Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der Hauptbibliothek der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

DIPLOMARBEIT

Nutzung des GLONASS-Satellitennavigationssystems in der Vermessungspraxis - Vorteile und Grenzen

Ausgeführt am Institut für

Geodäsie und Geophysik

FG Höhere Geodäsie

der Technischen Universität Wien

unter der Anleitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Robert Weber

und Dipl.-Ing. Gottfried Thaler

durch

Claudia Steinbichler Dostalgasse 1A/H3 A 1130 Wien

Wien, am 23. September 2009

Danksagung

An dieser Stelle möchte ich mich bei allen Personen bedanken, die mir bei dieser Arbeit geholfen haben. Mein besonderer Dank gilt meinen Betreuer Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Robert Weber für seine ausgezeichnete Betreuung. Bedanken möchte ich mich bei Herrn Dipl.-Ing. Gottfried Thaler für seine fachliche Hilfe. Weiters möchte ich mich bei der Firma Wienstrom für die Bereitstellung der GNSS Empfänger bedanken.

Bedanken möchte ich mich auch bei meinen Eltern für ihre Unterstützung während der gesamten Studienzeit.

Schlussendlich will ich meinem Freund Jochen, meinem Bruder Martin und meinen Freunden Elke und Mark danken.

Kurzfassung

In der praktischen Vermessung gewinnt die Positionsbestimmung mittels GNSS immer mehr an Bedeutung. Mit dem flächendeckenden Ausbau von GNSS-Referenzstationsnetzen zur Echtzeitpositionierung, stehen dem Ziviltechnikerbüro eine Vielzahl von Anwendungsmöglichkeiten zur Verfügung. Die Firma Wienstrom betreibt seit 2003 ein derartiges Referenzstationsnetzwerk (WEP), welches den Großraum Wien abdeckt. Dieses kann auch von externen Kunden genutzt werden. Aufgrund der großen Abschattungen in Stadtgebieten, werden hier mehr Satelliten für eine erfolgreiche Positionierung benötigt. Da GLONASS vor dem vollständigen Systemausbau (2010) steht, wird eine Nutzung kombinierter GPS/GLONASS Empfänger immer attraktiver.

Im Rahmen dieser Arbeit werden drei in der geodätischen Praxis typische Messszenarien näher betrachtet. Das erste Messszenarium bezieht sich auf eine statische Messung. Ein Netz bestehend aus drei Netzpunkten und drei Referenzstationen wird dabei vier Stunden lang beobachtet. Im zweiten Anwendungsfall werden RTK Messungen in drei unterschiedlichen teils stark abgeschatteten Gebieten durchgeführt. Das dritte Messszenarium ist die Punktbestimmung eines bewegten Fahrzeuges.

Ziel ist es, die Vorteile aber auch die Grenzen einer gemeinsamen Nutzung der Satellitensysteme GPS und GLONASS zu untersuchen. In Kapitel 6 werden die Auswertungen und Ergebnisse getrennt nach GPS und GPS+GLONASS beschrieben.

Abstract

Point Positioning by means of Global Navigation Satellite Systems (GNSS) becomes more and more important in most tasks of surveying. Moreover, the current technical standard of real-time capable reference station networks and their almost complete spatial coverage opens a wide field of applications. The Austrian energy provider Wienstrom operates such a reference station network providing RTK- and DGPS-corrections for the area of Vienna and the surrounding regions. Since 2003 this system is also open to external clients. Because of obstructions caused by buildings in urban regions, the availability of more satellites than provided by GPS would be extremely helpful for a successful positioning. The GLONASS system is close to a full capability status (2010), so a combined use of GPS and GLONASS receivers will gain importance.

This thesis focuses on three typical settings used in geodetic measuring practice. The first setting is a static point positioning. A network comprising of three points of interest and three reference stations was observed for four hours. The second example deals with RTK-measurements carried out in three different but heavily obstructed areas of Vienna. The final investigated application is the real-time positioning of a vehicle on the move.

Showing both the key benefits and the limitations of the combined use of GPS and GLONASS is the aim of this research. At the end of the thesis all results of the research are summarized and extensively interpreted.

Inhaltsverzeichnis

1	Einle	eitung		7
2	Die	Satellite	ennavigationssysteme GPS und GLONASS	9
	2.1	Grund	prinzip	9
	2.2	Das G	PS-System	10
		2.2.1	Das Weltraumsegment	10
		2.2.2	Das Kontrollsegment	11
		2.2.3	Die GPS-Signalstruktur	12
	2.3	Das G	LONASS-System	13
		2.3.1	Das Weltraumsegment	13
		2.3.2	Das Kontrollsegment	15
		2.3.3	Die GLONASS-Signalstruktur	15
	2.4	Das Bo	enutzersegment	17
3	Posi	itionsbe	estimmung	18
	3.1	Beoba	chtungen	18
		3.1.1	Codemessung	18
		3.1.2	Phasenmessung	19
	3.2	Fehler	einflüsse	20
		3.2.1	Ionosphärische Refraktion	20
		3.2.2	Troposphärische Refraktion	23
		3.2.3	Multipath	24
		3.2.4	Antennenphasenzentrum	25
	3.3	Linear	kombinationen	25
	3.4	Absolu	ute Punktbestimmung	28

D	Tool	micche	Datophlättor	03
Α	Bere	echnung	jsprotokolle	79
7	Zusa	ammenf	assung und Ausblick	77
		6.3.2	Statistik	76
		6.3.1	Auswertung	74
	6.3	Kinema	atische Messung	73
		6.2.5	Zusammenfassung und Ergebnisse	72
		6.2.4	Fixierungszeiten	
		6.2.3	Bahngasse	
		6.2.2	Gußhausstraße	
		6.2.1	Karlsplatz (Resselpark)	
	6.2		Iessung	
		6.1.3	Auswertung	
		6.1.2	Auswahl der Geräte	
		6.1.1	Planung	
_	6.1		ne Messung	_
6	Prak	ctische F	Beispiele	49
	5.2	Messte	chnik in einem ZT-Büro	48
	5.1	Einsatz	zmöglichkeiten von GNSS im ZT-Büro	45
5	Anfo	orderunç	gen ZT-Büro	45
	4.3	Einsatz	möglichkeiten und Nutzungsentgelte	43
			WEP Zentrale	
		4.2.1	Netzaufbau	
	4.2		ystemaufbau und technische Details	
	4.1		Energie	
4	Das	Echtzei	tpositionierungssytem WEP	40
	3.6	Satellit	engeometrie und Abschattungen	36
		3.5.2	Beobachtungsmethoden	
		3.5.1	Abgeleitete Beobachtungsgleichungen	29
	3.5	Relativ	e Punktbestimmung	29

Kapitel 1

Einleitung

Die Positionsbestimmung mit Satelliten gewinnt immer mehr Bedeutung in der praktischen Vermessung. Vor allem die in den letzten Jahren entstandenen Referenzstationsnetze zur Echtzeitpositionierung erhöhen die Anwendungsmöglichkeiten in der Vermessungspraxis. Die Nutzung der Satellitennavigationssysteme stellt eine Alternative zu den terrestrischen Messverfahren dar. Das bekannteste System ist das US-amerikanische Global Positioning System (GPS). Das Globale Navigations-Satelliten-System (GLONASS) ist das russische Pendant zu GPS. GLONASS unterscheidet sich von GPS in Bereichen des Kontrollsegments, des Weltraumsegments und in der Signalstruktur. Die Systeme GPS und GLONASS können unter Berücksichtigung der Systemunterschiede kombiniert genutzt werden. Nach einer Phase der eingeschränkten Verfügbarkeit Ende der 90-er Jahre steht nun GLONASS wieder vor dem vollständigen Systemausbau. Aus diesem Grund werden seit wenigen Jahren vermehrt kombinierte GPS/GLONASS-Zweifrequenzempfänger von den Geräteherstellern geodätischer Satellitennavigationsempfänger entwickelt und angeboten.

Bei einer gemeinsamen Nutzung erhöht sich zur Zeit die Anzahl der verfügbaren Satelliten von rund 30 GPS-Satelliten um 20 GLONASS-Satelliten auf bis zu 50 Satelliten. Dem klaren Vorteil einer höheren Zahl verfügbarer Satelliten steht aber das Problem der schwierigeren Verarbeitung hybrider Messdaten gegenüber.

Im Rahmen des praktischen Teils dieser Diplomarbeit wurden anhand von drei in der geodätischen Praxis typischen Messszenarien die Vorteile, aber auch die derzeitigen Grenzen einer gemeinsamen Nutzung der Satellitensysteme GPS und GLONASS näher untersucht.

Innerhalb der vorliegenden Arbeit wird zuerst der Systemaufbau und der aktuelle Status der Satellitensysteme GPS und GLONASS beschrieben. Das folgende Kapitel 3 befasst sich mit den unterschiedlichen Möglichkeiten der Positionsbestimmung mit Satelliten. In Kapitel 4 wird das Wienstrom Echtzeitpositionierungssystem WEP vorgestellt. Anschließend werden die Anwendungsmöglichkeiten von GNSS in einem ZT-Büro beschrieben. Kapitel 6 befasst sich mit den praktischen Beispielen, dem Ablauf und der Auswertung der Messungen.

Die drei ausgewählten Messszenarien umfassen:

- ein kleinräumiges statisch zu beobachtendes hochpräzises Überwachungsnetz,
- eine RTK Punktbestimmung unter Nutzung der Korrekturdaten des Echtzeitpositionierungssystems WEP im innerstädtischen Bereich und
- eine Punktbestimmung eines bewegten Fahrzeuges.

Kapitel 2

Die Satellitennavigationssysteme GPS und GLONASS

2.1 Grundprinzip

Die Hauptanwendung von GPS (Global Positioning System) und GLONASS (Globales Navigations Satelliten System) liegt in der Bestimmung dreidimensionaler Koordinaten eines Signalempfängers mittels Streckenmessung. Die Distanzen zwischen den bekannten Satellitenpositionen und dem Empfänger erhält man aus den gemessenen Signallaufzeiten die mit der Lichtgeschwindigkeit multipliziert werden. Anstelle der wahren Distanzen erhält man jedoch Pseudodistanzen, da die Empfänger- und Satellitenuhren niemals vollständig synchronisiert sind. Zu den drei unbekannten Koordinaten kommt somit noch als vierte Unbekannte der Uhrenfehler des Empfängers hinzu. Auch erfolgt die Signalausbreitung in der Atmosphäre mit einer verringerten Geschwindigkeit. Sowohl die atmosphärische Berechnung als auch eine Reihe weiterer physikalischer oder geometrischer Fehlereinflüsse werden durch Modelle berücksichtigt. Für eine eindeutige Positionsbestimmung ist die Messung der Pseudodistanzen zu mindestens vier Satelliten nötig. Weiterführende Literatur zu diesem Thema ist reichlich vorhanden (z.B.: [HOFMANN-WELLENHOF 2008], [BAUER 2003] oder [MANSFELD 2004]).

2.2 Das GPS-System

Das Referenzkoordinatensytem für GPS ist das World Geodetic System 1984 (WGS 84). Mit einer räumlichen Ähnlichkeitstransformation können die Koordinaten in das jeweilige Landessystem transformiert werden.

Das System GPS besteht aus drei Grundelementen [HOFMANN-WELLENHOF 2001]:

- Weltraumsegment
- Kontrollsegment
- Benutzersegment

2.2.1 Das Weltraumsegment

Die Satelliten sind in sechs um jeweils 60° gegeneinander verdrehten Bahnebenen (A-F) angeordnet. Die Bahnneigung beträgt rund 55°. Mit einer Höhe von ca. 20200km und einer nahezu kreisförmigen Bahn ergibt sich eine Umlaufzeit von einem halben Sterntag (ca. 11Stunden 58Minuten). Das bedeutet, dass der Satellit jeden Tag 4 Minuten früher über dem gleichen Punkt der Erdoberfläche erscheint. Bei nominell 24 im Raum befindlichen Satelliten sind garantiert zu jeder Zeit an jedem Ort mindestens 4 Satelliten sichtbar. Das Weltraumsegment besteht zur Zeit aus 31 aktiven Satelliten. Aufgrund von Wartungszeiten sind jedoch immer wieder einzelne Satelliten nicht verfügbar. Man unterscheidet sechs Bautypen von Satelliten: Block I, II, IIA, IIR, IIR-M, IIF und III. Die aktuelle Konstellation (April 2009) der GPS-Satelliten und deren PRN-Nummern ist in Tab. 2.1 dargestellt [NAVCEN 2009].

	A	В	С	D	Е	F
1	09 IIA	16 IIR	06 IIA	02 IIR	20 IIR	14 IIR
2	31 IIR-M	30 IIA	03 IIA	11 IIR	22 IIR	15 IIR-M
3	08 IIA	28 IIR	19 IIR	21 IIR	10 IIA	13 IIR
4	27 IIA	12 IIR-M	17 IIR-M	04 IIA	18 IIR	23 IIR
5	25 IIA	05 IIA	-	24 IIA	32 IIA	26 IIA
6	07 IIR-M	-	29 IIR-M	-	-	-

Tabelle 2.1: GPS-Konstellation (April 2009)

Abbildung 2.1: Nominelle GPS-Satellitenbahnen

2.2.2 Das Kontrollsegment

Das Kontrollsegment besteht aus 5 Bodenstationen: Hawaii, Kawajalein, Ascension Island, Diego Garcia und Colorado Springs. Die Station auf Colorado Springs ist die Master Control Station (MCS). Die Aufgaben des Kontrollsegmentes sind:

- Beobachtung und Kontrolle des Systems
- Bestimmung der Satellitenuhrenabweichung von GPS-Systemzeit
- Überwachung der Satellitenuhren
- Beobachtung und Prädiktion der Satellitenbahnen
- Übermittlung der Navigationsnachricht an die Satelliten

Die MCS sammelt die Daten der Bodenstationen und berechnet daraus Satellitenbahn- und Uhrparameter. Diese errechneten Daten werden in der Navigationsnachricht über die Bodenantennen an die entsprechenden Satelliten übermittelt.

2.2.3 Die GPS-Signalstruktur

Um eine Positionsbestimmung zu ermöglichen müssen die Satelliten fortlaufend Signale aussenden. Die Frequenzen der Signale werden von einer Grundfrequenz $f_0 = 10,23MHz$ abgeleitet. Zur Zeit senden die Satelliten auf zwei Trägerfrequenzen (L1 und L2):

- $L1 = 154f_0 = 1575,42MHz$
- $L2 = 150 f_0 = 1227,60 MHz$

Ab der Block IIF Satellitengeneration kommt eine dritte Frequenz hinzu:

•
$$L5 = 115f_0 = 1176,45MHz$$

Die zusätzliche Frequenz eröffnet die Möglichkeit, Mehrdeutigkeiten schneller als bisher lösen zu können. Den Trägersignalen L1 und L2 werden Codes aufmoduliert. Damit wird die Laufzeitmessung und die Identifikation der Satelliten ermöglicht. Jeder GPS-Satellit erhält einen einmaligen Code. Der C/A-Code (coarse/acquisition) ist eine allgemein zugängliche Codierung. Er hat eine Frequenz von $f_0/10=1,023MHz$ mit einer Wiederholungsrate von 1ms. Der C/A-Code wird nur dem Trägersignal L1 aufmoduliert. Der P-Code (precision) hat eine Frequenz von $f_0=10,23MHz$ mit einer Wiederholungsrate von einer Woche. Damit nur autorisierte Personen diesen Code nützen können, wird dieser verschlüsselt. Dies erfolgt durch Überlagerung mit einem langwelligen W-Code. Die Kombination von P- und W-Code wird mit Y-Code bezeichnet. Der P-Code bzw. Y-Code wird beiden Trägersignalen L1 und L2 aufmoduliert. Voraussetzung für eine Positionsbestimmung in Echtzeit sind die Bahndaten der Satelliten und weitere Informationen (z.B.: Uhrenparameter). Diese werden in der Navigationsnachricht zusammengefasst und als Datensignal beiden Trägersignalen aufmoduliert.

Signal	IIR	IIR-M	IIF
L1 C/A	X	X	X
L1 P/Y	X	X	X
L1 M	-	X	X
L2 C	-	X	X
L2 P/Y	X	X	X
L2 M	-	X	X
L5 C	-	-	X

Tabelle 2.2: GPS Signalstruktur

Die Navigationsnachricht besteht aus 1500bits, welche in 30 Sekunden mit einer Frequenz von 50Hz übertragen werden. Die IIR-M Satellitengeneration unterstützt erstmalig einen zivilen Code auf der zweiten Frequenz (L2C-Code) und ein neues militärisches Signal (L1M und L2M). Dem Trägersignal L5 wird ein ziviler Code aufmoduliert (L5C-Code).

2.3 Das GLONASS-System

2.3.1 Das Weltraumsegment

Das vollständig ausgebaute System besteht aus 24 Satelliten in 3 Bahnebenen. Diese sind um 120° gegeneinander verdreht und haben eine Inklination von 64,8°. In jeder Bahn sind 8 Satelliten in gleichen Winkelabständen vorgesehen. Die GLONASS Satelliten haben eine kreisähnliche Bahn mit einer Höhe von ca. 19100km. Für einen Umlauf benötigen sie ca. 11Stunden 15Minuten.

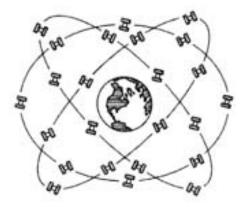


Abbildung 2.2: Nominelle GLONASS-Satellitenbahnen

In voller Besetzung der Bahnen sollten an jedem Ort der Erde zwischen 6 und 11 Satelliten sichtbar sein. Aufgrund von Finanzierungsschwierigkeiten und der kurzen Lebensdauer (3 Jahre) der GLONASS-Satelliten sank die Anzahl der aktiven Satelliten im Jahr 2001 auf nur 7. Seit 2001 wurden verbesserte Satelliten (GLONASS-M) mit einer Lebensdauer von 7 Jahren eingesetzt. Momentan verfügt das System über 20 aktiven Satelliten (siehe Tab. 2.3). Über den Zeitraum der praktischen Messungen dieser Diplomarbeit (Februar - August 2008)

standen 14 aktive Satelliten zur Verfügung. Aufgrund von Wartungsarbeiten oder Bahnmanövern schwankt die Anzahl ein wenig. Den jeweils aktuellen Status kann man auf [RSA 2009] einsehen.

I	_	02/01	03/05	04/06	-	06/01	07/05	08/06
II	09/-2	10/-7	11/00	-	13/-2	14/-7	15/00	-
II	17/04	18/-3	19/03	20/02	21/04	22/-3	23/03	24/02

Tabelle 2.3: GLONASS Slot-Nummern und Frequenzkanäle (April 2009)

In Abb. 2.3 ist der PDOP für einen GLONASS-Empfänger für alle Punkte der Erdoberfläche am 16.04.09 um 11:00 abgebildet. PDOP steht für Position Dilution of Precision und ist der mittlere Positionsfehler. Der PDOP ist nur von der augenblicklichen Empfänger-Satelliten-Geometrie abhängig. Die Empfänger-Satelliten-Geometrie und die Auswirkungen von Abschattungen werden im Kapitel 3.6 genauer beschrieben.

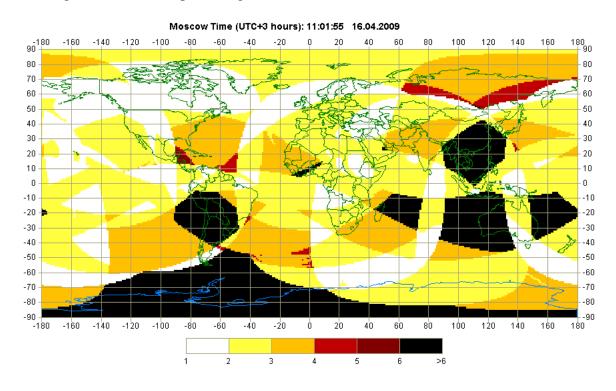


Abbildung 2.3: PDOP am 16.04.09 11:00 UTC Moskauer Zeit [RSA 2009]

Die neue Generation GLONASS-K Satelliten wird eine Lebensdauer von 10 Jahren haben und befindet sich derzeit noch in Entwicklung. Ab 2010 sollen diese gestartet werden.

2.3.2 Das Kontrollsegment

Das GLONASS Kontrollsegment besteht aus dem Systemkontrollzentrum in Moskau, mehreren Kommando- und Tracking-Stationen und mehreren Lasertrackingstationen die über die ehemalige Sowjetunion verteilt sind. Die Aufgaben sind ähnlich wie bei GPS:

- Überwachung der Satelliten zur Bahn- und Uhrenprädiktion
- Upload der Navigationsnachricht
- Kontrolle des Offsets zwischen GLONASS-Systemzeit und UTC

Die GLONASS-Systemzeit wird im Systemkontrollzentrum vom *Central Synchronizer* auf Basis von Atomuhren erzeugt. Die Positionsangaben beziehen sich auf das PZ 90-2 System (Parametri Zemeli= Erdparameter).

2.3.3 Die GLONASS-Signalstruktur

Ein wesentlicher Unterschied zwischen GPS und GLONASS ergibt sich aus den unterschiedlichen Techniken zur Identifizierung der einzelnen Satelliten. Während bei GPS individuelle Codes eingesetzt werden, benutzen GLONASS-Satelliten unterschiedliche Sendefrequenzen. Jeder GLONASS-Satellit sendet zwei Trägerfrequenzen: G1 und G2. Die Frequenzbänder G1 und G2 liegen im Bereich von:

$$G1:1598,0625-1605,375MHz$$
 (2.1)
 $G2:1242,9375-1248,625MHz$

Die einzelnen GLONASS-Satellitenfrequenzen ergeben sich aus

Frequenzband G1:
$$f_1(k) = 1602MHz + k*9/16MHz$$
 (2.2)
Frequenzband G2: $f_2(k) = 1246MHz + k*7/16MHz$

mit k = Frequenzkanal der Satelliten.

Momentan werden Frequenznummern von -7 bis 6 verwendet. Satelliten welche in derselben Bahnebene 180° auseinander liegen erhalten den gleichen Frequenzkanal. Ab der GLONASS-K Generation kommt eine dritte Trägerfrequenz hinzu:

Frequenzband G3:
$$f_3(k) = 1204,704MHz + k*94/125MHz$$
 (2.3)

Auf G1 wird der C/A-Code, P-Code und das Datensignal aufmoduliert. Wie bei GPS wird auf G2 nur der P-Code und das Datensignal aufmoduliert. Der C/A-Code hat eine Frequenz von 0,511MHz mit eine Wiederholungsrate von 1ms. Der P-Code hat eine Frequenz von 5,11MHz mit einer Wiederholungsrate von 1s. Eine vollständige GLONASS-Navigationsnachricht besteht aus 1500bits und wird mit 50Hz übertragen.

Komponente	Frequenz		
Träger L1/G1	1575MHz	1598-1605MHz	
Träger L2/G2	1228MHz	1243-1249MHz	
Träger L5/G3	1176MHz	1199-1209MHz	
P-Code	10,23MHz	5,11MHz	
C/A-Code	1,023MHz 0,511MHz		
Navigationsnachricht		50Hz	

Tabelle 2.4: Signalstruktur GPS und GLONASS

2.4 Das Benutzersegment

Das Benutzersegment besteht aus allen Empfängern, welche die GNSS-Signale empfangen und daraus ihre Position bestimmen können. Die Empfänger unterscheiden sich durch:

- Anzahl der Kanäle (Mehrkanalempfänger)
- Anzahl der Träger (1 Frequenz, 2 Frequenz oder 3 Frequenzempfänger)
- Codemessung oder Code- und Phasenmessung
- GPS oder GPS + GLONASS
- Maximale Anzahl parallel verfolgbarer Satelliten (entspricht meist der Kanalanzahl)
- · Größe und Gewicht
- Antenne
- Stromversorgung

Neueste GNSS-Empfänger verfügen über bis zu 120 Kanäle und können drei Frequenzen verarbeiten. In Zukunft werden Empfänger mit bis zu 216 Kanälen zur Verfügung stehen. Die Anzahl der Kanäle hat Einfluss auf den PDOP und die Bestimmung der Ambiguities. Umso größer die Anzahl der Kanäle ist umso mehr Satelliten kann der Empfänger gleichzeitig empfangen. Bei zwei oder drei Frequenzempfängern kann die Signalverzögerung in der Ionosphäre eliminiert werden.

Kapitel 3

Positionsbestimmung

3.1 Beobachtungen

3.1.1 Codemessung

Die Pseudoentfernung $R_R^S(t)$ bei der Codemessung erhält man aus der Laufzeitmessung des aufmodulierten Code-Signals vom Satelliten zum Empfänger. Da die Empfänger- und Satellitenuhren nicht synchronisiert sind, müssen zur Systemzeit zwei weitere Zeitskalen definiert werden. Die Codepseudodistanz kann wie folgt beschrieben werden:

$$R_R^S(t) = \rho_R^S(t) + c\Delta \delta_R^S(t) + d_F$$
 (3.1)

mit

$$\Delta \delta_R^S(t) = \delta_R(t) - \delta^S(t) \tag{3.2}$$

Der erste Term $\rho_R^S(t)$ beschreibt die geometrische Weglänge zwischen Satellit und Empfänger. Auf die Fehlereinflüsse d_F wird in Kapitel 3.2 näher eingegangen. $\Delta \delta_R^S(t)$ ist die Empfänger/Satelliten-Uhrenabweichung.

Da die Laufzeit durch Korrelation abgeleitet wird, hängt die Genauigkeit der Pseudodistanz von der Korrelation ab. Diese gelingt heute mit einer Genauigkeit von wenigen ‰ der Wellenlänge. Zusätzlich hängt das Messrauschen von der Bandbreite ab. Der C/A-Code liefert, abgesehen von systematischen Einflüssen eine Genauigkeit von unter 1m und der P-Code eine Genauigkeit von wenigen Dezimetern.

3.1.2 Phasenmessung

Wenn Genauigkeiten in cm- oder mm-Bereich benötigt werden, müssen Trägerphasen gemessen werden. In den GNSS-Empfängern gibt es einen Oszillator der eine Referenzwelle erzeugt. Die eigentliche Messgröße ist die Phasendifferenz φ_R^S zwischen ankommender φ^S und erzeugten φ_R Welle (3.3).

$$\varphi_R^S = \varphi^S(T) - \varphi_R(t) \tag{3.3}$$

Da nur die Phasendifferenz gemessen werden kann, tritt eine zusätzliche Unbekannte N auf. Der Mehrdeutigkeitsterm N (Ambiguity) ist die Anzahl der vollen Phasenzyklen. Zur Lösung der Ambiguities ist eine wesentlich aufwendigere Software notwendig. Die Phasenpseudodistanz kann wie folgt beschrieben werden:

$$\phi_R^S(t) = \frac{1}{\lambda} \rho_R^S(t) + N_R^S + \frac{c}{\lambda} \Delta \delta_R^S(t) + d_F$$
(3.4)

Diese Gleichung unterscheidet sich von der Codepseudodistanz nur um ein ganzzahliges Vielfaches N der Wellenlänge. Solange das Signal nicht gestört wird, genügt die Bestimmung der Mehrdeutigkeiten am Anfang der Messung. Störungen wie Unterbrechungen des Signals durch Sichthindernisse oder einem niedrigen Signal/Rausch Verhältnis treten jedoch immer wieder auf. Es entstehen Phasensprünge die auch Cycle Slips genannt werden. Kurzzeitige Messausfälle können überbrückt werden. Treten längere Ausfälle auf, müssen die Mehrdeutigkeiten neu bestimmt werden.

Die Phaselage einer Welle kann mit einer Genauigkeit von 0,01% der Wellenlänge bestimmt werden. Bei einer Wellenlänge von 20cm kann das Phasenreststück im mm-Bereich erfasst werden [HOFMANN-WELLENHOF 2008].

3.2 Fehlereinflüsse

Die Fehlereinflüsse bei der Pseudodistanzmessung können in drei Gruppen unterteilt werden.

Satellitenfehler:	Uhrenfehler
	Bahnfehler
Signalausbreitungsfehler:	Ionosphärische Refraktion
	Troposphärische Refraktion
Empfängerfehler:	Antennenphasenzentrumsvariation
	Uhrenfehler
	Multipath

Tabelle 3.1: Fehlereinflüsse

Manche systematische Fehler können modelliert werden, andere systematische Fehler können durch Linearkombinationen der ursprünglichen Beobachtungsgleichungen reduziert werden. Multipath entsteht hauptsächlich durch die Reflexion des Signals an umliegenden Oberflächen. Da es sich hier um keinen systematischen Fehler handelt kann er nur durch andere Methoden reduziert werden (siehe Kapitel 3.2.3).

3.2.1 Ionosphärische Refraktion

Die Ionosphäre erstreckt sich in einer Höhe von 70 - 1000km über der Erdoberfläche. In diesem Bereich sind die Gase ausreichend ionisiert, um eine elektromagnetische Welle in ihrer Ausbreitung zu beeinflussen. Die Ausbreitungsgeschwindigkeit ist durch die Anzahl der freien Elektronen bestimmt. Da die Ionosphäre für Mikrowellen ein dispersives Medium ist, ist die Signalausbreitung von der Frequenz der Trägerwellen abhängig. Nach dem Fermat'schen Prinzip ist die gemessene Distanz

$$s = \int nds. \tag{3.5}$$

Für den Brechungsindex n gilt:

$$n_{ph} = 1 - \frac{40.3N_e}{f^2}$$

$$n_{gr} = 1 + \frac{40.3N_e}{f^2}$$
(3.6)

mit

 n_{ph} ... Phasenbrechungsindex N_e ... Elektronendichte n_{gr} ... Gruppenbrechungsindex f ... Trägerfrequenz

Für die Codemessung muss der Gruppenbrechnungsindex herangezogen werden. Man sieht, dass der ionosphärische Einfluss auf die Code- und Trägerphasenmessung mit entgegengesetztem Vorzeichen wirkt (3.6). Die Differenz zwischen der gemessenen und der geometrischen Strecke beträgt:

$$\Delta \rho_{ph}^{ion} = -\frac{40.3}{f^2} \int N_e ds$$

$$\Delta \rho_{gr}^{ion} = \frac{40.3}{f^2} \int N_e ds$$
(3.7)

Als Maß für die Elektronendichte N_e wird der TEC (Total Electron Content) angenommen. TEC ist die Anzahl der freien Elektronen, die sich entlang des Signalweges in einer Säule von $1m^2$ Grundfläche zwischen Empfänger und Satellit befinden.

$$TEC = \int_{P}^{S} N_e ds \tag{3.8}$$

Modelle des aktuellen Ionosierungsgrades liefern meist den zeitabhängigen VTEC über dem Modellbereich. VTEC bedeutet hier Vertical Total Electron Content. Mit (3.9) erhält man die ionosphärische Korrektur für einen Satelliten im Zenit.

$$\Delta \rho_{ph}^{ion} = -\frac{40.3}{f^2} VTEC$$

$$\Delta \rho_{gr}^{ion} = \frac{40.3}{f^2} VTEC$$
(3.9)

In Abb. 3.1 ist ein Ein-Schicht-Modell dargestellt. Hier wird die gesamte Ionosphäre auf eine infinitesimale dünne Schicht zusammengedrückt.

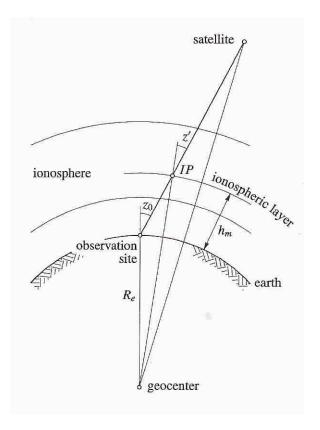


Abbildung 3.1: Geometrie des Ionosphärenlaufweges [HOFMANN-WELLENHOF 2001]

Um die ionosphärische Korrektur für einen Satelliten mit einer Zenitdistanz ungleich null zu erhalten muss der VTEC in den STEC (Slant Total Electron Content) umgewandelt werden. Dies geschieht mit der sogenannten Projektionsfunktion M(z') (Mapping Function).

$$M(z') = \frac{STEC}{VTEC} = \frac{1}{\cos(z')}$$

$$mitsin(z') = \frac{R_e}{R_e + h_m} \sin(z)$$
(3.10)

Der Laufzeitfehler ist somit proportional zur Elektronendichte entlang des Signalweges. Diese ist im hohen Maße von der Sonneneinstrahlung abhängig. Daraus resultieren tageszeitliche und jahreszeitliche Schwankungen. Aufgrund der unterschiedlichen zeitabhängigen Einflüsse ist es schwierig, ein zufriedenstellendes Modell für den TEC zu finden. Werden hingegen

zwei Signale auf unterschiedlichen Frequenzen verwendet, kann der Einfluss der ionosphärischen Refraktion eliminiert werden (siehe Kapitel 3.3). Für die praktischen Messungen dieser Diplomarbeit wurden Zwei-Frequenzempfänger verwendet.

3.2.2 Troposphärische Refraktion

Die Troposphäre erstreckt sich von der Erdoberfläche bis in ca. 40km Höhe. Im Gegensatz zur Ionosphäre ist sie für elektromagnetische Wellen im Radiofrequenzbereich ein nichtdispersives Medium. Das heißt, der Brechungsindex n ist nicht von der Frequenz abhängig jedoch vom Luftdruck, der Temperatur und der Luftfeuchte. Die troposphärische Brechzahl N kann als Funktion der metereologischen Parameter (Temperatur T, Luftdruck p und Wasserdampfdruck e) dargestellt werden (3.11).

$$N^{trop} = 10^{6}(n-1) = k_1 \frac{p}{T} + k_2 \frac{e}{T} + k_3 \frac{e}{T^2}$$
(3.11)

Für eine Modellierung der troposphärischen Refraktion müsste man den Verlauf der drei genannten Werte entlang des gesamten Ausbreitungsweges kennen. Der Distanzfehler ergibt sich aus:

$$\Delta L_{trop} = \int (n-1)ds = 10^{-6} \int Nds$$
 (3.12)

n ... Brechungsindex

N ... Brechzahl

Um den Distanzfehler einer Messung zu bekommen, muss der Refraktionseinfluss durch Integration über den Verlauf des Brechungsindexes entlang des Signalweges bestimmt werden. Der Brechungsindex kann in einen Trockenanteil N_d^{trop} und einen Feuchtanteil N_w^{trop} zerlegt werden.

$$N^{trop} = N_d^{trop} + N_w^{trop} (3.13)$$

Der Trockenanteil macht ca. 90% der Korrektur aus und ist vom Luftdruck abhängig. Da der Luftdruck relativ stabil ist, ist er gut modellierbar. Der Feuchtanteil beträgt ca. 10%. Der aus Bodenmessungen bestimmte Wasserdampfgehalt reicht im Allgemeinen nicht aus, um die Verteilung des Wasserdampfes mit einer genügenden Genauigkeit zu bestimmen. Die Verteilung des Wasserdampfes ist großen räumlichen und zeitlichen Schwankungen unterworfen. Deshalb ist der feuchte Anteil der tropospärischen Laufzeitverzögerung viel schwieriger zu bestimmen.

Die troposphärische Verzögerung kann durch zwei Methoden bestimmt werden:

- Direkte Messung des Refraktionsverlaufes unter Verwendung bodengestützter Mikrowellen-Wasserdampf-Radiometer oder mit Radiosondenaufstiegen.
- Einführung als zusätzliche Unbekannte bei der GNSS-Auswertung

Die Modellierung erfolgt in zwei Schritten:

Zuerst wird mit dem Atmosphärenmodell die Verzögerung in Zenitrichtung bestimmt. Danach wird mit einer Projektionsfunktion (Mapping function) die Verzögerung in der tatsächlichen Elevation bestimmt.

Die bekanntesten Modelle sind von [HOPFIELD 1969] und [SAASTAMOINEN 1973]. Wird die troposphärische Refraktion vernachlässigt, ergibt sich auf Meeresniveau ein Streckenfehler von etwa 2,3m für einen Satelliten im Zenit. Für einen Satelliten in rund 5° Höhe dagegen schon 25m. Angaben darüber, wie die Troposphäre bei den praktischen Messungen dieser Arbeit behandelt wurde findet man in Kapitel 6.

3.2.3 Multipath

Das vom Satelliten ausgesendete Signal erreicht den Empfänger über mehr als nur einen Weg. Die sogenannte Mehrwegausbreitung (Multipath) wird hauptsächlich durch reflektierende Oberflächen in der Nähe des Empfängers verursacht. Multipath-Effekte treten vor allem in stark verbauten Gebieten auf. Da der Effekt zeit- und ortsabhängig ist, gibt es kein generelles Modell. Die reflektierten Signale kommen verspätet am Empfänger an und erzeugen somit falsche Pseudoentfernungen, welche wieder falsche Positionierungsergebnisse zur Folge haben. Multipath hat auf Code-Messungen einen wesentlich größeren Einfluss als auf Trägerphasenmessungen. Der Multipatheffekt kann bei der Codemessung Werte bis zu einigen 10er Metern erreichen. Bei der Trägerphasenmessung hingegen bis zu einer Wellenlänge. Multipath kann durch folgende Methoden reduziert werden:

- spezielle Antennen
- verbesserte Empfangstechnik
- Signalanalyse

Für die praktischen Messungen dieser Arbeit wurden Antennen, welche Multipath reduzieren verwendet.

3.2.4 Antennenphasenzentrum

Ideal wäre wenn das elektrische Phasenzentrum einer Antenne ein Punkt ist, auf den sich alle Messungen der GNSS-Signale beziehen. Dafür wird ein geometrischer Punkt in der Antenne definiert. Dieser wird antenna reference point (ARP) genannt und befindet sich meist in der Mitte an der Unterseite der Antenne. Diese idealisierte Situation entspricht aber nicht der Realität. Das elektrische Phasenzentrum variiert mit der Elevation, dem Azimut, der Intensität des Signals und ist frequenzabhängig. Das bedeutet jedes einkommende Signal hat sein eigenes Phasenzentrum. Deshalb muss ein mittleres Antennenphasenzentrum aus den Kalibrierungsmessungen bestimmt werden. Der Antennenphasenzentrumsoffset a (PCO) definiert die Differenz zwischen mittleren Antennenphasenzentrum und dem ARP und sollte in dreidimensionalen Koordinaten für jede Trägerfrequenz von den Geräteherstellern angegeben werden. Die Abweichungen des aktuellen Phasenzentrums vom mittleren Antennenphasenzentrum nennt man Phasenzentrumsvariationen (PCV). Der PCV ist systematisch und kann über Testserien bestimmt werden. Die Variationen können horizontal 1-2cm und vertikal 10cm erreichen. Der PCV lässt sich nur schwer modellieren, da er für jede Antenne unterschiedlich ist [HOFMANN-WELLENHOF 2001]. Angaben darüber, wie das Antennenphasenzentrum bei den praktischen Messungen dieser Arbeit berücksichtigt wurde findet man in Kapitel 6.

3.3 Linearkombinationen

Linearkombinationen von Phasenmessungen

Um frequenzabhängige Fehlereinflüsse zu reduzieren, können Linearkombinationen der simultanen Messungen auf den zwei Trägerfrequenzen gebildet werden.

Nach [HOFMANN-WELLENHOF 2008] wird die Linearkombination aus Phasenmessungen nach

$$\varphi = n_1 \varphi_1 + n_2 \varphi_2 \tag{3.14}$$

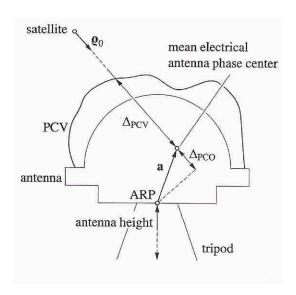


Abbildung 3.2: Elektrisches Phasenzentrum und ARP [HOFMANN-WELLENHOF 2001]

gebildet, wobei

 n_1, n_2 die Koeffizienten,

 φ_1, φ_2 die Phasenmessungen auf den Frequenzen $f_1 und f_2$ mit $\varphi_i = f_i \cdot t$ und φ die Linearkombination der zwei Phasenmessungen sind.

Die Frequenz f der Linearkombination ergibt sich aus

$$f = n_1 f_1 + n_2 f_2 \tag{3.15}$$

und hat eine Wellenlänge von

$$\lambda = \frac{c}{f} \tag{3.16}$$

Durch eine geeignete Wahl der Linearkoeffizienten n_1 und n_2 können Linearkombinationen mit besonderen Eigenschaften erzeugt werden. Von besonderer Bedeutung sind:

- die Narrow Lane (NL)
- die Wide Lane (WL)

- die ionosphärenfreie Linearkombination
- die geometriefreie Linearkombination

Wählt man $n_1 = n_2 = 1$ erhält man das NL-Signal. Dieses Signal hat eine kürzere Wellenlänge (für GPS-Frequenzen 0.106m). Es eignet sich besonders für die Koordinatenberechnung unter der Voraussetzung, dass die Mehrdeutigkeiten gelöst sind und der ionosphärische Einfluss gering ist. Die Mehrdeutigkeiten können besonders gut mit dem WL-Signal bestimmt werden. Das WL-Signal hat bei GPS eine relativ große Wellenlänge von 0.862m aber auch ein größeres Messrauschen als das ursprüngliche Signal. Es ist deshalb nicht zur Koordinatenberechnung geeignet. Die Linearkoeffizienten des WL-Signals sind $n_1 = 1$, $n_2 = -1$. Die ionosphärenfreie Linearkombination mit $n_1 = f_1^2$, $n_2 = -f_1 \cdot f_2$ kann bei Messungen verwendet werden, bei denen starke ionosphärische Einflüsse erwartet werden. Die geometriefreie Linearkombination mit $n_1 = 1$ und $n_2 = -\frac{f_1}{f_2}$ wird zur Bestimmung von Ionosphärenmodellen verwendet, da sowohl Satelliten- als auch Stationsgeometrie und der Uhrenfehler eliminiert werden.

Linearkombinationen von Phasen- und Codemessungen

Eine Kombination aus Phasen- und Codemessungen wird häufig in einfachen Empfängern zur Echtzeitpositionierung verwendet. Kombiniert man die nicht so genauen Codepseudoentfernungen mit den Differenzen nachfolgender Phasenmessungen, erhält man eine geglättete Pseudoentfernung. Mit diesem Verfahren kann eine eindeutige Pseudoentfernung berechnet werden, die weniger durch Mehrwegeinflüsse und Messrauschen beeinflusst wird (Code-Smoothing).

3.4 Absolute Punktbestimmung

Punktbestimmung mit Codemessung

Eine einfache Positionierung lässt sich mit der Beobachtungsgleichung

$$R_R^S(t) = \rho_R^S(t) + c\Delta \delta_R^S(t) + d_F \tag{3.17}$$

durchführen. Zeitlich werden die Messungen einer Epoche t zugeordnet. Damit das Gleichungssystem lösbar wird, muss die Anzahl der Beobachtungen zumindest gleich oder größer sein als die Anzahl der Unbekannten. Bezeichnet man die Anzahl der Satelliten mit n und die Anzahl der Epochen mit k erhält man für eine Position $n \cdot k$ Beobachtungsgleichungen und 3+k Unbekannte.

$$n \cdot k \ge 3 + k \tag{3.18}$$

Bei der statischen Positionierung erhält man innerhalb einer Epoche 4 Unbekannte (die Koordinaten der Position und den Uhrenfehler). Um die Position in k=1 Epochen zu bestimmen, benötigt man mindestens n=4 Satelliten. Theoretisch würde eine Beobachtung von n=2 Satelliten in k≥3 Epochen genügen. In diesem Fall entstehen jedoch stark linear abhängige Gleichungssysteme, die eine Lösung unmöglich machen. Stehen mehr Beobachtungen als Unbekannte zur Verfügung, kann das Gleichungssystem mit Hilfe der Methode der kleinsten Quadrate ausgeglichen werden. Hierbei kann ein Maß für die Güte der Konfiguration der Figur, die von dem Beobachter und den Satelliten aufgespannt wird, angegeben werden. Sie können aus der Kofaktormatrix der Unbekannten abgeleitet werden und heißen DOP-Faktoren (Dilution of Precision). Bei der kinematischen Positionierung kann die Konfiguration durch folgende Annahmen bestimmt werden. Da sich der Empfänger bewegt, erhält man 3k unbekannte Stationskoordinaten. Zusammen mit dem Empfängeruhrenfehler erhält man 4k Unbekannte. Daraus folgt:

$$n \cdot k > 4k \tag{3.19}$$

Das heißt, um die Position eines bewegten Empfängers zu bestimmen, müssen jede Epoche mindestens n=4 Satelliten zur Verfügung stehen [KAHMEN 2006].

3.5 Relative Punktbestimmung

Bei der relativen Positionierung werden mindestens zwei Empfänger verwendet. Als Ergebnis einer solchen Auswertung erhält man keine absolute Position sondern einen Basislinienvektor mit höherer Genauigkeit. Als Unbekannte treten jetzt nicht mehr die Koordinaten der Beobachtungsstation sondern die Koordinatendifferenzen auf. Im einfachsten Fall bestimmt man die Koordinaten eines Neupunktes in Bezug auf einen Referenzpunkt. Ist der Referenzpunkt koordinativ bekannt, kann auch die absolute Position des Neupunktes bestimmt werden.

3.5.1 Abgeleitete Beobachtungsgleichungen

Durch die Differenzbildung der simultan gemessenen Code- und Phasenbeobachtungen kann ein Teil der Fehlereinflüsse eliminiert oder verringert werden. Betrachtet man die Phasenmessung, können unterschiedliche Differenzen gebildet werden. Vernachlässigt man die Ionosphäre und die Troposphäre und setzt (3.2) in (3.4) ein erhält man für die Phasenbeobachtungsgleichung (3.20):

$$\phi_{R}^{S}(t) - f\delta^{S}(t) = \frac{1}{\lambda} \rho_{R}^{S}(t) + N_{R}^{S} + f\delta_{R}(t)$$
 (3.20)

Folgende Differenzbildungen sind möglich:

- Differenz der Messung von verschiedenen Empfängern zu einem Satelliten (siehe Abb. 3.3a)
- Differenz der Messung von einem Empfänger zu verschiedenen Satelliten (siehe Abb. 3.3b)
- Differenz der Messung zu unterschiedlichen Epochen (siehe Abb. 3.3c)

Diese können weiter untereinander kombiniert werden.

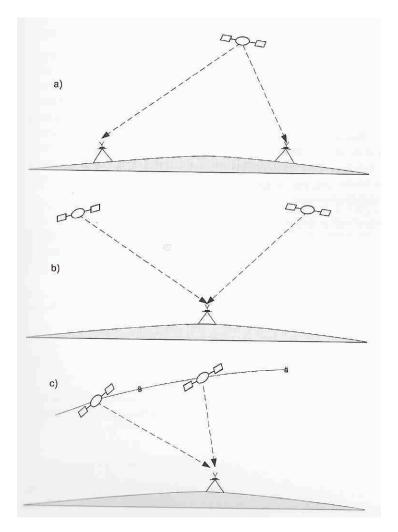


Abbildung 3.3: Differenzbildungen der GNSS-Beobachtungen [BAUER 2003]

Einfachdifferenzen

Zwei Empfänger und ein Satellit sind beteiligt. Die Beobachtungsgleichungen zwischen den Empfängern A und B und dem Satelliten 1 lauten:

$$\phi_{A}^{1}(t) - f\delta^{1}(t) = \frac{1}{\lambda}\rho_{A}^{1}(t) + N_{A}^{1} + f\delta_{A}(t)$$

$$\phi_{B}^{1}(t) - f\delta^{1}(t) = \frac{1}{\lambda}\rho_{B}^{1}(t) + N_{B}^{1} + f\delta_{B}(t)$$
(3.21)

Die Differenz der beiden Gleichungen ergibt:

$$\phi_B^1(t) - \phi_A^1(t) = \frac{1}{\lambda} \left(\rho_B^1(t) - \rho_A^1(t) \right) + N_B^1 - N_A^1 + f \left(\delta_B(t) - \delta_A(t) \right)$$
(3.22)

$$\phi_{AB}^{1}(t) = \frac{1}{\lambda} \rho_{AB}^{1}(t) + N_{AB}^{1} + f \delta_{AB}(t)$$
(3.23)

Man erkennt, dass die satellitenspezifischen Einflüsse eliminiert werden. Das heißt, der Fehler der Satellitenuhr kann eliminiert werden. Satellitenbahnfehler und Laufzeitschwankungen in der Atmosphäre können bei genügender räumlicher Korrelation durch diese Einfachdifferenz reduziert werden.

Doppeldifferenzen

Hier geht man von zwei Empfängern (A und B) und von zwei Satelliten (1 und 2) aus. Die Doppeldifferenz erhält man aus der Differenz der beiden Einfachdifferenzen:

$$\phi_{AB}^{1}(t) = \frac{1}{\lambda} \rho_{AB}^{1}(t) + N_{AB}^{1} + f \delta_{AB}(t)$$

$$\phi_{AB}^{2}(t) = \frac{1}{\lambda} \rho_{AB}^{2}(t) + N_{AB}^{2} + f \delta_{AB}(t)$$
(3.24)

Bildet man die Differenz so erhält man:

$$\phi_{AB}^{12}(t) = \frac{1}{\lambda} \rho_{AB}^{12}(t) + N_{AB}^{12}$$
 (3.25)

In der Beobachtungsgleichung sind sowohl die satellitenspezifischen als auch die empfängerspezifischen Fehler eliminiert. Hier fallen zusätzlich die Uhrenfehler der Empfänger weg.

Dreifachdifferenzen

Dreifachdifferenzen sind Differenzen der Doppeldifferenzen zwischen Epochen. Dabei werden zusätzlich die Empfänger-Satelliten-spezifischen Fehler eliminiert. Dazu gehören beispielsweise die Anfangsmehrdeutigkeiten. Deshalb eignen sich Dreifachdifferenzen sehr gut zum Auffinden von Phasensprüngen.

$$\phi_{AB}^{12}(t_{12}) = \frac{1}{\lambda} \rho_{AB}^{12}(t_{12}) \tag{3.26}$$

Bei der relativen Beobachtung mit Codephasenmessung ergeben sich die gleichen Beobachtungsgleichungen mit dem Unterschied, dass die Mehrdeutigkeiten gleich apriori wegfallen.

3.5.2 Beobachtungsmethoden

Relative Positionierung im Post processing

Bei dieser Beobachtungsmethode benötigt man mindestens eine Referenzstation. Beobachtungen von Referenzstationen können von Service-Anbietern wie WEP erhalten werden. Typische Anwendungsgebiete sind Deformationsnetze, Landes- und Ingenieurvermessung. In der Regel werden bei diesem Verfahren eine Vielzahl von Neupunkten bestimmt. Da die Zahl der Empfänger meist kleiner ist als die Anzahl der Neupunkte muss vor der Messung ein geeignetes Konzept entwickelt werden. Die Beobachtungsdauer reicht von einigen Minuten bis zu einigen Stunden. Um die Position der Neupunkte bestimmen zu können, müssen die Daten der Referenzstation und der Neupunkte differenziert und einer gemeinsamen Auswertung zugeführt werden. Durch die Auswertung im Post-Processing können Genauigkeiten von besser als 1cm erreicht werden.

Relative Positionierung in Echtzeit

Die relative Positionierung in Echtzeit kann entweder mit Code-Korrekturdaten oder mit Phasen-Korrekturdaten durchgeführt werden. Bei der Verwendung von Code-Korrekturdaten spricht man von differenziellen GPS (DGPS). Bei der Verwendung von Phasen-Korrekturdaten von Real Time Kinematic (RTK).

• Differenzielles GPS (DGPS)

Beim differenziellen GPS steht ein Empfänger fest auf einem Referenzpunkt. Die anderen Empfänger bewegen sich. Auf der Referenzstation werden Code-Korrekturdaten berechnet und in Echtzeit an die anderen Empfänger gesendet. Damit gelingt die Elimination der Satellitenuhrenfehler und eine Verringerung der ionosphärischen Fehler und der Orbitfehler. Es können also Positionen mit höherer Genauigkeit in Echtzeit bestimmt werden. Als Datenformat hat sich das RTCM-Format(Radio Technical Commission of Maritime Services) durchgesetzt. Bei der phasengeglätteten Codemessungen liegt die Genauigkeit der Position bei etwa ± 1 -2m.

• Real Time Kinematik (RTK)

Bei dem Real Time Kinematik Verfahren (RTK) verweilt der Empfänger meist für wenige Minuten auf einem Punkt um die Anfangsmehrdeutigkeiten einfacher zu lösen. Im Gegensatz zu DGPS werden hier die Phasendaten miteinbezogen. Ein wichtiges Kriterium bei RTK ist die Zeitspanne, innerhalb der die Mehrdeutigkeiten gelöst und fixiert werden. Nach der Bestimmung der Mehrdeutigkeiten kann eine cm-genaue Position erreicht werden. Sollen die Mehrdeutigkeiten eines bewegten Empfänger gelöst werden spricht man von OTF (on the fly) Suchroutinen. Diese werden in dieser Arbeit nicht benötigt.

GNSS-Referenzstationsnetze

Wird bei der RTK-Messung nur eine Referenzstation verwendet, ist die Messung auf wenige Kilometer um die Referenzstation beschränkt, da sonst die Mehrdeutigkeitslösung nicht mehr zuverlässig genug gelingt. Werden hingegen mehrere Referenzstationen vernetzt, kann der Referenzstationsabstand deutlich größer gewählt werden. Für einen flächendeckenden Dienst sind somit weniger Referenzstationen notwendig. Ein Referenzstationsnetz besteht aus folgenden Komponenten:

- Referenzstationen mit GNSS Zweifrequenzempfängern
- Rechenzentrum
- Kommunikationsverbindung zwischen Rechenzentrale und den Nutzern

Alle Rohdaten der Referenzstationen werden im Rechenzentrum ausgewertet. In der Rechenzentrale wird ein flächendeckendes Fehlermodell berechnet. Die Korrektur der Messung auf der Empfängerstation kann durch zwei unterschiedliche Konzepte realisiert werden:

- Flächenkorrekturparameter (FKP)
- Virtuelle Referenzstation (VRS)

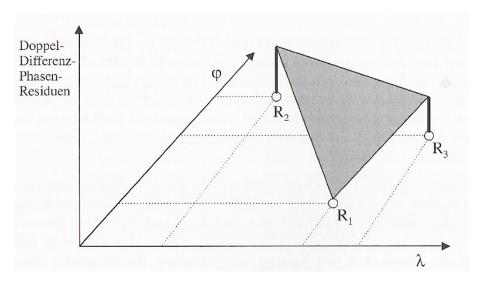


Abbildung 3.4: Flächenkorrekturmodell [BAUER 2003]

Für die Bestimmung der Flächenkorrekturen der relativen Fehlereinflüsse (ionosphärischer und troposphärischer Laufzeitfehler, Orbitfehlereinflüsse) benötigt man mindestens drei Referenzstationen. Die Modellierung basiert im einfachsten Fall auf Interpolationsebenen. Für jede Epoche werden die Parameter $a_{\varphi}(t)$ und $a_{\lambda}(t)$ berechnet, welche die Neigungen der Interpolationsebenen in Nord-Süd- bzw. Ost-West-Richtung beschreiben. Die Parameter werden Flächenkorrekturparameter (FKP) genannt. Diese werden in einen ionosphärischen und einen geometrischen Anteil aufgespaltet. Die Rechenzentrale überträgt die Beobachtungen der nächstgelegenen Referenzstation und die FKP für jeden Satelliten z.B. über das RTCM 2.3 Datenformat an den Nutzer. Mit 3.27 kann der Nutzer die Korrektur ε_i für seine Näherungskoordinaten φ , λ berechnen, wobei φ_0 und λ_0 die Koordinaten des Entwicklungspunktes der FKP sind.

$$\varepsilon(t) = a_{\varphi}(t)(\varphi - \varphi_0) + a_{\lambda}(t)(\lambda - \lambda_0)$$
(3.27)

Das VRS-Konzept basiert auf der Simulation einer Referenzstation in unmittelbarer Nähe des Empfängers. Dies ist gleichbedeutend mit einer sehr kurzen Basislinie von wenigen Metern, was ein nahezu vollständiges Eliminieren der Fehlereinflüsse mittels Differenzbildung erlaubt.

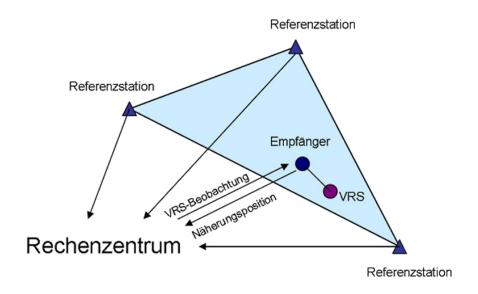


Abbildung 3.5: Virtuelle Referenzstation

Zur Berechnung der virtuellen Referenzstation sendet der Empfänger seine Näherungskoordinaten an die Rechenzentrale. In der Zentrale werden in Echtzeit die Fehlereinflüsse (Beobachtungskorrekturen) für diese Näherungsposition berechnet. Aus der geometrischen Position der Satelliten, der Näherungsposition und den Beobachtungskorrekturen werden die Beobachtungsdaten der Näherungsposition berechnet. Dem Empfänger wird dann die virtuelle Beobachtung der Näherungsposition übermittelt. Die Näherungsposition wird zu einer virtuellen Referenzstation, welche sich ganz in der Nähe des Empfängers befindet. Der Nutzer verhält sich dabei so, als wenn er mit einer normalen real existierenden Referenzstation arbeiten würde. Übersendet werden die Korrekturdaten meist per Mobilfunk oder über eine mobile Internetverbindung. Diese Technik benötigt nur Standard RTCM-Messages wogegen die FKP Technik zusätzliche Vorschriften zur Dekodierung der FKP benötigt.

3.6 Satellitengeometrie und Abschattungen

Die Genauigkeit der Positionsbestimmung hängt neben der Genauigkeit der einzelnen Pseudostreckenmessungen von der geometrischen Konfiguration der Satelliten ab [SEEBER 2003]. Geometrisch betrachtet kann der DOP-Faktor näherungsweise als der Kehrwert des Volumens eines Tetraeders V_T , dass von den Satellitenpositionen aufgespannt wird, angesehen werden (3.28). Der Kehrwert des Volumens ist direkt proportional zu DOP.

$$DOP = \frac{1}{V_T} \tag{3.28}$$

Der DOP ist ein Hilfsmittel, um die Qualität einer Position zu beschreiben. Eine gute Satellitenkonfiguration entspricht einem niedrigen DOP-Wert. Stehen die Satelliten räumlich gut getrennt, ist der DOP-Wert niedrig und die zu erwartende Qualität der Position hoch. Stehen die Satelliten nahe beieinander, verschlechtert sich die zu erwartende Qualität der Position, und der DOP steigt. Eine kritische Konstellation ist auch gegeben, wenn die Vektoren vom Empfänger zum Satelliten auf einem Kegel liegen. Bei vier Satelliten ist eine optimale geo-

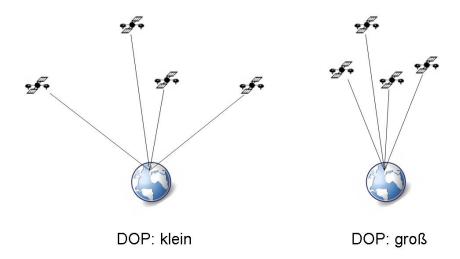


Abbildung 3.6: Satellitengeometrie und DOP

metrische Konfiguration gegeben, wenn ein Satellit im Zenit steht, und die übrigen drei Satelliten im Azimut um 120° getrennt sind und dabei so tief wie möglich über dem Horizont

stehen. Die DOP-Faktoren werden streng aus der Kofaktormatrix Q_{xx} der Ausgleichung der Positionsbestimmung berechnet.

$$Q_{xx} = \begin{pmatrix} q_{xx} & q_{xy} & q_{xz} & q_{xt} \\ q_{yx} & q_{yy} & q_{yz} & q_{yt} \\ q_{zx} & q_{zy} & q_{zz} & q_{zt} \\ q_{tx} & q_{ty} & q_{tz} & q_{tt} \end{pmatrix}$$
(3.29)

Es lassen sich fünf Typen von DOP-Faktoren ableiten:

• Position Dilution of Precision PDOP = $\sqrt{q_{xx} + q_{yy} + q_{zz}}$

• Geometrical Dilution of Precision GDOP = $\sqrt{q_{xx} + q_{yy} + q_{zz} + q_{tt}}$

• Time Dilution of Precision $TDOP = \sqrt{q_{tt}}$

Um ein horizontales und vertikales Maß im Horizontsystem zu bekommen, muss eine Transformation mit der Rotationsmatrix $R^T = [neu]$ in das lokale System durchgeführt werden.

$$Q_{XX} = RQ_{xx}R^{T} = \begin{pmatrix} q_{nn} & q_{ne} & q_{nu} \\ q_{ne} & q_{ee} & q_{eu} \\ q_{nu} & q_{eu} & q_{uu} \end{pmatrix}$$
(3.30)

• Horizontal Dilution of Precision HDOP = $\sqrt{q_{nn} + q_{ee}}$ (lokales Koordinatensystem)

• Vertical Dilution of Precision $VDOP = \sqrt{q_{uu}}$ (lokales Koordinatensystem)

Die Standardabweichung der Positionierung σ_i ergibt sich aus dem Produkt der Standardabweichung der Pseudostreckenmessung σ_r und dem DOP-Faktor:

$$\sigma_i = iDOP \cdot \sigma_r \qquad miti = (P, G, H, V, T)$$
 (3.31)

Die DOP-Faktoren können aus den Almanachdaten berechnet werden und zur Planung der GNSS-Messungen verwendet werden. Meist wird der GDOP verwendet. Der GDOP sollte in der Regel während einer Messung den Wert 6 nicht überschreiten. Planungssoftware stellen z.B. [TRIMBLE 2009] oder [LEICAGEOSYSTEM 2009] kostenlos zur Verfügung.

Die Anzahl der sichtbaren Satelliten kann durch Abschattungen stark eingeschränkt werden. Solche Abschattungen können z.B.: durch Berge, Bäume oder Häuser verursacht werden. Die Abschattungen können in Sichtbarkeitsdiagrammen dargestellt werden. Diese bieten eine anschauliche Darstellung der Satellitenpositionen in Bezug auf den gewählten Standort. Es werden die Satelliten nach ihrem Azimut und ihrer Elevation aufgetragen.

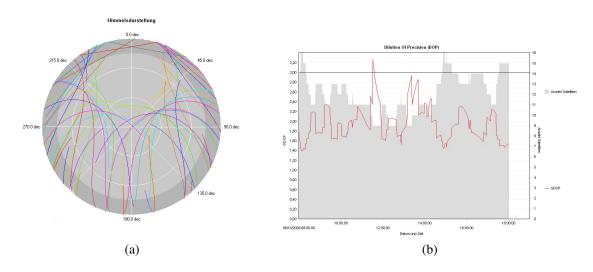


Abbildung 3.7: Sichtbarkeitsdiagramm und GDOP ohne Abschattung

Abb. 3.7a zeigt ein Sichtbarkeitsdiagramm ohne Abschattungen mit GPS und GLONASS Satelliten. Jedoch werden Satelliten welche sich unter 15° befinden nicht berücksichtigt. Sehr schön ist hier der Bereich sichtbar, in dem keine Satelliten beobachtbar sind, bedingt durch die Inklination der Satellitenbahnen von 55° und 64.8°. Abb. 3.7b zeigt den entsprechenden GDOP und die Anzahl der Satelliten am 10.06.2009 von 8:00 bis 18:00 Uhr. Die rote Linie zeigt den Verlauf des GDOPs. Dieser bleibt über den gesamten Zeitraum unter 4.

In der Praxis kommen unterschiedliche Abschattungen vor. Vor allem im städtischen Gebiet ist die Abschattung durch Gebäude sehr groß. In den Straßenzügen kann es zu gefährlichen Konfigurationen kommen. Die Auswirkungen einer Straßenabschattung hängen von der Straßenbreite, der Gebäudehöhe und der Richtung der Straßenachse ab.

In den zwei folgenden Beispielen wurde eine Straßenbreite von 30m und eine Gebäudehöhe von 15m angenommen (Straßenbreite:Gebäudehöhe = 2:1). In Abb. 3.8 ist die Abschattung einer Häuserfront entlang eines Straßenzuges in OW-Richtung mit dem entsprechenden GDOP am 10.06.2009 dargestellt. Der GDOP bleibt die meiste Zeit unter 6 (schwarzer waagrechter Strich). Der Empfängerstandpunkt befindet sich in der Mitte der Straße. In der Praxis wird sich

der Empfänger jedoch eher am Rand der Straße befinden. In der Regel wird sich der GDOP verschlechtern, umso weiter sich der Empfänger von der Straßenmitte entfernt. In Abb. 3.9 ist die Abschattung in einer NS-Straße zu sehen. Die Abschattungen einer NS-Straße sind deutlich ungünstiger als die einer OW-Straße. Grund dafür ist, dass die satellitenfreie Fläche einen großen Teil des Sichtfensters ausmacht. Hier ist es deutlich schwieriger ein Zeitfenster zu finden in dem der GDOP unter 6 bleibt.

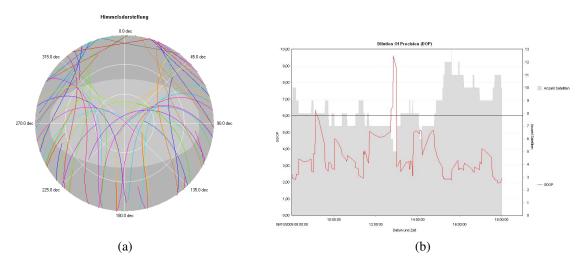


Abbildung 3.8: Sichtbarkeitsdiagramm und GDOP einer OW-Straßenabschattung

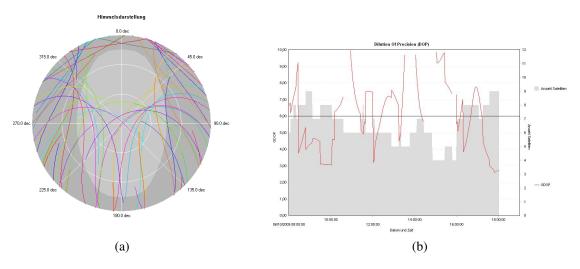


Abbildung 3.9: Sichtbarkeitsdiagramm und GDOP einer NS-Straßenabschattung

Kapitel 4

Das Echtzeitpositionierungssytem WEP

4.1 Wien Energie

Das Unternehmen Wien Energie GmbH [WIENENERGIE 2009] versorgt 2 Millionen Menschen und 230.000 Gewerbe- und Industrieanlagen in und um Wien mit Strom, Gas und Fernwärme. Die Dienstleistungen reichen allerdings weit über die Energieversorgung hinaus. Das Projekt Wienstrom Echtzeitpositionierung (WEP) wurde in den Jahren 2001 und 2002 entwickelt und ist seit 2002 in Betrieb. Seit 01.01.2003 wurde es für externe Kunden zugänglich gemacht. WEP ist ein regionales GNSS Referenzstationsnetz. Es erlaubt eine präzise Positionierung in Echtzeit innerhalb des Abdeckungsbereiches des Netzes. Das System ist durchgehend 24 Stunden am Tag in Betrieb.

Die Hauptkomponenten des Referenzstationsnetzes sind:

- Rechenzentrum mit Software
- Referenzstationen mit GNSS-Zweifrequenzempfängern
- Kommunikationsverbindung

4.2 WEP Systemaufbau und technische Details

4.2.1 Netzaufbau

Das derzeitige vom WEP-Dienst versorgte Netz wurde in Kooperation mit der BEWAG (Burgenländische Elektrizitätswirtschafts-Aktiengesellschaft) und der ÖBB (Österreichische Bundesbahnen) erweitert und besteht aus insgesamt 13 GPS/GLONASS Referenzstationen. Zwei Referenzstationen hat Wienstrom selbst aufgebaut (Umspannwerk Baden und Umspannwerk Leopoldau). Die BEWAG stellt die Daten von vier weiteren Stationen (Neusiedl am See, Mattersburg, Oberpullendorf und Güssing) zur Verfügung. Diese Netzkonfiguration erlaubt eine Positionsgenauigkeit von 1-5cm über das gesamte Versorgungsgebiet von Wien Energie. In Kooperation mit der ÖBB wurden sieben weitere Stationen auf Bahnhöfen in das Netz integriert. Dabei handelt es sich um die Stationen: Mistelbach, Ziersdorf, Allentsteig, Amstetten, Traisen (bei St. Pölten), Mürzzuschlag und Graz [Klug 2009]. Die Abb. 4.1 zeigt das Referenzstationsnetz von WEP. Die WEP Rechenzentrale befindet sich in Wien im 9. Bezirk in der Mariannengasse 4-6.

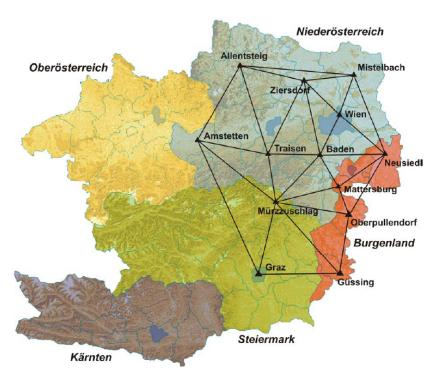


Abbildung 4.1: WEP Netzabdeckung in Kooperation mit BEWAG und ÖBB [KLUG 2009]

4.2.2 WEP Zentrale

In der WEP Zentrale werden alle Satellitenrohdaten der Referenzstationen zeitgleich gesammelt. Die Software GNSMART überprüft die Signalintegrität und scheidet fehlerhafte Signale aus. Die Berechnung der Korrekturdaten erfolgt für jeden Satelliten für jede Sekunde und wird über die Formate RTCM 2.0, RTCM2.1, RTCM 2.3 und RTCM 3.0 bereitgestellt. Das Format RTCM 2.0 liefert DGPS Code Korrekturen mit einer Positionierungsgenauigkeit von 1-2m. Die anderen Datenformate können für eine Positionierung im cm-Bereich genützt werden. Tab. 4.1 zeigt die Bedeutung einiger Message-Typen des RTCM 2.3 Formats [RTCM 2009].

Message Typ	Status	Bezeichnung
1	fix	DGPS-Pseudostreckenkorrekturen
2	fix	DGPS-Pseudostreckenkorrekturänderungen
3	fix	GPS-Referenzstationsparameter
18	fix	RTK unkorrigierte Trägerphasen
19	fix	RTK unkorrigierte Pseudostrecken
20	versuchsweise	RTK Trägerphasenkorrekturen
21	versuchsweise	RTK/Hochpräzise Pseudostrecken Korrekturen
31	versuchsweise	Differentielle GLONASS-Korrekturen
32	versuchsweise	Differentielle GLONASS Referenzstationsparameter
37	versuchsweise	GNSS System-Zeit Offset
59	fix	nutzerdefinierte Formate

Tabelle 4.1: RTCM 2.3 Message-Typen

Die Korrekturdaten werden entweder über einen Mobilfunkbetreiber mittels GSM oder GPRS oder über das Internet mittels NTRIP-Server (Networked Transport of RTCM via Internet Protocol) übertragen. Die Korrekturdatenabgabe über Internet erfolgt über das RTCM 3.0 Format. Zusätzlich werden die Satellitenrohdaten im RINEX Format im 15 Sekundentakt zur Auswertung im post-processing zur Verfügung gestellt. Auf Anfrage erhält man auch Daten mit einer Taktfrequenz bis zu 1 Sekunde. In Abb. 4.2 ist der schematische Ablauf der RTK Positionierung mit Hilfe eines Dienstes wie WEP dargestellt. Die Signallaufzeit vom Signalempfang an den Referenzstationsempfängern bis zum Eintreffen der Daten beim Nutzer beträgt 1-1.5 Sekunden.

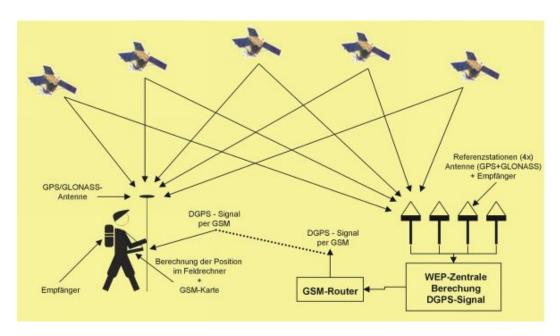


Abbildung 4.2: WEP System [Wien Energie 2009]

4.3 Einsatzmöglichkeiten und Nutzungsentgelte

Die Anwendungen bei Wienstrom sind [KLUG 2005]:

- Leitungs-und Einbautenerfassung
- Naturbestandsdatenerfassung /-aktualisierung
- Aussteckungen in der Natur (z.B.: Trafostationen)
- Überwachungsmessungen

Neben Wienstrom können auch externe Anwender das Echtzeitpositionierungssystem nutzen, wie z.B. Vermessungsbüros oder Baufirmen. Folgende Einsatzmöglichkeiten gibt es:

- Leitungsdokumentation
- Wiederauffinden von Einbauten
- Erfassung/Reambulierung von Naturbestandsdaten
- Absteckungen
- Katastervermessung

- Baumaschinensteuerung
- Fahrzeugpositionierung (Straßenbahn)

Folgende Tarife gelten an Werktagen von 7:00 bis 20:00 Uhr:

Echtzeitdaten:	
Transformationsparameter (nur bei Bezug von Korrekturdaten von WEP)	0 EUR
DGPS-Korrekturen im Format RTCM 2.1 pro Tag	40 EUR
PDGPS-Korrekturdaten im Format 2.3 (Zentimetergenauigkeit) pro Tag	40 EUR
DGPS-Korrekturdaten im Format 2.0 (Metergenauigkeit) pro Monat	100 EUR
PDGPS-Roverausrüstung (cm) pro Tag	180 EUR
DGPS-Roverausrüstung (m) pro Tag	180 EUR
Einmalige Freischaltgebühr für Einwahlnummer	50 EUR
Offline-Daten:	
RINEX-Daten für post-processing pro Sekunde und Station	0.01 EUR

Tabelle 4.2: Preisliste [Wien Energie 2009]

Kapitel 5

Anforderungen ZT-Büro

5.1 Einsatzmöglichkeiten von GNSS im ZT-Büro

Bis vor einigen Jahren war der Einsatz von GNSS auf eine Auswertung im post-processing beschränkt. Durch die cm-genaue Echtzeitpositionierung kann die lange Beobachtungszeit und der hohe Personalaufwand reduziert werden. Das führt in der Praxis zu einer größeren Anzahl von Einsatzmöglichkeiten satellitengestützter Messungen. Die Anwendungsgebiete unter Einsatz von GNSS in einem ZT-Büro sind:

1. Geländeaufnahme

Das zu erfassende Gelände sollte relativ frei sein. Außerdem sollte der Gebäude- und Baumbestand eher klein sein.

2. Ingenieurvermessung

In der Ingenieurvermessung gibt es mehrere Einsatzmöglichkeiten. Diese sind z.B. die Gebäudeabsteckung, die Überwachungsmessung (Deformationsmessung) oder anfallende Messungen im Verkehrsbau. Die Deformationsmessung dient der Untersuchung, ob sich ein Objekt über einen bestimmten Zeitraum verändert hat. GNSS wird bereits zur Überwachung von Hangrutschungen, Setzungen des Geländes, Gebäuden, Brücken und Staudämmen eingesetzt. Im Falle der permanenten Überwachung benötigt man eine Deformationssoftware zur Echtzeitauswertung der Messdaten (meist GNSS- und Tachymeterdaten). Da eine Deformation meist unerwünscht ist, muss zusätzlich zur Überwachungsmessung ein Alarmsystem, welches im Krisenfall aktiv wird, installiert werden.

GNSS Messungen können vor allem auch beim Verkehrsbau eingesetzt werden. Speziell im Straßenbau können folgende Bereiche abgedeckt werden:

- Schaffung des Baustellennetzes
- Geländeaufnahme
- Absteckung

GNSS eignet sich hervorragend zur Geländeaufnahme unter der Voraussetzung, dass das Gebiet nicht zu stark bewaldet ist. Die Absteckung innerhalb des geforderten Genauigkeitsrahmen kann ebenfalls mit einem minimalen Aufwand an Geräten und Personal erledigt werden.

3. Katastervermessung

Satellitengestützte Vermessung kann hier bei der Teilungsvermessung oder auch bei der Grenzvermessung eingesetzt werden. Mit dem RTK-Verfahren können Grenzpunkte in Echtzeit aufgenommen oder abgesteckt werden. Hier ist jedoch Vorsicht geboten, da die Hersteller der Empfänger meist Komplettlösungen anbieten. Ohne entsprechendem Hintergrundwissen können bei solchen Black-Box-Systemen Fehler entstehen. Ein weiteres Problem in der Katastervermessung stellt die nachbarschaftsgetreue Anpassung dar. Da RTK ein Basislinienverfahren ist, kann es als eine polare Aufnahme oder Absteckung angesehen werden. Das bedeutet aber, dass die nachbarschaftlichen Bezüge der gemessenen oder abgesteckten Punkte nicht berücksichtigt werden. Da das österreichische Landesnetz inhomogen ist, müssen die Messungen in das lokale Netz transformiert werden. Zur Einpassung der Messung in ein vorhandenes Netz müssen mindestens drei (besser vier) Anschlusspunkte in unmittelbarer Umgebung in die Messung miteinbezogen werden.

Die Vermessungsverordnung (VerV 94) ermöglicht es, GNSS-Messungen für die katastertechnische Aufnahme zu verwenden. Nach §7 VerV 94 ist die Vermessung so vorzunehmen, dass unter Berücksichtigung der mittleren Punktlagegenauigkeiten (mPLG) der Festpunkte die angegebenen mPLG in Tab. 5.1 nicht überschritten werden.

	mittlere Punktlagegenauigkeit
Triangulierungspunkte	± 5cm
Einschaltpunkte	± 7cm
Standpunkte	± 10cm
Grenzpunkte	± 15cm

Tabelle 5.1: Mittlere Punktlagegenauigkeit in der Katastervermessung

Folgende Angaben müssen in den Plänen enthalten sein:

- Netzbild (enthält verwendete Festpunkte und neu geschaffene Standpunkte)
- Nachweis der Genauigkeit der Stand- und Grenzpunkte und die Messdaten

Da GNSS-Messungen einer Vielzahl von Einflüssen unterliegen, welche zu Fehlern in den Messgrößen führen können, müssen diese kontrolliert werden. Deshalb sollte jeder Punkt mindestens zweimal besetzt werden. Zwischen den Messungen muss neu initialisiert werden.

Da eine katastertechnische Aufnahme durch Echtzeit GNSS Messungen gesetzlich nicht festgelegt ist, müssen die Anforderungen mit der jeweils zuständigen Behörde abgeklärt werden.

2009 wird eine Neufassung der Vermessungsverordnung veröffentlicht. Während der nachbarschaftliche Bezug erhalten bleiben soll, werden die in Tab. 5.1 gegebenen Maßzahlen enger gefasst.

5.2 Messtechnik in einem ZT-Büro

Die wichtigsten Auswahlkriterien für ein Messsystem sind:

- Genauigkeit
- Zuverlässigkeit
- Wirtschaftlichkeit
- Einsatzmöglichkeit

Reicht cm-Genauigkeit aus, kann das RTK-Verfahren angewendet werden. Ist eine Genauigkeit besser als 1cm gefragt, muss das statische Verfahren mit einer Auswertung in post-processing angewandt werden.

Ein wesentlicher Unterschied zwischen satellitengestützter und terrestrischer Vermessung ist, dass bei der satellitengestützten Vermessung keine Sichtverbindung zwischen den zu vermessenden Punkten erforderlich ist. Folglich entfallen Punkte, welche bei terrestrischen Netzen nötig sind. Hingegen muss bei einem Einsatz von satellitengestützter Vermessung beachtet werden, dass die Sichtverbindung zwischen Empfänger und Satelliten gegeben ist. Deshalb ist eine genaue Planung der GNSS Messung im Vorfeld ratsam. Die Vermessung mit GNSS kann unabhängig vom Wetter und von der Tageszeit erfolgen. Eine Entscheidung, welches Messsystem verwendet werden soll, muss für jedes Projekt einzeln getroffen werden. Hierbei sollte die Topographie, die Bebauung, der Bewuchs, das örtliche Passpunktfeld und die Größe des Projektes berücksichtigt werden. In einigen Fällen wird eine Kombination von satellitengestützter mit terrestrischer Vermessung am wirtschaftlichsten sein.

Betrachtet man die Geländeaufnahme, könnten bei geringer Abschattung etwa 80% der Punktaufnahmen mittels GNSS möglich sein. Ist das Gebiet hingegen stark abgeschattet, könnten die möglichen Punktaufnahmen mittels GNSS auch nur bei 20% liegen. In solchen Fällen wären GNSS Empfänger und Tachymeter kombiniert zu nutzen. GNSS würde hauptsächlich zur Bestimmung der Standpunkte genutzt werden und der Tachymeter zur Bestimmung der Detailpunkte.

Kapitel 6

Praktische Beispiele

Anhand von drei in der geodätischen Praxis typischen Messszenarien wurden die Vorteile aber auch die Grenzen einer gemeinsamen Nutzung der Satellitensysteme GPS und GLONASS näher untersucht.

Die drei ausgewählten Messzenarien setzen sich aus einem kleinräumigen statisch zu beobachtendem hochpräzisen Überwachungsnetz, einer RTK Punktbestimmung unter Nutzung der Korrekturdaten des Echtzeitpositionierungssystems WEP im innerstädtischen Bereich und einer Punktbestimmung eines bewegten Fahrzeuges zusammen.

6.1 Statische Messung

In diesem Kapitel wird die im Rahmen dieser Arbeit durchgeführte statische Messung und deren Auswertung beschrieben. Typische Anwendungsgebiete der statischen Punktbestimmung sind Grundnetze der Landes- und Ingenieurvermessung und Deformationsmessungen.

Überwachungsmessungen (Deformationsmessungen) verfolgen das Ziel, die Lage- und Höhenänderungen eines Untersuchungsobjektes gegenüber seiner Umgebung und/oder dessen Verformung als Funktion der Zeit zu ermitteln [Kahmen 2006]. Anwendungsmöglichkeiten sind z.B. die Überwachung von Bauwerken wie Brücken oder Staudämmen oder die Bestimmung von Verformungen der Erdoberfläche.

6.1.1 Planung

Für das praktische Beispiel wurde ein Netz bestehend aus insgesamt sechs Punkten ausgesucht. Die Stationen Baden und Leopoldau von WEP wurden als Referenzstationen ausgewählt. Als dritte Referenzstation wurde der Empfänger am Messdach der TU Wien herangezogen.

Nach einer Vorerkundung wurden die drei Festpunkte 223-58A2, 515-58E1 und 372-58A1 als Netzpunkte ausgewählt. Abb. 6.1 zeigt die drei zu beobachtenden Netzpunkte. Sie liegen im 13. und 23. Bezirk in Wien. Die Festpunkte 223-58A2 am Wienerblick und 5515-58E1 bei der Hermes Villa befinden sich beide im Lainzer Tiergarten und sind zu Fuß in etwa 15 bis 20 Minuten vom St. Veiter Tor aus zu erreichen. Der Festpunkt 372-58A1 liegt auf der Eichwiese und ist mit einem kurzen Fußmarsch von 15 Minuten von der Gütenbachstraße aus zu erreichen.

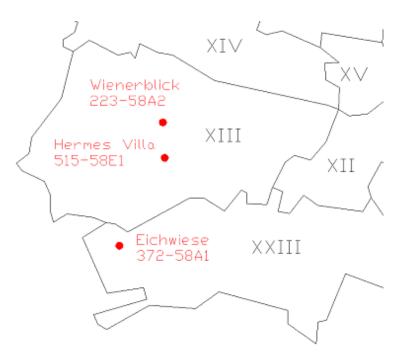


Abbildung 6.1: Punktübersicht

Die statische Messung fand am 28.08.2008 statt. Bei der Planung mussten mehrere Aspekte beachtet werden. Alle Netzpunkte sollten 4 Stunden gleichzeitig beobachtet werden. Drei Messtrupps und ein Auto standen zur Verfügung. In Tab. 6.1 ist der zeitliche Ablauf der Messer

sung dargestellt. Das Beobachtungsfenster wurde unter Berücksichtigung der Sichtbarkeit der GLONASS-Satelliten festgelegt.

Ze	eit	
von	bis	
08:00	08:30	Fahrt zum St. Veiter Tor
08:30	09:10	Fußweg + Aufstellung Empfänger 1 am Wienerblick 223-58A2
08:30	09:10	Fußweg + Aufstellung Empfänger 2 bei der Hermes Villa 515-58E1
08:30	09:00	Fahrt zur Gütenbachstraße
09:00	09:35	Fußweg + Aufstellung Empfänger 3 auf der Eichwiese 372-58A1
09:35	13:35	Messung
13:35	14:00	Abbau E3 + Fußweg (Eichwiese)
13:55	14:25	Abbau E2 + Fußweg (Hermes Villa)
13:55	14:25	Abbau E1 + Fußweg (Wienerblick)
14:00	14:30	Fahrt zum St. Veiter Tor
14:30	15:00	Fahrt zur TU Wien

Tabelle 6.1: Beobachtungsplan 28.08.2008

Abb. 6.2 zeigt die Anzahl der verfügbaren GLONASS-Satelliten am 28.08.2008. Die Abbildung wurde mit dem Programm Planning von Trimble erstellt. Man kann erkennen, dass bis zu fünf GLONASS Satelliten gleichzeitig sichtbar sind.

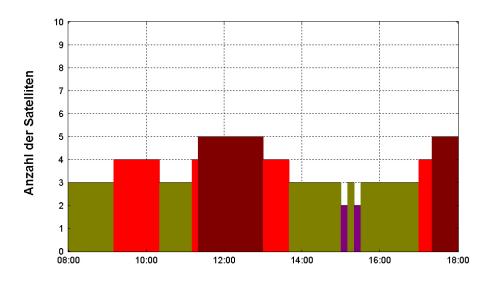


Abbildung 6.2: Anzahl der sichtbaren GLONASS-Satelliten am 28.08.2008 (Wiener Blick)

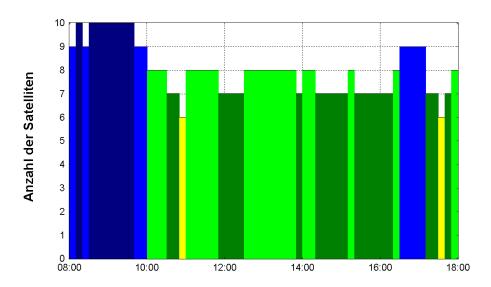


Abb. 6.3 zeigt die Anzahl der verfügbaren GPS-Satelliten am 28.08.2008.

Abbildung 6.3: Anzahl der sichtbaren GPS-Satelliten am 28.08.2008 (Wiener Blick)

Während der Messung waren auf der Eichwiese (372-58) mindestens 5 maximal 7 GLONASS Satelliten verfügbar. Auf dem Wiener Blick (223-58) waren es mindestens 3 und maximal 5. Bei der Hermes Villa (515-58) hingegen waren es nur 1 bis maximal 4 GLONASS Satelliten.

6.1.2 Auswahl der Geräte

Für die statische Messung standen drei GPS/GLONASS Empfänger zur Verfügung. Dabei handelt es sich um einen Empfänger der Firma TOPCON [TOPCON 2009] und zwei Empfänger der Firma Leica Geosystems. Die Firma Wien Energie Wienstrom stellte dankenswerterweise den Empfänger GR-3 der Firma TOPCON zur Verfügung. Der GR-3 Empfänger kann neben den GPS und GLONASS Signalen künftig auch GALILEO Signale verarbeiten. Bei einer statischen Positionierung bei Lösung aller Mehrdeutigkeiten ab einer Aufstellungsdauer von 30min können laut Gerätehersteller folgende Genauigkeiten erreicht werden:

Horizontal: \pm 3 mm + 0,5 ppm (x Basislinienlänge)

Vertikal: $\pm 5 \text{ mm} + 0.5 \text{ ppm}$ (x Basislinienlänge)

Die Forschungsgruppen Ingenieurgeodäsie und Höhere Geodäsie der TU Wien stellten dankenswerterweise jeweils einen Leica Empfänger zur Verfügung. Verwendet wurde das System GPS1200 mit dem Empfängertyp GX1230 GG und dem Antennentyp AX1202 GG Tripod. Laut Gerätehersteller können bei einer statischen Positionierung folgende Genauigkeiten erreicht werden:

Horizontal: \pm 3 mm + 0,5 ppm

Vertikal: \pm 6 mm + 0,5 ppm

Abbildung 6.4: GR-3 Empfänger auf der Eichwiese

Weitere Informationen zu den Empfängern sind dem Anhang zu entnehmen.

6.1.3 Auswertung

Die Auswertung der statischen Messung erfolgte im post processing mit der Software Geo Office 4.0 der Firma Leica Geosystems. Zu Beginn wurden die Rohdaten der drei Referenz-

stationen und der drei mobilen Empfänger in Leica Geo Office übertragen. Die präzisen Ephemeriden der GPS- und GLONASS-Satelliten wurden von der Homepage des International GNSS Service [IGS 2009] geladen und ebenfalls in Leica Geo Office eingelesen. Danach wurden die vertikalen Phasenzentrumsexzentrizitäten der jeweiligen Empfänger nach der Tab. 6.2 eingegeben.

Punktnummer	Antennentyp	Phasenzentr.exzentr. L1/L2 [m]
Baden	TOPCON CR3 GGD	0,0803 / 0,1027
Leopoldau	TOPCON CR3 GGD	0,0803 / 0,1027
TUWI	CR-G3	0,1093 / 0,1278
223-58A2	AX 1202 GG Tripod	0,0644 / 0,0640
515-58E1	AX 1202 GG Tripod	0,0644 / 0,0640
372-58A1	TPS GR3	0,2288 / 0,2163

Tabelle 6.2: Vertikale Phasenzentrumsexzentrizitäten (Abstand ARP zu PCO)

Die im Feld abgelesenen Instrumentenhöhen der Empfänger waren:

Eichwiese $372-58A1 \longrightarrow 1,440m$

Wiener Blick 223-58A2 \longrightarrow 1,161m

Hermes Villa 515-58E1 \longrightarrow 1,248m

Für die Berechnung der Basislinien benötigt man noch die Koordinaten der Referenzstationen. Diese wurden den RINEX Dateien entnommen. Tab. 6.3 zeigt die Koordinaten im Referenzrahmen ITRF2000 (Epoche 1997,0).

Referenzstation	X [m]	Y [m]	Z [m]
Baden	4105058,565	1196330,071	4717155,529
Leopoldau	4079879,624	1202310,310	4737221,260
TUWI	4086995,878	1200467,781	4731623,334

Tabelle 6.3: ITRF2000 Koordinaten der Referenzstationen

Die Berechnung der Basislinien erfolgte in zwei unterschiedlichen Lösungsmethoden. Die Auswertung wurde jeweils einmal nur mit GPS Satelliten und einmal mit GPS und GLONASS Satelliten durchgeführt. Prinzipiell stehen in Leica Geo Office die Lösungsarten *Automatisch*, *Phase*, *Code und Float* zur Verfügung.

Phasen Lösung

Bei der ersten Berechnung wurden folgende Parameter verwendet:

- Der Elevationswinkel wurde auf 10° gesetzt.
- Als Lösungsart wurde *Automatisch* angenommen. In diesem Fall versucht Leica Geo Office die Beobachtungen von Code und Phase für die Berechnung zu verwenden und für die vorliegenden Basislinien die Mehrdeutigkeiten zu lösen.
- Als Frequenz wurde Iono Frei (L3) ausgewählt. Iono Frei (L3) steht für die ionosphärenfreie Linearkombination der Trägerfrequenzen (L3, Narrow-Lane).
- Für das Troposphärenmodell wurde *Berechnet* verwendet. Hierbei werden die Variationen der troposphärischen Laufzeitverzögerungen in Zenitrichtung zwischen Referenz und Rover und über die Beobachtungszeit modelliert.
- Das Ionosphärenmodell wurde auf Automatisch gesetzt.
- Bei der Berechnung wurden alle aufgezeichneten Daten verwendet. Die Aufzeichnungsrate wurde im Feld auf 15 Sekunden gesetzt.

Bei der Berechnung traten keine Probleme auf, da alle Mehrdeutigkeiten gelöst werden konnten. Die Länge der Basislinien lag zwischen etwa 9 und 20 Kilometern. Um die Auswertung noch zu verbessern, wurden Zeitfenster herausgeschnitten, in denen kritische Phasensprünge auftraten. Diese Zeitfenster, die Parametereinstellungen und die Ergebnisse wurden in den von Leica Geo Office erstellten Protokollen dokumentiert. Einen Teil der Protokolle finden sich im Anhang.

In Tab. 6.5 sind die Ergebnisse der Basislinienberechnung dargestellt. Die berechneten Koordinaten wurden mithilfe eines aus Passpunkten bestimmten Transformationsparametersatzes in das Gauß Krüger System transformiert. In den Spalten Qualität sind folgende Werte aus der Leica Geo Office Auswertung angegeben:

Lage RMS (Root Mean Square) der Standardabweichung der beiden Lagekoordinaten

Höhe Standardabweichung der Höhenkoordinaten

L+H RMS der Standardabweichungen der Lage- und Höhenkoordinaten

Float Lösung

Bei der zweiten Berechnung wurde die Lösungsart Float ausgewählt. Die anderen Parameter blieben unverändert. Bei dieser Methode werden keine Mehrdeutigkeiten gelöst. Es werden nur reelle Schätzwerte der Mehrdeutigkeiten berechnet. Die Float Lösungsart führt nur bei sehr langen Beobachtungszeiten von über 8 Stunden zu ausreichend genauen Ergebnissen. Bei langen Beobachtungszeiten führt das Festsetzen der Phasenmehrdeutigkeiten von einem reellen Schätzwert auf einen ganzzahligen Wert nur noch zu einer geringeren Genauigkeitssteigerung. In Tab. 6.6 sind die Ergebnisse der Float Basislinienberechnung dargestellt.

Betrachtet man die beiden Tab. 6.5 und 6.6 lässt sich feststellen, dass bei keiner der beiden Auswertestrategien eine Genauigkeitssteigerung durch die GLONASS Satelliten erreicht werden konnte. Dies liegt vermutlich an der relativ langen Beobachtungszeit und daran, dass ab einer gewissen Anzahl von verfügbaren Satelliten, die Lösung nur mehr geringfügig genauer wird. Kleine DOP-Werte spielen bei der statischen Messung nur eine untergeordnete Rolle, da eine schlechte Satellitengeometrie durch eine längere Beobachtungszeit ausgeglichen werden kann.

Vergleicht man die Y-Koordinaten der GPS-Auswertung mit den Y-Koordinaten der GPS+GLONASS-Auswertungen, beträgt die maximale Abweichung 3,2mm. Die X-Koordinatenabweichungen liegen sogar im Submillimeterbereich. Die maximale Z-Koordinatenabweichung liegt bei 4,8mm. Auffällig ist auch dass die Koordinatenabweichungen von 515-58 alle im Submillimeterbereich liegen. Dies könnte an der relativ geringen Anzahl der GLONASS Satelliten (1 - 4) während der Messung liegen.

Koordinatenabweichung	maximale Abweichung
ΔΥ	3,2 mm
ΔΧ	0,5 mm
ΔZ	4,8 mm

Tabelle 6.4: Koordinatenabweichungen der GPS- und GPS+GLONASS-Auswertung

Außerdem fällt auf, dass die Standardabweichungen der Höhen bei der Float-Lösung kleiner sind. Da bei der Phasen-Lösung nur jene Satelliten verwendet werden, für welche auch die Mehrdeutigkeiten fixiert worden sind, verschlechtert sich die Schnittbedingung stark. Dies wirkt sich auf die Standardabweichung der Höhe aus.

Referenz	Punkt	GNSS Type	Frequenz	GK	GK Koordinaten [m]	ارر	Que	Qualität [mm]	m]
				Y	X	Höhe	Lage	Höhe	L+H
TUWI				-8187,514	5334043,312	329,972	0,3	1,4	1,5
Baden	372-58			-8187,521	5334043,333	329,979	0,3	1,4	1,5
eopoldau				-8187,525	5334043,326	329,962	0,3	1,2	1,2
TUWI				-6410,431	5338150,448	433,917	0,3	1,2	1,3
Baden	223-58	GPS	Iono Frei (L3)	-6410,439	5338150,468	433,939	0,3	1,2	1,2
eopoldau				-6410,443	5338150,462	433,917	0,2	1,1	1,1
TUWI				-6147,908	5336943,904	288,041	0,3	1,5	1,6
Baden	515-58			-6147,915	5336943,924	288,061	0,3	1,5	1,5
Leopoldau				-6147,919	5336943,919	288,031	6,0	1,5	1,5
TUWI				-8187,514	5334043,312	329,973	0,4	1,9	1,9
Baden	372-58			-8187,522	5334043,333	329,980	6,0	1,4	1,4
eopoldau				-8187,525	5334043,326	329,963	0,4	1,8	1,8
TUWI				-6410,434	5338150,448	433,922	0,4	1,6	1,6
Baden	223-58	GPS/GLONASS	Iono Frei (L3)	-6410,441	5338150,468	433,943	0,3	1,5	1,5
eopoldau				-6410,443	5338150,462	433,917	0,3	1,2	1,3
TUWI				-6147,908	5336943,904	288,041	0,3	1,5	1,5
Baden	515-58			-6147,915	5336943,924	288,061	0,3	1,5	1,5
Leopoldau				-6147,919	5336943,919	288,031	0,3	1,6	1,6

Tabelle 6.5: Basislinienberechnung (Phasen-Lösung)

Referenz]	Punkt	GNSS Type	Frequenz	GK	GK Koordinaten [m]	η]	Qua	Qualität [mm]	m]
				Y	X	Höhe	Lage	Höhe	T+H
				-8187,517	5334043,312	329,978	9,0	0,7	6,0
<u>m</u>	372-58			-8187,505	5334043,336	329,966	0,7	0,7	1,0
eopoldau				-8187,520	5334043,327	329,967	9,0	9,0	0,8
				-6410,446	5338150,446	433,926	0,5	9,0	0,8
<u>~</u>	223-58	GPS	Iono Frei (L3)	-6410,435	5338150,469	433,932	0,5	0,5	0,7
Leopoldau				-6410,449	5338150,461	433,923	0,4	0,5	9,0
				-6147,912	5336943,903	288,033	0,4	8,0	6,0
(V)	515-58			-6147,909	5336943,924	288,047	0,4	8,0	6,0
Leopoldau				-6147,921	5336943,918	288,024	0,4	0,7	0,8
				-8187,517	5334043,312	329,977	9,0	0,7	6,0
Baden 3	372-58			-8187,506	5334043,336	329,967	9,0	0,7	0,0
Leopoldau				-8187,520	5334043,327	329,968	9,0	9,0	8,0
TUWI				-6410,446	5338150,446	433,928	0,4	9,0	0,7
Baden 2	223-58	GPS/GLONASS	Iono Frei (L3)	-6410,437	5338150,469	433,932	0,4	0,5	0,7
eopoldau				-6410,449	5338150,461	433,923	0,4	0,5	9,0
TUWI				-6147,912	5336943,903	288,033	0,4	0,7	8,0
<u>~</u>	515-58			-6147,909	5336943,924	288,047	0,4	0,7	8,0
Leopoldau				-6147,921	5336943,918	288,024	0,4	0,7	8,0

Tabelle 6.6: Basislinienberechnung (Float-Lösung)

6.2 RTK-Messung

Abbildung 6.5: RTK Messung am Karlsplatz (K7)

Die Anwendungsgebiete der RTK Vermessung sind Leitungsdokumentation, Naturbestandserfassung, Absteckung und Katastervermessung. Die im Rahmen dieser Arbeit durchgeführten RTK Messungen fanden im teilweise sehr stark abgeschatteten innerstädtischen Bereich statt. Besonders in Gebieten mit starken Abschattungen wird erwartet, dass durch die zusätzlichen GLONASS Satelliten die Genauigkeit und die Verfügbarkeit verbessert werden.

Drei unterschiedliche Messgebiete wurden ausgewählt:

- Karlsplatz (Resselpark)
- Gußhausstraße
- Bahngasse

Die Gußhausstraße kann annähernd mit einer O-W verlaufenden Straße verglichen werden. Die Ausrichtung der Bahngasse entspricht eher einer N-S Straße. Für alle drei Messgebiete wurden jeweils acht Messpunkte ausgesucht. Diese wurden einmal nur mit GPS Satelliten und einmal mit GPS und GLONASS Satelliten bestimmt. Abb. 6.5 zeigt den Punkt K7 auf dem Karlsplatz. Aufgrund der im Vorfeld bestimmten Abschattungen wurden Beobachtungsfenster

für die Messungen festgelegt. Bei allen RTK Messungen waren maximal drei GLONASS Satelliten sichtbar. Die Messungen wurden mit Hilfe des Echtzeitpositionierungsdienstes WEP realisiert. Verwendet wurde wieder das GPS 1200 System von Leica mit dem Empfängertyp GX1230 GG und dem Antennentyp AX1202 GG Tripod.

6.2.1 Karlsplatz (Resselpark)

Die erste RTK Messung fand am Karlsplatz im Resselpark Ende Jänner 2008 statt. Zu Beginn gab es jedoch Probleme mit den GLONASS Korrekturdaten. In der ersten Februarwoche waren diese behoben. Die hier beschriebenen Messungen fanden am 5. Februar ohne Probleme statt. Der erste Punkt K1 ist kaum abgeschattet (siehe Abb. 6.6a). Abb. 6.6b zeigt den zugehörigen GDOP für den 5.02.08. Die Punkte K2, K3 und K8 sind am stärksten abgeschattet. In Abb. 6.7 ist die Abschattung von K2 und der GDOP für den 5.02.08 dargestellt.

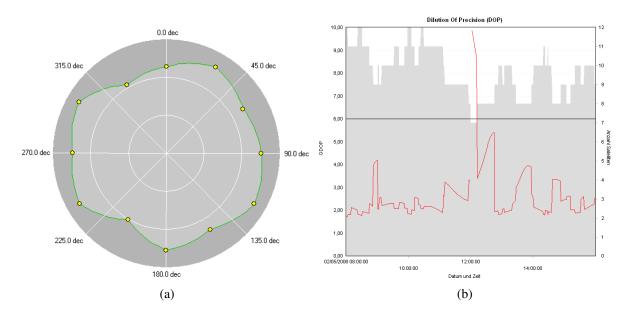


Abbildung 6.6: Abschattung und GDOP für K1 am 05.02.08

Der Punkt K3 liegt zwischen mehreren Bäumen, welche zum Zeitpunkt der Messung keine Blätter trugen.

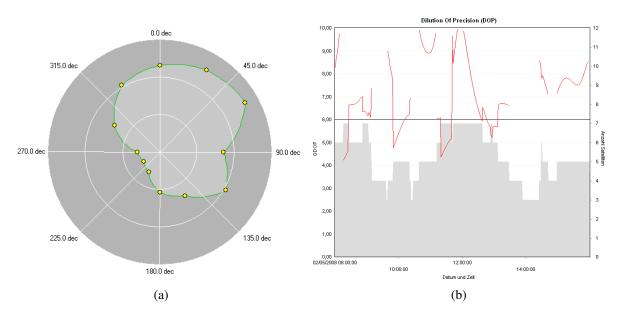


Abbildung 6.7: Abschattung und GDOP für K2 am 05.02.08

Die Ergebnisse sind in der Tab. 6.7 dargestellt. Jeder Punkt (K1 bis K8) wurde jeweils dreimal zwecks Kontrolle bestimmt (GL01, GL02, GL03). Die Punktnummern GPSxx stehen für die Punktbestimmung mit GPS Satelliten, wo hingegen die Punktnummern GLxx für eine Punktbestimmung mit GPS und GLONASS Satelliten stehen. In den letzten drei Spalten stehen die jeweiligen vom Empfänger ermittelten Standardabweichungen der Koordinaten.

Die Streuung der jeweiligen drei Positionsbestimmungen liegt in diesem Messgebiet bei den Lagekoordinaten unter 5mm und bei der Höhenkoordinate unter 1cm. Betrachtet man die Standardabweichungen in Tab. 6.7 fällt auf, dass bei der Bestimmung mit GLONASS Satelliten die Punkte K2 und K3 bessere Standardabweichungen haben. Es fällt auch auf, dass die GPS-Punkte zu den GL-Punkten teilweise einen Offset aufweisen. Bei dem Punkt K8 beispielsweise beträgt der durchschnittliche X- und Z-Koordinatenunterschied 4cm. Auffällig ist hier auch die relativ hohe Standardabweichung der X- und Z-Koordinaten. Eine Aussage darüber welche Koordinaten richtig sind, kann hier leider nicht getroffen werden. Grund für dieses eher schlechte Ergebnis ist sicher die starke Abschattung. Ein Grund für den Offset könnte auch der unterschiedliche Messzeitpunkt sein. Im Idealfall hätten die GPS- und die GL-Messungen gleichzeitig durchgeführt werden sollen. Dies war aber praktisch nicht möglich.

Punkt	Pktnr.	Y [m]	X [m]	Z [m]	σ Y [m]	σ X [m]	σ Z [m]
	GL01	2841,957	5340184,158	172,543	0,004	0,005	0,011
	GL02	2841,959	5340184,157	172,546	0,004	0,005	0,012
K1	GL03	2841,958	5340184,161	172,548	0,004	0,005	0,012
	GPS22	2841,947	5340184,168	172,540	0,008	0,007	0,016
	GPS23	2841,948	5340184,169	172,534	0,008	0,006	0,015
	GPS24	2841,948	5340184,172	172,533	0,008	0,007	0,016
	GL04	2876,353	5340172,116	172,438	0,006	0,007	0,016
	GL05	2876,355	5340172,118	172,436	0,007	0,008	0,018
K4	GL06	2876,356	5340172,117	172,438	0,007	0,008	0,018
	GPS19	2876,354	5340172,143	172,439	0,012	0,010	0,024
	GPS20	2876,353	5340172,133	172,442	0,012	0,010	0,025
	GPS21	2876,353	5340172,133	172,444	0,012	0,010	0,024
K1	GL07	2882,015	5340129,203	170,058	0,007	0,008	0,018
	GL08	2882,012	5340129,203	170,053	0,006	0,007	0,016
K5	GL09	2882,012	5340129,204	170,047	0,007	0,008	0,018
	GPS16	2882,014	5340129,223	170,057	0,010	0,009	0,020
	GPS17	2882,013	5340129,225	170,058	0,010	0,010	0,022
	GPS18	2882,017	5340129,228	170,058	0,010	0,009	0,021
	GL10	2833,557	5340129,106	170,142	0,005	0,007	0,014
	GL11	2833,560	5340129,102	170,141	0,006	0,007	0,014
К3	GL12	2833,561	5340129,100	170,140	0,005	0,007	0,014
	GPS13	2833,549	5340129,125	170,158	0,008	0,015	0,035
	GPS14	2833,555	5340129,126	170,170			
	GPS15	2833,556	5340129,128	170,179	0,009	0,015	0,036
	GL13	2897,880	5340097,771	170,769	0,005	0,006	0,013
К3	GL14	2897,872	5340097,772	170,766	0,008	0,010	0,021
K6	GL15	2897,875	5340097,768	170,766	0,006	0,007	0,016
	GPS10	2897,892	5340097,786	170,773	0,008	0,009	0,018
	GPS11	2897,888	5340097,781	170,768	0,009	0,013	0,013
	GPS12	2897,889	5340097,777	170,762	0,006	0,007	0,015
	GL16	2895,652	5340068,915	171,153	0,006	0,007	0,013
	GL17	2895,653	5340068,914	171,153	0,006	0,007	0,013

K7	GL18	2895,655	5340068,911	171,154	0,006	0,007	0,013
	GPS7	2895,661	5340068,923	171,141	0,006	0,007	0,013
	GPS8	2895,657	5340068,922	171,142	0,006	0,007	0,012
	GPS9	2895,659	5340068,924	171,144	0,006	0,007	0,013
	GL19	2933,609	5340027, 382	171 ,806	0,007	0,016	0,031
	GL20	2933,606	5340027, 382	171, 799	0,007	0,017	0,032
K8	GL21	2933,609	5340027, 386	171, 795	0,008	0,017	0,033
	GPS4	2933,614	5340027, 426	171, 842	0,008	0,016	0,032
	GPS5	2933,614	5340027, 423	171, 838	0,008	0,017	0,034
	GPS6	2933,618	5340027, 423	171, 839	0,007	0,015	0,030
	GL22	2877,230	5340023,027	171,337	0,015	0,011	0,022
	GL23	2877,229	5340023,027	171,342	0,016	0,011	0,022
K2	GL24	2877,233	5340023,031	171,344	0,018	0,013	0,025
	GPS1	2877,210	5340023,060	171,333	0,014	0,018	0,027
	GPS2	2877,212	5340023,059	171,330	0,016	0,020	0,030
	GPS3	2877,213	5340023,049	171,318	0,017	0,022	0,033

Tabelle 6.7: RTK Messung Karlsplatz

6.2.2 Gußhausstraße

Als nächstes wurden die acht Punkte (G1 bis G8) in der Gußhausstraße bestimmt. Die Messungen fanden am 9. und 16.05.2008 statt. Die Ergebnisse findet man in Tab. 6.8. Leere Felder bedeuten, dass hier die Mehrdeutigkeiten nicht gelöst werden konnten. Die Punkte G7 und G8 (siehe Abb. 6.8) waren am stärksten abgeschattet. Hier war es kaum möglich, eine Position zu bestimmen. Die Standardabweichungen sind für diese Punkte auch sehr hoch. Der Punkt G8 konnte nur mit GPS bestimmt werden. Grund dafür könnte das zu kleine Zeitfenster sein, innerhalb dessen die Positionsbestimmung möglich war.

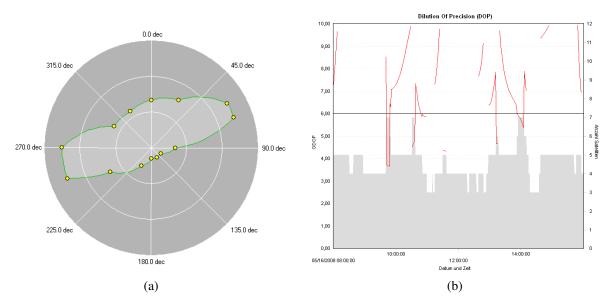


Abbildung 6.8: Abschattung und GDOP für G8 am 16.05.08

Die Streuung der jeweiligen drei Positionsbestimmungen liegt in diesem Messgebiet unter 1cm. Betrachtet man die Standardabweichungen in Tab. 6.8 fällt auf, dass die Punkte GPS37 bis GPS39 auf G5 geringere Standardabweichungen aufweisen als die zugehörigen GL-Punkte. Bei den Punkten G4 und G6 beträgt der durchschnittliche Z-Koordinatenunterschied zwischen GPSxx und GLxx 4cm. Auch beim Punkt G7 erreicht der Y-Koordinatenunterschied 4cm. Auch hier können nur Differenzen ausgewiesen werden aber keine Aussage darüber getroffen werden, welche Koordinaten (GPSxx oder GLxx) näher am richtigen Ergebnis liegen.

Punkt	Pktnr.	Y [m]	X [m]	Z [m]	σ Y [m]	σ X [m]	σ Z [m]
	GL25	2732,037	5339771,840	174,364	0,007	0,006	0,017
	GL26	2732,039	5339771,839	174,363	0,007	0,007	0,017
G1	GL27	2732,038	5339771,840	174,368	0,007	0,006	0,016
	GPS25	2732,033	5339771,847	174,337	0,007	0,008	0,015
	GPS26	2732,026	5339771,848	174,331	0,007	0,007	0,014
	GPS27	2732,028	5339771,848	174,330	0,007	0,007	0,014
	GL28	2738,487	5339773,067	174,492	0,008	0,006	0,017
	GL29	2738,481	5339773,070	174,484	0,007	0,006	0,017
G2	GL30	2738,475	5339773,076	174,485	0,006	0,007	0,017
	GPS28	2738,465	5339773,073	174,471	0,007	0,008	0,014
	GPS29	2738,466	5339773,068	174,479	0,008	0,009	0,015
	GPS30	2738,463	5339773,071	174,474	0,009	0,010	0,016
	GL31	2768,300	5339791,349	174,280	0,008	0,008	0,018
	GL32	2768,297	5339791,353	174,281	0,009	0,009	0,021
	GL33	2768,293	5339791,355	174,278	0,011	0,011	0,025
	GPS31	2768,316	5339791,337	174,274	0,007	0,008	0,016
	GPS32	2768,316	5339791,333	174,281	0,007	0,008	0,015
	GPS33	2768,319	5339791,329	174,281	0,008	0,009	0,017
	GL34	2770,107	5339789,334	174,392	0,009	0,009	0,020
	GL35	2770,106	5339789,336	174,395	0,010	0,009	0,022
G4	GL36	2770,104	5339789,330	174,387	0,008	0,006 0,007 0,006 0,008 0,007 0,006 0,006 0,006 0,007 0,008 0,009 0,010 0,008 0,009 0,011 0,008 0,009 0,011 0,008 0,009 0,009 0,009	0,018
	GPS34	2770,113	5339789,318	174,342	0,007	0,008	0,014
	GPS35	2770,110	5339789,323	174,343	0,009	0,011	0,019
	GPS36	2770,106	5339789,325	174,352	0,010	0,011	0,020
	GL37	2780,162	5339785,903	174,221	0,010	0,013	0,019
	GL38	2780,157	5339785,908	174,224	0,010	0,014	0,019
G5	GL39	2780,152	5339785,911	174,220	0,009	0,012	0,017
	GPS37	2780,140	5339785,910	174,203	0,005	0,007	0,015
	GPS38	2780,143	5339785,906	174,200	0,005	0,007	0,015
	GPS39	2780,153	5339785,892	174,206	0,005	0,007	0,015
	GL40	2811,047	5339800,870	174,221	0,011	0,010	0,024
	GL41	2811,050	5339800,867	174,230	0,012	0,011	0,026

G6	GL42	2811,050	5339800,869	174,227	0,012	0,011	0,025
	GPS40	2811,071	5339800,836	174,179	0,011	0,009	0,029
	GPS41	2811,071	5339800,834	174,184	0,009	0,007	0,025
	GPS42	2811,066	5339800,838	174,189	0,009	0,007	0,024
	GL43	2845,210	5339822,015	174,222	0,017	0,036	0,022
	GL44	2845,218	5339821,996	174,212	0,019	0,039	0,023
G7	GL45	2845,204	5339822,016	174,216	0,018	0,038	0,022
	GPS43	2845,206	5339822,043	174,186	0,008	0,032	0,034
	GPS44	2845,195	5339822,060	174,187	0,007	0,029	0,030
	GPS45	2845,192	5339822,063	174,187	0,008	0,034	0,035
	GL46						
	GL47						
G8	GL48						
	GPS46	2866,222	5339831,415	174,209	0,009	0,035	0,033
	GPS47	2866,216	5339831,427	174,203	0,006	0,026	0,024
	GPS48	2866,214	5339831,422	174,191	0,008	0,030	0,028

Tabelle 6.8: RTK Messung Gußhausstraße

6.2.3 Bahngasse

Da weder mit GPS noch mit GPS und GLONASS Satelliten eine Positionsbestimmung mit RTK in der Argentinierstraße (Abb. 6.9a) möglich war, wurde stattdessen die Bahngasse (Abb. 6.9b) als Messgebiet ausgewählt. Die Bahngasse ist deutlich weniger abgeschattet.

In Abb. 6.9c ist der GDOP für einen Punkt in der Argentinierstraße am 30.05.09 dargestellt. In Abb. 6.9d der GDOP für die Bahngasse.

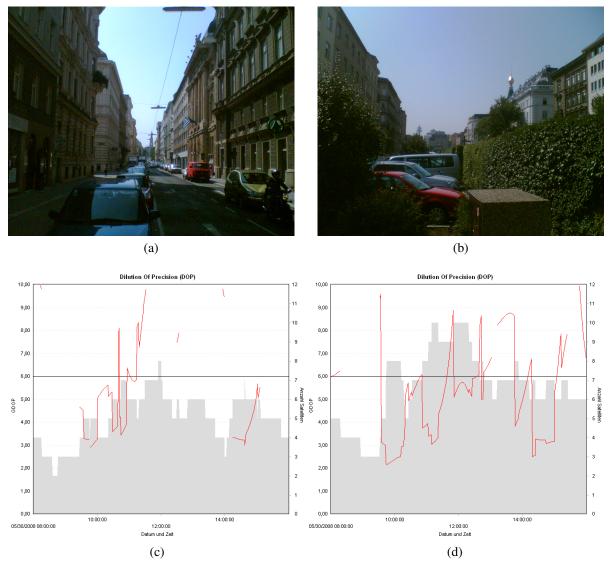


Abbildung 6.9: GDOP Argentinierstraße und Bahngasse

Die Messungen fanden am 30.05. und 06.06.2008 statt. Die Ergebnisse findet man in der Tab. 6.9.

Punkt	Pktnr.	Y [m]	X [m]	Z [m]	σ Y [m]	σ X [m]	σ Z [m]
	GL49	3925,592	5340102,913	172,811	0,008	0,011	0,022
	GL50	3925,586	5340102,916	172,789	0,008	0,010	0,021
B1	GL51	3925,586	5340102,919	172,782	0,008	0,011	0,022
	GPS49	3925,604	5340102,923	172,749	0,010	0,010	0,027
	GPS50	3925,604	5340102,921	172,761	0,010	0,010	0,025
	GPS51	3925,599	5340102,922	172,762	0,006	0,008	0,020
	GL52	3926,381	5340105,661	172,867	0,008	0,010	0,021
	GL53	3926,378	5340105,662	172,865	0,008	0,010	0,020
B2	GL54	3926,383	5340105,667	172,869	0,008	0,010	0,021
	GPS52	3926,386	5340105,660	172,833	0,010	0,009	0,025
	GPS53	3926,390	5340105,656	172,846	0,010	0,010	0,026
	GPS54	3926,385	5340105,657	172,843	0,011	0,010	0,027
	GL55	3926,271	5340116,857	172,727	0,007	0,009	0,021
	GL56	3926,274	5340116,859	172,732	0,008	0,010	0,023
В3	GL57	3926,276	5340116,856	172,741	0,008	0,009	0,021
	GPS55	3926,274	5340116,843	172,707	0,005	0,007	0,018
	GPS56	3926,273	5340116,852	172,684	0,007	0,008	0,022
	GPS57	3926,276	5340116,851	172,683	0,009	0,010	0,027
	GL58	3919,452	5340108,422	172,506	0,016	0,009	0,017
	GL59	3919,433	5340108,427	172,472	0,017	0,010	0,018
B4	GL60	3919,480	5340108,414	172,518	0,022	0,013	0,023
	GPS58	3919,467	5340108,408	172,502	0,011	0,010	0,026
	GPS59	3919,468	5340108,411	172,506	0,011	0,009	0,025
	GPS60	3919,468	5340108,409	172,505	0,011	0,009	0,025
	GL61	3946,511	5340067,426	173,022	0,006	0,008	0,017
	GL62	3946,513	5340067,427	173,024	0,005	0,006	0,012
В5	GL63	3946,514	5340067,425	173,035	0,005	0,006	0,013
	GPS61	3946,509	5340067,443	173,026	0,006	0,006	0,017
	GPS62	3946,510	5340067,441	173,031	0,006	0,006	0,017
	GPS63	3946,510	5340067,441	173,030	0,006	0,006	0,017

	GL64	3959,301	5340066,862	172,728	0,006	0,005	0,008
	GL65	3959,296	5340066,859	172,744	0,015	0,010	0,017
В6	GL66	3959,289	5340066,860	172,753	0,015	0,010	0,018
	GPS64	3959,260	5340066,853	172,767	0,018	0,013	0,033
	GPS65	3959,256	5340066,851	172,760	0,020	0,014	0,036
	GPS66	3959,256	5340066,851	172,757	0,020	0,014	0,037
	GL67	3955,526	5340044,433	172,721	0,009	0,009	0,018
	GL68	3955,540	5340044,439	172,709	0,008	0,008	0,016
В7	GL69						
	GPS67	3955,517	5340044,422	172,708	0,013	0,009	0,024
	GPS68	3955,513	5340044,421	172,709	0,012	0,008	0,023
	GPS69	3955,514	5340044,420	172,709	0,012	0,008	0,023
	GL70	3950,419	5340044,510	173,012	0,009	0,011	0,028
	GL71	3950,417	5340044,512	173,024	0,009	0,010	0,028
В8	GL72	3950,415	5340044,508	173,046	0,008	0,009	0,024
	GPS70	3950,405	5340044,552	173,027	0,007	0,008	0,026
	GPS71	3950,404	5340044,549	173,040	0,006	0,006	0,022
	GPS72	3950,408	5340044,552	173,029	0,007	0,007	0,024

Tabelle 6.9: RTK Messung Bahngasse

Betrachtet man die Tab. 6.9 genauer fällt auf, dass hier die Streuung der GL-Punkte deutlich höher ist als in den anderen Messgebieten. Sie beträgt bei den GL-Punkten bis zu 2cm bei den GPS-Punkten bis zu 1cm. Mögliche Ursache dafür könnte die Bahnstrecke und deren Oberleitungen sein, welche sich in der Mitte der Bahngasse befinden. Bei den Punkten B3, B6 und B8 kann man wieder ein Offset von etwa 4cm feststellen.

6.2.4 Fixierungszeiten

Die Fixierungszeit ist die Zeitspanne innerhalb der die Mehrdeutigkeiten gelöst und fixiert werden. Um die Fixierungszeiten näher zu untersuchen wurde noch eine zusätzliche vierte Messung am 17.07.2008 am Karlsplatz mit einem TOPCON Empfänger durchgeführt. Die Firma Wien Energie Wienstrom stellte dankenswerterweise den Empfänger Hiper+ der Firma TOPCON zur Verfügung. Bei diesem Empfänger kann über eine Reset Taste die Messung neu initialisiert werden. Die Fixierungszeiten für die Punkte sind in der Tab. 6.10 dargestellt.

	Punkt-	Fixierungs	zeit [s]
Punkt	nummer	GPS + GL	GPS
	73	11	8
K1	74	12	11
	75	13	12
	76	12	19
K4	77	22	13
	78	15	13
	79	14	14
K5	80	24	44
	81	13	51
	82	12	52
K6	83	37	13
	84	49	14
	85	12	46
K7	86	54	53
	87	12	103
	88	152	20
K8	89	25	46
	90	11	102

Tabelle 6.10: Fixierungszeiten

Gemessen wurden sechs der acht Punkte am Karlsplatz. Während dieser Messung waren 6 bis 8 GPS Satelliten und bis zu 3 GLONASS Satelliten sichtbar. Bei einem Vergleich der Fixierungszeiten lässt sich feststellen, dass die zusätzlichen GLONASS Satelliten bei dieser Messung keine kürzeren Fixierungszeiten ermöglichen.

In Tab. 6.11 sind die GK-Koordinaten und deren Standardabweichungen dargestellt.

Pkt	Nummer	Y [m]	X [m]	Z [m]	σ Y [m]	σ X [m]	σ Z [m]
	GL73	2841,941	340184,191	172,522	0,012	0,011	0,017
	GL74	2841,944	340184,189	172,538	0,014	0,010	0,013
K1	GL75	2841,938	340184,197	172,566	0,016	0,016	0,024
	GPS73	2841,932	340184,202	172,529	0,012	0,012	0,018
	GPS74	2841,939	340184,198	172,537	0,015	0,010	0,013
	GPS75	2841,939	340184,198	172,537	0,015	0,010	0,013
	GL76	2876,320	340172,151	172,431	0,016	0,013	0,017
	GL77	2876,331	340172,147	172,432	0,018	0,026	0,036
K4	GL78	2876,335	340172,092	172,337	0,030	0,046	0,060
	GPS76	2876,334	340172,169	172,417	0,018	0,013	0,016
	GPS77	2876,333	340172,169	172,414	0,018	0,014	0,017
	GPS78	2876,326	340172,182	172,423	0,018	0,017	0,020
	GL79	2881,985	340129,241	170,018	0,017	0,019	0,032
	GL80	2881,985	340129,241	170,025	0,018	0,020	0,034
K5	GL81	2881,991	340129,238	170,004	0,019	0,021	0,036
	GPS79	2882,013	340129,284	170,022	0,019	0,014	0,026
	GPS80	2882,012	340129,275	170,003	0,021	0,014	0,027
	GPS81	2880,265	340128,376	168,124	0,022	0,013	0,025
	GL82	2897,889	340097,809	170,741	0,018	0,017	0,034
	GL83	2897,887	340097,801	170,723	0,017	0,016	0,031
K6	GL84	2897,890	340097,812	170,751	0,017	0,013	0,027
	GPS82	2897,888	340097,800	170,725	0,042	0,038	0,097
	GPS83	2897,893	340097,806	170,767	0,021	0,017	0,037
	GPS84	2897,890	340097,810	170,779	0,018	0,014	0,028
	GL85	2895,672	340068,949	171,082	0,023	0,021	0,034
	GL86	2895,665	340068,854	171,090	0,022	0,017	0,032
K7	GL87	2895,668	340068,946	171,091	0,019	0,013	0,026

	GPS85	2895,668	340068,941	171,076	0,019	0,011	0,027
	GPS86	2895,667	340068,939	171,088	0,019	0,011	0,026
	GPS87	2895,666	340068,942	171,075	0,019	0,011	0,026
K8	GL88	2933,606	340027,446	171,809	0,015	0,011	0,020
	GL89	2933,612	340027,433	171,816	0,015	0,011	0,020
	GL90	2933,599	340027,433	171,821	0,015	0,011	0,020
	GPS88	2933,602	340027,426	171,817	0,014	0,011	0,020
	GPS89	2933,604	340027,422	171,807	0,014	0,011	0,020
	GPS90	2933,603	340027,437	171,798	0,016	0,015	0,019

Tabelle 6.11: RTK Messung Hiper+

6.2.5 Zusammenfassung und Ergebnisse

Die im Rahmen dieser Arbeit durchgeführten RTK Messungen fanden im teilweise sehr stark abgeschatteten innerstädtischen Bereich statt. Die drei unterschiedlichen Messgebiete Karlsplatz (Resselpark), Gußhausstraße und Bahngasse wurden ausgewählt. Es wurden jeweils acht Punkte einmal nur mit GPS Satelliten und einmal mit GPS und GLONASS Satelliten bestimmt. Zusätzlich wurde eine vierte Messung zur Bestimmung der Fixierungszeiten durchgeführt.

Bei der Messung am Karlsplatz konnten auf K2 und K3 bessere Koordinatenstandardabweichungen mit den GLONASS Satelliten erreicht werden. In der Gußhausstraße wurde jedoch der ungekehrte Fall festgestellt. In allen Messgebieten traten teilweise Offsets (zwischen GPS-und GL-Koordinaten) von bis zu 4cm auf. Eine Aussage darüber, welche Bestimmungen näher an den wahren Werten liegen, kann hier leider nicht getroffen werden. Bei den Fixierungszeiten brachten die zusätzlichen GLONASS Satelliten keine Verbesserung. Grund dafür könnte eine schlechte oder keine Kalibrierung der Frequenzen im Empfänger sein. Meist wird nur ein Zeitoffset für alle Satelliten zwischen den Signalen auf der ersten und zweiten Frequenz verwendet (DCB), was bei der Verwendung von GPS Satelliten kein Problem darstellt. Bei den GLONASS Satelliten reicht aufgrund der unterschiedlichen Trägerfrequenzen ein konstanter Offset nicht aus. Die Ergebnisse einer Messung mit hybriden Daten sind also von dem verwendeten Empfänger und der Qualität der Kanalkalibrierung abhängig.

6.3 Kinematische Messung

Das dritte Messszenarium war die kinematische Punktbestimmung eines bewegten Fahrzeuges. Hierfür wurde ein GPS/GLONASS Empfänger auf dem Dach eines Autos befestigt. Die Firma Wien Energie Wienstrom stellte dankenswerterweise den Empfänger GR-3 der Firma TOPCON für diese Messung zur Verfügung.

Die Fahrtstrecke führte quer durch Wien und war etwa 15km lang. Die Testfahrt fand am 28.07.2008 von 10:17:12 - 11:15:30 Uhr MESZ statt. Mit einer Fahrtdauer von 3499 Sekunden erhält man bei einer Aufnahmedatenrate von 1Hz auch 3499 mögliche Punkte.

Tab. 6.12 zeigt die während der Testfahrt bestimmten Punkte. Hier wurden die Mehrdeutigkeiten der GPS und GLONASS Signale mit der Sensorsoftware in Echtzeit gelöst.

	Punkteanzahl
bestimmt	3319
unbestimmt	180
von insgesamt	3499

Tabelle 6.12: Punkteanzahl der Testfahrt

Um herauszufinden wie groß der Beitrag der GLONASS Satelliten ist, wurden parallel die rohen Messdaten mitaufgezeichnet. Diese Messdaten wurden im post processing mit der Software Geo Office von Leica ausgewertet.

6.3.1 Auswertung

Die Auswertung erfolgte einmal nur mit GPS Satelliten und einmal mit GPS und GLONASS Satelliten. Um die Daten im Sekundentakt auswerten zu können, benötigt man auch die Refernzstationsdaten im Sekundentakt. Diesmal wurden die Daten der Referenzstation Güssing verwendet.

Die für die Berechnung ausgewählten Parameter sind im Berechnungsprotokoll im Anhang beschrieben.

In Tab. 6.13 ist die Anzahl der mit Leica Geo Office berechneten Punkte dargestellt. Im post processing konnten mit den GLONASS Satelliten 3092 Punkte berechnet werden. Das sind 661 Punkte mehr als bei der Auswertung ohne GLONASS Satelliten. Mit den GLONASS Satelliten können 20% mehr Positionen bestimmt werden.

	Punkteanzahl		
	GPS + GLO GPS		
bestimmt	3092	2431	
unbestimmt	407	1068	
von insgesamt	3499	3499	

Tabelle 6.13: Punkteanzahl der Leica Geo Office Auswertung der Testfahrt

In der Abb. 6.10 sind die Ergebnisse der post processing Auswertung der Testfahrt in einem Kartenausschnitt dargestellt. Entlang den roten Linien konnten keine Positionen bestimmt werden. Die blauen Linien zeigen die GPS Punkte. Die grün dargestellten Linien stellen die zusätzlichen Punkte dar, welche bei der Auswertung mit GPS und GLONASS Satellitendaten entstanden sind. Deutlich zu erkennen ist der relativ lange grüne Bereich im südlichen Teil der Testfahrt.

Abb. 6.11 zeigt die Empfängerergebnisse der Testfahrt. Die roten Linien stellen wieder die Bereiche dar in denen keine Positionsbestimmung möglich war.

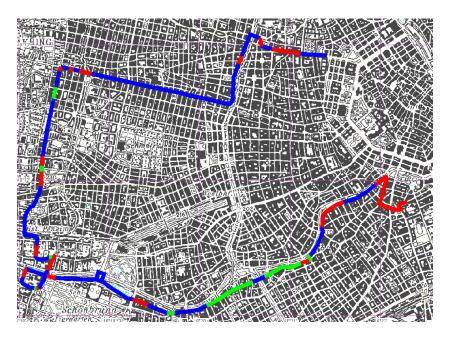


Abbildung 6.10: Testfahrt post processing

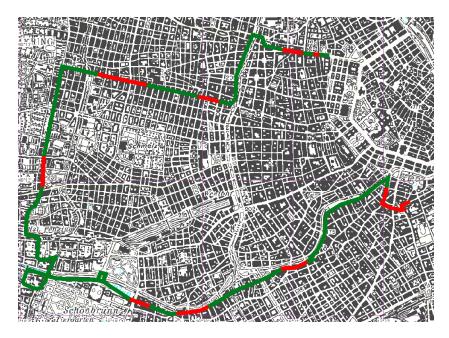


Abbildung 6.11: Testfahrt Empfänger

6.3.2 Statistik

Ergänzend zu den bereits ausgeführten Berechnungen wurde noch eine statistische Auswertung der RINEX Daten durchgeführt. Hierfür wurde für jede Epoche (jede Sekunde) die Anzahl der sichtbaren GPS bzw. GLONASS Satelliten aus dem RINEX Daten entnommen. Während der Testfahrt waren bis zu 11 GPS und bis zu 5 GLONASS Satelliten sichtbar. Die meiste Zeit waren 2 bis 3 GLONASS und 5 bis 7 GPS Satelliten verfügbar.

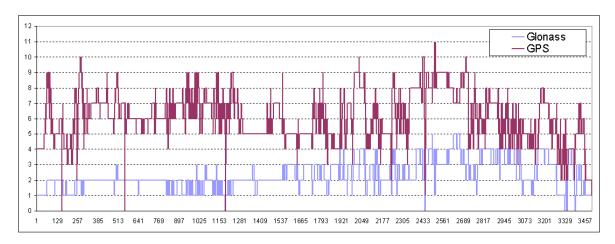


Abbildung 6.12: Anzahl der GPS/GLONASS Satelliten während der Testfahrt

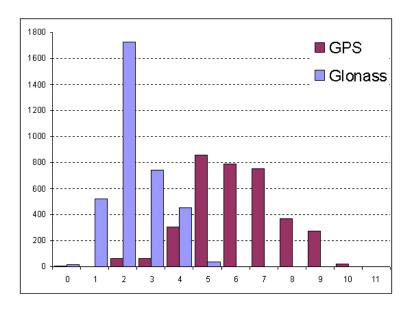


Abbildung 6.13: Häufigkeit Satellitenanzahl

Kapitel 7

Zusammenfassung und Ausblick

Die Verwendung kombinierter GPS/GLONASS Empfänger wird immer attraktiver, da GLO-NASS vor dem vollständigen Systemausbau (2010) steht. Bei einer gemeinsamen Nutzung erhöht sich die Anzahl der nutzbaren Satelliten von 30 GPS Satelliten um 20 GLONASS Satelliten auf bis zu 50 Satelliten. Andererseits lassen sich hybride Messdaten deutlich schwieriger verarbeiten.

Im Rahmen dieser Arbeit wurden drei in der geodätischen Praxis typische Messszenarien näher betrachtet. Ziel war es, die Vorteile aber auch die Grenzen einer gemeinsamen Nutzung der Satellitensysteme GPS und GLONASS näher zu untersuchen. Zum Zeitpunkt der Messungen standen maximal 14 GLONASS Satelliten zur Verfügung.

Für die statische Messung wurde ein Netz bestehend aus drei Netzpunkten und drei Referenzstationen ausgewählt. Alle Netzpunkte wurden vier Stunden gleichzeitig beobachtet. Die Auswertung der Basislinien erfolgte mit der Software Geo Office von Leica Geosystems im post processing. Die Berechnung wurde mit zwei unterschiedlichen Lösungsarten jeweils einmal mit GPS Satelliten und einmal mit GPS und GLONASS Satelliten durchgeführt. Weder bei der Phasen noch bei der Float Lösung konnte eine Genauigkeitssteigerung durch Hinzunahme von GLONASS Satellitendaten erreicht werden.

Die durchgeführten RTK Messungen fanden in teilweise sehr stark abgeschatteten innerstädtischem Gebiet statt. Es wurden in drei unterschiedlichen Messgebieten jeweils acht Punkte einmal mit GPS+GLONASS Satelliten und einmal ohne GLONASS Satelliten bestimmt. Zusätzlich wurde eine Messung zur Bestimmung der Fixierungszeiten durchgeführt. Auf dem

Karlsplatz konnte auf zwei Punkten eine Genauigkeitssteigerung durch die GLONASS Satelliten festgestellt werden. In der Gußhausstraße jedoch trat der umgekehrte Fall ein. In allen Messgebieten traten teilweise Offsets (zwischen GPS- und GPS+GLONASS-Koordinaten) von bis zu 4cm auf. Eine Aussage darüber welche Koordinaten näher am richtigen Ergebnis liegen, kann hier leider nicht getroffen werden. Bei den Fixierungszeiten brachten die zusätzlichen Satelliten keine Verbesserung. Grund dafür könnte eine schlechte Kalibrierung der frequenzabhängigen Offsets im Empfänger sein. Solche Effekte sind vom Gerätehersteller und der Software zu berücksichtigen. [JAVAD] hat bereite auf diese Probleme reagiert und neue Empfänger auf den Markt gebracht.

Bei der kinematischen Messung konnte bereits jetzt schon ein deutlicher Gewinn festgestellt werden. Die Teststrecke führte quer durch Wien und war etwa 15km lang. Sowohl die Positionen als auch die rohen Messdaten wurden im Sekundentakt aufgezeichnet. Die Auswertung der Messdaten erfolgte im post processing einmal mit GPS und GLONASS Satelliten und einmal ohne GLONASS Satelliten. Mit den zusätzlichen GLONASS Satelliten konnten von 3499 möglichen Positionen 3092 Punkte berechnet werden. Das sind 661 Punkte mehr als bei der Auswertung ohne GLONASS. Mit den zusätzlichen Satelliten konnten 20% mehr Positionen bestimmt werden.

Ab 2013 werden mit GALILEO sogar bis zu 85 Navigationssatelliten zur Verfügung stehen. Um diese Konfiguration ausnützen zu können, müssen die Gerätehersteller GNSS Kombinationsempfänger mit geeigneter Software entwickeln. Unter diesen Voraussetzungen könnte bei der RTK Messung eine deutliche Verbesserung der Verfügbarkeit und damit eine höhere Chance auf eine erfolgreiche Positionierung im städtischen Bereich erreicht werden. Folglich werden vermutlich auch kürzere Fixierungszeiten möglich sein. Durch die höhere Verfügbarkeit könnte auch die zeitintensive Vorplanung etwas reduziert werden.

Anhang A

Berechnungsprotokolle

- Statische Messung
- Kinematische Messung

Berechnungsprotokoll Statische Messung

Projekt Information

Projekt Name: stat_gl_phase
Erstellt am: 10/14/2008 11:08:23

Zeitzone: 1h 00' Koordinatensystem Name: wep neu

Applikationssoftware: LEICA Geo Office 4.0 Start Datum und Zeit: 08/28/2008 07:29:31 Ende Datum und Zeit: 08/28/2008 12:47:31

Manuell besetzte Punkte: 9

Processing Kernel: PSI-Pro 2.0

Berechnet: 02/19/2009 12:47:03

Auswerteparameter

ParameterAusgewähltElevationswinkel:10°Ephemeridentyp:PräziseLösungsart:AutomatischGNSS Typ:GPS / GLONASSFrequenz:Iono Frei (L3)Fixiere Ambiguities bis zu:80 km

Fixiere Ambiguities bis zu:

Min. Dauer für Float Lösung (statisch):

80 km
5' 00"

Datenrate:Alle verwendenTroposphärenmodell:BerechnetIonosphärenmodell:Automatisch

Stochast. Modellierung verwenden: Nein

Übersicht Basislinien

 TUWI - 515-58
 Referenz: TUWI
 Rover: 515-58

 Empfängertyp / S/N:
 TPSNET-G3 / P8IG4FER5S0
 GX1230GG / 451853

 Antennentyp / S/N:
 CR-G3 / 000
 AX1202 GG Tripod /

Antennenhöhe: 0.0000 m 1.2480 m

Koordinaten:

Breite: 48° 11' 45.93662" N 48° 10' 15.20960" N Länge: 16° 22' 08.48922" O 16° 14' 58.14004" O Ellip. Höhe: 248.1612 m 332.6478 m

Lösungsart: Phase

GNSS Typ: GPS / GLONASS Frequenz: lono Frei (L3)

Ambiguity: Ja

Zeitspanne: 08/28/2008 07:29:31 - 08/28/2008 12:47:31

Dauer: 5h 18' 00"

Qualität: Sa. Brt: 0.0002 m Sa. Lng: 0.0002 m Sa. Höhe: 0.0015 m

Lage Qualit.: 0.0003 m Sa. Schräg: 0.0002 m

Basislinienvektor: dBrt: -0°01' 30.72701" dLng: -0°07' 10.34917" dHöhe: 84.4866 m

Schräg: 9321.1986 m

DOPs (min-max): GDOP: 1.8 - 9.0

PDOP: 1.6 - 7.4 HDOP: 0.9 - 3.2 VDOP: 1.2 - 6.7

 BADEN - 515-58
 Referenz: BADEN
 Rover: 515-58

 Empfängertyp / S/N:
 TOPCONGB500 / 8PUR0VLZDHC
 GX1230GG / 451853

 Antennentyp / S/N:
 TOPCON CR3 GGD / 2170141
 AX1202 GG Tripod /

 Antennenhöhe:
 0.0000 m
 1.2480 m

Koordinaten:

Breite: 48°00' 03.37918" N 48°10' 15.21025" N Länge: 16°14' 51.41428" O 16°14' 58.13970" O Ellip. Höhe: 281.7206 m 332.6670 m

Lösungsart: Phase

GNSS Typ: GPS / GLONASS Frequenz: Iono Frei (L3)

Ambiguity: Ja

Zeitspanne: 08/28/2008 07:29:31 - 08/28/2008 12:47:31

Dauer: 5h 18' 00"

Qualität: Sa. Brt: 0.0002 m Sa. Lng: 0.0002 m Sa. Höhe: 0.0015 m

Lage Qualit.: 0.0003 m Sa. Schräg: 0.0002 m

Basislinienvektor: dBrt: 0°10' 11.83107" dLng: 0°00' 06.72542" dHöhe: 50.9464 m

Schräg: 18898.9067 m

DOPs (min-max): GDOP: 1.7 - 9.0

PDOP: 1.5 - 7.4 HDOP: 0.9 - 3.2 VDOP: 1.1 - 6.7

 LEOPOLDAU - 515-58
 Referenz: LEOPOLDAU
 Rover: 515-58

 Empfängertyp / S/N:
 TOPCONGB500 / 8PCZKWCXN9C
 GX1230GG / 451853

 Antennentyp / S/N:
 TOPCON CR3 GGD / 2170141
 AX1202 GG Tripod /

 Antennenhöhe:
 0.0000 m
 1.2480 m

Koordinaten:

 Breite:
 48°16' 18.94456" N
 48° 10' 15.21008" N

 Länge:
 16°25' 11.47756" O
 16°14' 58.13948" O

 Ellip. Höhe:
 222.5556 m
 332.6375 m

Lösungsart: Phase

GNSS Typ: GPS / GLONASS Frequenz: Iono Frei (L3)

Ambiguity: Ja

Zeitspanne: 08/28/2008 07:29:31 - 08/28/2008 12:47:31

Dauer: 5h 18' 00"

Qualität: Sa. Brt: 0.0003 m Sa. Lng: 0.0002 m Sa. Höhe: 0.0016 m

Lage Qualit.: 0.0003 m Sa. Schräg: 0.0002 m

Basislinienvektor: dBrt: -0 ° 06' 03.73448" dLng: -0 ° 10' 13.33808" dHöhe: 110.0819 m

Schräg: 16926.9549 m

DOPs (min-max): GDOP: 1.7 - 9.0

PDOP: 1.5 - 7.4 HDOP: 0.9 - 3.2 VDOP: 1.1 - 6.7

 TUWI - 223-58
 Referenz: TUWI
 Rover: 223-58

 Empfängertyp / S/N:
 TPSNET-G3 / P8IG4FER5S0
 GX1230GG / 470900

Antennentyp / S/N: CR-G3 / 000 AX12002 GG Tripod / -

Antennenhöhe: 0.0000 m 1.1610 m

Koordinaten:

 Breite:
 48° 11' 45.93662" N
 48° 10' 54.26289" N

 Länge:
 16° 22' 08.48922" O
 16° 14' 45.36553" O

 Ellip. Höhe:
 248.1612 m
 478.5257 m

Lösungsart: Phase

GNSS Typ: GPS / GLONASS Frequenz: Iono Frei (L3)

Ambiguity: Ja

Zeitspanne: 08/28/2008 08:17:01 - 08/28/2008 12:42:16

Dauer: 4h 25' 15"

Qualität: Sa. Brt: 0.0003 m Sa. Lng: 0.0002 m Sa. Höhe: 0.0016 m

Lage Qualit.: 0.0004 m Sa. Schräg: 0.0002 m

Basislinienvektor: dBrt: -0°00' 51.67373" dLng: -0°07' 23.12369" dHöhe: 230.3645 m

Schräg: 9293.5528 m

DOPs (min-max): GDOP: 1.7 - 4.4

PDOP: 1.5 - 3.7 HDOP: 0.9 - 1.7 VDOP: 1.2 - 3.4

 BADEN - 223-58
 Referenz: BADEN
 Rover: 223-58

 Empfängertyp / S/N:
 TOPCONGB500 / 8PUR0VLZDHC
 GX1230GG / 470900

Antennentyp / S/N: TOPCONGB500 / 8PUR0VLZDHC GX1230GG / 470900 Antennentyp / S/N: TOPCON CR3 GGD / 2170141 AX1202 GG Tripod / -

Antennenhöhe: 0.0000 m 1.1610 m

Koordinaten:

Breite: 48°00' 03.37918" N 48°10' 54.26353" N Länge: 16°14' 51.41428" O 16°14' 45.36522" O

Ellip. Höhe: 281.7206 m 478.5464 m

Lösungsart: Phase

GNSS Typ: GPS / GLONASS Frequenz: Iono Frei (L3)

Ambiguity: Ja

Zeitspanne: 08/28/2008 08:17:01 - 08/28/2008 12:42:16

Dauer: 4h 25' 15"

Qualität: Sa. Brt: 0.0003 m Sa. Lng: 0.0002 m Sa. Höhe: 0.0015 m

Lage Qualit.: 0.0003 m Sa. Schräg: 0.0003 m

Basislinienvektor: dBrt: 0°10' 50.88435" dLng: -0°00' 06.04906" dHöhe: 196.8259 m

Schräg: 20106.2102 m

DOPs (min-max): GDOP: 1.5 - 4.5

PDOP: 1.4 - 3.8 HDOP: 0.9 - 1.7 VDOP: 1.1 - 3.4

LEOPOLDAU - 223-58 Referenz: LEOPOLDAU Rover: 223-58

 Empfängertyp / S/N:
 TOPCONGB500 / 8PCZKWCXN9C
 GX1230GG / 470900

 Antennentyp / S/N:
 TOPCON CR3 GGD / 2170141
 AX1202 GG Tripod /

Antennenhöhe: 0.0000 m 1.1610 m

Koordinaten:

Breite: 48° 16' 18.94456" N 48° 10' 54.26336" N Länge: 16° 25' 11.47756" O 16° 14' 45.36510" O

Ellip. Höhe: 222.5556 m 478.5209 m

Lösungsart: Phase

GNSS Typ: GPS / GLONASS Frequenz: Iono Frei (L3)

Ambiguity: Ja

Zeitspanne: 08/28/2008 08:17:01 - 08/28/2008 12:42:16

Dauer: 4h 25' 15"

Qualität: Sa. Brt: 0.0002 m Sa. Lng: 0.0002 m Sa. Höhe: 0.0012 m

Lage Qualit.: 0.0003 m Sa. Schräg: 0.0002 m

Basislinienvektor: dBrt: -0°05' 24.68120" dLng: -0°10' 26.11246" dHöhe: 255.9654 m

Schräg: 16359.7361 m

DOPs (min-max): GDOP: 1.6 - 4.7

PDOP: 1.4 - 4.0 HDOP: 0.8 - 1.8 VDOP: 1.2 - 3.6

TUWI - 372-58Referenz: TUWIRover: 372-58Empfängertyp / S/N:TPSNET-G3 / P8IG4FER5S0TPSGR3 / P8YR0EYI48WAntennentyp / S/N:CR-G3 / 000TPSGR3 NONE / -Unknown-Antennenhöhe:0.0000 m1.4400 m

Koordinaten:

Breite: 48° 11' 45.93662" N 48° 08' 41.21417" N Länge: 16° 22' 08.48922" O 16° 13' 19.62862" O

Ellip. Höhe: 248.1612 m 374.7004 m

Lösungsart: Phase

GNSS Typ: GPS / GLONASS Frequenz: Iono Frei (L3)

Ambiguity: Ja

Zeitspanne: 08/28/2008 08:29:46 - 08/28/2008 12:30:01

Dauer: 4h 00' 15"

Qualität: Sa. Brt: 0.0003 m Sa. Lng: 0.0002 m Sa. Höhe: 0.0019 m

Lage Qualit.: 0.0004 m Sa. Schräg: 0.0003 m

Basislinienvektor: dBrt: -0 ° 03' 04.72245" dLng: -0 ° 08' 48.86060" dHöhe: 126.5392 m

Schräg: 12327.9133 m

DOPs (min-max): GDOP: 1.6 - 4.1

PDOP: 1.4 - 3.4 HDOP: 0.8 - 1.9 VDOP: 1.2 - 2.8

BADEN - 372-58 Referenz: BADEN Rover: 372-58

Empfängertyp / S/N: TOPCONGB500 / 8PUR0VLZDHC TPSGR3 / P8YR0EYI48W Antennentyp / S/N: TOPCON CR3 GGD / 2170141 TPSGR3 NONE / -Unknown-

Antennenhöhe: 0.0000 m 1.4400 m

Koordinaten:

Breite: 48° 00' 03.37918" N 48° 08' 41.21486" N Länge: 16° 14' 51.41428" O 16° 13' 19.62826" O Ellip. Höhe: 281.7206 m 374.7071 m

Lösungsart: Phase

GNSS Typ: GPS / GLONASS Frequenz: Iono Frei (L3)

Ambiguity: Ja

Zeitspanne: 08/28/2008 08:29:46 - 08/28/2008 12:30:01

Dauer: 4h 00' 15"

Qualität: Sa. Brt: 0.0003 m Sa. Lng: 0.0002 m Sa. Höhe: 0.0014 m

Lage Qualit.: 0.0003 m Sa. Schräg: 0.0003 m

Basislinienvektor: dBrt: 0°08' 37.83567" dLng: -0°01' 31.78602" dHöhe: 92.9865 m

Schräg: 16107.7293 m

DOPs (min-max): GDOP: 1.5 - 3.1

PDOP: 1.3 - 2.7 HDOP: 0.8 - 1.5 VDOP: 1.0 - 2.3

LEOPOLDAU - 372-58Referenz: LEOPOLDAURover: 372-58Empfängertyp / S/N:TOPCONGB500 / 8PCZKWCXN9CTPSGR3 / P8YR0EYI48WAntennentyp / S/N:TOPCON CR3 GGD / 2170141TPSGR3 NONE / -Unknown-Antennenhöhe:0.0000 m1.4400 m

Koordinaten:

 Breite:
 48° 16' 18.94456" N
 48° 08' 41.21463" N

 Länge:
 16° 25' 11.47756" O
 16° 13' 19.62810" O

 Ellip. Höhe:
 222.5556 m
 374.6901 m

Lösungsart: Phase

GNSS Typ: GPS / GLONASS Frequenz: Iono Frei (L3)

Ambiguity: Ja

Zeitspanne: 08/28/2008 08:29:46 - 08/28/2008 12:30:01

Dauer: 4h 00' 15"

Qualität: Sa. Brt: 0.0003 m Sa. Lng: 0.0002 m Sa. Höhe: 0.0018 m

Lage Qualit.: 0.0004 m Sa. Schräg: 0.0003 m

Basislinienvektor: dBrt: -0° 07' 37.72993" dLng: -0° 11' 51.84946" dHöhe: 152.1345 m

Schräg: 20394.5046 m

DOPs (min-max): GDOP: 1.5 - 4.7

PDOP: 1.4 - 4.0 HDOP: 0.8 - 1.8 VDOP: 1.1 - 3.6

Resultate - Basislinie TUWI - 223-58

Projekt Information

 Projekt Name:
 stat_gl_phase

 Erstellt am:
 10/14/2008 11:08:23

Zeitzone: 1h 00' Koordinatensystem Name: wep neu

Applikationssoftware: LEICA Geo Office 4.0

Processing Kernel: PSI-Pro 2.0

Berechnet: 02/19/2009 12:47:10

Punkt Information

Referenz: TUWI Rover: 223-58

 Empfängertyp / S/N:
 TPSNET-G3 / P8IG4FER5S0
 GX1230GG / 470900

 Antennentyp / S/N:
 CR-G3 / 000
 AX1202 GG Tripod /

Antennenhöhe: 0.0000 m 1.1610 m

Anfangskoordinaten:

Breite: 48 ° 11' 45.93662" N 48 ° 10' 54.26219" N Länge: 16 ° 22' 08.48922" O 16 ° 14' 45.35556" O Ellip. Höhe: 248.1612 m 477.2395 m

Auswerteparameter

Parameter	Ausgewählt	Verwendet	Kommentar
Elevationswinkel:	10°	10°	
Ephemeridentyp (GPS):	Präzise	Präzise	
Ephemeridentyp (GLONASS):	Präzise	Präzise	
Lösungsart:	Automatisch	Phase	
GNSS Typ:	GPS / GLONASS	GPS / GLONASS	
Frequenz:	Iono Frei (L3)	Iono Frei (L3)	
Fixiere Ambiguities bis zu:	80 km	80 km	
Min. Dauer für Float Lösung (statisch):	5' 00"	5' 00"	
Datenrate:	Alle verwenden	15	
Troposphärenmodell:	Berechnet	Berechnet	
Ionosphärenmodell:	Automatisch	Berechnet	
Stochast. Modellierung verwenden:	Nein	Nein	

Satellitenauswahl

Manuell deaktivierte GPS Satelliten (PRNs): 02

Manuell deaktivierte GLONASS Satelliten (Slot Nr.): 10 20

Satellitenfenster (Ausgeschlossen):

Satellit	Von	Bis	Dauer
G09	08/28/2008 10:08:46	08/28/2008 10:20:01	11' 15"

G10	08/28/2008 11:26:16	08/28/2008 10:27:31	1' 15"
	08/28/2008 10:36:01	08/28/2008 10:37:01	1' 00"
	08/28/2008 10:51:46	08/28/2008 10:52:01	15"
G12	08/28/2008 11:02:01	08/28/2008 11:07:16	5' 15"
	08/28/2008 11:10:31	08/28/2008 11:19:46	9' 15"
G18	08/28/2008 13:40:01	08/28/2008 12:42:16	2' 15"
G24	08/28/2008 10:04:01	08/28/2008 09:09:46	5' 45"
R09	08/28/2008 08:17:01	08/28/2008 12:09:16	3h 52' 15"
R11	08/28/2008 10:05:01	08/28/2008 10:11:31	6' 30"
R17	08/28/2008 08:17:01	08/28/2008 09:19:31	1h 02' 30"

Berechnetes Iono-Modell

Anzahl der berechneten Modelle: 1

Datenrate des Ionomodells: 30 Sek. Höhe der Einzelebene: 350 km

Modell 1:

Ursprung der Entwicklung: Breite: 48°11' 45.93662" N

Länge: 16° 22' 08.48922" O Zeit (UT): 08/28/2008 05:44:31

Gültigkeit: Von Epoche: 08/28/2008 06:44:31

Bis Epoche: 08/28/2008 13:32:31

Koeffizienten: Grad Brt Grad Zeit Wert 0.59969166 0.00440600 0 1 0.27626556 0.00363741 2 0 0.00112248 -0.06907147 1 0 -0.01820458 0.00285665 1 -0.01612503 0.00143271 1

Antennen Information

Referenz: TUWI Rover: 223-58
Antennentyp: CR-G3 AX1202 GG Tripod

Seriennummer: 000

Horizontaler Offset: 0.0000 m 0.0000 m Vertikaler Offset: 0.0000 m 0.3600 m

Erweiterte Korrekturen: Kein(e) Elevation und Azimut

Phasenzentrumsexzentrizitäten L1 (Referenz) L2 (Referenz) L1 (Rover) L2 (Rover) Vertikal: 0.1093 m 0.1278 m 0.0644 m 0.0640 m Ost: 0.0000 m 0.0000 m 0.0000 m 0.0000 m Nord: 0.0000 m 0.0000 m 0.0000 m 0.0000 m

Erweiterte Korrekturen (Rover):

 $_{\rm A} \setminus ^{\rm Z}$ 0° 5° 10° 15° 20° 25° 30° 35° 40° 45° 50° 55° 60° 65° 70° 75° 80° 85° 90° 0° L1 0.0 0.3 1.2 2.6 4.4 6.4 8.5 10.4 12.1 13.4 14.3 14.8 15.1 15.1 14.6 13.6 11.9 9.2 5.9 0° L2 0.0 0.1 0.6 1.2 2.1 3.0 4.0 5.1 6.1 6.9 7.4 7.6 7.4 6.8 6.1 5.1 3.8 1.9 -0.8

Ambiguity Statistik

Gesamtanzahl von GPS Ambiguitäten: 73
Anzahl von gelösten GPS Ambiguitäten: 41

Gesamtanzahl von GLONASS Ambiguitäten:	24
Anzahl von gelösten GLONASS Ambiguitäten:	11
Anzahl der unabhängigen Lösungen:	585
Mittl. Zeit zwischen unabh. Lösungen:	30"
Prozentsatz der fixierten Epochen (L1):	100%
Prozentsatz der fixierten Epochen (L2):	99%
Prozentsatz der fixierten Epochen (gesamt):	100%

Gesamt Statistik:

Status	Von	Bis	Dauer
Fixiert	08/28/2008 08:17:01	08/28/2008 12:42:16	4h 25' 15"

_____Cycle Slip Statistik _____

Gesamtanzahl Cycle Slips:

0

Endgültige Koordinaten

	Referenz:TUWI	Rover	:223-58	
Koordinaten: Breite: Länge: Ellip. Höhe:	48°11' 45.93662" N 16°22' 08.48922" O 248.1612 m	48° 10' 54.26289" N 16° 14' 45.36553" O 478.5257 m		
Lösungsart: GNSS Typ: Frequenz: Ambiguity:	Phase GPS / GLONASS Iono Frei (L3) Ja			
Qualität:	Sa. Brt: 0.0003 m Lage Qualit.: 0.0004 m	Sa. Lng: 0.0002 m Sa. Schräg: 0.0002	_	a. Höhe: 0.0016 m
M0: Kofaktor Matrix Qxx:	0.2366 m 0.00000147	-0.00000006 0.00000072	0	0.00000047 .00000103 .00004493
Basislinienvektor:	dBrt: -0°00' 51.67373" Schräg: 9293.5528 m	dLng: -0° 07' 23.12	369" d	Höhe: 230.3645 m
DOPs (min-max):	GDOP: 1.7 - 4.4 PDOP: 1.5 - 3.7	HDOP: 0.9 - 1.7	V	DOP: 1.2 - 3.4

Berechnungsfehler und Warnungen _____

Fehler Orbit: Fehlende Orbits für Satellit R24.

Resultate - Basislinie TUWI - 223-58

Projekt Information

Projekt Name: stat_gps_phase
Erstellt am: 10/14/2008 11:08:23

Zeitzone: 1h 00' Koordinatensystem Name: wep neu

Applikationssoftware: LEICA Geo Office 4.0

Processing Kernel: PSI-Pro 2.0

Berechnet: 02/19/2009 13:26:03

Punkt Information

Referenz: TUWI Rover: 223-58

Empfängertyp / S/N: TPSNET-G3 / P8IG4FER5S0 GX1230GG / 470900 Antennentyp / S/N: CR-G3 / 000 AX1202 GG Tripod / -

Antennenhöhe: 0.0000 m 1.1610 m

Anfangskoordinaten:

Breite: 48 ° 11' 45.93662" N 48 ° 10' 54.26219" N Länge: 16 ° 22' 08.48922" O 16 ° 14' 45.35556" O Ellip. Höhe: 248.1612 m 477.2395 m

Auswerteparameter

Parameter	Ausgewählt	Verwendet	Kommentar
Elevationswinkel:	10°	10°	
Ephemeridentyp (GPS):	Präzise	Präzise	
Ephemeridentyp (GLONASS):	Präzise	Präzise	
Lösungsart:	Automatisch	Phase	
GNSS Typ:	GPS	GPS	
Frequenz:	Iono Frei (L3)	Iono Frei (L3)	
Fixiere Ambiguities bis zu:	80 km	80 km	
Min. Dauer für Float Lösung (statisch):	5' 00"	5' 00"	
Datenrate:	Alle verwenden	15	
Troposphärenmodell:	Berechnet	Berechnet	
lonosphärenmodell:	Automatisch	Berechnet	
Stochast. Modellierung verwenden:	Nein	Nein	

Satellitenauswahl

Manuell deaktivierte GPS Satelliten (PRNs): 02

Manuell deaktivierte GLONASS Satelliten (Slot Nr.): 10 20

Satellitenfenster (Ausgeschlossen):

Satellit	Von	Bis	Dauer
G09	08/28/2008 10:08:46	08/28/2008 10:20:01	11' 15"

G10	08/28/2008 11:26:16	08/28/2008 10:27:31	1' 15"
	08/28/2008 10:36:01	08/28/2008 10:37:01	1' 00"
	08/28/2008 10:51:46	08/28/2008 10:52:01	15"
G12	08/28/2008 11:02:01	08/28/2008 11:07:16	5' 15"
	08/28/2008 11:10:31	08/28/2008 11:19:46	9' 15"
G18	08/28/2008 13:40:01	08/28/2008 12:42:16	2' 15"
G24	08/28/2008 10:04:01	08/28/2008 09:09:46	5' 45"
R09	08/28/2008 08:17:01	08/28/2008 12:09:16	3h 52' 15"
R11	08/28/2008 10:05:01	08/28/2008 10:11:31	6' 30"
R17	08/28/2008 08:17:01	08/28/2008 09:19:31	1h 02' 30"

Berechnetes Iono-Modell

Anzahl der berechneten Modelle: 1

Datenrate des Ionomodells: 30 Sek. Höhe der Einzelebene: 350 km

Modell 1:

Ursprung der Entwicklung: Breite: 48°11' 45.93662" N

Länge: 16° 22' 08.48922" O Zeit (UT): 08/28/2008 05:44:31

Gültigkeit: Von Epoche: 08/28/2008 06:44:31

Bis Epoche: 08/28/2008 13:32:31

Koeffizienten: Grad Brt Grad Zeit Wert 0.59969166 0.00440600 0 1 0.27626556 0.00363741 2 0 0.00112248 -0.06907147 1 0 -0.01820458 0.00285665 1 -0.01612503 0.00143271 1

Antennen Information

Referenz: TUWI Rover: 223-58
Antennentyp: CR-G3 AX1202 GG Tripod

Seriennummer: 000

Horizontaler Offset: 0.0000 m 0.0000 m Vertikaler Offset: 0.0000 m 0.3600 m

Erweiterte Korrekturen: Kein(e) Elevation und Azimut

Phasenzentrumsexzentrizitäten L1 (Referenz) L2 (Referenz) L1 (Rover) L2 (Rover) Vertikal: 0.1093 m 0.1278 m 0.0644 m 0.0640 m Ost: 0.0000 m 0.0000 m 0.0000 m 0.0000 m Nord: 0.0000 m 0.0000 m 0.0000 m 0.0000 m

Erweiterte Korrekturen (Rover):

 $_{\rm A} \setminus ^{\rm Z}$ 0° 5° 10° 15° 20° 25° 30° 35° 40° 45° 50° 55° 60° 65° 70° 75° 80° 85° 90° 0° L1 0.0 0.3 1.2 2.6 4.4 6.4 8.5 10.4 12.1 13.4 14.3 14.8 15.1 15.1 14.6 13.6 11.9 9.2 5.9 0° L2 0.0 0.1 0.6 1.2 2.1 3.0 4.0 5.1 6.1 6.9 7.4 7.6 7.4 6.8 6.1 5.1 3.8 1.9 -0.8

Ambiguity Statistik

Gesamtanzahl von GPS Ambiguitäten: 73
Anzahl von gelösten GPS Ambiguitäten: 41

Gesamtanzahl von GLONASS Ambiguitäten:	0
Anzahl von gelösten GLONASS Ambiguitäten:	0
Anzahl der unabhängigen Lösungen:	569
Mittl. Zeit zwischen unabh. Lösungen:	30"
Prozentsatz der fixierten Epochen (L1):	100%
Prozentsatz der fixierten Epochen (L2):	99%
Prozentsatz der fixierten Epochen (gesamt):	100%

Gesamt Statistik:

Status	Von	Bis	Dauer
Fixiert	08/28/2008 08:17:01	08/28/2008 12:42:16	4h 25' 15"

____Cycle Slip Statistik _____

Gesamtanzahl Cycle Slips:

0

Endgültige Koordinaten _____

	Referenz:TUWI	Rover:223-58	3
Koordinaten: Breite: Länge: Ellip. Höhe:	48°11' 45.93662" N 16°22' 08.48922" O 248.1612 m	48° 10' 54.26290" N 16° 14' 45.36568" O 478.5209 m	
Lösungsart: GNSS Typ: Frequenz: Ambiguity:	Phase GPS Iono Frei (L3) Ja		
Qualität:	Sa. Brt: 0.0002 m Lage Qualit.: 0.0003 m	Sa. Lng: 0.0002 m Sa. Schräg: 0.0002 m	Sa. Höhe: 0.0012 m
M0: Kofaktor Matrix Qxx:	0.1840 m 0.00000147	-0.00000005 0.00000077	-0.00000046 0.00000097 0.00004549
Basislinienvektor:	dBrt: -0°00' 51.67371" Schräg: 9293.5495 m	dLng: -0° 07' 23.12353"	dHöhe: 230.3597 m
DOPs (min-max):	GDOP: 1.7 - 4.6 PDOP: 1.5 - 3.9	HDOP: 0.9 - 1.8	VDOP: 1.2 - 3.5

Resultate – Kinematische Messung GÜSSING - Fahrtpunkte

Projekt Information

Projekt Name: Testfahrt

Erstellt am: 10/14/2008 14:28:03

Zeitzone: 1h 00' Koordinatensystem Name: WGS 1984

Applikationssoftware: LEICA Geo Office 4.0

Processing Kernel: PSI-Pro 2.0

Berechnet: 10/27/2008 10:56:27

Punkt Information

Referenz: GÜSSING Rover: 0EY0728_10171200

Empfängertyp / S/N: TOPCONGB1000 / 8PEE82KXWQO TPSGR3 / P8YR0EYI48W
Antennentyp / S/N: TOPCON CR3 GGD / 2170141 TPSGR3 NONE / -Unknown-

Antennenhöhe: 0.0000 m 1.0000 m

Anfangskoordinaten:

Breite: 47° 04' 27.03384" N - Länge: 16° 19' 08.85082" O - Ellip. Höhe: 281.9575 m -

Bewegte Punkte: 3495

Auswerteparameter -

Parameter	Ausgewählt	Verwendet	Kommentar
Elevationswinkel:	10°	10°	
Ephemeridentyp (GPS):	Präzise	Präzise	
Ephemeridentyp (GLONASS):	Präzise	Präzise	
Lösungsart:	Automatisch	Phase	
GNSS Typ:	GPS / GLONASS	GPS / GLONASS	
Frequenz:	Automatisch	Automatisch	
Fixiere Ambiguities bis zu:	200 km	200 km	
Min. Dauer für Float Lösung (statisch):	5' 00"	5' 00"	
Datenrate:	Alle verwenden	1	
Troposphärenmodell:	Hopfield	Hopfield	
Ionosphärenmodell:	Automatisch	Berechnet	
Stochast. Modellierung verwenden:	Nein	Nein	

Satellitenauswahl

Manuell deaktivierte GPS Satelliten (PRNs): Kein(e)
Manuell deaktivierte GLONASS Satelliten (Slot Nr.): Kein(e)

Endgültige Koordinaten

Referenz: GÜSSING

Referenz Koordinaten:

Breite: 47° 04' 27.03384" N Länge: 16° 19' 08.85082" O Ellip. Höhe: 281.9575 m

Antennenhöhe (Referenz): 0.0000 m

DOPs (min-max): GDOP: 1.8 - 19.4

PDOP: 1.6 - 18.9 HDOP: 1.0 - 18.4 VDOP: 1.2 - 9.9

Berechnungsfehler und Warnungen

Fehler Orbit: Fehlende Orbits für Satellit R09.

Allgemeiner Keine ausreichenden Referenzdaten von 07/28/2008 11:03:35 bis 07/28/2008

Fehler: 11:03:40. Differenzielle Position nicht möglich.

Anhang B

Technische Datenblätter

- GR-3 (TOPCON)
- Hiper+ (TOPCON)
- GX1230 GG (Leica)

It's time.

The Leader in Positioning Technology ...

Your authorized Topcon dealer has the answer for all of your precise positioning needs. Whether you're looking for precision GPS+ control for surveying and engineering applications or setout and grade management on a construction job site, your local Topcon dealer offers the widest range of products to get the job done quickly and accurately.

And don't forget, Topcon also offers the industry's easiest-to-use GPS+ machine control systems. Capable of working as an indicate-only system or fully automatic grade control, Topcon offers systems to automate your motorgrader, paver, profiler, dozer, excavator, or ag/land leveling machines.

There's only one company that offers you all of the positioning tools to keep you competitive in today's market.

The Leader in Customer Satisfaction ...

To ensure that your Topcon system maintains peak performance, your local Topcon partner offers factory trained and certified service technicians.

The Bluetooth word mark and logos are owned by the
Bluetooth SIG, Inc. and any use of such marks by Topcon
is under license. Other trademarks and trade names are
those of their respective owners.

Specifications subject to change without notice ©2009 Topcon Corporation. All rights reserved 05/09

SPECIFICATIONS			
	GR-3		
TRACKING			
Number of Channels	72 Universal Channels		
Signals Tracked: GPS GLONASS GALILEO	L1, L1 CA, L1 P, L2, L2 C, L2 P, L5 L1, L1 CA, L1 P, L2, L2 CA, L2 P all signals		
WAAS/EGNOS	Yes		
Antenna Type	Integrated Micro-Center on Flat Ground Plane		
ACCURACY			
Real time RTK accuracy	H: ± 10 mm + 1 ppm V: ± 15 mm + 1 ppm		
Post processed Static	H: ±3 mm + 0.5 ppm V: ±5 mm + 0.5 ppm		
COMMUNICATIONS			
Optional Radio Type	Integrated Tx/Rx UHF radio		
Base Radio Output	0.25 - 1.0 Watt, selectable		
Cellular Communications	Integrated via SIM Card, GSM/GPRS		
Wireless Communications	Integrated Bluetooth version 1.2 comp		
DATA & MEMORY			
Memory	Internal, Removable SD Memory Card (up to 2 GB)		
Data Update/Output Rate	1 – 20 Hz Selectable		
Real Time Data Output	TPS, RTCM SC104, CMR, CMR+		
ASCII Output	NMEA 0183 version 3.0		
Control & Display Unit	Optional, External, Mobile field computer		
ENVIRONMENTAL			
Enclosure	Aluminum I-Beam Housing		
Operating Temperature	-20°C to 50°C		
Environmental Specification	IP66 waterproof/dustproof		
Shock Rating	2 meter pole drop		
Humidity	100% non condensing		
Operating time	Base 11 hrs / Rover 13 hrs		

Your local authorized Topcon distributor is:

	HIPER SERIES
DESCRIPTION	40 channel integrated GPS+ receiver/antenna with MINTER interface
TRACKING SPECIFICATIONS	
Tracking channels	L1: 40 L1 GPS. L1+L2: 20 GPS L1+L2 (GD),
	20 GPS L1+L2+GLONASS (GGD) (Hiper GGD & Hiper+)
Signals Tracked	L1/L2 C/A and P Code & Carrier and GLONASS
PERFORMANCE	
Specifications	(1 sigma)
Baseline Accuracy	3mm + 0.5ppm for L1 + L2; 5mm + 0.5ppm for L1
RTK (OTF) Accuracy	10mm + 1.0ppm for L1 + L2; 15mm + 1.0ppm for L1
Cold Start	<60 seconds
Warm Start	<10 seconds
Reacquisition	<1 second
POWER SPECIFICATIONS	
Battery	Internal Lithium-lon batteries plus 1 external power port
Operating Time	14+ hours
External power input	6 to 28 volts DC
Power consumption	Less than 4.2 watts (Hiper w/o modem less than 3.0 Watts)
ENVIRONMENTAL SPECIFICATIONS	
Enclosure	Aluminum extrusion, waterproof
Operating Temperature	-30°C to 60°C
Dimensions	W:159 x H:172 x D:88 mm
Weight	1.65 kg
GPS+ ANTENNA SPECIFICATIONS	
GPS / GLONASS Antenna	Integrated (Hiper GGD & Hiper+)
Antenna Type	Microstrip (Hiper/HiperGGD)/ Center-mount UHF antenna (Hiper+ only)
Ground Plane	Antenna on a flat ground plane
RADIO SPECIFICATIONS	
UHF Radio Modem	Internal Rx or External Tx/Rx
CDPD & GSM Modem	Optional model
WIRELESS COMMUNICATION	
Communication	Bluetooth® version 1.1 comp.**† (Hiper+ only)
I/O	
Communication Ports	4x serial (RS232)
Other I/O Signals	1pps, Event Marker
Status Indicator	4x3-color LEDs (Green, Red, Yellow), two-function keys (MINTER)
Control & Display Unit	External: FC-1000, Ranger, or other
MEMORY & RECORDING	
Internal Memory	96MB (Hiper/HiperGGD). 1 Gbytes (Hiper+ only)
Raw Data Recording	Up to 20 times per second (20Hz)
Data Type	Code and Carrier from L1 and L2, GPS and GLONASS
DATA OUTPUT	
Real time data outputs	RTCM SC104 version 2.1, 2.2, 2.3, CMR, CMR+
ASCII Output	NMEA 0183 version 2.2
Other Outputs	TPS format
Output Rate	Up to 20 times per second (20Hz)

Specifications are subject to change without notice. Performance specifications assume a minimum of 6 GPS or 7 GPS/GLONASS satellites above 15 degrees in elevation and adherence to procedures recommended by TPS in the appropriate manuals. In areas of high multipath, during periods of high PDOP and during periods of high lonospheric activity performance may be degraded. Robust checking procedures are highly recommended in areas of extreme multipath or under dense foliage.

^{*}Cinderella feature activates full receiver reception at GPS midnight every other Tuesday for 24 hours.

** Bluetooth® type approvals are country specific. Please contact your Topcon representative for more information.

†The Bluetooth word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by Topcon Positioning Systems, Inc. is under license. Other trademarks and trade names are those of their respective owners.

Leica GPS1200 Technische Daten und Systemeigenschaften

GPS1200 Empfänger	GX1230 GG/ATX 1230 GG	GX1230	GX1220 (GG)	GX1210
GNSS Technologie	SmartTrack+	SmartTrack	SmartTrack+	SmartTrack
Тур	Zwei-Frequenz	Zwei-Frequenz	Zwei-Frequenz	Ein-Frequenz
Kanäle	14 L1 + 14 L2 GPS 2 SBAS	14 L1+ 14 L2 GPS, 2 SBAS	14 L1+ 14 L2 GPS, 2 SBAS	14 L1 GPS, 2 SBAS
	12 L1 + 12 L2 GLONASS		12 L1 + 12 L2 GLONASS	(mit DGPS Option)
	72 Kanäle		→ GX1220GG	
			(mit DGPS Option)	
RTK	SmartCheck+	SmartCheck	Nein	Nein
Statusanzeigen	3 LED-Anzeigen: Stromversorgung, Empfang, Speicher			

GPS1200 Empfänger	GX1230 GG/GX1230/GX1220 GG/GX1220	GX1210	ATX1230 GG
Ports	1 Stromversorgung, 3 serielle Port, 1 Controller, 1 Antennenanschluss		1 Stromversorgung/Controller,
			Anschluss
Stromversorgung,	Nominell 12 VDC		Nominell 12 VDC
Verbrauch	4.6 W Empfänger + Controller + Antenne		1.8 W
Event-Eingang und PPS Optional:		Optional:	
	1 PPS-Ausgang	1 PPS-Ausgang	
	2 Event-Eingänge	2 Event-Eingänge	
Standard-Antenne	SmartTrack+ AX1202 GG	SmartTrack AX1201	SmartTrack+ ATX1230 GG
Integrierte Grundplatt	e Integrierte Grundplatte	Integrierte Grundplatte	Integrierte Grundplatte

Die folgenden Daten gelten für alle Empfänger, sofern nicht anders angegeben.

Stromversorgung	Zwei Li-Ion-Batterien 4.2 Ah / 7.4 V für Empfänger. Eine Li-Ion-Batterie 2.1 Ah / 7.4 V für ATX1230 GG und RX1250.
Li-Ion-Einsteck-Batterie	n Für Empfänger + Controller + SmartTrack-Antenne
Identisch für	für ca. 17 Stunden (Datenaufzeichnung).
GNSS und TPS	Strom für Empfänger + Controller + SmartTrack-
	Antenne + Stromsparendes Funkmodem,
	oder Telefon für ca. 11 Stunden (für RTK/DGPS).
	Strom für SmartAntenna + RX1250 Controller für
	ca. 6 Stunden (für RTK/DGPS)
Externe Strom-	Externe Stromversorgung Eingang 10.5 V bis 28 V.
versorgung	
Gewicht	Empfänger 1.20 kg. Controller 0.48 kg (RX1210)
	und 0.75 kg (RX1250). SmartTrack-Antenne
	0.44 kg. SmartAntenna 1.12 kg. Li-Ion-Batterie
	0.09 kg (1.9 Ah) und 0.19 kg (1.9 Ah).
	Fiberkarbon-Lotstock mit SmartTrack-Antenne
	und RX1210 Controller: 1.80 kg.
	Alles am Lotstock: Fiberkarbon-Lotstock mit
	SmartAntenna, RX1250 Controller und Batterien:
	2.84 kg.

Temperatur	Betrieb: Empfänger	-40°C bis +65°C	
ISO9022	Antennen	-40°C bis +70°C	
MIL-STD-810F	Controller	-30°C bis +65°C	
	Controller RX1250c	-30°C bis +50°C	
	Lagerung: Empfänger	-40°C bis +80°C	
	Antennen	-55°C bis +85°C	
	Controller	-40°C bis +80°C	
	Controller RX1250c	-40°C bis +80°C	
Luftfeuchtigkeit	Empfänger, Antennen und Controller		
ISO9022, MIL-STD-810F	Bis zu 100% Luftfeuchtigkeit.		
Schutz gegen Wasser,	Empfänger, Antennen und Controller:		
Staub und Sand	Wasserdicht bei kurzzeitigem Eintauchen bis $1\ \mathrm{m}.$		
IP67, MIL-STD-810F	Staubdicht		
Erschütterung/Fall auf	Empfänger: Hält einem Fall aus 1 m Höhe stand.		
harte Oberflächen	Antennen: Halten einem Fall aus 1.5 m auf harte		
	Oberflächen stand.		
Umkippen des	Empfänger, Antennen un	d Controller:	
Lotstocks:	Halten Umkippen am Lotstock stand.		
Vibration	Empfänger, Antennen un	d Controller:	
ISO9022	Halten Vibrationen auf grossen		
MIL-STD-810F	Baumaschinen stand. Kei	n Signalverlust.	

Abbildungsverzeichnis

2.1	Nominelle GPS-Satellitenbahnen	11
2.2	Nominelle GLONASS-Satellitenbahnen	13
2.3	PDOP am 16.04.09 11:00 UTC Moskauer Zeit [RSA 2009]	14
3.1	Geometrie des Ionosphärenlaufweges [HOFMANN-WELLENHOF 2001]	22
3.2	Elektrisches Phasenzentrum und ARP [HOFMANN-WELLENHOF 2001]	26
3.3	Differenzbildungen der GNSS-Beobachtungen [BAUER 2003]	30
3.4	Flächenkorrekturmodell [BAUER 2003]	34
3.5	Virtuelle Referenzstation	35
3.6	Satellitengeometrie und DOP	36
3.7	Sichtbarkeitsdiagramm und GDOP ohne Abschattung	38
3.8	Sichtbarkeitsdiagramm und GDOP einer OW-Straßenabschattung	39
3.9	Sichtbarkeitsdiagramm und GDOP einer NS-Straßenabschattung	39
4.1	WEP Netzabdeckung in Kooperation mit BEWAG und ÖBB [KLUG 2009]	41
4.2	WEP System [Wien Energie 2009]	43
6.1	Punktübersicht	50
6.2	Anzahl der sichtbaren GLONASS-Satelliten am 28.08.2008 (Wiener Blick) .	51
6.3	Anzahl der sichtbaren GPS-Satelliten am 28.08.2008 (Wiener Blick)	52
6.4	GR-3 Empfänger auf der Eichwiese	53
6.5	RTK Messung am Karlsplatz (K7)	59
6.6	Abschattung und GDOP für K1 am 05.02.08	60
6.7	Abschattung und GDOP für K2 am 05.02.08	61
6.8	Abschattung und GDOP für G8 am 16.05.08	64
6.9	GDOP Argentinierstraße und Bahngasse	67
6.10	Testfahrt post processing	75

Abbildungsverzeichnis

6.11	Testfahrt Empfänger	75
6.12	Anzahl der GPS/GLONASS Satelliten während der Testfahrt	76
6.13	Häufigkeit Satellitenanzahl	76

Tabellenverzeichnis

2.1	GPS-Konstellation (April 2009)	10
2.2	GPS Signalstruktur	12
2.3	GLONASS Slot-Nummern und Frequenzkanäle (April 2009)	14
2.4	Signalstruktur GPS und GLONASS	16
3.1	Fehlereinflüsse	20
4.1	RTCM 2.3 Message-Typen	42
4.2	Preisliste [Wien Energie 2009]	44
5.1	Mittlere Punktlagegenauigkeit in der Katastervermessung	47
6.1	Beobachtungsplan 28.08.2008	51
6.2	Vertikale Phasenzentrumsexzentrizitäten (Abstand ARP zu PCO)	54
6.3	ITRF2000 Koordinaten der Referenzstationen	54
6.4	Koordinatenabweichungen der GPS- und GPS+GLONASS-Auswertung	56
6.5	Basislinienberechnung (Phasen-Lösung)	57
6.6	Basislinienberechnung (Float-Lösung)	58
6.7	RTK Messung Karlsplatz	63
6.8	RTK Messung Gußhausstraße	66
6.9	RTK Messung Bahngasse	69
6.10	Fixierungszeiten	70
6.11	RTK Messung Hiper+	72
6.12	Punkteanzahl der Testfahrt	73
6.13	Punkteanzahl der Leica Geo Office Auswertung der Testfahrt	74

Quellenverzeichnis

```
[IGS 2009] IGS, INTERNATIONAL GNSS SERVICE (2009).
  http://igscb.jpl.nasa.gov.
[JAVAD] JAVAD, NAVIGATION SYSTEMS (2009).
  http://www.javad.com/jgnss/.
[LEICAGEOSYSTEM 2009] LEICAGEOSYSTEM (2009).
  http://www.leica-geosystems.com.
[NAVCEN 2009] NAVCEN, NAVIGATION CENTER U.S. COAST GUARD (2009).
  http://www.navcen.uscg.gov.
[RSA 2009] RSA, RUSSIAN SPACE AGENCY INFORMATION-ANALYTICAL CENTRE
  (2009).
  http://www.glonass-ianc.rsa.ru.
[RTCM 2009] RTCM (2009). The Radio Technical Commission for Maritime Services.
  http://www.rtcm.org.
[TOPCON 2009] TOPCON (2009).
  http://www.topconeurope.com.
[TRIMBLE 2009] TRIMBLE (2009).
  http://www.trimble.com.
[WIENENERGIE 2009] WIENENERGIE, WEP ECHTZEIT-POSITIONIERUNG (2009).
  http://www.wienenergie.at/we.
```

Literaturverzeichnis

- [BAUER 2003] BAUER, M. (2003). Vermessung und Ortung mit Satelliten. GPS und andere satellitengestützte Navigationssysteme. 5. Auflage. Wichmann Verlag.
- [HOFMANN-WELLENHOF 2001] HOFMANN-WELLENHOF, B., LICHTENEGGER H. UND COLLINS J. (2001). *Satellite Geodesy. 2nd Edition*. Springer Verlag.
- [HOFMANN-WELLENHOF 2008] HOFMANN-WELLENHOF, B., LICHTENEGGER H. UND WASLE E. (2008). GNSS Global Navigation Satellite Systems. GPS, GLONASS, Galileo, and more. Springer Verlag.
- [HOPFIELD 1969] HOPFIELD, H. (1969). Two-quartic tropospheric refractivity profile for correcting satellite data.
- [KAHMEN 2006] KAHMEN, H. (2006). *Vermessungskunde*. 20. Auflage. Walter de Gryter Verlag.
- [KLUG 2005] KLUG, C. (2005). Wienstrom Vortrag. WEP PDGPS-Einsatz im Versorgungsgebiet der Wienstrom GmbH.
- [Klug 2009] Klug, C., Ramesmayer R. Stättner M. (2009). *AUSPRO Workshop. BEWAG ÖBB WE Aktueller Status*.
- [MANSFELD 2004] MANSFELD, W. (2004). Satellitenortung und Navigation. 2. überarbeitete Auflage. Vieweg Verlag.
- [SAASTAMOINEN 1973] SAASTAMOINEN, J. (1973). Contribution to the Theory of atmospheric refraction. Bulletin Géodésique.
- [SEEBER 2003] SEEBER, G. (2003). Satellite Geodesy. 2nd Edition. Walter de Gryter Verlag.

Lebenslauf

Claudia Steinbichler

Geboren am: 25. April 1983 in Wien

Eltern: Dipl.Ing. Josef Steinbichler

Dipl.Ing. Elisabeth Steinbichler

Ausbildung

1989 - 1993 Volksschule St.Ursula

1993 - 2001 Realgymnasium Diefenbachgasse

08.06.2001 Reifeprüfung

seit 2001 Studium Vermessung und Geoinformation

22.11.2004 1.Diplomprüfung

Berufliche Tätigkeiten

seit 11.06.2007 Angestellte im Büro STOLITZKA & PARTNER ZT GMBH

Sportliche Erfolge

Teilnahme an Jugendeuropameisterschaften im Schwimmen 1999

1 mal Österreichische Staatsmeisterin über 50m Brust (Schwimmen)

2 mal Österreichische Jugendmeisterin über 100m, 200m Brust (Schwimmen)

3 mal Österreichische Meisterin im Rettungsschwimmen

20 mal Wiener Meisterin im Schwimmen