysis (DEA) to identify the set of efficient portfolios. The decision

maker units are the portfolios generated by the branch-and-bound algorithm. A fur-

ther approach is given through the use of the analytic hierarchy process. Liberatore

and Nydick (2008) presented a literature review of the application of the analytic hi-

erarchy process to important decision problems in the context of medicine and health

care.

Almost all models presented in the literature share the same disadvantage. They

do not accept incomplete data as input, which we identified in the foregoing chapter

as a main reason for the failure of mathematical approaches in the area of PPM. They

necessitate precise data for every project about costs, resource requirements, benefits,

schedules, and so on. It is also necessary to offer exact information about availabilities
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of budget and human resources.

Liesiö et al. (2007) and Liesiö et al. (2008) did present one model that allowed

imprecise data as input. Called robust portfolio modelling (RPM), the model ac-

cepts interval data for project evaluation as well as for project costs. Furthermore,

preferences between evaluation criteria are modelled through inequalities.

The remainder of this chapter describes the RPM approach from Liesiö et al.

(2007) and Liesiö et al. (2008) in detail. Section 3.1 addresses the value of a portfolio

while Section 3.2 provides an introduction to portfolio feasibility. Section 3.3 presents

the dominance concept used as preference evaluation between portfolios. Incomplete

cost and a cost–benefit analysis are introduced in Section 3.4.

3.1 Portfolio Overall Value with Project Interac-

tions

3.1.1 Evaluation criteria and project scoring

Assume that a corporation considers the set X = {x1, . . . , xm} of m projects for eval-

uation. Project versions are treated as individual projects. X can contain ongoing

projects as well as new project proposals. From a mathematical point of view, we do

not have to distinguish between these two groups of projects. This follows from Re-

quirement 2.18, which states that ongoing projects should be evaluated independently

of sunk costs.

A project portfolio p ⊆ X can be any subset of available projects. Hence, the

theoretical set of all possible project portfolios is the power set P = 2X . To discrim-

inate between portfolios p, p′ ∈ P , it is necessary to define the overall value for a

project portfolio p. Therefore, let us suppose that n evaluation criteria are identified

to be correlated with the corporation’s mission. As stated in Requirement 2.10, DMs

consider some of these n evaluation criteria especially important while others are not

as crucial for the mission. Consequently, it is necessary to define a set of evaluation

criteria weights, w = (w1, . . . , wn)T , where each weight, wi, reflects the relative im-

portance of evaluation criterion i for i = 1, . . . , n. Without loss of generality, we can
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scale the weights w = (w1, . . . , wn)T so that the following condition holds

w ∈ S0
w :=

{
w ∈ Rn | wi ≥ 0,

n∑
i=1

wi = 1

}
. (3.1)

Every project, xj, must be evaluated with respect to every evaluation criterion

i (e.g., through scoring models). The score of project xj is stored in the vector

vj = (vj1, . . . , v
j
n). The vectors vj form the rows of the score matrix v ∈ Rm×n such

that [v]ji = vji . The overall value of project xj is simply given by the weighted sum

of its scores V (xj) =
∑n

i=1wiv
j
i . For any portfolio p ∈ P , the corresponding overall

value is modelled as the sum of the overall values of the projects in the portfolio. For

a given score matrix v and criterion weights w, the overall value of portfolio p is

V (p,w,v) =
m∑
j=1

n∑
i=1

zj(p)wiv
j
i = z(p)Tvw, (3.2)

where z(·) is a bijection z : P → {0, 1}m such that zj(p) = 1 if xj ∈ p and zj(p) = 0

if xj /∈ p ∀j = 1, . . . ,m. Theoretical presuppositions about the additivity assumption

in (3.2) are found in Golabi (1987) and Golabi et al. (1981).

As already mentioned several times before, the elicitation of exact project scores

and evaluation criteria weights is hard and often impossible. Thus, it is essential to

provide the opportunity to accept incomplete information about project scores and

evaluation criteria weights. In this model, any project xj can be evaluated by score

intervals instead of point estimates of every evaluation criterion i. Lower and upper

bounds of all score intervals are denoted by vji and vji and the corresponding score

vectors are vj and vj, respectively. It is assumed that all score intervals contain the

“true” score, vji ≤ vji ≤ vji for all j = 1, . . . ,m and i = 1, . . . , n. The set of feasible

scores is denoted by Sv := {v ∈ Rm×n|vji ∈ [vji , v
j
i ] ∀j = 1, . . . ,m ∀i = 1, . . . , n}.

Incomplete information about evaluation criteria weights is captured through a set

of linear inequalities corresponding to the DM’s preference statements. For instance,

the statement that evaluation criterion k is most important can be described through

wi < wk for i = 1, . . . , n and i 6= k.

This results in a set of feasible weights, denoted by Sw ⊆ S0
w with S0

w given by (3.1),

which is assumed to be a convex polyhedron. Sw = S0
w is the largest possible weight
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3.1 Portfolio Overall Value with Project Interactions

set, which corresponds to lack of any weight information, while point estimates in

Sw correspond to complete information. The literature on preference programming

provides several methods for the elicitation of both complete and incomplete weight

information (see Salo and Punkka 2005, Wang and Chin 2008).

Corresponding to the imprecise information provided by a DM in Sv and Sw, the

overall value (3.2) of project portfolio p is not unique. For a given portfolio p, the

selection of different feasible scores and weights in Sv and Sw defines an interval of

the overall portfolio value such that for any w ∈ Sw and v ∈ Sv,

V (p,w,v) ∈
[

min
w∈Sw

V (p,w), max
w∈Sw

V (p,w)

]
, (3.3)

where V (p,w,v) is given by (3.2) and

V (p,w) =
m∑
j=1

n∑
i=1

zj(p)wiv
j
i , (3.4)

V (p,w) =
m∑
j=1

n∑
i=1

zj(p)wiv
j
i . (3.5)

Upper and lower bounds of the portfolio overall value are linear in w. Moreover, for

a given weight vector w, the overall value of portfolio p ranges over the entire interval

[V (p,w), V (p,w)] when feasible scores v are allowed to vary in Sv.

3.1.2 Project interactions

The definition of the portfolio overall value by (3.2) has a substantial drawback. It

considers values of included projects xj ∈ p separately and does not take into account

project interactions. However, Requirements 2.15 and 2.16 state that it is essential to

include project interactions in the evaluation of project portfolios. More precisely, it

is required to take synergy and cannibalization effects between projects into account.

Therefore, we assume that synergy or cannibalization effects between projects may

arise if a portfolio p contains at least a number m̃k of projects that are elements of some

interaction subset X̃k ⊆ X whereby m̃k ≤ |X̃k| and K such interaction subsets are

defined—i.e., k = 1, . . . , K. Additionally, we assume that synergy or cannibalization

effects between projects may arise if a portfolio p contains at most a number m̂l of

projects that are elements of some interaction subset X̂l ⊆ X whereby m̂l ≤ |X̂l| and
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3.1 Portfolio Overall Value with Project Interactions

L such interaction subsets are defined—i.e., l = 1, . . . , L.

Even though synergy and cannibalization effects are exceptions to value additivity,

the portfolio overall value remains linear if we follow the approach from Stummer

and Heidenberger (2003). Therefore, we define dummy projects, x̃k and x̂l, for every

interaction subset X̃k and X̂l. Dummy projects are added toX so that |X| = m+K+L

and |P | = 2m+K+L. The score vectors for dummy projects ṽk and v̂l represent the

synergy and cannibalization effects that occur if conditions for interaction subset X̃k

and X̂l, respectively, are met. These vectors form the rows for the score matrices

ṽ ∈ RK×n and v̂ ∈ RL×n. As with the usual projects xj, dummy projects can be

evaluated using score intervals—i.e., [ṽki , ṽ
k

i ] and [v̂li, v̂
l

i]. The sets of feasible scores are

denoted by Sṽ :=
{
ṽ ∈ RK×n | ṽki ∈ [ṽki , ṽ

k

i ] ∀k = 1, . . . , K ∀i = 1, . . . , n
}

and Sv̂ :={
v̂ ∈ RL×n | v̂li ∈ [v̂li, v̂

l

i] ∀l = 1, . . . , L ∀i = 1, . . . , n
}

.

The composite set of feasible weight and score parameters for projects (interac-

tions) is denoted by the Cartesian product S := Sw×Sv×Sṽ×Sv̂ and s = (w,v, ṽ, v̂) ∈
S is equivalent to w ∈ Sw,v ∈ Sv, ṽ ∈ Sṽ, and v̂ ∈ Sv̂. Such a nonempty set S of

feasible weights and scores will be referred to as the information set. To keep the

notation simple, we will from now on use the notation s instead (w,v, ṽ, v̂). Further,

let us set s := (w,v, ṽ, v̂) and s := (w,v, ṽ, v̂) with w ∈ Sw free.

The prediction of project-interaction scores is especially hard and the interval

concept is appropriately important. The interval concept allows a DM to set the

corresponding interval boundary to 0 if interaction effects may arise but are not

certain.

The project portfolio overall value with project interactions appears by adding the

dummy projects to (3.2)

V (p, s) = V (p,w,v, ṽ, v̂)

=
m∑
j=1

n∑
i=1

zj(p)wiv
j
i +

K∑
k=1

n∑
i=1

z̃k(p)wiṽ
k
i +

L∑
l=1

n∑
i=1

ẑl(p)wiv̂
l
i

= z(p)Tvw + z̃(p)T ṽw + ẑ(p)T v̂w

(3.6)

with z̃(p) and ẑ(p) chosen appropriately as described below. Instead of (3.5) and
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3.1 Portfolio Overall Value with Project Interactions

(3.4), we have

V (p, s) := V (p,w) =
m∑
j=1

n∑
i=1

zj(p)wiv
j
i +

K∑
k=1

n∑
i=1

z̃k(p)wiṽ
k
i +

L∑
l=1

n∑
i=1

ẑl(p)wiv̂
l
i (3.7)

and

V (p, s) := V (p,w) =
m∑
j=1

n∑
i=1

zj(p)wiv
j
i +

K∑
k=1

n∑
i=1

z̃k(p)wiṽ
k

i +
L∑
l=1

n∑
i=1

ẑl(p)wiv̂
l

i. (3.8)

From a DM’s perspective, decisions are made only on real projects xj. The decision

on dummy projects x̃k and x̂l is made implicitly through the decision on the real

projects xj. Thus, the definition of bijection z(p) is unchanged from that given after

equation (3.2). z̃(p) is a K-dimensional vector with the functions z̃k(p) as elements.

Analogously, ẑ(p) is an L-dimensional vector with the functions ẑl(p) as elements.

These functions control the selection of dummy projects x̃k and x̂l into the overall

portfolio value. Therefore, z̃k(p) and ẑl(p), respectively, must take the value 1 iff

portfolio p meets the condition about interaction subset X̃k and X̂l, respectively.

Otherwise, they must be equal to 0. To achieve these properties for z̃k(p) and ẑl(p),

we define vectors ãk ∈ {0, 1}1×m for k = 1, . . . , K and âl ∈ {0, 1}1×m for l = 1, . . . , L,

as well as two sets of constraints. The vectors ãk are characterized through ãjk = 1

if xj ∈ X̃k and ãjk = 0 if xj /∈ X̃k, so that ãkz(p) represents the number of projects

in portfolio p that are affected by the interaction set X̃k. Similarly, the vectors âl

are characterized through âjl = 1 if xj ∈ X̂l and âjl = 0 if xj /∈ X̂l, so that âlz(p)

represents the number of projects in portfolio p that are affected by the interaction

set X̂l. Given m̃k as the necessary minimum number of projects for interaction subset

X̃k, the constraints

ãkz(p)−mz̃k(p) ≤ m̃k − 1

−ãkz(p) +mz̃k(p) ≤ m− m̃k

z̃k(p) ∈ {0, 1} for k = 1, . . . , K

(3.9)

ensure that z̃k(p) = 1 and also dummy project x̃k is included into p iff the condition

for project interaction subset X̃k is met by p.
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3.2 Feasibility of Portfolios

Given m̂l as the maximum number of projects for interaction X̂l, the constraints

−âlz(p)−mẑl(p) ≤− m̂l − 1

âlz(p) +mẑl(p) ≤ m̂l +m

ẑl(p) ∈ {0, 1}, for l = 1, . . . , L

(3.10)

ensure that ẑl(p) = 1 and also dummy project x̂l is included into p iff the condition

for project interaction subset X̂l is met by p.

For given project interaction sets X̃k and X̂l, we can define the vectors ãk and

âl for all k = 1, . . . , K and for all l = 1, . . . , L. These vectors form the rows of the

matrix A ∈ {0, 1}2(K+L)×m = [ã1,−ã1, . . . ,−âL, âL]T . Further, we define matrix

Ã ∈ Z2(K+L)×K through ãjk = −m iff (k + 1)/2 = j, ãjk = m iff (k)/2 = j for k =

1, . . . , 2K. Otherwise, we have ãjk = 0. Similarly, we define the matrix Â ∈ Z2(K+L)×L

through âjl = −m iff (l+ 1)/2 = j, âjl = m iff (l)/2 = j for l = 2K + 1, . . . , 2(K +L).

Otherwise, we have âjl = 0. Finally, let us record the right sides of (3.9) and (3.10) in

vector α ∈ Z2(K+L)×1. Any portfolio p ∈ P satisfying

Az(p) + Ãz̃(p) + Âẑ(p) ≤ α
z(p) ∈ {0, 1}m, z̃(p) ∈ {0, 1}K , ẑ(p) ∈ {0, 1}L

(3.11)

is feasible in terms of project interactions. This means that, for portfolio p, the overall

value (3.6) reflects the true value since it is modified by dummy projects that represent

the value of fulfilled project interaction subsets.

From now on, we always refer to (3.6) if the discussion is about portfolio overall

value. Like portfolio overall value (3.2), the portfolio overall value (3.6) varies in an

interval. This interval is given by (3.3) with (3.7) and (3.8) instead of (3.4) and (3.5).

Section 3.3 shows how this interval can be used to discriminate between portfolios

p ∈ P . However, before doing so, we discuss the feasibility of portfolios p ∈ P since

feasibility in terms of project interactions is not sufficient for a portfolio to be feasible.

3.2 Feasibility of Portfolios

Theoretically, all possible portfolios are given by P . However, as a result of the

requirements formulated in Chapter 2, not every portfolio p is feasible. In RPM,

the set of feasible portfolios PF ⊆ P is defined by linear constraints, which may be
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3.2 Feasibility of Portfolios

summarized into four categories:

� Resource constraints reflect fixed project (interaction) requirements cj, c̃k,

and ĉl and fixed availability R. Note, that cj, can be negative if xj corresponds

to a resource saving project. Similar, c̃k and ĉl, respectively, can be negative if

x̃k and x̂l, respectively, represent synergy effects.

� Logical constraints model mutually exclusive projects and technical project

dependencies.

� Positioning constraints reflect such issues as starting a minimum number of

projects in different project subsets such as strategic buckets.

� Threshold constraints help ensure that the performance of the portfolio and

its constituent projects meet minimum requirements. For example, the aggre-

gate NPV may have to exceed a minimum acceptable level.

The mathematical formulation of these constraints is straightforward. With respect

to the requirements of Chapter 2, we outline some examples for every category.

For the budget and resource categories with the property that project (interaction)

requirements cj, c̃k, and ĉl are exact to predict and there is a rigid availability level

R, a resource constraint,

m∑
j=1

zj(p)c
j +

K∑
k=1

z̃k(p)c̃
k +

L∑
l=1

ẑl(p)ĉ
l ≤ R, (3.12)

is created. Such a constraint can be formulated for an arbitrary number of resource

categories as well as for budgets. Nevertheless, these constraints, whether they ac-

count the time dimension of Requirement 2.7, do not allow for imprecise resource-

requirement information. Furthermore, the availability amount is assumed to be rigid,

which is inconsistent with Requirement 2.7 and Section 2.3.2. Section 3.4 upgrades

the model so that it partly satisfies the requirements above through the introduction

of a cost–benefit functionality that is useable for any resource category and for budget.

Next, we introduce two examples of logical constraints. The first example is

about mutually exclusive projects. Assume a set of projects X̃ ⊆ X which contains

mutually exclusive projects. The following constraint ensures that at most one project
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3.2 Feasibility of Portfolios

out of subset X̃ is selected:

m∑
j=1

ejzj(p) = ez(p) ≤ 1 (3.13)

with e ∈ {0, 1}1×m so that ej = 1 if xj ∈ X̃ and ej = 0 if xj /∈ X̃. This type of

constraint conforms to Requirement 2.15. It can be used, for example for project

versions. At the beginning of Section 3.1, we mentioned that project versions are

treated as individual projects. Such a constraint ensures that a feasible portfolio p

contains at most one version of a project.

The second kind of logical constraint reflects technical project dependencies. If

a successor project xs has m̃ predecessor projects, xp1 , . . . , xpm̃ , the corresponding

constraint is given by
m∑
j=1

ejzj(p) = ez(p) ≥ m̃zs(p), (3.14)

where e ∈ {0, 1}1×m so that ej = 1 if xj ∈ {xp1 , . . . , xpm̃} and ej = 0 otherwise. Such

constraints partially fulfill with Requirement 2.14 because the time dimension is not

considered.

To illustrate positioning constraints, assume again a set of projects X̃ ⊆ X. X̃

can represent any subset of projects, such as for technological or geographical areas.

The aim is to ensure that the selected portfolio p contains exactly, at least, or at most

m̃ projects out of X̃ whereby m̃ ≤ |X̃|. This can be achieved by attaching

m∑
j=1

ejzj(p) = ez(p)


≤ m̃ if at most

= m̃ if exact

≥ m̃ if at least

 m̃ projects out of X̃ are

allowed/required
(3.15)

to the model as a constraint. We have again e ∈ {0, 1}1×m so that ej = 1 if xj ∈ X̃
and ej = 0 if xj /∈ X̃. The main application of this type of constraint is given by

Requirement 2.11—i.e., for portfolio balancing. Here, it is also conceivable that X̃

represents a strategic bucket. However, this is not an adequate treatment for strategic

buckets. For a better treatment of strategic buckets see Chapter 4.

Another positioning constraint is needed for mandatory projects, Requirement 2.1.

This constraint is simply given by zj(p) = 1 for every mandatory project xj and is

just a special case of (3.15).
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3.2 Feasibility of Portfolios

A threshold constraint relates to an evaluation criterion i (e.g., NPV) for which

a minimum performance is required; see Requirement 2.10. To guarantee that the

selected portfolio p meets the defined minimum performance Vi, it is necessary to add

m∑
j=1

zj(p)wiv
j
i +

K∑
k=1

z̃k(p)wiṽ
k
i +

L∑
l=1

ẑl(p)wiv̂
l
i ≥ Vi

to the set of constraints.

Depending on the situation at hand, many other constraints can be added. One

could specify required relationships for different project groups. For example, the

number of projects in a certain subset should be at least twice the number of projects

in another subset. Outlining all the possibilities is beyond the scope of this thesis.

Other common constraints can be found in Archer and Ghasemzadeh (1999b) and

Stummer and Heidenberger (2003).

For a given set of constraints, the coefficients can be added to the matrices A, Ã

and Â. Thus, A ∈ R(2K+2L+T )×m, Ã ∈ R(2K+2L+T )×K and Â ∈ R(2K+2L+T )×L if T

represents the amount of nondummy project selection constraints. The matrix A

contains the coefficients corresponding to real projects xj, while the matrices Ã and

Â contain coefficients corresponding to dummy projects x̃k and x̂l, respectively. The

set of feasible portfolios is then denoted through

PF :=
{
p ∈ P | Az(p) + Ãz̃(p) + Âẑ(p) ≤ α,
z(p) ∈ {0, 1}m, z̃(p) ∈ {0, 1}K , ẑ(p) ∈ {0, 1}L

} (3.16)

where ≤ holds componentwise and the vector α ∈ R(2K+2L+T )×1 contains the fea-

sibility limits. For the special case that the information set S contains complete

information about project (interaction) scores and evaluation criteria weights, RPM

becomes a general multiobjective zero–one linear programming (MOZOLP) problem:

max
p∈PF

V (p, s) = max
z(p)

{
z(p)Tvw + z̃(p)T ṽw + ẑ(p)T v̂w |

Az(p) + Ãz̃(p) + Âẑ(p) ≤ α,
z(p) ∈ {0, 1}m, z̃(p) ∈ {0, 1}K , ẑ(p) ∈ {0, 1}L

}
.

(3.17)

Nevertheless, complete information is an exception. Therefore, it is much more inter-

esting to discuss how RPM can be used for decision support in situations where S
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contains incomplete information.

3.3 Portfolio Preference Evaluation Based on the

Overall Value

3.3.1 Non-dominated portfolios

While a MOZOLP identifies the portfolio with the highest overall value, the situation

with an imprecise information set S is different. In this case, the overall value (3.6)

is a function in s ∈ S and can take any value in the interval mentioned at the end of

Section 3.1. Thus, the value intervals of two portfolios p, p′ ∈ PF can overlap; at the

first glance, it may not be clear whether p or p′ has a higher overall value. However,

it may be possible to identify one of them as inferior through the dominance concept,

even if their intervals do overlap.

Definition 3.1. Let p, p′ ∈ P . Portfolio p dominates p′ with regard to the information

set S, denoted by p �S p′, if V (p, s) ≥ V (p′, s) for all s ∈ S and V (p, s) > V (p′, s)

for some s ∈ S.

We denote p � p′ when there is no risk of confusion about the information set S.

Following Requirement 2.10, which specifies that the overall value of the project port-

folio should be maximized, we can discard dominated portfolios. Thus, the analysis

can focus on the set of non-dominated portfolios.

Definition 3.2. The set of non-dominated portfolios with regard to the information

set S, denoted by PN(S), is

PN(S) := {p ∈ PF | @p′ ∈ PF s.t. p′ �S p}.

We denote PN ≡ PN(S) when there is no risk of confusion about the informa-

tion set S. The computation of PN is a key step in supporting project portfolio

selection under incomplete preference information. With regard to Requirement 2.10,

the computation eliminates unacceptable (dominated) portfolios from further consid-

eration while retaining the interesting (non-dominated) ones. An algorithm for the

computation of PN is given in Chapter 5.
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Dominance between two portfolios can readily be checked using the bounds (3.7)

and (3.8) and by noting that (i) projects that are included in both portfolios contribute

equally both of them and (ii) projects’ scores may vary across the full range of their

respective intervals, regardless of what the other scores or weights are. Thereof, we

can formulate a theorem.

Theorem 3.1. For any p, p′ ∈ P and information set S = Sw × Sv × Sṽ × Sv̂

p �S p
′ ⇐⇒


min
w∈Sw

[V (p \ p′, s)− V (p′ \ p, s)] ≥ 0

max
w∈Sw

[V (p \ p′, s)− V (p′ \ p, s)] > 0,

with V (·, s) and V (·, s) given by (3.7) and (3.8), respectively.

For the proof, see Liesiö et al. (2007).

It can be shown that the dominance relation of Definition 3.1 is asymmetric (p �
p), irreflexive (p � p′ ⇒ p′ � p) and transitive (p � p′ ∧ p′ � p′′ ⇒ p � p′′).

Consequently, PN cannot be empty unless the set of feasible portfolios PF is empty.

Furthermore, for each dominated portfolio p′ ∈ PF \ PN , there exists at least one

non-dominated portfolio p ∈ PN such that p � p′.

The set of non-dominated portfolios, PN(S), is not just nonempty, in general it

consists of multiple portfolios so that the size of PN(S) is probably unmanageable.

Nevertheless, the initially calculated set of non-dominated portfolios is just a first step

in the decision-making process. It provides informative decision recommendations to a

DM that are useful for modification or formulation of additional information, resulting

in a smaller set of non-dominated portfolios. Thus, the RPM model is an iterative

process that allows a DM interaction under informative decision recommendations

until a solution is identified. This process fits well with Requirement 2.17.

3.3.2 Impact of additional information

Before we outline which informative decision recommendation are provided by non-

dominated portfolios, we investigate how additional information modifies the set of

non-dominated portfolios, PN(S). Additional information refers to narrower score

intervals or additional constraints on the feasible weights and reduces the information

set S to S∗ ⊂ S. We already know that point estimates lead to an ordinary MOZOLP,
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usually resulting in a few optimal portfolios. In contrast, loose preference statements

and wide score intervals typically result in a large number of non-dominated portfolios.

For the purpose of examining the impact of additional information, it is assumed

that the “true” parameter values are contained in S∗ as well as in the (relative) interior

of S, defined as

int(S) := {s ∈ S | ∀s′ ∈ S ∃δ > 0 s.t. s+ ε(s− s′) ∈ S ∀ε ∈ [0, δ]}.

If this condition holds, the impact of additional information on PN(S) is given by

Theorem 3.2. Let S∗,S be information sets such that S∗ ⊂ S and int(S)∩S∗ 6= ∅.
Then, PN(S∗) ⊆ PN(S).

For the proof, see Liesiö et al. (2007).

A major computational impact of Theorem 3.2 is that the set of non-dominated

portfolios needs to be computed for the initial information set S only. Later on,

additional information may eliminate some portfolios from the previous set of non-

dominated portfolios, but cannot add any new portfolios to it. PN(S∗) can be obtained

from PN(S) by pairwise dominance checks (Theorem 3.1):

PN(S∗) = {p ∈ PN(S) | p′ �S∗ p ∀p′ ∈ PN(S)}. (3.18)

3.3.3 Decision information obtained by non-dominated port-

folios

Now that we know the value of additional information for the selection process, we

investigate which information PN(S) provides for the formulation of additional infor-

mation. The aim is to use PN(S) to receive information about how to modify the

information set S into S∗ ⊂ S so that the resulting set of non-dominated portfolios,

PN(S∗), is considerably smaller. Another aim is to link PN(S) and the selection of

individual projects. In doing so, the robustness of the selection of a project with

respect to incomplete information is of interest. We start this investigation with the

definition of the core index of a project xj.
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Definition 3.3. The core index of project xj ∈ X with regard to the information set

S, denoted by CI(xj,S), is

CI(xj,S) =
|{p ∈ PN(S) | xj ∈ p}|

|PN(S)|
.

The core index leads to a transparent project selection process, because for each

project it transforms information about non-dominated portfolios into a single per-

formance measure. Furthermore, the core index concept is transferable to project

interactions CI(x̃k,S) and CI(x̂l,S). The core index of a dummy project indicates

how significant the interaction effect is at the portfolio level. Also, if the dummy

project represents a program, the core index is a performance measure for the pro-

gram and fits well with Requirement 2.16.

If the core index of a project (interaction) is 1, the project (interaction) is included

(active) in all non-dominated portfolios and is consequently called a core project (in-

teraction). In contrast, if the core index of a project (interaction) is 0, the project

(interaction) is not included (active) in any non-dominated portfolio and is referred

to as an exterior project (interaction). Finally, the remaining projects (interactions)

whose core index is strictly greater than zero but less than one are called borderline

projects (interactions).

Definition 3.4. With regard to the information set S, we define the sets of core

projects XC(S), borderline projects XB(S), and exterior projects XE(S):

XC(S) := {xj, x̃k, x̂l ∈ X | CI(xj,S), CI(x̃k,S), CI(x̂l,S) = 1},
XB(S) := {xj, x̃k, x̂l ∈ X | 0 < CI(xj,S), CI(x̃k,S), CI(x̂l,S) < 1},
XE(S) := {xj, x̃k, x̂l ∈ X | CI(xj,S), CI(x̃k,S), CI(x̂l,S) = 0}.

Core projects can be surely recommended and all exterior projects can be safely

rejected independent of additional information. This is because core and exterior

projects (interactions) remain core and exterior projects (interactions) even in light

of additional information. This is easily shown using Theorem 3.2.

Corollary 3.1. Let S∗ ⊆ S such that int(S) ∩ S∗ 6= ∅. Then, XC(S) ⊆ XC(S∗) and

XE(S) ⊆ XE(S∗) holds.

As a consequence, the decision to select or to reject a project can be made as soon as

the core status or the exterior status is first established for a project xj.

56



3.4 Portfolio Costs and Optimal Budget Level

The core index of projects (interactions) has an additional useful property. It tells

a DM on which projects (interactions) to spend effort for additional information to

reduce the set of non-dominated portfolios, PN(S).

Corollary 3.2. Let S∗ ⊆ S such that int(S)∩S∗ 6= ∅. If S∗w = Sw, vj∗i = vji , v
j∗
i = vji ,

ṽk∗i = ṽki , ṽ
k∗
i = ṽ

k

i , v̂l∗i = v̂li, and v̂
l∗
i = v̂

l

i, ∀i = 1, . . . , n, ∀xj, x̃k, x̂l ∈ XB(S), then

PN(S) = PN(S∗).

Thus, the elicitation efforts can be focused on obtaining narrower score intervals

for borderline projects (interactions) and more restrictive weight information. In this

sense, core indices help to identify further information needs, which as such is one of

the key purposes of sensitivity and robustness analysis.

Summarizing the decision process, a DM is advised to start with loose preference

information. This implies large feasible sets of the parameter values and typically

results in a large number of non-dominated portfolios. Core index analysis helps

identifying core and exterior projects. This also helps focusing the effort of eliciting

additional information on borderline projects (interactions). Due to narrower score

intervals and stricter weight statements, the set of non-dominated portfolios becomes

smaller and new core and exterior projects may be identified. This process can be

continued until the final portfolio is identified.

3.4 Portfolio Costs and Optimal Budget Level

3.4.1 Portfolio costs with project interactions

By now, we are able to model budget and resource categories if the assumptions about

exact predictable costs and resource requirements and a rigid availability level hold.

Therefore, we can formulate Constraint (3.12). This section introduces a cost–benefit

analysis which is applicable to any resource category as well as the budget. In keeping

with the notation of Liesiö et al. (2008), we outline the cost–benefit analysis just for

the budget.

The cost–benefit analysis supports the identification of the most valuable budget

level based on incomplete cost information so that Requirements 2.7 and 2.9 are
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3.4 Portfolio Costs and Optimal Budget Level

supported as well as Requirement 2.2. Let us define the costs of portfolio p ∈ P with

C(p, sc) = C(p, c, c̃, ĉ) =
m∑
j=1

zj(p)c
j +

K∑
k=1

z̃k(p)c̃
k +

L∑
l=1

ẑl(p)ĉ
l

= z(p)Tc+ z̃(p)T c̃+ ẑ(p)T ĉ.

(3.19)

The vector c = (c1, . . . , cm)T represents costs for projects x1, . . . , xm. Similarly, the

vectors c̃ = (c̃1, . . . , c̃K)T and ĉ = (ĉ1, . . . , ĉL)T represent the costs for dummy projects

x̃1, . . . , x̃K and x̂1, . . . , x̂L, which still reflect project interactions. Thus, portfolio costs

(3.19) are adjusted to project interaction effects, similar to the overall value. Like for

project scores it is allowed to estimate project costs via an interval [cj, cj]. Analogously

intervals are used for dummy projects.

The set of feasible costs for projects xj is denoted by Sc := {c ∈ Rm×1 | cj ∈
[cj, cj] ∀j = 1, . . . ,m}, from which the definition of Sc̃ and Sĉ should be obvious. The

composite set of feasible costs for projects and interactions is denoted by the Cartesian

product Sc := Sc × Sc̃ × Sĉ and sc = (c, c̃, ĉ) ∈ Sc is equivalent to c ∈ Sc, c̃ ∈ Sc̃,

and ĉ ∈ Sĉ. Such a nonempty set of feasible costs will be referred to as the cost

information. The information set S = Sw × Sv × Sṽ × Sv̂ still corresponds to the

feasible regions of weights and scores associated with the n evaluation criteria.

In keeping with the notation of the portfolio overall value, we set sc = (c, c̃, ĉ)

and sc = (c, c̃, ĉ). The feasible cost of a portfolio p is then captured in the interval

[C(p, s), C(p, s)], similarly to the overall value.

3.4.2 Portfolio preference evaluation based on overall value

and costs

To identify a set of “interesting portfolios,” we have to consider the overall value as

well as the cost. Thus, non-dominated portfolios in their current shape are not usable

since they are based on the overall value only. Instead of non-dominated portfolios,

we identify efficient portfolios as the “interesting” ones. We call a portfolio efficient

if no other feasible portfolio gives a higher overall value at a lower cost.
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3.4 Portfolio Costs and Optimal Budget Level

Definition 3.5. The set of efficient portfolios with regard to information set S and

cost information Sc is

PE(S,Sc) :=

{
p ∈ PF | @p′ ∈ PF s.t.

{
V (p′, s) ≥ V (p, s), ∀s ∈ S

C(p′, sc) ≤ C(p, sc),∀sc ∈ Sc

}}

with at least one strict inequality for some s ∈ S or sc ∈ Sc.

Similar to the set of non-dominated portfolios, the further analysis about the

portfolio selection procedure can be focused on the set of efficient portfolios. If one

selected a portfolio outside the efficient set, there would exist an efficient portfolio

that yields a higher overall value for all feasible weights and scores, and cost less no

matter what the project costs are within their intervals.

A relationship between the sets of non-dominated portfolios and efficient portfolios

is the aim. Such a relationship should enable the use of decision recommendations

developed for non-dominated portfolios. To achieve this relationship, the total cost,

C(p, sc), is modelled as a criterion to be minimized. Thus, the (n+1)th score of project

xj is the opposite of its cost—i.e., −cj. The (n + 1)th scores for dummy projects x̃k

and x̂l are given by the corresponding opposite costs −c̃k and −ĉl. The costs are

associated with a weight wn+1 that varies so that wn+1 ∈ [0, 1]. This arrangement

allows the formulation of a theorem that guarantees a relationship between the sets

of non-dominated portfolios and the efficient portfolios we seek.

Theorem 3.3. Consider information set S = Sw×Sv×Sṽ×Sv̂ and cost information

Sc = Sc×Sc̃×Sĉ. Let the extended information set Š = Šw× Šv× Šṽ× Šv̂ be defined

by:

Šv = {[v,−c] ∈ Rm×(n+1) | v ∈ Sv, c ∈ Sc},

Šṽ = {[ṽ,−c̃] ∈ RK×(n+1) | ṽ ∈ Sṽ, c̃ ∈ Sc̃},

Šv̂ = {[v̂,−ĉ] ∈ RL×(n+1) | v̂ ∈ Sv̂, ĉ ∈ Sĉ},

Šw = {w ∈ Š0
w | 1

1−wn+1
(w1, . . . , wn)T ∈ Sw, wn+1 < 1}

∪ {w ∈ Š0
w | w1 = · · · = wn = 0, wn+1 = 1},
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where Š0
w = {w ∈ Rn+1 | wi ≥ 0,

∑n+1
i=1 wi = 1}. Then, PE(S,Sc) = PN(Š).

For the proof, see Liesiö et al. (2008).

This theorem allows the use of decision recommendations for non-dominated port-

folios on the set of efficient portfolios. First, additional information, S∗ ⊂ Š, can only

reduce the set of efficient portfolios, because PN(S∗) ⊆ PN(Š) by Theorem 3.2 and

PN(S∗) is obtained from PN(Š) by pairwise checks between portfolios as in (3.18).

Second, the share of efficient portfolios that contains project xj can be interpreted as

the core index of project xj for the information set Š—i.e., CI(xj, Š). This is also

true for dummy projects x̃k and x̂l. Moreover, the results of Corollary 3.1 and Corol-

lary 3.2 can be carried over to the set of efficient portfolios. Finally, the algorithm

introduced in Chapter 5 for the computation of non-dominated portfolios can be used

for the computation of efficient portfolios as well.

3.4.3 Cost–benefit analysis

Efficient portfolios help to analyze how the portfolio overall value changes as a func-

tion of the budget level. Since both overall values and costs are intervals, efficient

portfolios do not result in a unique cost–benefit curve. Rather they form a band in

the overall value–total-cost plane. For the analysis, we define the set of feasible port-

folios, PF (sc, R), that are attainable with fixed cost, sc ∈ Sc, and budget, R ∈ R,

and the corresponding set of non-dominated portfolios, PN(S, sc, R), with regard to

information set S:

PF (sc, R) := {p ∈ PF | C(p, sc) ≤ R}, (3.20)

PN(S, sc, R) := {p ∈ PF (sc, R) | p′ �S p ∀p′ ∈ PF (sc, R)}. (3.21)

The set PN(S, sc, R) contains all non-dominated portfolios in terms of overall value

whose project (interaction) costs are sc and budget is R. Dominance is determined by

incomplete information s ∈ S and (3.20) is the budget (resource category) constraint,

as is (3.12). Thus, PN(S, sc, R) is just an alternative notation to PN(S) in Definition

3.2 to highlight the dependence on sc and R.

For the cost–benefit analysis, it is reasonable to investigate the relationship be-

tween the set of efficient portfolios PE(S,Sc) and the set of non-dominated portfolios

with fixed costs sc and budget R—i.e., PN(S, sc, R). The set of efficient portfolios
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corresponds to the union of all sets of non-dominated portfolios in the sense that: (i)

every efficient portfolio is included in the set of non-dominated portfolios for some

fixed costs sc ∈ Sc and budget R and (ii) non-dominated portfolios for any fixed

sc ∈ Sc and R are efficient. However, there is an exception to the latter property.

If two non-dominated portfolios have equal overall value for all feasible weights and

scores, by definition only the less expensive one is efficient. The relationship between

PE(S,Sc) and PN(S, sc, R) is formalized by Theorem 3.4.

Theorem 3.4. Consider information set S = Sw×Sv×Sṽ×Sv̂ and cost information

Sc = Sc × Sc̃ × Sĉ. Then,

(i) p ∈ PE(S,Sc)⇒ ∃R ∈ R, sc ∈ Sc s.t. p ∈ PN(S, sc, R)

(ii) p ∈ PN(S, sc, R)⇒ ∃p′ ∼ p, p′ ∈ PN(S, sc, R) s.t. p′ ∈ PE(S,Sc),

where ∼ is the equivalence relation p ∼ p′ ⇐⇒ V (p, s) = V (p′, s) ∀s ∈ S.

For the proof, see Liesiö et al. (2008).

This relationship implies that PN(S, sc, R) can be obtained from PE(S,Sc) for any

given values of sc and R: Discard portfolios that do not meet the budget constraint

C(p, sc) ≤ R and use pairwise dominance checks (3.21) in the resulting PF (sc, R) to

obtain PN(S, sc, R).

The cost–benefit band describes the ranges of overall values that non-dominated

portfolios can assume at different budget levels R, subject to incomplete information

s ∈ S and sc ∈ Sc. For each available level, R, this band is given by the interval[
min

p∈PN (S,sc,R)
s∈S

V (p, s), max
p∈PN (S,sc,R)

s∈S

V (p, s)

]
. (3.22)

The bounds are attained by maximizing/minimizing the overall portfolio value while

project costs vary within their intervals sc ∈ Sc. The optima are achieved when all

costs are at their lower bounds sc = sc, where the budget is least restrictive.

The lower bound does not necessarily increase with R because a higher budget

may suffice to fund a new portfolio which is non-dominated but has a lower worst-

case overall value. Since this may confuse a DM, we use the maximum worst-case
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overall value over PN(S, sc, R), instead of min p∈PN (S,sc,R)
s∈S

V (p, s), as the lower bound

of the cost–benefit band.

Definition 3.6. Lower and upper bounds for the cost–benefit band of the project set

X with regard to information set S and cost information Sc are

Maximal overall value: MV (R) := max
p∈PN (S,sc,R)

max
s∈S

V (p, s),

Guaranteed overall value: GV (R) := max
p∈PN (S,sc,R)

min
s∈S

V (p, s).

Note, since the GV (R) curve is based on PN(S, sc, R), every portfolio associated

with the GV (R) curve is feasible no matter what the costs are (C(p, sc) ≤ R ∀sc ∈ Sc).
Both MV (R) and GV (R) are non-decreasing in R and can be taken as the basis for

the cost–benefit ratio MV (R)/R and GV (R)/R. The selected availability level, R,

may maximize one of these measures.
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Figure 3.1: Guaranteed and Maximal Overall Values as Functions of Budget Level R
Source Liesiö et al. (2008).

Figure 3.1 illustrates an example of a cost–benefit band for a project set X contain-

62



3.4 Portfolio Costs and Optimal Budget Level

ing 40 projects and 3 project interaction sets. It shows how the GV (R) and MV (R)

curves develop as functions of the budget level R. The GV curve shows that R = 227

is the lowest level which guarantees that a feasible portfolio can be constructed. From

MV , this first portfolio’s cost may be as low as R = 210. The range [GV (R),MV (R)]

expands with increasing R, since the more expensive portfolios include more features

(interactions) that add to the overall value and cost intervals. Further, Figure 3.1

shows that both MV (R) and GV (R) are piecewise constant because the composi-

tion of PN(S, sc, R) for some fixed sc (including sc and sc) can only change at levels

R ∈ {C(p, sc) | p ∈ PE(S,Sc)}. Thus, the number of jumps in GV (R) and MV (R)

is limited from above by the number of efficient portfolios.

3.4.4 Budget-dependent core index

The sets PN(S, sc, R) also help analyze the robustness of individual projects (interac-

tions) as a function of R. The budget-dependent core index of project (interaction)

xj (x̃k or x̂l) measures the share of non-dominated portfolios which contain xj (x̃k or

x̂l) and are certainly attainable—i.e., sc = sc—at budget level R.

Definition 3.7. The budget-dependent core index of project xj at budget level R is

CI(xj,S, R) =
|{p ∈ PN(S, sc, R) | xj ∈ p}|

|PN(S, sc, R)|
.

The budget-dependent interaction core indices—CI(x̃k,S, R) and CI(x̂l,S, R)—

are defined analogously. Interestingly, the core index is not necessarily increasing in

R. For instance, a small increase δ in R may be enough for a new portfolio p to enter

PN(S, sc, R+ δ). In this new portfolio, project (interaction) xj (x̃k or x̂l) may not be

included. However, the new portfolio p must contain projects and interactions that

are alternatives to xj (x̃k or x̂l). These alternatives fit into the budget level R + δ,

even if sc = sc, and yields a higher overall value than xj (x̃k or x̂l) for some s ∈ S.

Thus, project (interaction) xj (x̃k or x̂l) can lose its core status when these alternative

projects or interactions become attainable at the higher budget R + δ.

Figure 3.2 offers a graphical description of the budget-dependent core index for 40

projects and 3 project interactions. The budget-dependent core index of project x17,

for instance, seems to be very sensitive to changes in R, demonstrating how a core

index can change with the budget level, R.
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Figure 3.2: Budget-Dependent Core Indices of Projects and Project Interdependencies
Source Liesiö et al. (2008).

3.4.5 Alternative budget-dependent core index

The budget-dependent core index is based on the single cost scenario sc although the

interval cost information indicates that a DM is interested in different cost scenarios.

Instead of restricting the analysis to a set of non-dominated portfolios, PN(S, sc, R),

we will focus the analysis on all non-dominated portfolios for a fixed budget level R:

PN(S,Sc, R) := {p ∈ PF (sc, R) | ∃sc ∈ Sc s.t. p ∈ PN(S, sc, R)} . (3.23)

Liesiö et al. (2008) stated that PN(S, sc, R) ⊆ PN(S, sc, R) holds for any sc ∈
Sc and therefore PN(S,Sc, R) = PN(S, sc, R). However, we doubt the correctness

of this statement. Note that PF (sc, R) ⊆ PF (sc, R) holds for any fixed sc ∈ Sc.
While PN(S, sc, R) is received from pairwise dominance checks between portfolios

p ∈ PF (sc, R), is PN(S, sc, R) obtained through pairwise dominance checks between

portfolios p ∈ PF (sc, R). We can assume a portfolio p for which p ∈ PF (sc, R) and
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p /∈ PF (sc, R). If we further assume a portfolio p′ ∈ PF (sc, R) so that p �S p′, then

p′ /∈ PN(S, sc, R). However, since p /∈ PF (sc, R), p′ ∈ PN(S, sc, R) may hold.

As a consequence, we use PN(S,Sc, R) as a base for the alternative budget-

dependent core index. The base for the calculation of PN(S,Sc, R) is given by

PF (sc, R)—i.e., efficient portfolios for which C(p, sc) ≤ R holds, see Theorem 3.4.

To examine whether for portfolio p ∈ PF (sc, R) also p ∈ PN(S,Sc, R) holds, we use

pairwise dominance checks and collect portfolios p′ ∈ PF (sc, R) with p′ �S p in the

auxiliary set PC(p). Iff we can find a cost scenario sc ∈ Sc for that portfolio p is

feasible and all portfolios p′ ∈ PC(p) are infeasible, p ∈ PN(S,Sc, R) holds. The set

of cost scenario sc ∈ Sc for which the mentioned conditions hold is described by the

following inequalities:

C(p′, sc) ≥ R + ε ∀p′ ∈ PC(p)

C(p, sc) ≤ R

cj ≤ cj ≤ cj ∀j = 1, . . . ,m

c̃k ≤ c̃k ≤ c̃
k ∀k = 1, . . . , K

ĉl ≤ ĉl ≤ ĉ
l ∀l = 1, . . . , L

(3.24)

with ε > 0 marginal. Thus, iff the set described by (3.24) is not empty then p ∈
PN(S,Sc, R) holds. Whether (3.24) is an empty set or not can be verified using

the first phase of the two phase simplex method—i.e., through the solution of an

auxiliary linear optimization problem. Summarizing, the set of all non-dominated

portfolios PN(S,Sc, R) can be established through pairwise dominance checks and

solving an auxiliary linear optimization problem for portfolios p ∈ PF (sc, R) for which

∃p′ ∈ PF (sc, R) s.t. p′ �S p.

Since PN(S,Sc, R) is compound by sets of non-dominated portfolios, Theorem 3.2

indicates that additional information can only reduce PN(S,Sc, R). Thus, if S∗ ⊆
S 6= ∅ with int(S) ∩ S∗, it follows PN(S∗,Sc, R) ⊆ PN(S,Sc, R). PN(S∗,Sc, R) is

therefore obtained from PN(S,Sc, R) as base instead of PF (sc, R). As with additional

information, it is interesting how additional cost information S∗c ⊂ Sc impacts the

set PN(S,Sc, R). The following Theorem shows that additional cost information can

eliminate some non-dominated portfolios, but cannot add new ones.

Theorem 3.5. Let S∗c ⊂ Sc. Then,

PN(S,S∗c , R) ⊆ PN(S,Sc, R).
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Proof. Since S∗c ⊆ Sc, we can find every set of non-dominated portfolios PN(S, s∗c , R)

with s∗c ∈ S∗c defined on the basis of Sc.

As with additional information, we can use PN(S,Sc, R) as a basis for the calculation

of PN(S,S∗c , R).

Taken together, we have outlined that additional information, S∗, and additional

cost information, S∗c , cannot add new portfolios to PN(S,Sc, R). Thus, PN(S,Sc, R)

satisfies important properties in the context of the core index concept. Therefore, we

can use the set of all non-dominated portfolios PN(S,Sc, R) to introduce a core index

that fits to the interval-cost concept.

Definition 3.8. The alternative budget-dependent core index of project xj at budget

level R is

CI(xj,S,Sc, R) =
|{p ∈ PN(S,Sc, R) | xj ∈ p}|

|PN(S,Sc, R)|
.

As with the budget-dependent core index, the alternative budget-dependent core

index is applicable for project interactions as well—i.e., core indices CI(x̃k,S,Sc, R)

and CI(x̂l,S,Sc, R). Further, the alternative budget-dependent core index facili-

tates the establishment of the sets of core projects XC(S,Sc, R), borderline projects

XB(S,Sc, R), and exterior projects XE(S,Sc, R). Due to the validity of Theorem

3.2 for PN(S,Sc, R), the results of Corollaries 3.1 and 3.2 hold. Thus, for a fixed R,

the decision information with respect to project values and evaluation criteria weights

comes from CI(xj,S,Sc, R) as from CI(xj,S). Additionally, C(xj,S,Sc, R) pro-

vides decision information with respect to project costs. Specifically, core (exterior)

projects (interactions) remain core (exterior) projects (interactions) even if additional

cost information is given. The corresponding corollary can be derived from Theorem

3.5.

Corollary 3.3. Let S∗c ⊆ Sc. Then, XC(S,Sc, R) ⊆ XC(S,S∗c , R) and XE(S,Sc, R) ⊆
XE(S,S∗c , R) holds.

As with score information, we can reduce the set of projects for which additional

cost information is useful. The following theorem states that additional cost informa-

tion can reduce the set of all non-dominated portfolios only if it relates to borderline

or core (dummy) projects.
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Theorem 3.6. Let S∗c ⊂ Sc so that cj∗ = cj, c̃k∗ = c̃k, ĉl∗ = ĉl and cj∗ =

cj, c̃
k∗

= c̃
k
, ĉ

l∗
= ĉ

l ∀xj, x̃k, x̂l ∈ XB(S,Sc, R)∪XC(S,Sc, R). Then, PN(S,Sc, R) =

PN(S,S∗c , R) holds.

Proof. (i) PN(S,S∗c , R) ⊆ PN(S,Sc, R) : Follows from Theorem 3.5.

(ii) PN(S,Sc, R) ⊆ PN(S,S∗c , R) : Assume contrary to the claim ∃p ∈ PN(S,Sc, R)

s.t p /∈ PN(S,S∗c , R). From p ∈ PN(S,Sc, R) ⇒ ∃sc ∈ Sc for which p ∈
PN(S, sc, R). Due to the presumptions ∃s∗c ∈ S∗c for that C(p′, s∗c) = C(p′, sc) ∀p′

∈ PN(S,Sc, R) including p. This implies that p ∈ PF (s∗c , R) so there must be a

p′ ∈ PN(S, s∗c , R) s.t. p′ �S p. Since p′ ∈ PN(S, s∗c , R) we have p′ ∈ PN(S,Sc, R)

and therefore C(p′, s∗c) = C(p′, sc). This means that p′ ∈ PF (sc, R) wherefore

p /∈ PN(S, sc, R) which is a contradiction.

Although core projects are robust choices in the sense that they are unaffected

by additional information and additional cost information, Corollaries 3.1 and 3.3, a

change in their cost bounds may eliminate non-dominated portfolios. This is since

there may exist portfolios p, p′ ∈ PN(S,Sc, R) so that p′ �S p wherefore a certain cost

scenario is necessary for which p is feasible but not p′. Additional cost information

concerning a core or a borderline project may eliminate this cost scenario. In the

opposite, additional cost information relating exterior projects cannot eliminate this

cost scenario. Increasing lower cost bounds of core projects or borderline projects

may also eliminated some non-dominated portfolios if they are not feasible anymore.

Thus, an increase of the core or exterior projects’ lower cost bounds tells a DM how

sensitive a p ∈ PN(S,Sc, R)\PN(S, sc, R) is with respect to the costs of core and

exterior projects.

The alternative budget-dependent core index approach allows one to define addi-

tional information and additional cost information simultaneously. However, for the

purpose of promoting learning, we suggest defining either additional information and

generating the new set of all non-dominated portfolios or defining new cost informa-

tion and generating the new set of all non-dominated portfolios. This allows one to

backtrack if a discarded portfolio is sensitive with respect to project scores and criteria

weights or with respect to project costs. Therefore, the alternative budget-dependent

core index approach allows DM’s to investigate the robustness of projects and port-

folios with respect to costs as well as score and weight information for a fixed budget
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level R.

This section has introduced costs of a portfolio. These costs are incorporated

into the evaluation process through efficient portfolios and a relationship-evaluation

concept for non-dominated portfolios was given (Theorem 3.3). Further, a cost–benefit

band was defined to support the determination of the budget level R. The link to the

selection of single projects and programs is given by the budget-dependent core index

or by the alternative budget-dependent core index.

The concept is usable for resource categories with incomplete information on re-

source requirements and availability. Further, the concept may be upgraded to con-

sider multiple resource categories and budget simultaneously. In this case, Definition

3.5 (efficiency) can be extended to form another cost inequality for each additional re-

source category, and Theorem 3.3 can be applied successively to incorporate resource

categories one by one into the extended information set.
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Chapter 4

Implementation of Strategic

Buckets in the Robust Model

The main purpose of strategic buckets is to enforce a strategic resource/budget al-

location between them; see Requirements 2.3 and 2.4. (To keep with the notation

of Section 3.4, we focus the investigation on budget, but the concept is also valid

for any resource category). The strategic budget allocation is flexible in the sense

that a strategic bucket receives more budget than is proposed strategically if it con-

tributes extra to the overall portfolio value; see Requirement 2.5. More budget than

strategically proposed for some strategic buckets means less budget than strategically

proposed for some others. Therefore, it is desirable to extend the cost–benefit anal-

ysis from Section 3.4 such that: (i) for any budget level R ∈ R+ the allocation of R

among strategic buckets with the highest portfolio overall value is identified and (ii)

flexible strategic allocation constraints for the budget allocation are satisfied. There-

fore, Section 4.1 introduces strategic buckets for the RPM model. Sections 4.2 and

4.3 address the extension of the cost–benefit analysis with respect to (i). Section 4.4

covers the extension of the cost–benefit analysis with respect to (ii). Section 4.5 covers

the allocation of a fixed budget level R among strategic buckets. Finally, Section 4.6

combines results from the foregoing sections and introduces the extended cost–benefit

analysis which satisfies the requirements of a strategic-bucket structure.
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4.1 Introduction to Strategic Buckets

4.1 Introduction to Strategic Buckets

Let us assume that the set of projects X is split into strategic buckets X1, . . . , XQ ⊆ X

so that Xq represents a strategic bucket of the lowest level for q = 1, . . . , Q. Every

(dummy) project, xj, x̃k, x̂l ∈ X, is contained in exactly one Xq so that Xq ∩Xq∗ = ∅
for q 6= q∗ and

⋃Q
q=1Xq = X.

A subportfolio, pq ⊆ Xq, is a subset of (dummy) projects within one single strategic

bucket. The set of all theoretically possible subportfolios for Xq is the power set

P q := 2Xq . The relationship to the set of all theoretically possible portfolios, P , is

given by

P =

Q⊕
q=1

P q :=
{
p1 ∪ · · · ∪ pQ | pq ∈ P q for q = 1, . . . , Q

}
. (4.1)

Thus, any portfolio p ∈ P has a unique description through a union of Q subportfolios

p =
⋃Q
q=1 pq with pq ∈ P q. We refer to the subportfolios of p as p1, . . . , pQ.

To meet Requirement 2.10, we assume that every Xq has its own set of nq evalua-

tion criteria. As a consequence, every Xq is associated with an information set Sq and

we assume that for every information set, S1, . . . ,SQ, the same assumptions hold as

for the information set S in the foregoing chapter. A particular realization of criteria

weights and (dummy) project scores for strategic bucket Xq is denoted by sq ∈ Sq.
The notations sq and sq are used to indicate particular realizations where (dummy)

project scores are set to their lower or upper bounds, respectively. The definitions of

S1, . . . ,SQ are allowed since Xq∩Xq∗ = ∅ for q 6= q∗ so that every project is evaluated

with respect to a unique set of evaluation criteria.

The information set for X under a strategic bucket structure appears as the

Cartesian product S := S1 × . . . × SQ, and s := (s1, . . . , sQ) ∈ S is equivalent

to s1 ∈ S1, . . . , sQ ∈ SQ. This implies that sq can be selected independently from sq
∗

for q∗ 6= q, which has important implications for the further investigations.

First, we investigate the overall value of subportfolios. The overall value of sub-

portfolio pq is the sum of the overall values of its (dummy) projects. Thus, the

definition of the overall value of a subportfolio is analogous to the definition of the

overall value of a portfolio (3.6) and is therefore denoted by V (pq, s
q).

For the overall value of project portfolio p, notice that p in general consists of

(dummy) projects within different strategic buckets. Thus, (dummy) projects within
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4.1 Introduction to Strategic Buckets

portfolio p are evaluated by multiple sets of evaluation criteria so that we are interested

in premises to keep up the additivity assumption of the overall value of a portfolio. In

Golabi et al. (1981), premises for the additivity assumption are discussed, assuming

a certain set of evaluation criteria for every single project. Therefore, we can further

assume that the overall value of a portfolio is the sum of the overall values of its

(dummy) projects. This implies that the overall value of portfolio p under a strategic

bucket structure is the sum of the overall values of its subportfolios:

V (p, s) :=

Q∑
q=1

V (pq, s
q). (4.2)

Nevertheless, subportfolios are evaluated by different sets of multiple evaluation

criteria. For the evaluation of projects on multiple criteria, in the RPM approach the

project scores for each evaluation criterion are scaled so that vji ∈ [0, 1] (for scaling

issues see Clemen and Smith 2009). Therefore, the overall value of subportfolio pq

increases with the number of evaluation criteria, nq, so that the impact of subportfolio

pq on the overall value of portfolio p depends on the number of evaluation criteria, nq.

Since a strategic bucket, Xq, is represented in the overall value of a portfolio by the

corresponding subportfolio, the priority of a strategic bucket would also depend on the

number of its evaluation criteria, nq. In our discussion about budget allocation among

strategic buckets, however, we will assume that every strategic bucket, X1, . . . , XQ,

has the same priority (although other approaches are conceivable, see Section 7).

Hence, we have to replace the overall value of a portfolio (4.2) with the normalized

overall value:

V (p, s) :=

Q∑
q=1

1

nq
V (pq, s

q). (4.3)

Despite the redefinitions of V (p, s) and S, the dominance concept and its decision

procedure introduced in Section 3.3 holds. In the following, we show that under cer-

tain conditions the dominance concept is transferable to subportfolios and decisions

about subportfolios allow conclusions for decisions about the entire portfolio. There-

fore, notice that Section 2.3 about strategy motivates the separation of constraints

between strategic buckets. The only exceptions would be resource constraints. How-

ever, Section 3.4 demonstrated that resources are not formulated as constraints in the

RPM. Thus, we assume that constraints are divided among strategic buckets. Sep-
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4.1 Introduction to Strategic Buckets

arated constraints between strategic buckets means that matrices A, Ã and Â from

(3.16) are defined as follows.

A =


A1 0 . . . 0

0 A2
. . .

...
...

. . . . . . 0

0 . . . 0 AQ

 , Ã =


Ã1 0 . . . 0

0 Ã2
. . .

...
...

. . . . . . 0

0 . . . 0 ÃQ

 , Â =


Â1 0 . . . 0

0 Â2
. . .

...
...

. . . . . . 0

0 . . . 0 ÂQ


with Aq being matrices containing coefficients for projects within Xq. Analogously,

matrices Ãq and Âq store coefficients about dummy projects within Xq.

The bijection z : P → {0, 1}m×1 can be divided into z1(·), . . . ,zQ(·) so that zq(·)
represents the share for projects within Xq. In the same way the vectors z̃ and ẑ are

dividable. Further, we split the vector with the limits α into Q shares so that αq

can be associated with Aq. Thus, the following description for feasible portfolios is

similar to that in (3.16):

PF := {p ∈ P | Aqzq(pq) + Ãqz̃q(pq) + Âqẑq(pq) ≤ αq for q = 1, . . . , Q}. (4.4)

This means a portfolio p is feasible if all its subportfolios, p1, . . . , pQ, comply with

the corresponding subconstraints. The assumption about separated constraints has

therefore important implications. First, it allows one to define the set of feasible

subportfolios for any Xq, P
q
F := {pq ∈ P q | Aqzq(pq) + Ãqz̃q(pq) + Âqẑq(pq) ≤ αq}.

The set of feasible portfolios is given by PF =
⊕Q

q=1 P
q
F . Second, it allows even the

definition of the set of non-dominated subportfolios for any Xq with the information

set Sq, P q
N(Sq) := {pq ∈ P q

F | @p′q ∈ P
q
F s.t. p′q �Sq pq}. Even here, the relationship

PN(S) =
⊕Q

q=1 P
q
N(Sq) holds. These results are summarized in Theorem 4.1.

Theorem 4.1. Consider a set of projects, X, divided into strategic buckets, X1, . . . , XQ

with information set S = S1 × . . . × SQ. If feasibility constraints Az(p) + Ãz̃(p) +

Âẑ(p) ≤ α are dividable into Aqzq(pq) + Ãqz̃q(pq) + Âqẑq(pq) ≤ αq for q = 1, . . . , Q

then the following holds.

(i) PF =
Q⊕
q=1

P q
F

(ii) PN(S) =
Q⊕
q=1

P q
N(Sq)
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Proof. (i) For any p ∈ PF ,

Az(p) + Ãz̃(p) + Âẑ(p) ≤ α
⇐⇒ Aqzq(pq) + Ãqz̃q(pq) + Âqẑq(pq) ≤ αq for q = 1, . . . , Q

⇐⇒ pq ∈ P q
F for q = 1, . . . , Q.

(ii) PN(S) ⊆
Q⊕
q=1

P q
N(Sq):

Assume, contrary to the claim, that ∃p ∈ PN(S) s.t. p /∈
⊕Q

q=1 P
q
N(Sq). Since

p ∈ PN(S), we have p ∈ PF and, due to (i), we have pq ∈ P q
F for q = 1, . . . , Q.

From p /∈
⊕Q

q=1 P
q
N(Sq), ∃q∗ s.t. pq∗ /∈ P q∗

N (Sq
∗
). Therefore, ∃p′q∗ ∈ P q∗

N (Sq
∗
)

s.t. p′q∗ �Sq∗ pq∗ and the portfolio p′ =
⋃Q

q=1
q 6=q∗

pq ∪ p′q∗ ∈ PF . From this, p′ �S p,

which is a contradiction.

Q⊕
q=1

P q
N(Sq) ⊆ PN(S):

Assume, contrary to the claim, that ∃p1 ∈ P 1
N(S1), . . . , pQ ∈ PQ

N (SQ) s.t. p =⋃Q
q=1 pq /∈ PN(S). From (i), we have p ∈ PF . Therefore, ∃p′ ∈ PN(S) s.t.

p′ �S p. If p′1, . . . , p
′
Q are the subportfolios of p′, we have p′q ∈ P

q
F for q = 1, . . . , Q

due to (i) again. Since p′ �S p we have:

p′ �S p =⇒ V (p′, s)− V (p, s) ≥ 0 ∀s ∈ S

⇐⇒ min
s∈S

[
V (p′, s)− V (p, s)

]
≥ 0

⇐⇒ min
s1∈S1,...,sQ∈SQ

[ Q∑
q=1

1
nq
V (p′q, s

q)−
Q∑
q=1

1
nq
V (pq, s

q)
]
≥ 0

⇐⇒
Q∑
q=1

1
nq

[
min
sq∈Sq

[
V (p′q, s

q)− V (pq, s
q)
]]
≥ 0.

If there ∃q∗ so that min
sq∗∈Sq∗

[V (p′q∗ , s
q∗) − V (pq∗ , s

q∗)] < 0 it follows from the

last equation ∃q∗∗ s.t. min
sq∗∗∈Sq∗∗

[V (p′q∗∗ , s
q∗∗) − V (pq∗∗ , s

q∗∗)] > 0. However, this

means that V (p′q∗∗ , s
q∗∗) > V (pq∗∗ , s

q∗∗) ∀sq∗∗ ∈ Sq∗∗ and p′q∗∗ �Sq∗∗ pq∗∗ which

is a contradiction. As a consequence we must assume that min
sq∈Sq

[V (p′q, s
q) −

V (pq, s
q)] ≥ 0 ∀q = 1, . . . , Q. Since p′ �S p there ∃s◦ ∈ S for that V (p′, s◦) >

V (p, s◦) holds implying that ∃q� for that V (p′q� , s
q�
◦ ) > V (pq� , s

q�
◦ ) so that pq� /∈

P q
N(Sq

♦
) what is a contradiction and finishes our proof.
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4.2 The Marginal Value of a Strategic Bucket

Theorem 4.1 gives the set of non-dominated portfolios, PN(S), from the sets of non-

dominated subportfolios, P q
N(Sq). This has positive consequences for the calculation

time of PN(S) since it depends heavily on the number of projects; see Chapter 5.

From Section 3.3, we know that additional information may eliminate some non-

dominated portfolios but cannot add new ones. That is, PN(S∗) ⊆ PN(S) for S∗ ⊂ S
with int(S) ∩ S∗ 6= ∅. Since the results of Theorem 4.1 also hold for S∗ we obtain

PN(S∗) =
⊕Q

q=1 P
q
N(S∗q). Thus, additional information can eliminate some non-

dominated subportfolios, but cannot add new ones to any P q
N(S∗q), so P q

N(S∗q) can

be obtained from P q
N(Sq) by pairwise dominance checks. Further, it is obvious that

additional information with respect to Sq —i.e. S∗q ⊂ Sq with int(Sq) ∩ S∗q 6= ∅—
can just eliminate subportfolios within P q

N(Sq) but not within any other P q′

N (Sq
′
) for

q′ 6= q. In short, the decision information introduced in Section 3.3 also holds for the

sets of non-dominated subportfolios and the set of non-dominated portfolios can be

calculated using Theorem 4.1.

Thus, the decision about the optimal portfolio can be divided into the independent

decisions of optimal subportfolios. That is useful if strategic buckets X1, . . . , XQ have

their own DM or one is going to drill down the analysis into a Xq, see Section 2.

4.2 The Marginal Value of a Strategic Bucket

One approach for the optimal allocation of a fixed R ∈ R+ among X1, . . . , XQ, is

given by define the marginal value of Xq (further conceivable approaches are outlined

in Section 7). The marginal value of Xq describes how efficient Xq uses a marginal

budget increase and therefore whether it is a candidate for additional funding. For the

definition of the marginal value of Xq, we apply cost–benefit analysis for the project

set X from Section 3.4 to Xq. Therefore, notice that the entire cost information Sc

can be separated into S1
c , . . . ,S

Q
c since Xq ∩ Xq∗ = ∅ for q 6= q∗. The entire cost

information can be regarded as their Cartesian product Sc = S1
c × . . . × SQc . A

particular realization of project costs for strategic bucket Xq is denoted by sqc ∈ Sqc .
The notation sqc and sqc, respectively, is used to indicate the realizations where project

costs are set to their lower or upper bounds, respectively.

The cost for subportfolio pq is given by C(pq, s
q
c) with C(·, ·) from (3.19). Con-

sequently, the cost of a portfolio p is the sum of costs of its subportfolios p1, . . . , pQ:
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4.2 The Marginal Value of a Strategic Bucket

C(p, sc) =

Q∑
q=1

C(pq, s
q
c). (4.5)

Taking the total cost of subportfolios, we can define the set of efficient subportfolios

for any strategic bucket Xq:

P q
E(Sq,Sqc ) :=

{
pq ∈ P q

F | @p
′
q ∈ P

q
F s.t.

{
V (p′q, s

q) ≥ V (pq, s
q) ∀sq ∈ Sq

C(p′q, s
q
c) ≤ C(pq, s

q
c) ∀sqc ∈ Sqc

}}
,

with at least one strict inequality for some sq ∈ Sq or sqc ∈ Sqc . Using Theorem 3.3,

we find the relationship P q
N(Šq) = P q

E(Sq,Sqc ), and through Theorem 4.1, we obtain

PE(S,Sc) =
⊕Q

q=1 P
q
E(Sq,Sqc ).

Let us denote the share of R allocated to Xq by Rq. Then we can define the set

of feasible subportfolios, P q
F (sqc, Rq) := {pq ∈ P q

F | C(pq, s
q
c) ≤ Rq}, that are attainable

with fixed sqc ∈ Sqc and Rq and the corresponding set of non-dominated subportfolios,

P q
N(Sq, sqc, Rq) := {pq ∈ P q

F (sqc, Rq) | p′q �Sq pq ∀p′q ∈ P q
F (sqc, Rq)}, with regard to

information set Sq. Since the results of Theorem 3.4 also hold for P q
N(Sq, sqc, Rq) and

P q
E(Sq,Sqc ), the cost–benefit band for Xq is defined analogously to the cost–benefit

band in Section 3.4. The bounds of the cost–benefit band for strategic bucket Xq are

then given by

Maximal overall value for Xq:

MVq(Rq) := max
pq∈P q

N (Sq ,sqc ,Rq)
max
sq∈Sq

V (pq, s
q),

Guaranteed overall value for Xq:

GVq(Rq) := max
pq∈P q

N (Sq ,sqc ,Rq)
min
sq∈Sq

V (pq, s
q).

The cost–benefit bands for X1, . . . , XQ are the basis for the calculation of marginal

values ∆1(R1), . . . ,∆Q(RQ). The marginal value ∆q(Rq) measures how efficiently

subportfolios pq ∈ P q
E(Sq,Sqc ) use a marginal increase of Rq to Rq + δ and is therefore

a measure of whether Xq is a candidate for additional funding. However, the cost–

benefit band for Xq depends on information sq ∈ Sq as well as on costs sqc ∈ Sqc ,
implying ∆q(Rq) = ∆q(Rq, s

q, sqc). The dependency on information sq and costs sqc
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4.2 The Marginal Value of a Strategic Bucket

impacts the definition of ∆q(Rq, s
q, sqc) as well as the preference evaluation among

∆1(R1, s
1, s1

c), . . . ,∆Q(RQ, s
Q, sQc ).

For the definition of ∆q(Rq, s
q, sqc), let us consider the cost–benefit band of Xq.

It is described by the sets of non-dominated subportfolios, P q
N(Sq, sqc, Rq), with fixed

costs sqc. To ensure that all subportfolios in the set of non-dominated subportfolios

are feasible, even for their worst case cost scenario, we use costs sqc so that we have

P q
N(Sq, sqc, Rq). Since the composition of P q

N(Sq, sqc, Rq) can change only at levels

Rq ∈ {C(pq, s
q
c) | pq ∈ P q

E(Sq,Sqc )}, the cost–benefit band of Xq changes at these

levels only; see Figure 3.1. Thus, if δq(Rq) represents the marginal increase of Rq, it

should be the smallest increase so that a new subportfolio pq ∈ P q
E(Sq,Sqc ) enters into

the set of non-dominated subportfolios with cost scenario sqc:

δq(Rq) := inf
pq∈P q

E(Sq ,Sq
c )
{C(pq, s

q
c)−Rq | C(pq, s

q
c) > Rq,

pq ∈ P q
N(Sq, sqc, Rq + δq(Rq))}.

(4.6)

Note, for given costs, sqc, any increase of Rq less than δq(Rq) is a waste of money since

no new opportunity becomes feasible. Conversely, if Rq is increased by δq(Rq), it is

ensured that a new opportunity becomes feasible even for the worst-cost scenario, sqc.

The marginal value ∆q(Rq, s
q, sqc) is then received through comparing subportfolios

between P q
N(Sq, sqc, Rq) and P q

N(Sq, sqc, Rq + δq(Rq)).

In what follows, let arg min and arg max denote the sets of variables that minimize

and maximize, respectively, the given functions. For a given sq ∈ Sq, let us introduce

the following notation:

P q
M(sq, Rq) := arg max

pq∈P q
N (Sq ,sqc ,Rq)

V (pq, s
q)

and
P q
M(sq, Rq + δq(Rq)) := arg max

pq∈P q
N (Sq ,sqc ,Rq+δq(Rq))

V (pq, s
q).

If we use this notation, the definition of the marginal value for a strategic bucket reads

as follows.

Definition 4.1. Consider budget level Rq, scenario sq ∈ Sq, and cost scenario

sqc ∈ Sqc . Further, let p′q ∈ P q
M(sq, Rq + δq(Rq)) and p′′q ∈ P q

M(sq, Rq) such that

p′q ∈ arg minpq∈P q
M (sq ,Rq+δq(Rq))C(pq, s

q
c) and p′′q ∈ arg minpq∈P q

M (sq ,Rq) C(pq, s
q
c). Then
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is the marginal value for Xq given by

∆q(Rq, s
q, sqc) :=

V (p′q, s
q)− V (p′′q , s

q)

C(p′q, s
q
c)− C(p′′q , s

q
c) + ε

with δq(Rq) given by (4.6) and a small ε > 0.

The ε in the denominator ensures that the denominator cannot assume a value less

than or equal to zero. In the definition of ∆q(Rq, s
q, sqc), we always use those sub-

portfolios p′q ∈ P q
N(Sq, sqc, Rq + δ(Rq)) and p′′q ∈ P q

N(Sq, sqc, Rq) that maximize the

overall value for given information, sq. This approach is motivated by the assump-

tion that a rational DM would for given information, sq, choose the subportfolio with

the highest overall value, since every considered subportfolio is feasible no matter

what its costs. Further, the subportfolios that maximize the overall value remain in

the set of non-dominated subportfolios, P q
N(Sq, sqc, Rq), even if additional informa-

tion is defined that confirms the subportfolios as optimal, see Theorem 3.2. For the

case that P q
M(sq, Rq + δq(Rq)) and/or P q

M(sq, Rq) consist of multiple subportfolios, we

choose the subportfolio(s) with the lowest cost for the given cost scenario, sqc. Sum-

marizing, we will choose those subportfolios p′q and p′′q which best represent the sets

P q
N(Sq, sqc, Rq + δq(Rq)) and P q

N(Sq, sqc, Rq) subject to a maximal overall value, with

sq and sqc given.

Consider the subportfolio that becomes feasible at budget level Rq + δq(Rq), de-

noted by p∗q. The set of non-dominated subportfolios, P q
N(Sq, sqc, Rq + δ(Rq)), is easily

obtained through P q
N(Sq, sqc, Rq). We just have to add p∗q to P q

N(Sq, sqc, Rq) and remove

all subportfolios dominated by p∗q through dominance checks (3.18). Therefore we can

derive the following properties for ∆q(Rq, s
q, sqc).

(i) ∆q(Rq, s
q, sqc) ≥ 0 ∀sq ∈ Sq and ∀sqc ∈ Sqc ,

(ii) ∆q(Rq, s
q, sqc) > 0⇐⇒ V (p∗q, s

q) > max
pq∈P q

N (Sq ,sqc ,Rq)
V (pq, s

q).

Condition (i) reflects the fact that the cost–benefit band of Xq is non-decreasing.

Since the denominator is bigger than zero, condition (i) is straightforwardly obtained

from the explanation of the composition of P q
N(Sq, sqc, Rq + δ(Rq)) above. Just take p′q

and p′′q from Definition 4.1 and if p′′q ∈ P
q
N(Sq, sqc, Rq + δq(Rq)) set p′q = p′′q otherwise

set p′q = p∗q. Condition (ii) also arises from the explanation above which implies that

P q
N(Sq, sqc, Rq + δq(Rq))\p∗q ⊆ P q

N(Sq, sqc, Rq).
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Conditions (i) and (ii) are helpful for the calculation of ∆q(Rq, s
q, sqc). Instead of

the identification of P q
M(sq, Rq +δq(Rq)), the set of subportfolios with maximal overall

value for a given sq ∈ Sq, we can simply use p∗q. For a given sq ∈ Sq, ∆q(Rq, s
q, sqc) 6= 0

iff V (p∗q, s
q)−V (pq, s

q) > 0 with pq ∈ P q
M(sq, Rq), otherwise ∆q(Rq, s

q, sqc) = 0 so that

∆q(Rq, s
q, sqc) = max

{
V (p∗q, s

q) − V (p′′q , s
q)

C(p∗q, s
q
c) − C(p′′q , s

q
c) + ε

, 0

}
, (4.7)

where p′′q ∈ arg minpq∈P q
M (sqc ,Rq) C(pq, s

q
c). Thus, for given information sq ∈ Sq and

given cost information sqc ∈ Sqc , the marginal value ∆q(Rq, s
q, sqc) is easily obtained.

We just have to identify P q
M(sq, Rq) and subsequently the subportfolio p′′q ∈ P

q
M(sq, Rq)

with the lowest cost for sqc. However, for the budget allocation between strategic

buckets, DMs may be more interested in the range of values which a marginal value

∆q(Rq, s
q, sqc) can assume—i.e., DMs are interested in ∆q(Rq, s

q, sqc) and ∆q(Rq, s
q, sqc)

with
∆q(Rq, s

q, sqc) := min
sq∈Sq ,sqc∈Sq

c

∆q(Rq, s
q, sqc),

∆q(Rq, s
q, sqc) := max

sq∈Sq ,sqc∈Sq
c

∆q(Rq, s
q, sqc).

For the calculation of ∆q(Rq, s
q, sqc) notice that the set P q

N(Sq, sqc, Rq + δ(Rq)) is

represented by the subportfolio p∗q as specified in equation (4.7). Further, notice that

the maximization with respect to sq corresponds to the maximization of the numerator

in (4.7) and the maximization with respect to sqc corresponds to the minimization of

the denominator in (4.7).

The maximization of the numerator in (4.7) is achieved if (dummy) project scores

are set to their upper bound if they relate to p∗q and to their lower bound if not.

We will denote those scenarios by sp
∗
q . Therefore, for a given pq ∈ P q

N(Sq, sqc, Rq) the

maximization of the numerator in (4.7) depends only on the weights of evaluation

criteria wq ∈ Swq . Thus, the maximum of the numerator in (4.7) for a given pq ∈
P q
N(Sq, sqc, Rq) is given by the solution of the following linear optimization problem:

∆̃q(pq) := max
wq∈Sq

w

(
V (pq, s

p∗q )− V (pq, s
p∗q )
)

subject to

V (p′′′q , s
p∗q ) ≤ V (pq, s

p∗q ) ∀p′′′q ∈ PN(Sq, sqc, Rq)\pq

(4.8)

The constraints in the optimization problem (4.8) ensure that pq ∈ P q
M(sq, Rq) holds.
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Since PN(Sq, sqc, Rq) is not represented by a certain subportoflio pq we have to calculate

∆̃q(pq) for all pq ∈ PN(Sq, sqc, Rq).

To receive the maximum from the fraction in (4.7) we must divide the obtained

maximums, ∆̃q(pq), with the corresponding minimums of the denominator. The min-

imum of the denominator in (4.7) is obtained if (dummy) project costs are set to their

lower bound if they relate to p∗q and to their upper bound if not. We will denote this

cost scenario by s
p∗q
c . Thus, we simply divide the maximums of the numerators ∆̃q(pq)

by the corresponding cost differences C(p∗q, s
p∗q
c )−C(pq, s

p∗q
c )+ε. The received maximum

is then ∆q(Rq, s
q
c, s

q) if it is greater than zero. Otherwise we have ∆q(Rq, s
q
c, s

q) = 0

according to (4.7). (Note, if for a pq the value ∆̃q(pq) is also achieved by another

subportfolio p′′′q , we have to remove pq from the calculation of ∆q(Rq, s
q, sqc) if its costs

at the cost scenario s
p∗q
c are higher than the costs from p′′′q . This is since in this case

pq /∈ arg minPM (sq ,Rq) C(pq, s
p∗q
c )).

The calculation of ∆q(Rq, s
q, sqc) works analogously. However, if P q

N(Sq, sqc, Rq +

δ(Rq)) 6= p∗q we receive P q
N(Sq, sqc, Rq + δ(Rq))∩P q

N(Sq, sqc, Rq) 6= ∅. Thus, there exists

a subportfolio p′′q for which p′′q ∈ P
q
N(Sq, sqc, Rq + δ(Rq)) and p′′q ∈ P

q
N(Sq, sqc, Rq) holds.

For p′′q , we can find a certain scenario, sq, so that V (p∗q, s
q) ≤ V (p′′q , s

q). This implies

that ∆q(Rq, s
q, sqc) = 0 according to (4.7).

4.3 Strategic-Bucket Preference Evaluation Based

on the Marginal Value

When different weights and/or scores are selected from the information set S and/or

different costs are selected from cost information Sc, the marginal values of strategic

buckets vary within the intervals [∆q(Rq, s
q, sqc),∆q(Rq, s

q, sqc)] for q = 1, . . . , Q. For

the identification of the marginal value of the preferred strategic bucket, we could

use the dominance concept again. However, the dominance concept outlines a unique

solution only on rare occasions. For the case of multiple solutions, interactions with

the DM are required. This is a serious disadvantage in the context of budget allocation

between strategic buckets. The budget level, R, is determined through a cost–benefit

analysis employing the cost–benefit band for X; see Section 3.4. The overall cost–

benefit band, however, depends on the allocation of R among X1, . . . , XQ. Thus, to

calculate the cost–benefit band for X it would be necessary to set interaction effects for
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4.4 Strategic Budget Allocation Constraints

all R ∈ R+ where the cost–benefit band can change. Since this is too time consuming,

we need another preference measure.

Hence, instead of the dominance concept, we will use the minimax–regret rule

as preference criterion. The minimax–regret rule suggests the marginal values for

which the maximum loss is smallest. Theory and algorithms for the calculation of

the minimax–regret rule are to find in Kasperski (2008) as well as in Kouvelis and Yu

(1996). If ∆ denotes the collection of marginal values ∆1(R1, s
1, s1

c), . . . ,∆Q(RQ, s
Q, sQc ),

the suggested marginal values are given by

∆mmr := min
∆q∈∆

max
s∈S, sc∈Sc,

∆q′∈∆

{
1

nq′
∆q′(Rq′ , s

q′ , sq
′

c )− 1

nq
∆q(Rq, s

q, sqc)

}
. (4.9)

Although the minimax–regret rule does not guarantee a unique solution neither, the

solution set may be incomparably smaller than the set of non-dominated marginal

values. Thus, the minmax–regret rule should be a suitable decision criterion for the

funding of strategic buckets.

The calculation of ∆mmr depends on the calculation of the extreme points of the

marginal values. Therefore, notice that the maximization with respect to s ∈ S and

sc ∈ Sc can be separated so that the minimax–regret rule appears as

∆mmr = min
∆q∈∆

max
∆q′∈∆

{
1

nq′
∆q′(Rq′)−

1

nq
∆q(Rq)

}
. (4.10)

4.4 Strategic Budget Allocation Constraints

To guarantee a certain strategic alignment of the selected portfolio, it is necessary

to constrain the allocation of R among X1, . . . , XQ; see Section 2.3. Thus, every

Rq is allowed to vary between a minimum and maximum ratio to R, generating the
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4.4 Strategic Budget Allocation Constraints

following set of constraints.

rqR− ιq(sqc) ≤ Rq ≤ rqR + ιq(s
q
c) (4.11)

R1 + · · ·+RQ ≤ R (4.12)

r1 + · · ·+ rQ ≤ 1 (4.13)

r1 + · · ·+ rQ ≥ 1 (4.14)

0 ≤ rq ≤ rq ≤ 1 (4.15)

q = 1, . . . , Q

The constants rq and rq are the minimum and maximum proportional ratio for Rq to

R. Constraint (4.11), therefore, ensures that every Rq is within its flexible range. The

functions ιq(s
q
c) and ιq(s

q
c) in (4.11) only adjust the minimum and maximum ratios to

costs of subportfolios:

ιq(s
q
c) := rqR−max{C(pq, s

q
c) | pq ∈ P

q
E(Sq,Sqc ), C(pq, s

q
c) ≤ rqR},

ιq(s
q
c) := min{C(pq, s

q
c) | pq ∈ P

q
E(Sq,Sqc ), C(pq, s

q
c) ≥ rqR} − rqR.

The adjustment of the lower bound rqR by ιq(s
q
c) is necessary because if a strategic

bucket Xq does not receive additional funding, the budget amount ιq(s
q
c) would be

wasted in the sense that it does not enable a new opportunity. In the opposite scenario,

if a strategic bucket Xq is funded by the lower bound, the adjustment by ιq(s
q
c) does

not destroy any opportunity, see the allocation procedure in the next section.

The adjustment of the upper bound by ιq(s
q
c) is just necessary if the solution

space, described by the constraint set above, is empty. Although Constraints (4.13)

and (4.14) ensure that R can be continuously allocated among X1, . . . , XQ, this is not

true if the allocation is based on subportfolio costs, sqc. That is, if strategic bucket Xq

is considered to be valuable for additional funding at budget level Rq, the additional

budget amount for Xq is given by δq(Rq). Thus, we can imagine a situation in which

Rq + δq(Rq) > rqR for q = 1, . . . , Q but R −
∑Q

q=1Rq ≥ δq(Rq) holds for at least

one q ∈ {1, . . . , Q}. If we increase the upper bound for strategic bucket Xq, we can

increase its funding level to Rq + δq(Rq) so that a new opportunity becomes available.

Otherwise, the budget amount R−
∑Q

q=1Rq ≥ δq(Rq) is not utilized, see the allocation

procedure in the next section. Constraint (4.12) just ensures that at most the available

budget amount R is allocated among X1, . . . , XQ.
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4.5 Strategic, Preference-Based Budget Allocation

4.5 Strategic, Preference-Based Budget Allocation

For the allocation of a fixed budget level R among strategic buckets X1, . . . , XQ we

will assume that their cost-benefit bands have a concave form, like shown in Figure

3.1. This assumption is motivated by the fact that efficient portfolios at lower budget

levels include mostly projects with the best individual cost-benefit ratios. As the

budget level increases, projects with less attractive cost-benefit ratios are added to

maximize the overall value of the portfolios, see Liesiö et al. (2008). This implies that

the increase of the overall value of portfolios drops down with an increasing budget

level Rq and the cost-benefit band is concave.

If the assumption about concave cost-benefit bands holds, the most valuable al-

location of a fixed budget level R among strategic buckets can be identified via their

marginal values. Just start the allocation by the lower bounds for every strategic

bucket and allocate the remaining budget stock to strategic buckets with the ”best“

marginal value. Thus, for the allocation of a fix budget level, set Rq = rqR− ιq(sqc) for

q = 1, . . . , Q so that the allocation of
∑Q

q=1Rq is already fixed. The remaining budget

amount R −
∑Q

q=1Rq is optimally allocated among X1, . . . , XQ using their marginal

values. Therefore, identify the set of strategic buckets XF which is not fully funded:

XF :=
{
Xq | Rq < max{C(pq, s

q
c) | pq ∈ P

q
E(Sq,Sqc )}

}
. (4.16)

As long as R < max{C(p, sc) | p ∈ PE(S,Sc)}, the set XF 6= ∅. From XF , we can

determine the set XA that is qualified for additional allocation:

XA :=

{
Xq ∈XF | δq(Rq) ≤ R−

Q∑
q=1

Rq, Rq + δq(Rq) ≤ rqR

}
. (4.17)

If XA = ∅ and R−
∑Q

q=1Rq ≥ δq(Rq) for at least one Xq ∈XF , set rqR = rqR+ιq(s
q
c)

for all Xq ∈XF . Once XA is established, calculate marginal values ∆q(Rq, s
q, sqc) for

all Xq ∈ XA and identify the set of ∆mmr. If it is affordable, every strategic bucket

within ∆mmr receives additional fund—i.e., we set Rq∗ = Rq∗ + δq∗(Rq∗) for all q∗ for

that ∆q∗(Rq∗ , s
q∗ , sq

∗
c ) ∈ ∆mmr holds. Otherwise, we will identify that combination

of strategic buckets within ∆mmr with the highest available number of additionally

funded strategic buckets. If we set the corresponding Rq∗ = Rq∗+δq∗(Rq∗) the budget

level R should be used optimally. For all increased Rq∗ check whether Xq∗ ∈ XF
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holds and for the corresponding ones calculate the new δq∗(Rq∗). The procedure can

be started again with the determination of XA and it can be repeated until the entire

budget stock, R, is allocated among X1, . . . , XQ. That is, minq δq(Rq) > R−
∑Q

q=1 Rq.

If the remaining budget amount R −
∑Q

q=1Rq > 0, it is wasted in that sense that it

does not enable a new opportunity for costs sc.

4.6 Strategic-Bucket–Based Cost–Benefit Analysis

and Additional Information

4.6.1 Cost–benefit analysis

The cost–benefit analysis from Section 3.4 is based on sets of non-dominated portfolios,

PN(S, sc, R). These sets, PN(S, sc, R), on the other hand, are based on the sets

of feasible portfolios, PF (sc, R) from (3.20), which do not consider flexible budget

allocation constraints (4.11) to (4.15). As a consequence, the sets of PN(S, sc, R) are

not applicable for a cost–benefit analysis in the case of a strategic-bucket structure.

However, for a fixed R, we can find the optimal levels for R1, . . . , RQ through

the allocation procedure given in Section 4.5. The budget levels Rq are usable to

determine the sets of non-dominated subportfolios P q
N(Sq, sqc, Rq) for any fixed sqc ∈

Sqc . Furthermore, the budget levelsRq are useable to define the set of feasible portfolios

with respect to flexible allocation constraints (4.11) to (4.15),

PF (sc, R,RQ) := {p ∈ PF (sc, R) | C(pq, s
q
c) ≤ Rq for q = 1, . . . , Q}, (4.18)

whereby the vector RQ ∈ RQ contains the budget levels R1, . . . , RQ to highlight the

dependency on them. From PF (sc, R,RQ), we can determine the set of non-dominated

portfolios with respect to flexible budget allocation constraints:

PN(S, sc, R,RQ) := {p ∈ PF (sc, R,RQ) | p′ �S p ∀p′ ∈ PF (sc, R,RQ)}. (4.19)

Therefore, we can determine the guaranteed overall value and the maximal overall

value of the cost–benefit band for X at any fixed R. Moreover, since PF (sc, R,RQ)
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meets the assumptions for Theorem 4.1, PN(S, sc, R,RQ) =
⊕Q

q=1 P
q
N(Sq, sqc, Rq), so

MV (R,RQ) := max
p∈PN (S,sc,R,RQ)

max
s∈S

V (p, s) =
Q∑
q=1

1
nq
MVq(Rq),

GV (R,RQ) := max
p∈PN (S,sc,R,RQ)

min
s∈S

V (p, s) =
Q∑
q=1

1
nq
GVq(Rq).

(4.20)

In contrast to PN(S, sc, R), which can change its composition at levels R ∈
{C(p, sc) | p ∈ PE(S,Sc)} for some fixed sc only, the set PN(S, sc, R,RQ) may change

its composition also for budget levels R /∈ {C(p, sc) | p ∈ PE(S,Sc)}. Therefore, note

that the set PN(S, sc, R,RQ) depends on the budget levels R1, . . . , RQ. The determi-

nation of Rq, on the other hand, starts at rqR−ι(sqc) and is inserted into the calculation

of the marginal value ∆q(rqR−ι(sqc), sq, sqc), which serves as a decision base for the final

Rq. The allocation procedure stops as soon as no new opportunity for costs sc is avail-

able and adjusts upper limits by ιq(s
q
c) if it is necessary. Thus, PN(S, sc, R,RQ) may

change its composition at levels R ∈ {C(pq, s
q
c)/rq, C(pq, s

q
c)/rq, C(pq, s

q
c), C(pq, s

q
c) |

pq ∈ P q
E(Sq,Sqc ), q = 1, . . . , Q}. For the cost–benefit band this means that the value of

theGV (R,RQ) curve can increase at levelsR ∈ {C(pq, s
q
c)/rq, C(pq, s

q
c)/rq, C(pq, s

q
c) |

pq ∈ P q
E(Sq,Sqc ), q = 1, . . . , Q}. The levels where the MV (R,RQ) curve may

increase are given by R ∈ {C(pq, s
q
c)/rq, C(pq, s

q
c)/rq, C(pq, s

q
c), C(pq, s

q
c) | pq ∈

P q
E(Sq,Sqc ), q = 1, . . . , Q}.

4.6.2 Additional information

The distribution of R into R1, . . . , RQ depends on the marginal values, ∆q(Rq, s
q, sqc),

and therefore on the information set S as well as on the cost information Sc. The

dependency of Rq on S and Sc has adverse effects. If additional information is defined,

S∗ ⊂ S with int(S) ∩ S∗ 6= ∅ and/or S∗c ⊂ Sc, the values of Rq may change even if

the overall level R is fixed.

If we highlight the dependency of Rq on S and Sc by Rq = Rq(S,Sc), we may find

Rq(S,Sc) 6= Rq(S
∗,S∗c ) for fixed R and in further sequence

P q
N(S∗q, s∗qc , Rq(S

∗,S∗c )) * P q
N(Sq, s∗qc , Rq(S,Sc))
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with fixed s∗qc ∈ S∗q. This includes

PN(S∗, s∗c , R,RQ) * PN(S, s∗c , R,RQ)

since
Q⊕
q=1

P q
N(Sq, s∗qc , Rq(S,Sc)) = PN(S, s∗c , R,RQ)

holds for any information set S = S1 × . . .× SQ and any fixed cost s∗c ∈ S∗c .
However, this means that the results of Theorem 3.2 no longer hold and subse-

quently Corollaries 3.1 and 3.2 no longer hold either. Since their results are essential

for the decision process, the allocation of R among strategic buckets can be calculated

just once at the base of S and Sc. The minimax–regret rule, which serves as a decision

criterion for the distribution of R into R1, . . . , RQ, ensures that the greatest possible

loss of value relative to other distribution scenarios is smallest for any S∗ and S∗c .

Summarizing this chapter, we have introduced a strategic-bucket structure on

the set of projects X. The analysis is based on the assumption of separated con-

straints as well as separated sets of decision criteria and shows the relation of feasible,

non-dominated, and efficient subportfolios to feasible, non-dominated, and efficient

portfolios (Theorem 4.1). It is also shown how additional information impacts non-

dominated subportfolios. The main focus, however, was on the support of strategic

budget allocation between strategic buckets. We defined the marginal value for a

strategic bucket which is used to identify the optimal allowed budget allocation with

respect to the minimax–regret criterion. Finally, the optimal allocation of budget

levels, R, was used to define a cost–benefit band for X that satisfies budget-allocation

constraints.
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Chapter 5

Generation of Non-Dominated,

Efficient Portfolios

The RPM model corresponds to a general MOZOLP problem with interval-valued

objective-function coefficients. This problem has not been widely studied, so this

small chapter outlines the algorithm from Liesiö et al. (2008) for the computation of

non-dominated portfolios.

The computation of non-dominated and efficient portfolios is identical in the sense

that the set of efficient portfolios is equal to the set of non-dominated portfolios with

regard to the extended information set (Theorem 3.3). Thus, we only consider the

computation of the set PN without taking a stance on whether or not the information

set includes the cost criterion.

The calculation time of any algorithm depends heavily on the number of projects

(see Stummer and Heidenberger 2003). This leads to the disadvantage that problems

with a large number of projects may not be solvable in a reasonable time. However, if

the assumptions about separated constraints between strategic buckets and own sets of

decision criteria hold, Theorem 4.1 may provide a solution. In this case, any algorithm

for the calculation of PN(S) can be also used to calculate P q
N(Sq) ∀q ∈ {1, . . . , Q}.

The set of non-dominated portfolios, PN(S), is then obtained by their composition,

PN(S) =
⊕Q

q=1 P
q
N(Sq). Since every strategic bucket, Xq, contains only a subset

of the projects in X, the calculation time of PN(S) via the sets P q
N(Sq) should be

considerably shortened. For simplicity of notation, we consider the computation of

the set PN(S) only. The computation of any P q
N(Sq) is then identical.

For the formulation of the algorithm, we often focus the discussion on the non-
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dummy project-selection constraints without taking care about the dummy project-

selection constraints. Therefore, we define matrices B ∈ RT×m, B̃ ∈ RT×K , and

B̂ ∈ RT×L which contain the coefficients of the non-dummy project-selection con-

straint. Thus, matrix B corresponds to the last T rows from matrix A. Analogously,

matrices B̃ and B̂, respectively, correspond to the last T rows from matrices Ã and

Â, respectively. Additionally, we record the corresponding feasibility limits in the

vector β ∈ RT which therefore corresponds to the last T rows from the vector α.

If the discussion is just about the non-dummy project-selection constraints we use

matrices B, B̃, and B̂ as well as the vector β to highlight that we do not consider

non-dummy project-selection constraints.

The algorithm builds upon dynamic programming which, in this case, is equivalent

to the breadth-first search strategy. Let us define P 0 := {∅} and a recursive iteration

scheme,

P h = P h−1 ∪ {(p ∪ {xh}) | p ∈ P h−1}, (5.1)

for 1 ≤ h ≤ m. Further, we define P−h := {xh+1, . . . , xm, x̃1, . . . , x̃K , x̂1, . . . , x̂L} so

that each auxiliary set, P h, has the property that if p ∈ P h, then p ∩ P−h = ∅. Since

PN ⊆ PF ⊆ P , a complete enumeration approach would start with P 0 and go through

the iteration (5.1) for all h ∈ {1, . . . ,m} and would further use the same iteration

scheme to include dummy projects x̃k and x̂l to obtain P . Infeasible portfolios could be

discarded using the feasibility check (3.16), and PN could be computed from PF using

pairwise dominance checks; see Theorem 3.1. However, since the size of P is 2m+K+L,

this approach becomes infeasible in terms of memory requirements and computation

time when m + K + L grows even if the assumptions for Theorem 4.1 hold. “ For

instance, if the generation of P with 20 (dummy) projects takes one second then it

would take 1×220 seconds (about 12 days) to generate P with 40 (dummy) projects,”

Liesiö et al. (2007). As a consequence, more efficient optimization algorithms are

needed.

Therefore, at each hth stage of the iteration, we identify and discard portfolios

p ∈ P h that cannot become non-dominated even if (dummy) projects from the set

P−h are added to them. The computational benefits of discarding such portfolios are

amplified by the iteration scheme, since if p ∈ P h is discarded, any portfolios p′ =

p∪p′′, p′′ ⊆ {xh+1, . . . , xm} are not included in any of the auxiliary sets P h+1, . . . , Pm.

Furthermore, for every portfolio p′ = p∪p′′, p′′ ⊆ {xh+1, . . . , xm} it is not necessary to

check which interaction effects are active to add the corresponding dummy projects.
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However, the infeasibility of portfolio p ∈ P h is not a sufficient condition for dis-

carding it. Lemma 5.1 presents a sufficient condition for discarding p on the basis that

it cannot become feasible, and thus non-dominated, by including (dummy) projects

from the set P−h.

Lemma 5.1. Let p ∈ P h. If

h∑
j=1

zj(p)b
j
t +

m∑
j=h+1

min{0, bjt}+
K∑
k=1

min{0, b̃kt }+
L∑
l=1

min{0, b̂lt} > βt

for some t ∈ {1, . . . , T}, then (p ∪ p′′) /∈ PN for any p′′ ⊆ P−h.

For the proof, see Liesiö et al. (2008).

Lemma 5.2 compares the overall values and constraint values of two portfolios

p, p′ ∈ P h to determine if p cannot become non-dominated.

Lemma 5.2. Let p, p′ ∈ P h. If p′ � p and

(i) Bz(p′) ≤ Bz(p) (where ≤ holds componentwise)

and

(ii) ãkz(p′) = ãkz(p) for k = 1, . . . , K

âlz(p′) = âlz(p) for l = 1, . . . , L,

then p ∪ p′′ /∈ PN for any p′′ ⊆ P−h.

For the proof, see Liesiö et al. (2008).

Lemma 5.3 states that a portfolio, p ∈ P h, for which Bz(p) ≤ β holds cannot

become non-dominated if it is full. That is, no (dummy) projects can be added to it

without losing feasibility, and there exists a feasible portfolio p′ ∈ PF that dominates

p.

Lemma 5.3. Let p ∈ P h for which Bz(p) ≤ β holds. If

(i)
h∑
j=1

zj(p)b
j
t + minj∈{h+1,...,m} b

j
t > βt

(ii)
h∑
j=1

zj(p)b
j
t + mink∈{1,...,K} b̃

k
t > βt
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(iii)
h∑
j=1

zj(p)b
j
t + minl∈{1,...,L} b̂

l
t > βt

for some t ∈ {1, . . . , T}, then p is full (i.e., p∪p′′ /∈ PF for any nonempty p′′ ⊆ P−h).

Furthermore, if there exists p′ ∈ PF such that p′ � p, then p ∪ p′′ /∈ PN for any

p′′ ∈ P−h.

For the proof, see Liesiö et al. (2008).

For Lemma 5.4, recall that Sw is assumed to be a convex polyhedron so that for

fixed score matrices, v, ṽ, and v̂, the overall value, V (p, s) = z(p)Tvw + z̃(p)T ṽw +

ẑ(p)T v̂w, achieves its maximum at extreme points of Sw (for linear optimization,

see Hillier and Lieberman 2004). We denote the extreme points of the convex poly-

hedron Sw by {w1, . . . ,wE} := ext(Sw) and the extreme point matrix by Wext :=

[w1, . . . ,wE]. In Lemma 5.4, the extreme points of Sw are used to calculate an upper

bound of how much a portfolio, p ∈ P h, can still be increased. Thus, we are interested

in the maximal overall value of portfolio p′′ ∈ P−h, measured at the extreme point we

of Sw, achievable with the slack in constraints α∗ = α−Az(p). This corresponds to

an integer linear programming (ILP) problem,

max
z∗∈{0,1}m−h

{
zT∗ v∗w

e + z̃T ṽwe + ẑT v̂we | A∗z∗ + Ãz̃+

Âẑ ≤ α∗, z̃ ∈ {0, 1}K , ẑ ∈ {0, 1}L
}
,

(5.2)

where v∗ = [vh+1T , . . . ,vm
T
]T ∈ R(m−h)×n andA∗ = [ah+1, . . . ,am] ∈ R2(K+L)+T×(m−h).

Finding an exact solution at each extreme point may be too time consuming. Instead,

the Lagrangian dual of (5.2) is solved with subgradient optimization, which gives an

upper bound, Uh+1
e (α∗), for the exact solution with less computational effort.

In Lemma 5.4, the overall value of portfolio p ∈ P h plus the upper bound of the

increase, denoted by vector Uh+1(α∗) = [Uh+1
1 (α∗), . . . , U

h+1
E (α∗)]

T , is compared to

the overall value of a reference portfolio, p′ ∈ PF , to determine whether p cannot

become non-dominated.

Lemma 5.4. Let p′ ∈ PF and p ∈ P h. If

z(p′\p)TvWext+z̃(p′)T ṽWext+ẑ(p′)T v̂Wext  z(p\p′)TvWext+U
h+1(α−Az(p))

(denoted by p′ �U p), then (p ∪ p′′) /∈ PN for any p′′ ∈ P−h.
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5. Generation of Non-dominated, Efficient Portfolios

For the proof, see Liesiö et al. (2008).

For Lemma 5.4 to discard portfolios effectively, the reference portfolio p′ should

have a high overall value over the whole information set S. The first step is to generate

a set of reference portfolios PD ⊂ PF by solving the ILP-problem (3.17) with random

feasible weights and scores. An algorithm for the computation of non-dominated

portfolios (CNDP) is formulated as follows.

PN = CNDP(Wext,v,v,A,B,α,β){

1. Generate PD

2. P 0 ← {∅}

3. For h = 1, . . . ,m do

(a) P h ← {(p ∪ {xh}) | p ∈ P h−1} ∪ P h−1

(b) P h ← {p ∈ P h |
∑h

j=1 zj(p)b
j
t +
∑m

j=h+1 min{0, bjt}

+
∑K

k=1 min{0, b̃kt }+
∑L

l=1 min{0, b̂lt} ≤ βt ∀t ∈ {1, . . . , T}}

(c) P h ← {p ∈ P h | p′ �U p ∀p′ ∈ PD}

(d) P h ← {p ∈ P h | p′ �U p ∀p′ ∈ {p′ ∈ P h ∩ PF , p′′ � p′ ∀p′′ ∈ PD}}

(e) P h ← {p ∈ P h | @p′ ∈ P h s.t. p′ � p, Bz(p′) ≤ Bz(p),

ãkz(p′) = ãkz(p) ∀k ∈ {1, . . . , K}, âlz(p′) = âlz(p) ∀l ∈ {1, . . . , L}}

4. For k = 1, . . . , K do

Pm ← {p = (p∪{x̃k}) | p ∈ Pm, ãkz(p) ≥ m̃k}∪{p | p ∈ Pm, ãkz(p) < m̃k}

5. For l = 1, . . . , L do

Pm ← {p = (p ∪ {x̂l}) | p ∈ Pm, âlz(p) ≤ m̂l} ∪ {p | p ∈ Pm, âlz(p) > m̂l}

6. Pm ← {p ∈ Pm |
∑m

j=1 zj(p)b
j
t +

∑K
k=1 z̃k(p)b̃

k
t +

∑L
l=1 ẑl(p)b̂

l
t ≤ βt ∀t ∈

{1, . . . , T}}

7. PN ← {p ∈ Pm | p′ � p ∀p′ ∈ Pm}

}
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5. Generation of Non-dominated, Efficient Portfolios

In Step 3, the algorithm runs through the iteration scheme (5.1) for all h =

1, . . . ,m. In Step 3(a), P h is structured by taking each portfolio in P h−1 with and

without project xh. Step 3(b) discards portfolios that cannot become feasible by

Lemma 5.1. Steps 3(c) and 3(d) discard portfolios by Lemma 5.4, first by using port-

folios in PD as reference portfolios (c) and then using feasible portfolios p ∈ P h that

are not dominated by any portfolio in PD as reference portfolios (d). By Lemma 5.3,

zero upper bounds are used for full portfolios p when determining whether p′ �U p

in Steps 3(c) and 3(d). Step 3(e), discards portfolios within P h by Lemma 5.2. In

Steps 4 and 5, dummy projects are added to portfolios p ∈ Pm so that every portfolio

p ∈ Pm is feasible in terms of project interactions. Step (6) discards portfolios for

which Bz(p) + B̃z̃(p) + B̂ẑ(p) ≤ β does not hold so that Pm ⊆ PF . Finally, in

Step 7, PN is obtained from Pm by discarding dominated portfolios through pairwise

dominance checks.

We will remark that instead of Steps 4 and 5 we could add an additional step

between 3(a) and 3(b) where the conditions for project interactions are checked and

dummy projects are added. This would increase the set of reference portfolios in

Step 3(d) by comparison to the outlined approach since every portfolio in P h is made

feasible in terms of project interactions. However, therefore we must check conditions

for project interactions in every iteration loop.
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Chapter 6

Selection Procedure of the Robust

Model and Its Alignment with

PPM

This chapter outlines the RPM decision process for comparison with the MDSFPPM

requirements. This will facilitate the illustration of the strengths and weaknesses of

the RPM model. The construction of the chapter follows the RPM’s decision process

which is coincident with the decision process of the MDSFPPM. Thus, Section 6.1

presents strategy guidelines and individual project analysis. Section 6.2 focuses on

the calculation of non-dominated portfolios while Section 6.3 covers the interactive

adjustment and portfolio analysis procedure. Finally, Section 6.4 offers a table to

outline which of the MDSFPPM requirements are supported by the RPM model.

6.1 Preselection: Strategy and Project Analysis

6.1.1 Strategic guidelines

For the demonstration of the decision process of the RPM model, we assume again

that the entire project portfolio is decomposed into Q lowest-level strategic buckets.

Since projects are stored only in the lowest-level strategic buckets, we do not have

to confuse ourselves with multilevel hierarchies. If the assumptions for Theorem 4.1

hold, we can establish any set of strategic buckets that are subject to the (sub)portfolio

selection. Without loss of generality, we can assume that the first Q∗ ≤ Q strategic
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6.1 Preselection: Strategy and Project Analysis

buckets are considered for the portfolio selection. The remaining Q−Q∗ buckets are

unaffected by the selection process. Thus, as long as the assumptions for Theorem 4.1

hold, Requirement 2.6 is satisfied. For situations where assumptions for Theorem 4.1

are violated, one could try to merge some strategic buckets for the selection process so

that the assumptions are met again. Otherwise, the isolated selection of subportfolios

is not supported in general.

For the Q∗ strategic buckets that are subject to the selection process, it is neces-

sary to determine available amounts of resource categories and budget. In the RPM

model, budget and resource categories are treated in the same way, so we can use the

budget concept from Section 3.4 and Chapter 4 for each resource category as well. As

a consequence, we can define an arbitrary number, F ∈ N, of resource categories for

the decision process. Through resource constraints (3.12), DMs are able to set upper

bounds for the budget availability, R, as well as for the availability of resource cate-

gories, R1, . . . , RF . In the same way, we can set lower bounds for budget availability,

R, and availability of resource categories, R1, . . . , RF . To set lower and upper limits

for the availability of budget and resource categories means discarding unacceptable

availability levels in advance of the cost–benefit analysis.

The opportunity to set lower and upper bounds for the overall availability of bud-

get and resource categories only partly meets the requirements of Table 2.4. Time

sensitivities in the availability of budget and resource categories are disregarded since

the RPM model does not, in general, consider the time dimension. This is the main

weakness of the RPM model since budget and resource utilization are strongly corre-

lated with project scheduling (see Archer and Ghasemzadeh 1999b).

For the case of the budget-based strategic-bucket approach, Requirement 2.4, the

budget level R must be allocated among X1, . . . , XQ∗ . To guarantee a strategic allo-

cation of R among the Q∗ strategic buckets, DMs can define minimum proportional

ratios rq as well as a maximum proportional ratios rq for the strategic buckets. The

RPM model supports the identification of the most beneficial allocation of R among

strategic buckets with respect to strategic allocation constraints. Summarizing, the

combination of Requirements 2.4 and 2.5 is satisfied.

The situation is different for the case of the resource-based strategic-bucket ap-

proach, Requirement 2.3. The issue is that allocation decisions among strategic buck-

ets for resource categories and budget cannot be taken independently from each other;

they must be taken collectively. The RPM model, however, only paves way for the
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6.1 Preselection: Strategy and Project Analysis

necessary collective treatment and its implementation needs further research.

The isolated allocation of resource categories and budget among strategic buckets

is just usable for a very small number of resource categories—e.g., F = 1 or F = 2. In

this case, DMs may learn how the allocation of resource categories and budget interact

each other. However, if the number of resource categories increases, it is not possible

to keep an overview about the interactions. Thus, the combination of Requirements

2.3 and 2.5 is not satisfied if the number of resource categories increases.

Although the resource allocation concept from Chapter 4 paves way to implement

interaction effects, it may also be valuable to use interval-based data envelopment

analysis (DEA). Therefore, strategic buckets represent decision-maker units so DEA

can identify the most efficient ones. For interval-based DEA, see (Despotis and Smirlis

2002) or (Kao 2006).

For the evaluation of non-dominated portfolios, DMs define a set of nq evaluation

criteria and priority statements between them for every strategic bucket, i.e. q =

1, . . . , Q∗. The definition of different sets of evaluation criteria between strategic

buckets corresponds to Requirement 2.10.

Finally, DMs can analyze projects to identify mandatory projects and balancing

criteria. If a project, xj ∈ Xq for any q ∈ {1, . . . , Q∗}, is considered mandatory, a sim-

ple constraint ensures that every non-dominated subportfolio, pq ∈ P q
N , contains xj,

satisfying Requirement 2.1. The DM can also define balancing requirements that can

be identified at this early decision stage. Thereby, it does not matter which balancing

dimension from Section 2.4.3 is considered with the exception of time. Further, it does

not matter whether the budget-based or the project-based approach from Require-

ment 2.11 is chosen. Summarizing, aside from the time dimension, the preselection

requirements for portfolio balancing are met.

6.1.2 Project analysis and project dependencies

Project proposals as well as active projects within the strategic buckets, X1, . . . , XQ∗ ,

must be evaluated with respect to the corresponding nq evaluation criteria. For active

projects, it may be rather a confirmation or adjustment process. If we assume that

X1, . . . , XQ∗ contain m project proposals and active projects, xj, DMs must estimate

or confirm intervals [vjiq , v
j
iq

] for j = 1, . . . ,m and iq = 1, . . . , nq. Thereby it does not

matter whether a scoring model is used or not.

As with the estimation of evaluation criteria scores, costs, [cj, cj], and resource
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6.2 Generation of Efficient Portfolios

requirements, [cjf , c
j
f ] for f = 1, . . . , F , must be estimated for all projects, x1, . . . , xm.

For active projects, that means estimating the remaining costs and resource require-

ments to conform to the concept of sunk costs, Requirement 2.18. The estimation of

project parameters by the interval concept is the main strength of the RPM model

and conforms to Requirement 2.2. The interval approach takes estimation errors into

account and is necessary for a high-quality solution (see Cooper et al. 2001b).

Besides the evaluation of single projects, it is necessary to identify project de-

pendencies as well as programs. With regard to technical project dependencies,

DMs can for a successor project, xs, define a set of predecessor projects, x1
p, . . . , x

G
p ;

see Constraint (3.14). However, certain relationships between xs and any xgp for

g ∈ {1, . . . , G}, as stated in Requirement 2.14, are not possible since the RPM model

ignores the time dimension.

For economical project dependencies, assume a project set, X̃k ∈ Xq or X̂ l ∈ Xq,

for which a synergy or cannibalization effect is expected. Synergy or cannibalization

effects with respect to evaluation criteria and requirements on resource categories

are modelled by dummy projects x̃k or x̂l so that the interval concept for parameter

evaluation holds. Since mutually exclusive projects are simply modelled by constraint

(3.13), Requirement 2.15 is satisfied.

The approach for economical project interactions is usable to define programs, as

stated in Requirement 2.16. Therefore, assume a project set, X̃p, which is considered

as a program. The difference from a common economic project interaction is that just

some compositions of the projects within X̃p are allowed (mutually exclusive projects,

technical dependencies, mandatory projects, etc.). As long as the composition of the

program does not take time constraints into account, it can be modelled via con-

straints as outlined in Section 3.2. With respect to the evaluation process, benefits

and resource requirements of a program should primarily be described by the cor-

responding dummy project, x̃p. That is, by the intervals [ṽpiq , ṽ
p

iq ] c̃
p, c̃

p
, and [c̃pf , c̃

p

f ].

For any project, xjp ∈ X̃p, the interval parameters should just be used to describe

project-specific contributions to the program; see Section 6.3.

6.2 Generation of Efficient Portfolios

If the assumptions for Theorem 4.1 hold, one can calculate the sets of efficient subport-

folios, P 1
N , . . . , P

Q∗

N . Since the computational effort increases exponentially with every
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6.2 Generation of Efficient Portfolios

additional project, the partition of the entire calculation problem into subproblems of-

fers a considerable advantage. Instead of a single calculation problem with m projects,

we have to solve Q∗ subproblems with m1, . . . ,mQ∗ projects and m = m1 + . . .+mQ∗

holds.

To further speed up the calculation of P q
N , notice that Xq contains a set of active

projects, Xact
q ⊆ Xq. In the previous subportfolio selection procedure, Xact

q was a

part of the selected subportfolio pselq . Projects within the set pselq \Xact
q are either

successfully finished or terminated. Since we can assume that pselq has a high overall

value and Xact
q ⊆ pselq , feasible combinations of Xact

q with new project proposals xj ∈
Xq\Xact

q are useful as reference subportfolios in P q
D, which are required for Lemma

5.4 to accelerate the calculation of P q
N .

Within the scope of this thesis, we do not perform calculation experiments with the

dedicated dynamic programming algorithm from Chapter 5. However, Liesiö et al.

(2008) reported that the algorithm handles problems with some 60 projects on a

personal computer in a reasonable time. It is further reported that the calculation time

is highly dependent on the types of constraints and correlates between project scores

and constraint coefficient so that further simulation studies are necessary. However,

it should be taken into account that the calculation has to be performed just once

because in the subsequent interactive decision process, additional information can

only reduce the set of non-dominated subportfolios (Theorem 3.2 in combination with

Theorem 4.1). As a consequence, the calculation of the initial set of non-dominated

portfolios by the dedicated algorithm may be started days before DMs meet for the

interactive decision process so that the calculation time may not be critical for many

corporations (Stummer and Heidenberger 2003).

According to experiences collected during an internship, corporations store up

to 100 projects within a single strategic bucket. Since, from a technical point of

view, project versions are treated as an ordinary project xj, the number of technical

projects—i.e., the number of projects m which is considered in the RPM model—

may by considerably higher than 100. If in the future the time dimension can be

incorporated, the number of technical projects will further increase (see Stummer and

Heidenberger 2003). Thus, further research into algorithms for the calculation of non-

dominated portfolios based on incomplete information is necessary. To our knowledge,

the RPM research group has developed in the interim an algorithm which handles up

to 100 projects. Additionally, there is the discussion of a heuristic algorithm that can
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6.3 Interactive Decision Process

work with hundreds of projects.

The allocation of the overall budget level R among strategic buckets is not adjusted

to additional information; see Section 4.6. Hence, the allocation procedure from

Section 4.5 to distributeR intoR1, . . . , RQ∗ can be started in advance to the interactive

decision process. Arguments about the calculation time of non-dominated portfolios

therefore also hold for the calculation time of the allocation procedure of R (and

R1, . . . , RF for the case of the resource-based strategic-bucket approach).

6.3 Interactive Decision Process

6.3.1 Cost-benefit analysis

The interactive decision process starts with the efficient subportfolios, P 1
E(S1,S1

c ), . . .,

PQ∗

E (SQ
∗
,SQ

∗
c ), and the set of efficient portfolios, PE(S,Sc). Further, overall cost–

benefit bands for budget and resource categories are available since the allocation of

overall availability levels, R,R1, . . . , RF , among strategic buckets has already been

calculated in advance. To be consistent with foregoing chapters, we outline the cost–

benefit decision by reference to budget.

The bounds of the budget overall cost–benefit band GV (R,RQ∗) and MV (R,RQ∗)

are helpful for the identification of the most beneficial budget level R. For instance, R

may be set at a level where GV (R,RQ∗) first exceeds a given threshold. Further, one

could employ the cost–benefit ratiosGV (R,RQ∗)/R andMV (R,RQ∗)/R to determine

the final budget level. Additionally, one can employ the budget-dependent core-index

plot, see Figure 3.2, to identify a budget level R∗ at which a reference project first

enters a non-dominated portfolio (Liesiö et al. 2008). The determination of the overall

availability level R implicitly determines the availability levels Rq for strategic buckets;

see Section 4.6. Thus, DMs may also drill down their analysis into the cost–benefit

bands for X1, . . . , XQ∗ to determine R.

For the case that multiple cost–benefit bands and resource categories are analyzed,

DMs need to take into account interaction effects between them. For instance, an iso-

lated increase of the availability level Rf is useless if the portfolio also lacks a different

resource category, f ∗. In an overview, Kendall and Rollins (2003) suggested focusing

the cost–benefit analysis just on the most critical resource categories. Summarizing,

the cost–benefit analysis concept supports Requirements 2.9 and 2.7, apart from the
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time dimension.

6.3.2 Core-index–based portfolio selection

If DMs have identified an interesting combination of availability levels, R,R1, . . . , RF ,

they can drill down their analysis into the corresponding set of non-dominated (sub)-

portfolios. The core-index approach is especially valuable for this purpose. However,

in this thesis, we only have introduced core indices that depend on budget, not on

multiple resource categories. Although especially the alternative budget-dependent

core index may be expandable for situations with multiple resource categories, the

restriction to budget is a main weakness at the moment. Since the further decision

process is based on the core index, we must restrict the discussion to the situation

without resource categories, knowing that this is a considerable weakness.

Thus, we assume that DMs have identified an interesting budget level R and

therefore will identify the most preferred project portfolio for this budget level. The

most preferred portfolio for budget level R, information set S, and cost information

Sc is contained in

PN(S,Sc, R) =

Q∗⊕
q=1

P q
N(Sq,Sqc , Rq). (6.1)

To ensure that every portfolio, p ∈ PN(S,Sc, R), is subject to the analysis, we use

the alternative budget-dependent core index CI(xj,S,Sc, R) from Definition 3.8. Due

to Corollary 3.2, core projects, xj ∈ XC(S,Sc, R), can surely be selected, even under

their worst scenarios. Similarly, exterior projects, xj ∈ XE(S,Sc, R), can surely be

discarded even under their best scenarios. Thus, the choice about core and exterior

projects takes all predictable situations into account and therefore fits Requirement

2.12; this is surely a main strength of the RPM model.

The choice about borderline projects, xj ∈ XB(S,Sc, R), is undetermined. How-

ever, the interactive decision process of the RPM model supports the decision about

borderline projects. According to Corollary 3.2 DMs are advised to reduce their efforts

to define additional information S∗ to borderline projects, and, due to Theorem 3.6,

efforts to define additional cost information S∗c can be reduced to borderline projects

and core projects. Considering fewer projects considerably reduces the complexity of

the decision process. The impact of additional information S∗ or cost information S∗c

on PN(S,Sc, R) is a straightforward calculation from Theorems 3.2 and 3.5. Thus,
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Figure 6.1: RPM—Decision Support Process
Source (Liesiö et al. 2007).

DMs immediately receive feedback about their actions as called for in Requirement

2.17.

The definition of additional information and cost information and the calculation of

their impact on PN(S,Sc, R) can be understood through a simulation. This facilitates

the generation of What-If scenarios of Section 2.5.2 (simulations of portfolios with

different input parameters). The RPM model even guides DMs through the choice

of input parameters. It tells DMs that only adjustments to parameters of borderline

projects or adjustments to costs of core projects have effects. To promote learning, it

may be advisable to proceed from a relatively incomplete information set towards a

more complete one. In the course of such an iterative process, the DM can learn, for

instance, when a particular project is identified as one of the core or exterior projects.

Moreover, the selection of the final project portfolio can be defended by showing which

projects were among the core and borderline projects, respectively. It is even possible

to backtrack and show at what stage core projects acquired their status (Liesiö et al.

2007). Figure 6.1 outlines this phase of the decision process.

The concept of the alternative budget-dependent core index is also applicable

to project interactions CI(x̃k,S,Sc, R) and CI(x̂l,S,Sc, R). The core index of a

dummy project illustrates how significant the corresponding interaction effects are at

the portfolio level. Furthermore, we can assume that dummy project x̃p represents

a program whose benefits and costs are estimated as stated in Section 6.1. Then,

the decision support obtained by CI(x̃p,S,Sc, R) is similar to the decision support
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6.3 Interactive Decision Process

Figure 6.2: Bubble Diagram with Core, Exterior, and Borderline Projects
Source RPM Group.

obtained by the core index of a common project CI(xj,S,Sc, R). If program x̃p is

selected, DMs can further drill down their analysis to core indices of projects that

belong to that program, xj ∈ X̃p. This may help make a decision about the final

composition of the program and fulfills Requirement 2.16.

Another way the core index supports the project portfolio decision is the charts

frequently used to achieve a desired balance. For instance, in a bubble diagram like the

one outlined in Figure 2.13, we can insert all m projects and highlight core projects as

green, exterior projects as red, and borderline projects as yellow. Figure 6.2 represents

an example with m = 50 projects and programs.

Borderline projects can be used to balance the project portfolio. Therefore, DMs

can mark a certain borderline project, xB ∈ XB(S,Sc, R), as mandatory so that all

portfolios, p ∈ PN(S,Sc, R), for which xB /∈ p holds are immediately discarded. The

rejection of portfolios may indicate further borderline projects, xj ∈ XB(S,Sc, R),

with xj 6= xB as core projects or as exterior projects. For instance, the selection of

borderline project x5 in Figure 6.2 indicates that borderline project x19 is a core and

projects x20, x24, and x32 are exterior; see Figure 6.3
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Figure 6.3: Bubble Diagram After Identifying Borderline Project x5 as Mandatory
Source RPM Group.

The set of non-dominated portfolios, PN(S,Sc, R), provides further opportunities

for the interactive decision process, even aside from the core index. For instance, it

could be used to analyze scores of individual evaluation criteria to identify thresholds.

Portfolios p ∈ PN(S,Sc, R) not meeting those thresholds are rejected. However, for

our purpose, it is sufficient to know that the RPM model provides excellent oppor-

tunities for an interactive decision process so that we can consider Requirement 2.17

as satisfied. Details about an interactive decision process based on evaluation criteria

scores can be found in Stummer and Heidenberger (2003).

Regarding portfolio maintenance, we will mention that the core index of a project

also supports gate decisions of individual projects; see Requirement 2.18. The termi-

nation of a borderline project has a limited impact on the entire portfolio since there

are non-dominated portfolios available that do not contain the borderline project. In

contrast, the termination of a core project endangers the entire project portfolio so

that an emergency portfolio review may take place.

Finally, how the RPM model supports decision with respect to Requirements 2.19

and 2.20 depends on the situation at hand. If the impacts on the ongoing portfolio
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are expected to be considerable, it may be necessary to start the decision process from

the beginning. Otherwise, it may be sufficient to find the optimal portfolio starting

with the interactive decision process. For instance, if the mission update corresponds

to additional information about evaluation criteria weights, S∗w ⊆ Sw, it is sufficient

to use the interactive decision process.

6.4 Strengths and Weaknesses of the Robust Model

For the purposes of a better overview of how the RPM model supports the require-

ments of the MDSFPPM, we repeat the table of requirements for the MDSFPPM.

The last column in Table 6.1, therefore, describes how the corresponding requirement

is handled in the RPM model. Supported means that the requirement is totally cov-

ered by the RPM model. In contrast, Unsupported means that the requirement is not

covered in general by the RPM model. Partly supported means that just parts of the

requirement are covered by the RPM model, but the entire requirement is not.

We identified the missing time dimension as a main weakness of the RPM model.

Therefore, we highlight those requirements whose treatment in the RPM model is

unsatisfactory due to the missing time dimension by the word Time. Further, we

use the word Resources to highlight an insufficient treatment of a requirement if it is

based on the isolated treatment of resource categories and budget, the second major

weakness of the RPM model. Note, the isolated treatment of resource categories and

budget implies a weaknesses of the core index; see Section 6.3.
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Table 6.1: Requirements for the MDSFPPM supported by the RPM model

Requirement
Number Requirement Name Satisfaction in RPM

Requirement 2.1 Mandatory projects Supported

Requirement 2.2 Imprecise project information Supported

Requirement 2.3 Strategic buckets and resources Partly supported, Time, Resources

Requirement 2.4 Strategic buckets and budget Partly supported, Time

Requirement 2.5 Strategic resource allocation Partly supported, Time, Resources

Requirement 2.6 Subportfolios Supported

Requirement 2.7 Human resource planning Partly supported, Time, Resources

Requirement 2.8 Role staffing Not discussed

Requirement 2.9 Budget resource planning Partly supported, Time, Resources

Requirement 2.10 Trade-off between portfolio values Supported

Requirement 2.11 Portfolio balancing Partly supported, Time

Requirement 2.12 Risk analysis Supported

Requirement 2.13 Project scheduling Unsupported, Time

Requirement 2.14 Technical project dependencies Partly supported, Time

Requirement 2.15 Economical project interactions Supported

Requirement 2.16 Program selection and composition Supported

Requirement 2.17 Portfolio adjustment features Partly supported, Time, Resources

Requirement 2.18 Project development progress evaluation Partly supported, Time, Resources

Requirement 2.19 Mission update and portfolio adjusting Partly supported

Requirement 2.20 New hot project proposal Partly supported, Time
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Chapter 7

Conclusions

7.1 Summary

The primary focus of this thesis is the design of a mathematical optimization model

that can be embedded into existing PPM software. Therefore, we formulated nu-

merous requirements which must be satisfied by the mathematical model. However,

since we were not addressing a certain software product, we tried to formulate the

requirements very generally. If a certain PPM software is considered, it is certainly

necessary to specify the set of requirements more precisely. Chapter 2, which describes

the requirements, should also help to avoid misunderstandings between developers of

mathematical optimization models and their users.

As the mathematical optimization model, we introduced the RPM approach from

Liesiö et al. (2007) and Liesiö et al. (2008) since it seems to be a promising approach

to be embedded into PPM software. Thereby, we explicitly considered project inter-

actions. However, the main focus here is the extension of the RPM model to permit

a strategic-bucket structure, optimizing budget allocation among buckets. Therefore,

we divided the entire project set into subsets which represent strategic buckets. We

introduced restrictions so that decisions within strategic buckets can be taken indepen-

dently of each other. Furthermore, we defined the marginal value for strategic buckets

which serves as the decision criterion for the optimal budget allocation between them.

We outlined a possible budget allocation procedure subject to strategic-budget allo-

cation constraints. Nevertheless, in this thesis, we only outlined the theory, leaving

simulations of the behavior of the extension for the future.

Besides the strategic buckets, we enhanced the RPM model with the alternative
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budget-dependent core index. Even here, simulation experiments have not been per-

formed, so some adjustments may be necessary during implementation.

Finally, we presented the algorithm from Liesiö et al. (2008) for the computation

of non-dominated/efficient portfolios as well as the decision process from the RPM

model. The demonstration of the decision process served as a basis to outline the

strengths and weaknesses of the enhanced RPM model.

7.2 Further Research Areas

Several areas of research remain unsolved in the extension of the RPM model. First,

the definition of the overall value of a portfolio under a strategic-bucket structure

needs a more detailed investigation. We introduced a normalization so that there

are no priorities between strategic buckets (priorities of strategic buckets are rather

formulated as strategic-budget allocation constraints). However, the normalization

of project scores, which is necessary for the case of multiple attributes, is an open

issue, see Clemen and Smith (2009). As a consequence, the normalization of the

overall values of subportfolios by 1
nq

may be inappropriate. Besides the normalization

issues, it may be interesting to introduce weighting factors for the overall values of

subportfolios to incorporate the priority of strategic buckets into the overall value of

a portfolio.

Second, the outlined budget allocation among strategic buckets is, so far, just a

theoretical approach; simulation studies may reveal adjustments to be made to the

extension. For instance, in the definition of the marginal value, it may be valuable to

replace P q
N(Sq, sq, Rq) with P q

N(Sq,Sqc , Rq) to account for all non-dominated subport-

folios. Also, besides the definition of the marginal value, it may be beneficial to use a

decision criterion different from the suggested minimax–regret rule.

Third, the outlined approach for the optimal budget allocation among strategic

buckets is just one of several conceivable approaches. For instance, one could take

a representative score and weight scenario as well as a representative cost scenario

for every strategic bucket. For the budget allocation, weights are assigned to strate-

gic buckets; to comply with possible uncertainties, imprecise information about the

weights must be respected. For a certain budget stock, one could identify a robust

allocation among strategic buckets by using an interactive decision process. Another

approach may be given by using an interval-based DEA concept. Strategic buck-
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ets would represent the decision-maker units so that the DEA concept identifies the

efficient strategic buckets.

Finally, the main weakness of the RPM model in its current form is the lack of

the time dimension. Project scheduling, however, is important for various reasons, so

research efforts must be placed on selecting and scheduling projects. When doing so,

one must know how much schedule work is required from the RPM model and how

much schedule work should be done by the optimizer for role staffing, see Requirement

2.8.

106



Bibliography

N. P. Archer and F. Ghasemzadeh. An integrated framework for project portfolio

selection. International Journal of Project Management, 17:207–216, 1999a.

N. P. Archer and F. Ghasemzadeh. A zero–one model for project portfolio selection

and scheduling. Journal of the Operational Research Society, 50:745–755, 1999b.

N. P. Archer and F. Ghasemzadeh. Project portfolio selection through decision sup-

port. Decision Support Systems, 29:73–88, 2000.

R. D. Archibald. Managing High-Technology Programs and Projects. Wiley, New

York, NY, 3rd edition, 2003.

N. Baker and J. Freeland. Recent advances in R&D benefit measurement and project

selection methods. Management Science, 21:1164–1175, 1975.

G. Bohlander and S. Snell. Managing Human Resources. South-Western College

Publishing, Mason, OH, 15th edition, 2009.

D. Campbell, G. Stonehouse, and B. Housten. Business Strategy: An Introduction.

Butterworth-Heinemann, Oxford, 2nd edition, 2002.

R. T. Clemen and J. E. Smith. On the choice of baselines in multiattribute portfolio

analysis: A cautionary note. Decision Analysis, 6:256–262, 2009.

R. G. Cooper. Maximizing the value of your new product portfolio: Methods, metrics

and scorecards. Current Issues in Technology Management, 7(1), 2003.

R. G. Cooper and S. J. Edgett. Lean, Rapid, and Profitable New Product Development:

New Product Development. Product Development Institute, Ancaster, ON, 2005.

107



BIBLIOGRAPHY

R. G. Cooper, S. J. Edgett, and E. J. Kleinschmidt. New product portfolio manage-

ment: Practices and performance. Journal of Product Innovation Management, 16:

333–351, 1999.

R. G. Cooper, S. J. Edgett, and E. J. Kleinschmidt. Portfolio management for new

product development: Results of an industry practices study. R&D Management,

31:361–380, 2001a.

R. G. Cooper, S. J. Edgett, and E. J. Kleinschmidt. Portfolio Management for New

Products. Perseus, Cambridge, MA, 2nd edition, 2001b.

R. G. Cooper, S. J. Edgett, and E. J. Kleinschmidt. Optimizing the stage-gate process:

What best-practice companies do—Part I. Research Technology Management, 45:

21–27, 2002.

D. K. Despotis and Y. G. Smirlis. Data envelopment analysis with imprecise data.

European Journal of Operational Research, 140:24–36, 2002.

W. Edwards, R. F. Miles, and D. Von Winterfeldt. Advances in Decision Analysis:

From Foundations to Applications. Cambridge University Press, Cambridge, UK,

1st edition, 2007.

H. Eilat, B. Golany, and A. Shtub. Constructing and evaluating balanced portfolios

of R&D projects with interactions: A DEA based methodology. European Journal

of Operational Research, 172:1018–1039, 2006.

A. Freville. The multidimensional 0–1 knapsack problem: An overview. European

Journal of Operational Research, 155:1–21, 2004.

K. Golabi. Selecting a group of dissimilar projects for funding. IEEE Transactions

on Engineering Management, 34:138–145, 1987.

K. Golabi, C. W. Kirkwood, and A. Sicherman. Selecting a portfolio of solar energy

projects using multiattribute preference theory. Management Science, 27:174–189,

1981.

W. J. Gutjahr, S. Katzensteiner, P. Reiter, C. Stummer, and M. Denk. Competence-

driven project portfolio selection, scheduling and staff assignment. Central European

Journal of Operations Research, 16:281–306, 2008.

108



BIBLIOGRAPHY

G. R. Heerkens. The Business-Savvy Project Manager: Indispensable Knowledge and

Skills for Success. McGraw-Hill Professional, New York, NY, 2006.

F. S. Hillier and G. J. Lieberman. Introduction to Operations Research. McGraw-Hill

Higher Education, Boston, MA, 8th edition, 2004.

C. Kao. Interval efficiency measures in data envelopment analysis with imprecise data.

European Journal of Operational Research, 174:1087–1099, 2006.

A. Kasperski. Discrete Optimization with Interval Data: Minmax Regret and Fuzzy

Approach (Studies in Fuzziness and Soft Computing). Springer, Berlin, Ger, 1st

edition, 2008.

G. I. Kendall and S. C. Rollins. Advanced Project Portfolio Management and the

PMO: Multiplying ROI at Warp Speed. J. Ross Publishing, Conyers, GA, 2003.

C. E. Kleinmuntz and D. N. Kleinmuntz. Strategic approaches for allocating capital

in healthcare organizations. Healthcare Financial Management, 53:52–58, 1999.

P. Kouvelis and G. Yu. Robust Discrete Optimization and Its Applications. Springer,

Berlin, Ger, 1st edition, 1996.

H. A. Levine. Project Portfolio Management: A Practical Guide to Selecting Projects,

Managing Portfolios and Maximizing Benefits. John Wiley and Sons, San Francisco,

CA, 1st edition, 2005.

H. A. Levine. Dealing with risk in project portfolios. Technical report, Sciforma

Corporation, 2006.

H. A. Levine. Allocating resources: Myths and methods. Technical report, At Task,

2009.

M. J. Liberatore and R. L. Nydick. The analytic hierarchy process in medical and

health care decision making: A literature review. European Journal of Operational

Research, 189:194–207, 2008.
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