

▪ ▪ ▪

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

http://www.tuwien.ac.at/

2

Eidesstattliche Erklärung

„ ä ä
ä

– ß –

“

3

Abstract

We live in the era of the internet which makes it possible to connect more and more people to each
other. For this large amount of users suitable technologies are needed, so users can collaborate with
each other efficiently. The solution should be able to cover the complex details and problems which
can occur in large systems, like concurrent access to data. The newly developed middleware XVSM
(eXtensible Virtual Shared Memory) that is based on shared data structures enables an efficient
solution for many real-world problems. The XVSM model allows an intuitive collaboration between
different partners on a peer-to-peer infrastructure. For coordination the model supports flexible data
structures that can easily be customized. Another strength of this lightweight system is that the
middleware can also be used on mobile devices. The biggest advantage of XVSM is the extensibility
of the module structure. New functionalities can be included very quickly to the core system.

As a basis for the descriptions in this thesis the XcoSpaces, the .NET reference implementation of
XVSM, is used. The focus in this thesis lies on three main issues, which are the coordination concept,
transactions and communication. First of all, many possibilities for the whole coordination
mechanism are shown. The transaction and locking management allows concurrent access to data
without inconsistencies. The middleware is able to communicate across machine boundaries via
communication services.

4

Kurzfassung

Durch das Zeitalter des Internet werden immer mehr Menschen miteinander verbunden. Für die

große Anzahl an Benutzern werden Technologien benötigt, die eine effiziente Zusammenarbeit

zwischen allen ermöglichen. Die angestrebte Lösung sollte dabei die Komplexität, die bei großen

Systemen entstehen kann, wie zum Beispiel bei gleichzeitigem Zugriff auf Daten, möglichst gut vor

dem Nutzer verbergen. Eine effiziente Lösung für viele Probleme steckt in der neuen Middleware

XVSM (eXtensible Virtual Shared Memory), die auf gemeinsam genutzten Datenstrukturen beruht.

Das XVSM Modell erlaubt eine intuitive Kommunikation zwischen verschiedenen Parteien über eine

dezentrale (P2P) Infrastruktur. Das bestehende Koordinationsmodell unterstützt flexible

Datenstrukturen, die leicht angepasst werden können. Eine weitere Stärke des Systems ist die

Ressourcen schonende Implementierung, die es erlaubt XVSM auch auf mobilen Geräten

einzusetzen. Der größte Vorteil von XVSM liegt in der Architektur, die vor allem für Erweiterungen

ausgelegt ist, durch die neue Funktionen schnell hinzugefügt werden können.

Als Grundlage für diese Diplomarbeit dient XcoSpaces, die .NET Referenz-Implementierung von

XVSM. Die folgenden drei Kernthemen werden behandelt: das Koordinationskonzept, Transaktionen

und Kommunikationsmöglichkeiten. Als erstes werden die sehr vielfältigen Möglichkeiten der

verfügbaren Koordinationsmechanismen vorgestellt. Die Transaktions- und Sperrmechanismen

erlauben gleichzeitige Zugriffe auf die Daten ohne inkonsistente Zustände. Über die diversen

Kommunikationsmöglichkeiten kann die Middleware über Rechnergrenzen hinweg kommunizieren.

5

Acknowledgements

At this point I would like to mention several people who supported me during my studies.

Firstly I would like to thank my supervisor, Eva Kühn for the insightful conversations about space

based computing. With her knowledge she made it possible for me to find good solutions for the

given challenges in this master thesis. The helpful suggestions from Richard Mordinyi also inspired

me during the writing process.

Ralf Westphal, an independent consultant with special skills for Microsoft Technologies like .NET was

always very helpful with constructive ideas in the whole development process. Through the work

with Ralf I gained a lot of experience in developing in the .NET platform.

Furthermore I want to thank Michael Pröstler and Christian Schreiber who were responsible for the

MozartSpaces (the JAVA implementation of the XVSM space) for their exchange of ideas which

helped to find solutions across technology borders.

Special thanks go to Lucinda Monie from Australia for helpful comments on this thesis. I would

especially like to thank my girlfriend Barbara Gerl who endured the countless hours I have spent at

the computer during my studies.

Finally, I would like to thank Thomas Scheller with whom I had a great time during my studies for the

perfect collaboration. Together we developed the XcoSpaces and always found solutions even when

the problems seemed unsolvable. He is a really good friend whom I can always count on.

6

Content

1.1 Figure Index ... 9

1.2 Example Index ... 10

1.3 Abbreviations .. 11

2 Introduction ... 12

2.1 The XVSM .. 12

3 The XVSM Space .. 14

3.1 Introduction ... 14

3.2 Containers and Coordination .. 15

3.3 Transactions and Locking .. 16

3.4 Core Structure ... 16

3.5 Aspects and Notifications .. 16

3.6 Communication ... 17

3.7 API.. 18

3.8 Other Space based Computing Systems .. 18

4 Coordination .. 19

4.1 Introduction ... 19

4.2 Coordination mechanism .. 20

4.2.1 Coordinators .. 20

4.2.2 Selectors .. 20

4.2.3 Selector & Coordinator Pairs ... 21

4.2.4 XVSM Query Language .. 21

4.2.5 General coordinator rules ... 22

4.3 Semantics .. 22

4.3.1 FIFO .. 22

4.3.2 LIFO .. 24

4.3.3 Vector .. 26

4.3.4 List ... 28

4.3.5 Key ... 29

4.3.6 Label .. 31

4.3.7 Linda .. 32

4.4 Implementation ... 33

4.4.1 Basic Operations .. 34

4.4.2 Implemented coordination types .. 35

7

4.5 Processing the basic operations .. 36

4.5.1 Aspects in the space .. 36

4.5.2 Processing read ... 37

4.5.3 Processing take and destroy .. 38

4.5.4 Processing write .. 39

4.5.5 Processing shift .. 40

4.6 Combination of Coordination Types .. 42

4.6.1 Reading, taking and destroying entries ... 43

4.6.2 Writing entries ... 43

4.6.3 Shifting entries... 44

4.7 Custom Coordinators .. 44

4.7.1 Example Priority Selector / Coordinator pair .. 44

5 Transactions in the .NET Kernel .. 47

5.1 Introduction ... 47

5.2 Transactions – Theoretical .. 47

5.3 Transactions – Implementation... 48

5.3.1 Transaction structure .. 49

5.3.2 Transactions in use .. 50

5.4 Locking ... 52

5.4.1 Locking interfaces and helper ... 52

5.4.2 Container locking ... 53

5.4.3 Entry locking .. 54

5.5 Deadlock Detection ... 57

5.5.1 Limitations of the Core .. 58

5.5.1 Solution .. 59

6 Remote communication .. 60

6.1 Introduction ... 60

6.2 Processing a message .. 61

6.2.1 Sending a remote request ... 61

6.2.2 Receiving a remote response .. 63

6.3 Types of communication ... 64

6.3.1 TCP ... 64

6.3.2 WCF ... 66

6.3.3 BizTalk Services .. 69

6.3.4 Jabber / XMPP ... 70

8

6.4 Serialization ... 71

6.4.1 .NET Serialization ... 71

6.4.2 Interoperable Serialization – XVSM Protocol .. 71

7 XVSM - XML Protocol .. 73

7.1 Basic Elements ... 73

7.1.1 Values .. 73

7.1.2 Tuples .. 73

7.1.3 Entries and Properties ... 74

7.1.4 Selectors and Coordinators ... 74

7.2 Basic Protocol Structure .. 75

7.2.1 Command behavior ... 75

7.2.2 Request / Response ... 75

7.3 Operations ... 76

7.3.1 Container operations ... 76

7.3.2 Basic operations .. 77

7.3.3 Transaction operations .. 78

7.3.4 Aspect operations .. 78

8 The Low – Level API ... 80

8.1 XcoKernel ... 80

8.2 Operations ... 80

8.2.1 Container operations ... 80

8.2.2 Basic operations .. 83

8.2.3 Transaction operations .. 84

8.2.4 Aspects .. 84

8.2.5 Notifications .. 86

8.2.6 Communication Management ... 87

9 Future Work .. 89

10 Conclusion ... 91

11 References ... 92

9

1.1 Figure Index

Figure 1: A XVSM space consisting of multiple core instances. .. 14

Figure 2: Execution semantic of an XQ [8] .. 21

Figure 3: Example, of a fifo coordinated container ... 22

Figure 4: Writing an entry into a fifo coordinated container .. 23

Figure 5: Shifting an entry into a fifo coordinated container .. 23

Figure 6: Reading from a fifo coordinated container .. 23

Figure 7: Taking an entry from a fifo coordinated container .. 24

Figure 8: Destroying an entry in a fifo coordinated container .. 24

Figure 9: Example, of a lifo coordinated container ... 25

Figure 10: Writing an entry into a lifo coordinated container .. 25

Figure 11: Shifting an entry into a lifo coordinated container .. 25

Figure 12: Taking an entry from a lifo coordinated container .. 26

Figure 13: Example, of a vector coordinated container .. 27

Figure 14: Writing an entry without a specific index into a vector coordinated container 27

Figure 15: Writing an entry to a specific index into a vector coordinated container 27

Figure 16: Shifting an entry into a vector coordinated container ... 27

Figure 17: Taking from a vector coordinated container ... 28

Figure 18: Shifting an entry into a list coordinated container .. 28

Figure 19: Example, of a key coordinated container ... 30

Figure 20: Writing an entry into a key coordinated container .. 30

Figure 21: Shifting an entry into a key coordinated container.. 30

Figure 22: Shifting an entry into a full key coordinated container ... 31

Figure 23: Taking an entry from a key coordinated container .. 31

Figure 24: Writing an entry into a label coordinated container ... 32

Figure 25: Example, of a linda coordinated container .. 33

Figure 26: Writing an entry into a linda coordinated container ... 33

Figure 27: Taking an entry from a linda coordinated container ... 33

Figure 28: Read operation on a container ... 38

Figure 29: Take and destroy operation on a container ... 39

Figure 30: Write operation on a container .. 40

Figure 31: Shift operation on a container .. 42

Figure 32: Combination of coordinators on a container ... 43

Figure 33: Example for a transaction instance with locks and logs ... 49

Figure 34: Successful basic operation processing with explicit transaction handling........................... 51

Figure 35: Setting a read container lock .. 54

Figure 36: Class diagram of the most important entry locking classes. .. 55

Figure 37: Example for a deadlock .. 58

Figure 38: The important classes of the CommunicationService contract. ... 60

Figure 39: Processing of a request over remote communication part I ... 62

Figure 40: Processing of a request over remote communication part II .. 64

Figure 41: The Standard XcoTCPCommunicationService ... 65

Figure 42: The XcoTCPCommunicationService in bidirectional mode ... 66

Figure 43: BizTalk Services Internet Service Bus [60] .. 69

Figure 44: BizTalk Services – Relay Binding [60] .. 69

file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897819
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897820
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897821
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897822
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897823
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897824
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897825
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897826
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897827
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897828
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897829
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897830
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897831
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897832
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897833
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897834
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897835
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897836
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897837
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897838
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897839
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897840
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897841
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897842
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897843
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897844
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897845
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897846
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897847
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897848
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897849
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897850
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897851
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897852
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897853
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897854
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897855
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897856
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897857
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897858
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897859
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897860
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897861
file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897862

10

Figure 45: Overview XML serialization .. 72

1.2 Example Index

Example 1: Initialize XcoKernel and create container ... 34

Example 2: Writing into container .. 34

Example 3: Reading from container .. 35

Example 4: Taking from container .. 35

Example 5: Shifting from container ... 35

Example 6: Destroy container ... 35

Example 7: Signature of the read method on the container .. 37

Example 8: Signature of the take and destroy operation on the container.. 38

Example 9: Signature of the write method on the container ... 39

Example 10: Signature of the shift method on the container ... 40

Example 11: Implementation of the PrioritySelector ... 45

Example 12: Implementation of the PriorityCoordinator ... 46

Example 13: Contract of the XcoWCFCommunicationService .. 67

Example 14: Configuration example for netTcpBinding.. 68

Example 15: Configuration example for BizTalk services .. 70

Example 16: DataContractAttribute for serialization with the NetDataContractSerializer 71

Example 17: XML protocol – values .. 73

Example 18: XML protocol – left: tuple with values, right: template tuple .. 73

Example 19: XML protocol – left: entries, right: properties .. 74

Example 20: XML protocol – left: coordinators, right: selectors ... 74

Example 21: XML protocol – general structure ... 75

Example 22: XML protocol – operational context ... 75

Example 23: XML protocol – XSD definition example for request and response of container create .. 76

Example 24: XML protocol – create container .. 76

Example 25: XML protocol – destroy container .. 77

Example 26: XML protocol – example for a basic read operation .. 77

Example 27: XML protocol – example for a basic write operation ... 77

Example 28: XML protocol – transaction create ... 78

Example 29: XML protocol – transaction commit / rollback ... 78

Example 30: XML protocol – add aspect ... 78

Example 31: XML protocol – remove aspect ... 79

Example 32: low level API – Constructor of the XcoKernel ... 80

Example 33: API - create container ... 80

Example 34: API – publishing containers .. 81

Example 35: API – publishing containers .. 82

Example 36: API – destroy containers ... 82

Example 37: API - named container .. 82

Example 38: API – read operations: read, take and destroy ... 83

Example 39: API – write operations: write and shift ... 84

Example 40: API – transaction management .. 84

Example 41: API – create container aspects ... 85

file:///E:\Uni\Master\Markus\Master%20Thesis%20XcoSpaces%20Markus.docx%23_Toc247897863

11

Example 42: API – create space aspects .. 86

Example 43: API – removing aspects ... 86

Example 44: API – create notification ... 87

Example 45: API – communication start /stop and management functions .. 87

1.3 Abbreviations

API Application Programming Interface
FIFO First In First Out
GPRS General Packet Radio Service
GUID Globally Unique Identifier
HTTP Hypertext Transport Protocol
IPoint Interception Point
LIFO Last In First Out
MSMQ Microsoft Message Queuing
P2P Peer-To-Peer
RMI Remote Method Invocation
SBC Space Based Computing
TCP/IP Transmission Control Protocol/Internet Protocol
WCF Windows Communication Foundation
XML Extensible Markup Language
XMPP Extensible Messaging and Presence Protocol
XSD XML Schema Definition
XVSM Extensible Virtual Shared Memory
.NET Microsoft .NET Framework

12

2 Introduction
The internet is continuously growing and has connected more and more people in the last years (an

increase of 380 % in the past 9 years [1]). With the advent of Web 2.0 [2] the usage behavior of the

internet changed drastically. At the beginning the internet provided only static content for its users.

Then more and more dynamic information was offered for everyone. Nowadays modern web sites

allow interacting with different people, who are now able to design and modify their own content.

This trend will continue and new dynamic scenarios will be possible where users can communicate,

collaborate and interact with each other.

With the growing number of users, the corresponding requests on existing systems are increasing. In

traditional systems a message is sent to the server for every request and the server gives a response.

When dynamic changes at the server can only be recognized over requests from the client, this

behavior is also known as polling, which does not scale well if it is done too frequently. Otherwise an

update could be missed if there are too few requests.

When a client needs to exchange data with another member in the network all information is routed

over the server. For this purpose many different messages must be exchanged between the different

parties before the actual requested information is transferred from one client to another. If many

users generate concurrent requests the server can end up with a bottleneck in the system, or in the

worst case, a critical server may fail and the whole service may break down.

A different approach is pursued by distributed middleware. Here the communication between the

parties is decoupled. Every single participant uses a well known interface and provides its service.

Instead of polling, events will be provided directly when new information has to be distributed. The

required message amount will be drastically decreased, providing a good outcome for all parties

involved. With middle-wares, a good solution is found for many weaknesses in the communication.

The space based paradigm goes one step further and extends the handling to the data. The data

should not be stored on a centralized server. All data can be distributed between many different

participants and everyone has near real-time access to the shared view of data. Every single

participant can contribute its service functionality in the space. Many participants can work on the

same data structures with an optimal work load [3; 4; 5]. If one worker fails, the process will be

continued by the others so there is no single point of failure. The system can easily expand when the

number of requests rises over a certain level.

2.1 The XVSM

The new communication paradigm is called XVSM [6; 7; 8] (eXtensible Virtual Shared Memory). It is

based on the principles of shared data spaces and defines a new peer-to-peer [9] based middleware.

The idea of shared data spaces initially was born for coordinating parallel processes. These should get

access to store and receive objects in virtual, associative memory. In the model, the processes have

several simple operations to interact with the data structures called “tuples”. The associative

memory that manages all tuples is called tuplespace. The whole coordination only needs four

operations: inserting a new tuple, reading with remove, reading without remove and an evaluation

13

for tuples. For the evaluation a template will be created and only the fields to be considered will be

filled with data. This concept is called Linda and was developed by David Gelernter [10; 11].

This model has the option to obtain simple access to a large amount of data via template matching.

The selection by tuples is a great method when, for example, all persons with black hair are to be

selected. The system reaches its limit [7] when there is an implicit order needed for the data in the

space, e.g. like in a queue.

The XVSM paradigm extends the manageability of data. For this purpose different coordination

mechanisms are supported in addition to Linda matching. Furthermore, an elaborate event

management system is included with many options for customizing the functionalities in detail. An

independent communication protocol is provided for open communication across programming

boundaries. To obtain access to other applications, many different transport protocols can be used

together with XVSM. In addition to all supported functionalities in the space, a large effort was also

given to extensibility. Using interfaces, simple access is given for new tasks; for example, a new

communication service or coordination type can be added.

Currently for the XVSM model there are two implementations available. One is implemented in JAVA

[12] and is named Mozartspaces [13], and the other in .NET [14] called XcoSpaces [15]. The details in

this work are all based on the XcoSpaces implementation.

14

3 The XVSM Space
This chapter gives a short overview about the XVSM space. Here all functions and components will be

mentioned for a better understanding of the whole system.

3.1 Introduction

For the development of the XVSM space, the experience of the space based computing group [16;

17] was a great benefit during the project. Corso [18; 19] was the first space based middleware of the

Institute of Computer Languages at the Vienna University of Technology and based on the concept of

virtual shared memory [20]. This middleware allows coordination and information exchange over

shared data objects.

In the XVSM space everything revolves around containers, which manage the coordinated data

structures (see Chapter 4). In containers the user data is managed and can be added and removed.

The containers themselves are administered from their corresponding XVSM core instance. The core

is the smallest piece of the implementation that provides all main functionalities. For more details

about the core see [21].

The whole XVSM space is composed of multiple XVSM core (short XCore) instances, which are co-

operating with each other. Every core instance has its own data and specialized purpose. When one

instance needs data from another instance for example hosted on an external machine the

information can be exchanged between them. The concepts of peer to peer networks are integrated

in the communication architecture [22]. Figure 1 below shows an example of how three different

core instances communicate with one another. If a container is needed from another core instance,

only the address of the container is required. The access over the instance borders is automatically

done by the space (for more details see Chapter 6).

XCore A

XCore C

XCore B
XVSM
Space

Container (local
within XCore B)

Container (remote
from XCore A)

communication
channel

Figure 1: A XVSM space consisting of multiple core instances.

15

In the designing phase of the XVSM space we came to the decision to only implement the minimal

function set for a high performing space implementation. The concrete function set can be found in

[21]. All features that are not absolutely needed for the main functionality are not implemented in

the core; additional functionalities could be added over profiles afterwards if needed (see [21]). The

space provides different mechanisms to simply extend existing features. For example, special

functionalities can be added over aspects, which can be found in Chapter 3.5.

3.2 Containers and Coordination

A very important concept in the XVSM space is the usage of containers. For accessing data within

containers, only five basic operations are needed; this is similar to the Linda concept mentioned

earlier. The basic operations are read, take, write, shift and destroy and more details are described in

Chapter 4.4.1. The container behavior is managed by so-called coordinators. Different coordinators

are allowed in a container at the same time, creating the most flexible solution. A coordinator takes

care of a specialized behavior with the entries that are managed in the container. For example, the

fifo coordinator will order the entries like a conventional queue, meaning the first entry that is

inserted will be the first to be read. There is an associated selector for choosing entries for every

coordinator on a container. More about selector/coordinator pairs and coordination itself can be

found in Chapter 4.

The XVSM space has an additional special feature for containers. For every container, a

corresponding meta container exists. The meta container information manages the details of

attached container, such as creation date, maximal amount of allowed entries and much more. In

addition to internal space data, user defined data can also be managed here. With meta containers, a

central place for maintenance is created in the space. For more information about this see [21].

In the following table the function set is shown for different space based middleware

implementations focused on coordination. Nearly all systems support the linda template matching.

More coordination is only supported by a few solutions like GigaSpaces [23] or XVSM.

B
lit

z
[2

4
]

G
ig

aS
p

ac
es

 [
2

3
]

Ja
va

Sp
ac

es
 [

2
5

]

C
o

rs
o

 [
1

8
; 1

9
]

X
V

SM

Li
gh

TS
 [

2
6

]

Fifo Coordination * * *
Lifo Coordination *
Vector Coordination *
Key Coordination * *
Label Coordination * *
Linda Coordination * * * * *
Other Coordination * *
Extensibility * *

16

3.3 Transactions and Locking

For good performance the space system should enable concurrent access to entries on containers. To

ensure there is no inconsistency during multiple simultaneous read and write operations, a

transaction management system with locking is supported. This takes care of all changes that are

done in a single context. No other transactions can change or have access to a certain resource until

the current transaction is complete; all changes are only visible to all others when the transaction is

finished successfully. Detailed descriptions of transaction and locking mechanisms can be found in

Chapter 5.

3.4 Core Structure

Here all components are defined which provide all required functionalities for all parts needed for

processing a message in the space over all stages. For further details see [21]. First the request is

recognized over the network or the embedded API. Then the operation is processed through a core

processor instance. If the operation can immediately be fulfilled the response is sent back to the

destination address. Otherwise the operation goes into the waiting state. Here the core must invoke

all queued operations waiting for a changing event of data. On the other side, the timeout handling

and exception handling is also done by the core. When it is possible (when no side effects are

expected), all operations that are processed in the core are running concurrently. The locking

mechanism (described in Chapter 5.4) is responsible for concurrent access to entries on a container.

When a larger number of requests appear at one core at the same time, the performance must not

be compromised, so the space is dimensioned to perform on multi threaded systems. Every instance

in the processing sequence has its own threading resources and is separated in a clear way over

different interfaces. If a new implementation of a part is needed, it can be simply extended or

exchanged.

In contrast to a huge desktop/server system, the space should also work on a small mobile device.

The current implementation utilizes the existing resources carefully and is able to work on mobile

devices with very few resources.

For more details about the architecture of the XVSM space see [21].

3.5 Aspects and Notifications

For better usability and extensibility, the space supports so-called aspects [27; 28]. On all important

positions (see [21]) in the space the user can register to be notified for events, such as when a new

container is created. These event points that are distributed are also known as interception points.

For every operation a pre and a post aspect is available. The user can modify an action before it will

be executed in a pre aspect. For example in a security aspect the credentials of the user can be

validated before the operation is executed. In a post aspect the user receives all changes which were

made and can decide to except or revoke them. The aspects themselves are divided into two groups,

the first being the space aspects. Here the user can access all global events such as container create,

transaction create, commit and so on. On the other side there are the container aspects, with which

every access on a container can be traced. With the aspect concept the space can easily be

customized. For every single event it can be decided if the event should be continued or blocked;

17

perhaps due to security reasons. An additional feature is that over the aspect events the space

provides to change the entire behavior of the space.

Additional features such as a security mechanism can be added very easily. Over a space aspect, a

global security instance can check every modification to containers (create, delete). With the create

container aspect (see [21]), the security mechanism can not only monitor access; the system is also

able to add its own container aspect to every new container, meaning the system can monitor all

access to every single entry. Afterwards, the security mechanism can check every task and only needs

cancel those actions that are not authorized by the aspect event.

Another popular functionality that can be implemented over aspects is persistency. Here the user

can decide on which containers a persistency aspect should do its work or if the whole space should

be persisted. The persistency aspect only needs to process all given changes which are resulting from

commit transaction events.

With the aspect mechanism the available notification system is implemented. Instead of polling the

status changes on a container, a notification can be registered on the container. Whenever new

information is available it is automatically transferred to the user, reducing traffic for status updates

to a minimum.

In the following table the function set is shown for different space based middleware

implementations. All systems support notifications except LightTS [26] which only offers the

possibilities to extend its functionality.

B
lit

z
[2

4
]

G
ig

aS
p

ac
es

 [
2

3
]

Ja
va

Sp
ac

es
 [

2
5

]

C
o

rs
o

 [
1

8
; 1

9
]

X
V

SM

Li
gh

TS
 [

2
6

]

Notifications * * * * *
Aspects *
Transactions * * * * *

3.6 Communication

An important feature in the space is the replaceable and configurable communication service system.

For best support for different communication methods, an interface is designed to allow an easy

implementation of new communication modules similar to the existing ones. In the current version a

TCP socket, WCF and BizTalk service implementation are supported. More information about the

communication system in the XVSM space can be found in Chapter 6.

For communication a lot of the space based middleware implementations are based on JAVA. In Java

the Jini [29] technology assists to construct distributes systems that are scalable, evolvable and

flexible. This technology is used by the most of the JAVA based space implementations.

18

B
lit

z
[2

4
]

G
ig

aS
p

ac
es

 [
2

3
]

Ja
va

Sp
ac

es
 [

2
5

]

C
o

rs
o

 [
1

8
; 1

9
]

X
V

SM
 -

X
co

Sp
ac

e
s

Li
gh

TS
 [

2
6

]

Jini * * *
RMI *
Socket * *
BizTalk *

3.7 API

 A feature that should not be left out is the application programming interface (API). This is the main

connection factor to a developer using the system. Here the developer can access all methods to

exploit existing features in the XVSM space. More details can be found in Chapter 7.

3.8 Other Space based Computing Systems

Since the first idea of spaces in the 1980’s with the linda tuple space a lot of space based computing

middleware solutions have been implemented. In this document some alternative middleware

solutions are compared with the main focus to coordination, transactions and communication. A

detailed comparison of JavaSpaces [25] and Corso can be found in [30]. Blitz [24], LighTS [26] and

GigaSpaces [23] are compared in [21].

19

4 Coordination

4.1 Introduction

In the XVSM space, everything is based on coordinated data structures: so-called containers.

Everything must be structured into containers, thus it is not possible to store data directly into the

space. This structure allows a very flexible coordination. The coordination mechanism enables a

hierarchical data structure to be created if needed (container references can be stored in a

container). Furthermore, the container supports transactions and must deal with concurrent

operations. For a detailed explanation about container functionalities in the XVSM core, see [21].

The main functionality of a container is to provide the co-ordination mechanism for entries. The

different co-ordination types are represented through special selectors and coordinators. A

coordinator defines how the entries must be structured for efficient coordination. For example, the

coordinator decides which entries have to be read next during a read operation. With the selector

the access to the entries can be specified. The selection properties can be set in the selector

coordination information. A container has additional properties such as size and uniqueness. The size

property allows a maximum count of entries in the container to be set. The unique property requires

that only unique entries are to be stored.

Coordination functionalities can be accessed through the basic operations read, write, take, shift and

destroy.

The read operation types:

All read operations will be blocked until the operation can be fulfilled, more information can be

found in Chapter 4.5.

read: The entries read from the container are returned to the user. No changes on the container

are made.

take: The concerned entries are read and removed from the container. The read entries are

returned to the user.

destroy: The operation works like take, but doesn’t return the read entries. Only an operation

result, successful or not, is returned. This behavior spares the communication channels so not

needed data won’t be transferred. Because the behavior is very similar to the take operation,

destroy is defined as a read operation.

The write operation types:

write: The entries will be added to the container. If the container is full or, for example, the key

entry already exists, the write operation is blocked until the operation can be fulfilled.

shift: This write operation never blocks. When no blocking problem occurs the shift operation

works like a normal write. Otherwise the shift operation removes entries according to the

container’s coordination types as long as it is needed to write the new entries successfully into

the container.

20

It is important for all these operations to run successfully that the results are consistent. This is

guaranteed through a fine grained locking mechanism and transactions (see Chapter 5). The support

of transactions ensures that more than a single user is able to use the space at the same time and no

unexpected results will be generated. The simplest locking mechanism is container locking. Here the

whole container will be locked during a transaction. The entry level locking mechanism is more

complex. Here the transaction only locks the required entries, so many different transactions may be

active at the same time on a single container. When these transactions do not target the same

entries, this locking mode will have better performance than container locking because the

transactions can run in parallel (and not sequentially).

One of the most important features of the XVSM space is the support of different coordination types.

The main question is how data should be stored and loaded from the space. One very widely spread

coordination type in different space implementations is Linda [10; 11] (see Chapter 4.3.7). Linda is

the basic concept of the Linda tuple space model. In this model, every data object is stored in tuple

representation. In order to read the data from the space, a matching tuple template must be

created. With this type of coordination unsorted data can be stored very quickly into the space

because the data is independent and so comparatively easy for concurrent processing.

For some problems Linda is not the most suitable solution, because the data as a whole is completely

unordered. In some situations a certain order is important; in this case better solutions for

coordination than Linda are available. For example, to build up a queue in a shop application, a

better solution would be an implicit order like fifo (first in first out).

The current implementation of the XVSM space supports the coordination types fifo, lifo, key, list,

vector, label and linda. If more than these standard coordination types are required for a particular

situation, the space provides an extensible interface for implementing your own coordination type,

as is shown in Chapter 4.7.

4.2 Coordination mechanism

4.2.1 Coordinators

A coordinator must support all basic operations (read, take, destroy, write, shift) and can

administrate necessary coordination information on a container. Additionally the coordinator

provides a method for reading properties (metadata of the coordinator itself; more details about the

meta container can be found in [21]). The information would also be manageable in the container’s

meta container but this would result in a performance decrease of the coordinator implementation.

Due to concurrency reasons the coordinator must provide full support for transactions. Every single

coordinator has the ability to define its transaction details in a transaction log (see Chapter 5.3) for a

successful commit or rollback action. Beyond that, every coordinator can specify the locking

granularity. The space supports entry or container level locking as mentioned above. For flexibility

multiple coordinators can be added to a container.

4.2.2 Selectors

With a selector a query can be specified for an according coordinator. A selector allows specifying

how many entries shall be returned. When the given selected count is -1 all matching entries are

returned. Beside the count functionality, query information can be provided for the corresponding

coordinator. The combination of related selector and coordinator is called selector and coordinator

21

pair. For example the KeySelector and KeyCoordinator provide the key coordination functionality for

the space. For the query, the key for selection can be specified in the KeySelector.

4.2.3 Selector & Coordinator Pairs

The processing of a single selector and coordinator pair during a read operation works as follows:

First the defined selector in the read operation will be mapped to the coordinator instance on the

container. Then the selector will ask the associated coordinator on the container which entries

should be read. All read entries are given back in one result list.

In the write operation, beside the entries that shall be written, selector information can be added for

every entry. The corresponding coordinator to the given selector on the container will be selected.

With the selector information the coordinator can decide how to process the given entry.

4.2.4 XVSM Query Language

The XVSM space supports more than simple template matching as coordination mechanism. For

selecting entries the XVSM Query Language [8; 31] is defined. In an XVSM query (XQ) several simple

XVSM queries (SXQ) can be combined and chained via a pipe operator “|”. In the implementation an

XQ is represented through selectors. The processing of an SXQ is internally done by the coordinator

functionality.

The query process begins with evaluating the first SXQ from a XQ over the whole container. The

resulting multiset (bag) or sequence of matching entries is used as input for the second SXQ in the

chain and so on which is shown in Figure 2.

In the implementation for a SXQ in the XcoSpaces the selector allows to specify how many entries

shall be read. Additionally every selector implementation can have additional information that can

be used by the coordinators. With this behavior extensible coordination models can be built with

self-designed selectors that can be chained to complex queries.

For the following chapters the notation of entries, multisets and sequences are based on the Data

Model for Space-Based Collaboration Protocol [31]. Single entries and multisets are denoted by

square brackets and sequences are denoted by angle brackets. In this thesis a simplified version is

used – the entry type information (e.g. int, string,…) is left out and all entry values are specified as

anonymous labels (e.g. [type:string,val:“a”+  *“a”+).

Some examples:

Single entry: *“a”+
Multiset (e.g. key container): **“a”+, *”b”+, *”c”++
Sequence (e.g. fifo, lifo container): <*“a”+, *”b”+, *”c”+>

in | SXQ2 | SXQ3 | . . . | SXQn result SXQ1

out‘ out‘‘ out‘‘‘ out n-1

XVSM Query (=XQ)

Figure 2: Execution semantic of an XQ [8]

22

4.2.5 General coordinator rules

The following rules are valid in general for all coordinators:

 If multiple selectors are used, an element count is only valid for the first selector. If there are
not enough elements for subsequent selectors, a fault will occur

 Multiple selectors are applied in the same order as they are given (as explained in the
previous chapter)

 The number of selectors that can be used is not restricted

 If a count is defined in the read operation and there are not enough entries present in the
container, the operation will wait until the required number of entries is available.

4.3 Semantics

4.3.1 FIFO

Fifo (first in first out) is one of the coordination types. It works like a queue, which means the order in

which the entries are read out of the container is the same as they were written into the container.

The fifo order is implicit, which means that the user cannot decide which position a new entry can be

written into, or which entry can be read next. The fifo order can be used for many different

situations, for example a printer spooler, to print the documents in the order they were sent to the

printer.

4.3.1.1 Rules

 The elements are read in the order in which they were written into the container, beginning
with the one that has been written first.

 When an element is written into a full container with shift operation, the element which
would have been taken from the container next in fifo order is removed.

 Locking granularity for the fifo coordinator is container locking, for more details see Chapter
5.4

4.3.1.2 Illustrations

The following illustrations (4.3.1.2.x) are based on an unbounded container (except for shift where

the container is bounded) with fifo coordination as shown in Figure 3. The entries in the container

were inserted in the order <[“a”], [“b”], [“c”], [“d”]>. Fifo has a pointer to the first and the last

inserted entry.

4.3.1.2.1 Writing an Entry

With the write operation a new entry will be added behind the last one. When adding an entry, for

example [“e”], it will be set at position 5 and will so become the new last entry. This is shown in

Figure 4.

fifo order

 1 (first)
 2
 3
 4 (last)

container

a
b
c
d

Figure 3: Example, of a fifo coordinated container

23

4.3.1.2.2 Shifting an Entry

The following illustration (Figure 5) shows a shift operation on a container that is bounded to a

maximum size of 4. The boundary of the container is shown in the left upper corner and with a red

border. The container is full, so the shift operation must remove an entry before [“e”] can be written.

In a fifo coordinated container, the entry to be read next is removed, in this case [“a”] (the one at the

first position). After this entry is removed, the new entry can be written into the container and

becomes the new last entry.

When the container is unbounded, the shift operation works like a normal write.

4.3.1.2.3 Reading an Entry

Reading an entry always means that the first entry [“a”] is read and the container is not changed.

Figure 6 shows the processing of reading an entry with fifo coordination. The read entry [“a”] is then

given back to the user and the container is not changed.

4.3.1.2.4 Taking an Entry

When an entry is taken, the first entry [“a”] is read and removed from the container, and the next

entry [“b”] becomes the new first one. Figure 7 illustrates the processing of the take operation. The

read entry [“a”] is then given back to the user.

fifo order

 1 (first)
 2
 3
 4 (last)

container

a
b
c
d

read 1 entry

a

fifo order

 1 (first)
 2
 3
 4(last)

container

a
b
c
d

Figure 6: Reading from a fifo coordinated container

fifo order

 1 (first)
 2
 3
 4 (last)

container

a
b
c
d

write 1 entry

e

fifo order

 1 (first)
 2
 3
 4
 5(last)

container

a
b
c
d
e

Figure 4: Writing an entry into a fifo coordinated container

fifo order

 1 (first)
 2
 3
 4 (last)

container

a
b
c
d

fifo order

 1 (first)
 2
 3 (last)

container

b
c
d

shift entry

e

fifo order

 1 (first)
 2
 3
 4 (last)

container

b
c
d
e

4 4 4

Figure 5: Shifting an entry into a fifo coordinated container

24

4.3.1.2.5 Destroying an Entry

The operation destroy works like the take operation with the simple difference that the destroy

operation doesn’t bring the read entries back to the user. Only an operation result (successful/not

successful) is given back from the destroy action. Figure 8 illustrates one single destroy for one entry.

Entry [“a”] will be removed from the container.

The destroy operation depends on the functionality of the take operation for all coordination types.

The entries are removed over the take operation and the entries are never given back. In the next

coordination types the destroy operation is not mentioned anymore.

4.3.2 LIFO

Lifo (last in first out) is another coordination type. It equals a stack, which means that the last entry

that has been written into the container will be read first. The lifo order is also implicit like the fifo.

So you cannot influence in which position a new entry can be written or be read next.

4.3.2.1 Rules

 The elements are read in the order in which they were written into the container, beginning
with the one that has been written last.

 When an element is written to a full container with shift operation, the element that would
have been taken from the container next in lifo order is removed.

 Locking granularity for the lifo coordinator is container locking, for more details see Chapter
5.4

4.3.2.2 Illustrations

The following illustrations (4.3.2.2.x) are based on an unbounded container (except for shift where

the container is bounded) with lifo coordination as shown in Figure 9. The entries in the container

were inserted in the order <[“a”], [“b”], [“c”], [“d”]>. Lifo holds a pointer to the last inserted entry.

fifo order

 1 (first)
 2
 3
 4 (last)

container

a
b
c
d

take 1 entry

a

fifo order

 1 (first)
 2
 3 (last)

container

b
c
d

Figure 7: Taking an entry from a fifo coordinated container

fifo order

 1 (first)
 2
 3
 4 (last)

container

a
b
c
d

destroy 1 entry

fifo order

 1 (first)
 2
 3 (last)

container

b
c
d

Figure 8: Destroying an entry in a fifo coordinated container

25

4.3.2.2.1 Writing an Entry

When an entry is written into the container, it is inserted behind the last entry in the container [“d”],

and becomes the new last entry. This is shown in Figure 10.

4.3.2.2.2 Shifting an Entry

The following illustration (Figure 11) shows a shift operation on a container that is bounded to a

maximum size of 4. The container is full, so the shift operation must remove an entry before [“e”]

can be added. In a lifo coordinated container, the entry which would be read next is removed, which

is the one at the last position (in the example this would be [“d”]). After the entry is removed, the

new entry is written into the container and becomes the new last entry.

When the container is unbounded, the shift operation works like a normal write.

4.3.2.2.3 Reading and taking an Entry

The read operation reads the last entry [“d”] and gives back the value to the user.

When an entry is taken, the last entry [“d”] is read and removed from the container and the entry

before [“c”] becomes the new last one. Figure 12 illustrates the processing of the take operation. The

read entry [“d”] is then given back to the user.

lifo order

1
2
3
4 (last)

container

a
b
c
d

Figure 9: Example, of a lifo coordinated container

lifo order

 1
 2
 3
 4 (last)

container

a
b
c
d

write 1 entry

e

lifo order

 1
 2
 3
 4
 5(last)

container

a
b
c
d
e

Figure 10: Writing an entry into a lifo coordinated container

lifo order

 1
 2
 3
 4 (last)

container

a
b
c
d

lifo order

 1
 2
 3 (last)

container

a
b
c

shift entry

e

lifo order

 1
 2
 3
 4 (last)

container

a
b
c
e

4 4 4

Figure 11: Shifting an entry into a lifo coordinated container

26

4.3.3 Vector

The next coordination type is vector. This type acts like a linked list and is named after JAVA´s Vector

class. Entries can be accessed by their index, beginning with zero for the first entry, and ending with

(number of entries minus 1) for the last entry. Here the explicit order is combined with an implicit

order which means that the index automatically changes when other entries are inserted at or

removed from a lower index, so this coordinator is a hybrid. A vector is defined by a name on a

container, so you can add different vector coordinators to one container.

4.3.3.1 Rules

 General vector index behavior
o If an element is removed from the container with a take or destroy operation, the

index of all elements that have an index greater than the removed element is
reduced by 1.

o When an element is written to the container, the index of all elements greater or
equal to the index where the new element is inserted is increased by 1.

o If “LAST” is given as an index (-1) for a new entry (or no index is defined), it will be
inserted after the last entry (the one with the highest index).

o If the index to insert an entry is greater than the number of elements in the
container, a fault will be thrown.

o If the index for a read operation is greater than the number of elements in the
container, a fault will be thrown.

 Vector operations on bounded containers:
o If an entry shall be read from a bounded container and the read index is greater than

the maximum size of the container (and thus the element can never exist), a fault
will be thrown.

o If the index to insert an entry is greater than the maximum size of a bounded
container, a fault will be thrown.

o If the write operation works as shift and the bounded container is full, the last
element (the one with the highest index) will be removed.

o If an element is inserted at the last position with shift to a full container, it replaces
the current last element.

 If the selector in a read or write operation uses a vector name that is not defined in the
container, a fault will be thrown.

 Locking granularity for the vector coordinator is container locking, for more details see
Chapter 5.4.

4.3.3.2 Illustrations

The following illustrations (4.3.3.2.x) are based on an unbounded container (except for shift where

the container is bounded) with a vector coordination named “v” as shown in Figure 13. The entries in

the container are assigned to an index by the vector <[“a”,v:0], [“c”,v:1], [“b”,v:2], [“d”,v:3]>.

lifo order

 1
 2
 3
 4 (last)

container

a
b
c
d

take 1 entry

d

lifo order

 1
 2
 3 (last)

container

a
b
c

Figure 12: Taking an entry from a lifo coordinated container

27

4.3.3.2.1 Writing an entry (without a specified index)

When an entry is written into the same container as above, and this entry doesn’t define a selector

with a vector index, it is always inserted at the end of the vector (and its index is number of entries in

the container minus 1). Here entry [“e”] is inserted at index 4 (Figure 14).

4.3.3.2.2 Writing an entry to a specified index

When an entry defines a selector with a specific index for this new entry, it is inserted at this

position. Entry [“f”] is inserted at index 1 (see Figure 15), the indices of entries [“b”], [“c”] and [“d”]

are increased by one.

4.3.3.2.3 Shifting an Entry

The following illustration (Figure 16) shows a shift operation on a container that is bounded to a

maximum size of 4. The container is full, so the shift operation must remove an entry before [“e”]

can be written. In a vector, the entry with the highest index is always removed. In this case [“d”] is

removed, before [“e”] can be written to index 1.

vector ”v“

0
1
2
3

container

a
c
b
d

Figure 13: Example, of a vector coordinated container

vector ”v“

0
1
2
3

container

a
c
b
d

write entry

f

vector ”v“

0
1
2
3
4

container

a
f
c
b
d
e

vector selector

”v“: index=1

Figure 15: Writing an entry to a specific index into a vector coordinated container

vector ”v“

0
1
2
3

container

a
c
b
d

vector ”v“

0
1
2

container

a
c
b

shift entry

e

vector ”v“

0
1
2
3

container

a
e
c
b

4 4 4

vector selector

”v“: index=1

Figure 16: Shifting an entry into a vector coordinated container

vector ”v“

0
1
2
3

container

a
c
b
d

write entry

e

vector ”v“

0
1
2
3
4

container

a
c
b
d
e

Figure 14: Writing an entry without a specific index into a vector coordinated container

28

When the container is unbounded, the shift operation works like a normal write.

4.3.3.2.4 Reading and taking an Entry

The read operation reads the entry with the given index (or indices, if more elements shall be read).

For example the entry with selector index = 1 reads entry [“c”] and gives back the value to the user.

When an entry is taken, it must specify the index (or indices, if more elements shall be taken) from

where it shall be read. The selector specifies index = 1, which is the entry [“c”] (see Figure 17). When

[“c”] is removed, the index of [“b”] and [“d”] is decreased by 1.

4.3.4 List

The equivalent to the Vector implementation in JAVA is the List implementation in .NET. For a better

support of the .NET programmers, we decided to implement our own list coordination type. The only

difference to the behavior of a vector coordinator is that shift with an index can overwrite the entry

in the container when it is specified (using the selector parameter override). With our

implementation the behavior is more similar to .NET’s List<> class and we don’t lose the

interoperability functionality with the JAVA implementation of XVSM. The list coordinator is a unique

feature for the XcoSpaces implementation.

4.3.4.1 Rules
All rules are valid from the vector rule set (see Chapter 4.3.3.1 Rules).

 If the write operation is a shift, the element with the given index will be replaced when the
override parameter is used in the selector.

4.3.4.2 Illustrations

4.3.4.2.1 Shifting an Entry

The following illustration (Figure 18) shows a shift operation on a container. In the list, the entry,

with the given index, is removed when in the selector property override is set to true. In this case

[“e”, index:1] should be shifted. So entry [“c”] will be removed, then [“e”] is written to index 1.

vector ”v“

0
1
2
3

container

a
c
b
d

take 1 entry

c

vector ”v“

0
1
2

container

a
b
d

vector selector

”v“: index=1

Figure 17: Taking from a vector coordinated container

list ”v“

0
1
2
3

container

a
c
b
d

list ”v“

0
1
2

container

a
b
d

shift entry

e

list ”v“

0
1
2
3

container

a
e
b
d

list selector

”v“: index=1

Figure 18: Shifting an entry into a list coordinated container

29

4.3.5 Key

The key coordination type acts like a hash table – the entries are coordinated by a key. This

coordination type supports genericity, so you have type safe access to all keys and values. The

Dictionary<> class in .NET Framework is comparable to this coordination type. This coordination type

has its entries only ordered explicitly, because all coordination decisions are made on the key

information. This information is created during the write operation and will not be changed until the

data is removed from the container. Based on this behavior, this coordination type implements entry

locking (see Chapter 5.4). During an operation, only a single entry will be changed, so it is

comparatively easy to implement entry locking compared to other coordination types. In other

coordination types like lifo, a single entry change will have effects to the whole container

information.

One key coordinator on a container is defined by a name and type, so more than one instance for a

container is supported. If a key coordinator is defined for a container, entries can be given a key

value for this coordinator. Comparable to a database a key value must be unique, it can only be used

once. Unlike in a DB, an entry may define no key value at all. When reading from a container, entries

can be accessed by their key values.

4.3.5.1 Rules

 All keys are unique.

 Not every entry must define a key

 If the selector of an entry that shall be written to a container uses a key name that is not
defined in the container, or if the type of the key is different than the one defined, a fault will
be thrown.

 If the key of an entry that shall be written to a container is already present, and write is used
as an operation, the operation blocks until the entry with this key value is taken from the
container.

 If the key of an entry that shall be written to a container is already present, and shift is used
as operation, the entry with this key value is removed from the container. This also means
that if more than one key selector is defined for this entry, the operation might remove more
than one entry from the container before the new entry can be written.

 When an entry must be shifted out of a bounded and full container with key coordination
(and no conflicting keys exists), it is not clearly defined which entry will be chosen. The
selection of the entry will be done at random.

 Locking granularity for the key coordinator is entry locking, for more details see Chapter 5.4.

4.3.5.2 Illustrations

The following illustrations (4.3.5.2.x) are based on an unbounded container (except for shift where

the container is bounded) with a key coordination named “k” and the type is string as is shown in

Figure 19. The entries in the container are ordered in the same way as a dictionary [[”a”, k:”k1”],

[“b”, k:”k6”], [“c”, k:”k3”], [“d”, k:”k9”]].

30

4.3.5.2.1 Writing an entry

When an entry shall be written to the container with a key that is not yet specified, it is simply added

to the container without any effects to the other entries. The entry [“e”] is added to the container

(Figure 20) with the key value “k4”.

4.3.5.2.2 Shifting an Entry

When an entry is written to a container using shift operation with a key value that already exists in

the container, the entry with this value is removed first from the container. The new entry [“e”] has

the same key value “k6” as the entry [“b”] in the container (shown in Figure 21), so [“b”] is removed

from the container, and then [“e”] is inserted.

4.3.5.2.3 Shifting an entry to a bounded and full container

When an entry is written to a bounded and full container using shift operation with a key value that

doesn’t already exist in the container, an entry must be removed. This will be chosen at random. In

the example e.g. entry [“a”] (in Figure 22) is removed first and then [“e”, k:”x1”] is written.

key ”k“

”k1“
”k6“
”k3“
”k9“

container

a
b
c
d

Figure 19: Example, of a key coordinated container

key ”k“

”k1“
”k6“
”k3“
”k9“

container

a
b
c
d

key ”k“

”k1“
”k3“
”k9“

container

a
c
d

shift entry

e

key ”k“

”k1“
”k3“
”k9“
”k6“

container

a
c
d
e

key selector

k = ”k6“

Figure 21: Shifting an entry into a key coordinated container

key ”k“

”k1“
”k6“
”k3“
”k9“

container

a
b
c
d

write entry

e

key ”k“

”k1“
”k6“
”k3“
”k9“
”k4“

container

a
b
c
d
e

key selector
k = “k4”

Figure 20: Writing an entry into a key coordinated container

31

When the container is unbounded, the shift operation works like a normal write.

4.3.5.2.4 Reading and taking an Entry

The read operation reads the entry with the given key (or keys, if more entries shall be read). For

example, an operation with selector key (k:”k3”) reads entry [“c”] and gives back the value to the

user.

When an entry is taken, the operation must specify the key value (or values, if more entries shall be

taken) that shall be read. The key value “k6” in Figure 23 belongs to the entry [“b”], so take “k6”

reads and removes [“b”+ from the container.

4.3.6 Label

The label coordinator type is very similar to the key coordination type, with one very important

difference; with label you can have many different entries with the same label name. This

coordination type also supports genericity.

4.3.6.1 Rules

 Multiple entries can have the same label name.

 Not every entry must define a label

 If the selector of an entry that shall be written to a container uses a label name that is not
defined in the container, or if the type of the label name is different than the one defined, a
fault will be thrown.

 When an entry must be shifted out of a full and bounded container with label coordination, it
is not clearly defined, which entry will be chosen. The selection of the entry will be done at
random.

 Locking granularity for the label coordinator is container locking, for more details see
Chapter 5.4. In a future version the implementation will be changed to entry locking.

key ”k“

”k1“
”k6“
”k3“
”k9“

container

a
b
c
d

take 1 entry

b

key ”k“

”k1“
”k3“
”k9“

container

a
c
d

key selector

k = ”k6“

Figure 23: Taking an entry from a key coordinated container

key ”k“

”k1“
”k6“
”k3“
”k9“

container

a
b
c
d

key ”k“

”k6“
”k3“
”k9“

container

b
c
d

shift entry

e

key ”k“

”k6“
”k3“
”k9“
”x1“

container

b
c
d
e

key selector

k = ”x1“

4 4 4

Figure 22: Shifting an entry into a full key coordinated container

32

4.3.6.2 Illustrations

4.3.6.2.1 Writing an entry

The following illustration shows a write operation to a label coordinated unbounded container (the

label is identified with “l”). The entries in the container are inserted with multiple values for one label

[[“a”, l:”l0”], [“b”, l:”l3”], [“c”, l:”l1”], [“d”, l:”l4”]]. When an entry defines a selector with a specific

label for this new entry, it is inserted with this label. In the example (Figure 24), entry [“f”] is inserted

with label “l3”.

4.3.7 Linda

The Linda coordinator implementation allows the user to use classical tuple space coordination. For

the Linda model every entry must be represented in a tuple representation. A tuple represents a

stored sequence of typed fields. Over this construction the template matching works, when the user

wants to find the entries during a read operation. With this possibilities Linda has a simple

mechanism to access single data structure parts in the container.

4.3.7.1 Template Matching

For the read operations Linda template matching allows different specifications for entry selection.

First a complete type matching is allowed e.g. selecting all Tuples that have on the first position an

integer value and on the second a string (Tuple<int, string>). The second possibility is to specify only

certain required types and let the others empty. For example matching all entries with an arity of two

where the one on the second position is a string (Tuple<null, string>). The third and last possibility is

to define concrete values for matching e.g. all tuples where on the first position the value is an int

with the value two (Tuple<2, null>).

4.3.7.2 Rules

 Entries have to implement the ILindaMatchable interface. When an entry is written that
doesn’t implement this interface, a fault will be thrown.

 The shift operation equals a normal write when the container is unbounded.

 When an entry must be shifted out of a full container with linda coordination, it is not clearly
defined which entry will be chosen. The selection of the entry will be done at random.

 Locking granularity for the linda coordinator is container locking, for more details see
Chapter 5.4. In a future version the implementation will be changed to entry locking.

4.3.7.3 Illustrations

The following illustrations (4.3.7.3.x) are based on an unbounded container (except for shift where

the container is bounded) with linda coordination as shown in Figure 25. The entries in the container

label ”l“

”l0“
”l1“
”l3“
”l4“

container

a
b
c
d

write entry

f

label ”l“

”l0“
”l1“
”l3“
”l4“
”l3“

container

a
b
c
d
f

label selector

l=”l3“

Figure 24: Writing an entry into a label coordinated container

33

are inserted with two different tuple types – first is a Tuple<int> and second a Tuple<int, string>. The

inserted entries are [<1,”a“>, <2,”b“>, <3>, <4,”c“>].

4.3.7.3.1 Writing an entry

When an entry shall be written to the container, it is simply added to the container without any

effects to the other entries. In the example the entry <5,”d”> is added to the container (in Figure 26).

4.3.7.3.2 Reading and taking an Entry

The read operation reads all entries that are matching with the given selector template. For example

a read operation with template Tuple<int, string> reads three entries [<1,”a“>, <2,”b“>, <4,”c“>] and

gives them back to the user.

With take, all entries matching the template are removed from the container. For example (Figure

27), the template Tuple<int> reads only one entry [3] and removes the entry from the container.

4.4 Implementation

The implementation of containers and concrete coordination types is strictly separated into

interfaces. In this way many different coordination types can be combined on one single container.

The processing is done in the order in which the coordinators are created on a container. The

functionality of every coordination type is split into a coordinator and selector pair. In the selector

contract (XcoSpaces.Kernel.Contracts.Selectors) all interfaces and classes that are needed for

implementation are specified. The most important parts are the abstract class Selector which all

container

 (1,”a“)
(2,”b“)

(3)
(4,”c“)

linda

Tuple<int, string>
Tuple<int, string>
Tuple<int>
Tuple<int, string>

Figure 25: Example, of a linda coordinated container

linda

Tuple<int, string>
Tuple<int, string>
Tuple<int>
Tuple<int, string>

container

(1,”a“)
(2,”b“)

(3)
(4,”c“)

write entry

<5,“d“>

linda

Tuple<int, string>
Tuple<int, string>
Tuple<int>
Tuple<int, string>
Tuple<int, string>

container

(1,”a“)
(2,”b“)

(3)
(4,”c“)
(5,”d“)

linda selector
Tuple<int, string>

Figure 26: Writing an entry into a linda coordinated container

linda

Tuple<int, string>
Tuple<int, string>
Tuple<int>
Tuple<int, string>

container

<1,”a“>
<2,”b“>

<3>
<4,”c“>

take one entry

[3]

linda

Tuple<int, string>
Tuple<int, string>
Tuple<int, string>

container

<1,”a“>
<2,”b“>
 <4,”c“>

linda selector
Tuple<int>

Figure 27: Taking an entry from a linda coordinated container

34

selectors inherit from and the interface ICoordinator for all coordinators. Both definitions can be

found under the namespace XcoSpaces.Kernel.Selector in the contract package.

For a simple identification of the selector/coordinator pairs, the names are a combination of the

coordination type and the pair-type (Selector/Coordinator). E.g. naming convention used with fifo:

FifoSelector and FifoCoordinator.

The following chapters show the concrete implementation of the different coordination types. For

more detailed description of the selector contract, see [21].

4.4.1 Basic Operations

The next section illustrates a user code example that demonstrates the usage of all basic operations

based on a container. For this sample, a container with key coordination is used so a simple

coordination flow can be shown with generics. More details about the used commands can be found

in Chapter 8. All operations in this example use implicit transactions (the parameter transaction=null)

and timeout in milliseconds. For more information about transactions see Chapter 5. First a new

space instance is initiated and a new local container (no remote address needed, so the first

parameter is null) will be created with the generic KeySelector<string> with the key name “k” without

timeout (second parameter the constant System.Threading.Timeout.Infinite for infinite). Every next

part of this example depends on the previous parts.

//create a new space by instantiating the kernel

using (XcoKernel kernel = new XcoKernel())

{ //create a container with key coordination

 ContainerReference cref = kernel.CreateContainer(null, Timeout.Infinite,

 new KeySelector<string>("k"));

…
Example 1: Initialize XcoKernel and create container

4.4.1.1 Write

The next part of the example writes three new entries into the empty container. The write operation

on a container needs the following information: the container reference of the target container,

transaction reference, timeout and the data that shall be written. As shown in this example, in

addition to the data that shall be written into the container for every entry the coordination

information for the explicit key coordinator is provided. With the KeySelector the keys for every entry

can be specified. Following entries [[”a”, k:”k1”], [“b”, k:”k2”], [“c”, k:”k3”]] will be written in the

example (Example 2) into the container with KeySelector “k”.

…
 //writing entries into the container with KeySelector informations

 kernel.Write(cref, null, 1000, new Entry("a",

 new KeySelector<string>("k","k1")));

 kernel.Write(cref, null, 1000, new Entry("b",

 new KeySelector<string>("k","k2")));

 kernel.Write(cref, null, 1000, new Entry("c",

 new KeySelector<string>("k","k3")));

…
Example 2: Writing into container

4.4.1.2 Read

The following example shows two read operations. The first operation reads the entry with the key

“k1” and the second reads all (parameter constant Selector.COUNT_ALL) entries, i.e. the entries with

the keys “k2” and “k3”. A single read operation needs, like the write operation, the container

35

reference, transaction reference, timeout and the specification which data should be read. With the

KeySelector the key selection can be made.

…
 //now read the entries from the container

 List<IEntry> result = kernel.Read(cref, null, 1000,

 new KeySelector<string>(1, "k", "k1"));

 //result contains the entry [“a”]

 result = kernel.Read(cref, null, 1000,

 new KeySelector<string>(Selector.COUNT_ALL, "k", "k2","k3"));

 //result contain the entries [“b”] and [“c”]

…
Example 3: Reading from container

4.4.1.3 Take

In the next part one entry will be taken from the container. The take operation works like the read

operation with the only difference being that the entry will be removed afterwards. In the example,

the entry [“c”+ will be taken from the container with the key “k3”. After the successful completion of

the operation only two entries remain in the container [[“a”, k:”k1”], [“b”, k:”k2”]].

…
 //now take a entry from the container

 result = kernel.Take(cref, null, 1000, new KeySelector<string>(1, "k", "k3"));

 //result contains the entry [“c”]

…
Example 4: Taking from container

4.4.1.4 Shift

The following example shows a shift operation. The entry [“b”, k:”k2”] will be overwritten through

the new entry [“d”, k:”k2”] because both entries have the same key. The two entries [[“a”, k:”k1”],

[“d”, k:”k2”]] remain in the container after the shift operation has finished.

…
 //overwrite the existing entry by a new one

 kernel.Shift(cref, null, 1000, new Entry("d",

 new KeySelector<string>("k", "k2")));

 //read entries with key k1 and k2

 result = kernel.Read(cref, null, 1000, new

 KeySelector<string>(Selector.COUNT_ALL, "k","k1", "k2"));

 //result contain the entries [“a”] and [“d”]

…
Example 5: Shifting from container

4.4.1.5 Destroy Container

Finally, the container will be removed and all resources will be cleaned up.

… //destroy the container

 kernel.DestroyContainer(cref);

}
Example 6: Destroy container

4.4.2 Implemented coordination types

The following coordination types can be found in the package XcoSpaces.Kernel.Selectors:

 FifoSelector & FifoCoordinator

 LifoSelector & LifoCoordinator

 KeySelector<TKey> & KeyCoordinator<TKey>

36

 LabelSelector<TLabel> & LabelCoordinator<TLabel>

 ListSelector & ListCoordinator

 LindaSelector & LindaCoordinator

Both key and label coordinator implementation support a specialized functionality via the

GetProperty method to provide simple access to the list of all keys/labels. This is faster than reading

all entries with all data when only the keys/labels information is needed.

4.5 Processing the basic operations

For a better understanding of how the space manages the different coordinators, this chapter shows

the exact procedures for all basic operations on a container.

For the basic operations, some helper objects do exist such as RequestRead and RequestWrite. The

RequestRead contains the read operation type (read, take, destroy), the chosen selectors, container

reference, transaction reference and the timeout. The corresponding object for the write operations

(write, shift) is RequestWrite. The difference to RequestRead is, that in contrast to the read operation

object, it holds the write operation type and the list of entries (in each entry the selectors for writing

are included), which should be written instead of the query selector information.

All basic operation methods give back the completion status of the operation. Each time an

operation cannot be fulfilled (locking, aspect break, no results) it will be rescheduled when the

timeout is not reached.

4.5.1 Aspects in the space

Besides coordination, aspects provide a very powerful functionality in the space. With aspects the

developer gets the possibility to extend the space behavior and functionality. On all important

positions in the space there are extension markers, called interception points (short IPoints), which

allow access to observe or modify functionalities in the space. This can be seen as an implementation

of the interceptor pattern [32]. For all operations (except SpaceShutdown – here only pre aspects

exist) there are two IPoints defined, one before (Pre) and one after (Post) the operation. To maximize

different possibilities of every single IPoint, special data are provided, such as transactions, selector

collections, container references and many others. For example, the developer can write the result of

successful operations into a database using Post-IPoints, or write all basic operation events into a log

file using Pre-IPoints.

The following return values of aspects are possible:

Reschedule: If an aspect sets the AspectResult to reschedule, an XcoAspectRescheduleException
will be thrown. The exception forces an immediate operation termination and the
operation will be prepared for reschedule. This means that current changes will be
reverted and the operation will be set to the waiting state.

Skip: If the aspect result is changed to skip, the operation advances directly to the post
aspects. This return value makes only sense for pre aspects.

Ok: The normal processing will be continued. i.e. the next aspect will be processed or the
operation will be continued when no further pre aspect exists.

NotOK: If the operation cannot be fulfilled throw an XcoAspectException. Current changes
will be reverted and the whole operation fails. In the following examples no special

37

attention will be given to this case because this simply leads to a rollback and causes
the operation to fail. It will therefore not be depicted in the following figures.

For more details about the theory of aspect usage, have a look at [33] and for more practical details

in the .NET implementation, at [21].

4.5.2 Processing read

In the following Example 7, the signature of the read operation is shown. The read operation returns

a list of all resulting entries. The parameter op (RequestRead) contains the selector information for

the reading operation.

public bool Read(RequestRead op, Transaction t, out List<IEntry> entries)
Example 7: Signature of the read method on the container

After the start of the read operation that is shown in Figure 28, the first action is the processing of all

PreRead aspects over the AspectManager. After aspect processing, the given selectors will be

checked. It is required that at least one selector is specified and that no more selectors are used as

coordinators than are available on the container. When these requirements cannot be fulfilled an

XcoContainerReadException will be thrown and the operation will fail and will not be rescheduled.

To prevent any access violations, parts of the operations must have exclusive access to the container.

These are shown as green colored items in Figure 28. The first part of the main read operation tries

to lock the whole container if the coordinators set the granularity to container locking. For more

details about locking see Chapter 5.4). When the whole container must be locked and it is not

possible at that particular moment (for example when another transaction is already locking the

same resources), all previous actions will be rolled back and the operation will be rescheduled for a

new attempt. If the locking is successful or not required, the actual read action will begin.

The chosen selector list for the read operation is accessible over the RequestRead item. In a loop

over all chosen selectors in the list, the corresponding coordinators at the container will be selected.

The read operation is done for every coordinator. If any read entries exist, every coordinator will

receive a list of previously read entries. For this list every coordinator implementation must

determine if the read operation can be fulfilled. If one of the coordinator conditions cannot be

carried out, the whole operation will be rolled back and will be prepared for retry. If the specified

number of entries is found after asking all selectors, the read action will be deemed to be finished

successfully.

The read entry locking will now be started if the container’s locking granularity is set to entry locking.

Similar to the container locking mentioned previously, when the locking does not succeeded, rollback

and reschedule are initiated; otherwise the process continues. After finishing this step successfully

the exclusive access to the container will be terminated.

The last step in the read process after the successful search for entries is the processing of all

PostRead aspects. Aspect Reschedule results in a rollback and retry of the whole operation. If the

post aspect cannot be fulfilled, an XcoAspectException is thrown, rollback starts and the operation

fails. In all other aspect states the operation returns the entry list and finishes the read operation

successfully.

38

For simplicity in the following explanations for processing basic operation, the aspect processing of

pre and post aspect is only hinted with gray items and dotted lines. For each basic operation an

equivalent pre and post aspect operation will be performed. No special attention will be given to

failed locking requests (write or read), because the behavior is always the same. The request will be

cancelled, the rollback will be carried out for all changes in this operation and then the operation will

be prepared for reschedule (For more details about the rescheduling system see [21]). This also

means that the exclusive access will be terminated, if still existing.

As mentioned above, the next figures will only concentrate on the actions between the pre and post

aspects.

4.5.3 Processing take and destroy

Take and destroy (shown in Figure 29) are very similar. However, there are two differences; 1) the

pre and post aspect IPoints are different, and the 2) the destroy operation does not give the read

entries back in contrast to take. The latter is reflected in the signature (Example 8) of these two

methods. As mentioned before, the parameter op includes the selector information for the

operation.

public bool Take(RequestRead op, Transaction t, out List<IEntry> entries)

public bool Destroy(RequestRead op, Transaction t)
Example 8: Signature of the take and destroy operation on the container

After the pre aspect processing the read selectors will be checked. This works similarly to the read

operation. Next, the excusive processing will begin. If one of the coordinators of the container needs

container locking, the following action will attempt to acquire a write lock for the whole container.

After successful completion of the locking process, the reading procedure starts which follow the

same procedure as the read operation (see Chapter 4.5.2). When the reading action can be

PreRead
aspects

PostRead
aspects

start

successful

skip

throw exception

reschedule

 ok

reschedule

selectors
check

not successful

rollback / prepare for wait

ok on error set read
lock

set read
lock

(container lock
if needed)

(entry lock if
needed)

read
entries

ok

failed

failed

ok

ok

entries found

no result

catch exception / rollback

Figure 28: Read operation on a container

39

successfully finished and entries have been read from the container, the write locking starts on entry

level provided that the container is not container locked yet. When the locking has finished without

error, all selected entries are removed from the container. The exclusive access is released and the

post aspect processing starts.

4.5.4 Processing write

The signature for the write operation includes the op object which contains entries which need to be

written including selector information and transaction.

public bool Write(RequestWrite op, Transaction t)
Example 9: Signature of the write method on the container

The first action after the pre write aspect is the start of the exclusive access (see Figure 30). The

container write-locking starts directly after the exclusive access is granted, if the locking granularity is

container locking. Then the processing starts for every single entry required to be written to the

container. If the container is full, and no more entries may be added, the write operation will be

canceled and rollback and rescheduling will be started. If there is enough space for a new entry in the

container, the write entry lock will be requested, providing that entry locking is allowed and that the

whole container is not already locked. After the successful locking, the write process can be started.

Every existing coordinator on the container is then allowed to create coordination data. The only

response from a single coordinator is the processing result. If a coordinator cannot perform the write

operation (e.g. because an entry with the same key already exists, in case of a key coordinator), the

rollback and reschedule process are started. When all coordinators of the container have seen the

entry and the coordination accounting is finished, the entry is added to the container memory. This

process is repeated for every entry to be written within the given operation. If all entries can be

written to the container without error, the exclusive access will be terminated and the post aspects

will start.

selector check ok

successful

set write
lock

not successful

rollback / prepare for wait

set write
lock

(entry lock if
needed)

read
entries

failed

failed

ok

ok

entries found no result

remove entries

(container lock if
needed)

pre
aspects

start

post
aspects

Figure 29: Take and destroy operation on a container

40

4.5.5 Processing shift

The shifting process is the most complex one of the basic operations. This is simply because the

operation does not enter into waiting state when a condition is not fulfilled; for example, if the

container is full or an entry with the same key is already present. To make this easier to understand,

the shift process (see Figure 31) is split into three actions. This starts with the coordinator checking

(shown in yellow), followed by the container is-full-prevention (in blue) and ends with the normal

write process (in purple). The write process is initiated when all possible errors are resolved in the

previous two steps.

public bool Shift(RequestWrite op, Transaction t)
Example 10: Signature of the shift method on the container

Directly after the successful pre-shift aspects the exclusive access starts. As in all other basic

operations, the container locking will be assigned only when needed by the coordinators. Very

similar to the write operation, every single entry will run through the whole process in the order in

which they were added by the user.

The first part of the shift operation is the coordinator checking which is slightly different to the write

operation. Here every coordinator must decide if the new entry might cause any problems and if

other entries must be removed from the container. If any entries have been selected by the

coordinator(s) a write lock will be requested for these entries, if not the whole container is locked.

successful

set write
lock

not successful

rollback / prepare for wait

set write lock

(entry lock if
needed)

failed

ok

container full
is full

enough space

select coordinator

write
coord. info

next entry
next

coord. choose next
coordinator

ok

failed

all
coordinators
finished

next entry
exists

all entry
written

(container lock if
needed)

pre
aspects

start

post
aspects

write entry

(container
memory)

Figure 30: Write operation on a container

41

After a successful write lock the affected entries are removed from the container. This procedure is

continued for each coordinator. After this part it is assured that no conflicts with a coordinator

constraint can occur.

The second part is the container-is-full prevention. The normal basic write operation will go to the

reschedule mode when the container is full. The first check in this part is the entry boundary check

on the container. If the container has enough space for the new entry the third part will be processed

next, but if the container is full, at least one entry must be removed from the container. For this

selection the first coordinator will be selected from the entry that should be written. If no selector is

defined for the entry, the first coordinator on the container will be used. The given coordinator must

decide which entry should be removed. Next, the write entry lock will be requested for the chosen

entry, or if locking level is container locking, the whole container will be locked. The selected entry

will then be marked for deletion from the container.

The third and last step is the write operation. If the two preparation steps are finished, there can be

no further problem except of an unsuccessful write lock. The write operation itself is the same as a

normal write. Every coordinator on the container can update its coordination information and the

entry will be stored in the container.

After successful processing of all single given entries through this three step process, the exclusive

access will be terminated, and the post shift aspects will be started.

42

4.6 Combination of Coordination Types

The space provides the possibilities to combine coordination types on one single container. In this

discipline the space can show it real strengths in processing coordination information. For this

functionality the user must specify all needed coordination types during container creation. This

solution is not as flexible as dynamically adding coordination types during container usage, but the

behavior of the whole container and the different coordination types is easier to understand. When a

new coordinator is needed on an existing container, create a new container with all coordinators and

copy all entries to the new container. The old container than can be removed.

In real life, complex problems can be solved through smart combinations of different coordinators on

a single container. The possible combinations are nearly limitless. With this easy mechanism, better

solutions can be created. An example is shown in the following scenario.

In the scenario entries in the container shall be coordinated with the following requirements:

successful not successful

rollback / prepare for wait

failed

failed

ok

ok

is full

enough
space

select coordinator

get shift
entries

next
coord.

next entry

choose next
coordinator

ok

ok

all
coordinators

finished

set write
lock

(entry lock if
needed)

remove entries

select first
coordinator

get next entry

set write
lock

remove entries

set write
lock

select coordinator

next
coord.

write coord. info

no result

failed

select entry

container full

(entry lock if
needed)

(entry lock if
needed)

choose next
coordinator

failed

next entry
exists

all entry
shifted

set write
lock

[coordinator check] [is full prevention] [normal write]

(container lock if
needed)

start

pre
aspects

post
aspects

write entry

(container
memory)

Figure 31: Shift operation on a container

43

 every message has a unique identifier so it is important to be able to access a single message

very quickly

 the messages shall be distinguished into local and remote messages,

 different remote messages shall be separated for different source types

 a list shall be provided for high priority messages

 all messages shall be accessible in the order that the messages enter the container

The solution (see Figure 32) uses an unbounded container with five different coordinators. A key

coordinator for the message identity (named “id”), a label coordinator for the local/remote split

(named “location”), a second label coordinator for the source types of remote messages (named

“msgType”), a custom coordinator (for more details see 4.7.1) for the preferred messages (named

“priority”) and a fifo coordinator for the incoming order.

Assume that the following entries are added to the container:

 [“a”, id=1000, location=”local”, msgType=”socket”]

 [“b”, id=1001, location=”local”, msgType=”socket”]

 [“c”, id=5000, location=”remote”, msgType=”wcf”, priority=1]

 [“d”, id=3000, location=”remote”, msgType=”biztalk”, priority=2]

 [“e”, id=3001, location=”remote”, msgType=”biztalk”]

4.6.1 Reading, taking and destroying entries

During the entry search – in the order that the query was built – the coordinators on the container

decide which entries will be read from the container. What is important here is that every sub result

is given to the next coordinator and the coordinator only reduces the entries from this subset. If the

first selection returns two entries, the second one will only look at these two.

Some query examples:

 Select all entries with (location=”remote”) and (msgType=”biztalk” or “wcf”)  The result

will be [[“d”], [“e”], [“c”]], because after the first selection of “remote” [[“c”], [“d”], [“e”]],

the second selection uses two subselects, [[“d”], [“e”]] for “biztalk” and [“e”] for “wcf”.

 Select all entries with (id=1000) and (location=”remote”)  no result can be found

 Get all “biztalk” or “wcf” messages with priority, ordered by incoming (e.g. fifo)  <*“c”],

[“d”]>

4.6.2 Writing entries

The write operation gives the corresponding selector information to the associated coordinators on

the container. If one coordinator cancels the write operations because a coordinator constraint is

violated, the whole operation will be rolled back and prepared for reschedule.

key
„id“

1000
1001
5000
3000
3001

container

a
b
c
d
e

label
„location“

local
local
remote
remote
remote

label
„msgTyp“

pe“
socket
socket
wcf
biztalk
biztalk

priority
„priotity“

list

1
2

fifo

1
2
3
4
5 (last)

Figure 32: Combination of coordinators on a container

44

Some write examples:

 Write [“f”, id=1000, location=”local”, msgType=”socket”], the write operation will wait until

the entry [“a”] is removed.

 Write [“g”, id=5005, location=”remote”, msgType=”wcf”], will be added without delay.

4.6.3 Shifting entries

As explained in Chapter 4.5.5 the difference to the write operation is that shift removes existing

entries until all constraints can be fulfilled. For this elimination process the given selector order in the

shift command is important.

Some shift examples:

 Shift [“h”, id=1001, location=”local”, msgType=”socket”]; this will remove entry [“b”] because

both have the same key id= 1001

 If the container shown Figure 32 is bounded to five entries, then:

o Shifting a new entry [“i”, with id=3001, location=”local”, msgType=”socket”], will

remove the entry [“e”] during the coordinator check, and then [“i”] will be written to

the container

o Shifting a new entry [“j”, with id=9000, location=”local”, msgType=”socket”], if the

coordinator check has no problems with the new entry, the full-prevention validation

will remove one entry over the first coordinator. In this example the first coordinator

is key and removes an entry with random selection. For example, entry [“a”] is

removed.

4.7 Custom Coordinators

If the standard coordinators are not sufficient, it is possible to extend the space functionality. For

this, two tasks need to be fulfilled as mentioned earlier. First the Selector class (namespace

XcoSpaces.Kernel.Selectors) must be overloaded with the new functionality, and a compatible

coordinator must be implemented using the ICoordinator interface (namespace

XcoSpaces.Kernel.Container).

4.7.1 Example Priority Selector / Coordinator pair

In this chapter a concrete implementation of a custom selector and coordinator pair will be given.

The new coordinator selects entries depending on their priority classification in the container. For

this assignment a new selector must be written, called PrioritySelector. The coordinator shall use an

explicit order and only select those entries that are tagged with PrioritySelector information.

4.7.1.1 Custom Selector: PrioritySelector

The main task of a selector is providing specialized information for its associated coordinator. For

convenience, the PrioritySelector (shown in Example 11, Figure 32) provides four different

constructors. The empty constructor is needed for the microkernel [21; 34], the dynamic loading

system of the space. The second constructor with the single name parameter is for the container

create phase, so many different instances of the priority coordinator can be active on one container.

Over the name a single instance can be identified. With the third constructor a single entry can be

tagged and the last constructor with the range information is for all read operations. For a shorter

representation of this sample all serialization details are removed. These are needed when a

45

serializer (e.g. binary or xml) converts the object to a serialized state in preparation for the transfer

to another space instance that is not running in the same application.

public class PrioritySelector : Selector

{

 public String Name { get; private set; }

 public int RangeMax { get; private set; }

 public int RangeMin { get; private set; }

 public int Value { get; private set; }

 public PrioritySelector(){}

 public PrioritySelector(String name) { Name = name; }

 public PrioritySelector(String name, int value)

 {

 Name = name;

 Value = value;

 }

 public PrioritySelector(int count, String name, int min, int max) : base(count)

 {

 Name = name;

 RangeMin = min;

 RangeMax = max;

 }

 public override ICoordinator CreateCoordinator()

 {

 return new PriorityCoordinator(Name);

 }

}
Example 11: Implementation of the PrioritySelector

4.7.1.2 Custom Coordinator: PriorityCoordinator

The coordinator instance is a little more complex than the selector. Here the needed coordination

functionality must be implemented. Example 12 shows the relevant parts of the PriorityCoordinator

implementation that are needed for a custom coordinator.

The write operation first checks if the entry contains a PrioritySelector. If not, the entry will not be

managed by this coordinator; otherwise the entry will be added with the helper method

AddEntrySorted. This method inserts the new entry on the right position for fast reading access.

At the beginning of the read operation, the coordinator’s SelectorFits method will be used and must

approve a fitting selector (in this case the PrioritySelector) found in the entry selectors list. When the

read operation starts, the difference is that the read process relies on the selected coordinator

sequence. If the PriorityCoordinator is the first coordinator in the read process on the container,

there is no list of preselected entries available, so the read process searches through the local

coordination information. If preselected entries exist from a previous coordinator, only the

preselected entries will be processed. The result is then a sub-select of the already given entries. For

this sample implementation the read process must only select the entries when their priority level is

in the range specified within the PrioritySelector.

The remove method searches the corresponding coordination information and removes it from the

coordinator. Over the helper method Rollback the coordinator can inverse the deleting or adding

process. This implementation always selects the first entry over the GetNext method when needed

to select an entry to remove when the container is full. For this coordinator there are no conflicts

during shift to be expected, so the GetShifted method always returns null.

46

public class PriorityCoordinator : ICoordinator

{

…

public bool Write(IEntry entry, ITransaction t)

{

 PrioritySelector ls = GetSelector(entry);

 if (ls != null)

 {//check if IEntry has the correct selector

 AddEntrySorted(ls.Value, entry);

 t.AddLog(new TransactionLog(TransactionLogType.CoordinatorAdd, null,

 Rollback, entry));

 }

 return true;

 }

public bool SelectorFits(Selector selector)

{

 return (selector is PrioritySelector &&

 ((PrioritySelector)selector).Name == _name);

}

public List<IEntry> Read(Selector selector, ITransaction t, List<IEntry>

preSelectedEntries)

{

 PrioritySelector ps = (PrioritySelector)selector;

 if (preSelectedEntries == null) //no preselection

 return GetElementsFromLocal(ps.RangeMin, ps.RangeMax,

 vs.HasCountAll ? -1 : vs.Count);

 else

 return GetElementsFromPreSelected(preSelectedEntries, ps.RangeMin,

 ps.RangeMax, vs.HasCountAll ? -1: vs.Count);

}

public int Remove(List<IEntry> entries, ITransaction t)

{

 int count = 0;

 foreach (IEntry e in entries)

 {

 PriorityEntry tmp = GetEntry(e);

 if (tmp != null)

 if (_entries.Remove(tmp))

 {

 count++;

 t.AddLog(new TransactionLog(TransactionLogType.CoordinatorRemove,

 null, Rollback, e, 0, tmp.Value));

 }

 }

 return count;

 }

public IEntry GetNext(ITransaction t)

{

 if (_entries.Count == 0)

 return null;

 return _entries[0].Ientry;

}

public List<IEntry> GetShifted(IEntry entry, ITransaction t) { return null; }

…

}
Example 12: Implementation of the PriorityCoordinator

47

5 Transactions in the .NET Kernel

5.1 Introduction

For a space implementation with concurrent data access the support of transactions is very

important. This means that different users should be able to access the same data concurrently.

Based on the highest possible level of performance the consistency of the data must be guaranteed.

This is done by the transaction concept. During a transaction a flow of operations must either be

performed successfully on the space or have no effects at all.

5.2 Transactions – Theoretical

The behavior for transactions relies typically on the ACID [35; 36] properties. These properties come

from database systems and stand for Atomicity, Consistency, Isolation and Durability. In the space

these four are represented as follows: Atomicity warrants that changes will only be visible if the

transaction will be committed successfully, otherwise no changes will be made. Consistency means

that integrity constraints mustn’t be violated after a transaction is finished. It is important that

different transactions aren’t able to interfere with each other, this feature is called Isolation. The last

rule for transactions is called Durability which means that all changes must be persistent after the

transaction is committed.

For the XVSM space the transaction implementation ensures that different operations on different

containers can be executed as a single atomic operation. Over the transaction concept and its locking

mechanism the ACID rules can be fulfilled.

The main operations on transactions are create, commit and rollback. Commit will be used for

applying all changes permanently to the space. In contrast, the rollback command will revert all

changes to the original state. For example, this will be needed when an error occurs or the

transaction expires. After a rollback no changes will be made in the space; all states will be the same

as before the transaction began.

The space also supports the prepare state for transactions. This is needed, for example, when

transactions that are distributed over different cores are used. After finishing of all the tasks the

transaction on the different core instances should be committed together. Before the commit

command is sent, all transactions are prepared. This behavior is also known as two phase commit

[37]. A transaction can be switched to the prepare state when all operations on the transaction are

finished. When the transaction is in the prepared state, the space ensures that the transaction can be

committed successfully. For distributed commits this is very important, so it can be ensured that

every single transaction is alive and can now be committed and no other instance can make changes

after this point. The space accepts only commit and rollback commands for prepared transactions.

The XVSM space supports pessimistic transactions. This means that a single transaction collects locks

for every resource which is to be accessed. No other transaction can access these locked resources

until the active transaction is finished through commit or rollback, except that multiple reads on the

same resource are allowed. This behavior guarantees that an active transaction always is able to

commit successfully, but restricts the access for other transactions. The opposite transaction

handling to pessimistic behavior would be optimistic so as e.g. used in Corso [18]. Here no locks

48

would be used during the operations performed on the transaction. At the end the commit

procedure will check all entries modified from another transaction during the transaction life time. If

a conflict is detected during this check the transaction will roll back. This would occur, for example, if

transaction A reads an entry [“x”] and another transaction B removes the same entry [“x”] and B

commits [“x”] before A. Then transaction A cannot be committed successfully because the entry [“x”]

does not exist anymore and would so be rolled back.

When an operation on a container is performed a transaction is always needed. If an operation is

started from the user without a transaction definition, the space will create a new temporary

transaction for this operation. This automatic transaction behavior is named implicit transaction.

These transactions will be committed directly after an operation is finished successfully, or will be

rolled back in case of an error. On the other side with explicit transactions the user is able to define

manually when prepare, commit and rollback should be done. Rollback will only start automatically

when the transaction runs into a timeout. The timeout value can be defined for every single

operation and additionally a timeout can be defined for the whole transaction. It defines the longest

accepted period for an operation starting with the processing in the core of the space (processing

start in the CoreProcessor, more information follows in the next chapter).

5.3 Transactions – Implementation

The transaction in the XVSM space is structured into different parts: The locking and logging part.

With the locking information, the different locking mechanisms can ensure the correct access to all

data. This will be shown in detail in Chapter 5. Every single instance which changes data on the

container is responsible for a correct commit and rollback execution, and the information needed for

this purpose can be stored in the transaction log. During commit and rollback every involved instance

can access its own information for a smoothly flow. For more internal clarity a single transaction is

structured into hierarchical parts as it is shown in Figure 33. Every single operation on an explicit

transaction is added as sub transaction. When a new operation on a long running transaction cannot

be fulfilled, the whole transaction does not need to be rolled back; only the active sub transaction

must be rolled back. The rest of the transaction remains unchanged and only the single operation will

be rescheduled. The hierarchical structure is only for internal use, outside of the space no nested

transactions are supported.

A single log provides the answers to the three main questions: What should be changed and where?

Which resources are locked? What is the root transaction? Here the information to every changed

entry from a single operation can be found with the appropriate action. Additionally all locks can be

found which are needed for consistent access. During the locking procedures, a transaction needs

the information about its root transaction so that it is able to access all resources that have been

locked by the root transaction or any other child transaction of it.

49

5.3.1 Transaction structure

Every transaction in the XVSM space is managed trough the TransactionManager. The class provides

the main methods for creating, preparing, committing and rolling back a transaction. Additionally the

transaction timeout handling can be found in this class. Every transaction in the space can be

discovered over its transaction reference. A transaction reference is automatically generated in the

create method during transaction creation. An additional method delivers the active transaction

instance to a given transaction reference.

The Transaction class provides the main management functionality and access for transactions and

implements the three interfaces ITransactionLog, ITransaction, ITransactionInfo. ITransactionLog

provides a simple commit and rollback method. This is implemented in the TransactionLog class

which makes delegates (function pointers) available for the two actions. Over the delegates a very

flexible solution is available so every involved instance can do individual actions during commit and

rollback. The interface ITransaction defines two maintenance methods for transactions. Over the first

method AddLog new ITransactionsLogs instances can be added. This interface is used from the

coordinator implementations to add information about every change in the container. The second

method enables access to the root transaction for checks in the locking hierarchy. The last interface

ITransactionInfo provides the function to receive information about all operations in the transaction,

for example all added or removed entries from an adequate container. The interface is used as

parameter for every commit aspect event. In the pre and post transaction commit event the user can

work with the list of changes from the transaction. Beside the three interfaces, the transaction class

manages the following information: the transaction timeout, a reference to the root transaction if it

does exist, and the count of currently active operations that are using this transaction. The

OperationCounter is a helper class that implements the current count of operations on a root

transaction. For every single operation that is started on the transaction the counter will be

incremented as soon as the operation is finished the counter will be decremented. This information

is used for preparing and commit of a transaction. When a transaction is being prepared or

committed, no operation is allowed to be active. Over the counter this information can easily be

verified. For additional information about the transaction interfaces and classes a class diagram can

be found in [21].

The transaction management in the XVSM space starts in the CoreProcessor. The CoreProcessor is the

control center of the space to execute all different commands with the highest throughput that is

possible. Here it is important that no inconsistency will be generated during parallel processing of the

Transaction T

TransactionLog

Container

Container

Container

entry

entry

entry

entry

entry
entry

entry
entry

TransactionLock

TransactionLog

TransactionLog

TransactionLog

(entry lock)

(container
lock)

(entry lock)

(write)

(read)

(write)
(shift)

Figure 33: Example for a transaction instance with locks and logs

50

different tasks. For every single command the CoreProcessor must decide which way transactions

should be handled. For more details to the architecture and the CoreProcessor see [21].

For the commands read, write, container create and container destroy, a helper class named

TransactionalContext is created. In this class the transaction handling defines which type of

transaction (implicit or explicit) is used. If no explicit transaction is defined, a new transaction is

created otherwise a new sub-transaction is added to the existing transaction. After the initialization

phase a transaction instance will exist for the next steps in the operation. The TransactionalContext

will not be used for commands that directly manage transactions like create, prepare, commit and

rollback. This behavior is also valid for aspect commands, because these commands do not work

directly on containers so they do not use transactions for add and remove. The active aspect itself

gets the transaction information for the current operation which the aspect is registered for.

 TransactionalContext: IDisposable

 Tx The transaction that should be used for the operation

 OperationSuccess Will be called when the operation is successful. Implicit
transactions will be committed.

 OperationWaitOrReschedule Will be called when the operation goes into waiting state or is
rescheduled. Implicit transactions will be rolled back.

 Dispose If the transactional context is still active (meaning the
OperationSuccess and OperationWaitOrReschedule methods have
not been called), the implicit transaction will be rolled back.

5.3.2 Transactions in use

In the next illustration (Figure 34) the processing of a basic operation with an explicit transaction is

shown. For this example all conditions are assumed to be fulfilled so no rollback will be needed (e.g.

pre aspect will be ok). After starting the processing (1) in the CoreProcessor of a basic operation the

TransactionalContext (2) is created as mentioned above. In this case the transaction reference is

defined and so the active transaction is selected from the TransactionManager (3). The

TransactionalContext is created and a new sub-transaction (4) it is added to the existing transaction

(If no transaction reference is provided in the operation information an implicit transaction will be

created here). Furthermore, the operation counter in the root transaction is increased because a new

operation starts. After preparing a transaction for the basic operation the requested container is

selected from the ContainerManager (5). At this point all information is prepared for the main basic

operation processing on the container. Some examples of the basic operation are shown in Figure 28

for read and in Figure 30 for write.

51

First the pre aspect is started (6). Here only the transaction reference is provided, because the aspect

itself should not get access to the active transaction itself. Here the aspect only should get the ability

to create its own commands in the space with the same transaction, but should not be able to

change settings directly in the transaction. This is for protection of the transaction against

undesirable behavior through unexpected actions on the transaction object. After processing all pre

aspects the locking procedure is started.

If container locking should be used the locking mechanism will try to lock the whole container. More

details to container locking can be found in Chapter 5.4.2. Next the basic operation is started on the

container (7). All entries that should be changed on the container are given to the existing

coordinators. Every coordinator must ensure that all changes can be committed and rolled back

correctly without any side effects. For this purpose every coordinator can write into the active

transaction log and its changes are added to a protocol. Here the entry, coordinator information, the

action itself (e.g. add, remove), and the rollback delegate can be specified. When a rollback is needed

every single change will be reverted through the coordinator that caused it. The transaction itself has

no knowledge about commit and rollback actions for every single change. It only provides the ability

for processing a correct commit and rollback via delegates. If container locking is not active, the entry

locking will lock every single entry. In this case the locking information of the transaction is used to

gain a lock to the entry. More details about entry locking can be found in Chapter 5.4.3.

When all entries can be processed and locked successfully, the post aspect starts (8). Because the

post aspect is also not allowed to change anything directly on the transaction, only the reference is

forwarded. If all post aspects can be fulfilled the last action can be started in the basic operation of

the container. This is a wakeup call for all operations waiting in the current transaction. Over this all

waiting operations can be reactivated if they are waiting on an event like entryAdd like in this

example. More details about the wait handling of operations can be found in [21].

During the basic operation on the container different problems can occur. Some examples are

conditions for pre or post aspects, no locking is possible because the requested resources are already

locked by another transaction or the coordinator task cannot be fulfilled. In all these cases the

Figure 34: Successful basic operation processing with explicit transaction handling

Transaction Manager

Transaction

Processor

Transaction Aspect Manager

Container Manager

Container

Aspect

Aspect

Aspect

Transaction

Container

Container

1. Process
basic
operation

Basic
Operation

2. Create

3. get
transaction

4. Create sub
transaction

5. Select container

6. pre aspect

8. post
aspect

9. finished

Use transaction and
modify transaction
log

Container

T.-log

Transaction

Sub-Trans
T.-log

7. operation
execution

TransactionContext

52

currently running transaction is rolled back automatically, the operation on the container does not

return successfully and the basic operation is rescheduled.

The processing of the basic operation on the container with a transaction gives back the information

if it was successful or not. If it was successful the operation count is decreased (actual action is now

finished, prepare is now possible if no other operations are active) and if an implicit transaction was

used it is automatically committed and the result information is returned to the user. When the basic

operation result is not successful the operation is rescheduled. In this case an implicit sub transaction

is automatically rolled back.

5.4 Locking

For good concurrency an efficient locking mechanism is important. Therefore the access to all

resources is monitored by the locking system. If a resource should be accessed which is already

locked through another transaction, the current action must wait until the lock on the resource is

released. This is possible through a commit or rollback from the other transaction. The operation

stays in the waiting state as long as it has not reached its operational or transaction timeout.

5.4.1 Locking interfaces and helper

The whole locking handling is managed over the interface ILockManager that is used in the Container

class. In the constructor block of the Container class the different used coordinators decide which

locking granularity will be used during the container’s lifetime. If a coordinator needs container

locking, it will be used, otherwise entry locking will be initialized. With the interface ILockManager

the container only needs to specify which data should be locked (read or write) in the current basic

operation. The management is implemented in the selected locking mechanism. Depending on its

type the one or the other method (read and write are overloaded) will do nothing and the other will

implement the locking functionality.

 ILockManager

 SetReadLock Sets a read lock for the complete container. (only for container level
locking)

 SetReadLock Sets a read lock for a single entry. (only for entry level locking)

 SetWriteLock Sets a write lock for a single entry. (only for entry level locking)

 SetWriteLock Sets a read lock for the complete container. (only for container level
locking)

 SetCompleteReadLock Sets a read lock for the complete container, for special situations where
locking the complete container is even needed in entry level locking
mode

 SetCompleteWriteLock Sets a write lock for the complete container, for special situations where
locking the complete container is even needed in entry level locking
mode

The interface ILockWaitInfo gives a clear definition why a lock must wait. This is used as decision base

for read and write locks.

 ILockWaitInfo

 Transaction The transaction instance of the waiting information

 Op The operation that needs the lock

 OtherContainerReadLockSet Indicates true if another read lock than the own is set for the
container

53

 OtherContainerWriteLockSet Indicates true if another write lock than the own is set for the
container

 OtherLocksSet Uses the information in this wait object to check if there are (still)
other locks set, because of that the lock for this operation cannot
be set.

In the class LockData all locks are held from one locking implementation type.

 LockData: IDisposable

 WriteLock The Transaction that currently holds a write lock on the container, or null, if the
container is currently not write locked

 ReadLocks The list of transactions that currently hold a read lock on the container. (The list is
empty when the container is currently not read locked.)

5.4.2 Container locking

The container locking mechanism is a very simple opportunity to implement locking. Here the access

granularity is very low, after the model complete-or-no access. Although only a single entry should be

written into a container, all other transactions must wait for the release of the whole container

before further action can be taken. The implementation is divided in two classes. The helper class

ContainerLockWaitInfo implements the interface ILockWaitInfo. Here the important method

OtherLocksSet defines that for a read lock no other write lock is allowed, and for a write lock neither

a read nor write lock is allowed from other transactions. The second class is the

ContainerLevelLockManager which implements the interface ILockManager. When all coordinators

come to the decision that container locking should be used, this class is loaded for the locking

mechanism on the container. In this class the main read and write locking methods only work on the

container, the overloaded methods with entry locking possibilities are with no functionality.

5.4.2.1 Setting a read lock

The first action in the read lock mechanism (see Figure 35) is gathering information on the actual

locking state of the container. This task searches for currently active read and write locks from other

transactions and stores the results in a helper instance named ContainerLockWaitInfo (implements

ILockWaitInfo). Read locks from others are seen as active when there is more than one existing read

lock or the existing read lock is not from the current transaction. The write lock check is simpler

because only one write lock can exist. If a write lock exists the check verifies if the write lock is from

the current transaction or not. With this collected information the read lock can be managed easily.

The first condition implies no other write lock is allowed. If another write lock is active, the process

will be canceled and a check for the operation time out will be performed. If the timeout is not

reached, the lock request will be rescheduled. In case of timeout an exception will be thrown and the

transaction be rolled back.

If the write lock is not from another transaction it will check whether or not the write lock is from the

current transaction. If so, the read lock is not needed because the write lock is stronger than the read

lock and the check returns success. Otherwise no write lock exists and the existing read-locks will be

checked. When the root transaction does not yet exist in the read lock list, a read lock entry is added

with the root transaction to the list. After adding the read lock the read lock count of all waiting locks

will be refreshed. If then the waiting condition becomes invalid, the lock request will be restarted.

54

Then the locking event will be added to the transaction log for commit and rollback. After this the

read lock is successfully set.

5.4.2.2 Setting a write lock

The write lock mechanism is structured very similar as read. Here the same information is requested

for other active locks. When other locks (write or read) are active the equal rescheduling procedure

with timeout check will proceeded as with read. If no other locks are active on the container the

write lock will be checked. If it is already the same as the current transaction, the task is complete,

otherwise the write lock will be set to the root transaction (otherwise children of the same

transaction could lock themselves). In the case where a new write lock is set, the other write lock

count is recalculated for all waiting locking requests. When old waiting conditions become invalid as

a result, the restart of the lock request will be initialized. As a last action the write lock event is added

to the transaction log for commit or rollback.

5.4.3 Entry locking

With entry locking, not the entire container is locked when accessing an entry; only the requested

entries are locked. This mechanism is quite more complex than container locking and achieves a far

better performance especially when many write operations should be processed at once. Especially

when the requests are spread to different entries the concurrency can be increased, and the chance

that the task must wait will be reduced. In the normal case with this mechanism quite more requests

can be processed concurrently as with container locking.

In Figure 36 the class diagram of the entry locking classes can be found. For the entry locking

mechanism the corresponding ILockManger implementation is EntryLevelLockManager. Here are the

SetWriteLock and SetReadLock methods working on single entries the ones that provide the main

functionality. The overloaded write and read methods which are designed for container locking have

no functionality. In some cases although entry locking is used, the whole container must be locked

(e.g. for create and destroy of the container or a complete read lock for reading properties on the

container, like the container’s entry count). For these requirements the ContainerLock class uses the

same locking information as for entry locking and works like a wrapper for all functionalities and

behavior which is described in the previous Chapter (5.4.2). There is only one single but important

Generate Lock-Info

successful

other write
lock exists

not successful

prepare to wait

Read lock
already set

write lock set
by root TX

yes

no

yes

check
timeout

(operation
timeout)

timeout
reached

add readlock

enough
time

Timeout exception

no

yes

no

Figure 35: Setting a read container lock

55

detail, when the other locks are verified for a locking request. Here beside the whole container locks

also the entry lock information must be included for verification. This means for a read lock that

besides the condition that no other container write lock is allowed, also no write lock on any of the

container’s entries is allowed. For a write lock the expansion is similar as read, here no read or write

lock is allowed, neither container nor entry lock.

The centerpiece of the entry locking mechanism is built by the LockInfo and EntryLock classes. In the

LockInfo all information is managed that is needed for the lock waiting and event management at

entry level locking. In the EntryLock class all entry locking requests are processed. The

EntryLevelLockManager itself only distributes the different locking requests to the EntryLock class if

the lock is requested for an entry or to the ContainerLock class if the whole container should be

locked.

 LockInfo

 ContainerLockData The lock data for container locks

 EntryLocks The list of entry lock objects (each entry in container has an own
lock object that handles the locking for this entry)

 AddWaitingOperation Creates a new wait info object(ContainerLockWaitInfo) for an
operation waiting for a container lock and adds it to the list of
waiting operations
First all read and write entry locks of all other entry locks will be
collected. Second all read and write locks will collected on
container level

 RemoveWaitingOperation Removes an operation from the list of waiting operations for
container lock

 AddWaitingEntryLock Adds a wait object to the list of operations waiting for an entry lock

 RemoveWaitingEntryLock Removes a wait object from the list of operations waiting for an
entry lock

 IncEntryReadLockCount Increases the entry read lock counts of all container lock wait
objects, except of the ones for the given transaction, by 1. This is

Figure 36: Class diagram of the most important entry locking classes.

56

called when an entry read lock is set

 DecEntryReadLockCount Decreases the entry read lock counts of all container lock wait
objects, except of the ones for the given transaction, by 1. This is
called when an entry read lock is set. Every concerned wait object
is checked, and if there are no other locks set, an event is sent to
wake up the waiting operation

 IncEntryWriteLockCount Increases the entry write lock counts of all container lock wait
objects, except of the ones for the given transaction, by 1. This is
called when an entry read lock is set.

 DecEntryWriteLockCount Decreases the entry write lock counts of all container lock wait
objects, except of the ones for the given transaction, by 1. This is
called when an entry read lock is set. Every concerned wait object
is checked, and if there are no other locks set, an event is sent to
wake up the waiting operation.

 ContainerReadLocksChanged Called by whenever the container read locks are changed. All
waiting operations are checked, if they can be woken up.

 DecEntryWriteLockCount Called by whenever the container write locks are changed. All
waiting operations are checked, if they can be woken up.

 SendEvent Sends an event for the operation that is waiting with this waitInfo
object. (The event is written to the event container.)

 SendToWait Send an operation into waiting state by writing it into the wait
container

5.4.3.1 Setting a read lock

Over the interface ILockManager the EntryLevelLockManager gets the read lock request for a single

entry from the container. In the first step the lock information for the given entry is chosen. The lock

information is generated when the entry is added to the container (during the first write). If no lock

information of the entry is available an exception will be thrown, otherwise the normal processing

will be continued. The set read lock request is forwarded to the EntryLock instance.

Here also the locking information gathering will start for other active locks as in the container locking

level. The following information is collected in an EntryLockWaitInfo instance:

 EntryLockWaitInfo: ILockWaitInfo

 Transaction The transaction for which the lock should be set

 Op The operation that needs the lock

 IEntry The entry that should be locked

 OtherEntryReadLockSet This property will be true if more than one entry lock active or the
only existing entry read lock is from another transaction

 OtherEntryWriteLockSet This property will be true if an write lock exists and the lock is
from another transaction

 OtherContainerReadLockSet This property will be true if the same conditions will be fulfilled on
container level (OtherEntryReadLockSet).

 OtherContainerWriteLockSet This property will be true if the same conditions will be fulfilled on
container level (OtherEntryWriteLockSet).

 OtherLocksSet For write lock every other read or write lock on both locking levels
(entry/container) returns true.
For read locks no other write lock will be accepted
(entry/container)

57

When all this information has been evaluated the decision process is started. If other locks are

currently active the operation timeout is validated. If the operation timeout is expired an exception is

thrown (XcoOperationTimeoutException) and the roll back sequence for the transaction is started.

Otherwise the operation is scheduled. If there are no other conflicting locks, the process is

continued.

If a write lock exists on the container and it is from the current root transaction, the read locking is

not required anymore, because the existing write lock is stronger than the requested read lock. (If a

write lock exists and it is not from the current root transaction the request will be directly

scheduled). Then the search for already existing read entry lock is started. If a read lock is already

active no further action is required, otherwise the root transaction is added to the read lock list.

After adding a new read lock for all waiting requests the entry read lock count is updated and

requests that are no longer blocked are woken from the waiting state. Additionally the entry read

count on the current transaction is increased, then all locking information is refreshed and the read

lock event added to the transaction log, and the read lock request is successfully finished.

5.4.3.2 Setting a write lock

The write lock also starts like the read lock with information gathering and building the

EntryLockWaitInfo helper object. When other locks (read/write) are found that are not from the

current transaction, the operational timeout check will be processed like in the read procedure. If the

operational timeout is not yet reached the lock request will be rescheduled.

If no other locks are currently active, the existing write lock is validated. If the write lock is owned by

the current transaction the locking process is finished. Otherwise the write lock is set to the root

transaction. Then all information is refreshed as in the read lock procedure. First the entry write lock

count of all waiting locks is recalculated. When then waiting conditions are released, the lock request

will be restarted from the waiting state. As one of the last tasks the entry write lock count for the

own transaction is incremented and the write lock count for all other waiting locks not in the current

transaction are refreshed. The final task adds the write lock event into the transaction lock for

commit and rollback.

5.5 Deadlock Detection

A deadlock occurs when two different concurrent transactions attempt to access the resources that

are already held by the competing transaction. Both transactions will then wait for the other to

release the lock from the resource.

For deadlocks four conditions are necessary to occur, mutual exclusion, hold and wait, no

preemption, circular wait, also known as the Coffman conditions [38]. Mutual exclusion implies that a

resource cannot be used more than once at the same time. Hold and wait means that a transaction

which already holds resources may request new ones. No preemption states that an already held

resource cannot be automatically removed from the transaction. The resource can only be released

over an explicit action of the transaction. The last condition is circular wait which defines that a

scenario is possible where two or more transactions build a circular chain where each process waits

for the release of resources from the other next in the chain.

All these conditions can be shown in a simple example for a deadlock in the next illustration (see

Figure 37). Here two different transaction “I” and “II” want to read and write to two different

58

containers “a” and “b” using container locking. First transaction “I” gets the container lock for

container “a”, at the same time the transaction “II” ensures the container lock for “b”. Then

transaction “I” wants to access container “b” but it is already locked through transaction “II” vice

versa the transaction “II” wants to access container “a” that is locked through transaction “I”. Then

the deadlock is complete, both transactions cannot fulfill their operations and will wait endlessly.

5.5.1 Limitations of the Core

Deadlock prevention is a complex topic. Here a solution would be needed that one of the four

conditions can not be possible so that no deadlock will occur. As long as pessimistic locking is used in

the XVSM space the mutual exclusion will be needed and cannot be solved over non-blocking

algorithms. To prevent the hold and wait condition every transaction would have to specify all

required resources before the transaction starts. But implementing this functionality is not easy and

not very flexible. Large transactions could only start when all information is available which resources

are needed, and often this will not be possible because in a transaction the user will react on data

which was read in the current transaction. A solution for the no preemption condition may be also

very difficult when pessimist locking is used. Here an algorithm would have to decide which

transactions are allowed to get the lock to the resource and which transactions must be rolled back

and rescheduled. This behavior can cost a large amount of performance. To avoid circular waits a

transaction is allowed to wait for resources, but ensure that the waiting cannot be circular. One

solution might be to create a hierarchical structure between resources for example with precedence.

A transaction can only request resources in order of the precedence. If resources are already held

only resources with higher precedence can be requested.

Deadlock detection itself is may be easier to implement than prevention solutions. Here an algorithm

must track all allocated resources and transaction states. When a deadlock is identified the algorithm

must specify which transactions should be rolled back and rescheduled. For deadlock detection some

additional problems exist. How often should this algorithm start? How many resources and how

much performance does the deadlock detection itself require? Which transaction should be rolled

back (what is the best decision in this case)? The next problems come up when distributed

transaction are used.

Figure 37: Example for a deadlock

Transaction I

Container a

entry

entry

TransactionLock

TransactionLog
(write)

(write)

Container b

entry

entry

Transaction II

TransactionLock

TransactionLog

TransactionLog TransactionLog

(read)

(read)
Waiting for
lock release

Waiting for
lock release

59

5.5.1 Solution

The solution for the deadlock problem in the current implementation of the XVSM space is

composed of specified timeouts for every single transaction. After the timeout is expired a

transaction will be automatically rolled back. With this solution, endless waiting situations are not

possible unless the user specifies an infinite timeout. So in this case it is up to the user to define

meaningful timeout values for his/her transactions so that deadlocks will be prevented.

60

6 Remote communication

6.1 Introduction

When a XVSM core instance shall not only work in embedded mode a remote communication

mechanism is needed. Instead of supporting only a single transport protocol, an open extensible

solution is preferred to add the transport service the user requires. For this purpose the XVSM space

has clear and straightforward communication contract by which the XVSM core is able to

communicate to the outside. For more general information on contracts in the XVSM space see [21].

In the following illustration (Figure 38) classes of the CommunicationService contract are shown.

The IXcoCommunicationService interface allows the XVSM core to transfer messages over a remote

channel without having any knowledge about implementation details of the underlying transport

protocol. On the other hand, the communication service itself must only deal with the message and

make sure that the messages will be delivered and received. This decoupling is important given that

additional communication services should be easliy supported by the space. The public properties of

the interface should give an overview of the state of the service. With the hostname und port

information the local address is generated. In the running state, the space can check if the service is

already active. The ReleaseConnections methods allow the communication service to clean up all

active connections before a service is shut down and the underlying communication instances are

disposed of and cleaned up.

During the start sequence two important pieces of information are handed to the communication

service. First the delegate for received massages is specified; every message that is received over the

communication server will be forwarded to the defined delegate. The second parameter in the start

method is the ISerializationHelper instance. Using this inferface, the communication service can

serialize and deserialize the message instances. In the current implementation of the serializer the

developer can decide which way the messages should be converted from the object instance to a

byte array and vica versa. Through the usage of the ISerializationHelper the developer does not need

any knowledge of how the data should be serialized in the communication serivce, but only needs to

concentrate on the technical details for the new communication service specification.

Figure 38: The important classes of the CommunicationService contract.

61

 IXcoCommunicationService: IXcoService

 Hostname The hostname on which the service is running

 Port The port on which the service is running

 Running True if the service is running

 ServerAddress The address of the server

 ReleaseConnections Releases all current active connections

 SendMessage Sends an instance of IMessage to the given address

 Start Starts the communication service with IP address and port.
Additionally the method delegate for receiving messages
(MessageReceiveMethod) and the serializer instance
(ISerialzationHelper) can be defined here.

 Stop Stops the communication service

6.2 Processing a message

In the next chapter the workflow for remote requests is shown. New requests to be processed by the

space can be generated over the embedded API or via network using the communication service. For

more information about message handling in the core see [21].

For the next sub chapters, no exception handling will be mentioned. When something goes wrong

the space will throw an exception. Here not only a standard exception will be thrown; instead a

specialized XVSM exception will be generated with the most possible available details. More details

about the different exception types can be found in [21]. This concept is not only valid for local

exceptions; if an exception occurs during processing on a remote space the exception will be caught

and sent to the defined remote address.

In the standard space communication concept the single cores do not connect to other core

instances. They only send a single message over the space with no connections. The whole space

should be shown as a coherent system. For the normal developer it makes no difference where the

real data is hosted. The communication service automatically manages the communication in the

background. For most implementations (like TCP communication service) a connection is needed in

the background and this connection should be held for a certain amount of time. For example to

open a new TCP connection for every single message does not make a lot of sense because the TCP

handshake needs a considerable amount of time. This is especially important when a large amount of

small packages need to be sent. Managing open connection consumes more memory, but the

performance will be enhanced. When the connection is not used for a configurable time span, the

connection will be closed and the cleanup begun.

6.2.1 Sending a remote request

In the next illustration (Figure 39) the processing of a request is shown. In this case a TCP

(Transmission Control Protocol [39]) communication service is configured for the space. A simple

example is that a request from core A is created and then adds a new entry into a container on core

B. The start procedure for all requests to be processed is the same, and it makes no difference if it is

to be processed on the local or on a remote space. First a new message instance is generated with a

message identifier (short message id) that is unique for this core instance. Over the message id the

core can identify the response after the processing. Then the operation context of the message is

62

checked. The operational context additional information can be provided for a single message. This

can be used, for example, when security tokens are needed to authenticate the current request on

the other space. The space allows defining default operational context details. If a default context is

set, then all messages will receive this information, otherwise a default empty object will be

generated.

As next step in the sequence the remote information is updated. Here the system must decide if it

needs remote communication or not. For remote communication the given remote address must be

defined in the message, which must of course be different to the local communication service

address. If remote sending is required the content of the message is serialized by the currently active

serialization helper instance. More information about serialization can be found in Chapter 6.4.

When the serialization is finished, the timeout is calculated. If a timeout for the operation is specified

it will be used, otherwise a default timeout (30 seconds) will be set.

For the timeout management a waiting-object is created in which all important information, such as

message id, remote address and timeout is held.

At this point, every prepared task is forwarded to the XCore processor. The XCore processor adds the

task to its processing queue and will start processing the task. With this last action the start

procedure is nearly finished. Immediately after forwarding the task, the start procedure falls into a

waiting state. An event from the waiting management reactivates the task when the response is

available or the operation timeout is reached.

Figure 39: Processing of a request over remote communication part I

63

The processing itself is continued over the scheduling mechanism of the XCore processor. As soon as

there are free resources the task will be processed. If the task is to be processed locally the internal

request management will start here, otherwise the message will be given to the

RemoteMessageHandler instance. This class is the intermediary between the core classes and the

currently active communication service. The RemoteMessageHandler not only manages the transfer

of the messages in both directions, but is also responsible for the communication service start and

stop sequences. In this example the Send method hands the message over to the active

communication service.

In the current example the active communication service is the XcoTCPCommunicationService. This

creates a new TCPClient class instance if no active connection to this remote address exists,

otherwise the already existing one will be used. In the next step the remote address is changed to

the address of the currently active communication service. With this small change the remote core

knows which host the response should be transferred to, and the message is forwarded to the

TCPClient instance. The TCPClient itself serializes the message before the transfer can be started.

Directly after this process, the transfer over the network starts.

6.2.2 Receiving a remote response

Corresponding to the last chapter, here the flow of a response message from another core instance is

shown in Figure 40. When the other core instance receives the processed request the response will

be transferred. In this case the TCPServer is the receiving part of the XcoTCPCommunicationService

implementation and is waiting for new connections from the outside. The accepting of new

connections is decoupled from the processing and is managed over a thread pool. When a new data

object can be read from an already running receiving task this object is deserialized with the active

serializer instance. If the result after the deserialization can be parsed to an IMessage object the new

instance is returned by the message received delegate. Normally here the MessageReceived method

will be called from the RemoteMessageHandler instance. During the startup of the communication

service, the RemoteMessageHandler defines the delegate for received messages. The

RemoteMessageHander passes the response message back to the XCore processor. Here the

corresponding waiting object is found. The response object is then added to the waiting instance and

the signal is generated to release the waiting state.

The closing action is that the waiting instance is reactivated. The first action is to deserialize the

content of the message. If an error was thrown on the other space instance the content of the

message will contain an exception. When an exception is found in the content, the exception will be

thrown, otherwise the content of the message will be returned and the processing of the message

will be finished afterwards.

If no response is returned before the operation timeout is reached, the waiting operation is canceled

and a corresponding timeout exception is thrown.

64

6.3 Types of communication

In the next chapters the different supported implementations are presented. Every single variant has

its own advantages and disadvantages. The communication implementation can be divided into two

groups. The first group works very well in local area networks and therefore the performance is very

high, but if communication over firewalls is needed, every firewall must be configured manually. The

TCP and the WCF (Windows Communication Foundation) implementations belong to this group. The

second group on the other hand is designed to communicate without any problems across firewall

borders. This is done over tunneling via servers in the internet and so the performance is not as high

as with local communication, but instead the communication works over the internet. Currently the

BizTalk services implementation is the only option; a solution using jabber will be implemented in a

later version.

6.3.1 TCP

The XcoTCPCommunicationService allows the XVSM space to communicate over sockets. This

implementation is normally used when the communication needs to be platform independent and

work together with the JAVA implementation (Mozartspaces [33; 13; 40]) of the XVSM space.

For the execution the service has two main classes. The first is the TCPServer class which manages all

incoming connections. The second class, which is the TCPClient, is responsible for sending the

messages over the network. Besides the main functionality to send and receive messages, all open

connections are managed by this service.

In the next illustration (Figure 41) the normal behavior of the XcoTCPCommunicationService is shown.

For better performance to a single endpoint (combination of IP-address and port) only one

connection at a time will be established and held open. When a new message is to be delivered to

another XVSM core, a TCPClient instance is needed. If an active TCPClient does not already exist, a

new client will be created. To create a connection to another XVSM core it is necessary that the

firewall rules are correct and that the other space instances can be connected directly.

Figure 40: Processing of a request over remote communication part II

65

The TCPClient itself connects to the other XVSM core during the initialization phase. In the message

send method the message serialization over the given active serializer is started. After the message is

converted to a byte array, the data is sent over the socket. All TCP client connections that are not

needed for more than a minute will be closed and cleaned up automatically.

On the other side messages are received over the TCPServer instance, which accepts new

connections on the given port. To ensure no performance issues arise from concurrent processing of

all incoming requests, all requests are managed over a thread pool. Before the processing of an

incoming connection is started, the connection itself is added to the active incoming connection

pool. When the service is to be stopped, all current active connections must be closed before the

socket is closed.

In the processing loop the system waits for new message objects. Every incoming object is directly

deserialized with the given active serializer. When the instance is an IMessage instance the message

is forwarded over the receiving delegate to the processing mechanisms of the core.

A special scenario is shown in Figure 42, here a firewall is situated behind the master space (XCore A).

The other space instances (XCore B-D) are e.g. running on mobile devices. On mobile devices the

mobile core should not open a port due to security and performance issues. For this behavior the TCP

service can be switched to the bidirectional mode in the settings. When the bidirectional mode is

active on a space instance, no direct connections are established (connecting directly to a mobile

device is not possible). Instead, outgoing data is managed over the same connection as incoming

data. Here all mobile space instances have to connect to the master space on a well known port,

which is open on the firewall. If a mobile space instance (XCore B-D) has established a connection to

the master space (XCore A) the connection will be held as long as possible. This has two simple

reasons. First the master space can communicate over the existing connection with the mobile space.

The second reason is economically motivated. As long as no data is transferred over the active GPRS

connection no additional costs will be incurred. In contrary the reconnect into the GPRS network will

generate new cost for the operator of the software, therefore a connection will be held as long as

possible.

The bidirectional mode requires some little changes in the TCPClient and TCPServer module. The

processing of newly connected clients in the TCPServer requires an extension. Directly after reading

the first message, the internal remote address is read, and with the remote address, the connection

is added to a hash table of existing connection. This connection-collection is used when a new

message is to be sent. The corresponding active connection can be found in the hash table via the

TCPServer

TCPClient
XcoTCP-

Communication-
Service

Accept new
connections

TCP connections

send

send receive

receive

incoming
data

outgoing
data

XCore A

XCore B

XCore C

XCore D

Figure 41: The Standard XcoTCPCommunicationService

66

destination address in the message. This connection is also used for sending of new messages to the

other space instance instead of establishing a new connection. The last difference between this and

the normal mode is in the timeout handling. Normally all TCPClient instances for sending are closed

when no message has been sent within the timeout period. In the bidirectional mode only the

TCPClient object is removed and destroyed - the underlying connection is not closed. This connection

must be closed off from the space situated outside the firewall.

6.3.2 WCF

6.3.2.1 Introduction

The Windows Communication Foundation (WCF) [41] is one of the most important new parts of the

.NET Framework 3.0. WCF unifies different communication technologies (DCOM [42], Enterprise

Services [39; 43], MSMQ [44], WSE [45] and Web-Services) over a single and common service

oriented at a programming model for communication. The main field of WCF is in supporting service

oriented architecture principles for distributed services.

In WCF a service is accessed via an endpoint. The endpoint is composed of address, binding and

contact, also known as ABC principle [46]. The address defines where the service is hosted. In the

binding the supported protocol (HTTP, TCP, UDP,…) and all other communication details (e.g.

timeouts, serialization, security definitions and so on) can be set [47]. In the contract the interfaces

of the service are specified for the client.

6.3.2.2 WCF in the XVSM space

The WCF service implementation (XcoWCFCommunicationService) is the standard communication

service in the XVSM space. That is because WCF provides communication functions on a very high

level and is easy to use and implement. The main reason lies in the very powerful configuration

possibilities of WCF. In the XVSM service the contract is defined and all settings for the protocol and

communication details can be specified in the configuration file. For most settings, no changes in the

source code are needed.

As mentioned in the previous chapter, the open connections are automatically managed and reused

for more than one message. By communicating via WCF the communication slows down when the

connection is repeatedly closed and reopened.

For the XcoWCFCommunicationService the WCF contract is shown in Example 13. The interface

IRemoteSpaceService is quite simple – with the connect method a new connection is established. Via

TCPServer

Accept new
connections

 TCPClient &
TCP connections

send

send receive

receive

incoming
data

outgoing
data

XCore A

XCore B

mobile

XCore C

mobile

XCore D

mobile

XcoTCP-
Communication-

Service

Figure 42: The XcoTCPCommunicationService in bidirectional mode

67

SendMessage new data can be transferred, and when all work is done the connection can be

released with Disconnect. The SessionMode is responsible for the connection handling and specifies,

when the connection must be initiated and terminated in the corresponding parameters.

[ServiceContract(SessionMode=SessionMode.Required)]

public interface IRemoteSpaceService

{

 [OperationContract(IsInitiating = true, IsTerminating = false)]

 void Connect();

 [OperationContract(IsInitiating = false, IsTerminating = true)]

 void Disconnect();

 [OperationContract(IsInitiating = false, IsTerminating = false)]

 void SendMessage(byte[] xCoreData);

}

public interface SpaceServiceChannel : IRemoteSpaceService, IClientChannel { }
Example 13: Contract of the XcoWCFCommunicationService

The class SpacePortal implements the interface IRemoteSpaceService. The only method that must be

overridden with new functionalities is the SendMessage method, the other two (connect and

disconnect) can be left empty because WCF automatically handles the rest.

During the startup phase of the XcoWCFCommunicationService the setup of the ServiceHost is started

in a background thread. The ServiceHost mechanism of WCF allows hosting a contract over different

endpoints with different bindings. In the case of the communication service, the SpacePortal is used

as contract. First a valid WCF endpoint is generated with the hostname of the machine. Then the

configuration is checked. If an application configuration file exists the important values for the WCF

service are searched there. When a valid configuration block is found, these settings are used,

otherwise a default TCP binding is generated. With the endpoint address (already defined), binding

(now loaded) and contract (IRemoteSpaceService) all preconditions (ABC principle) are fulfilled and

the hosting of the SpacePortal can begin.

After this point new connections are handled over the WCF service. This means that every data

object transferred over the network to this hosted service can be handled in the SendMessage

method of the SpacePortal. Here the byte array of data should only be deserialized to an IMessage

instance. The IMessage instance then will be forwarded over the delegate to the core processing

mechanisms.

For sending new messages over WCF a new RemoteSender is generated when no currently active

instance is registered for the current remote address (= destination address of the message). Similar

to the SpacePortal initialization sequence the RemoteSender can also be defined via the settings file.

When no configuration block is found, default settings for a TCP binding are added. A WCF channel

can be established to a SpacePortal instance via a ChannelFactory<SpaceServiceChannel>.

After the RemoteSender instance is initialized the connect method will be called. The WCF

abstraction on this channel only allows the three methods from the contract for the communication

with the other end of the network. The connect method of the channel will be invoked by the

connect method of the RemoteSender. To send the message, the object will be serialized and the

resulting byte array will be sent over the WCF channel.

The WCF takes care of many details which a developer must otherwise consider when the

communication would be managed manually. To obtain the best results, the

68

XcoWCFCommunicationService additionally manages some WCF details for the user. First the active

connection may be reused and may also be cleaned up when the service is stopped. If a connection

breaks or a timeout occurs the dead connection will be removed automatically and used resources

will be released. Similar to the native TCP implementation in the previous chapter a connection

timeout handling exists which closes RemoteSender channels that are not used for a defined amount

of time.

The current configuration is tested for the WCF bindings for TCP and Named-Pipes [48]. The WCF

naming is netTcpBinding and netNamedPipeBinding. Named pipes allow simple communication

between a pipe server and one or more pipe clients. This can be especially useful for communication

between related or unrelated processes with security checks. The communication can also run across

machine borders over the network.

The configuration does not work with Microsoft Message Queues (MSMQ) [44] because the contract

is not compatible with the netMsmqBinding definitions (a message queue normally sends the data

one way and doesn’t have any open connections). Microsoft Message Queues also allow exchanging

messages when the other process is not currently running. The messaging system supports

guaranteed message delivery, security and priority-based messaging. When the other partner is

ready again, the queued messages can be processed.

In the next illustration, (Example 14) an example configuration for the XcoWCFCommunicationService

with netTcpBinding can be found. If netNamedPipeBinding is used only the binding tag must be

changed from netTcpBinding to netNamedPipeBinding. With this simple change the service then runs

with another communication protocol.

<system.serviceModel>

<services><!-- For XVSM cores server -->

 <service name="XcoSpaces.Kernel.Communication.WCF.SpacePortal"

 behaviorConfiguration="XCoreBehavior">

 <endpoint name="XVSMDefault" address=""

 binding="netTcpBinding"

 bindingConfiguration="XVSMBinding"

 contract="XcoSpaces.Kernel.Communication.WCF.IRemoteSpaceService" />

 </service>

</services>

<client> <!-- For XVSM core clients -->

 <endpoint name="XCoreClientDefault" address=""

 binding="netTcpBinding" bindingConfiguration="XVSMBinding"

 contract="XcoSpaces.Kernel.Communication.WCF.IRemoteSpaceService"/>

</client>

<behaviors>

 <serviceBehaviors>

 <behavior name="XCoreBehavior">

 <serviceThrottling maxConcurrentSessions="10000" />

 </behavior>

 </serviceBehaviors>

</behaviors>

<bindings>

 <netTcpBinding>

 <binding name="XVSMBinding" maxReceivedMessageSize="512000"

 maxBufferSize="512000">

 <readerQuotas maxArrayLength="512000" />

 <security mode="None" />

 </binding>

 </netTcpBinding>

</bindings>

</system.serviceModel>
Example 14: Configuration example for netTcpBinding

69

6.3.3 BizTalk Services

The BizTalk Services [49] were an initiative from Microsoft to build a lightweight programming model

to connect applications over the internet. During our space development the BizTalk Services were a

Community Technology Preview (CTP) and nobody knew precisely whether this new software module

would come to a release state and in which product Microsoft would present it. (Meanwhile the

BizTalk Services are included in Microsoft’s new Windows Azure platform [50])

All applications that need to communicate with each other must do this over the new Internet

Service Bus (ISB) (see Figure 43). This is light-weight implementation as known from bigger, already

existing Enterprise Service Bus implementations specialized for internet service needs. The Internet

Service Bus has automatic identity, authentication and authorization mechanisms for a secure

communication between partners. The ISB also supports syndication, callbacks, notifications and a

lot more. All these functionalities are integrated to a well known Microsoft WCF binding [48]

mechanism.

The most important part of the BizTalk Services ISB is the supported relay binding. It allows easy

access to other services that are secured behind a firewall. The automatic connect procedure is

shown in Figure 44.

Figure 43: BizTalk Services Internet Service Bus [60]

Figure 44: BizTalk Services – Relay Binding [60]

70

The XcoBiztalkCommunicationService contains the XVSM space implementation to connect space

instances over the internet via the BizTalk Services ISB. For this purpose the

XcoBiztalkCommunicationService inherits the XcoWCFCommunicationService and extends the BizTalk

functionality. Here only the loading mechanism of the BizTalk specific settings from the configuration

should be adapted. For a very simple solution a username token is used to authenticate the space

service against the ISB. WCF covers all BizTalk details, and after correctly loading the new settings for

the “normal” WCF communication service, it is ready to communicate across firewalls without

changing anything on them. An example configuration can be found in Example 15.

<system.serviceModel>

<services><!-- For XVSM cores relayBinding for biztalk-->

 <service name="XcoSpaces.Kernel.Communication.WCF.SpacePortal"

 behaviorConfiguration="XCoreBehavior">

 <endpoint name="XVSMRelayEndpoint"

 contract="XcoSpaces.Kernel.Communication.WCF.IRemoteSpaceService"

 binding="relayBinding" bindingConfiguration="XVSMBTBinding"

 address="" />

 </services>

<client> <!-- For XVSM core clients relayBinding for biztalk -->

 <endpoint name="XVSMClientRelayEndpoint"

 contract="XcoSpaces.Kernel.Communication.WCF.IRemoteSpaceService"

 binding="relayBinding"

 bindingConfiguration="XVSMBTBinding"

 address="http://AddressToBeReplacedInCode/" />

</client>

<behaviors>

 <serviceBehaviors>

 <behavior name="XCoreBehavior">

 <serviceThrottling maxConcurrentSessions="10000" />

 </behavior>

 </serviceBehaviors>

</behaviors>

<bindings>

 <relayBinding>

 <binding name="XVSMBTBinding" maxReceivedMessageSize="512000"

 maxBufferSize="512000">

 <readerQuotas maxArrayLength="512000" />

 </binding>

 </relayBinding>

</bindings>

</system.serviceModel>
Example 15: Configuration example for BizTalk services

The information and the experience that was collected with the BizTalk Services are involved in

Microsoft’s new Windows Azure platform [50] where this part is called .NET Services. The Azure

platform is now also in Community Technology Preview (CTP) state for evaluation through January

2010.

6.3.4 Jabber / XMPP

Another solution to communicating in a barrier-free way over the internet can be established with

the Extensible Messaging and Presence Protocol (XMPP) [51]. XMPP is an open XML-based protocol

which is also known as Jabber [52]. The network of XMPP is managed decentralized similar to email,

because anyone can run its own XMPP servers and no central master is needed. The XMPP server

allows communicating over firewalls between different partners. Many clients implement an instant

messenger, but over this protocol a simple application-to-application communication can also be

established. An XMPP communication service is planned for the next version of the XVSM space.

71

6.4 Serialization

Serialization is the conversion process when an object is transformed to another representation for

persisting on a storage medium or, in the main case of the space, for transferring data from one core

instance to another.

6.4.1 .NET Serialization

The default serializer of the XVSM .NET space is the WCF NetDataContractSerializer [53]. It serializes

and deserializes an instance of a type into XML stream or document using the supplied .NET

Framework types. The SerializationHelper class can be found in the WCF communication service and

implements the ISerializationHelper interface.

When a class must be serializable via NetDataContractSerializer, it must be marked with the

DataContractAttribute or SerializableAttribute. For a class the DataContractAttribute helps to define

which members of a class should be serialized and which should not. This is shown in Example 16.

Here the class Person will be serialized together with its three properties with the DataMember

attribute. On the other side when the SerializableAttribute (“[Serializable]”) is defined for a class, all

public and private fields will be serialized.

[DataContract(Name = "Customer")]

public class Person

{

 [DataMember]

 public string FirstName;

 [DataMember]

 public string LastName;

 [DataMember]

 public int ID;

 public DateTime CreationDate;

 public Person(int ID, string FirstName, string LastName)

 {

 this.ID = ID;

 this.FirstName = FirstName;

 this.LastName = LastName;

 CreationDate = DateTime.Now;

 }

}
Example 16: DataContractAttribute for serialization with the NetDataContractSerializer

During performance testing of the different supported serializers of the WCF, the

NetDataContractSerializer has the highest throughput with the best usability to use both serializing

attribute definitions.

6.4.2 Interoperable Serialization – XVSM Protocol

An important feature in the XVSM space is the interoperability between XVSM nodes in a

heterogeneous network. For this purpose an extensible protocol was developed to cover all

functionalities and also to be prepared for new requirements in the future. More details about the

XML protocol can be found in Chapter 7.

In the beginning we implemented the XML protocol without a schema definition and defined every

single tag manually. In the next evaluation phase we decided to use an XSD (XML schema definition)

with which validation checks can automatically be done for the basic structure and other details in an

XML block. Since the XSD implementation is finished, a clean and clear structure exists and simple

errors like typos are can be discovered and corrected much more quickly.

72

6.4.2.1 Processing

During the whole serialization process (shown in Figure 45), automatic XML generation tools were

used to create a very small memory footprint and a high throughput. The serializer in the XVSM

space is named XMLSerializationHelper and implements the ISerializationHelper interface members.

The main functionalities such as serializing and deserializing are done with the corresponding

XcoXMLWriter and XcoXMLReader classes.

In the convert classes every single core API command has its own set of rules for a correct

conversion. If an error occurs during the convert process an XcoSerializationException will be thrown

with further details.

XcoXMLReader

Deserialize
XML

XML-Serialization-

Helper XcoXMLWriter

Serialize an
object

read
destroy createContainer

deleteContainer
take

write shift

createTransaction
commitTransaction

rollbackTransaction

addAspect
removeAspect

XML protocol

XML

container operations basic operations transaction commands aspect commands

Figure 45: Overview XML serialization

object

73

7 XVSM - XML Protocol
Over the XML protocol, different implementations of the XVSM become able to communicate with

each other. This makes it possible for example for .NET space (XcoSpaces [15]) to communicate with

a JAVA space (Mozartspaces [13]) implementation and vice versa. Severin Ecker [54] built the initial

version for this protocol. This version was then customized and extended for newly arisen needs. In

the next subchapters an overview of the new protocol is given. In the current version the XML

representations contains definitions for all core API (short CAPI) commands. The functionalities from

the CAPI are very similar to the low level developer API described in Chapter 7.

7.1 Basic Elements

7.1.1 Values

In the value definition all variables are represented. For this the current protocol version supports

the following .NET data types: bool, byte, int, long, float, double, string, DateTime, byte[] and Uri. In

the current version complex objects cannot be automatically serialized. For the XML protocol

complex objects must be converted to a tuple representation. This functionality is provided in the

Object-Tuple converter which is a specialized serializer developed by Alexander Marek [55]. Over this

the conversation between object and tuple representation is supported, and vice versa.

<value>

 <string>simple string value</string>

</value>

Example 17: XML protocol – values

When combination of data types is needed as a single object, a tuple representation must be

created, which is shown in the following Chapter 7.1.2. This tuple definition can also be stored in a

value instance.

7.1.2 Tuples

The tuple representation defines a collection of different values. This can be used, for example, to

represent an entry in a linda coordinated container or the tuple can be added to a normal entry. In

the Example 18 a tuple with three elements is shown on the left side. On the other side a template

tuple is shown. Here only the field to be matched exactly contains specific values between the data

type definitions; for all others only the data type is defined and no specific value is given (using the

<null> element).

<tuple size="3">

 <value position="0">

 <integer>1</integer>

 </value>

 <value position="1">

 <string>test</string>

 </value>

 <value position="2">

 <long>10000</long>

 </value>

</tuple>

<tuple size="3">

 <value position="0">

 <integer>1</integer>

 </value>

 <value position="1">

 <null>string</null>

 </value>

 <value position="2">

 <null>long</null>

 </value>

</tuple>

Example 18: XML protocol – left: tuple with values, right: template tuple

74

7.1.3 Entries and Properties

These are the important elements in the XML protocol for simple data. On the one hand side, entries

are responsible for defining the data in the containers, and on the other hand side, the properties

manage the settings for the different command elements.

Everything that may be modified in a container must be an entry. In an entry a value instance can be

held. When more than one entry is to be processed, a list of entries will be used with the XML tag

entries.

For dynamic settings a single property can be defined over a keyword and value combination. The

XML elements addAspect, operational context, ipoints, selectors and coordinators can specify a list of

properties.

<entries>

 <entry>

 <value>

 <string>test value 1</string>

 </value>

 </entry>

 <entry>

 <value>

 <string>test value 2</string>

 </value>

 </entry>

</entries>

<properties>

 <property key="Name">

 <value type="string">MasterKey</value>

 </property>

 <property key="Type">

 <value type="string">String</value>

 </property>

 <property key="Value">

 <value type="string">X1050</value>

 </property>

</properties>

Example 19: XML protocol – left: entries, right: properties

7.1.4 Selectors and Coordinators

The selectors and coordinator tags are used for specifying the coordination details for all basic

operations.

The coordinator tag is used to define the supported coordinators on a container. For a coordinator

definition the tag name must be set. Using this tag, the corresponding coordinator will be selected.

Additional properties can be defined for a coordinator as shown in the next example (Example 20).

The selector details are used to set the coordination information for basic operations. They are very

similar to the coordinator definition. Additionally, the entry count that is to be read must be specified

for reading operations (when all available entries are to be read, the count must be set to “-1”).

<coordinators>

 <coordinator name="FifoCoordinator" />

 <coordinator name="KeyCoordinator">

 <properties>

 <property key="Name">

 <value>

 <string>k</string>

 </value>

 </property>

 <property key="Type">

 <value>

 <string>String</string>

 </value>

 </property>

 </properties>

 </coordinator>

</coordinators>

<selectors>

 <selector class="KeySelector" count="1">

 <properties>

 <property key="Name">

 <value type="string">k</value>

 </property>

 <property key="Type">

 <value type="string">String</value>

 </property>

 <property key="Value">

 <value type="string">k4</value>

 </property>

 </properties>

 </selector>

</selectors>

Example 20: XML protocol – left: coordinators, right: selectors

75

7.2 Basic Protocol Structure

7.2.1 Command behavior

The communication protocol is based on asynchronous calls which will be handled by containers.

When a request is generated for another space instance it must be specified which container the

results are to be stored in, and when these results are available. The result can be accessed from this

container aka “answer container”. The answer container can also be a virtual container that is

managed by the remote communication. The remote core instance that processes the request writes

the result to the given answer container. With this mechanism it is possible to distribute a command

from core A to B and receive the result at C.

In the XML every command starts with capi (core API). The root element has two simple properties.

The first property source reveals the sending core instance and the second one

answerToContainerRef defines where the result must be returned.

<capi source="tcpxml://coreAddrA" answerToContainerRef="tcpxml://

{coreAddrA}/containers/00000000-0000-0000-0200-000000000000">

…

</capi>
Example 21: XML protocol – general structure

For every single command an operational context can be used to add extended information not

directly needed in the command itself. This can be used, for example, for a security mechanism to

provide a username and password to ascertain if the request should be processed or not.

<capi <!-- capi parameters --> >

 <!-- operation -->

 …

 <operationContext>

 <properties>

 <property key="user">

 <value type="string">bob</value>

 </property>

 <property key="passHash">

 <value type="string">o5§gbI6oWf</value>

 </property>

 </properties>

 </operationContext>

</capi>

Example 22: XML protocol – operational context

7.2.2 Request / Response

For every request command supported, a corresponding response definition exists in the XSD. A

short section of the XSD is shown in Example 23, where the request and response definitions for the

create container operation are listed.

For the create container operation the available fields are defined. With that information a new

container can be created. In the response as base information the originator message identity

requestId is defined so that the correlating request can be found. Additionally a status flag is defined,

which will be either “ok” or “error”. When an error state is given an exception information is

provided in the base response definition. The exceptions declaration includes an enumeration

definition of all supported exceptions via the name property and text property for exception details.

If the request was successfully processed, extended information is available. In the current case the

resulting container reference of the new container is provided.

76

<!-- create container definition -->

<xsd:complexType name="CreateContainerType">

 <xsd:sequence>

 <xsd:element name="coordinators" type="CoordinatorListType"/>

 </xsd:sequence>

 <xsd:attribute name="transactionRef" type="xsd:anyURI"/>

 <xsd:attribute name="size" type="xsd:int"/>

</xsd:complexType>

<!-- basic response definition -->

<xsd:complexType name="ResponseBaseType">

 <xsd:sequence>

 <xsd:element name="exception" type="ExceptionType" minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="requestId" type="xsd:string" use="optional"/>

 <xsd:attribute name="status" type="ResponseStates" use="required"/>

</xsd:complexType>

<!—create container response definition -->

<xsd:complexType name="CreateContainerResponseType">

 <xsd:complexContent>

 <xsd:extension base="ResponseBaseType">

 <xsd:attribute name="containerRef" type="xsd:anyURI"/>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

Example 23: XML protocol – XSD definition example for request and response of container create

7.3 Operations

7.3.1 Container operations

7.3.1.1 Create container

In the create container element all supported coordinator information can be defined. There is also

the option to set a transaction reference to process the container create in an explicit transaction,

otherwise an implicit transaction is used. The last parameter size specifies the maximal entry count in

a container (“-1” represents infinite count).

<!-- create a container with linda coordination -->

<capi source="tcpxml://{coreAddrA}"

answerToContainerRef="tcpxml://{coreAddrA}/containers/00000000-0000-0000-2800-000000000000">

 <createContainer transactionRef="tcpxml://{coreAddrB}/transactions/77aace52-0000-0000-2700-

000000000000" size="-1">

 <coordinators>

 <coordinator name="LindaCoordinator">

 <properties />

 </coordinator>

 </coordinators>

 </createContainer>

</capi>

<!-- container successfully created -->

<capi source="tcpxml://{coreAddrB}"

answerToContainerRef="tcpxml://{coreAddrB}/containers/00000000-0000-0000-2800-000000000000">

 <write containerRef="tcpxml://{coreAddrA}/containers/00000000-0000-0000-2800-000000000000">

 <entries>

 <entry>

 <value>

 <response>

 <createContainer requestId="00000000-0000-0000-2800-000000000000" status="ok"

containerRef="tcpxml://{coreAddrB}/containers/4b0cac83-2169-4218-8469-fd934552fa8e" />

 </response>

 </value>

 </entry>

 </entries>

 </write>

</capi>
Example 24: XML protocol – create container

77

In the following operation explanations the response type will not especially be mentioned, this

would go beyond the scope of this master thesis. Additionally every GUID in the following examples

is replaced through the placeholder GUID for better readability.

7.3.1.2 Destroy container

To delete a container, only its container reference is required. A transaction reference and a timeout

can be specified additionally.

<deleteContainer containerRef="tcpxml://{coreAddrB}/containers/{CRef-GUID}"

transactionRef="tcpxml://{coreAddrB}/transactions/{TRef-GUID }" />

Example 25: XML protocol – destroy container

7.3.2 Basic operations

The basic operations are divided into read and write operations. Read, take and destroy belong to the

read operations, write and shift to the write operations.

7.3.2.1 Read operations

For the read operations the entries to be processed can be specified via the selector definition (see

Chapter 7.1.4). The destination container can be defined by the container reference. The last

property to be set is the timeout value. Furthermore a transaction reference can be specified for

explicit transactions.

In the following xml fragment (see Example 26) a read command is shown that reads all entries in fifo

order from the given container. When the other commands like take and destroy are used, the tag

will simply be replaced.

<read containerRef="tcpxml://{coreAddrB}/containers/{CRef-GUID}" timeout="1000">

 <selectors>

 <selector name="FifoSelector" count="-1" />

 </selectors>

</read>

Example 26: XML protocol – example for a basic read operation

7.3.2.2 Write operations

The write operations are very similar to the read command. The main difference is that the entries

with optional selector information which are to be written will be specified instead of only the

selector definition.

<write containerRef="tcpxml://{coreAddrB}/containers/{CRef-GUID}" timeout="0">

 <entries>

 <entry>

 <value>

 <string>c</string>

 </value>

 <selectors>

 <selector name="LabelSelector" count="1">

 <properties>

 …

 </properties>

 </selector>

 </selectors>

 </entry>

 <entry>

 …

 </entry>

 </entries>

 </write>

</capi>

Example 27: XML protocol – example for a basic write operation

78

7.3.3 Transaction operations

7.3.3.1 Create transaction

The only parameter for a transaction create operation is the timeout.

<createTransaction timeout="-1" />

Example 28: XML protocol – transaction create

7.3.3.2 Transaction commit / rollback

For commit and rollback of a transaction only the transaction reference is needed.

<commitTransaction transaction="tcpxml://{coreAddrB}/transactions/{TRef-GUID}" />

<rollbackTransaction transaction="tcpxml://{coreAddrB}/transactions/{TRef-GUID}" />

Example 29: XML protocol – transaction commit / rollback

7.3.4 Aspect operations

7.3.4.1 Add aspect

The definitions for the aspect operations are a little more complicated than for the other commands.

First the name must be specified. Using this parameter the corresponding registered implementation

will be found. The registration can be done over the microkernel in the space. The microkernel

concept allows dynamic bindings between contracts and current implementations, for more

information see [21]. The next parameter type specifies on which platforms the aspect is hosted

(java, dotNet and interopt are available). The interopt parameter is planned for scripting support in

the next version of the XVSM space.

For the aspect the target type must be specified. Here the two types space and container can be

selected. Depending on the target type a container reference must be specified if the aspect is a

container aspect; space aspects do not need this definition. For clear specification of every single

possible insertion point (short ipoint) an element in the enumeration collection exists. From the

definition the space knows where the aspect must be registered. For a complete definition of aspect

implementation specific information can be added over properties.

<addAspect name="NotificationAspect" type="dotNet" target="container"

containerRef="tcpxml://{coreAddrB}/containers/{CRef-GUID}">

 <ipoints>

 <ipoint>PostWrite</ipoint>

 <ipoint>PostContainerDestroy</ipoint>

 <ipoint>PostAddAspect</ipoint>

 </ipoints>

 <properties>

 <property key="cref">

 <value>

 <uri>tcpxml://{coreAddrB}/containers/{CRef-GUID}</uri>

 </value>

 </property>

 <property key="ncref">

 <value>

 <uri>tcpxml://{coreAddrB}/containers/{CRef-GUID}</uri>

 </value>

 </property>

 </properties>

</addAspect>

Example 30: XML protocol – add aspect

79

7.3.4.2 Remove aspect

Removing an aspect from the space is very similar to the adding procedure. Here the name, type and

target definition are replaced by a single aspect reference. All other information is defined as in the

add command, the only difference being that the set ipoints will be deregistered on the space.

<removeAspect aspectRef="tcpxml://{coreAddrB}/aspects/{ARef-GUID}" target="container"

containerRef="tcpxml://{coreAddrB}/containers/{CRef-GUID}">

 <ipoints>

 <ipoint>PostWrite</ipoint>

 </ipoints>

</removeAspect>

Example 31: XML protocol – remove aspect

80

8 The Low – Level API
The low level API provides access to all functionalities in the XVSM space. This means that on this

level very large amount of parameters and overloaded methods exist to cover all possibilities. For

this purpose the method versions with the most parameters will be explained. The low level API is

not object oriented. A higher level API exists which is developed by Ralf Westphal.

8.1 XcoKernel

The XcoKernel that can be found in the namespace XcoSpaces.Kernel is the class with all user

methods that will be shown in detail in the next sub chapters. The XcoKernel can be seen as the

implementation of the XCore model. In the creating procedure of a new XcoKernel instance, all

configuration settings will be loaded over the microkernel. The microkernel allows loading dynamic

component bindings at runtime, for more details see [21].

public XcoKernel()

Example 32: low level API – Constructor of the XcoKernel

8.2 Operations

8.2.1 Container operations

8.2.1.1 Create container

A new container can be created using the create container methods. For correct specification, the

maximal amount of entries in a container and the supported coordination types must be defined. All

other parameters are for additional requirements like using a transaction or adding an operational

context for an aspect.

public ContainerReference CreateContainer(String address, int size, params Selector[]

coordinationTypes)

public ContainerReference CreateContainer(String address, TransactionReference tref, int

size, params Selector[] coordinationTypes)

public ContainerReference CreateContainer(String address, TransactionReference tref, int

size, Selector[] coordinationTypes, OperationContext specificOpContext)

public ContainerReference CreateContainer(String address, TransactionReference tref, Guid id,

int size, params Selector[] coordinationTypes)

public ContainerReference CreateContainer(String address, TransactionReference tref, Guid id,

int size, params Selector[] coordinationTypes)

public ContainerReference CreateContainer(String address, TransactionReference tref, Guid id,

int size, Selector[] coordinationTypes, OperationContext specificOpContext)

Example 33: API - create container

 CreateContainer

 address The address of the kernel in format ip:port where the container must be
created (null for local containers)

 size The maximum size of the container. Use -1 for an unbounded container.

 coordinationTypes The list of the coordination types for this container (fifo, lifo, vector, key, ...). A
container must have at least one coordination type.

 id The id of the container. An exception will be thrown if a container with this id
already exists. Using Guid.Empty automatically leads to the creation of a new id

 tref Reference to the transaction in which the operation is to be performed, or null
if no transaction is to be used.

81

 specificOpContext The operation context that must be used specifically within this operation (can
provide additional information for aspects).

8.2.1.2 Get container properties

The GetProperty methods give access to container and coordinator properties. All GetProperty

methods that use the parameter propertyName are used to read information from coordinators, the

others are for containers. Container properties will be read via the corresponding meta container.

Only some special properties such as the entry count in the container will be directly processed.

More information about meta containers can be found in [21].

With the SetProperty methods custom meta information can be written to the container.

public object GetProperty(ContainerReference cref, TransactionReference tref, int timeout,

String propertyName)

public object GetProperty(ContainerReference cref, TransactionReference tref, int timeout,

Selector selector, String propertyName)

public object GetProperty(ContainerReference cref, TransactionReference tref, int timeout,

Selector selector, String propertyName, OperationContext specificOpContext)

public object GetProperty(ContainerReference cref, TransactionReference tref, int timeout,

ContainerProperty prop)

public object GetProperty(ContainerReference cref, TransactionReference tref, int timeout,

ContainerProperty prop, OperationContext specificOpContext)

public void SetProperty(ContainerReference cref, TransactionReference tref, int timeout,

String propertyName, object propertyValue)

public void SetProperty(ContainerReference cref, TransactionReference tref, int timeout,

String propertyName, object propertyValue, OperationContext specificOpContext)

Example 34: API – publishing containers

 PublishContainer / UnpublishContainer

 cref Reference to the container where the property should be read/written

 tref Reference to the transaction in which the operation should be performed, or
null if no transaction should be used

 timeout The timeout of the operation in milliseconds. Use
System.Threading.Timeout.Infinite for infinite timeout.

 propertyName The name of the property that should be read/written.

 prop The container property that should be read

 selector The selector that defines from which coordinator of the container the property
should be read

 propertyValue The property value that should be written

 specificOpContext The operation context that should be used specifically within this operation
(can provide additional information for aspects).

8.2.1.3 Publishing container

With PublishContainer a container can be published in the lookup container which has got a static

address. Every space instance has its own lookup container. In the lookup container other containers

can be found via a unique name.

UnpublishContainer is the opposite to PublishContainer. Here a published container is removed from

the lookup container.

public void PublishContainer(ContainerReference cref, TransactionReference tref, String name)

public void PublishContainer(ContainerReference cref, TransactionReference tref, String name,

OperationContext specificOpContext)

public ContainerReference UnpublishContainer(String address, TransactionReference tref,

String name)

82

public ContainerReference UnpublishContainer(String address, TransactionReference tref,

String name, OperationContext specificOpContext)

Example 35: API – publishing containers

 PublishContainer / UnpublishContainer

cref The reference to the container to be published

name The name of the published container

address The address of the space where the container is published, in the form ip:port
(null for local containers)

tref Reference to the transaction in which the operation should be performed, or
null if no transaction should be used.

specificOpContext The operation context that should be used specifically within this operation
(can provide additional information for aspects).

8.2.1.4 Destroying a container

The command DestroyContainer removes a container with all its entries from the space.

public void DestroyContainer(ContainerReference cref)

public void DestroyContainer(ContainerReference cref, TransactionReference tref, int timeout)

public void DestroyContainer(ContainerReference cref, TransactionReference tref, int timeout,

OperationContext specificOpContext)

Example 36: API – destroy containers

 PublishContainer / UnpublishContainer

 cref The reference to the container that should be destroyed

 tref Reference to the transaction in which the operation should be performed, or
null if no transaction should be used.

 timeout The timeout of the operation in milliseconds. Use
System.Threading.Timeout.Infinite for infinite timeout.

specificOpContext The operation context that should be used specifically within this operation
(can provide additional information for aspects).

8.2.1.5 Named container

With the named containers method, the user is given access to an automatic container publishing

mechanism. During create the container will automatically be published, and is un-published on

destroy. With the GetNamedContainer an easy access to a published container will be supported.

public ContainerReference CreateNamedContainer(String address, String name, int size, params

Selector[] coordinationTypes)

public ContainerReference CreateNamedContainer(String address, TransactionReference tref,

String name, int size, params Selector[] coordinationTypes)

public ContainerReference CreateNamedContainer(String address, TransactionReference tref,

String name, int size, Selector[] coordinationTypes, OperationContext specificOpContext)

public ContainerReference GetNamedContainer(String address, String name)

public ContainerReference GetNamedContainer(String address, String name, OperationContext

specificOpContext)

public void DestroyNamedContainer(String address, String name)

public void DestroyNamedContainer(String address, TransactionReference tref, int timeout,

String name)

public void DestroyNamedContainer(String address, TransactionReference tref, int timeout,

String name, OperationContext specificOpContext)

Example 37: API - named container

83

 CreateNamedContainer

 address The address of the kernel in format ip:port where the container should be
created. (null for local containers)

 name The name of the published Container

 size The maximum size of the container. Use -1 for an unbounded container.

 coordinationTypes The list of the coordination types for this container (fifo, lifo, vector, key, ...). A
container must have at least one coordination type.

 id The id of the container. An exception will be thrown if a container with this id
already exists. Using Guid.Empty automatically leads to the creation of a new id

 tref Reference to the transaction in which the operation should be performed, or
null if no transaction should be used.

 specificOpContext The operation context that should be used specifically within this operation
(can provide additional information for aspects).

8.2.2 Basic operations

The basic operations can be split up to two groups: read and write operations. A detailed description

about the behavior of every basic operation is shown in Chapter 4.4.1.

8.2.2.1 Read operations

The normal read operation only reads entries from the space. With the take operation the read

entries will be additionally removed from the space. The last read operation is destroy, which works

in a similar way to take, but does not give the read entries back to the user.

public List<IEntry> Read(ContainerReference cref, TransactionReference tref, int timeout,

params Selector[] selectors)

public List<IEntry> Read(ContainerReference cref, TransactionReference tref, int timeout,

Selector[] selectors, OperationContext specificOpContext)

public List<IEntry> Take(ContainerReference cref, TransactionReference tref, int timeout,

params Selector[] selectors)

public List<IEntry> Take(ContainerReference cref, TransactionReference tref, int timeout,

Selector[] selectors, OperationContext specificOpContext)

public void Destroy(ContainerReference cref, TransactionReference tref, int timeout, params

Selector[] selectors)

public void Destroy(ContainerReference cref, TransactionReference tref, int timeout,

Selector[] selectors, OperationContext specificOpContext)

Example 38: API – read operations: read, take and destroy

 Read / Take / Destroy

 cref Reference to the container where the entries should be read/taken/destroyed

 tref Reference to the transaction in which the operation should be performed, or
null if no transaction should be used.

 timeout The timeout of the operation in milliseconds. Use
System.Threading.Timeout.Infinite for infinite timeout.

 selectors The list of selectors by which the entries are selected from the container

 specificOpContext The operation context that should be used specifically within this operation
(can provide additional information for aspects).

8.2.2.2 Write operations

In the write operations new entries can be added to the space. A write operation will only be

processed when all conditions are fulfilled. Shift in contrast, overwrites existing entries if it is needed

to add the new entries to the container.

84

public void Write(ContainerReference cref, TransactionReference tref, int timeout, params

IEntry[] entries)

public void Write(ContainerReference cref, TransactionReference tref, int timeout, IEntry[]

entries, OperationContext specificOpContext)

public void Shift(ContainerReference cref, TransactionReference tref, int timeout, params

IEntry[] entries)

public void Shift(ContainerReference cref, TransactionReference tref, int timeout, IEntry[]

entries, OperationContext specificOpContext)

Example 39: API – write operations: write and shift

 Write / Shift

 cref Reference to the container where the entries should be written/shifted

 tref Reference to the transaction in which the operation should be performed, or
null if no transaction should be used.

 timeout The timeout of the operation in milliseconds. Use
System.Threading.Timeout.Infinite for infinite timeout.

 entries The entries that should be written/shifted

 specificOpContext The operation context that should be used specifically within this operation
(can provide additional information for aspects).

8.2.3 Transaction operations

Using these methods all transaction states can be managed. With create, a new transaction instance

can be created. The prepare state guarantees that a successful commit can be achieved. Commit

stores all changes of the transaction in the space and releases all locks. During rollback all changes of

the transaction will be reverted to the original state. For more details about transactions see Chapter

5.

public TransactionReference CreateTransaction(String address, int timeout)

public TransactionReference CreateTransaction(String address, int timeout, OperationContext

specificOpContext)

public void PrepareTransaction(TransactionReference tref)

public void PrepareTransaction(TransactionReference tref, OperationContext specificOpContext)

public void CommitTransaction(TransactionReference tref)

public void CommitTransaction(TransactionReference tref, OperationContext specificOpContext)

public void RollbackTransaction(TransactionReference tref)

public void RollbackTransaction(TransactionReference tref, OperationContext

specificOpContext)

Example 40: API – transaction management

 Create- / Prepare- / Commit- / Rollback- Transaction

 address The address of the kernel in format ip:port where the container should be
created. (null for local containers)

 tref Reference to the transaction in which the operation should be performed

 timeout The timeout of the operation in milliseconds. Use
System.Threading.Timeout.Infinite for infinite timeout.

 specificOpContext The operation context that should be used specifically within this operation
(can provide additional information for aspects).

8.2.4 Aspects

With aspects the behavior of the space can be customized. For more information about aspects see

[21]. In the next chapters the two main groups of aspects will be explained, first the container

aspects then the space variant.

85

8.2.4.1 Add Container Aspects

Here two different creation types (local and the remote) are supported. With the local variant the

container aspect can be directly referenced. When remote instantiation is used, the given type

(aspectType) or name (aspectName) must be already registered in the space. The given properties

will be automatically injected into the aspect instances that are using the

XcoSpaces.Kernel.Microkernel.PropertyAttribute attribute.

public AspectReference AddContainerAspect(ContainerReference cref, ContainerAspect aspect)

public AspectReference AddContainerAspect(ContainerReference cref, ContainerAspect aspect,

OperationContext specificOpContext)

public AspectReference AddContainerAspect(ContainerReference cref, ContainerAspect aspect,

params ContainerIPoint[] iPoints)

public AspectReference AddContainerAspect(ContainerReference cref, ContainerAspect aspect,

ContainerIPoint[] iPoints, OperationContext specificOpContext)

public AspectReference AddContainerAspect(ContainerReference cref, Type aspectType,

Dictionary<string, object> properties)

public AspectReference AddContainerAspect(ContainerReference cref, Type aspectType,

Dictionary<string, object> properties, params ContainerIPoint[] iPoints)

public AspectReference AddContainerAspect(ContainerReference cref, Type aspectType,

Dictionary<string, object> properties, OperationContext specificOpContext)

public AspectReference AddContainerAspect(ContainerReference cref, Type aspectType,

Dictionary<string, object> properties, ContainerIPoint[] iPoints, OperationContext

specificOpContext)

public AspectReference AddContainerAspect(ContainerReference cref, string aspectName,

Dictionary<string, object> properties, ContainerIPoint[] iPoints, OperationContext

specificOpContext)

public AspectReference AddContainerAspect(ContainerReference cref, string aspectName,

Dictionary<string, object> properties, params ContainerIPoint[] iPoints)

Example 41: API – create container aspects

 AddContainerAspect

 cref Reference to the Container where the Aspect should be added

 aspect The aspect that should be added

 aspectType The type of the aspect that should be added

 aspectName The predefined name of the aspect that should be added

 iPoints The insertion points where the Aspect should be added in the Container

 properties The list of properties for instantiating the aspect

 specificOpContext The operation context that should be used specifically within this operation
(can provide additional information for aspects).

8.2.4.2 Add Space Aspects

The create behavior of space aspects is very similar to the container aspects, with the main

difference being that space aspects are valid for the whole space and not registered to certain

containers.

public AspectReference AddSpaceAspect(SpaceAspect aspect)

public AspectReference AddSpaceAspect(SpaceAspect aspect, params SpaceIPoint[] iPoints)

public AspectReference AddSpaceAspect(SpaceAspect aspect, OperationContext specificOpContext)

public AspectReference AddSpaceAspect(SpaceAspect aspect, SpaceIPoint[] iPoints,

OperationContext specificOpContext)

public AspectReference AddSpaceAspect(string address, Type aspectType, Dictionary<string,

object> properties)

public AspectReference AddSpaceAspect(string address, Type aspectType, Dictionary<string,

object> properties, params SpaceIPoint[] iPoints)

public AspectReference AddSpaceAspect(string address, Type aspectType, Dictionary<string,

86

object> properties, OperationContext specificOpContext)

public AspectReference AddSpaceAspect(string address, Type aspectType, Dictionary<string,

object> properties, SpaceIPoint[] iPoints, OperationContext specificOpContext)

public AspectReference AddSpaceAspect(string address, string aspectName, Dictionary<string,

object> properties, params SpaceIPoint[] iPoints)

public AspectReference AddSpaceAspect(string address, string aspectName, Dictionary<string,

object> properties, SpaceIPoint[] iPoints, OperationContext specificOpContext)

Example 42: API – create space aspects

 AddContainerAspect

 address The address of the space where the aspect should be added

 aspect The aspect that should be added

 aspectType The type of the aspect that should be added

 aspectName The predefined name of the aspect that should be added

 iPoints The insertion points where the aspect should be added in the space

 properties The list of properties for instantiating the aspect

 specificOpContext The operation context that should be used specifically within this operation
(can provide additional information for aspects).

8.2.4.3 Remove Aspects

All added aspects can also be removed from the space. The following code example shows all

available methods for removing aspects.

public void RemoveAspect(AspectReference aref)

public void RemoveAspect(AspectReference aref, OperationContext specificOpContext)

public void RemoveContainerAspect(ContainerReference cref, AspectReference aref)

public void RemoveContainerAspect(ContainerReference cref, AspectReference aref,

OperationContext specificOpContext)

public void RemoveContainerAspect(ContainerReference cref, AspectReference aref, params

ContainerIPoint[] iPoints)

public void RemoveContainerAspect(ContainerReference cref, AspectReference aref,

ContainerIPoint[] iPoints, OperationContext specificOpContext)

public void RemoveSpaceAspect(AspectReference aref, params SpaceIPoint[] iPoints)

public void RemoveSpaceAspect(AspectReference aref, SpaceIPoint[] iPoints, OperationContext

specificOpContext)

Example 43: API – removing aspects

 RemoveAspect / RemoveContainerAspect / RemoveSpaceAspect

 aref Reference to the aspect that should be removed

 cref Reference to the container where the aspect should be removed

 iPoints The insertion points where the aspect should be removed

 specificOpContext The operation context that should be used specifically within this operation
(can provide additional information for aspects).

8.2.5 Notifications

The automatic notification mechanism allows getting an event for every change that the user has

registered on a container. The notification mechanism itself is space internal implemented with

aspects. A notification can be easily removed from the space with the Stop method of the

Notification class. When the underlying container is destroyed the notification will also be stopped.

public Notification CreateNotification(ContainerReference cref, TransactionReference tref,

bool onRead, bool onTake, bool onDestroy, bool onWrite, bool onShift)

public Notification CreateNotification(ContainerReference cref, TransactionReference tref,

bool onRead, bool onTake, bool onDestroy, bool onWrite, bool onShift, OperationContext

87

specificOpContext)

public Notification CreateReadNotification(ContainerReference cref, TransactionReference

tref, params ReadOperation[] operations)

public Notification CreateReadNotification(ContainerReference cref, TransactionReference

tref, ReadOperation[] operations, OperationContext specificOpContext)

public Notification CreateWriteNotification(ContainerReference cref, TransactionReference

tref, params WriteOperation[] operations)

public Notification CreateWriteNotification(ContainerReference cref, TransactionReference

tref, WriteOperation[] operations, OperationContext specificOpContext)

Example 44: API – create notification

 CreateNotification

 cref Reference to the container the notification should be created on

 tref Reference to a transaction, if the notification should run within a transaction,
or null (in which case the notification will only notify about operations after
they have been committed).

 onRead True if the notification should trigger on read operations

 onTake True if the notification should trigger on take operations

 onDestroy True if the notification should trigger on destroy operations

 onWrite True if the notification should trigger on write operations

 onShift True if the notification should trigger on shift operations

 operations List of read or write operations for which a Notification should be thrown

 specificOpContext The operation context that should be used specifically within this operation
(can provide additional information for aspects).

8.2.6 Communication Management

With the method Start the communication service of the space will be started. If no communication

service has been added or configured, an XcoWCFCommunicationService will be used by default.

Before the communication is stopped, all connections can be closed carefully using the

ReleaseCommunicationConnections. The method Stop closes all communication channels of the

remote communication service.

The operation context can be used to provide information to aspects within an operation. Properties

of the default operation context are added to every operation that is called in the XcoKernel.

The method Close shuts down the kernel and stops the server for remote communication if running.

All communication currently operating within the kernel will result in an

XcoOperationTimeoutException.

The Dispose method cleans up all resources by calling Close.

public void Start()

public void Start(string ipAddress, int port)

public void Start(int port)

public void Stop()

public void ReleaseCommunicationConnections()

public void AddService(IXcoService service)

public OperationContext DefaultOperationContext {get;}

public void Close()

public void Dispose()

Example 45: API – communication start /stop and management functions

88

 Start

 ipAddress The IP address on which the service should be running (null if the service
should decide itself)

 port The local port on which the server should be running. If the port is 0, a random
port number between 8000 and 9000 will be generated

 service Adds a service to the XcoKernel. Only services of type
IXcoCommunicationService are supported by now (other services must be
added at kernel instantiation

89

9 Future Work
The current XVSM implementation offers a solid base for a powerful space based middleware

solution. Looking further ahead we may expect that the XVSM space will be able to demonstrate

whether the extension mechanisms are ready for real world scenarios or not. For subsequent

versions, some interesting features can be imagined.

Based on the experience from the space-based computing team the next step is to undertake an

intensive code review before new features will be integrated into the space. In this context a very

true statement was made by Ralf Westphal on the last review in a parallel project: “Even source code

needs vacation”. This code review should be done by an external team to validate the architecture as

the realized solution for the different tasks. Through this code review new ideas can be discussed and

the quality of the whole project will be enhanced. During the review process new requirements or

ideas can also be collected for new features. After the review and rework the code base should be

ready for changes and new functionalities can also be added and integrated.

A very interesting part of the operation of the space is the scalability in the future. The already

existing performance tests [56] should be expanded. On the one hand side it is very interesting to see

how many requests the system can process without encountering any problems, and on the other

hand side it is important to identify bottlenecks in the system. If such performance problems are

detected, the problem needs to be identified and adequate solutions have to be found.

For subsequent versions additional communication services are planned. As mentioned before, an

XMPP (Jabber) service should be one of the next communication services to enable barrier free

communication over the internet. (For this purpose software development kits are already available

for the .NET framework.) For better performance, a Jabber server can also be hosted which only

handles requests from space instances.

Another important feature for more convenient interoperable communication will be an automatic

mechanism that can convert complex objects to a XML representation. The current implementation

can only manage primitive data types; for this purpose the tuple-object converter from Alex Marek

can be used for converting on the .NET side. As a next step, an implementation is needed for the

JAVA side to automatically convert tuples to JAVA objects. Then the interoperability functionality

should be tested with complex objects between the two platforms.

In subsequent versions scripting languages like IronPhyton [57] should be integrated into the space

for dynamically adding scripted aspects. Using these scripting languages will dramatically increase

the possibilities for what the user can do with aspects. The security mechanisms must be upgraded

relative to the usage of scripting languages and so more options to make changes in the space are

available. Here special security functionalities are needed like script originator authorization and

authentication, script access validation and many more. No unchecked script should be processed by

the space.

A simple persistency profile exists in the current space that works with db4o [58] and was developed

by Alexander Marek [59]. With an automatic persistency mode the space is able to arrive at the same

state after finishing the start sequence as it was before the last shutdown. In one of the next versions

the internal space support for persistency functionality should be enhanced, by persistency modules.

90

Another interesting feature for a future space version is an automatic lookup functionality. A basic

lookup approach has been implemented in the high level API which was developed by Ralf Westphal.

For subsequent versions the lookup mechanisms should be enhanced so that all currently running

core instances can be found together via a decentralized naming service, making it possible to simply

search for and find every registered container.

For maintenance and monitoring new tools should be developed. Here information should be

available such as memory and processor consumption for every space instance, average number of

processed messages, container count and so on. With these tools an administrator can obtain more

details about the current state of the space. There should as well be an option to collect statistical

information in the form of reports. Another monitoring approach is a development tool that is able

to show the container structure and the containing data in the containers. This would be very useful

for debugging and troubleshooting, since finding an error in a distributed system is not normally an

easy task.

In summary, there are many possibilities for upgrading the code to add new functionalities; thus, a

great amount of work is yet to be done.

91

10 Conclusion
XVSM (eXtensible Virtual Shared Memory) is a new middleware that allows collaboration of software

components over shared data structures which are managed in containers. Every container can

handle multiple coordination patterns which allow to automatically handle the data in the container.

It is possible to simply add customized features in the current space and notifications enable sending

of events when changes happen. The transaction support allows concurrent requests for more

throughput in the space without consistency problems. The space is based on a P2P [9] infrastructure

and allows the use of different transport protocols and also has its own interoperable protocol for

communication between different implementations of the XVSM space.

Further, the implementation details of XcoSpaces, which is the .NET implementation of XVSM, were

used to show the realization of different concepts in the XVSM model. The following topics such as

coordination, transactions, locking and communication were shown in detail.

In the coordination chapter all currently available coordination patterns were explained in detail for

all basic operations (read, take, shift, write and destroy). The data is managed in the container using

coordinator and selector pairs. For more flexibility the concept allows new coordinator and selector

pairs to be integrated into the space very easily.

For good performance concurrent requests are supported in the XVSM space. The transaction

management and the included locking mechanism are responsible for ensuring that there are no

inconsistencies in the data when two requests are made on the same data. For each request the user

may specify an explicit transaction reference, otherwise an implicit transaction will be used. The

locking mechanism supports container and entry locking: container locking only allows a single write

operation at a time, whereas in entry locking multiple write operations can be carried out

concurrently when the entries to be written are different. The coordinators on the containers decide

which locking mode should be used.

The document also introduced the communication concept of the space, which allows various

transport protocols to communicate with each other. The available TCP, WCF, BizTalk communication

services are explained in detail in the message processing in the XcoSpaces. Different serialization

mechanisms are supported for communication. A XML protocol is specified for interoperable

communication across programming languages. This protocol enables the communication between

XcoSpaces [15] and MozartSpaces [13] (the JAVA reference implementation of XVSM).

The API for developer was shown in detail. Here all methods for the management of the XcoSpaces

were shown.

With the functionalities that are combined in the new middleware XVSM we hope to contribute our

part for new and efficient technology to make the development of distribution applications easier.

Through this alternative approach based on different coordination mechanisms and notifications the

entire communication process will become more natural and save development resources and time.

92

11 References
1. Internet World Stats. World Internet Users and Population Stats. Internet Usage Statistics.

[Online] Last visited: 2009-11-03. http://www.internetworldstats.com/stats.htm.

2. Tim O'Reilly. Design Patterns and Business Models for the Next Generation of Software. What Is

Web 2.0. [Online] Last visited: 2009-10-06. http://oreilly.com/web2/archive/what-is-web-20.html.

3. Sesum-Cavic, Vesna and Kühn, eva. A Swarm Intelligence Appliance to the Construction of an

Intelligent Peer-to-Peer Overlay Network. 1st Workshop on Coordination in Complex Software

Intensive Systems (COCOSS-2010). 2010, Co-located with CISIS 2010: 4th International Conference on

Complex, Intelligent and Software Intensive Systems.

4. Kühn, eva and Sesum-Cavic, Vesna. A Space-Based Generic Pattern for Self-Initiative Load

Balancing Agents. Utrecht University, The Netherlands : accepted for The 10th Annual International

Workshop "Engineering Societies in the Agents' World" (ESAW 2009), 2009.

5. Sesum-Cavic, Vesna and Kühn, eva. Peer-to-Peer Overlay Network based on Swarm Intelligence.

Utrecht University, The Netherlands : accepted as Poster Paper for The 10th Annual International

Workshop "Engineering Societies in the Agents' World" (ESAW 2009), 2009.

6. Kühn, eva, Riemer, Johannes and Joskowicz, Gerson. XVSM (eXtensible Virtual Shared Memory)

Architecture and Application. TU-Vienna, Insititute of Computer Languages, SBC-Group : Technical

Report, 2005.

7. Kühn, eva; Mordinyi, Richard; Keszthelyi, László; Schreiber, Christian. Introducing the concept of

customizable structured spaces for agent coordination in the production automation domain. AAMAS

'09: Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems.

Budapest, Hungary : International Foundation for Autonomous Agents and Multiagent Systems,

2009.

8. Kühn, eva, Mordinyi, Richard and Schreiber, Christian. An Extensible Space-based Coordination

Approach for Modeling Complex Patterns in Large Systems for Analysing. Porto Sani, Greece :

Leveraging Applications of Formal Methods, Verification and Validation, 2008.

9. Schollmeier, Rüdiger. A Definition of Peer-to-Peer Networking for the Classification of Peer-to-Peer

Architectures and Applications. Los Alamitos, CA, USA : IEEE Computer Society, 2001.

10. Gelernter, David. Generative communication in linda. s.l. : ACM Trans. Program. Lang. Syst., 1985.

11. Gelernter, David and Carriero, Nicholas. Coordination Languages and their Significance. New

York, NY, USA : Commun. ACM, 1992.

12. Sun Microsystems. Java . [Online] Sun Microsystems, Inc, Last visited: 2009-11-01.

http://java.sun.com/.

13. MozartSpaces. [Online] Last visited: 2009-10-03. http://www.mozartspaces.org.

93

14. Microsoft. .Net Framework Developer Center. MSDN. [Online] Last visited: 2009-08-20.

http://msdn2.microsoft.com/en-us/netframework/default.aspx.

15. XCOORDINATION. Software Technologies. [Online] Last visited: 2009-09-02.

http://www.xcoordination.com/.

16. Space based computing group. [Online] Last visited: 2009-11-09.

http://www.spacebasedcomputing.org.

17. eva Kühn. Institute of computer languages. [Online] Last visited: 2009-11-07.

http://www.complang.tuwien.ac.at/eva.

18. Kühn, eva. Fault-Tolerance for Communicating Multidatabase Transactions. s.l. : Proceedings of

the 27th Hawaii International Conference on System Sciences (HICSS), 1994.

19. Kühn, eva and Nozicka, Georg. Post-Client/Server Coordination Tools. s.l. : Coordination

Technology for Collaborative Applications, Wolfram Cohen, Gustaf Neumann (eds.), Springer Series

Lecture Notes in Computer Science, 1998.

20. Kühn, eva. Virtual shared memory for distributed architectures. Commack, NY, USA : Nova

Science Publishers, Inc., 2001.

21. Scheller, Thomas. Design and Implementation of XcoSpaces, the .Net Reference Implementation

of XVSM: Core Architecture and Aspects. TU-Vienna, Insititute of Computer Languages, SBC-Group :

Master Thesis, 2008.

22. Androutsellis-Theotokis, Stephanos and Spinellis, Diomidis. A survey of peer-to-peer content

distribution technologies. s.l. : ACM, 2004.

23. GigaSpaces Technologies Inc. GigaSpaces. [Online] Last visited: 2009-10-03.

http://www.gigaspaces.com.

24. Creswell, Dan. The Blitz Project. [Online] Last visited: 2009-10-02. http://www.dancres.org/blitz.

25. Freeman, Eric, Arnold, Ken and Hupfer, Susanne. JavaSpaces Principles, Patterns, and Practice.

UK : Addison-Wesley Longman Ltd., 1999.

26. LighTS. [Online] Last visited: 2009-10-06. http://lights.sourceforge.net.

27. Kühn, eva and Schmied, Fabian. XL-AOF: lightweight aspects for space-based computing.

Grenoble, France : ACM, 2005.

28. Kühn, E., Mordinyi, R., Keszthelyi, L., Schreiber, Bessler, S., and Tomic, S. Aspect-oriented Space

Containers for Efficient Publish/Subscribe Scenarios in Intelligent Transportation Systems. s.l. : The

11th International Symposium on Distributed Objects, Middleware, and Applications (DOA'09), 2009.

29. Jini. Jini.org. [Online] Last visited: 2009-11-04. http://www.jini.org.

30. Schreiber, Christian. Design and Implementation of MozartSpaces, the Java Reference

Implementation of XVSM: Core Structure, Transactions and Communication. TU-Vienna, Insititute of

Computer Languages, SBC-Group : Master Thesis, in preparation, 2008.

94

31. Craß, Stefan, Kühn, eva and Salzer, Gernot. Algebraic Foundation of a Data Model for an

Extensible Space-Based Collaboration Protocol. Calabria, Italy : Thirteenth International Database

Engineering & Applications Symposium (IDEAS), 2009.

32. Schmidt, Douglas C.; Stal, Michael; Rohnert, Hans; Buschmann, Frank. Pattern-Oriented

Software Architecture, Volume 2, Patterns for Concurrent and Networked Objects. s.l. : John Wiley &

Sons, 2000.

33. Pröstler, Michael. Design and Implementation of MozartSpaces, the Java Reference

Implementation of XVSM: Timeout Handling, Notifications and Aspects. TU-Vienna, Insititute of

Computer Languages, SBC-Group : Master Thesis, 2008.

34. Westphal, Ralf. Spicken nicht erlaubt, Contract First Design und Microkernel-Frameworks.

dotnetpro. 2005, 09/2005.

35. Kemper, Alfons and Eickler, André. Datenbanksysteme - Eine Einführung. München, Wien : R.

Oldenbourg Verlag, 2001.

36. Haerder, Theo and Reuter, Andreas. Principles of transaction-oriented database recovery. New

York, NY, USA : ACM Comput. Surv., 1983.

37. Weikum, Gerhard and Vossen, Gottfried. Transactional information systems: theory, algorithms,

and the practice of concurrency control and recovery. San Francisco, CA, USA : Morgan Kaufmann

Publishers Inc., 2001.

38. Coffman, E. G., Elphick, M. and Shoshani, A. System Deadlocks. New York, NY, USA : ACM

Computing Surveys, 1971.

39. Tanenbaum, Andrew S. and Van Steen, Maarten. Distributed Systems: Principles and Paradigms .

USA : Prentice Hall, 2001.

40. Schreiber, Christian. Design and Implementation of MozartSpaces, the Java Reference

Implementation of XVSM: Core Structure, Transactions and Communication. TU-Vienna, Insititute of

Computer Languages, SBC-Group : Master Thesis, 2008.

41. Microsoft. Windows Communication Foundation. MSDN. [Online] Last visited: 2009-09-03.

http://msdn2.microsoft.com/en-us/netframework/aa663324.aspx.

42. Microsoft. DCOM Architecture. MSDN. [Online] Last visited: 2009-09-05.

http://msdn.microsoft.com/de-de/library/ms809311.aspx.

43. Microsoft. COM+ (Component Services). MSDN. [Online] Last visited: 2009-09-05.

http://msdn.microsoft.com/en-us/library/ms685978.aspx.

44. Microsoft. Microsoft Message Queuing. Microsoft Corporation. [Online] Last visited: 2009-09-06.

http://msdn.microsoft.com/en-us/library/ms711472.aspx.

45. Microsoft. Web Services Enhancements. MSDN. [Online] Last visited: 2009-09-05.

http://msdn.microsoft.com/en-us/library/dd560722.aspx.

95

46. Microsoft. Introduction to Building Windows Communication Foundation Services. MSDN.

[Online] Last visited: 2009-09-06. http://msdn.microsoft.com/en-us/library/aa480190.aspx.

47. McMurtry, Craig; Mercuri, Marc; Watling, Nigel; Winkler, Matt. Windows Communication

Foundation Unleashed (WCF) (Unleashed). s.l. : Sams Publishing, 2007.

48. Microsoft. Windows Communcation Foundation Bindings. MSDN. [Online] Last visited: 2009-09-

07. http://msdn.microsoft.com/en-us/library/ms733027.aspx.

49. Microsoft. Services. Biztalk.Net. [Online] Last visited: 2008-04-06. http://labs.biztalk.net.

50. Microsoft. Windows Azure Platform. Windows Azure Platform. [Online] Last visited: 2009-09-05.

http://www.microsoft.com/windowsazure/.

51. XMPP Standards Foundation. XMPP Standards Foundation. [Online] Last visited: 2009-09-06.

http://xmpp.org/.

52. Jabber. Jabber.org. [Online] Last visited: 2009-09-06. http://www.jabber.org.

53. Microsoft. .NET Framework - NetDataContractSerializer. MSDN. [Online] Last visited: 2009-09-05.

http://msdn.microsoft.com/en-

us/library/system.runtime.serialization.netdatacontractserializer.aspx.

54. Ecker, Severin. Communication protocols in xvsm-design and implementation. TU-Vienna,

Insititute of Computer Languages, SBC-Group : Master Thesis, 2007.

55. Marek, Alexander. Profile for XcoSpaces: TupleConverter, Praktikum. Vienna University of

Technology, Institute of Computer Languages, E185/1 : Space Based Computing Group, 2008.

56. Kühn, eva; Mordinyi, Richard; Moritsch, Hans; Scheller, Thomas; Schreiber, Christian. A Staged-

driven Architecture style for a Scalable Space-based Middleware. TU-Vienna, Insititute of Computer

Languages, SBC-Group : Technical Report, 2008.

57. IronPython. IronPython. [Online] Last visited: 2009-11-01.

http://www.codeplex.com/wikipage?ProjectName=IronPython.

58. Versant Corp. db4o. db4o - open source object database. [Online] Last visited: 2009-11-02.

http://www.db4o.com.

59. Marek, Alexander. Profile for XcoSpaces: AdvancedPersistency, Praktikum. Vienna University of

Technology, Institute of Computer Languages, E185/1 : Space Based Computing Group, 2008.

60. Weyer, Christian. In the Cloud Connect Your Services with the Internet Service Bus. MSDN.

[Online] Last visited: 2009-09-04. http://download.microsoft.com/download/3/a/3/3a31f2e5-39fe-

4df0-ba40-a5fc96b14a05/A103_In the cloud_Services with the Internet Service Bus.pptx.

