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Kurzfassung

Durch den rapiden Fortschritt der Mikroelektronik haben die charakteristischen Größen
der realisierten Bauteile Dimensionen im Nanometerbereich erreicht. Dadurch treten
quantenmechanische Effekte auf, die die Leistungsmerkmale der modernen Bauelemente
entscheidend beeinflussen. Das stellt neue Herausforderungen an die Modellierung und
Simulation der Halbleiterbauelemente, da semi-klassische Modelle nur empirische, quan-
tenmechanische Korrekturen beinhalten.
Die Wellennatur der Elektronen in quantenmechanischen Systemen bedarf einer korrek-
ten Beschreibung durch die Schrödingergleichung. Für die Darstellung des Quanten-
transports mussten fortschrittliche, physikalische Modelle, die offene Randbedingungen
stellen, entwickelt werden.
Das Themengebiet der Greenschen Funktionen, die ein generelles Konzept zur Lösung
von inhomogenen Differentialgleichungssystemen bieten, wird schrittweise aufgerollt.
Alle Annahmen und Näherungen, die gemacht wurden, um stationären Transport unter
Zuhilfenahme der Greenschen Funktionen Methode zu beschreiben, werden besonders
hervorgehoben. Weiters wird der Übergang von einer generellen Quantentransportthe-
orie, die die Nichtgleichgewichts Greenschen Funktionen verwendet, hin zu einer nu-
merischen Implementierung in einer rechnerunterstützten Simulation näher untersucht.
Im Zuge dieser Diplomarbeit wurde der Nichtgleichgewicht Greensche Funktionen For-
malismus verwendet, um die Phänomene des Quantentransports zu simulieren. Der
Vienna Schrödinger Poisson-Gleichungslöser, der am Institut für Mikroelektronik der
Technischen Universität Wien entwickelt wurde, wurde um ein Modul zur Lösung eindi-
mensionaler Nichtgleichgewichts Greenschen Funktionen erweitert. Die Schrödingergle-
ichung in der effektiven Massennäherung wird im Rahmen des Greenschen Funktio-
nen Formalismus behandelt und konsistent mit der Poissongleichung gelöst. Die Im-
plementierung ermöglicht ebenso zukünftige Erweiterungen, um Effekte wie Streuung
oder komplexere Bandstrukturen zu berücksichtigen. Die Simulation von ballistischem
Transport in einer resonanten Tunneldiode wurde durchgeführt. Der Gleichungslöser
liefert die lokale Zustandsdichte und Besetzung im Simulationsgebiet. Die erlangten
Strom-Spannungs Kurven zeigen den typischen negativen differentiellen Widerstand der
resonanten Tunneldiode.
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Abstract

With the continuous progress of microelectronics, the featured structure size has been
scaled down to the nanometer regime. Therefore, quantum mechanical effects signifi-
cantly influence the characteristics of state-of-the-art devices. This poses new challenges
to the modeling and simulation of semiconductor devices, since semi-classical models
only allow to incorporate empirical quantum corrections.
The wavelike nature of the electrons in quantum mechanical systems requires a proper
treatment by the Schrödinger equation. For quantum transport very elaborate physical
models posing open boundary conditions have been developed.
The subject of Green’s functions, which are a general concept to solve for inhomogeneous
differential equation systems, is approached gradually. All assumptions and approxima-
tions that have been made to allow a numerical treatment of steady-state transport
within the non-equilibrium Green’s functions (NEGF) method are pointed out. The
intersection of a general quantum transport theory using Green’s functions and its nu-
merical implementation within a computer simulation is examined in detail.
In this diploma thesis the NEGF formalism has been used to simulate quantum trans-
port phenomena. The Vienna Schrödinger Poisson solver, developed at the Institute for
Microelectronics at the Technical University of Vienna, has been extended with a one-
dimensional non-equilibrium Green’s functions solver. The effective mass Schrödinger
equation is treated within the NEGF framework and solved self-consistently with the
Poisson equation. The implementation allows for future improvements especially consid-
ering scattering events and more complicated bandstructures. The simulation of ballistic
transport in resonant tunneling devices was performed. The NEGF solver provides the
local density and occupation of states within the simulation domain. Furthermore, the
current-voltage curves showing the characteristic negative differential resistance were
obtained.
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Abandon all hope, you who enter here.

Dante Alighieri

CHAPTER 1

Introduction

Semiconductor industry has undergone a rapid development process through the last
half century. It is best couched into terms by Moore’s law stated by Gordon Moore, one
of the co-founders of Intel. He predicted a doubling of the number of transistors in an
integrated circuit every two years whereas the production costs would decrease by the
same factor. Up until 2007, all encountered technological difficulties have been overcome
and Moore’s law is still valid. The pace in research and development to further continue
on this path is set by the International Technology Roadmap for Semiconductors [1].
In the field of semiconductor device development, modeling and simulation are of in-
creasing significance. Numerical simulation allows a deeper understanding of the physi-
cal processes within existing semiconductor devices and facilitates predictions for future
developments. Computer simulations are no substitution to experiments but provide a
valuable complement which give new insights to the physics within an iterative research
process.
To accurately describe physical phenomena by numerical simulation the subjacent mod-
els have to be valid within the domain of application. For microelectronic devices,
one effect of great interest is carrier transport. The simulation of transport in Metal-
Oxide-Semiconductor (MOS) field effect transistors was dominated by the drift-diffusion
model [2,3]. More advanced approaches considering higher order moments of the Boltz-
mann equation [4] allow to investigate hot carrier effects.
As device dimensions are going to hit the nanoscale, classical models fail due to emerging
of quantum mechanical effects. Electrons show wavelike behavior and they are reflected
or transmitted through finite barriers, i.e. tunneling occurs. Furthermore, electrons
contained in a potential well lead to energy quantization. Unique effects such as reso-
nances in double barrier structures are of growing interest for new devices. A wide range
of different approaches to treat quantum mechanical transport phenomena have been
proposed in the literature. For instance, they govern the solution of the Pauli master
equation [5] or Monte Carlo methods to solve for the Wigner distribution function [6].
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INTRODUCTION

The approach presented in this thesis is called non-equilibrium Green’s function (NEGF)
method. Its roots go back to the sixties of the past century, where the foundation of the
theory was developed by Kadanoff and Baym [7] and Keldysh [8]. In the last decade,
increasing interest arose to apply Green’s functions to device simulation because they
enable computer simulations of resonant tunneling devices [9] and nanoscaled transis-
tors [10].
Chapter 2 provides a compact overview of the theory of quantum transport. Fur-
thermore, it points out the difficulties of open boundary conditions needed to describe
transport phenomena. The Schrödinger equation is reviewed with regard to semicon-
ductor device simulation. Therefore, the density and occupation of states are presented.
A description of transmission through potential barriers has been given to facilitate the
understanding of resonant tunneling devices, which is used as benchmark for the imple-
mentation of the non-equilibrium Green’s function formalism presented at the end of the
chapter.
In Chapter 3, the numerical methods to solve for the Schrödinger equation are sum-
marized. The implementation of the NEGF method has been realized by means of
a recursive algorithm. For comparison the quantum transmitting boundary method
(QTBM) is illustrated. A great challenge is posed by the numerical integration methods
which have been presented in further detail.
The results of the conducted simulations are given in Chapter 4. Plots of the local
density of states, the occupation of states, and current-voltage curves are provided.
Finally, a summary and outlook for future developments are stated in Chapter 5.
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To the electron:
may it never be of any use!

J. J. Thomson

CHAPTER 2

Theory of Open Quantum Systems

This chapter provides the necessary concepts of physics and mathematics that are essen-
tial for the treatment of open quantum mechanical systems. First, a brief introduction to
the Schrödinger equation is given which finally will lead to the non-equilibrium Green’s
functions formalism.

2.1 The Schrödinger Equation

Approaching smaller and smaller dimensions classical mechanics based on Newton’s law
are no longer applicable to correctly describe the motion of the particles invoked. There-
fore, quantum mechanics is necessary to obtain physical insight. Eighty years ago the
formulation of Schrödinger’s wave mechanics and Heisenberg’s matrix mechanics pro-
vided the tools to understand the effects that can be seen regarding small particles such
as electrons. Hence, it is unavoidable to apply quantum mechanics if one is interested
in accurately describing the behavior of electrons in nanoscaled semiconductor devices.
An introduction to this topic with emphasis on low-dimensional semiconductors is given
by Davies [11].
In wave mechanics physical quantities are no longer given directly but have to be derived
from the wave function Ψ. Since the wave functions only describe probabilities, quantum
mechanical statistics have to be applied to obtain the expectation values of the desired
quantities.
The one-dimensional time-dependent Schrödinger equation of a single particle under the
influence of a varying potential V (x) reads as

− ~2

2m

∂2

∂x2
Ψ (x, t) + V (x) Ψ (x, t) = ı~

∂

∂t
Ψ (x, t) . (2.1)

In semiconductors the electrons are under the influence of the conduction band edge of
the band structure and the applied electrostatic potential. Hence, the problem reduces

3



THEORY OF OPEN QUANTUM SYSTEMS 2.1. The Schrödinger Equation

to the stationary case and the Schrödinger equation may be separated into a time-
independent part ψ(x) and a spatial-independent part T (t):

Ψ (x, t) = ψ (x)T (t) . (2.2)

Applying ansatz (2.2) to the time-dependent Schrödinger equation (2.1) leads to the
equation system

ı~
∂

∂t
T (t) = ET (t), (2.3a)

− ~2

2m

∂2

∂x2
ψ(x) + V (x)ψ(x) = Eψ(x). (2.3b)

The separation constant E can be identified as the energy of the particle. Equation
(2.3b) is the one-dimensional time-independent Schrödinger equation. An expansion to
three dimensions using the Laplace-operator ∇2 = ∂2

∂x2 + ∂2

∂y2
+ ∂2

∂z2
gives(

− ~2

2m
∇2 + V (x)

)
ψ(x) = Eψ(x). (2.4)

An equivalent operator notation was introduced by Dirac. It combines all terms on the
left-hand side of the Schrödinger equation into the Hamiltonian H which acts on the
state |ψ〉 denoted by the infinitely-dimensional ket-vector.

H|ψ〉 = E|ψ〉 (2.5)

2.1.1 Band Structure and Effective Mass Approximation

In semiconductors, the movement of electrons within the crystal is determined by the
bandstructure. The periodicity of the lattice leads to a periodic potential. Hence, the
Schrödinger equation can be solved by applying Bloch functions. This gives a wavevector
for the electrons passing through the periodic lattice. For a face-centered cubic lattice,
the reciprocal lattice which forms the Brillouin zone is body-centered cubic (Fig. 2.1).
The dispersion relation of these electrons gives the band structure, which needs to be
plotted within the first Brillouin zone in three-dimensional k-space. This can be done by
defining directions between distinctive points in the Brillouin zone. There, the Γ-point
defines the origin in k-space, X lies in the center of a square and L in the center of a
hexagon. K is situated in the middle of an edge shared by two hexagons and U bisects
the edge between a square and a hexagon. Finally, W is the intersection point of two
hexagons and a square [11].
The bandstructure of silicon is shown in Figure 2.2. The dispersion relation is plotted
along the secants between L, Γ, X, K and back to Γ. The full picture emerges by
folding back higher Brillouin zones into the first one, which is called the reduced zone
scheme. The gaps between different band edges are the so-called band gaps where
classical propagation is not possible.

4



THEORY OF OPEN QUANTUM SYSTEMS 2.1. The Schrödinger Equation

010
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010
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Figure 2.1: First Brillouin zone of silicon [12]. The significant points Γ, L, K , and X
used in the band structure diagram of silicon are marked. Additionally, the equivalent
energy surfaces of the three valley types forming ellipsoids and its minimum close to the
X points are illustrated.

As shown in Fig. 2.2 the band structure has a very complex shape. Therefore, instead of
a full description, a widely used concept, called effective mass approximation, is applied.
The energy minimia in the bandstructure are called valleys. Around these a Taylor series
expansion of the energy is performed. Thereby, the electron energy is approximated by

E(k) = E(kmin) +
~2

2

[
(k− kmin)

T m̃−1 (k− kmin)
]
. (2.6)

The minimum energy of the valley is given by E(kmin) and the curvature enters through
the so-called effective mass tensor m̃ [12]. The inverse of this tensor is given by

m̃−1 =
1

~2



∂2E
∂k2

x

∂2E
∂kx∂ky

∂2E
∂kx∂kz

∂2E
∂ky∂kx

∂2E
∂k2

y

∂2E
∂ky∂kz

∂2E
∂kz∂kx

∂2E
∂kz∂ky

∂2E
∂k2

z

 . (2.7)

The effective mass approximation to the band structure is reasonable for electrons with
a low kinetic energy. It enters the Schrödinger equation by substituting the electron
mass as follows: (

−~2

2
∇m̃−1∇+ V (x)

)
ψ(x) = Eψ(x). (2.8)
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THEORY OF OPEN QUANTUM SYSTEMS 2.1. The Schrödinger Equation
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Figure 2.2: Bandstructure diagram of Silicon [13].

For some materials in certain directions, further simplifications are possible. The equiv-
alent energy surface of the valleys of silicon form six ellipsoids, which can be described
by a lateral and transversal mass ml and mt. According to their orientation, one can
distinguish three valley types with a twofold degeneracy. The effective mass tensor for
a silicon substrate with 〈100〉 orientation takes a diagonal form, given by

m̃−1 =


1

mx

0 0

0
1

my

0

0 0
1

mz

 . (2.9)

According to the orientation of the valley type, the coefficients equal ml = 0.91m0

and mt = 0.19m0, respectively. Hence, there are three different effective mass tensors
conforming to the ellipsoids. Therefore, the Schrödinger equation needs to be solved
three times and the solutions due to each valley have to be summed up.

2.1.2 Separation of the Schrödinger Equation

The geometrical structure of semiconductor devices often allows to reduce the simulation
domain to a one-dimensional cross section of the device. For example, in heterostructures
the electrons are not free to move in any direction. In a potential well their motion is
confined perpendicular to the well and leads to discrete energy levels. The behavior of
electrons bound to these discrete states is two-dimensional opposed to the continuous
free or propagating states of higher energy than the confining potential well [14]. It is
possible to separate the Schrödinger equation in a longitudinal and transversal part. The
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THEORY OF OPEN QUANTUM SYSTEMS 2.1. The Schrödinger Equation

general procedure will be shown in the following. Starting from the time-independent
Schrödinger equation as derived in Section 2.1(

−~2

2
∇m̃−1 (x)∇+ V (x)

)
ψ(x) = Eψ(x), (2.10)

we are able to derive a formula that describes the motion of an electron in a low-
dimensional system. We make use of the effective mass approximation and assume
that the mass perpendicular to the heterostructure layers is mx(x) whereas the effective
mass parallel to the layers is constant and therefore reads my and mz respectively.
Furthermore the electrostatic potential varies only normal to the heterostructure layers,
i.e. V (x) = V (x). Hence, the Schrödinger equation reads(

−~2

2

∂

∂x

1

mx(x)

∂

∂x
− ~2

2my

∂2

∂y2
− ~2

2mz

∂2

∂z2
+ V (x)

)
ψ(x, y, z) = Eψ(x, y, z). (2.11)

The following ansatz uses plane waves for the motion along y and z, which is plausible
for a heterostructure with varying potential solely along the growth direction.

ψ(x, y, z) = ϕx(x) exp(ıkyy) exp(ıkzz). (2.12)

Applying ansatz (2.12) to the Schrödinger equation (2.11) gives(
−~2

2

∂

∂x

1

mx(x)

∂

∂x
+

~2ky
2

2my

+
~2kz

2

2mz

+ V (x)

)
ϕx(x) = Eϕx(x). (2.13)

The energy εx follows the solution ϕx of the one-dimensional Schrödinger equation, where

εx = E − ~2ky
2

2my

− ~2kz
2

2mz

. (2.14)

Substituting (2.14) for the energy E in equation (2.13) yields(
−~2

2

∂

∂x

1

m(x)

∂

∂x
+ V (x)

)
ϕx(x) = εxϕx(x). (2.15)

Therefore, the solution of the original three-dimensional problem can be rewritten with
r = (y, z) and k = (ky, kz) and the effective mass of the y-z-plane myz to give

ψk(r, x) = exp(ık · r)ϕx(x), (2.16a)

E(k) = εx +
~2k2

2myz

. (2.16b)

Assuming closed boundary conditions implies discrete states as solution of (2.15) along
the x-direction. For each quantum number nx i.e. each allowed energy εx in x-direction,
a dispersion relation (2.16b) for the y-z-plane holds. The wavefunctions, the parabolic
dispersion relation and the stepwise growth of the electron density are illustrated in
Figure 2.3. This introduces the concept of subbands.

7
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k[nm−1]x[nm] n(E)[eV−1nm−2]

E [eV]

E1(k)

E3(k)

E2(k)

ε1

ε2

ε3

Figure 2.3: This diagram shows subbands corresponding to the discrete energy levels
within a quantum confined system [11].

2.2 Density of States and Occupation

This section introduces the concept of the density of states and the distribution function.
Together, they allow to determine the carrier concentration within a device.

2.2.1 Density of States

To be able to describe the number of states that are available in quantum mechanical
systems the density of states ρ(E) is defined. It gives the number of states within an
energy range [E , E + dE ] as ρ(E)dE [11]. The density of states is generally defined with
Dirac delta functions δ(E)

ρ(E) =
∑
n

δ(E − εn). (2.17)

Each state n is accounted for by a Dirac function at its energy level εn. Therefore, the
number of states within the energy range from E1 to E2 is given by the integration

Z =

E2∫
E1

ρ(E)dE =

E2∫
E1

∑
n

δ(E − εn)dE =
∑
n

E2∫
E1

δ(E − εn)dE . (2.18)

Equation (2.18) shows that due to the delta function only states within the given energy
range contribute to the total sum of states, which is the desired property of the density
of states.
The density of states for a free electron gas in one, two, and three dimensions are given

8
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Dimension d 1D 2D 3D

ρd(E)
1

π~

√
2m1D

dos

E
m2D

dos

π~2

m3D
dos

√
2m3D

dosE
π2~3

nd N1D
C F− 3

2

(
−EC − EF

kBT

)
N2D

C ln
(
1 + eEF/kBT

)
N3D

C F 1
2

(
−EC − EF

kBT

)
Nd

C gSgV

(
m1D

doskBT

2π~2

)1/2

gSgV
m2D

doskBT

2π~2
gSgV

(
m3D

doskBT

2π~2

)3/2

md
dos mz myz =

√
mymz mxyz = 3

√
mxmymz

Table 2.1: The density of states, the electron density, the effective density of states and
the density of states mass are summarized for one-, two- and three- dimensional systems.

in Table 2.1. It shows a typical energy dependency of E−1/2 in one dimension, E1/2 in
three dimensions and a constant behavior in two dimensions.
Equation (2.17) allows to describe the density of states of an arbitrary system. For
systems, which are not translationally invariant, the density of states varies locally.
Therefore, a local density of states is defined where every state is weighted by its wave-
function [11],

ρ(x, E) =
∑
n

|ψn(x)|2δ(E − εn). (2.19)

The density of states can be recovered by employing a spatial integration

ρ(E) =
∑
n

δ(E − εn)

∫
|ψn(x)|2dx =

∑
n

δ(E − εn). (2.20)

An even more general case of the density of states is the so-called spectral function

ρ(x, x′, E) =
∑
n

ψn(x)ψ
∗
n(x)δ(E − εn). (2.21)

This is an important quantity for the Green’s functions formalism and will reappear
later in the according sections governing the non-equilibrium Green’s functions.

2.2.2 Occupation of States

After having calculated the number of available states, they have to be filled according
to an occupation function. Fermions such as electrons need to obey the Pauli exclusion
principle, which means that a state can only be occupied by a single particle at once.

9
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Their behavior is described by the Fermi-Dirac distribution function

f (E , EF, T ) =
1

1 + exp

(
E − EF

kBT

) (2.22)

where EF is the Fermi level, which is the energy at which the probability that the state
is occupied equals the probability that it is empty. Figure 2.4 shows the Fermi-Dirac
distribution function. Knowing the distribution function and the density of states it is
possible to calculate the number of electrons within a quantum system according to

n =

∞∫
−∞

ρ(E)f (E , EF, T ) dE . (2.23)

Table 2.1 summarizes the density of electrons in a free electron gas with the given
dimensionality. NC is called the effective density of states in the conduction band which
has the band edge at EC. The effective masses mxyz and myz are the respective density
of states masses calculated form the coefficients of the effective mass tensor (see Section
2.1.1). The constant gS gives the degeneracy due to the spin of the electrons, which is
twofold (spin up and spin down). The degeneracy of equivalent valleys within a band
is given by gV. Equation (2.23) is of the same form as the so-called Fermi integrals and
needs to be evaluated accordingly. The Fermi integral of order j is defined as

Fj(ξ, ζ) =
1

Γ(j + 1)

η2=∞∫
η1=ζ

ηj

1 + exp (η − ξ)
dη, (2.24)

where Γ(x) is the gamma function and

η =
E − EC

kBT
, (2.25a)

−ξ =
EC − EF

kBT
. (2.25b)

The complete Fermi integral used for the calculation of the electron density of the free
electron gas requires a lower integration boundary of ζ = 0.
In Section 2.1.2 it has been demonstrated, that it is possible to separate the Schrödinger
equation, if the potential V (x) meets some special constraints. If it were dependent
on one spatial direction solely, the problem is split in a two-dimensional problem that
describes the electron behavior within the subband itself and a one-dimensional problem
that gives rise to these subbands. If a system with discrete states is occupied with elec-
trons, each subband is filled sequentially. The number of electrons within a subband with
index nx, which is a two-dimensional electron gas, is therefore given by (cf. Table 2.1)

nnx =
myzkBT

π~2
ln

[
1 + exp

(
EF − εnx

kBT

)]
. (2.26)

10
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0.5

1

T > 0

T = 0

E − EF0

f(E , EF, T )

Figure 2.4: Fermi-Dirac distribution function for T = 0 K and T > 0 K. [12].

Now, the electron density of the complete system can be written as a summation over
the electron contributions of all subbands

n =
∑
nx

nnx =
∑
nx

myzkBT

π~2
ln

[
1 + exp

(
EF − εnx

kBT

)]
. (2.27)

If the spectrum of states becomes continuous, the summation in equation (2.27) can be
approximated as an integral. Instead of the discrete states, the density of states ρx(Ex)
of a one-dimensional system arises. These states are filled according to two-dimensional
subbands. Therefore, the electron density of these subbands can be interpreted as oc-
cupation function f(Ex) of the one-dimensional density of states ρx(Ex). The overall
electron density is given by

n =

∞∫
−∞

ρx(Ex)
myzkBT

π~2
ln

[
1 + exp

(
EF − Ex
kBT

)]
︸ ︷︷ ︸

f(Ex)

dEx =

∞∫
−∞

ρx(Ex)f(Ex)dEx, (2.28)

where ρx(Ex) is acquired by solving the one-dimensional Schrödinger equation.

2.3 Transmission

After the discussion of the separation approach to reduce the Schrödinger equation to a
one-dimensional problem, we will now focus on the transmission and reflection of particle
waves incident perpendicularly on barriers within the transport direction [14, Chapter
3]. The simplest model of quantum transport in devices is to describe the problem in
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V0

A

B F

E

a−a x

V (x)

Figure 2.5: A single rectangular potential barrier

terms of the scattering of the electron wave by a spatially varying potential [15]. One
assumes that this potential is situated inbetween two electron reservoirs, each emitting
particles with an equilibrium distribution into the scattering region. An applied voltage
causes two different chemical potentials within the contact regions. The flux of electrons
passing between the reservoirs constitutes the electrical current conducted through the
device.
In wave mechanics, the particle density is written as

ς(x, t) = Ψ(x, t)Ψ∗(x, t). (2.29)

Using this quantity, the Schrödinger equation can be rewritten in the form of a continuity
equation for ς(x, t),

∂ς(x, t)

∂t
= − ~

2m0ı
∇ · [Ψ∗(x, t)∇Ψ(x, t)−Ψ(x, t)∇Ψ∗(x, t)] . (2.30)

With m0 being the mass of an electron and q0 the elementary charge, the electron current
is given as

j =
~q0

2m0ı
[Ψ∗(x, t)∇Ψ(x, t)−Ψ(x, t)∇Ψ∗(x, t)] . (2.31)

2.3.1 Transmission and Scattering Matrix

A single potential barrier with the width W = 2a and the height V0 as depicted in
Figure 2.5 will be considered next [14]. Regarding an electron coming from the left of
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the barrier, the single particle Schrödinger equation with a single-band effective mass is
again written as (

−~2

2

∂

∂x

1

mx(x)

∂

∂x
+ V (x)

)
ψ(x) = Eψ(x) (2.32)

The solution of this equation may be written as piecewise-continuous function

ψ(x) =


A exp(ıkx) +B exp(−ıkx) x < −a
C exp(γx) +D exp(−γx) −a < x < a

E exp(ıkx) + F exp(−ıkx) x > a

(2.33)

where

k =

√
2mxE
~

, (2.34a)

γ =

√
2mx(V0 − E)

~
. (2.34b)

The coefficients A and B are associated respectively with incoming and outgoing waves
on the left side relative to the barrier. Likewise, the coefficients E and F are outgoing
and incoming waves on the right. For energies E < V0, the solutions in the barrier are
exponentially decaying functions corresponding to evanescent states.
The coefficients C and D may be eliminated using the continuity of the envelope function
and its derivative as boundary condition at the interfaces x = −a and x = a. This leads
to the matrix equation [

A

B

]
=

[
M11 M12

M21 M22

][
E

F

]
(2.35)

where the matrix elements of the transfer matrix M are given by

M11 = M∗
22 =

[
cosh(2γa)− ı

2

(
k2 − γ2

kγ

)
sinh(2γa)

]
exp(2ıka), (2.36a)

M21 = M∗
12 = − ı

2

(
k2 + γ2

kγ

)
sinh(2γa). (2.36b)

The transmission and reflection coefficients are associated with the ratio of fluxes. As-
suming that there is a wave incident from the left side with amplitude A and no wave
from the right side we can set F = 0. Using equation (2.31) we are able to calculate the
probability flux incident to the barrier as

finc = |A|2 ~k
mx

= v|A|2, (2.37)
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T
(E

)
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0 0.40.2 0.6 0.8 1

E [eV]
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0.4
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LB = 6nm

LB = 12nm

LB = 18nm

Figure 2.6: Transmission of a single barrier with a height of V0 = 0.5 eV and three
different widths.

where v = (1/~)dE/dk denotes the group velocity of a particle of wavevector k (here
assuming parabolic bandstructure). For the transmitted wave the probability flux is

ftrans = |E|2 ~k
mx

= v|E|2. (2.38)

Hence, the transmission coefficient, defined as the ratio of the transmitted to the incident
probability flux density, writes

T (E) =
ftrans

finc

=
|E|2

|A|2
=

1

|M11|2
. (2.39)

The reflection coefficient is likewise defined as the ratio of the incident to reflected flux,

R(E) =
|B|2

|A|2
=
|M21|2

|M11|2
= |M21|2T (E). (2.40)

The transmission of a single barrier with a height of V0 = 0.5 eV and three different
widths is shown in Figure 2.6. The matrix equation (2.35) may be rewritten in a way,
that it provides a relation between incoming and outgoing fluxes,[

B

E

]
=

[
S11 S12

S21 S22

][
A

F

]
. (2.41)

Here, the matrix S is referred to as the scattering matrix. The transmission and reflection
coefficients are obtained as before. For F = 0 and the more general case of asymmetric
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barriers which give different group velocities vl for the left and vr for the right side
respectively, the coefficients result from

T (E) = |S21|2
vr

vl

, (2.42a)

R(E) = |S11|2. (2.42b)

Equivalently, the transmission may be calculated for waves incident from the right by
letting A = 0 which gives

T (E) = |S12|2
vl

vr

. (2.43)

The transmission coefficients obtained are reciprocal and relate to the off-diagonal ele-
ments of the scattering matrix. The diagonal elements of the S-matrix are the reflection
coefficients.
The properties of the scattering matrix are briefly summarized. Due to time reversal
symmetry the matrix product of the scattering matrix and its complex conjugate is the
unity matrix [14]

S∗S = I. (2.44)

It follows from (2.44) that

|S11|2 + S∗12S21 = 1, (2.45)

which simply denotes the conservation of flux

T +R = 1. (2.46)

To turn the scattering matrix into a unitary matrix

S†S = I, (2.47)

the coefficients have to be normalized by the flux ratio Sij
√
vi/vj which leads to

S =

[
rl tr

tl rr

]
. (2.48)

The coefficients rl and tl denote the reflection and transmission amplitudes from left to
right whereas rr and tr describe the opposite case from right to the left. The transmission
and reflection coefficients are therefore given by T = |tl|2 and R = |rl|2. Further examples
and a more detailed description are presented in [14].

15



THEORY OF OPEN QUANTUM SYSTEMS 2.3. Transmission

2.3.2 Conductance - The Landauer Formula

If a system is near thermal equilibrium, i.e. the applied voltages are very small, trans-
port can be described using linear response theory. One approach is the Kubo formalism
which is based on the fluctuation-dissipation theorem [15–17]. It allows the calculation
of the conductivity via the autocorrelation of the current density.
Another widely used approach is the so-called Landauer formula [16, 18]. Assume a
one-dimensional system with two ideal contact regions connected to a ballistic conduc-
tor between them. The contact shall be reflectionless, i.e. electrons from the ballistic
conductor are not reflected entering the contact regions [16]. The contact regions are
characterized by their chemical potentials µl and µr, which is equal to the corresponding
quasi-Fermi levels for the mentioned assumptions. Hence, the applied bias is given by
V = µl − µr.
The electron states in the ballistic conductor are given by the subbands starting from
certain energy levels εn. Therefore, the number of transverse modes which contribute to
the current for a certain energy E is given by

M(E) =
∑
n

θ (E − εn). (2.49)

The current from a single mode can be calculated separately and then summed up to the
total current. For a single mode the +k states, i.e. the states with propagation from left
to the right, are occupied with electrons due to the left contact according to a certain
distribution function f+(E). The total current through a ballistic conductor of length L
resulting from this electrons in positive k states writes as

I+ =
q0
L

∑
k

νf+(E) =
q0
L

∑
k

1

~
∂E
∂k
f+(E), (2.50)

where ν denotes the group velocity of the electron gas. This sum can be converted to
an integral (including spin) over energy:

I+ =
2q0
h

∞∫
ε

f+(E)dE , (2.51)

where the lower integration boundary is the cut-off energy ε of the transverse mode.
Using equation (2.49) this integral can be rewritten to give the current for multiple
modes

I+ =
2q0
h

+∞∫
−∞

M(E)f+(E)dE . (2.52)

For a constant number of modes the current reads

I =
2q0
h
M(µl − µr), (2.53)
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which allows us to calculate the conductivity, i.e. the contact resistance of a ballistic
conductor

GC =
2q2

0

h
M. (2.54)

Assuming a slightly different geometry with two contact regions connected by two bal-
listic leads to a conductor with transmission probability T the previous results can be
applied again. In the low temperature limit the whole current flows in the energy range
µl < E < µr which leads to an inflow of electrons due to the left lead as expressed be
equation (2.53)

I+
l =

2q0
h
M(µl − µr). (2.55)

Knowing the transmission probability the outflux of the right lead is given by

I+
r =

2q0
h
MT (µl − µr), (2.56)

and the remaining electrons are reflected back to the left lead

I−l =
2q0
h
M(1− T )(µl − µr). (2.57)

Therefore, the total current through the device becomes

I = I+
l − I−l = I+

r =
2q0
h
MT (µl − µr), (2.58)

which gives rise to the conductance

G =
2q2

0

h
MT. (2.59)

This is the conductivity for a two-probe measurement and includes the contact resis-
tance of the leads [14]. The conductivity of the scatterer alone is given by a four-probe
measurement and leads to the original Landauer formula

G =
2q2

0

h
M

T

1− T
=

2q2
0

h
M
T

R
. (2.60)

Büttiker has generalized this formula to the multichannel case [19]. If there are N
conducting channels to the left and N ′ conducting channels to the right the conductivity
is given by

G =
2q2

0

π~

N ′∑
i=1

Ti

1 +

[
N∑
i=1

(ν l
i)
−1Ri

] [
N∑
i=1

(ν l
i)
−1

]−1

−
[
N ′∑
i=1

(νr
i )
−1Ti

] [
N ′∑
i=1

(νr
i )
−1

]−1 . (2.61)

Here ν l
i and νr

i denote the injection velocities on the left and right side respectively.
Since linear-response theories only study small departures from equilibrium state both
the Kubo and Landauer formalism are not able to deal with situations far from equilib-
rium, i.e. when a large voltage drop occurs [15]. Therefore, more advanced methods as
described later in Section 2.4 need to be applied.
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(a)
left lead well right lead

b x

V (x)
barrierbarrier

0 b + 2a−2a

V0

(b)

Figure 2.7: (a) A rectangular potential well with a bound state. (b) In a well with
barriers of finite thickness a and height V0 a resonant or quasi-bound state arises.

2.3.3 Resonant Tunneling

In quantum wells with a finite barrier height, quasi bound states (QBS) may occur. The
QBS are related to resonances in the transmission of the quantum well. Hence, they are
also called resonant states (Fig. 2.7) [11]. The double barrier structures can be treated
with the methods that were presented in Section 2.3.1 and applied to a single barrier.
The transfer matrix of the barrier is described as before by equations (2.35) and (2.36).
Additionally, we have to account for the wave propagation within the well to obtain
the full transfer matrix. Since the potential in the well is uniform, just a phase factor
depending on the width b and a propagation constant k is introduced [14]. Therefore,
the barriers are connected by the transfer matrix

MW =

[
e−ıkb 0

0 eıkb

]
. (2.62)

The transfer matrix of the complete double barrier system is given by

MT = ML ·MW ·MR, (2.63)

where ML and MR are the transfer matrices of the left and right barrier. As stated in
equation (2.39) the transmission coefficient is determined by the coefficient

MT11 = ML11MR11e
−ıkb +ML12MR21e

ıkb (2.64)

of the transfer matrix.
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Figure 2.8: Transmission coefficient for a double barrier structure with a height of V0 =
1.355 eV, a barrier width of LB = 6 nm, and three different well widths.

For the geometry in Figure 2.7b with symmetric barriers the propagation constant k is
the same in the leads and in the well (cf. equation (2.34a)). Furthermore, for equal barrier
width a and height V0 there is a single attenuation constant γ given by equation (2.34b).
Following Ferry [14], the results for a single barrier can be applied to ML and MR directly.
The matrix element M11 of the single barriers can be expressed in polar coordinates

M11 = m11e
ıθ, (2.65)

which leads to the magnitude

m11 =

√
cosh2(2γa) +

(
k2 − γ2

2kγ

)2

sinh2(2γa), (2.66)

and the phase

θ = − arctan

[(
k2 − γ2

2kγ

)
tanh(2γa)

]
+ 2ka. (2.67)

Therefore, the square of the matrix coefficient (2.64) becomes

|MT11|2 = |m11|4 + |M21|4 + 2|m11|2|M21|2 cos
[
2(kb− θ)

]
(2.68)

=
(
|m11|2 − |M21|2

)
︸ ︷︷ ︸

detM

2

+ 4|m11|2|M21|2 cos2(kb− θ). (2.69)
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V
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V1 V2 V3

V1 V2

V3

Figure 2.9: Schematic band edge diagram of a resonant tunneling diode and an according
I-V characteristic. The hatched areas at the left and right leads symbolize the Fermi sea
of electrons. If the bias voltage V2 is applied, resonance occurs which manifests itself as
a peak in the I-V curve.

Since det(M) is unity for a symmetric barrier, the transmission coefficient simplifies
further to

T (E) =
1

|MT11|2
=

1

1 + 4|m11|2|M21|2 cos2(kb− θ)
=

TB
2

TB
2 + 4RB cos2(kb− θ)

. (2.70)

The transmission and reflection coefficients TB and RB are given by equations (2.39) and
(2.40) derived for the single barrier system.

There are two special cases to consider for the transmission coefficient of a resonant
tunneling device. For off-resonance the minimum transmission occurs when the cosine
becomes unity, i.e. kb− θ = nπ

Tmin =
TB

2

TB
2 + 4RB

∼ TB
2

4
, (2.71)

where the approximation usually holds for typical resonant tunneling devices.
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For the second case, the cosine vanishes and the system is in resonance:

Tmax = 1, for kb− θ = (2n+ 1)
π

2
, n = 0, 1, . . . (2.72)

If the quasi-bound state within the double barrier device is biased in resonance with
the ground state of a lead the transmission becomes unity. This can be clearly seen in
Fig. 2.8, where the transmission of a double barrier with a height of V0 = 1.355 eV and
a barrier width of LB = 3 nm is plotted for three different well widths.
A schematic band edge diagram of a resonant tunneling device is depicted in Figure 2.9.
A quasi-bound state is marked as a dashed line between the two barriers. As the voltage
is increased from V1 to V2 the current rises up until it reaches its peak at the resonance
level (V2). After the resonance, a region with negative differential resistance occurs and
the current drops into a valley after which it starts to grow again (V3) due to conduction
states at higher energies.

2.4 Green’s Function Method

In this section, the non-equilibrium Green’s functions formalism and its connection to
the physical quantities will be presented. First, a basic introduction to the mathemat-
ical meaning of Green’s functions will be given providing common terminology needed
for device simulation. Subsequently, the different types of Green’s functions and its
application to describe quantum transport phenomena will be discussed.

2.4.1 Introduction to Green’s Functions

This section summarizes the introduction of Supriyo Datta [16] which provides the math-
ematical background. Green’s functions provide a tool to solve inhomogeneous differen-
tial equation systems. A system with the differential operator D responds with R to an
excitation given by S,

DR = S. (2.73)

A Green’s function G = D−1 can be determined, that describes the response by

R = D−1S = GS. (2.74)

In an analogous way, one can write

(E − H)ψ = S, (2.75)

where ψ is the wavefunction, S is an excitation due to a wave incident from a lead and H
is the Hamiltonian. Like equation (2.73), the response for this system can be expressed
via a Green’s function,

G = (E − H)−1 . (2.76)
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x

A− A+

x = x′

Figure 2.10: Excitation leading to the retarded Green’s function

To fully determine the inverse of this differential operator it is necessary to define proper
boundary conditions. For a one-dimensional wire with the constant potential energy V0,
the Hamiltonian writes

H = − ~2

2m

∂2

∂x2
+ V0. (2.77)

Hence, the Green’s function of the system is given by

G =

(
E − V0 +

~2

2m

∂2

∂x2

)−1

, (2.78)

which can be rewritten as(
E − V0 +

~2

2m

∂2

∂x2

)
G(x, x′) = δ(x− x′). (2.79)

The similarities with the Schrödinger equation (2.4) can be clearly seen(
E − V0 +

~2

2m

∂2

∂x2

)
ψ(x) = 0. (2.80)

The difference lies in the source term δ(x − x′) whereby the Green’s function G(x, x′)
describes the propagation of a disturbance at x′ to x. Such an excitation causes two
waves originating from x′ (Fig. 2.10). These wavefunctions with the amplitudes A+ and
A− are given by

G(x, x′) = A+ exp
[
ık (x− x′)

]
, if x > x′ (2.81a)

G(x, x′) = A− exp
[
−ık (x− x′)

]
, if x < x′ (2.81b)

with the wave vector k =
√

2m(E − V0)/~. This is a solution for every point x 6= x′ but
in order to fulfill equation (2.79) at x = x′ additional boundary conditions have to be
specified. The Green’s function and its derivative need to satisfy:

I) G(x, x′)
∣∣∣
x=x′+

−G(x, x′)
∣∣∣
x=x′−

= 0 (2.82a)

II)
∂G(x, x′)

∂x

∣∣∣∣
x=x′+

− ∂G(x, x′)

∂x

∣∣∣∣
x=x′−

=
2m

~2
. (2.82b)
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x

A− A+

x = x′

Figure 2.11: Excitation leading to the advanced Green’s function

Thereby, the amplitudes of the wave functions are uniquely determined

A = A+ = A− = − ım

~2k
= − ı

~ν
, (2.83)

with ν = (~k)/m which leads to the Green’s function of an infinite one-dimensional wire

G(x, x′) = − ı

~ν
exp
[
ık |x− x′|

]
. (2.84)

However, equation (2.84) is only one of two possible solutions, which is called the re-
tarded Green’s function GR(x, x′). The other solution, called advanced Green’s function,
consists of incoming waves vanishing at the point of excitation x = x′ instead of outgo-
ing waves which originate from it (cf. Fig. 2.11). Hence, two different sets of boundary
conditions determine the advanced and retarded Green’s function

GR(x, x′) = − ı

~ν
exp
[
ık |x− x′|

]
, (2.85a)

GA(x, x′) = +
ı

~ν
exp
[
−ık |x− x′|

]
. (2.85b)

Here

k =
√

2m(E − V0)/~ and ν = (~k)/m (2.86)

is the wave vector and the particle velocity, respectively.
Another way to account for the boundary conditions is to introduce an infinitesimal
imaginary part to the energy. Equation (2.79) then becomes the constituting relation
for GR(x, x′). Introducing η > 0,(

E − V0 +
~2

2m

∂2

∂x2
+ ıη

)
GR(x, x′) = δ(x− x′). (2.87)

This gives a positive imaginary part in the wavevector k, which furthermore renders
the advanced Green’s function exponentially growing at the boundary and therefore
unphysical. Likewise, with η > 0 the advanced Green’s function is the only acceptable
solution of (

E − V0 +
~2

2m

∂2

∂x2
− ıη

)
GA(x, x′) = δ(x− x′). (2.88)
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This leads to the commonly used definitions of the retarded and advanced Green’s func-
tions as

GR = (E − H + ıη)−1 , η −→ 0+ (2.89a)

GA = (E − H− ıη)−1 , η −→ 0+. (2.89b)

2.4.2 Equilibrium Green’s Functions

In this section, the relation of the Green’s functions used within this thesis and its origin
will be provided. The work on non-equilibrium Green’s functions has been pioneered by
Martin and Schwinger [20], who provided the base for the work of Kadanoff and Baym [7]
and Keldysh [8]. Following Haug [21] the time-ordered single-particle Green’s function
writes as

G (x,x′; t, t′) = − ı

~
〈Ψ0|T

(
ψH(x, t)ψ†H(x′, t′)

)
|Ψ0〉

〈Ψ0|Ψ0〉
, (2.90)

where the ground state of the interacting system is given by H|Ψ0〉 = E0|Ψ0〉 and
T
(
A(t)B(t′)

)
is the time-ordering operator, that moves the operator with the earlier

time-argument to the right

T
(
A(t)B(t′)

)
= θ(t− t′)A(t)B(t′)− θ(t′ − t)A(t)B(t′). (2.91)

The operators ψH(x, t) are in the Heisenberg picture which means that they are time-
dependent. Calculating the time derivative of the Green’s function gives

ı~
∂G (x,x′; t, t′)

∂t
= δ(t− t′)

〈Ψ0|
{
ψH(x, t), ψ†H(x′, t′)

}
|Ψ0〉

〈Ψ0|Ψ0〉

− ı

~
〈Ψ0|T

(
ı~∂ψH(x,t)

∂t
ψ†H(x′, t′)

)
|Ψ0〉

〈Ψ0|Ψ0〉

= δ(t− t′)δ(x− x′)− ı

~
〈Ψ0|T

(
ı~∂ψH(x,t)

∂t
ψ†H(x′, t′)

)
|Ψ0〉

〈Ψ0|Ψ0〉
(2.92)

where {A,B} denotes an anti-commutator. Equation (2.92) is of the same form as equa-
tion (2.74) with the delta functions providing the excitation to the system. Therefore,
the time-ordered Green’s function defined in (2.90) obeys an inhomogeneous differential
equation.
For example, consider free particles with the Hamiltonian H = − ~2

2m

∫
dxψ†(x)∇2ψ(x)

following the Heisenberg equation of motion [21]

ı~
∂ψH(x, t)

∂t
=
[
ψH(x, t),H

]
= −~2∇2

x

2m
ψH(x, t), (2.93)

with the square brackets
[
·, ·
]

denoting the commutator relation. Therefore, the dif-
ferential equation of the free particle Green’s function turns into the inhomogeneous

24



THEORY OF OPEN QUANTUM SYSTEMS 2.4. Green’s Function Method

Schrödinger equation

(
ı~
∂

∂t
+

~2∇2
x

2m

)
G(x, x′; t, t′) = ~δ(t− t′)δ(x− x′). (2.94)

Additionally to the time-ordered Green’s function the retarded and advanced Green’s
functions as well as the lesser and greater Green’s functions are defined as

GR (x,x′; t, t′) = − ı

~
θ(t− t′)〈{ψ(x, t), ψ†(x′, t′)}〉 (2.95a)

GA (x,x′; t, t′) =
ı

~
θ(t′ − t)〈{ψ(x, t), ψ†(x′, t′)}〉 (2.95b)

G< (x,x′; t, t′) =
ı

~
〈ψ†(x′, t′)ψ(x, t)〉 (2.95c)

G> (x,x′; t, t′) = − ı

~
〈ψ(x, t)ψ†(x′, t′)〉 (2.95d)

where the angle brackets 〈· · · 〉 denote the calculation of the expectation value. The
normalization factor 〈Ψ0|Ψ0〉 has been omitted here [21].
The retarded Green’s function GR gives the response at time t to a perturbation of
the system at an earlier time t′. The lesser Green’s function G< is also called particle
propagator or correlation function, whereas the greater Green’s function is called hole
propagator [21]. The differences between the four Green’s functions become important
when treating non-equilibrium systems, which will be done in the succeeding section.
The Green’s functions are related to each other by

GR −GA = G> −G<, (2.96)

and the time-ordered as well as the retarded and advanced Green’s functions can be
expressed in terms of the lesser and greater Green’s functions

G (x,x′; t, t′) = θ(t− t′)G> (x; t) + θ(t′ − t′)G< (x,x′; t, t′) , (2.97a)

GR,A (x,x′; t, t′) = ±θ(±t∓ t′)
[
G> (x,x′; t, t′)−G< (x,x′; t, t′)

]
. (2.97b)

Every Green’s functions has its domain, where it is best applied. The time-ordered
Green’s functions are used for perturbation theory. The retarded and advanced Green’s
functions allow to treat physical responses and therefore provide information on spectral
properties, density of states and scattering rates. The lesser and greater Green’s func-
tions describe kinetic properties and allow to obtain physical quantities, i.e. quantum
mechanical observables [21]. As an example, the particle density is given by

〈ς(x)〉 = −ıG<(x,x, t, t) (2.98)

in terms of the lesser Green’s function.

25



THEORY OF OPEN QUANTUM SYSTEMS 2.4. Green’s Function Method

2.4.3 Non-Equilibrium Green’s Functions

In the following paragraphs the Green’s functions defined in (2.95) will be applied to
a system under nonequilibrium conditions [16]. Since we are interested in steady-state
problems, we make use of the fact, that under this prerequisite the correlation functions
only depend on time differences. This can be used to Fourier transform the two-times
correlation function (2.95), which gives

G< (x,x′; E) =

∞∫
−∞

1

~
G< (x,x′; τ) e−ıEτ/~dτ, τ = t− t′, (2.99)

where the energy dependence of the treated particle is revealed.
An important quantity is the so-called density matrix ρ(x,x′, t), which is derived from
the two-times correlation function by setting t = t′,

ρ(x,x′, t) = −ıG< (x,x′; t, t′)
∣∣∣
t=t′

. (2.100)

This is equal to an integration over energy which yields

ρ(x,x′, t) = −ıG< (x,x′; t, t′)
∣∣∣
t=t′

= −ı
∞∫

−∞

G< (x,x′; E)
dE
2π
. (2.101)

Therefore, the electron density (2.98) is given by the diagonal elements of the density
matrix:

n(x) = −2ı

∞∫
−∞

G< (x,x; E)
dE
2π
. (2.102)

The factor of two accounts for spin degeneracy.
The lesser and greater Green’s function describe the propagation of a particle within a
state. To cover the transitions from one state to another the self-energies Σ< (x,x′; t, t′)
and Σ> (x,x′; t, t′) are introduced. In steady state, a Fourier transformation similar to
the procedure for the lesser Green’s function gives Σ< (x,x′; E) and Σ> (x,x′; E). The
self-energies allow to describe scattering events and are used to incorporate the effects
of leads on a device as described in Section 3.2.
To achieve a more compact notation, the product of two terms is interpreted as a matrix
product in the internal variables [21]. The four types of Green’s functions and the self
energies are related by the kinetic equations

G< = GRΣ<GA, (2.103a)

G> = GRΣ>GA. (2.103b)
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Contrary to the equilibrium case, these have to be solved simultaneously with the equa-
tions for the Green’s functions [16] given by

GR =
[
EI− H− ΣR

]−1
, (2.104a)

GA =
[
GR
]†
. (2.104b)

Equation (2.104a) is for the sake of completeness equivalently rewritten in real space
representation:

[E − H]GR (x,x′; E)−
∫

ΣR (x,x′′; E)GR (x′′,x′; E) dx′′ = δ (x− x′) . (2.105)

To solve equations (2.103) and (2.104), the knowledge of the retarded self-energy ΣR

and the lesser and greater self-energies Σ< and Σ> is necessary. The self-energies to
incorporate the leads are derived in Section 3.2. The modeling of scattering requires
great care. The modeling of electron-phonon interactions and the resulting self-energies
will be given in the following Section 2.4.4. More details on self-energies have been given
by Mahan [22].
A further important quantity, the current density (2.31), can be expressed in terms of
the non-equilibrium Green’s functions [16]

j(x, E) = − ı~q0
2m0

[
(∇−∇′)ψ(x)ψ∗(x′)

]∣∣∣
x′=x

. (2.106)

Here, the gradient operators ∇ and ∇′ act on x and x′, respectively. The definition of
the lesser Green’s function is used to substitute ψ(x)ψ∗(x′). Furthermore, considering
the steady-state condition gives a factor of 2π. Hence, we derive the current density at
the energy E as

j(x, E) = − ~q0
2m0

1

2π

[
(∇−∇′)G< (x,x′; E)

]∣∣∣
x′=x

. (2.107)

Finally, integration over energy and taking the electron spin into account gives the overall
current density

j(x) = −2
~q0
2m0

∞∫
−∞

[
(∇−∇′)G< (x,x′; E)

]∣∣∣
x′=x

dE
2π
. (2.108)

2.4.4 Scattering

The self-energies depend on the type of phase breaking interaction that is modeled.
They can be obtained by applying perturbation theory. As a result, the form of the self-
energies depends on the order of the perturbation. As an example, the incorporation
of electron-phonon interaction in the self-consistent Born approximation will be given
according to [16]. More sophisticated modeling approaches to other scattering processes
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can be found in [22].
The lesser and greater self-energies for the electron-phonon interaction read

Σ<
e-ph (x,x′; E) =

∫
D (x,x′; ~ω)G< (x,x′; E − ~ω) d(~ω), (2.109a)

Σ>
e-ph (x,x′; E) =

∫
D (x,x′; ~ω)G> (x,x′; E + ~ω) d(~ω). (2.109b)

Hence, D (x,x′; ~ω) describes the spatial correlation and energy spectrum of the phase-
breaking scatterers [16]. Absorption occurs if ~ω > 0 and emission occurs in the opposite
case. Given the number of phonons Nq with the wavevector q and frequency ωq where
a single phonon exerts a potential Vq on an electron, we get

D (x,x′; ~ω) =
∑
q

|Vq|2
{

exp
[
−ıq · (x− x′)

]
Nqδ (ω − ωq)

+ exp
[
+ıq · (x− x′)

]
(Nq + 1) δ (ω + ωq)

}
.

(2.110)

Assuming thermal equilibrium, the number of phonons is given by the Bose-Einstein
distribution

Nq =
1

exp

(
~ωq

kBT

)
− 1

. (2.111)

The retarded self-energy is given by

ΣR
e-ph (x,x′; E) = ΓH

e-ph (x,x′; E) +
ı

2
Γe-ph (x,x′; E) , (2.112)

where

ΓH
e-ph (x,x′; E) = P

∫
Γe-ph (x,x′; E ′)

E − E ′
dE ′. (2.113)

In (2.113) P denotes the principal part which yields the Hilbert transform of the broad-
ening Γe-ph. The broadening depends on the lesser and greater self-energies via the
relation

Γe-ph (x,x′; E) = ı
(
Σ>

e-ph (x,x′; E)− Σ<
e-ph (x,x′; E)

)
. (2.114)

Therefore, the retarded self-energy in the defining equation GR =
[
EI− H− ΣR

]−1
for

the retarded Green’s function itself is connected to the lesser and greater self-energies in
the lesser Green’s functionG< = GRΣ<GA and greater Green’s functionG> = GRΣ>GA.
This couples the retarded and advanced Green’s functions to the lesser and greater
Green’s functions. Hence, a computationally very demanding self-consistent calculation
of the self-energies (2.109), (2.112) and Green’s functions (2.103) and (2.104) is required.
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A little inaccuracy sometimes saves a
ton of explanation.

H. H. Munro

CHAPTER 3

Numerical Methods

For nanoscaled devices, numerical simulation based on the non equilibrium Green’s func-
tions (NEGF) formalism has been successfully applied by several groups [9,23–25]. After
depicting a method to solve for the Schrödinger equation, the numerical implementation
of the non-equilibrium Green’s functions formalism introduced in the previous section is
described. A very efficient implementation of this method has been achieved by means
of a recursive algorithm [10].
Proper integration methods are vital for the stability and accuracy of NEGF simulations.
This chapter is concluded with an overview of numerical integration methods, that were
adopted for the NEGF solver.

3.1 Numerical Solution of Schrödinger Equation

In this section, numerical methods based on spatial discretization to directly solve for
the Schrödinger equation will be presented. The closed and the open quantum system
will be discussed separately but their mathematical similarities will be pointed out.

3.1.1 Closed Boundaries

The time-independent Schrödinger equation can be solved numerically by applying a
finite difference scheme. For the one-dimensional time-independent Schrödinger equation(

−~2

2

∂

∂x

1

mx(x)

∂

∂x
+ V (x)

)
ψ(x) = Eψ(x), (3.1)

where the position-dependent inverse effective mass 1/mx(x) is evaluated from the ef-
fective mass tensor. For a discretization, the first and second derivative of the wave
function have to be determined. For a uniform grid (Fig. 3.1) xj = j∆x and the values
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ψn−1ψ0 ψ2 ψnψ1 ψn+1ψ−1

∆x∆x ∆x ∆x∆x ∆x ∆x

x

Figure 3.1: Discretization points on an equidistant one-dimensional grid

of the wavefunction are given as ψj = ψ(xj). The application of central finite differences
gives

∂

∂x
ψ(xj) =

ψj+1 − ψj−1

2∆x
+O(∆x2), (3.2)

for the first and

∂2

∂x2
ψ(xj) =

ψj+1 − 2ψj + ψj−1

∆x2
+O(∆x2), (3.3)

for the second derivative of the wavefunction ψ with a remaining second order error
O(∆x2) due to the Taylor series expansion. This leads [15] to a set of equations of the
form

Hψj = −sjψj−1 + djψj − sj+1ψj+1 = Eψj, (3.4)

which allows one to write the Hamiltonian as a tridiagonal matrix. The equation system
reads 

d1 − E −s2

−s2 d2 − E −s3

−s3 d3 − E −s4

. . . . . . . . .

−sn−1 dn−1 − E −sn
−sn dn − E


︸ ︷︷ ︸

H



ψ1

ψ2

ψ3

...

ψn−1

ψn


= 0. (3.5)

The coefficients of the Hamiltonian matrix d and s take account for variations in the
effective mass like heterojunctions correctly. Is is required, that the wavefunction ψ(x)
and 1

mx(x)
∂
∂x
ψ(x) are continuous to ensure conservation of current. A piece-wise linear

wave function between adjacent mesh points is eligible and yields the following discretiza-
tion [15]

dj =
~2

2∆x2

(
1

mj−1 +mj

+
1

mj +mj+1

)
+ Vj, (3.6a)

sj =
~2

2∆x2

1

mj−1 +mj

. (3.6b)

Here, Vj is the potential and mj is the effective mass at grid point xj. This results in
an eigenvalue problem that can be solved fast and accurately with standard numerical
methods.
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3.1.2 Open Boundaries

The methods described in the previous section have to be expanded for the application
to open quantum systems connected to leads. The approach by Lent and Kirkner [26],
the so-called the quantum transmitting boundary method (QTBM) will be presented as
proposed by Frensley [15]. The quantum transmitting boundary conditions are deter-
mined by a linear combination of the values of the wavefunction ψ on two neighboring
grid points. Therefore, the system defined by (3.5) with the endpoints j = 1 and j = n
will be extended by an additional boundary point at each side. The wavefunctions take
the form

ψj = a1e
(j−1)ık1∆x + b1e

(1−j)ık1∆x for j ≤ 1, (3.7a)

ψj = ane
(n−j)ıkn∆x + bne

(j−n)ıkn∆x for j ≥ n, (3.7b)

where k1 and kn are the wave vectors. They may be found by solving the Schrödinger
equation at the boundaries, which leads to the dispersion relation

E = d1 − s1

(
eık1∆x + e−ık1∆x

)
, (3.8a)

E = dn − sn
(
eıkn∆x + e−ıkn∆x

)
. (3.8b)

The wavefunctions at the boundary of the simulation domain are given by

ψ1 = a1 + b1, (3.9a)

ψn = an + bn. (3.9b)

They are connected to the nearby wavefunctions

ψ0 = a1e
−ık1∆x + b1e

ık1∆x, (3.10a)

ψn+1 = ane
−ıkn∆x + bne

ıkn∆x. (3.10b)

The two unknowns b1 and bn are eliminated using equations (3.9) and (3.10) which leaves
a1 and an to be determined by

a1 =
ψ0 − eık1∆xψ1

e−ık1∆x + eık1∆x
= α1ψ0 + β1ψ1, (3.11a)

an =
ψn+1 − eıkn∆xψn
e−ıkn∆x + eıkn∆x

= αnψn+1 + βnψn. (3.11b)

This eventually results in a (n+ 2)-dimensional equation system

α1 β1

−s1 d1 − E −s2

−s2 d2 − E −s3

. . . . . . . . .

−sn dn − E −sn+1

βn αn





ψ0

ψ1

ψ2

...

ψn

ψn+1


=



a1

0

0
...

0

an


. (3.12)
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By setting a1 = 1 and an = 0, the wave function for a left-incident wave is obtained by
solving the system for ψj. For the numerical solution of the open quantum system it
is to be mentioned that (3.12) represents a complex non-Hermitian matrix contrary to
(3.5) of a closed system which results in a Hermitian Hamiltonian matrix. But since it
is tridiagonal, fast numerical methods may be applied advantageously.
The QTBM is closely related to the non-equilibrium Green’s functions formalism, which
is discussed in further detail in Section 3.2.4.

3.2 Numerical Solution of NEGF

Various numerical techniques have been proposed to implement the non-equilibrium
Green’s functions formalism. In the following, derivations of a discretized representa-
tion of the Green’s functions are given. A numerical solution procedure using matrix
operations, as well as highly efficient use of a recursive algorithm are described.

3.2.1 Hamiltonian

When dealing with one-dimensional devices it is convenient to split the Hamiltonian
into a longitudinal and a transversal part [27]. Therefore, the procedure presented in
Section 2.2 may be applied. The effective mass Hamiltonian (2.11) yields the longitudinal
Hamiltonian in transport direction

H = −~2

2

∂

∂z

1

mz(z)

∂

∂z
+ V (z) (3.13)

A discretization of this Hamiltonian can be determined with the central differences
scheme (cf. Section 3.1.1). Using a one-dimensional infinite simulation domain the dis-
cretized Hamiltonian is an infinite-dimensional matrix of the form [16]

H =



. . . −ti−2,i−1 0 0 0

−ti−1,i−2 Vi−1 + 2ti−1,i−1 −ti−1,i 0 0

0 −ti,i−1 Vi + 2ti,i −ti,i+1 0

0 0 −ti+1,i Vi+1 + 2ti+1,i+1 −ti+1,i+2

0 0 0 −ti+2,i+1
. . .


(3.14)

where Vi is the potential at grid point i. The coefficients ti,j for a uniform grid with
spacing a are given by [23]

ti,i =
~2

2a2

(
1

m+
+

1

m−

)
+ Vj, (3.15a)

ti,i±1 =
~2

2a2

1

mj±1 +mj

. (3.15b)

For a non-uniform grid one has to ensure hermiticity of the Hamiltonian ti,i+1 = t†i+1,i [28].
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3.2.2 Discretization of Green’s Functions

After obtaining the Hamiltonian, the retarded Green’s function (see Section 2.4) can be
calculated by the matrix inversion

GR = [(E + ıη)I− H]−1 , (3.16)

where η → 0+ has to be considered in the correct limit. This matrix is infinite dimen-
sional and so it has to be truncated correctly to reflect open boundary conditions [16].
By partitioning the matrix into a device region and a contact region one obtains the
matrix equation: [

GR GDC

GCD GC

]
=

[
EI− H −τ
−τ † (E + ıη)I− HC

]−1

. (3.17)

The unknown retarded Green’s function GR of the device needs to be determined. It
does not include the infinitesimal imaginary part ıη because this term is introduced via
the coupling to the contact region as shown by [16, page 146]. Hence, the retarded
Green’s function writes as

GR = [EI− H− Σ]−1 . (3.18)

The interaction with the lead is taken into account via the self-energy Σ which is given
by

Σ = τGR
C,isolatedτ

†, (3.19)

with the retarded Green’s function of the isolated contact as

GR
C,isolated = [(E + ıη)I− HC]−1 . (3.20)

A remarkable simplification is achieved, because the coupling parameter τ is only non-
zero for points adjacent to the contact region. Hence, the Green’s function of the isolated
lead can usually be calculated analytically.
For the one-dimensional lattice, the self-energy due to a semi-infinite lead can be deter-
mined by the discretized Schrödinger equation at the boundary of the device and contact
region.

ε1ψ1 = −tψ0 + (V1 + 2t)ψ1 − tψ2 (3.21)

Here, ε1 is given by equation (2.14) and t = ~2/(2ma2) for an equidistant grid with
constant mass. This assumption is eligible for the calculation of the self-energy of a
semi-infinite wire [27]. To eliminate the wavefunction ψ0 just outside the device, one has
to consider, that the retarded Green’s function gives the response for excitation within
the device and therefore only outgoing waves are to be assumed at the boundaries.

ψ0 = ψ1 exp (ık1a) (3.22)
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Therefore, the Schrödinger equation at the boundary becomes

ε1ψ1 = −t exp (ık1a)ψ1 + (V1 + 2t)ψ1 − tψ2 (3.23)

Hence, the self-energy of a semi-infinite lead on the left of the device is a matrix with
only one non-zero element at the upper left:

ΣR
L;1,1 (E) = −t exp (ık1a) (3.24)

Similarly, the self-energy of the right lead is given by the non-zero element

ΣR
R;N,N (E) = −t exp (ık2a) (3.25)

where the wave vectors are to be determined via the dispersion relation and therefore
give the energy dependence of the self-energies.
The retarded Green’s function with a N ×N Hamiltonian of the device region and the
self-energies ΣR

i that take the leads into account exactly, is given by

GR (E) =
[
EI− H− ΣR

L − ΣR
R

]−1
. (3.26)

The self-energies are non-Hermitian and their anti-Hermitian parts are given by

ΓL = ı
[
ΣR

L − ΣA
L

]
= −2=

{
ΣR

L

}
=

~
τL(E)

(3.27)

ΓR = ı
[
ΣR

R − ΣA
R

]
= −2=

{
ΣR

R

}
=

~
τR(E)

(3.28)

which are called broadening. They can be seen as the scattering rate of the electrons in
the device into the lead region and vice versa [27, 28]. Having calculated the retarded
Green’s function, we are able to determine the requested physical quantities. The density
of states is given by

ρ(x,x, E) = − 1

π
=
{
GR(x,x, E)

}
, (3.29)

but to obtain the electron density an integration over energy space is necessary. The
electron density at grid point i of an equidistant grid with grid spacing a writes as [28]:

ni = −2ı

a

∫ [
GR
i,iΣ

<
LG

A
i,i +GR

i,iΣ
<
RG

A
i,i

] dE
2π
. (3.30)

The new quantity introduced here is the lesser self-energy. It is given by [29]

Σ<
L (E) = ıΓLfL(E), (3.31a)

Σ<
R(E) = ıΓRfR(E), (3.31b)

for the left and right lead, respectively, where fL(E) and fR(E) are the Fermi-Dirac
occupation functions. Furthermore, this integral may include the effect of the transverse
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direction by a modified occupation function as pointed out in Section 2.2.2. Similarly,
the current density from grid point i to grid point i+ 1 is given by

ji,i+1 = q0
~

2ma2
2

∫ [
GR
i,i+1Σ

<
LG

A
i,i+1 −GR

i+1,iΣ
<
RG

A
i+1,i

] dE
2π
. (3.32)

A different way to define the electron and current density is achieved by using correlation
functions. The lesser Green’s function is determined by the equation[

EI− H− ΣR
L − ΣR

R

]
G< (E) = Σ< (E)GA (E) , (3.33)

where Σ< is the self-energy matrix due to the leads containing the non-zero elements
Σ<

1,1 = Σ<
L and Σ<

N,N = Σ<
R. After solving for G< by a full matrix inversion, the electron

and current densities (coherent transport, [28]), are given by

ni = −2ı

a

∫
G<
i,i(E)

dE
2π
, (3.34a)

ji,i+1 = q0
~

2ma2
2

∫ [
G<
i,i+1(E)−G<

i+1,i(E)
] dE

2π
. (3.34b)

The evaluation of the electron and current densities demands two numerical operation.
First, the inversion and the multiplications to obtain the retarded and lesser Green’s
functions are very time costly. To circumvent this problem, the recursive Green’s func-
tion algorithm was developed, which will be presented in the succeeding section. Second,
the integration over energy spaces requires special care. Small peaks within the energy
integration in the Green’s functions need to be resolved correctly but simultaneously the
number of energy grid points for the numerical integration should be kept low due to
memory requirements. Therefore an adaptive numerical integration method was devel-
oped (cf. Section 3.3).

3.2.3 Recursive Green’s Function Algorithm

The inversion of a matrix is a very time consuming computer operation. Since only
the diagonal and first off-diagonal elements of the retarded and lesser Green’s function
are needed, an algorithm that only calculates these elements is desirable. The recursive
Green’s function algorithm by Svizhenko [10] accomplishes this demand.

Recursive Algorithm for the Retarded Green’s Function

The retarded Green’s function GR of a one-dimensional system given by a N×N Hamil-
tonian is defined by

(EI− H− ΣL − ΣR − ΣS)G
R = AGR = I, (3.35)

where ΣL and ΣR are the self-energies due to the left and right lead and ΣS is the self-
energy due to scattering events, which can be combined into the retarded self-energy
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Algorithm 1 Recursive algorithm for the retarded Green’s function

GRl,1
1,1 :=

1

A1,1

. Initialize first element

for i = 1 : N − 1 do

GRl,i+1
i+1,i+1 :=

1

Ai+1,i+1 − Ai+1,iG
Rl,i
i,i Ai,i+1

. Left connected Green’s function

end for
GR
N,N := GRl,N

N,N . Nth element of
. retarded Green’s function

for i = N − 1 : 1 do
GR
i+1,i := −GR

i+1,i+1Ai+1,iG
Rl,i
i,i . Off-diagonal element

GR
i,i+1 := −GRl,i

i,i Ai,i+1G
R
i+1,i+1 . Off-diagonal element

GR
i,i := GRl,i

i,i −GRl,i
i,i Ai,i+1G

R
i+1,i . Diagonal element

end for

ΣR = ΣL + ΣR + ΣS . The left connected Green’s function GRl,i is defined by the first
i× i elements of (3.35).

A1:i,1:iG
Rl,i = Ii×i. (3.36)

Similarly, the (i+ 1) × (i+ 1) dimensional left connected Green’s function GRl,i+1 is
given. The element GRl,i+1

i+1,i+1 can be expressed via GRl,i by using Dyson’s equation [14,28]

GRl,i+1
i+1,i+1 =

1

Ai+1,i+1 − Ai+1,iG
Rl,i
i,i Ai,i+1

. (3.37)

The last element GRl,N
N,N is equal to the fully connected retarded Green’s function GR

N,N .
The remaining elements of the fully connected retarded Green’s function are to be cal-
culated by the relation

GR
i,i = GRl,i

i,i +GRl,i
i,i

(
Ai,i+1G

R
i+1,i+1Ai+1,i

)
GRl,i
i,i

= GRl,i
i,i −GRl,i

i,i Ai,i+1G
R
i+1,i. (3.38)

The off-diagonal elements of the retarded Green’s function are given by

GR
i+1,i = −GR

i+1,i+1Ai+1,iG
Rl,i
i,i , (3.39a)

GR
i,i+1 = −GRl,i

i,i Ai,i+1G
R
i+1,i+1. (3.39b)

The diagonal and the first off-diagonal elements of the retarded Green’s function are
needed for the recursive algorithm for the electron correlation (i.e. lesser Green’s) func-
tion. The whole recursive algorithm for the retarded Green’s function is summarized in
Alg. 1.
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Algorithm 2 Recursive algorithm for the lesser Green’s function

G<l,1
1,1 := GRl,1

1,1 Σ<
1,1G

Al,1
1,1 . Initialize first element

for i = 1 : N − 1 do
G<l,i+1
i+1,i+1 = GRl,i+1

i+1,i+1

(
Σ<
i+1,i+1 + σ<i+1

)
GAl,i+1
i+1,i+1 . Left connected Green’s function

end for
G<
N,N := G<l,N

N,N . Nth element of
. lesser Green’s function

for i = N − 1 : 1 do
G<
i+1,i = GR

i+1,i+1Ai+1,iG
<l,i
i,i +G<

i+1,i+1A
†
i+1,iG

Al,i
i,i . Off-diagonal element

G<
i,i = G<l,i

i,i +GRl,i
i,i

(
Ai,i+1G

<
i+1,i+1A

†
i+1,i

)
GAl,i
i,i

+
[
G<l,i
i,i A†

i,i+1G
A
i+1,i +GR

i,i+1Ai+1,iG
<l,i
i,i

]
. Diagonal element

end for

Recursive Algorithm for the Lesser Green’s Function

The constituting equation of the lesser Green’s function writes as(
EI− H− ΣR

)
G< = AG< = Σ<GA. (3.40)

Here Σ< is the lesser self-energy and GA is the advanced Green’s function, i.e. the
Hermitian conjugate of the retarded Green’s function. A left connected Green’s function
is defined

A1:i,1:iG
<l,i = Σ<

1:i,1:iG
Al,i
1:i,1:i, (3.41)

which also allows the calculation of G<l,i+1 using a recursive algorithm,

G<l,i+1
i+1,i+1 = GRl,i+1

i+1,i+1

(
Σ<
i+1,i+1 + σ<i+1

)
GAl,i+1
i+1,i+1, (3.42)

with σ<i+1 = Ai+1,iG
<l,i
i,i A†

i,i+1. The self-energies are assumed to be diagonal matrices. The
knowledge of the left connected lesser Green’s function and the main and second diago-
nals of the retarded Green’s function permits the calculation of the electron correlation
function. Its second diagonal is given by

G<
i+1,i = GR

i+1,i+1Ai+1,iG
<l,i
i,i +G<

i+1,i+1A
†
i+1,iG

Al,i
i,i (3.43)

which is used for the calculation of the main diagonal

G<
i,i = G<l,i

i,i +GRl,i
i,i

(
Ai,i+1G

<
i+1,i+1A

†
i+1,i

)
GAl,i
i,i

+
[
G<l,i
i,i A†

i,i+1G
A
i+1,i +GR

i,i+1Ai+1,iG
<l,i
i,i

]
. (3.44)

The presented algorithm allows the evaluation of the correlation functions and hence,
the desired physical quantities by a highly efficient algorithm without time consuming
matrix-matrix operations. The recursive algorithm for the lesser Green’s function is
finally composed by the steps illustrated in Alg. 2.
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3.2.4 Analogies to QTBM

Using the quantum transmitting boundary method, the equation system to be solved
writes as



α1 β1

−s1 d1 − E −s2

−s2 d2 − E −s3

. . . . . . . . .

−sn dn − E −sn+1

βn αn


︸ ︷︷ ︸

D



ψ0

ψ1

ψ2

...

ψn

ψn+1


︸ ︷︷ ︸

R

=



a1

0

0
...

0

an


︸ ︷︷ ︸

S

. (3.45)

Comparing (3.45) with DR = S in Section 2.4.1, the matrix on the left hand side can
be identified as the inverse of the retarded Green’s function. Therefore, the quantum
transmitting boundary method equation system is equivalent with the non-equilibrium
Green’s functions in the ballistic case,

[
EI− H− ΣR

L − ΣR
R

]
ψ = S = ıΓ. (3.46)

The matrix coefficients a1 and an (3.11) correspond to the self-energies of the left and
the right lead contained in the broadening Γ in equation (3.46).

3.3 Adaptive Energy Integration

The numerical evaluation of the physical quantities requires a discretized representation
of the energy space. A simple approach using an equidistant energy grid suffers from
two problems. Too few grid points are not able to correctly resolve narrow resonances,
whereas a vast number can lead to an unpredictable summation of numerical errors
and to intractable memory requirements. These effects cause poor or even unstable
convergency of a self-consistent Poisson loop [30]. Therefore, adaptive energy integration
on a non-equidistant grid is the method of choice to increase accuracy, numerical stability,
and memory efficiency.
An adaptive algorithm has been developed, which is depicted in Fig. 3.2. Additional grid
points are inserted as long as the local error criterion regarding the electron concentration
is not met. This procedure is repeated until the whole energy space is covered.

In the following sections different numerical integration methods implemented with adap-
tive grid refinement will be presented.
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Error criterion
met?

Add to complete
integral

End integration

Yes No

Start with
inital grid

Calculate
GR and G<

Insert additional
energy points

Reduce upper
interval boundary

Interval
energy integration

Jump to
next interval

Last interval?

No

Yes

Figure 3.2: Illustration of the adaptive integration algorithm with grid refinement. Grid
points are added as long as the error criterion is not met.

3.3.1 Simpson’s Rule

The Simpson rule1 is a closed Newton-Cotes rule of second order. The integral of an
function f(x) over an interval [a, b] is given by

I1 =
b− a

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
. (3.47)

f(x) is interpolated by a parabola, hence Simpson’s rule gives an exact result for poly-
nomials up to second degree only. One strategy to decrease the interpolation error is to
subdivide the interval into two equal parts and to apply Simpson’s rule on each subin-
terval. This leads to the composite Simpson’s rule which, for five grid points, writes
as

I2 =
b− a

12

[
f (a) + 4f

(
a+ b

4

)
+ 2f

(
a+ b

2

)
+ 4f

(
3
a+ b

4

)
+ f (b)

]
. (3.48)

An illustration of a grid on which these two rules are applied is depicted in Fig. 3.3.
To obtain an error criterion for the adaptive integration algorithm (Fig. 3.2) mentioned
before, the electron concentration within the current integration interval is calculated
using the 3-point Simpson rule and the 5-point composite Simpson’s rule. This leads to
a local error which is compared to the desired tolerance factor τ∣∣∣∣I1 − I2

I2

∣∣∣∣ < τ. (3.49)

1after Thomas Simpson, English mathematician, 1710-1761
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︸ ︷︷ ︸

E
remaining energy rangefinished energy range

current interval

5-point composite Simpson’s rule
3-point Simpson’s rule

Figure 3.3: The deviation of two integration methods applied to the same integration
interval is used as a local error criterion.

If the condition in equation (3.49) is met, the integral is accurate enough and no more
grid refinement in the given interval is needed.

3.3.2 Akima Interpolation

The Akima interpolation is a method to fit curves as it would be done in a natural
way by humans [31]. A piecewise function, composed of polynomials up to third degree,
is fitted to the data points. The slopes of two adjacent points defines the polynomial
between them. The interpolation method uses five grid points X1, X2, X3, X4 and X5

to determine the slope t of the curve at point X3 (cf. Fig. 3.4). m1, m2, m3 and m4

are the slopes of the line segments X1X2, X2X3, X3X4 and X4X5, respectively. Akima
defines the slope t as

t =
|m4 −m3|m2 + |m2 −m1|m3

|m4 −m3|+ |m2 −m1|
. (3.50)

This imposes that t = m2 if m1 = m2 and m3 6= m4, and t = m3 if m3 = m4 and
m1 6= m2. Furthermore, if m2 = m3 the slope becomes t = m2 = m3. Although the
slope is not defined under the condition m1 = m2 6= m3 = m4, Akima equates the slope
to t = 1

2
(m2 +m3). This assures invariance under a linear scale transformation of the

coordinate system.

A piece of the curve between two consecutive grid points will be fitted in such a manner
that the curve passes through the points and will have the slopes t1 and t2, determined
by the procedure described above. This gives rise to four conditions which allow to
calculate a polynomial of third order between two points (x1, y1) and (x2, y3)

f (x) = y1 and f ′ (x) = t1 at x = x1, (3.51a)

f (x) = y2 and f ′ (x) = t2 at x = x2. (3.51b)

An interpolation polynomial could be chosen to have the following form

f(x) = p0 + p1 (x− x1) + p2 (x− x1)
2 + p3 (x− x1)

3 , (3.52)
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f(x)

x

m1

X1
X2

m2

m3

m4

X4

X5

X3

Figure 3.4: Points used to calculate the slope at point X3

where the coefficients pi are therefore given by

p0 = y1, (3.53a)

p1 = t1, (3.53b)

p2 =
3
y2 − y1

x2 − x1

− 2t1 − t2

x2 − x1

, (3.53c)

p3 =
t1 + t2 − 2

y2 − y1

x2 − x1

(x2 − x1)2
. (3.53d)

The interpolation polynomial (3.52) can be integrated easily. Hence, the integral of the
fitted curve f(x) in the interval [x1, x2] writes as

F (x)
∣∣∣x2

x1

=
p3

4
(x2 − x1)

4 +
p2

3
(x2 − x1)

3 +
p1

2
(x2 − x1)

2 + p0 (x2 − x1) . (3.54)

3.3.3 Polynomial Interpolation

Simpson’s rule is based on equidistant grid points and the interpolation polynomial is
only of second order. Hence a more general approach with non-equidistant grid points
and arbitrary degree would be eligible. For a monomial power basis the interpolation
polynomial on N nodes takes the form

p(x) = a1 + a2x+ a3x
2 + · · ·+ aNx

N−1 =
N∑
i=1

aix
i−1. (3.55)
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Algorithm 3 Fast Algorithm to solve Vandermonde system [32]

function Vandermonde([x1, x2, . . . , xN ], [y1, y2, . . . , yN ])
for i = 1 : N do

ai := yi . Copy y to a
end for
for i = 1 : N do

for j = N : (−1) : i+ 1 do
aj := (aj − aj−1)/(xj − xj−i) . Apply divided differences scheme

end for
end for
for i = N − 1 : (−1) : 1 do

for j = i : N − 1 do
aj := aj − xiaj+i . Apply Horner’s rule

end for
end for
return [a1, a2, . . . , aN ] . Return coefficient vector a

end function

To obtain the coefficient vector a = [a1, a2, a3, . . . , aN ]T it is necessary to solve a N ×N
dimensional equation system

1 x1 · · · xN−1
1

1 x2 · · · xN−1
2

...
. . .

...

1 xN · · · xN−1
N


︸ ︷︷ ︸

V


a1

a2

...

aN

 =


y1

y2

...

yN

 , (3.56)

where V is called the Vandermonde matrix. Unfortunately this system is very ill-
conditioned and hence its solution numerically unstable. Björk and Pereyra [32] de-
veloped an algorithm (Alg. 3) that is able to calculate the coefficient vector a in a very
fast and stable manner.
In a first step, divided differences are used to obtain the coefficients in Newton basis.
The second step applies Horner’s rule to compute the vector a. The algorithm never
builds the whole equation system since only the grid point vector x = [x1, x2, . . . , xN ]
and the right-hand side vector y = [y1, y2, . . . , yN ] are needed. Hence, no memory for
the whole Vandermonde matrix V needs to be associated.
After applying the Björck and Pereya algorithm to obtain the coefficients of the polyno-
mial, the integral of the interval [x1, xN ] of the interpolation function can be calculated.
For an arbitrary even number N of grid points, a subset of (N + 1)/2 grid points may
be used to obtain a second polynomial and consequentially a second integral. These two
results are then compared and yield the error criterion for the adaptive integration al-
gorithm. Unfortunately polynomial interpolation functions on equidistant points suffer
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from Runge’s phenomenon for a higher degree. This results in oscillations towards the
both ends of the interval which have to be carefully considered. They can be avoided by
using non-equidistant grid points as done by the Clenshaw-Curtis Rule described in the
succeeding section.

3.3.4 Clenshaw-Curtis Integration

A method to circumvent oscillations of the interpolation polynomial is to use a non-
equidistant grid, i.e. to use more grid points at the interval borders. Fejér [33] proposed
to use the zeros of the Chebyshev polynomial Tn = cos(n arccos x) in the interval ]−1, 1[
as quadrature points of the integral of f(x),

1∫
−1

f(x)dx =
n∑
k=0

wkf(xk). (3.57)

For Fejér’s second rule, the n−1 extreme points of Tn are used. Clenshaw and Curtis [34]
extended this open rule to a closed form which includes the boundary points x0 = −1
and xn = 1 of the interval [−1, 1], i.e. the n+ 1 quadrature points are to be found at

xk := cos(ϑk), ϑk := k
π

n
, k = 0, 1, . . . , n. (3.58)

The weights wk of equation (3.57) are to be obtained by an explicit expression or by
means of discrete Fourier transforms [35]. For a low number of n, the explicit expressions
of the Clenshaw-Curtis weights are sufficient regarding calculation speed and numerical
accuracy, determined by:

wk =
ck
n

(
1−

bn/2c∑
j=1

bj
4j2 − 1

cos(2jϑk)

)
, k = 0, 1, . . . , n. (3.59)

The coefficients bj and ck are defined as

bj =

{
1, if j = n/2

2, if j < n/2
and ck =

{
1, if k = 0 mod n

2, otherwise.
(3.60)

A useful property of the Clenshaw-Curtis rule is the possibility to create subsets of the
quadrature nodes, i.e. to move from n+1 points to 2n+1 points only the function values
of the inserted n points need to be evaluated.

3.3.5 Comparison of Integration Methods

Concluding this section, a comparison of the advantages and disadvantages of the pre-
sented adaptive integration methods is given. In order to achieve convergence within a
self-consistent NEGF-Poisson loop using Simpson’s rule, a stringent error criterion has
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Postprocess results:

Local density of states, electron density, current

Calculate Non-Equilibrium Green’s Functions

GR(x,x′, E) and G<(x,x′, E)

Obtain: ρ(x, E), n(x) and j(x)

Converged?
YesNo

Guess initial potential profile

Obtain: φ(x)

Solve Poisson equation

Obtain new potential φ(x)

Figure 3.5: Self consistent calculation of potential and electron density

been necessary, which leads to a huge amount of grid points. The Akima interpolation
has not proven suitable for the application in the Green’s function solver, as it did not
allow a stable grid refinement for sudden strong variations in the local density of states.
The polynomial interpolation worked best for an order of five and nine but suffered from
Runge’s phenomenon for a higher polynomial degree. The Clenshaw-Curtis integration
is based on an interpolation method using Chebyshev nodes and therefore circumvents
this disadvantage. Because of its numerical stability, computation time, and memory
consumption the two latter approaches rendered most applicable within the NEGF for-
malism.

3.4 Self Consistent Solution

Charged carriers within a semiconductor device influence the electrostatic potential,
which is expressed by Poisson’s equation

∇ · (ε̃∇φ) = %. (3.61)

In semiconductors charge is due to ionized dopants (NA and ND), electrons and holes.

%(φ) = −q0
(
n(φ)− p(φ) +NA −ND

)
(3.62)
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Charge itself depends on the electrostatic potential since electron and hole concentrations
are influenced by the band edge energy and the Fermi level. Therefore it is necessary
to calculate the space charge distribution obtained through the non-equilibrium Green’s
functions and the potential profile resulting from Poisson’s equation within a self consis-
tent iteration scheme. The basic principle is depicted in Fig. 3.5. A Poisson solver using
a predictor corrector approach is provided by the Vienna Schrödinger Poisson Solver [12].
This scheme requires an estimation of the local derivative of the carrier concentration
with respect to the electrostatic potential d%/dϕ. The non-equilibrium Green’s functions
formalism allows to obtain the carrier concentration and this derivative in a similar man-
ner.
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We have to remember that what we
observe is not nature herself, but nature
exposed to our method of questioning.

Werner Heisenberg

CHAPTER 4

Results

The non-equilibrium Green’s functions method as described in the previous chapters was
implemented in C++ within the framework of the Vienna Schrödinger Poisson solver
developed at the Institute for Microelectronics at the Technical University of Vienna [36].
Ballistic quantum transport is simulated for a simple single barrier. The local density of
states, the occupation and its transmission function have been evaluated. Furthermore,
resonant tunneling has been investigated. The results are split into two parts. First a
linear potential drop across the device was assumed. Then the effects of charge on the
band edge was taken into account by a self-consistent solution with the Poisson equation.
The simulation output of the one-dimensional physical quantities is given as a .crv file.
They were processed with XmGrace. Two-dimensional quantities such as the local
density of states have been displayed using the IBM Data Explorer.

4.1 Single Barrier

A symmetric rectangular potential barrier with a height of V0 = 0.5 eV and the width
of 6 nm was simulated first. The effective mass mx = 0.05m0 is assumed to be constant
across the whole simulation region.
In Figure 4.1, the local density of states of the unbiased barrier is shown. Because of the
ballistic simulation, the interference due to the reflections of the electrons at the barrier
can be seen clearly. The band edge of the device is marked in red. It is recognizeable
that the electrons are allowed to penetrate into the barrier, which would be forbidden
classically. This is also illustrated in Figure 4.2 showing the energetic distribution of the
electrons in the semiconductor structure by occupying the local density of states.
The last figure for the rectangular barrier shows its transmission coefficient plotted over
the energy range from 0 to 1 eV (Fig. 4.3). Comparison with the analytical result for
the same barrier depicted in Figure 2.6 shows perfect agreement.
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RESULTS 4.1. Single Barrier

Figure 4.1: The local density of states of a single barrier with a height of 0.5 eV and a
width of 6 nm. The effective mass mx = 0.05m0 is assumed to be constant across the
whole device. The band edge is marked by a red line.

Figure 4.2: Occupied density of states for a single barrier.
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Figure 4.3: Transmission coefficient plotted over energy for the device in Figure 4.1. The
numerical solution perfectly agrees with the analytical calculation.

4.2 Resonant Tunneling Diodes

This section provides the results of a simulation of a GaAs/AlAs/GaAs resonant tun-
neling device. The AlAs barriers are 1.355 eV high and 3 nm wide. They are separated
from the contact region by an undoped 2 nm GaAs spacer layer. The contacts are made
of a 50 nm region with a doping of ND = 1.0 × 1018 cm−3 and a highly doped 20 nm
layer next to the lead with ND = 5.0 × 1018 cm−3. The well is made of undoped GaAs
with a width of 9 nm. The effective mass of GaAs is mx,GaAs = 0.067m0 and for AlAs
mx,AlAs = 0.15m0. The device is discretized on a uniform spatial grid with a constant
grid spacing of ∆x = 0.1 nm.
This section is divided into two parts. The results assuming a linear potential drop
across the double barrier structure are shown in the succeeding Section 4.2.1. The self-
consistent solution is given in Section 4.2.2.

4.2.1 Linear Potential Drop

For the simulations in this section, the potential drop under bias occurs over the spacer,
barrier and well layers. In the contact regions, the potential is assumed to be constant.
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Figure 4.4: Local density of states of a GaAs/AlAs/GaAs resonant tunneling device
with a barrier width of 3 nm and height of 1.355 eV. The GaAs well width is 9 nm. The
effective mass of GaAs ismx,GaAs = 0.067m0 and for AlAsmx,AlAs = 0.15m0. The density
of states of the lowest quasi-bound states in the well is too low to be visualized, only
the fourth and fifth resonance can be seen clearly. As for the single barrier structure in
Section 4.1 wave function penetration into the barriers occur.

Figure 4.4 shows the local density of states of the double barrier structure described
in Section 4.2 without bias. The wave function penetration of the electrons into the
barriers can be seen clearly. It is important to note, that the value of the local density of
states of the lowest resonant states within the well is too low to be displayed. However,
the higher quasi-bound states can be recognized at an energy level of about 0.75 eV.
Assuming a linear potential drop, the local density of states of the RTD under a bias of
0.3V is shown in Figure 4.5.
In Figures 4.6 and 4.7 the occupied states are depicted without and with applied bias,
respectively. Under bias, that is chosen around the second resonance, the occupation in
the well can be seen clearly.
The transmission probability for this structure is illustrated in Figure 4.8. The sharply
peaked resonances reach a transmission of 1.
The current-voltage curve in Figure 4.9 shows that for a decreasing well width, the
resonance levels are shifted to higher energies. The peaks in the IV-curve are therefore
shifted to higher voltages. After a resonance the negative differential resistance, that is
typical for a resonant tunnel device, is reproduced.
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Figure 4.5: Local density of states for the resonant tunneling device with a bias of 0.3V.

Figure 4.6: Occupied density of states of the RTD without bias.
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Figure 4.7: Occupied density of states of the RTD in Figure 4.4 with applied bias of
0.3V. The occupation of the second quasi-bound state in the well can be seen.
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Figure 4.8: Calculated transmission probability of the resonant tunneling device pre-
sented in Figure 4.4. The sharp resonances reach a transmission probability of 1.
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Figure 4.9: Calculation of a current-voltage curve of the double barrier structure in
Fig. 4.4 with three different well widths. A reduction of the well width shifts the reso-
nance levels to higher energies. Hence, the peaks in the IV-curve occur at higher bias.

4.2.2 Self Consistent Simulation

The double barrier device is simulated within a self-consistent loop of the non-equilibrium
Green’s functions solver and the Poisson solver.
Using the self-consistent Schrödinger-Poisson loop, the resulting local density of states
of the resonant tunneling device is illustrated in Figure 4.10. A higher doping within the
contact region leads to a bending of the conduction band edge. Likewise, the carriers
in the GaAs well have an effect on the band edge. The influence of the spacer layer
on the left and the right of the barriers is shown. Due to the sharpness of the first
resonant state, it could not be displayed in the figure. The other quasi-bound states can
be identified.
In Figure 4.11 the local density of states is given for a bias of 0.46V. This is around the
second resonant level. A triangular potential well that forms in the left contact region
can be recognized. Electrons incident from the left device region are able to occupy the
quasi-bound state in the well, that lies at the same energy level. This is depicted likewise
in Figure 4.13 which shows the occupation of the states and especially the quasi-bound
states in the well. The electrons filling the contact regions are clearly distinguishable.
Figure 4.12 gives the occupation of the density of states if no bias is applied.
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Figure 4.10: Local density of states of a GaAs/AlAs/GaAs resonant tunneling device
with a barrier width of 3 nm and height of 1.355 eV. A GaAs well width of 9 nm is
assumed. As effective mass of GaAs mx,GaAs = 0.067m0 and AlAs mx,AlAs = 0.15m0

is given. Due to the sharpness of the lowest quasi-bound state in the well, it can not
be recognized. Contrary, the higher resonances can be clearly seen. The wave function
penetration into the barriers is depicted. Near the left and right leads a high doping
was used, which yields a bending of the conduction band edge. Within the well, the
influence of the carriers can be seen by the deflection of the band edge.

The band edge of the resonant tunneling device is given in Figure 4.14. The electron
concentration that results from the self-consistent calculation is depicted. It particularly
illustrates the penetration of the electrons into the barriers and the high carrier concen-
tration in the quantum well due to the quasi-bound states that appear in this region.
To depict the current, that is carried by the resonant states, the current density spec-
trum at a bias of 0.46V is given in a semi-logarithmic plot. It shows that most of the
current is provided through the sharply peaked resonances. The contribution of the first
resonance is much lower, since its energy lies below the conduction band edge of the left
lead, as seen in Figure 4.13. The quasi-bound states above the third resonance can not
contribute to the current, because the electrons have not occupied this states yet, since
their energy is too high for this bias. Therefore, only the second quasi-bound state, that
is in resonance with the contact region, and the third quasi-bound state can be seen in
the range of the illustrated eight decades.

53



RESULTS 4.2. Resonant Tunneling Diodes

Figure 4.11: Self-consistent calculation of the local density of states for the resonant
tunneling device biased in the second resonance at 0.46V.

Figure 4.12: Self-consistent calculation of the occupied density of states for the resonant
tunneling device without bias. Only the second resonant level is noticeably occupied.
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Figure 4.13: Self-consistent calculation of the occupied density of states for the resonant
tunneling device biased in the second resonance at 0.46V.
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Figure 4.14: Self-consistent calculation of the band edge and the carrier concentration
of the resonant tunneling device.
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Figure 4.15: Current density spectrum of the resonant tunneling device. The bias of
0.46V leads to a high current at the energy of the second resonant level as well as the
third quasi-bound-state.

The current-voltage characteristic for the resonant tunneling device with three different
well widths is given in Figure 4.16. Comparing the results of the self-consistent solution
and the linear potential drop (Fig. 4.9) a more abrupt change from the peak current
to the valley current in the negative differential resistance regime can be seen for the
former figure.
The IV-curve shows how the peak to valley ratio of the current rises with decreasing
well width due to broader resonances. Furthermore, a shorter well leads to resonances
at higher energy levels. This yields the shift of the current peak to higher voltages.
The self-consistent simulation takes account of the doping of the resonant tunneling
device. A Schrödinger-Poisson solver loop ensures charge neutrality and therefore adjusts
the conduction band edge correspondingly. This leads to an overall higher current in the
self-consistent simulation.
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Figure 4.16: Self consistent calculation of the current-voltage characterstic of the device
from Figure 4.10 with a variation of the GaAs well width. Compared to the IV char-
acteristic of the non-self-consistent simulation, the peaks are much sharper. The higher
current is a result of the charge neutrality of the ionized dopants and the free carriers
by the self-consistent simulation. That yields a total shift of the conduction band edge
and therefore has an effect on the current.
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In all things success depends on previous
preparation, and without such previous
preparation there is sure to be failure.

Confucius

CHAPTER 5

Summary and Outlook

Quantum transport in systems with open boundary conditions was investigated. The
non-equilibrium Green’s functions formalism for one-dimensional devices was imple-
mented within the framework of the Vienna Schrödinger Poisson solver.
Starting from the time-independent effective mass Schrödinger equation the concept of
the local density of states was introduced. Assuming a Fermi-Dirac distribution function
the occupation of states was derived. Tunneling through single and double barrier struc-
tures has been examined by means of the transmission formalism. The basic theory of
Green’s functions has been presented. Its application to solve the Schrödinger equation
with emphasis on quantum transport phenomena has been pointed out. All assump-
tions in order to allow a numerical treatment of the non-equilibrium Green’s functions
formalism were stated clearly. To ensure a performant implementation of the Green’s
functions method an efficient recursive algorithm has been applied. A major issue of
the realization is the numerical integration over the discrete energy space. In order to
keep the memory requirements low an adaptive energy grid refinement proved neces-
sary. Various quadrature rules, namely Simpson’s rule, Akima interpolation, polynomial
interpolation, and the Clenshaw-Curtis rule, have been examined were only the latter
two were identified to be applicable for this case. To include the effects due to electro-
statics, a self-consistent Schrödinger-Poisson loop is required. The developed simulation
model has been applied to single and double barrier structures. As physical quantities
of interest, the transmission, the local density of states, and the occupation have been
evaluated. Furthermore, the current-voltage characteristics of resonant tunneling devices
posing the typical negative differential resistance have been shown.
For future development, the adaption of a more sophisticated Hamiltonian could re-
produce the dispersion relation for high energetic electrons and holes. Furthermore,
the treatment of phase-breaking interactions to describe incoherent transport should be
incorporated.
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