
DIPLOMARBEIT

Embedded Execution Environment for Modular
Firmware Structures

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Diplom-Ingenieurs

unter der Leitung von

Ao. Univ. Prof. Dipl.-Ing. Dr. techn. Markus Vincze
Dipl.-Ing. Dr. techn. Alois Zoitl

E376
Institut für Automatisierungs- und Regelungstechnik

eingereicht an der Technischen Universität Wien
Fakultät für Elektrotechnik und Informationstechnik

von

Martin Melik-Merkumians
Matr.-Nr.: Matr.-Nr.: 0125853

Possingergasse 39–51/17/14, A–1160 Wien

Wien, im März 2009

Martin Melik-Merkumians

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

The rising pressure of competition forces the industry to more flexible pro-
duction. The ability of effective lot-size one and small batch production is
becoming an important requisite for success on the todays competitive mar-
kets. However, classical manufacturing plants are not suited for the new re-
quirements of todays markets. Decentralized systems helped to save money
for cabling of the automation devices, but changed nothing on the monolithic
structure of classic industrial process and measurement systems. Such struc-
tures are not suited for fast reconfigurability.
The emerging standard IEC 61499 – Function blocks introduces a distributed

execution model, suited for fast reconfigurability. Unfortunately it is not
widely used, as there are few automation devices that support IEC 61499
natively. Although there are runtime environments for IEC 61499, none of
them is suited for use in cheap smart sensors and actuators, as memory size
and computing power are too low on such devices. But direct integration of
smart sensors and actuators would vastly improve and simplify the possibilities
of designing and handling distributed control systems for e.g., manufacturing
plants or building automation systems.
This diploma thesis targets this problem, by developing an embedded ex-

ecution environment for modular firmware structures with direct integration
in IEC 61499 networks suitable for embedded systems with limited memory.
First the requirements of a firmware execution environment will be identified
by an use case analysis of the programming phase and the operational phase
of a typical automation device. Based on the findings of the use case analysis
the requirements for the execution environment are identified, which are the
base for a first conceptual design for such an execution environment.
The findings of the conceptual design are then used to modify the existing

IEC 61499 runtime environment FORTE. The modification decreased the code
size of FORTE for about 56% to 172076 bytes. Therefore it is now possible to
run FORTE on cheap micro controllers, with limited ROM and RAM, com-
monly used in smart sensors and smart actuators. Thereby the granularity of
a distributed system can be further reduced and therefore the available com-
puting power can be better utilized, and the reuse and modularity of system
parts can be increased.

i

Kurzfassung

Der steigende Wettbewerbsdruck zwingt die Industrie zu flexibleren Produk-
tionsanlagen. Die Fähigkeit zu effizienter Losgröße Eins- und Kleinserien-
Produktion sind wichtige Voraussetzungen für den Erfolg in den wettbewerb-
sintensiven Märkten. Jedoch sind klassische Produktionsanlagen nicht mehr
den Anforderungen heutiger Märkte gewachsen. Dezentrale Systeme haben
dazu beigetragen Geld für die Verkabelung von Automatisierungsgeräten zu
sparen. Dies änderte jedoch nichts an der monolithischen Struktur der klassis-
chen Automatisierungssysteme, welche nicht für schnelle Rekonfigurierbarkeit
geeignet sind.
Der sich gerade etablierende Standard IEC 61499 - Function blocks führt

ein verteiltes Ausführungmodell ein, welches für schnelle Rekonfigurierbarkeit
geeignet ist. Leider ist der Standard noch nicht weit verbreitet, da es nur
wenige Geräte gibt, die die Modelle der IEC 61499 unterstützen. Zwar gibt es
Laufzeitumgebungen für IEC 61499, jedoch ist keine für den Einsatz in billigen
intelligenten Sensoren und Aktuatoren, aufgrund der begrenzten Speichergröße
und Rechenleistung dieser Geräte, geeignet. Die direkte Integration von intelli-
gente Sensoren und Aktoren würde die Entwicklung und Handhabung verteilter
Steuerungssysteme von z.B. Fertigungsanlagen oder Gebäudeautomationsan-
lagen erheblich verbessern und vereinfachen.
Das Ziel dieser Diplomarbeit ist es dieses Problem durch die Entwicklung

einer Ausführungsumgebung für modulare Firmware-Strukturen für Systeme
mit beschränkten Speicherressourcen und Rechenleistung zu lösen, die eine
direkte Integration in IEC 61499-Systeme ermöglicht. Zuerst werden die An-
forderungen an die Ausführungsumgebung mit Hilfe einer Use Case Analyse
der Planungs- und der Betriebsphase eines typischen Automatisierungsgeräts
ermittelt. Basierend auf den Ergebnissen der Use Case Analyse und der ermit-
telten Randbedingungen des Ausführungsumfeldes, wird ein erstes Grobdesign
für eine solche Ausführungsumgebung entwickelt.
Die Ergebnisse der Entwürfe werden dann verwendet, um die bestehende

IEC 61499-Laufzeitumgebung FORTE zu verändern. Die durchgeführte Mod-
ifikation der FORTE verringert die Codegröße der FORTE um rund 56% auf
172076 bytes. Dadurch ist die FORTE auf billigen Mikrocontroller mit be-
grenztem ROM- und RAM, die typischerweise für intelligente Sensoren und
intelligente Aktuatoren verwendet werden, lauffähig. Durch die dadurch er-
reichte Verringerung der Granularität von verteilten Systemen, kann die zur
Verfügung stehende Rechenleistung besser genutzt werden. Des Weiteren kann
dadurch die Modularität und die Wiederverwendbarkeit von Systemteilen er-
höht werden.

ii

Acknowledgment

I want to thank my advisors Ao. Univ.-Prof. Dipl.-Ing. Dr.techn. Markus
Vincze for supervising my diploma-thesis, and Dipl.-Ing Dr.techn. Alois Zoitl
for his helpful suggestions and discussion, his patience while correcting my
diploma-thesis, and his ongoing support the whole time during this work. I
also want to thank Dipl-Ing. Reinhard Hametner and Dipl.-Ing. Ingo Hegny
for their helpful hints, cheering words and the many coffee breaks we shared.
My thanks also go to my friends and fellow students René Paris, Dipl.-Ing.

Maria Klonner and Irina Barnay for their support and friendship.
Special thanks goes to my girlfriend Anita, who supported me always during

my studies and endured me when I had to learn for my exams.
Above all, I want to thank my parents Dipl.-Ing. (FH) Edwart Melik-

Merkumians and Christa Melik-Merkumians who have supported me through-
out my entire life. They have always encouraged me to do my best no matter
what it was, and enabled my to study. Without them I wouldn’t be where I
am today.

I dedicate my diploma-thesis to my mother Christa Melik-Merkumians, who
passed away this year, which was much too soon. We all love and miss you.

Martin Melik-Merkumians

iii

Contents

1 Introduction 1
1.1 Conceptual Formulation . 2
1.2 Solution Statement . 2

2 State of the Art 3
2.1 Software Design . 3

2.1.1 UML . 4
2.1.2 Design Patterns . 5
2.1.3 Component Software . 7

2.2 IEC 61499 . 8
2.2.1 Function Blocks . 9
2.2.2 Execution Model . 12
2.2.3 Distribution Model . 13

2.3 Summary . 14

3 Concept 16
3.1 Sample Application . 16
3.2 Use Case Analysis . 19

3.2.1 Firmware and Application Development Phase Use Cases 19
3.2.2 Operational Phase Use Cases 22

3.3 Requirements Analysis . 30
3.4 Requirements Matching with IEC 61499 31
3.5 Conceptual Design . 33

3.5.1 Function Block Management Layer 33
3.5.2 Application Execution Layer 35
3.5.3 Hardware Abstraction Layer 36
3.5.4 Device Specific Hardware Layer 36

3.6 Summary . 36

4 Implementation 37
4.1 Overview . 37

4.1.1 Core . 38

iv

4.1.2 Architecture . 39
4.2 Optimization Guidelines and Targets 40
4.3 Data Types . 41

4.3.1 Original Design . 41
4.3.2 Revised Design . 46

4.4 New Package: Serializer . 52
4.5 Function Block Management . 52

4.5.1 Original Design . 53
4.5.2 Revised Design . 57

4.6 Standard Template Library Elements 60
4.6.1 String . 60
4.6.2 Container . 61

4.7 Results . 63
4.8 Summary . 63

5 Outlook 65

6 Conclusion 67

v

List of Figures

2.1 Boolean vs. Event variable based on [Vya07] 9
2.2 Properties of a IEC 61499 function block based on [IEC05a] . . 10
2.3 ECC example based on [IEC05a] 11
2.4 Composite FB based on [IEC05a] 11
2.5 Operational State Machine of a IEC 61499 FB based on [IEC05a] 13
2.6 Distribution Model of IEC 61499 [Zoi07] 15

3.1 Sample Application — Temperature Control Devices 17
3.2 Sample Application — Temperature Controller 17
3.3 Composite FB — CyclicTempSensor 18
3.4 Execution Environment Conceptual Design 34

4.1 FORTE Overview . 38
4.2 FORTE Data Type Class Diagram 42
4.3 FORTE Union UANYData . 48
4.4 Little Endian Binary Data Representation 49
4.5 Little Endian Data Representation 50
4.6 Big Endian Problem . 50
4.7 Revised FORTE Data Type Class Diagram 51
4.8 Serializer Class Diagram . 53
4.9 Function Block Management Class Diagram 54
4.10 Revised Function Block Management Diagram 58
4.11 Singly Linked List — Class Diagram 61

vi

List of Tables

3.1 IEC 61499 — Device Configuarbility classes based on [IEC05b] . 32

4.1 Size Comparison FORTE — Values in Bytes 64

vii

1 Introduction

As eastern countries urge their way into the markets, the pressure of competi-
tion is growing steady on the western industry. Due to the low-labor-costs in
those countries the western industry cannot compete with them in the low-cost
mass production market. Therefore the western companies have to evolve and
strive for the market segment of high quality small batch production.
But to be successful in the small batch and lot-size one production segment

the manufacturing facilities have to be highly adaptive. Unfortunately most
of the used manufacturing facilities are designed as monolithic systems, even
as the latest trend to decentralized systems changed nothing on the principle
monolithic structure. If a systems has to be changed the monolithic software,
running in a programmable logic controller, has to be reprogrammed almost
from scratch. The industry recognized the problem and a new standard has
been developed.
The new standard IEC 61499 – Function blocks introduces a distributed

execution model, where each device can be programmed separate and offer its
services to the system. Therefore to design a system it is only necessary to con-
nect the offered device service in such a way, that the behavior of the complete
system fits the desired behavior. However there a few small systems which
can be directly integrated in a IEC 61499 system, as there are no embedded
systems native to the execution model of IEC 61499 and the available runtime
environments for IEC 61499 are far to big to be run on an embedded system
with limited memory. But if the firmware of devices like smart sensors and
smart actuators could be implemented in a way that the device is compliant
to IEC 61499 huge benefits in system integration could be generated.
Therefore the goal of this diploma thesis is to identify the needs of a embed-

ded system firmware and then to develop an IEC 61499 runtime environment,
which suits the needs of firmware development and the limited resources of an
embedded system.

1

1.1 Conceptual Formulation

1.1 Conceptual Formulation

The goal of this work is to enable firmware development and execution in
IEC 61499. Based on the 4DIAC1 runtime environment (FORTE2), an em-
bedded execution environment for modular firmware structures shall be devel-
oped. Therefore it is necessary to analyze the life-cycle of a typical embedded
automation device. The main problem in the development of the embedded
execution device will be the limited ROM size of typical embedded system,
which is why the main interest will be to keep the code size of the embedded
execution environment as small as possible.

1.2 Solution Statement

The first step will be to analyze a typical embedded automation device, such as
a smart sensor or a smart actuator. The analysis will comprise a requirements
analysis for embedded devices and a use case analysis of the programming
phase and the operational phase of the embedded device. Based on the findings
of the analysis a conceptual design of an embedded execution environment for
modular firmware structures will be developed. This concept will be the base
for the modifications of the existing IEC 61499 runtime environment FORTE,
which will be the base for the embedded execution environment.

1Framework for Distributed Automation and Control
2Available at http://www.fordiac.org/

2

2 State of the Art

Software engineering, despite of being a young engineering discipline, had and
still has a large impact on many other engineering disciplines. Through the
use of programmable machines we gained much flexibility as one machine was
now capable to perform many different tasks. The most famous programmable
machine is the PC, which can be used as a typewriter, a calculator, an enter-
tainment center, and much more. Programmable machines also found their
way into the field of IPMCS. Programmable logic controllers (PLC) revolu-
tionized the way of building and programming manufacturing facilities, as the
new technology allowed to build much more complex systems as it has been
possible with relay-based logic hardware. But also new challenges as real-time
capabilities, software design for IPMCS and interoperability between differ-
ent manufacturers arose. The IEC 61131 was developed to deal with those
new challenges. Due to the high competition on todays markets new problems
arise, such as flexible production lines and “lot-size one” production. To achieve
this flexibility distributed IPMCS (dIMPCS) were devised and IEC 61499 was
established to provide a common platform for IPMCS manufacturers.

2.1 Software Design

Software design often seems to be the first step of software development, but
software design is not an end in itself. First the problem that the software
shall solve must be identified. After the determination of the purpose and
the specification of the software the software design process begins. It’s main
purpose is to solve the problems imposed by the specification and the planning
of the software architecture as well as the low-level components and algorithm
implementation as both are influencing each other. Most modern software
design tools are using the Unified Modeling Language (UML). By the use
of these tools developers try to manage the complexity imposed by the task
of software design by splitting the problem in different parts (e.g., systems,
subsystems, modules, classes) and different views (e.g., structural view, be-
havioral view, functional view). Design patters are another important and
potent tool, as they describe a general solution for common design problems.

3

2.1 Software Design

Through the use of design patterns a robust design can be developed as the
advantages and disadvantages of the patterns are well known and the patterns
are tested and proven to work. Yet another upcoming software model is the
component software paradigm (also known as Component-based software en-
gineering (CBSE)). The goal of CBSE is the separation of concerns in respect
of the functionality in a software systems. Software components shall be able
to provide a service to the rest of the software system without depending on
the services or functions of other components. The benefit of such a design is,
that those components can be easily reused and exchanged with newer versions
of that component.

2.1.1 UML

The Unified Modeling Language (UML) is a standard developed by the Object
Management Group (OMG). The initial version 1.1 was released in November
1997, since February 2009 the current version is 2.2.
UML defines many different diagrams as the structure diagram (also known

as class diagram), the deployment diagram, state charts, activity charts, use
case diagrams, and sequence charts. The core diagrams of UML are the struc-
ture diagram, the state chart, and the sequence diagram. The other diagrams
model additional aspects of the system.[Dou99]
The goal of UML is to allow the user to define a model of the system. A

model is a coherent set of abstractions that represents the model to be designed.
As the model consists of semantics and the view of the user on those semantics
an important part of the user is the definition of the semantics of the system
under development[Dou02]. The three primary aspects of the semantics are:

• Structural aspect

• Behavioral aspect

• Functional aspect

The structural aspect deals with the entities that make up the system. If a
“snapshot” from the system is taken at runtime, the set of objects and their
relations represents the current state or condition of the whole system, there-
fore the set of classes and their relations specify all possible sets of objects
and object relations at runtime. The difference between objects and classes is,
that classes exist only at design-time, as classes are a specification, and objects
only exist at run-time being instances of those classes. At larger scale subsys-
tems and components (both basically big objects and classes) form larger-scale

4

2.1 Software Design

abstractions for complex systems. Without those abstractions it would be im-
possible to handle today’s comprehensive systems.[Dou99]
The behavioral aspect defines how the structural elements work and inter-

act in the running system. This can be modeled for individual structural
elements (e.g., objects, classes, subsystems, components) and for assemblies of
elements to achieve large-scale behaviors. State charts and activity diagrams
are used for individual structural elements to specify actions and their permit-
ted sequencing. The behavior of assemblies of structural elements, also called
collaborations, are modeled by sequence and collaboration diagrams.[Dou02]
The function aspect refers to the required behavior without regard of the

implementation of that behavior. To model the behavior UML provides the
use case diagram. Use cases describe the interaction between one or more
actors. Actors can be humans but also other parts of the system (e.g., an
automated teller machine requests the account balance of the user). As a use
case is coarse description of the interaction the detailed requirements of the
use case are modeled with state charts and interaction diagrams.[Dou02]
The goal of the design process is to create a complete, consistent and accu-

rate application model that can be verified via analysis or execution and could
be used to generate the source code, thus greatly reducing coding effort and
maintain the consistency between the UML model and the source code.[Dou02]
Detailed information on UML diagrams can be found in [OMG09a], [OMG09b],
[ISO05], [Öst01], [Dou99] and [Dou02].

2.1.2 Design Patterns

Design patterns are generalized solutions to common design problems. They
are not precoded chunks of software ready to be used by the programmer. A
design pattern is the abstractions of a solution of a given design problem. As
an example outside of the world of software design, the solution of crossing
a ravine could be a bridge without specifying what kind of bridge, maximum
bearing load, or what materials are to be used to build the bridge. There are
several design patterns to one problem, as there is also more than one way to
cross a ravine.
As design patterns are descriptions of abstract solutions, the authors of design
patterns are commonly using following elements to structure a pattern:

• Name

• Problem

• Solution

5

2.1 Software Design

• Consequences

The name of the pattern should be a catchword that describes the problem
to solve and the solution in one or two words. The problem section gives a
detailed explanation of the design problem, which the pattern will solve. The
problem section will usually also state a number of conditions that must be met,
so that the pattern is applicable. The solution section describes the elements of
the design pattern and their interactions, responsibility, and relations to each
other, so that the problem will be solved. The consequences section deals with
the advantages and disadvantages that comes with the use of the particular
design pattern.[GHJV96] As design is all about optimization, design patterns
are also about optimization. Typical design parameters that are reviewed in
the consequences section are:

• Worst case performance

• Average case performance

• Predictability

• Scheduability

• Memory usage

• Reuseability

• Portability

• Maintainability

• Extendability

• Development time/effort

• Safety

• Reliablilty

• Securtiy

As it is impossible to achieve all of this simultaneously there must be an order
of importance so the final design is “optimal enough”, because as we optimize
certain aspects of the design, we also deoptimize other aspects[Dou02].

6

2.1 Software Design

2.1.3 Component Software

The component software approach is a new paradigm for software reuse. In-
stead of reusing individual functions or classes or class hierarchies the compo-
nent software approach strives to reuse so-called “components”. Simply put a
component is a system-independent software that provide certain services to
the system. Components are characterized by three properties:

• It is a unit of independent deployment

• It is a unit of third-party compositions

• It has no (externally) observable state

Those three points have several implications. First for a component to be
deployed independent it has to be separated from its environment and other
components. As a component is a unit of deployment it can never be deployed
partially. In this context a third-party is a component user that can not be
expected to know the construction details of the component. Second for a com-
ponent to be composable with third-party components, it needs a well defined
interface for interaction with its environment and its implementation has to be
encapsulated. Third and finally a component should not have any (externally)
observable state. It is necessary that a component cannot be distinguished
from copies of itself, except for attributes that are not contributing to the
components functionality (e.g., serial numbers used for accounting).[Szy02]
Components itself can be programmed in functional or object-oriented lan-
guages and although there should be no observable state at component level,
it is allowed that the objects, that make up the component, are allowed to
have a state as long as it is assured that the component itself has no externally
observable state.
Based on the points above, it is possible to combine components to a system
and replace or add components to a existing system very fast. This is a major
advantage compared to classes. As a result of this, a new market of soft-
ware component providers has evolved and system designers are able to buy
standard software components and then customize it to their needs through
parameters. It is also possible to buy components of different quality level for
example a cheaper and slower one or a expensive and faster one. The advan-
tage for system designers is that they don’t have to develop every new system
from scratch, as well tested and documented components are available. Thus
system designers can reduce the risk on new developments. The system design-
ers also gain another degree of freedom as they can decide which components
will be bought and which components will be developed in-house.

7

2.2 IEC 61499

2.2 IEC 61499

IEC 61499 – Function blocks is a new family of standards. Its main purpose
is to introduce a function block (FB)-oriented programming model for dis-
tributed IPMCS (dIPMCS). The IEC 61499 standard family consists of three
parts:

IEC 61499-1 (2005): Function blocks – Part 1: Architecture
This part describes the general architecture and all general model behind

this standard.

IEC 61499-2 (2004): Function blocks – Part 2: Software tool re-
quirements
Part 2 gives rules and concepts for software tool developers implementing an

engineering tool for IEC 61499. Most of the information given is rather gen-
eral. The most important definition of this part is an exchange data format
for the software models defined in IEC 61499-1. This is a main requirement
for vendor independent software libraries.

IEC 61499-4 (2005): Function blocks – Part 4: Rules for compli-
ance profiles
IEC 61499 leaves several points open to implementation. How these items

are solved should be described in related compliance profiles. IEC 61499-4
defines the structure of such compliance profiles.

The FB paradigm is a well established concept for software encapsulation
and defining reusable components. The innovation of IEC 61499 is in the new
event-driven execution model. A FB only starts the execution of an algorithm
if the corresponding event occurs. Events are similar to boolean variables as
their value can be 0 or 1, but unlike boolean variables events can only hold
the value 1 for instantaneous moments. FBs are representations of compo-
nents which can be implemented in the form of software but also in the form
of hardware.[Vya07] This brings object-oriented (OO) programming languages
to mind, as one of the main characteristics of OO languages (OOL) is encap-
sulation. But the FB paradigm of IEC 61499 is not a OO concept, due to
the lack of a main characteristics of OOLs: inheritance.[Lew01] Therefore IEC
61499 is only an object-based programming language.

8

2.2 IEC 61499

Figure 2.1: Boolean vs. Event variable based on [Vya07]

2.2.1 Function Blocks

The standard defines three different types of FBs:

• Basic FBs

• Composite FBs

• Service Interface FBs (SIFBs)

Each type sports the same interface as shown in Figure 2.2. The event
interface is at the top of the FB, which is usually referred as the “head”, where
the event inputs are on the left-hand side and the event outputs are on the
right-hand side. The data interface, usually called the “body”, is located below
the event interface and again the the inputs are on the left-hand side and the
outputs are on the right-hand side. The FB type name is placed in the middle
of the FB. The instance name above the FB is a user-defined name for this
specific FB. As the position of data and event in- and outputs suggests the
data and event flow is from left to right. If we again compare FB type name
and instance name with elements of OOLs, then the FB type name would be
the class name and the instance name would be the name of the instanced
object of this class.
The “head” represents the execution control and the “body” represents the
algorithms, functions, and internal data of the FB.

Basic Function Blocks

The main component of the Basic FB is a state machine which controls the ac-
tions taken by the FB if an input event occurs. This state machine is called Ex-
ecution Control Chart (ECC) and is based on the Sequential Function Charts
of IEC 61131-3.[Zoi09] The EEC consists of three elements:

9

2.2 IEC 61499

Figure 2.2: Properties of a IEC 61499 function block based on [IEC05a]

• EEC states

• EEC action

• EEC transitions and guards conditions

EEC actions typically consists of an algorithm to be executed and an out-
put event to be sent, but it is also allowed that an action only includes an
algorithm or an output event to be sent. Each EEC action is affiliated with
an EEC state and the different states are connected through EEC transitions.
The transitions are typically guarded by boolean logic expressions. The first
transition of the actual state which guarding condition is true, will be taken.
Upon state entry the associated ECC action will be performed. The algorithms
can be programmed in any language, but the algorithms are only allowed to
access data inputs, data outputs, and internal variables of the FB. Figure 2.3
shows an example ECC.

Composite Function Blocks

Composite FBs encapsulate FB networks (FBNs) and therefore helps to reduce
complexity in the FBN like a subroutine in programming languages. The
contained FBN is connected to the outer FBN through the event/data inputs
and outputs of the Composite FB (see Figure 2.4). The Composite FB has no
own ECC but the combined ECCs of the contained FBs can be seen as the
ECC of the Composite FB.

10

2.2 IEC 61499

EX1INIT

1

Figure 2.3: ECC example based on [IEC05a]

Figure 2.4: Composite FB based on [IEC05a]

11

2.2 IEC 61499

Service Interface Function Blocks

SIFBs are used as interfaces to provide functionality that is beyond the scope
of IEC 61499. Controlling the device hardware (e.g., I/O interface, communi-
cation interface), or including libraries that contain functions needed by the
control system are typical application areas of SIFBs. The encapsulated func-
tionality is described through service primitives in the form of time sequence
diagrams. There are two general types of SIFBs, the responder and the re-
quester type. The responder type is hardware-triggered, which means that the
SIFB can send output events caused by the actions the the resource or the
hardware (e.g., interrupts or traps) without prior activation through an in-
put event. The requester type is application-triggered and will therefore wait
until an input event arrives and triggering it’s service an an output event if
necessary.[Zoi09]

2.2.2 Execution Model

A major feature of IEC 61499 is the ability to reconfigure the IPMCS, thus
following management commands are implemented to provide the ability to
reconfigure a system:

• Create - creates FB types, resource types, data types, FB instances and
resource instances

• Delete - deletes created types and instances

• Start, Stop, Kill - changes the state of a managed FB

• Read - reads from data inputs and data outputs

• Write - writes parameters to data inputs

• Query - gets information on available types, instanced FBs and resources,
connections, and the status of an FB

As FBs can be created or deleted during runtime, it must be possible to
start and stop an FB to change the system in an orderly fashion. The standard
describes the operational behavior of a FB in form of a state machine 1, as
shown in Figure 2.5. When a FB is created it enters the IDLE state. There
the FB initializes and all its variables (data inputs, data outputs and internal
variables) get their initial value. From the IDLE State the FB can only enter

1Not to be confused with the EC state machine

12

2.2 IEC 61499

entry/initialize

IDLE

runECC

RUNNING

entry/completeAlgorithm

STOPPED

entry/stopAlgorithm

KILLED

CREATE [type_defined]

START

DELETE [is_deleteable]

RESET

DELETE

KILL

START

RESET

Figure 2.5: Operational State Machine of a IEC 61499 FB based on [IEC05a]

the RUNNING state when the “start” command occurs. In this state the FB
will process incoming events and its internal actions will be executed. From
there the FB can enter the STOPPED state of the “stop” command occurs or
the KILLED state if the “kill” command is sent. If the FB enters the STOPPED
state no further incoming events are accepted, but all running algorithms will
finish. Otherwise if the FB enters the KILLED state also no further incoming
events are accepted, but all running algorithms are aborted and therefore the
internal state could be corrupted. A stopped FB can be brought back to
the RUNNING state by the “start” command, can be deleted by the “delete”
command or can be reseted by the “reset” command and therefore enter the
IDLE state again. A FB in KILLED state can only be deleted or reseted and
so enter the IDLE state again.

2.2.3 Distribution Model

Before discussing distribution in IEC 61499, lets consider the elements of the
IEC 61499 environment (see Figure 2.6). The devices are physical units that

13

2.3 Summary

are connected to the controlled process. They consist of a communication in-
terface, a process interface an device management components and can or can
not contain resources. The communication interface provides the communica-
tion services for the application parts residing in the device. A resource is a
functional element that has independent control of its operation and that can
contain applications or application parts. Within a device a resource can be
created, deleted, configured, etc. without interfering with other resources in
the device and their contained application or application parts.[Zoi09] The pro-
cess interface provides services for accessing the actuators and sensors needed
to control the process. The application is a logical unit, built up by FBs. The
standard states that a FB is an atomic unit of distribution[IEC05a], which
means that it is not possible to distribute a FB. The IEC 61499 distribution
model allows distribution by allocating FB instances to different resources in
one or more devices. Due to the distribution of the FBs of an application the
functionality of it shall not be affected, though the timing and the reliability
of the communications function will affect the timing and the reliability of the
distributed application.

2.3 Summary

Software engineering is of great importance for all kinds of business, also for the
manufacturing industry. Through the use of PLCs all modern manufacturing
facilities have a huge amount of processing power in their production lines.
The IEC 61131-3 greatly improved reuse of PLC software and interoperability,
but failed to tap in the full potential of this processing power, as every IEC
61131 control system is an isolated application. The IEC 61499 harness this
potential of distributed processing power, but to use it to its fullest potential
we have to honor the basic principals of software design. Design tools like
UML, design patterns and design paradigms like component-oriented software
help to devise a custom software system through standardized processes, thus
decreasing development time and increasing software quality and therefore
product quality.
Development of IPMCS device firmware with IEC 61499 FBs would be such a
standardized process and can be implemented in the component-based software
paradigm. The device itself would be represented by a FB and offers its services
to the system through the FBs interface. The FB and the device could be
reused in many different IEC 61499 systems without reprogramming parts of
the firmware and without the need to adjust the interface for use in a IEC
61499 system.

14

2.3 Summary

b) Device Model

d) Function Block
Types

Manages
Applications
Commands

create
initialise
start
stop
delete
query

Communication Network

Device 3 Device 4 Device 5

Controlled Process

a) System Model

Device
Management Resource B Resource C

Communication Interface

Process Interface

Resource A

Application 2

Device 1

Communication Interface

Process Interface

Scheduling function

c) Resource Model

Application 1

Application 3

Basic

STARTSTART

EX
1

INITINIT

INIT

1

IN IT IN ITOINITIN IT IN ITOINITO

EXOM AIN M AIN

Composite

Service
Interface

resourceapplication

STATUS

INITO(+)

STATUS

INITO(+)

startServicestartServicePARAMS

INIT(+)

PARAMS

INIT(+)

Device 2
Application 1

Application 3

Application 2

Figure 2.6: Distribution Model of IEC 61499 [Zoi07]

15

3 Concept

To formulate a concept for an embedded execution environment for modular
firmware structures, it is essential to examine the life-cycle of an IPMCS and
its components, but its of equal importance to consider the boundary condi-
tions. The firmware design process normally has to heed the problems of low
memory space for the firmware and low execution power of the device. There-
fore the main task of a firmware designer is to overcome those two fundamental
and often contrary problems and so the concept must take this problems into
account.
A use case analysis and a requirements analysis will be performed based on
a sample application, which will be defined in the next chapter. In the last
section of this chapter a conceptual design will be developed based on the
findings of the use case analysis.

3.1 Sample Application

The sample application is a simplified version of a temperature control for a
single room which could be used in a similar (but of course more advanced)
design in a building automation system. It consists of a heater, a temperature
sensor, a HMI, and a heater control. The different parts of the temperature
control are connected via some kind of network, field bus or wireless connection
as shown in Figure 3.1. The correct spreading of the different system parts
is not important (e.g., the heater control could also be a part of the sensor
device), it is only important that the sample system is distributed. Figure 3.1
shows the physical mapping of the different FBs to the different devices in the
distributed system.
The program of the application, represented as an IEC 61499 FB net-

work (FBN), is shown in Figure 3.2. The FBN consists of several different
FBs, where some represent physical devices and others don’t have a phys-
ical representation. The START-FB of type E_RESTART and the HYST-FB of
type HYST_MW_LOW_ON are such FBs without concrete physical representations.
They only provide control functionality to the system.
The purpose of the START-FB is to start the FBN at start-up of the system

16

3.1 Sample Application

Temperature Sensor

CyclicTempSensor

CTS

QO

TEMP

IND

INITO

START
STOP

QI

RES

INIT

C_FACTOR

CYCLE_TIME

Heater Control

HYST_MW_LOW_ON

HYST

QO

OUT

CNF

CONCNFCONREQ

REQ

QI

IN

INIT

HMW

HWS

INITO

Heater Status
LED

HMI

HMI
INIT

REQ

Q

Heater

Heater

HEATER

QO

STATUS

CNF

INITOINIT
REQ

QI

HEATING

Fieldbus/Network/Wireless
Connection

Figure 3.1: Sample Application — Temperature Control Devices

E_RESTART

START

STOP

WARM
COLD

CyclicTempSensor

CTS

QO1

TEMP

IND

INITO

START
STOP

QI

RES14

2.543

T#5s

INIT

C_FACTOR

CYCLE_TIME

HYST_MW_LOW_ON

HYST

QO

OUT

CNF

CONCNFCONREQ

REQ

QI

IN

25.0

1.0

INIT

HMW

HWS

INITO

Heater

HEATER

QO

STATUS

CNF

INITOINIT
REQ

QI

HEATING

HMI

HMI
INIT

REQ

Q

Figure 3.2: Sample Application — Temperature Controller

and to stop the FBN on the shut down of the system. The HYST implements
a symmetrical hysteresis function where the data output OUT is high when
the data input IN is below the lower switching threshold and vice versa. The
threshold levels can be adjusted by the parameters HMV (hysteresis mean value)
and HWS (hysteresis window size), where the HMS is the midpoint of the sym-

17

3.1 Sample Application

E_CYCLE

Cycle

CYCLE_TIME

START EO

STOP

START

STOP

DT

TempSensor

TSensor

QOQI

INIT

I_TEMP

CNF

INITOINIT

REQ

QI

RESRES

INT_TEMP2REAL_TEMP

Converter

TEMP

QO QO

TEMP

CNF

INITO

CNF

INITOINIT

REQ

QI

I_TEMP
C_FACTOR C_FACTOR

Figure 3.3: Composite FB — CyclicTempSensor

metrical hysteresis function and the HWS gives the distance from the HMV to the
upper and lower switching threshold.
The FBs CTS of type CyclicTempSensor, HMI of type HMI and HEATER of

type Heater represent physical entities. The HMI-FB represents a LED and
via the boolean data input Q the LED can be switched on (Q is high) or off
(Q is low). The heater device is controlled and represented by the HEATER-FB.
Similar to the HMI-FB, the HEATING data input controls if the heater device
is heating (HEATING is high) or not (HEATING is low), but additionally the
HEATER-FB can submit its status via the STATUS data output.
The last FB CTS is a composite FB and the inner FBN is shown in Figure 3.3.

This FB is special because it implements the minimal necessary firmware
of the temperature sensor. The firmware can be parametrized through the
data inputs RES, C_FACTOR and CYCLE_TIME, where RES gives the resolution
of the temperature sensor in bits, C_FACTOR gives the conversion factor from
the binary temperature value to the temperature value in degree Celsius and
CYLCE_TIME defines the interval between two temperature measurements. In
this application the CYCLE_TIME also defines the frequency of the control loop.
The firmware FB of the temperature sensor consists of three FBs as shown

in Figure 3.3. The FB Cycle of type E_CYCLE generates the event that initiates
the temperature measurement after the preset time interval. The hardware of
the temperature sensor is accessed by the FB TSensor of type TempSensor.
The conversion from the integer representation of the temperature value to
a representation in degree Celsius is done by the FB Conversion of type
INT_TEMP2REAL_TEMP.
The communication between the FB is handled by communication-FBs which
are not shown in Figure 3.2, as they would only complicate the application
and no additional insight could be gained.

18

3.2 Use Case Analysis

3.2 Use Case Analysis

The purpose of the following use cases is to determine what capabilities the
execution environment has to provide for convenient use and implementation
of a device firmware. As written above the CTS-FB is a typical firmware FB
and so most of the use cases revolve around this FB. For sake of simplicity the
communication FBs have been neglected, but as the application is distributed
there have to be means that allow FBs to communicate with each other. For
simplicity in this application it is assumed that the communication partners
can be addressed through IDs. The temperature sensor identifies itself with its
sensor-ID and the rest of the application is identified by a temperature control-
ID. The use cases cover most of the life-cycle of a typical automation device
from the programming phase, via the start-up to the end of the products life.
The use cases are described in the suggested form of [Öst01]. Each use case
consists of a name for identification, a brief description, a list of actors who
have an active role in the use case, a trigger for the use case, preconditions that
have to be met, incoming informations necessary for the use case, the result
of the actions taken in the use case and postcondition that is guaranteed after
the steps are executed. At last the workflow sequence is described in the form
of an enumeration.

3.2.1 Firmware and Application Development Phase Use
Cases

To ensure convenient means for firmware and application programming, it is es-
sential to analyze which IEC 61499 language elements (e.g., Basic FBs, SIFBs,
Composite FBs) must be provided. The less elements has to be supported
the smaller the execution environment can be, but software maintainability
decreases and complexity increases.

19

3.2 Use Case Analysis

Use Case: Programming the Firmware for the Temperature Sensor

Name: Programming the Firmware for the Temperature
Sensor

Brief description: A firmware for the temperature sensor shall be pro-
grammed

Actor: Firmware programmer, Product development de-
partment

Trigger: New temperature sensor shall be developed
Preconditions: Target hardware chosen, a single firmware FB shall

represent the device, execution environment is al-
ready ported to target hardware

Incoming informations: Target hardware, temperature sensor resolution,
conversion factor

Result: Firmware is programmed for the new device
Postcondition: Temperature sensor firmware is working properly
Workflow:

1. Product development department issues task
to code new temperature sensor firmware to
firmware programmer

2. Firmware programmer codes hardware inde-
pendent FB INT_TEMP2REAL_TEMP as seen in
Figure 3.3

3. Firmware programmer codes hardware spe-
cific FB TempSensor as seen in Figure 3.3

4. Firmware programmer encapsulates the
FBN in a composite FB as seen in Figure 3.2

The precondition that a single FB shall represent the device defines the
necessity to support composite FBs. To be compliant with the IEC 61499
standard, hardware has to be handled with SIFB, therefore the execution en-
vironment must support them too. For software maintenance and for a FB
to be easy to use, its always preferable to represent physical value in a native
representation, but as sensors can only deliver analog or digital values it is
necessary to convert this values into their native representation. Therefore in
this case it is necessary to convert the temperature value from the delivered

20

3.2 Use Case Analysis

integer representation to a representation in degree Celsius. For that kind of
task, the standard provides basic FBs and therefore the execution environment
has to support them.

Use Case: Port Existing Temperature Sensor Firmware to a New
Target Hardware

Name: Port Exisitng Temperature Sensor Firmware to a
New Target Hardware

Brief description: The firmware of the temperature sensor shall be
ported to a new target hardware

Actor: Firmware programmer, Product Development
Trigger: New temperature sensor hardware shall be used
Preconditions: Target hardware chosen, E_CYCLE-FB and

INT_TEMP2REAL_TEMP-FB available, TempSensor-
FB not implemented for new hardware, execution
environment is already ported to target hardware

Incoming informations: Target hardware, temperature sensor resolution,
conversion factor

Result: Firmware is ported to new hardware
Postcondition: Temperature sensor firmware is working properly
Workflow:

1. Product Development issues task to port
firmware to new target hardware

2. Firmware programmer codes hardware spe-
cific FB TempSensor as seen in Figure 3.3

3. Firmware programmer builds the FBN as a
Composite FB as seen in Figure 3.3

This use cases confirms that the taken approach of firmware modularization
is appropriate for a fast and easy port of the firmware to a new hardware
platform.

21

3.2 Use Case Analysis

Use Case: Program Temperature Control Application with the
Temperature Sensor FB

Name: Use Case: Program Temperature Control Applica-
tion with the Temperature Sensor FB

Brief description: The temperature sensor FB shall be used in a tem-
perature control application

Actor: Application programmer, Product Development
Trigger: Temperature sensor shall be used in a temperature

control application
Preconditions: Target hardware chosen, all necessary FB available
Incoming informations: Target hardware, temperature sensor resolution,

conversion factor
Result: A temperature control application is created
Postcondition: The application is working properly
Workflow:

1. Product Development issues task to develop
temperature control application with the
temperature sensor

2. Application programmer uses existing FBs
to create a FBN that implements the func-
tion of a temperature control (see Figure 3.2)

This use case confirms that the taken approach of encapsulation simplifies
and accelerates the process of application design, as the application program-
mer must not deal with the inner workings of the temperature sensor-FB.

3.2.2 Operational Phase Use Cases

The operational phase use cases deal with the typical day-to-day work of the
maintenance personal. As maintainability is a great issue, both in time and
costs, the firmware execution environment must provide capabilities to sim-
plify the necessary maintenance tasks. Therefore it is of great importance to
examine this tasks carefully.

22

3.2 Use Case Analysis

Use Case: Install Temperature Sensor

Name: Install temperature sensor
Brief description: Company technician affixes and configures the sen-

sor
Actor: Property management, Company technician
Trigger: Property management gives order to install sensor
Preconditions: None
Incoming informations: Sensor location, sensor-ID, temperature control-ID
Result: Sensor is placed and configured
Postcondition: Sensor is on line
Workflow:

1. Property management issues company tech-
nician order to install sensor.

2. Property management imparts location,
sensor-ID and temperature control-ID

3. Company technician configures sensor-ID
and temperature control-ID of the sensor

4. Company technician affixes the sensor on the
given location

5. Company technician brings the sensor on line

The first use case defines the necessary steps to install a temperature sensor
in a room. The company technician configures the temperature sensor with the
given configuration parameters provided by the property management. After
that the company technician mounts the temperature sensor at the designated
location and starts the temperature sensor. This shows the company technician
has to write the parameters to the device’s data input and then start the
execution of the device. Therefore this use case identifies the needs for a
WRITE PARAMETER and a START DEVICE command.

23

3.2 Use Case Analysis

Use Case: Remove Temperature Sensor

Name: Remove temperature sensor
Brief description: The temperature sensor will be deactivated and

removed
Actor: Company technician, Property management
Trigger: Property management gives order to remove tem-

perature sensor
Preconditions: Temperature sensor with given sensor-ID is in-

stalled at given location
Incoming informations: Sensor-ID and sensor location
Result: Temperature Sensor is deactivated and removed
Postcondition: Sensor is off line
Workflow:

1. Property management issues company tech-
nician order to remove sensor

2. Property management imparts location,
sensor-ID and temperature control-ID

3. Company technician checks sensor-ID an
temperature control-ID of the sensor at the
given location

4. Company technician stops temperature sen-
sor

5. Company technician removes temperature
sensor

The analysis of this use case, where a temperature sensor gets deactivated
and unmounted, identifies the need for a STOP DEVICE command, so that an
executing device can be shut down in a controlled manner.

24

3.2 Use Case Analysis

Use Case: Reconfigure the Sensor-ID

Name: Reconfigure the sensor-ID of a temperature sensor
Brief description: Company technician reconfigures sensor-ID of a

temperature sensor
Actor: Property management, company technician
Trigger: Property management gives company technician

order to reconfigure sensor-ID
Preconditions: Sensor with old sensor-ID is installed on given

location and configured with given temperature
control-ID

Incoming informations: New sensor-ID, old sensor-ID, temperature
control-ID and sensor location

Result: Temperature sensor is configured with new sensor-
ID

Postcondition: Sensor continues to work properly with new
sensor-ID

Workflow:

1. Property management issues company tech-
nician order to reconfigure sensor-ID

2. Property management imparts location,
old sensor-ID, new sensor-ID, temperature
control-ID, and sensor location

3. Company technician checks sensor-ID and
temperature control-ID of the temperature
sensor at the given location

4. Company technician stops device execution

5. Company technician reconfigures tempera-
ture sensor with new sensor-ID

6. Company technician restarts device execu-
tion

To perform the workfow of this use case, the following commands must
be supported by the firmware execution environment: STOP DEVICE, READ
PARAMETER, WRITE PARAMETER and RESTART DEVICE.

25

3.2 Use Case Analysis

Use Case: Reconfigure Temperature Control-ID

Name: Reconfigure temperature control-ID of the temper-
ature sensor

Brief description: Company technician reconfigures temperature
control-ID of a temperature sensor

Actor: Property management, company technician
Trigger: Property management gives company technician

order to reconfigure temperature control-ID
Preconditions: Sensor with old temperature control-ID is installed

on given location and configured with given sensor-
ID

Incoming informations: New temperature control-ID, old temperature
control-ID, sensor-ID, and sensor location

Result: Temperature sensor is configured with new tem-
perature control-ID

Postcondition: Sensor continues to work properly with new tem-
perature control-ID

Workflow:

1. Property management issues company tech-
nician order to reconfigure temperature
control-ID

2. Property management imparts location,
sensor-ID, new temperature control-ID, old
temperature control-ID, and sensor location

3. Company technician checks sensor-ID and
temperature control-ID of the temperature
sensor at the given location

4. Company technician stops device execution

5. Company technician reconfigures tempera-
ture sensor with new temperature control-ID

6. Company technician restarts device execu-
tion

26

3.2 Use Case Analysis

This use case is analog to the use case above. Therefore the same commands
STOP DEVICE, READ PARAMETER, WRITE PARAMETER and RESTART DEVICE are
needed to execute the workflow of this use case.

Use Case: Replace Defective Temperature Sensor

Name: Replace defective temperature sensor
Brief description: The building automation system (BAS) reports a

defective temperature sensor that must be replaced
Actor: BAS, company technician
Trigger: BAS reports defective temperature sensor
Preconditions: Configuration and error status can be read-out
Incoming informations: Sensor-ID, sensor location
Result: Defect temperature sensor is replaced with work-

ing and correct configured temperature sensor
Postcondition: New temperature sensor is working properly
Workflow:

1. BAS reports defective temperature sensor
with sensor-ID and sensor location

2. Company technician queries error condition

3. Company technician queries configuration of
the defective temperature sensor

4. Company technician configures new temper-
ature sensor with queried configuration

5. Company technician stops defective temper-
ature sensor

6. Company technician replaces defective tem-
perature sensor with the new temperature
sensor

7. Company technician starts new temperature
sensor

This maintenance use case identifies the need for a STOP DEVICE, READ
PARAMETER, WRITE PARAMETER, READ DATA OUTPUT and RESTART DEVICE com-

27

3.2 Use Case Analysis

mands.

Use Case: Read Parameter List

Name: Read parameter list
Brief description: Company technician wants to query parameter

names and types to configure a temperature sensor
Actor: Company technician, temperature sensor
Trigger: Company technician needs to configure a temper-

ature sensor
Preconditions: No manual of the temperature sensor available
Incoming informations: None
Result: Company technician knows parameter names and

types
Postcondition: None
Workflow:

1. Company technician queries parameter
names and types of a temperature sensor

2. Temperature sensors returns parameter
names and types

As the goal of this use case is to determine the names and types of the
the available data inputs, it identifies two new commands: QUERY DATA INPUT
NAMES and QUERY DATA INPUT TYPE. In contrast to the READ PARAMETER com-
mand, which returns the value of a single data input, those commands return
the data input name (e.g., RES or CYCLE_TIME from the sample application) or
the data input type of a single data input (e.g., CYCLE_TIME is of type TIME).

28

3.2 Use Case Analysis

Use Case: Inclusion of a new Temperature Sensor into a Building
Automation System

Name: Inclusion of a new sensor into the BAS
Brief description: A new sensor is integrated into the BAS
Actor: Temperature Sensor, BAS, Company technician
Trigger: New temperature sensor is installed
Preconditions: The new temperature sensor is compatible with

the BAS
Incoming informations: None
Result: The new temperature sensor is known to the BAS

and can be configured by the BAS
Postcondition: Temperature sensor is working properly in the

BAS
Workflow:

1. New temperature sensor is installed by a
company technician

2. The company technician declares a new tem-
perature control application in the BAS and
enters sensor-ID and temperature control-ID

3. The BAS queries the devices by the given IDs
for parameter input names, parameter input
types, data output names, data output types
and working condition

4. The BAS generates a user interface for the
application

5. The sensor is integrated into the BAS

For practical inclusion of the sample application into a building automa-
tion system (BAS), this use case identifies following commands: QUERY DATA
INPUT NAMES, QUERY DATA INPUT TYPES, QUERY DATA OUTPUT NAMES, QUERY
DATA OUTPUT TYPES, QUERY CONDITION.

29

3.3 Requirements Analysis

3.3 Requirements Analysis

Now that the use case analysis is finished, it is time to define the require-
ments of the firmware execution environment. The first requirements have
been identified through the operational phase use cases of Chapter 3.2.2. All
those use cases have in common, that they identify the different management
commands which the execution environment must support for a convenient use
of the devices in the day-to-day tasks of startup and maintenance of systems
and devices. The needed management commands are

• START DEVICE

• RESTART DEVICE

• STOP DEVICE

• READ PARAMETER

• WRITE PARAMETER

• READ DATA OUTPUT

• QUERY CONDITION

• QUERY DATA INPUT NAMES

• QUERY DATA INPUT TYPES

• QUERY DATA OUTPUT NAMES

• QUERY DATA OUTPUT TYPES

The programming phase use cases of Chapter 3.2.1 identified the required
language constructs to enable firmware modularization, code reuse and encap-
sulation and confirmed the accuracy of demand for those capabilities. The
needed language constructs of IEC 61499 are

• Basic FB

• Composite FB

• SIFB

30

3.4 Requirements Matching with IEC 61499

The last set of requirements can be generated by the boundary conditions of
firmware development. As mentioned in Chapter 1.1 memory size for firmware
tends to be smalls and the computing power of smart actuators and smart
sensors is low, both a consequence of the economic need for low device prices.
Therefore the firmware execution environment must be optimized for embed-
ded systems. Furthermore the embedded execution environment shall be com-
patible with IEC 61499 compliant devices and systems. At last the execution
environment itself shall be easy to port and therefore the basic functions must
be hardware independent, as hardware life-cycles are shortening and software
often have to outlive several hardware revisions. Therewith the final require-
ments are

• The execution environment shall be optimized for code size and low com-
puting power (embedded systems)

• Compatibility to IEC 61499 compliant devices and systems

• The basic functions of execution environment must be hardware inde-
pendent

• Hardware specific functions of the execution environment must be easy
to replace

3.4 Requirements Matching with IEC 61499

The required management commands for the convenient use of the firmware
devices have been identified in Chapter 3.3. However IEC 61499 defines its
own set of management commands, and as IEC 61499 shall be the target
platform for the firmware execution environment the required and the defined
management commands must be matched. The standard also defines so called
“Device configurability classes” in IEC 61499-4 Annex B[IEC05b]. Devices are
divided into one of three configurability classes, namely:

• Class 0: Simple devices

• Class 1: Simple programmable devices

• Class 2: User-reprogrammable devices

Table 3.1 gives an overview which configurability class has to support which
management commands, where a dot means that the corresponding command

31

3.4 Requirements Matching with IEC 61499

CMD Object Required Class 0 Class 1 Class 2
CREATE type_declaration •

fb_type_declaration •
fb_instance_definition • •
connection_definition • • • •

access_path_declaration • •
DELETE data_type_name •

fb_type_name •
fb_instance_reference • •
connection_definition • •
access_path_name • •

START fb_instance_reference • • • •
application_name • • • •

STOP fb_instance_reference • • • •
application_name • • • •

KILL fb_instance_reference • •
QUERY all_data_types • • •

all_fb_types • • •
data_type_name •
fb_type_name •

fb_instance_reference • •
connection_start_point • •

application_name • •
access_path_name • •

READ access_path_name • • • •
WRITE access_path_data • • • •

Table 3.1: IEC 61499 — Device Configuarbility classes based on [IEC05b]

32

3.5 Conceptual Design

must be supported. The column “Required” indicates the management com-
mands have been identified by the requirements analysis. Further information
on configurability classes can be found in [IEC05b]. The most of the required
management commands are also needed for the Class 0 device with only a
minor deviation in the “Query” section, as the use cases of Chapter 3.2.2 iden-
tified the need for easy parameter access, which is achieved easiest through
a query of the so called access paths. An access path defines the access to a
FB input or output through a defined name, which read or modified through
the READ and WRITE management commands. According to the standard it is
also possible to set a parameter by the CREATE command, and as the execu-
tion environment must be compliant to the standard, that command is also
included.

3.5 Conceptual Design

Based on the findings of Chapter 3.3 a first conceptual design shall be devel-
oped now. To simplify the design process the execution environment will be
split in several parts where each of them shall have a specific task. This will
lead to a modular design, which is also desirable, as it will enable to separate
the hardware specific parts from the hardware independent functions of the
execution environment. As shown in Figure 3.4 the modules of the execution
environment are

• Function Block Management Layer

• Application Execution Layer

• Hardware Abstraction Layer

• Device Specific Hardware Layer

which will be examined in the following chapters.

3.5.1 Function Block Management Layer

The Function Block Management Layer (FBML) is the controlling instance of
the Application Execution Layer (AEL). Through the management commands,
identified in Chapter 3.3 it is possible to control the execution state of the AEL
(start, restart and stop). Furthermore the management commands can read
the data inputs and data outputs, write the data inputs, query data names

33

3.5 Conceptual Design

Hardware Abstraction Layer

Function Block Management Layer

Application Execution Layer

E_RESTART

START

STOP
WARM
COLD

CyclicTempSensor

CTS

QO1
TEMP

IND
INITO

START
STOP

QI
RES14

2.543
T#5s

INIT

C_FACTOR
CYCLE_TIME

HYST_MW_LOW_ON

HYST

QO
OUT

CNF
CONCNFCONREQ

REQ

QI
IN

25.0
1.0

INIT

HMW
HWS

INITO

Heater

HEATER

QO
STATUS

CNF
INITOINIT

REQ

QI
HEATING

HMI

HMI
INIT

REQ

Q

Timer Inferface I/O Inferface Network Inferface Memory Inferface Event Handling
Inferface

Device Specific Hardware Layer

Management Commands Function Block ListConnection List

Figure 3.4: Execution Environment Conceptual Design

34

3.5 Conceptual Design

and types, and query the condition of every FB of the application in the AEL.
To provide this functionality the FBML consists of the three elements

• Management Commands

• Function Block List

• Connection List

As any kind of application can be run in the AEL the FMBL must keep a list
of all instanced FBs of the application to access their informations. Through
that the FBML can identify and access individual FBs and can also query all
FBs in the list for specific properties. The Connection List keeps track of the
connections between the FBs, whereby it is possible to determine which data
inputs are parameter inputs, as they will not be connected to another FB. The
advantage of keeping a list of connections instead of keeping a list of parameters
is, that thereby possible connection errors (and thereby application errors) can
be detected by analyzing the connection list. The only penalty of this design
is, that an automated user interface generator of a BAS has to query the lists
of connections and data input names and then to match them to determine
the parameter inputs, instead of just querying the list of parameters.

3.5.2 Application Execution Layer

The Application Execution Layer (AEL) has to emulate an IEC 61499 environ-
ment. It must be able to execute all kinds of FBs in the right manner. Basic
FBs are controlled by their execution control charts (EECs), Composite FBs
have to relay their event and data inputs to their inner FBN and to pass the
results of their inner FBN to their data and event outputs. SIFBs don’t follow
such rules as their implementation is not defined by IEC 614991 and there-
fore can implement any kind of program sequence. The execution sequence of
all FBs must also be according to IEC 61499. If an event arrives at an FB
only the associated data inputs are read and the corresponding algorithm is
executed. Data outputs are only written if the corresponding output event is
sent. The AEL must also ensure that the data types defined in IEC 614992

behave hardware independent and according to the standard.

1As shown in Chapter 2.2.1 their execution behavior is only defined by time sequence
diagrams

2Part of the data types are taken from IEC 61131-3

35

3.6 Summary

3.5.3 Hardware Abstraction Layer

The Hardware Abstraction Layer (HAL) offers hardware services to the AEL,
such as I/O interfaces, timers, memory management, event handling and net-
work interfaces as shown in Figure 3.4. The HAL separates the specific imple-
mentation of the hardware services from the interface, wherefore the specific
implementation can be replaced without changing the interface or FBs of the
AEL. Therewith hardware independence of the upper layers can be achieved
and the execution environment can be ported to a new target hardware by
replacing the Device Specific Hardware Layer.

3.5.4 Device Specific Hardware Layer

As the HAL offers the abstract hardware services to the AEL, the Device
Specific Hardware Layer (DSHL) offers its concrete hardware services to the
abstract interface of the HAL. Therefore the DSHL implements the services of-
fered by the HAL for a concrete target hardware and for every target hardware
a new DSHL has to be programmed. As mentioned above, this two layered
design allows to implement all high level function (FBML and AEL functions)
hardware independent and enables to easily port the firmware execution envi-
ronment to a new target hardware or a new revision of an embedded system
(e.g. new external I/O interface chip).

3.6 Summary

To generate the requirements for an embedded execution environment for mod-
ular firmware structures, first a typical sample application has been defined.
Based on this sample application a use case analysis has been performed in
Chapter 3.2, and thereafter a requirements analysis. The analysis produced
the necessary IEC 61499 language constructs and a set of generic management
commands, that have to be supported for convenient use of such firmware
devices in the day-to-day business. But as the execution environment must
be compliant to IEC 61499 the generic management commands have been
matched to the commands defined in the standard. At last a conceptual de-
sign has been produced based on the findings of the requirements analysis of
Chapter 3.3.

36

4 Implementation

Based on the findings of Chapter 3 the already existing IEC 61499 runtime en-
vironment FORTE shall be modified to fit the needs of an embedded firmware
execution environment and design flaws shall be identified and corrected. There-
fore the first step is to analyze FORTE and give an overview of FORTE and
its key components. Thereafter the parts of FORTE that have been identified
for change are explained in detail in their original implementation. After the
explanation of a FORTE part the revised implementation is shown, and its
advantages are illustrated.

4.1 Overview

The 4DIAC runtime environment (FORTE) is an execution environment for
IEC 61499 FBNs and is implemented in C++. It consists of three parts (see
Figure 4.1)

• Core

• Architecture

• FB Library

The “Core” implements the hardware independent functions necessary to em-
ulate a native IEC 61499 environment compliant to the standard. The “Core”
enfolds the IEC 61499 data types, FB event handling, function block man-
agement, function block interface specifications, device and resource handling,
and connection handling for the FBs.
The “Architecture” is split in two parts. The first part specifies the hardware

service interfaces in a hardware independent way. The second part implements
the functionality of those interfaces for each target hardware FORTE has been
ported to.
The “FB Library” compasses the implementations of specific FBs. Those

FBs must inherit an adequate interface specification for its type from the
“Core”. The library contains standard implementations of often needed FBs,

37

4.1 Overview

FORTE

FB Library

Architecture

Hardware
Independent
Interfaces

Hardware Specific
Implementations

Core

Data Types Event Handling

Function Block
Interfaces Connection Interface

Function Block
Management

Device and Resource
Handling

Figure 4.1: FORTE Overview

but the user of FORTE can also implement additional FBs and use them in
the execution environment.
The “Core” and “Architecture” components will be explained in a bit more

detail in the next chapters, as they are important for the functionality of the
runtime environment.

4.1.1 Core

As shown in Figure 4.1 the core consists of the packages

• Data Types

• Event Handling

• Function Block Management

• Function Block Interfaces

• Device and Resource Handling

• Connection Interface

The “Data Types” package defines and implements the data types defined
in IEC 61499. Those data types are used for implementing the interface of
FBs, internal variables of the FBs, and to define the data types of the connec-
tion endpoints. Further details on the “Data Types”-package will be given in
Chapter 4.3.

38

4.1 Overview

As IEC 61499 is a event-based execution system the rules for event handling
have to be modeled in the execution environment. The “Event Handling”
package implements the event eradication rules of IEC 61499. It ensures that
the events are processed in the order of arrival.
The “Function Block Management” package is responsible for the creation

and deletion of FBs and connections, starting and stopping FBs and IEC 61499
applications, reading and writing of data inputs and data outputs, queries for
information, and the strict compliance of the operational state machine of
IEC 61499 shown in Chapter 2.2.2.
The C++ interface for the different kinds of FBs are defined in the “Function

Block Interface” package. It provides the base classes from which the concrete
FBs in the FB library must inherit to be used in FORTE. The base classes
provide the basic functionality of its FB kind, such as event processing and
FB interface definitions.
In IEC 61499 each FBN is nested within a resource or device, and resources

are nested in devices according to the distribution model of IEC 61499 (see
Chapter 2.2.3). The “Device and Resource Handling” package provides the
C++ constructs to implement the behavior and the interface of the IEC 61499
devices and resources.
The last package of the “Core”-component is the “Connections” package. It

implements the event and data connections between the FBs and provides
services to the “Function Block Management” package for connection and dis-
connection of those connections.

4.1.2 Architecture

The “Architecture” component consists of a hardware independent hardware
service interface specification for the timer, serial interface, and network inter-
face. For the sake of completeness there should be an interface specification for
threads and synchronizing objects, but such base classes have been neglected
for performance issues.
To implement the functions for a specific hardware, the interface of the given

hardware service interface (e.g., the timer) is inherited from the given base
class (e.g., the timer base class). Therefore the implementation of a hardware
service is separated from its interface and can be reused for every new target
hardware. Another benefit of this design is, that FORTE can be easily ported
to a new target hardware, by implementing a new set of the interface classes
for the new hardware.

39

4.2 Optimization Guidelines and Targets

4.2 Optimization Guidelines and Targets

Optimization is a process to enhance a system or process in a defined sense.
Therefore it is necessary to define a optimization criterion, which indicates
if the steps done in the optimization process contribute to the optimization
goal. There are several kinds of optimization goals, like execution speed op-
timization, code readability optimization, code maintainability optimization,
compile time optimization, and several more. The goal of this optimization
is to reduce the code size of FORTE, so that it becomes a possible solution
for firmware execution, as firmware code space tends to be small. FORTE is
implemented in C++, which the optimization guidelines must take in account.
The code size reduction an be achieved through several programming and

design techniques1. One of them is to eliminate as much virtual functions as
possible, as each virtual function needs additional code space for the so called
virtual function table. The table gives the information which specific function
must be executed for the calling class. The execution speed is also improved
through the elimination of virtual functions as a virtual function call usually
takes three times more time as a simple function call.
The second technique is to design flat class hierarchies, as each level of

inheritance adds the constructors and (commonly virtual) destructors of the
base classes. Often the purpose of such class hierarchies is to further reuse and
maintainability by separating the interface from its implementation, but at the
cost of code size (and usually execution speed). If its not possible to flatten
the class hierarchy without seriously impeding maintainability and reuse, this
technique should be avoided.
A commonly used method for code size reduction, is to re-implement the

used container classes (e.g., list, map, string), instead of using the provided
pre-implemented ones from a library, such as the Standard Template Library
(STL) of C++. The STL elements are general-purpose implementations with
no special demand in mind, therefore those implementations are not optimized
in any special way[Str99]. The advantage of using STL elements is, that they
are well tested and proven to work. Own implementations of the container
classes take the demand for small code size in account.
With regard of this techniques, the analysis of FORTE showed that the “Data

Types” and “Function Block Management” packages have to be optimized to
achieve the optimization goal. The STL container classes string, list, map,
and set, which are used in FORTE, shall be re-implemented or, if possible

1The following points are not a complete collection of such techniques, but the most com-
monly used in the optimization of FORTE

40

4.3 Data Types

and applicable, removed.

4.3 Data Types

The “Data Types” package is an essential package of FORTE, as the classes
of the “Data Types” package are used in the data interface of all FBs and
the connections between the FBs. Therefore it is important that the “Data
Types” classes are maintainable, easy to understand and use, and efficient. A
boundary constraint of the design of the “Data Types” class hierarchy is, that
the hierarchy shall reflect the data types hierarchy defined in [IEC03]. Based
on the analysis of the “Data Types” package of the next chapter, a revised
design will be devised.

4.3.1 Original Design

The original class hierarchy design (shown in Figure 4.2) is heavily oriented
on the data type hierarchy of [IEC03]. It contains a fair amount of abstract
classes, which are:

• CIEC_ANY

• CIEC_ANY_DERIVED

• CIEC_ANY_ELEMENTARY

• CIEC_ANY_DATE

• CIEC_ANY_STRING

• CIEC_ANY_BIT

• CIEC_ANY_MAGNITUDE

• CIEC_ANY_NUM

• CIEC_ANY_REAL

• CIEC_ANY_INT

41

4.3 Data Types

C
IE

C
_A

N
Y

C
IE

C
_A

N
Y_

FA
C

A
D

E

C
IE

C
_A

N
Y_

B
IT

C
IE

C
_A

N
Y_

D
A

TE

C
IE

C
_A

N
Y_

D
ER

IV
ED

C
IE

C
_A

N
Y_

EL
EM

EN
TA

R
Y

C
IE

C
_A

N
Y_

IN
T

C
IE

C
_A

N
Y_

M
A

G
N

IT
U

D
E

C
IE

C
_A

N
Y_

N
U

M

C
IE

C
_A

N
Y_

R
EA

L

C
IE

C
_A

N
Y_

ST
R

IN
G

C
IE

C
_B

O
O

L
C

IE
C

_W
O

R
D

C
IE

C
_D

W
O

R
D

C
IE

C
_S

IN
T

C
IE

C
_I

N
T

C
IE

C
_D

IN
T

C
IE

C
_U

SI
N

T
C

IE
C

_U
IN

T
C

IE
C

_U
D

IN
T

C
IE

C
_B

YT
E

C
IE

C
_R

EA
L

C
IE

C
_L

R
EA

L

C
IE

C
_D

A
TE

C
IE

C
_D

A
TE

_A
N

D
_T

IM
E

C
IE

C
_T

IM
E_

O
F_

D
A

Y

C
IE

C
_T

IM
E

C
IE

C
_S

TR
IN

G
C

IE
C

_W
ST

R
IN

G

C
IE

C
_A

R
R

A
Y

Figure 4.2: FORTE Data Type Class Diagram
42

4.3 Data Types

The common interface for all data type classes is provided by CIEC_ANY. The
purpose of the other classes is to divide the concrete data types into categories
according to IEC 61131-3. The concrete class CIEC_ANY_FACADE implements
a data type object that can assume the role of any concrete data type and the
class CIEC_ARRAY implements an array for all concrete data types. The other
concrete classes

• CIEC_TIME

• CIEC_DATE

• CIEC_DATE_AND_TIME

• CIEC_TIME_OF_DAY

• CIEC_STRING

• CIEC_WSTRING

• CIEC_BOOL

• CIEC_BYTE

• CIEC_WORD

• CIEC_DWORD

• CIEC_USINT

• CIEC_UINT

• CIEC_UDINT

• CIEC_SINT

• CIEC_INT

• CIEC_DINT

• CIEC_REAL

• CIEC_LREAL

implement the concrete data types. Each concrete class encapsulates the
necessary C++ variable to hold the value (e.g., CIEC_INT contains a C++
int), and has to implement the interface the base class CIEC_ANY specifies.

43

4.3 Data Types

The data type interface is specified through following function:

• virtual void setValue(CIEC_ANY* pa_poValue)

• virtual void getValue(CIEC_ANY* pa_poValue)

• virtual CIEC_ANY* clone(void)

• virtual const EDataTypeID getDataTypeID()

• virtual bool fromString(const string &pa_rsValue)

• virtual bool toString(string &pa_rsValue)

• static void isCastable(EDataTypeID pa_eSource, EDataTypeID pa_-
eDestination, bool &pa_rbUp, bool &pa_rbDown, bool &pa_rbCross)

• bool castFrom(CIEC_ANY* pa_poValue, bool &pa_rbWarnIfOutOfRange)

• virtual void* getDataPtr(void)

Both the functions void setValue(CIEC_ANY* pa_poValue) and void get-
Value(CIEC_ANY* pa_poValue) implement the assignment operator with in-
terchanged left-hand side and right-hand side operators. While void set-
Value(CIEC_ANY* pa_poValue) implements the assignment operator as Des-
tination = Source, void getValue(CIEC_ANY* pa_poValue) implements it
as Source = Destination. As both functions implement the same functional-
ity and the C++ convention for assignment operators is Destination = Sou-
rce, the void getValue(CIEC_ANY* pa_poValue) function can be removed.
The function CIEC_ANY* clone(void) is used to create a copy of a data

type object and returns a pointer to the copy. This function and by the
“Connections” package for the connection creation.
With const EDataTypeID getDataTypeID() the type of a data type object

can be determined at run-time.
The functions bool fromString(const string &pa_rsValue) and bool

toString(string &pa_rsValue) allows to transform a data object to and
from a string. As every data type has other transformation rules the functions
need to be virtual.
Through the function static void isCastable(EDataTypeID pa_eSource,

EDataTypeID pa_eDestination, bool &pa_rbUp, bool &pa_rbDown, bool
&pa_rbCross) it is possible to determine if and in which way a source data
type object can be cast into a destination data type object. The function bool

44

4.3 Data Types

castFrom(CIEC_ANY* pa_poValue, bool &pa_rbWarnIfOutOfRange) imple-
ments the cast itself.
The last function void* getDataPtr(void) returns a pointer to the con-

tained variable of the data type object holding the value.
The functions

• virtual int serialize(TBYTE* pa_pcBytes, int pa_nStreamSize)

• virtual int serializeTag(TBYTE* pa_pcBytes)

• virtual int serializeValue(TBYTE* pa_pcBytes)

• virtual int deserialize(const TBYTE* pa_pcBytes, int pa_nStreamSize)

• virtual int deserializeTag(TBYTE pa_cByte)

• virtual int deserializeValue(const TBYTE* pa_pcBytes, int pa_-
nStreamSize)

• static void serializeshort(TBYTE* pa_pcBytes, TUINT16 pa_nValue)

• static void deserializeshort(const TBYTE *pa_pcBytes, TUINT16
*pa_nValue)

• static void serializelong(TBYTE* pa_pcBytes, TUINT32 pa_nValue)

• static void deserializelong(const TBYTE* pa_pcBytes, TUINT32
*pa_nValue)

• static bool isNull(TBYTE* pa_pcBytes)

• static void serializeNull(TBYTE* pa_pcBytes)

are also part of the CIEC_ANY class, but not part of the data type interface.
They form a serialization interface which prepares the data to be sent over a
communication interface. The data is transformed into a platform indepen-
dent data representation according to the IEC 61499 Compliance Profile for
Feasibility Demonstrations, which is specified in [HOL]. Including an interface
that is not part of the role of a class is bad design, therefore the communication
interface must be removed from the class and be re-implemented in its own
class hierarchy.

45

4.3 Data Types

4.3.2 Revised Design

Based on the analysis of Chapter 4.3.1 the design of the “Data Type” package
shall be improved. First the interface of CIEC_ANY will be modified, as the com-
munication interface will be removed. The functions void getValue(CIEC_-
ANY* pa_poValue) and bool castFrom(CIEC_ANY* pa_poValue, bool &pa_-
rbWarnIfOutOfRange) will also be removed, as void getValue(CIEC_ANY*
pa_poValue) implements the same functionality as void setValue(CIEC_-
ANY* pa_poValue), and bool castFrom(CIEC_ANY* pa_poValue, bool &pa_-
rbWarnIfOutOfRange) shall be implemented by cast-operators, as it is com-
mon usage in C++. As the interface of CIEC_ANY is now streamlined, the
next steps are taken to reduce the number of virtual functions. As void
getValue(CIEC_ANY* pa_poValue) has been removed the remaining virtual
functions are:

• virtual void setValue(CIEC_ANY* pa_poValue)

• virtual CIEC_ANY* clone(void)

• virtual const EDataTypeID getDataTypeID()

• virtual bool fromString(const string &pa_rsValue)

• virtual bool toString(string &pa_rsValue)

• virtual void* getDataPtr(void)

Its not possible to change the implementation of virtual CIEC_ANY* clone-
(void) as every object has to return an object of its own type, and the object
calling the function can only be determined at runtime.
The function virtual const EDataTypeID getDataTypeID() returns an

enumerations value which represents the type of the object, which can also
only be determined at runtime. But unlike the function virtual CIEC_ANY*
clone(void) the operation is always the same, as the function returns the
value of the member variable holding the type information. Therefore virtual
const EDataTypeID getDataTypeID() does not have to be virtual.
Most of the concrete implementations of the function virtual void set-

Value(CIEC_ANY* pa_poValue) are exactly alike as the member variable,
which is holding the actual value, of the source data type object is assigned to
the member variable of the destination object by the assignment operator. Due
to the design, that every concrete data type class holds a member variable for
holding the actual value, the function virtual void setValue(CIEC_ANY*

46

4.3 Data Types

pa_poValue) needs to be virtual. Therefore to solve this problem, the design
for holding the value must be changed.
The first step is to identify the data types where the virtual void set-

Value(CIEC_ANY* pa_poValue) can be implemented in the exactly same way.
The identified data types are

• CIEC_ANY_BOOL

• CIEC_ANY_BYTE

• CIEC_ANY_WORD

• CIEC_ANY_DWORD

• CIEC_ANY_SINT

• CIEC_ANY_INT

• CIEC_ANY_DINT

• CIEC_ANY_USINT

• CIEC_ANY_UINT

• CIEC_ANY_UDINT

• CIEC_ANY_REAL

• CIEC_ANY_LREAL

• CIEC_ANY_DATE

• CIEC_ANY_TIME

• CIEC_ANY_TIME_AND_DATE

• CIEC_ANY_TIME_OF_DAY

and will be further called “simple data types”. The other data type classes
need special implementations for the virtual void setValue(CIEC_ANY* pa_-
poValue) function.
The member variables and the virtual void setValue(CIEC_ANY* pa_-

poValue) function for simple data types will now be centralized in the CIEC_-
ANY class. The simple data types are collected in the union structure shown
in Figure 4.3. A union can only hold one of the specified types at a time, but

47

4.3 Data Types

-bool
-byte
-word
-dword
-sint
-int
-dint
-usint
-uint
-udint
-time
-date
-time_and_date
-time_of_day

«union»UAnyData

Figure 4.3: FORTE Union UANYData

as each concrete data object only needs to hold one type at a time this poses
no problem. A minor disadvantage is, that the union always has to reserve
memory space for the biggest type in the union, but this is only a small price for
the gained advantages. Now the virtual void setValue(CIEC_ANY* pa_-
poValue) function can be implemented by an assignment between the source
and destination union, which means the function has not to be virtual anymore
for simple data types.
The other classes

• CIEC_ARRAY

• CIEC_STRING

• CIEC_WSTRING

(called “complex data types”) need special treatment, as they further need
special implementations for the virtual void setValue(CIEC_ANY* pa_po-
Value) function, and would therefore demand that the function remains vir-
tual, which would be a acceptable design. But even as the main optimization
goal is to optimize the code size, the execution speed aspect must be con-
sidered. With a small design change it is possible to increase the execution
speed for simple data types. Therefore a new virtual function virtual void
setValueComplex(CIEC_ANY* pa_poValue) is defined, which will handle the
assignment of the complex data types. Simultaneously the function void set-
Value(CIEC_ANY* pa_poValue) is declared as non-virtual. The functions now
chooses on the basis of the enumeration value, that holds the data type, if the

48

4.3 Data Types

00110100 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00110100 = 52

11001100 11111111 11111111 11111111 11111111 11111111 11111111 11111111

11001100 = -52

Sign Bit

Sign Bit

Sign Bit

Sign Bit

Figure 4.4: Little Endian Binary Data Representation

union assignment operator will be executed or if virtual void setValue-
Complex(CIEC_ANY* pa_poValue) will be called. As normal function calls
are approximately three times faster then virtual function calls, the execution
speed for simple data types is improved more, than the execution speed for
complex data types is decreased, as it now has to call an additional function
before the assignment.
Another look on the union structure shows, that it contains three groups

of variables: signed, unsigned, and other types. As the signed variables and
unsigned variables in each case share the same data representation (two’s com-
plement for signed data types, magnitude for unsigned data types). This fact
can be used to implement an automatic up-cast in Little Endian systems. If
the value is stored in the variable with the greatest number range (e.g., a short
int is stored in a double int) the sign bit and the value of the variable never-
theless remains the same, as shown in Figure 4.4. The positive sample value
also shows the case of an unsigned value, which also keeps the correct value if
stored in the variable with the greatest number range.
But this implementation trick only works in Little Endian systems, because

in Little Endian system the used memory space starts with the lowest byte
of the data value. Therefore the first byte of the allocated memory space
represents a short int or the lowest byte of a double int (see Figure 4.5).
Unfortunately this trick doesn’t work in Big Endian system, because the

lowest byte of a variable is placed on the last position. Therefore even as a
Big Endian short int and a Big Endian double int represent the same value,
the representation in memory differs greatly (see Figures 4.6a and 4.6b). This

49

4.3 Data Types

1 8765432

8 1234567

0 B01F00000

B0 0000001F

1F 000000B0

Figure 4.5: Little Endian Data Representation

1 8765432

8 1234567

0 B01F00000

B0 0000001F

1F 000000B0

(a) Big Endian Data Representation

8 1234567

1234

12

(b) Big Endian – Little Endian Prob-
lem

Figure 4.6: Big Endian Problem

problem can be bypassed, by implementing two sets of functions that deal with
the inner representation of the union, which can be switched by a compiler
option, as a system uses either Little Endian or Big Endian data representation.
The functions virtual bool fromString(const string &pa_rsValue) and

virtual bool toString(string &pa_rsValue) can be similarly re-designed
to reduce the number of virtual functions in the subclasses.
For further code size reduction the class hierarchy is slightly changed. The

class CIEC_ANY_FACADE is removed to save code space, as the gain of this class
was to reduce the complexity for the handling of a data variable of type ANY.
The elimination of the class forces some minor modifications of “Connections”
package, but has no further impact on the data types.
Furthermore the class CIEC_WSTRING now inherits from the class CIEC_-

STRING as the implementation of most functions and operators are exactly
alike, but with this design, the functions and operators don’t have to be im-
plemented twice, which not only saves code space, but also increases the main-
tainability of the code. The new class hierarchy design is shown in Figure 4.7.

50

4.3 Data Types

C
IE

C
_A

N
Y

C
IE

C
_A

N
Y_

B
IT

C
IE

C
_A

N
Y_

D
A

TEC
IE

C
_A

N
Y_

D
ER

IV
ED

C
IE

C
_A

N
Y_

EL
EM

EN
TA

R
Y

C
IE

C
_A

N
Y_

IN
T

C
IE

C
_A

N
Y_

M
A

G
N

IT
U

D
E

C
IE

C
_A

N
Y_

N
U

M

C
IE

C
_A

N
Y_

R
EA

L

C
IE

C
_A

N
Y_

ST
R

IN
G

C
IE

C
_B

O
O

L
C

IE
C

_W
O

R
D

C
IE

C
_D

W
O

R
D

C
IE

C
_S

IN
T

C
IE

C
_I

N
T

C
IE

C
_D

IN
T

C
IE

C
_U

SI
N

T
C

IE
C

_U
IN

T
C

IE
C

_U
D

IN
T

C
IE

C
_B

YT
E

C
IE

C
_R

EA
L

C
IE

C
_L

R
EA

L

C
IE

C
_D

A
TE

C
IE

C
_D

A
TE

_A
N

D
_T

IM
E

C
IE

C
_T

IM
E_

O
F_

D
A

Y

C
IE

C
_T

IM
E

C
IE

C
_S

TR
IN

G

C
IE

C
_W

ST
R

IN
G

C
IE

C
_A

R
R

A
Y

Figure 4.7: Revised FORTE Data Type Class Diagram

51

4.4 New Package: Serializer

4.4 New Package: Serializer

As mentioned in Chapter 4.3.1 the data type base class CIEC_ANY contained
a communication interface, which was not part of its role. As it is bad design
to incorporate an interface which is outside the role of the class, because it
decreases maintainability and reuseability, it has been removed from CIEC_-
ANY. But as the functionality is needed by FORTE the interface has to be
re-implemented in a appropriate way. To determine how the communication
interface shall be re-implemented, the provided functions and the typical usage
of the interface have to be analyzed.
The purpose of the communication functions is to prepare data values to

be sent over a network or serial interface, in the platform independent for-
mat ASN.1 as specified in the IEC 61499 Compliance Profile for Feasibility
Demonstrations [HOL]. The communication functions are typically used by
the communication FBs, which passes the data value to the communication
functions to encode the value, or passes a ASN.1 coded data package to receive
the decoded data value according to the compliance profile. As [HOL] only
describes a sample encoding, it is thinkable that the encoding can be replaced
by another one.
Based on this findings the class hierarchy, shown in Figure 4.8 for this “seri-

alizer” is conceived. The class hierarchy consists of the abstract interface class
ISerDeser, which defines the functions serializeData and deserializeData
as the interface for all concrete classes of the hierarchy. The interface is suffi-
cient for the communications FB, as it is possible to encode and decode data
packages. The subclass CITASerDeser implements the encoding and decoding
rules of [HOL].
This design allows to easily change the encoding rules, as it is only necessary

to create a new subclass which inherits from ISerDeser and to change the used
concrete class for encoding in the corresponding communication FBs.

4.5 Function Block Management

The “Function Block Management” consists of two main parts, the Object
Handler and the Type Library. The Type Library is a kind of list, which
holds all FBs known to FORTE. It implements a so-called “Abstract Factory”
design pattern, which allows to select an object by a name and then creates
the selected object[GHJV96].
The Object Handler is the second half of the Function Block Management.

Its task is to interpret and process the incoming management commands, in-

52

4.5 Function Block Management

+serializeData()
+deserializeData()

ISerDeser

+serializeData()
+deserializeData()
-serializeTag()
-deserializeTag()
-serializeValue()
-deserializeValue()
-serializeNull()
-isNull()
-serialize()
-deserialize()

«implementation class»
CITASerDeser

Figure 4.8: Serializer Class Diagram

voke the necessary functions to perform the requested command, and then
send the corresponding response.
The goal of the redesign of the Object Handler is to remove the ability of

FORTE to reconfigure a FBN at runtime, as a firmware device shall contain
a fixed FBN with no need to be changed at runtime. To achieve this goal
several steps have to be set. First the Type Library can be removed, as no
FBs have to be created at runtime. Second the now unnecessary management
commands, such as FB creation or deletion, have to be removed. At last the
class hierarchy of the Object Handler has to be changed in a way that it is
possible to use the Object Handler with the reduced management command
set (called Reduced Object Handler), as well as the Object Handler with
the original set of management commands.

4.5.1 Original Design

As the first step the class hierarchy of the Object Handler is analyzed, which
is shown in Figure 4.9. As can be seen in the Figure 4.9 the class C61499-
ObjectHandler, which implements the functionality of the Object Handler
inherits from the class CFunctionBlock. As a inheritance relationship de-
scribes a specialization relationship2 between classes, and the fact that an

2sometimes also described as an “is-a” relationship

53

4.5 Function Block Management

CManagedObject

CFunctionBlock

CBasicFB CCompositeFB CServiceInterfaceFB CSimpleFB

CResource CDevice

C61499ObjectHandler CAdapter

Figure 4.9: Function Block Management Class Diagram

Object Handler is not a type of function block, the inheritance relationship
between those classes is plainly wrong.
Another oddity in the class hierarchy is the inheritance between the class

C61499ObjectHandler and class CResource, and between the class C61499-
ObjectHandler and class CDevice. The classes CResource and CDevice im-
plement the resource and device behavior defined in IEC 61499, and as both
classes don’t represent a type of Object Handler, again the inheritance rela-
tionship between those classes is plainly wrong.
The next step is to analyze the interface provided by C61499ObjectHandler,

which consists of following functions:

• virtual EMGMResponse executeMGMCommand(SManagementCMD &pa_oCommand)

• EMGMResponse createFB(CStringDictionary::TStringId pa_nFBNameId,
CStringDictionary::TStringId pa_nFBTypeId, const char *pa_acAppl)

• EMGMResponse createConnection(TUINT32 pa_nSourceId, TUINT32 pa_-
nDestId)

• EMGMResponse deleteFB(CStringDictionary::TStringId pa_nFBNameId)

• EMGMResponse deleteConnection(TUINT32 pa_nSourceId, TUINT32 pa_-
nDestId)

54

4.5 Function Block Management

• EMGMResponse writeValue(TUINT32 pa_nDestId, const char *pa_-
acValue)

• EMGMResponse readValue(TUINT32 pa_nSourceId, string &pa_sValue)

• EMGMResponse queryFBTypes(string &pa_sValue)

• EMGMResponse queryRESTypes(string &pa_sValue)

• EMGMResponse queryDTTypes(string &pa_sValue)

• EMGMResponse queryTypeVersion(TUINT32 pa_nSource, string &pa_-
sValue)

• EMGMResponse executeQueryReq(TUINT32 pa_nSourceId, TUINT32 &pa_-
nDestId, string &pa_sResponse)

• EMGMResponse executeQueryCon(TUINT32 pa_nSourceId, TUINT32 pa_-
nDestId, string &pa_sResponse)

• EMGMResponse executeStartReq(CStringDictionary::TStringId pa_-
nFBNameId)

• EMGMResponse executeStopReq(CStringDictionary::TStringId pa_-
nFBNameId)

• EMGMResponse executeKillReq(CStringDictionary::TStringId pa_-
nFBNameId)

• EMGMResponse executeResetReq(CStringDictionary::TStringId pa_-
nFBNameId)

• virtual EMGMResponse startManagedObject(void)

• virtual EMGMResponse stopManagedObject(void)

• virtual EMGMResponse killManagedObject(void)

• virtual EMGMResponse resetManagedObject(void)

The received management commands are processed by the function EMGMResponse
executeMGMCommand(SManagementCMD &pa_oCommand), which invokes the cor-
responding function to execute the requested command.

55

4.5 Function Block Management

The task to the functions createFB(CStringDictionary::TStringId pa_-
nFBNameId, CStringDictionary::TStringId pa_nFBTypeId, const char *pa_-
acAppl) and EMGMResponse createConnection(TUINT32 pa_nSourceId, TU-
INT32 pa_nDestId) is to create FB instances and connections between the
FBs and FBs and parameters. The createFB(CStringDictionary::TStr-
ingId pa_nFBNameId, CStringDictionary::TStringId pa_nFBTypeId, const
char *pa_acAppl) function can be removed, as the reduced version of FORTE
shall not be able to create FBs at runtime. The analysis of the function EMGM-
Response createConnection(TUINT32 pa_nSourceId, TUINT32 pa_nDest-
Id) has shown, that even if it is not desirable to create connections between
FBs at runtime, the function must be kept, as the process of connecting to
FBs at start of the application and at runtime is identical.
The functions EMGMResponse deleteFB(CStringDictionary::TStringId

pa_nFBNameId) and EMGMResponse deleteConnection(TUINT32 pa_nSour-
ceId, TUINT32 pa_nDestId) delete the chosen FBs or connections. This
functions can be removed, as the analysis of Chapter 3 showed now neces-
sity for this functionality.
The EMGMResponse writeValue(TUINT32 pa_nDestId, const char *pa_-

acValue) and EMGMResponse readValue(TUINT32 pa_nSourceId, string &pa_-
sValue) functions implement the READ and WRITE commands for accessing the
so-called access paths. This functions will be kept.
The several QUERY commands and the appropriate responses are imple-

mented by the functions

• EMGMResponse queryFBTypes(string &pa_sValue)

• EMGMResponse queryRESTypes(string &pa_sValue)

• EMGMResponse queryDTTypes(string &pa_sValue)

• EMGMResponse queryTypeVersion(TUINT32 pa_nSource, string &pa_-
sValue)

• EMGMResponse executeQueryReq(TUINT32 pa_nSourceId, TUINT32 &pa_-
nDestId, string &pa_sResponse)

• EMGMResponse executeQueryCon(TUINT32 pa_nSourceId, TUINT32 pa_-
nDestId, string &pa_sResponse).

As the analysis of Chapter 3.4 has shown, FORTE doesn’t need to support
all of the already implemented queries, and therefore most of the function can
be removed from the interface.
The functions

56

4.5 Function Block Management

• EMGMResponse executeStartReq(CStringDictionary::TStringId pa_-
nFBNameId)

• EMGMResponse executeStopReq(CStringDictionary::TStringId pa_-
nFBNameId)

• EMGMResponse executeKillReq(CStringDictionary::TStringId pa_-
nFBNameId)

• EMGMResponse executeResetReq(CStringDictionary::TStringId pa_-
nFBNameId)

starts, stops, kills, or resets the chosen FB or application. All of those func-
tions, except EMGMResponse executeKillReq(CStringDictionary::TStringId
pa_nFBNameId), will be needed.
The last four functions

• virtual EMGMResponse startManagedObject(void)

• virtual EMGMResponse stopManagedObject(void)

• virtual EMGMResponse killManagedObject(void)

• virtual EMGMResponse resetManagedObject(void)

are part of the Object Handler interface due to the odd class hierarchy
design. As an Object Handler is a FB in this design it has to implement
the common interface for all FBs, and as a FB has to be able to be started,
stopped, killed, and restarted the Object Handler also has to provide these
capabilities in this design. As initially mentioned the class hierarchy needs to
be changed, as an Object Handler is not a FB, and therefore these function
can be removed.

4.5.2 Revised Design

Considering the design problem found in Chapter 4.5.1, before any interface
changes are considered the class hierarchy has to be changed in a way that the
design represents the correct relationships between the classes. As the Object
Handler is clearly not a FB it has to be removed from the FB class hierarchy
and be put into its own. As the Object Handler for the firmware execution
environment represents a reduced version of the already implemented one, this
fact should be represented by the class hierarchy. Therefore the new reduced
Object Handler (called C61499Class0ObjectHandler can be seen as the base

57

4.5 Function Block Management

CManagedObject

CFunctionBlock

CBasicFB

CCompositeFB

CServiceInterfaceFB

CSimpleFBCResource

CDevice

C61499Class0ObjectHandler 11

C61499Class1ObjectHandler

CAdapter

Figure 4.10: Revised Function Block Management Diagram

class for more advanced Object Handlers (the C61499ObjectHandler, now
renamed to C61499Class1ObjectHandler), whereby reuse of the functions of
the simpler Object Handler can be achieved.
The same train of thoughts is also valid for the relationship between CResource

and CDevice, where CDevice represents a higher level structure with more
functionality, but it also includes the functionality of CResource. This allows
to design the relationship between those classes as a “is-a” relationship.
The last relationship that must be set is the one between CResource and

C61499Class0ObjectHandler, and CDevice and C61499Class0ObjectHan-
dler, which is a “has-a” relationship, as a resource or device has an Object
Handler for managing their contained FBs. Each resource or device has one
and only one Object Handler, which is represented by a one-to-one contain-
ment relationsship in UML. The new class hierarchy is shown in Figure 4.10.
The next design step is the definition of the interfaces of the Object Handler

classes. The C61499Class0ObjectHandler implement the following interface:

• virtual EMGMResponse executeMGMCommand(SManagementCMD &pa_oCommand)

• EMGMResponse addFB(CFunctionBlock* pa_poFuncBlock)

• EMGMResponse createConnection(TUINT32 pa_nSourceId, TUINT32 pa_-
nDestId)

58

4.5 Function Block Management

• EMGMResponse writeValue(TUINT32 pa_nDestId, const char *pa_-
acValue)

• EMGMResponse readValue(TUINT32 pa_nSourceId, string &pa_sValue)

• EMGMResponse queryAccessPath(string &pa_sValue)

• EMGMResponse executeQueryReq(TUINT32 pa_nSourceId, TUINT32 &pa_-
nDestId, string &pa_sResponse)

• EMGMResponse executeQueryCon(TUINT32 pa_nSourceId, TUINT32 pa_-
nDestId, string &pa_sResponse)

• EMGMResponse executeStartReq(CStringDictionary::TStringId pa_-
nFBNameId)

• EMGMResponse executeStopReq(CStringDictionary::TStringId pa_-
nFBNameId)

• EMGMResponse executeKillReq(CStringDictionary::TStringId pa_-
nFBNameId)

• EMGMResponse executeResetReq(CStringDictionary::TStringId pa_-
nFBNameId)

The function EMGMResponse addFB((CFunctionBlock* pa_poFuncBlock)
replaces the function EMGMResponse createFB(CStringDictionary::TStringId
pa_nFBNameId, CStringDictionary::TStringId pa_nFBTypeId, const char
*pa_acAppl). The task of the function is to add a instantiated FB, created at
startup of the device, to the list of a resource or a device, which is responsible
for the FB (see Chapter 2.2.3).
To access the Access Paths it is necessary to know their names. The

function EMGMResponse queryAccessPath(string &pa_sValue) returns the
known Access Paths of the device, so that the user can read or write to them
through the READ and WRITE management commands.
The remaining functions are the same as in the original design.
The C61499Class1ObjectHandler extends this interface to match the func-

tionality of the old Object Handler, by the following interface:

• virtual EMGMResponse executeMGMCommand(SManagementCMD &pa_oCommand)

• EMGMResponse createFB(CStringDictionary::TStringId pa_nFBNameId,
CStringDictionary::TStringId pa_nFBTypeId, const char *pa_acAppl)

59

4.6 Standard Template Library Elements

• EMGMResponse deleteFB(CStringDictionary::TStringId pa_nFBNameId)

• EMGMResponse deleteConnection(TUINT32 pa_nSourceId, TUINT32 pa_-
nDestId)

• EMGMResponse queryFBTypes(string &pa_sValue)

• EMGMResponse queryRESTypes(string &pa_sValue)

• EMGMResponse queryDTTypes(string &pa_sValue)

• EMGMResponse queryTypeVersion(TUINT32 pa_nSource, string &pa_-
sValue)

This design allows to select a different Object Handler type for each re-
source and device. The class C61499Class1ObjectHandler can also be re-
moved from FORTE, to generate a specialized FORTE version for firmware
device. As the C61499Class0ObjectHandler doesn’t need the Type Library,
the code size of the specialized FORTE version is greatly reduced.

4.6 Standard Template Library Elements

The Standard Template Library (STL) provides a set of often needed classes
for C++, such as container classes, associative arrays and strings. Those el-
ements can be used with any built-in or user-defined data type that support
a minimal set of operators (e.g., assignment, copy constructor). But for each
type that shall be used with a STL element, a new class is created by the
template-algorithm of C++. The main disadvantage of using STL elements in
an embedded system is, that they are not optimized for such systems. The goal
of the STL is, that the contained elements can be used in the majority of cases,
and therefore the implementation is a trade-off between several optimization
goal (see Chapter 4.2).[GHJV96]
The most frequently used STL elements in FORTE are the string, and the

container classes set, map and list.

4.6.1 String

The string class offers many functions as concatenation, dynamic memory
allocation, casts to and from built-in types, and much more. But most of the
functions of the string class is not used. The strings of FORTE are mainly
used to receive management commands, and to send management responses.

60

4.6 Standard Template Library Elements

CSinglyLinkedList

Contained Data Type
«struct»

SSinglyLinkedListElement

Contained Data Type

1 0..1 1

0..1

Iterator

Contained Data Type

«uses»

Figure 4.11: Singly Linked List — Class Diagram

String allocate the memory needed to contain the value dynamic, which is not
desirable in embedded systems, because it can lead to memory fragmentation
as embedded system seldom implement garbage collectors3. This can lead to
a situation where only small chunks of continuous memory is available, and
therefore, even if the sum of free memory would be sufficient, no large enough
continuous memory could be allocated for a variable. In the worst case this
can lead to a system crash.
As most of the string functions are not needed, and to save a great amount

of code size, all strings are removed from the FORTE and replaced by character
arrays. If functions like concatenation, or comparison of strings are needed the
appropriate C functions are used.

4.6.2 Container

The usage of the container classes set, map and list in FORTE showed, that
all container classes can be replaced by singly linked lists, as high access speed
and random access are not necessary. The only objective for a container class
in FORTE are small size, which is fulfilled by a singly linked list. As the
string already has been removed, it is desirable to get rid of the other STL
elements as well, because platform independency can be improved, as different
compiler vendors deliver different implementations of STL elements. Therefore
if FORTE implements its own singly linked list, the exact implementation is

3A program routine for reordering the allocated memory to reduce memory fragmentation

61

4.6 Standard Template Library Elements

known and there is no further compiler vendor dependency.
The singly linked list consists of a container class (CSinglyLinkedList)

which holds the pointer to the first list element (SSinglyLinkedListElement),
if the element has been created already. Each list element contains a pointer
to the next list element, as shown in Figure 4.11. The Iterator is used to
traverse along the singly linked list and to access its elements. This is only
possible in one direction, as each element holds only the pointer to the next
element. Therefore if a previous element must be accessed, the Iterator has
to restart at the beginning of the list.
The interface of the container class consists of:

• void push_front(T const& pa_roElement)

• void push_back(T const& pa_roElement)

• void pop_front()

• void clearAll()

• bool isEmpty()

The functions void push_front(T const& pa_roElement) and void pu-
sh_back(T const& pa_roElement) adds the given element at the start or at
the end of the singly linked list, where void pop_front() deletes the first
element and void clearAll() deletes all elements. The function bool is-
Empty() returns true if the list is empty, otherwise it returns false.
The Iterator implements a minimal set of operators for a one-way read/write

access iterator, which are:

• Iterator& operator++()

• T& operator*()

• T* operator->()

• bool operator==(Iterator const& rhs)

• bool operator!=(Iterator const& rhs)

The Iterator& operator++() traverses the Iterator to the next element.
The operators bool operator==(Iterator const& rhs) and bool oper-
ator!=(Iterator const& rhs) implement the access to the stored elements,
and the last two operators bool operator==(Iterator const& rhs) and
bool operator!=(Iterator const& rhs) implement the equality and inequal-
ity comparations.

62

4.7 Results

4.7 Results

After the end of the code size optimization the success of the optimization
measures has to be proved. Therefore the original version (FORTE V0.3), the
redesigned version with full management command support (FORTE V0.36),
and the redesigned version with reduced management command support sup-
port (µFORTE V0.36) have been build with different compiler optimization
settings, which are O0 for no optimization, O1 for local size and speed opti-
mization4, O2 for global size and speed optimization, O3 for pure speed opti-
mization, and Os for pure size optimization. The program size is split into
code size (text), initialized data (data), and uninitialized data bss. The total
program size is given by dec.
In Table 4.1 the code size of the different FORTE version are compared.

FORTE V0.3 is the original version of FORTE before the optimization. FORTE
V0.36 is the optimized version with full management command support and
µFORTE V0.36 is the specialized version of FORTE for firmware devices. As
can be seen the major part of the size reduction is due to code size reduction,
and therefore the design changes are proven to be correct. The program size of
the FORTE V0.36 has been reduced by 101064 bytes (33%) compared to the
original version, without loosing any functionalities provided by the original
runtime.
The reduced version µFORTE V0.36, suitable for embedded firmware exe-

cution, is even smaller, saving 172076 bytes (56%) compared to the original
version, which is why this version is appropriate for single-chip solutions, where
ROM and RAM size is limited.

4.8 Summary

Based on the requirements formulated in Chapter 3, the already existing run-
time environment FORTE has been modified to meet those requirements. Af-
ter a short overview of FORTE, optimization guidelines and goals have been
formulated. The main goal of the optimization was to reduce code size, by
the means of better implementations of some FORTE packages and by the
reduction of functionality, such as real-time reconfigurability. Based on this
criteria FORTE packages have been identified, which have to be optimized.
Each package has been thoroughly analyzed, and based on this analysis the
optimization has been performed, where special attention was given to the
explanations of the design decisions in the new design.

4Although this option is seldom used

63

4.8 Summary

Table 4.1: Size Comparison FORTE — Values in Bytes
section O0 O1 O2 O3 Os

FO
R
T

E
V

0.
3

text 336092 311804 332944 345280 282528
data 4624 4628 4444 4444 4468
bss 18376 18376 18280 18280 18280
dec 359092 334808 355668 368004 305276

FO
R
T

E
V

0.
36 text 242272 2386280 219360 223168 183512

data 2544 2740 2548 2548 2572
bss 18128 18224 18120 18120 18120
dec 262944 259592 240036 243844 204212

µ
FO

R
T

E
V

0.
36

text 151500 148252 131704 134872 113772
data 2520 2716 2524 2524 2548
bss 16880 16976 16880 16880 16880
dec 170900 167944 151108 154276 133200

64

5 Outlook

New possibilities ans tasks are opening up through the new IEC 61499 runtime
environment specialized for firmware devices. The next step after the code size
optimization is to evaluate the execution performance of the revised design.
The changes done in FORTE should not only decrease the used code space, but
also increase the execution speed considerable, as the new design eliminated
most of the used virtual functions. The latest investigations on virtual func-
tion performance indicate that a virtual function is approximately three times
slower than a simple function call[O’R02]. Another reason for a thoroughly
execution speed evaluation is to identify execution bottlenecks throughout the
runtime, as small systems tend to have less execution speed than industrial
PCs or PLCs. Therefore it is important to improve the execution performance
of the runtime environment as well.
As the size of FORTE is now reasonable to run on small systems (e.g.,

embedded systems, firmware controller), the FB paradigm of IEC 61499 can
now become a part of firmware and embedded systems design. Therefore it
must be evaluated, if the new programming paradigm is suitable in the day-
to-day business of embedded systems design and firmware development, and
which further gains can be generated by the use of the FB paradigm.
The Component-based software engineering (CBSE) is a promising new soft-

ware design paradigm, as it focuses reuse of software elements of the granularity
of a FB. It should be researched if the principles of CBSE can be applied on
IEC 61499 FBs and which prerequisites must be meet in the development of
a FB, that it can be seen as a component according to CBSE. If this is pos-
sible IPMCS device vendors would have several benefits. They could program
the device firmware with FBs and therefore automatically generate IEC 61499
compliant devices, and also generate a set of FB that can be reused in further
products. The firmware interface, which could be represented by a SIFB, could
be handed to the customer, who could use the SIFB in his application. As the
customer only needs the interface and a behavior specification of the device,
the FBN of the firmware device, and their algorithms would be not visible to
the customer, whereby the intellectual property of the device vendor would be
protected.
At last it would be interesting to investigate on the capability of IEC 61499

65

5 Outlook

for the use in low-power system. The event-based execution model of IEC 61499
would be well suited for such systems, as algorithms are only executed, if the
corresponding event arrives. Therefore a low-power system could go into a
sleep mode as long as no events arrive. Such capabilities are interesting in the
field of building automation systems, where more and more wireless, battery
powered devices are used for e.g., temperature, moisture, and light sensors.
The data of those sensors is then used to control the heating system, blinds,
and the ventilation system. As those devices are battery powered it is desirable
to reduce the power consumption to a minimum.
Battery powered wireless smart sensors are also used in so-called “Wireless

Smart Sensor Networks”, where each sensor performs its measurements, but
additionally the wireless sensors form a mesh network. The measured values
are passed to the next node as long as the value arrives at the destination
node, which is commonly a so-called gateway node and is connected to another
network, e.g., connected to a PLC or actuators.[Mah04]

66

6 Conclusion

Lot-size one and small batch productions are becoming more important, as the
western high-labor cost countries can not compete with low-labor-cost coun-
tries in the field mass production. Therefore they are forced to be more flexible
in their production and be on the edge of innovation with both production pro-
cesses and products. The established standard IEC 61131 is not suited for the
new task of high adaptability and therefore the standard IEC 61499 – Function
blocks has been developed. Its core capabilities are run-time reconfigurability
and distributed execution, wherefore it is suited for fast adaptation of the pro-
duction facility to new products and processes. Unfortunately the IEC 61499,
despite being introduced in January 2005, has not become widely accepted.
One reason for it, was that no functioning and free execution environment,

and therefore no IEC 61499 compliant devices, have been available. The
4DIAC initiative released the free available open source runtime environment
for IEC 61499 named FORTE. Although compliant to the standard and freely
available FORTE had the disadvantage, that it has been to big for low-cost
micro controllers. Therefore it was not possible to program devices, that have
only little ROM available e.g., smart sensors or smart actuators, which is why
no direct integration in IEC 61499 of such devices have been possible. That
is why this thesis analyzed the requirements of firmware development and re-
search if the found requirements could be fulfilled by IEC 61499.
The first step was to identify what requirements a typical automation de-

vice poses on a runtime environment, hence why the typical life-cycle of an
automation device was analyzed. As hypothetical devices are not tangible and
therefore important points could be missed, a sample application, a distributed
heater control, has been introduced, whereof the programming phase and the
operational phase has been thoroughly examined, by use case analysis. Based
on the insights of the use case analysis, first the requirements have been de-
duced, then a conceptual design for an embedded execution environment for
modular firmware structures has been defined.
As FORTE has been chosen to be the basis for the embedded execution

environment, the whole runtime has been thoroughly inspected. With the
conceptual design and the requirements in mind, the parts of FORTE which
needed modification have been identified. The main goal of the redesign was to

67

6 Conclusion

decrease code size, by optimization of FORTE and the reduction of integrated
functionality to the point, where only the basic requirements for firmware
execution were met. This included the reduction of the number of supported
management commands and optimization of some parts of the FORTE (e.g.,
data types). Along the way some disadvantageous design decisions have been
found and replaced by more suited designs. The code size of FORTE has been
reduced by 101064 bytes (33%), while retaining the full functionality of the
original version, or by 172076 bytes (56%) in the reduced version.
The next steps could be to examine the execution performance of the revised

FORTE version, or the possibilities for low-power operation for applications in
building automation or wireless sensor networks. It would be also of interest
if CBSE can be applied to the IEC 61499 programming model.
The now possible integration of various small devices in IEC 61499 sys-

tems opens up many possibilities for the use of embedded systems in IPMCS,
building automation systems, wireless sensor networks, and other fields. As
smart sensors, smart actuators and other embedded devices can now be di-
rectly included in IEC 61499 system, whereby the granularity of distribution
can be further reduced. This improves the reconfigurability and reuseability of
IEC 61499 systems, as instead of a PLC controlling the embedded devices, and
therefore forming a decentralized architecture, the devices are now becoming
part of the IEC 61499 system.

68

Bibliography

[Dou99] Bruce Powel Douglass. Doing hard time: developing real-time
systems with UML, objects, frameworks, and patterns. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.
ISBN 0-201-49837-5.

[Dou02] Bruce Powel Douglass. Real-Time Design Patterns: Robust Scal-
able Architecture for Real-Time Systems. Addison-Wesley, Boston,
2002. ISBN 0-201-69956-7.

[GHJV96] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Entwurfsmuster Elemente wiederverwendbarer objektorien-
tierter Software. Addison-Wesley, Bonn, 1996. ISBN 3-8273-1862-
9.

[HOL] HOLOBLOC, Inc. IEC 61499 Compliance Profile for Feasibility
Demonstrations. http://www.holobloc.com/doc/ita/index.htm.

[IEC03] IEC. IEC 61131-3 Programmable controllers Part 3: Programming
Languages. IEC, January 2003.

[IEC05a] IEC. IEC 61499-1 Function blocks - Part 1: Architecture. IEC, 1
2005.

[IEC05b] IEC. IEC 61499-1 Function blocks - Part 4: Rules for compliance
profiles. IEC, 1 2005.

[ISO05] ISO. Unified Modeling Language Specification , ISO/IEC 19501.
ISO, January 2005.

[Lew01] Robert Lewis. Modelling control systems using IEC 61499, Apply-
ing function blocks to distributed systems. IEE - The institution of
Electrical Engineers, London, United Kingdom, 2001.

[Mah04] Stefan Mahlknecht. Energy-Self-Sufficient Wireless Sensor Net-
works for the Home and Building Environment. PhD thesis, Vienna
University of Technology, 2004.

69

Bibliography

[OMG09a] OMG. OMG Unified Modeling LanguageTM(OMG UML), Infras-
tructure. OMG, February 2009.

[OMG09b] OMG. OMG Unified Modeling LanguageTM(OMG UML), Super-
structure. OMG, February 2009.

[O’R02] Martin J. O’Riordan. Technical Report on C++ Performance
(DRAFT). May 2002.

[Öst01] Bernd Österreicher. Objekt-orientierte Softwareentwicklung Anal-
yse und Design mit der Unified Modeling Language. Oldenburg
Verlag München Wien, 5 edition, 2001.

[Str99] Bjarne Stroustrup. The C++ Programming Language Third Edi-
tion. Addison-Wesley, Murray Hill, New Jersey, 1999. ISBN 0-201-
88954-4.

[Szy02] Clemens Szyperski. Component Software Beyond Object-Oriented
Programming. Addison-Wesley, second edition, 2002.

[Vya07] Valeriy Vyatkin. IEC 61499 Function Blocks for Embedded and
Distributed Control Systems Design. ISA, New Zealand, 2007.
ISBN 978-0-9792343-0-9.

[Zoi07] Alois Zoitl. Basic Real-Time Reconfiguration Services for Zero
Down-Time Automation Systems. PhD thesis, Vienna University
of Technology, Vienna, 2007.

[Zoi09] Alois Zoitl. Real-Time Execution for IEC 61499. ISA, O3Neida,
2009.

70

	Abstract
	Kurzfassung
	Acknowledgment
	Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Conceptual Formulation
	1.2 Solution Statement

	2 State of the Art
	2.1 Software Design
	2.1.1 UML
	2.1.2 Design Patterns
	2.1.3 Component Software

	2.2 IEC 61499
	2.2.1 Function Blocks
	2.2.2 Execution Model
	2.2.3 Distribution Model

	2.3 Summary

	3 Concept
	3.1 Sample Application
	3.2 Use Case Analysis
	3.2.1 Firmware and Application Development Phase Use Cases
	3.2.2 Operational Phase Use Cases

	3.3 Requirements Analysis
	3.4 Requirements Matching with IEC 61499
	3.5 Conceptual Design
	3.5.1 Function Block Management Layer
	3.5.2 Application Execution Layer
	3.5.3 Hardware Abstraction Layer
	3.5.4 Device Specific Hardware Layer

	3.6 Summary

	4 Implementation
	4.1 Overview
	4.1.1 Core
	4.1.2 Architecture

	4.2 Optimization Guidelines and Targets
	4.3 Data Types
	4.3.1 Original Design
	4.3.2 Revised Design

	4.4 New Package: Serializer
	4.5 Function Block Management
	4.5.1 Original Design
	4.5.2 Revised Design

	4.6 Standard Template Library Elements
	4.6.1 String
	4.6.2 Container

	4.7 Results
	4.8 Summary

	5 Outlook
	6 Conclusion
	Bibliography

