
Dissertation

Threats to Privacy Sensitive Data

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften unter der Leitung von

Priv.-Doz. Dipl.-Ing. Dr. Engin Kirda

und
Priv.-Doz. Dipl.-Ing. Dr. Christopher Krügel

Institut für Rechnergestützte Automation

Arbeitsgruppe Automatisierungssysteme (E183-1)

eingereicht an der Technischen Universität Wien,
Fakultät für Informatik

von

Dipl.-Ing. Mag. Gilbert Wondracek

Fasangasse 43/2/8
1030 Wien
9925208

Wien, 30. November 2009

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung

In den letzten Jahren sind hunderte Millionen von Benutzern zu Opfern von
Cybercrime geworden. Bösartige Software (Malware) oder Aktivitäten wie
Daten- oder Identitätsdiebstahl, Phishing, Botnetze, Trojaner oder gezielte
Spamkampagnen sind eine ernsthafte Bedrohung für die Sicherheit und den
Schutz von sensiblen und privaten Daten von Benutzern. Diese Dissertation
präsentiert neuartige Lösungsansätze und Techniken für drei Problemfelder
innerhalb des Gebiets der Computersecurity.

Zuerst stellen wir ein neuartiges Bedrohungsszenario für soziale Netzwerke
(z.B. Facebook, LinkedIn, Xing) vor, welches es einem Angreifer ermöglicht,
eine große Anzahl von Benutzern zu deanonymisieren. Wir zeigen, sowohl the-
oretisch als auch experimentell, dass ein derartiger Angriff mit relativ geringem
Aufwand in der Realität durchführbar ist, und die persönlichen Daten und die
Privatsphäre von Millionen von Benutzern gefährdet.

Des Weiteren demonstrieren wir anhand einer Studie die Verbindung zwis-
chen Cybercrime und der Internet-Schattenwirtschaft (underground econo-
my). Wir führen eine technische und wirtschaftliche Untersuchung der Online-
Adult Branche durch, und zeigen, dass undurchsichtige Geschäftsmodelle mit
traditionellen Securitybedrohungen Hand in Hand gehen. Dies berührt im
Besonderen die Themen traffic trading, Betrug in Partnerprogrammen, das
Ausspähen von privaten Browserdaten und Malware Bedrohungen (drive-by-
downloads).

Schließlich präsentieren wir “Prospex”, ein System zum automatischen Reverse-
Engineering von Netzwerkprotokollen. Durch dynamische Taint-Analyse ist es
möglich, Rückschlüsse auf das interne Verhalten von Programmen, die ein Pro-
tokoll implementieren, zu erhalten. Wir führen neuartige Methoden ein, mit
denen genaue Format- und Typbeschreibungen für Protokollnachrichten gener-
iert werden können, und ein Zustandsautomat abgeleitet werden kann. Als
konkrete Anwendung zeigen wir, dass automatisch generierte Protokollbeschrei-
bungen zum Fuzz-Testing von existierender Software verwendet werden kann
und damit reale Sicherheitslücken gefunden werden können.

Abstract

In recent years, security and privacy threats like data or identity theft, phish-
ing, credential stealing trojans, botnets, or targeted spam campaigns have
affected millions of users and online businesses. Researchers have acknowl-
edged these threats, and are actively exploring potential attack vectors and
developing solutions and countermeasures. In this doctoral thesis, we present
new approaches and techniques to three problems in the domain of computer
security that severly impact user privacy.

First, we introduce a novel attack scenario against social networks (e.g., Face-
book, LinkedIn, Xing), that potentially allows a miscreant to de-anonymize a
large amount of social network users. We demonstrate, both theoretically and
practically, that this is feasible in a real-world scenario, thus compromising
the privacy and security of millions of users.

Second, we conduct a study on cybercrime and the underground economy.
Specifically, we investigate shady business practices using the example of the
online adult industry and perform an economic and technical analysis. Fur-
thermore, we provide a real-world evaluation of security issues in this domain,
including traffic trading, affiliate fraud, history stealing, and malware (drive-
by-downloads) vulnerability assessments.

Finally, we present “Prospex”, a system that aims at automatic network pro-
tocol reverse engineering. By applying dynamic taint analysis on binaries, we
can observe the internal behavior of programs that implement an application
level protocol. Then, we use novel techniques to identify message formats and
types, and infer a protocol state machine. As an application of our system, we
show that we successfully used the recovered protocol specifications as input
to a fuzz testing tool, allowing us to find security vulnerabilities in real-world
software.

Contents

List of Figures v

List of Tables vii

1 Introduction 3
1.1 Security and Privacy . 3
1.2 Contributions . 4
1.3 Organization of this Thesis . 5
1.4 List of Publications . 5

2 De-Anonymization of Social Networks 7
2.1 Introduction . 7
2.2 Background . 9

2.2.1 Model and Definitions 9
2.2.2 Structure of Social Networking Sites 11
2.2.3 History Stealing . 13
2.2.4 Possible Attack Scenarios 15

2.3 De-Anonymization Attacks . 16
2.3.1 Basic Attack . 16
2.3.2 Improved Attack . 17
2.3.3 Efficiently Obtaining Group Information 18

2.4 Crawling Experiments . 21
2.4.1 Ethical and Legal Considerations 21
2.4.2 Overview . 21
2.4.3 Social Network Crawling Approaches 22
2.4.4 Crawling Experiments 23

2.5 Evaluation . 26
2.5.1 Analytical Results . 28
2.5.2 Real-World Experiments 34
2.5.3 Run-Time and Throughput Rate 35
2.5.4 Fluctuation in Groups 36

2.6 Possible Mitigation Techniques 38
2.6.1 Server-side Mitigation 38
2.6.2 Client-side Mitigation 38

i

2.7 Summary . 39

3 Privacy Threats in Online Services 41
3.1 Introduction . 42
3.2 Analysis Techniques . 44

3.2.1 Manual Inspection . 44
3.2.2 Identified Site Categories 44
3.2.3 Automated Crawling and Experimental Setup 48

3.3 Observations and Insights . 51
3.3.1 Revenue Model . 52
3.3.2 Organizational Structure 53
3.3.3 Economic Roles . 54
3.3.4 Security-Related Observations 54
3.3.5 Malware . 57
3.3.6 Hosting Infrastructure 58

3.4 Experimental Evaluation . 59
3.4.1 Preparation Steps . 59
3.4.2 Traffic Profiling . 60
3.4.3 Traffic Buying Experiments 62
3.4.4 Profiling Results . 62
3.4.5 Traffic Selling Experiments 67

3.5 Summary . 70

4 Extracting Privacy-Relevant Information from Network Protocols 73
4.1 Introduction . 74
4.2 System Description . 76

4.2.1 Session Analysis . 78
4.2.2 Message Clustering . 80
4.2.3 State Machine Inference 84
4.2.4 Prerequisites Inference Algorithm 86
4.2.5 Creating Fuzzing Specifications 90

4.3 Evaluation . 91
4.3.1 State Machine Inference 92
4.3.2 Quality of Protocol Specifications 95
4.3.3 Comparative Evaluation 97
4.3.4 Robustness of k . 98
4.3.5 Exbar Performance . 99
4.3.6 Fuzzing Experiments 99

4.4 Summary . 101

5 Related Work 103

ii

5.1 Social Network De-anonymization 103
5.2 The Online Adult Industry and Cybercrime 104
5.3 Protocol Reverse-Engineering 105

6 Conclusion 109

iii

iv

List of Figures

2.1 Examples of distinct types of web application hyperlinks. . . . 12
2.2 Schematic overview of history stealing attack. 14
2.3 Cumulative distribution for number of unique users. 29
2.4 Cumulative distribution for the size of candidate sets. 31
2.5 Cumulative distribution for the size of group union sets. . . . 32
2.6 Cumulative distribution for the users in the candidate set. . . 33
2.7 Runtime benchmark for different web browsers. 35
2.8 Degradation of group data in Xing. 37

3.1 Observed traffic and money flows. 45
3.2 Schematic overview of traffic trading. 48
3.3 Distribution of economic roles. 55
3.4 Results for vulnerability assessment. 66
3.5 Overview of n-fold click inflation fraud scenario. 69

4.1 System overview. 76
4.2 APTA for the Agobot example. 85
4.3 Labeled State Tree for Agobot example. 89
4.4 Inferred state machine for Agobot example. 90
4.5 Inferred state machine for command and control. 92
4.6 Inferred state machine for the SMTP protocol. 93
4.7 Inferred state machine for the SMB/CIFS protocol. 94
4.8 Inferred state machine for the SIP protocol. 95
4.9 Robustness of k . 100

v

vi

List of Tables

2.1 Overview of popular social networking websites. 11
2.2 Vulnerability Comparison of Social Networks. 27

3.1 Distribution of domains per country. 58
3.2 Statistics about the visitors of traffic buying experiments. . . . 64

4.1 Precision and Recall of inferred automata. 98

vii

viii

Acknowledgments

Writing this thesis would not have been possible without the help from many
people. First of all, I would like to express my gratitude to my advisors,
Prof. Dr. Engin Kirda and Prof. Dr. Christopher Krügel, who made
this work possible. Their inspiring work and advice helped me to develop new
skills and complete this thesis, and I am looking forward to working with them
in the near future.

In addition, I would like to thank all colleagues and members of the Interna-
tional Secure Systems Lab and the Institut für Rechnergestützte Automation
at the Vienna University of Technology for the great cooperation and the fun
we had.

Last but not least, my gratitude goes to my family and my girlfriend Cor-
nelia for their endless love and support during the past years.

1

2

Chapter 1

Introduction

In recent years, security researchers and professionals have experienced a
global paradigm shift from “hacking for fun” to profit-driven cybercrime. This
development is fueled by an underground economy that is estimated to have
a volume in the range of billions of dollars.

In the wake of real-world threats like data or identity theft, phishing, mal-
ware, trojans, botnets, spam, or credit card fraud, security and privacy issues
have become a major concern for hundreds of millions of users. For example,
every day, web surfers are tricked into installing scareware, hackers use mass
exploits to automatically compromise thousands of systems, while personal
and private data or credit card information are openly traded in underground
marketplaces on the Internet.

Researchers have acknowledged these threats, and are actively exploring po-
tential attack vectors and developing solutions and countermeasures in areas
that range from web security to binary analysis. The ongoing race between
researchers and miscreants constantly leads to the exploration of new theoreti-
cal and practical approaches to security, combining aspects of many computer
science disciplines.

1.1 Security and Privacy

One particularly interesting area within computer security is privacy. For ex-
ample, the renowned security researcher Bruce Schneier emphasizes this, by
defining privacy as “Privacy is an inherent human right, and a requirement
for maintaining the human condition with dignity and respect.” [26]. The
scope of the challenges and issues that are related to privacy is constantly
expanding, as more and more users use (online) services and applications that
store personal and sensitive data (for example, search engines, social networks,
photo sharing websites, online banking, or discussion forums). While, intu-
itively, most people would agree that their personal data should be protected,
many people willingly, and even more worrisome, unwillingly, give up informa-
tion such as their names, addresses, religion, sexual and political preferences,

3

Chapter 1 Introduction

friends, location, and even medical conditions.
Ideally, users should be aware of how their personal information is being

used, and able to retain control on how it is processed and propagated. How-
ever, this is an ambitious goal, as the high complexity of many applications
makes it increasingly difficult or even impossible for users to anticipate the
implications of their actions. For example, users might not be aware that a
seemingly private messaging area in a social network is accessible by search
engine crawling bots, or that web site owners may share their customer data
with data mining or marketing companies that then use this information for
targeted advertising. Also, many (legitimate) services make it overly compli-
cated to change privacy settings or do not provide adequate options at all.
These shortcomings, along with lax restrictions and a large amount of users
that are not aware of privacy issues, are facilitating cybercrime scenarios, such
as identity theft, unsolicited e-mail (spam), or phishing.

From a research point of view, privacy challenges are particularly interesting,
as they play an important role in a wide array of security research directions.
Throughout this work, we will show how security issues from seemingly differ-
ent domains are linked by the underlying implications to the privacy of user
data.

We think that it is crucial to the security of users to research and develop
novel, privacy enhancing solutions, as well as to find potential attack vectors
and weaknesses in existing systems and techniques. It is equally important to
create awareness among users about privacy issues, and educate them on how
to protect their private information.

1.2 Contributions

In this thesis, we also want to show that privacy issues and challenges act as
a common link between individual aspects of computer security. To this end,
we contribute to the domains of web security, a study on the underground
economy, and protocol reverse engineering and highlight privacy-relevant im-
plications.

In summary, we make the following main contributions in this thesis:

• First, we present a novel de-anonymization scenario that is directed
against social networks. These networks (for example, Facebook, MyS-
pace) are used by millions of users, who often publish sensitive personal
information in their member profiles. We demonstrate, both theoreti-
cally and experimentally, that a malicious attacker can, with relatively
low effort, use a web based attack to de-anonymize a large amount of so-

4

1.3 Organization of this Thesis

cial network members, thus potentially compromising the privacy of mil-
lions of users. Furthermore, we evaluate the de-anonymization scenario
on real-world social networks and show that an attacker only requires
access to publicly available data.

• Second, we investigate the relationship between the underground econ-
omy and the online industry. To this end, we observe a whole business
branch, the online adult industry, and examine its associated security
and privacy issues. Furthermore, we show the economic and techni-
cal interdependencies between its participants and demonstrate attacks
against website visitors. Our study is the first on this subject to combine
a technical analysis with economical aspects.

• Finally, we present a system for automatically reverse engineering appli-
cation level network protocols. By utilizing binary analysis, our system
is able to perform a behavioral analysis of server applications. Our sys-
tem can be used to analyze unknown or proprietary server programs as
well as malicious bots that are a threat to users and their private infor-
mation. We have developed novel techniques that allow the reversing of
individual protocol message formats, discover message types, and infer
a protocol state machine. As an application, we used the protocol spec-
ifications generated by our system to instrument fuzz testing software.
This allowed us to successfully find security vulnerabilities in real-world
server applications.

1.3 Organization of this Thesis

This dissertation is organized as follows. In Chapter 2, we present our work on
de-anonymizing users of social networks. In Chapter 3, we present our find-
ings on the relationship between the online adult industry and cybercrime.
Chapter 4 presents “Prospex”, our system for automatically extracting pro-
tocol specifications from binaries. Chapter 5 lists the related work for each of
the systems presented in this work. Finally, in Chapter 6, we conclude this
thesis.

1.4 List of Publications

Parts of this thesis are based on publications listed in this section. In partic-
ular, Chapter 4 was published as a paper together with Milani-Comparetti,

5

Chapter 1 Introduction

Kirda and Krügel [85]. Additionally, two papers based on the content of Chap-
ter 2 and Chapter 3 are currently under submission to academic, peer-reviewed
conferences.

6

Chapter 2

De-Anonymization of Social Networks

2.1 Introduction

Social networking sites such as Facebook, LinkedIn, Twitter, and Xing have
been increasingly gaining in popularity [6]. In fact, Facebook has been report-
ing growth rates as high as 3% per week, with more than 300 million registered
users as of September 2009 [2]. Furthermore, this site has more than 30 billion
page views per month, and it is reported to be the largest photo storage site
on the web with over one billion uploaded photos. Clearly, popular social net-
working sites are critical with respect to security and especially privacy due
to their very large user base.

Of course, social networking sites are not less secure than other types of web-
sites. However, the difference to other sites lies in the amount of private and
possibly sensitive data that they store. Social networking sites are typically
used to contact friends, discuss specific topics in online discussion forums and
groups, establish new business contacts, or simply to keep in touch with other
people. Along with the information about friendships and acquaintances, users
often provide a great deal of personal information that may be interesting for
attackers. Although social networking sites employ mechanisms to protect the
privacy of their users, there is always the risk that an attacker can correlate
data or abuse the structure of a social network to infer information about
registered individuals [32, 4, 128].

In this work, we introduce a novel de-anonymization attack against users
of social networking sites. In particular, we show that information about the
group memberships of a user (i.e., the groups of a social network to which a
user belongs) is often sufficient to uniquely identify this user. When unique
identification is not possible, then the attack might still significantly reduce
the size of the set of candidates that the victim belongs to.

To make the de-anonymization attack practical, we present a way in which
an adversary can learn information about the group memberships of a user
who is just browsing the web. To do this, an attacker can leverage the well-
known technique of history stealing [67, 83]. More precisely, using history
stealing, an attacker can probe the browser history of a victim for certain

7

Chapter 2 De-Anonymization of Social Networks

URLs that reveal group memberships on a social network. By combining
this information with previously collected group membership data from the
social network, it is possible to de-anonymize any user (of this social network)
who visits the attacker’s website. In some cases, this allows an attacker who
operates a malicious website to uniquely identify his visitors by their name (or,
more precisely, the names used on the corresponding social network profiles).

Previous work in the area of de-anonymization was mostly focusing on corre-
lating information from several independent data sets (datasets from different
sources). For example, Griffith and Jakobsson used public records such as mar-
riage and birth information to derive a mother’s maiden name [58]. Narayanan
and Shmatikov showed, in two recent papers, that information from different
data sources can be combined to de-anonymize a user [89, 4]. In contrast, our
attack uses only information from a single social networking site, and com-
bines it with intrinsic information that is generated while users access the site.
That is, our attack makes use of the fact that the browser records the URLs
of the social networking site that a user visits (since browsers typically keep
an access history for some time).

To demonstrate that our attack works, we performed both a theoretical
analysis and empirical measurements for users of the Xing social network.
The results suggest that our attack can be used to potentially de-anonymize
millions of users. Due to the limited resources that were available to us, we
focused our empirical evaluation on Xing, a medium-sized network that has
eight million registered users. We managed to extensively collect data for this
network and achieved a high coverage of its groups and members. However, to
demonstrate that the attack is not conceptually limited to one social network,
we also performed an empirical feasibility study on two other, significantly
larger networks: Facebook and LinkedIn. Furthermore, we also briefly study
five other social networks and find that they are also vulnerable to our attack.

Our attack can also be generalized to other websites that generate sparse
datasets (i.e., the information about each individual user covers only a small
fraction of the overall attributes) [89]. In the case of social networks, our
attack works because even the most active user is only a member of a small
fraction of all groups, and thus, the group membership information serves as
a fingerprint. Sparse datasets are common with websites that deal with user
data. For example, Amazon and eBay use concepts similar to groups on social
networks (“Customer Communities” and “Groups,” respectively), meaning
that they are both potentially vulnerable to our de-anonymization attack.

In summary, we make the following three contributions:

• We introduce a novel de-anonymization attack, and show how it can
be applied to social networking sites. The key idea of the attack is to

8

2.2 Background

exploit information about specific users (in this case, membership in
groups) combined with the victim’s browsing history.

• We demonstrate several techniques to scale our attacks to real-world
social networking sites. This is a challenging task since these websites
often have tens of millions of users.

• We provide both a theoretical analysis and empirical measurements to
demonstrate the feasibility of our attack. The results indicate that about
42% of users in the social network Xing can be reliably de-anonymized.
Furthermore, we empirically show that both Facebook and LinkedIn are
also potentially vulnerable.

2.2 Background

In this section, we provide a brief introduction to the background concepts to
allow the reader to better understand our attack. We first present a model of
social networks, and define the terminology we use within this thesis. We then
list our assumptions about the attacker. We continue with an overview of the
common structure of social networks, and discuss the aspects of this structure
that we exploit. Finally, we explain why social networks are commonly prone
to history stealing attacks.

2.2.1 Model and Definitions

Throughout this work, we use the following models and definitions to describe
our de-anonymization attack.

Social Networks A social network S is modeled as a graph G = (V, E)
containing nodes V representing users, and undirected edges E representing
the “friendship” relation between two users. Furthermore, the social network
contains G groups. Each group g ∈ G contains a set of users from V : ∀g ∈ G :
g ⊆ V . Social networks typically do not allow empty groups without any user
(and also actively delete such groups). Thus, we can assume, without loss of
generality, that ∀g ∈ G : g 6= ∅.

Each user v ∈ V is a member of n groups, with n ≥ 0. We model this
information as a vector Γ(v) := (Γg(v))

g∈G
such that:

Γg(v) =

{

1 if v is a member of group g

0 if v is not a member of group g
(2.1)

9

Chapter 2 De-Anonymization of Social Networks

For each group g in which v is a member, one dimension of Γ(v) is set to
one. Otherwise, this dimension is set to zero. For the case of n = 0 (i.e., the
user is not a member in any group), the vector Γ(v) contains only zeros. This
is the worst case for our attack.

As we will show, the vector Γ(v) can be used to de-anonymize users within
a social network. In particular, Γ(v) serves as the group fingerprint of a user,
and we demonstrate in our experiments that this fingerprint, in practice, is
characteristic for a given user.

Browser History A building block that we use during our attack is the brows-
ing history βv of a user v. A web browser maintains a list of web pages that
the user has recently visited. Every time a user visits a page p, the URL φp

that was used to load this page is added to βv. Moreover, entries in βv expire.
That is, after a time interval τ has elapsed, the URL related to p is removed
from βv. The timeout itself depends on the browser and user settings. For
example, Mozilla Firefox uses τ = 90 days by default, while Microsoft Internet
Explorer only uses τ = 20 days. Apple Safari is between both browsers with
τ = 1 month by default, whereas Google Chrome has an unlimited history
timeout τ = ∞.

Attacker Model We have two basic assumptions about an attacker. First,
we assume that the attacker can determine which web pages, from a given set,
a specific user v has accessed in the recent past (within time τ). This means
that the attacker can determine whether or not a given URL φp is in βv. The
attacker, thus, has a method to compute, for a given victim v, the function
σv(φp), which is defined as follows:

σv(φp) =

{

1 if φp ∈ βv for the user v

0 if φp 6∈ βv for the user v
(2.2)

It is reasonable to assume that such a function exists and that the attacker can
perform the computation based on history stealing, as we show in Section 2.2.3.

The second assumption is that the attacker has a way to learn about the
members of groups for a given social network S. As defined above, a group g

is a non-empty subset of the overall users of S. The attacker does not need to
have the membership information for all groups g ∈ G. However, knowledge
about more groups makes the attack more efficient. In Section 2.3.3, we discuss
how an attacker can obtain the necessary group membership information.

We believe that our two assumptions about an attacker can be (easily) satis-
fied in practice, and our empirical experiments support this claim. Moreover,
as we will discuss in Section 2.3, our attack is able to tolerate a certain amount

10

2.2 Background

Name # users Focus Alexa rank Groups

Facebook 300,000,000+ general audience, global 2 ✔

MySpace 260,000,000+ music, global 11 ✔

Friendster 90,000,000+ general audience, global 111 ✔

LinkedIn 50,000,000+ business, global 53 ✔

StudiVZ 15,000,000+ students, Germany 179 ✔

Xing 8,000,000+ business, Europe 285 ✔

Bigadda 5,500,000+ teenage audience, India 3,082 ✔

Kiwibox 2,500,000+ teenage audience, global 74,568 ✔

Table 2.1: Overview of popular social networking websites. The data is
based on information provided by individual social networks, public
sources such as Alexa [6], and our analysis.

of inaccuracy. That is, even when the history stealing attack does not produce
a perfect group fingerprint Γ(v) for a victim v, or when the attacker’s view
of the social network is different than the network’s actual state (e.g., due to
users who join and leave groups), the attack can still be successful. However,
in such cases, it typically proceeds slower and produces larger candidate sets.

2.2.2 Structure of Social Networking Sites

Overview

Most social networking sites share the same basic structure. Each user v

within the network has a profile pv that contains (partially sensitive) informa-
tion. This information, for example, can be the user’s full name, photographs,
date of birth, relationship status, former and current employers, and educa-
tion. One of the core technical components of a social network is its website,
and the underlying web application. The web application provides the main
functionalities of the social network. This functionality often comprises of fea-
tures that allow a web visitor to become a member, to edit personal profiles,
to view other user profiles, or to join groups. To become a member of a social
network, users can sign up at the website. This process usually only requires
a valid e-mail address for verification purposes.

Since social networks can have millions of users, most popular social net-
works (see Table 2.1) include features that allow users to be organized in
groups. This feature allows users of a social network to easily find other users
with whom they might share specific interests (e.g., same hobbies), demo-
graphic groups (e.g., studying at the same university), political or sexual-

11

Chapter 2 De-Anonymization of Social Networks

orientation, and even medical conditions. Typically, there exists some kind of
hierarchy within a group. That is, particular members can hold the role of
administrators or moderators, which grants them some special privileges (e.g.,
sending messages to the whole group, or removing members). In general, two
different types of groups exist:

• Public groups : These groups allow all members of the social network to
join. Typically, members are automatically added to the group when
they wish to join. Interestingly, we found that some social networks
even allow non-group members to list the members of public groups
(e.g., Facebook).

• Closed groups: On the other hand, closed groups require some sort of
authorization before a member is allowed to join. In practice, this means
that a group administrator or moderator needs to manually approve each
membership request.

The different social networks vary widely in the number of available groups.
Networks that target a general audience typically have a large number of
groups, and the average user is a member of many groups. Social networks
that target business users, on the other hand, have a smaller number of groups,
and the average user is only a member in a few groups (see Section 2.5 for
more specific results).

Web Applications

(1) http://www.facebook.com/home.php?ref=home

(2) http://www.facebook.com/ajax/profile/picture/upload.php?id=[userID]

(3) http://www.facebook.com/group.php?gid=[groupID]&v=info&ref=nf

(4) https://www.xing.com/net/[groupID]/forums

Figure 2.1: Examples of distinct types of web application hyperlinks for dif-
ferent social networks.

The web applications for the most popular social networks (see Table 2.1)
rely on hyperlinks and HTTP GET parameters to implement the commu-
nication between a user (more precisely, her browser) and the actual web
application. For example, Figure 2.1 shows four real-world examples from the
web application of Facebook and Xing that are representative for two groups
of hyperlinks. The first link is used to tell the web application to display the

12

2.2 Background

currently logged-in user’s “home” area. Since the hyperlink for this operation
is the same for every user of the social network, we refer to links of this type
as static hyperlinks. In contrast, the other links are used to inform the web
application of state changes requested by a user. For example, the second
link sends a request to the web application that the user with the ID userID

wishes to upload a new profile picture. This link contains a dynamic token
(in this case, the ID of user v), so we consequently call it a dynamic hyperlink.
This type of links explicitly contains information about a user since the link is
unique for each user of the social network (i.e., this link identifies a particular
v ∈ V).

Besides dynamic hyperlinks that contain information about users, there also
exist dynamic hyperlinks that contain (or embed) information about groups.
The third and fourth link of Figure 2.1 show two examples in which informa-
tion about a specific group (i.e., a groupID parameter) is encoded within the
hyperlink. Note that each link uniquely refers a group g ∈ G.

From the web application’s point of view, these hyperlinks facilitate the
“internal” state keeping and communication between the web application and
the user’s web browser. Since web browsers are agnostic to the semantic
interpretation of links, they simply add the URLs of all visited web pages to
the browsing history βv of a user v. Note that since the interesting information
is already encoded in the URL itself, it does not matter if the website is using
security-enhancing protocols such as HTTPS for protecting the actual content.
The URL is nevertheless added to the browser’s history. From an attacker’s
point of view, this behavior is interesting, since it enables the attacker to
identify groups a user has visited, and even potentially identify a specific user.
That is, if the attacker is able to determine which pages are in the victim’s
browsing history (i.e., she can compute the function σv(φp) for pages loaded
via dynamic hyperlinks φp), she can use this information to de-anonymize a
user v (as shown in more detail later).

2.2.3 History Stealing

History stealing is a known attack in which a malicious website can extract
the browsing history of a visitor. One of the first descriptions of this attack
dates back to the year 2000 [106], and the technique was re-discovered several
times in the recent years (e.g., [16, 24]). The core observation behind this
attack is the fact that a web browser treats hyperlinks differently depending
on whether or not a hyperlink was previously accessed by a user. This means
that a browser implements the function σv(φp) (that is, the browser implicitly
checks whether a target URL φp is in the browsing history βv). Typically,
hyperlinks to web pages in the browsing history are displayed in a different

13

Chapter 2 De-Anonymization of Social Networks

Figure 2.2: Schematic overview of history stealing attack.

color to indicate to the user that this link has been clicked in the past. An
attacker can use various techniques to probe whether or not a web page is in
the browsing history:

• An attacker can create an HTML page with links to target web pages
of interest and use background image tags in the a:visited style infor-
mation. Since images can be referenced with URLs, the user’s browser
will then access these URLs if a target web page is in βv.

• Alternatively, an attacker can also use client-side scripting (for example,
JavaScript) to generate and iterate over a list of target links and pro-
gramatically check for the a:visited style to see if a link is present in
βv.

Note that an attacker has to probe for each URL (and cannot simply access
the full browsing history of a victim), obtaining one bit of information per
URL that determines whether it is contained in βv or not.

From a schematic point of view, each attack scenario is the same (see Fig-
ure 2.2): First, the attacker sends a list of URLs to the victim’s browser.
Second, the attacker forces the browser to check for each URL whether or
not it is contained in the browsing history using one of the methods discussed
above. Finally, a report is sent back to the attacker, who then obtains a list
of URLs that are contained in the victim’s browsing history.

History stealing can be used for different kinds of attacks. For example,
it can be used for more effective phishing. Jakobsson and Stamm presented

14

2.2 Background

a scenario where the attacker checks the browsing history for various bank
site URLs. If the attacker sees that the victim has visited a certain bank,
she can then launch targeted phishing attacks [83] that target this bank. In
the context of web applications, this means that an attacker can apply this
technique to reconstruct knowledge on past interaction between the victim
and the web application. While this knowledge alone might not be sufficient
for many attack scenarios (e.g., an attacker would still need the online banking
credentials to withdraw funds – requiring a phishing step), we show that we can
successfully improve this technique to de-anonymize users of social networks.

All popular browsers (e.g., IE, Firefox, Safari) are vulnerable to history
stealing attacks in their default settings (i.e., when the browser keeps a history
of visited pages). To date, the problem has not been solved as it is often viewed
a usability feature/design issue rather than a browser bug.

2.2.4 Possible Attack Scenarios

De-anonymizing website visitors allows an adversary to launch targeted at-
tacks against unsuspecting victims. Such attacks could be targeted phishing
attempts [68] or support social engineering efforts to spread malware (e.g., a
message such as “Hello Mr. Smith, we have discovered that your computer
is infected. Please download and install this file.” might be displayed to Mr.
Smith). In addition, many people in political or corporate environments use
social networks for professional communication (e.g., LinkedIn). Identifying
these “high value” targets might be advantageous for the operator of a ma-
licious website, revealing sensitive information about these individuals. For
example, a politician or business operator might find it interesting to identify
and de-anonymize any (business) competitors checking her website. Further-
more, our attack is a huge privacy breach: any website can determine the
identity of a visitor, even if the victim uses techniques such as onion rout-
ing [45] to access the website – the browser nevertheless keeps the visited
websites in the browsing history.

Of course, analogous to the situation where attackers compromise and abus-
ing legitimate websites for drive-by downloads, the de-anonymization tech-
nique presented in this work can be used in a large-scale setup. That is, an
attacker could abuse several compromised (but otherwise legitimate) websites
as a vehicle for a de-anonymization attack.

15

Chapter 2 De-Anonymization of Social Networks

2.3 De-Anonymization Attacks

With the background concepts introduced in the previous section, we are
now ready to present our attack in more detail. We first introduce a basic
variation of the attack, which is not feasible in practice. We then show how
this basic approach can be refined to work for real-world social networks.
Finally, we discuss how group membership information, a critical component
for the advanced attack, can be obtained with a reasonable (limited) amount
of resources.

2.3.1 Basic Attack

As mentioned in the previous section, certain dynamic hyperlinks contain
explicit information about individual groups g ∈ G and users v ∈ V within
a given social network S. An attacker can take advantage of this fact by
using history stealing to probe for URLs that encode user information. In
particular, the attacker can probe for a URL φ that contains an identifier
of user v. When a link is found that contains this identifier for v, then the
attacker can reasonable assume that the browser was used by v in the past to
access the user-specific URL φ.

To find a suitable URL φ, an attacker would first perform an information
gathering step and join the target social network. In particular, he would an-
alyze the website and look for dynamic hyperlinks that (a) contain identifiers
that are indicative for a specific personal profile (e.g., because they contain
a user ID) and (b) easy to predict for arbitrary users. For example, the sec-
ond link in Figure 2.1 satisfies these properties: The user IDs are numerical
and, hence, easy to predict. Also, the link is indicative for a specific user be-
cause the corresponding web application command (i.e., modifying the profile
image) can only be performed by the owner of the profile. Thus, it is very
unlikely that a user other than v has this link in her history.

Of course, the basic attack is not feasible in practice. The reason is that
the attacker has to generate and check one URL for every user in the social
network, and each potential victim’s browser would have to download all links
and process them. In the case of Facebook, this would mean that more than
300 million links would have to be transferred to each victim. Thus, using
the basic attack technique, the size of the search space (the candidate set) is
far too large to be practical. In the following paragraphs, we show how group
information can be used to to significantly reduce the search space. Moreover,
we need to keep in mind that the basic attack is still a valuable tool to identify
a specific user among a (small) group of possible candidates.

16

2.3 De-Anonymization Attacks

2.3.2 Improved Attack

For our improved attack, we leverage the fact that many social network users
are members in groups. Social networks commonly provide special features
for groups in order to facilitate communication and interaction between group
members. Often, discussion forums or mailing lists are provided. Since these
features are incorporated into the social network’s web application, they are
also prone to the history stealing technique. Similar to per-member actions,
dynamic hyperlinks are used to incorporate group features into the web appli-
cation. The main difference is that the identifiers in these links are not related
to individual users within the group, but to the group itself. For example, the
URLs (3) and (4) in Figure 2.1 are used for opening the group forums for two
social networks.

An improved attack that leverages group membership information proceeds
in two steps: First, the attacker needs to obtain group membership informa-
tion from the social network. That is, the attacker has to learn, for some
(possibly many) groups, who the members of these groups are. This step will
be discussed in detail in the next section.

In the second step, the attacker uses history stealing to check the victim’s
browser for URLs that indicate that this user has recently accessed a page
related to group g, and hence, is likely a member of g. By preparing URLs
for a set of n groups, the attacker can learn a partial group fingerprint of
the victim Γ′(v). More precisely, the attacker can learn the entry Γk(v) for
each group k that is checked. The remaining entries are undefined. Clearly,
being able to check more groups allows the attacker to learn more about
the group fingerprint of a victim (i.e., he can obtain a larger, partial group
fingerprint). This increases the chances that at least one entry of the partial
group fingerprint is non-zero, which is necessary to carry on with the attack.

Once the partial group fingerprint of a victim is obtained, the attacker
checks for the presence of entries where Γk(v) = 1. Whenever such an entry
is found, we assume that the victim v is member of the corresponding group
k. At this point, the attack can continue in one of two ways.

A slower, but more robust, approach is to leverage the group membership
information and generate a candidate set C that contains the union of all
members {u}k in those groups k for which Γk(v) = 1. That is, C = ∪{u}k :
Γk(v) = 1. Then, we use the basic attack for each element c in the candidate
set C. More precisely, we use the basic attack to determine whether the victim
v is one of the users c ∈ C. If so, then the attack was successful, and the user
is successfully de-anonymized.

A faster, but more fragile, approach is to leverage the group membership
information and generate a candidate set C that contains the intersection of all

17

Chapter 2 De-Anonymization of Social Networks

members {u}k in those groups k for which Γk(v) = 1. That is, C = ∩{u}k :
Γk(v) = 1. Again, the basic attack is used to check for each user c in the
candidate set C. Since the second technique uses set intersection instead of
set union, it produces much smaller candidate sets and thus, it is faster.

Robustness. To see why the first attack is more robust than the second,
we have to realize that the information that the attacker learns might be
not entirely accurate. There are two reasons for this: First, the browsing
history may contain incomplete information about the victim’s past group
activity (e.g., a user might have deleted the browsing history at some point in
the past). Second, the group membership information that the attacker has
collected “degrades” over time, deviating increasingly from the real group and
membership configuration as users join and leave groups.

As a result of inaccuracies, some entries Γk(v) in the partial group fingerprint
might be wrong. Two cases need to be distinguished. The first case is that the
entry Γk(v) for a group k is 0 (or undefined), although v is a member of k. In
general, this is not a problem, as long as the attacker finds at least one group
k that the victim belongs to (and Γk(v) = 1). The reason is the following.
Since the entry for k is zero, the first attack will not add the members of k

(including v) to the candidate set C. However, we assume that there is another
group that contains v. This means that v will be added to C, and the attack
succeeds. For the second attack, the candidate set C can only shrink when
a new group is considered (since set intersection is used). Thus, the attacker
might need to check a larger candidate set, but he will still find v eventually.

The second case describes the situation where the entry Γk(v) for a group
k is 1, although v is not a member of k. This causes no problem for the first
attack, which simply adds additional users (all members from group k) to the
candidate set C. However, it is a problem for the second technique. The
reason is that the intersection operation now includes a group that does not
contain the victim user v. As a result, v will not be a part of the candidate
set C, and hence, the attack will fail to find the victim.

In practice, an attacker would first attempt to use the fast (but fragile)
approach based on set intersection. Only if this fails, one fall-backs onto the
slower, more robust approach based on set union.

2.3.3 Efficiently Obtaining Group Information

To carry out the advanced attack, the adversary requires information about
groups and group memberships. In this section, we demonstrate how an at-
tacker can obtain this knowledge with relatively little effort.

The number of groups is typically considerably smaller compared to the

18

2.3 De-Anonymization Attacks

number of users. Nevertheless, collecting information about all groups and the
members of each group is a challenging task. Therefore, we now discuss two
techniques to efficiently obtain information about groups: group directories
and group member crawling.

Group Directory

Typically, groups within social networks aim at attracting members that share
a common interest with the group. To this end, social networks either offer
a search functionality to find groups with a specific keyword, or they publish
a list of the existing groups, called a group directory, via their website. This
directory can be listed and searched by members of the social network to find
groups related to their interests.

In our attack, it is desirable for the attacker to have knowledge on as many
groups as possible. More specifically, the attacker is interested in the group
identifiers to construct the hyperlinks for the history stealing attack. An
attacker can use standard web crawling techniques to download the group
directory, and then extract the group IDs from the web page’s source code.
Several social networks even allow the group directory to be viewed by non-
members, which enables an attacker to use commercial crawling services for
this task (see Section 2.4.3 for details).

Directory Reconstruction Some social networks do not publish a group di-
rectory or only do so partially (i.e., not all information about groups can be
accessed this way). We implemented three methods to successfully circumvent
this obstacle in practice.

First, the group identifiers that we observed in our experiments were either
systematic (for example, numerical) or names. If group IDs can be guessed
by an attacker, the group directory can be reconstructed by simply iterating
over all (or at least a large fraction of) the ID space. The presence of the
individual groups can be verified by trying to access each group’s web page.
In Section 2.5, we show that this brute-force technique can be used in practice
effectively with a relatively small effort.

Second, an attacker can use the built-in search functionality of social net-
working websites to expose the group directory by listing all groups within a
specific category of groups. Group search results are usually ranked by mem-
ber size, which means that even if the result size is limited to a fixed value,
an attacker gains valuable information.

Finally, we found that social networks may provide special “public” mem-
ber profiles that can be accessed by non-members (i.e., they serve as “virtual”

19

Chapter 2 De-Anonymization of Social Networks

business cards). For privacy reasons, these profiles usually contain less per-
sonal information than the original member profiles. However, these public
profiles typically reveal the groups for a specific member. In this case, an at-
tacker can reconstruct the group directory (including the group members) by
crawling the public member profiles. Note that this technique is rather costly,
since it requires to crawl member profiles.

Group Member Crawling

In addition to group IDs, an attacker needs to obtain the IDs of the group
members for a significant amount of groups to successfully de-anonymize group
members. This step can also be automated and performed on a large-scale, as
we discuss below.

If we deal with a public group, the easiest case is that the social network
allows all members of this group to be listed. Then, we can use a standard
crawling approach to discover the group members and use them for our attack.
As we show in Section 2.5, even tens of millions of group members can be
crawled with only a limited amount of resources.

Some social networks limit the size of the member list that can be browsed.
For example, Facebook only returns the first 6,000 members of a group. Hence,
this limits a crawling attempt to only fully discover groups with up to 6,000
members. While this is still useful in practice, clearly, we would like to also
be able to crawl larger groups.

In order to overcome this limitation, we take advantage of the fact that social
networks typically allow searching within groups for members. This limits the
amount of members returned per search, but we can efficiently extract most
group members by searching for common first or last names. We use publicly
available data from the U.S. Census Bureau [114] to determine common names,
and then utilize this information to search within large groups to extract their
members.

If we are dealing with a closed group, we cannot easily access the member-
ship information for this group since only members can access this information.
Hence, we send a request to join the group from a legitimate user account by
using a script (i.e., “I would like to become member of this group”). If our
application is accepted, we leave the group after we have collected membership
information. Surprisingly, such a simple automated demand is successful in
practice as we show in Section 2.5.

Note that, depending on the resources of an attacker, the member crawling
may optionally be performed on-the-fly instead of offline before the actual
attack. In an online setting, the attacker would crawl the groups a victim is a
member of on demand, and then use the collected information for performing

20

2.4 Crawling Experiments

the second round of history stealing (i.e., verification step). From a conceptual
point of view, both attacks are similar. They just vary in the amount of
resources needed.

2.4 Crawling Experiments

In this section, we describe our empirical experiments to extract group in-
formation from social networks and present the results we obtained for three
social networks.

2.4.1 Ethical and Legal Considerations

Crawling data in social networks is an ethically sensitive area. Clearly, one
question that arises is if it is ethically acceptable and justifiable to conduct
crawling experiments in social networks. Similar to the experiments conducted
by Jakobsson et al. in [69, 70], we believe that realistic experiments are the
only way to reliably estimate success rates of attacks in the real-world.

First, in the crawling experiments we conducted, we only accessed user in-
formation that was publicly available. Second, note that the crawler we wrote
was not powerful enough to influence the performance of any social network
we investigated. Third, the commercial crawling services we used had mis-
use protection mechanisms like bandwidth throttling in place that prevented
them from launching denial of service-like attacks against the websites that
they were crawling (i.e., because of a higher crawling load).

We also consulted the legal department of our university (comparable to the
IRB in the US), and we were informed that our experiments are approved.

2.4.2 Overview

For our experiments, we performed an in-depth analysis of the Xing plat-
form. Furthermore, we carried out feasibility studies for Facebook [2] and
LinkedIn [3].

We chose these networks as they are representative of the different categories
of popular social networks. For example, Facebook aims at an audience that
would like to maintain and create friendships, whereas LinkedIn and Xing are
more focused towards business users who would like to maintain and extend
their professional networks. Furthermore, each network has a unique way of
representing its member and group directories.

Because of resource limitation, and because we had access to more Xing
users for real-world user experiments, we chose to perform an in-depth analysis

21

Chapter 2 De-Anonymization of Social Networks

of Xing (Xing’s size is considerably smaller than Facebook or LinkedIn, but it
still has more than eight million users).

In the following, we discuss how an attacker can automatically extract group
information (i.e., which is a prerequisite for the de-anonymization attack) from
each of these social networks.

2.4.3 Social Network Crawling Approaches

In order to access group information, an attacker can either run crawlers on
her machines, or use third-party crawling services. For our experimental eval-
uation, we followed both approaches by implementing a custom web crawler,
and by using commercial crawling services.

Custom Crawler

We implemented a web crawler that works by following the hyperlinks on a
given starting public web page and then continues to download the HTML
source code of each hyperlinked web page. To be able to also access parts
of the social network that are only restricted to members, we added features
that allow the crawler to login using provided member credentials. To this
end, we manually registered three members to the social network using valid
registration data (e.g., e-mail for our lab, etc.).

To extract the desired data, the crawler matches a set of regular expressions
against the HTML source code. The extracted data (for example, group IDs
and group names) are then stored in a database. To speed up the crawling
process, we ran up to four instances of our crawler simultaneously.

Anti-Crawling Techniques Most social networks employ anti-crawling tech-
niques to protect the data of their members. Typically, if a member behaves
suspiciously (for example, if he tries to access an overly large amount of user
profiles in a short amount of time), this member’s account will be temporarily,
or permanently disabled. In contrast, no similar restrictions are in place for
group directories. We believe that this mainly has two reasons:

1. The content is regarded as being public, and not security-relevant.

2. As a means of promoting groups, it should be intentionally easy to access
the directory.

In addition, we observed that group directories often contain additional
information that is relevant for an attacker (e.g., group size, or additional
meta data). In our scenario, an attacker benefits from these factors, as it
allows her to prepare the history stealing attack with relatively little effort.

22

2.4 Crawling Experiments

Commercial Crawling Services

Attackers with limited computing or network resources might resort to com-
mercial crawling services instead of operating their own web crawler. Such
services allow customers to specify which websites to visit. Typically, the
crawling service might accept a given list of web pages and regular expres-
sions. Such a service can be very cost effective. For example, services such as
80legs [34] charge as low as $0.25 per one million crawled URLs. In our exper-
iments, we used such a service provider to perform some of our experiments.

2.4.4 Crawling Experiments

We applied the two different crawling strategies to the three social networks
Xing, Facebook and LinkedIn. In the following, we elaborate on how the group
directories for each network can be retrieved, and provide an overview of the
results.

Xing

We mainly concentrated our crawling experiments on this network, as its
smaller size allowed us to fully crawl its public groups. This network is being
actively policed by administrators who, for example, quickly remove empty,
or inactive groups.

By directing our custom crawler to Xing, we could download the data of
6,574 groups containing more than 1.8 million unique members. Xing claims
to have about 8 million members in total (i.e., including members that do not
use groups at all). Hence, the users in these groups represent a substantial
fraction of the entire social network.

Closed Groups On Xing, the largest groups are public. That is, there are
no restrictions on who is allowed to join these groups. On the other hand,
an attacker might also be interested in crawling closed groups (that require
manual approval by a moderator) in order to increase the effectiveness of the
de-anonymization attack. To test how restrictive these groups are, we sent
automated member requests from a legitimate account to the groups that had
a large number of members.

We automatically applied for membership in 1,306 groups, and were ac-
cepted to 108 groups (8.2%). This allowed us, as an attacker, to see the user
IDs of a total of 404,331 group members. Note that membership was denied
by 1,199 groups (91.8%). However, despite the high rejection rate, we believe

23

Chapter 2 De-Anonymization of Social Networks

that our test demonstrates that a malicious user can successfully launch au-
tomated social engineering attacks to become member of closed groups. In
practice, a real attacker would probably use fake fotos, detailed fake informa-
tion, and a corresponding application text to increase her success rate. In our
experiments, we simply asked if we could become member of the group.

Interestingly, our success rate was higher for the larger (i.e., more important
from the attacker’s point of view) groups. We were often instantly added to
the group without receiving any feedback. Hence, membership application
seems to be a formality for many large, closed groups.

Facebook

Recovering the group directory for Facebook initially appeared straightfor-
ward. The network publishes a group directory on its website. Access to the
directory is not restricted. As a result, everyone can download it from the
web. The directory itself is organized in a multi-level hierarchical collection
of alphabetically ordered lists that provide pointers to individual web pages
to make it convenient for a human to navigate.

Due to the large size of the dictionary, we decided to use a commercial
crawling service to download it. In total, the dictionary consisted of 7.1GB of
HTML data in about 7,4 million files that contain 39,156,580 group IDs. The
crawling service cost us $18.47 and we received the data after five days.

To enumerate Facebook’s group members, we extracted the group IDs from
the group directory, and then used our custom crawler to enumerate the mem-
bers for each group. Facebook permits each logged-in user to search within the
member lists of arbitrary groups. This search can be used to filter the mem-
ber lists to only show members whose first and/or last name fully matches
the search token. Using an empty string as the search token returns random
sample of the group members. The size of each search result is limited to 6,000
members, and can be retrieved in chunks of 100 members per HTTP request.

Using Member Search Functionalities Since most Facebook groups have
less than 6,000 members, this threshold is high enough and often allows us to
obtain full member lists. An attacker can additionally use the search function-
ality to enumerate members in larger groups by searching for common first or
last names. For example, with only 757 first names (233 male, 524 female), an
attacker would be able to cover a cumulative percentage of more than 75% for
each gender. According to the public 1990 US census [114] statistics, the most
common first name, “James”, has a 3.318% probability among males, and
1.635% among the overall population. Hence, for groups with about 367,000
members, an attacker could obtain all members with this name (i.e., the search

24

2.4 Crawling Experiments

returns about 6,000 members for each name) on average. An attacker could
even refine this approach by computing a more accurate name distribution by
downloading Facebook’s own (also publicly available) member directory.

Note that enumerating very large groups that contain millions of members
only provides a limited benefit for an attacker. Apart from the high crawling
effort, the time required to check for so many members via history stealing
would defeat the purpose of using groups as a means of search space reduction
in a realistic attack scenario (e.g., see throughput rates in Section 2.5.3).
However, an attacker can also use the group member search functionality to
verify the membership of individual members.

Results In total, we successfully crawled more than 43.2 million group mem-
bers from 31,853 groups in a period of 23 days using only two machines. While
this is still only a fraction of the overall Facebook groups and members, it
demonstrates the feasibility of the approach.

In general, we believe that an attacker could also use a malicious botnet in
real-life, or crawl for a longer period of time, and collect significantly more
data compared to our effort with only limited resources.

LinkedIn

Just like Xing, LinkedIn focuses on business users. LinkedIn is a popular
service and is widely-known.

Third-Party Crawling Use-Cases LinkedIn does not publish a full group
directory, but provides a group search functionality for logged-in users. Theo-
retically, this functionality could be exploited in a similar fashion to the group
member search functionality of Facebook. However, this requires a much larger
effort due to the higher variation in possible group names as opposed to first
or last names of individuals.

LinkedIn uses easy to predict group IDs. Specifically, LinkedIn uses nu-
merical group IDs that range from 0 (oldest) to about 3,000,000 (the newest
groups). In addition, the group ID space seems to be sparsely populated, as
according to the network itself, it currently has only 442,434 registered groups.

In a two-phase crawling scenario, we first started a crawling pass with a
commercial service [34]. In a preparation step, we first generated three million
hyperlinks for the observed group ID space, and then used these links as “seed”
for the commercial crawling service. The results of the crawling service can
be used to identify which group IDs actually exist (i.e., a group profile page
is returned if the ID exists). The cost for this experiment was $7.49.

25

Chapter 2 De-Anonymization of Social Networks

After probing for the existing groups, we performed a second crawling run
to retrieve additional information for each group such as its group size and
group description. As this operation requires a logged-in user, we had to use
our custom crawler.

While LinkedIn restricts access to its group directory, we found this not to
be the case for its public member directory. For privacy reasons, the public
member profiles are much less detailed than the regular profiles within the
social network. Surprisingly, though, they do contain the membership status
and group IDs for all groups that a member has joined. Clearly, data on
groups and group memberships does not seem to be regarded as being security-
relevant. As the public member profiles can be freely accessed over the web,
an attacker can use automated legal third-party services to fully “outsource”
the information gathering phase of the de-anonymization attack.

In a different crawling scenario, we performed an experiment and used an
external crawling service to crawl the public profiles of three million members
that we randomly picked from LinkedIn’s member directory. The costs for the
crawling were $6.57. Assuming a linear cost model, we estimate overall costs
of about $88 for crawling all 40 million public profiles. This small investment
would allow an attacker to target all group members of LinkedIn in a de-
anonymization attack.

Other Social Networks

In order to find out how generic the problem of group information disclosure
is, we manually analyzed five additional popular social networks that share
features with the three networks that we analyzed in more detail.

Table 2.2 shows the features that are related to our de-anonymization sce-
nario for these networks. All networks are vulnerable to history stealing and
de-anonymization via groups. While we did not conduct crawling experiments
for these networks, we expect the results and techniques to be similar to the
ones we described in this section. Our empirical results demonstrate that
group memberships are generally not considered as being privacy-relevant in
many social networks.

2.5 Evaluation

In this section, we evaluate the practical feasibility of the de-anonymization
attack.

26

2
.5

E
v
a
lu

a
tio

n

Facebook MySpace Friendster LinkedIn StudiVZ Xing Bigadda Kiwibox

Uses dynamic links ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Group directory Full Searchable Full Searchable Searchable Searchable Searchable Full

Member directory Full Searchable Full Full Searchable Searchable Searchable Searchable

Group member enumeration ≤6,000 Unlimited Unlimited ≤500 Unlimited Unlimited Unlimited Unlimited

Public member profiles ✔ ✔ ✔ ✔ ✔ ✔ ✔ ×
Vulnerable ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Table 2.2: Vulnerability Comparison of Social Networks.

27

Chapter 2 De-Anonymization of Social Networks

2.5.1 Analytical Results

To assess the effectiveness of our de-anonymization attack, we first perform an
analytical analysis of Xing. For this social network, we have a comprehensive
overview. More precisely, we have crawled all public and several closed groups,
together with all member information for these groups. We start with an
overview of the different parameters of that network related to our attack
scenario.

In total, we collected membership information for more than 1.8 million
unique users in 6,466 public and 108 closed groups. Based on our data, the
average Xing user is a member of 3.49 groups. By using data from Xing’s group
directory, we found that for the whole network, the sum of group member
sizes (i.e., the number of membership relations) for the 6,466 public groups
totals to more than 5.7 million. In contrast, the 15,373 closed groups only
contain about 4.4 million membership relations. Furthermore, the average
size of public groups is 914 members, whereas it is only 296 members for
closed groups. The closed groups that we crawled contain 404,548 unique
users. However, of these users, 329,052 (81.34%) were already covered by the
public groups in our dataset.

These figures indicate, that an attacker can already collect a substantial
amount of information by only focussing on public groups. The practical
impact of closed groups appears to be rather low, given the increased effort
that is necessary for gaining membership data for closed groups.

As mentioned in Section 2.3, the improved de-anonymization attack requires
that the history stealing step finds at least one group k that the victim is a
member of (that is, Γkv = 1 for at least one k). Thus, when probing for an
increasing number of groups, it is interesting to see how the number of unique
users grows that appear in at least one of these groups. When this number
grows quickly, the attacker has a good chance to get a “hit” after inspecting
a small number of groups.

Of course, one also needs to consider the order in which the history stealing
step should probe for group membership: clearly, the attacker wants to op-
timize the process such that he has seen each user at least once after as few
attempts as possible. One approach is to perform a greedy search. That is,
the attacker first probes the largest group, then the second largest group, and
so on. The problem is that this order might not be optimal, since it does not
take into account group membership overlaps. An alternative approach is to
choose the groups by information gain, i.e., in each step, test the group which
has most members not seen before. This might leads to a better probing pro-
cedure, since the attacker covers in each step the largest possible number of
previously-unseen users.

28

2.5 Evaluation

Figure 2.3: Cumulative distribution for number of unique users seen after
crawling a specific number of groups (Xing).

29

Chapter 2 De-Anonymization of Social Networks

Figure 2.3 shows the cumulative distribution for the number of unique users
seen after crawling a specific number of groups. Besides considering all groups,
we also studied the effect of limiting the search space to groups with at most
50,000 and 20,000 members, respectively. This takes into account that really
large groups with hundreds of thousands of members are too large to probe
efficiently, thus we restrict an attack to groups with an upper bound on the
group size. The results indicate that an attack is very effective in practice:
Even after testing only a few hundred groups, we have seen a significant per-
centage of all users at least once, i.e., a specific user is a member in at least
one of the groups we have tested so far. In fact, we have seen more than 50%
of the users after testing only 61 groups. After testing 1,108 groups, we have
seen 90% of the users at least once. When restricting the search space, we can
observe that we do not find each member at least once since some users are
only member of large groups. Nevertheless, we can find more than 90% of the
overall users when only considering groups smaller than 20,000 members.

The figure also shows that the difference between the greedy and the infor-
mation strategy is small. More precisely, the overall shape is very similar, only
the number of tested group is significantly different: with the information gain
strategy, an attacker only needs to probe 6,277 groups until he has seen each
user at least once, whereas the brute-force approach requires to test 6,571 of
all 6,574 groups before the complete set of users (who are part of at least one
group) is covered.

For our next analysis, we assume that the attacker has successfully launched
a history stealing attack and computed an accurate group fingerprint Γ(v) for
a victim v. This allows the attacker to use the fast de-anonymization attack
based on set intersection. To demonstrate the effectiveness of this attack, we
show in Figure 2.4 the cumulative distribution of the candidate set sizes after
set intersection. Each user in the candidate set needs to be inspected by the
basic attack, thus, a smaller size if favorable for the attacker. Interestingly, for
42.06% of the users (= 753,357 users), the group fingerprint is exact, i.e., only
a single user in the social network is a member of exactly these groups. These
users can be uniquely identified just based on their group fingerprint, and no
additional steps are required. For one million users, we can narrow down the
candidate set to less than 32 users, and for 90% of all users, the candidate set
is reduced from initially ∼1.8 million to less than 2,912 user. This highlights
that one can dramatically narrow down the search space of candidates (who
are then compared against the victim, one by one, using the basic attack).

Extracting a partial group fingerprint for a victim v might not always work
flawlessly (for reasons discussed in Section 2.3). As a result, the fast de-
anonymization attack based on set intersection could fail. In this case, the
attacker needs to resort to the slower but more robust attack based on set

30

2.5 Evaluation

Figure 2.4: Cumulative distribution for the size of candidate sets (Xing).

union. In Figure 2.5, we show the cumulative distribution of the candidate
set sizes when performing set union. Compared to the candidate sets from
Figure 2.4, the union sets are considerably larger due to the fact that we
merge each group for which we have a match. Second, there is still a significant
reduction in size compared to the overall number of users in Xing for a larger
fraction of victims. For example, the set union attack still reduces the size of
candidate set to less than 50,000 for more than 72% of all users on Xing.

We performed the same kind of analysis for Facebook. Since we did not com-
pletely crawl this social network, the results in Figure 2.6 provide an overview
for the snapshot of group information we obtained during our experiment. For
the 43.2 million users we have seen in 31,853 groups, 9.9 million have an exact
group fingerprint Γ(v). Furthermore, for 25.2 million users, the size of the
candidate set is smaller than 1,000. The distribution of users in a candidate
set of a given size is different compared to the Xing experiment, but we expect
that also for Facebook the shape of the cumulative distribution will be similar
if an attacker has crawled the complete network.

31

Chapter 2 De-Anonymization of Social Networks

Figure 2.5: Cumulative distribution for the size of group union sets (Xing).

32

2.5 Evaluation

Figure 2.6: Cumulative distribution for the number of users seen in the can-
didate set (Facebook).

33

Chapter 2 De-Anonymization of Social Networks

2.5.2 Real-World Experiments

To demonstrate the practical feasibility of our attack, we created a website
that performs a de-anonymization attack against Xing. While there is no
technical restriction that limits our attack scheme to a specific network, we
chose to only implement it for Xing, as our crawling experiments had covered
the highest fraction of groups and members for this network.

For ethical reasons, we only promoted this website to volunteers that we
picked from our personal contacts. Before the actual de-anonymization pro-
cess starts, a warning page explains the purpose of the experiment to visitors.
Then, the visitors need to explicitly acknowledge that they would like to par-
ticipate in the experiment. Once a visitor decides to take part, she also needs
to fill out a brief questionnaire that asks her about how she uses the social
network, if she shares her computer or user account with someone else, and
how often she participates in social networking groups.

Once the experiment starts, the visitor’s browsing history is probed for the
URL of the main web page of Xing. If this URL is not present in the history,
we assume that the visitor has not used Xing recently, or that she has disabled
her browsing history (see the discussion in Section 2.6). In this case, we abort
the de-anonymization attempt, and do not proceed.

If we do identify that a user has visited Xing before, we then use history
stealing to probe for the URLs of the groups within Xing. That is, for each
group, we check the visitor’s browsing history for dynamic group links. We
only expect these links to be present in the browsing history of users who are
indeed members of these groups. We then perform the analysis based on the
obtained group fingerprint, and present the result to the user.

Results In total, we launched our attack on 26 volunteers from our Xing
contacts. For 11 of these visitors, we could not find any dynamic links that
indicated interaction with groups in their browsing history. The reasons for
this can be manifold, for example only seldom usage of groups or regularly
flushing the browsing history.

For the remaining 15 visitors, we could determine group fingerprints, and
successfully launched de-anonymization attacks. More precisely, we could
leverage the faster group intersection variant of the attack, and could compute
intersection sets for 11 visitors. The median size of these intersection sets was
only 570 members, thus a search within this set can be performed easily. For
4 visitors, we had to fallback to the more robust, but slower union set-based
variant of our attack. As expected, the union set is significantly larger com-
pared to the intersection set: the median size was 30,013 members, which can
nevertheless be probed during a history stealing attack.

34

2.5 Evaluation

Figure 2.7: Runtime benchmark for different web browsers on different oper-
ating systems. The legend corresponds to the browsers from left
to right.

In summary, our experiments with real users show that our attack works in
practice. We managed to de-anonymize 15 of 26 users who participated in our
experiment.

2.5.3 Run-Time and Throughput Rate

The runtime of the attack significantly influences its success rate in practice.
Recall that we perform an active attack, and probe the victim’s browsing
history. Thus, the victim needs to interact with the attacker for a certain
amount of time. There are many techniques to convince a victim to stay longer
at the attacker’s website. These techniques range from benign attempts such
as showing a video or music clip, to offensive techniques such as “hijacking”
the user’s browser with the help of JavaScript to prevent her from leaving the
site. In any case, from the point of view of the attacker, it is desirable that
the attack takes as little time as possible.

35

Chapter 2 De-Anonymization of Social Networks

We measured the typical time it takes to perform a history stealing attack
in practice. We performed experiments with the four major web browsers (i.e.,
Internet Explorer, Firefox, Safari, Chrome) on different operating systems (i.e.,
Windows Vista, Ubuntu Linux, Mac OS X). The test machine was a MacBook
Pro with a 2.8 GHz Intel Core 2 Duo processor and 4 GB RAM. We booted
the operating system natively on the machine, and used no virtualization
software to prevent side-effects. In each test case, we measured the time it
takes to perform a history stealing attack by checking a specific number of
URLs (i.e., we check if these URLs have been visited or not): That is, we
started with 1,000 URLs, and we increased the number of URLs to be checked
in steps of thousand until we reached 90,000. We performed each test ten
times, and calculated the mean values. These values are shown in Figure 2.7.
In order to increase readability, and since the mean error between individual
runs was always below 5%, we omit error bars.

Safari on both Mac OS X and Windows achieved the best results in our
experiments: A history stealing attack with 90,000 tests can be performed
in less than 20 seconds. Chrome is about 25% slower, while Firefox requires
between 48 and 59 seconds, depending on the operating system. The slowest
performance was measured for Internet Explorer, which took 70 seconds to
probe all pages. Nevertheless, even for Internet Explorer, we could probe
more than 13,000 URLs in less than 10 seconds. Together with the results
from Figure 2.3, this show that an attacker can detect many groups of a
victim in a small amount of time.

2.5.4 Fluctuation in Groups

Another aspect we need to consider is the fluctuation rate in groups. From
the viewpoint of an attacker, it is interesting to understand how the groups
and members in a social network change over time.

First, it is unlikely that an attacker has access to the networking and com-
puting capacity that would enable her to take a complete snapshot of a social
network (i.e., permit her to collect the necessary data for a de-anonymization
attack in a time span that is short enough to prevent any change in both
groups and members). In practice, depending on the size of the network and
the attacker’s resources, the duration from start to end of crawling and the
reconstruction of the groups directory might take days, or even weeks.

Second, there will also be changes that are caused by normal user behavior
after the initial crawling phase. For example, members will join or leave
groups, or new groups will be created. Over time, these changes cause the
crawled data to increasingly deviate from the real configuration of groups
and members in the network. Determining how stable the group data is, is

36

2.5 Evaluation

Figure 2.8: Degradation of group data in Xing.

related to the question of how often an attacker would have to recrawl parts
or the entire social network. Hence, this directly influences how much effort
an attacker has to invest for a de-anonymization attack. An attacker can also
develop iterative approaches for keeping the collected information up-to-date,
e.g. social networking features that explicitly allow the listing of only new
members in groups and newly created groups can be used.

For measuring the fluctuation in groups, we conducted experiments for Xing.
Instead of repeatedly crawling the entire network, we only downloaded the
group directory and the member size for each group. This permitted us to
repeat this operation every four hours over a period of 18 days.

Figure 2.8 shows the CDF for the changes in group size for four different pe-
riods. Interestingly, while the results from our measurements confirm that the
quality of the collected group and member data degrades over time, they also
show that the data stays relatively stable, significantly reducing the necessary
crawling effort for an attacker.

While we are aware of the possibility that the amount of users that either

37

Chapter 2 De-Anonymization of Social Networks

join or leave a group might lead to the same overall group size, we believe that
the result of our experiment is still accurate enough to give an indication of
the amount of change that affects the Xing’s group configurations.

2.6 Possible Mitigation Techniques

The approach presented in this work allow a malicious user to launch de-
anonymization attacks against a large number of victims with relatively little
effort. Whereas history stealing by itself is often not enough to identify in-
dividual users, combined with the misuse of group membership information
stored in social networks, it becomes a critical weakness. In this section, we
list mitigation techniques that aim to thwart our attack.

2.6.1 Server-side Mitigation

As a server-side mitigation, web applications could use dynamic hyperlinks
that an attacker cannot easily predict. For example, existing systems could
be hardened against the history stealing attack by automatically adding HTTP
GET parameters that contain random tokens to all hyperlinks. Depending on
the utilized web server, it might be possible to retrofit existing web applications
by using URL rewriting to automatically add such tokens to each URL.

Even adding a simple, alphanumerical string of length 2 would increase the
attacker’s search space by a factor of 3844 (622). Hence, the attack would
effectively be prevented.

Also, web applications should preferably use HTTP POST instead of HTTP
GET in order to send parameters. This is because only GET parameters are
stored in the browsing history. In fact, a server-side mitigation solution that
randomizes web-application links is presented in existing work [71].

Note that one difficulty with server-side mitigation is that the usability of
the web applications may be affected. For example, it may become more
difficult to bookmark parts of the application, or links to certain groups may
become more difficult to remember.

2.6.2 Client-side Mitigation

On the client-side, history stealing is more difficult to fix without sacrificing
functionality. Obviously, the goal is to prevent browsers from leaking sensitive
and private information via style information. As a solution, browsers could
generally restrict client-side scripts from accessing the CSS properties of hyper-
links. Unfortunately, this could also break existing websites that legitimately

38

2.7 Summary

do so.
In [67], the authors offer a clever solution by extending the same-origin

concept of web browsers to visited links. Unfortunately, so far, none of the
published countermeasures to history sniffing have experienced wide-spread
adoption, whether on the server, nor on the client-side.

Current web browsers only provide limited options for protection against
attacks that are based on history stealing. Because the attack can be imple-
mented without the need for client-side scripting, turning off JavaScript, or
using browser add-ons that protect against script-based attacks (for example,
NoScript [84]) may only provide limited help.

Users can also permanently, or temporarily disable the browsing history.
They can, for example, use the “private browsing modes” that are supported
by several current browsers (e.g., Firefox, Safari). Unfortunately, all of these
methods also require some effort on behalf of the user, and reduce the usability
of web browsers and web applications.

2.7 Summary

In this chapter, we introduced a novel de-anonymization scenario against so-
cial networking websites. We have shown, theoretically and experimentally,
that an attacker can crawl social networking sites and use publicly available
group membership data to de-anonymize large amounts of members of social
networks with relatively low effort. Clearly, as social networking websites store
large amounts of sensitive data for millions of users, this attack is a serious
security threat,

In the next chapter of this thesis, we are going to widen the scope of our
observations. In contrast to analyzing the privacy issues of a single type of
website, we are going to examine a more complex system, a whole branch of
the online business. Specifically, we are performing a case study on the online
adult industry, as it is widely assumed that many websites in this industry are
privacy threatening. We perform a technical and economical analysis to show
the industry’s privacy and security issues, as well as its relationship with the
underground economy.

39

Chapter 2 De-Anonymization of Social Networks

40

Chapter 3

Privacy Threats in Online Services

Typically, popular online services (such as news websites, video and media
sharing websites, online shops) attract large amounts of visitors. As many
users are not aware of the potential security and privacy risks, this also creates
an incentive for cyber criminals to participate in online services themselves. In
this chapter, in contrast to “direct” privacy threats against websites (as shown
in the previous chapter for social networks), we are interested in examining a
whole branch of online business in more detail.

As a case study, we have chosen the online adult industry, as it is among the
most profitable business branches on the Internet, its participants clearly are
interested in protecting their privacy, and its web sites attract large amounts
of visitors and traffic. Nevertheless, no study has yet characterized the in-
dustry’s economical and security-related structure. As cyber-criminals are
motivated by financial incentives, a deeper understanding and identification
of the economic actors and interdependencies in the online adult business is
important for analyzing security-related aspects of this industry.

This knowledge can be used to answer the following questions: (1) Which
economic roles exist in the online adult industry? (2) Is there a connection
between the online adult industry and cyber-crime? (3) What specific threats
target visitors of adult web sites? (4) Is there domain-specific malicious activ-
ity originating from adult web sites? To answer these questions, we applied a
combination of automatic and manual analysis techniques to investigate the
economic structure of the online adult industry and its business cases. To gain
additional insider information that can be used for a security assessment, we
also created and operated two adult web sites. In this study, we provide a
survey of the different economic roles that adult web sites assume, and high-
light their economic and technical features. We provide insights into security
flaws and potential points of interest for cyber-criminals. Furthermore, we
also performed several experiments to gain a better understanding of the flow
of visitors to these sites and the related cash flow, and report on the lessons
learned while operating adult web sites.

41

Chapter 3 Privacy Threats in Online Services

3.1 Introduction

“The Internet is for Porn” is the title of a satirical song that has been viewed
several million times on YouTube. Its popularity indicates the common belief
that consuming pornographic content via the Internet is part of the modern
pop-culture. Compared to traditional media, the Internet provides fast, easy,
and anonymous access to the desired content. That, in turn, results in a
huge number of users accessing pornographic content. According to the Inter-
net Pornography Statistics [65], 42,7% of all Internet users view pages with
pornographic content. From the male portion of these users, 20% admittedly
do it while at work.

With a total worth of more than 97 billion USD in 2006 [65], the Internet
porn industry yields more revenue than the top technology companies Mi-
crosoft, Google, Amazon, eBay, Yahoo!, and Apple combined. Interestingly,
however, to the best of our knowledge, no study has yet been published that
analyzes the economical and technological structure of this huge industry from
a security point of view. We aim at answering the following questions:

Which economic roles exist in the online adult industry? Our analysis
shows that there is a broad array of economic roles that web sites in this indus-
try can assume. Apart from the purpose of selling pornographic media over
the Internet, there are much less obvious and visible business models in this
industry, such as traffic trading web sites or cliques of business competitors
who cooperate to increase their revenue. We identify the main economic roles
of the adult industry and show the associated revenue models, organizational
structures, technical features and interdependencies with other economic ac-
tors.

Is there a connection between the online adult industry and cyber-
crime? According to web statistics, adult web sites regularly rank among
the top 50 visited web sites worldwide [6]. Anonymous and free access to
pornographic media appeals to a huge audience, and attracts large amounts
of Internet traffic. A global increase in available consumer bandwidth has
made adult web sites even more popular over the past years. We show that
this highly profitable business is an attractive target for cyber-criminals, who
are mainly motivated by financial incentives [52, 64].

What specific threats target visitors of adult web sites? Common be-
lief suggests that adult web sites tend to be more dangerous than other types
of web sites, considering well-known web-security issues such as malware, or
script based attacks. Our results verify this assumption, and in addition, we

42

3.1 Introduction

show that many adult web sites use aggressive marketing and advertisement
methods that range from “shady” to outright malicious. They include tech-
niques that clearly aim at misleading web site visitors and deceiving business
partners. We describe the techniques we identified, and their associated secu-
rity risks.

Is there domain-specific malicious activity originating from adult
web sites? To be able to assess the abuse potential of adult web sites, we
describe how we created and operated two adult web sites. This enabled us
to identify potential attack points, and participate in adult traffic trading.
We conducted several experiments and performed a security analysis of data
obtained from web site visitors, evaluating remote vulnerabilities of visitors
and possible attack vectors. We also identified and experimentally verified
scenarios involving fraud and mass infection that could be abused by adult
site operators, showing that we could potentially exploit more than 20,000
visitors spending only about $160.

To summarize, we make the following contributions in this work:

1. We provide a detailed overview of the individual actors and roles within
the online adult industry. This enables us to better understand the
mechanisms with which visitors are redirected between the individual
parties and how money flows between them.

2. We examine the security aspects of more than 250,000 adult pages and
study, among other aspects, the prevalence of drive-by download attacks.
In addition, we present domain-specific security threats such as disguised
traffic redirection techniques, and survey the hosting infrastructure of
adult sites.

3. By operating two adult web sites, we obtain a deeper understanding of
the related abuse potential. We participate in adult traffic trading, and
provide a detailed discussion of this unique aspect of adult web sites,
including insights into the economical implications, and possible attack
vectors that a malicious site operator could leverage. Furthermore, we
experimentally show that a malicious site operator could benefit from
domain-specific business practices that facilitate click-fraud and mass
exploitation.

This chapter is structured as follows: Section 3.2 discusses the analysis tech-
niques we used to study adult web sites. Section 3.3 presents the observations
we made and insights we gained on the economic and technical structure of

43

Chapter 3 Privacy Threats in Online Services

adult sites. In Section 3.4, we describe how we mimic adult webmasters and
operate two adult websites, allowing us to collect and evaluate security rele-
vant insider information.

3.2 Analysis Techniques

In this section, we describe the experimental setup that we used to perform
the analysis that allowed us to gain insights into the online adult industry.
As part of this study, we first manually examined about 700 pornographic
web sites. This allowed us to infer a basic model of the industry’s economic
system. In the second step, we created a system that crawls adult web sites
and extracts information from them to automatically gather additional data.

3.2.1 Manual Inspection

Given the minimal amount of (academic) information currently available for
this very specific type of Internet content, we basically had to start from
scratch by projecting ourselves into a “consumer” role. By using traditional
search engines, we located 700 distinct web sites related to adult content. This
initial sample set provided the first insights into the general structure of adult
web pages. For example, we observed that many web sites contain parts that
implement similar functionality, such as preview sections and sign-up forms.
In addition, we also looked for specialized services and web sites that appeal
to “producers” of pornographic web sites. We used information gained from
industry-specific business portals [124] to identify business-to-business web
sites, such as adult hosting providers and web payment systems.

We identified several web site “archetypes” that represent the most impor-
tant business roles present in the online adult industry. The majority of web
sites that we analyzed fits into exactly one of these roles. The economic rela-
tionships between these entities are shown in Figure 3.1. Whenever suitable,
we named the roles according to the industry jargon. In the following section,
we provide a detailed overview of each role. Based on these observations, we
then created an automated crawling and analysis system to gain a broader
insight into the common characteristics of adult web pages, operating on a
large sample set of about 270,000 URLs (on more than 35,000 domains).

3.2.2 Identified Site Categories

Based on our observations, we can classify the market participants in the
following categories.

44

3.2 Analysis Techniques

Domain redirector
services

Traffic broker

Search engines

No content provided Promotional content Original content providers

Paysites

$

TGP/MGP,
link collections

$

$
$

$

$

$

flow of
visitors

flow of
money

$

Figure 3.1: Observed traffic and money flows for different roles within the
online adult industry.

Paysites

This type of web sites constitutes the economic core of the online adult in-
dustry. These web sites typically act as “content providers”, producing and
distributing pornographic media such as images and videos via their web pages,
charging money in return. Most common users would consider these sites to
be representative for this genre.

Link Collections, TGP / MGP

Complementary to paysites, a large number of pornographic web sites promise
free content. These sites often call themselves link collections, thumbnail
gallery posts (TGPs) or movie gallery posts (MGPs), depending on the pro-
vided form of pornographic media. We use the term free site to denote these
types of web sites.

Link collections typically consist of a series of hyperlinks (often adding tex-
tual descriptions of the underlying media) to other web sites. TGP and MGP
sites are structurally similar, with the addition of displaying miniature pre-
view (still) images next to each link. It is indicative for free sites that they
do not produce their own content. Our evaluation shows that they receive
media from other content providers, as their main economic role is market-
ing for paysites. A secondary role is traffic trading, as it will be explained in
Section 3.2.2.

45

Chapter 3 Privacy Threats in Online Services

Search Engines

With the multitude of different providers, specialized search engines evolved
to fit the need of every potential customer. Functionally similar to general
purpose search engines such as Google, adult search engines [59] allow users to
search for web sites that match certain criteria or keywords. Unlike traditional
search engines, adult search engines claim to manually classify the web sites
in their index, instead of relying on heuristics or machine learning techniques.
However, this claim - suggesting that their results are more accurate than other
search engines - is highly questionable, considering the fact that pornographic
pages account for 12% of the total number of web pages on the Internet [65].
Adult search engines generally generate revenue by displaying advertisements
and selling higher-ranked search result positions.

Domain Redirector Services

Interestingly, there are services that specialize in managing adult domain port-
folios. They are similar to commercial domain parking services that display
web pages with advertisements (which are often targeted towards the domain
name) in lieu of “real” content [118].

Adult domain redirector services such as [18] not only allow their clients to
simply park their domains, but are rerouting any web traffic from their clients’
domains to adult web sites. Adult sites that wish to receive traffic from the
redirector service have to pay a fee for being registered as a possible redirection
target. The exact destination of the redirections is typically based on the string
edit distance between the domain name of the web site participating in the
redirector service, and the domain name of the adult web sites which wish to
receive traffic. For example, a user might browse to www.freehex.com, not
knowing that this site participates in a redirector service. The user will then
be redirected to an adult web site with a domain name that has a low edit
distance to this domain name. The destination adult web site initially has
to pay a fee for being considered by the redirection service, while the domain
owner is rewarded for any traffic that originates from his domains. Technically,
these redirector services work by using a layer of HTTP redirections, giving
no indication to the user that a redirection has occurred.

From a miscreant’s point of view, these redirector services appear to be an
ideal tool for typo-squatting [118]. Typo-squatting is the practice of registering
domain names that are syntactically very close to the names of legitimate web
sites. The idea behind typo-squatting is to parasitize web traffic from users
that want to go to the legitimate site, but make a typographical error while
entering the URL.

46

www.freehex.com

3.2 Analysis Techniques

Keyword-Based Redirectors

Several businesses offer a service that aims at increasing the visibility and (tra-
ditional) search engine ranking of their clients (adult web sites). To this end,
keyword based redirector services operate websites that have a large numbers
of subdomains. The names of these subdomains consist of combinations of
adult-related search engine keywords.

Similar to domain redirector services, these subdomains are configured to
redirect visitors to “matching” web sites, e.g. the redirector’s clients. Clearly,
this technique is an attempt to exploit ranking algorithms to achieve higher
search result positions, effectively subverting the search engine’s business model
of selling search result positions. Furthermore, it is an efficient way to prepare
a web site for spam advertisement. Unsolicited bulk (spam) mails tend to yield
a higher penetration rate when embedded links differ from mail to mail [109].

Traffic Brokers

This unique type of service provider allows its clients to directly trade adult
web traffic for money, and vice versa (i.e., web traffic can be turned into
real money with this kind of providers). Prospective clients who want to
buy traffic can place orders (typically in multiples of 1,000 visitors) that will
then be directed to a URL of their choice. Usually, the buyer can select
the source of the web traffic according to several criteria, such as interest in
certain niches of pornography or from specific countries. Available options
also include traffic that originates from other adult sites, e-casinos, or from
users who click on advertisements such as pop-up or pop-under windows, or
even links in YouTube comments. Another option is traffic that is redirected
from recently expired domains, which have been re-registered by the traffic
broker.

On the other hand, clients who want to sell traffic can do so by redirecting
their visitors to URLs that are specified by the traffic broker, receiving money
in return. If the broker has no active orders from buyers for the type of
traffic that is provided, the traffic is sent back to a link specified by the client.
However, if the broker has an active order, the traffic is redirected to the
site of the buyer’s choice and the seller is credited a small amount of money.
Figure 3.2 visualizes the flow of visitors and money for both scenarios.

Before a client can participate in traffic trading, brokers typically claim that
they check the source or destination site of the traffic to prevent potential
abuse. For example, many traffic brokers state that they do not tolerate
hidden frames on target web sites. However, in our experiments with traffic
brokers, we found this claim to be false: We successfully managed to buy large

47

Chapter 3 Privacy Threats in Online Services

Adult website: traffic seller

Traffic broker

Adult website: traffic buyer

$ $

(2)

(1)

(3)

(4)

(a) Traffic buyer is interested in receiving traffic and pays for it.

Adult website: traffic seller

Traffic broker

(1)

(2)

(b) No traffic buyer available, traffic broker returns visi-
tor to a specific URL.

Figure 3.2: Schematic overview of traffic trading and the flow of visi-
tors/money.

quantities of traffic for a web site that makes extensive use of hidden iframes

and even performs vulnerability checks on its visitors (see Section 3.4 for more
details).

3.2.3 Automated Crawling and Experimental Setup

To acquire real-world data and to perform a large-scale validation of the initial
results from our manual analysis, we created a web crawler system. Based
on our observations, we added several domain-specific features. Our system
consists of the following components.

Search Engine Mining

For our crawling system, it was necessary to acquire a set of adult web sites
that were suitable as initial input. To mimic the way a consumer would look
for adult web sites, we made use of search engines. We manually compiled
a set of domain-specific search queries and automatically fed it as input to a
set of 13 search engines. This included three general purpose search engines
(Google, Yahoo, and Microsoft Live) and ten adult search engines. We then
automatically extracted the URLs from the search results and stored them
in a database. The result set consisted of 95,423 URLs from 11,782 unique
domains. These URLs were the seed used in the crawling step.

48

3.2 Analysis Techniques

Crawling Component

The core component of our system is a custom web crawler we implemented
for this purpose. We configured it to follow links up to a depth of three for
each domain. For performance reasons, we additionally limited the maximum
amount of URLs for a single domain to 500. Starting from the previously-
mentioned seed, we crawled a total of 269,566 URLs belonging to 35,083 web
sites. For each crawled URL, we stored the web page source code, and the
embedded hyperlinks. This formed the data set for our subsequent analysis.
In addition to the crawling, we used the following heuristics to further classify
the content, and detect a number of features.

Enter Page Detection. A characteristic feature of many adult web sites
(unrelated to their economic role) are “doorway” web pages that require visi-
tors to click on an Enter link to access the main web site. These enter pages
often contain warnings, terms of use, or reminders of legal requirements (for
example, a required minimum age for accessing adult material).

In order to automatically detect enter pages, we used a set of 16 manually
compiled regular expressions to scan textual descriptions of links. Since some
enter pages use buttons instead of text-only descriptions, we also checked the
HTML alternative text for images. For example, if a link description matches
. ∗ enter here.∗ or . ∗ over. ∗ years.∗, we classify the page as an enter page.

Adult Site Classifier. Since we wish to avoid crawling non-adult web sites,
and since not all outgoing links lead to adult web sites, we created a simple,
light-weight keyword-based classifier to identify adult web sites. To this end,
we first check for the appearance of 45 manually selected, domain-specific
keywords in the web site’s HTML meta description tags. In case no matches
are found, we also extend our scan to the HTML body of the web page. If
at least two matches are encountered, we consider the web site to contain
pornographic content.

According to our experience, this näıve classification works surprisingly well,
as porn sites usually promote their content openly. To evaluate the true pos-
itive (TP) and false positive (FP) rate of our classifier, we ran it on a hand-
labeled subset of 102 web sites that we chose randomly our manual-analysis
test set. It achieved rates of 81.5% TP and 18.5% FP. Moreover, a limitation
of our current implementation is that it currently only works with English-
language web sites. After excluding non-English web sites, the rate improved
to 90.1% TP and 9.9% FP. We are aware that far more advanced classifiers
for adult sites exist, for example systems that include image recognition tech-
niques [60]. However, these classifiers are typically aimed towards filtering

49

Chapter 3 Privacy Threats in Online Services

pornographic content and are not readily and freely available, and our current
heuristic yields sufficiently accurate results for our purposes.

Client Honeypots

Malicious web sites are known to direct a multitude of different types of attacks
against web surfers [102, 103, 117]. Examples include drive-by downloads,
Flash-based browser attacks, or malformed PDF documents that exploit third-
party software. To detect such attacks, we used two different client honeypots
to check the web sites that we crawled in our study.

Capture-HPC. We used an adapted version of the Capture-HPC [112] client hon-
eypot. The tool detects and records changes to the system’s filesystem and
registry by installing a special kernel driver. We set up Capture-HPC in vir-
tual machines (VMs) with a fully patched Windows XP SP2, resembling a
typical PC used for web browsing. We then instrumented the VMs to open
the URLs from our crawling database using Internet Explorer 7 (including
the popular Flash and Adobe PDF viewer plugins). This allowed us to detect
malicious behavior triggered by (adult) web sites. In our experimental setup,
we ran eight instances of the VMs in parallel, to achieve a higher throughput
rate.

Wepawet. To complement the analysis performed by Capture-HPC, we used
another client honeypot, namely Wepawet [82], in parallel. The software fea-
tures special capabilities for detecting and analyzing Flash-based exploits,
and for handling obfuscated JavaScript, which is commonly used to hide mali-
cious code. Wepawet also tries to match identified code signatures against
a database of known malware profiles, returning human-readable malware
names.

Whois Mining

Our system also performs Whois lookups for each crawled domain. Then,
the registrant (the entity that owns the domain name) and the registrar (the
company that sold the domain) are determined for each entry. Since Whois
records do not have a homogeneous data representation, we had to implement
a parsing tool that can process Whois records. We subsequently use this
information to determine if web sites belong to the same owner and also search
for anomalies in this data set.

50

3.3 Observations and Insights

Economic Classification

To decide if paysites are more or less secure (i.e., trustworthy) than free sites,
we created a heuristic for automatically classifying each web site depending
on its economic role. Our classifier is limited to determining if a web site is
either a paysite or a free site; otherwise, the web site’s economic role remains
undefined.

Paysite Indicators. We identity paysites based on manual observations and
by using information we found on adult business-to-business web sites: we
compiled a list of 96 adult payment processors, i.e., companies appointed by
a web site operator to handle credit card transactions on behalf of him. If a
web site links to a payment service provided by one of these processors, we
immediately mark it as a paysite. In case no payment processor is found, we
look for additional features of paysites. To this end, we match the web site
source code against a set of regular expressions to determine if it contains
a “tour”, “member section”, or membership sign-up form. We assume these
structural features to be indicative for paysites, as we did not find any counter-
examples in our manual observations.

Free Site Indicator. To identify free web sites, we examine their hyperlink
topology. For this classification, we only regard outgoing links as a reliable
feature, as it is not feasible to recover (all) incoming links for a web site.
We analyze the number of hyperlinks pointing to different domains for each
web site, and additionally compare the Whois entries for both the source and
destination domains. If a web site exceeds a threshold t of links to “foreign”
domains (e.g., the Whois entries show different registrants), we label it as a free
site. To evaluate this classifier and instantiate a value for t, we tested it on a
hand-labeled set of 384 link collection web sites that we selected randomly from
our database. Based on this experiment, we chose t = 25 for the evaluation.

3.3 Observations and Insights

During our crawling experiments, we observed several characteristics of adult
sites. In this section, we provide an overview of the most interesting findings,
and discuss how they are security-relevant.

51

Chapter 3 Privacy Threats in Online Services

3.3.1 Revenue Model

Like with every economy, the ultimate goal for commercial web site operators
is to earn a maximum of money, and the slogan “sex sells” is a clear testimony
to this fact. In the following, we analyze the revenue model of the major
categories identified in Section 3.2.2.

Paysites

We found the revenue model of paysites to be centered around selling member-
ships to customers. A membership grants the customer access to an otherwise
restricted member area with username/password credentials. In the member
area, an archive of pornographic media can be browsed or downloaded by the
customer. Memberships typically have to be renewed periodically, causing re-
curring fees for the customer and, therefore, providing a steady cash-flow for
the paysite. To appeal to customers and to create a stimulus for purchasing a
membership, paysites rely heavily on a number of marketing and advertising
techniques, like for example:

A “Tour” of the Web Site. Similar to traditional advertising methods (for
example cinematic trailers for movies), preview media content is published for
free on the paysites’ web pages, eventually directing the user to membership
sign-up forms.

Search Engines and Web Site Directories. Specialized promotion services,
such as adult search engines and web site directories, allow users to submit
hyperlinks to web sites. These links are then categorized (depending on the
nature of the content), and made available on a web site where they can be
searched and browsed. While these services are typically free of charge, higher
ranked result positions can be purchased for a fee.

Affiliate Programs. The main purpose of an affiliate program is to attract
more visitors to the paysite. The business rationale is that more visitors
translates to more sales. To this end, paysites allow business partners to
register as affiliates, thus giving them access to promotional media. This media
is designated for marketing the paysite. It consists of hyperlinks pointing to
the paysite and optionally includes a set of pornographic media files. In return
for directing visitors to the paysite, affiliates are rewarded a fraction of the
revenue that is generated by those customers that were referred by the affiliate.

By using affiliate programs, paysites are effectively shifting part of their
marketing effort towards their affiliates. Additionally, those sites that dis-

52

3.3 Observations and Insights

tribute the media files (instead of just providing hyperlinks) can reduce their
resource consumption (such as bandwidth costs) as an additional benefit.
Many paysites even offer specialized services to their affiliates, for example,
by providing preview images and textual descriptions of the content, or even
creating administrative shell scripts. Also, Internet traffic statistics are made
available to affiliates, so that they can optimize their marketing efforts.

Free Sites

Free sites typically participate in multiple affiliate programs. We found ex-
amples of sites participating in more than 100 different programs, generating
revenue by directing visitors to paysites. To account for the origin of cus-
tomer traffic, paysites usually identify their affiliates by unique tokens that
are assigned on registration. These tokens are then used to associate traffic
with affiliates, for example, by incorporating them as HTTP parameters in
hyperlinks pointing from the affiliate site to the paysite. The same technique
is used to identify links originating from spam mails, providing the site with
the means to evaluate a spammers’ advertising impact.
Often, affiliates can choose between two revenue system options:

• Pay-per-sign-up (PPS): The affiliate receives a one-time payment from
the paysite for each paysite member that was referred by the free site.

• Recurring income: In contrast to PPS, the affiliate can choose to receive
a fraction of each periodic fee as long as the membership lasts.

We found that the payment systems that are used to transfer money from
paysites to affiliates offer a wide variety of options, including wire transaction,
cheques, and virtual payment systems. In addition to affiliate programs, free
sites display advertisements to increase their revenue.

3.3.2 Organizational Structure

Paysites We noticed that many paysites are organized in paysite networks.
Such networks act as umbrella organizations, where each paysite contains hy-
perlinks to other members of its network. Additionally, networks often offer
customers special membership “passes” that grant collective membership for
multiple paysites.

Interestingly, however, upon inspection of the Whois [92] entries for mem-
ber sites within several networks, we found the registration information to
often match (e.g., the sites were belonging to the same owner). Apparently,
the individual network members prefer to create the outward impression of

53

Chapter 3 Privacy Threats in Online Services

representing different enterprises, when they are in fact part of the same or-
ganization. This indicates that a diversification among paysites, depending
on the sexual specifics of the offered content, is advantageous for the owners.
These specialized sites are called niche sites in the industry jargon.

Free Sites Similar to paysite networks, we found free sites to be also orga-
nized in networks. However, in contrast to paysites, free sites also frequently
link to each other even if the site owners differ. This means that business
competitors are collaborating. This appears counter-intuitive at first. How-
ever, one has to take into account that cross-linking between free sites is a
search engine optimization method. Thus, the search engine ranking of all
sites participating in a “clique” of free sites improves, as the sites are artifi-
cially increasing their “importance” by creating a large number of hyperlinks
pointing towards them.

3.3.3 Economic Roles

From a consumer perspective, paysites and free sites are the most important
types of adult web sites. To get an overview of the distribution of paysites and
free sites with regard to the total population of adult web sites, we applied
our economic classification heuristic to the 35,083 adult web sites (domains)
in our data set.

Our classifier was able to determine the role of 87,7% of these web sites.
For the remaining 12,3%, whose roles remained undefined, we found a high
percentage of web sites that either served empty pages, returned HTTP error
codes (for example, HTTP 403 “Forbidden”), or were parked domains. We
assume that many of these sites are either still under construction or simply
down for maintenance during our crawling experiment.

Our results indicate that 8.1% of the classified sites are paysites and 91.9%
are free sites (link collections). This is consistent with the intuition that
we gained from our initial, manual analysis, showing that most adult site
operators make money by indirectly profiting from the content provided by
paysites.

3.3.4 Security-Related Observations

For either economic role, we found a relatively large number of web sites
that use questionable methods and techniques that can best be described as
“shady.” Unlike well-known web-based attacks and malicious activities (such
as drive-by downloads [102, 117]), these practices directly aim at manipulating
and misleading a visitor to perform actions that result in an economic profit

54

3.3 Observations and Insights

for the web site operator. Overall, we found free sites to employ at least
one of these techniques more often (34.2%, see Figure 3.3) when compared
to paysites (11.4%). In particular, we frequently found the techniques listed
below on adult web sites.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

Free site Paysite

Questionable
OK

Figure 3.3: Distribution of economic roles.

JavaScript Catchers

These client-side scripts “hijack” the user’s browser, preventing him from leav-
ing the web site. To this end, usually JavaScript code is attached to either
the onunload or onbeforeunload event handlers. Anytime the user tries to
leave the web site (e.g., by entering a new address, using the browser’s “Back”
button, or closing the browser) a confirmation dialog is displayed. The user
is then asked to click on a button to leave the web site, while, at the same
time, advertisements are displayed or popup windows are spawned. Apart
from the obvious annoyance, this could easily be used in a clickjacking attack
scenario [61]. We detected catcher scripts in 1.2% of the paysites and 3.9% of
free sites.

Blind Links

This technique uses client-side scripting via JavaScript to obscure link desti-
nations, effectively preventing the addresses from being displayed in the web
browser’s status bar. The most popular methods that we found in the wild ei-
ther work by overwriting the window.status or parent.location.href vari-
ables. We scanned the source code of the web sites for occurrences of these

55

Chapter 3 Privacy Threats in Online Services

variable names, and found 10.9% of paysites, and 26.2% of free sites to use
blind links.

While the destination addresses are still contained in the web page source
code, we believe it is fair to assume that most users will be unable to extract
them. This is problematic, as it not only leaves the user unaware of the link’s
destination (leading to different web sites), but could also potentially be used
to mask malicious activities such as cross site scripting (XSS) or cross site
request forgery (CSRF) attacks.

Redirector Scripts

Redirector scripts make use of server-side scripting (for example PHP scripts)
to redirect users to different web sites. In contrast to blind links, the link
targets are determined at the server at run-time, making it impossible for a
client to know in advance where a link really points to.

Typically, these redirector scripts are presented in combination with porno-
graphic media. For example, small preview images usually have links to full-
size versions attached. Instead of this expected behavior, users are redirected
with a probability p to different web sites (so called skimming rate). The ra-
tionale behind redirector scripts is that users will know from experience that
by keeping on clicking on the preview image, the desired media will eventually
be shown at some point. At the same time, they “generate” artificial outgoing
traffic for the web site, even though the user originally never intended to leave
the site.

In our crawler implementation, we use a simple, yet effective technique to
detect redirector scripts. Whenever our system finds hyperlinks with a desti-
nation address that contains a server-side script (currently *.php and *.cgi

scripts), it resolves the link 10 times. If there is more than one destination
address, the script is regarded as a redirector script, and the set of targets is
added to our crawling queue. We chose a value of 10, because in our initial
tests, we observed this as an upper bound for the number of redirection tar-
gets. When tested on a sample of 100 redirector scripts, none of them exceeded
this threshold.

We found examples of p ranging from 0 (no random redirection) to 1 (the
promised content is never shown). Also, the number of possible target ad-
dresses n varied from 1 to 6 destinations. Interestingly, only 3.2% of paysites
but 23.6% of free sites contained redirector scripts. This implies that free sites
have an incentive for using this technique.

The most likely explanation of this phenomenon are traffic brokers (see
Section 3.2.2). These services have specialized in (adult) traffic trading and
allow visitor traffic to be sold, a unique feature available only in this type of

56

3.3 Observations and Insights

online industry. This means that a miscreant could lure unsuspecting visitors
who click on pornographic media to click on redirector links. The resulting
traffic can then be sold to such a traffic trading service, which redirects it to
targets of the buyer’s choice. The web site operator earns money with every
click, even if a single visitor clicks on one links many times – something not
possible in traditional online advertisement.

Redirection Chains

If web sites which contain redirector scripts link to other sites with redirector
scripts, we call this a redirection chain. This topology can be abused to further
increase the revenue from artificial traffic generation.

We observed that JavaScript catchers are frequently used in conjunction
with redirector chains, effectively “trapping” the user in a network of redirec-
tions. In our evaluation, we found 34.4% of those web sites that use redirector
scripts to be part of redirector chains. Potentially, this could easily be abused
for performing click-fraud or similar traffic-based cyber-crime because it en-
ables the redirection operators to direct large amounts of “realistic” traffic
to destinations of their choice. We study this phenomenon in more detail in
Section 3.4.

3.3.5 Malware

To find more “traditional” web-based attacks, we applied our client honey-
pot analysis (see Section 3.2.3) to all 269,566 pages in our data set (which
represents the adult web sites’ main pages, subdomain pages, and enter page
targets). Of these, 3.23% were found to trigger malicious behavior such as
code execution, registry changes, or executable downloads. This percentage is
significantly higher than what we expected based on related work [102], where
slightly more than 0.6% of adult web sites were detected as malicious.

We used Anubis [17], a behavior-based malware analysis tool, to further ana-
lyze the malware samples that were collected by the honeypots. Also, Wepawet
could successfully identify several families of exploit toolkits used by the ma-
licious sites. This gave us human-readable malware names for the malware,
showing that the most popular types of malware that we found are Spyware
and Trojan downloaders (e.g., rootkit.win32.tdss.gen or backdoor.win32.bandok).

Whenever iframes were used as infection vectors, we extracted the host-
ing location of the injected code, finding the malicious code to be mostly
(98.2%) not stored on the adult web sites themselves. We believe this is a
clear indication that the web sites that distribute the malware were origi-
nally exploited themselves, and are not intentionally serving malware. This

57

Chapter 3 Privacy Threats in Online Services

was also confirmed by results from Wepawet, which automatically attributed
several exploits to the “LuckySploit” malware campaign [51].

3.3.6 Hosting Infrastructure

In this section, we provide an overview of the information we collected on
adult web site hosting.

Geographic Distribution

As part of our work, we analyzed the geographical distribution of adult web site
hosting. To this end, we used a publicly available database [91] that contains
a mapping of IP addresses to countries. We then queried this database with
the IP addresses extracted from DNS lookups of the 35,083 adult web sites
domains in our data set. Table 3.1 shows the most popular countries for
hosting adult web sites.

Not surprisingly, the order of countries in this list appears largely similar
to statistics that rank countries by the revenue generated from adult web
sites [65]. However, several very small countries are ranked surprisingly high,
for example, the Virgin Islands, Gibraltar, or Dominica. We speculate that
this might be related to these countries’ well-known roles as business off-
shoring centers, or legal requirements for hosting adult content.

Pos Country Web Sites
1 United States 26,793
2 Netherlands 2,502
3 Germany 1,122
4 United Kingdom 1,048
5 Canada 779
6 Spain 720
7 France 638

...
14 Virgin Islands (brit.) 217
22 Gibraltar 75
26 Dominica 64

Table 3.1: Distribution of domains per country.

58

3.4 Experimental Evaluation

Whois Anonymization

We also matched the Whois entries against signatures for Whois anonymiza-
tion services, such as Go Daddy’s Domains by Proxy [46] or Namecheap’s
WhoisGuard [121] service. These commercial services provide “privacy” by
substituting the name of the registrant with a generic entry, and an anony-
mous email address, while still allowing the original registrant to be contacted.

We found anonymization service signatures in 9.4% of the Whois entries in
our data set. In contrast, we also performed this check on the Whois entries
for the top 5,000 ranking web sites of Alexa [6], and found anonymization
signatures in only 1.9% of these entries. On manual inspection, almost all
of these sites were either gambling or file sharing related web sites, or of
pornographic nature. Clearly, this reflects an increased interest for privacy for
operators of adult web sites.

3.4 Experimental Evaluation

The analysis methods and findings presented in the previous sections allow us
to gain information from an external observer’s point of view, enabling us to
outline the online adult industry’s business relationships and studying some
security-related aspects. However, we are also interested in more technical,
security relevant information that is only available to adult web site operators
themselves, for example, data about the web site visitors or the mechanisms
behind traffic trading. One of the goals of our research is to estimate the
malicious potential of adult web sites, for example, as a mass exploitation
vector. Therefore, we also need the internal point of view to understand this
area of the Internet in detail.

Unfortunately, we are not aware of any available real-world data set that
could be used for such an analysis. Therefore, we took over the role of an
adult webmaster and created two adult web sites from scratch to conduct our
experiments.

3.4.1 Preparation Steps

To be able to interact with the adult industry, we performed the following
operations to mimic an adult web site. First, we created two relatively simple
web sites. We designed both sites’ layout to resemble existing, genuine adult
web sites, allowing us to blend in with the adult web site landscape. We
chose to mimic two popular types of free sites, one “thumbnail gallery” web
site and one link collection web site. After registering domain names that are

59

Chapter 3 Privacy Threats in Online Services

indicative for adult web sites, we put the sites online on a rented web hosting
server.

Affiliate Programs. To receive promotional media, we then registered as an
adult web site operator at eight adult affiliate programs. Surprisingly, the
requirements for joining affiliate programs appear to be very low. In our case,
only the web site URL, a contact name, and an email address had to be
provided. There is no verification of neither the contact identity information
nor is a proof of ownership required for the web site.

Immediately before signing up to an affiliate program, we created a snapshot
of our web server access logs. As soon as an affiliate program accepted our
application, we compared the current access logs to the snapshot. We found
that six of the eight affiliate programs were accepting our application, even
though no access to our web sites happened during the period between sign-up
and acceptance. This means, that they were blindly accepting our application,
performing no check of the web sites at all.

Traffic Brokers. Furthermore, we also registered our web sites at four traffic
brokers that we chose due to their popularity among adult site operators,
allowing us to participate in traffic trading. The registration procedure was
almost identical to affiliate programs, and again, most brokers accepted our
application without looking at the web sites. Only one broker checked our site
and subsequently declined our application after detecting our analysis scripts
(see next section).

Payment System. To be able to buy traffic, we had to send money to the
traffic brokers. To this end, we used the “ePassporte” electronic payment
system, that is popular among adult site operators, as it is widely accepted in
the adult industry. We spent slightly more than $160 for our traffic trading
experiments (including transaction fees).

3.4.2 Traffic Profiling

Our main goal in operating these web sites is to acquire as much security rele-
vant information about web traffic coming to the sites as possible. To this end,
we added several features to the web sites that allow us to collect additional
information from each visitor. Since the collected data may contain detailed
information about a unique visitor, his surfing habits, and other privacy re-
lated information, we implemented several precautions to protect the user’s
privacy (e.g., anonymization of the collected raw log data). This information

60

3.4 Experimental Evaluation

is then used in subsequent analysis steps, e.g., to determine if a user is vulner-
able to remote exploits like arbitrary code execution or drive-by downloads,
or to analyze what other kinds of sites the visitor surfed before coming to our
site. Specifically, we collect the following information from each visitor:

Browser Profiling. First, we store general information for each visitor that is
available through the web server log files, for example, the User-Agent string
and the HTTP request headers that are sent by the user’s browser.

Additionally, we added several JavaScript functions to the web site. These
routines gather specific data about a visitor’s web browser capabilities, for
example, the supported data types or installed languages. We also collect
information about any installed browser plugins, including their version num-
bers. This information is security relevant, as browser plugins are frequently
vulnerable to remote exploits, and we can infer from this data if the visitor is
potentially vulnerable to a drive-by download attack.

In particular, we are interested in the Flash browser-plugin [5], which is
typically used to embed videos in web sites, as it is known for its bad security
record [113]. Our intuition is that visitors to multimedia-rich adult web sites
will most likely have Flash installed. Therefore, in addition to the plugin de-
tection, we implemented a JavaScript-independent Flash detection mechanism
that uses a small Flash script to check if the user has Flash installed. This
allows us to detect vulnerable clients, even if they have JavaScript turned off
(see Section 3.4.4). In addition to Flash, we also check for vulnerable versions
of browser plugins for the Adobe PDF document viewer and Microsoft Office
as they are the most prevalent targets for malicious attackers [14].

Browsing History. For an unscrupulous web site operator, it is desirable to
know which other web sites a particular user has visited in the past. Exposing
the user’s browsing history can be used for advertising purposes or – in a
malicious variation – to launch targeted phishing attacks.

As shown by Jakobsson and Stamm [83], it is possible to actively query for
URLs in the user’s browsing history by abusing cascading style sheets (CSS).
In Chapter 2 of this thesis, we already introduced the background of this
technique in more detail (although in a different context). The basic idea of
the attack is that a URL is displayed differently by the browser once a user
has accessed this URL (to indicate to the user that he has surfed this URL in
the past). This visual difference can be queried via CSS, enabling an attacker
to enumerate which URLs a visitor has accessed in the past. In addition to the
290 web sites proposed by Jakobsson and Stamm, we extended the list with
the top 100,000 web sites from the Alexa [6] index to collect a larger data set

61

Chapter 3 Privacy Threats in Online Services

about each visitor’s browsing history. Tests with different browsers showed
that this technique can result in a suspiciously high CPU load and sluggish
GUI behavior for the client if many domain names are queried in parallel.

This might indicate that something unusual is going on, and therefore, we
adapted our system to perform the domain name lookup in chunks of 1,000
domains each. This technique successfully solved this problem when testing
history stealing on several different machines. Note that if a user decides to
leave our web site before the history query finishes, we would still receive
matching domain names up to the last chunk that was processed.

Outgoing Links. To be able to verify statistics provided by affiliate program
partners, we track all outgoing (i.e., leaving the web site) hyperlinks that a user
has clicked. This is implemented by scripts that operate similar to redirector
scripts often employed on adult web sites (see Section 3.3.4 for details).

3.4.3 Traffic Buying Experiments

After having prepared the web sites with our profiling tools, we placed orders
for buying web site visitors at three different traffic brokers. We tested dif-
ferent brokers to study the differences in delivered traffic and to gain a better
understanding of their intricacies. In total, we ordered almost 49,000 visitors
at the three different traffic brokers during a period of seven weeks. We spent
a total of $161.84 on these traffic orders (average $3.30 per thousand visitors).
Surprisingly, each traffic broker redirected traffic to our site (almost) instantly
after placing an order. This suggests that they have an automated traffic dis-
tribution system in place, capable of flexibly rerouting traffic to customers,
and enough incoming traffic that they can handle orders in a timely manner.
Checking our web server logs confirmed that we indeed received the correct
amount of visitors (e.g., clients with unique IP addresses) at the correct rate
for all orders.

In addition to the rate limit, we also chose the more expensive “high quality”
option when buying traffic, which is regarded by traffic brokers as synonymous
with traffic coming mostly from the US and Europe. To verify the geographical
origin of traffic, we performed an IP to country lookup for the bought traffic.
We found that 98.22% of the traffic really originates from the US and Europe,
thus the origin is correct for the vast majority of visitors.

3.4.4 Profiling Results

After having received the ordered amount of traffic, we analyzed the output
of the profiling steps outlined in Section 3.4.2. An overview of the results of

62

3.4 Experimental Evaluation

this analysis is shown in Table 3.2. All brokers sent a similar type of visitors
to our site and there are no major differences between the brokers. Therefore,
we discuss the overall results in the following sections.

Browser Profiling

When a visitor accesses one of our web sites, we automatically start to col-
lect information about him (e.g., all request headers and information about
browser extensions). In certain cases, our system cannot obtain this profiling
information for a web site visitor. The reasons can be manifold, for example a
client can have JavaScript support disabled, it can be an “exotic” web browsers
with reduced functionality, the visitor might stay for only a few seconds on
our web site, or it might not be a human visitor but a bot. The most prevalent
case were visitors that did not correctly execute our JavaScript-independent
Flash detection: 18,794 (38.43%) of our overall visitors behaved in this way.
In contrast, 30,106 (61.57%) visitors correctly performed the test, and of those
96.24% had Flash installed. Furthermore 10,214 visitors (about 20.89%) did
not download any images, but just requested the HTML source code of the
site. While we cannot coherently explain this behavior, we think that it is
caused by bots (e.g., click-bots [43]), since the browser of a human visitor
would start to download the complete content of the site.

For about 47% of all visitors we were able to build a complete browser profile,
which includes all the information we are interested in. For the remaining
visitors only certain types of information were collected (e.g., only HTTP
headers and no other information since the visitor spent not enough time on
our site). We opted to analyze only the cases in which we have collected the
complete browser profile to be conservative in our analysis.

During our analysis we also detected some noteworthy anomalies that pro-
hibit browser profiling. For example, about 0.53% of the visitors used browser
versions typically found in mobile phones or video game consoles (such as
Nintendo Wii, Playstation Portable, or Sony Playstation). These devices do
not fully support JavaScript or have a limited set of features, preventing our
profiling scripts from executing correctly. We also found that in about 0.14%
of the cases our profiling did not work since the HTTP headers were purged,
a fact that we could attribute to clients which have the Symantec Personal
Firewall installed.

Vulnerability Assessment

We determine if a client is vulnerable to known exploits by matching the visi-
tor’s browser properties (e.g., version number of common plugins and add-ons)

63

C
h
a
p
te

r
3

P
ri

v
a
cy

T
h
re

a
ts

in
O

n
li
n
e

S
er

v
ic

es

Broker A Broker B Broker C Total
Ordered Visitors 12,000 7,900 29,000 48,900
Performed Flash Detection 8,638 (71.98%) 5,010 (63.42%) 16,458 (56.75%) 30,106 (61.57%)
7→ Flash Found 8,401 (97.26%) 4,876 (97.33%) 15,697 (95.38%) 28,974 (96.24%)
Complete Browser Profiles 6,183 (51.53%) 3,682 (46.60%) 13,176 (45.43%) 23,041 (47.12%)
7→ Vulnerable 5,251 (84.93%) 3,242 (88.05%) 11,847 (89.91%) 20,340 (88.28%)
7→ Browsing History 3,635 (58.79%) 2,066 (56.11%) 8,211 (62.32%) 13,912 (60,38%)
Clicked Links 3,662 2,742 8,997 15,401

Table 3.2: Statistics about the visitors studied during our traffic buying experiments.

64

3.4 Experimental Evaluation

against a list of common vulnerabilities we compiled manually. We focused on
only the most prevalent browser plugins such as those related to Adobe Flash
and PDF, and Microsoft Office. These three plugins had seven vulnerabilities
in the recent past, and an attacker can buy toolkits that exploit these vulner-
abilities to compromise a visitor [14]. Since realistically, additional exploits
(even some that are not publicly known yet) exist in the wild, this provides
us with a lower bound for the number of vulnerable systems among visitors to
our web sites. Using this heuristic, we found that more than 20,000 visitors
had at least one vulnerable component installed and more than 5,700 visitors
had multiple vulnerable components. Figure 3.4(a) shows a Venn diagram
depicting the prevalence of different types of vulnerabilities.

A malicious site operator could take advantage of these vulnerabilities and
compromise the visitor’s browser with a drive-by download [102]. Besides the
opportunity to build a botnet with only a small investment (e.g., we spent
$160 and could potentially infect more than 20,000 machines), an operator
could also earn money with the help of so called Pay-Per-Install (PPI) affiliate
programs. In a PPI program, the “advertiser” pays the partner a commission
for every install of a specific program by a user. The exact amount of this
commission depends on the countries that the users come from. For example,
we registered at one PPI program (note that we did not install any software
to clients) and found the rate for 1,000 installs to computers located in the
US and parts of Europe to be set to $130, while it would be as low as $3 for
most Asian countries. This is consistent with information that we manually
compiled from five other PPI program web sites. Related work that focuses
on PPI (for example [111]) lists even higher prices per installation. Since
we only bought US and European traffic in our experiments, we found a large
fraction of traffic to fall into the highest selling PPI category (more than 95%).
While an in-depth analysis of PPI programs is outside the scope of this work,
these figures clearly show that it would be highly profitable for a malicious
site operator to participate in PPI programs, and covertly trigger installs of
unwanted software at vulnerable clients.

In addition to vulnerable browser versions and plugins, we also analyzed
the User-Agent strings obtained from the visitor’s browser. This enables us
to detect certain cases of clients that are already compromised: While the
User-Agent string can be arbitrarily set by a client, it is still a good indicator
for clients that are infected with certain types of malware, which intentionally
“mark” infected clients to avoid re-infection or change the behavior of web
sites that act as an infection vector. We found 915 clients (1.87%) that contain
known malware marker strings, such as for example the adware “Simbar”, or
scareware like “Fake Antivirus 2008”. Figure 3.4(b) provides an overview of
the most common suspicious User-Agent strings we observed in the visitor’s

65

Chapter 3 Privacy Threats in Online Services

!�����

!��

4

!���� !�

�"

!�!��

MS Of ce

PDFFlash

(a) Distribution of the three vulnera-
bility types we examined. Note that
the display format is not proportional.

User-Agent # Suspicious Clients Type

FunWebProducts 260 Adware
SIMBAR 136 Adware
DesktopSmiley 93 Spyware
JuicyAccess 85 Nagware
Antivir XP 2008 52 Fake AV
Seekmo 46 Adware
3P UV 45 Fake AV

Other 198 -
Total 915 -

(b) Overview of suspicious User-Agent strings that we observed
frequently, indicating that these clients are presumably infected
with some kind of malware, e.g., scareware or adware.

Figure 3.4: Results for vulnerability assessment of clients studied during traffic
experiments.

66

3.4 Experimental Evaluation

browser.

Browser History Evaluation

For more than 13,900 visitors (about 60% of the complete browser profiles),
we were able to probe the browser history of the visitor and found at least one
domain with this technique. In total, we found 218,255 domains in the visitor’s
browser history. We noticed that the distribution is highly biased: the average
per visitor is 15.7 sites, while the mean is 3 sites. For 3,973 visitors, we found
only one domain during our probing. We suspect that this bias is mainly
introduced by three factors. First, probing of the browser’s history commonly
takes at least 30 seconds: If a visitor leaves the page earlier, we cannot probe
all sites. The high number of incomplete profiles already hints that bought
visitors often do not spend a long time on a redirected site. Second, since our
probing technique did in almost 40% of the cases not even find popular web
sites, we speculate that visitors to adult web sites more carefully control their
browser’s history. Third, recent versions of different browsers introduced a
feature that enables private browsing, i.e., in this mode, the browser does not
record browsing history.

One malicious use-case of browser history information are targeted phish-
ing attacks, for example to obtain online banking credentials or to facilitate
identity theft by displaying fake versions of web sites that the user is indeed
using [83]. Another use case would be to change the content of the site de-
pending on the visitor’s history.

To understand the browsing habits of a typical user, we determined the
category of each domain with the help of the OpenDNS domain tagging
database [94]. This database assigns, based on human classification, a num-
ber of tags such as for example Nudity, Webmail, or Auctions to domains
according to their content. We found that the domains we detected in our ex-
periments are highly biased towards adult themes: about 40% of the domains
had the tag Pornography, and 36% the tag Nudity.

3.4.5 Traffic Selling Experiments

Traffic brokers also allow their clients to sell web traffic, paying them for
visitors that are redirected to the broker’s web site; from there the visitors are
forwarded to traffic buyers (see Section 3.2.2 for details). The commission a
traffic seller receives mainly depends on the sexual niche that is attributed to
the traffic, and is influenced by the type of web site the seller operates. To
explore the security aspects of traffic selling, we included traffic selling links
on our web sites and participated in this business.

67

Chapter 3 Privacy Threats in Online Services

Click Inflation Fraud Scenario

The first thing we noticed is the fact that traffic brokers do not require traffic
selling web sites to include any content (for example a script) that is hosted
by the traffic broker or by a third party. This stands in contrast to other
types of web businesses that rely on partner web sites to publish information.
For example, online advertisers such as Google typically require the inclusion
of JavaScript code that is hosted by the advertiser himself on the publisher’s
web site. This code enables the content provider to acquire information about
the publishing web site that can be used for abuse and fraud detection, for
example by computing the click-through-ratio (CTR) or by checking the cookie
information of a user that clicks on a link.

Since traffic brokers do not use this technique, they cannot implement these
well-known techniques for fraud detection and are thus subject to specific
abuses. However, we found that traffic brokers check the HTTP Referrer

header of redirected traffic to see if it really originates from the seller’s web
site. If this is not the case, the traffic is either rejected (redirected back to the
seller), or only a very low price is paid.

These observations led us to the assumption that the level of sophistication
of anti-fraud techniques employed by traffic brokers is rather low. To verify
this assumption, we devised a simple, yet effective fraud scenario to test the
vulnerability of traffic brokers to click fraud. In this scenario an attacker
(legitimately) buys traffic from at least one traffic broker, and then “resells”
this traffic to n different traffic brokers in parallel by forwarding the incoming
traffic. Figure 3.5 illustrates the concept of our attack, which is a variation of
click inflation attacks [10].

With the help of this n-fold click inflation, an attacker can earn money if
the total earnings from selling the traffic n times exceeds the amount of money
she needs to spend for buying the traffic. Furthermore, she could even earn
more money by abusing each visitor she bought, for example by compromising
vulnerable visitors with the help of a drive-by download.

From a technical point of view, we found that simple HTTP or JavaScript
redirections to the traffic selling URLs would not suffice, as many popular
web browsers such as Internet Explorer and Mozilla Firefox incorporate pop-
up blocking features that prevent opening new browser windows without the
user’s interaction. However, during our traffic buying experiment, we noticed
that a relatively high amount of visitors clicked on links on the web site:
overall, we had more than 15,400 clicks based on just 48,900 visitors (see
Table 3.2).

Since pop-up blockers do not trigger if user interaction is involved in opening
links, we were able to attach JavaScript code to the onclick event handler of

68

3.4 Experimental Evaluation

Adul

T-�	
c broker

$

Traffic broker Traffic broker Traffic broker...

$ $
$

Figure 3.5: Overview of n-fold click inflation fraud scenario.

hyperlinks. This allows us to perform n-fold traffic selling every time a user
clicks on a hyperlink on the web site.

We performed an experiment that shows that this attack is effective against
traffic brokers: We signed up as traffic seller at two different traffic brokers and
bought visitors from a third broker. Each click on our web site was redirected
to both brokers. We implemented only a 2-fold click inflation attack to test
the setup in practice, but higher values for n can be implemented without
problems. In total, we bought 17,000 visitors to our site, from which more
than 1,800 visitors clicked at least one link and thus we could sell them to
both brokers. The visitors generated a total of 4,100 clicks, which could also
be abused in other ways by a malicious site operator. During our experiment,
we successfully accumulated funds of slightly less than $10 (on average, we
received $2.22 for 1,000 sold visitors). To prevent damage to the traffic broker,
we did not withdraw any funds, but forfeited our traffic trading accounts.

Based on the insights gained from this experiment, we think that other,
even more powerful types of click fraud (such as clickjacking [61]) would be
equally easy to employ. The success of this experiment also suggests that
traffic brokers do not share information among each other about traffic sold,
and that no advanced fraud detection systems are in place.

69

Chapter 3 Privacy Threats in Online Services

Malware Distribution

The main drawback of traffic selling is that the seller does not have any control
over the final destination of sold traffic. This is worrisome, as this can be
abused in a number of ways. For example, we discussed in Section 3.4.4 the
possibility that a malicious operator could buy traffic and then use drive-
by download attacks to infect visitors. Since traffic brokers seem to have low
standards for traffic buyers (e.g., no background check was performed when we
signed up), a benign traffic seller could unintendedly become part of malicious
activity by redirecting traffic to malicious web sites. Due to the fact that
redirection by traffic brokers is transparent to a client, it could directly harm
the reputation of the seller.

To study the prevalence of malicious redirects, we followed our own traffic
selling links to check the final destination of our traffic. To our surprise, we
were redirected to a web site that provides a fake video player that would
trigger the download of an executable upon clicking the “Play” button. By
closer examination, we found that the downloaded file contains the JuicyAc-
cess toolbar, which we detected previously in the context of infected clients
(see Section 3.4.4). Thus, there are, indeed, malicious web site operators that
buy traffic to infect visitors on purpose.

3.5 Summary

In this chapter, we examined the challenges and issues for security and privacy
of a whole branch of online business. The online adult industry is one of the
largest industries, and the general consensus is that these websites are privacy
threatening. In order to empirically determine if these claims are founded,
we performed a case study on this industry, and conducted a technical and
economical analysis. We observed that questionable business practices (e.g.,
traffic trading, redirection chains) are frequently employed. In our experimen-
tal evaluation, we found that an attacker mimicking adult website operators
would only require little effort to perform large-scale malicious activity, such
as mass exploitation, drive-by downloads, or browser history stealing.

Clearly, this facilitates criminal activity like malware distribution, bot herd-
ing, affiliate fraud, or theft of private data. Many of these activities aim at
compromising the computers of website visitors to install malware, for exam-
ple, bots, keyloggers, or trojans. The malicious software is then used to steal
private information from the victim, and send it to the criminal, for example,
bank account numbers, passwords, or whole documents. Often, such malware
programs use unknown or custom communication protocols, making it costly

70

3.5 Summary

and tedious for human analysts to understand their function.
In the following chapter, we will present a system that aims at automati-

cally reverse-engineering unknown application-level network protocols. From
a security point of view, such a system has many interesting applications,
ranging from the analysis of legitimate software (that might use proprietary
or undocumented protocols) to malicious, privacy-threatening bots. Specifi-
cally, we show that our system can reverse the protocols used in real-world
applications, including a malicious bot’s command and control channel.

71

Chapter 3 Privacy Threats in Online Services

72

Chapter 4

Extracting Privacy-Relevant Information
from Network Protocols

Protocol reverse engineering is the process of extracting application-level spec-
ifications for network protocols. Such specifications are very useful in a number
of security-related contexts, for example, to perform deep packet inspection
and black-box fuzzing, or to quickly understand custom botnet command and
control (C&C) channels. Furthermore, reverse-engineering application level
protocols also has important implications for the privacy of users. The result-
ing protocol specifications can be used to monitor and understand if private
or sensitive information is sent or received by applications - for example, by
malicious bots or keyloggers.

Since manual reverse engineering is a time-consuming and tedious process, a
number of systems have been proposed that aim to automate this task. These
systems either analyze network traffic directly or monitor the execution of
the application that receives the protocol messages. While previous systems
show that precise message formats can be extracted automatically, they do
not provide a protocol specification. The reason is that they do not reverse
engineer the protocol state machine.

In this thesis, we focus on closing this gap by presenting a system that
is capable of automatically inferring state machines. This greatly enhances
the results of automatic protocol reverse engineering, while further reduc-
ing the need for human interaction. We extend previous work that focuses
on behavior-based message format extraction, and introduce techniques for
identifying and clustering different types of messages not only based on their
structure, but also according to the impact of each message on server behavior.
Moreover, we present an algorithm for extracting the state machine. We have
applied our techniques to a number of real-world protocols, including the com-
mand and control protocol used by a malicious bot. Our results demonstrate
that we are able to extract format specifications for different types of messages
and meaningful protocol state machines. We use these protocol specifications
to automatically generate input for a stateful fuzzer, allowing us to discover
security vulnerabilities in real-world applications.

73

Chapter 4 Extracting Privacy-Relevant Information from Network Protocols

4.1 Introduction

Reverse engineering is the process of analyzing a device or a system to un-
derstand its structure and functionality. In the context of network proto-
cols, reverse engineering describes the process of deriving the application-level
protocol specification of an unknown protocol. To this end, an analyst can
monitor the exchange of messages over a network or observe how the com-
munication end-points (such as client and server) process network input. The
detailed knowledge of a protocol specification is important for addressing a
number of security problems.

Given a protocol specification, it can be used to generate protocol fuzzers [93]
that perform black-box vulnerability analysis of network applications. In fact,
many vulnerabilities have been found in the past that resulted from program-
ming errors in protocol parsing code [72]. Moreover, detailed protocol specifi-
cations are required by intrusion detection systems (e.g., Bro [99]) that perform
deep packet inspections. Also, the ability to generate protocol specifications is
useful for generic protocol analyzers that require protocol grammars as input
(e.g., binpac [97] and GAPA [22]). Furthermore, protocol reverse engineering
can help to identify (subtle) variations in the way that different applications
implement the same protocol. These differences can be used for application
fingerprinting [115] or to discover security vulnerabilities [27]. Finally, the
analysis of malware is another important area where protocol reverse engi-
neering can be applied. Botnets [42] increasingly make use of non-standard
communication protocols [101, 11]. For a security analyst who attempts to un-
derstand and take down botnets, the ability to automatically reverse engineer
the command and control protocol is clearly helpful.

In general, reverse engineering is largely a manual, tedious, and time-consuming
process. To support a human analyst with this task, a number of automatic
protocol reverse engineering techniques have been proposed. These techniques
aim to automatically generate the specifications of an application-level proto-
col. Two possible input sources can be used to analyze a protocol: network
traffic and an application that implements the protocol.

A number of approaches [38, 39, 78, 79] have been presented that use net-
work traffic as input. These systems typically analyze traces generated by
recording the communication between a client and a server. Then, heuristics
are applied to extract different protocol fields and delimiters. Although useful
in practice, the precision of these systems is often limited. That is, it is not
always possible to extract all required information about a protocol from the
network traffic alone. To address the limited precision of techniques that oper-
ate directly on the network traces, a number of systems [29, 80, 123, 40] were
introduced that focus on the (server) application. More precisely, these sys-

74

4.1 Introduction

tems operate by observing the execution of the application while it is process-
ing input messages. This allows them to infer the structure of a message (i.e.,
its constituent fields) with higher precision, and it provides insight into field
semantics that are not available to network-trace-based approaches. A com-
mon property of all previous systems (whether network- or behavior-based)
is that they only extract the format of individual protocol messages.That is,
these systems do not aim at reverse engineering the protocol state machine,
and, therefore, cannot produce specifications for stateful network protocols.

In this thesis, we introduce Prospex (Protocol Specification Extraction), a
system that can automatically infer specifications for stateful network proto-
cols, i.e. including state machine information. To the best of our knowledge,
this is the first system with this capability. Our analysis builds upon a system
introduced in previous work [123], which can extract the format specifications
of individual messages by monitoring the application as it processes its inputs.
For this thesis, our system was extended in two main directions. First, we de-
veloped a mechanism to identify messages of the same type. This information
is leveraged to combine similar messages into clusters. The second extension
is related to the inference of a protocol state machine. The protocol state
machine encodes all sequences of messages that are permitted by the proto-
col. Information about the state machine is required to be able to engage in a
“meaningful” conversation with a communication partner, e.g., knowing when
a certain message can be sent.

In summary, the contributions of this work are the following:

• We propose several features to determine when two messages in a net-
work session are similar. These features take into account not only the
format of messages, but also the effect that receiving each message has
on server execution. This allows us to automatically identify and cluster
messages of the same type. Automatically recognizing different message
types allows us to use a set of messages of the same type to generate a
corresponding message format specification.

• We present a technique to automatically infer the protocol state ma-
chine. This state machine specifies the order in which messages can be
exchanged, given no prior knowledge about the protocol under analysis.
We further show that our technique consistently outperforms existing
approaches for state machine inference.

• We applied our system to a number of real-world applications that im-
plement complex, stateful protocols. The results demonstrate that our
techniques are capable of extracting meaningful message formats and

75

Chapter 4 Extracting Privacy-Relevant Information from Network Protocols

protocol state machines. This is true both for protocols used by be-
nign applications (such as SMTP, Samba, or SIP) and protocols used by
malicious software (such as the C&C protocol used by Agobot).

• We leverage the output of our system to automatically produce proto-
col specifications for the open-source Peach fuzzing platform [100]. To
this end, we actively contributed to the development of Peach and ex-
tended its support for stateful protocols. Running Peach with our spec-
ifications allowed us to automatically find vulnerabilities in real-world
applications.

4.2 System Description

The input to our system are a number of application sessions. An application
session is a connection between hosts that allows the involved machines to
exchange data. Each session typically consists of a sequence of messages.
Each of these messages has a message type, which is defined by a message
format specification. The message format specifies the structure of a message,
typically as a number of fields. The structure of the whole application session is
determined by the protocol state machine. The protocol state machine defines
the order in which messages of different types can be sent.

The objective of our system is to automatically infer the specification of
an unknown protocol that a client uses to communicate with a server. More
precisely, given a sequence of messages that a client sends to a server, we are
interested in the specifications of these messages, as well as the protocol state
changes that these messages result in.

I npu t da ta

Control led
env i ronment

Application

Message
format

inference

Execution
trace

analysis

Feature
extract ion

Clustering

State
machine

minimizat ion

State
labeling

Session analysis Message clustering
State machine

inference

Execution
traces

Messages

Dynamic taint analysis

Clusters

Figure 4.1: System overview.

76

4.2 System Description

To this end, our system proceeds in several phases, as shown in Figure 4.1.

Dynamic taint analysis. In this phase, dynamic data tainting is used to
observe the application as it processes incoming messages. The resulting exe-
cution traces show the operations performed on data that was read from the
network.

Session analysis. Initially, we analyze these execution traces, splitting them
into individual messages. Then, we perform message format inference on each
message, resulting in detailed format specifications for single messages.

Message clustering. We extract a number of features for each message
from the execution trace. These features take into account the previously
inferred message formats as well as the effect of each message on the appli-
cation’s behavior. The similarity between messages is determined using these
features. Then, we apply the partitioning around medoids (PAM) cluster-
ing algorithm [74] to group similar messages into types. Finally, we derive a
generalized message format specification for each type.

State machine inference. In this phase, we infer a state machine that
models the order in which messages of different types may be sent. Initially,
we construct a state machine that accepts exactly the sequences of messages
observed during training. Then, we use a novel algorithm, based on domain-
specific heuristics, to label the states of this state machine. States that may
be similar are assigned identical labels. Finally, we apply the Exbar [75] algo-
rithm to produce a more general, minimal state machine by merging similar
states. Together with the generalized message format specifications for the
different types of messages, this minimal state machine represents the reverse-
engineered network protocol.

Fuzzing. Optionally, our tool can translate the extracted protocol specifi-
cations into input for the Peach fuzzing platform [100]. As we will show in
Section 4.3, this allows Peach to test code that is only accessible in later proto-
col stages, finding “deeper” security vulnerabilities in real-world applications.

Message clustering. To recognize the types of messages, we assume that
messages of the same type are similar. As a result, the goal of the message
clustering phase is to identify and combine (cluster) similar messages. We
regard two messages as similar (and hence, of the same type) when they share
similar message formats and when the server “reacts” in a similar fashion
upon receiving them.

Thus, in addition to comparing message formats, we propose a number of
novel similarity features that are based on the analysis of the application’s
actions as it processes different messages.

Once all similar messages are clustered, we label each cluster (and all cor-
responding messages) with a type. Moreover, for each cluster, we generate

77

Chapter 4 Extracting Privacy-Relevant Information from Network Protocols

a generalized message format specification that describes all messages in this
cluster.

Generation of fuzzing specifications. Optionally, our tool can translate
the extracted protocol specifications into input for the Peach fuzzing platform
[100]. As we will show in Section 4.3, this allows Peach to test code that is only
accessible in later protocol stages, finding “deeper” security vulnerabilities in
real-world applications.

4.2.1 Session Analysis

The purpose of the session analysis phase is to automatically retrieve the mes-
sage format specifications for the messages that are passed between client and
server within an application session. To this end, we leverage an observation
that was exploited in previous work [29, 123] for the analysis of individual
messages. This observation suggests that it is advantageous to monitor how
a program processes its input messages instead of analyzing the traffic that is
exchanged between hosts at the network-level, because this allows more pre-
cise inference of message formats. By using dynamic taint analysis [33, 35, 37],
we can precisely track how the application, which “understands” the messages
and implements the protocol state machine, handles input data. As a result
of the session analysis phase, we obtain a sequence of messages for an applica-
tion session, each represented as a tree of high-level messages fields. Previous
work on message format inference includes systems that analyze either single
inputs [29, 80] or, more generally, multiple inputs [123, 40]. Our current im-
plementation extends work from [123] and automatically splits sessions into
sequences of messages. Thus, the need for human assistance during this phase
is removed.

Like previous work, our system is not capable of reverse engineering en-
crypted traffic. While this is an intrinsic limitation of approaches that only
analyze network traffic, it could be overcome by systems that observe server
behavior. For this, one could manually or automatically [119] identify buffers
that hold decrypted messages and then use these buffers as a starting point
for the analysis.

The following paragraphs outline the steps performed by our system to retrieve
the message formats.

Recording execution traces. Initially, we execute the application that
implements the protocol that we are interested in (e.g., a server program).
The program is run in a controlled environment that supports dynamic data
tainting [33, 35, 37]. This allows us to record all operations that involve
data read from protocol messages. Then, we engage the server in a series of

78

4.2 System Description

application sessions, typically by connecting with a client program, performing
some common tasks.

In this work, we limit ourselves to the analysis of the communication in a
single direction. That is, we infer the protocol state machine only for one of
the communication partners. Also, we only determine the specifications of the
messages that this communication partner receives. For ease of presentation,
we will refer to this communication partner as “server,” and to the other as
“client.” Note that it would be possible to use our techniques to simultane-
ously monitor both the client and the server, eventually combining the two
different state machines and sets of message formats.

With dynamic data tainting, the system assigns a unique label to each input
byte and tracks the propagation of these labels throughout the execution of the
program. The output of this step is, for each application session, an execution
trace that contains all executed instructions as well as the taint labels of all
instruction operands.

Splitting a session into messages. The execution traces that we record
contain all instructions that are executed during an application session. As
the next step, this trace needs to be split according to the individual mes-
sages. Since we assume no prior knowledge of message boundaries, we use a
simple heuristic: The first message starts with the first input byte that the
server receives. All subsequent input is considered to be part of this mes-
sage. This continues until the server writes data to the socket from where
it had received the input (that is, the server sends a reply). The next byte
received from the client is considered to denote the start of the next message.
This is repeated until all execution traces are split into segments, where each
segment corresponds to one message. While this approach is not fully gen-
eral, it is significantly more accurate than considering each network packet
as a message by itself. The reason is that clients sometimes break a message
into several packets (for example, interactive protocols). The server collects
these packets until a complete message has arrived before a response is sent.
Our heuristic correctly handles this case and combines multiple packets into
a single message.

Inferring message formats. Once our system has identified an execution
trace segment for each protocol message, we use the techniques presented in
previous work [29, 123] to determine the format of each message. Using these
techniques, we analyze an execution trace segment and split the corresponding
message into fields. As a result, each message is represented as a tree of
fields with associated semantics (i.e., delimited field, length field, pointer field,
keyword, file name, etc.). The output of the session analysis step is a sequence
of messages for each application session. Each message is represented as a tree

79

Chapter 4 Extracting Privacy-Relevant Information from Network Protocols

of nested fields.

4.2.2 Message Clustering

After the session analysis phase, the system has extracted a format specifi-
cation for every individual message. However, there is no information about
similarities between messages or their types.

Previous systems that perform message format inference operate on mes-
sages of a single, known type. However, our goal is to infer a protocol specifi-
cation assuming no prior knowledge about message types (in fact, we do not
even know a priori how many message types there are for a certain protocol).
Therefore, we require a step that can recognize the types of different messages.

Thus, the goal of the message clustering phase is to assign a type to each
message. To this end, we define a metric of similarity between messages, and
use it to cluster together similar messages. Our similarity metric is based on
the assumption that messages of the same type share similar message formats
and that the server “reacts” in a similar fashion upon receiving them. Thus,
in addition to comparing message formats, we propose a number of similar-
ity features that are based on the analysis of the application’s actions as it
processes different messages. Once all similar messages are clustered, we label
each cluster (and all corresponding messages) with a type.

By assigning types to messages, we can operate on a more abstract rep-
resentation of protocol sessions. Moreover, for each cluster, we generate a
generalized message format specification that describes all messages in this
cluster.

Feature Extraction and Similarity Computation

To be able to cluster related messages, we require a way to assess their simi-
larity. For this, we introduce a number of features and corresponding distance
functions that allow our system to calculate the similarity between two mes-
sages. These features can be divided into three groups that are discussed in the
following paragraphs. For each feature, we compute a normalized similarity
score between 0 (meaning completely different) and 1 (meaning identical).

Input similarity. Clearly, when comparing two messages, the structure and
order of the fields that these messages are composed of play an important
role. That is, we would assume that two messages of the same type also
contain similar fields in a similar order. To capture this intuition, we use a
sequence alignment algorithm (the Needleman-Wunsch algorithm [90], to be
more precise). The goal of this algorithm is to take two sequences as input and
find those parts that are similar, respecting the order of the elements. These

80

4.2 System Description

similar parts are then aligned, exposing differences or missing elements in the
sequences. In our case, we use the sequences of fields that each message is
composed of. For more details on how the comparison between two messages
is implemented, we refer the reader to [123].

Execution similarity. In addition to the format of the input messages, we
also expect that messages of the same type are handled by similar code in
the application. That is, when a message of a certain type is received and
processed, we assume that the program uses the same code fragments, library
calls, and system calls, at least to a certain degree. This intuition is captured
by the following execution similarity features, which can be directly derived
from the recorded execution traces.

• System call feature: This feature takes into account the types of system
calls (as indicated by their system call number) that were invoked during the
processing of a message. These system calls are stored as a set, that is, the
order is not taken into account for this feature.

• Process activity feature: This feature is related to the system call feature, but
focuses on system calls related to the generation or destruction of processes
(such as clone and kill). Process-activity-related system calls are typically
very indicative for the behavior of an application. When considered together
with all other system calls (as part of the previous feature), these calls would
not have sufficient weight in the similarity calculation.

• Invoked function feature: For this feature, we store in a set the target ad-
dresses of call operations that are executed during the processing of a message
(if these addresses are within the application’s text segment).

• Invoked library functions feature: This feature is used to track (dynamically-
linked) library calls that are made by an application. To capture this fea-
ture, we record the target addresses of call operations that are outside the
program’s text segment. In the case of statically-linked binaries, we would
recognize a library call as a regular function call.

• Executed addresses feature: For this feature, we use the set of addresses
of instructions that are executed by the application while it is processing a
specific message (if these addresses are within the application’s text segment).

For each of the execution features listed above, we record a set of numbers
or addresses that are associated with a certain message. To compare two mes-
sages, we employ the Jaccard index [66] to determine the similarity between

81

Chapter 4 Extracting Privacy-Relevant Information from Network Protocols

two features, defined as:

J(a, b) =
|a ∩ b|

|a ∪ b|

In the equation above, a is the set of elements associated with a feature of the
first message, while b is the set that represents the same feature of the second
message. Clearly, J(a, b) yields 0 when the sets are disjoint and 1 when they
are identical. Note that we calculate five execution similarity scores, one for
each of the five execution features.

Impact similarity. The last group of features captures the response of the
server to a message that is received. Typically, a server application will execute
a series of actions when receiving a (legitimate) request from a client. The
goal of the following two impact similarity features is to represent some of
these actions at a high level of abstraction.

• Output feature. This feature captures the output behavior of the server while
processing a message. In particular, we are interested in all system calls that
cause the server to write out data. More precisely, we consider the following
four destinations for data write operations: the socket to which the client
is connected, other network sockets, files, and the terminal. The socket to
which the client is connected captures cases in which data is returned to the
client (thus ending the message, as explained in Section 4.2.1), while other
network sockets refer to cases in which a server sends data over a different
connection. File and terminal destinations simply represent operations where
the application writes data to one of these sinks.

For each write operation, we also analyze the taint status of the data that is
written. This allows us to distinguish between operations that write tainted
data (i.e., data previously received from the client) and those that write other
data. We then label each byte of output with a tuple 〈sink, tainted〉 that
specifies where the data was written to and whether it was tainted or not. The
output feature is represented by a sequence of such tuples, with consecutive
duplicates removed.

Finally, we use the Needleman-Wunsch sequence alignment algorithm to com-
pare output sequences, as for the input similarity. The result is the output
similarity score.

• File system feature. This feature captures the file system activity of the
server when handling an input message. Therefore, we consider system calls
that perform file system actions, such as opening or closing a file, or obtaining
information about a file or directory. In a first step, we represent the file
system activity as a set of 〈operation, path〉 tuples, where operation is one of

82

4.2 System Description

{open, close, read, write, rename, stat, mkdir, rmdir}, and path is the
path of the file that the system call operates on.

The name of the file or directory on which a system call operates may be spe-
cific to the individual execution trace, and, therefore, needs to be generalized.
Specifically, we look for prefixes of the path that are either hardcoded in the
binary (by scanning for strings in the program’s file on disk) or are found in
one of the program’s configuration files (if provided by an analyst). We can
also detect those parts of a path that are tainted, and as such, represent a
parameter of a client request. To perform generalization of a path, we first
attempt to look for the longest prefix that matches a string that is found in
the binary. The remaining parts are then replaced with one of the special
tokens TAINT, CONFIG, or VARIABLE. The VARIABLE token is used for
all parts that are neither tainted nor appear in a configuration file.

As a result of the previous step, the file system feature is represented by a set
of tuples, for example, 〈open, ”/CONFIG/TAINT”〉 or
〈write, ”/var/log/samba/VARIABLE”〉. To compute the similarity measure
between the file system features of two messages, we use the Jaccard index,
as for the execution similarities.

Clustering

Based on the features and similarity functions described in the previous sec-
tion, we compute the distance between a pair of messages a and b as d(a, b) =
1−

∑

i wisi(a, b), where si is the similarity measure for feature i, and
∑

i wi = 1.
The weights wi are selected in such a way that each of the three groups of
features described above has the same overall weight of 1

3
, and that features

in the same group have equal weight. Once a distance matrix is computed,
we can use off-the-shelf clustering techniques to classify our data. Specifically,
we employ the partitioning around medoids (PAM) algorithm [74].

Like most partitioning-based clustering techniques, the PAM algorithm takes
as input the number k of clusters to generate. To determine a suitable value
for k, we employ a generalization of the Dunn index. The Dunn index [47] is
a standard intrinsic measure of clustering quality, defined as:

D(k) =
min1≤i≤k{min1≤j≤k{δ(Ci, Cj)}}

max1≤i≤k{∆(Ci)}
(4.1)

where C1, .., Ck are the clusters, ∆(Ci) is the diameter of cluster Ci, and
δ(Ci, Cj) is the distance between the two clusters. Since the numerator of
Equation 4.1 is a measure of cluster separation, while the denominator is a
measure of cluster compactness, k should be chosen so that the Dunn index is

83

Chapter 4 Extracting Privacy-Relevant Information from Network Protocols

maximized. To compute the distance between two clusters (δ in Equation 4.1),
we use the single-linkage distance defined as δ(Ci, Cj) = mina∈Ci,b∈Cj

{d(a, b)}.
To compute the diameter of a cluster (∆ in Equation 4.1), we use one of the
measures defined in [95], which is based on Relative Neighborhood Graphs.
Once clustering has been performed, we derive a format specification for each
message type by merging the formats of all messages in the corresponding
cluster. This merging step leverages techniques from [123].

4.2.3 State Machine Inference

The previous clustering phase identifies similar messages in application ses-
sions, assigning a different type to each cluster. As a result, each session si

can be represented as a sequence Si = (σ1, .., σh), where σ1, .., σh ∈ M and M

is the set of message types. The goal of the state machine inference phase is to
infer an acceptor machine that can recognize sequences of message types that
represent valid sessions of the protocol under analysis. Unfortunately, this
problem cannot be solved exactly, even if we assume that the language com-
prising all valid sequences is a regular language. The reason is that Gold [56]
has proved that a regular language cannot be learned from positive exam-
ples only. Moreover, the problem is even more difficult for more powerful
languages.

A commonly-used approach to infer a regular language from a labeled train-
ing set (a labeled training set is a set of example strings, labeled accept or
reject), is to find the smallest automaton that is consistent with that train-
ing set [28]. Such an approach selects the simplest, most-generic hypothesis
consistent with the observations. Unfortunately, this technique cannot be di-
rectly applied to our problem. The reason is that only positive examples are
available (all sessions are labeled accept), therefore, the minimal automaton
consistent with our training set accepts all possible sequences of message types.
To avoid such an over-generalization, we need to restrict the hypothesis space
using domain-specific knowledge.

Augmented Prefix Tree Acceptor (APTA)

As mentioned previously, the input to the state machine inference phase is a set
Λ of message sequences Si, where each Si represents one observed application
session. In a first step, we can represent the set Λ as an augmented prefix tree
acceptor (APTA) T [28].

An APTA is an incompletely-specified deterministic finite state automaton
(DFA), with a state transition graph that is a tree. The root of the tree
is the initial state of the DFA, and each branch represents an application

84

4.2 System Description

session. As an example, consider that we observe two application sessions of
the Agobot malware. The sequences of the message types of these two sessions
are: (login, bot.dns, bot.status, mac.logout) and (login, mac.logout,
login, bot.status, bot.dns, mac.logout). The APTA for this example is
shown in Figure 4.2. States of T may be labeled either accept, or reject. In
our example, all states are labeled accept (marked with an “A”) because any
prefix of a valid protocol session is also a valid session (if this were not the
case, only the two final states would be accept states, and other states would
be unlabeled). T is an incompletely-specified acceptor DFA that accepts only
the sequences in the training set (and their prefixes). For any other sequence,
the result is unspecified.

The APTA T is used as a starting point to find the protocol state machine.
This is done by finding the minimal DFA that is consistent with T . To find
such a DFA, we can leverage existing algorithms (such as Exbar [75]) that
start from T and successively merge pairs of states. Clearly, states with dif-
ferent labels can never be merged. However, in our training set, all states of
T are labeled accept. Thus, the result of directly applying an existing algo-
rithm would be an over-general DFA with only a single state. To address this
problem, we introduce an algorithm that assigns different labels to the states
of T (discussed in the next Section 4.2.3). This restricts the possible merges,
since only states with the same label may be merged. Finally, we use Exbar
to obtain a minimal DFA that is consistent with that labeling, as discussed in
Section 4.2.4. This minimal DFA represents our state machine.

A A
login

Abot.dns

A

mac.logout

A
bot.status

A
mac.logout

A
login

A
bot.status

A
bot.dns

A
mac.logout

Figure 4.2: APTA for the Agobot example.

State Labeling Algorithm

The goal of the state labeling algorithm is to find states in the APTA that
are different. By assigning different labels to these states, we can prevent
them from being merged. To this end, we leverage the observation that a
common pattern in application layer network protocols is that a message or
a sequence of messages must be sent before the server can perform certain
actions. As an example, in the Agobot command and control protocol, a
login is required before other commands become available. In SMB/CIFS,

85

Chapter 4 Extracting Privacy-Relevant Information from Network Protocols

a “TREE CONNECT” operation must be performed to connect to a share
before file operations can be issued. In addition, certain commands may lead
the server away from a state where it can perform these actions. For instance,
a logout command in Agobot or a “TREE DISCONNECT” in SMB/CIFS
make previously available commands impossible to execute.

Our state labeling algorithm attempts to identify states that represent sim-
ilar application conditions. That is, we attempt to identify cases in which an
application can process similar commands, based on the sequence of messages
that it previously received. To this end, we extract simple patterns from the
observed application sessions. These patterns have the form of regular ex-
pressions on sequences of message types. More precisely, each pattern has the
form:

. ∗ r(a1|..|aj)∗, (r, a1, .., aj ∈ M) (4.2)

where “∗” means zero or more repetitions of the previous term and “.” matches
any message type. We call such a pattern a prerequisite.

A prerequisite requires that, for the server to be in a state where it can
meaningfully process a message of type m, it must first receive a message of
type r, optionally followed only by messages in the set Ar = a1, .., aj.

The message of type r is a message that always occurs before m. That
is, in all application sessions, a message of type r was found before m. This
is to capture the case where a connect or login message must be sent before
message m. Note that Equation 4.2 allows messages of any type to occur
before r (including more occurrences of r).

The set of optional messages Ar is the set of all messages that, in at least
one application session, have been seen between the last occurrence of r and
a message of a type m. In the Agobot example, login always occurs before
messages in the set Mlogin = {bot.dns, bot.status, mac.logout}. Furthermore,
only bot.dns and bot.status occur between the last login and messages in
the Mlogin set. Therefore, the prerequisite .* login(bot.dns|bot.status)∗ will
be added for all three message types in Mlogin. We provide a more precise
description of our algorithm for inferring prerequisites in the following section.

4.2.4 Prerequisites Inference Algorithm

In this section, we detail the algorithms that we use to infer the prerequisites
described in Section 4.2.3. Algorithm 1, together with Algorithms 2 and 3,
computes prerequisites in the form of Equation 4.2. A prerequisite for message
type m is specified by the tuple 〈m, r, Ar〉. To implement the hitting set heuris-
tic and to infer prerequisites in the form of Equation 4.3, we replace the call to
the get required function in Algorithm 1 with a call to get required sets

86

4.2 System Description

(Algorithm 4).
The hitting set function in Algorithm 4 finds a solution to the minimum

hitting set problem for sets in Y . That is, it finds the smallest set ρ of message
labels such that ρ ∩ y 6= ∅, ∀y ∈ Y . That is, we want to find the minimum
number of message types such that at least one type is present on any path
from the start state to a state where m is received. The minimum hitting set
problem is NP-complete [73], but we impose the restriction |ρ| ≤ K and solve
it by exhaustive search. The constant K was set to 5 in our experiments; we do
not expect a protocol specification to have more than 5 message types leading
to the same state transition, or our clustering algorithm to be so inaccurate
as to split messages of a single message type into more than 5 clusters. Since
get required sets returns a set of sets, Algorithms 1 and 3 must also be
modified accordingly.

Algorithm 1 infer prerequisites

Input: The set of message types M . The training set composed of n appli-
cation sessions S1, .., Sn, where Si = σi,1, ..σi,|Si| and σi,j ∈ M .

Result: the set of prerequisites P .
for each m ∈ M do

Rm = get required(m)
R =

⋂

m∈M Rm

P = ∅
for each r ∈ R do

Mr = m ∈ M |r ∈ Rm // the set of messages which share requirement r

Ar = get allowed(r, Mr)
for each m ∈ Mr do

add 〈m, r, Ar〉 to P

Algorithm 2 get required

Input: A message type m ∈ M . The training set S1, .., Sn.
Result: Rm ⊂ M , the set of msg. types required before m

Y = ∅
for each instance σi,j of m in the training set do

y = {σi,1, .., σi,j−1}
// the set of message types found before σi,j in Si

add y to Y

return
⋂

y∈Y

Once all prerequisites have been computed, we label each state q of T with
the set of message types that are allowed as input in that state. A message

87

Chapter 4 Extracting Privacy-Relevant Information from Network Protocols

Algorithm 3 get allowed

Input: A message type r ∈ M . A set of message types Mr ⊂ M . The training
set S1, .., Sn.

Result: A ⊂ M , the set of message types allowed after r

A = ∅
for each instance σi,j of m in the training set do

consider the application session Si = σi,1, .., r, σi,k+1, .., σi,j, .. // σi,k = r

is the last occurrence of r in Si before σi,j

a = {σi,k+1, .., σi,j−1}
add a to A

return A

Algorithm 4 get required sets

Input: A message type m ∈ M . The training set S1, .., Sn.
Result: Rm ⊂ 2M , the set of requirements for m

Rm = ∅
compute Y as in get required
while (y 6= ∅ ∀y ∈ Y) do

ρ = hitting set(Y)
add ρ to Rm

set y to y − ρ for each y ∈ Y

return Rm

88

4.2 System Description

type m is allowed in a state q if the sequence of message types leading to q

exactly matches all prerequisites for m (since T is a tree, there is only one
path leading from the root to state q). The labeled state tree for the Agobot
example is shown in Figure 4.3.

{login}

{login,
mac.logout,
bot.status,
bot.dns}

login

{login,
mac.logout,
bot.status,
bot.dns}

bot.dns

{login}

mac.logout

{login,
mac.logout,
bot.status,
bot.dns}

bot.status
{login}

mac.logout

{login,
mac.logout,
bot.status,
bot.dns}

login
{login,

mac.logout,
bot.status,
bot.dns}

bot.status
{login,

mac.logout,
bot.status,
bot.dns}

bot.dns
{login}

mac.logout

Figure 4.3: Labeled State Tree for Agobot example.

Hitting set heuristic. The technique described above fails to detect a pre-
requisite for a message m when there are multiple, alternative paths to a state
where m is allowed. As an example, in an SMTP session, either HELO or
EHLO may be the first message, but one of these two is required before a
RCPT TO message may be sent. Furthermore, even if there is only one login
message type according to the specification of a protocol, this message type
may be split into several clusters by our tool (for instance, when the login
message can have significantly different, optional parameters). To be able to
handle such situations, we generalize Equation 4.2 and infer prerequisites in
the form:

. ∗ (r1|..|rk)(a1|..|aj)∗ (4.3)

That is, we require only one of the messages r1, .., rk to be present in a ses-
sion before m can be received. To infer such prerequisites, we generalize the
algorithm described above, as detailed in Section 4.2.4.

End-state heuristic. In addition to the techniques described previously, we
also use a simple heuristic to detect end-states in the protocol state machine.
It is common for application layer protocols to have one (or more) message
types that request the termination of the protocol session. To detect those
message types, we simply look for messages that, throughout all observed
application sessions, appear only last in a session. In T , we mark all states
that follow such messages as end-states, setting their label to the empty set
(since no messages of any type are allowed in those states).

89

Chapter 4 Extracting Privacy-Relevant Information from Network Protocols

Exbar

Based on a state tree (APTA) that is labeled by our heuristics, we can now
infer a minimal DFA. The problem of deriving the smallest DFA consistent
with a labeled training set is an important problem in grammar inference,
and has been proven NP-complete by Gold [57]. Both approximate and exact
algorithms have been proposed to solve it (see [28] for an up to date survey
of existing techniques). Exbar [75] is the state-of-the-art, exact algorithm for
minimal consistent DFA inference. Thus, we apply Exbar to the state tree T ,
once it has been labeled by the previously-discussed algorithm. The result is
the generalized protocol state machine.

The state machine for the Agobot example (Figure 4.3) is shown in Fig-
ure 4.4. Here, we have once more replaced the state labels with accept. Once
this generalization phase is complete, we assume that any sequence of message
types that leads to an unspecified state transition is not a valid protocol ses-
sion. Therefore, we add an additional reject state (not shown in Figure 4.4) to
the state machine, and make it the endpoint for all unspecified transitions. In
the state machines shown throughout this work, this reject state is also omit-
ted for ease of presentation. In Section 4.3.5, we evaluate the performance of
Exbar on our datasets.

A A
login

mac.logout

bot.dns
bot.status

Figure 4.4: Inferred state machine for Agobot example.

4.2.5 Creating Fuzzing Specifications

As a final step, our tool is able to export the state machine and message
format descriptions to the XML-based protocol specification format used by
the Peach fuzzing platform [100].

Fuzzing is a black-box software testing technique that is based on the prin-
ciple of feeding an application with random input, while observing crashes or
other undesired behavior [86]. To achieve better code coverage of the tested
application, advanced fuzzers (such as Peach [100]) generate test data based
on the grammar of the file formats or network messages understood by the
target application (we refer the reader to [110] for a recent overview of fuzzing

90

4.3 Evaluation

techniques). Unfortunately, without any knowledge of the protocol state ma-
chine, a (stateful) network protocol cannot be effectively fuzzed. The reason
is that a server will typically discard messages with types that are not ac-
ceptable in the current protocol state. Thus, stateful protocol fuzzers such
as Snooze [15], additionally use a specification of a protocol state-machine to
reach deep protocol states.

Prospex is able to automatically extract a grammar for protocol messages, as
well as a protocol state machine; stateful, grammar-based fuzzing is, therefore,
a natural application. We chose to leverage an existing tool for fuzz testing,
and selected Peach [100], mainly because it is an open-source project under
active development, and it provides most of the required features. The main
limitation of Peach was the limited support for statefulness. To address this
limitation, we contributed to the design and development of improved state-
fulness features for Peach, which have been integrated into release 2.2. To use
Prospex specifications for fuzzing, we simply translate the message formats
and state machine extracted by our tool to Peach XML. The Peach fuzzing
framework then provides all the mechanisms necessary to perform stateful fuzz
testing of real-world applications that implement the target protocol.

4.3 Evaluation

We have tested our tool on a number of applications that implement stateful,
application-layer protocols. In particular, we chose a bot protocol, SMB,
SMTP and SIP, as they are all stateful protocols implemented in complex
server applications that are widely deployed. Because of a limitation of our
current system (our taint tool only runs under Linux), we only analyzed server
programs that are available to us as Linux binaries. However, this does not
represent a general limitation of our approach.

The quality of the specifications produced by our tool is limited by the qual-
ity and variety of the data used to train it. As for all trace-based approaches,
our system cannot learn behaviors that do not occur in the training data. For
the purpose of this evaluation, we trained our system using small datasets that
covered a meaningful subset of the functionality of each protocol, such as using
SIP to perform phone calls or SMB to browse shared files and folders. The
goal of this evaluation is to demonstrate that, provided suitable training data,
we can produce accurate state machines and message formats for complex,
stateful protocols. Furthermore, our tool can help a human malware analyst
to understand a previously-unknown malware protocol. Finally, we show that
we can automatically generate fuzzing specifications that are subsequently
used to find security vulnerabilities in real-world server programs.

91

Chapter 4 Extracting Privacy-Relevant Information from Network Protocols

4.3.1 State Machine Inference

We applied our system to one malware protocol (Agobot C&C), two text-based
protocols (SMTP, SIP), and one binary protocol (SMB). For each protocol,
the system created state machines that ranged from four states (Agobot) to
13 states (SMB).

Agobot. We selected the well-known Agobot as the malware example. The
reason is that Agobot implements a custom C&C protocol and is represen-
tative for a whole family of bots, for example, Phatbot and Forbot [63]. For
C&C, Agobot uses a text-based protocol that resembles the IRC protocol.
However, the malware author has extended the protocol by incorporating ad-
ditional command keywords. These commands typically trigger malicious bot
behavior, for example, spreading via scanning and remote exploits, relaying
traffic, or downloading binaries from the web. The automatic analysis of bots
can provide valuable information about the malware’s communication pro-
tocol and the available commands, which can help an analyst to better and
faster understand the bot’s internal functionality.

For our experiments, we set up an IRC server and configured an Agobot
instance such that the bot connected to a local IRC channel, listening for
commands. We then mimicked a bot herder, issuing several commands to the
bot while monitoring it. We then ran our tool on the collected traces and
obtained the state machine in Figure 4.5. Moreover, the system has correctly
produced format specifications for the commands that we sent to the bot. Of
course, for a more realistic scenario, it would be desirable to trace the bot
while a real bot herder is issuing commands.

0

PING
1login

3

mac.logout

bot.die

PING
bot.dns

bot.status

2

redirect.tcp

mac.logout

bot.die

redirect.stop

redirect.tcp
bot.status

PING
bot.dns

Figure 4.5: Inferred state machine for Agobot command and control protocol.

SMTP protocol. As an example of an application that implements a state-
ful, text-based protocol, we have chosen the widely-deployed mail transport
agent sendmail (version 8.13.8). The application implements SMTP (Sim-
ple Mail Transfer Protocol). To infer the state machine, we first recorded 16

92

4.3 Evaluation

SMTP application sessions on our group’s e-mail server. We then replayed
this small training set to a sendmail server instance that we were tracing. Fig-
ure 4.6 shows the SMTP state machine that our system inferred. It can be
seen that two different message types were created for each the MAIL FROM
and RCPT TO commands. This is due to the fact that those mail clients
that initially send an EHLO command are typically using extended options
(additional flags and keywords) in subsequent SMTP commands (for example
“ORCPT” in the RCPT TO command). Because of the resulting, different
message formats, our system distinguishes between simple and extended ver-
sions of these SMTP commands.

0

1HELO

9

EHLO

2MAIL FROM 1 36RCPT TO 1

RCPT TO 1

43

QUIT

41

DATA

40

RCPT TO 2

QUIT

DATA

10
MAIL FROM 2 RCPT TO 2

42
EMPTY CONTENT

CONTENT

QUIT

Figure 4.6: Inferred state machine for the SMTP protocol.

Server Message Block (SMB) protocol. As an example of a complex,
stateful, binary protocol, we have chosen SMB/CIFS. In our experiments, we
used version 3.0.26a of the Samba software suite, and traced the smbd daemon
while using the smbclient utility to browse shared directories, performing
common operations such as writing, reading, and deleting files and directories.
Using this setup, we produced a training set of 31 recorded sessions. The
state machine inferred from the SMB dataset can be seen in Figure 4.7. The
login sequence leading to State 3 is clearly visible. After that, when the DFS
(distributed file system) option is enabled, the client first connects to the IPC$
share to obtain a DFS referral for the requested share. Otherwise, the client
directly connects to the requested share in State 6. In this state, most of
the file system operations are available. Operations on a file are performed
by opening the file, reading or writing, and finally closing it (States 8-10).
According to this state machine, only one file may be opened at any given time.
Of course, this is not a limitation of the SMB/CIFS protocol, but a peculiarity
of how the smbclient tool employs it. In fact, smbclient always closes a file
before operating on the next one. Finally, notice that States 11 and 12 are
artifacts of our system, caused by the limited variety of the training set. The
reason is that, in the training set, “DELETE” and “QUERY DISK” requests

93

Chapter 4 Extracting Privacy-Relevant Information from Network Protocols

were always preceded by find requests. This highlights the dependence of our
system on the quality and variety of data in the training set.

0 1

NEGOTIATE
PROTOCOL
REQUEST

11

6

DELETE

QUERY DISK
12

ECHO

QUERY DISK

2

SESSION
SETUP

negotiate

7

3

SESSION
SETUP

authenticate

FIND 2

FIND 1

FIND 3

TREE
DISCONNECT

CREATE
DIRECTORY

QUERY FILE
BASIC INFO

ECHO

DELETE
DIRECTORY

8
OPEN

TREE
CONNECT

4

TREE
CONNECT

ipc$

5

GET DFS
REFERRAL

TREE
DISCONNECT

ipc$

9

READ

10

READ

CLOSE

QUERY FILE
ALL INFO

WRITE

Figure 4.7: Inferred state machine for the SMB/CIFS protocol.

Session Initiation Protocol. The text-based Session Initiation Protocol
(SIP) [105] is used for setting up and controlling communication connections.
In our experiment, we traced the well-known, open-source telephony server
Asterisk [12] (version 1.4.0), which is typically used as part of a Voice-Over-
IP (VOIP) infrastructure. Our test environment consisted of three (virtual)
machines, one of them running the Asterisk server, while the two other ad-
ditional machines served as clients. In our test configuration, we created two
SIP peers, each including a voice box. The client machines had installed either
CounterPath Corporation’s proprietary softphone X-Lite [125] (version 2.0)
or the open-source softphone Ekiga [48] (version 2.11). To simulate different
client behavior, the softphones were configured to either automatically answer
incoming calls using a built-in auto-answer feature, automatically answer after
a short delay (e.g., permit ringing) by using a GUI automation tool [77], or to
not answer at all (triggering the voice box). Then, we initiated a number of
phone calls to these peers by using a softphone, including simultaneous phone
calls on multiple lines. These training calls were used by our tool to generate
protocol specifications for the observed call initialization use-cases. Figure 4.8
shows the SIP state machine.

94

4.3 Evaluation

0 1
REGISTER

3

ALIVE

4

Trying

ALIVE
2INVITE

ACK

ALIVE

OK

ALIVE

Figure 4.8: Inferred state machine for the SIP protocol.

4.3.2 Quality of Protocol Specifications

To evaluate the quality of the protocol specifications inferred by Prospex, we
need to assess their soundness and completeness. For the purpose of this thesis,
we say that a protocol specification is complete if it is not overly restrictive.
That is, the protocol specification accepts (parses) valid protocol sessions.
Conversely, we say that a protocol specification is sound if it is not overly
permissive. That is, it rejects invalid protocol sessions.

As for all trace-based approaches, the completeness of inferred specifications
is limited by the variety of behaviors observed in the training data. Therefore,
we evaluate completeness with respect to the subset of protocol functionality
that was exercised during training. For instance, for the SMB protocol we
take into account the browsing of shared files and directories, but not the use
of printing services.

Protocol Completeness

In the first step, we demonstrate that our protocol specifications are complete.
To this end, we used our protocol specifications to parse real-world network
traces (that were not part of the training data) of SMTP, SMB, and SIP traffic
. Note that this shows the completeness of both the message formats and the
state machines inferred by our tool. The reason is that, for successful parsing,
Prospex has to correctly determine the format of each individual message and
recognize their correct ordering.

For parsing, we used an enhanced version of the single message parser pre-
sented in [123], which includes support for multiple states. Each result was
achieved by using the value of k where the generalized Dunn index reaches its
maximum (as discussed in Section 4.2.2).

SMTP results. For SMTP, we recorded our group’s Postfix [122] e-mail
server traffic (incoming traffic on port 25) during a period of four weeks.
Then, we split the dumps into TCP sessions and parsed them, using the
automatically-generated SMTP protocol specification with k = 10.

Out of 31,903 total sessions, we were able to parse 29,832 sessions (93.5%)

95

Chapter 4 Extracting Privacy-Relevant Information from Network Protocols

successfully. We found that the remaining 2,071 sessions (6,5%) were all using
TLS encryption, which we cannot handle properly as one of the limitations
of our system is its inability to handle encrypted traffic. This shows that our
system can fully parse (unencrypted) real-world traffic, generated by a number
of clients and sent to a different mail server implementation than the one used
to infer the protocol specifications.

SMB results. To test our SMB protocol specification, we used smbclient to
browse shared directories on both Windows and Linux servers, and recorded
80 sessions. For k = 23, only 8 sessions fail to parse. We examined these
sessions and determined that parsing fails because of (1) error conditions not
present in the training set (such as attempting to read from a non-existing file),
(2) writing of long files; a limitation of our training set was that only short
files were written, small enough to be sent in a single write message, and (3)
insufficient generalization of the state machine (as discussed in Section 4.2.3,
states 11 and 12 in Figure 4.7 are artifacts of our system).

SIP results. For generating SIP traffic, we used X-Lite [125] to initiate
phone calls to different SIP peers in a laboratory Voice-Over-IP environment.
We recorded a set of 80 SIP sessions during these calls. Using the state machine
for the indicated optimum of k = 6, we were able to parse all of the traffic
successfully.

Protocol Soundness

In the next step, we evaluate the soundness of the inferred specifications.

Soundness of the Message Formats. To show that our protocol specifica-
tions are not overly permissive, we first need to demonstrate that the inferred
message format for each cluster is not too general, as it should neither parse
arbitrary messages nor messages that have a different type. To this end, we
compute the message format specificity.

Initially, we manually label every message in the training set with its actual
message type (such as “HELO” or “TREE CONNECT”). Then, we mark each
cluster with the message label of the majority of its messages (while, ideally,
all messages in a cluster would share the same label, this step is necessary if
different message types are incorrectly clustered together). In the next step,
we select a certain cluster. Then, we find all training set messages that are
not labeled with the label of this cluster. These messages are then parsed
with the cluster’s message format. When the clustering phase was successful
and the message formats are sound (not too general), we would expect most
parsing attempts to fail. This step is then repeated for all clusters. Finally,
we calculate the ratio r of successfully parsed messages to the number of total

96

4.3 Evaluation

parsing attempts. The format specificity is then computed as 1 − r.

For the value of k where the Dunn index reaches its maximum, our tool
achieves a message format specificity of 1 for all four datasets (Agobot, SMTP,
SMB and SIP). This means that (a) no cluster contains messages of multiple
types, and (b) the message format for a cluster does not parse any messages
of a different type.

Soundness of the State Machines. The next goal is to evaluate the sound-
ness of the inferred state machines. To do so, we require a reference state ma-
chine for each protocol. We created these reference state machines manually,
using information from specification documents (if available), and integrating
it with our own testing and reverse engineering efforts. Clearly, our tool can-
not learn parts of the protocol that were not exercised in our training data,
so we do not include them in the reference state machine. We then performed
n (for n = 50, 000) random walks over our inferred state machine, generat-
ing n sessions that our specification considers valid. These sessions were fed
to the reference state machines. The idea is that an overly permissive state
machine would generate sessions that are not recognized by the true protocol.
We found that, for all four protocols, all sessions were accepted. Thus, our
inferred state machines are sound.

4.3.3 Comparative Evaluation

The previous section has shown that our techniques allow us to infer accu-
rate specifications. However, there exist alternative approaches to infer an
automaton from positive examples only. One popular approach is based on
the minimum message length (MML) principle [116]. According to this prin-
ciple, a solution should minimize the length of the description of the state
machine together with the dataset it tries to account for. Since minimiz-
ing this quantity is an NP-complete problem, several approximate algorithms
have been proposed to attempt to solve it. The sk-strings algorithm [98] is one
such algorithm, which has previously been applied to mine specifications [8]
of a software component from program execution traces. The authors of [98]
also introduced the beams algorithm [104], which outperforms sk-strings. We
obtained the implementations of both algorithms from the authors [1].

To compare the performance of previous techniques with our system, we
leverage the precision and recall metrics introduced in [81]. Precision is closely
related to the soundness metric described in the previous section. It measures
the ratio of sequences generated by a random walk over the inferred automaton
that are accepted by the reference automaton. Conversely, recall measures the
ratio of sequences generated by the reference automaton that are accepted by

97

Chapter 4 Extracting Privacy-Relevant Information from Network Protocols

the inferred automaton. It is a measure of completeness. For details on how
these metrics are computed, we refer the reader to [81].

Results are shown in Table 4.1. For sk-strings, we show results using the
OR heuristic (which was the best performer in [98]) and the AND heuristic
(which is evaluated in [81]). We run sk-strings with tail lengths of 1, 2 and 3
and s = 0.5, 0.75, 1, and select the best solution based on MML. Similarly, we
run the beams algorithm with beam widths of 1, 2, 4, 8, 16 and 32.

Prospex clearly outperforms previous tools on all four datasets. The sk-
strings algorithm using the OR heuristic does not produce sound results on
most datasets (P ≃ 0.12). Sk-strings with the AND heuristic and beams pro-
duce better results. However, only Prospex consistently provides a sound state
machine (P = 1). Previous algorithms over-generalize on at least one dataset.
Somewhat surprisingly, neither sk-strings nor beams succeed in learning a
state machine for the rather simple Agobot dataset.

Agobot SMTP SMB SIP
P R P R P R P R

Prospex 1 1 1 1 1 .58 1 1
beams .56 1 .89 1 1 .50 1 1
skstrings(and) .79 .20 1 .88 1 .30 1 .01
skstrings(or) .11 .92 .11 1 .12 .62 1 1

Table 4.1: Precision (P) and Recall (R) of inferred automata with respect to
reference automaton.

4.3.4 Robustness of k

In this section, we examine the robustness of our tool to the choice of the
parameter k, the number of message types (clusters) that need to be provided
as input to the clustering algorithm. The number of clusters is a trade-off
between soundness and completeness. With too many clusters, we expect
the inferred model to be sound but over-specific, and therefore incomplete.
Conversely, with too few clusters, we expect a complete but over-permissive
(unsound) model. We wish to demonstrate that, for a relatively large range
of values for k, Prospex produces a sound and complete protocol specification.
Therefore, we measure the following two properties over a range of values for
k:

Parsing success rate. To compute this property, we use the generated
protocol specification for each k to parse network traces of real-world traffic,
and measure the ratio of successfully parsed sessions to the total number of

98

4.3 Evaluation

sessions. This is a measure of completeness, so we expect it to to decrease as
k increases.

Message format specificity. This is the property introduced in Section 4.3.2.
It is a measure of soundness, so we expect this property to increase as k in-
creases. The reason is that more clusters imply fewer messages per cluster, so
the message formats for each cluster become more specific.

In Figure 4.9, we show both properties for the SMTP and SMB protocols
over a range of values for k. In addition, the figures show the generalized
Dunn index, which, as described in Section 4.2.2, is used to choose the value
of k. The Dunn index is normalized to the (0, 1) range. It can be seen that
the maximum of the Dunn index correlates with the optimal choice of k with
regard to parsing quality and message specificity. This confirms that the Dunn
index is a good predictor to select k, resulting in protocol specifications that
are specific and successful in parsing.

Specifically, in Figure 4.9(a), the Dunn index reaches its maximum at k =
10. This corresponds to the optimal parsing results and a message format
specificity of 1, which demonstrates the suitability of our approach. Similarly,
Figure 4.9(b) shows that values of k around the choice of 23 (between 22 and
25) produce high parsing results, while having a message format specificity of
1.

4.3.5 Exbar Performance

We allowed Exbar to run for up to 5 minutes for each value of k, and were able
to infer state machines of up to 25 states (starting from state trees with over
200 states). For the optimal values of k, selected using the Dunn index, Exbar
terminated in less than 0.03 seconds for all of our test cases. Nonetheless, for
very large values of k, Exbar might not terminate in the allotted time. In such
cases, approximate algorithms could be used instead [28], but a better solution
is to increase the size of the training set, since DFA learning is harder when
the training set is sparse (as was empirically demonstrated by the Abbadingo
competition [76]).

4.3.6 Fuzzing Experiments

As discussed in Section 4.2.5, our system can be used to create input specifi-
cations for the Peach fuzzer. This allows the fuzzer to use the automatically
inferred state machine while fuzzing the message’s field values according to
the inferred field types.

99

Chapter 4 Extracting Privacy-Relevant Information from Network Protocols

 0

 0.2

 0.4

 0.6

 0.8

 1

 6 8 10 12 14 16 18 20

k

Dunn Index
Parsing success

Format specificity

(a) SMTP

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30

k

Dunn Index
Parsing success

Format specificity

(b) SMB

Figure 4.9: Robustness of k

100

4.4 Summary

SMB fuzzing. We automatically converted the protocol specifications gen-
erated by Prospex for the SMB/CIFS protocol into more than 2,100 lines
of Peach XML. This allowed us to use Peach to fuzz the latest versions of
the Samba server and the Windows XP SMB/CIFS implementation. Unfor-
tunately, we did not find any vulnerabilities in these programs. This may
be due to the fact that both are mature, widely-deployed services that have
been patched for many vulnerabilities related to input validation errors in the
past. Therefore, we target an older version of Samba (version 3.0.2a, which is
subject to an arbitrary file access vulnerability [41]) to validate our tool. By
searching the network traces captured during the fuzzing run, we were able to
verify that the fuzzer had been able to find the vulnerability. More specifically,
the fuzzer downloaded the /etc/passwd file, which should not have been ac-
cessible through the SMB service. The /etc/passwd file is commonly used to
test for file traversal vulnerabilities on UNIX variants. Notice that successful
exploitation of this vulnerability requires the fuzzer to navigate deep into the
protocol state machine (to State 10 in Figure 4.7). Furthermore, this attack is
only possible because the message format inference has automatically identi-
fied a field in the “OPEN” message as a file name. Peach only makes directory
traversal attempts on fields that are marked as file names.

SIP fuzzing. We generated fuzzing specifications for SIP and ran the Peach
fuzzer on the Asterisk server. After checking the fuzzer logs, we noticed
that sending the server an “OK” message with status code “0” triggered a
segmentation fault that crashed Asterisk. This could be used to launch a
denial-of-service (DOS) attack. For the server to successfully accept and parse
the message that crashes it, the fuzzer has to navigate successfully to State 4
in the SIP state machine (shown in Figure 4.8). Finding vulnerabilities of this
kind by using stateless fuzzing is practically infeasible. Even though we found
this to be a known vulnerability [13] that has already been addressed in the
newest versions of Asterisk, it shows that our system is capable of creating
fuzzing specifications that can be used to automatically find vulnerabilities in
real-world software.

4.4 Summary

In this chapter, we introduced Prospex, a system for automatically reverse-
engineering application level network protocols. We presented novel approaches,
algorithms and techniques for automatically extracting message formats, iden-
tifying message types and inferring a protocol state machine. In an experi-
mental evaluation with real-world server software, we were able to show that
we can produce accurate protocol specifications. Furthermore, we extended

101

Chapter 4 Extracting Privacy-Relevant Information from Network Protocols

our system to produce specifications for a stateful fuzz testing tool, which
allowed us to automatically find several security vulnerabilities.

102

Chapter 5

Related Work

Each of the three systems described in this thesis is related to a different field
of security research. To reflect this, the sections in this chapter individually
highlight the related work for each of these systems.

5.1 Social Network De-anonymization

Clearly, de-anonymization of privacy-sensitive data is not a new concept. Re-
search initially focused on anonymization and de-anonymization of network
level data. For example, work by Pang et al. [96] presents techniques for
anonymizing network packet traces with the intent of sharing data between
researchers. As a reaction to anonymization research, Coulls et al. [36] intro-
duced approaches that allow an attacker to de-anonymize network traces, and
recover sensitive data on network topologies.

Information Leakage and Social Networks Due to the popularity of so-
cial networks and the large amounts of sensitive data they store, the focus of
de-anonymization research has recently extended to this area. Several publi-
cations have shown that seemingly non-sensitive data from publicly available
sources can be used to recover private information about individuals. For
example, Griffith and Jakobsson [58] use public records to infer individuals’
mothers’ maiden names, and Heatherly et al. [62], as well as Zheleva and
Getoor [128], show how public data provided by social networks can be used
to infer private information.

In addition, several publications have analyzed and measured features of
social networks that are privacy-related. For example, Mislove et al. present
a measurement study on social networks [87] while Bonneau and Preibusch
evaluate the privacy settings and policies of a large number of social networks
in [21]. Closely related to this context, several recent papers focus on scenar-
ios for malicious activity directed against social networks. For example, Ja-
gatic et al. evaluate the success rates of phishing attacks [68], and Brown et al.

103

Chapter 5 Related Work

discuss context-aware spam [25]. Another study [20] by Bilge et al. shows the
feasibility of automated identity theft attacks in social networks.

Attacks on Browsing Privacy The de-anonymization scenario presented in
this work leverages a browsing history stealing technique that is based on CSS
and has been known since the year 2000. This technique has been discussed in
several browser bug reports [106, 16, 24], and has been shown to be practical for
targeted phishing attacks by Jakobsson and Stamm [83]. Despite its malicious
potential, browser history stealing has not lead to any changes in browser
software.

There are also other techniques that aim at exposing private browsing infor-
mation. Several systems use timing properties to recover private information.
For example, Felten and Schneider show an attack on web browsing history
by analyzing caching operations [50], while Bortz and Boneh [23] use timing
attacks to recover private information from web applications.

De-Anonymization of Social Networks Narayan and Shmatikow have shown
that statistical methods can be applied to de-anonymize micro-data by cross-
correlating multiple datasets [89]. They extend their approach to social net-
works in [4], and prove that it is possible to de-anonymize members by mapping
known, auxiliary information on the (social) network topology.

In [44], Diaz et al. present a de-anonymization approach that uses informa-
tion gained from observing communication patterns between social network
members.

In contrast to existing work, our attack uses only information from a single
social networking site, and combines it with the browsing history of a user to
identify individuals. Furthermore, our attack is highly practical, and works
effectively in the real-world. In fact, as we demonstrate in Chapter 2, the
attack has the potential to affect the privacy of millions of registered social
network users.

5.2 The Online Adult Industry and Cybercrime

Little academic information is available about the online adult industry, yet it
consists of thousands of web sites that generate a revenue of billions of dollars
every year. Many publications that analyze general web security issues have
been published in recent years. For example, Wang et al. developed client
honeypots to detect and capture web-based malware samples [117].

Existing work on web-based threats often targets specific types of malware.
For example, Moshchuk et al. provide an analysis of web-based spyware by

104

5.3 Protocol Reverse-Engineering

utilizing a web-crawling system [88]. Provos et al. focus on analyzing tech-
nical exploitation details [102]. The authors did mention the adult industry,
however, the scope of their work is limited to drive-by downloads found on
adult web sites and no other aspects were studied.

Several studies show parallels and draw connections between malicious In-
ternet activity and the underground economy. For example, Provos et al.
provide technical details on how cyber-criminals use web-based malware to
their advantage [103]. The aspect of an underground economy that is fuelled
by financially motivated cyber-criminals is highlighted by Franklin et al. [52].
In a recent paper, Holz et al. study the structure and profits of keyloggers [64].

To the best of our knowledge, our study (presented in Chapter 3) is the
first that combines an economic analysis of the online adult industry with a
security analysis from a technical and a cyber-crime perspective.

5.3 Protocol Reverse-Engineering

Since proprietary, closed protocols started to emerge on the Internet (e.g., such
as the OSCAR protocol, used by ICQ and AIM [53]), there has been interest
to reverse engineer these protocols with the goal of providing free, open-source
alternatives. For example, Samba [107] aims to offer a free implementation
of the Microsoft SMB/CIFS file sharing protocol. Although popular, protocol
reverse engineering is still a largely manual task. It is tedious and labor-
intensive.

Session replay. The first automated protocol analysis approaches emerged
within the context of honeypots. In order to capture malicious code that de-
livers its payload after a series of interactions over the network, researchers
started working on systems that could replay application sessions automat-
ically. To this end, systems such as RolePlayer [39] and ScriptGen [78, 79]
analyze network traffic and attempt to generalize the traces so that correct
replies can be generated to new requests. Although useful, the main focus of
these systems is not to reverse engineer and understand the entire protocol
that is analyzed, but to continue the interaction with a malicious program
long enough so that its payload can be intercepted. Hence, these systems only
focus on the protocol format to the extent necessary for replay, in particu-
lar, on the recognition of fields that contain cookie values or IP addresses.
ScriptGen is the only previous work that attempts a kind of state machine in-
ference. However, the proposed technique is limited because no generalization
takes place. Thus, the resulting state machine is a tree, similar to the APTA
in Section 4.2.3, which can only parse sessions identical to those previously
observed.

105

Chapter 5 Related Work

Protocol analysis. Reacting to the emerging need for the automated anal-
ysis and reverse engineering of entire protocols, systems were proposed that
attempt to discover the complete protocol format. In [19], the authors pro-
pose to apply bio-informatics techniques (such as sequencing algorithms) to
network traffic. The goal of the system is to identify protocol structure and
fields with different semantics. In [38], an improved technique was proposed
that uses recursive and type-based clustering instead of byte-wise alignment.
The advantage of such network trace-based approaches is that it is straightfor-
ward to gather large datasets for training. Their shortcoming is that network
traces provide a limited amount of information and no information on field
semantics, making classification of messages into types extremely challenging.

Recently, four approaches were presented that propose to extract protocol
information by observing the execution of a program while it processes input
messages [29, 80, 123, 40]. However, these systems focus on reversing message
formats, and leave state machine inference for future work.

Specification mining. Automatically extracting a protocol state machine
from a set of observed protocol interactions is related to the problem of extract-
ing temporal specifications for software components (such as API or method
call sequences) from program traces [8, 120, 49, 126, 7]. Here, we focus on
how work in this field performs state machine inference. In [120], each relevant
event is directly mapped to a state in the automaton. This approach is not
suitable for protocol inference, where typically there exist message types that
are valid in many different states (such as the “ALIVE” message in Figure 4.8).
In [8], the sk-strings algorithm is used to infer a state machine. As discussed
in Section 4.3.3, this algorithm does not provide acceptable performance for
most of our datasets. Other works [49, 126] only infer properties conforming
to simple patterns, such as alternation between two events. Finally, [7] uses
an active learning approach, and learns state machines using the L∗ algo-
rithm [9]. The L∗ algorithm requires a teacher that can answer membership
queries. In [7], the teacher is implemented using model checking techniques.
This approach cannot be easily applied to network protocol inference.

Automated white-box testing. Performing fuzzing of an application based
on an automatically reverse-engineered network protocol is related to concolic
testing [108], white-box fuzzing [55, 54], and related approaches [31, 30]. These
techniques leverage symbolic execution of a target application to generate test
cases that provide better code coverage than black-box fuzzing approaches.
They have been successfully applied to a wide variety of software such as
Linux file system implementations [127], the entire GNU coreutils [30], and
the JavaScript interpreter of Internet Explorer 7 [54]. To the best of our knowl-
edge, none of these tools have yet been applied to real-world implementations

106

5.3 Protocol Reverse-Engineering

of stateful network protocols. Also, we believe that these techniques are com-
plementary to ours. That is, symbolic execution could be added to Prospex
to overcome some of its limitations, such as its inability to express arbitrary
relationships between protocol fields. Conversely, the protocol specifications
generated by Prospex could be used to enhance white-box fuzzing of complex
network applications by leveraging a grammar-based constraint solver [54].

107

Chapter 5 Related Work

108

Chapter 6

Conclusion

In this thesis, we presented novel approaches and techniques for solving prob-
lems within three research areas in the domain of computer security. The
challenges and issues covered in this work range from web security to auto-
matic protocol analysis, and are crucial to the security and privacy of users.

Social Network De-Anonymization. Social networking is a recent phenomenon
on the Internet. Sites that offer social networking features are reporting ex-
ponential growth rates (e.g., [2]). In many ways, the growth and popularity
of social networking sites is showing similarities to the early days of e-mail.
Just as e-mail revolutionized communication in the early days of the Internet,
social networking sites are now making it easier for Internet users to maintain
friendships, and to meet new people.

Social networking sites are useful, and as a result, they have millions of reg-
istered users. However, these sites are interesting from a security and privacy
point of view as they store large amounts of sensitive personal user data. For
an attacker, social networking sites are interesting targets as the sensitive in-
formation stored by them can be used in many attack scenarios (e.g., targeted
phishing, targeted spam, etc.).

In this work, we have introduced a novel, practical de-anonymization attack
that makes use of the group information in social networking sites. Using
empirical, real-world experiments, we show that the group membership of a
user in a social network (i.e., the groups within a social network in which a
user is a member), may reveal enough information about an individual user
to identify her when visiting web pages from third parties.

The implications of the attack we present are manifold. The attack re-
quires a low effort, and has the potential to affect millions of registered social
networking users who have group memberships.

The theoretical analysis and empirical measurements we present demon-
strate the feasibility of the attack on the Xing, Facebook, and LinkedIn social
networks. Furthermore, our investigations suggest that many more social net-
works that support group memberships can potentially be misused for similar

109

Chapter 6 Conclusion

attacks.

Cybercrime and the Underground Economy. In Chapter 3, we performed
a technical and economic analysis of the online adult industry. The novel
insights that we gained show that shady business practices and well-known
security threats often go hand in hand with each other. We analyzed the
economic structure of this industry, and found that apart from the expected
“core business” of adult sites, more shady business models exist in parallel.
Our evaluation shows that many adult web sites try to mislead and manipulate
their visitors, with the intent of generating revenue. To this end, a wide range
of questionable techniques are employed, and openly offered as business-to-
business services. The tricks that these web sites employ range from simple
obfuscation techniques such as relatively harmless blind links, over convenience
services for typo-squatters, to sophisticated redirector chains that are used for
traffic trading. Additionally, the used techniques have the potential to be
exploited in more harmful ways, for example by facilitating CSRF attacks or
click-fraud.

By mimicking adult web site operators ourselves, we gained additional in-
sights on unique security aspects in this domain. For example, we discovered
that a malicious operator could infect more than 20,000 with a minimal in-
vestment of about $160. We successfully conducted an experiment that shows
that the lack of appropriate security measures in this domain indeed facilitates
click-fraud. Furthermore, adult web sites seem to have a high potential for
being abused in malicious Pay-Per-Install schemes.

We conclude that many participants of this industry have business models
that are based on very questionable practices that could very well be abused
for malicious activities and conducting cyber-crime. In fact, we found evidence
that this kind of abuse is already happening in the wild.

Automatic Protocol Reverse Engineering. As the final main contribution
of this thesis, we presented Prospex, a system to automatically extract appli-
cation layer protocol specifications. The goal of our techniques is to provide
precise specifications of unknown network protocols. Our system monitors the
execution of a (server) program that processes network input in a controlled en-
vironment to perform a behavioral analysis of a binary. Based on the recorded
execution traces, the tool produces accurate message format specifications for
different types of messages and a generalized protocol state machine.

Our technique proceeds in three main steps: First, we split application ses-
sions into individual messages and extract their formats. The second step

110

is responsible for clustering similar messages. The notion of similarity is es-
tablished not only by comparing message formats, but also by analyzing the
overall behavior of the server in reaction to each input. Based on the clusters,
we can assign a type to each message, a process that required manual analysis
in previous work. Finally, the third step infers a generalized protocol state
machine that reflects the sequences in which messages may be exchanged.

Our experiments demonstrate that the presented approach works well in
practice. Our system can analyze real-world programs, producing specifica-
tions for complex protocols such as SMB/CIFS. Moreover, our system is able
to help malware analysts by automatically reverse-engineering a non-standard
protocol used by a malicious bot program. Additionally, our system can create
detailed input specifications for a stateful fuzzer. For a number of real-world
server applications, this allowed us to automatically find security vulnerabili-
ties.

111

Chapter 6 Conclusion

112

Bibliography

[1] PFSA Toolkit. http://www.cs.usyd.edu.au/~rcdmnl/PFSA.

[2] Facebook. http://www.facebook.com, 2009.

[3] LinkedIn. http://www.linkedin.com, 2009.

[4] A. Narayanan and V. Shmatikov. De-anonymizing social networks. In
IEEE Symposium on Security and Privacy, 2009.

[5] Adobe Systems Incorporated. Adobe Flash Player. http://www.adobe.
com/de/products/flashplayer/, 2009.

[6] Alexa. Top 500 Global Sites. http://www.alexa.com/topsites, 2009.

[7] R. Alur, P. Černý, P. Madhusudan, and W. Nam. Synthesis of Interface
Specifications for Java Classes. SIGPLAN Not., 40(1), 2005.

[8] Glenn Ammons, Rastislav Bod́ık, and James R. Larus. Mining Specifi-
cations. SIGPLAN Not., 37(1), 2002.

[9] D. Angluin. Learning Regular Sets from Queries and Counterexamples.
Inf. Comput., 75(2), 1987.

[10] Vinod Anupam, Alain Mayer, Kobbi Nissim, Benny Pinkas, and
Michael K. Reiter. On the Security of Pay-per-click and Other Web
Advertising Schemes. In Proceedings of the Eighth Conference on World
Wide Web (WWW), 1999.

[11] Danmec / Asprox SQL Injection Attack Tool Analysis. http://

www.secureworks.com/research/threats/danmecasprox/?

threat=danmecasprox, 2008.

[12] Asterisk: The Open Source PBX and Telephony Platform. http://www.
asterisk.org, 2008.

[13] Asterisk DOS Vulnerability. http://secunia.com/advisories/24579,
2007.

113

http://www.cs.usyd.edu.au/~rcdmnl/PFSA
http://www.facebook.com
http://www.linkedin.com
http://www.adobe.com/de/products/flashplayer/
http://www.adobe.com/de/products/flashplayer/
http://www.alexa.com/topsites
http://www.secureworks.com/research/threats/ danmecasprox/?threat=danmecasprox
http://www.secureworks.com/research/threats/ danmecasprox/?threat=danmecasprox
http://www.secureworks.com/research/threats/ danmecasprox/?threat=danmecasprox
http://www.asterisk.org
http://www.asterisk.org
http://secunia.com/advisories/24579

Bibliography

[14] B. Stone-Gross and M. Cova and L. Cavallaro and B. Gilbert and M.
Szydlowski and R. Kemmerer and C. Kruegel and G. Vigna. Your Botnet
is My Botnet: Analysis of a Botnet Takeover. In ACM Conference on
Computer and Communications Security (CCS), 2009.

[15] Greg Banks, Marco Cova, Viktoria Felmetsger, Kevin Almeroth, Richard
Kemmerer, and Giovanni Vigna. Snooze: Toward a Stateful Network
Protocol Fuzzer. In Proceedings of the 9th Information Security Confer-
ence (ISC), 2006.

[16] David Baron. :visited support allows queries into global history.
https://bugzilla.mozilla.org/show_bug.cgi?id=147777, 2002.

[17] U. Bayer, P. Milani Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda.
Scalable, Behavior-Based Malware Clustering. In Symposium on Net-
work and Distributed System Security (NDSS), 2009.

[18] Beano Publishing. Domain Players Club. http://www.

domainplayersclub.com, 2009.

[19] M. Beddoe. The Protocol Informatics Project. In Toorcon, 2004.

[20] Leyla Bilge, Thorsten Strufe, Davide Balzarotti, and Engin Kirda. All
Your Contacts Are Belong to Us: Automated Identity Theft Attacks on
Social Networks. In 18th International Conference on World Wide Web
(WWW), 2009.

[21] Joseph Bonneau and Sören Preibusch. The Privacy Jungle: On the
Market for Privacy in Social Networks. In Eighth Workshop on the
Economics of Information Security (WEIS), 2009.

[22] Nikita Borisov, David Brumley, Helen J Wang, John Dunagan, Pallavi
Joshi, and Chuanxiong Guo. A Generic Application-Level Protocol An-
alyzer and its Language. In 14h Symposium on Network and Distributed
System Security (NDSS), 2007.

[23] Andrew Bortz and Dan Boneh. Exposing Private Information by Timing
Web Applications. In 16th International Conference on World Wide
Web (WWW), 2007.

[24] Zbigniew Braniecki. CSS allows to check history via :visited. https://
bugzilla.mozilla.org/show_bug.cgi?id=224954, 2003.

114

https://bugzilla.mozilla.org/show_bug.cgi?id=147777
http://www.domainplayersclub.com
http://www.domainplayersclub.com
https://bugzilla.mozilla.org/show_bug.cgi?id=224954
https://bugzilla.mozilla.org/show_bug.cgi?id=224954

Bibliography

[25] Garrett Brown, Travis Howe, Micheal Ihbe, Atul Prakash, and Kevin
Borders. Social networks and context-aware spam. In ACM 2008 Con-
ference on Computer Supported Cooperative Work (CSCW), 2008.

[26] Bruce Schneier. The Eternal Value of Privacy. http://www.schneier.
com/essay-114.html, 2006.

[27] D. Brumley, J. Caballero, Z. Liang, J. Newsome, and D. Song. Towards
Automatic Discovery of Deviations in Binary Implementations with Ap-
plications to Error Detection and Fingerprint Generation. In Usenix
Security Symposium, 2007.

[28] M. Bugalho and A. L. Oliveira. Inference of Regular Languages Using
State Merging Algorithms with Search. Pattern Recognition, 38(9), 2005.

[29] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot: Automatic
Extraction of Protocol Format using Dynamic Binary Analysis. In 14th
ACM Conference on Computer and Communications Security (CCS),
2007.

[30] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unas-
sisted and Automatic Generation of High-Coverage Tests for Complex
Systems Programs. In USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI), 2008.

[31] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and
Dawson R. Engler. EXE: Automatically Generating Inputs of Death.
In 13th ACM Conference on Computer and Communications Security
(CCS), 2006.

[32] Monica Chew, Dirk Balfanz, and Ben Laurie. (Under)mining Privacy
in Social Networks. In Proceedings of Web 2.0 Security and Privacy
Workshop (W2SP), 2008.

[33] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum.
Understanding Data Lifetime via Whole System Simulation. In Usenix
Security Symposium, 2004.

[34] Computational Crawling LP. 80legs. http://www.80legs.com, 2009.

[35] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and
P Barham. Vigilante: End-to-End Containment of Internet Worms. In
20th ACM Symposium on Operating Systems Principles (SOSP), 2005.

115

http://www.schneier.com/essay-114.html
http://www.schneier.com/essay-114.html
http://www.80legs.com

Bibliography

[36] Scott Coulls, Charles Wright, Fabian Monrose, Michael Collins, and
Michael Reiter. Playing Devil’s Advocate: Inferring Sensitive Infor-
mation from Anonymized Traces. In Symposium on Network and Dis-
tributed Systems Security (NDSS), 2007.

[37] J. Crandall and F. Chong. Minos: Control Data Attack Prevention
Orthogonal to Memory Model. In 37th International Symposium on
Microarchitecture (MICRO), 2004.

[38] W. Cui, J. Kannan, and H. Wang. Discoverer: Automatic Protocol Re-
verse Engineering from Network Traces. In 16th Usenix Security Sym-
posium, 2007.

[39] W. Cui, V. Paxson, N. Weaver, and R. Katz. Protocol-Independent
Adaptive Replay of Application Dialog. In 13th Symposium on Network
and Distributed System Security (NDSS), 2006.

[40] W. Cui, M. Peinado, K. Chen, H. Wang, and L. Irun-Briz. Tupni :
Automatic Reverse Engineering of Input Formats. In ACM Conference
on Computer and Communications Security (CCS), 2008.

[41] Potential Arbitrary File Access. http://www.securityfocus.com/

archive/1/377618, 2004.

[42] D. Dagon, G. Gu, C. Lee, and W. Lee. A Taxonomy of Botnet Struc-
tures. In Annual Computer Security Applications Conference (ACSAC),
2007.

[43] Neil Daswani and Michael Stoppelman. The Anatomy of Clickbot.A.
In First Workshop on Hot Topics in Understanding Botnets (HotBots),
2007.

[44] Claudia Diaz, Carmela Troncoso, and Andrei Serjantov. On the Im-
pact of Social Network Profiling on Anonymity. In 8th International
Symposium on Privacy Enhancing Technologies (PETS), 2008.

[45] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The
Second-Generation Onion Router. In USENIX Security Symposium,
2004.

[46] Domains By Proxy, Inc. Domains By Proxy. http://domainsbyproxy.
com, 2009.

[47] J.C. Dunn. Well Separated Clusters and Optimal Fuzzy Partitions. Jour-
nal of Cybernetics, 4, 1974.

116

http://www.securityfocus.com/archive/1/377618
http://www.securityfocus.com/archive/1/377618
http://domainsbyproxy.com
http://domainsbyproxy.com

Bibliography

[48] Ekiga - Free your speech. http://www.ekiga.org, 2008.

[49] Dawson Engler, David Chen, Seth Hallem, Andy Chou, and Benjamin
Chelf. Bugs as Deviant Behavior: A General Approach to Inferring
Errors in Systems Code. In ACM Symposium on Operating Systems
Principles, 2001.

[50] Edward W. Felten and Michael A. Schneider. Timing Attacks on Web
Privacy. In 7th ACM Conference on Computer and Communications
Security (CCS), 2000.

[51] Finjan Inc. LuckySploit Toolkit Exposed. http://www.finjan.com/

MCRCblog.aspx?EntryId=2213, 2009.

[52] Jason Franklin, Vern Paxson, Stefan Savage, and Adrian Perrig. An
inquiry into the nature and causes of the wealth of internet miscreants.
In ACM Conference on Computer and Communications Security (CCS),
2007.

[53] A. Fritzler. UnOfficial AIM/OSCAR Protocol Specification. http://

www.oilcan.org/oscar/, 2007.

[54] Patrice Godefroid, Adam Kieżun, and Michael Y. Levin. Grammar-
based Whitebox Fuzzing. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, 2008.

[55] Patrice Godefroid, Michael Y. Levin, and David A Molnar. Automated
Whitebox Fuzz Testing. In Network and Distributed Security Symposium
(NDSS). Internet Society, 2008.

[56] E. Mark Gold. Language Identification in the Limit. Information and
Control, 10(5), 1967.

[57] E. Mark Gold. Complexity of Automaton Identification from Given
Data. Information and Control, 37(3), 1978.

[58] V. Griffith and M. Jakobsson. Messin’ with Texas, Deriving Mother’s
Maiden Names using Public Records. In Third Conference on Applied
Cryptography and Network Security (ACNS), June 2005.

[59] Guywire, Inc. Booble. Adult Search Engine. http://www.booble.com,
2009.

117

http://www.ekiga.org
http://www.finjan.com/MCRCblog.aspx?EntryId=2213
http://www.finjan.com/MCRCblog.aspx?EntryId=2213
http://www.oilcan.org/oscar/
http://www.oilcan.org/oscar/
http://www.booble.com

Bibliography

[60] M. Hammami, Y. Chahir, and L. Chen. Webguard: A web filtering
engine combining textual, structural, and visual content-based analysis.
IEEE Transactions on Knowledge and Data Engineering, 18(2), 2006.

[61] R. Hansen and J. Grossman. Clickjacking. Technical report, SecTheory
– http://www.sectheory.com/clickjacking.htm, 2008.

[62] Raymond Heatherly, Murat Kantarcioglu, and Bhavani Thuraisingham.
Preventing Private Information Inference Attacks on Social Networks.
Technical Report UTDCS-03-09, University of Texas at Dallas, 2009.

[63] T. Holz. A Short Visit to the Bot Zoo [Malicious Bots Software]. Security
& Privacy, IEEE, 3(3), 2005.

[64] Thorsten Holz, Markus Engelberth, and Felix Freiling. Learning More
About the Underground Economy: A Case-Study of Keyloggers and
Dropzones. In European Symposium on Research in Computer Security
(ESORICS), 2009.

[65] Internet Filter. Internet Pornography Statistics.
http://internet-filter-review.toptenreviews.com/

internet-pornography-statistics.html, 2006.

[66] P. Jaccard. The Distribution of Flora in the Alpine Zone. The New
Phytologist, 11(2):37–50, 1912.

[67] Collin Jackson, Andrew Bortz, Dan Boneh, and John C. Mitchell. Pro-
tecting Browser State From Web Privacy Attacks. In 15th International
Conference on World Wide Web (WWW), 2006.

[68] Tom N. Jagatic, Nathaniel A. Johnson, Markus Jakobsson, and Filippo
Menczer. Social phishing. Commun. ACM, 50(10):94–100, 2007.

[69] M. Jakobsson, P. Finn, and N. Johnson. Why and How to Perform Fraud
Experiments. Security & Privacy, IEEE, 6(2):66–68, March-April 2008.

[70] Markus Jakobsson and Jacob Ratkiewicz. Designing ethical phishing
experiments: a study of (ROT13) rOnl query features. In 15th Interna-
tional Conference on World Wide Web (WWW), 2006.

[71] Markus Jakobsson and Sid Stamm. Web Camouflage: Protecting Your
Clients from Browser-Sniffing Attacks. IEEE Security and Privacy, 5(6),
2007.

118

http://www.sectheory.com/clickjacking.htm
http://internet-filter-review.toptenreviews.com/internet-pornography-statistics.html
http://internet-filter-review.toptenreviews.com/internet-pornography-statistics.html

Bibliography

[72] R. Kaksonen, M. Laakso, and A. Takanen. Software Security Assess-
ment through Specification Mutations and Fault Injection. In IFIP
Joint Working Conference on Communications and Multimedia Secu-
rity (CMS), 2001.

[73] Richard M. Karp. ”Reducibility Among Combinatorial Problems”. In
Complexity of Computer Computations. Plenum Press, 1972.

[74] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An Intro-
duction to Cluster Analysis. Wiley, 1990.

[75] K. J. Lang. Faster Algorithms for Finding Minimal Consistent DFAs.
Technical report, NEC Research Institute, 1999.

[76] K. J. Lang, B. A. Pearlmutter, and R. A. Price. Results of the Ab-
badingo One DFA Learning Competition and a New Evidence-Driven
State Merging Algorithm. In ICGI 98: Proceedings of the 4th Interna-
tional Colloquium on Grammatical Inference. Springer-Verlag, 1998.

[77] The Linux Desktop Testing Project. http://ldtp.freedesktop.org,
2008.

[78] C. Leita, M. Dacier, and F. Massicotte. Automatic Handling of Proto-
col Dependencies and Reaction to 0-Day Attacks with ScriptGen-based
Honeypots. In Symposium on Recent Advances in Intrusion Detection
(RAID), 2006.

[79] C. Leita, K. Mermoud, and M. Dacier. ScriptGen: An Automated Script
Generation Tool for Honeyd. In 21st Annual Computer Security Appli-
cations Conference (ACSAC), 2005.

[80] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic Protocol Format
Reverse Engineering through Context-Aware Monitored Execution. In
15th Symposium on Network and Distributed System Security (NDSS),
2008.

[81] D. Lo and S. Khoo. QUARK: Empirical Assessment of Automaton-
based Specification Miners. In 13th Working Conference on Reverse
Engineering (WCRE). IEEE Computer Society, 2006.

[82] M. Cova and S. Ford. Wepawet: Detecting and Analyzing Web-Based
Malware. http://wepawet.iseclab.org, 2009.

[83] M. Jakobsson and S. Stamm. Invasive Browser Sniffing and Counter-
measures. In 15th International World Wide Web Conference, 2006.

119

http://ldtp.freedesktop.org
http://wepawet.iseclab.org

Bibliography

[84] Giorgio Maone. NoScript. https://addons.mozilla.org/de/

firefox/addon/722, 2009.

[85] Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel, and
Engin Kirda. Prospex: Protocol Specification Extraction. In IEEE
Symposium on Security and Privacy, 2009.

[86] B.P. Miller, L. Fredriksen, and B. So. An Empirical Study of the Relia-
bility of UNIX Utilities. Communications of the ACM, 33(12), 1990.

[87] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Dr-
uschel, and Bobby Bhattacharjee. Measurement and Analysis of Online
Social Networks. In 7th ACM SIGCOMM Internet Measurement Con-
ference (IMC), 2007.

[88] Alexander Moshchuk, Tanya Bragin, Steven D. Gribble, and Henry M.
Levy. A crawler-based study of spyware on the web. In Symposium on
Network and Distributed System Security (NDSS), 2006.

[89] Arvind Narayanan and Vitaly Shmatikov. Robust De-anonymization of
Large Sparse Datasets. In IEEE Symposium on Security and Privacy,
2008.

[90] S. Needleman and C. Wunsch. A General Method Applicable to the
Search for Similarities in the Amino Acid Sequence of Two Proteins.
Journal of Molecular Biology, 48(3), 1970.

[91] Net Industries, LLC. IP Address Lookup and GeoTargeting. http://

www.hostip.info, 2009.

[92] Network Working Group. WHOIS Protocol Specification. http://

tools.ietf.org/html/rfc3912, 2004.

[93] P. Oehlert. Violating Assumptions with Fuzzing. IEEE Security and
Privacy, 3(2), 2005.

[94] OpenDNS community. Domain Tagging. http://www.opendns.com/

community/domaintagging, 2009.

[95] N R. Pal and J. Biswas. Cluster Validation Using Graph Theoretic
Concepts. Pattern Recognition, 30(6), 1997.

[96] Ruoming Pang, Mark Allman, Vern Paxson, and Jason Lee. The Devil
and Packet Trace Anonymization. SIGCOMM Comput. Commun. Rev.,
36(1), 2006.

120

https://addons.mozilla.org/de/firefox/addon/722
https://addons.mozilla.org/de/firefox/addon/722
http://www.hostip.info
http://www.hostip.info
http://tools.ietf.org/html/rfc3912
http://tools.ietf.org/html/rfc3912
http://www.opendns.com/community/domaintagging
http://www.opendns.com/community/domaintagging

Bibliography

[97] Ruoming Pang, Vern Paxson, Robin Sommer, and Larry Peterson. bin-
pac: A yacc for writing application protocol parsers. In Internet Mea-
surement Conference (IMC), 2006.

[98] Jon Patrick and Palmerston North. The sk-strings Method for Inferring
PFSA. In Workshop on Automata Induction, Grammatical Inference and
Language Acquisition at the 14th International Conference on Machine
Learning (ICML97), 1997.

[99] V. Paxson. Bro: A System for Detecting Network Intruders in Real-
Time. In Usenix Security Symposium, 1998.

[100] Peach Fuzzing Platform. http://peachfuzzer.com, 2008.

[101] P. Porras, H. Saidi, and V. Yegneswaran. A Multi-perspective Analysis
of the Storm (Peacomm) Worm. Technical report, Computer Science
Laboratory, SRI International, 2007.

[102] Niels Provos, Panayiotis Mavrommatis, Moheeb Abu Rajab, and Fabian
Monrose. All Your iFRAMEs Point to Us. In 17th Usenix Security
Symposium, 2008.

[103] Niels Provos, Dean McNamee, Panayiotis Mavrommatis, Ke Wang, and
Nagendra Modadugu. The Ghost In The Browser. In First Workshop
on Hot Topics in Understanding Botnets (HotBots), 2007.

[104] A. Raman, P. Andreae, and J. Patrick. A Beam Search Algorithm for
PFSA Inference. Pattern Analysis and Applications, 1, 1998.

[105] RFC 3261 - SIP: Session Initiation Protocol. http://www.ietf.org/

rfc/rfc3261.txt, 2008.

[106] Jesse Ruderman. CSS on a:visited can load an image and/or reveal
if visitor been to a site. https://bugzilla.mozilla.org/show_bug.

cgi?id=57351, 2000.

[107] How Samba Was Written. http://samba.org/ftp/tridge/misc/

french_cafe.txt, 2007.

[108] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A Concolic Unit
Testing Engine for C. In ESEC/FSE-13: Proceedings of the 10th Euro-
pean Software Engineering Conference held jointly with 13th ACM SIG-
SOFT International Symposium on Foundations of Software Engineer-
ing. ACM, 2005.

121

http://peachfuzzer.com
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3261.txt
https://bugzilla.mozilla.org/show_bug.cgi?id=57351
https://bugzilla.mozilla.org/show_bug.cgi?id=57351
http://samba.org/ftp/tridge/misc/french_cafe.txt
http://samba.org/ftp/tridge/misc/french_cafe.txt

Bibliography

[109] Spam Assassin. List of performed Tests. http://spamassassin.

apache.org/tests_3_2_x.html, last accessed: 23.04.2009, 2009.

[110] M. Sutton, A. Greene, and P. Amini. Fuzzing: Brute Force Vulnerability
Discovery. Addison-Wesley, 1st edition, 2007.

[111] Symantec Corporation. Misleading Applica-
tions. http://www.symantec.com/connect/blogs/

misleading-applications-show-me-money-part-3, 2009.

[112] The Honeynet Project. Capture-HPC Client Honeypot. https://

projects.honeynet.org/capture-hpc, 2009.

[113] Trusteer, Inc. Flash Security Hole Advisory. http://www.trusteer.

com/files/Flash_Security_Hole_Advisory.pdf, 2009.

[114] U.S. Census Bureau. Frequently Occurring Names and Surnames.
http://www.census.gov/genealogy/www, 2009.

[115] S. Venkataraman, J. Caballero, P. Poosankam, M. Kang, and D. Song.
Fig: Automatic Fingerprint Generation. In Symposium on Network and
Distributed System Security (NDSS), 2007.

[116] C.S. Wallace and M.P. Georgeff. A General Objective for Inductive
Inference. Technical report, Department of Computer Science, Monash
University, 1983.

[117] Yi-Min Wang, Doug Beck, Xuxian Jiang, Roussi Roussev, Chad Ver-
bowski, Shuo Chen, and Sam King. Automated Web Patrol with Strider
HoneyMonkeys. In Symposium on Network and Distributed System Se-
curity (NDSS), 2006.

[118] Yi-Min Wang, Doug Beck, Jeffrey Wang, Chad Verbowski, and Brad
Daniels. Strider Typo-Patrol: Discovery and Analysis of Systematic
Typo-Squatting. In 2nd Conference on Steps to Reducing Unwanted
Traffic on the Internet, 2006.

[119] Zhi Wang, Xuxian Jiang, Weidong Cui, and Xinyuan Wang. ReFor-
mat: Automatic Reverse Engineering of Encrypted Messages. Technical
Report 2008-26, NC State University, 2008.

[120] J. Whaley, M. C. Martin, and M. S. Lam. Automatic Extraction of
Object-Oriented Component Interfaces. SIGSOFT Softw. Eng. Notes,
27(4), 2002.

122

http://spamassassin.apache.org/tests_3_2_x.html
http://spamassassin.apache.org/tests_3_2_x.html
http://www.symantec.com/connect/blogs/misleading-applications-show-me-money-part-3
http://www.symantec.com/connect/blogs/misleading-applications-show-me-money-part-3
https://projects.honeynet.org/capture-hpc
https://projects.honeynet.org/capture-hpc
http://www.trusteer.com/files/Flash_Security_Hole_Advisory.pdf
http://www.trusteer.com/files/Flash_Security_Hole_Advisory.pdf
http://www.census.gov/genealogy/www

Bibliography

[121] WhoisGuard. WhoisGuard. http://www.whoisguard.com, 2009.

[122] Wietse Venema. Postfix. http://www.postfix.org, 2008.

[123] Gilbert Wondracek, Paolo Milani Comparetti, Christopher Kruegel, and
Engin Kirda. Automatic Network Protocol Analysis. In 15th Symposium
on Network and Distributed System Security (NDSS), 2008.

[124] XBIZ. The Adult Industry Source for Business News and Information.
http://www.xbiz.com, 2009.

[125] X-Lite softphone. http://www.counterpath.com, 2008.

[126] J. Yang and D. Evans. Perracotta: Mining Temporal API Rules from
Imperfect Traces. In 28th Internl. Conf. on Software Engineering (ICSE
2006.

[127] Junfeng Yang, Can Sar, Paul Twohey, Cristian Cadar, and Dawson
Engler. Automatically Generating Malicious Disks Using Symbolic Ex-
ecution. In IEEE Security and Privacy, 2006.

[128] Elena Zheleva and Lise Getoor. To Join or Not To Join: The Illusion of
Privacy in Social Networks with Mixed Public and Private User Profiles.
In 18th International Conference on World Wide Web (WWW), 2009.

123

http://www.whoisguard.com
http://www.postfix.org
http://www.xbiz.com
http://www.counterpath.com

Bibliography

124

Curriculum Vitae

02.07.1980 geboren in Eisenstadt, Österreich
1986 - 1990 Besuch der Volksschule Großhöflein
1990 - 1998 BG/BRG/BORG Eisenstadt
1999 - 2006 Diplomstudium Informatik an der TU Wien,
2006 - 2008 Magisterstudium Informatikmanagement an der TU Wien,

(mit Auszeichnung)
2006 - 2009 PhD Studium Informatik an der TU Wien

125

	List of Figures
	List of Tables
	Introduction
	Security and Privacy
	Contributions
	Organization of this Thesis
	List of Publications

	De-Anonymization of Social Networks
	Introduction
	Background
	Model and Definitions
	Structure of Social Networking Sites
	History Stealing
	Possible Attack Scenarios

	De-Anonymization Attacks
	Basic Attack
	Improved Attack
	Efficiently Obtaining Group Information

	Crawling Experiments
	Ethical and Legal Considerations
	Overview
	Social Network Crawling Approaches
	Crawling Experiments

	Evaluation
	Analytical Results
	Real-World Experiments
	Run-Time and Throughput Rate
	Fluctuation in Groups

	Possible Mitigation Techniques
	Server-side Mitigation
	Client-side Mitigation

	Summary

	Privacy Threats in Online Services
	Introduction
	Analysis Techniques
	Manual Inspection
	Identified Site Categories
	Automated Crawling and Experimental Setup

	Observations and Insights
	Revenue Model
	Organizational Structure
	Economic Roles
	Security-Related Observations
	Malware
	Hosting Infrastructure

	Experimental Evaluation
	Preparation Steps
	Traffic Profiling
	Traffic Buying Experiments
	Profiling Results
	Traffic Selling Experiments

	Summary

	Extracting Privacy-Relevant Information from Network Protocols
	Introduction
	System Description
	Session Analysis
	Message Clustering
	State Machine Inference
	Prerequisites Inference Algorithm
	Creating Fuzzing Specifications

	Evaluation
	State Machine Inference
	Quality of Protocol Specifications
	Comparative Evaluation
	Robustness of k
	Exbar Performance
	Fuzzing Experiments

	Summary

	Related Work
	Social Network De-anonymization
	The Online Adult Industry and Cybercrime
	Protocol Reverse-Engineering

	Conclusion

