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Abstract

Investigations of the interactions of fast heavy particles and slow highly charged

ions (HCI) with insulator targets have shown common features. Above a thresh-

old energy (kinetic energy for fast heavy particles, potential energy for slow HCI),

restructuring of the target material was observed leading to track formation in

the bulk of the insulator and/or nano-hillock formation at its surface. Recently, a

microscopic mechanism for the creation of nano-hillocks by slow HCI has been pro-

posed [1], modelling lattice heating due to electron-phonon interaction and giving

temperature distributions in the lattice around 100 fs after the HCI’s impact.

Following the same idea, this work investigates the creation of tracks by swift

heavy ions in an ionic crystal, CaF2. Ionization of the target by swift projectiles

is modeled using time-dependent perturbation theory. The electrons excited to the

conduction band are propagated and excite phonons thereby heating the target

lattice. Melting and restructuring are modeled in a proof-of-principle molecular

dynamics (MD) simulation.

The same MD simulation is used to extend the model for nano-hillock formation

to the picosecond time scale. Threshold behavior is observed for track as well as

hillock formation. Similarities between the processes are investigated and other

processes which could be simulated by similar methods are suggested.





List of symbols in the order of appearance

Symbol Description (page of first mention)
Ep projectile energy (p. 19)

S(Ep) stopping power (deposited energy per path length) (p. 19)
vp projectile velocity (p. 20)
v electron velocity (p. 24)
Ei ionization potential (binding energy) of an electron, Ei > 0 (p. 24)
Zp projectile equilibrium charge state (p. 24)
Zt (effective) target charge (p. 30)
E electron energy (p. 30)
σion total ionization cross section (p. 31)
~q momentum transfer to electron (p. 31)
ni principal quantum number (p. 34)
λion total ionization mean free path of the projectile (p. 36)
n total electron number density (p. 36)
λi contribution of shell i to λion (p. 36)
〈E〉i average energy of ejected electron from shell i (p. 36)
σel(E) elastic scattering cross section in electron transport (p. 42)
Egap energy gap between valence and conduction band

(CaF2: Egap ∼ 12 eV) (p. 42)
σin(E) inelastic scattering cross section in electron transport (p. 43)

∆E energy loss of primary electron in inelastic collision (p. 43)
Ephonon optical phonon peak energy (CaF2: Ephonon ∼ 58 meV) (p. 43)
λ total electron mean free path (p. 45)
λel total elastic electron mean free path (p. 46)
λin total inelastic electron mean free path (p. 46)

Nphonon effective number of phonons emitted
in one quasi-elastic scattering event (p. 50)

R distance from track axis for tracks,
or center of hemisphere for hillocks (p. 53)

ρE(R) energy density in distance R from center (p. 54)
T temperature (p. 54)

Emelt melting energy density (CaF2: Emelt ∼ 0.55 eV/atom) (p. 54)
Eroom energy density corresponding to room temperature (300 K) (p. 54)
N number of atoms in the molecular dynamics (MD) simulation) (p. 64)
Tbath temperature of heat bath (target temperature) (p. 68)
Thot (final) temperature of the “hot” region in MD simulations (p. 69)

(abbreviated as T if no confusion is possible)
Rhot radius of the “hot” region in track and hillock MD simulations (p. 69)

(abbreviated as R if no confusion is possible)
g(r) pair correlation function (radial distribution function) (p. 73)





1 Introduction

After irradiation with swift heavy ions a strongly damaged zone can be found in a

variety of materials. Around the path of individual projectiles, cylindrical tracks

with typical diameters of a few nm are formed. The left panel of fig. 1.1 shows

a cross-sectional TEM (transmission electron microscope) image of such tracks.

Depending on the target, the tracks consist of amorphous material or contain lattice

or electronic defects. Track formation is common in insulators, in particular in

ionic crystals. In any case, track formation was observed only if a threshold in the

stopping power of the projectile was exceeded.

Track formation and its applications have been studied for several decades, start-

ing with photographic plates used to detect cosmic radiation [2]. Today, this basic

technique is still used to measure the heavy ion dose in space dosimetry [3] in

combination with thermoluminescent detectors (TLDs). Controlled modification

of material properties using irradiation with ion beams has become a widely used

technique in applied fields [4–6], e.g. ion beam lithography. Recently, track forma-

tion and subsequent etching has been used for the fabrication of capillaries that are

used to guide ion beams [7]. Furthermore, tracks can be used to pin the magnetic

flux lines in superconductors, increasing the critical temperature, field, and current

density [8, 9].
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Experimental as well as theoretical work [10–15] seeking to understand the rele-

vant mechanisms abounds. Early theoretical models include the two-temperature

model [16, 17]. A descendant is the “thermal spike” model [18–23] which has been

successfully applied to experimental findings.

According to this model the energy is transferred from the projectile to the

electronic system of the target, which couples to the lattice, leading to melting and

restructuring. This mechanism is modeled by two coupled one-dimensional radial

heat diffusion equations for the electronic system and the lattice of the target,

where the coupling is a free parameter (“electron-phonon coupling constant”). If

the temperature of the target lattice in distance r from the track axis rises above

the melting temperature, it is considered as “molten”, and supposed to contain

defects upon recrystallization. The diameter of the experimental track is given by

rexp = max{r}. In general, agreement with experiment is good. Limitations include

the need for a free parameter and the doubtful validity of macroscopic models (the

track radius, ∼ 50 Å, is only around 50 nearest neighbor distances but is treated as

continuum). Furthermore, material dependent parameters (e.g. heat capacity and

thermal conductivity) are taken from data tables for moderate ambient conditions

but are supposed to be correct under the extreme conditions encountered in the

central region of the track (extremely high temperatures and non-equilibrium).

A more qualitative model has been given by Chadderton [15]. The track forma-

tion process is interpreted as the interplay between a “heating wave” which flows

from the projectile path outwards and an inward-flowing “cooling wave” which heals

the crystal.

In this work, we in contrast propose a microscopic model for track formation

to overcome these deficiencies. The process is divided into three sub-processes
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which take place on different time scales so that they can be modeled in sequence:

energy deposition from the projectile to the electronic system of the target, energy

diffusion from the electronic system into the lattice, and atomic motion. Results of

the preceding step are used as input for the subsequent step. Due to the different

scenarios in each step, methods from numerous fields are applied, each with different

approximations and validity criteria; among them are time-dependent perturbation

theory, electron transport including electron-phonon-interaction, dielectric theory,

and molecular dynamics. Wherever possible, experimental data is used to provide

a realistic description. Comparison to experiment and to theoretical calculations

obtained by different means provide tests for the model.

Figure 1.1: Left: Scanning electron microscopy image of ion tracks produced by
275 MeV Au ions under gracing incidence on YBa2Cu3O7 grown on MgO
substrate[23, 24]. Center: High-resolution electron microscopy image of an
amorphous track zone produced along the trajectory of one 1.4 GeV Au ion
in crystalline Bi2Sr2CaCu2O8 [23, 25]. Right: AFM image of CaF2 after
irradiation with slow highly charged ions. Nano-sized hillocks are observed.
Fig. taken from [26].

Signatures of a similar mechanism have been found in the interaction of ions

with surfaces. While experimentally observed surface modifications in ion-surface

interactions include well-ordered patterns like ripples or dots [27–29] we will focus

on the recently found “potential hillocks” [26] induced by slow highly charged ions
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(HCI).

These potential or “nano-” hillocks have been found on several materials, e.g. on

dielectric targets (see right panel of fig. 1.1). As for track formation, the hillocks

can be linked to the impact of single ions. A threshold potential energy (charge

state) of the ion is required for hillock creation. Model calculations show that this

threshold can be linked to nano-scale melting of the crystal around the ion impact

site [1, 26] where the largest part of the ion’s energy is deposited.

In this work, we will try to investigate the link between the two phenomena. We

will concentrate on one material, CaF2, in which both hillock and track formation

have been observed. A theoretical framework for hillock creation has been proposed

in [1], centered on energy deposition of the ion’s potential energy to the target elec-

tronic system and subsequent lattice heating by electron-phonon coupling. We will

extend this model to the picosecond time scale by a molecular dynamics simulation

of the restructuring of the heated lattice similar to track formation.

This work is organized as follows: First, we will summarize our model for track

formation, outlining the nature of the problem and the different methods needed

to calculate the various parts of the model and their approximations (chapter 2).

Then, we will briefly summarize the experimental evidence and some theoretical

results on hillock formation before proposing an extension to the current theory

by the same means which we use for the simulation of tracks. We will outline the

differences and the similarities between the two processes, and propose other cases

to which the present simulation could be applied (chapter 3). A graphical summary

of the proposed model for track and hillock formation including the numerous input

sources is given in fig. 1.2.

Atomic units (me = ~ = e0 = 1) are used unless otherwise stated.
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Figure 1.2: Graphical summary of unified model for track and nano-hillock formation
including input data.





2 A microscopic model for track

creation

In this chapter we will first briefly explain our model and make order-of-magnitude

estimates showing that we can divide track creation into three subprocesses (energy

deposition into the electronic degree of freedom of the target, energy diffusion in

the electronic system and energy deposition to the lattice, and atomic movement

and eventually restructuring). Then, we go into detail about the methods and

approximations we use to model each subprocess discussing the results at the end

of each section.

2.1 Overview: analysis of time scales

The passage of swift heavy ions through some materials, in our case an ionic insu-

lator (CaF2), creates tracks along the ion’s path if the average energy transferred

to the medium along a unit path length (stopping power S(Ep) at projectile energy

Ep) is above a certain threshold, see fig. 2.1.

In this section, we will propose a microscopic mechanism in which the energy

is at first deposited in the electronic degree of freedom of the target, from where

it is transferred to the lattice (phononic degree of freedom) which, in turn, leads
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to restructuring. To be able to understand this process, let us first look at the

different time scales involved.

Energy deposition to the target. The swift heavy ion deposits its energy

during the time it passes the target atoms. For projectile velocities vp of about 3

to 30 a.u. which are required for track formation, a unit cell with a lattice constant

of roughly 5 Å is passed in less than 10−16s or 0.1 fs. Electrons of elevated energy

are left behind.

Electron cascade and energy transfer to the lattice. Let us consider 10 eV

as a characteristic energy for the quasi-free ejected electrons, which amounts to a

velocity of ∼ 20 Å/fs. During the passing of the projectile (0.1 fs), their motion can

therefore be neglected. We estimate a range of the order of 100 Å for the electrons

(compare also section 2.3). Assuming continuous slowing down, we find that the

electrons reach 99 % of their range within / 100 fs.

Energy diffusion in the lattice and restructuring. In order to derive a char-

acteristic time scale for lattice restructuring, we start with the speed of sound in

CaF2, which is of the order of ∼3.8 km/s [30] or 0.04 Å/fs. The time it takes a

sound wave to propagate from the track axis to the experimental track radius is a

lower bound to the time scale for lattice dynamics. Assuming 50 Å for the track

radius, we find this lower bound of the characteristic time span to be >1 ps, much

longer than the duration of the electron cascade.

Conclusion The above back-of-a-napkin calculation shows that the process of

track creation can be divided into three subprocesses which happen in time scales

which are orders of magnitude apart. Thus, we can assume that the steps happen
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one after another. We can model each of the steps independently, taking the result

of one step as input data for the next one. This enables us to model a process

stretching over 5 orders of magnitude in time, which would not be feasible otherwise.
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2.2 Energy deposition to the target

In this section, we describe our model of the primary energy transfer, from the

incident projectile to the electronic system of the target. We review the basic

mechanisms of energy transfer that exist and single out the most important one,

i.e. ionization. We explain modelling the ionization of bound target electrons by

a moving ionic projectile using time-dependent perturbation theory, including the

approximations that must be made to render the problem tractable. Finally, we

present the results of the simulation and compare them to experimental results.

2.2.1 Mechanisms of energy transfer

A swift charged particle moving in a solid can transfer its energy to the solid by two

different mechanisms. The first is elastic collisions between the ion and the target

nuclei, called “nuclear stopping”. The second comprises all possible excitations of

electronic degrees of freedom and is thus called “electronic stopping”. The program

SRIM [31] (“Stopping and range of ions in matter”) accesses a large database of

experimental results and uses scaling laws to give estimates for the stopping power

of any given particle in any given medium. Fig. 2.1 shows the SRIM estimate for

the stopping power of a Xe projectile of different energies Ep. In experiments, a

threshold stopping power of 0.5 keV/Å is observed for the formation of tracks (red

dashed line in fig. 2.1).

Nuclear stopping does not play a substantial role in the energy regime where the

stopping power is larger than the threshold for track formation (c.f. fig.2.1). At the

lowest energies that will be treated in this work (∼ 3 · 107 eV), its contribution is

only 5 % and vanishes rapidly for higher energies. Therefore, we concentrate on

the energy deposition to the electronic system of the target.
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Figure 2.1: Stopping power of Xe in CaF2 as given by SRIM [31] (random direction of
incidence). Contributions from nuclear stopping dominate at low energies.
The horizontal dashed line represents the experimental threshold for track
formation. Track formation is experimentally observed for stopping powers
above 0.5 keV/Å, which corresponds to projectile energies from 107 - 1010

eV or projectile velocities from 3 to 30 a.u.

Within the realm of electronic excitations, one can further distinguish several

types of reactions:

Electron capture and loss The projectile can capture one of the target electrons

to a bound projectile state by lowering the potential barrier through the Coulomb

potential of the projectile. For high projectile charges and target valence electrons,

the electron will usually be captured to an excited projectile state.

On the other hand, the reversed process is possible: The projectile might lose

weakly bound electrons to the target. Due to screening of the projectile by the tar-
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get electrons and collisions with target cores outer electrons can be stripped off. A

good first estimate is found by comparison of orbital and projectile velocities. Only

electrons with orbital velocities faster than the projectile velocity are considered to

remain bound to the projectile.

For example, consider a projectile energy Ep of 30 MeV, which corresponds to

a stopping power slightly above the threshold for track formation (fig. 2.1). The

velocity of the Xe projectile (ZXe = 54, mXe = 131.293 amu) is then about vp = 3

a.u. An electron which moves with the same velocity v = vp around its orbit

has a total energy (binding energy) of ∼120 eV, as can be seen from the Virial

theorem1. In the ground state of xenon [32], the electrons from the 4d, 5s, and 5p

shells are bound more loosely than that. Therefore, they are stripped off, leaving

the projectile with a net charge of Zp = 18. On the right side of the stopping

power graph in fig. 2.1, at about 3.5 GeV, the projectile moves at a speed of around

33 a.u. which corresponds to an electron binding energy of ∼15 keV. Only the 1s

electrons are bound tighter than that, leaving a net charge of Zp = 52.

1 The Virial theorem states that for a stable system governed by Coulombic forces [33],

Epot = −2Ekin

with Epot the total potential and Ekin the total kinetic energy of the system. We consider an
electron of total energy Ei below vacuum (binding energy), which is given by the sum of the
kinetic and potential energies

Ei = Ekin + Epot

and thus is related to the orbital velocity v and mass me of the electron as

−Ei = Ekin =
mev

2

2
.

Solving for v yields

v

a.u.
=

√
−Ei

1Ry
; 1Ry = 13.605692 eV .
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A balance of electron capture and loss will be established, leading to an “equilib-

rium charge state”. More elaborate calculations as well as experiments have been

done to investigate these processes. Here, we use [34], where experiments were

analyzed that measure the charge state of different projectiles of different energies

after they have passed thin foils of different materials. They give an analytical

formula which allows the calculation of equilibrium charge states for a large range

of systems, with an error of only about ±0.5(e0). For the cases mentioned above,

we calculate a projectile net charge of 16 and 52, respectively, which is quite close

to our estimates (18 and 52). Further details on the equilibrium charge, charge

state distributions and the formulae used can be found in appendix A. We note

that we restrict ourselves to the part of the track where the equilibrium charge

state has been reached. We assume that in total electron capture and loss do not

contribute much to the stopping power and we have therefore not included them

in our simulation.

Target excitation and ionization The projectile interacts with the electrons of

the target and transfers some of its kinetic energy to them leaving them in either an

excited target state (excitation) or a continuum state (ionization). Since all target

states are occupied up to the valence band in the ground state, a vacancy would

have to be formed before a target electron from a deeper level could be excited

there, making excitation improbable compared to ionization.

On the other hand, the solid-state nature of the target gives rise to additional

energy loss channels. For example, excitons can be created. These bound states

of target electrons and their holes have energies just below bottom of conduction

band. Furthermore, the target is a dielectric and will thus shield the projectile. The

induced charge density leads to a wake potential around the projectile which in turn
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leads to a retarding electric force on the projectile. The energy lost by the projectile

is stored in the electronic system of the medium in the form of electron-hole pairs.

The wake potential provides a way to estimate the distance up to which the medium

effectively “feels” the presence of the projectile. This response is larger for higher

projectile charges (stronger potential) and lower projectile velocities (which give

the medium more time to react). Fig. 2.2 shows the wake potential (normalized to

a unit charge) in CaF2 at a projectile velocity of 3 a.u. Details of the calculation

are given in appendix B. Consistent with a later estimate based on the stopping

power, we find that the influence of the projectile on the medium is small for

distances larger than ∼ 10 Å. We assume that the contribution of excitons and

other excitations are small compared to ionization losses.

Figure 2.2: “Reduced” wake potential φwake,red of a projectile of velocity 3 a.u. (in
+z direction) in CaF2. φwake,red is related to the total potential φ as φ =
Zp
(

1
R

+ φwake,red
)
.
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2.2.2 Target ionization

2.2.2.1 Simplifying the system to a 3-body-problem

The problem of a charged particle with its bound electrons interacting with the elec-

tronic system of a solid consisting of N electrons with N of the order of Avogadro’s

number (NA = 6 · 1023) requires additional simplification to be tractable.

Equilibrium charge state of the projectile The projectile is assigned an equi-

librium charge state Zp reflecting the balance of electron capture and loss. We

determine Zp according to a fit to experiments on many projectile-target combina-

tions [34], see appendix A. For the following calculations we treat the projectile as

a point charge of strength Zp.

Independent ionizations The next approximation is to treat ionizations as in-

dependent events. This enables us to calculate the probability of ionization for

one target electron individually and derive the total ionization probability from

the spatial density of electrons. For this approximation to be valid, two conditions

must be met: First, multiple ionization from one target atom must be treatable

by an independent electron approximation. This is justified if correlations can be

ignored and if the motion of the projectile can be treated in a classical manner [35].

Experimental evidence shows that these assumptions are met for our case [36–38].

Second, the ionization processes from different target atoms have to be treatable

as independent of each other. The approximation is justified if the characteristic

distance between target atoms is much larger than the characteristic interaction dis-

tance with the projectile. This is not the case here, since the (screened) Coulomb

potential of the projectile can ionize atoms several interatomic distances away from
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its position. To get an estimate, we analyze the magnitude of the stopping power

necessary for track formation (compare fig. 2.1). We assume for simplicity that the

projectile loses on average 50 eV in each ionization event (the band gap of CaF2 is

12 eV, binding energies of core electrons range up to 4 keV; later, we will calculate

this value and find ≈ 50 eV). Then, 10 ionization events are required in 1 Å path

length to reach the threshold stopping power of 500 eV/Årequired for track forma-

tion. At the velocities and projectile charges where the cross sections are largest,

multiple ionization probabilities are of the order of 20 % of the single ionization

probability [39]. For simplicity, we assume one ionization per atom. Then, the

projectile has to ionize 50 atoms while it traverses one unit cell (5.46 Å). With 12

atoms per unit cell (c.f. appendix D), we obtain a characteristic distance of ∼6 Å or

8 unit cells that interact with the projectile. For larger stopping powers, this model

gives larger characteristic interaction distances, always of the order of 10 Å, which

is clearly larger than the nearest-neighbor distance of about 2 Å. This estimate is

also consistent with the calculation of the wake potential presented in fig. 2.2.

Even though the premises of the approximation are not satisfied, a more elaborate

approximation that is still tractable is difficult to find. Furthermore, results closely

resembling the experiment have been calculated in this approximation (e.g. [40]).

Independent electrons: single active electron We are now left with a point

charge impinging on a target atom with up to several tens of electrons. To further

simplify the calculation, the single active electron model is employed: we distinguish

between the electron that is ionized and the electrons that are left behind. The

latter are treated as “frozen”, i.e. they act as spectators of the ionization process,

and their state remains unchanged during the ionization. Electron correlations

in the ground state, i.e. before the ionization, are considered in the spirit of a
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mean field theory leading to an effective potential for the electron to be ionized.

The probability for ionization of any electron from a certain state is given by the

ionization probability for one electron times the number of electrons in that state.

Multiple ionization plays a role for charge states Zp and projectile velocities vp

lower than the stopping power maximum; its importance decreases towards higher

projectile energies. It is difficult to estimate the contribution of multiple ionization,

especially as there are no data for ions in a solid. In atom-ion collisions maximum

ratios of single to double ionization of ∼ 20 % [39] are obtained for similar collision

parameters Zp and vp as used in this work. We neglect multiple ionization and

show the validity of this approximation later by comparison to other data. It is

possible to calculate multiple ionization probabilities in the independent particle

model [35, 39, 41] given the ionization probabilities for all electrons as a function

of impact parameter. This information could, in principle, be obtained using the

time-dependent perturbation theory treatment we propose later in this section [42].

However, it would require rewriting the implementation used in this work.

Further adaptations have to be incorporated into our model to account for the

ionicity of the target constituents Ca2+ and F−. Electronic structure calculations

[43] show that the electron density can be attributed to the ions according to their

nominal charges. Linear combination of atomic orbitals (LCAO) calculations [44]

show that the valence band of CaF2 almost entirely consists of F(2p) orbitals, with

only minor admixtures of Ca levels. More deeply bound levels are only weakly

influenced by the crystal potential. We therefore conclude that the atomic orbitals

of Ca2+ and F− are good approximations to the true electron wave functions. The

binding energy of the electrons of the considered shells is adjusted to match the

experimental value [45] (see section 2.2.2.2).
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Continuum After ionization, the electrons are transferred to continuum states of

the target. From band structure calculations (e.g. [43]) it is known that the disper-

sion relation of continuum states for electrons in CaF2 is, to a good approximation,

parabolic, i.e. similar to that of free electrons.

2.2.2.2 Time-dependent perturbation theory

We are now left with the following problem: the projectile, a point charge of

strength Zp, impinges with velocity vp on a target atom of effective charge Zt (see

below) with one active electron. The effect of other electrons is partly taken into

account through the initial wave function of the active electron and the effective

target charge Zt. We calculate the probability to find the electron in a continuum

state moving with energy E = v2

2
in direction θ with respect to vp after the passage

of the ion (doubly differential ionization cross section). The situation is depicted

in fig. 2.3. For simplicity, we consider a fixed impact parameter b [46, 47].

Figure 2.3: Depiction of ionization geometry. The projectile (green) with charge Zp and
velocity ~vp passes the target with nuclear charge Zt (red). The minimum
distance between them (impact parameter) is |~b|. The relative position
vector between projectile and target core is ~Rt. The target has one active
electron (blue) with relative position vector ~rt to the target core. The vector
from the projectile to the electron is ~rp = ~rt − ~Rt, and ~Rt(t) = ~vpt+~b.
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Appendix C gives a brief account of the general method of time-dependent pertur-

bation theory as applied to ion-atom collisions. The doubly differential ionization

cross section for the ejection of an electron into the solid angle dΩ with energy E

is given by [48]

d2σion
dΩdE

= kt
1

4πv2
p

∫ ∞
qmin

dq q

∫ 2π

0

dφq|Ti,f |2 (2.1)

where infinite masses for the nuclei are assumed, kt is the momentum of the electron

relative to the target and Ti,f is the transition matrix between the initial state |i〉

and the final state |f〉. The momentum transfer is given by ~q = ~Ki− ~Kf where ~Ki

and ~Kf label the initial and final projectile momenta with respect to the target.

φq is the azimuthal angle of ~q, and the integration limit is qmin = E+Ei
vp

with Ei

the ionization potential of the initial bound state |i〉. The different approximations

available for the treatment of ionization differ in the choice of the perturbation and

the initial and final states.

2.2.2.3 CDW-EIS: Continuum distorted wave - eikonal initial state

The CDW approach was initially developed for charge transfer processes [49, 50]

and has later been applied to ionization in its CDW-EIS form [51]. For a detailed

introduction that cannot be given here the reader is directed to [52]. An exemplary

comparison that shows the improvement of CDW-EIS over simpler approximations

as compared to experiments can be found in [53].

The final wave function is a continuum distorted wave of the form (with rp, rt

and Rt as in fig. 2.3)

ξ−f = φ−f D
−(Zp, ~kp;~rp) (2.2)
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with

φ−f = ei
~Ki·~Rtψ−

t,~kt
(~rt)

ψ−
t,~kt

(~rt) =
ei
~kt·~rt

(2π)
3
2

D−t (~kt;~rt)

D−t (~kt;~rt) = D−(Zt, ~kt;~rt)

= e
παt
2 Γ(1 + iαt)1F1(−iαt, 1,−i(~kt · ~rt + ktrt))

αt =
Zt
kt

where ψ−
t,~kt

(~rt) is an incoming continuum state of the electron in the field of the

target ion with momentum ~kt, D−t and D− are distortion factors due to the pro-

jectile and target, respectively, and 1F1 is the confluent hypergeometric function of

the first kind. This description has the correct asymptotic behavior in the limit of

large internuclear distances for the electronic degree of freedom. It behaves as a

continuum state of the two-center combined Coulomb fields of the projectile and

the target. Of course, this is only true in the case of atom-ion collisions. In the

solid, the field of the projectile and the residual target will eventually be shielded

while the wave function of the electron evolves in the crystal potential. Therefore,

a plane wave could be a better asymptotic approximation to the wave function of

the ejected electron. However, the main features of the wave function are formed

while electron, target, and projectile are close to each other, which makes this

approximation preferable.

The application of the same idea to the initial state of the electron fails due to

normalization issues [54] which lead to a divergence in the T matrix. In the CDW-

EIS approximation, the initial state is therefore only distorted by an eikonal phase

which is associated with the electron-projectile interaction:
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η+
i = φ+

i E
+(Zp, ~vp;~rp)

= φ+
i e
−iZp

vp
ln(~vp·~rp+vprp) (2.3)

with

φ+
i = ei

~Ki·~Riϕαi(~rt) (2.4)

where ϕαi(~rt) is the initial bound state of the electron. As mentioned above, the

atomic orbitals of Ca2+ and F− are good approximations to the electron wave func-

tions. They are tabulated, e.g. in [55–59], in the form of expansion coefficients of ex-

ponentials, which is convenient for the CDW-EIS calculation (“Roothaan-Hartree-

Fock”). We adjust the binding energy of the electron by tuning the effective target

charge Zt (see below).

The resulting CDW-EIS transition matrix is

T (~kt, ~q) = 〈ξ−f |V
†
f |η

+
i 〉

= −(2π)−
3
2

∫
d3rpe

−i~q·~rpE+(Zp, ~vp;~rp)

×∇~rpD−∗(Zp, ~kp;~rp)

×
∫

d3rte
i~s·~rtϕαi(~rt)∇~rtD−∗t (~kt;~rt) (2.5)

with Vf the residual ion potential and ~s = ~q − ~kt.
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Effective target charge Zt We chose the effective target charge Zt according

to Belkić’s prescription (hydrogenic model, 1Ry = 13.6 eV) as

Ei = 1Ry
Z2
t

n2
i

(2.6)

where Ei is the experimental binding energy for the respective shell (distance to

the bottom of the conduction band, taken from [45]) and ni its principal quantum

number. This is an empirical prescription which has been successful in predicting

experimental results and has to be verified by comparison to experiment. From

a physical point of view, it effectively re-scales the wave function to take into ac-

count the crystal potential of the solid in an approximate manner. Extensions

of this model include the choice of different effective charges for initial and final

wave functions. In ion-atom collisions, it has been shown that employing model

potentials instead of the Coulomb potential leads to improvements over the hy-

drogenic approximation [48]. This way, one could also insert the wake potential

of the projectile (compare fig. 2.2 and appendix B), which requires a customized

implementation and much longer computation times.

Implementation We used a public domain implementation by McSherry [60].

Expansion coefficients for F− were taken from [55], for Ca2+ coefficients for the

isoelectronic Ar atom had to be used. Binding energies were replaced by the ex-

perimental values from [45].

Validity Most authors cite the validity criterion of Belkić [49],

E [MeV/amu] ≥ 0.08Ei [a.u.] , (2.7)
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which is purely empirical and requires verification by comparison to experiment.

The ion energies considered in this work range from 0.2 to 26 MeV/amu, the

largest binding energy considered is about 2 a.u. for the Ca(3s) state. Condition

eq. 2.7 is therefore fulfilled and reasonable agreement to experiment can be expected

over the whole range of energies, with the largest errors expected in the low velocity

regime.

2.2.3 Results

After some tests that reproduced literature results, we have calculated total, singly,

and doubly differential ionization cross sections for ion impact on CaF2. This was

done for 5 different projectile energies (and therefore charge states, c.f. fig. A.3),

and for the four weakest bound shells of CaF2, i.e. F(2p) (binding energy Ei = 14.4

eV [45]), F(2s) (35 eV), Ca(3p) (31.6 eV), and Ca(3s) (50.2 eV).

2.2.3.1 Validity of the approximation - calculating the stopping power

Since we have claimed target ionization to be the most important process responsi-

ble for energy loss of the projectile, a comparison of the calculated stopping power

in the energy range where track formation is possible with dEp
dz

from other sources

provides a test for the model.

The stopping power, sometimes called linear energy transfer, is given by

S(Ep) =

∣∣∣∣dEpdz

∣∣∣∣ , (2.8)

the absolute value of the amount of energy lost by the projectile dEp along a path

of length dz. Energy conservation requires that the energy lost by the projectile
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has to be equal to the energy transferred to the medium. We now link this quantity

to our calculated cross sections.

The mean free path λion for ionization is the average distance between subsequent

ionization events. It is related to the cross section σion and the number density n

of scattering partners (electrons) as

σionλion =
1

n
, (2.9)

i.e. in a cylinder of base area σion and height λion there is on average one scattering

partner. From the number densities of F and Ca atoms (c.f. appendix D) and the

number of electrons per shell (2 for an s shell, 6 for a p shell) one can calculate the

average electron number density. The different contributions λi (i =F(2p), F(2s),

Ca(3p), Ca(3s)) contribute to the total ionization mean free path λion as

1

λion
=
∑
i

1

λi
. (2.10)

The average energy transferred from the projectile to the target in one scattering

event δE is the ionization potential of the electron, Ei, plus the average energy of

the ejected electron, 〈E〉i:

δEi = Ei + 〈E〉i (2.11)

where 〈E〉i can be calculated from the singly differential cross sections dσion,i
dE

(Ep)

which give the probability to find the ejected electron from shell i in a state with

energy E for a certain projectile energy Ep. Averaging and normalizing we get
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(dropping the index i in all terms)

〈E〉 =

∫
dσion

dE
EdE∫

dσion
dE

dE
(2.12)

where the denominator is equal to the total cross section.

The stopping power for an ionization process from a given shell (index i) can

now be approximated by

Si(Ep) =

∣∣∣∣dEpdz

∣∣∣∣
i

≈ δEi
λi

(2.13)

and the total stopping power is the sum of the stopping powers for the different

processes (i=F(2p), F(2s), Ca(3p), Ca(3s)), c.f. 2.10

S(Ep) =
∑
i

Si(Ep) . (2.14)

Fig. 2.4 gives the result of the calculation. We are not aware of any measurements

of the stopping power of Xe in CaF2 in this energy range. Therefore, we compare

our results to the stopping power given by SRIM [31] which should be accurate to

around 20 %.

Over the whole range of energies, the stopping power graph is reproduced well,

validating our model. At the lowest energy considered, 0.27 MeV/amu, the stop-

ping power is around 30% smaller than predicted by SRIM, partly due to the

negligence of nuclear stopping (∼ 5 %). We observe that our calculation tends

to underestimate the stopping power, which we ascribe partly to the neglected

multiple ionization channel. The data point at Ep ∼ 600 keV/amu gives a stop-

ping power which is, against the trend, larger than the calculated SRIM results.
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Figure 2.4: Comparison of stopping power calculated with CDW-EIS (blue points) and
SRIM [31] versus energy. The contributions of the different shells to the
total stopping power are depicted as indicated.

This can be attributed to the known over-estimation by CDW-EIS of cross sec-

tions near the maximum cross section σion,max(vp = vmax) with (at this Ep, Zp)

vmax ≈ v
√
Zp/Zt + 1) ≈ 3.5 =̂ 600 keV/amu [61].

2.2.3.2 Discussion of singly differential cross sections

Figure 2.5 depicts singly differential ionization cross sections for a wide range of

energies and projectile charge states investigated in this work.

As expected, the highest orbital (F(2p), blue) contributes most to the cross

section. At higher energies, the contributions from lower shells increase compared

to the F(2p) orbital.

In all cases, the majority of electrons is ejected with low to medium energies

below 200 eV. The average kinetic electron energy is always well below 100 eV.

Table 2.1 summarizes the results of the ionization cross section calculations.
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Figure 2.5: Singly differential ionization cross sections for the 4 highest target orbitals
(F(2p), blue; F(2s), turquoise; Ca(3p), red; Ca(3s), green) for three different
energies and charge states, which correspond to the left, center, and right
of the stopping power graph, see fig. 2.4. On the leftmost picture, the cross
section for the Ca(3s) orbital is below 10−2 × 10−20 m2/eV for all electron
energies.

Table 2.1: Details of the calculation of the ionization cross sections.

Projectile Projectile Total Total projectile Average electron
energy charge state cross section mean free path ejection energy
Ep Zp σion λion 〈E〉

[keV/amu ] [e] [Å2] [Å] [eV]
226.21 16 29.7 0.142 60.0
608.56 23 90.5 0.051 70.3
2338.28 34 142.5 0.033 40.4
7692.72 44 142.1 0.031 27.0
26124.8 52 120.3 0.034 17.0

2.2.3.3 Summary

In this section, we have calculated doubly differential ionization cross sections in

ion-atom collisions inside a solid. The approach is used to model the energy depo-

sition from swift heavy particles to the electronic system of the medium. We use a

one-electron time-dependent perturbation theory approach (CDW-EIS) which has
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proven to be accurate in high-velocity ion-atom collisions. Hartree-Fock represen-

tations of the initial electronic wave functions are used. We tune a parameter of

the CDW-EIS (“effective charge”) to match the experimental binding energy of the

target. Our results for the stopping power (proportional to the total cross section)

agree well with experimental data over a wide range of energies.
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2.3 Energy diffusion in the electronic system and

energy deposition to the lattice

2.3.1 Introduction

The second step in our three-step model is the energy diffusion in the electronic

system and deposition of the energy to the lattice. In an intuitive picture, electrons

with energies Ei (initial velocities) are released by the passing ion. They propagate

inside the solid under the influence of elastic and inelastic scattering processes

along their trajectory (fig. 2.6). Quantum mechanics enters our classical transport

simulation through scattering cross sections (see below). In the following, we give

a short overview over the possible interactions to be considered before describing

each of them in detail.

Figure 2.6: Schematic picture of the processes modelled in this chapter. Left: The ion
(green) has passed the region of the crystal, leaving behind electrons (blue)
along the track (dash-dotted line). Right: Electron cascades: electrons
are propagated through the crystal, eventually being elastically deflected or
creating secondary electrons through inelastic collisions. Phonon excitations
(red spots) heat the target lattice.

First, electrons can be scattered elastically by the (mean-field) potential of a

target atom (left panel of fig. 2.7). The initial energy E = v2

2
(measured from

the bottom of the conduction band) of the electron is unchanged but the direction
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of the velocity vector changes. This change is often described in terms of the

scattering angle θ between the velocity vectors prior to and after the collision.

All the information is contained in the scattering potential, or, equivalently, in

the energy dependent elastic differential cross section, dσel
dΩ

(E). The latter gives a

probability distribution for the scattering angle θ via dΩ(θ) = sin(θ)dθdφ. The

probability of the process is expressed via the energy dependent elastic total cross

section σel(E) =
∫

dσel
dΩ

(E) dΩ. The energy E of the electron is not changed in this

process and the process can occur at any energy.

Figure 2.7: Schematic scattering geometry of the interactions. Left: Quasi-elastic
scattering. The electron is scattered by the potential of a target atom by a
scattering angle θ from its initial direction. Right: Inelastic scattering. The
electron ionizes a target atom, producing a secondary electron “s”, while the
primary electron “p” is scattered by the angle θ. The energy of the primary
electron is reduced by the band gap plus the kinetic energy of the secondary
electron.

Second, the electron may produce an electron-hole pair, thereby producing a

secondary electron (right panel of fig. 2.7). Since the electron energy is reduced by

Egap +Esec (gap energy Egap ≈ 12 eV plus kinetic energy of the secondary electron

after the collision), this is called an inelastic process. The process is only possible

if the initial energy of the electron is large enough, i.e. higher than the binding

energy of the secondary electron. Weakly bound electrons are more likely to be

excited than core electrons. Another energy loss mechanism in free electron gases

is plasmon excitation, a quasi-particle representing the collective motion of the
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electrons. The plasmon eventually decays into an electron-hole pair or by emission

of a photon. Electron-hole pair production and plasmon excitation are described

by dielectric theory, see e.g. [62]. Here we assume it can also be applied to insulator

targets [63]. Key quantity is the doubly differential inelastic scattering cross section

dσin
d∆EdΩ(θ)

(E), depending on the energy of the incident electron. Probabilities for

scattering angles θ and energy losses ∆E of the primary electron are derived from

it.

If the electron energy becomes too small to allow for electron-hole pair excitation

(E < Egap), another energy loss mechanism is left: the excitation of phonons, quasi-

particles of lattice vibration (heat). Due to the small energy loss (meV) this process

is more similar to an elastic than an inelastic collision. Because of the kinematic

limitations of the process (me � matom) the electron transfers only a small part

of its energy to the atoms. To estimate typical energy losses, consider an electron

which is backscattered from a (free) target atom. The momentum transfer will be

almost like in a collision with a hard wall, ∆p / 2v, which is also the momentum of

the target atom after the collision. Expressing the energy of the target atom Eatom

in terms of the electron energy E before the collision, we find Eatom ≈ 4 me
matom

E,

which gives an energy loss of about 1 meV for a 10 eV electron in CaF2. With this

estimate we are already within one order of magnitude of the excitation energy of

a phonon in CaF2 (acoustic phonon . 30 meV, optical phonon up to Ephonon = 58

meV [43, 64, 65]).

After the electron has lost all its energy, it may recombine radiatively, not con-

tributing to the heating of the central zone. Recombination processes can also

happen for electrons of higher energies and need not necessarily decay radiatively.

In inelastic collisions, excitons can form instead of electron-hole pairs. Plasmon
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excitations and excitons could both potentially couple to the phononic system and

thus contribute to the heating process. Furthermore, it is difficult to assess the

importance of these processes and also the time scales on which they happen.

We only model the above three processes (elastic and inelastic scattering and

phonon excitation) in a stochastic electron transport simulation using classical

transport theory, with initial conditions determined by the doubly differential elec-

tron ejection cross sections that were calculated in section 2.2. The electron is

modelled as a classical point-like particle subject to stochastic scattering events.

To reach statistical convergence many electron trajectories are calculated. The

density of excited phonons corresponding to lattice vibrations (i.e. heat) serves as

input for the subsequent MD simulation.

2.3.2 Electron transport

We solve the classical Langevin equation in the absence of an external force,

~̇p = ~Fstoc(~r, t) , (2.15)

for a large ensemble of electron trajectories. The force ~Fstoc(~r, t) =
∑

i ∆~p δ(t− ti)

models momentum transfers ∆~pi at discrete times ti, which are chosen stochastically

(see below). The momentum transfers account for elastic electron-atom potential

scattering as well as inelastic scattering of the projectile electron. Trajectories of

electrons released by inelastic losses are simulated as well.

We use an electron transport code that was originally developed in [66] and has

since been applied to a large number of problems [1, 63, 67].
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2.3.2.1 Initial conditions

The initial conditions for one electron trajectory are the initial position ~r0 and the

initial momentum ~p0.

Initial position For simplicity, we chose ~r0 to be on the track of the projectile.

This choice is not obvious: we have already pointed out in section 2.2 that the

characteristic interaction distance of the projectile potential is of the order of 10 Å

and electrons are expected to be excited within this range. Later in this section, we

will look into how smearing of the initial positions around the track axis changes

the outcome of the simulation.

Initial momentum For the initial momentum of the electron, we use the results

of section 2.2. Calculating the weighted sum of the doubly differential cross sections

at a certain projectile energy Ep leaves us with a two-dimensional distribution for

the probability of finding an electron with initial momentum |~p0| and emission

direction θ (from the track axis).

2.3.2.2 Energy diffusion in the electronic system

The electron is propagated along straight lines between subsequent collisions. From

the total electron mean free path λ the (Poissonian) probability density for a scat-

tering event to take place after a path length s is given by

P (s) = λ−1 exp (−s/λ) , (2.16)
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where λ is determined from the mean free paths for both elastic and (different

contributions to) inelastic scattering by

1

λ
=

1

λel
+
∑
i

1

λ
(i)
in

. (2.17)

Collisions can either be elastic or inelastic according to the ratio of their inverse

mean free paths.

Elastic collisions In case of an elastic collision, the ratio of the relative concen-

trations of the elements constituting the target and their elastic scattering cross

sections decide at which element the projectile will be scattered next. The scat-

tering angle θ between the electron velocity before and after the collision is chosen

from the energy dependent differential elastic scattering cross section dσel
dΩ

(E) for

that element, which was calculated using the ELSEPA code [68] (partial-wave so-

lution for scattering states of the Dirac equation). In elastic collisions, the energy

is conserved, i.e. the absolute value of the momentum does not change, p′ = p. The

momentum transfer ~q = ~p′ − ~p defines the scattering angle θ.

Inelastic collisions In inelastic collisions, the energy of the incident electron is

not conserved. The electron loses the energy ∆E and is deflected by θ from the

incidence direction. For a given ∆E, the momentum transfer ~q can be related to

the scattering angle θ. The energy loss ∆E must be larger than the energy gap

Egap between valence and conduction bands (CaF2: 12 eV). A secondary electron

with energy Esec = ∆E − Egap and momentum derived from kinematics is added

at the location of the scattering and is also followed on its way through the crystal,

possibly leading to more secondary electrons.
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Key input for inelastic collisions is the doubly differential cross section dσin
d∆EdΩ(θ)

(E)

which gives the probability for an energy loss ∆E and a momentum transfer q(θ). It

is customary to rewrite this quantity in terms of a doubly differential inverse mean

free path d2λ−1
in (E)

d∆Edq(θ)
(see eq. 2.9). It can be derived from dielectric theory applied

to an electron moving in a solid, where the solid is characterized by a dielectric

response function ε(~q,∆E) [66]. The (Fourier components of the) total potential

Φ(~q,∆E) in response to an external potential Φ0(~q,∆E) is given by

Φ(~q,∆E) =
Φ0(~q,∆E)

ε(~q,∆E)
. (2.18)

Inserting the Fourier transform of the charge density ρ0(~r, t) = −δ(~r − ~vt) of

an electron moving with velocity ~v into the Poisson equation, the external po-

tential induced by the electron Φ0(~q,∆E) is obtained. One can then define the

doubly differential inelastic mean free path so that the stopping power S(E) =∫
d(∆E)dq (∆E)

d2λ−1
in (E)

d∆Edq
corresponds to the retarding force on the electron due to

the electric field −~∇Φ(~r − ~vt) at the position of the projectile. For an isotropic

medium, the result is (with cos(θ) = q2/2−2E+∆E

−2
√
E(E−∆E)

):

dλ−1
in (E)

d∆Edq
=

1

πqE
Im

{
−1

ε(q,∆E)

}
. (2.19)

The challenge is to find a sensible approximation to the dielectric function. For

this purpose, one can analyze results from EELS (electron energy loss spectroscopy)

[69, 70] or inelastic X-ray scattering [71] experiments. Theoretical approaches in-

clude linear response time-dependent density functional theory (TDDFT) [72, 73].

In this work, we use a method derived from dielectric theory.

The dielectric function at zero momentum transfer is taken from optical data
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[65, 74] that measure the refractive and absorption indices, n and κ:

ε(q = 0,∆E) = (n+ iκ)2 . (2.20)

We extrapolate this data into the q-∆E-plane assuming that each feature of the

spectrum behaves as a plasmon pole of a free electron gas [67, 75, 76]. One finds

for the inverse imaginary part of ε(q,∆E) (“loss function”, see fig. 2.8) entering

eq. 2.19 [66]

Im

{
−1

ε(q,∆E)

}
=

∆E0

∆E
Im

{
−1

ε(q = 0,∆E0)

}
, (2.21)

∆E0 = ∆E − q2

2
. (2.22)

In this work, we assume that this model is also a valid approximation for insulators

[1, 63]. At least, the model gives a dielectric function that obeys the Thomas-

Reiche-Kuhn sum rule [67] which links the dielectric function to the electron density

of the medium.

2.3.2.3 Analysis of mean free paths; energy diffusion to the lattice

Fig. 2.8 shows the optical data Im
{

−1
ε(q=0,∆E)

}
of CaF2 and the elastic and inelastic

mean free paths for electrons of different energies in CaF2. The loss function (left

panel) is proportional to the probability that a photon with energy ∆E is absorbed

[77]. The gap energy of Egap = 11.7 eV is clearly visible. Below this energy, only

(optical) phonons can be excited (Ephonon ≈ 0.058eV). For photon energies between

0.1 and 10 eV the crystal is transparent. The oscillations directly above the gap

energy can be attributed to excitonic states (localized electron-hole pairs). The

first large peak (below 25 eV) stems from the F(2p) valence band (average binding
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Figure 2.8: Left panel: Loss function Im
{

1
ε(q=0,∆E)

}
of CaF2. The gap energy is 11.7

eV (the left peak represents optical phonons). Right panel: Energy depen-
dent magnitude of the elastic and inelastic mean free paths. The inelastic
mean free path diverges as the energy approaches the gap energy (energy
measured from top of valence band). Data for left figure from [65, 74];
right figure taken from [1].

energy 14.4 eV, width about 5 eV [45]). The structure at 30-40 eV is attributed to

the lower lying orbitals, Ca(3p) (31.5 eV) and F(2s) (35 eV). Barely visible in the

plot is the shoulder in the spectrum at the energy of the Ca(3s) orbital (50 eV). The

sharp edges at higher energies indicate characteristic transitions from core orbitals

(Ca(2p) and Ca(2s) at ∼400 eV, F(1s) 700 eV, not shown is Ca(1s) at 4 keV [32]).

The right panel shows the elastic and inelastic mean free paths for electrons in

CaF2. The electron energy is measured from the top of the valence band which is

separated by Egap =11.7 eV from the bottom of the conduction band. The same

applies to all electron energies in this section, unless otherwise noted.

It is important to realize that for an inelastic scattering event to take place, the

incident electron must have an energy larger than 2Egap, because the final states of

both electrons must be allowed and unoccupied (in an insulator, we expect all va-

lence states to be occupied and all conduction states to be unoccupied). Therefore,
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the inelastic mean free path diverges at that energy. In contrast, the total mean

free path is almost an order of magnitude lower at low energies (10 eV) than at

high energies (1000 eV) due to the short elastic mean free path. Thus, low-energy

electrons will remain close to their initial spatial position, while electrons of ele-

vated energy will quickly diffuse away and deposit their energy far from their point

of emission. This will be discussed more quantitatively in section 2.3.3.2.

The above reasoning shows that for electron energies E smaller than 2Egap, the

only remaining inelastic process is phonon excitation. In this process, the energy

loss is very small, ∆E ≈ Ephonon � E; as a first estimate, we use the elastic cross

sections for its angular dependence. We can therefore model phonon excitation in

terms of a (to be determined) average (effective) number of phonons Nphonon which

are created in each quasi-elastic scattering process, each of which reduces the energy

of the electron by Ephonon. Nphonon therefore gives the energy loss dE per unit path

length dx of low-energy electrons, for which no other loss mechanism is available,

as

dE

dx
= −NphononEphonon

λel
. (2.23)

Therefore, Nphonon influences the length of the path s low-energy electrons travel

inside the solid before they have lost their initial energy E0

s ∼ E0

NphononEphonon
λel , (2.24)

so that largerNphonon (stronger coupling to the phononic system) leads to deposition

of thermal energy nearer to the initial position of the electron and vice versa.

Nphonon is energy dependent and has to be determined from the theory of electron-
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phonon interaction. For our proof-of-principle study, we use a simpler approach.

Low-energy electrons (E < Egap) are much more efficient in heating the part of

the crystal close to the track axis, providing the main contribution to the energy nec-

essary for track formation (compare section 2.3.3.2). We give an order-of-magnitude

estimate for the coupling of low-energy electrons to the phononic system, Nphonon,

based on data from scanning electron microscopy. Electrons of larger energy are

assumed to have the same coupling.

Estimate of Nphonon Experimental data from scanning electron microscopy

(SEM) can be used to estimate Nphonon. Secondary electrons (with energies ≤ 20

eV) produced by the primary beam can only escape from a relatively thin layer near

the surface, and their intensity I is experimentally found to follow an exponential

decay [78],

I ∝ e−x/l (2.25)

with l the mean escape depth (attenuation length) and x the distance from the

surface. For metals, l ≈ 10 Å while for insulators, l ≈ 100 Å [78]. Fig. 2.9

shows an energy spectrum of these low-energy electrons. Most of the electrons

have energies smaller than the gap energy Egap and thus cannot create secondary

electrons. Therefore, they are slowed down mainly by electron-phonon interaction

and we can relate the observed l to our parameter Nphonon.

The relationship between the microscopic parameter Nphonon and the macroscopic

observable l is established empirically by comparing results from the electron trans-

port simulation to experimental observations. We ran electron transport simula-

tions for initial energy distributions as in fig. 2.9. The simulations differ only in the
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choice of Nphonon. Fig. 2.10 shows the relative intensity (number of electrons) in a

distance x from their point of origin.

Figure 2.9: Secondary electron (E ≤ 20 eV) spectra from scanning electron microscopy
(large) and complete electron spectrum up to the primary beam energy EPE
(inset), including Auger and backscattered primary electrons. Figures taken
from [78]. The electron energy is counted from the vacuum level.

The choice of Nphonon influences the slowing down of the electrons as expected.

For larger Nphonon (stronger coupling), electrons lose their energy more rapidly and

their intensity decays faster, and vice versa.

Along with the intensities, exponentials of several decay constants are plotted

in fig. 2.10 that indicate that the intensity is asymptotically well described by an

exponential (experimental behavior from eq. 2.25). From a comparison of the two,

we find that a choice of Nphonon . 0.1 yields best agreement with the experimental

value of l ≈ 100 Å from [78].
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Figure 2.10: Intensity of low-energy electrons with an energy distribution as in Fig. 2.9 in
distance x from their point of origin inside the solid (solid lines). Depending
on Nphonon (0.01. . . 1), the attenuation length l varies between 20 and 200
Å (dashed lines).

2.3.3 Results

104 electron trajectories sampling each initial condition (projectile energy Ep) de-

rived from section 2.2 (see fig. 2.5) were calculated. Their initial conditions corre-

spond to ion energies Ep of 0.226, 0.609, 2.3, 7.7, and 26 MeV/amu and equilibrium

charges Zp of 16, 23, 34, 44, and 52, respectively (c.f. fig. A.3). This is the energy

range in which the stopping power is above the threshold for track formation.

Radial energy density distributions are calculated from the sum of phonon ener-

gies 〈E〉(R) excited in a cylindrical shell of thickness ∆R in distance R from the

track axis containing Natom = 2π R∆R∆z · nCaF2 atoms. nCaF2 is the number

density of atoms in CaF2, see eq. D.1. ∆z = Ntrajλion, the height of the cylin-

der, is given by the number of calculated electron trajectories times the ionization
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mean free path derived in section 2.2. The average energy density is then given

by ρE(R) = 〈E〉(R)
Natom

. For the subsequent molecular dynamics simulation, a “tem-

perature distribution” T (R) is derived from the energy density ρE(R). Each atom

in the crystal has three translational degrees of freedom plus three (approximately

harmonic) vibrational degrees of freedom. The energy is distributed according to

the equipartition theorem,

〈E〉(R) =
6

2
Natom kBT (R) →

T (R) =
1

3kB
ρE(R) (2.26)

For T in K and ρE in eV/atom, the proportionality factor is T ≈ 3900ρE.

2.3.3.1 Effect of Nphonon on energy distribution

We assess the importance of the parameter Nphonon by varying it around its es-

timated order-of-magnitude, Nphonon . 0.1 (see above) for a test case that corre-

sponds to the maximum of the stopping power graph, Ep = 2.3 MeV/amu. Fig. 2.11

shows the resulting radial energy distributions for different Nphonon together with

the energy density necessary for melting (minus the energy density corresponding

to room temperature Eroom = 0.078 eV/atom ; Emelt = 0.55 eV/atom [79]).

As expected, the distribution depends on the choice of Nphonon. For small Nphonon

more elastic scattering events are required in order to deposit the energy. This, in

turn, leads to a longer trajectory length of the random walk of the electron and,

consequently, to a smaller energy density. Therefore, the energy density falls off

steeper for large Nphonon than for low Nphonon.
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Figure 2.11: Radial energy distributions in the lattice of CaF2 after the passage of a Xe
ion of 2.3 MeV/amu. The distribution depends on the choice of the pa-
rameter Nphonon. For comparison, the energy density necessary for melting
Emelt − Eroom and the energy density corresponding to room tempera-
ture (300 K) Eroom are shown as horizontal lines. Vertical dotted lines
indicate the distance from the track axis where the energy density crosses
Emelt − Eroom or Eroom. The integrals over each distribution (total en-
ergy) are almost equal (except for energy which is lost due to increased
secondary electron production).

Bounds for track diameters based on energy density distributions

In a simple model, one could expect that the region where the energy is higher than

the melting energy will melt and constitute the future “track” while the rest of the

crystal will remain stable. Of course, one has to take into account the interplay

between the excess heat in the central region and cooling by the rest of the crystal

which will shift the border between the molten and crystalline region outwards.

Still, the size of the region where the energy density for melting is reached is a
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lower bound of the diameter of the future track. Similarly, an upper bound for the

diameter of the track is given by the size of the region whose temperature is only

negligibly influenced by the electron cascade. We estimate that this is the case if

the additional energy density deposited by the electron cascade is lower than the

energy density at room temperature, Eroom.

The crossing points of the energy density distributions with the horizontal lines

that indicate Emelt − Eroom and Eroom are shown as dotted lines in fig. 2.11. For

Nphonon = 0.01, the melting energy density is not even reached on the ion path

itself, indicating that this choice of Nphonon is too low. The other choices which are

shown in fig. 2.11 give lower bounds for the track radius of ∼ 10− 40 Å and upper

bounds 80− 90 Å. This compares well to the experimental track radius of 50-70 Å,

independent of the exact value of Nphonon which is varied between 0.1 and 1.

We find best agreement with experimental results for Nphonon =0.2. All further

results are calculated using this value for the electron-phonon coupling.

2.3.3.2 Dependence of energy distributions on the initial electron

energy

It is instructive to visualize the dependence of the heating efficiency on the energy

of the primary electron. Figure 2.12 shows the average thermal energy distribution

produced by one electron of primary energy 1, 10, 100, and 1000 eV, including heat

generated by secondary electrons. Note that the fraction of high-energy electrons

is by orders of magnitude lower than low-energy electrons for the initial conditions

derived in section 2.2, see fig. 2.5.

Fig. 2.12 shows that low-energy electrons contribute disproportionally much to

the heating of the central cylinder. This is due to two reasons: first, they stay closer
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Figure 2.12: Radial thermal energy distributions per electron following the ejection of
an electron with different kinetic energies as indicated, including heat de-
posited by secondary electrons.

to the track due to their lower mean free path and deposit their energy there rather

than further away. Second, a larger fraction of their energy is converted to phonons

while no energy is spent for secondary electrons. An electron of primary energy E =

1 or 10 eV deposits 100 % of its energy as phonons because no secondary electrons

can be created. Once secondary electron creation is possible (E > Egap ≈ 12 eV), it

is the main energy consumption mechanism. An electron of E = 50 eV (not shown

in the graph) already deposits 75 % of its initial energy as secondary electrons and

only 25 % remain for lattice heating. This fraction stays roughly constant for more

energetic electrons; an electron of 1000 eV, for example, creates ∼ 14.5 secondary

electrons of average energy ∼ 60 eV which in turn create ∼ 50 more secondary

electrons. Altogether, 64.5 · Egap ≈ 77%·E are lost due to secondary electron

excitation, and only ∼ 23% of the initial energy remain effective for heating.
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2.3.3.3 Ion energy dependent radial energy distributions

Following the model presented in the preceding sections, we have calculated the

radial energy density distributions in the lattice of the target after the passage of

the ion. We have calculated distributions for ion energies of 0.226, 0.609, 2.3, 7.7,

and 26 MeV/amu or equilibrium charges of 16, 23, 34, 44, and 52, respectively. In

all of these cases, the stopping power S(Ep) is larger than the threshold for track

formation.

Figure 2.13: Radial energy densities in the target lattice after a passage of a Xe ion of
indicated energy Ep (MeV/amu). Horizontal lines represent energy den-
sity for melting (reduced by room temperature) and room temperature as
indicated.

In fig. 2.13 the calculated energy densities are plotted along with the melting

energy density Emelt − Eroom and the energy density corresponding to room tem-

perature Eroom. The top graphs (2.3, 0.61 and 7.7 MeV/amu) correspond to points

near the maximum of the stopping power while the bottom graphs (0.27 and 26
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MeV/amu) are near the threshold for track formation (compare fig. A.3). As men-

tioned in section 2.2.3.1, the stopping power at the lowest ion velocity is underes-

timated, placing it at the threshold stopping power. As a result of this, the radius

where the energy density is higher than Emelt is much smaller than for the other

ion energies.

We give upper and lower bounds for track diameters following from these energy

distributions by examining the crossing points of the energy distributions with

Eroom and Emelt − Eroom respectively, see section 2.3.3.1. Excluding the lowest

velocity from the analysis, we find lower and upper bounds of 9 . . . 24 Å / R /

44 . . . 89 Å, in accord with experimental results (50− 70 Å).

Impact parameter dependence of the ionization process Electrons will

not only be ionized near the track axis. Rather, the projectile will ionize electrons

within a characteristic distance of /10 Å from the track axis (compare section 2.2).

This will lead to a smearing of the radial distribution of the energy by about the

same magnitude, increasing the lower bound of the track diameter. We study this

effect by modifying the initial positions of the electrons. For simplicity, we chose

a Gaussian ∝ exp(−r2/2d2) with d = 5 Å as the radial distribution function for

the initial electron positions to qualitatively assess the importance of this effect. A

more accurate approach could proceed along the following pathway: In [42], it is

shown how the impact parameter dependence can be extracted using CDW-EIS.

Calculations for each projectile energy, shell, electron ejection energy, and electron

ejection angle have to be performed. This method is very time consuming and

would require rewriting the CDW-EIS code.

Figure 2.14 shows the electron densities resulting from smeared initial electron

positions. The only notable change is the flattening of the peak at small distances.
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Figure 2.14: Radial energy densities in the target lattice after a passage of a Xe ion of
indicated energy (in MeV/amu). Horizontal lines represent energy density
for melting (reduced by the energy density corresponding to room tem-
perature) and the energy density corresponding to room temperature as
indicated. Initial electron positions are assumed to be Gauss-distributed
with a root mean square deviation of d = 5Å around the track axis.

For the slowest projectile (0.27 MeV/amu) the distribution does not reach the

melting temperature any more. As mentioned before, this may be related to the

deficiencies of CDW-EIS at low velocities which leads in this case to a stopping

power about 30 % smaller than predicted by SRIM. Increasing the ionization cross

section to match the SRIM value leads to energy densities above Emelt − Eroom

for radii below 8 Å. The stopping powers at other projectile energies are at least

a factor of two above the threshold for track formation. The distributions are

virtually unchanged above R ≈ 5 Å.

We conclude that the energy distributions are largely insensitive to changes in

the initial spatial distribution of the ionized electrons.
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2.3.4 Conclusion

In this section, we have presented a model for electron transport and energy deposi-

tion to the lattice. In a CTMC simulation a large number of electrons is propagated

starting from initial conditions derived from the ionization cross sections. Transport

through a solid is described by a stochastic sequence of elastic and inelastic scatter-

ing events leading via secondary electron generation to a cascade. In quasi-elastic

scattering events, phonons can be excited leading to heating of the lattice. We

have presented energy distributions in the solid at the end of the electron cascade.

Comparison to characteristic energy densities required for melting and at room

temperature give lower and upper bounds for track diameters, which are consistent

with experimental data.
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2.4 Energy diffusion in the lattice and

restructuring

Previous steps of our multi-scale model have left us with a crystal with an elevated

temperature distribution which depends on the kinetic energy of the incident ion.

As the final step we have to model the motion of the target atoms in response

to their elevated kinetic energy density. We hope to find a signature of “tracks”,

distinct regions (with smeared out border) inside the target where “damage” is

visible, i.e. where the lattice structure is partially dissolved (increased disorder).

Up to now, we have treated the target as a structureless medium with certain

properties, i.e. lattice structure effects have been neglected. Now, we need to take

the crystal structure into account. A summary of some lattice properties of CaF2

is given in appendix D. As explained in section 2.1, the time scale of this next step

of the simulation is much larger than the time scales of the previous steps, which

is why we assume the ionization and electron cascade processes to be finished and

use their output as input for the Molecular Dynamics (MD) simulation. Other

processes which happen due to the electron cascade and might not be finished at

this time (e.g. recombination of electrons and holes, self-trapped excitons, color

centers, or residual charges) are neglected in our model.

As the relevant time scale (& 1 ps) is much longer than the orbital period of

a target electron (0.3 fs for a F2p electron, the slowest in our material), we can

neglect the motion of the electrons. Using effective potentials we can treat the

crystal by a molecular dynamics (MD) simulation.

Molecular dynamics is an important tool of modern computational physics. It has

been successfully applied to model situations similar to ours, e.g. sputtering [80–84],
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cluster bombardment [85], laser ablation [86], and the calculation of transport co-

efficients [87–90]. It is the essential tool of the theoretical biologist [91–94] for the

prediction of protein folding, transport of macromolecules through membranes, and

much more.

The potentials are the key ingredient of any MD simulation. For our proof-of-

principle study, we use the most basic approach, two-body potentials. Depending

on the nature of the material, refinements to this approximation can be made. The

use of many-body potentials allows one to take into account the effective electron

density that mediates the binding in materials consisting of neutral atoms [85] while

for hydrocarbons, reactive empirical bond order potentials [80, 81, 95] have proven

successful. For ionic materials like CaF2, taking into account the polarizability of

the atoms can improve agreement to experiment [87, 88] but comes at the expense

of computing and man-power not available for this work.

A major concern of modern MD simulations is efficient implementation as the

size of the system which can be modeled is limited by the computer power avail-

able. Efficiency is increased using parallelization, the extreme case of which is

perhaps Folding@home (http://folding.stanford.edu/) from Stanford (exam-

ple result [96]). They calculate large-scale problems using cloud computing to split

the work among around 350000 volunteering home pc’s, graphic cards, and Sony

Play Stations, amounting to 7.3 x86 PFLOPS (09/7/19) which makes it currently

the world’s largest computing power. It is fuelled to a large part by graphic cards

and game consoles because of their inherently parallel nature and their ability

to compute trigonometric functions and exponentials about 10 times faster than

CPUs. Of course, very specific code has to be developed to use this power. Another

interesting project in this respect is HOOMD (Highly Optimized Object-oriented

http://folding.stanford.edu/
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Molecular Dynamics) [97, 98], a general-purpose MD implementation which is de-

signed to run on a graphic card, boasting speedups up to a factor of 30 compared

to CPU-based implementations. It uses NVIDIA R©’s CUDA (Compute Unified De-

vice Architecture) [99] which provides convenient access to low-level functions of

graphic cards as a cost-effective way to treat numerically intensive problems.

In contrast to these highly optimized implementations, the code we use was

originally developed by G. Betz (example result [85]) for sputtering simulations of

metals and modified for our purposes. It is not parallelized and is mostly run on a

desktop PC, which sets serious limitations on the system size which can be treated

within realistic times.

2.4.1 Overview of Molecular Dynamics (MD)

MD propagates an ensemble of N atoms (in our case N ≈ 104 − 105) according to

Newton’s equations of motion,

~̇pi(t) = ~Fi(t) , i = 1, 2, . . . , N . (2.27)

The integration method is a core part of the code. One typically uses a symplectic

integrator (e.g. from the Verlet family [100]), sacrificing the accuracy of individual

trajectories in favour of better energy conservation properties. We use a similar

algorithm [84, 101], but with an adaptive step size which is tuned to the fastest

atoms in the ensemble. Integration time steps are ∼ 1− 4 fs.

The initial conditions at time t = 0, xi(t = 0), are chosen according to the

equilibrium positions of the lattice (see appendix D). Since only a very small part

of an actual crystal can be modelled (105 out of 1023), periodic boundaries are used
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to avoid edge effects. The key input to the simulation is the force ~Fi(t) which is

applied to the i-th atom at time t. In addition to the physical forces of all other

atoms exerted on the i-th atom through two-body-potentials, additional forces can

account for external force fields, the influence of the rest of the crystal, or a heat

bath.

2.4.1.1 Choice of physical forces

We start with a description of the calculation of physical forces between the atoms.

CaF2 is an ionic crystal, so the main part of the force is the Coulomb attraction

or repulsion between the under-/over-shielded cores (Ca: 2+, F: 1−); the Coulomb

force decays with 1/r2 with r the internuclear distance. Other effects can be ac-

counted for by using additional terms with a different asymptotic behavior. We

employ a so-called rigid-ion potential which has been successfully used to predict

the thermal conductivity of CaF2 at elevated temperatures and other properties

[89]. The term “rigid-ion” refers to the lack of polarization effects where the shape

and center of charge of the electron cloud is changed with respect to the initial

configuration. Such an improvement is described in [102] but lies beyond the scope

of this work. Here, we use a pair potential of the form

Vij(r) =
qiqj
r

+ Aije
−r/ρij − Cij

r6
(2.28)

where the second term reflects short range repulsion due to overlapping electron

clouds and the third term reflects induced dipole-dipole (van der Waals) interac-

tions. The ions are assigned their nominal screened charges qi (qF = −1, qCa = +2).

The coefficients in eq. 2.28 depend only on the types of the atoms i and j (i.e. Ca

or F).
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The force can be calculated from this potential according to

~Fij(~r) = −~∇Vij(r) . (2.29)

For each atom, the total force at each time step is computed as the sum of all forces

exerted on the atom by all other atoms. However, it is more economical to cut off

the force at some distance rcut and assume contributions of atoms outside this

distance to be negligible. This is the standard technique in simulations with only

short-range forces. Due to the long-ranged Coulomb interactions in our simulation,

the contribution of atoms outside rcut is not small, and atoms diffusing in and

out of rcut lead to unrealistically strong variations in the force field which in turn

break the crystal apart. We found that the best way to circumvent this problem is

an advantageous choice of the cut-off radius rcut combined with a softening of the

cut-off by multiplying the force function with a Fermi-type function f(r; r0, β) =

1
1+exp(β(r−r0))

. After analyzing many combinations of r0 and β, we chose r0 = 4 Å

and β = 12 Å-1 which amounts to a soft cut-off over a range of around 1 Å,

~Fij,cut(~r) = f(r; r0, β) ~Fij(~r) . (2.30)

Since the dominant Coulomb forces decay with 1/r2 but the number of atoms in

a spherical shell of thickness ∆r in distance r from the test point increases with r2,

it is a priori not clear that any kind of cut-off will model the interactions correctly.

We will discuss below which properties of actual CaF2 our model reproduces. Un-

fortunately, a better treatment of Coulomb forces would include major rewriting of

the existing code, up to a complete redesign [103]. We must therefore assume that
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our model at most qualitatively represents a real CaF2 crystal.

2.4.1.2 Thermostat

In addition to the physical forces, other properties which one wishes to simulate can

be included in the simulation by the application of additional “generalized” forces.

The most important property for our simulation is the temperature.

An ensemble of atoms of temperature T is exponentially relaxed to a target

temperature T0 (where 〈E〉 = 6
2
N kBT ) by [104]

dT

dt
=
T0 − T
τ

. (2.31)

We estimate the order of magnitude of the time constant τ by calculating how long

it takes a sound wave of velocity vsound ∼ 3.8 km/s [30] to pass a nearest-neighbor

distance (2.5 Å). The result is ∼ 70 fs. Eq. 2.31 is translated to a modification

of the force, effectively rescaling the velocities of the particles. This method is

called Berendsen thermostat [104] and is widely used for the sake of its efficiency.

However, it suppresses temperature fluctuations and therefore does not represent a

canonical ensemble correctly. Therefore we use it for equilibration only, as our main

calculations will be non-equilibrium simulations where only two layers on each side

of the crystal are coupled to the heat bath (see below).

2.4.1.3 Application of MD to track formation

In order to model the crystal dynamics after the electron cascade is finished, we first

equilibrate the whole crystal to T = 300 K and then slowly heat up a cylindrical

central region (see below) until a temperature distribution inside the crystal similar

to the output of the electron transport simulation is reached. Time dependent MD is
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then used to investigate the effects of this temperature distribution on a picosecond

time scale. Fig. 2.15 illustrates the time dependent temperature of the hot central

region, the rest of the crystal (heat bath), and the whole crystal for one particular

case.

Figure 2.15: Time dependent average temperature of the whole crystal (red), the hot
zone (blue) and the rest of the crystal (green) in the three phases of the
simulation (R=16 Å, T=4000 K). Note the different time scale chosen for
the last phase.

Equilibration All atoms in the lattice built from the initial conditions are given

Gaussian velocities so that the energy density in total amounts to a temperature of

2 · Tbath. According to the equipartition theorem (supposing a roughly harmonical

potential for the three vibrational degrees of freedom of each atom), this energy is

subsequently shared equally among translational and harmonic degrees of freedom

and gives the desired temperature Tbath. The simulation starts with an equilibration

phase. The system is relaxed for typically 2 ps from its initial state to a thermalized

state of temperature Tbath. During this phase, all atoms are coupled to the heat

bath. We use Tbath = 300 K unless otherwise noted, which corresponds to a target

at room temperature.
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Heating of a central zone To obtain radial temperature distributions, a cen-

tral cylinder of the crystal is heated by setting the target temperature T0 of the

Berendsen thermostat (c.f. eq. 2.31) to a value that linearly increases from the

equilibration temperature of the first phase, Tbath, to a “hot” temperature, Thot, if

the atom is inside the “hot” region (distance to the track axis lower that Rhot).

Rhot and Thot will for now be treated as parameters; later, we will show how they

can be related to the calculated kinetic energy density distributions from section

2.3. Atoms outside the hot region are thermalized to Tbath. Note that even though

both regions are thermalized to different temperatures, one will not obtain a step

function in the radial temperature distribution because the atoms in the “hot” zone

can interact with the atoms from the “cold” zone and vice versa. This heat conduc-

tion mechanism leads to a smooth radial temperature (kinetic energy) distribution.

However, it also leads to a central temperature which is somewhat higher than Thot.

Temperature distributions after this heating period are depicted in fig. 2.17 later

in this section.

An important parameter for this step of the simulation is the heating duration,

theat. The shorter it is, the better the step temperature distribution is reproduced,

but the change induced in the material is more violent. From a physical point

of view, theat should be of the order of magnitude of the duration of the electron

cascade, 100 fs (see section 2.2). Unfortunately, such short heating times affect the

long-time stabilities of the simulated lattice, which we ascribe to our treatment of

long-range forces in our simulation. Furthermore, the creation of tracks depends

sensitively upon theat if it is chosen so short. Therefore, we chose a much longer

theat (> 1 ps). Then, the heated region reaches (dynamical) equilibrium during

the heating process, and its exact duration does not influence the outcome of the
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simulation. In this way, a “molten” phase (of the less stable F sub-lattice) is created,

whose time development we can then observe. For the results presented here, we

chose theat = 2 ps.

Time-dependent MD After heating up, the system evolves on its own, i.e. with-

out coupling to heat baths. Only two layers on the side walls of our simulation box

are coupled to an external heat bath with increasing coupling coefficient 1/τ , re-

flecting the influence of a crystal of 300 K temperature outside the box. The system

is propagated in time until no further changes are observable. Long-time simula-

tions have been performed to determine the stability of the cooled system. It was

found that the state of the system did not change anymore after 15 ps.

2.4.2 Features and deficiencies of the simulation

Despite its simplicity, the model explained above can be used for our purposes.

It succeeds in keeping the crystal stable at non-zero temperatures. When the

temperature is raised, the F sub-lattice breaks at lower temperatures than the

Ca lattice (“superionicity”, [89]), which stays always intact in our simulation at

the temperatures we consider here. The short-range forces are reasonably well

reproduced while the treatment of long-range interactions using a relatively sharp

cut-off leads to long-time instabilities for short heating times (violent changes in

the kinetic energy distribution).

An important macroscopic parameter that our simulation should be able to re-

produce is the thermal diffusivity, which decides how fast heat is transported away

from the track core. We find that our model reproduces the correct order of mag-

nitude of the thermal diffusivity, see appendix F.
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The many possible electronic excitations after the passing of the projectile (ex-

citons, residual cores, color centers) are neglected in our simulation, as are charge

transfer processes between target atoms despite the extreme temperatures in the

central region of the track and the preceding electron cascade. The importance of

such processes can be seen in fig. 2.16 which shows a bright-field TEM image of

tracks in CaF2.

Figure 2.16: Bright-field 300 keV TEM image of 30 MeV C60 cluster ion latent tracks
in CaF2, from [15, 105, 106]. Dark contrast loops of liberated fluorine
gas (yellow dashed circle) are often seen at the end of heterogeneously
nucleated individual tracks (red ellipse), which consist of intermittent 100
faceted calcium colloids along each track.

From cluster experiments, it is known that tracks in CaF2 consist of F voids

(aggregation of vacancies) and bubble-like defects [15, 105, 106], see fig. 2.16. The

Ca sub-lattice stays unaltered by the formation of anion voids, which can be viewed

as Ca inclusions in the CaF2 lattice, with fully developed 100 faces (white rectangles

in fig. 2.16). These inclusions can develop easily because the lattice constant of
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CaF2 is only ∼ 2 % off the lattice constant of Ca [15], minimizing the distortion

of the surrounding CaF2 lattice. The F2 aggregates as interstitials, forming the

bubble-like structures. This behavior can be linked to the chemical reaction CaF2→

Ca2++F− →Ca + F2. Such a process, of course, heavily relies on charge transfer

which is not included in our simulation. We restrict ourselves to modelling the

track formation without charge transfer, interpreting disorder in the F sub-lattice

as sign of a track.

2.4.3 Results

2.4.3.1 Rhot-Thot- (R-T -) plane

We present a set of calculations that scan the R-T -plane for track formation. The

radius of the hot zone has been varied between 2 and 32 Å, and its average temper-

ature has been varied between 500 and 6000 K. The system size was always around

15000 atoms, amounting to 84×88×30 Å3. It was substantially increased for some

test cases to around 120000 atoms, amounting to 180 × 180 × 60 Å3, without any

noticeable differences.

Figure 2.17 shows projections of the lattice at the end of the simulation for two

parameter combinations, {R,T}={16,2000} and {32,4000}. In the former case, the

lattice returns to its original position (except for one Ca interstitial, which to find

is left as an exercise to the reader). In the second case, lattice disorder in the F

sub-lattice remains after the cooling is completed. F ions leave their potential wells

due to increased kinetic energy. While their temperature is high enough, they can

move freely and transmit their thermal energy (by scattering) to larger distances

from the track axis. Eventually, they cool down (become slower) and are trapped

again, but now in local minima of the energy hyper-surface. Along with projections
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of the lattice, fig. 2.17 shows the actual temperature distributions at the end of the

heating phase.

Figure 2.17: Above: Temperature distributions T (R) and average temperatures Tbath,
Thot reached after heating; left: Thot = 2000K, Rhot = 16Å; right: Rhot =
32 Å, Thot = 4000K. Below: Images from the time dependent molecular
dynamics simulation several picoseconds later. In the first case, no lattice
disorder is found, while in the second case a track of displaced F ions is
clearly visible.

A quantitative measure of the amount of disorder induced by melting and re-

structuring is the pair correlation function g(r) (sometimes also called “radial dis-

tribution function”). It measures the probability density to find an atom in distance

r from another atom, see appendix E. Fig. 2.18 shows the pair correlation function

for the crystal before heating, shortly after the heating phase, and at the end of a

simulation which produced a track. In each case, the pair correlation function has

been averaged over ∼ 250 central atoms. For the undamaged system (blue graph),

g(r) shows sharp peaks at the different neighbor locations as expected. Shortly

after the heating (red graph), the peaks are still visible but much less pronounced,

indicating a liquid-like behavior. After cooling (green curve), most atoms return

to places which form a lattice structure, but the peaks are much less pronounced,



74 2.4 Energy diffusion in the lattice and restructuring

Figure 2.18: Pair correlation function for crystal before heating (same as undamaged
crystal) (blue), hot crystal shortly after the heating phase (red), and cooled
down crystal including damage (right panel in fig. 2.17). In the undamaged
crystal, peaks at nearest-neighbor distances are visible (grey).

indicating defects. Most notably, the pronounced F-F peak is only visible as a

shoulder, indicating that the F sub-lattice suffers more than the Ca sub-lattice.

Fig. 2.19 shows the R-T -plane with regions of (visually determined) track forma-

tion (green) and parameter pairs R and T that do not lead to restructuring (red).

The transition region shows individual dislocations, but no clear signs of a track.

Track formation sets in only above the melting temperature (1693 K), a validity

test which our model passes.

The point to stress here is that there is a threshold, and that both the total

deposited energy (∝ R2T ) and the kinetic energy density (∝ T ) determine whether

or not a track is formed. The threshold for track formation can neither arise

from the ionization process nor from the electron cascade, because neither part
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Figure 2.19: Sketch of track formation depending on the simulation parameters R and
T . No tracks (red), tracks (green).

features a well-defined threshold. The estimation of the track diameter in section 2.3

was only done by comparing the radial temperature distributions to characteristic

temperatures where macroscopic modifications of the crystal structure may happen.

Conclusion Our model, despite its simplicity, shows a clear threshold for track

formation in the simulation parameters R and T , which correspond to the total

energy and the energy density deposited in the target, in agreement to experiment.

2.4.3.2 Comparison to calculated temperature distributions

Finally, we establish a link between the temperature distributions calculated with

the electron transport code in section 2.3 and the MD parameters. The energy

density distributions (fig. 2.13) are analyzed in order to estimate Rhot and Thot.

Rhot is calculated as the crossing point of the energy density distribution with

the energy density that corresponds to melting temperature (eq. 2.26). Thot is
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calculated as the expectation value of the energy density for distances smaller than

Rhot and again related to a temperature via eq. 2.26. Figure 2.20 shows the R-T -

plane together with the R-T combinations that can be ascribed to ions of different

energies (blue dots).

Figure 2.20: Map of track formation with {R,T} combinations that correspond to ions
of different energies (in MeV/amu) (see text).

Points from the border of the stopping power distribution (0.3 and 26 MeV/amu)

are well outside the green region of the R-T -plane. For the low-velocity point this

is also related to the underestimated stopping power (see above). All other points

are at the border of the green region. The reason that they are not inside the

green region might lie partly in the choice of the strength of the electron-phonon-

interaction, see section 2.3, and the failures of the MD implementation (see above).

Another reason, however, is the somewhat heuristic definition of the relation of

temperature and energy density, see eq. 2.26. There, we assumed that a harmonic

approximation for the crystal potential is adequate. While the approximation is

sensible for low temperatures, it is only approximately true for higher temperatures
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and near-liquid behavior. The experimental melting point of CaF2 is given as

T = 1693 K [89] or 〈E〉/N = 0.55 eV/atom [79]. Inserting into a linear relation

between 〈E〉 and T , we find for the number of degrees of freedom f

〈E〉 =
f

2
N kBT →

f ≈ 7.5 . (2.32)

This indicates that the temperatures estimated from the electron transport calcula-

tion might be up to ∼ 25 % too low, moving the three rightmost points of fig. 2.20

towards the green region.
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2.5 Conclusions and outlook

We have presented a microscopic model for track formation, covering 5 orders of

magnitude in time. This is achieved by breaking the process down into 3 steps:

the excitation of the electronic system of the target (0.1 fs), energy diffusion in the

electronic system and energy deposition into the lattice (100 fs), and lattice dy-

namics (10 ps). These three steps are modeled using time-dependent perturbation

theory, classical electron transport with phonon excitation, and molecular dynam-

ics, respectively. We were able to calculate the electronic stopping power, energy

distributions in the target lattice about 100 fs after the ion has passed, and restruc-

turing of the target lattice. An energy threshold as found in experiment is only

apparent in the final step of the model, the lattice dynamics. There, a minimum

energy is required to overcome the restoring (cooling) forces of the target crystal.

Results of individual steps closely resemble experimental data, the combination of

all simulation steps is close to experimental findings.

Future improvements are expected to increase the agreement of model and ex-

periment. In the electron transport part, electron-electron interactions between the

simultaneously diffusing electrons and static Coulombic forces from the remaining

cores near the track axis are not included, and a derivation of the electron-phonon

interaction instead of a heuristic effective interaction would be more satisfactory.

Furthermore, the dielectric function governing energy loss along the electron trajec-

tory could be calculated from first principles instead of the extrapolation method

used in this work. Our molecular dynamics simulation is the part that would bene-

fit most from further work. The most effective tasks there would be parallelization,

a model for charge transfer processes, and treatment of long-range forces. Improve-

ments of the latter would likely also allow for a reduction of the heating time theat
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thereby facilitating a more realistic simulation of the process.

It would be interesting to apply our model to different materials, for example

other ionic crystals, synthetic materials like Mica, SiO2, or biological materials. A

consistency check would be to apply it to a metal, where, so far, no tracks have

been found. If these calculations also agree with experiment, our model could

possibly gain predictive power to determine which projectile-target combination

would lead to lasting target damage. This could have applications for the expected

wear of materials exposed to swift heavy ions, e.g. in nuclear fusion reactors, for

the damage done by swift heavy ions in biological materials (e.g. in space stations),

or for the design of high-temperature superconductors in which tracks are used to

pin magnetic flux lines.





3 Nano-hillock formation

3.1 Introduction

In recent years, there has been vivid interest in the interaction of highly charged

ions with surfaces. This area of surface physics is of interest both to the theorist who

seeks to understand the complex processes involved, and the application-oriented

experimentalist because it holds the promise of controlled surface modification on

the nanoscale.

CaF2, for example, has a lattice constant of 5.46 Å, which is only ∼0.5 % off the

lattice constant of Si, 5.43 Å. It has been shown that thin, atomically flat Si films

(1 nm) can be grown epitaxially on CaF2 [107]. Therefore, applications include,

e.g., nano-scale patterning of microelectronic devices.

This chapter is organized as follows: we will first give a quick review of the ex-

perimental evidence on nano-hillock formation and its physical implications. Then,

a model for nano-hillock formation will be discussed, which bears interesting sim-

ilarities to the track formation model we have discussed in the previous chapter.

In earlier works [1, 108], excitation of the electronic system by an incoming highly

charged ion and electron transfer as well as lattice heating have been modeled. In

this work, we will take the simulation one step further and model the last step,
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lattice dynamics, by molecular dynamics (MD). Finally, we will discuss the simi-

larities of the mechanisms of track formation and hillock creation.

3.2 Experimental evidence - threshold behavior

Let us first review the existing experimental evidence for hillock creation. A brief

summary can be found in [108], where the results discussed in this section are taken

from unless otherwise noted.

Figure 3.1: Topographic contact-mode AFM picture of a CaF2 (111) surface irradiated
with 2q keV Xe33+ ions. Hillock-like nanostructures protruding from the
surface are observed. Note the different scales on the xy and z axes, from
[108].

Figure 3.1 shows an AFM (atomic force microscope) topographic image of an

atomically flat fluorine-terminated CaF2 (111) surface after irradiation with highly

charged ions (kinetic energy 2q keV Xe33+, with q the charge state). One observes

hillock-like nanostructures protruding from the surface. The hillocks are stable over

macroscopic time scales in air and are not destroyed by the AFM measurement.
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They are, on average, 200 Å wide and 8 Å high. Width measurements are subject

to a large error bar due to the unknown structure of the AFM tip which has a finite

width, comparable to the hillock diameter (≈100 Å). Furthermore, it can scratch

off surface atoms/layers in contact mode, worsening the resolution. The errors from

the latter effect are very difficult to assess experimentally. Height measurements,

on the other hand, are less prone to systematic errors and are generally believed to

be quite accurate.

Figure 3.2: Mean volume of hillocks as a function of the potential energy of the HCI
(corresponding charge state on top) for two different ion velocities. The er-
ror bars represent the statistical mean standard deviation of the ensemble of
hillocks that were measured (not the uncertainty of a single measurement),
from [108].

In the experiment, the incident ions have been slowed down to very low velocities

(150q eV, corresponding to ∼40 eV/amu), without notable changes of the surface

modification. From a comparison of the number of hillocks per unit area to the beam

fluence, one can conclude that at least ∼80% of the incident ions produce a hillock.
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Interestingly, a minimum charge state (potential energy) of the highly charged ion

is required for hillock formation, almost independent of the kinetic energy of the

projectile. Figure 3.2 shows this threshold in the volume of the hillocks for two

different HCI velocities. These results suggest that hillock formation is mainly

driven by the potential energy of the incident ion, in contrast to track formation

that is driven by the kinetic energy. It is remarkable, however, that both processes

feature a threshold in the energy that is deposited into the target: by slowing down

of swift projectiles (S(Ep)) in the case of track formation or by conversion of the

ionic potential energy (charge state) stored in the HCI in the case of nano-hillock

formation.

Similar hillocks have been found [109] on the surface of insulators that have been

irradiated with swift heavy ions. As described in the previous chapter on track

formation, the onset of track formation is linked to a minimum stopping power.

In tracks starting at the surface the material around the impact site is heated up

by the same mechanisms described above, melts, and spills out. Upon cooling, it

remains amorphous and forms hillock-like structures.

3.3 Energy deposition to the lattice

Basic mechanism From the experimental evidence, we have concluded that the

mechanism for hillock formation should be similar to the one for track formation:

The HCI is de-excited near the surface during a very short time span and deposits

its potential energy in a small region near the point of impact into the electronic

system of the target. The energy diffuses through the electronic system of the target

by an electron cascade and is eventually deposited to the target lattice by electron-

phonon coupling. Then, the lattice around the impact site starts to melt due to
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the high kinetic energy density. Finally, material spills out forming structures that

protrude out from the surface. As in the model for track formation, the threshold is

related to the lattice dynamics, which leads to restructuring only above a threshold

energy density that is sufficient for melting.

Time scales In order to model potential energy-driven hillock formation, it is

important that the process can again be broken up in independent steps due to

different time scales involved. To show this, we briefly estimate characteristic times

for the different processes: First, the de-excitation of the slow highly charged ion

(velocity around 1 Å/fs) will happen in the surface region. This complex process

cannot be easily simplified. However, within the classical over-the-barrier model

[110] and its extension to insulator targets [111], it is possible to estimate the time

scale by the fastest Auger transitions, ≈ 5 fs. For the other steps, we can use

the estimates from section 2.1, giving times of the order of 100 fs for the energy

diffusion in the electronic system and 1 ps for the time scale of lattice dynamics.

These estimates show that a step model is a good approximation to the process.

Review of theoretical results for the first two steps A quantitative im-

plementation of the first two steps of this model has been given in [1, 108]. The

de-excitation is modeled using the classical over-the-barrier model [110] and its ex-

tension to insulator targets [111, 112]. Additional information about the interaction

of slow multiply charged ions with surfaces including a review of the experimental

results in this field can be found in [29]. In short, target electrons are trans-

ferred into highly excited projectile states, from where they decay through different

channels (collisional, radiative, Auger), which can be modeled using a system of

coupled rate equations (classical over-the-barrier model). The emission of target
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electrons leaves unbalanced holes, mainly F0 atoms, in the surface, storing part of

the potential energy. The interaction time above the surface is not long enough

to complete the neutralization which eventually ends around 10 − 40 Å below the

surface, depending on the initial kinetic energy of the ion. The electron spectrum

emitted by the incident ion has a pronounced maximum at low energies while its

detailed shape depends on the initial charge state of the projectile. For example,

in the case of Ar18+, core holes have to be filled, eventually leading to the emission

of keV-electrons. The energetic electrons emitted in this neutralization process are

then propagated inside the solid (electron cascade) using an electron transport code

which is very similar to the one that we described in section 2.3, the only difference

being the presence of a surface. The lattice is heated by electron-phonon interac-

tion, which is the dominant process for low-energy electrons. As in the track case,

high-energy electrons do not contribute much to the heating because their elastic

mean free path is larger.

Fig. 3.3 shows the calculated energy distributions in the target after the energy

has been deposited to the lattice for different ion charge states and kinetic energies.

The shape of the heated region strongly depends on the kinetic energy of the inci-

dent ion. While it is flame-like for projectiles of higher kinetic energy, it becomes

almost hemispherical for slow projectiles. However, it always features a hot “core”

region (bright yellow) where the average energy density is higher than the energy

needed for melting. The width of this core depends on the potential energy (charge

state) of the incident ion. It has a typical diameter of 15 Å. In the model for track

formation, we were able to estimate a lower bound of the track diameter from the

diameter of the region that was heated above melting temperature. In the hillock

case, the observed hillocks are much larger than the volume of the hot zone, even
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Figure 3.3: Top: calculated energy density distribution deposited by Xe ions of different
kinetic and potential energy (charge state). C.f. fig. 3.2: (a,b,d) lead to
hillock formation while (c) does not. Figure taken from [108]. Bottom:
Sketches (to scale!) of the size of a hillock, the shape an actual hillock
might have, and a typical AFM tip which is used to measure the hillock.

taking into account the width of the AFM tip (bottom of fig. 3.3). Therefore, an

additional mechanism must be responsible for the measured size of the hillocks,

especially if one takes into account that some of the atoms from the hot zone will

be sputtered and material will be lost. Among the candidate processes for this in-

crease in defect size are shock waves produced by the ion impact, surface diffusion,

and preferential adsorption at the boundaries of a pre-hillock.



88 3.4 Energy diffusion in the lattice and restructuring

3.4 Energy diffusion in the lattice and restructuring

After the deposition of part of the potential energy of the incident ion to the target

lattice, the atoms of the target start moving. As in the track case, we model

the subsequent processes on a picosecond time scale with the help of a molecular

dynamics simulation. We can adapt the simulation of track formation (details see

section 2.4) to the hillock case by the following changes:

Presence of a surface The surface is modelled by keeping periodic boundary

conditions in x and y directions (in the surface plane), but not in the z direction

(perpendicular to the surface, c.f. fig. D.2). To model the influence of the semi-

infinite crystal, we apply a restoring force to atoms of the deepest layer. The

simulation box is extended into vacuum up to twice the simulated crystal thickness

in +z direction. Atoms which traverse the top boundary of the computing box

are considered as sputtered and are no longer followed (which is computationally

favorable as the often have high velocities which decrease the adaptive time step

used in the trajectory integration).

Shape of the “hot” zone Instead of a hot central cylinder, we use a hot hemi-

spherical region extending from the surface inwards, in agreement to the calculated

energy distributions for slow ions (top row in fig. 3.3). The hot zone is character-

ized by its radius R and its average temperature T . We equilibrate the crystal for

2 ps, then the crystal is heated up over 5 ps. After this heating, we consider the

initial conditions after the energy deposition to the lattice as reached. We follow

the evolution of the system for 10 ps. This time is long enough to cool the system

to a point where the surface structure remains stable.
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3.4.1 Results

3.4.1.1 Snapshots

Before we scan the R-T -plane for hillock formation, we show some snapshots of

the simulation in fig. 3.4 to give an impression of the quantitative results discussed

in the following. As in the track case, the Ca sub-lattice (purple in right panel of

fig. 3.4) remains stable while the disorder in the F sub-lattice (green) is much larger.

The height of the hillock is around two or three triple layers, as in experiment, while

its width is too small.

Figure 3.4: Snapshots of the simulation. Left, from top to bottom: Equilibration of
the crystal (300 K), heating (to 5000 K, radius of hot hemisphere 26 Å),
evolution of the system. The crystal is cut open for better visibility (not
in the simulation). The colors indicate the kinetic energies of single atoms,
converted to a “local temperature” via eq. 2.26 (see color code). Right:
Projection of the crystal after propagation for 10 ps. Colors indicate type
of atom (Ca, F). A hillock is observed. The size of the simulated system is
∼ 84× 88× 30 Å3.

3.4.1.2 Threshold behavior

The experiments show a clear threshold for hillock formation. If our model is

correct, we should be able to observe a threshold in the parameter space, R and
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T . We performed a series of calculations for different values of R and T , and

determined whether or not they lead to hillock formation by visual inspection. The

result is the “map of hillocks” depicted in fig. 3.5.

Figure 3.5: Hillock formation as a function of the simulation parameters R and T . Red
indicates no hillock formation while green indicates the formation of hillocks.
In the transition region (purple dashes), a visual inspection is inconclusive,
and might have different outcomes for different runs of the simulation with
the same parameters R and T .
The dots represent pairs {R,T} obtained from the simulated energy den-
sity distributions (fig. 3.3). They correspond to projectile charge states
and kinetic energies as follows: a . . . Xe28+ with 150q eV kinetic energy, b
. . . Xe33+ 150q eV, c . . . Xe28+ 10q keV, d . . . Xe33+ 10q keV.
In experiment, hillock formation is found for projectile charge states and
kinetic energies that correspond to a, b and d (turquoise dots) while no
hillock formation is observed for c (purple dot).

We observe a clear threshold in the R-T -plane, similar to the track formation

case (purple dashes). As expected, it is not only the total deposited energy but

also the energy density that decides whether or not hillock formation occurs.

Note that the temperature necessary for hillock formation is higher than in the

track case. That can be understood from the geometry. Heat transport in our model

proceeds through interaction of atoms from the hot zone with atoms from the cold
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zone. A larger surface area of the hot zone therefore facilitates the transport of

thermal energy away from the hot region. On the other hand, the total thermal

energy added to the system through heating is roughly proportional to the volume

of the hot zone. In the track case (cylindrical hot zone of radius R), the ratio

of surface over volume is 2/R; in the hillock simulation (hemispherical hot zone),

this ratio is 3/R so that heat conduction is enhanced compared to the track case.

Therefore, higher temperatures T are necessary at the same R for restructuring.

The calculations of the thermal energy density produced by the electron cascade

(section 3.3) predict radii of the hot zone R . 15 Å. In contrast, we do not observe

surface restructuring for such low values of R. This is similar to the track sim-

ulation, where we found that track formation happens only somewhat above the

experimental melting temperature, indicating that the simulated crystal is more

heat-resistant than the real one. We ascribe this failure of the simulation to the

lack of long-range interactions and charge transfer processes.

Fig. 3.5 also contains pairs of {R,T} that we obtain from the simulated energy

density distributions after the electron cascade (fig. 3.3). They were obtained as

follows: T is the average temperature (plus room temperature) of the bright yellow

region in fig. 3.3, where the energy density exceeds the melting temperature. The

radius of the hot hemisphere is calculated by equating the volume of the hot zone

to the volume of a hemisphere of radius R (in order to be able to compare the

flame-like energy distributions to the near-hemispheric ones). The labelling is the

same as in fig. 3.3.

As stated above, we do not observe hillock formation for any of the simulated

energy density distributions {a−d}. However, the threshold region in the R-T -

plane between {c} (purple) and {a, b, d} (turquoise) is relatively narrow, similar to
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the one we observe in our simulation at higher values of R and T (purple dashes).

Even their direction in the R-T -plane appears to be similar, which we view as a

coincidence.

It is also interesting to compare the effect of the velocity of the impinging ion

between the points {a,b} and {c,d} which correspond to slow and fast ions, respec-

tively. In the latter case, the hot region is flame-shaped while it is hemispherical

for slow ions. Not only the base diameter is larger in {a} than in {c}, the average

temperature of the hot region is also higher for slow ions, as the electrons deposit

their energy closer to the point of impact.

3.4.1.3 Height and width of simulated hillocks

Fig. 3.6 shows a contour map of a typical crystal at the end of the simulation (after

10 ps), with parameters R and T chosen at the border of the green area of fig. 3.5

(R = 26 Å, T = 5000 K).

Figure 3.6: Left: Contour map of a hillock (from the same simulation as in fig. 3.4, left)
(size of simulated crystal is visible as faint black border). Middle: Sketch
of an AFM tip with which the contour map is broadened; right: Broadened
contour map (same color code). Hillock diameter is around 100 Å.

The figure sketches a possible method of deriving “experimental” AFM pictures
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from the MD calculation. A contour map of the crystal is broadened geometri-

cally by a virtual AFM tip of indicated shape and dimensions. The individual

protrusions from the surface are smeared out to a hillock of ∼ 100 Å in diameter

(experimental diameter ∼ 200 Å). We obtain heights that are in good agreement

with the experimental value of about 8 Å, which suggests that hillocks are two or

three triple layers high, c.f. fig. 3.3.

3.4.1.4 Target temperature dependence

We have tested the dependence of hillock formation on the target temperature which

is a parameter that can be easily adjusted in experiment. Upon first glance, one

would expect that an increased target temperature would shift the potential energy

threshold for hillock formation downwards because the melting temperature of the

material is reached more easily. On the other hand, heating the target restores the

original lattice structure and heals surface defects because it increases the mobility

of the atoms. Therefore, it is a priori not clear whether a heated/cooled target will

show hillocks for different threshold charge states, or not at all.

We model target temperatures different from 300 K as follows: for a target which

is heated/cooled to Ttarget, we set Tbath = Ttarget. To mimic the effect of the incident

projectile, we put Thot = Thot|300K + (Tbath − 300 K) to make it comparable to the

results from above. We ran tests for several combinations {R,T} in the transition

region, for heat bath temperatures Tbath ranging from 50 to 1200 K.

We find that the influence of the temperature at which the sample is kept is much

smaller than the influence of the simulation parameters R and T . In general, results

do not change for small variations of Tbath in the range 300 − 900 K, while both

much higher or lower temperatures enhance the creation of hillocks (Tbath & 1200 K
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or Tbath . 150 K). Experimentally accessible effects are therefore only expected in

temperature regions difficult to reach at the target surface (melting point 1693 K)

or in the liquid nitrogen temperature range (77 K).

3.4.2 Conclusions and outlook

We have shown how the molecular dynamics simulation can be adapted for the

simulation of hillock formation. We find a threshold for hillock formation in sim-

ulation parameters which correspond to the total energy and the energy density

deposited in the target, consistent with experimental results. However, we do not

observe hillock formation for simulation parameters extracted from earlier theoreti-

cal work. Still, the results presented in this section indicate that the experimentally

observed threshold behavior has to be linked to lattice restructuring as in the case

of track formation. The height of the simulated hillocks compares favourably to

experiment while their width is around 50% too small. We attribute this discrep-

ancy to AFM width measurements or an additional mechanism for the growth of

hillocks, possibly on much larger time scales � 10 ps. Candidate processes include

surface diffusion or additional lattice defects due to shock waves.

There is ample room for improvement of our simulation. The molecular dynamics

simulation suffers from the same weaknesses as in the track case, see section 2.4.

An analysis of the available literature shows that there is no undisputed method for

the simulation of Coulomb forces and a surface at the same time, which neverthe-

less would be an indispensable ingredient for a more realistic simulation. Charge

transfer processes might even be more important than in the track case, because

it has been found that neutral F0 atoms bind and leave the crystal as F2, leaving

behind a Ca-enriched region where the hillock may form.
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3.5 Comparison between track and hillock

formation

In this work, we have investigated two substantially different processes which can

be treated by very similar methods, and which both lead to structural modifications

of the target. While the source of the energy (kinetic vs. potential energy of the

projectile) and the primary energy transfer method (ionization vs. a complex de-

excitation and neutralization cascade) are different, they both lead to energetic

electrons in the conduction band of the target. In addition, they lead to quite similar

electron energy spectra, with their maximum at low energies. These electrons are

the most important source of heat as they do not diffuse very far, but deposit the

larger part of their energy close to their initial position. In both cases, the energy is

transferred from the electronic system to the lattice by electron-phonon interaction.

The structural modification is achieved by melting and recrystallization on the nano

scale.

While a different model is needed for the primary energy deposition to the tar-

get, we have shown that the same methods can be used to investigate the energy

diffusion in the electronic system and the melting and recrystallization. This opens

up the pathway to a wider spectrum of possible applications. A first candidate for

future research will be laser ablation, where the electrons are created by photoexci-

tation. The interaction of photons with matter is well investigated and accessible to

experiments (photoelectron spectra etc.). It should therefore be possible to derive

realistic conditions for the state of the system after the primary energy transfer.





4 Summary and conclusions

We have presented a microscopic model for track formation by swift heavy ions in

insulator targets. The model covers five orders of magnitude in time from primary

energy deposition to restructuring. We have shown that the process can be de-

scribed by three sub-processes which happen on different time scales, and proposed

a microscopic model for each step.

During the first 0.1 fs, the energy transfer from the swift heavy ion to the elec-

tronic system of the target is described by time-dependent perturbation theory in

a single active electron approximation (CDW-EIS). The validity of the approxima-

tion is confirmed by the reproduction of the stopping power to within 20-30% of

its (semi-)experimental value over two orders of magnitude in the kinetic energy of

the ion. The results are doubly differential ionization cross sections, which serve as

initial conditions for the following step.

Within the next 100 fs, an electron cascade develops which we model by classical

transport theory. Electrons can undergo inelastic scattering events, which lead

to secondary electrons, and quasi-elastic scattering events in which phonons are

excited, thereby heating the lattice. We give an estimate of the magnitude of

electron-phonon coupling based on experiments. Temperature distributions in the

target lattice after the electron cascade are derived. Only a part of the stopping
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power is effective for heating.

We model subsequent lattice restructuring on a picosecond time scale with a

proof-of-principle molecular dynamics (MD) simulation. We find threshold behavior

in simulation parameters that correspond to the energy density and the total energy

deposited by the ion, in agreement to experiment. Results from the previous step

are compared to input parameters of the MD simulation and reasonable agreement

is found.

The last step, lattice restructuring, has also been applied to nano-hillock cre-

ation by slow highly charged ions. Starting from earlier results indicating a molten

zone around the ion impact site, we find a threshold in simulation parameters, in

qualitative agreement to experiment. Experimental hillock heights are reproduced

while widths are a factor two too small, indicating additional mechanisms.

Microscopic models for both processes are given and the influence of remarkable

similarities is found. The source of energy (kinetic vs. potential) and the mechanism

of primary energy deposition (ionization vs. a complex de-excitation cascade) are

different in track and hillock formation, respectively. However, both processes result

in low-energy electrons in the conduction band of the target which heat the lattice

by electron-phonon coupling. If a threshold quantity (stopping power vs. potential

energy) of the projectile is reached, melting and restructuring is observed. We

have shown that a sharp threshold behavior can only be due to lattice dynamics,

ascribing it to the interplay between heating and cooling of the crystal. A unified

model for track and hillock formation has been established which bears the promise

of future application to similar processes, e.g. to laser ablation.



Appendices





A Equilibrium charge state

A.1 Introduction

This appendix is devoted to a write-up of the technical issues involved in the ap-

plication of G. Schiwietz’s paper [34] to a Xenon projectile of any given energy

in CaF2. For further reading on the topic of equilibrium charges as well as shape

parameters of charge state distributions and the like, the reader is referred to the

references given in [34]. A somewhat older review which introduces the basic the-

oretical concepts can be found in [113].

The problem is to calculate the equilibrium charge of a particle which moves

through a solid at a given energy Ep. The particle loses electrons to the target and

also captures electrons from the target, which in total gives rise to an average net

charge (”equilibrium charge state“) which is later used as the ”effective charge“, the

estimated projectile charge felt in the ionization process by the target electron.

Many quantities (e.g. ionization cross sections and stopping powers) scale with

the square of the projectile charge, compare appendix C. Therefore, it is essen-

tial to have low uncertainties in the estimated equilibrium charge. Up to now,

only experiments can provide the required accuracy because in addition to charge

exchange processes, complications arise from multi-electron loss processes, meta-
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stable excited states, and Auger and radiative transitions of the highly excited

projectile-electron system. In solids, the mean charge state is increased compared

to gaseous targets because of the much higher collision frequency: highly excited

electrons are stripped off before they can decay to a lower state.

Of course, this balance of electron capture and loss is a stochastic process and

leads to a distribution of charge states around the equilibrium charge. An ex-

ample is depicted in fig. A.1 for a system that is similar to Xe in CaF2 (I in

formvar). From exponential ansatzes for the cross sections of (single) electron

capture and loss it can be shown that the distribution function F (q) of the pop-

ulation of charge states around the equilibrium charge is given by a Gaussian

F (q) = (2πd2)−
1
2 exp (−(q − qmean)2/(2d2)) [113]. Heuristically, this fit agrees to

experiment up to charge states with relative intensities of ≥ 1 %. The maximum

width found at projectile velocities vp ≈ 1−10 a.u. is roughly given by d = 0.27Z
1
2

[113]. Asymmetries in F (q) are observed for heavier targets and at lower projectile

velocities, where F (q) decreases more slowly for q > qmean than for the low charge

states. This is largely due to the cross sections for multiple electron loss which are

small in light targets but very large in heavy targets. The lack of an equivalent mul-

tiple capture mechanism leads to the asymmetries. The charge state distribution

is not considered in the present work.

The approach taken in [34] is pragmatic. They analyze a large number of exper-

iments in which the charge states of projectiles of varying energies are measured

after traversing thin foils of different materials. By a multi-parameter least squares

fit, a scaling parameter x is found that minimizes the scatter of qmean/Z, with qmean

the equilibrium charge state and Z the nuclear charge of the projectile. The other

quantities that enter the fit are the velocity v of the projectile (in atomic units) and
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Figure A.1: Equilibrium charge state distributions for iodine (Z=53, m=127 amu) ions
stripped in polymer foils (“formvar”). Ion energies are indicated in the plot
and correspond to velocities of 2.4, 3.1 and 4.2 a.u.

the target nuclear charge Ztarget. For around 850 experimental data points taken

from various sources, they find a difference of ±0.2 between results from different

labs, which is a lower bound to the final error. Projectiles from Z = 1-92 and tar-

gets in the range Ztarget = 4-83 were considered, with about 40% of the experiments

using carbon targets. The fit is applied to projectiles with velocities v ≥ 2.8 only.

The result is

qmean = Z
12x+ x4

0.07/x+ 6 + 0.3
√
x+ 10.37x+ x4

(A.1)

x =
(
v Z−0.52 Z

−0.019Z−0.52vp
target /1.68

)1+1.8/Z

(A.2)

with uncertainties ∆qmean = 0.54 and relative uncertainty ∆qmean/Z = 2.3%.

Fig. A.2 shows a plot of [qmean/Z](x).
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Figure A.2: Plot of qmean/Z as a function of the scaling parameter x (see eq. A.1 ).

A.2 Application to Xe in CaF2

The following values have to be inserted in eq. A.1 to model a Xe projectile in

CaF2:

• For a Xe ion (mXe =131.293 amu = 239332.5 a.u.), the velocity v for a

projectile energy Ep (in eV) is given by:

v =
√

2Ep/(27.211383 · 239332.5)

• The nuclear charge of Xenon, Z = 54.

• The “average target core charge” of CaF2, Ztarget = 12.6̇.

Fig. A.3 shows the part of the stopping power graph above the threshold for track

formation and some equilibrium charges as well as other important parameters.
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Figure A.3: Electronic stopping power versus projectile energy per atomic mass unit as
calculated by SRIM [31] for projectile energies with stopping powers above
the threshold for track formation (red line). Below the plot, other quantities
derived from the projectile energy are shown: β (v

c
, c. . . speed of light ≈

137 a.u.), v (projectile velocity, a.u.), E (projectile energy per mass unit,
eV/amu), Z (equilibrium charge).



B Calculation of the wake potential

This appendix is a write-up of the relevant formulae for the calculation of the

wake potential (fig. 2.2). As in section 2.3.2.2, we assume that the response of

an isotropic dielectric medium is given by its frequency and momentum dependent

dielectric function ε(q, ω). The (Fourier components of the) total potential Φ(q, ω)

in response to an external potential Φ0(q, ω) is given by (eq. 2.18)

Φ(q, ω) =
Φ0(q, ω)

ε(q, ω)
. (B.1)

The charge density of the moving projectile (charge Zp, velocity vp) is ρ0(~r, t) =

Zpδ(~r − ~vpt). We chose cylindrical coordinates in the rest frame of the projectile,

z̄ = z − vpt, ρ =
√
x2 + y2, R =

√
x2 + y2 + z̄2 =

√
ρ2 + z̄2. Upon insertion of the

Fourier transform of the charge density in the Poisson equation and transforming

back to real space, one finds (for particles with mass � 1) for the total scalar

electric potential φ in the target [114–116]

φ(ρ, z̄) =
Zp
πvp

∫ ∞
0

dκκ J0(κρ)

×
∫ ∞
−∞

dω eiωz̄/vpk−2 1

ε(k, ω)
(B.2)

where the wave number is related to the integration variable as k2 = κ2 + ω2

v2p
.
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For ε(q, ω), we chose the same free electron gas extrapolation as described in

eq. 2.21.

The total potential φ can be viewed as a superposition of the potentials of the

projectile and the wake,

φ(ρ, z̄) =
Zp
R

+ φwake (B.3)

and the so-called reduced wake potential is given by φwake,red = φwake/Zp.



C Time-dependent perturbation

theory

In this appendix, we state the main lines of thought which lead to a physical picture

of the ionization process in quantum mechanics for a point charge Zp impinging on

an atom with one active electron. For a more detailed calculation, the reader is

referred to textbooks of quantum mechanics like [117].

We start by defining the Hamiltonian of the system, neglecting the interaction

between the two cores:

H(t) = T + Vtarget + Vprojectile = H0 + V (t) (C.1)

where T is the usual kinetic energy operator, Vtarget the potential of the target,

and Vprojectile the potential of the projectile exerted on the electron. We split the

Hamiltonian into a time-independent part H0, which is considered to be solved,

H0|φ〉 = Ei|φ〉 (C.2)

with Ei the binding energy (ionization potential) and |φ〉 the stationary electronic

wave function in the absence of the perturbation caused by the projectile, V (t).
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The perturbation should be small in magnitude compared to the interaction in the

unperturbed system and/or be of short duration. Intuitively, one could chose the

Coulomb potential of the projectile as the perturbation. This choice turns out to be

problematic because the criteria for a “perturbation” as stated above are not met in

our case. In the results of section 2.2, a part of the kinetic energy of the projectile

has been chosen as the perturbation, enabling the construction of “unperturbed”

states |φ〉 that are eigenstates of the combined potentials of target and projectile.

To illustrate further the freedom of choice one has, we mention the “distorted wave

strong potential Born” approximation, see e.g. [48, 118], in which the potential of

the projectile is chosen as H0 and the target core as a perturbation. For now, we

consider the general case instead of these special ones.

The time evolution operator U of the system is defined by Schrödinger’s equation

as

i
∂U(t, t0)

∂t
= H(t)U(t) ; U(t0, t0) = 1 (C.3)

and it can be shown that it is possible to expand U into a power series in the

perturbation V (t),

U(t, t0) = U0(t, t0) +
+∞∑
n=1

Un(t, t0) (C.4)

where U0 is the evolution of the unperturbed system and Un is given in terms of

the perturbation,

Un(t, t0) =
(−i)n

n!

∫
t>tn>...>t0

dtndtn−1 . . . dt1

× U †0(tn, t0)V (tn)U0(tn, t0) . . . U †0(t1, t0)V (t1)U0(t1, t0) . (C.5)
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Rewriting in terms of the overlap between an initial wave function |ψi; t0〉 and a

final wave function |ψf ; t〉 at times t0 and t leads to

〈ψf ; t|ψi; t0〉 =
∞∑
n=0

(−i)n
∫

t≥ tn≥ ...≥ t1≥ t0

dtn . . . dt1

× 〈ψf ; t|eiH0(t−tn)V (tn)e−iH0(tn−tn−1) . . .

. . . eiH0(t2−t1)V (t1)e−iH0(t1−t0)|ψi; t0〉. (C.6)

In a physical picture, this means that in n-th order in perturbation theory the final

wave function is reached via n intermediate (virtual) states, where each transition

to a virtual state is induced by the perturbation. If we consider orthogonal initial

and final stationary states of H0, the transition amplitude

aif = 〈ψf ; t|ψi; t0〉 = 〈ψf |U(t, t0)|ψi〉 (C.7)

will be zero in zeroth order, when the perturbation acts zero times on the wave

function. In first order, the initial wave function will be propagated unperturbed

from t0 to t1, at which time it “feels” the potential V (t1). The result will again be

propagated from t1 to t. Projection on |ψf〉 determines the overlap corresponding

to the probability amplitude of finding |ψf〉 in a measurement. The sum over

all possible times t1 between t0 and t gives the total probability amplitude of the

process. In second order perturbation theory, we would sum over two points in time

t1 and t2 at which V (t) acts on the wave function to the right. It is obvious that

for short interaction times (high projectile velocities) the major contribution to the

total probability should be accessible in first order. However, we cannot expect

to model two-step processes in first order, e.g. first electron excitation followed by
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emission at a later point in time.

The transition amplitude for a given impact parameter aif (~b) is related to the

total transition amplitude aif by

aif = lim
bmin→0 , bmax→∞

bmax∫
bmin

∫ 2π

0

b aif (b, φ)dφdb , (C.8)

giving the total probability for transition from the initial to the final state

Pif = |aif |2 . (C.9)

For the final result, integration limits t0 → −∞ and t→∞ are implied, and the

final state |f〉 corresponds to an electron of energy E moving in direction θ from

the projectile path (doubly differential cross section). The initial state |i〉 is the

stationary wave function of the bound electron in absence of the perturbation.

Scaling behavior We now show that the probability amplitude scales approxi-

mately with Z2
p . To do this, we make the following (oversimplified) approximations:

Only terms of order 1 in above series are considered, and the Coulomb potential

of the moving ion serves as the perturbation V (t). We take the initial wave function

φi(~r) as a hydrogenic wave function. As final state φf (~r), a continuum state of the

unperturbed system is chosen, a plane wave of momentum k (energy E = k2

2
) in

direction θ with respect to the direction of ~vp. Inserting the explicit form of the

straight line of the ion path, and writing the matrix element of V in position space,
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we arrive at

aif (~b) = −i
t∫

t0

dt′
∫

d~r exp(−i∆Et′)φ∗f (~r)
Zp

|~b+ ~vpt′ − ~r|
φi(~r) (C.10)

with ∆E = E+Ei the difference between the energies of the initial and final states

(binding energy Ei > 0). Therefore the transition probability from a bound state

to a continuum state, i.e. the doubly differential ionization cross section, scales with

Z2
p , as does the stopping power. Despite the crudeness of the model, the scaling is

verified approximately in experiment [119]. Therefore, a good choice of Zp is crucial

in determining cross sections.



D The fluorite lattice structure

CaF2 is an ionic crystal with three atoms per primitive face-centered-cubic unit cell

in the reduced positions (0,0,0) for Ca and ±(1
4
, 1

4
, 1

4
) for F. Later, we will assign

charges (F−, Ca2+) to the atoms.

A cubic unit cell which consists of 4 Ca and 8 F atoms is depicted in fig. D.1.

It can be seen as a face centered cubic lattice with lattice constant c of Ca atoms

and a cubic primitive lattice with lattice constant c
2
of F atoms, where the latter

is displaced by 1
4
of the body diagonal in the direction of the body diagonal. The

experimental lattice constant is c = 5.46 Å (side length of the cube in D.1). The

atomic number densities of Ca, F, and the total atomic number density are therefore

(in units Å−3)

nCa = 0.0245744 ,

nF = 0.0491487 ,

nCaF2 = 0.0737231 . (D.1)

The experimentally stable face of CaF2 is the (111) surface. It is terminated by

a charge neutral triple layer of F-Ca-F (see below). This means that the structure
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Figure D.1: Cubic unit cell of CaF2. Each Ca (white) is coordinated to eight F (yellow-
green) while each F is coordinated to four Ca ions. Experimentally, only the
(111) surface is stable. The surface normal of the (111) surface corresponds
to the body diagonal of the cube in the picture. Picture by Ben Mills.

consists of shifted layers of equilateral triangles of side length a = c√
2
, half of the

face diagonal. The layer distance in the direction perpendicular to the surface (z

direction) is cz = c
4
√

3
as can be seen from the crystal structure: along the space

diagonal, there are 3 individual layers of Ca in the cubic unit cell in fig. D.1. The

distance between them is one third of the body diagonal, c√
3
. They are sandwiched

by layers of F in a distance of cz. These triple layers are seperated by 4cz = c√
3

(see side view of crystal in fig. D.2).

We choose the x axis aligned to the basis of the equilateral triangle, the y axis

normal to the x axis in the surface plane and thus aligned to the altitude of the

equilateral triangle and the z axis perpendicular to the surface. The individual

layers differ only in their starting points in y direction. They are shifted by units

b = 1
3

√
3a
2

in y direction, i.e. one third of the altitude of the equilateral triangles.

Starting from an F atom, the shifts in starting positions when moving through

the layers are +b,+b,−b,+b,+b,−b, . . ., cf. fig. D.2. The structure repeats exactly

after three triple layers, which has been considered in choosing the computational

box for the molecular dynamic simulation.
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Figure D.2: Side view of a CaF2 crystal as used in the MD calculations (F yellow,
Ca grey, projection along x direction). 22 layers in x, 24 in y, 27 in z
direction, giving a system size of about 88 × 83 × 28 Å3. Note the triple
layer structure. This picture was taken from the MD simulation shortly
after starting, therefore some atoms whose coordinates coincide with the
simulation box borders have already been replaced by their periodic images.
Compare text for details.



E Calculation of the pair correlation

function

The pair correlation function (or radial distribution function) g(r) [103] is often

used as a measure for order in a system. It is directly linked to the structure factor

accessible in neutron beam or X-ray scattering experiments. It is given by [120]

g(|~r|) = n−2
CaF2

〈∑
i

∑
j 6=i

δ(~ri)δ(~rj − ~r)

〉
(E.1)

with nCaF2 the particle number density and point particles located at rl. Therefore,

it is the conditional probability density to find a particle j in distance r = |~ri − ~rj|

from particle i, given that there is a particle at ~ri. The average is taken over many

particles i. For an ideal gas, we would expect g(r) = const (disorder), while in

a crystal, we would expect peaks at all possible linear combinations of the lattice

basis vectors.

In this work, the pair correlation function is calculated as follows. A volume

within the crystal is selected which is sufficiently far away from the edges. The

average is taken over all atoms i within this volume. For each atom i, the number

of atoms j(6= i) within a spherical shell of radius R and thickness ∆R is counted.

To obtain a density, this number is divided by the volume of the spherical shell
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which is approximately 4πR2∆R. The pair correlation function g(r) is then given

through normalization by the particle number density n.



F Estimate of thermal diffusivity

The thermal diffusivity is a key parameter in the simulation, as it decides how

quickly the thermal energy is transported away from the track. The molecular

dynamics (MD) simulation contains the information about the thermal diffusivity

through the pair potentials. In this appendix, we will briefly discuss how one can

estimate its magnitude, and show that our simulation gives realistic results for to

the thermal diffusivity.

In MD simulations, one often deduces transport coefficients via the Green-Kubo-

formalism from equilibrium fluctuations, e.g. [89]. In our case, we proceed differ-

ently due to the dynamical nature of the track formation process, where strong

non-equilibrium conditions are found. Furthermore, our Berendsen thermostat is

not expected to yield reliable values for fluctuations. We therefore solve the heat

equation in cylindrical coordinates for initial conditions taken from the MD simu-

lation and an experimental thermal diffusivity and show that our MD simulation

yields similar results.

The heat equation in cylindrical coordinates, assuming symmetry in φ and z

directions (T (r, φ, z, t)→ T (r, t)), reads

∂2
r T (r, t) +

1

r
∂r T (r, t) = k ∂t T (r, t) (F.1)
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where T (r, t) is the temperature in distance r from the track axis at the time t after

the start of the simulation (or, in the MD calculation, the end of the heating phase).

k is the inverse thermal diffusivity which is commonly expressed as k = ρcp
λ

with

ρ the mass density, cp the specific heat capacity, and λ the thermal conductivity

of the material. For CaF2 at room temperature, ρ ≈ 3.18 g/cm3, cp ≈ 0.86 kJ

kg−1K−1 and λ ≈ 10 W m−1K−1 [121]. The values are temperature dependent, but

for our proof-of-principle estimate, we assume them as constant and note that k

should be within a factor of 2 of its true value for 200 K. T . 1000 K [121]. The

above values give k = k0 ≈ 2.7 fs/Å2.

We integrate the heat equation eq. F.1 using the finite difference method for

three different values of k, namely 0.5k0, k0, and 2k0. The initial conditions were

taken from the MD simulation after the end of the heating phase, see left panel of

figure F.1, for simulation parameters Rhot = 16 Å and Thot = 2000 (there are no

data available for the thermal diffusivity of CaF2 at very high temperatures). We

chose “heat bath” boundary conditions at the maximum r, which in turn was chosen

according to the MD simulation box to rmax = 43 Å. The right panel of fig. F.1

shows a contour plot of the simulation for k = k0. As in our MD simulation, the

core of the track cools within some ps.

We chose the temperature of the crystal for r < Rhot as a time-dependent pa-

rameter which is conveniently extracted from the MD calculation. Fig. F.2 shows

the time dependent temperature of the hot zone as calculated in the MD simula-

tion compared to the same quantity resulting from integration of the heat equation

eq. F.1 with k = 0.5k0, k0, and 2k0 respectively. While the functional dependence

is not exactly reproduced by the heat equation, the decaying time constant of T (t)

is well reproduced by k0, and certainly lies within the lower and upper bounds
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Figure F.1: Left panel: Initial conditions for the heat transport simulation. Red dots:
calculated from MD (at the end of the heating phase, Rhot = 16 Å, Thot =
2000 K), green line: smoothed fit function used as initial condition for heat
transport simulation. Right panel: solution T (r, t) of the heat transport
equation eq. F.1 for initial condition from left panel and inverse thermal
diffusivity k = k0 ≈ 2.7 fs/Å2.

given by 0.5k0 and 2k0. We conclude that the order of magnitude of the thermal

diffusivity is well reproduced by our MD simulation.



F Estimate of thermal diffusivity 121

Figure F.2: Time dependent average temperature T (t) of “hot” zone (i.e. r < Rhot =

16 Å). Green dots: MD calculation, lines: solutions of heat equation for
initial condition as in left panel of fig. F.1 with k = k0 (solid red line), 0.5k0

(turquoise dashed line) and 2k0 (blue dashed line); k0 is the inverse thermal
diffusivity of CaF2 at room temperature.
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