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Kurzfassung

Malware (Computerviren, Trojaner, etc.) stellen heutzutage eines der größten
Sicherheitsprobleme im Internet dar. Antiviren-Firmen bekommen typischer-
weise zehntausende neue Malware Dateien pro Tag. Um mit diesen großen
Datenmengen zurecht zukommen, haben Forschung und Industrie gleicher-
maßen an der Entwicklung von automatisierten, dynamischen Malware-Analyse-
Systemen gearbeitet. Solche Systeme führen ein zu untersuchendes Programm
in einer speziell präparierten Umgebung aus und erstellen einen Bericht, der
das Verhalten des Programms wiedergibt. Anubis [1, 28], ein Programm, das
größtenteils vom Autor entwickelt wurde, ist ein Beispiel solch eines automa-
tisierten, dynamischen Analyse-Systems.

Um eine Analyse durchzuführen, überwacht Anubis den Aufruf von wichti-
gen Windows-API- Funktionen und System-Calls, zeichnet Netzwerkverkehr
auf, und verfolgt Datenströme. Für jede zu untersuchende Datei wird ein
Bericht erstellt, der die Aktivitäten (u.a. welche Dateien, Windows-Registry-
Keys, Windows-Services erzeugt worden sind) des Programms beinhaltet. Anu-
bis erhält Dateien durch ein öffentliches Web-Interface [1] und durch eine An-
zahl von Kooperationsabkommen mit Sicherheitsfirmen. Da die Dateien von
einer Vielzahl an Benutzern stammen, stellen die von Anubis gesammelten
Dateien eine umfassende und repräsentative Auswahl der gängigen Viren dar.

In dieser Dissertation stellen wir neuartige Techniken vor, um die Anwen-
dung von automatisierter, dynamischer Analyse im großen Stil zu verbessern:

Typisches Malware-Verhalten. Wir versuchen typisches Malware-Ver-
halten zu ergründen. Dafür werten wir die Anubis-Analyse-Resultate von fast
einer Million Dateien aus, untersuchen Trends und Evolutionen von bösar-
tigem Verhalten über einen Zeitraum von ungefähr zwei Jahren und unter-
suchen den Einfluss von Polymorphismus auf Malware-Statistiken.

Skalierbares, verhaltensbasiertes Malware Clustering. Automatisierte,
dynamische Analyse-Systeme erlauben die Analyse tausender bösartiger Pro-
gramme pro Tag. Jedes Analyseresultat liegt in der Form eines Anubis-Reports
vor, der die Aktionen eines Programms zusammenfasst. Jetzt ist man allerd-
ings mit dem Problem konfrontiert, tausende Analyseresultate manuell bear-
beiten zu müssen. Vor kurzem haben Forscher mit der Entwicklung von au-
tomatisierten Clustering-Systemen zur Identifizierung von Dateien mit ähn-
lichem Verhalten begonnen. Dadurch hat ein Analyst einer A/V-Firma die
Möglichkeit, sich auf interessante, neue Bedrohungen zu konzentrieren, während
er Reporte von bereits bekannten Malware-Programmen ignorieren kann. Lei-
der skalieren bisherige Clustering-Systeme schlecht und haben noch Prob-
leme damit, beobachtetes Verhalten gut genug zu generalisieren, um wirklich
Malware-Familien zu erkennen.



Wir präsentieren in dieser Dissertation ein skalierbares Clustering-System
zur Identifizierung und Gruppierung von Malware-Programmen mit ähnlichem
Verhalten. Zu diesem Zweck führen wir zuerst eine dynamische Analyse durch,
um eine Aufzeichnung der Funktionsaufrufe zu erhalten. Danach generalisieren
wir diese Aufzeichnungen zu sogenannten Verhaltensprofilen. Ein Verhaltenspro-
fil charakterisiert das Verhalten eines Malware-Programms auf einer höheren
Abstraktionsebene. Diese Verhaltensprofile dienen als Eingabe für unseren
effizienten Clustering-Algorithmus, der es uns erlaubt Malware-Programme
um eine Größenordnung schneller zu clustern als bisherige Techniken. Weit-
ers haben wir unser System mit Malware-Sammlungen aus der realen Welt
getestet. Die Resultate demonstrieren, dass unsere Technik in der Lage ist
Ähnlichkeiten zwischen Malware-Programmen zu erkennen und entsprechende
Gruppen zu bilden. Dabei erzielen wir genauere Resultate als bisherige Tech-
niken. Um die Skalierbarkeit des Systems zu zeigen, haben wir für eine Menge
von fünfundsiebzigtausend Malware-Programmen in weniger als drei Stunden
erfolgreich ein Clustering erstellt.

Effizienzsteigerung für die dynamische Malware Analyse. Innerhalb
der letzten drei Jahre stieg die Anzahl an Malware-Programmen, die sich im
Umlauf befinden, um den Faktor 10. Leider ist anzunehmen, dass die Anzahl
an neuen Malware-Dateien in Zukunft noch weiter zunehmen wird. Damit
die automatisierte, dynamische Analyse mit dieser Entwicklung Schritt hal-
ten kann - ohne weitere Kosten für neue Hardware zu verursachen - haben
wir eine Technik entwickelt, die die Zeit für die Analyse einer bestimmten
Menge von Programmen drastisch reduziert. Unsere Lösung basiert auf der
Erkenntnis, dass die große Anzahl an neuen Malware-Programmen vor allem
durch einfache, teilweise automatisierte Mutationen einiger weniger Malware
Programme entsteht. Um Analysezeit zu sparen, schlagen wir eine Technik
vor, die eine mehrmalige, vollständige Analyse von polymorphen Programmen
vermeidet. In einem Experiment mit unserem Prototypen gelang es uns, bei
einer Auswahl von 10.922 Dateien in 25,25 Prozent der Fälle eine vollständige
Analyse zu vermeiden.



Abstract

Malicious software (or malware) is one of the most pressing and major
security threats facing the Internet today. Anti-virus companies typically have
to deal with tens of thousands of new malware samples every day. To cope
with these large quantities, researchers and practitioners alike have developed
automated, dynamic malware analysis systems. These systems automatically
execute a program in a controlled environment and produce a report describing
the program’s behavior. Anubis [1, 28], a program mainly developed by the
author, is an example of such a system.

To perform the analysis, Anubis monitors the invocation of important Win-
dows API calls and system services, it records the network traffic, and it
tracks data flows. For each submission, reports are generated that provide
comprehensive reports about the activities of the binary under analysis. Anu-
bis receives malware samples through a public web interface and a number
of feeds from security organizations and anti-malware companies. Because
the samples are collected from a wide range of users, the collected samples
represent a comprehensive and diverse mix of malware found in the wild.

This thesis presents novel approaches for performing large-scale dynamic
malware analysis:

A View on Current Malware Behaviors. We aim to shed light on
common malware behaviors. To this end, we evaluate the Anubis analysis
results for almost one million malware samples, study trends and evolution
of malicious behaviors over a period of almost two years, and examine the
influence of code polymorphism on malware statistics.

Scalable, Behavior-Based Malware Clustering. Automated, dynamic
analysis systems permit the analysis of thousands of malicious binaries per
day. Each analysis results in the creation of an analysis report summarizing
a program’s actions. Of course, the problem of analyzing the reports still
remains. Recently, researchers have started to explore automated clustering
techniques that help to identify samples that exhibit similar behavior. This
allows an analyst to discard reports of samples that have been seen before,
while focusing on novel, interesting threats. Unfortunately, previous tech-
niques do not scale well and frequently fail to generalize the observed activity
well enough to recognize related malware.

In this thesis, we propose a scalable clustering approach to identify and
group malware samples that exhibit similar behavior. For this, we first per-
form dynamic analysis to obtain the execution traces of malware programs.
These execution traces are then generalized into behavioral profiles, which
characterize the activity of a program in more abstract terms. The profiles
serve as input to an efficient clustering algorithm that allows us to handle sam-



ple sets that are an order of magnitude larger than previous approaches. We
have applied our system to real-world malware collections. The results demon-
strate that our technique is able to recognize and group malware programs that
behave similarly, achieving a better precision than previous approaches. To
underline the scalability of the system, we clustered a set of more than 75
thousand samples in less than three hours.

Improving the Efficiency of Dynamic Malware Analysis. During
the last three years, the number of malware programs appearing each day has
increased by a factor of ten, and this number is expected to continue to grow.
To keep pace with these developments without causing even more hardware
costs for operating dynamic analysis systems, we have developed a technique
that drastically reduces the overall analysis time. Our solution is based on the
insight that the huge number of new malicious files is due to mutations of only
a few malware programs. To save analysis time, we suggest a technique that
avoids performing a full analysis of the same polymorphic file multiple times.
In an experiment conducted on a set of 10,922 randomly chosen executable
files, our prototype implementation was able to avoid a full dynamic analysis
in 25.25 percent of the cases.
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Chapter 1

Introduction

One of the major threats on the Internet today is malicious software, often
referred to as malware. In fact, most Internet security problems have malware
as their underlying root cause. For example, botnets are commonly used to
send spam and host phishing web sites that are more difficult to track down
and blacklist. Malware comes in a wide range of forms and variations, such as
viruses, worms, botnets, rootkits, Trojan horses, and denial of service tools.
To spread, malware exploits software vulnerabilities in browsers and operating
systems, or uses social engineering techniques to trick users into running the
malicious code.

Whereas early malware was not focused on making a financial profit, unfor-
tunately, this is not the case anymore. The success of the web and the lack of
technical sophistication and understanding of many web users has attracted
criminals, who are well-organized and who aim to make easy money. As a
result, the number of malware instances discovered in the wild continues to
increase at an alarming rate [14]. To defend against the flood of malware
samples, the anti-malware industry has to invest significant effort to develop
effective signatures. Unfortunately, the problem of maintaining a signature
database and keeping it up-to-date is not trivial.

An anti-malware company typically receives thousands of new malware sam-
ples every day. These samples are submitted by users who have found sus-
picious code on their systems, by other anti-malware companies that share
their samples, and by organizations (e.g., MWCollect [15], ShadowServer [17],
VirusTotal [20]) that use technologies such as honeypots [70] to collect mal-
ware. For each sample, it is important to understand the actions that this
program can perform. This is necessary to determine the type and severity
of the threat that the malware constitutes. Also, this information is valuable
to create detection signatures and removal procedures. In some cases, the
sample may turn out to be harmless. Furthermore, in many cases, the mal-
ware may turn out to be a variant of a well-known malware instance. In fact,
although the malware may remain the same, its signature might change just
because the malware author is using a simple obfuscation or polymorphism
technique [55, 61, 72]. Hence, for anti-malware organizations, it is typically
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Chapter 1 Introduction

easy to obtain many malware samples in the wild, but difficult to analyze their
functionality.

Because of the growing need for automated techniques to examine mal-
ware, dynamic malware analysis tools such as CWSandbox [5], Norman Sand-
box [16], ThreatExpert [19] and ANUBIS [1, 28] have increased in popularity.
These systems execute the malware sample in a controlled environment and
monitor its actions. Based on the execution traces, reports are generated that
aim to support an analyst in reaching a conclusion about the type and severity
of the threat imposed by a malware sample. For example, when observing a
sample that modifies the autorun registry entry and opens a connection to a
notorious IRC server (which is often used for botnet command and control),
the analyst can quickly conclude that the sample is an IRC bot. Even when
the analyst is not able to reach a detailed conclusion about a sample, the au-
tomated analysis is beneficial to help separate interesting samples from those
that are less relevant. Clearly, if required, the interesting samples can fur-
ther be analyzed manually (e.g., by disassembling and debugging the program
using reverse engineering tools such as IDA Pro [12]).

Automated analysis systems are nothing but a first step to solve the chal-
lenges posed by the large quantities of new malware samples appearing each
day. The question arises how we can master the large number of analysis
reports that we have created in response to the large number of incoming ma-
licious programs. To address this problem, we present a technique that allows
the grouping of samples based on the similarity of their behavior exhibited
while running in Anubis. Moreover, we show how to leverage the large body
of analysis reports for drawing conclusions about common malware behaviors.
Last, we demonstrate that it is possible to improve the efficiency of dynamic
malware analysis by making use of the fact that many of today’s malware pro-
grams are due to mutations of only a few malware programs [45]. This permits
us to analyze more samples in the same time without requiring more hardware
resources. We will give a more detailed overview of these three solutions in
the following paragraphs.

1.1 Anubis

Anubis is a project that focuses on automatic malware analysis. By dynami-
cally analyzing the behavior of Windows executables, it addresses the demand
for automatic binary analysis that arises from the huge amounts of new mal-
ware samples appearing each day. Apart from analyzing individual malware
samples, Anubis is capable of providing a high-level view of the malware land-
scape by clustering samples into larger malware families and by offering various

2



1.1 Anubis

statistics on common malicious behavior. Anubis offers users the possibility
to upload suspicious samples for analysis via a public website [1]. In addition,
Anubis receives malware samples through a number of feeds from security or-
ganizations and anti-malware companies. At the time of writing this thesis,
Anubis analyzes several thousand binaries per day.

Anubis evolved from TTAnalyze [28], a tool for dynamically analyzing mal-
ware samples, written by the author during his master’s thesis. While TTAna-
lyze was a command-line tool that analyzes a suspicious Windows executable
and subsequently outputs the results into an HTML file, Anubis is a sys-
tem designed for large-scale malware analysis that consists of many programs,
scripts, databases as well as a powerful hardware infrastructure.

Anubis began as a single-man project and over time grew to a project
that involved many students and colleagues. Since its beginning the follow-
ing people contributed to the development of Anubis: Ulrich Bayer, Florian
Nentwich, Paolo Milani Comparetti, Constantin Claudiu Gavrilete, Clemens
Hlauschek, Clemens Kolbitsch, Florian Lukavsky, Matthias Neugschwandtner,
Martin Schenk, Michael Weissbacher, Engin Kirda, Christopher Kruegel, An-
dreas Moser, Sylvester Keil, M. Levent Koc, Valentin Habsburg, Christoph
Schwarz. Without their help Anubis would not exist as it does today.

In this section, we are going to provide a technical overview of the Anubis
system. We speak about the practical aspects of designing and operating a
large-scale dynamic malware analysis system.

1.1.1 Architecture

Anubis has grown from a simple command-line tool for analyzing malware
to a full-fledged system for large-scale malware analysis consisting of many
components. We list the main components in Figure 1.1.

• Web/DB Server. This component provides the public web interface that
permits users to submit malware samples to Anubis. At the same time,
this server hosts a relational database that we leverage for storing anal-
ysis tasks and its results. In particular, we store the produced analysis
reports, which exist in the form of XML files, also in the database.

• Malware Sample Storage. We store all malware files on the filesystem.

• Report Storage. The storage of analysis results takes place on the file
system. In addition to the XML report file, we store the network traffic
for each analysis as a PCAP file.

3



Chapter 1 Introduction

Figure 1.1: Anubis Building Blocks.

• Worker. The workers are the servers that perform the actual work of dy-
namically analyzing a Windows executable. We employ several workers
in parallel for improving the analysis throughput. To analyze a mal-
ware sample, the binary is run in an emulated operating system envi-
ronment and its (security-relevant) actions are monitored. In particular,
we record the Windows native system calls and Windows API functions
that the program invokes. One important feature of our system is that
it does not modify the program that it executes (e.g., through API call
hooking or breakpoints), making it more difficult to detect by malicious
code. Also, our tool runs binaries in an unmodified Windows environ-
ment, which leads to excellent emulation accuracy.

• Victim Server. When analyzing malware, it is essential to avoid sending
malicious traffic out of the analysis environment. For this reason, we
redirect the majority of network traffic generated by files under analysis
to the so-called victim server. This server has been configured to accept
incoming connections on a number of ports that are frequently used
by malware programs. For example, the victim machine runs its own
SMTP server that answers all SMTP requests (but does not deliver any
emails). Moreover, we have set up nepenthes [22] - a honeypot system
that emulates known vulnerabilities of popular services. Of course, we
are not using the nepenthes server as a honeypot system in the usual
sense, i.e., as a way to gain new malware samples. Instead, we have
deployed nepenthes only for having a basic service listening on ports
that are frequently used for spreading (such as the Windows Samba

4



1.2 A View on Current Malware Behaviors

ports)

Submission Process. To clarify the interaction between these components,
let us have a look at the submission process. First, a user submits a sample
to the Anubis webserver which registers the submission in the database and
stores the submitted file in the sample store. In a next step, the Anubis
workers process outstanding tasks and store the analysis results in the report
store as well as the database.

1.1.2 Data Repository

Operating an analysis system that keeps up with the huge number of new
malware samples appearing each day means generating several thousands of
new results each day. This quickly leads to big amounts of data that need to
stored. We designed Anubis to store the raw data (such as submitted files,
behavioral reports) on the file system. However, we extract the important
information from these files and load them into a relational database. Having
this data in a relational database enables us to draw conclusions on global
malicious behavior.

The data repository fulfills three different requirements:

• Task management. Submissions to Anubis are represented as analysis
tasks in the Anubis environment. These tasks, as well as their state (out-
standing, completed, currently processed) are managed in the database.

• Storage of behavioral information. We load important information from
the behavioral summaries (XML files) into the database.

• Clustering management. Similar to the task management capabilities,
clustering tasks are kept in the database. Moreover, behavioral profiles
(a more machine-readable representation of a program’s behavior) are
stored in the database.

1.2 A View on Current Malware Behaviors

In this thesis, we set out to provide insights into common malware behav-
iors. Our analysis and experiences are based on the malicious code samples
that were collected by Anubis [1, 28], our dynamic malware analysis platform.
When it receives a sample, Anubis executes the binary and monitors the in-
vocation of important system and Windows API calls, records the network
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Chapter 1 Introduction

traffic, and tracks data flows. This provides a comprehensive view of mali-
cious activity that is typically not possible when monitoring network traffic
alone.

Anubis receives malware samples through a public web interface and a num-
ber of feeds from security organizations and anti-malware companies. These
samples are collected by honeypots, web crawlers, spam traps, and by security
analysts from infected machines. Thus, they represent a comprehensive and
diverse mix of malware found in the wild. Our system has been live for a
period of about two years. During this time, Anubis has analyzed almost one
million unique binaries (based on their MD5 file hashes). Given that process-
ing each malware program is a time consuming task that can take up to several
minutes, this amounts to more than twelve CPU years worth of analysis.

When compiling statistics about the behaviors of malicious code, one has
to consider that certain malware families make use of polymorphism. Since
samples are identified based on their MD5 file hashes, this means that any
malware collection typically contains more samples of polymorphic malware
programs than of non-polymorphic families. Unfortunately, this might skew
the results so that the behavior (or certain actions) of a single, polymorphic
family can completely dominate the statistics. To compensate for this, we
analyze behaviors not only based on individual samples in our database but
also based on malware families (clusters).

For this thesis, we performed an analysis of almost one million malware
samples. The main contribution are statistics about and insights into malicious
behaviors that are common among a diverse range of malware programs. We
also consider the influence of code polymorphism on malware statistics. To
this end, we compare analysis results based on individual samples to results
based on malware families. We will present details in Chapter 2.

1.3 Clustering Malware

In recent years, there has been progress on automated malware analysis [31,
41, 60, 73, 74]. However, while automating the analysis of the behavior of
a single malware sample is a first step, it is not sufficient. The reason is
that the analyst is now facing thousands of reports every day that need to
be examined. Thus, there is a need to prioritize these reports and guide
an analyst in the selection of those samples that require most attention. One
approach to process reports is to cluster them into sets of malware that exhibit
similar behavior. The ability to automatically and effectively cluster analyzed
malware samples into families with similar characteristics is beneficial for the
following reasons: First, every time a new malware sample is found in the
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wild, an analyst can quickly determine whether it is a new malware instance
or a variant of a well-known family. Moreover, given sets of malware samples
that belong to different malware families, it becomes significantly easier to
derive generalized signatures, implement removal procedures, and create new
mitigation strategies that work for a whole class of programs.

Grouping individual malware samples into malware families is not a new
idea, and clustering and classification methods have already been proposed
previously [24, 43, 50, 52, 47]. These approaches, however, generally do not
scale well and are too slow for the size of malware sets that anti-malware
companies are confronted with. Moreover, these techniques are imprecise,
either because their notion of similarity is not tied to a program’s actual
behavior or because it does not capture a program’s behavior well enough.
Imprecise in this context either means putting samples of different types into
the same group or failing to recognize similar malware programs. We will
present our scalable, behavior-based solution in Chapter 3.

1.4 Improving the Efficiency of Dynamic Malware

Analysis

The main thing to note about dynamic analysis systems is that they are indeed
executing the binary for a limited amount of time. Since, typically, malicious
programs do not reveal their behavior when only executed for several seconds,
dynamic systems are required to monitor the binary’s execution for a longer
time. This is why dynamic analysis is resource-intensive in terms of necessary
hardware and time. Moreover, the sheer number of malware programs ap-
pearing each day became high enough to not only challenge manual analysis
but also automated, dynamic malware analysis. One needs costly server farms
running the dynamic analysis systems to cope with the ever-increasing load
(i.e., amount of binaries to be analyzed).

In this thesis, we present a novel and practical approach for improving the
efficiency of dynamic malware analysis systems. Our approach is based on the
insight that the huge number of new malicious files appearing each day is due
to mutations of only a few malware programs [45]. More precisely, malware
authors write programs that reproduce polymorphically [72] or employ run-
time packing algorithms to create new malware instances that differ on the
file level, but exhibit the same behavior. We propose a system that avoids
analyzing malware binaries that merely constitute slightly mutated instances
of already analyzed polymorphic malware. To detect polymorphic binaries,
we have extended our dynamic analysis system to check—after executing the
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Chapter 1 Introduction

malware program for only a short time—whether our database of existing
analysis reports contains a behaviorally almost identical (for the time frame
in question) analysis report. If this is the case, we stop the analysis process
and instead, return the existing analysis result.

We will describe this solution in more detail in Chapter 4.

1.5 Contributions

In this thesis, we address several of the challenges created by the need to an-
alyze the large quantities of malicious programs currently circulating in the
wild. We propose three novel approaches–each one providing a practical so-
lution to one aspect in the field of large-scale automated, dynamic malware
analysis. To evaluate our techniques, we have built and successfully run pro-
totype systems. First, we have built and operated Anubis as a public system
that allows Internet users to submit suspicious binaries to our analysis. We
make use of these results to provide a view on current malware behaviors. Fur-
thermore, we have built a prototype clustering system to assess the quality
and performance metrics of our novel clustering technique. To evaluate our
approach for improving the efficiency of dynamic malware analysis, we have
also built a prototype system and conducted experiments. Summing up, we
make the following contributions in this thesis:

• We provide a view on the currently common malicious behavior by ana-
lyzing almost one million malware samples. We present statistics about
and insights into malicious behaviors that are common among a diverse
range of malware programs. We also consider the influence of code poly-
morphism on malware statistics. To compile these statistics, we evaluate
the Anubis results collected by operating Anubis during a time period
of approximately two years and analyzing almost one million malware
sample.

• We present a novel clustering technique that scales well and produces
more precise results than previous approaches. Our technique is based
on a dynamic analysis system that monitors the execution of a malware
sample in a controlled environment. Unlike many previous systems that
operate directly on low-level data such as system call traces, we en-
rich and generalize the collected data and summarize the behavior of a
malware sample in a behavioral profile. These profiles express malware
behavior in terms of operating system (OS) objects and OS operations.
Moreover, profiles capture a more detailed view of network activity and
the ways in which a malware program uses input from the environment.
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This allows our system to recognize similar behaviors among samples
whose low-level traces appear very different. Finally, we cluster the an-
alyzed samples according to their behavioral profile. We employ a scal-
able clustering algorithm that avoids calculating n2 distances between all
pairs of n samples, and thus, is suitable for clustering large, real-world
malware collections.

• We present a novel and practical approach for improving the efficiency of
dynamic malware analysis systems. Our approach is based on the insight
that the huge number of new malicious files appearing each day is due to
mutations of only a few malware programs [45]. To save analysis time,
we suggest a technique that avoids performing a full analysis of the same
polymorphic file multiple times. In an experiment conducted on a set of
10,922 randomly chosen executable files, our prototype implementation
was able to avoid a full dynamic analysis in 25.25 percent of the cases.

1.6 List of Publications

This thesis is based on material that was published at academic, peer-reviewed
conferences. Chapter 2 presents the results of a study of current malware be-
havior that was undertaken together with Imam Habibi, Davide Balzarotti,
Engin Kirda, and Christopher Kruegel and published at LEET 2009 [26].
Chapter 3’s work on clustering malware is based on joint work with Paolo Mi-
lani Comparetti, Clemens Hlauschek, Christopher Kruegel and Engin Kirda.
It was published at NDSS 2009 [25]. Chapter 4 features work that I did in
collaboration with Christopher Kruegel and Engin Kirda for improving the
efficiency of dynamic malware analysis. It will be presented at SAC 2010 [27].
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Chapter 2

A View on Current Malware Behaviors

2.1 Introduction

Anubis receives malware samples through a public web interface and a number
of feeds from security organizations and anti-malware companies. Because
the samples are collected from a wide range of users, the collected samples
represent a comprehensive and diverse mix of malware found in the wild. In
this chapter, we aim to shed light on common malware behaviors. To this
end, we evaluate the Anubis analysis results for almost one million malware
samples, study trends and evolution of malicious behaviors over a period of
almost two years, and examine the influence of code polymorphism on malware
statistics.

2.2 Dataset

In this section, we give a brief overview of the data that Anubis collects. As
mentioned previously, a binary under analysis is run in an emulated operat-
ing system environment (a modified version of Qemu [29]) and its (security-
relevant) actions are monitored. In particular, we record the Windows native
system calls and Windows API functions that the program invokes. One im-
portant feature of our system is that it does not modify the program that it
executes (e.g., through API call hooking or breakpoints), making it more diffi-
cult to detect by malicious code. Also, our tool runs binaries in an unmodified
Windows environment, which leads to good emulation accuracy. Each sample
is run until all processes are terminated or a timeout of four minutes expires.
Once the analysis is finished, the observed actions are compiled in a report
and saved to a database.

Our dataset covers the analysis reports of all files that were submitted to
Anubis in the period from February 7th 2007 to December 31st 2008, and that
were subsequently analyzed by our dynamic analysis system in the time period
between February 7th 2007 and January 14th 2009. This dataset contains
901,294 unique samples (based on their MD5 hashes) and covers a total of
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Figure 2.1: Anubis submission statistics.

1,167,542 submissions. Typically, a given sample is only analyzed once by our
analysis system. That is, when a sample is submitted again, we return the
already existing analysis report without doing an actual analysis.

Figure 2.1 shows the number of total samples, the number of new samples,
and the number of actually analyzed samples submitted to Anubis, grouped by
months. We consider a file as being new when, at the time of its submission,
we do not have a file with the same MD5 hash in our repository. As one can
see, we have analyzed about fifty thousand samples on average per month in
the year 2008. When we first launched the Anubis online analysis service, we
received only few samples. However, as the popularity of Anubis increased, it
was soon the computing power that became the bottleneck. In fact, in July
and August 2008, we had to temporarily stop some automatic batch processing
to allow our system to handle the backlog of samples.

Naturally, the Anubis tool has evolved over time. We fixed bugs in later
versions or added new features. Given that there is a constant stream of new
malware samples arriving and the analysis process is costly, we typically do not
rerun old samples with each new Anubis version. Unfortunately, this makes it
a bit more difficult to combine analysis results that were produced by different
versions of Anubis into consolidated statistics. In some cases, it is possible to
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Figure 2.2: Number of distinct sources for each sample.

work around such differences. In other cases (in particular, for the analysis of
anti-sandbox techniques presented Section 2.3.6), we had to confine ourselves
to results for a smaller subset of 330,088 analyzed PE files. The reason is that
necessary information was not present in older reports.

2.2.1 Submissions

Figure 2.2 shows the number of different sources that submit a particular
sample to Anubis. The graph illustrates that most of the samples we receive
are submitted by one source only. Even though the curve decreases quickly,
there is still a significant number of samples that are submitted by 10 to 30
different sources.

We have made the experience that measuring the number of sources that
submit a certain sample tends to indicate how widespread a certain malware
sample is in the wild. In fact, this premise is supported by the results of the
anti-virus scans that we run on each sample that we receive. For example,
if we consider the samples submitted by one source, 73% of the submissions
are categorized by two out of five anti-virus scanners as being malicious. In
comparison, 81% of the submissions that are submitted by at least 3 different
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sources are identified as being malicious by anti-virus software. Furthermore,
among the samples that are submitted by 10 or more sources, 91% are iden-
tified as being malicious.

2.2.2 Submitted file types
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Figure 2.3: Overview of used packers

One problem with running an online, public malware analysis service is
that one can receive all sorts of data, not only malware. In fact, users might
even try to submit applications such as Microsoft Word or Microsoft Internet
Explorer just to see how the system reacts. Furthermore, unfortunately, not
all the submitted samples are valid Windows PE executables [66] (around 14%
are not). Table 2.1 shows a breakdown of the different file types submitted
to Anubis. As can be seen from this table, fortunately for us, most of the
files that are sent to Anubis can be analyzed. The category of non PE files
includes mostly different archive formats (ZIP and RAR archives) and MS
Office documents (such as Word and Excel), but also a small number of shell
scripts and executables for different operating systems (such as DOS, Linux).
According to SigBuster, a signature-based scanner for packers, 40.64% of the
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PE files (770,960) DLL files (75,505)
Drivers (4,298)
Executables (691,057)

Non PE files (130, 334) ZIP archives (17,059)
RAR archives (25,127)
HTML files (27,813)
Other (60,335)

Table 2.1: File types submitted to Anubis.

analyzed PE files are packed. Figure 2.3 provides an overview of the most
common packers.

2.2.3 Submission sources

Over the two-year time period that we have provided the service, Anubis
received samples from more than 120 different countries. Depending on the
number of samples submitted, we have grouped the Anubis submitters into
four different categories: large, medium, small, single. We define a large
submitter as an entity (i.e., a person, an organization) that has submitted more
than one thousand different (per MD5 hash) samples. A medium submitter
is an entity that has submitted between 100 and 1,000 different samples. A
small submitter is an entity that has submitted between 10 and 100 different
samples, and finally, a single submitter is an entity that has submitted less
than 10 samples. Table 2.3 summarizes our findings.

Note that there are 20 large submitters (with more than one thousand dif-
ferent samples submitted) who account for almost 90% of the Anubis submis-
sions. Interestingly, the number of single submitters is very high. However,
these users are only responsible for about 5% of the total submissions. Accord-
ing to anti-virus results that we run on every submitted sample, the medium
submitters (probably represented by malware analysts) are more reliable in
submitting malicious samples (i.e., 75% of their submissions are flagged as
being malicious). In comparison, only 50% of the samples submitted by single
submitters are identified as being malicious, suggesting that single individuals
are probably more likely to submit random files, possibly to test the Anubis
system.
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Observed Behavior Percentage of Percentage of
Samples Clusters

Installation of a Windows kernel driver: 3.34% 4.24%
Installation of a Windows service: 12.12% 7.96%
Modifying the hosts file: 1.97% 2.47%
Creating a file: 70.78% 69.90%
Deleting a file: 42.57% 43.43%
Modifying a file: 79.87% 75.62%
Installation of an IE BHO: 1.72% 1.75%
Installation of an IE Toolbar: 0.07% 0.18%
Display a GUI window: 33.26% 42.54%
Network Traffic: 55.18% 45.12%
Writing to stderr: 0.78% 0.37%
Writing to stdout: 1.09% 1.04%
Modifying a registry value: 74.59% 69.92%
Creating a registry key: 64.71% 52.25%
Creating a process: 52.19% 50.64%

Table 2.2: Overview of observed behavior.

Submitter Category % of total tasks
Category Members submitted

Large (1000-*) 20 89.1%
Medium (100-1000) 112 3.8%
Small (10-100) 1279 2.5%
Single (1-10) 30944 4.5%

Table 2.3: Submission sources.
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2.3 Observed Malicious Behavior

2.3 Observed Malicious Behavior

In this section, we present detailed discussions on the file, registry, network,
and botnet activity that we observed when analyzing the Anubis submissions.
The goal is to provide insights into malicious behaviors that are common
among a diverse range of malware programs. An overview of interesting activ-
ity is shown in Table 2.2. In this table, we show the fraction of samples that
perform certain high-level activity. We also provide the behavioral information
with respect to the number of malware families, approximated as clusters of
samples that exhibit similar behaviors. We describe the clustering technique
in more detail in Chapter 3.It is interesting to observe that the differences
are often not very pronounced. One reason is that the clustering process was
using a tight threshold. That is, samples are only grouped when they exhibit
very similar activity, resulting in a large number of clusters. Another reason is
that the activity in Table 2.2 is quite generic, and there is not much difference
at this level between individual samples and families. The situation changes
when looking at activity at a level where individual resources (such as files,
registry keys) are considered. For example, 4.49% of all samples create the
file C:\WINDOWS\system32\urdvxc.exe, but this is true for only 0.54% of all
clusters. This file is created by the well-known, polymorphic allaple worm,
and many of its instances are grouped in a few clusters. Another example
can be seen in Table 2.4 and in Table 2.5. Here, 17.53% of all samples use a
specific registry key for making the malware persistent. When looking at the
granularity of clusters (families), this number drops to 11.67%. Again, the
drop is due to the way in which allaple operates. It also demonstrates that
using statistics based on malware clusters is more robust when large clusters
of polymorphic malware samples are present in the dataset.

2.3.1 File system activity

Looking at Table 2.2, we can see that, unsurprisingly, the execution of a large
number of malware samples (70.8% of all binaries) lead to changes on the file
system. That is, new files are created and existing files are modified.

When analyzing the created files in more detail, we observe that they mostly
belong to two main groups: One group contains executable files, typically
because the malware copies or moves its binary to a known location (such as
the Windows system folder). Often, this binary is a new polymorphic variant.
In total, 37.2% of all samples create at least one executable file. Interestingly,
however, only 23.2% of all samples (or 62% of those that drop an executable)
choose the Windows directory or one of its sub-folders as the target. A large
fraction – 15.1% – create the executable in the user’s folder (under Document
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Autostart Location Percentage
of Samples

HKLM\System\Currentcontrolset\Services\%\Imagepath 17.53%
HKLM\SW\MS\WIN\CV\Run% 16.00%
HKLM\SW\MS\Active Setup\Installed Components% 2.50%
HKLM\SW\MS\WIN\CV\Explorer\Browser Helper Objects% 1.72%
HKLM\SW\MS\WIN\CV\Runonce% 1.60%
HKLM\SW\MS\WIN\CV\Explorer\Shellexecutehooks% 1.30%
HKLM\SW\MS\WIN NT\CV\WIN\Appinit Dlls 1.09%
HKLM\SW\MS\WIN NT\CV\Winlogon\Notify% 1.04%
HKLM\SW\MS\WIN\CV\Policies\Explorer\Run% 0.67%
C:\Documents and Settings\%\Start Menu\Programs\Startup\% 0.20%

Abbreviations

HKLM=HKEY LOCAL MACHINE
SW=Software
MS=Microsoft
WIN=Windows
CV=Currentversion

Table 2.4: Top 10 Autostart locations in percentage of samples.

Autostart Location Percentage
of Clusters

HKLM\SW\MS\WIN\CV\Run% 17.80%
HKLM\System\Currentcontrolset\Services\%\Imagepath 11.67%
HKLM\SW\MS\WIN\CV\Runonce% 3.07%
HKLM\SW\MS\Active Setup\Installed Components% 2.79%
HKLM\SW\MS\WIN\CV\Explorer\Shellexecutehooks% 2.29 %
HKLM\SW\MS\WIN\CV\Explorer\Browser Helper Objects% 1.75%
HKLM\SW\MS\WIN NT\CV\Winlogon\Notify% 1.89%
HKLM\SW\MS\WIN\CV\Policies\Explorer\Run% 1.04%
C:\Documents and Settings\%\Start Menu\Programs\Startup\% 0.95%
HKLM\SW\MS\WIN NT\CV\WIN\Appinit Dlls 0.89%

Abbreviations

HKLM=HKEY LOCAL MACHINE
SW=Software
MS=Microsoft
WIN=Windows
CV=Currentversion

Table 2.5: Top 10 Autostart locations in percentage of clusters.
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and Settings). This is interesting, and might indicate that, increasingly,
malware is developed to run successfully with the permissions of a normal
user (and hence, cannot modify the system folder).

The second group of files contains non-executables, and 63.8% of all samples
are responsible for creating at least one. This group contains a diverse mix
of temporary data files, necessary libraries (DLLs), and batch scripts. Most
of the files are either in the Windows directory (53% of all samples) or in the
user folder (61.3%1). One aspect that stands out is the significant amount of
temporary Internet files created by Internet Explorer (in fact, the execution
of 21.3% of the samples resulted in at least one of such files). These files
are created when Internet Explorer (or, more precisely, functions exported
by iertutil.dll) are used to download content from the Internet. This is
frequently used by malware to load additional components. Most of the DLLs
are dropped into the Windows system folder.

The modifications to existing files are less interesting. An overwhelming
majority of this activity is due to Windows recording events in the system
audit file system32\config\SysEvent.Evt. In a small number of cases, the
malware programs infect utilities in the system folder or well-known programs
(such as Internet Explorer or the Windows media player).

In the next step, we examined the deleted files in more detail. We found
that most delete operations target (temporary) files that the malware code
has created previously. Hence, we explicitly checked for delete operations that
target log files and Windows event audit files. Interestingly, Windows malware
does not typically attempt to clear any records of its activity from log data
(maybe assuming that users will not check these logs). More precisely, we find
that 0.26% of the samples delete a *log file, and only 0.0018% target *evt

files.

We also checked for specific files or file types that malware programs might
look for on an infected machine. To this end, we analyzed the file parameter to
the NtQueryDirectoryFile system call, which allows a user (or program) to
specify file masks. We found a number of interesting patterns. For example, a
few hundred samples queried for files with the ending .pbk. These files store
the dial-up phone books and are typically accessed by dialers. Another group
of samples checked for files ending with .pbx, which are Outlook Express
message folder.

1Note that the numbers exceed 100% as a sample can create multiple files in different
locations.
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2.3.2 Registry activity

A significant number of samples (62.7%) create registry entries. In most cases
(37.7 % of those samples), the registry entries are related to control settings for
the network adapter. Another large fraction – 22.7% of the samples – creates a
registry key that is related to the unique identifiers (CLSIDs) of COM objects
that are registered with Windows. These entries are also benign. But since
some malware programs do not change the CLSIDs of their components, these
IDs are frequently used to detect the presence of certain malware families. We
did also find two malicious behaviors that are related to the creation of reg-
istry entries. More precisely, a fraction (1.59%) of malware programs creates
an entry under the key SystemCertificates\TrustedPublisher\Certifi-
cates. Here, the malware installs its own certificate as trusted. Another group
of samples (1.01 %) created the Windows\CurrentVersion\Policies\System
key, which prevents users from invoking the task manager.

We also examined the registry entries that malware programs typically mod-
ify. Here, one of the most-commonly-observed malicious behavior is the dis-
abling of the Windows firewall – in total, 33.7% of all samples, or almost
half of those that modify Windows keys, perform this action. Also, 8.97% of
the binaries tamper with the Windows security settings (more precisely, the
MSWindows\Security key). Another important set of registry keys is related
to the programs that are automatically launched at startup. This allows the
malware to survive a reboot. We found that 35.8% of all samples modify
registry keys to get launched at startup. We list that Top 10 Autostart lo-
cations in Table 2.4 and Table 2.5. As can be seen, the most common keys
used for that purpose are Currentversion\Run with 16.0% of all samples and
Services\Imagepath with 17.53%. The Services registry key contains all
configuration information related to Windows services. Programs that explic-
itly create a Windows service via the Windows API implicitly also modify the
registry entries under this key.

2.3.3 Network activity

Table 2.6 provides an overview of the network activities that we observed
during analysis. Figure 2.4 depicts the use of the HTTP, IRC, and SMTP
protocols by individual samples over a one and a half year period. In contrast,
Figure 2.5 shows the usage of the HTTP, IRC, and SMTP protocols once fam-
ilies of malware samples are clustered together (using our clustering approach
presented in Chapter 3). These two graphs clearly demonstrate the usefulness
of clustering in certain cases. That is, when the first graph is observed, one
would tend to think that there is an increase in the number of samples that
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Observed Behavior Percentage of Percentage of
Samples Clusters

Listen on a port: 1.88% 4.39%
TCP traffic: 45.74% 41.84%
UDP traffic: 27.34 % 25.40%
DNS requests: 24.53% 28.42%
ICMP-traffic: 7.58% 8.19%
HTTP-traffic: 20.75% 16.28%
IRC-traffic: 1.72% 4.37%
SMTP-traffic: 0.89% 1.57%
SSL: 0.23% 0.18%
Address scan: 19.08% 16.32%
Port scan: 0.01% 0.15%

Table 2.6: Overview of network activities.

use the HTTP protocol. However, after the samples are clustered, one realizes
that the use of the HTTP protocol remains more or less constant. Hence, the
belief that there is an increase in HTTP usage is not justified, and is proba-
bly caused by an increase in the number of polymorphic samples. However,
the graph in Figure 2.5 supports the assumption that IRC is becoming less
popular.

Moreover, we observed that 796 (i.e., 0.23%) of the samples used SSL to
protect the communication. Almost all use of SSL was associated to HTTPS
connections. However, 8 samples adopted SSL to encrypt traffic targeting
the non-standard SSL port (443). Interestingly, most of the time the client
attempted to initiate an SSL connection, it could not finish the handshake.

In the samples that we analyzed, only half of the samples (47.3%) that
show some network activity also query the DNS server to resolve a domain
name. These queries were successful most of the time. However, in 9.2% of
the cases, no result was returned. Also, 19% of the samples that we observed
engaged in scanning activity. These scans were mostly initiated by worms
that scan specific Windows ports (e.g., 139, 445) or ports related to backdoors
(e.g., 9988 – Trojan Dropper Agent). Finally, 8.9% of the samples connected
to a remote site to download another executable. Figure 2.6 shows the file
sizes of these second stage malware programs, compared with the size of the
executable samples submitted to Anubis. As one may expect, the second stage
executables are in average smaller than the first stage malware.

Note that over 70% of the samples that downloaded an executable actually
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Figure 2.4: Network protocols (by samples).

downloaded more than one. In fact, we observed one sample that downloaded
the same file 178 times during the analysis time of four minutes (i.e., the down-
load was corrupted with each download, so the sample immediately attempted
another download).

2.3.4 GUI windows

Table 2.2 shows that a surprising fraction of samples (33.26%) display a GUI
window. Closer analysis reveals that only a small set (2.2%) is due to pro-
gram crashes. The largest fraction (4.47%) is due to GUI windows that come
without the usual window title and contain no window text. Although we
were able to extract window titles or window text in the remaining cases, it
is difficult to discover similarities. Window names and texts are quite diverse,
as a manual analysis of several dozens of reports confirmed. The majority of
GUI windows are in fact simple message boxes, often pretending to convey
an error of some kind. We believe that their main purpose lies in minimizing
user suspicion. An error message draws less attention than a file that does
not react at all when being double clicked. For example, 1.7% of the samples
show a fabricated message box that claims that a required DLL was not found.
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Figure 2.5: Network protocols (by families/clusters).

However, if this error message was authentic, it would be created on behalf of
the csrss.exe process.

2.3.5 Botnet activity

Although a relative recent phenomenon, botnets have quickly become one of
the most significant threats to the security of the Internet. Recent research ef-
forts have led to mechanisms to detect and disrupt botnets [44]. To determine
how prevalent bots are among our submissions, we analyzed the network traf-
fic dumps that Anubis has recorded. For this, we were interested in detecting
three bot families: IRC, HTTP, and P2P.

The first step in identifying a bot based on an analysis report is to de-
termine the network protocol that is being used. Of course, the protocol
detection needs to be done in a port-independent fashion, as a bot often com-
municates over a non-standard port. To this end, we implemented detectors
for IRC, HTTP, and the following P2P protocols: BitTorrent, DirectConnect,
EDonkey, EmuleExtension, FastTrack, Gnutella, and Overnet.

In the next step, we need to define traffic profiles that capture expected,
bot-like behaviors. Such profiles are based on the observation that bots are
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usually used to perform distributed denial-of-service (DDoS) attacks, send
out many spam e-mails, or download malicious executables. Hence, if we see
signs for any such known activity in a report (e.g., address scans, port scans,
DNS MX queries, a high number of SMTP connections, etc.), we consider this
sample a bot candidate. In addition, we use some heuristics to detect known
malicious bot conversations such as typical NICKNAME, PRIVMSG, and
TOPIC patterns used in IRC communication, or common HTTP bot patterns
used in URL requests. The bot analysis is also used to create a blacklist of
identified command and control servers. This blacklist is constantly updated
and is also used to identify and verify new bot samples.

Our analysis identified 36,500 samples (i.e., 5.8%) as being bots (i.e., 30,059
IRC bots, 4,722 HTTP bots, and 1,719 P2P bots). Out of the identified
samples, 97.5% were later correctly recognized by at least two anti-virus as
malware. However, it was often the case that anti-virus programs misclassified
the sample, e.g. by flagging a storm worm variation as an HTTP Trojan. Also,
all P2P bots we detected were variations of the Storm worm.

Figure 2.7 and 2.8 show the bot submission (grouped by type) based on
unique samples and unique clusters, respectively. By comparing the IRC bot-
net submissions in the two graphs, we can observe that, in 2007, most of IRC
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botnets were belonging to different clusters. In 2008 instead, we still received
an high number of IRC bots, but they were mostly polymorphic variations of
the same family. As an example, the peak that we observed in May 2008 is
due to a large number of polymorphic variations of W32.Virut.

Interestingly, we are able to identify samples that, months after their first
appearance, are still not recognized by any anti-virus software. This is prob-
ably due to the polymorphism and metamorphism techniques used in the
malware code. We also verified how many samples were identified by one anti-
virus vendor as being a bot and cross-checked these samples with our detection
technique. We missed 105 samples that the anti-virus software was able to
detect. One reason for this could be the four-minute maximum runtime limit
for the samples emulated in the Anubis system.

The Storm worm began infecting thousands of computers in Europe and
the United States on Friday, January 19, 2007. However, Anubis received
the first storm collection (96 samples) in April 2007. Note that most of the
submitted samples of Storm after October 1st are dominated by variants with
the encryption capability (i.e., 93%). We obtained the first sample using
encrypted communication in October 2007.

When IRC bots are analyzed in more detail, one observes that the channel
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Figure 2.8: Botnet submissions (by families/clusters).

topic is base64-encoded 13% of the time. During the time in which the samples
were executed in Anubis, we also collected over 13,000 real commands that
the bot master sent to malware under analysis. In 88% of the cases, the
commands were instructing the client to download some file (e.g., get and
download commands). Some other interesting commands that we observed
were ipscan, login, keylog, scan, msn, and visit.

We also analyzed how many samples tried to disguise their activities by
using standard protocols on non-standard ports. For the HTTP bots, 99.5%
of the samples connected to the ports 80 and 8080. Only 62 samples were
using non-standard ports. However, for the IRC bots, the picture is quite
different. 92% of the samples were connecting to an IRC server running on
a non-standard port. For example, the ports 80 and 1863 (i.e., Microsoft
Messenger) are very common alternatives, often used to bypass firewalls.

Finally, we can classify the 1,719 Storm samples that have been submitted
to Anubis into two classes: variants that use encrypted communication chan-
nels, and those that do not support encryption. As far as the decryption key
is concerned, we only observe one symmetric key consistently being used to
encrypt Storm traffic.
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Observed Comparison with Number of Number of
Samples Clusters

Windows Product Id of Anubis: 55 28
Windows Product Id of CWSandbox: 32 14
Windows Product Id of Joebox: 32 14
Executable name of sample.exe: 35 17
Computer name of Anubis: 4 4
Qemu’s HD name: 2 2
VMWare’s HD name: 1 1
Windows user name of ’user’: 2 2
Any Anti-Anubis comparison: 99 54
Any Anti-Sandbox comparison: 100 55

Table 2.7: Overview of observed comparisons.

2.3.6 Sandbox detection

Another interesting aspect of malware behavior is its capability to detect the
presence of an analysis environment such as Anubis. Dynamic analysis sys-
tems are a popular means to gather data about malicious code, and it is not
surprising that malware is using techniques to thwart such analysis. When a
malware program detects a sandbox, it typically alters its behavior - most of
the time, it just quits. In this section, we attempt to estimate the number of
samples that use (general and Anubis specific) anti-sandbox techniques.

Sandbox detection techniques fall into two main classes: One class is com-
prised of instruction-level detection techniques, which are techniques that
determine the difference between a real CPU and an emulated one by only
making use of CPU instructions. The second class are API-level detection
methods, which query the environment by calling one or several (Windows)
API functions.

Unfortunately, we have currently no good way to detect instruction-level
detection attempts. While it is theoretically possible to monitor single instruc-
tions in a full system emulator, for performance reasons, Anubis essentially
works at the API (and system call) level. Since Anubis leverages Qemu for
its full system emulation, it is susceptible to the same detection methods as
Qemu is. In particular, several of the detection strategies (all of them are
instruction-level detections) outlined in [42] and [64] also work for Anubis.

Since we do monitor Windows API calls, we are in a better position to check
for possible API-level detection methods. At the time of writing this thesis,
several Anubis-specific detections have been published [11] on the Internet.
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All of them work by comparing the return value of a Windows API function
such as GetComputerName to a a hard-coded value that is known to identify
Anubis. Our system includes a data tainting component that allows us to
detect when the output of an interesting function is subsequently used as
an operand in a comparison operation [25]. Thus, we were able to analyze
our sample set for specific comparisons that represent known Anubis checks
published in forum postings or blogs. Table 2.7 summarizes our findings. A
couple of checks deserve more discussion. Our system names each analyzed
sample sample.exe. Thus, a well-known Anubis detection routine compares
the return value of the Windows API function GetCommandLine with that
string. Similarly, in the past, every sample was executed as a Windows user
with the name “user.” Consequently, it was possible to compare the result
of NtQuerySystemInformation with the string “user” to detect Anubis (as a
side note, we have since changed this username to “Administrator”).

In total, we have found that only 0.03% of the samples (99 distinct malware
programs) contain a known Anubis check. Most of these samples perform the
check in the beginning of their execution, and immediately exit if they detect
the presence of our sandbox. Of course, it is possible that malware samples
perform a wide range of other checks. Moreover, as mentioned previously,
we have no good way to identify instruction-level detections or timing-based
detection attempts. Thus, the reported numbers are a clear lower bound.

Under the assumption that a sample that detects Anubis (or a sandbox)
does not perform much activity, we can also provide an upper bound for the
samples that do sandbox detection. Based on our experience with Anubis,
we consider a behavioral report (a profile [25]) to contain “not much activity”
when it contains less than 150 features. For comparison, the average profile has
1,465 features. Using this definition, we found that 12.45 % of the executable
samples (13.57 % of the clusters) show not much activity.

Of course, not of all these samples really contain anti-sandbox routines, as
there are multiple reasons why Anubis might not be able to produce a good
report. For example, GUI programs that require user input (such as installers)
cannot be analyzed sufficiently. Anubis only has a very limited user input
simulation, which simply closes opened windows. Moreover, some programs
require non-existing components at runtime (note, though, that programs that
fail because of unsatisfied, static DLL dependencies are not included in the
12.45 %). In addition, at least 0.51% of the reports with not much activity can
be attributed to samples that are protected with a packer that is known to be
not correctly emulated in Qemu (such as Telock and specific packer versions
of Armadillo and PE Compact). Last but not least, bugs in Anubis and Qemu
are also a possible cause.
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2.4 Conclusion

Malware is one of the most important problems on the Internet today. Al-
though much research has been conducted on many aspects of malicious code,
little has been reported in literature on the (host-based) activity of malicious
programs once they have infected a machine.

In this chapter, we aim to shed light on common malware behaviors. We
perform a comprehensive analysis of almost one million malware samples and
determine the influence of code polymorphism on malware statistics. Under-
standing common malware behaviors is important to enable the development
of effective malware countermeasures and mitigation techniques.

We have seen in this chapter that it is possible and very useful to use the
large number of analysis results at our disposal to create a high level view of
common malicious behavior. In the next chapter, we will discuss a comple-
mentary approach for dealing with such a huge number of malware samples
and analysis reports. We present a system for grouping analysis reports of
malware according to the similarity of their behavior.
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Chapter 3

Scalable, Behavior-Based Malware
Clustering

3.1 Introduction

In this chapter, we present a novel clustering technique that scales well and
produces more precise results than previous approaches. Our technique is
based on a dynamic analysis system that monitors the execution of a mal-
ware sample in a controlled environment. Unlike many previous systems that
operate directly on low-level data such as system call traces, we enrich and
generalize the collected data and summarize the behavior of a malware sample
in a behavioral profile. These profiles express malware behavior in terms of
operating system (OS) objects and OS operations. Moreover, profiles capture
a more detailed view of network activity and the ways in which a malware pro-
gram uses input from the environment. This allows our system to recognize
similar behaviors among samples whose low-level traces appear very different.
Finally, we cluster the analyzed samples according to their behavioral profile.
We employ a scalable clustering algorithm that avoids calculating n2 distances
between all pairs of n samples, and thus, is suitable for clustering large, real-
world malware collections. To summarize, the contributions of this solution
are as follows:

• We present a novel, precise approach to capture a malware program’s
behavior. To this end, we monitor the execution of a program and create
its behavioral profile by abstracting system calls, their dependences, and
the network activities to a generalized representation consisting of OS
objects and OS operations.

• We present an efficient and fast algorithm for clustering large sets of
malware samples that avoids calculating n2 distances between all pairs
of n samples, and thus, is suitable for clustering large, real-world malware
collections.
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Figure 3.1: System overview.

• We have evaluated our system on large, real-world data sets. Our exper-
iments demonstrate that our technique achieves more precise clustering
results than previous approaches and scales to tens of thousands of mal-
ware samples.

3.2 System Overview

The goal of our system is to cluster large collections of malware-samples based
on their behavior. That is, we want to find a partitioning of a given set of
malware programs so that subsets share some common traits. As illustrated in
Figure 3.1, clustering malware samples is a multi-step process. It consists of an
initial, dynamic malware analysis phase, a subsequent extraction of behavioral
profiles, and a final clustering phase.

Dynamic Analysis. The first step in the clustering process is the automated
analysis of malware samples. For this purpose, we have extended ANUBIS, our
system for automated, dynamic malware analysis [28]. This system is based
on Qemu [29], a whole-system emulator for PCs and the Intel x86 architecture.
The analysis system works by executing binaries in the emulated environment,
producing a trace of the system calls that this binary invokes.

We first extended ANUBIS with taint tracking. Similar to tainting systems
in previous work [39, 60, 63], we attach (taint) labels to certain interesting
bytes in memory and propagate these labels whenever they are copied or oth-
erwise manipulated. Our taint tracking system builds upon the taint tracking
implementation used in a previous prototype [60]. While the propagation of
taint labels works the same as in [60], the tainting systems differ in their use
of taint sources. In our system, system calls serve as taint sources. More
precisely, we taint the out-arguments and return values of all system calls. At
the same time, we check whether any in-argument of a system call is tainted.
The goal is to identify how the program uses information that it obtains from
the operating system.

While the idea of taint tracking itself is not new, we leverage this infor-
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mation to obtain a number of novel, important features that better capture
the behavior of a malware program. For example, we can observe when a
program uses the return value of the GetDate system call in a subsequent
CreateFile call. This allows us to determine that a file name depends on
the current date and changes with every malware execution. As a result, the
filename is generalized appropriately. Furthermore, we taint the entire code of
the executable. This allows us to uncover cases in which a program reads its
own code segment. This is helpful to detect important propagation patterns,
such as a worm sending itself over the network or a Trojan horse copying itself
into the Windows system directory. Finally, we record program control flow
decisions that are based on tainted data. This allows us to identify similarities
between programs that perform the same date checks or that attempt to shut
down the same anti-virus software.

To address the problem that a program’s network activity is not sufficiently
captured by system call traces, we have built a network analysis component
that operates on the network traffic itself. The problem is that on the system-
call level, all network activities are performed through calls to a single, native
API function called NtDeviceIoControlFile - only differing in their argu-
ments. Ideally, we would like to know what emails are sent, what HTTP
downloads are performed, what IRC conversations take place, etc. To this
end, our network analysis component leverages Bro [65] and makes use of its
capabilities to recognize and parse application-level protocols (such as HTTP,
SMTP, and IRC).

The output of the analysis step is an execution trace that is augmented with
taint information. This trace lists all system calls together with their argument
values. Moreover, it provides taint information for each argument. This taint
information allows us to connect the return values (and out-arguments) of one
system call with the in-arguments of subsequent calls.

Behavioral Profile. In this step, we process the execution traces provided
by the previous step. More precisely, for each sample, we extract a behavioral
profile that accurately describes the runtime activity of the binary and serves
as input to our clustering algorithm.

Unlike existing systems [43, 52], our clustering algorithm does not operate
directly on system calls. The reason is that system call traces can vary signif-
icantly, even between programs that exhibit the same behavior. For example,
consider the different ways to read from a file: Program A might read 256
bytes at once, while program B calls read 256 times, reading 1 byte with each
call. Moreover, it is easily possible to interleave the read calls with other, in-
dependent system calls so that the system call trace changes. For this reason,
we abstract system call traces into a set of operating system objects, together
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with a set of operations (such as read, write, create) that were performed on
these objects.

An OS object represents a resource, such as a file or registry key, that can
be manipulated and queried via system calls. For example, our behavioral
profile might include the file object C:\Windows and its accompanying opera-
tion query directory. An OS operation is a generalization of a system call
that unifies different system calls with similar semantics but different function
signatures (e.g., the system calls NtCreateProcessEx and NtCreateProcess

both map to the same operation).

Based on the information that the tainting system provides, we infer de-
pendences between OS objects. Copying a file, for example, is represented
as a dependence between the source file OS object and the destination file
object. Dependency information implicitly captures the order of certain oper-
ations. This is important, because we do not explicitly consider the order of
OS operations that are performed on a specific OS object. The reason is that
a behavior profile should not rely on the order in which unrelated operations
are executed. Moreover, dependences help to determine resource names that
are derived from data sources whose values change between execution traces
(such as random values or the current time). This information allows us to
generalize the corresponding OS object names.

The output of this step is an abstraction of the program’s execution trace
that contains information about the OS objects that the program operates on,
as well as of the type of operations and dependences. These abstractions are
called a behavioral profile.

Scalable Clustering. In this step, we cluster a set of behavioral profiles such
that samples that exhibit similar behavior are combined in the same cluster.
Given the rapidly increasing number of malware programs, it is clear that one
of the most important requirements for a clustering algorithm is scalability.
It must be possible to cluster a large amount of malware, such as a hundred
thousand samples, in a reasonable time. Most clustering methods require the
computation of the distances between all pairs of points, which invariably
results in a computational complexity of O(n2). This might lead to systems
that take three hours to process 400 samples [52].

In this chapter, we propose to efficiently solve the clustering problem using
an approximate, probabilistic approach. Our clustering algorithm is based on
locality sensitive hashing (LSH), which was introduced by Indyk and Mot-
wani [48]. LSH provides an efficient (sublinear) solution to the approximate
nearest neighbor problem (ǫ-NNS). Clustering is one of the main applications
of this technique: LSH can be used to perform an approximate clustering while
computing only a small fraction of the n2/2 distances between pairs of points.
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Leveraging LSH clustering, we are able to compute an approximate, single-
linkage hierarchical clustering for a data set of more than 75,000 samples in
less than three hours.

3.3 Dynamic Analysis

Dynamic malware analysis systems have become increasingly popular because
they deliver good analysis results even in case of obfuscated or self-modifying
code and analysis resistance techniques [55, 61, 72]. Since meaningful analysis
results are a prerequisite for good clustering results, we have chosen to further
extend ANUBIS, our existing, dynamic analysis system [28]. More precisely,
we have added support to track dependences between operations on system
code objects, as well as support to analyze control flow decisions that involve
tainted data operands, and we have improved the network analysis.

3.3.1 System Call Dependences

Data tainting is a well-known technique for tracking information flows in a
whole-system emulator. In this work, we are leveraging the tainting approach
to capture the dependences between system calls. As noted by Christodorescu
et al. [36], system call dependences provide valuable insights into the behavior
of an application. For example, knowledge about dependences allows one to
see when a program searches for files with a specific filename pattern and then
opens all files that were found. In our analysis, system call dependences are
used in the following contexts:

• Generalization of execution traces: An execution trace inherently in-
cludes many execution-specific events and names (filenames, host names).
These execution-specific tokens change every time the binary is exe-
cuted. Based on dependence analysis, such execution-specific artifacts
can be recognized. For example, knowing that a filename depends on
the current time helps to remove the filename as a characteristic for
a program’s behavior. Also, tainting the return value of the Windows
function GetTempFileName puts us into a position where we can identify
temporary file names.

• Copy Operations: Tainting allows us to recognize data movements, such
as the case when data is copied. This allows us to determine the mal-
ware’s propagation vector. For example, we see when the malware copies
itself to the Windows system directory or sends a copy of its code over
the network.

35



Chapter 3 Behavior-Based Malware Clustering

Taint Sources. Although our behavioral profile is primarily based on system
calls and their dependences, we are not focusing on the native API inter-
face1 alone. Instead, we also include several Windows API functions. This is
different from previous systems, which either operate on the system call in-
terface [41, 63] or perform whole-system taint analysis [74]. In the latter case,
taint sources are typically devices such as a network card or the keyboard.

The Windows API is a large collection of user mode library routines, which
in turn invoke native API functions when necessary. Considering the Windows
API is important for several reasons: First, some functionality is managed and
provided exclusively by user-mode portions of the operating system. That is,
no calls to native API functions are performed. Among other things, this is
true for the random number generator, the path-related Windows API func-
tions (e.g. GetTempFileName, GetTempPath), and DLL-management functions
(e.g., GetProcAddress). Second, there are Windows API functions that have
semantically-equivalent native API functions, but, because of performance
reasons, have been implemented in a way that does not require invoking the
appropriate system service. An important instance are the time-related Win-
dows API function, such as GetTickCount or GetSystemTime. These functions
do not invoke a system call but work by reading from a special page in the
virtual address space. This page is always mapped read-only to a fixed address
in the user-mode, virtual address space of a processes. The kernel maps the
same page with write access and updates the time-related information in the
timer interrupt handler.

Memory-Mapped Files. Memory-mapped files, officially termed section
objects in Windows NT, pose a special challenge to the analysis system. When
a process maps a file into its virtual address space, reading and writing to the
file is possible by simply reading and writing to the mapped memory region.
These read and write operations do not result in any system calls. Thus, in
current analysis systems such as [1, 5, 16, 19], all read and write activity to a
memory-mapped file will go unnoticed. However, it is crucial to add support
for Windows section objects to obtain a complete view of the operations of a
program.

To keep track of indirect write operations to a file, we modified the func-
tion that is responsible for writing to the physical memory in our emulation.
Whenever the process writes to memory, we check whether the address is in a
memory-mapped area. If this is the case, we report this operation as a write
to the corresponding, mapped file. Tracking read operations from a memory-
mapped file requires tainting the appropriate region in memory whenever a
program maps a file into its address space. However, Windows does not load

1In Windows NT, the operating system call interface is termed native API.
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the contents of the file into physical memory at the time of the section cre-
ation. Instead, Windows defers loading (portions of) the file into the physical
memory until the time when a virtual address in this region is accessed. Be-
cause our tainting system is only able to taint values in the physical memory
and the CPU registers, we have to wait until the file is eventually mapped into
physical memory before we can taint it. We solve this problem by monitoring
all invocations of the page fault handler. When the page fault handler brings
in a page that is part of a memory-mapped region, we taint the page after the
handler returns.

3.3.2 Control Flow Dependences

Taint information is useful to track dependences between system calls. How-
ever, it is also interesting to analyze how tainted data is used by the program
itself. More specifically, we would like to identify the control flow decisions
that involve data that a process has obtained via system calls. Information
about such control flow decisions reveals many interesting aspects about a
program. For example, it allows us to discover which processes a malware
sample potentially wishes to terminate by observing all comparisons that take
place as the program iterates over the list of running processes. Since the list
of running processes has to be retrieved by means of system calls, the process
names that this system call returns are tainted. Hence, we are aware of all
comparisons that involve the retrieved process list as argument.

On the x86 architecture, many different assembler instructions for compar-
ing two values exist. Fortunately, inside the Qemu intermediate language, all
of these different compare instructions (such as CMP, CMPS, SCAS) map to the
same intermediate language construct. Thus, we can easily handle all compare
instructions by building our analysis on top of Qemu’s intermediate language.
The REP instruction prefix is correctly handled as a consecutive execution of
the same compare instruction. However, as explained in the following para-
graphs, consecutive compare instructions are merged into a single one during
our analysis.

To detect comparisons with tainted values, the following extensions were
necessary:

Representation. In the Qemu intermediate language a compare instruction
has two operands with a size of either one, two, or four bytes. For each com-
parison, we can examine the taint labels that are attached to the bytes of both
arguments (if there are any). When a taint label is present, we can determine
the system call and the exact argument where the corresponding data byte
was retrieved from. Based on this information, we can also determine the
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original data type of a tainted byte. This is possible because the Windows
native API header files declare all system calls and the types of their argu-
ments. Based on the data type, we consider the operand of a comparison as
signed/unsigned integer or as a character string. Knowing the data type also
allows us to pinpoint the exact member of a structure. For example, we do
not only see that a value ’6’ is compared with struct SYSTEMTIME, but we
can also determine that the value is compared to the struct’s wDay member.

One problem arises when more complex data structures (e.g., structs, strings,
etc.) are involved in a comparison. In this case, we observe several, consecutive
cmp instructions that operate on a few bytes of the data structure. To handle
such cases, consecutive compares on successive labels are merged. Also, when
comparing for equality, the comparison terminates as soon as the first differing
byte is encountered. In these cases, we cannot see the complete values that
the program actually compares. However, the complete data structure exists
in the computer’s main memory. Thus, when string comparisons are involved,
we try to recover the entire string by reading it from the main memory. To
this end, we assume that the operand being compared marks the beginning of
the string and check until a null byte is found.

There are two types of comparisons that we record as part of an execution
trace: A comparison of a labeled value (i.e., at least a single byte of an operand
is tainted) with an unlabeled value (called a label-value comparison) and a
comparison of a labeled value with another labeled value (called a label-label
comparison). In both cases, we do not output the concrete values of the labeled
(tainted) data but the source where this data originates from. More precisely,
for tainted data, we record the function name, the function argument, and, if
applicable, the name of the structure that holds the data together with the
member name. This allows us to identify which inputs to the program are
used for comparisons. In case of a label-value comparison, we also learn the
concrete value that the program checks for.

Filtering. An important part of analyzing control flow dependences is to
filter out the irrelevant ones. Compare instructions occur very frequently, and
a raw execution trace typically contains millions of compares with tainted
operands. To focus on compare instructions that are done by the actual mal-
ware program, we discard those that were executed on behalf of (user-mode)
Windows API functions. In this way, we ignore comparisons that do not repre-
sent the direct intent of the program’s author, but that are present as a result
of standard Windows behavior. The only exception to this rule are a number
of Windows API functions that are used for comparing more complex data
types, such as strings or dates. Obviously, the comparisons that occur inside
these API functions are the direct consequence of the programmer’s intent.
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For this reason, we catch all comparisons that take place inside strcmp, for
example.

3.3.3 Network Analysis

The network activities of a malware sample provide one of the most important
and characterizing insights into a sample’s behavior. Thus, the analysis of a
sample’s network activity plays an important role in our approach.

Environment. A successful network analysis requires that a sample is able to
perform the network activities that it has been programmed to do. Dynamic
analysis cannot observe email activity of a program when it fails to establish a
TCP connection to a mail server. Thus, as a first step, we run the sample in an
environment that permits a sample to perform its built-in network activities.

To create the environment for malware execution, we allow an analyzed
sample to download files via HTTP and to contact IRC servers directly on the
Internet. All other traffic is rerouted to a specially-prepared server, called the
victim machine, which has been configured to accept incoming connections on
a number of ports that are frequently used by malware programs. For example,
the victim machine runs its own SMTP server that answers all SMTP requests
(but does not deliver any emails). Moreover, we have set up nepenthes [22]
- a honeypot system that emulates known vulnerabilities of popular services.
Of course, we are not using the nepenthes server as a honeypot system in the
usual sense, i.e., as a way to gain new malware samples. Instead, we have
deployed nepenthes only for having a basic service listening on ports that are
frequently used for spreading (such as the Windows Samba ports).

Analysis. The goal of our network analysis is to extract high-level semantic
operations from the low-level socket system calls. For example, instead of
reporting that a TCP connection was established, together with the amount
of bytes that were exchanged, we aim to report that an HTTP GET request
was sent to download the file “foo.bar.” We have chosen to build our analysis
on top of the packets that are sent and received at the network level. This
is easier and more comprehensive than attempting to infer all information
from the arguments of the DeviceIoControlFile system call, which serves
as a funnel for all network-related activity on Windows. To capture network
traffic, we have modified our system emulator’s network card to simply dump
all packets to a log file in PCAP-format. This way, we have a wide range
of standard network analysis tools at our disposal to aid us in our analysis
efforts. Also, by parsing network packets and parsing application protocols,
such as HTTP, we are able to identify network activity on a higher level of
abstraction. We use Bro [65] for our analysis, a system that has built-in
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support for identifying and parsing HTTP, IRC, SMTP, and FTP protocols.
For these protocols, we extract information such as names of downloaded files,
names of IRC channels, or mail subjects.

3.4 Behavioral Profile

When the dynamic analysis step finishes processing a sample, the next task is
to transform the augmented execution trace into a behavioral profile. As men-
tioned previously, a behavioral profile captures the operations of a program
at a higher level of abstraction. To this end, we model a sample’s behavior
in the form of OS objects, operations that are carried out on these objects,
dependences between OS objects and comparisons between OS objects. More
formally, a behavioral profile P is defined as an 8-tuple

P = (O, OP, Γ, ∆, CV, CL, ΘCmpV alue, ΘCmpLabel)

where O is the set of all OS objects, OP is the set of all OS operations, Γ ⊆
(O×OP ) is a relation assigning one or several operations to each object, and
∆ ⊆ ((O×OP )×(O×OP )) represents the set of dependences. CV is the set of
all compare operations of type label-value, while CL is the set of all compare
operation of type label-label. ΘCmpV alue ⊆ (CV × O) is a relation assigning
label-value compare operations to an OS object. ΘCmpLabel ⊆ (CL × O × O)
is a relation assigning label-label compare operations to the two appropriate
OS objects.

OS Objects. An OS object represents a resource, such as a file or registry
key, that can be manipulated and queried via system calls. Formally, an OS
object is a tuple of the following form:

OS Object ::= (type, object-name)

type ::= file|registry|process|job|

network|thread|section|

driver|sync|service|random|

time|info

That is, an OS object has a name and a type that together uniquely identify
the object in the operating system. The ‘file‘ type covers file, named pipe, and
mailslot resources, ‘registry‘ consists of registry keys, ‘process‘ includes pro-
cesses, and ‘job‘ denotes Windows NT jobs, which allow for combining individ-
ual processes into a group. The ‘network‘ category describes network objects,
‘thread‘ represents thread activity, ‘section‘ refers to memory-mapped files,
and ‘driver‘ captures the loading and unloading of Windows device drivers.
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The type ‘sync‘ abstracts all synchronization activities, such as operations on
semaphores and mutexes, and ‘service‘ contains objects that represent Win-
dows services. The type ‘random‘ includes several sources of randomness, each
of which can be used by a program to generate a random number. The type
‘time‘ consists of time sources, and ‘info‘ contains only two objects. One is
the object info-executable, which represents the loaded executable. The other
one is info-general, which represents information such as pathnames of the
windows system directory and the temporary directory.

OS Object OS Operation
Type Name Name Attributes
net http server contact ‘www.gson.com‘,‘80‘
net http request get ‘/down/s.htm‘
net dns resolver query ‘Type A‘,‘mx.gmx.net‘
net port listener listen ‘TCP‘,‘6777‘
net smtp attmts send ‘fpw.exe‘
net smtp content send ‘Test yep.‘
net smtp subjs send ‘Hi‘

Table 3.1: Example network OS objects.

To create OS objects, we search the execution trace for all system calls that
produce new OS resources. For example, the function NtCreateFile creates
new files. For each such system call, we extract the object name from the
argument list, deduce the object type from the type of the system call, and
then create a new OS object. Typically, native API calls have a parameter,
named ObjectAttributes, that can be directly translated to an object name.
In a few cases, it is more difficult to determine the object name. For example,
NtCreateProcess expects a handle argument that points to a section object
(a memory-mapped file), instead of an argument that specifies the filename
of the executable. To address this problem, we have extended our system call
logger to resolve handles to NT kernel objects and provide this information.

Since network activities are not directly represented in the execution trace,
we rely on the network analysis component for extracting the virtual network
OS objects. Depending on the type of network traffic observed, we create dif-
ferent kinds of network objects. Table 3.1 lists some example network objects,
together with their corresponding operations.

OS Operations. An OS operation is a generalization of a system call. For-
mally, an operation is defined as:

OS operation ::= (operation-name,
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operation-attributes?,

successful?)

An operation must have a name, it may have one or more attributes that
provide additional information about the operation, and it may have a value
describing whether the operation was successful.

We map system calls to OS operations with the intent of abstracting from
API-specific details. For example, we ignore whether a process is created
by means of NtCreateProcess or NtCreateProcessEx and unify these two
system calls into the single OS operation create. Our mapping function only
considers the most essential system calls, such as functions for reading, writing,
and creating operating system objects. This allows us to abstract from many
unimportant details. For example, we ignore all functions relating to NT’s
Local Procedure Call functionality, because this is an undocumented feature
that is not available via the Windows API. Currently, we map 130 native API
and Windows API functions to 55 OS operations.

System calls that operate on a resource typically have a (handle) parameter
that references the target resource. This is necessary for the OS to know
the resource to which an operation should be applied. We make use of these
handles to map operations to the appropriate OS objects. There are few cases
where a function that logically constitutes an operation on an object does not
have a handle parameter that specifies this object. The NtQueryAttributes-

File function, for example, uses a filename instead of a handle to indicate
the file object that it works on. After assigning operations to OS objects, our
implementation stores all of an object’s operations in a set. As a consequence,
the order of OS operations is irrelevant. This is important, because it is very
easy to reorder system calls on a resource without changing the semantics of a
program. Thus, we are able to generalize our behavioral profile by neglecting
the order of operations. System call dependences are used to capture the
order between those OS operations where the actual order is implied by a
data dependence. Moreover, the number of operations on a certain resource
does not matter in our system. This sacrifices some precision, but makes
the behavioral profile more general, and thus, harder to evade by introducing
superfluous operations.

Example of a Behavioral Profile. Figure 3.2 shows an example of a
behavioral profile. Note that although this example is shown in C code,
our profile extraction algorithm works on execution traces. This example
shows code that copies the file C:\sample.exe to C:\Windows\sample.exe
by memory-mapping the source file. As one can see, independent of the num-
ber of times the write operation in Line 14 is executed, the write operation
appears only once in the corresponding behavioral profile. It is also notewor-
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0: // open the source-file as a memory-mapped file 
1:  HANDLE src = NtOpenFile("C:\sample.exe"); 
2:  HANDLE sectionHandle = NtCreateSection(src); 
3:  void *base = NtMapViewOfSection(sectionHandle); 
4: 
5:  // don't overwrite the target 
6:  if (NtQueryAttributesFile("C:\Windows\sample.exe") !
= 
7:     STATUS_OBJECT_NAME_NOT_FOUND) 
8:   exit(1); 
9:  // open the target 
10:  target = NtCreateFile("C:\Windows\sample.exe"); 
11: 
12:  void *p = base; 
13:  while(p < base + fileLen) { 
14:    NtWriteFile(target, p++); 
15:  } 

File|C:\sample.exe 
             open:1 
Section|C:\sample.exe 
             open:1, map:1, mem_read: 1 
File|C:\Windows\sample.exe 
             query_file:0, create:1, write:1 
Section|C:\sample.exe -> File|C:\Windows\sample.exe 
             mem_read – write: (fileLen) 

Pseudo Code Fragment

Behavioral Profile

Figure 3.2: Example Behavioral Profile
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thy that the NtQueryAttributesFile operation in Line 6 is assigned to the
object C:\Windows\sample.exe, although it does not use a handle argument
to reference its OS object.

Object Dependences. We abstract dependences between system calls to
dependences between OS objects. While a system call dependence is a depen-
dence relation between two system call instances, an OS object dependence is
a dependence between two OS objects and their operations. For each existing
system call dependence, we first check whether the two involved system calls
map to OS operations. If this is the case, we introduce an object dependence
between the corresponding OS objects. The behavioral profile shown in Fig-
ure 3.2 contains a dependence between the section OS object of the source file
and the file object of the destination file. This dependency reflects the fact
that data from the source was copied to the destination file.

Due to the fact that all our object dependences originate from system call
dependences, we would lack network-related dependences. As explained pre-
viously, this is because the extraction of network OS objects is a separate
process that is mostly based on the captured network traffic. To address this
problem, we have partly reverse-engineered the semantics of the NtDeviceIo-
ControlFile function. NtDeviceIoControlFile is a universal interface that
allows user-mode programs to communicate with device drivers, including the
network stack. It is possible to recognize network-related invocations of Nt-
DeviceIoControlFile by checking two of its arguments, the handle argument
as well as its IO control code. In addition, NtDeviceIoControlFile has an
input buffer and an output buffer argument for transferring data. For each
call to NtDeviceIoControlFile that represents network activity, we insert an
artificial system call into the execution trace that represents a decoded form
of the original call. In particular, we have to decode the buffer arguments.
In the case of network activities, NtDeviceIoControlFile’s buffer arguments
contain pointers to network-specific structs. There are four different artificial
system calls:

AfdSend(SocketHandle h, char *buffer)

AfdReceive(SocketHandle h, char *buffer)

AfdBind(SocketHandle h, short localPort)

AfdConnect(char *foreignAddress,

short foreignPort)

We insert AfdSend when we determine that a process calls NtDeviceIo-

ControlFile to send data. Analogously, we insert AfdReceive when data
is received, AfdBind when a socket is bound to a specific port number, and
AfdConnect, when a TCP connection is established. The arguments of the
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four artificial calls reflect the taint information of their corresponding sys-
tem calls. The SocketHandle parameter allows us to attribute the individual
invocations to the appropriate network connection.

Based on our representation of objects and their dependences, it is straight-
forward to find execution-specific artifacts. For example, we recognize random
or temporary filenames by checking whether there is a dependence between a
file object and a random source. If this is the case, we do not want to keep the
actual object in the profile, since it is different for each execution. Thus, we
replace the concrete object name with a placeholder token that indicates the
source of the object name (such as TEMPORARY for a temporary filename).
Moreover, we append the value of a counter that is increased by one until the
object name becomes unique in this profile. When comparing two behavioral
profiles that both contain objects with temporary filenames, it is possible to
match these two objects. However, we have to avoid that an object a1 of profile
A matches with object b1 of profile B, when the operations associated with the
object make it actually more similar to object b2 of profile B. We address this
problem by calculating a checksum over all OS operations, using the result-
ing value as part of the new object name. That is, execution-specific names
are replaced with a new name of the form <token><checksum><counter>.
The checksum guarantees that only objects with the same OS operations will
receive the same name in two different profiles, and consequently match.

Control Flow Dependences. Control flow dependences are translated into
comparisons between OS objects. Depending on the type of the comparison,
a control flow dependency is associated with either one or two OS objects. A
label-label comparison involves two OS objects (one for each operand), while
a label-value comparison involves only a single one. To find the appropriate
OS resource, the labels are used. That is, we search for the OS operation that
created a particular label. Then, we search for the object that the operation
is associated with.

3.5 Scalable Clustering

Clustering a set of n points in a high-dimensional space is a computationally
expensive task. Most clustering algorithms require to compute the distances
between all pairs of points in the set. In this case, computational complexity
is at least O(n2) evaluations of the distance function, which is unacceptable
for large data sets.

There exist algorithms, such as the k-means algorithm (Lloyd’s algorithm) [57],
that only compute the distance from the n points to k cluster centers, and
repeat this computation for each of i iterations required to converge to a local
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optimum. The computational complexity is, therefore, O(nki) evaluations of
the distance functions. Unfortunately, there are no guarantees that the value
of i is small (in fact, the number of iterations is super-polynomial in n in the
worst-case [21]). Furthermore, the accuracy of k-means is limited (the solution
is only locally optimal), and the number of clusters k has to be specified a
priori.

In this work, we employ locality sensitive hashing (LSH), introduced by
Indyk and Motwani [48], to compute an approximate clustering of our data
set that requires significantly less than n2 distance computations. Our clus-
tering algorithm takes as input the set of malware samples A = a1, .., an,
where ai ⊆ F , and F is the set of all features. LSH algorithms have been
proposed for metric spaces where the similarity between two points is de-
fined by one of a few simple functions, such as Jaccard index [30], or cosine
similarity [34]. In this work, we employ the Jaccard index as a measure of
similarity between two samples a and b, defined as J(a, b) = |a ∩ b|/|a ∪ b|.
A similarity value of J(a, b) = 1 indicates that two samples have identical
behavior. While other, more complex similarity functions, such as normalized
compression distance [24], may be more accurate measures of the similarity
between behavioral profiles, choosing this simple set similarity measure al-
lows our clustering approach to leverage LSH and to scale up to the size of
real-world malware collections.

In the following Section 3.5.1, we explain how we map a behavioral profile
into a set of features that are suitable for LSH. Section 3.5.2 briefly explains
the LSH algorithm. In Section 3.5.3, we discuss how we can use the output
of the LSH algorithm to compute an approximate, hierarchical clustering of
our malware sample set. Finally, in Section 3.5.4, we discuss the asymptotic
performance of our approach.

3.5.1 Transforming Profiles into Features Sets

Before we can run the clustering algorithm, we have to transform each behav-
ioral profile into a feature set. Informally, a feature is a behavioral characteris-
tic of a sample, such as “file xy was created.” We use the following algorithm to
transform a behavioral profile P = (O, OP, Γ, ∆, CV, CL, ΘCmpV alue, ΘCmpLabel)
into a set of features: For each object oi ∈ O, and for each assigned opj ∈
OP |(oi, a) ∈ Γ, create a feature:

fij = ”op|” + name(oi) + ”|” + name(opj)

where name() is a function that returns the name of an OS object, operation,
or comparison as string, quotes (”) denote a literal string, and + concatenates
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two strings. Moreover, for each dependence δi ∈ ∆ = ((oi1, opi1), (oi2, opi2)),
we create a feature:

fi = ”dep|” + name(oi1) + ”|” + name(opi1)+

+” → ” + name(oi2) + ”|” + name(oi2)

For each label-value comparison θi ∈ ΘCmpV alue = (cmp, o), we create a
feature:

fi = ”cmp value|” + name(o) + ”|” + name(cmp)

For each label-label comparison θi ∈ ΘCmpLabel = (cmp, o1, o2), we create a
feature:

fi = ”cmp label|” + name(o1)+

+” → ” + name(o2) + ”|” + name(cmp)

The output of this transformation step is a set of features that captures
the behavioral characteristics of a sample in a form that is suitable for the
clustering algorithm. We then discard all features of a sample that are unique
with regards to all other samples in the data set. That is, we do not consider
a feature for clustering when it does not occur in at least one other sample’s
feature set. This is because a unique feature of a sample does not help us
to find other samples that behave similarly (i.e., the information gain of this
feature is very low). Moreover, our experiments show that the robustness of
our clustering to the selection of the threshold t improves when we discard
such unique outliers.

3.5.2 Locality Sensitive Hashing (LSH)

The idea behind locality sensitive hashing is to hash a set A of points in such
a way that near (or similar) points have a much higher collision probability
than points that are distant. We achieve this by employing a family H of
hash functions such that Pr[h(a) = h(b)] = similarity(a, b), for a, b points in
our feature space, and h chosen uniformly at random from H . By defining
the locality sensitive hash of a as lsh(a) = h1(a), .., hk(a), with k hash func-
tions chosen independently and uniformly at random from H , we then have
Pr[lsh(a) = lsh(b)] = similarity(a, b)k.

In the case of sets for which the Jaccard index is used as similarity measure,
a family of hash functions H with the desired property has been introduced
in [30]. A hash in H imposes a random order on the set of all features. The
hash value for a feature set a is then determined by the index of the smallest
element of a according to this order. Since it is inefficient to generate truly
random permutations, random linear functions in the form h(x) = c1x + c2
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mod P are used instead [46], with P a prime number larger than the total
number of features in F .

Given a similarity threshold t, we employ the LSH algorithm to compute
a set S which approximates the set T of all near pairs in A × A, defined as
T = {(a, b)|a, b ∈ A, J(a, b) > t}. Given the threshold t, we first choose the
number k of hash functions in each LSH hash, and the number of iterations l.
Furthermore, we initialize the set S of candidate near pairs to the empty set.
Then, for each iteration, the following steps are performed:

• choose k hash functions h1, .., hk at random from H

• compute lsh(a) = h1(a), .., hk(a) for each a ∈ A

• sort the samples based on their LSH hashes

• add all pairs of samples with identical LSH hashes to S

LSH Parameters. For a given similarity threshold t, we must choose appro-
priate values of k and l. For a pair p = (a, b) such that similarity(a, b) = v,
we have Pr[p ∈ S] = 1− (1− vk)l = g(v). Thus, given t, we can choose k and
l such that g(t) is close to 1 and g(t/(1 + ǫ)) is small, for any ǫ > 0. That
is, t is the only parameter that needs to be chosen. For a threshold value of
t = 0.7 we selected k = 10 and l = 90.

3.5.3 Hierarchical Clustering

The result of the locality sensitive hashing step is a set S, which is an approx-
imation of the true set of all near pairs T = {(a, b)|a, b ∈ A, J(a, b) > t}. Be-
cause LSH only computes an approximation, S might contain pairs of samples
that are not similar. To remove those, for each pair a, b in S, we compute the
similarity J(a, b) and discard the pair if J(a, b) < t. Then, we sort the remain-
ing pairs by similarity. This allows to produce an approximate, single-linkage
hierarchical clustering [56] of A, up to the threshold value t. Single-linkage
clustering allows us to simply iterate over the sorted list of pairs to produce
an agglomerative clustering. We stop the clustering when there are no more
near pairs left.

In some cases, one would like to continue the hierarchical clustering process
until all elements are merged into a single cluster. However, all subsequent
clustering steps would require to merge two clusters that have a similarity
value below t. Of course, this information is not readily available. The reason
is that the LSH algorithm avoids the calculation of distances between elements
that have a similarity value below t. To solve this problem and to obtain an
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exhaustive, hierarchical clustering, we use the following technique: We choose
a representative element for each cluster, calculate the distances between all
representatives, and then perform exact, hierarchical clustering between these
elements. We create the representative element r of a cluster C by adding all
features to rC that exist in at least half of all the feature sets in C. Of course,
exact hierarchical clustering has a complexity of O(n2). This is acceptable
because the number of representatives is very low.

3.5.4 Asymptotic Performance

The LSH scheme described previously requires the computation of nkl hashes.
The computational complexity of each hash of a sample a is O(|a|). Therefore,
the overall complexity of the hashing step is O(nkld), where d = avg(|a|), a ∈
A, is the average number of features in a sample. After hashing, |S| similarity
functions must be computed.

The set S is an approximation of the true set of all near pairs T . We may,
therefore, have false negatives (T − S), and false positives (S − T ). We have
|S| ≤ |T |+ |S−T |. Clearly, |T | < nc, where c is the maximum cluster size for
the given threshold. Unfortunately, we cannot provide a theoretical bound for
the fraction of false positives |S − T |/|S| without making some assumptions
on the distribution of the distances between pairs in A. However, in practice,
the value is small (below 0.19 in our experiments). Therefore, the number
of similarity computations is limited by the size of |T | and the complexity of
O(nc). Since a single similarity computation is O(d), computational complex-
ity of this step is O(ncd). Finally, the pairs in S need to be sorted to perform
hierarchical clustering. This step is O(nc log(nc)).

For large data sets, the cost of the similarity computations, which is O(ncd),
dominates. Note that while in practice nc is significantly smaller than n2, the
asymptotic performance has not improved. The reason is that c can still be
O(n) in the worst case. Consider, for instance, a trivial dataset where all n
samples are identical. Clearly, for such a dataset we would have a single cluster
of size n (and, therefore, c = n) for any t. More generally, if the threshold
value t is too low, it may lead to most samples being concentrated in a few
large clusters. However, for meaningful datasets and reasonable values of t,
nc is significantly smaller than n2. The performance gained by using LSH is
therefore sufficient to allow us to cluster large, real-world malware data sets,
as we will show in Section 3.6.3.

For extremely large datasets, on the other hand, more aggressive approx-
imate clustering techniques may need to be employed (at the cost of some
accuracy), such as the ones described in [46]. In [46], LSH is used to generate
the set of approximate near pairs |S|, but there are no similarity computations.
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A pair (a, b) ∈ S is not verified to be near by computing similarity(a, b), but
by using a faster approximate method that is based on the already computed
hashes.

3.6 Evaluation

To verify the effectiveness of our approach, we used our system to cluster
real-world malware data sets. In the next section, we discuss the quality of
the generated clusters. Then, in Section 3.6.2, we compare our solution with
previously-proposed clustering techniques [24, 52]. In Section 3.6.3, we present
performance measurements of running our prototype on a very large data set.
Finally, in Section 3.6.4, we discuss some examples of the clusters produced
by our tool and of the insight they provide to the malware analyst.

3.6.1 Quality

Assessing the quality of the results that are produced by a clustering algorithm
is an inherently difficult task. Obviously, it is possible to quantify the number
of clusters, the average number of samples per cluster, or the relative sum of
all pairwise distances for a cluster. Alternatively, one could randomly pick a
few clusters and manually verify that the samples in these clusters are similar.
The best option for demonstrating the correctness of a produced clustering,
however, is to compare it with an existing reference clustering. Unfortunately,
no such reference clustering exists for malware samples2. As a result, to verify
that our clustering approach is meaningful, we first needed to create a reference
clustering.

Reference Clustering. To create a reference clustering, we took the follow-
ing approach: First, we obtained a set of 14,212 malware samples that were
submitted to ANUBIS [1] in the period from October 27, 2007 to January
31, 2008. These samples were contributed by a number of security organiza-
tions and individuals, spanning a wide range of sources (such as web infections,
honeypots, botnet monitoring, peer-to-peer systems, and URLs extracted from
other malware analysis services). Then, we scanned each sample with six dif-
ferent anti-virus programs. For the initial reference clustering, we selected
only those samples for which the majority of the anti-virus programs reported
the same malware family (this required us to define a mapping between the
different labels that are used by different anti-virus products). This resulted

2In fact, providing a reference clustering for a set of malware samples is a difficult problem
by itself, mostly because it requires human expertise to compile such a clustering or
confirm the correctness of existing results.
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in a total of 2,658 samples. For each sample, we examined the corresponding
ANUBIS [1] report and manually corrected classification problems.

Precision and Recall. To evaluate the quality of the clustering produced by
our algorithm, we compared it to the reference clustering described above. To
quantify the differences between the two clusterings, we introduce two metrics,
precision and recall.

The goal of precision is to measure how well a clustering algorithm can
distinguish between samples that are different. That is, precision captures
how well a clustering algorithm assigns samples of different types to different
clusters. Intuitively, we strive for results where each cluster contains only
elements of one particular type. More formally, precision is defined as follows:
Assume we have a reference clustering T = T1, T2, .., Tt with t clusters and a
clustering C = C1, C2, .., Cc with c clusters (for a sample set A = a1, a2, .., an).
For each Cj ∈ C, we calculate a cluster precision value as:

Pj = max(|Cj ∩ T1|, |Cj ∩ T2|, .., |Cj ∩ Tt|)

The overall precision value is:

P =
(P1 + P2 + .. + Pc)

n

In addition to precision, we use recall to measure how well a clustering
algorithm recognizes similar samples. That is, recall captures how well an
algorithm assigns samples of the same type to the same cluster. Clearly, we
prefer a clustering where all elements of one type are assigned to the same
cluster. We formally define recall as follows: Assume we have a reference
clustering T = T1, T2, .., Tt with t clusters and a clustering C = C1, C2, .., Cc

with c clusters. For each Tj ∈ T , we calculate a cluster recall value as:

Rj = max(|C1 ∩ Tj |, |C2 ∩ Tj|, .., |Cc ∩ Tj|)

The overall recall value is:

R =
(R1 + R2 + .. + Rr)

n

The primitive algorithm that creates a cluster for each sample achieves op-
timal precision, but the worst recall. The algorithm that combines all samples
in a single cluster, instead, achieves optimal recall but the worst precision. In
practice, an algorithm should provide both high precision and recall. That is,
each cluster should contain all samples of one type, but no more.

Clustering Results. We have run our clustering algorithm on the reference
set of 2,658 samples. For this run, we selected a similarity threshold of t = 0.7.
The value of this threshold was determined based on our experience with initial
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experiments on a small malware sample set with less than a hundred programs.
Later in this section, we discuss in more detail the considerations for selecting
an appropriate threshold. Moreover, we will show that the algorithm is quite
robust with regard to the choice of the concrete threshold value.

Our system produced 87 clusters, while the reference clustering consists of
84 clusters. For our results, we derived a precision of 0.984 and a recall of
0.930. This demonstrates that our approach has produced a clustering that is
very close to the reference set. The excellent precision shows that the system
was able to differentiate well between different malware classes. The recall
shows that, in almost all cases, samples of the same class were grouped in
the same cluster. A quantitative comparison to other clustering techniques is
presented in the following Section 3.6.2. In Section 3.6.4, we discuss a number
of interesting, qualitative observations about the clustering that our system
produced.

Threshold Selection. The value of the similarity threshold t determines how
aggressively the clustering algorithm considers two different profiles as similar.
Therefore, selecting a correct threshold often depends on the desired level of
granularity of the clustering. For example, an analyst might be interested
only in a rough partitioning of a set of malware samples into a few high-level
categories (such as dialer, worm, or bot). Another analyst, instead, could be
more interested in splitting a single malware family into different variants. In
these cases, the first analyst would select a small t, while the second one would
use a larger value for t.

For our experiments, we decided to use a threshold value such that our re-
sults would differentiate between malware families (that is, only similar vari-
ants of the same family should be clustered). As mentioned previously, a
concrete value of t = 0.7 was selected, based on our experience with initial,
small-scale experiments. However, the selection of the correct value of t is
quite robust. Figure 3.3 shows how precision and recall vary with respect to
different choices of t. One can see that a broad range of choices for t ∈ [0.6, 0.9]
yield good results for both precision and recall.

3.6.2 Comparative Evaluation

In the previous section, we have shown that our system has performed accurate
clustering. However, we need to put these numbers into context with other
approaches to be able to better assess the quality of our results. In this
section, we present a comparative evaluation with the current state-of-the-art
clustering approach, introduced by Bailey et al. [24]. Moreover, we analyze
the impact of our behavioral abstraction and compare our clustering to one
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Figure 3.3: Precision and recall.

that is directly based on system call traces [52].

Bailey et al. [24] proposed a system for clustering malware based on the
Normalized Compression Distance (NCD), using zlib-compression. NCD is
based on the Kolmogorov complexity theory [54] and exploits the fact that
similar data, when concatenated, compresses better than more differing data.
Moreover, Bailey performs a coarse-grain abstraction from system calls and
also uses profiles to represent malware behavior (we refer to these profiles as
Bailey-profiles from now on). The difference to our approach is that Bailey-
profiles contain only behavior in terms of non-transient state changes that a
malware sample causes on the system (i.e., changes to the file-system, reg-
istry), as well as names of spawned processes and some basic information
about network connections and scans. A detailed impression of the contents
of Bailey-profiles can be gained from [23]. To evaluate Bailey’s system on
our reference data set, we adapted our dynamic analysis system to generate
Bailey-profiles. Concerning NCD, we made use of the library provided by the
Complearn-Toolkit [38].

A number of previous systems (e.g., [52]) based their behavioral profiles
essentially on the raw system call traces. Thus, to evaluate the performance
of such systems, and to obtain a baseline that shows the improvements due to
generalized behavior profiles, we also performed clustering on the raw system
call traces.

We used our reference clustering and the precision and recall metrics to
directly compare the quality of the produced clusters for the different tech-
niques. As an overall measure of clustering quality, we use the product of
precision ∗ recall. For each of the combinations of profile-types, similarity
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measures, and clustering methods presented in Table 3.2, we selected the
threshold value which produces the highest quality score. In the clustering
column, “exact” means that all n ∗ n/2 distances between pairs of samples
were computed, while “LSH” means that locality sensitive hashing was used.
The last two rows show that the difference between exact and LSH-based clus-
tering is minimal, demonstrating the effectiveness of LSH-based clustering as
an approximation.

Behavioral Similarity Clustering Optimal Quality Precision Recall
Profile Measure Threshold

Bailey [24] NCD exact 0.75 0.916 0.979 0.935
Bailey [24] Jaccard exact 0.63 0.801 0.971 0.825
Syscalls [52] Jaccard exact 0.19 0.656 0.874 0.750
Our profile Jaccard exact 0.61 0.959 0.977 0.981
Our profile Jaccard LSH 0.60 0.959 0.979 0.980

Table 3.2: Comparative evaluation of different clustering methods.

As can be seen in Table 3.2, the quality of our clustering approach (last
two rows) outperforms the clustering proposed by Bailey et al. (first row).
This is because our profiles represent the actual behavior of a malware sam-
ple in a more comprehensive and accurate way. For example, certain samples
exhibit behavior that cannot be captured using Bailey-profiles. As a result,
such profiles remain empty, or almost empty. Even more troublesome is the
fact that Bailey’s approach produces significantly worse results when using
the Jaccard index as a similarity metric instead of NCD (second row). Un-
fortunately, a clustering algorithm based on NCD cannot take advantage of
LSH to avoid computing all n2 distances. Thus, a clustering approach that
uses Bailey-profiles [24] either produces results that are significantly less pre-
cise than ours (by using the Jaccard index and LSH), or it does not scale to
real-world datasets (when using NCD). When analyzing the results for raw
system call traces (third row), the results are significantly worse than for the
other two techniques. This is not surprising, since the traces contain far too
much noise to effectively find similarities between even closely-related malware
instances.

3.6.3 Performance

To demonstrate the scalability of our clustering algorithm, we ran our system
on a set of 75,692 malware samples (obtained from the complete database
of ANUBIS). We performed our experiments on a XEN virtual machine that
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was hosted on a PowerEdge 2950 server equipped with two Quad-Core Xeon
1.86 GHz CPUs and 8 GB of RAM. We allocated about 7GB RAM and one
physical CPU to the XEN VM.

As shown in Table 3.3, our prototype implementation succeeded to cluster
the set of 75,692 samples in 2 hours and 18 minutes. This time could be further
reduced by exploiting the inherent parallelism: Both the LSH hashing and the
distance calculation step can be easily performed in parallel. The memory
requirements of our prototype never exceeded 3.7 GB of virtual memory. For
each sample, we store a behavioral profile on disk, which consumes about 96
KB of disk space on average. To load the samples, the clustering algorithm
had to read and process 6.9GB of behavioral profiles.

We ran the clustering algorithm with the same threshold value t = 0.7. The
LSH algorithm computed a set S, our approximation of the set of near pairs,
that contained 66,528,049 pairs. Only 57,024,374 pairs were indeed above the
similarity threshold t, i.e., LSH hashing resulted in about 14% false positives.
Nevertheless, employing LSH hashing allowed us to calculate only 66,528,049
instead of (75, 6922)/2 = 2, 864, 639, 432 distances.

Algorithm Step Time (Virt.) Mem. Used
Loading the samples 58m 1.6 GB
l iterations of LSH hash. 1h 0m 3.6 GB
Distance calculation 16m 3.7 GB
Sorting all pairs 1m 3.7 GB
Hierarchical clustering 3m 3.7 GB
Total 2h 18m 3.7 GB

Table 3.3: Runtime for 75K samples.

Compared to previous work, our prototype shows significantly improved
performance. To classify malware based on NCD as in Bailey et al. [24], all
of the n2/2 distances between the n samples need to be computed. Moreover,
it is possible to derive from the run-time graphs presented in their paper that
a single distance calculation between two pairs takes about 1.25 milliseconds.
As a result, the distance calculation step of their algorithm would require 995
hours (almost 6 weeks) to perform the necessary 75, 6922/2 distance calcu-
lations. This is despite the fact that Bailey profiles are rather small (about
1KB on average). Applying our NCD implementation to the (much larger)
behavioral profiles produced by our tool yields even more prohibitive com-
putation times: a single NCD computation takes on average 43 milliseconds.
Therefore, clustering 75, 692 samples would take at least 6 months, even if the
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implementation were parallelized to run on 8 CPUs.

3.6.4 Qualitative Discussion of Clustering Results

In this section, we present a number of observations on the quality of our
clustering techniques. First, we discuss the four largest clusters (with regard
to the number of samples that they contain). These are Allaple.1 (1,289
samples), Allaple.2 (717 samples), DOS (179 samples), and GBDialer.j (106
samples). Together, they account for 86% of all samples.

Allaple.1 and Allaple.2 are two different variants of the Allaple worm [10].
Allaple is a polymorphic malware, which explains why there are so many
different samples in each cluster. It also demonstrates the ability of our system
to quickly dispose of polymorphic malware instances that appear different but
exhibit the same behavior. Interestingly, we found that virus scanners were
inconsistently assigning different variant names to samples in both clusters
(recall that we only used the malware family names that the virus scanners
reported to perform the initial reference clustering). However, closer manual
analysis showed that our clustering correctly identified two different Allaple
variants. While all of the samples in both clusters perform ICMP scans, the
Allaple.2 variant is much more aggressive at immediately attempting to exploit
the target systems using a wider variety of propagation vectors. For instance,
almost all Allaple.2 samples perform DNS lookups for the addresses of hosts
they have successfully scanned, and attempt to connect to TCP port 9988,
which corresponds to the Windows remote administration service. On the
other hand, in none of the samples in the Allaple.1 cluster is there any DNS
or port 9988 activity. Furthermore, all samples in Allaple.1 make a copy of
themselves to the file “C:\WINDOWS\system32\urdvxc.exe,” while none of
the samples in Allaple.2 do. Moreover, in the Allaple.1 cluster, we observe the
following, interesting object dependences:

Section|C:\sample.exe->Network|TCP

File|C:\WINDOWS\system32\urdvxc.exe ->

File|C:\(..)\Temporary Internet Files\

\(..)\ccxebztz.exe

Random|Random Value Generator ->

File|C:\(..)\Temporary Internet Files\

\(..)\ccxebztz.exe

The first dependency indicates that the sample has succeeded in propagating
itself over the network (to our nepenthes honeypot). Since our taint-system
correctly handles memory-mapped files, we see that the malware propagates
by reading a memory-mapped file and writing it to the network. The second
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and third dependences provide a strong indication that this is polymorphic
malware, since data from the malware sample and from a random number
generation API is written to the new file “ccxebztz.exe.” This shows how
system call dependences can provide valuable insight on malware behavior.

GBDialer.J is the biggest of several dialer clusters in our sample set. It
is interesting that we were able to correctly group the samples in this clus-
ter, because our analysis environment does not directly support the analysis
of dialers. That is, there is no modem (emulation) present that would al-
low dialers to perform their main task. Nevertheless, the remaining behavior
(such as startup actions and system modifications) was sufficiently character-
izing to differentiate between the various dialer variants. This is not the case
for the forth cluster, called “DOS.” This cluster contains various DOS mal-
ware samples. The reason for not being able to distinguish between different
DOS variants is that our analysis environment can only execute Windows PE
executables. The Windows loader treats all non-Windows PE files as DOS ex-
ecutables, and attempts to execute them by emulating them in the ntvdm.exe
process. This activity was recognized as similar behavior.

In addition to the four large clusters, there are several interesting, smaller
clusters. For example, there is a cluster of only two samples that are la-
beled as “Keylogger.Ghostbot” by the Kaspersky virus scanner. Our dynamic
analysis discovered that this malware constantly checks for key presses using
the Windows API function GetKeyState. The profile contains the following
interesting comparisons:

cmp_val|registry|HKLM\SOFTWARE\MICROSOFT\

\WINDOWS\CURRENTVERSION\RUN

NtEnumerateValueKey-KeyValueInformation

- PCCNTMON

This tells us that the malware looks for known anti-virus and firewall programs
in the list of autostart registry values. Please note that the above is only
an excerpt. In total, the profile lists 98 different program names that are
compared against the result of NtEnumerateValueKey. We also have a cluster
that consists of four samples that are recognized as “Mabezat” by the majority
of virus scanners. Our behavioral profile shows that it is a file infector that
searches for executable files on the local hard disk and infects them. This
characteristic behavior was correctly identified and resulted in one cluster that
precisely captured all four samples in the data set. We also discovered, with the
help of control flow dependences, that the program is searching for different
kinds of document files in the directory that Windows uses for temporarily
storing data that is scheduled to be written to a CD. Again, we show only
parts of the list of comparisons.
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cmp_val|file|

C:\Documents and Settings\user\Local

Settings\Application Data\Microsoft\

\CD Burning\

NtQueryDirectoryFile-FileInformation

- .TXT

According to the virus description database of AVG [3], the malware program
checks whether the current date is greater then 2012/10/16, and if so, starts
encrypting user documents. Our system was only partly able to find this date
check. Our profile is shown below:

cmp_val|time|System Time

GetSystemTime-

lpSystemTime.struct _SYSTEMTIME.wYear

-2012

As one can see, the system correctly recognizes the fact that a comparison
between the current year and the value 2012 takes place. As this comparison
already fails, the rest of the date is not further checked. That is why we
cannot determine the complete date. However, we are considering to improve
our system with the ability to read the entire data structure from the main
memory (in a fashion that is similar to our current approach for strings).

Of course, there are also malware programs for which our system did not
produce the correct results. One common case is when a sample did not show
any suspicious activity in our analysis environment. This could be because the
malware program is damaged, or because it detects the presence of the analysis
environment and exits prematurely. In any case, it underlines the dependence
of our system on the quality of the behavioral profiles. One cluster in particular
is composed of 25 samples which belong to 10 different clusters according to
the reference clustering. Manual analysis reveals that these samples all crash,
which causes the Dr. Watson debugger application to be executed, generate a
crash report, and display a pop-up window asking the user permission to send
the report to Microsoft. Clearly, this behavior is not specific to the malware
family and it leads to misclassification.

3.7 Limitations and Future Work

Trace Dependence. As mentioned previously, a limitation of any dynamic
malware analysis approach is that it is trace-dependent. Analysis results will
be based only on the sample’s behavior during one (or more) specific execu-
tion runs. Unfortunately, some of a malware’s behavior may be triggered only
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under specific conditions. A simple example of trigger-based behavior is a
time-bomb. That is, a malware that only exhibits its malicious behavior on a
specific date. Another examples is a bot that only performs malicious actions
when it receives specific commands through a command and control channel.
Also, malware aimed at identity theft may only exhibit certain behavior when
the user performs certain actions, such as logging into specific banking web-
sites. Since we run malware samples automatically with no human interaction,
such behavior will not occur in our traces.

Interestingly, our clustering may still succeed in grouping similar samples
even when their most significant malicious behavior is not triggered, as is
the case for the GBDialer.J cluster discussed in Section 3.6.4. The reason is
that the behavioral features used for clustering encompass all malware behav-
ior, not just malicious actions. Also, one could use techniques that explore
multiple execution paths [60] to obtain a more comprehensive picture of the
functionality of a program.

Evasion. Clearly, a malware author could manually modify a malware sam-
ple until its behavior is different enough from the original that the two are
assigned to different clusters by our tool. We are not interested in this kind
of labor-intensive, manual evasion. Instead, we consider an adversary who
attempts to automatically produce an arbitrary number of mutations of a
malware sample in such a way that all (or most) such mutations are assigned
to different clusters by our tool. To this end, a malware author could randomly
mutate parts of the malware’s behavior that are not essential to its function-
ality. An example would be the often arbitrary file names under which the
malware copies itself on the file system. These could be replaced with random
strings, hard-coded into each malware instance. Nonetheless, adding enough
randomness to make each mutation different is not a simple task. A sample in
our dataset has more than one thousand features on average, many of which
represent behavior from inside system libraries that is only indirectly a con-
sequence of the malware writer’s intent. Also, since our tool discards features
that are unique to a single malware instance, simple random variations would
just lead to these features being discarded. In addition, we could add more
aggressive generalization to our algorithm for extracting behavioral profiles.
As an example, we could consider the name of any file created by the malware
as irrelevant, and replace it with a special token (as we currently do for the
names of temporary files).

Another issue is that dynamic data tainting of untrusted software is vul-
nerable to evasion. A malicious binary could inject fake data dependencies,
using NOP-equivalent operations to taint clean data without modifying its
value. Furthermore, it could hide data dependencies from our tool, using
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implicit flows to ”clean” tainted data [33]. Unfortunately, there is no easy de-
fense against such techniques. To address this issue, we would have to disable
dynamic data tainting, sacrificing some of the system’s accuracy.

3.8 Conclusion

In this chapter, we propose a novel approach for clustering large collections
of malware samples. The goal is to find a partitioning of a given set of ma-
licious programs so that subsets exhibit similar behavior. Our system begins
by analyzing each sample in a dynamic analysis environment that we have en-
hanced with taint tracking and additional network analysis. Then, we extract
behavioral profiles by abstracting system calls, their dependences, and the
network activities to a generalized representation consisting of OS objects and
OS operations. These profiles serve as the input to our clustering algorithm,
which requires less than a quadratic amount of distance computations. This
is important to handle large data sets that are commonly encountered in the
real world. Our experiments demonstrate that our techniques can accurately
recognize malicious code that behaves in a similar fashion. Moreover, our re-
sults show that we can cluster more than 75 thousand samples in less than
three hours.

The approach presented in this chapter allows us to better manage the
large number of analysis reports that automatic, dynamic analysis systems
are creating in response to the flood of new malware files appearing each
day. In the following chapter, we will present an approach that allows us to
keep up with the ever-increasing, high number of malware samples each day.
By streamlining the automated analysis process, we are able to substantially
improve the number of analyzed files per day without requiring additional
hardware infrastructure.
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Chapter 4

Improving the Efficiency of Dynamic
Malware Analysis

4.1 Introduction

Automated, dynamic malware analysis systems work by running a binary in
a safe environment, monitoring the program’s execution and generating an
analysis report summarizing the behavior of the program. These analysis
reports typically cover file activities (e.g., what files were created), Windows
registry activities (e.g., what registry values were set), network activities (e.g.,
what files were downloaded, what exploit were sent over the cable), Windows
service activities (e.g., what services were installed) and process activities (e.g.,
what processes were terminated). Several of them are publicly available on the
Internet (Anubis [1, 28], CWSandbox [5], Joebox [13], Norman Sandbox [16],
ThreatExpert [19]) but many similar internal systems exist behind the closed
doors of A/V companies.

In this chapter, we present a novel and practical approach for improving the
efficiency of dynamic malware analysis systems. Our approach is based on the
insight that the huge number of new malicious files appearing each day is due
to mutations of only a few malware programs [45]. More precisely, malware
authors write programs that reproduce polymorphically [72] or employ run-
time packing algorithms to create new malware instances that differ on the
file level, but exhibit the same behavior. We propose a system that avoids
analyzing malware binaries that merely constitute slightly mutated instances
of already analyzed polymorphic malware. To detect polymorphic binaries,
we have extended our dynamic analysis system to check—after executing the
malware program for only a short time—whether our database of existing
analysis reports contains a behaviorally almost identical (for the time frame
in question) analysis report. If this is the case, we stop the analysis process
and instead, return the existing analysis result.

The contributions of our technique outlined in this chapter are as follows:

• We propose an approach that drastically reduces the amount of time re-
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quired for analyzing a set of malware programs. To achieve this, we avoid
analyzing the same polymorphic program multiple times. For detecting
that a program is a polymorphic variation of an already analyzed binary,
we dynamically analyze it for a short period of time. In a next step, we
search the behaviorally nearest program. If such a program is similar
enough (with respect to a specified threshold), we stop the currently
ongoing analysis and instead return the existing analysis result.

• We present experimental evidence that demonstrates that our approach
is feasible and usable in practice.

• We have designed an algorithm that is efficient and scalable. We find
a program’s behaviorally nearest neighbor without having to perform
n − 1 comparisons.

4.2 Background: Analysis Time

A dynamic malware analysis system faces the problem that it has to analyze as
many suspicious binaries as possible within a limited time frame and a limited
amount of computing resources available. At the same time, it still has to
provide meaningful analysis reports. Clearly, it is necessary that a dynamic
analysis system executes and monitors a given binary for a reasonable amount
of time to determine the binary’s purpose. Traditional systems either analyze
a given binary until its execution as well as the execution of all of its children
processes ends, or a certain timeout limit has been reached. This timeout
is four minutes long in the case of the dynamic analysis system that we are
modifying. This means that the execution of a binary under analysis lasts for
a maximum of four minutes. The total analysis time for a file, however, might
be longer because in most cases, a post-processing step follows the actual
execution phase. Our system, for instance, permits the post-processing step
to run for a maximum of another four minutes. In case the program exits
(or dies because of an error) before the timeout is reached, the analysis will
naturally take less time. The assumption behind this modus operandi is that
the typical malicious program tries to perform its malicious actions as soon as
possible. However, we want to point out that this assumption is not always
true and that a longer analysis might be desirable in some situations . For
example, a binary could try to sleep for several minutes before it begins its
(malicious) work. To allow for a longer analysis (in certain cases or in general),
even more computing resources are required. In the following paragraphs, we
will describe a technique that reduces the amount of required analysis time.
Thus, this technique helps a dynamic analysis system both to analyze more
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programs in a given period and to analyze programs for a longer amount of
time. More formally, this relationship can be described as:

OverallAnalysisT ime = (|B| ∗
∑

b∈B

ta(b))/I

with B being our set of binaries, ta the analysis time for a single binary and
I the number of instances of the analysis system that are running in parallel.

More precisely, the analysis time ta(b) of a binary b is composed of a setup
time ts(b) and a post-processing time tp(b) in addition to the actual time te(b)
used for executing the binary b in a secure environment. That is:

ta(b) = ts(b) + te(b) + tp(b)

During the setup time, we prepare the analysis environment—possibly by
loading a virtual machine and transferring the program into it. In the final
post-processing step, we apply all kinds of offline analysis methods to the
information gained during the execution of the binary. Tasks performed during
the post-processing step range from archiving the analysis result and updating
databases to running scripts for analyzing a network traffic dump file.

Note that analysis systems usually treat binaries scheduled for analysis as
a mathematical set consisting of unique files. That is, to save analysis time,
one avoids analyzing the same file multiple times. Practically, this technique
is implemented by computing a hash value for the file before the analysis
starts. If a matching analysis result already exists in the report repository,
the analysis system can simply return the already existing result to the user.

4.3 Reducing the Overall Analysis Time

Our solution is based on the insight that the large quantity of new malicious
files appearing each day is due to mutations of only a few malware programs
(e.g., polymorphic reproduction or use of runtime packing algorithms with a
random crypt seed resulting in a slightly changed binary). Indeed, we made
the experience that, in our system, analysis reports are in many cases almost
identical suggesting that we’ve analyzed a polymorphic malware instance sev-
eral times. We propose a system that makes use of the fact that we can avoid
analyzing the large percentage of incoming malware binaries that merely con-
stitute slightly mutated instances of already analyzed polymorphic malware
binaries. This system is the logical extension of the hash-based technique that
saves analysis time by not analyzing the same file (identified via its hash value)
twice.
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To this end, our system checks after running a binary b for only a short
amount of time that we call the checkpoint time Tc whether the behavior seen
in this short time is almost identical to behavior seen in a previous analysis. If
this is the case, we stop analyzing the binary b. We return the analysis result
of the program that we found to behave almost identically instead. This means
that we are able to deliver a full analysis report which covers all of a program’s
behavior as observed in time te(b) for a binary b that we effectively analyzed
only for a much shorter period Tc . Of course, this scheme only makes sense
if Tc is a lot smaller than te(b): Tc << te(b). We will discuss the selection of
Tc in the evaluation section.

Thus, the analysis time of a pre-empted binary b is given by tpre−empted(b) =
ts(b) + Tc. Since in the case of pre-empted binaries we return an already
existing analysis result there is no need for a post-processing phase. The time
saved by pre-empting a file b is consequently ta(b) − tpre−empted(b).

4.3.1 Behavioral Profiles

To determine whether a program’s behavior after time Tc corresponds to one
that we have already analyzed, we leverage a presentation of a program’s be-
havior that we call behavioral profile. We represent a binary’s b behavioral
profile as bp(b) in this chapter. Behavioral profiles were introduced in Chap-
ter 3. A behavioral profile aims to capture a program’s behavior at an higher
level of abstraction than a raw system call trace while correctly retaining a
program’s behavioral semantics. Among other things, a behavioral profile re-
lies on information gained from the data tainting system of a dynamic analysis
program. This is used, for example, in order to determine whether execution
artifacts, such as filenames, registry-key names, etc. depend on randomness
and thus change with every execution of the program. Clearly, it is of utter
importance to detect randomness when comparing two behavioral profiles. It
is known, for example, that the polymorphic Allaple worm scans a randomly
chosen IP sub-net for potential victims. Even in the simplistic case of com-
paring two different executions of the same binary we have to detect that the
target IP is randomly chosen for achieving a high similarity score. We refer
the reader to chapter 3 for the details of behavioral profiles.

For this project, it proved useful to extend behavioral profiles with timing
information. More concretely, we assigned a timestamp value to each feature
representing the feature’s first occurrence in an execution trace. This per-
mits us to order features based on their first occurrence. Moreover, it allows
for more advanced comparison techniques between behavioral profiles. Please
note that a behavioral profile still remains a set of string features. If, for

64



4.3 Reducing the Overall Analysis Time

instance, a program creates and deletes a certain file several times, the behav-
ioral profile contains only a single feature representing the file’s creation. Its
timestamp would equal the time when the program created the file the very
first time. This timestamp value specifies the offset to a well defined start-
ing time. We decided to use the time when a program’s very first user-mode
instruction is being executed as the starting time. This approach is robust
against varying durations of the setup phase where among other things we
have to load the snapshot and copy the program into the virtual environment.

4.3.2 Comparison

We consider a program b to be a polymorphic variant of another program a
if the distance between their behavioral profiles at time Tc is below a certain
distance threshold d. Formally, we demand that dist(bp(a), bp(b)) < d. As a
distance function we employ the Jaccard distance [49], defined as

J(a, b) = 1 − |a ∩ b|/|a ∪ b|

We define two programs a and b as being behaviorally identical if J(bp(a), bp(b)) <
d is true. In the evaluation section, we are going to discuss the selection pro-
cess for the distance threshold parameter d. In the ideal case, we would expect
to have a distance of 0 between the profiles of two behaviorally identical bi-
naries. Practically, our experiments show that this distance is rarely exactly
zero. The reason for that is that our behavioral profile cannot capture all
randomized artifacts. Another reason is that frequently the analyzed program
is not able to execute the exact same number of system calls during differ-
ent analysis runs. This is due to OS scheduling decisions, differing server
workloads, network connection latencies and similarities.

Extended Jaccard Distance. Although we perform our analysis runs each
time in exactly the same configuration, we cannot prevent the existence of a
small number of differences in behavioral profiles due to timing issues. Con-
sider, for example, that we have chosen a checkpoint time Tc of 45 seconds and
that we have two analysis runs of the same file. Let us furthermore assume
that this file is programmed to sleep for 45 seconds and to proceed by creating
twelve files. Clearly, it is easily possible that in one execution all twelve files
have been created at time Tc while in the other one no files at all have been
created. To alleviate this problem, we introduce an extended Jaccard distance
Je that is more robust against the described timing issues.

Without loss of generality we assume that for two behaviorally identical
programs a, b the program a has already advanced further in its execution at
a certain point in time. Thus, its behavioral profile contains more features.
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At the same time, b’s behavioral profile bp(b) is an approximate subset of
bp(a) (since we are assuming that b exhibits the same behavior). We define
an approximate subset as a relationship where a large percentage p of the
features are the same: |bp(b) ∩ bp(a)|/|bp(b)| >= p. For our experiments, we
have—based on our experience with the reference set—chosen a value of 0.9
for p. We will demonstrate that this selection of p is reasonable and yields
good results. This model motivates the following algorithm for computing a
more timing resilient distance value:

1. if bp(b) is not an approximate subset of bp(a) we stop and return the
normal Jaccard distance J(bp(a), bp(b))

2. otherwise we select the feature
fhighest ∈ bp(a) ∩ bp(b) with the highest timestamp

3. we compute a bpnormalized(a) by removing all features from bp(a) with a
timestamp higher than timestamp(f)

4. return J(bpnormalized(a), bp(b)) as a result

In our experiments, we compare the results achieved by employing either
one of them. The computation of the extended Jaccard distance is more
costly than the simple Jaccard distance. Additionally, as we will see in the
next section, it lacks some of the properties that make the Jaccard distance
so attractive. In particular, techniques exist that allow the efficient search for
a behavioral profile’s nearest neighbor when the Jaccard distance is used as
a distance metric. This is why we use the Jaccard distance as our primary
distance metric and resort to the extended Jaccard distance only in a second
step when it is computationally more feasible.

Figure 4.1: Overview of our approach for saving analysis time
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4.3.3 Efficient Nearest Neighbor Search

As explained in the preceding paragraphs, we represent a program’s behavior
in the form of a behavioral profile and use the Jaccard distance for determining
the dissimilarity between two behavioral profiles. In this subsection, we will
describe how to efficiently find for a program b at time Tc, an almost identical
program if such a program exists (i.e., was already analyzed). The naive
solution, a linear search, would be to compare bp(b) with all existing behavioral
profiles. This solution has a runtime complexity of O(n ∗ d) where n is the
number of behavioral profiles in our database and d is the number of features
present in the union of all behavioral profiles. In addition to the runtime costs,
we would need to keep all behavioral profiles in main memory to allow for a
efficient comparison. This is clearly not very scalable.

A more efficient technique for finding the nearest behavioral profile is Local-
ity Sensitive Hashing (LSH) [48]. LSH provides an efficient (sublinear) solution
to the approximate nearest neighbor problem (ǫ-NNS). We already success-
fully leveraged LSH for developing the scalable, malware clustering system
that was described in Chapter 3. In the following, we assume that the reader
has already read the description of LSH in Chapter 3.

4.3.4 The Analysis Process

In this subsection, we explain the steps necessary to integrate our approach
into the traditional analysis work flow. First, we we assume that the results
of completed analysis runs are being stored. Second, the LSH configuration
consisting of l∗k hash functions h1,1, ..., hk,l has to be selected once and stored
persistently for later use. Third, LS hashes for completed analysis runs need
to be stored persistently in a hash database.

Figure 4.1 gives an overview of the entire analysis process. After analyzing
a binary b for Tc seconds, we create a behavioral profile bp(b). This profile
captures the program’s behavior until time Tc. In a next step, we employ LS
hashing to find the set of candidate near behavioral profiles N . To this end,
we first initialize the set N to the empty set. Then, this search is performed
in l iterations with each iteration consisting of the following steps:

1. We load the k hash functions h1, ..., hk for iteration l from our persistent
storage

2. We compute the LS hash for binary b: lsh(b) = h1(b), ..., hk(b)

3. We check whether lsh(b) exists in our database of hashes and add all
behavioral profiles with identical LS hashes to the set of candidate neigh-
bors N
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Since the set of candidate neighbors N might contain false positives due to
the probabilistic nature of LS hashing, we compute all the distances J(b, n)
for all n ∈ N . In the evaluation section, we will demonstrate that results of
replacing J with Je for this step. We keep the nearest behavioral profile n
if one exists with a distance smaller than our chosen threshold. In case we
found a behaviorally identical profile, we stop the currently ongoing analysis
and return the analysis report of profile n. Otherwise, we store the l LS hashes
that we calculated before in our hash database and let the dynamic analysis
continue.

4.4 Evaluation

To verify the correctness and efficiency of our approach, we have implemented a
prototype system. We will first shortly describe our prototype implementation
and then discuss the experiments that we conducted, and the results obtained.

4.4.1 Prototype Implementation

For testing our approach, we modified an existing dynamic analysis system.
In the following, we summarize the most important changes:

• On-the-fly generation of the behavioral profile: First, we had to modify
the analysis system so that behavioral profiles are built incrementally
while the analysis of a program progresses. Each invocation or return of
a system call triggers the update of our behavioral profile. Consequently,
it is possible to create a behavioral profile at each point during the
analysis of a program. Special handling was necessary to account for
network actions. Since the existing network analysis examines the raw
network traces, we have to execute this network analysis script (which in
turn parses the network traffic dump file) each time a behavioral profile
is generated.

• Timestamps: The generation of behavioral profiles was modified to in-
clude a timestamp for each feature. The timestamp indicates the time
of a feature’s first occurrence.

• LSH: For performance reasons, the LSH computation code is written
in C++. To interface this code with the rest of the analysis scripts,
which are written in Python, we wrapped the C++ code in a Python
module (with the help of Boost.Python [4]). The LS hashes for a profile
are stored in a relational DBMS (MySQL). Searching for LS hashes and
adding new hashes is performed via regular SQL queries.
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Figure 4.2: False Positives

• Mapping feature strings to integer values: It would be inefficient to per-
form all of our distance and LSH computations directly with behavioral
profiles in the form of sets of (feature) strings. Instead, we map each
feature string to a unique integer value with the help of a table in our
relational DBMS. Currently, we store feature ids as 32-bit numbers.

• LSH configuration: We decided to store the LSH configuration in the
relational DB as well. This permits each analysis run to rebuild the
identical k∗ l hash functions h1,1, ..., hk,l. The LSH configuration consists
of l ∗ k (pseudo-) random numbers c1, c2 and the prime number P . It is
necessary to select a prime number P that is higher than the number of
all features. Since we cannot predict how many features we will have in
the future (each analysis adds new features) we chose the largest 32 bit
prime number for P .
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Figure 4.3: False Negatives

4.4.2 Experiment with a Reference Set

To assess the effects of the checkpoint time parameter Tc and the distance
threshold d on our algorithm, we chose to compare the outcome of our algo-
rithm under different configurations with a reference set.

Reference Set. In a first step, we manually compiled a set of 20 polymorphic
programs and 22 non-polymorphic programs, 42 files in total, that should
serve as our reference set. More precisely, we included four different types of
malware which are known to be polymorphic and which appeared in the wild
during August 2009:

• Virut: Virut is a polymorphic file infector [8, 9]. It infects files with an
.EXE or .SCR extension by appending a slightly modified copy of itself
to the file. We were able to manually verify that the five Virut files
in our set were indeed all infections of the same original executable file.
That is, the five Virut files contained the same host file and only differed
in their last section where the actual (polymorphic) virus code resides.
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• Allaple.1: Allaple [6] is a polymorphic worm that spreads by exploiting
a number of vulnerabilities. Whenever the worm propagates it newly
encrypts its code. The result is a copy of the virus that differs at the
byte-level from its source.

• Allaple.2: This is another variant of Allaple.

• Trojan-PWS.Win32.LdPinch: LdPinch [7] is a Trojan that is designed
for stealing passwords and mailing them back to the virus author. Unlike
viruses and worms Trojans do not replicate. Consequently, someone
must have created the different LdPinch files in our set. We discovered
that a toolkit for creating Pinch Trojans exists [2] that allows for the
easy creation of new Pinch Trojans. We suspect that this or a similar
tool was used by the virus author(s) for the semi-automatic creation of
new LdPinch files. The toolkit was first detected in the wild in 2008
but newly created variants continue to appear. Mcafee, for example,
included a new variant in its signature file update on 08/28/2009 [18].

Each of the four polymorphic malware programs in the preceding list is
represented by five unique binaries in our reference set.

Selecting the checkpoint time and the distance threshold. The time
parameter Tc determines after how many seconds we search for the nearest
behavioral profile. The distance threshold d specifies the maximum distance
that two behavioral profiles are allowed to have in order to be considered as
behaviorally identical. To understand the effects of these parameters on our
results, we conducted the following experiment.

For all parameters combinations Tc ∈ {1, 2, ..., 240},
d ∈ {0.05, 0.1, 0.15, ..., 0.4, 0.5, ..., 1.0} we calculated a full distance matrix
based on the Jaccard distance. After choosing the nearest profile for each file,
we decided in accordance with the current threshold d whether the analysis
of this file is pre-empted or not. Each time, we compared the outcome with
the reference set. We measure the success of our algorithm by calculating
the number of the false positives (i.e., the number of programs that were
wrongly determined to be behaviorally identical) and the number of false
negatives (i.e., the number of programs that we did not correctly identify as
being behaviorally identical).

In this experiment, we are mainly interested in the distances between be-
havioral profiles at specific execution times. This is why, we we do not assume
any specific submission order and calculate all possible distances.

Figure 4.2 shows the percentage of false positives in relation to the check-
point time. The figure contains five different lines showing the false positive
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rate for five different distance thresholds. Naturally, a higher distance thresh-
old leads to higher false positive rate. In the extreme case of a distance
threshold of d = 1.00, all 22 non-polymorphic binaries are wrongly found to
be behaviorally identical with one of the four polymorphic malware types.
On the other hand, a value of d = 1.00 leads to 0 percent of false negatives.
Furthermore, we can see that the percentage of false positives diminishes over
time. This makes perfectly sense because the longer we execute a program the
more characteristic actions we are going to include in its behavioral profile.

We show the false negative rate in Figure 4.3. In contrast to the false posi-
tives, the false negative rate improves when the distance threshold increases.
A threshold of d = 0.30 paired with a checkpoint time greater than approxi-
mately 100 seconds is sufficient to not miss any polymorphic binary. That is,
we recognize all polymorphic programs correctly as being polymorphic. In the
extreme case of d = 0.00, none of our 20 polymorphic programs is correctly
recognized as being polymorphic. Moreover, it is interesting to see that a dis-
tance threshold of 0.10 still results in quite a high number of false negatives.
This indicates that our behavioral profiles still contain more execution-specific
artifacts than we desire. It is noteworthy that the false negative rate fluctu-
ates a lot at different checkpoint times in case of tight thresholds, such as
0.10 or 0.15. This is because a longer analysis time increases the number of
actions and the number of execution artifacts in a behavioral profile. As a
consequence, a longer analysis time can make behavioral profiles drift more
apart than would be appropriate.

4.4.3 Real-World Experiments

After completing our experiments with the reference set, we started to test
our algorithm in a real-world setting. To this end, we installed and operated
our prototype system inside our dynamic analysis platform for several days.
In this period, the system has analyzed a set B of 10,922 unique executable
files. For each analysis, we created and stored a behavioral profile including
timestamps for all features. In this experiment, we did not stop the analysis
of any programs prematurely. Instead, we decided to allow all programs to
continue running until the normal timeout is reached. This puts us into a
position to review the full behavior of otherwise pre-empted programs and to
reason whether our algorithm’s decision to prematurely end an analysis run is
justified.

While it is straight-forward to calculate the total amount of time saved by
running our algorithm in this real-world setting, it is inherently more difficult
to estimate the number of false positives and false negatives in these results.
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We developed the following strategy to evaluate how reliable our algorithm is
in its decisions to prematurely stop an analysis : For all the programs bi ∈ B,
that, according to our algorithm, have a behaviorally identical program si ∈ B
at checkpoint time TC , we compute the pair-wise Jaccard distances at the time
of the traditional analysis end. In other words, we are evaluating how much
the behavior of two programs a and s that were found to be behaviorally
identical at an earlier time Tc differs after the normal timeout of four minutes.
This distance calculation permits us to quantify to what extent our analysis
result would have differed in case our algorithm was actively deployed. We
are not claiming that the current analysis results, which are delivered after
4 to 8 minutes, are always correct. We are only examining the question to
what degree our algorithm, while saving time, returns possibly worse analysis
results. This strategy does not allow us to directly measure the false positive
rate, but it is suited to give us an estimate of the false positive rate.

Although the size of the real-world set makes an exhaustive evaluation of all
possible parameters infeasible, we were able to try out several interesting ones
thanks to the fact that we had the full behavioral profile including timestamps
available. We show the results of performing five runs of our algorithm on
set B with varying parameters for the checkpoint time Tc and the distance
threshold d in Table 4.1. Our initial parameter selection was guided by our
experience gained while performing tests on the reference set. Additionally,
we were examining the effects of using the extended Jaccard distance.

Configuration Pre-empted files Time saved/ Total time

pre-emption saved

45s, 0.12 3,087 (28.26%) 265s 227.2 hours
60s, 0.12 2,747 (25.15%) 250s 190.8 hours
60s, 0.12, Je 3,659 (33.5%) 250s 284.1 hours
60s, 0.08 1,653 (15.13%) 250s 114.8 hours
60s, 0.08, Je 2,539 (23.24%) 250s 176.2 hours

Table 4.1: Results of testing our approach in different configurations

When testing a new configuration, of course, no LS hashes exist in the
beginning. Clearly, for the very first program, we cannot possibly find a
nearest neighbor. During each run of our algorithm, we performed the steps
detailed in section 4.3.4. This means that we iterated (in the same order
that the files were originally analyzed) over the set of files in B: For each
b ∈ B, we searched the nearest behavioral profile si ∈ B. This search process
consists of the LS hashing step that efficiently calculates a set of candidate near
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Figure 4.4: CDF in [%] of distances J(bi, si) at time te

profiles and a subsequent traditional comparison with all the candidate near
profiles to eliminate false positives. The number of traditional comparisons
averaged to 1.2820 during all our runs. For practical reasons, we conducted
all our algorithm runs with a value of l = 140 and k = 25. We selected these
values to get good results for distances of 0.15 and smaller. More precisely,
these parameters cause behavioral profiles with a distance of 0.15 to collide
with a probability of 0.912. The chosen value for k and l allowed us to test
our algorithm reliably with all threshold distances smaller than 0.15. For
thresholds < 0.15 we simply adapted our traditional comparison function,
which checks all candidate near profiles emitted by the LSH step, accordingly.
Furthermore, for the runs in Table 4.1 having Je listed in their configuration,
we performed the false positive removal by computing the extended Jaccard
distance.

As stated before, for all binaries that have a behaviorally identical program
at time Tc, we recomputed the distance at time te. Figure 4.4 shows the
distribution of these distances as a CDF. The x-axis of the diagram details
the percentage of behaviorally identical programs while the y-axis specifies
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the distance between two programs at time te (i.e., after four minutes). One
can see that in most parameter configurations around 90% of all pre-empted
executables have a distance ¡ 0.3 after executing for four minutes. We saw
in Figure 4.3 that executions of the same malware program can easily have
a distance of 0.3. In fact, a threshold below 0.3 leads to a number of false
positives for checkpoint times below 100 seconds. At the same time, a distance
threshold of 0.3 causes no false positives, as can be seen in Figure 4.2. This
is why these results are absolutely encouraging. They demonstrate that our
algorithm works well with only a small number of serious distance deviations.

Looking at Figure 4.4 makes it clear that we get better results in the runs
where we chose a checkpoint time of 60 seconds as opposed to 45 seconds.
Moreover, we see that the extended Jaccard distance does not perform nec-
essarily better. It is also quite intuitive that demanding a smaller distance
threshold at time Tc results in smaller distances at time te. At the same time,
the effectiveness (i.e., number of pre-empted files) of our algorithm decreases
with tighter distance thresholds as can be seen in Table 4.1. Thus, there is no
single correct value for the checkpoint time and the distance threshold. When
selecting these parameters, one has to take the requirements of the application
into consideration. For our purposes, we believe that a checkpoint time of 60
seconds and and a distance threshold of 0.12 strike a good balance between
reliability of the analysis results and efficiency of the algorithm.

To calculate the time saved by pre-empting an analysis run, we make use of
average values for ta(b) and for tpre−empted(b). In case of our dynamic analysis
system, the average analysis time for a program including the setup-time and
post-processing amounts to 334 seconds. For pre-empted analysis runs, we
have to add on average 24 seconds to the checkpoint time to account for
the setup-time. As a consequence, we save on average 265 seconds with a
checkpoint time of 45 seconds and 250 seconds when the checkpoint time is 60
seconds. A configuration of Tc = 60s and d = 0.12 saves in total 190.8 hours
of analysis time. In this time, we can perform 2,056 additional, full analysis
runs on average.

4.5 Limitations

It is obviously possible that a malicious adversary crafts two files that appear
to be behaviorally identical at checkpoint time TC but change their behavior
afterward. In such a case, our algorithm would wrongly pre-empt the analysis
of one file. There is no easy defense against this kind of attack since this is
an intrinsic problem of dynamic analysis systems. A dynamic analysis system
is evadable by programs that do not reveal their true behavior during the
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short period where their behavior is monitored. While it is possible to defend
against specific attacks (such as sleep operations), it is more difficult to find
solutions in the general case.

4.6 Conclusion

In this chapter, we propose a novel approach for making the dynamic analysis
of malicious programs more efficient. It drastically reduces the amount of time
necessary for analyzing a set of malicious program. Our approach makes use
of the fact that the huge number of new malware programs appearing each day
is due to mutations of only a few malware programs. Therefore, we suggest
a technique that avoids fully analyzing a program again if we have already
analyzed this program (albeit different on the file level) once. We detect
that a program is a polymorphic variation of an already analyzed binary by
executing it for a short period of time. In a next step, we check whether the
behavior seen in this period is almost identical to an already analyzed binary.
If this is the case, we stop the currently ongoing analysis and instead return
the existing analysis result.

We have empirically demonstrated that this technique works well in prac-
tice and that it is efficient. By leveraging locality sensitive hashing we avoid
performing n − 1 comparisons for determining whether an almost identical
program has already been analyzed. Moreover, our experiments show that for
a set of 10,922 randomly chosen executable files, we were able to avoid the full
analysis of 2,747 files (25.25%). This equals 190.8 hours of saved analysis time.
In the future, we plan to actively use this technique in our dynamic analysis
system because it helps us to analyze more of today’s malicious programs.

In the following chapter, we discuss the contributions of our thesis in the
context of other existing work.
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Related Work

5.1 Static vs Dynamic Analysis

Dynamic analysis system are not the only means to analyze malicious bina-
ries. Systems based on static analysis (e.g., [35, 37, 40, 51]) also exist. Static
analysis in this context means that no code is executed. Such techniques are
less popular though because malware is usually well-protected against static
techniques. In particular, today’s malware programs leverage code obfusca-
tion [55], code encryption and runtime packing [45] to make dis-assembly diffi-
cult. Since sophisticated static techniques rely on disassembling the binary in
a first step, these techniques suffer from the fact that they cannot analyze the
majority of malicious binaries. The biggest advantage of static techniques is
their potential to reason about all possible execution paths of a (malware) pro-
gram while dynamic analysis is limited to a single execution path. Moreover,
implementations of static methods are fast compared to dynamic techniques
because they do not depend on a program’s execution. Thus, static techniques
are often preferred when speed or scalability is an issue. For example, applica-
tions (e.g., virus scanners) running on a user’s computer are more inclined to
the use of static than dynamic techniques. One problem of static techniques is
that they are undecidable in the general case. Consequently, one has to resort
to approximations in many cases.

Dynamic analysis sees the instructions that are actually executed and so
they are unaffected by code obfuscation, runtime packing or anti-debug tech-
niques. Their main drawback is that they traditionally examine only a single
execution path. Recently, Moser at al suggested in their paper [60] to en-
hance dynamic analysis by exploring multiple executions paths. Similarly,
symbolic execution of programs as described in [31] was proposed with the
goal of observing more than a single execution path and in particular to de-
tect trigger-based behavior in malware.

In theory, also static techniques could profit from the fact that a large por-
tion of today’s malicious program landscape is composed of file-level variations
of a small number of malware programs. Analog to our technique for improv-
ing the efficiency of dynamic analysis systems, an expensive static analysis run
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could be avoided if it’s possible to prematurely detect that an analysis of this
malware program already exists.

5.2 Malware Analysis

Researchers have extensively studied the malware problem domain. One line
of research has focused on the extent to which certain classes of malware have
penetrated the Internet. For example, there have been studies that quantify
the size of botnets [69], the number of executables infected with spyware [62],
and the number of malicious web sites that launch drive-by downloads [68].
Another line of research deals with tools to collect and study malware. Here,
researchers have introduced various forms of honeypots [22, 70], static analysis
techniques [35], and dynamic monitoring tools [41, 74]. Finally, there are
proposals to detect and remove malware once it has infected a machine, using
either signature-based or behavior-based approaches.

While previous research has shed light on many aspects of malicious code,
relatively little is known about the behavior of malicious programs once they
infect a host. With behavior, we refer to the interaction of a program with
the host operating system, other applications, or the network. Of course, a
few popular malware families are very well-understood [59]. Also, folk wisdom
associates with malware behavior programs that read and copy their own ex-
ecutables into the Windows system folder. Finally, network activity has been
analyzed more thoroughly [58], possibly because it is more straightforward to
collect and evaluate. However, there is little knowledge about general, host-
based interactions that are characteristic for or common among a large and
diverse set of different malware families. For example, we would like to know
common mechanisms that malware binaries use to propagate, to make their
programs persistent, and to evade detection. On one hand, such information
is valuable to better understand the motives and goals of malware authors
and to see the ways in which malicious code evolves over time. On the other
hand, the information is crucial for the development of better behavior-based
detection techniques.

The recent advances in the field of automated malware analysis (e.g., [31,
41, 60, 73, 74]) have created a rising interest in the automatic grouping of the
analysis results (and reports) that are created. For this purpose, researchers
have proposed supervised as well as unsupervised machine learning techniques.
Because it is crucial that these techniques can process a large number of sam-
ples, their scalability is one of the decisive properties.

At the core of every system that aims to find malware families is the notion
of similarity. Therefore, these systems need to solve two problems. First, they
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need to find a suitable representation of a malware sample. Second, based on
these representations, they need to compute a distance between two samples.
In the literature, content-based and behavior-based comparison approaches
have been proposed.

Content-Based Analysis. The first attempts to cluster malware samples
were based on static analysis of the malware samples. In [43], the author
proposes an automated virus classification system that works by first disas-
sembling the binaries, and subsequently, comparing their basic code blocks.
Other researchers have proposed to represent a malware program as a hex-
dump of its code segment, building a classification system on top of this [50].
In [40], Dullien proposes a system for comparing executables based on their
control flow graph.

All content-based analysis approaches share the problem that they need
to disassemble the binary. This is often difficult or even impossible, given
that malware is frequently obfuscated and packed. Also, it is possible to
write semantically-equivalent programs that have large difference in their code.
Thus, it is possible for malware authors to thwart content-based similarity
calculations.

Behavior-Based Analysis. Recently, Holz et al. [47] presented a system
that classifies unknown malware samples based on their behavior. A significant
limitation is that the system requires supervised learning, using a virus scanner
for labeling the training set. Lee et al. developed a system for classifying
malware samples that relies on system calls for comparing executables [52].
The scalability of the technique is limited; the system required several hours
to cluster a set of several hundred samples. Also, the tight focus on system
calls implies that the collected profiles do not abstract the observed behavior.

The approach that is closest to ours was presented by Bailey et al. [24].
Their proposed system abstracts from system call traces and clusters samples
that exhibit similar behavior. Unfortunately, Bailey’s system does not scale
well (it requires to compute O(n2) distances), and, compared to our system,
their generated behavioral profiles lack important information that we can
obtain via a fine-grained analysis and behavioral abstraction. This results in
a clustering that is less accurate.

Leita et al. [53] suggest classifying malware based on the epsilon-gamma-
pi-mu model. In this model, additional information on how the malware is
originally installed on the target system is considered for classification. This
can include information on the exploit and exploit payload used to install the
malware dropper, and on the way the dropper in turn downloads and installs
the malware. Since in [53] the malware itself is characterized by simply using
anti-virus names, this approach is complementary to the one described in this
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thesis.

Dynamic Data Tainting. Taint analysis is a technique that has been ex-
tensively used in the field of computer security. For example, it has been
successfully applied to the detection of exploits that hijack the control flow
of a program and, in some cases, automatic signature generation against de-
tected threats [39, 63, 67]. Similar to our approach, there are systems that
employ tainting for extracting characteristic information flows from malware
binaries. Yin et al. [74] extended Qemu with data tainting to capture system-
wide information flows. Recently, dynamic taint analysis has been also used
for the automatic analysis of network protocols [32, 71].

Improving the efficiency. Both clustering systems, as well, as our algorithm
for detecting already analyzed programs (albeit different on the file level) have
to compare different execution traces and define a notion of similarity. While
clustering aims to find groups of behaviorally similar programs, we are only
interested in finding a program’s nearest neighbor. Finding a program’s near-
est neighbor is a step necessary to reach our goal of not analyzing binaries that
have already been analyzed. We are performing this search based on monitor-
ing the behavior for a more limited amount of time. Clustering systems, on
the other hand, work of course on the whole execution trace of a binary.
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Conclusion

The root cause of many criminal activities on the Internet are malicious pro-
grams. Trojans, viruses, bots, etc. give miscreants a wide range of possibilities
for conning unsuspecting Internet users. For this reason, we see a huge num-
ber of new malware programs appearing each day. This number has grown
dramatically over the last few years, and it will continue to grow in all likeli-
hood. At the time of writing this thesis, one has to assume that around 35,000
new malicious binaries appear each day. Obviously, A/V companies cannot
analyze such a high number of files manually. They need automated tools for
verifying whether all of the suspicious files they receive are, in fact, malicious
or not. Because of the limits of static analysis [61], this prompted researchers
and practitioners to develop automated, dynamic malware analysis systems.

In this dissertation, we presented several novel techniques to improve the
large-scale dynamic analysis of malware. First, we shed light on common
malware behaviors. To this end, we evaluated the analysis results of almost
one million malware samples. Second, we presented a clustering algorithm that
allows the grouping of malware samples according to their behavior. Third,
we proposed and evaluated a technique for improving the efficiency of dynamic
malware analysis.

To demonstrate the usefulness of our techniques, we have implemented pro-
totype systems and tested them in real-world scenarios. The results show
that our approaches work well in practice. All of our prototype systems are
available online [1].
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