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Abstract

The objective of the diploma thesis is to demonstrate dynamics of magnetic systems based
on the theory of micromagnetics and find a analytical approach to calculate Ω0 for spin-
chains. After a basic introduction on thermodynamics, that involves the formulation of an
effective magnetic field and stresses its important contributions (e.g. Zeeman-, anisotropy-
and exchange-terms), requirements for the minimization of Gibb’s Free Energy are given. In
chapter 3 the dynamics of single- and multi-particle magnetic systems is analyzed using the
Landau-Lifschitz-Gilbert Equation. A finite difference scheme is used to solve the Landau-
Lifshitz-Gilbert equation numerically for a magnetic spin-chain. At first the relaxation of a
magnetic system into its energetic minimum is simulated. Then magnetization reversal pro-
cesses as a result of externally applied magnetic fields are investigated. In chapter 4 magne-
tization reversals due to thermal activity is described by use of the Arrhenius-Nèel Equation,
which features the attempt frequency. In the following the attempt frequency is given as a
product of a dynamic factor λ+ and a statistical prefactor Ω0, as stated by Braun [Bra94]. Fur-
thermore the required Hessians for the calculation of Ω0 are derived and an analytical solution
for the single-spin-system is given. The analytical derivation of the multi-spin-system is given
and simulations are carried out, varying total system size and number of spins. The simulation
show that the results depend on the total system size. It could be shown, that cell size of the
finite difference discretization does not change the results of Ω0. Additionally eigenfunctions
of the Hessian are analyzed with respect to a Fourier mode representation of the Gibb’s Free
Energy and magnetization as suggested in [Md09]. Finally the ratio of the eigenvalues of the
Hessians for minimum- and saddle-point-configurations are plotted and fitted by an exponen-
tial function. The plot shows that not all ratios of eigenvalues need to be taken into account in
order to calculate a sufficiently accurate value of Ω0.
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1 Introduction

Magnetic structures on the scale of nanometers have seen much development in recent years.
Fields of application reach from data storage devices to applied biology. The magnetization
states of such systems are subject to stability questions. Typically there are two reasons for
the change of a certain magnetization state. Firstly - and obviously - magnetization configura-
tions can be affected by application of external magnetic fields. Most prominent are of course
hysteresis curves that result from such experiments. Such a change of configuration is mostly
intended, since it basically describes a writing or measuring process. Secondly, thermal acti-
vation can result in loss of a set configuration. In case of data storage, such a loss is usually
unintended and equivalent to the loss of information (i.e. data).
Experimental research on this field proves somewhat difficult, because data storage media
should be able to work for a very long period of time (i.e. many years). Intuitively, it is not
a very efficient method to keep testing recording media for 10 to 20 years in order to prove
their technical capability. Therefore computer simulations are a predominant line of research
in this field, if it is possible to find a theoretical foundation, on which to build a formalism, that
allows to analyze magnetization behavior as a function of time. Such simulations can speed
up investigations and promise much more efficient research in this field.
The objective of this work is a basic description of magnetization dynamics with special stress
upon magnetization switching as a reaction to an applied magnetic field. In order to find a suit-
able theory for such a system the theory of micromagnetism, as was first presented by W.F.
Brown in the 1960s [Bro63b], is applied. Within this semi-classical environment the Landau-
Lifschitz-Gilbert Equation describes magnetization dynamics for various damping limits.
Furthermore sudden magnetization switching due to thermal activation is discussed by use of
the Arrhenius-Néel law. It describes the lifetime of a magnetic state by means of a temperature-
independent attempt frequency. Temperature is taken into account by an exponential term that
is the ratio of energy barrier over temperature. The energy barrier separates the two magnetic
stable states. Most attention is directed onto the attempt frequency, which can be expressed
by a statistical factor Ω0 and a dynamical one λ+. The dynamical factor results from the
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1 Introduction

Landau-Lifschitz-Gilbert Equation and therefore is highly dependent on the damping, giving
rise to two main lines of research VDL (very low damping limit) and IDL (intermediate to high
damping limit). The statistical factor results from second derivatives of the Gibb’s Free Energy
with respect to the set of spherical coordinates under the boundary condition of r = constant.
A formalism will be derived that points out single particle calculations of Ω0 and extend it to
the multi-particle problem, providing an analytical approach to calculate the statistical factor,
that offers eradication of numerical derivation of the Hessian.
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2 Basics of Micromagnetism

2.1 Maxwell’s Equations

The phenomenon of electromagnetism was discovered in the 19th century. The most profound
theoretical description is given by the set of Maxwell’s equations

∇D = ρ ∇×E =−∂B
∂ t

∇B = 0 ∇×H = j+
∂D
∂ t

(2.1)

2.2 Thermodynamic Description of Magnetic Systems

2.2.1 Gibb’s Free Energy

Magnetic systems are described by the so-called Gibb’s Free Energy. To derive it we start at
the Inner Energy U(S,M,N), which is a function of extensive variables entropy S, magneti-
zation M, and mole number N; as well as their conjugate intensive variables temperature T ,
magnetic field Hm, and chemical potential µ [GB06]. Any change of Inner Energy can be
given by

dU = T dS+µ0HmdM+µdN (2.2)

where µ0 is the magnetic permeability.
In our case, we will consider systems for which particle transfer with the environment is
prohibited, making dN = 0. The entropy S and the magnetization M remain state defining
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2 Basics of Micromagnetism

variables. Performing a Legendre transformation we define the enthalpy H

H(T,M) = U−T S

dH = dU−T dS−SdT (2.3)

Performing a second transformation we arrive at Gibb’s Free Energy E.

E(T,H) = H−µ0MHm

dE = dH−µ0MdHm−µ0HmdM

dE = dU−T dS−SdT −µ0MdHm−µ0HmdM (2.4)

Since all fields that result from sources within the system are already accounted for by the
Inner Energy U , the field Hm in 2.4 has to be external. In the following we will assume that
Hext remains constant for longer than the relaxation time of the magnetic system, canceling
the term dHext = 0. If we furthermore consider isothermal (dT = 0) processes we can further
simplify the expression, and by choosing T = 0 we arrive at

dE(T,M) = dU−µ0HextdM (2.5)

2.5 consists of two main terms, the first is the Inner Energy of the system, mainly consisting of
the exchange interaction, the magnetocrystalline anisotropy and scattering energy, the second
is the Zeeman Energy. In the following we will outline these important contributions to E.

2.2.2 Zeeman Term

The Zeeman energy EZ describes the change of a systems energy due to application of an
external magnetic field. In micromagnetics we use the term to account for the magnetization
distribution M interacting with externally applied fields. We define the Zeeman term as

EZ = −µ0

∫
Hext ·MdV (2.6)
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2 Basics of Micromagnetism

We see that EZ is minimized for parallel alignment of external field Hext and magnetization
M. Such a state would be energetically favorable because of the minus sign in 2.6.

2.2.3 Exchange Interaction

The dominant contribution to the Inner Energy U originates from the interaction between the
magnetic moments. Within a quantum mechanic formalism, spins of a ferromagnet tend to line
up parallel to each other, whereas in antiferromagnets they tend to align antiparallel. The most
principle way of treating this behavior is by means of the Heisenberg Hamiltonian [Aha96]

H = −∑
i6= j

Ji, jSi ·S j (2.7)

with Ji, j being the exchange integral

Ji, j = 2
∫

φ
∗
i (r1)φ

∗
j (r2)

e2

|r1− r2|
φi(r1)φ j(r2)dr1dr2 (2.8)

where φi(r j) are wavefunctions of a spin carrier (e.g. an electron), containing information on
both spatial distribution and spin, given at the site r j, and e is the elementary electric charge.
The integral features the overlap of those wavefunctions. For ferromagnetic systems J is pos-
itive J f erro > 0, while for antiferromagnets it is negative Janti < 0. Since overlaps decrease
quickly, the further the spins are away from each other, it is sufficient for most calculations, to
take only next neighbor interaction into account. We therefore rewrite 2.9 as

H = −J ∑
NN

Si ·S j (2.9)

With ηi j being the angle between Si and S j, we (Taylor-)expand the cosine function, redefine
the zero level of the exchange energy, and use

|ηi j| ≈
1

Ms
|Mi−M j| ≈ |(ri ·∇)

M
Ms
|
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2 Basics of Micromagnetism

Inserting this into 2.9 and changing the sum into an integral over the system, yields under the
usage of u = M

Ms

Exch = A
∫ [

(∇ux)
2 +(∇uy)

2 +(∇uz)
2]dV (2.10)

with the exchange constant

A =
JS2

a
ρ

where a is the distance between neighboring spins and ρ is a parameter that depends on the
number of nearest neighbors, which is defined by the crystal structure [Sch06].

2.2.4 Magnetocrystalline Anisotropy

A hysteresis curve depicts the fact that magnetization is not a sole result of externally applied
fields. It can be evoked by them, but once the field is switched off again, the magnetization
does not necessarily decay to zero as well. In absence of an external field this effect can not
be explained by the Zeeman term 2.6, nor does the exchange interaction give a satisfying an-
swer. The exchange interaction in a ferromagnet tries to align spins parallel to one another.
Since the Heisenberg Hamiltonian is isotropic no specific direction in space is favored by the
exchange energy. Within a real solid state ferromagnetic body there are directions, which are
preferable for the magnetization M to point into. They result from the spin-orbit interaction
of the electrons. The orbits are depending on the crystallographic structure and the interaction
makes spins align along certain axes within the crystal [Aha96].
These axes need not be the same throughout the magnet, nor is their number forcefully the
same everywhere. It is not unusual, that in some regions of a solid body, magnetization is
oriented in a different direction compared to others. Those domains were first interpreted by
Weiss and he gave them his name.
Effectively, anisotropy makes it easier to align spins along certain directions in space within
a solid state body. This is a very important property concerning data storage. To enable
data storage on magnetic media it is essential that magnetization distributions are stable for
a macroscopic period of time after it has been established; e.g. by application of an external
magnetic field. The anisotropy gives rise to the idea that no additional power source is needed
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2 Basics of Micromagnetism

to maintain a magnetic state. This notion is, however, subject to stability considerations and
will be coped with later.
A fundamental derivation of the anisotropy energy is hardly ever needed [Aha96] and we
introduce a phenomenological approach. In the following we will concentrate on uniaxial
anisotropy. The direction which is preferable to the spins will be called ’easy’-direction.
Let θ be the angle between the ’easy’-direction’s unit vector k and the magnetization unit
vector u = M

Ms
, then

Eani = V K1

(
1− (u ·k)2

)
+V K2 (u ·k)4 + . . .

= V K1
(
1− cos2

θ
)
+V K2 cos4

θ + . . . (2.11)

with Ms being the saturation magnetization. Experiments show that uniaxial anisotropy is
symmetric with respect to the plane perpendicular to the ’easy’-direction, hence we can safely
omit all odd powers of u ·k. For most applications we can neglect all terms except the first
featuring K1, which will be the case for all calculations within this work.

2.2.5 Omitted Terms

A full description of the Inner Energy should also contain contributions from surface anisotropies
and a demagnetizing term, which can be derived from the Maxwell Equations 2.1. The stray-
field and the surface anisotropy of a magnetic spin chain, can be approximated by an additional
contribution to the uniaxial anisotropy.

2.3 Minimization of the Gibb’s Free Energy

A magnetization state of equilibrium must mean that the Gibb’s Free Energy E is at a min-
imum. Later we will study minimum configurations, therefore we will take a look at how a
magnetization configuration can be found, that minimizes E.
Since the Gibb’s Free Energy is a functional of the magnetization distribution M, it takes a
functional derivative to find a minimum. Brown solved the problem by introducing a varia-
tional method, examining how E reacted to small variations of M under the boundary condi-
tion that |M|= Ms = const.
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2 Basics of Micromagnetism

1
µ0

δE
δM

= 0 (2.12)

The formalism needs to be applied to all contributions of E [Sue99]. It results in defining of
an effective magnetic field He f f by use of the energy density E = E

V

1
µ0Ms

δE

δu
= −He f f (2.13)

with

He f f =
2A

µ0Ms
∇

2u+
2K1

µ0Ms
(u ·k)k+Hext (2.14)

The minimum condition that needs to be fulfilled is

µ0He f f ×M = 0 (2.15)

2.4 Finite Difference Method

The Gibb’s Free Energy is a functional of the continuous magnetization distribution M(r). In
the following chapters we will introduce a transition from the continuous magnetization to
a system of discrete spin vectors, located on nodes of a grid. This semi-classical approach
allows us to reduce the degrees of freedom of our system. Another feature that comes with
the discretion of space is that differentials and gradients can be approximated by difference
quotients. This approximation - in general - is only valid for small arguments. Many other
and different procedures have been examined. The method of choice depends on a vary?ity
of properties such as, complexity of the geometry, the type of differential equation which is
aimed to be solved, the accuracy . . .
We will apply the procedure to the exchange energy [Sch06]. We start at 2.10 and replace the
differential
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2 Basics of Micromagnetism

(∇ux)
2 =

(
∂ux

∂x

)2

+

(
∂ux

∂y

)2

+

(
∂ux

∂ z

)2

→
(

∆xux

∆x

)2

+

(
∆yux

∆y

)2

+

(
∆zux

∆z

)2

(2.16)

with ∆x being the distance between two lattice sites in x direction. For a regular cubic lattice
it holds true that

∆x = ∆y = ∆z = a

Calculating the exchange of i-th and i+1-th spin explicitly, we write for the first term in 2.16

(
∆ux

∆x

)2

=
(ui+1,x−ui,x)

2

a2

=

(
u2

i+1,x−2ui+1,xui,x +u2
i,x

)
a2 (2.17)

Performing this on the other components and inserting the boundary condition |u|= 1, while
summing over the components, yields

(
∆ux

∆x

)2

=
1
a2

(
2−2uiu j

)
(2.18)

Same procedure may be applied for the neighbor at site i− 1. Accounting for the double
counting in the sum by dividing by 2, we obtain the discretized exchange energy.

Exch =
A
a2 ∑

i
[1− (ui ·ui+1 +ui ·ui−1)] (2.19)

We have set Ai,i−1 = Ai,i+1 = A

The anisotropy energy is

Eani = K1 ∑
i

(
1− (ui ·ki)

2
)

(2.20)
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3 Dynamical Analysis of Micromagnetics

In this chapter we will discuss the time evolution of a system consisting of a variable number
of micromagnetic spin vectors. Each vector will be considered to have only two neighboring
spins as though we were looking at a chain of spins. This will be of significance, especially
when we motivate the exchange interaction between adjacent vectors. Different scenarios are
simulated:
At first analytical formula for calculation of micromagnetic dynamics is discussed and simple
examples of a 1-spin- and 3-spin-systems are given. Furthermore we investigate the absolute
magnetization of 20 spins - which have identical anisotropy constants - that are exposed to a
time dependent external magnetic field, which is inclined to the easy direction by 45◦. We
compare these results to a 80-spin-system where the first 40 spins have no anisotropy at all but
the latter do, while the external field will be applied 1◦ off the easy axis.

3.1 Landau Lifschitz Gilbert Equation

The Landau Lifschitz Gilbert Equation (hereafter referred to as LLG) is a differential equation
that describes dynamics of a magnetic system on a micromagnetic scale [Bro63b]. In the
following we will briefly derive the LLG.
To start, we note that an external field H applied to a magnetic moment µ results in a torque
µ×H. The torque is the derivative of the angular momentum L with respect to time, hence

d
dt

L = µ×H (3.1)

Since we know that the magnetic moment µ and the angular momentum L are connected to
each other by the gyromagnetic ratio γ = ge

2mec , where g is the Landé factor, e is the elementary
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3 Dynamical Analysis of Micromagnetics

charge, me is the electron mass, and c is the speed of light, we denote

µ = −γL (3.2)

Taking both these identities into account we arrive at an expression that describes the time
development of the magnetic moment µ

d
dt

µ = −γµ×H (3.3)

In micromagnetics we replace the magnetic moment µ by a continuous magnetization vector
M.

d
dt

M = −γM×H (3.4)

This equation describes a precession - the so-called Larmor precession - of the magnetization
vector M around the field H. If we look closely we realize that this equation may not lead to
saturation of magnetization with increasing magnetic field, which would pose a radical incon-
sistency with experimental results like hysteresis curves. For this reason Gilbert proposed to
alter it in 1955 by adding a phenomenological damping term, which could not be explained
fundamentally but succeeded in conquering the inaccuracies the previous equation 3.4 offered.
Inserting J = µ0M the Gilbert equation is

d
dt

J = −γJ×H+α
J
Js
× dJ

dt
(3.5)

where Js is the saturation polarization of the magnetic polarization vector J and α is a dimen-
sionless constant scaling the damping factor.
The damping term yields a vector that is perpendicular to the magnetic polarization J and
slowly pulls it towards the direction of the magnetic field vector H until saturation is reached,
hence polarization and field are parallel.
It is worth noting, that by expanding 3.5 by means of the scalar product with J, we deduce that
the saturation polarization Js - and therefore also the saturation magnetization Ms - remains
constant for all times.

d
dt

Js = 0 (3.6)
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3 Dynamical Analysis of Micromagnetics

The only step left is to isolate the differential operators from the other terms. In order to
accomplish this we expand 3.5 by means of the vector product with J. This leads to

J× d
dt

J = −γJ× (J×H)+αJ× (
J
Js
× dJ

dt
) (3.7)

J× d
dt

J = −γJ× (J×H)−αJs
dJ
dt

) (3.8)

Inserting this result into 3.5 yields the Landau-Lifschitz-Gilbert Equation

d
dt

J = −γ
′J× (J×H)−αγ

′ J
Js
× (J×H) (3.9)

where γ ′ = γ

1+α2 .
The LLG is a differential equation of first order. Its first part describes a precession of the
magnetic polarization vector J around the magnetic field vector H, the second part is the
damping term, which can be interpreted as energy dissipation that ultimately leads to a parallel
alignment of polarization and field vectors.

3.2 Solid Body Systems

3.2.1 Single Spin System

We consider a special case scenario where only one vector of magnetic polarization J is
present. We apply a magnetic field Hext along the cartesian z-axis.
In case of a real solid state body environment we have to take magnetocrystalline anisotropy
into account. The anisotropy - as pointed out in the previous chapter - describes the fact that
there are so-called ’easy’-directions which are energetically preferable for the polarization
vector to point into, thus it makes it easier to magnetize the material along those directions.
All simulations in this diploma thesis were done assuming that there is only one ’easy’-axis.
In this example - for simplicity - we let the ’easy’-axis unit vector k be parallel to the magnetic
field Hext .
If we remind ourselves of the structure of the LLG 3.9, we notice that it is no longer sufficient
to consider Hext . To describe the physics of this system correctly, we have to substitute the
magnetic field H by an effective field He f f that takes anisotropy into account as well as the
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3 Dynamical Analysis of Micromagnetics

external field Hext . We therefore write 3.9 in the form

d
dt

J = −γ
′J×

(
J×He f f

)
−αγ

′ J
Js
×
(
J×He f f

)
(3.10)

with

He f f = Hext +Hani (3.11)

and using u = 1
Js

J

Hani = 2K1
Js
(u ·k)k (3.12)

where K1 is the anisotropy constant [Sue99].
In order to start our simulation we need to provide a starting position of our polarization vector
J. In this case we set the initial coordinates to J = (0,1,0), so the polarization J points into
positive y-direction within three-dimensional cartesian space and the saturation polarization
is Js = 1T . The damping constant is α = 0.1, the anisotropy constant is K1 = 106Jm−3, and
Hext = k = (0,0,1).

Figure 3.1: trajectory of single spin in mx,my-plane with k ‖ Hext
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3 Dynamical Analysis of Micromagnetics

3.1 shows the trajectory of a single polarization vector in the cartesian x,y-plane. Since the
applied magnetic field H is parallel to the ’easy’-axis unit vector k, He f f is parallel as well,
and we observe the predicted behavior of the polarization precessing about the effective field,
but also being pulled towards it by the damping term in 3.10.
If we change the ’easy’-direction to something different, e.g. k = (ϑk,ϕk) =

1
7(π,π) we find

an analogous solution 3.2.
We note that by changing the ’easy’-direction k, we ultimately change the minimum direction,

Figure 3.2: single spin trajectory with k and Hext not parallel

into which the system converges. The same would hold true, of course, if we were to change
the direction of the external magnetic field Hext .

3.2.2 3 Spin System

In this section we will add two more spins to our system, creating a 3-spin-chain. Again we
apply an external magnetic field parallel to the z-axis, which we also choose to be the ’easy’-
direction. Since we are now looking at a multi-spin-system we have to respect the exchange
interaction between the spins. Once again we alter the effective field He f f by adding another

18



3 Dynamical Analysis of Micromagnetics

term Hxch such that

He f f ,i = Hext,i +Hani,i +Hxch,i (3.13)

where He f f ,i is the effective magnetic field acting on the i-th polarization vector, with

Hxch,i =
2A

Jsa2 ∑
NN

u j (3.14)

where A is the exchange constant and a is the distance between two neighboring spins. The
sum is to be taken over nearest neighbors only.
For A = 10−11 J

m and a = 1nm we find 3.3
Clearly, the three spins act as though they were strongly connected to each other, moving in

Figure 3.3: trajectories of three interacting spins with k ‖ Hext

unimotion. This result is not surprising, due to the structure of the LLG and He f f . It is also
noteworthy that the exchange interaction does not change the direction, which the spins are
pointing into, for the minimum configuration. It is merely a scaling factor of how strongly they
are correlated. This means that in a solid state body the exchange interaction between elec-
trons does not prefer one specific polarization direction over the other, it leaves the magnetic
order isotropic. Comparing 3.3 to 3.2 we deduce that, in absence of an external magnetic field
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3 Dynamical Analysis of Micromagnetics

Hext , the only contribution to the effective field He f f , that makes one polarization direction
preferable to the other - and therefore destroys isotropy - , is the magnetocrystalline anisotropy
(hence the name).

3.3 Magnetization Alteration Analysis

The recording process of data - and therefore data storage as a whole - can only be provided
if if the magnetization in regions, where the information is intended to be written, can be
switched reproducibly. In the previous sections we have discussed how magnetic fields influ-
ence the dynamics of magnetic spins and how different contributions add to the LLG through
the effective magnetic field He f f in 3.10. We have observed that eventually the magnetization
converges into a stable state, a local minimum of the system’s Gibb’s Free Energy E.
However, there is no immediate indication that this needs to be the only local minimum state
available and there might be other (meta)stable states possible to reach. Such states can be
obtained, for example, by applying very strong external fields in order to force the system into
another local minimum state, where it may prevail for some time. It needs to be pointed out
that such a transition may happen on its own due to thermal activity. In this section we will
omit such transitions and idealize the model by defining T = 0. The influence of temperature
on the stability of a magnetization state will be tackled later.
Recording media are made up out of much larger clusters of spins, but can qualitatively be
described by long spin chains. 3.3 has shown that a local set of spins will act in unimotion,
because of the strong exchange interaction between them. Hence, - neglecting boundary prob-
lems - we expect spins in a whole cluster to act in unimotion as well and by summing over all
polarization vectors within the cluster, we obtain a vector, that represents the whole cluster.
Such a cluster with two potential minimum configurations (e.g. spin− up and spin− down)
can be interpreted as an entity of information; a bit.
In recent years questions have arisen how large this clusters have to be in order to be able
to neglect surface problems but maintain product quality. Obviously surface contributions
increase with decreasing cluster size, which affect stability [Sch09].
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3 Dynamical Analysis of Micromagnetics

3.3.1 40 Spin System

We will start with a chain of 40 spins. The ’easy’-direction is once again k = (0,0,1), and the
initial configuration sees all spins pointing into the ’easy’-direction. The system is already in
an energetic minimum.
We will now switch on an external magnetic field that is inclined by ξ = 45◦ against the easy
axis. We vary the magnitude of the external field Hext over a range of [−4,4]K1

Js
and measure

the magnetization along the z-axis. For A = 10−11 A
m , a = 1nm, K1 = 106Jm−3, Js =

1
2T , and

α = 1 we find 3.4
Initially the magnetization is in saturation Mz = Ms, since all polarization vectors point into

Figure 3.4: magnetization over external field

the same direction. Once the external field is turned on, the minimum configuration changes
and Mz decreases, because the other magnetization components change to Mx 6= 0 and My 6= 0.
At a critical magnitude of Hext = Hc =−K1

Js
there is a sudden reversal of magnetization, where

spins flip over and Mz = −Ms. This flip over could be interpreted as a writing process on a
hard disc, turning a bit from 0 to 1. As we can see the critical (=coercivity) field Hc, that
needs to be provided in order to change the polarization configuration, is proportional to the
anisotropy constant K1.
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3.3.2 2×40 Spin System

We go on to another chain of spins. This time we look at a chain of 80 polarization vectors,
the first 40 of which shall have no anisotropy, the latter are equal to the ones described in
the previous section. The external field will be varied as in the previous section, but with an
inclination of ξ = 1◦ against the ’easy’-direction. For the usual set of constants we find 3.5.

At first glance we see a strong resemblance to 3.4, but the spin flip has a somewhat inhar-

Figure 3.5: magnetization over external field

monious feature to it. Once more we measure saturation for no externally applied field, and
due to the fact that this time the inclination between applied field and ’easy’-axis is very little,
this saturation upholds even for higher magnitudes of Hext . Once we turn the magnetic field
against the ’easy’-direction, we see an immediate response in the magnetization. It originates
from the first 40 spins which are not affected by anisotropy. The only contributions to He f f

for those spins are Hxch and Hext . Since Hext changes sign, they attempt immediate spin flips,
but Hxch conquers the flipping for the ones nearest to the set of anisotropically interacting
spins, because - in our simulation - the exchange interaction favors ferromagnetic (parallel)
alignment of spins. Nevertheless, for a critical field Hc =− K1

2Js
the anisotropic contribution to

He f f for the latter spins is overpowered and they perform the flip as well.
We will take a look at the flipping motion in a little more detail. 3.6 to 3.9 qualitatively show
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3 Dynamical Analysis of Micromagnetics

the development of a Bloch wall for Hc < Hext < 0 as a result of the competition between
exchange interaction and anisotropy energy. Colors represent values of Mz.

Figure 3.6: spin chain for Hext = 0

3.3.3 Conclusion

Clearly the stability of a magnetization state is closely related to the magnitude of the anisotropy
constant K1. Simply put, if one magnetization direction is much more preferable to all others
in its vicinity, it is even harder to change the particle’s spin orientation. This should mean
that for recording media, it is on the one hand a great feat to use materials that provide a
high K1-value, because it adds to the stability of the system, but on the other hand it makes
writing processes very energy consuming, since along with increasing stability there comes
an increasing coercivity field Hc. Along with the urge of developing ever smaller entities of
information to get a good signal-to-noise ratio and the henceforth arising vulnerability of a
magnetization state to temperature, we name the trilemma of magnetic recording [Sch09].
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Figure 3.7: Hext =−0.12K1
Js
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Figure 3.8: Hext =−0.222K1
Js
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Figure 3.9: Hext =−0.32K1
Js
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4 Analytical Calculation of the Attempt

Frequency

4.1 Thoughts on Stability

It was already discussed, that minimization of the Gibb’s Free Energy leads to a magnetiza-
tion distribution of equilibrium. However, there might be multiple possible configurations that
would minimize E at least locally. This means that in principle there are many (meta)stable
states that can be occupied, which are parted by maxima or saddle-points of the Gibb’s Free
Energy. The analysis of stability of a system is analogous to answering the question of how
likely the system is to make a transition from one local minimum to the other.
In the previous chapter we have seen that a system always converges into equilibrium, and
implicitly we expected it to stay there, once it has reached it. So the question arises why it
even should suddenly change from one minimum configuration to the other. The answer is
thermal activity.
In the previous chapter we restricted our system to T = 0 and therefore had a completely
deterministic model to work with. To introduce thermal activity (T > 0) to our system we
would have to add a stochastic variable (a stochastic field Hth) to the LLG 3.10 as was done
in [Sch09].
W.F. Brown [Bro63a] and L. Néel [N4́9] are accountable for the predominantly used theory on
this field. Brown found a Fokker-Plank-Equation to describe a distribution function to tackle
this problem and by applying it to an idea by Kramers [Kra40]. Kramers developed the tran-
sition state theory in order to estimate the rate constant between stable states.
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4.2 Attempt Frequency

The attempt frequency is a measure of how stable a magnetic state is. It describes how likely
a system performs a sudden transition into another state of local energetic minimum. Braun
[Bra94] and Langer [Lan67] explained the attempt frequency as a measure of the total prob-
ability current of a stationary non-equilibrium magnetization state through a surface near the
saddle-point. An empirical equation to describe a transition like this, was proposed by the
chemist Arrhenius.

f = f0e−
∆E

kBT (4.1)

where f is the rate of magnetization reversal, f0 is the attempt frequency, T the absolute tem-
perature, kB is the Boltzmann constant, and ∆E is the energy barrier that needs to be overcome
to switch from the initial state to the final state. Initially, 4.1 was designed to explain the tem-
perature dependency of chemical reactions frequencies, but Néel applied it to the problems
of micromagnetism. We can see that f increases with increasing T , while a higher energy
barrier ∆E results in a lesser rate. Intuitively this is plausible, because a higher energy barrier
should make a rather more stable state. Methods of calculating the energy barrier are given
in [EPCF08] [RDF02]. The temperature dependence of f is isolated within the exponential
function, leaving the attempt frequency temperature independent. In general, this need not
hold true. Braun proposed a way to derive the attempt frequency [Bra94]. He arrived at

f0 =
λ+Ω0

2π
(4.2)

so f0 is composed of a product of two factors Ω0 and λ+. The statistical prefactor Ω0 is pro-
portional to the configuration’s volume in phase space, whereas λ+ is the dynamical factor
and results from the LLG [Bra94].

4.3 The Statistical Prefactor Ω0

In order to be able to calculate Ω0, we need to derive the second derivative of the Gibb’s Free
Energy at each spin with respect to the set of spherical coordinates (ϑ ,ϕ), and evaluate the
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resulting Hessian at the minimum configuration and at the saddle-point [Bra94].

Ω0 =

√
detHmin

|detHsad|
(4.3)

with

Hmin =

(
∂ 2E
∂ϑ 2

∂ 2E
∂ϑ∂ϕ

∂ 2E
∂ϑ∂ϕ

∂ 2E
∂ϕ2

)
min

(4.4)

4.4 Spherical Hessian

Our objective is to derive the second spherical derivative of the Gibb’s Free Energy, without
transforming the expression for E itself into spherical coordinates. In this section we will de-
rive an analytical formalism to transform the Hessian Matrix Ĥx,y,z

Ĥx,y,z =


∂ 2E
∂u2

x

∂ 2E
∂ux∂uy

∂ 2E
∂ux∂uz

∂ 2E
∂uy∂ux

∂ 2E
∂u2

y

∂ 2E
∂uy∂uz

∂ 2E
∂uz∂ux

∂ 2E
∂uz∂uy

∂ 2E
∂u2

z

 (4.5)

which contains derivatives with respect to the cartesian components of the polarization vec-
tors Ji, into a spherical Hessian Ĥϑ ,ϕ , that contains derivatives with respect to the spherical
coordinates ϑi, ϕi. Although we do not account for the radial derivative ∂

∂ r we do not lose
any information, owing to the fact that for all polarization vectors it holds true that |J| = Js

and therefore r = Js = const. By deriving the transforming algorithm of the cartesian 3× 3-
Hessian Ĥx,y,z into a spherical 2× 2-Hessian Ĥϑ ,ϕ for each lattice site (i.e. spin), we will
obtain a formalism that allows us to keep the cartesian expression for the Gibb’s Free Energy,
and still use the spherical derivative to calculate Ω0.
For any coordinate transformation differential operators are connected such that
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∂

∂ai,α
=

∂bn,α

∂ai,α

∂

∂bn,α

∂

∂ai,α

∂

∂a j,β
=

∂bn,α

∂ai,α

∂

∂bn,α

∂bm,β

∂a j,β

∂

∂bm,β

=
∂bn,α

∂ai,α

[(
∂

∂bn,α

∂bm,β

∂a j,β

)
∂

∂bm,β
+

∂bm,β

∂a j,β

∂ 2

∂bn,α∂bm,β

]
(4.6)

where - for our purposes - letters a,b represent a set of coordinates, Latin indices sum over
coordinates (e.g. ai = ϑ ,ϕ and bm = x,y,z), and Greek indices label different spins (α,β =

1,2,3, . . .). Note that Einstein’s sum convention does only apply to Latin indices i, j and not to
Greek ones. For now we let α,β be free indices, which may not be subject to summation. We
try to indicate discrepancies in meaning and handling, in relation to i, j by putting a comma in
between them, like in 4.6.
We expand the term in the round brackets

∂

∂bn,α

∂bm,β

∂a j,β
=

∂ai,α

∂bn,α

∂

∂ai,α

∂bm,β

∂a j,β

=
∂ai,α

∂bn,α

∂ 2bm,β

∂ai,α∂a j,β
(4.7)

Since the partial derivatives with respect to coordinates on two different sites are not con-
nected, the last term in 4.7 is only nonzero, if α = β . This simplifies explicit calculation
immensely, because the following tensor product with ∂

∂bm,β
is reduced to a scalar product of

two vectors, and our notation convention concerning indices is not threatened. We therefore
add a Kronecker symbol δαβ , which for α = β is 1 and else 0, to 4.7, and insert the result into
4.6. This yields

∂

∂ai,α

∂

∂a j,β
= δαβ

∂ 2bm,β

∂ai,α∂a j,β

∂

∂bm,β
+

∂bn,α

∂ai,α

∂bm,β

∂a j,β

∂ 2

∂bn,α∂bm,β
(4.8)

On the left hand side of 4.8 we count 4 free indices, that - if we were to apply Einstein’s sum
convention regularly - would define a 4th-grade tensor t̂i, j,α,β . However in our notation, for
arbitrary number of spins N and i, j = 1, . . . ,q, let T̂ N

{ai} be a Nq×Nq matrix, e.g. for q = 2
and N = 1
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T̂ 1
{ϑ ,ϕ} =

(
∂ 2

∂ϑ 2
∂ 2

∂ϑ∂ϕ

∂ 2

∂ϑ∂ϕ

∂ 2

∂ϕ2

)
(4.9)

and N = q = 2

T̂ 2
{ϑ ,ϕ} =



∂ 2

∂ϑ 2
1

∂ 2

∂ϑ1∂ϕ1

∂ 2

∂ϑ1∂ϑ2

∂ 2

∂ϑ1∂ϕ2
∂ 2

∂ϑ1∂ϕ1

∂ 2

∂ϕ2
1

∂ 2

∂ϑ2∂ϕ1

∂ 2

∂ϕ1∂ϕ2
∂ 2

∂ϑ2∂ϑ1

∂ 2

∂ϑ2∂ϕ1

∂ 2

∂ϑ 2
2

∂ 2

∂ϑ2∂ϕ2
∂ 2

∂ϑ1∂ϕ2

∂ 2

∂ϕ2∂ϕ1

∂ 2

∂ϑ2∂ϕ2

∂ 2

∂ϕ2
2

 (4.10)

4.5 Single Spin System

4.5.1 Single Spin Spherical Hessian

We apply the T̂ N
{ai}-operator onto Gibb’s Free Energy E of a single magnetic body (q = 1) and

find

T̂ 1
{ϑ ,ϕ}E = Ĥϑ ,ϕ =

(
∂ 2E
∂ϑ 2

∂ 2E
∂ϑ∂ϕ

∂ 2E
∂ϑ∂ϕ

∂ 2E
∂ϕ2

)
(4.11)

Following the rule 4.8 we arrive at expressions for the components of the matrix Ĥϑ ,ϕ . Shuf-
fling terms around we finally arrive at
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∂ 2E
∂ϑ 2 =




∂ 2E
∂u2

x

∂ 2E
∂ux∂uy

∂ 2E
∂ux∂uz

∂ 2E
∂uy∂ux

∂ 2E
∂u2

y

∂ 2E
∂uy∂uz

∂ 2E
∂uz∂ux

∂ 2E
∂uz∂uy

∂ 2E
∂u2

z




∂ux
∂ϑ

∂ux
∂ϑ

∂ux
∂ϑ


 ·


∂ux
∂ϑ

∂ux
∂ϑ

∂ux
∂ϑ

+


∂ 2ux
∂ϑ 2

∂ 2uy
∂ϑ 2

∂ 2uz
∂ϑ 2

 ·


∂E
∂ux
∂E
∂uy
∂E
∂uz

 (4.12)

∂ 2E
∂ϕ2 =




∂ 2E
∂u2

x

∂ 2E
∂ux∂uy

∂ 2E
∂ux∂uz

∂ 2E
∂uy∂ux

∂ 2E
∂u2

y

∂ 2E
∂uy∂uz

∂ 2E
∂uz∂ux

∂ 2E
∂uz∂uy

∂ 2E
∂u2

z




∂ux
∂ϕ

∂ux
∂ϕ

∂ux
∂ϕ


 ·


∂ux
∂ϕ

∂ux
∂ϕ

∂ux
∂ϕ

+


∂ 2ux
∂ϕ2

∂ 2uy
∂ϕ2

∂ 2uz
∂ϕ2

 ·


∂E
∂ux
∂E
∂uy
∂E
∂uz

 (4.13)

∂ 2E
∂ϑ∂ϕ

=




∂ 2E
∂u2

x

∂ 2E
∂ux∂uy

∂ 2E
∂ux∂uz

∂ 2E
∂uy∂ux

∂ 2E
∂u2

y

∂ 2E
∂uy∂uz

∂ 2E
∂uz∂ux

∂ 2E
∂uz∂uy

∂ 2E
∂u2

z




∂ux
∂ϑ

∂ux
∂ϑ

∂ux
∂ϑ


 ·


∂ux
∂ϕ

∂ux
∂ϕ

∂ux
∂ϕ

+


∂ 2ux

∂ϑ∂ϕ

∂ 2uy
∂ϑ∂ϕ

∂ 2uz
∂ϑ∂ϕ

 ·


∂E
∂ux
∂E
∂uy
∂E
∂uz

 (4.14)

Using the fact that the functional derivative of the Gibb’s Free Energy E with respect to the
magnetic polarization J is the negative effective magnetic field He f f

δE
δJ

= −He f f (4.15)

and

− Js
∂He f f

∂J
=


∂ 2E
∂u2

x

∂ 2E
∂ux∂uy

∂ 2E
∂ux∂uz

∂ 2E
∂uy∂ux

∂ 2E
∂u2

y

∂ 2E
∂uy∂uz

∂ 2E
∂uz∂ux

∂ 2E
∂uz∂uy

∂ 2E
∂u2

z

 (4.16)

as well as


∂ux
∂ϑ

∂ux
∂ϑ

∂ux
∂ϑ

= 1
Js

∂J
∂ϑ

(4.17)
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we rewrite the first component of Ĥϑ ,ϕ

∂ 2E
∂ϑ 2 =

[(
−

∂He f f

∂J

)
∂J
∂ϑ

]
· ∂J

∂ϑ
− ∂ 2J

∂ϑ 2 ·He f f (4.18)

To calculate Ω0 it is sufficient to have knowledge of He f f and its dependency on J, as well
as the magnetization itself. For the single spin system we have already shown, that there are
only two contributions to He f f - the external field Hext and the crystalline anisotropy term
Hani. Since Hext is not a function of J, the first term in 4.18 features only contributions of the
anisotropy field.
It is evident that Ĥϑ ,ϕ is symmetric since

∂ 2E
∂ϑ∂ϕ

=
∂ 2E

∂ϕ∂ϑ
(4.19)

Hence all eigenvalues - and therefore determinants as well - of Ĥϑ ,ϕ for both minimum and
saddlepoint configurations are real.

4.5.2 Minimum and Saddle-Point Configurations

In the previous chapter we have seen, that for ferromagnetic coupling of the exchange interac-
tion makes spins align parallel to each other. We can therefore assume that for minimum and
saddle-point configurations, the lateral dimension of the spin chain is sufficient small, so that
the particle can be regarded as single domain.
However, the information gained from spherical derivatives of vectors depends strongly on
where on the surface of the sphere the derivation was carried out. Consider a derivation on
one of the poles; e.g. ϑ = 0. Since a change of the azimuth angle ϕ would result in no change
of orientation, every derivative with respect to ϕ would equal zero.
To guarantee comparable results, we have to make sure that we carry out the derivations at
sites that are in the vicinity of the x,y-plane. This restriction demands ϑ = π

2 . Effectively this
means, that any minimum and saddle-point configurations must be transposed to fit on this
plane. Such a transformation is well defined. Consider a sphere of radius r = Js and centered
at M = (0,0,0). The polarization vector J may point from the center of the sphere onto the
surface. Polarization vectors for minimum and saddle-point configurations define two points
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P,Q on the surface. It is always possible to find a plane A through M, such that P,Q are el-
ements of that plane. Following this definition [DB99] the crossing of such a plane with the
corresponding sphere results in a great circle, that must feature P,Q. The transformation may
now turn coordinate axis, such that the plane A becomes the x,y-plane and the great circle
becomes the equator.
Such a transformation results in ϑmin =ϑsad =

π

2 . The two configurations differ in their setting
of the azimuth angle ϕmin 6= ϕsad .

4.5.3 Explicit Calculation

We realize the right configurations for minimum and saddle-point by choosing the x-axis as
’easy’-direction and applying an external field parallel to the y-axis. The magnitude of Hext is
measured by means of h = HextJs

2K1
, making h a dimensionless parameter [Sch09]. This leads to

a simple expression for Gibb’s Free Energy

E = −V K1
(
sin2

ϑ cos2
ϕ +2hsinϑ sinϕ

)
(4.20)

and

ϑmin =
π

2
ϕmin =±arcsinh

ϑsad =
π

2
ϕsad =

π

2
(4.21)

For the spherical Hessians we find

Ĥmin
ϑ ,ϕ = 2V K1

(
1 0
0 1−h2

)
(4.22)

Ĥsad
ϑ ,ϕ = 2V K1

(
h 0
0 h−1

)
(4.23)
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We calculate the determinants of the matrices and apply them to 4.3. This yields

Ω0 =

√
1+h

h
(4.24)

4.6 Multi-Spin Problem

4.6.1 Multi-Spin Spherical Hessian

Extending the formalism to tackle a system of an arbitrary number of spins, take a closer look
at the structure of the T̂ N

{ai}-operator. In the previous section we have seen, that when it acts on
a scalar like the Gibb’s Free Energy, T̂ N

{ai} produces a matrix. This matrix is symmetric and all
its entries are real, as long as there are only real entries in E.
For the Single Spin Problem this results in a 2×2 spherical Hessian, which we will refer to as
Ĥ11. Using this notation, we can qualitatively line out a N×N-matrix for the N-Spin-Problem

Ĥϑ ,ϕ =


Ĥ11 Ĥ12 · · · Ĥ1N

Ĥ21 Ĥ22 · · · Ĥ2N
...

... . . . ...
ĤN1 ĤN2 · · · ĤNN

 (4.25)

where every entry represents a real 2× 2-matrix. Obviously the main diagonal consists ex-
clusively of Single-Spin-like terms Ĥii. However, we must not be so naive as to not consider
exchange interactions in those terms, because 4.18 teaches us that there is a contribution of
He f f which - for Multi-Spin-Problems - contains the exchange field Hxch.
Bearing this in mind, we take a look at the off-diagonal terms Ĥi j with i 6= j. These matri-
ces feature derivatives of E with respect to ϑ ,ϕ on two different sites. The only way such a
derivative is nonzero, is, if E depends on variables of two different sites. There is only one con-
tribution to the Gibb’s Free Energy that fulfills this requirement; the exchange energy. Since
we take only next neighbor interactions into account, the exchange energy on the site i Exch,i

is dependent on the two adjacent spins at sites i±1 as well as the spin at the site i itself. Hence,

Ĥi j = 0, j = i±2, i±3, . . . (4.26)
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leaving only three diagonals in 4.25 nonzero. It is easily shown that

Ĥ21 = ĤT
12 (4.27)

making Ĥϑ ,ϕ a symmetric band matrix.
The 2× 2-elements Ĥi j with i 6= j, have to be proportional to the exchange energy, all other
contributions to E may not contribute, because they are canceled by the partial derivation. For
the off-diagonal terms we arrive at the following expression.

Ĥi j = − A
a2Js


1 0 0

0 1 0
0 0 1

( ∂Ji

∂ (ϑ ,ϕ)i

) ·( ∂J j

∂ (ϑ ,ϕ) j

)
(4.28)

The partial derivatives with respect to (ϑ ,ϕ) depends on which component of the 2× 2 ma-
trix is to be calculated. Simplifying the expression, we write the off-diagonal elements of Ĥϑ ,ϕ

Ĥi j =−
A

a2Js

( ∂Ji
∂ϑi

)
·
(

∂J j
∂ϑ j

) (
∂Ji
∂ϑi

)
·
(

∂J j
∂ϕ j

)(
∂Ji
∂ϕi

)
·
(

∂J j
∂ϑ j

) (
∂Ji
∂ϕi

)
·
(

∂J j
∂ϕ j

) , j = i±1 (4.29)

For a ferromagnetic state the exchange interaction keeps the spins parallel aligned to each
other. Hence, we can assume that ϑi = ϑ j = ϑ and ϕi = ϕ j = ϕ . Inserting the polarization
vector in spherical coordinates

1
Js

J =

sinϑ cosϕ

sinϑ sinϕ

cosϑ

 (4.30)

and performing the derivation with respect to (ϑ ,ϕ), yields

Ĥi j =−
AJs

a2

(
1 −sinϑ cosϑ

−sinϑ cosϑ 1

)
, j = i±1 (4.31)
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which for ϑ = π

2 results in

Ĥi j =−
AJs

a2

(
1 0
0 1

)
, j = i±1 (4.32)

We note that 4.31 is independent of ϕ . Since minimum and saddle-point configurations differ
only in their ϕ-setting, not in their ϑ -setting, the off-diagonal terms of Ĥϑ ,ϕ are identical for
the respective Hessians.
Once more we observe the isotropic character of the exchange energy. Provided, that in both
minimum and saddle-point configurations spins align parallel, the configurations themselves
differ from one another in orientation. The off-diagonal terms of the respective Hessian fea-
ture only exchange contributions and due to the isotropy of the Heisenberg Hamiltonian re-
main oblivious to a change from minimum to saddle-point. The diagonal terms of the Hessian,
however, must differ for different magnetization configurations, because they feature contri-
butions of the anisotropy energy.

4.6.2 Explicit Calculations

Comparing different total system sizes with a variable number of spins, we get the plots in 4.1
We can see that Ω0 is basically independent of the number of spins within a system, but is

proportional to the total system size.

4.7 Eigenvectors and Eigenfunctions

For the calculation of Ω0 we need the determinants of 4.25 at the minimum and saddlepoint
of the Gibb’s Free Energy. The determinant is the product of the eigenvalues λk that satisfy
the equation

Ĥϑ ,ϕ χk(r) = λkχk(r) (4.33)

det Ĥϑ ,ϕ = ∏
k

λk (4.34)
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Figure 4.1: Ω0 over number of spins for different total system sizes

with χk being the eigenvector or eigenfunction that is associated with λk. The set of all χk are
a basis for the subspace of Ĥϑ ,ϕ . D’Aquino et al [Md09] formulated a spectral representation
of Fourier modes, that allowed to write Gibb’s Free Energy as

Edis = ∑
k

1
2

λka2
k− (hext ,χk(r))ak (4.35)

where χk(r) are the discretized magnetization Fourier modes, Edis is the discretized Gibb’s
Free Energy, and (v,w) is the scalar product of L2(Ω)

(v,w) =
1
V

∫
Ω

v ·wdV (4.36)

The spectral representation of spin-wave decomposition [Suh56] [GB01] is a good example of
how magnetization can be expressed by means of Fourier plane-wave modes. The basic idea
is to expand the magnetization through a Fourier series
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u(r, t) =
∞

∑
k=1

ak(t)χk(r) (4.37)

with

ak(t) = (u(r, t),χk(r)) (4.38)

Modes of lower k correspond to a lower energy contribution, making χ0 the ground state
mode, which we expect to show all spins aligned parallel in minimum direction. Higher
modes represent excitations and refer to higher energy contributions.
The representation of the eigenfunctions χk(r) is not well defined, since the used norm is
relevant. Consider a unit eigenvector

χe =

(
ϑe

ϕe

)
(4.39)

giving a solution of equation 4.33. Every new set

χ
′ =

(
ϑ ′e
ϕ ′e

)
= s

(
ϑe

ϕe

)
s ∈ R (4.40)

would provide an equal solution. Within a coordinate system of axis (ϑ ,ϕ), such a transfor-
mation would keep the orientation of the vector intact and for s ∈ (−∞,∞) defines a straight
line 4.2
However, if we map this function on the x,y,z-space using the usual transformations

χx

χy

χz

 =

sin(sϑe)cos(sϕe)

sin(sϑe)sin(sϕe)

cos(sϑe)

 (4.41)

the straight line becomes a rather complex curve on the surface of a sphere 4.3
This means that orientations of the eigenvector modes is depending on the norm s. As long

as this is kept in mind and the same norm (e.g. s = 1) is used for all representations of χk, no
qualitative information is lost.
A 2N×2N-matrix has 2N eigenvectors, hence k = 0,1,2, . . .2N−1. Each eigenvector has 2N
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Figure 4.2: Eigenvector within (ϑ ,ϕ)-coordinate system

components. The components represent (ϑ ,ϕ)-coordinates for all spins.

χ =



ϑ1

ϕ1

ϑ2

ϕ2
...

ϑN

ϕN


(4.42)

These eigenvectors are transformed into a cartesian representation and plotted. For lower
excitations of a 30-spin-system we get rather beautiful wave-like eigenfunctions χk(r) like in
4.4 - 4.7

For higher excitations this representation is no longer gentle to the eye and we choose at
glyph-representation, where colors correspond to Jz-values of the local polarization vector.

40



4 Analytical Calculation of the Attempt Frequency

Figure 4.3: Eigenvector within (x,y,z)-coordinate system
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Figure 4.4: mode = 0,groundstate

4.8 Eigenvalue Analysis

The ordering of the eigenvalues by magnitude allows us to take a look at the ratios λ min
k

λ sad
k

.
Numerical calculations of 3nm system consisting of 30 (figure 4.13) respectively 300 (figure
4.14) spins are shown here. The numerical solutions were fitted by an exponential function
and a critical exponent was found.

We observe that the fitting function quite rapidly converges to zero, and deduce that after
a critical k-value all fractures λ min

k
λ sad

k
equal one, and therefore do no longer contribute to the

attempt frequency. This gives rise to the idea that the complexity could be drastically reduced,
if a formalism was derived, that determines how many k-values need to be taken into account
for a sufficient numerical solution. The formalism shows no dependency on the number of
spins.
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Figure 4.5: mode = 8

Figure 4.6: mode = 12
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Figure 4.7: mode = 16

Figure 4.8: mode = 0,groundstate
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Figure 4.9: mode = 1, f irstexcitation
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Figure 4.10: mode = 2

Figure 4.11: mode = 33
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Figure 4.12: mode = 58

Figure 4.13: ln λ min
k

λ sad
k

over k for 3nm system size and 30 spins; fit with aexp
(
−k

t

)
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Figure 4.14: ln λ min
k

λ sad
k

over k for 3nm system size and 300 spins; fit with aexp
(
−k

t

)
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5 Conclusion and Outlook

The analysis of single domain dynamics predicts uniform movement for spins in a magnetic
chain. Regardless of system size and number of spins, the exchange integral accounts for fer-
romagnetic (parallel) or anti-ferromagnetic (antiparallel) alignment. Magnetization alteration
by means of an externally applied magnetic field shows a dependency of the coercivity field on
the anisotropy constant, resulting in the fact that with increased stability of state there comes
a higher strain for magnetization switching. The statistical factor of the attempt frequency is
independent of the number of spins within the micromagnetic system, but simulations predict
a dependency on the total system size. A closer look at the eigenvalues shows that for an accu-
rate calculation of the statistical factor, it suffices to take only a few eigenvalues into account,
reducing computing time and complexity of the problem. For future considerations, this rou-
tine may also be extended to tackle 3-dimensional systems of different material properties
(e.g. different anisotropies, nearest-neighbor-distance,. . . etc).
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