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CONTENTS 1

Summary/Abstract

A theory of profinite 2-complexes is presented aiming at a 2-dimensional
analog of a theory of profinite fundamental groups of profinite graphs of
groups as introduced by O.V.Mel’nikov and P.A.Zalesskii in [32] and [33]. We
tried to “simulate” elementary homotopies but avoided introducing profinite
homotopy categories. In a sense, our approach is more flexible than using
something like profinite simplicial complexes. For example we allow 2-cells
with infinite boundaries and loops.

Chapter 1 reviews basic facts from profinite graph theory as presented in
the book by L.Ribes and P.A.Zalesskii [25]. Some remarks on the Vietoris
topology follow and we also introduce unoriented profinite graphs – they
turn out to be useful for defining 1-skeletons. “Big lines” and “circles” are
introduced – the latter are candidates for boundaries of 2-cells. A big line is
a directed profinite graph with its edges linearly ordered.

In Chapter 2 we introduce a category of “profinite 2-complexes” with mor-
phisms allowed to collapse 2-cells to edges or vertices and edges to vertices.
These conditions “simulate” homotopies which one can – in a finite complex
– interpret as elementary homotopies of geometric models. The 1-skeleton of
a 2-complex is an unoriented profinite graph. At the end of the chapter we
prove the existence of (co)equalizers.

Chapter 3 reviews the theory of profinite groupoids and draws mainly from
work of J.Almeida & P.Weil [1] and P.R.Jones [12]. We show that certain
subcategories are closed under forming projective limits and that every object
is the projective limit of finite objects. Profinite groupoids and 2-complexes
lead to defining a category of “continuous actions”. Of particular interest to us
are actions with complexes admitting a continuous section for the projection
onto the space of its connected components.

Chapter 4 is devoted to the study of continuous disc free actions (any disc
intersects trivially with its image). This category turns out to be closed
under taking projective limits.

Chapter 5 deals with “based Galois actions”, i.e., disc free actions such that
the underlying complex admits a continuous section for the canonical projec-
tion onto its component space. Constructions introduced in Chapter 4 are
specialized.

Chapter 6 introduces the concepts of “universal based Galois action” and “fun-
damental groupoid”. It is proved that such actions always exist. They play a
role similar to that of the universal covering space on which the fundamental
group acts. For a connected profinite graph interpreted as a 1-complex the
universal Galois cover as introduced in [32] appears.

Chapter 7 provides a van Kampen theorem for gluing schemes of based Ga-
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Figure 0.0.1: The figure has two parts. On the left a geometric visualization
of the abstract data structure indicated on the right is pictured. The abstract
data structure consists of a space of points, the nodes in the right part of the
picture, and a continuous boundary map, indicated by the dashed arrows.

lois actions. Essentially it says that a profinite graph of actions (carrying the
data of complexes and their fundamental group(oid)s) gives rise to a graph of
profinite groups such that gluing the complexes yields a complex whose fun-
damental group(oid) is the fundamental group(oid) of the profinite graph of
group(oid)s. In describing the fundamental groupoid of a graph of groupoids
we use free and universal groupoids.
Chapter 8 shows how to use the van Kampen theorem for defining and study-
ing Cayley complexes. We finish the work with a construction that yields for
a given profinite groupoid G a 2-complex with G as fundamental groupoid.

Hints for viewing figures

All figures that appear within the text realizing a graph or a 2 dimensional
complex are drawn such that vertices are points, edges are curves in R2,
and 2-cells are homeomorphic to D2. This style of drawing is a convenient
visualization of abstract data structures in R2. If the data structures are
finite the drawings correspond to geometric realizations. To avoid confusion,
especially when considering infinite structures, Figure 0.0.1 states the relation
between the “pictures” and the abstract graphs and complexes.



Chapter 1

Profinite graphs

1.1 Basic concepts

Concepts of profinite graph theory and hyperspace topologies are reviewed.
For a profinite space X let FX denote the set of closed non empty subsets of
X. Equip it with the Vietoris topology to become a profinite space. Recall
that the set of all W (U1, . . . , Un)= {C ∈ FX : i = 1, . . . , n Ui ∩C 6= ∅, C ⊆
⋃n
i=1 Ui} with U1, . . . , Un open in X and n ∈ N, is a basis of the Vietoris

topology ([20], [10]). The Vietories functor F is defined on the category of
profinite spaces sending each X to FX and ϕ : X → Y to Fϕ : C 7→ ϕ(C).

Since X is compact T2, FX is compact T2 and the finite subsets of X, with
at most n elements are a compact subspace of FX. We denote it by

„

X

n

«

.

An oriented graph (X, d0, d1) is a profinite space X together with maps
d0, d1 : X → X satisfying didj = dj for i, j ∈ {0, 1}. An unoriented graph
(X, δ) is a profinite space X together with a map δ : X →

„

X

2

«

such that

δx = {x} whenever x ∈ δy for some y in X.

A vertex in (X, δ) (in (X, d0, d1)) satisfies δx = {x} (respectively dix = x
for some i ∈ {0, 1}). Set V X the set of vertices and EX:= X \ V X the set
of edges. Note that V X is closed. Using these definitions one has δ : X →
„

V X

2

«

. A loop is an edge x with δx = {u} (with d0x = d1x = u). A loop-free

graph is a (un)oriented graph without loops.

Every oriented graph can be viewed to be unoriented with the same set of
vertices and edges. The converse holds if X is second countable but not in
general [4].

A graph morphism f between oriented graphs (G, d0, d1) and (H, d′0, d
′
1) is

a map from G to H such that d′if = fdi, i ∈ {0, 1} (see [25]).

A graph morphism f between unoriented graphs (G, δ) and (H, δ′) is a
map from G to H such that δ′fx = {fy : y ∈ δx}.

3
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If H carries the final topology with respect to f (i.e., U ⊆ H is open if and
only if f−1U open in G) then (H, d′0, d

′
1) is a quotient graph of G and f

is the quotient map. (Un)oriented graphs together with their morphisms
form a category.

C will be a class of finite groups closed under taking subgroups, quotients,
and extensions. A projective limit of groups in C is a pro-C group. We
refer to [32] for the concept of pro-C fundamental group of a profinite
graph.

During this work let Set, Top, p-OGraph, p-UGraph, Group,
Groupoid, PGroupoid, ContAct, GalAct, BasedAct, BGalAct,
denote the respective categories of sets, topological spaces, oriented graphs,
unoriented graphs, groups, groupoids, profinite groupoids, continuous ac-
tions, Galois actions, based actions and based Galois actions. Our source
for category theory are [29] and [15]. Concepts of profinite groupoids are
discussed in [23].

1.2 Oriented graphs

Oriented graphs have been treated in [19], [26], [32], [33] and [34].

In p-OGraph the universal constructions of (co)products, (co)equalizer and
thus pushout and pullbacks are directly inhereted from Top.

Definition 1.2.1: The pushout (Γ1 ⊔A Γ2, d0, d1) of the diagram
(A, dA0 , d

A
1 ) (Γ1, d

Γ1
0 , d

Γ1
1 )

(Γ2, d
Γ2
0 , d

Γ2
1 )

ι1

ι2

with injections ι1, ι2 exists. We called it oriented adjunction graph.

Next we introduce the barycentric refinement of an oriented graph. Refine-
ment does not change the fundamental group(oid) of the oriented graph.
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Construction 1.2.2: Let (Γ, d0, d1) be an oriented graph and make
ΓV ,Γ0,Γ1 different copies of Γ. Form the adjunction space BΓ := ΓV ⊔V Γ

Γ0 ⊔V Γ Γ1 in Top and let ιV , ι0, ι1 be the canonical embeddings of ΓV ,Γ0,Γ1

into BΓ. The boundary maps dB
0 , d

B
1 : BΓ→ BΓ

dB
0 (x) :=







x : x ∈ ΓV
ιV d0ι

−1
0 x : x ∈ Γ0

ιV ι
−1
1 x : x ∈ Γ1

and

dB
1 (x) :=







x : x ∈ ΓV
ιV ι

−1
0 x : x ∈ Γ0

ιV d1ι
−1
1 x : x ∈ Γ1

turn out to be well defined.

Proposition 1.2.3: (BΓ, dB
0 , d

B
1 ) is an oriented graph with the following

properties:

• V BΓ = ΓV .

• For all v ∈ V BΓ the intersection (dB
0 )−1v ∩ (dB

1 )−1v = {v}. In other

words BΓ does not contain loops b .

• For every v ∈ VBΓ \ V Γ there exist exactly two disctinct edges e1, e2
in BΓ such that dB

0 e1 = v and dB
1 e2 = v.

Proof : For proving the continuity of dB
0 , d

B
1 a symmetry argument shows that it is

enough to consider dB
0 . It is obvious that there is a basis of open sets U

in BΓ such that either U ⊆ ιvEΓ ∪ ι0EΓ ∪ ι1EΓ or ι−1
v U = ι−1

0 U = ι−1
1 U .

In the first case (dB
0 )−1U is open because it is either U or empty. In the

second case we set U ′ = ι−1
V U and observe that (dB

0 )−1U = (ιV U
′)∪ (ι1U

′)∪
(ι0d

−1
0 U ′) ∪ (ι1d

−1
1 U ′) is open.

Since ΓV is closed in BΓ and dB
i x = x⇔ x ∈ ΓV one has V BΓ = ΓV . Thus

(BΓ, dB
0 , d

B
1 ) is an oriented graph.

By the definition of dB
0 for v ∈ ιVEΓ we have (dB

0 )−1v = {ι1ι
−1
V v} and

(dB
1 )−1v = {ι0ι

−1
V v}. Thus there are exactly two edges adjacent to each

v ∈ ιVEΓ. On the other hand if v ∈ ιV V Γ then (dB
0 )−1v = ι0d

−1
0 ι−1

V v ⊆

ι0EΓ∪{v} and (dB
1 )−1v = ι1d

−1
1 ι−1

V v ⊆ ι1EΓ∪{v}. Thus e1 and e2 intersect

in {v} only.
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On the right the amalgama-
tion BΓ = ΓV ⊔V Γ Γ0 ⊔V Γ

Γ1 and V BΓ are visual-
ized. Below the realization
of a barycentric refinement
is sketched.
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Figure 1.2.1: Visualization and structure of BΓ
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Observe that there is a canonical graph morphism ϕ : (Γ, dB
0 , d

B
1 ) →

(Γ, d0, d1) collapsing the connected components of the closed subgraph ∆ :=
ιV Γ ∪ ι0Γ. For every v ∈ ιVEΓ one has (dB

0 )−1v ⊆ ivEΓ ∪ i0EΓ and
(dB

1 )−1v ⊆ ivEΓ ∪ i1EΓ respectively. Moreover dB
0 ι0EΓ ∪ dB

1 ι1EΓ ⊆ V Γ.
Thus the connected components of ∆ consist of single edges together with
their endpoints. Hence the quotient is isomorphic to Γ. We refer to ϕ as the
canonical morphism from BΓ to Γ.

Definition 1.2.4: The oriented graph (BΓ, dB
0 , d

B
1 ) is the barycentric

refinement of (Γ, d0, d1).

Theorem 1.2.5: There is an isomorphism of pro-C fundamental groups
πC

1 (BΓ, dB
0 , d

B
1 ) ∼= πC1 (Γ, d0, d1).

Proof : The canonical morphism φ collapses the trees of the forest ∆. So the first

Proposition on page 486 in [35] shows that the fundamental pro-C groups of

Γ and BΓ coincide.

1.3 Unoriented graphs

This paragraph is devoted to the study of universal constructions in
p-UGraph. The following is an analog of 1.7 in [33].

Theorem 1.3.1:

1. For any inverse system of graphs ((Gα, δα), pαβ) the projective limit
(G, δ) = lim

←−α
(Gα, δα) exists.

2. Every (G, δ) is the projective limit of an inverse system ((Gα, δα), pαβ)
of finite unoriented graphs.

Proof :

1. Let G := lim
←−α

Gα be the projective limit of profinite spaces. Since the Vi-
etoris functor F is right exact, the system (Gα, pαβ) gives rise to an inverse
system (FGα,Fpαβ) with projective limit lim

←−α
FGα equal to FG. The univer-

sal property of lim
←−α

FGα yields δ : G→ FG turning (G, δ) into an unoriented
graph. It remains to show that the canonical projections pα : G → Gα are
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graph morphisms and that for any (Y, δ′) with compatible graph morphisms
p′α : (Y, δ′) → (Gα, δα) the universal map u : Y → G is a graph mor-
phism. The commutativity of the following diagram shows the validity of
these assertions.

G

Y Gα Gβ

FY FGα FGβ

FG

pα pβ

pαβ

Fpα Fpβ

Fpαβ

δα δβδ′

p′α

Fp′α

p′β

u

Fu

δ

2. It suffices for any clopen partition P of G to find a refined clopen partition P′,

such that the induced quotient map is a graph morphism. Let M be the set

of all non empty clopen sets of the form δ−1W (P ) ∩ P = {x ∈ P : δx ⊆ P}

with P ∈ P. Every P ∈ P which intersects all sets in M trivially, is contained

in EG. Therefore, letting M′ be the set of all non empty sets of the form

δ−1W (P ′, Q′)∩EG with P ′ 6= Q′ ∈M, one finds P′ := M′∪M to be a clopen

partition of the desired sort.

Corollary 1.3.2: When (G, δ) is loop-free b then the inverse system can
be chosen to be loop-free.

Proof : Let ((Gα, δα), pαβ) be an inverse system as in Theorem 1.3.1 1. For each α

set G′
α the graph obtained from Gα by collapsing all loops to their endpoints.

Then ((G′
α, δ

′
α), p′αβ) is a cofinal inverse system because for any two elements

g, g′ in G there is α such that pαg 6= pαg
′ and pαa 6= pαb for {a, b} denoting

either δg or δg′.

Let F be an arbitrary functor from a small category to p-UGraph. We will
show that colimF exists. Since a directed set can be viewed as a small arrow
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category, we will refer to a diagram from a directed set to p-UGraph, as
a directed p-UGraph-diagram. Therefore projective limits in p-UGraph

are colimits of directed p-UGraph-diagrams. Note that the existence of
arbitrary colimits in p-UGraph implies Theorem 1.3.1.
As shown in [29], the existence of arbitrary colimits is equivalent to the
existence of arbitrary products and equalizers.
Using this equivalence we will prove our assertion in two parts. First we
show that p-UGraph admits arbitrary products, and second, we construct
equalizers.
Products in p-OGraph are products in Set and a suitable definition of
boundary maps. For defining products in p-UGraph we avail ourselves of a
more complex set theoretical construction.

Construction 1.3.3: Let I be an arbitrary index set and (Gi, δi)i∈I be a
collection of unoriented graphs. In Top we define X :=

∏

i∈I V Gi .

Take P :=
(
∏

i∈I Gi

)

×

(

X
2

)

and note that it is compact. Denote the

elements of P by (m, {u, v}) = ((mi)i∈I , {(ui)i∈I , (vi)i∈I}).
The subset

Γ := {(m, {u, v}) ∈ P : ∀i ∈ I δimi = {ui, vi}}

is compact. Define δ : Γ→
„

Γ
2

«

by sending (m, {u, v}) to {(u, {u}), (v, {v})}.

Then (Γ, δ) is an unoriented graph, the product, denoted by
∏

i∈I(Gi, δi).
There are canonical projections pi :

∏

i∈I(Gi, δi) → (Gi, δi), defined as
pi(m, {u, v}) = mi.

Proof : It is easy to see that the assignment (u, {u}) 7→ u is a homeomorphism from

∆→ X, where ∆ =

{

(u, {u}) ∈ X ×

(

X
2

)}

, and therefore we can identify

δ with the projection of P to

(

X
2

)

. Hence δ is continuous. To see that Γ is a

closed subset of P , take a point p0 ∈ P and observe: If every neighbourhood
of p0 = (m, {u, v}) contains some g = (m′, {u′, v′}) ∈ Γ then for fixed i ∈ I
in every neighbourhood of mi, ui and vi there is some m′

i, u
′
i and v′i with

δim
′
i = {u′i, v

′
i}. Continuity of δi, for all i ∈ I, yields δimi = {ui, vi} and

thus p0 ∈ Γ, such that finally (Γ, δ) turns out to be an unoriented graph.

It remains to show that (Γ, δ) has the universal property of the product in
p-UGraph. Let (Γ′, δ′) be given and p′i : (Γ′, δ′) → (Γi, δi) be projections.
The universal morphism σ : (Γ′, δ′)→ (Γ, δ) turns out to be σ(m′, {u′, v′}) =
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((p′im
′)i∈I , {(p

′
iu

′)i∈I , (p
′
iv

′)i∈I}). One observes that σ is well defined and
that for every i ∈ I the diagram

(Γ, δ) (Γi, δi)

(Γ′, δ′)

p′i

pi

σ

is commutative. Therefore σ is unique as a consequence of its definition.

Now we turn to the existence of equalizers. It is obvious that equalizers in
p-OGraph are obtained by using the forgetful functor p-OGraph → Set ,
but this method does not work for equalizers in p-UGraph: Consider the
one edge graph b b . The equalizer of the endomorphism, flipping the two
endpoints, and the identity morphism is the empty set, because the equalizer
in Set consists of the edge e only which is not a graph. So in this case the
equalizer in p-UGraph will turn out to be empty.

Construction 1.3.4: Given two graph morphisms:

(G, δ)
ϕ

⇉
ψ

(H, δ)

The equalizer of ϕ and ψ is the set difference E \ S , where E :=
{g ∈ G : ϕg = ψg} is the set theoretic equalizer and S :=
{g ∈ EG : ϕu 6= ψu, {u, v} = δg} the set of edges e, for which ϕ and ψ
differ on the endpoints of e.
Set δ↾ := δ↾(E \ S) and ι : E \ S → G the natural embedding. The set S
is open and (E \ S, δ↾) is a subgraph of (G, δ), which together with ι is the
equalizer of ϕ and ψ, represented by the diagram

(E \ S, δ↾)
ι
→ (G, δ)

ϕ

⇉
ψ

(H, δ)

and often denoted as E(ϕ, ψ).

Proof : To see that S is open we observe that δ is continuous, and therefore the
complement {g ∈ G : ψu = ϕu, ∀u ∈ δg} of S is closed. Since E is closed
E \S is closed and thus compact. Moreover since all e ∈ EG for which there
is a vertex u ∈ δe such that ϕu 6= ψu lie in S, we conclude that E \ S is a
subgraph of (G, δ).
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Obviously ι has the desired property ϕ ◦ ι = ψ ◦ ι.

It remains to show that ((E \ S, δ↾), ι) is universal, i.e. for any ((F, δ∗), κ),
with κ : (F, δ∗) → (G, δ) and ϕ ◦ κ = ψ ◦ κ there is a unique morphism
σ : (F, δ∗)→ (E \ S, δ↾) such that ϕ ◦ κ = ϕ ◦ ι ◦ σ = ψ ◦ ι ◦ σ = ψ ◦ κ.

Observe that the image of κ is contained in E \ S. Then σ = ι−1 ◦ κ.

Definition 1.3.5: An (un)oriented graph is connected if it is not the
disjoint union of two non empty closed subgraphs. The connected compo-
nents of an (un)oriented graph are its maximal connected subgraphs.

In [34] a graph is termed connected if it is the projective limit of finite
connected graphs (in the sense that the “realization” is connected). In light
of Lemma 1.6 [34] our definition is equivalent.

1.4 Big line

A LOT space (linear ordered topological, [10]) is a linearly ordered set
(X,≤) with order topology (i.e. the open intervals (a, b)≤:= {x : a < x < b}
form a basis). If no confusion arises we simply write (a, b) for (a, b)≤. An
element x ∈ X is a successor of a if a < x and (a, x) = ∅. A successor of a
is unique and will be denoted by a+.

Definition 1.4.1: On a quotient space Y of a LOT space (X,≤) define
the strictly induced relation 4 as follows:

q 4 q′ if and only if ∀x ∈ f−1q, ∀x′ ∈ f−1q′ : x < x′ or q = q′

The following is an immediate consequence of the definition.

Proposition 1.4.2: “4” is a partial order. It is linear if and only if f−1(y)
is an interval for every y in Y .

Remark that a continuous surjection f from a compact space X to a T2

space Y is a quotient map. Therefore the induced map g : X/f → Y
is a continuous bijection. Since X is compact and Y is a T2 space, g is a
homeomorphism.
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Proposition 1.4.3: Let Y be a space, (X,≤) a LOT space and f : X → Y
a surjective map with “4” the strictly induced relation on Y . Then the order
topology induced by “4” agrees with the quotient topology modulo f . If, in
addition, X is profinite then the topology on Y equals the quotient topology
as well.

Proof : For proving the first statement it suffices to show the quotient topology on Y
is coarser than the 4-topology. Since f−1y is an interval for every y ∈ Y , the
preimage f−1V of any quotient open set V ⊆ Y , is the union of f -saturated
intervals. It shows that every connected component of f−1V is f -saturated
and maps onto a 4-open interval in V .

If X is profinite the quotient topology is induced by “4”.

Construction 1.4.4: Let (X,≤) be a profinite LOT space and C := {a ∈
X : ∃a+}. Form X∗ := X ∐ C. Define a map ι : X∗ → X by setting
ι(x) = x for x ∈ X and ι(c) := c for c ∈ C. Extend ≤ to a linear order ≤∗

on X∗ by setting x <∗ y if either ιx < ιy or ιx = ιy and x ∈ X, y ∈ C. Then
X∗ is a LOT space.
Writing χ : X → X∗ and ζ : C → X∗ for the natural identifications define
maps d0, d1 : X∗ → X∗ by setting

d0x
∗:=χιx∗

d1x
∗:=

{

χι(x∗) : x∗ ∈ χ(X)
χι(x∗)+ : x∗ ∈ ζ(C)

and observe d0ζ(c) = χ(c), d1ζ(c) = χ(c+), d0χ = d1χ = χ.
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Proposition 1.4.5: Every morphism f : (X,≤) → (Y,≤′) of profinite
LOT spaces lifts to a unique morphism f ∗ and gives rise to commutative
diagrams:

X Y

X∗ Y ∗

f

χX χYιX ιY

f ∗

X Y

X∗ Y ∗

f

ζX ζYιX ιY

f ∗

Moreover, if f is injective (surjective), so is f ∗. The assignment X → X∗,
f → f ∗ gives rise to an exact functor.

Proof : During the proof write χ, ζ, χ′, ζ ′ for χX , ζX , χY , ζY . Define

f∗(x∗) :=

{

χ′(f(ιx∗)) : x∗ ∈ χ(X) or f((ιx∗)+) = f(ιx∗)
ζ ′(f(ιx∗)) : else

f∗ is a morphism of LOT spaces, injective (surjective) if and only f is a
morphism of LOT spaces and that the above diagrams commute.

Uniqueness of f∗: Assume g∗ : X∗ → Y ∗ is a morphisms of LOT spaces such

that the diagrams commute. Then the commutativity reads g∗ = χ′ ◦ g ◦ ι so

that for every x∗ either g∗(x∗) = χ′ ◦ f ◦ ιx∗ or g∗(x∗) = ζ ′ ◦ f ◦ ιx∗ holds. If

x∗ is in χ(X) the first of these equalities is satisfied. Otherwise x∗ is in ζ(C).

Since g∗ is a morphism of LOT spaces, the first equality holds if g identifies

ι(x∗) with its successor, and, the second otherwise. Hence f∗ = g∗.

Corollary 1.4.6: Any (X,≤) is a projective limit lim
←−α

(Xα,≤α) of finite
LOT spaces Xα, and (X∗,≤∗) = lim←−α(X

∗
α,≤

∗
α), where all X∗

α are finite.

Proof : This follows from the right exactness of “∗”.

Proposition 1.4.7: The triple (X∗, d0, d1) is an oriented graph.

We give two proofs, a direct one, and one using a projective limit argument
and Corollary 1.4.6:
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Proof
direct

: Continuity of di is proved by showing that the inverse image of an open

interval (a, b) in X is an open interval:

d−1
0 (a, b) =

(

min
≤∗

(ι−1a),max
≤∗

(ι−1b)

)

and

d−1
1 (a, b) =

(

c,min
≤∗

(ι−1b)

)

where, in case there is x with a = x+, we put c := x and c := a else.

To prove compactness of X∗ suppose {Ji : i ∈ I} is an open cover of X∗ by
non-empty open intervals Ji. Since X is compact (in the induced topology as
well) there is a finite subcover {Ji : i ∈ I0} of X. When e ∈ C is not covered
by the finite subcover there are 2 indices i, j ∈ I0 with Ji = (a, e), Jj = (e, b).
Therefore almost all elements of X∗ are covered and thus there is a finite
subcover {Ji : i ∈ I1} of X∗.

X∗ is T2 since its topology is induced by an order.

Totally disconnectedness of X∗ is shown if for any x <∗ y one can provide

clopen sets A,B with x ∈ A, y ∈ B, A ∩ B = ∅ and A ∪ B = X∗. When

d0y = d1x then set A = (−∞, y), B = (d0y,∞) if x, y are edges and A =

(−∞, y), B = (d0y,∞) else. Otherwise if d0y 6= d1x separate d0y and d1x

with two clopen intervals I, J in X such that I ∪ J = X. Since X∗ is a LOT

space A = d−1
0 I, B = d−1

0 J is a suitable choice.

Proof
with Prop.

: For any finite quotient (Xα,≤α) it is immediate that (X∗
α, dα,0, dα,1) is an

oriented graph. Proposition 1.4.6 implies that X∗ is profinite. Denoting
pαβ : Xα → Yβ the canonical projections of an inverse system of X, one
observes:

• dβ,0p
∗
αβ = χβιβp

∗
αβ = χβpαβια = p∗αβχαια = p∗αβdα,0

• For x∗ is in χα(Xα) or pαβιαx
∗ = pαβια(x∗)+ one has dβ,1p

∗
αβ(x

∗) =
χβιβp

∗
αβ(x

∗) = χβpαβια(x∗) = p∗αβχαια(x∗) = p∗αβdα,1(x
∗).

• For x∗ is in ζα(Xα) and pαβιαx
∗ 6= pαβια(x∗)+ one has dβ,1p

∗
αβ(x

∗) =

ζβιβp
∗
αβ(x

∗) = ζβpαβια(x
∗) = p∗αβζαια(x

∗) = p∗αβdα,1(x
∗). Therefore each

p∗αβ is a graph morphism and so (X∗, lim
←−α

dα,0, lim←−α
dα,1) = (X∗, d0, d1) is a

profinite graph.

Corollary 1.4.8: The morphism f ∗ of Proposition 1.4.5 is a graph mor-
phism.
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Proof : We have to prove that f∗dj = d′jf
∗ holds for j = 0, 1. This follows from the

properties of f∗ (1.4.5).

Definition 1.4.9: An (un)oriented graph as in Construction 1.4.4 is a(n
unoriented) big line. The (unoriented) big circle obtained from it is
the quotient graph with endpoints identified. Define the two classes I :=
[I : Ibig line ], S := [S : Sbig circle ] and a class function ϕ: I → S that
assigns to each I the big circle S obtained from it. Denote by πI : I → S
the respective quotient map. In the unoriented situation we set Su := [S :
S unoriented big circle ].

Note that the class of unoriented big circles Su = S/ζ where ζ : S → S
operates by reversing orientation for each S ∈ S . For any big line (L,≤) the
following statements can be readily verified:

Corollary 1.4.10:

• For different vertices v, w there is an edge e in (v, w) ∪ (w, v).

• For all e in EL one has (d0e, d1e) = {e}.

Lemma 1.4.11: The topology on a big circle (S, d0, d1), containing more
than 1 element, is not induced by an order “≤S” on S such that for all edges
e ∈ S one has d0e ≤S e ≤S d1e.

Proof : Assume on the contrary that an order “≤S” induces the topology. Since

S is compact there are vertices m, the minimum, and m′, the maximum.

By definition there exists a big line (L,≤) and a morphism f : L → S,

identifying l := min≤ L and l′ := max≤ L. Observe that either f−1m 6=

l or f−1m′ 6= l′. Assume w.l.o.g. f−1m 6= l and f−1m ≤ f−1m′. Set

I := (f−1m, l′). By 1.4.10 for all v ∈ V I there is an edge contained in

(f−1m, v). Thus either there is an e0 ∈ I such that f−1m = d0e0 or for

every neighbourhood U of f−1m there is an edge e > f−1m. Similarly for

I ′ := (l, f−1m) either there is an edge e′0 with f−1m = d1e
′
0 or for every

neighbourhood U of f−1m there is an edge e′ ∈ U with e′ < f−1m. Note

that fI ∪ fI ′ ∪ {fl,m} = S. For any v ∈ I the image f [f−1m, v) is an

open set containing a non-empty interval [m,x)S . Recall that f restricted

to L \ {l, l′} is a homeomorphism. Use 1.4.10 again and conclude for every

e ∈ EI the validity of (d0fe, d1fe)S ∪ (d1fe, d0fe)S = {fe}. Thus because
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f−1m 6= l and L is a big line the existence of e0 implies those of e′0. This leads

to either fe0 >S m or fe′0 >S m, both a contradiction. Since f ↾ L \ {l, l′}

is a homeomorphism, every closed neighbourhood A of m contains an edge

e′ ∈ fI ′ and an edge e ∈ fI. Because A is compact, v := min{x′ ∈ V (f(I ′)∩

A) : x′ > max{d0e, d1e}, i ∈ {0, 1}} exists in A and thus v 6= m. Since

fI ∪ fI ′ ∪ {fl,m} = S, either v is in {d0e0, d1e0} for some e0 ∈ fEI, or

else, every neighbourhood of v contains some e ∈ fEI, both a contradiction,

because (d0I ∪ d1I) ∩ (d0I
′ ∪ d1I

′) = ∅ and I ∩ I ′ ⊂ {f−1m, l, l′}.

Proposition 1.4.12: For a surjective graph morphism f from a big line
(G, δ) to a graph (H, δ′) the following conditions are equivalent:

(1) H is a big line and the restriction of f to f−1EH is a bijection.

(2) For all y ∈ H , f−1y is a closed interval.

Proof :

(1)⇒ (2) Since H is a LOT space it is T2. Therefore f−1y is closed for every y ∈ H.
Assume there is y ∈ H and f−1y is not an interval. Then there is an
interval (a, b) which intersects f−1y trivially but (−∞, a] ∩ f−1y 6= ∅ and
[b,∞) ∩ f−1y 6= ∅. Now f restricted to f−1EH is a bijection and thus f−1y
is in V H and (a, b) contains an edge e. Since [a, b] is compact there exist
m := max{c′ ∈ [a, b] : c′ < e, ∃d′ > e : fc′ = fd′} and m′ := min{c′ ∈
[a, b] : c′ > e, ∃d′ < e : fc′ = fd′}, and the bijectivity of f implies
m,m′ ∈ V H. Restricting f to the subgraph G′ := [m,m′], and observing
that G′ is a big line, it turns out that f [m,m′] is a big circle with order
topology, contradicting Lemma 1.4.11.

(2)⇒ (1) If f−1y is an interval in ≤, by Proposition 1.4.2 the relation 4 induces the

topology on H. Using Proposition 1.4.5 lift f ↾ V G : V G → V H to the

unique graph morphism f∗ : G → (V H)∗. We show that H coincides

with (V H)∗. Since f is a graph morphism {fz : z ∈ δx} equals δ′fx. By

requisite if δx is mapped onto a single vertex y so is x. On the other hand

if f is bijective on δx, x is mapped to an edge y, so f−1y has to be a single

point, and hence f is bijective on f−1EH. Thus there is a bijective graph

morphism g : (V H)∗ → H such that f = g ◦f∗. So g is a morphism of LOT

spaces and thus a homeomorphism. The restriction of f∗ to f∗−1E((V H)∗)

is a bijection thus the second statement in (1) holds.

Remark that any morphism of unoriented big lines which respects condition
(2) of Proposition 1.4.12 uniquely determines a morphism between the big
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circles, obtained from them. Moreover since any big line has a basis consisting
of clopen intervals we conclude from Proposition 1.4.12:

Corollary 1.4.13: A big line (big circle) is the projective limit of an
inverse system of finite big lines (big circles).

Proposition 1.4.14: Given a big circle S and x ∈ V S. Then there exists
a big line (L,≤) in ϕ−1{S} with x the image of min≤ and max≤. Removing
an edge from S yields a big line.

Proof : Let f : L → S be the quotient map and v ∈ V L map to x. We can
assume v 6∈ {min,max} otherwise there is nothing to prove. Cover L with
[min, v], [v,max] and build L′ := [min, v] ∐min=max [v,max]. Since [min, v]
and [v,max] naturally carry the induced order topology we can define a
relation ≤′ on L′ setting l ≤′ m⇔ (l ≤ m whenever l,m both in [min, v] or
both in [v,max], or l ∈ [v,max] and m ∈ [min, v]). This relation is a well
defined linear order and induces the topology on L′. Since both, [v,max] and
[min, v], are big lines, L′ is a big line. (min, v)∪(v,max) is homeomorphically
embedded into both L and L′ and thus S is homeomorphic to L′ mod min≤′ L′

and max≤′ L′.

For every e ∈ ES: f−1ES \ {e} is the union of two big lines L and L′. Then

f(L ∪ L′) is a big line.

For all x ∈ S let “≤x” be the order induced on S \ {x}.

Corollary 1.4.15: Let S ′, S ′′ be big circles and g : S ′′ → S, f : S → S ′

morphisms of graphs injective on g−1ES, f−1ES ′ respectively. Then there
is a morphism of big lines g′ : I ′′ → I and a unique morphism of big lines
f ′ : I → I ′ giving rise to a commutative diagram:

S ′′ S S ′

I

g f

πI

S ′′ S S ′

I ′′ I I ′

g f

πIπI′′ πI′

∃!f ′∃g′ ,
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Proof : Set l := min≤ I and m := max≤ I. Since f is bijective on f−1ES′ removing

any edge e′ ∈ ES′ turns f ↾ S \{f−1e′} into a morphism of big lines (Propo-

sition 1.4.14). Thus for every y ∈ S′ with y 6= fπI l, the preimage π−1
I f−1y is

a closed interval, and π−1
I f−1fπI(l) = [l, a]∪[b,m] the union of two closed in-

tervals with a < b. Hence P := {[l, a]}∪{[b,m]}∪{π−1
I f−1y : y ∈ S′\fπI(l)}

partitions I into closed intervals and so I ′ := I/P serves the purpose. On the

other hand choose a point in g−1πl and use the first part of Proposition 1.4.14

to find a big line I ′′, such that S′′ is obtained from it by mapping min≤′′ and

max≤′′ to the chosen point. Then a morphism of big lines g′ : I ′′ → J is in-

duced, such that S is obtained from J . Obviously I and J are homeomorphic.

So g′ has the desired properties.

Corollary 1.4.16: Let S be a big circle and f : S → S ′ a surjective graph
morphism. Suppose that for every y in S ′ there are a big line (Iy,≤), S is
obtained from Iy, and, π−1

I f−1y is an interval in Iy.Then S ′ is either a big
circle or a point.

Proof : Construct a partition P of I like in Corollary 1.4.15. Now I ′ = I/P enjoys

ϕI ′ = S′.

Corollary 1.4.17: Let ((Sα, δα), pαβ) be an inverse system of big cir-
cles, and the morphisms pαβ injective on p−1

αβESj. Then the projective limit
(S, δ) = lim←−A(Sα, δα) is a big circle.

Proof : By Corollary 1.4.15 there exist an inverse system of big lines ((Iα,≤α), p′αβ)

such that πIβp
′
αβ = pαβπIα holds for all α ≥ β. Since inverse images of

intervals are intervals, the projective limit lim←−α(Iα,≤α) is a big line (I,≤)

which, by the universal property of projective limits, maps onto (S, δ) :=

lim
←−α

(Sα, δα). Since each πIα ↾ (min,max)≤α is a homeomorphism we can see

that (S, δ) is obtained from (I,≤).



Chapter 2

Complexes

2.1 Pre-complexes

We introduce a category of profinite complexes and show that it is closed
under taking projective limits. The notion of pre-complex is needed:

Definition 2.1.1: A pre-complex is a triple (X, o, δ) where

1. X is a topological space.

2. o ∈NX is a map. When o(x) = n then x is an n-cell.

3. (a) δ : X → FX is a continuous map.

(b) For each x ∈ X all cells y in δx \ {x}) satisfy o(y) ≤ o(x)− 1. If
δx \ {x} is not empty then it contains some y satisfying o(y) =
o(x)− 1.

(c) For all x in X one has {x} ∪
⋃

{δy : y ∈ δx} ⊆ δx.

The disc and the boundary of x are respectively δx and βxx := δx \ {x}.
Note that δx = {x} whenever o(x) = 0. A vertex is a 0-cell and an edge is
a 1-cell.
The dimension O(A) of A in 2X is defined as O(A) := −1 if A = ∅ and
O(A) := supx∈A o(x) else. We allow O(A) = +∞.

3.(b) can be rephrased:

3.(b.′): Forall x ∈ X : O(βx) = o(x)− 1.

A pre-complex ({v, e}, o, δ) with o(v) = 0 and o(e) = 1 is a loop b . A
pre-complex ({v0, v1, e}) with o(v0) = o(v1) = 0 and δe = {v0, v1} is a single

19



20 CHAPTER 2. COMPLEXES

edge b b .

Definition 2.1.2: A pre-complex of spherical type Sj, j = −1, 0, 1 or,
for short, a sphere, is one of the following:

• S−1 := ∅.

• S0 := {{x, y}, o, δ} with o(x) = o(y) = 0 and δx := {x}, δy := {y}.

• S1 is a big circle with at least one edge interpreted as a 1-pre-complex
(Proposition 2.3.1).

Definition 2.1.3: A sub pre-complex of (X, o, δ) is a pre-complex
(A, oa, δa) with A ⊆ X, o ↾ A = oa, δ ↾ A = δa. The subset X≤n:=
o−1([−1, n]) together with the restriction of o and δ to X≤n is a pre-complex,
the n-skeleton of X. Set X=n := o−1(n) and X>n := o−1([n+ 1,∞))
To shorten notation for low dimensional complexes we set V X = X=0 the
vertices of X, EX = X=1 the edges of X and DX = X=2 the 2-cells of X.

Note that X=n need not be a subpre-complex.
A subset Y ⊆ X is a subpre-complex if and only if βy ⊆ Y holds for all
y ∈ Y .

Proposition 2.1.4: When (Ai, oi, δi) are subpre-complexes of (X, o, δ) then
their intersection

⋂

Ai and their union
⋃

Ai are both subpre-complexes.

Proof : It suffices to define the functions oT

ai
, δT

Ai
by restriction. A similar argu-

ment works for the union.
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2.2 2-complexes

Definition 2.2.1: A 2-complex is a pre-complex (X, o, δ) such that the
following holds:

(a) (Boundary condition) The boundary βx of every 2-cell x is a sphere
S1. For every 1-cell x its boundary βx is a sphere S0.

(b) (Base property) b : For every edge l with a single endpoint there
is a base of neighbourhoods B(l) such that for all B ∈ B(l) the closure
of the set {e ∈ EX : ∃d ∈ DX, e ∈ βd∩B, |βd∩B| is odd} does not
contain l.

The base property is needed to prevent 2-cells to converge to loops in a non
“homotopic” manner (see Figure 2.2.1).

Every subpre-complex of a complex is itself a complex.

Definition 2.2.2: A subpre-complex of a complex is a subcomplex.

For any cell x its boundary βx, and its disk δx are subcomplexes. Remark
that β need not be continuous! An example is the complex with triangles
converging to the single edge as indicated in Figure 2.2.2:

Definition 2.2.3: A 1-complex is connected if it is not the disjoint union
of two closed subcomplexes. A complex is connected it its 1-skeleton X≤1

is connected.

Corollary 2.3.2 will relate this definition to the one for graphs (Definition
1.3.5).

Definition 2.2.4: A morphism of 2-complexes φ : (X, o, δ)→ (Y, o′, δ′)
is a continuous map φ : X → Y such that 0-cells map to 0-cells and the
following properties hold:

(i) For every x ∈ X the equation δ′φx = {φy : y ∈ δx} hold.

(ii) Let x ∈ X, y = φx ∈ Y be 2-cells. Then the restriction of φ to
E(βx) ∩ φ−1E(βy) is a bijection onto E(βy).

(iii) b : For all 2-cells x ∈ X and all edges y ∈ Y with φx = y the
cardinality of the set φ−1y ∩ βx is finite and even.
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b b bbb

bb b

b bb b bb bb

bbbbbbbbbbb

b bb

b

b

b

b

l2

l1

V (l2)

U(l1)

Even:

δd1 δd2 δd3 δd4 δl1

Odd:

δd′1 δd′2 δd′3 δd′4 δl2

Figure 2.2.1: Two sequences of 2-cells (dn)n∈N → l1 and (d′n)n∈N → l2 together
with their discs δdn and δd′n are displayed where δl1 and δl2 are loops. In
the even case the two “nooses” tend to become identified while converging to
l1. This is okay. In the odd case the boundary condition is violated. The
three vertical “strips” tend to be identified along parts of the boundary, so
that one rather would expect a “twisted 2-manifold” then the loop l2 as the
limit of the sequence.
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b

b

bb

b

bb

b

bb

b

bb

b

bb

b

bb

b

U(e)

U(v) U(w)

d3 d2 d1

v

w

e

Figure 2.2.2: The sequence (dn)n∈N of 2-cells (the triangles) converges to the
edge e on the left. The boundary βe consists of v and w. Looking at the
neighbourhoods U(e), U(v), U(w) makes clear that βdn → δe and certainly
δe 6= βe.

It can be shown that o′(φx) ≤ o(x) for every cell x. The conditions imply
that φX is a subcomplex of Y .
If Y has no loops and is T1 then (iii) follows from the properties of Sn, a
counting argument and the continuity of δ.

Lemma 2.2.5: When (X, o, δ) is connected and ϕ : (X, o, δ)→ (Y, o, δ) a
surjective morphism of complexes, then (Y, o, δ) is connected.

Proof : Assume that (Y, o, δ) is not connected. Then Y is the disjoint union of two

subcomplexes Y1, Y2. Therefore X is the disjoint union of the subcomplexes

(here we use 2.2.4 (i)) ϕ−1Y1 and ϕ−1Y2 and therefore X is not connected,

a contradiction.

Proposition 2.2.6: Complexes and their morphisms (Definition 2.2.4)
form a subcategory Comp of Top.

Proof : We check by induction that composition of morphisms φ : (X, o, δ) →
(Y, o′, δ′) and ψ : (Y, o′, δ′)→ (Z, o′′, δ′′) is a morphism.

When n = 0 then ψφ certainly maps 0-cells to 0-cells. Suppose ψφ ↾ X≤n−1

has been shown to be a morphism for some n ≥ 1. Then the first condition
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holds for n since

δ′′ψφx = {ψz : z ∈ {φy : y ∈ δx}} = {ψφy : y ∈ δx}.

Let n > 1, x ∈ X, y := φx ∈ Y , z := ψφx ∈ Z be n-cells then ψ is a bijection
from βx=n−1 ∩ ψ−1y=n−1 to βy=n−1 and obviously ψφ is a surjection onto
βz=n−1, the composition ψφ is a bijection from βx=n−1 ∩ φ−1ψ−1z=n−1 to
βz=n−1. Then the second condition holds.

Let n > 1, x ∈ X, y := φx ∈ Y , z := ψφx ∈ Z be cells where o(x) = n,
o(z) = n− 1 and o(y) is either n or n− 1. So

|(φ−1ψ−1z ∩ βx=n−1)| =

{

|(ψ−1z ∩ β′y=n−1)| : o′(y) = n
|(φ−1y ∩ βx=n−1)| : o′(y) = n− 1

and thus the third condition is valid for ψ ◦ φ.

2.3 Profinite complexes

2.3.1 1-complexes and unoriented graphs

It is convenient to interpret unoriented graphs as 1-complexes and vice versa.
More formally let p-1-Comp be the category of 1-complexes where the
underlying space is profinite.

Proposition 2.3.1: There is a fully faithful surjective functor

F : p-UGraph → p-1-Comp

sending an object (X, δ) to (X, o, δ′), where δ′x := δx ∪ {x} and o(x) = 1 if
x ∈ EX and 0 else. F (ϕ) is determined by ϕ as a map of underlying spaces
and the properties of complexes.

Proof : Observe δ−1W (U1, U2) = δ′−1W (X,U1, U2) and δ′−1W (U1, U2) =

δ−1W (U1, U2) ∩ W (U1, U2), showing that δ′ is continuous if and only if δ

is.

As a consequence of the definition of F we have:
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Corollary 2.3.2:

• The underlying spaces of (X, δ) and F (X, δ) is X.

• The subgraphs of (X, δ) are in 1-1 correspondence to the subcomplexes
of F (X, δ). Thus (X, δ) is a connected graph if and only if F (X, δ) is
a connected complex.

• F preserves products, equalizers, co-products, co-equalizers and pro-
jective limits.

In the sequel we switch between the two categories whenever it is of advan-
tage.

In particular a loop in p-1Comp is of the form F (L) where L is a b .

Recall that a map from X to Y is a quotient map if and only if it is surjective
and it induces the topology on Y .

Definition 2.3.3: A complex morphism f : (X, o, δ)→ (Q, oq, δq) with Q
the quotient space modulo f is a quotient morphism and (Q, oq, δq) is the
quotient complex.

Any clopen partition P of a profinite space X induces a quotient map onto
a finite set. For a complex, with underlying profinite space, the quotient in
Top need not inherit the structure of a complex. The example indicated in
Figure 2.3.1 is a 2-complex with underlying profinite space – it is not the
projetive limit of finite complexes.

2.3.2 The quotient property and projective limits

For beeing able to describe a “profinite” complex as the projective limit of fi-
nite complexes with quotient maps complex morphisms, conditions on clopen
partitions P of the complex need to be formulated. Let P be a clopen parti-
tion of the 2-complex (X, o, δ) where X is a profinite space.
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Figure 2.3.1: Each vertical “strip” of disc d1 is twisted by 180◦ before glued
towards βd2. Similarly the “strips” of d2 are treated. On the right the slots
“converge” to x. Observe that a typical clopen neighbourhood U(x) of x does
not contain an open neighbourhood which satisfies (3) of Lemma 2.3.4, i.e.
the intersection of U(x) with the boundaries of either d1 or with d2 is not
connected. There must be a clopen partition containing a subset of U(x).
Collapsing the partition results in a complex consisting of two discs sharing
a vertex: Collapsing U(x) itself creates a disc with a “hole”, coming from a
loop. Since a disc cannot have such a hole (see boundary condition Definition
2.2.1 (a)), the loop needs to be contracted. In this way all the holes in the
picture have to be contracted to x.
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Lemma 2.3.4: Suppose that (X, o, δ) is a 2-complex with X profinite and
P a clopen partition of X.
Define on the quotient X/P the functions:

o′(P ) := min{o(x) : x ∈ P}

For any Q ⊆ P : O′(Q) := supP∈Q o
′(P )

δ′(P ) := {Q ∈ P : ∃x ∈ P, δx ∩Q 6= ∅}.

Then (X/P, o′, δ′) is a 2-complex if and only if the following conditions hold:

(1) For all P and Q in P, and for all elements p, p′ in P the set δp ∩ Q is
not empty if and only if δp′ ∩Q 6= ∅.

(2) For P ∈ P, O′(β ′P ) = o′(P )− 1.

(3) For every P ∈ P with o′(P ) = 2, every x ∈ P and every Q ∈ P the
boundary βx is either a b or one can find a big line (L,≤), with at
least three elements, such that βx, interpreted as an unoriented graph,
is obtained from it, and the inverse image of the projection π−1(Q∩βx)
is a closed interval.

(4) For all P with o′(P ) = 1 and all x ∈ DX∩P the intersection E(βx)∩P
is of even cardinality.

Proof : Set Y = X/P and f the canonical projection. Pick y ∈ Y arbitrary:

∀x, x′ ∈ f−1y : {Q ∈ P : Q ∩ δx 6= ∅} = {Q ∈ P : Q ∩ δx′ 6= ∅}
⇔ ∀x ∈ f−1y : δ′y = {fz : z ∈ δx}
⇔ ∀x ∈ f−1y : δ′fx = {fz : z ∈ δx}

Thus (1) is equivalent to Definition 2.2.4-(i).

⇒ If f is a complex morphism, then (2) and (4) hold. For any x ∈ X and y ∈ Y
with o′(y) = 2 and fx = y one has f bijective on f−1Eβ′y ∩ βx. Suppose
there is a big line I such that βx is obtained from it. Then by 1.4.15 there
is a big line I ′, such that β′fy is obtained from it, and an order preserving
graph morphism f̃ : I → I ′. Because f is a complex morphism β′fy is either
a loop or has at least three elements. In the latter case Proposition 1.4.12
renders a choice of I, with π−1(P ∩ βy) a closed interval, possible. Thus (3)
holds.
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⇐ To show the converse we check the relevant properties of Defintions 2.1.1,
2.2.1 and 2.2.4.

2.1.1-3.(a) δ′ is a continuous map from Y → FY .

2.1.1-3.(b) ∀y ∈ Y : O′(β′y) = o′(y)− 1.

2.1.1-3.(c) ∀y ∈ Y :
⋃

{δ′z : z ∈ δ′y} ⊆ δy.

2.2.4-(ii) For 2-cells x ∈ X, y ∈ Y with fx = y the restriction of f to βx=n−1 ∩
f−1y=n−1 is a bijection onto β′y=n−1.

2.2.1 (a) For all 2-cells y ∈ Y , β′y is an S1

2.2.1 (b) (Base Property) for b .

2.2.4-(iii) For all 2-cells x ∈ X and all edges y ∈ Y with φx = y the cardinality
of the set φ−1y ∩ βx is finite and even.

2.1.1-3.(b) is equivalent to (2). 2.1.1-3.(c) follows obviously form (1) and
the complex properties of X. 2.1.1-3.(b) shows that f ↾ X≤1 is a graph
morphism. Thus use (3) and Corollary 1.4.16 to obtain 2.2.1. Referring to
Corollary 1.4.15 there is a commutative diagram

S S′

I I ′

f

π π′

f ′
.

Thus Proposition 1.4.12 yields 2.2.4-(ii).

We show 2.1.1-3.(a). Since f is continuous and X is compact, f is closed.
Thus f can be lifted to Ff : FX → FY by letting FfA := {fa : a ∈ A}.
To see that Ff is a continuous functor, pick an open set U = W (O1, . . . , Ok)
in FY . Then Ff−1U = {A ∈ FX : fA ∩ Oi 6= ∅, fA ⊂

⋃

Oi} = {A ∈
FX : A ∩ f−1[Oi] 6= ∅, A ⊂

⋃

f−1[Oi]} = W (f−1[O1], . . . , f
−1[Ok]) so that

F−1U is open. Since for all x in X, Ffδx = {fz : z ∈ δx} we can conclude
from (a) that fx = fx′ ⇒ {fz : z ∈ δx} = {fz : z ∈ δx′}. Hence the map
δ′′y := Ff ◦ δ[f−1y] is well defined and δ′′ = δ′.

2.2.1 (b) is satisfied since Y is finite.

Finally we show 2.2.4-(iii). For every P ∈ P with o′(P ) = 1 and every 2-cell
x in P the intersection E(βx) ∩ P is finite because βx is a big circle. We
show that it is even by proving the following claim:

For every edge e ∈ EX and every P ∈ P with o′(P ) = 1 the edge e is not
contained in the closure of {d ∈ DX : |βd ∩ P | is odd}.

If βe is a singleton set, item (4) of the quotient property implies the validity of

the claim. Now let βe be not a singleton set. Then there are neighbourhoods
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U and V , with U∩V = U∩P = V ∩P = ∅ such that W (U, V, P ) is a Vietoris

neighbourhood of δe. Since U and V are disjoint, for every d ∈ DX, with

δd ∈W (U, V, P ), the intersection βd ∩ P is indeed finite and even.

Definition 2.3.5: A clopen partition of a complex giving rise to a quotient
complex has the quotient property.

Definition 2.3.6: A profinite 2-complex is the projective limit of finite
2-complexes.

Lemma 2.3.7: The category of profinite 2-complexes is closed under
forming projective limits.

Proof : Let ((Xi, oi, δi), pij)i∈I be an inverse system of profinite 2-complexes. Set

X = lim←−I Xi. The projective limit (X ′, o′, δ′) := lim←−I(X
≤1
i , oi, δi) exists in

p-1-Comp by Corollary 2.3.2 and Theorem 1.3.1. X ′ can be viewed as a
closed subspace of X. Set o(x) = o′(x) if x ∈ X ′ and o(x) = 2 else. The
right exactness of the Vietoris functor (i.e., F in the diagram accompanying
1.3.1) shows that δ := lim

←−
δi is a well-defined map.

Since FX is the projective limit of the inverse system (FXi, p
∗
ij) with p∗ij =

F (pij), one obtains a 1-complex B := lim
←−

βixi. Corollary 1.4.17 shows that
B = βx is a big circle, as desired.

Definition 2.2.4 (iii) implies that Definition 2.2.1 (b) holds. Therefore

(X, o, δ) is a complex.

Theorem 2.3.8: A 2-complex (X, o, δ) is a profinite 2-complex if and only
if:

”space” X is a profinite space.

”base” Every clopen partition of X has a clopen refinement with the quotient
property.

Proof : This follows from Lemma 2.3.4 and Lemma 2.3.7.
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2.4 Universal constructions in Comp

The category of profinite 2-complexes is closed under taking projective limits.
We focus our interest on the existence of (co)-products and (co)-equalizers.
In p-2-Comp the coproduct of finitely many profinite 2-complexes is their
disjoint union.

The existence of products we prove only under restrictions:

Definition 2.4.1: A 2-complex (X, o, δ) is homogeneously bounded
if the sets V X, EX, DX and Bκ(X) := {x : |βx| = κ} are closed for all
cardinalities κ. It is finitely bounded if for every x ∈ X the boundary βx
is finite.

For any homogeneously bounded profinite complex X the sets V X, EX, DX
and Bκ(X) are clopen.

We now provide a similar construction as in 1.3.3.

Construction 1st part 2.4.2: (X1, o1, δ1) and (X2, o2, δ2) be finitely and
homogeneously bounded profinite 2-complexes. Make M = X1 × X2, set
pi the i-th coordinate projection, define in Top the profinite space P :=
M ×F(M) and denote the canonical projections onto the factors by πM and
πC respectively. We write, for short, mi := pim and Ci := piC.
An element (m,C) in P is a vertex, an edge or a 2-cells according to the
following rule:

(m,C) ∈











V P m1 ∈ V X1, m2 ∈ V X2

EP m1 ∈ X
≤1
1 , m2 ∈ X

≤1
2 , m1 or m2 is an edge

DP m1 or m2 is a 2-cell

One observes that Γ := X≤1
1 ×X

≤1
2 ⊆ P . We let Γ be the 1- skeleton of the

product. Define δ : P → FP by δ(m,C) = {(m′, C ′) ∈ Γ, C ′ ⊆ C}∪ (m,C)
and o : P → N by

o(x) =











0 x ∈ V P

1 x ∈ EP

2 x ∈ DP

.
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Construction 2nd part 2.4.3: Make X the elements (m,C) ∈ P which
meet for all i = 1, 2 the following requirements:

1. Ci = δimi (compare Definition 2.2.4 i.).

2. m ∈ C.

3. If (m,C) ∈ EP then C ∈

(

P
3

)

.

4. mi ∈ DXi ⇒ pi is injective on C ∩ p−1
i ECi (compare Definition 2.2.4

ii.).

5. If (m,C) ∈ DP then δ(m,C) \ {(m,C)} is a big circle.

(X, o, δ) is a finite 2-complex – the product of the given complexes (Xi, oi, δi).
We denote it by (X1, o1, δ1)× (X2, o2, δ2).

Proof : We compile a list of items to be shown.

a.) All x ∈ X have to satisfy the following complex properties:

– δ is continuous

– o(βx) = o(x)− 1

– The boundary condition 2.2.1 (a)

– The disc δx is a subcomplex

– The base property 2.2.1 (b)

b.) X is a closed subset of P and thus X is profinite.

c.) The projections pi are complex morphisms

d.) The universal property of the product

Let us process the list:

Continuity of δ: Pick x = (m,C) and a Vietoris-open neighbourhood of δx
of the form

V := W
(

V 1
1 ×W (V 1

1 , . . . , V
1
n(1)), . . . , V

k
1 ×W (V k

1 , . . . , V
k
n(k))

)

(there is no loss of generality in such a choice of V ). Since the elements of
δx are of the form (m′, C ′) with C ′ ⊆ C we can assume V i

l ∈ {V
1
1 , . . . , V

1
n(1)}

for all l ≥ 2 and every i ∈ {1, 2}. Hence δ−1V equals the open set V 1
1 ×

W (V 1
1 , . . . V

1
n(1)) and therefore δ is continuous.
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o(βx) = o(x) − 1 and the boundary condition follow directly, for vertices
from 1, for edges from 1 – 3 and for 2-cells from 5.

δx is a subcomplex because of 1, 3 and 5.

The base property is immediate because for every e ∈ EX there is a neigh-
bourhood which does not contain any disc.

The pi are continuous and δipi = {q ∈ δp}. Moreover property 4 yields 2.2.4
ii. and thus the pi are complex morphisms.

Now we turn to the universal property of products. Assume given a complex
(Z, u, γ) with projections q1 : Z → X1 and q2 : Z → X2 such that q1, q2
are complex morphism. Let η(y) := ((q1y, q2y), {(q1z, q2z) : z ∈ δy}) and
observe that it is a complex morphism from Z → X, commuting with pi and
qi, as desired.

We still have to show thatX is closed in P . For the 1-skeleton there is nothing

to show and thus 3 holds. Take a net of discs ((mν , Cν))ν∈Λ → (m,C).

Because mν ∈ Cν it follows by the properties of the Vietories topology that

m ∈ C. Thus the argument showing continuity of δ in X holds for X̄ and

hence pi[δm] = δimi = Ci = piC. It remains to show 4 and 5. Since, by

assumption, for i = 1, 2 the sets {xi ∈ Xi : |δixi| = n} are clopen in Xi

the boundaries βimi are isomorphic to βipimν for ν large enough. Therefore

there exists a Vietoris open neighbourhood W (V1, . . . , Vn) of C, such that

Vj∩Vk 6= ∅ implies for 1 ≤ j ≤ k ≤ n that j = k. Moreover for all ν ∈ Λ large

enough the intersections Vj ∩ C and Vj ∩ Cν both contain a single element.

Hence 4 holds and because δ is continuous δ(m,C) is connected and 5 holds.

In general a product for two profinite complexes does not exist if one contains
a 2-cell with infinite boundary and the other one a single edge b b .
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Example 2.4.4: Let (X1, o1, δ1) be a 2-cell d with infinite boundary β1d,
and (X2, o2, δ2) a single edge b b with edge e and endpoints w1, w2.
Now assume that their exists their product (X, o, δ). The universality of
products yields canonical projections p1, p2 such that for every (Y, o′, δ′)
with morphisms q1 : (Y, o′, δ′) → (X1, o1, δ1), q2 : (Y, o′, δ′) → (X2, o2, δ2)
there exists a unique morphism σ and the following diagram commutes:

(Y, o′, δ′)

(X, o, δ) (X2, o2, δ2)

(X1, o1, δ1)

q1

q2

p1

p2

σ

For the following construction compare Figure 2.4. Let a sequence of edges
(en)n∈N in (X1, o1, δ1) converge to a vertex v. Denote the order induced by v
(Proposition 1.4.14) by ≤. We can assume en ≤ em ⇔ n ≤ m.
We construct inductively morphisms qn2 : (X1, o1, δ1)→ (X2, o2, δ2).
Set q1

2(x) = w1 for all x ∈ X1. For n > 0

qn2 (y) :=











qn−1
2 (y) n is odd or y ∈ β \ [en−1, en]≤v

e n is even and y ∈ {en−1, en}

w2 n is even and y ∈ (en−1, en)≤v

Let qn1 = 1X1 for all n ∈ N. By the universal property of X, for every n there
is a unique morphism σn : X1 → X with p1σn = 1X1 and p2σn = qn2 .
Observe that for every n ∈ N and every y ∈ [v, en−1]≤ one has σn−1y = σny.
Therefore the sequence of images of σnX1 converges to some δy because δ
is continuous. Since δy ⊇ [v, en] for a fixed n ∈ N the boundary βy has
cardinality greater than 2 and thus y must be a 2-cell. On the other hand
since qn2 en = {e} and (q1en = q1em ⇔ n = m), it is clear that (σnen)n∈N

is an infinite sequence of edges in βy. Since y is a disc βy is a complex of
type S1 and therefore converges to the vertex σ1v. The set of vertices Z =
{z ∈ βy : p2z = w2} is closed since p2 is continuous and βy is closed. But
as indicated σnen → σ1v and therefore the intersection {σnwn ∈ δ1en, n ∈
N} ∩ Z is infinite and gives rise to a subsequence in Z converging to σ1v, a
contradiction.
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Figure 2.4.1: A finite model of Example 2.4.4 is sketched. The dotted lines
symbolize natural projections, the “vertical” morphism q5

1 : X1 → X1, and
the “horizontal” morphism q5

2 : X1 → X2. The projections q5
1 and q5

2 of the
complex (the shaded area) are presented in space, and for better visibility,
circles at the upper and lower level of X2 help with orientation. As one can
see with n = 5 increasing n adds more an more vertices in the “zig-zag” line.
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Now we turn to (co)equalizers of 2-complexes, which we need for the Con-
structions 4.3.1, 4.3.2 and finally for Corollary 4.3.3.

Construction 2.4.5: Let there be given morphisms of profinite 2-
complexes

(X, o, δ)
f

⇉
g

(Y, o′, δ′).

Define S := {x ∈ X : ∃z ∈ X fz = gz, fx 6= gx, x ∈ δ′z}. Let o↾, δ↾
denote the restrictions of o, δ to X \ S. Then S is open and (X \ S, o↾, δ↾) is
a complex which serves as an equalizer:

(X \ S, o↾, δ↾)→ (X, o, δ)
f

⇉
g

(Y, o′, δ′).

Proof : The proof given in Construction 1.3.4 for graphs carries over to the present

situation with minor changes.

We next construct an adjunction complex. In Construction 2.4.8 co-
equalizers will be established.

Definition 2.4.6: The adjunction complex of two profinite complexes
(X, o, δ), (Y, o′, δ′) along A is the pushout of the diagram

(A, oA, δA) (X, o, δ)

(Y, o′, δ′)

ι1

ι2

with embeddings ι1, ι2 .

Proposition 2.4.7: Let (X, o, δ), (Y, o′, δ′) be profinite 2-complexes and
(A, o, δ) be a subcomplex of X and of Y with embeddings eX , eY . Then the
co-equalizer C(eX , eY ) of the diagram

(A, o, δ)
eX

⇉
eY

(X, o, δ) ⊔ (Y, o′, δ′)

is given by the co-equalizer in Top. Thus the adjunction complex along A
exists.
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Proof : Since the images of the embeddings are disjoint one has a partition of Z :=

(X, o, δ)⊔(Y, o′, δ′) given by {{eXa, eY a} : a ∈ A}∪{z ∈ Z \eX⊔eYA}. It is

easily seen that this partition has the quotient property and thus the quotient

space is a complex. The universal property of an adjunction complex can be

readily verified.

Proposition 2.4.8: For f and g morphisms of 2-complexes

(X, o, δ)
f

⇉
g

(Y, o′, δ′).

There exists the coequalizer C(f, g).

Proof : Let Λ denote the set of all surjective morphisms λ : (Y, o′, δ′)→ (Cλ, oλ, δλ)
to finite Cλ such that λf = λg. We devise an order “≤” on Λ by setting
λ ≤ λ′ if and only if there is ϕλλ′ with ϕλλ′λ

′ = λ. The set Λ is not empty
since our category has a terminal object (a single point). We claim that
(Λ,≤) is a directed set. Pick λ, λ′. Using Construction 2.4.3 we can form
the product complex (Cλ, oλ, δλ)× (Cλ′ , oλ′ , δλ′) as indicated in the diagram
below

(Cλ, oλ, δλ)

(X, o, δ) (Y, o′, δ′) Cλ × Cλ′

(Cλ′ , oλ′ , δλ′)

f

g

λ

λ′

σ

The universal property of the product yields the dashed arrow σ. Since
σf = σg the canonical image σY is a non empty complex and so σ belongs
to Λ. Moreover σ ≥ λ and σ ≥ λ′. The projective limit of the above inverse
system provides us with a morphism ρ from Y to a 2-complex, say R.

We claim R = C(f, g). Take a morphism κ : Y → R′ with κf = κg. Since

for every finite quotient of R′ the composition of the canonical projection and

κ belongs to λ a projective limit argument yields a morphism from R→ R′.
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Profinite Groupoids

3.1 Basic definitions

Our concepts of (continuous) groupoids and profinite categories are taken
from [14], [5], [23], [12] and [21]. Let C be a category. Ob(C ) denotes the
objects and HomC the morphisms of C . For objects x 6= y of C we define
C (x, y):= Hom(x, y) and C (x) := Hom(x, x).

Definition 3.1.1: A groupoid G, or sometimes (G, ·), is a small category
with invertible arrows, i.e. Gopp ∼= G. Here “ ·” denotes composition of arrows.
For c ∈ G(A,B), d ∈ G(B,C) we shall denote composition by c · d.
A subgroupoid H<G is a subcategory such that H ∼= Hopp. It is wide if
V G = VH and full if H(A,B) = G(A,B) for every pair of objects A,B ∈
VH. A covariant functor F : G → H with im(F ) a subcategory of H is a
groupoid morphism.
F is injective (surjective) if it is injective (surjective) on morphisms.
A normal subgroupoid H� G is a wide subgroupoid of G such that for
every two objects A,B in H, every morphisms h0 ∈ H(A) and g ∈ G(A,B),
there is a morphism h1 ∈ H(B) with h1 = g−1 · h0 · g.
A quotient groupoid G/H of a groupoid G by a normal subgroupoid H� G
is the groupoid with object set the connected components of H, and mor-
phisms gH := {g′ : ∃h, h′ ∈ H, g′ = h′ · g · h}. H has finite index in G
or, for short, H�fin G, if for all v ∈ Ob(G/H) one has |G/H(v)| < ∞. For
details see [14].
A groupoid is totally disconnected if for all x, y ∈ G the homset G(x, y) =
∅.

37



38 CHAPTER 3. PROFINITE GROUPOIDS

b bb

C G
1v 1w

F

e

v w
x

1x

Figure 3.1.1: The category C , on the left, consists of two objects v, w and
three arrows 1v, 1w, e. The dashed arrows indicate a functor F from C to
the trivial groupoid G with one vertex x. F sends v, w to x and 1v, 1w, e to
1x. Because F is injective on each homset of C it is faithful, but C is not a
groupoid. Therefore PGroupoid is not a pseudovariety.

Definition 3.1.2: A boolean groupoid consists of an oriented graph
(G, d0, d1), a closed subset D of EG ×EG and a map · : D → EG such that:

1. (G, ·) is a groupoid.

2. (e, f) ∈ D ⇔ d1e = d0f .

3. d0(e · f) = d0e, d1(e · f) = d1f

4. Inversion in (G, ·) is continuous.

5. d0 restricted to the identities of the groupoid (G, ·) is a homeomorphism.

A profinite continuous groupoid or, for short, a profinite groupoid
(pc-groupoid) is the projective limit of finite boolean groupoids.
Our definition is coherent with the notions given in [23], [12] and [21].
The quotient of a profinite continuous groupoid by a profinite normal sub-
groupoid is the quotient groupoid equipped with the quotient topology.
Morphisms of profinite groupoids are graph morphisms which at the
same time are groupoid morphisms.
The kernel of a morphism F of groupoids is the wide normal subgroupoid
whose edges map to identity elements. We denote it by kerF .

Remarks: For boolean groupoids EG is closed.

If a functor of groupoids is injective on objects it is a groupoid morphism.
PGroupoid is not closed under divisors, i.e. the existence of a faithful
functor from a category C to a groupoid G does not imply that C is a groupoid
(Example 3.1.1).
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Thus pc-groupoids do not form a pseudovariety of categories and thus results
of Almeida, Weil [1] and Jones [12], do not carry over to our situation.
The canonical projection of a groupoid to a quotient groupoid is a groupoid
morphism. Moreover for profinite groupoids this projection is continuous.
If G is connected, G/G considered as an oriented graph is a b .
A profinite group G is a profinite groupoid G(G) if we define EG = G and
V G = {1G}.

3.2 Universal constructions

Proposition 3.2.1: The category PGroupoid allows forming arbitrary
products, equalizers and projective limits.

Proof : We define products and equalizers in PGroupoid explicitly. G ×H = EG ×
EH∪V G×VH and d0, d1, ·, .

−1 are defined coordinatewise. The topology on
G×H is the usual product topology. Certainly G×H is a continuous groupoid
and the product of G and H in PGroupoid. For the infinite case take the
Tychonoff product

∏

EGi ∪
∏

V Gi. Define the operations coordinatewise
and observe that they are continuous.

Given two morphisms ϕ,ψ : G → H. The set theoretic equalizer {g ∈ EG :
ϕg = ψg} ∪ {g ∈ V G : ϕg = ψg} of ϕ and ψ is a subgroupoid of G – the
equalizer of ϕ and ψ in PGroupoid.

The third assertion is a consequence of the previous ones.

The next result is easy to prove.

Proposition 3.2.2: The coproduct of a finite family of profinite groupoids
Gi, i ∈ I can be constructed in Top by forming the coproducts V (

∐

Gi) =
∐

(V Gi), E(
∐

Gi) =
∐

(EGi) and D(
∐

Gi) =
∐

Di.

Proof : The coproduct in Top can be turned into a profinite groupoid by defining

the operations componentwise. The universal property of the coproduct is a

consequence of its universality in Top.

3.2.1 Projective limits and “congruences”

The notion of normal subgroupoids connects to the concept congruence re-
lation in universal algebra. We need a more general form. We need a more
general form.



40 CHAPTER 3. PROFINITE GROUPOIDS

Definition 3.2.3: A congruence relation on a profinite groupoid G is
a closed equivalence relation ∼ on G, such that the quotient G/∼ is a pc-
groupoid.
The quotient groupoid modulo ∼ has objects and arrows the respective
equivalence classes. The quotient map is a morphism of profinite groupoids.

In a connected boolean groupoid the normal subgroupoids determine the
congruence relations and vice versa.
For boolean totally disconnected groupoids the next result will turn out use-
ful.

Lemma 3.2.4: In a compact totally disconnected boolean groupoid for
each open subgroupG�G(x) and each open neighbourhood of U ∈ U(1x) with
U∩G(x) = G one can find a neighbourhood V ⊆ U such that V ∩G(y)�G(y)
for all y ∈ Ob(G).

Proof : We first show that one can achieve V ∩G(y) ≤ G(y). Assume on the contrary
that for each V there is a y ∈ V G and edges uV , nV ∈ G(y) ∩ V with
uV nV = gV 6∈ G(y)∩V . We are going to choose V in a specific manner. For
each O ∈ U(x) the intersections O ∩ V G and O′ := d−1

0 (O ∩ V G) are open.
Thus O′ ∩ U is open and y ∈ O implies V (O) = G(y) ∩ O′ ∩ U = G(y) ∩ U .
Therefore the open neighbourhoods V (O) satisfy G(x) ∩ V (O) = G. By
assumption for each O there are uV (O) and nV (O) such that their product
gV (O) is not contained in V (O) and hence not in U . By the continuity of the
composition the closure {gV (O) : O ∈ U(x)} ⊆U c intersects the open set U ,
a contradiction.

In a similar fashion with conjugation instead multiplication one shows that

V ∩ G(y) can be turned into a normal subgroup of G(y) for all y ∈ V G.

Corollary 3.2.5: If G < G(x) has finite index then G(y)∩V is a subgroup
of finite index in G(y). In addition one can achieve that for every a ∈ G(x)
there is an open neighbourhood Wa with aV = Wa ∩ G(x) and, whenever
Wa ∩ G(y) 6= ∅ then Wa ∩ G(y) = ayV ∩ G(y) holds for a suitable ay ∈ G(y).
Moreover d0Wa = d0V .

Proof : Assume for any V there is a y ∈ Ob(G) such that the subgroup G(y) ∩ V

has infinite index. Then there are infinitely many aν ∈ G(y) representing the
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cosets of V ∩ G(y) in G(y). Now for each y choose two different aν , a
′
ν such

that they converge to a, a′ ∈ G(x) such that aV ∩ G(x) = a′V ∩ G(x). Then

aνa
′−1
ν converges to an v ∈ G(x)∩V which is a contradiction since they do not

lie in V . Then |G(x) : G(x)∩V | ≥ |G(y) : V ∩G(y)|, for ν big enough, shows

that the first statement of the corollary holds. The same argument works

for every a ∈ G(x) and Wa. For different a, a′ use T2 to see that Wa ∩Wa′

can be chosen empty. Because the index of G is finite in G(x) there are only

finitely many Wa. The set A := {ay ∈ G(y) : ay 6∈
⋃

Wa} is therefore closed

and one observes that d0A is closed. Hence the sets Wa ∩ d
−1
0 d0A together

with the given sets V ∩ d−1
0 d0A give rise to a finite quotient.

Proposition 3.2.6: Every boolean totally disconnected groupoid G is
profinite.

Proof : A proof can be found in [13]. For convenience we sketch a direct one. Let
e1, e2 be in EG. Each object group is the projective limit of finite quotients
thus it suffices to consider a congruence relation on G such that e1, e2 belong
to different congruence classes and the quotient modulo the relation is finite.

If d0e1 6= d0e2 take a clopen partition P of V G separating e1 and e2, otherwise

let P be the trivial partition. If d0e1 6= d0e2 set Nx = G(x) for all x ∈ Ob(G).

Otherwise take Nx �fin G(x) for x = d0e1 with e1Nx 6= e2Nx. By Corollary

3.2.5 Nx can be extended to a clopen congruence on some neigbhourhood of

x. All such congruences yield an clopen cover of G such that compactness

yields a finite subcover, w.l.o.g. containing the congruence generated byNd0x.

Then one finds a clopen congruence relation using the finite subcover and

the partition P such that the quotient G/P is a finite groupoid separating e1
and e2.

The next propositions concern groupoids with finitely many objects.

Proposition 3.2.7: Every boolean groupoid G with finitely many objects
is profinite.

Proof : We refer to [12] 4.1 where it has been shown that G is the projective limit

of finite categories V . Since groupoids map to groupoids the inverse system

can be taken to consist of groupoids only.

Now we turn to the connected case



42 CHAPTER 3. PROFINITE GROUPOIDS

Proposition 3.2.8: Every connected boolean groupoid G is profinite.

Proof : It suffices to find, for given different elements a, b ∈ EG, a groupoid morphism
ϕ : G → H to a finite groupoid H with ϕa 6= ϕb. Fix vertices x, y in V G
with a ∈ G(x) and b ∈ G(y). We choose a clopen partition P of V G and a
normal subgroup N � G(x) as follows:

If x is different from y then N = G(x) and P is any clopen partition such
that x and y belong to different classes. If x is equal to y then N is any open
normal subgroup of G(x) such that ab−1 6∈ N and P has a single class, V G.

G(x) acts freely by left multiplication on
⋃

y∈V G G(x, y) = d−1
0 x. By [25]

Lemma 5.6.5 there is a continuous section σ : d−1
0 x/G(x)→ d−1

0 x. Note that

σ(y) ∈ G(x, y) and we can achieve that σ(G(x)/G(x)) = 1G(x). For P ∈ P

consider the subgroupoid NP :=
⋃

y,y′∈P σ
−1(y)Nσ(y′). Then

⋃

P∈P NP is a

normal subgroupoid of G with finite quotient. When ϕ denotes the canonical

projection, then ϕa 6= ϕb by construction.

The next example is a contribution of Karl Auinger [2].

Example 3.2.9: Take the Cantor set C, represented by the dyadic ex-
pansion, i.e. binary sequences (in)n∈N where each sequence is a label for a
different point of C. There is an equivalence relation on C generated by

(in)n∈N ∼ (jn)n∈N ⇔ ∃n ∈ N







im = jm : m < n
im < jm : m = n
im > jm : m > n

The relation ∼ induces a map C → [0, 1] ⊂ R. Observe that the equivalence
classes of ∼ have either 1 or 2 elements. Defining EG :=∼⊂ C×C, V G := C
and setting d0, d1 : C × C → C the coordinate projections, turns G =
V G ⊔EG into a boolean groupoid. There is no (local) continuous section for
the connected components of G. More precisely every finite quotient of G is
totally disconnected. Thus there does not exist an inverse system of finite
groupoids Gi with G = lim←−i Gi.

3.3 Sheaves of groups and free constructions

To unify notations of different sources we prove:
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Proposition 3.3.1: A profinite totally disconnected groupoid is a sheaf of
profinite groups in the sense of [19] and conversely.

Proof :

⇒ Define γ : HomG → Ob(G) in a canonical way. Then γ is continuous. G(x)
is a profinite group for every x ∈ Ob(G) and since composition of arrows
is continuous on D(·); therefore it is continuous in the sense of [32]. So
{{G(x) : x ∈ Ob(G)}, γ, Ob(G)} is a sheaf of profinite groups.

⇐ Given (G, γ, T ) a sheaf of profinite groups. Define Ob(H) := T and for all t ∈

T set H(t) := γ−1t. Obviously this forms a groupoid with D :=
⋃

t∈T H(t)×

H(t), when “ ·” is the group multiplication then (H, ·) is a profinite groupoid.

We now consider special universal objects in the category PGroupoid.

Definition 3.3.2: Let (Γ, d0, d1) be an oriented graph. A profinite groupoid
F (Γ) is the free profinite groupoid on Γ if there is a graph morphism
η : (Γ, d0, d1)→ F (Γ) such that for every profinite groupoid G and morphism
of graphs ϕ : (Γ, d0, d1) → G there is a unique groupoid morphism σ :
F (Γ)→ G with ϕ = σ ◦ η.
Let G be a profinite groupoid and σ a map from V G to a profinite space X.
The profinite universal groupoid Uσ(G) is a profinite groupoid for which
the following holds:

1. X ∼= V Uσ(G)

2. σ extends to a unique groupoid morphism σ̃ : G → Uσ(G).

3. For every groupoid H and morphism τ̃ : G → H there is a unique τ̃ ′ :
Uσ(G)→H with τ̃ = τ̃ ′ ◦ σ̃ if there is a morphism τ ′ : V Uσ(G)→ V H
with τ ′ ◦ σ = τ ↾ V G.

The diagrams below display the universal properties of FΓ and Uσ(G).

Γ FΓ

H

η

ϕ ∃!σ
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V G X

VH

G Uσ(G)

H

σ

σ̃

τ

τ̃

τ ′

∃!τ̃ ′

A simple example is the following free groupoid. Take an oriented graph

L which is a b . The free groupoid F (L) in Groupoid computes to be
F (L) = G(Z) while in PGroupoid one has F (L) = G (̂Z).

Proposition 3.3.3: For every connected profinite graph (Γ, d0, d1) with
closed set of edges F (Γ) exists. For every connected groupoid and every
morphism of profinite spaces σ : V G → X there exists Uσ(G).

Proof : For proving the first statement we present Γ = lim
←−

Γα for finite graphs Γα.
When F0(Γα) denotes the (abstract) free groupoid in the sense of [5] chapter
8, then there is an induced inverse system of these abstract groupoids, which
in turn, give rise to an inverse system of their profinite completions (compare
[12] chapter 6). The completions are connected as well and their projective
limit is our canditate for F (Γ). We need to prove the universal property only
for finite groupoids H. Now one can fix α such that the map Γ→H factors
through Γ → Γα. Hence the induced groupoid morphism F (Γα) → H lifts
to the desired groupoid morphism F (Γ)→H.

To prove the second statement factorize the equivalence relation induced by

σ−1 on V G. Then one obtains an oriented graph (Γ, d0, d1). Take F (Γ) and

the normal totally disconnected subgroupoid generated by the relation ∼ on

Γ, where e ∼ f is equivalent to e, f share the same endpoints in Γ and there

is an h ∈ EG such that within G the equality e = h−1fh holds. Then F (Γ)/∼
will serve as the universal object.



Chapter 4

Profinite Continuous Actions

We will introduce actions of profinite group(oid)s on a profinite 2-complex
and Galois actions.

4.1 Definition and basic properties

Definition 4.1.1: A profinite action is a triple (G, (X, o, δ), µ) consisting
of a profinite group G, a profinite 2-complex (X, o, δ) and a continuous map
µ : G×X → X such that µ(h, µ(g, x)) = µ(hg, x) and δµ(x, g) = {µ(y, g) :
y ∈ δx}.
A continuous groupoid action, or for short continuous action
(G, (X, o, δ), ∗, p) is a profinite continuous groupoid (G, ·), a profinite 2-
complex (X, o, δ), a map p : X → V G, a closed subset D(∗) of X × EG
and a map ∗ : D(∗)→ X such that for arbitrary x ∈ X and g ∈ G all of the
following holds:

• D(∗) = {(x, g) : p(x) = d0g}

• x ∗ 1p(x) = x

• p(x ∗ g) = d1g

• (x ∗ g) ∗ h = x ∗ (g · h)

• δ(x ∗ g) = {y ∗ g : y ∈ δx}

We shall find it convenient to denote a continuous action by (p, ∗).

45



46 CHAPTER 4. PROFINITE CONTINUOUS ACTIONS

Definition 4.1.2: For a given action (G, (X, o, δ), p, ∗) we say G acts on
X.
xG:= {x∗ g : g ∈ G} is the orbit and xG := {g ∈ G : x∗ g = x} the stabilizer
of x.
An action is free if xG is trivial for every x ∈ X. It is disc free if it is free
and xG ∩ δy = {x} for all y ∈ DX and x ∈ δy.
A Galois action is a continuous disc free action (G, (X, o, δ), p, ∗).
The quotient of an action (p, ∗) is the quotient complex induced by the
partition {xG : x ∈ X}.
A connected or componentwise action is a continuous action such that
for all x ∈ X the orbit xG is contained in the connected component of x.
A morphism of continuous actions (G, (X, o, δ), p, ∗) →
(H, (Y, o′, δ′), p′, ∗′) is a pair (µ, η), with µ : G → H a morphism of
profinite groupoids and η : (X, o, δ) → (Y, o′, δ′) a complex morphism
satisfying the following compatibility condition:

∀(x, g) ∈ D(∗) : η(x ∗ g) = ηx ∗′ µg

A morphism is surjective, injective, or bijective if both, µ and η, have
these properties.

Remarks: Any profinite action (G, (X, o, δ), µ) can be regarded as a contin-
uous action by setting G = G(G), p(x) = v for all x ∈ X where {v} = V G,
the composition ∗ = µ and D(∗) = X ×EG.
For each g ∈ G the map x 7→ x∗g is injective because (x∗g)∗g−1 = x∗1p(x) =
x.
If x∗g is defined than y ∗g is defined for every y ∈ δx, because g is invertible
and the set δ(x ∗ g · g−1) = δx is compact. Thus for every g ∈ G the
preimage p−1(d0g) is a closed subcomplex of (X, o, δ) and g induces a complex
morphism from p−1(d0g) to p−1(d0g

−1).
The equality δ(x ∗ g) = {y ∗ g : y ∈ δx} and the injectivity of the map
x 7→ x ∗ g imply o(x) = o(x ∗ g) for all x ∈ X.

Lemma 4.1.3: For every connected action (G, (X, o, δ), p, ∗) the groupoid
G is totally disconnected.

Proof : Assume X is a connected complex. A clopen partition P of Ob(G) gives rise
to a clopen partition {p−1[P ] : P ∈ P} of X. But for all x ∈ X and g ∈ p(x)
one has δ(x ∗ g) = {y ∗ g : y ∈ δx} and thus p(x) = p(y) for every y ∈ δx.
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Therefore the inverse image p−1g of g ∈ Ob(G) is a subcomplex. X is thus
a finite union of disjoint subcomplexes. It is not connected if |P| > 1 since P

has the quotient property and X/P is a finite set of vertices. Therefore G is
groupoid with a single vertex.

Applying this observation to the connected components of X shows that G

is indeed totally disconnected.

4.2 Galois actions

4.2.1 Existence of projective limits

Lemma 4.2.1: For a Galois action (G, (X, o, δ), p, ∗) the space X/G is a
quotient complex.
Moreover {(G/H, (X/H, oH, δH), pH, ∗H) : H �fin G} is an inverse system of
(possibly infinite) Galois actions with projective limit (G, (X, o, δ), p, ∗).

Proof : To prove that the quotient X/G is a complex set P (x) := {x ∗ g : g ∈

d−1
0 p(x)} and P := {P (x) : x ∈ X}. Let o′, O′ and δ′ be defined as in

Lemma 2.3.4. P is a closed partition and for each x ∈ X and each g ∈ p(x)
the discs δx and δ(x ∗ g) are disjoint. We prove (a) and (b) of Definition
2.2.1 to hold. It suffices to show (a) for x ∈ DX. Take a big line (L,≤)
such that βx is obtained from it. Since δ(x ∗ g) = {y ∗ g : y ∈ δx} the
action of G on δx is completely determined by the action of G on x. Thus
for each y ∈ δx and each g ∈ d−1

0 py the action y 7→ y ∗ g induces an injective
morphism δx→ δx∗g. Therefore

⋃

g∈d−1
0 p(x) δx ∗g/P is homeomorphic to δx

and thus a big circle. So (a) holds.

We prove (b). Let x be an edge with single endpoint and V a neighbourhood
of x. The set U(V ) := {y ∗ g : g ∈ p(y), y ∈ V } is open because U(V ) =
πX(∗−1(V )) (here πX is the projection onto X). For every given open G-
saturated set W , one can find V with U(V ) ⊆W . Moreover V can be chosen
to belong to the base of neighbourhoods of x satisfying (b).

For x ∈ D(X) and |βx ∗ g ∩ V | even for all g ∈ d−1
0 p(x) one concludes that

|βx ∩ U(V )| is even. By assumption there does not exist a net of 2-cells
(x′ν)ν∈Λ → x with odd |βx′ν ∩V | for infinitely many ν. Therefore U(V ) is an
open set containing xG satisfying property (b) for all x′ ∈ xG. Thus by (a)
one concludes that (b) is true for the quotient U(V )/P.

The canonical map ϕ : X → X/P obviously fulfills (i),(ii),(iii) of Definition
2.2.4 and thus the first assertion of the lemma is proved.
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Next let us show that every H � G induces a Galois action G/H on X/H.
In light of Lemma 4.1.3 we can assume G to be a profinite group and H a
normal subgroup. On the quotient X/H define ∗′ :

xH ∗′ gH := (x ∗ g)H

One observes that this is welldefined. Define

p′(xH) := p(x)H

Now routine calculation shows that (∗′, p′) is a continuous action.

Since G operates disc free on X so does G/H on X/H. Therefore (∗′, p′) is a
Galois action.

Now the pair (µ, η) of quotient maps µ : G → G/H and η : X → X/H is a
morphism of continuous actions, sending (∗, p) to (∗′, p′),

Therefore P := {{(G/H, (X/H, oH, δH), pHH′ , ∗HH′) : H�fin G}, (µH, ηH)}
with µHH′ , ηHH′ are the morphisms, defined only for H′

�H, is a projective
system. By Proposition 3.2.6 G is the projective limit of an inverse system
of finite groupoids. For each of these finite groupoids K there is an H�fin G
and a surjective morphism G/H → K. Therefore G = lim←−H�finG

G/H and

consequently X = lim←−H�finG
X/H. It then turns out that(∗, p) = lim←−P.

Lemma 4.2.2: Let (G, (X, o, δ), ∗, p) be a Galois action with G fi-
nite then it is the projective limit of an inverse system of Galois actions
(G, (Yi, oi, δi), ∗i, pi) with each Yi finite.

Proof : Let P be a clopen partion of X. We want for every g ∈ EG and P ∈ P that
p ∗ g is defined either for all or for no p ∈ P . The set {p−1(g) : g ∈ V G} is
a clopen partition of X as well and we replace P by the common refinement.
Thus w.l.o.g. we assume that V G is a singleton set. We pass to a partition
P′ that arises by further refinement of P and {P ∗ g : P ∈ P, g ∈ EG}.

There is a maximal subset M of P′ such that M ∗ g ∩M = ∅ for all g ∈ EG.

Therefore g 6= h implies M∗g∩M∗h = ∅ and
⋃

g∈EG,P∈M P ∗g = X. Set Y =
⋃

{P ∈M} and define δ̃ : Y → FY by δ̃y = {x ∗ g ∈ Y : x ∈ δy, g ∈ EG}.

Observe that (X/G, o/G, δ/G) = (Y, o, δ̃) and let p : (X, o, δ) → (Y, o, δ̃) be

the canonical projection. By Lemma 4.2.1 (Y, o, δ̃) is a profinite 2-complex.

Therefore there is a refinement Q of {p(P ) : P ∈ P} which has the quotient

property with respect to δ̃. Lifting Q to X yields a clopen partition Q′ :=

{p−1Q : Q ∈ Q}. Let Q1 ∈ Q. Observe that for δ̃′Q1 = {Q1, . . . , Qn} there
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are g2, . . . , gn ∈ EG such that δ′Q1 = {Q1, Q2 ∗ g2, . . . , Qn ∗ gn}. Therefore

it is immediate that Q′ is a G-invariant clopen partition with the quotient

property.

Lemma 4.2.3: A Galois action (G, (X, o, δ), ∗, p) is the projective limit of
finite Galois actions (Gi, (Xi, oi, δi), ∗i, pi)

Proof : By Lemma 4.2.1 (G, (X, o, δ), ∗, p) = lim
←−H�finG

(G/H, (X/H, oH, δH), ∗H, pH).

By Lemma 4.2.2 each (G/H, (X/H, oH, δH) is the projective limit of an in-
verse system of finite Galois actions (G/H, (Y H

α , oHα , δ
H
α ), ∗Hα , p

H
α ).

For any H′
� H every (G/H, (Y H

α , oHα , δ
H
α ), ∗Hα , p

H
α ) is a finite quotient of

(G/H′, (X/H′, oH′ , δH′), ∗H′ , pH′). Therefore there exists α′ and a surjec-
tive morphism of Galois actions (ηα′α, ϕα′α) : (∗H

′

α′ , pH
′

α′ ) → (∗Hα , p
H
α ). In-

voking the universal property of projective limits yields a natural isomor-
phism of the Galois actions (G′, (Y, o′, δ′), ∗′, p′) = lim←−H�G, αH

(∗HαH
, pHαH

) and

(G, (X, o, δ), ∗, p). The subsequent diagram visualizes the situation. The
dotted arrows result from the universal properties of projective limits, the
dashed ones are the surjective morphisms constructed above.

(∗, p) (∗H′ , pH′) (∗H, pH)

(∗′, p′) (∗H
′

α′ , pH
′

α′ ) (∗Hα , p
H′

α )

(∗H
′

β′ , pH
′

β′ ) (∗Hβ , p
H
β )

∼=

Proposition 4.2.4: GalAct is closed under forming projective limits.

Proof : Let (Gα, (Xα, oα, δα), ∗α, pα) be an inverse system of Galois actions.
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Lemma 2.3.7 and Proposition 3.2.1 show that (X, o, δ) = lim←−(Xα, oα, δα) and

G = lim
←−
Gα exist. We define an action of G on (X, o, δ). The map p := lim

←−
pα,

and the map ∗ : D(∗)→ X are given by projective limits. It is not hard to

verify the conditions in Definition 4.1.1. In particular the action is disc free

because for every non trivial g ∈ EG there is a finite quotient where it is disc

free.

4.3 Universal constructions

In the next section the existence of pullbacks of profinite actions is needed.
Thus we construct the product of two profinite actions and the equalizer of
two action morphisms.

Construction 4.3.1: We define the product of continuous actions
(G, (X, o, δ), ∗, p) and (H, (Y, o′, δ′), ∗′, p′) provided that the product of the
complexes X and Y exists (as shown in Construction 2.4.3 this is the case
for X and Y homogeneously finitely bounded.).
Form G ×H and let it act coordinatewise on (X, o, δ)× (Y, o′, δ′).

Proof : The product (X, o, δ) × (Y, o′, δ′) is a subset of X × Y × F(X × Y ). Define
the map p× p′ : (X, o, δ) × (Y, o′, δ′)→ G ×H by p× p′ := (p ◦ πX , p

′ ◦ πY )
and a candidate “⋄” for the action by

(m,C) ⋄ (g, h) = ((x, y), {(x′, y′) ∈ C}) ⋄ (g, h)
:= ((x ∗ g, y ∗′ h), {(x′ ∗ g, y′ ∗′ h) : (x′, y′) ∈ C}).

Because x′ ∈ δx and y′ ∈ δ′y, the map ⋄ is well defined. Now we prove for
H, (X, o, δ) × (Y, o′, δ′), ⋄, p × p′) the axioms of beeing a continuous action
(Definition 4.1.1):

• By construction it follows that (m,C) ⋄ (g, h) = ((x, y), C) ⋄ (g, h) is defined
whenever p × p′(m,C) = p × p′((x, y), C) = (p(x), p′(y)) = (d0g, d0h) =
d0(g, h).

• (m,C) ⋄ 1p×p′(m,C) = ((x, y), C) ⋄ (1p(x), 1p(y)) = ((x, y), C) as desired.

• p × p′((m,C) ⋄ (g, h)) = p × p′(((x, y), C) ⋄ (g, h)) = (p(x ∗ g), p′(y ∗ h)) =
(d1g, d1h) = d1(g, h)

• As before one checks ((m,C)⋄(g, h))⋄(g′ , h′) = (m,C)⋄(gg′, hh′) = (m,C)⋄
((g, h) · (g′, h′)).
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• Set (Z, oπ, δπ) = (X, o, δ) × (Y, o′, δ′). We want to show that δπ((m,C) ⋄

(g, h)) = {(m′, C ′)⋄(g, h) : (m′, C ′) ∈ δπ(m,C)}. For this purpose it suffices

to show that the elements (m′, C ′)⋄(g, h) belong to Z. For every disc x in the

product we have to verify the properties of the list in Construction 1.3.3 for

βx. Items 1–4 hold since they hold coordinatewise. Items 5–6 hold because

(g, h) induces a continous bijection from C onto {(x′∗g, y′∗h) : (x′, y′) ∈ C}.

Construction 4.3.2: The equalizer

(K, (E, oe, δe), ∗e, pe)
(ψ,ϕ)
→ (G, (X, o, δ), ∗, p)

(µ′,η′)

⇉
(µ,η)

(H, (Y, o′, δ′), ∗′, p′)

of two morphisms of actions (µ, η), (µ′, η′), denoted by E((µ, η), (µ′, η′)), is
given by the equalizer in PGroupoid

K
ψ
→ G

µ′

⇉
µ

H

together with the equalizer in p-2-Comp

(E, oe, δe)
ϕ
→ (X, o, δ)

η′

⇉
η

(Y, o′, δ′).

Proof : Observe that if v ∈ V G \ ψVK then one has ηy 6= η′y for all y ∈ p−1(v).
Therefore E ∩ p−1V (ϕK) = E. Since ϕ and ψ are embeddings let us identify
E and K with their respective images. Define ∗e := ∗ ↾ D(∗) ∩ E × EK
and pe to be the respective restriction of p to E. Observe that E consists
exactly of those elements z for which ηz = η′z and p(z) ∈ Ob(K). This yields
η(z ∗ k) = ηz ∗′ µk = η′z ∗′ µ′k = η′(z ∗ k) and therefore E is invariant under
the action of K. Thus (K, (E, oe, δe), ∗e, pe) is an action such that (µ, η) and
(µ′, η′) agree on (K, (Z, oe, δe), ∗e, pe)). Thus (µ′, η′)◦ (ψ,ϕ) = (µ, η)◦ (ψ,ϕ).

We prove the universal property of equalizers for E((µ, η), (µ′, η′)). Let

(ψ′, ϕ′) : (K′, (Z ′, o′e, δ
′
e), ∗

′
e, p

′
e) → (G, (X, o, δ), ∗, p) be a morphism of ac-

tions satisfying (µ ◦ ψ′, η ◦ ϕ′) = (η′ ◦ ϕ′, µ′ ◦ ψ′). Then η ◦ ϕ′ = η′ ◦ ϕ′ and

µ◦ψ′ = µ′ ◦ψ′ hold and therefore conclude that im(ϕ′) ⊆ E and VK = VK′.

If there is a k ∈ EK′ with µk′ = µ′k′ then k′ ∈ K. Thus K′ is contained in

K.
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Corollary 4.3.3: Consider actions with homogeneously finitely bounded
complexes. Then every diagram

(∗̃, p̃)

(∗′, p′) (∗, p)

(µ̃, η̃)
(µ, η)

admits a
pullback

(∗e, pe) (∗̃, p̃)

(∗′, p′) (∗, p)

(µ̃, η̃)
(µ, η)

(µ̃e, η̃e)

(µ′
e, η

′
e)

In concrete terms, (∗e, pe) is the equalizer

(∗e, pe)
(ψ,ϕ)
→ (∗′, p′)× (∗̃, p̃)

(µ̃,η̃)◦π(∗̃,p̃)

⇉
(µ,η)◦π(∗′ ,p′)

(∗, p),

where π(∗′,p′) and π(∗̃,p̃′) are the canonical projections from the product of
actions onto its factors.

Proposition 4.3.4: Let (µ, η) and (µ′, η′) be morphisms of continuous
(Galois) actions

(G, (X, o, δ), ∗, p)
(µ′,η′)

⇉
(µ,η)

(H, (Y, o′, δ′), ∗′, p′).

There exists a coequalizer C((µ, η), (µ′, η′)) in ContAct or GalAct.
When considering continuous actions the groupoid K of the coequalizer
C((µ, η), (µ′, η′)) agrees with the coequalizer C(µ, µ′) in PGroupoid. This
can fail to happen if the coequalizer is constructed in GalAct. (Ex-
ample 4.3.6). Example 4.3.5 shows that the underlying 2-complex of
C((µ, η), (µ′, η′)) does not necessarily equals the coequalizer C(η, η′).

Proof : The proof is an extension of the proof of Proposition 2.4.8. Let Λ denote the
set of all morphisms (γ, λ) : (∗′, p′)→ (Gl, (Xl, ol, δl), ∗l, pl) to finite (Galois)
actions (∗l, pl) such that (γ, λ) ◦ (µ, η) = (γ, λ) ◦ (µ′, η′). We devise an order
“≤” on Λ by setting (γ, λ) ≤ (γ′, λ′) if and only if there are ψγγ′ and ϕλλ′

with ψγγ′γ
′ = γ and ϕλλ′λ

′ = λ. The set Λ is not empty since our category

has a terminal object (a single point on which the groupoid b acts). We
claim that (Λ,≤) is a directed set. Pick (γ, λ), (γ′, λ′). Using Construction
4.3.1 we can form the product action (∗l, pl) × (∗l′ , pl′) as indicated in the
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diagram below

(∗l, pl)

(∗, p) (∗′, p′) (∗l, pl)× (∗l′ , pl′)

(∗l′ , pl′)

(µ, η)

(µ′, η′)

(γ, λ)

(γ′, λ′)

(τ, σ)

The universal property of the product yields the dotted arrow (τ, σ). Take
the action generated by the image of τ and σ. Proposition 4.3.7 will show
that (∗l, pl) × (∗l′ , pl′) is Galois if the two factors are. One checks that
(τ, σ) ◦ (µ, η) = (τ, σ) ◦ (µ′, η′) and thus (τ, σ) belongs to Λ. Moreover
(τ, σ) ≥ (γ, λ) and (τ, σ) ≥ (γ′, λ′). The projective limit of the above inverse
system provides us with a morphism (κ, ρ) from (∗′, p′) to a continuous action,
say (B, q).

We claim that (B, q) = C((µ, η), (µ′, η′)). Take a morphism to a fi-
nite quotient (γα, λα) : C((µ, η), (µ′, η′)) → (Bα, λα). Observe that
(γα, λα) ◦ (τ ′, σ′) ∈ Λ, where (τ, σ) is the universal morphism of the coequal-
izer. Therefore there is a morphism from (B, q)→ C((µ, η), (µ′, η′)) which is
obviously surjective and thus the claimed equality (B, q) = C((µ, η), (µ′, η′))
holds.

We observe that the groupoid of C((µ, η), (µ′, η′)) is gernerated by im(τ), and
thus cannot be bigger than K(µ, µ′). To show that, if considering continuous
actions in general, it cannot be smaller, we construct an action of K(µ, µ′) on
the equalizer C(η, η′), such that the action is the surjective image of (∗, p).
The universal property of the coequalizer then shows that K(µ, µ′) equals
the groupoid of C((µ, η), (µ′, η′)).

Let τ ′ : H → K(µ, µ′), σ′ : Y → C(η, η′) be the universal morphisms of
groupoid- and complex coequalizers respectively.

Set

c ⋄ k :=
⋃

σ′ ◦ η
[

D(∗) ∩ (η−1σ′−1c× µ−1τ ′−1k)
]

and D(⋄) = {(c, k) : c ⋄ k 6= ∅} Note that ⋄ is a well defined map from
D(⋄)→ C(η, η′). Define

q′(c) := τ ′p′σ′−1c.
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Then a short calculation shows that (K(µ, µ′), C(η, η′), ⋄, q′) is a continuous
action. Let y = ηx and h = µg then

σ′(y ∗′ h) = σ′ηη−1(y ∗′ h) = σ′η(x ∗ g) = σ′ηx ⋄ τ ′µg = σ′y ⋄ τ ′h

Thus (τ ′, σ′) is a morphism of actions having the property (τ ′, σ′) ◦ (µ, η) =
(τ ′, σ′) ◦ (µ′, η′).

The pair τ ′, σ′ turns out to be a surjective morphism of actions from (⋄, q′)→

(B, q).

Example 4.3.5: Let Γ(Ẑp) be the oriented Cayley graph of Ẑp interpreted

as a 1-complex. Take the complex Γ(Ẑp) ⊔ {z} ⊔ b b where z is a vertex.
Let G(d0, d1) be the groupoid consisting of three discrete vertices v, z′, w such
that d−1

0 v = Ẑp and d−1
0 z′ = 1z′, d

−1
0 w = 1w. There is a natural profinite

action (G,Γ(Ẑp), ∗, p) with pΓ(Ẑp) = {v}, pz = z′ and p( b b) = {w}.

Let a ∈ V Γ(Ẑp) and b ∈ V ( b b ). We define two morphisms of actions
∂0, ∂1 : (∗, p)→ (∗, p) such that ∂0 = (µ, η) and ∂1 = (µ′, η′). The morphisms
µ, η, µ′, η′ restricted to d−1

0 {v, w} and Γ(Ẑp) ⊔ b b are the identities while
µ1z′ = 1v, µ

′1z′ = 1w and ηz = a, η′z = b. The morphisms ∂0, ∂1 turn out to
be morphisms of continuous actions.
Let us construct C(∂0, ∂1). It is immediate that C(µ, µ′) = Ẑp and C(η, η′) =

Γ(Ẑp) ⊔a=b b b . Observe that every continuous action on C(η, η′) has to
stabilize a. Therefore C(µ, µ′) only acts trivially on C(η, η′). Denote this
action by (B, q).
We show that this action cannot be the coequalizer C(∂0, ∂1) by constructing
an action (B′, q′) and a morphism of actions from (∗, p)→ (B′, q′) which does
not factor through (B, q).
Set Y := G⊔E ⊔V := Γ(Ẑp)⊔V Γ(Ẑp)⊔V Γ(Ẑp). Let o ↾ G⊔V be inherited

from the dimension maps on Γ(Ẑp), and set o(E) = {1}. For every e in E
define δe := {g, e, v} with g ∈ G, v ∈ V all representing the same vertex
in Γ(Ẑp). Obviously (Y, o, δ) is a profinite 2-complex and there is a natural

continuous action (G(Ẑp), (Y, o, δ),B
′, q′) coinciding with the inherited actions

of Ẑp on G,E, V .

Observe that every morphism of actions (B, q) → (B′, q′) maps Ẑp to 1 but
the morphism which embeds C(η, η′) into Y naturally extends to a morphism
of actions (σ′, τ ′) such that the image of σ′ is not trivial.

Remark that it is possible to show that C(∂0, ∂1) = (B′, q′).
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Example 4.3.6: Let (X, o, δ) be the complex indicated by

b

b b

b

a

d c

b

and let G = G(C2), where C2 is the cyclic group with 2 elements. Define
an operation of G on X rotating the square such that a → c and b → d.
This operation yields a disc free continuous action (∗, p) of G on X. Now
let r(x) := x ∗ g where g is the not trivial element of C2. Observe (idG, r)
and (idG, idX) are automorphisms of (∗, p). Their coequalizer consists of the
complex (C, o′, δ′) indicated by

a=c

b=d

b

b

and the groupoid G(C2) which does not operate disc free on C.
It turns out that the coequalizer C((r, idG), (idX, idG)) in GalAct is the
trivial groupoid G(1) acting on C.

In general forming the coequalizer for two morphisms in GalAct and in
ContAct yields different underlying complexes.

Proposition 4.3.7: Let (∗′, p′) and (∗̃, p̃) be continuous actions with
morphisms (µ, η), (µ′, η′) : (∗′, p′)→ (∗, p).
Let (B, q) be any of either the equalizer or the product. When the given
actions are (disc) free so is (B, q).
If (B, q) is the product then the universal morphisms are surjective.
Let (B, q) be the pullback action of the diagram in Corollary 4.3.3. (µ′

e, η
′
e)

is surjective provided (µ′, η′) is and (µ̃e, η̃e) is surjective if (µ̃, η̃) is. If η̃ maps
different connected components to different connected components so does
η′e. If (µ̃, η̃) is a quotient of actions so is (µ′

e, η̃
′
e).

Proof : Let (B, q) be the product of (∗, p) and (∗′, p′). Observe that the action (B, q)
is defined component-wise:

(m,C)B(g, h) = ((x, y), {(x′, y′) ∈ C})B(g, h)
:= ((x ∗ g, y ∗′ h), {(x′ ∗ g, y′ ∗′ h) : (x′, y′) ∈ C}).
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and thus it is (disc) free if both (∗, p) and (∗′, p′) are. The complex mor-
phisms pX : ((x, y), C) 7→ x and pY : ((x, y), C) 7→ Y are surjective and
the coordinate projections from a product of profinite groupoids onto its
components are surjective. Thus the composite morphisms are surjective.

If (B, q) is the equalizer of (η, µ) and (η′, µ′) then it embeds into (∗′, p′) and
is thus a (disc) free action if (∗′, p′) is. As a consequence the pullback of
(disc) free actions is disc free.

Let finally (B, q) be the pullback of the diagram in Corollary
4.3.3. Let (K, (Z, oe, δe), ∗e, pe), (H, (Y, o′, δ′), ∗′, p′), (G̃, (X̃, õ, δ̃), ∗̃, p̃) and
(G, (X, o, δ), ∗, p) be the data of the diagram. Assume (µ′, η′) is surjective.
We show that (µ′e, η

′
e) is surjective. Take g̃ ∈ EG̃ and x̃ ∈ X̃. Let g = µ̃g̃

and x = η̃x̃. Then there is some h ∈ EH, y ∈ Y with µ′h = g and η′y = x.
Obviously (g′, g̃) ∈ K. It is not hard to construct at least one C ∈ FZ such
that ((y, x̃), C) ∈ Z. This shows surjectivity of (µ′e, η

′
e).

Similarly one concludes that the surjectivity of (µ̃, η̃) implies the surjectivity
of (µ̃e, η̃e).

We prove that if η̃ respects components so does η̃e. Let
((a′, ã), C), ((b′, b̃),D) be elements of Z. Assume a′ = b′. By the
property of the equalizer we have η′a′ = η̃ã and ηb′ = η̃b̃. Therefore ηã = ηb̃
follows and thus ã and b̃ are in the same component of X̃ . Moreover, if a′, b′

lie in the same component of Y , then their images in X belong to the same
component. Let A′, Ã are sets of representatives of components of Y and
X̃ such that their images in X coincide. For every a′ ∈ A′ there is a unique
ã ∈ Ã with ((a′, ã), C) ∈ Z. Therefore we find η′e to respect components.

We now prove that if (µ̃, η̃) is a quotient morphism so is (µ̃e, η̃e). First we
show that for given x̃ ∈ X̃ and y ∈ Y with η′y = η̃x̃ one has exactly one C
in FZ such that ((y, x̃), C) ∈ Z. If x̃ is a vertex the claim is true. If x̃ is an
edge then C = {(y′, x̃′) : x̃′ ∈ β̃x̃, y′ ∈ η′−1η̃x̃′} ∪ {(y′, x̃) : y′ ∈ η′−1η̃x̃}.
Because η̃ is injective on δ̃x̃ one checks that C is cannot be smaller and thus
the claim is true. If x̃ is a 2-cell the proof works similarly.

Therefore η̃e : ((y, x̃), C) 7→ y is the same as factorizing Z modulo G because
it respects components.



Chapter 5

Based (continuous) actions

Our definition of Galois actions requires to consider based actions so that
an abstract analog of unique “homotopy lifting property” can be achieved for
morphisms.

5.1 Definitions and basic properties

Definition 5.1.1: Let A be a subset of vertices, representatives of the con-
nected components of a complex (X, o, δ). Then (X, o, δ) is a based com-
plex with base A. Denote it by ((X,A), o, δ). A based continuous action,
denoted by (G, ((X,A), o, δ), ∗, p), is a continuous action (G, (X, o, δ), ∗, p)
such that A is a base for X and p restricted to A is injective.
We use (p, ∗, A) as shorthand.
A morphism (µ, η) : (G, ((X,A), o, δ), ∗, p) → (H, ((Y,A′), o′, δ′), ∗′, p′) is
based if ηA ⊆ A′.
(µ, η) is A-injective if η is injective on A.

Definition 5.1.2: A based Galois action (G, ((X,A), o, δ), ∗, p) is a disc
free based continuous action with A is closed.

There is a disc free based continuous action with A not closed.

57
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Example 5.1.3: Take the space X of [25] example 5.6.9 on which C2

operates such that there is no section for the quotient morphism x 7→ x̄.
Take 2 copies Xv and Xe of X and build Y := Xv ⊔x0 Xe where x0 is the
fixed point of the action of C2. Define δ : Y → FY by setting

δx :=

{

{x} : x ∈ Xv

{x} ∪ x̄ : x ∈ Xe
.

Obviously δx is well defined and continuous. One sets o : Y → N by
o(Xv) = 0 and o(Xe) = 1. Thus (Y, o, δ) is a profinite 1-complex. Define
the groupoid G by setting V G := X/C2, G(x0) is trivial and G(x) = C2 else.
Observe that there is a natural continuous action of G on X by setting px = x̄
and the induced action “∗” of C2. The action (G, ((Y,A), o, δ), ∗, p) is a disc
free based action if one selects A appropriately. Since there is no continuous
section for the action of C2 the base A cannot be chosen to be closed.

We provide an analog of Proposition 1.4 in [34].

Proposition 5.1.4: Suppose we are given a commutative diagram of Galois
actions

(B, p, A) (∗̃, q̃, B̃)

(∗, q, B)

(µ, η)

(µ′, η′)

(ν, σ) (τ, π)

A
−

in
je

ct
iv

e

and the complex morphisms η and η′ agree on A. Then (µ, η) = (µ′, η′).

Proof : We introduce full notation for the continuous actions

(G, ((X,A), o, δ),B, p)

(H̃, ((Ỹ , B̃), õ′, δ̃′), ∗̃, q̃)

If the theorem holds for (∗̃, q̃, B̃) finite a projective limit argument allows us
to find an inverse system of A-injective morphisms (τα, πα) such that (τ, π)
is its projective limit. Let pα be a shorthand for the projection from (∗̃, q̃, B̃)
onto a finite quotient. If the Proposition is shown for the finite case, one
has pα ◦ (µ, η) = pα ◦ (µ′, η′) and a projective limit argument yields that
(µ, η) = (µ′, η′).
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Therefore let us assume Y is finite. Because of the A-injectivity of (τ, π)
further assume that Y is connected.

First we show η = η′. For the proof of this statement it is enough to consider
an arbitrary connected component C of X. Assume that η 6= η′ on C. The
morphisms η and η′ coincide on A and thus the equalizer E(η, η′) intersected
with C is a subcomplex of C which is not empty. By the finiteness of Y
the sets {η−1y : y ∈ Y } and {η′−1y : y ∈ Y } are clopen partitions of C
and thus their common refinement is a clopen partition P of C. Each P ∈ P

has the property that either ηP = η′P or ηP ∩ η′P = ∅ holds. Hence the
equalizer is a finite union of clopen sets and thus clopen itself. Because C
is connected and E(η, η′) is a subcomplex we can find an edge or a 2-cell
x ∈ C such that that ηx 6= η′x and ηv = η′v for some vertex v contained
in βx ∩ E(η, η′). Since πη = σ = πη′ the images ηx and η′x lie in the same
orbit of H̃, i.e. there is a h ∈ EH̃ with ηx = η′x∗̃h. The equations ηv = η′v
and δ̃x∗̃h = {y∗̃h : y ∈ δx} yield that ηv∗̃h = ηv contradicting the free
action of H̃. Thus ηx = η′x, a contradiction to the choice of x.

Therefore η and η′ agree on X.

We now show µ = µ′. Assume on the contrary µ 6= µ′, i.e. it exists some

g ∈ EG such that µg 6= µ′g. Observe that for every x ∈ p−1g the equality

η(x ∗ g) = ηx∗̃µg = η′x∗̃µ′g = η′(x ∗ g) holds and hence µ = µ′ and thus

(µ, η) 6= (µ′, η′) as desired.

Note that the pair η, η′ respects fibers in the sense of Proposition 1.4 in [34].

Lemma 5.1.5: For a based continuous action (G((X,A), o, δ)∗, p) the map
p is open.

Proof : Assume that this is false. Then there is an open subset U of X with p(U)

not open. Hence there is a net (gν)ν∈Λ in the complement p(U)c ∩ V G

which converges to g ∈ p(U). Thus there is a corresponding net 1G(gν) of

the respective identities converging to 1G(g). Take a net (xν)ν∈Λ in X with

pxν = gν and observe xν 6∈ U for all ν ∈ Λ. Now 1G(gν) → 1G(g) but g 6= px,

contradicting to D(∗) closed.

Lemma 5.1.6: Given a based continuous action (G, ((X,A), o, δ), ∗, p). A
is closed if and only if for every U open in A the inverse image p−1pU is open
in X.

Proof :
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⇒ Take U open in A. Assume V := p−1pU is not open then there exists a net
(xν)ν∈Λ → x ∈ V where all xν are in the complement of V and w.l.o.g. lie
in different connected components of X. Therefore there is a corresponding
net of (aν)ν∈Λ such that each aν belongs to the connected component of
xν for every ν in Λ. Since V is a union of connected components of X by
construction aν 6∈ U . But A is closed and thus aν → a ∈ A. Since X
is profinite and δ continuous, connected components converge to subsets of
connected components. Thus a and x are members of the same connected
component of X. This yields a contradiction to the openness of U , because
aν 6∈ U for all ν ∈ Λ.

⇐ Assume A is not closed. Then there is a net (aν)ν∈Λ in A converging to

x 6∈ A. Let {a} be the intersection of A with the connected component of x.

Because the set B := {aν : ν ∈ Λ} ∪ {x} is closed and X is profinite there

are two open neighbourhoods U of B, and V of a with void intersection. Let

V ′ = V ∩ A be an open neighbourhood of a in A. Then p−1pV ′ does not

contain any aν but it contains x a contradiction.

Corollary 5.1.7: Given a based continuous action (G((X,A), o, δ)∗, p)
with closed A. Then p is a homeomorphism from A to V G.

Proof : Since p is continuous every open set V ∈ V G yields an open subset p−1V ∩A

of A. On the other hand since A is closed the open subsets U in A give

rise to open sets p−1pU in X (Lemma 5.1.6). Since A meets each connected

component in one point we find pp−1pU = pU and Lemma 5.1.5 yields

pp−1pU is open.

5.2 Universal constructions and projective lim-

its

The existence of equalizers and products of based actions can be deduced
from the constructions for continuous actions (4.3.1 and 4.3.2). It is an easy
observation that these constructions are naturally based.

Let us consider pullbacks of based continuous actions:
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Proposition 5.2.1: For a given diagram of based actions

(∗̃, q̃, B̃)

(B, p, A) (∗, q, B)
(ν, σ)

(τ, π)

A
−

in
je

ct
iv

e

the pull back

(B̃, p̃, Ã) (∗̃, q̃, B̃)

(B, p, A) (∗, q, B)
(ν, σ)

(τ, π)

A
−

in
je

ct
iv

e

(ν̃, σ̃)

(τ ′, π′)

A
−

in
je

ct
iv

e

exists, if it exists in ContAct. Moreover the morphism (ν̃, σ̃) is uniquely
determined.

Proof : Take a pull back given by the continuous actions forgetting base points. Then

Proposition 4.3.7 allows us to lift A,B, B̃ uniquely to representatives of the

connected components of Ã. In light of Proposition 5.1.4 any compatible

morphism (ν̃ ′, σ̃′) : (B̃, p̃, Ã) → (∗̃, p̃, B̃) that agrees with (ν̃, σ̃) on Ã must

be (ν̃, σ̃).

Corollary 5.2.2: Let (B̃
′
, p̃′, Ã′) be universal for (B, p, A) then there is a

unique morphism (ν̃ ′, σ̃′) : (B̃
′
, p̃′, Ã′)→ (∗̃, q̃, B̃) lifting (ν, σ).

Proof : By the universal property of the universal action there exists a unique mor-

phism (τ̃ , π̃) : (B̃
′
, p̃′, Ã′)→ (B̃, p̃, Ã).

Proposition 5.2.3: Every based Galois action (G, ((X,A), o, δ), ∗, p) is
the projective limit of finite based Galois actions. Conversely the projective
limit of finite based Galois actions is a based Galois action.

Proof :

⇒ By 4.2.2 an inverse system of finite Galois actions (∗ν , pν) has a projective
limit (∗, p). The inverse system consists of based morphisms and based ac-
tions (∗ν , pν , Aν) so that A = lim←−Aν is closed. Observe that A meets each
component of the projective limit in one element and thus (∗, p,A) is a based
Galois action.

⇐ Given (G, ((X,A), o, δ), ∗, p) with A closed. By Lemma 4.2.1 the action

(∗, p) is the projective limit of finite continuous actions. Take a member

(H, ((Y, o′, δ′), ∗′, p′) of this inverse system. Y lifts to a clopen partition P of

X. We refine this partition to a partition such that the quotient morphism
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is a morphism of based continuous actions: Take a clopen partition P(A) of

A finer than the partition induced by P. By Corollary 5.1.7 for all P ∈ P

the set p(P ) is clopen in V G. Therefore setting P′ := {p−1p(P ) : P ∈ P(A)}

yields a clopen partition which is coarser than that consisting of connected

components. Thus the common refinement Q of P and P′ inherits the quo-

tient property from P and the image of A in the quotient X/Q meets each

connected component once. Take H′ =
∐

P∈P(A)H(a(P )), where a(P ) is a

chosen representative of P . The action of H′ on X/Q is naturally induced

by the action of H on Y and thus is disc free as desired.

Proposition 5.2.4: Let (∗, p, A), (∗′, p′, B) be based actions. If (∗, p) ×
(∗′, p′) exists so does (∗, p, A)× (∗′, p′, B).

Proof : Consider the product of actions (∗, p) × (∗′, p′) and observe that

{((a, b), {(a, b)}) : a ∈ A, b ∈ B} is a base for (∗, p) × (∗′, p′) compatible

with the coordinate projections. Thus one finds that (∗, p,A) × (∗′, p′, B)

exists.

Proposition 5.2.5: Let (µ, η) and (µ′, η′) be morphisms of based contin-
uous actions

(G, ((X,A)o, δ), ∗, p)
(µ′,η′)

⇉
(µ,η)

(H, ((Y,B), o′, δ′), ∗′, p′).

Then the coequalizer constructed in Proposition 4.3.4 serves as a coequalizer
in BasedAct.

Proof : We rewrite the proof of Proposition 4.3.4. Let Λ denote the set of all mor-
phisms (γ, λ) : (∗′, p′, B)→ (Gl, (Xl, ol, δl), ∗l, pl, Bl) to finite based (Galois)
actions (∗l, pl, Bl) such that (γ, λ) ◦ (µ, η) = (γ, λ) ◦ (µ′, η′). We devise an
order “≤” on Λ by setting (γ, λ) ≤ (γ′, λ′) if and only if there are ψγγ′ and
ϕλλ′ with ψγγ′γ

′ = γ and ϕλλ′λ
′ = λ. The set Λ is not empty since our

category has a terminal object (a single point on which the groupoid b

acts). We claim that (Λ,≤) is a directed set. Pick (γ, λ), (γ′, λ′). Using
Proposition 5.2.4 we can form the product action (∗l, pl, Bl) × (∗l′ , pl′ , Bl′)
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as indicated in the diagram below

(∗l, pl, Bl)

(∗, p,A) (∗′, p′, B) (∗l, pl, Bl)× (∗l′ , pl′ , Bl′)

(∗l′ , pl′ , Bl′)

(µ, η)

(µ′, η′)

(γ, λ)

(γ′, λ′)

(τ, σ)

The universal property of the product yields the dotted arrow (τ, σ). Take

the action generated by the image of τ and σ. Proposition 4.3.7 shows that

(∗l, pl, Bl) × (∗l′ , pl′ , Bl′) is based Galois if the two factors are. One checks

that (τ, σ) ◦ (µ, η) = (τ, σ) ◦ (µ′, η′) and thus (τ, σ) belongs to Λ. Moreover

(τ, σ) ≥ (γ, λ) and (τ, σ) ≥ (γ′, λ′). One checks that the above inverse system

is cofinal for the inverse system constructed in Proposition 4.3.4. Thus the

projective limit is equal to the coequalizer formed in the category ContAct.

Because all morphisms and actions considered this coequalizer serves as the

coequalizer in BasedAct.

Proposition 5.2.6: Proposition 4.3.7 is valid for based actions. In partic-
ular the pullback of based Galois action is a based Galois action.

Proof : Since the construction of (co)products, (co)equalizers and pullbacks in

ContAct can be performed with morphisms of based actions Proposition

4.3.7 stays valid.
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Chapter 6

Simply connected complexes and
universal based Galois actions

In this section, for any given based Galois action, we will construct the
universal based Galois action and later use it to define pro-C fundamental
groupoids. We first carry out the basic constructions for finite 2-complexes
and (pro)finite groups and then consider the general case. In this way we
follow the strategy in [34] where the existence of a universal Galois cover has
been proved for any connected oriented graph.

6.1 Basic definitions

Definition 6.1.1: A based Galois action (G̃, ((X̃, Ã), õ, δ̃), ∗̃, p̃) is uni-
versal for a based Galois action (G, ((X,A), o, δ), ∗, p) if all of the following
holds

1. There is a quotient morphism of actions (µ, η) : (∗̃, p̃, Ã)→ (∗, p, A).

2. Every quotient morphism (µ′, η′) from a based Galois action
(H, ((Y,A′), o′, δ′), ∗′, p′) to (∗, p) lifts to a based morphism (µ̃, η̃) yield-
ing the commutative diagram

(∗̃, p̃) (∗′, p′)

(∗, p)

(µ̃, η̃)

(µ, η) (µ′, η′)

A based Galois action is universal if it is universal for itself.

It is immediate that the lifted morphism is a quotient morphism.

65
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It is convenient, to interpret any profinite 2-complex as a based action with
trivial groupoid:

Definition 6.1.2: Let ((X,A), o, δ) be a based profinite 2-complex. Let 1A
be the groupoid defined by Ob(1A) = A and Hom1A = A consisting of the
identities only. Moreover let pA : X → V 1A be the map sending x 7→ a if a
and x lie in the same connected component of X and let ∗A : X×E1A → X
be defined as (x, e) 7→ x if and only if d0e = pAx.
Then (1A, ((X,A), o, δ), ∗A, pA) is the trivial based action for the complex
((X,A), o, δ).

6.2 Finite constructions

We need the “concept” of finite tree. A profinite tree is defined by homology
properties [33]. For the discrete case the concepts of tree and simply con-
nected graph are equivalent. The concept of realization of finite graphs can
be shown to be unique up to homeomorphism.
For an infinite profinite graph beeing simply connected is a stronger property
than that of beeing a profinite tree ([33]).

Definition 6.2.1: A circuit is a finite big circle. A finite tree is a
connected (un)oriented graph which does not contain a circuit. A finite
tree complex is a complex which interpreted as an unoriented graph is a
finite tree. A finite tree subcomplex T in (X, o, δ) is a spanning tree if
V T = V X.

Definition 6.2.2: A based profinite 2-complex ((X,A), o, δ) is simply
connected if the trivial based action (1A, ((X,A), o, δ), ∗A, pA) is universal.

A finite connected 2-complex contains a maximal simply connected subcom-
plex.
Considering a finite tree (in the sense of [34]) as a 1-complex (2.3.1) it turns
out immediately that it is simply connected.
Our next goal is showing that any finite connected based 2-complex
((X, a), o, δ) possesses a maximal simply connected subcomplex which we
denote by K(X, a).
We employ a straight forward algorithm which implicitly uses combinatorial
homotopies ([24]).
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Algorithm 6.2.3:

➩ Fix a spanning tree T0 in X which contains a.

➩ Suppose Tn−1 has been constructed for n ≥ 1. If there is a 2-cell in
X \ T and e ∈ EX with δx \ T ⊆ {x, e} then set Tn := Tn−1 ∪ {x, e},
else terminate the algorithm.

✔ Since X is finite, there exists n ∈ N for which the algorithm terminates.
In this case we let K(X, a) := Tn−1.

Proposition 6.2.4: K(X, a) is a simply connected subcomplex of
((X, a), o, δ).

Proof : Let (µ, η) : (G, ((Y, b), o′, δ′), ∗, p)→ (1a, ((X,a), o, δ), ∗a , pa) be a morphism

of based actions. For all g ∈ G and all y ∈ Y the equation η(y ∗ g) = ηy

holds. Therefore and because T0 is simply connected η−1T0 has connected

components each isomorphic to T0. Suppose η−1T0 were not connected.

Since ((Y, b), o′, δ′) is connected and V T0 = V X there is an edge y ∈ EY

such that δ′y meets at least two connected components of η−1T0. Then y

connects two different copies C,C ′ of T0. Algorithm 6.2.3 yields a disc d in

X with βd \ T0 = ηy. Hence there is an element d′ of η−1d such that y is in

the boundary of d′. But C ∪C ′∪ y does not contain a circuit and therefore η

is not injective on the set of edges of βd′ ∩ η−1βd. Thus η is not a morphism

of complexes, a contradiction.

6.3 Existence of universal based Galois actions

Let (G, ((X, ã), o, δ), ∗, p) be a finite based Galois action. We construct a
based Galois action (G̃, ((X̃, b), õ, δ̃), ∗̃, p̃) with (∗, p, a) a quotient.

Using Proposition 1.4.14 for every 2-cell x we select vx ∈ V βx and an order
“≤v” on βx.

Similarly for every edge or vertex x we select a vertex vx ∈ δx.
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Construction 6.3.1: Let ((X, a), o, δ) be a finite 2-complex and K(X, a)
a maximal simply connected subcomplex. By Construction 6.2.3 K(X, a)
exists.
Let FC (EX), be the free pro-C groups generated by all edges of X.
For every 2-cell x with Eβx = {e1, . . . , en} there is a unique word w(x) =
eǫ11 e

ǫ2
2 . . . e

ǫn
n ∈ FC (EX) such that for 0 < i < j ≤ n one has ei <vx

ej and

ǫi =

{

+1 : vei
<vx

ei
−1 : else

.

Let D be the normal subgroup of FC (EX) generated by the set

EK ∪ {w(x) : x ∈ DX \K}

The following diagram arises:

EX FC (EX) FC (EX)/D
τ

Set G := im(τ), U := G×X and b := (1, a).
Now assume that x ∈ X \K is a 2-cell. The word w(x) can be written in the
form w(x) = w1(x) . . . wk(x) such that for i = 0, . . . , k all of the following
holds:

1. wi(x) = eǫi1i1 . . . e
ǫim
im and {ei1, . . . , eim} \K ⊆ {ei1, eim}.

2. If ei1 6∈ K then ǫi1 = −1

3. If eim 6∈ K then ǫim = 1

For every 2-cell x define κx(y) : βx→ FC (EX) by setting

κx(y) := w1(x)w2(x) . . . wi(x)

where i is determined by the condition

min{ei1, vei1
} ≤vx

y ≤vx
max{eim, veim

}

For (f, x) ∈ U set

o′(f, x) := o(x)

and

δ′(f, x) :=







{(f, y) : y ∈ δx} : x ∈ K
{(f, x), (f, xf ), (xf, yf) : δx = {xf , yf}, xf = vx} : x ∈ EX \K
{(τκx(y)f, y) : y ∈ βx} ∪ {(f, x)} : x ∈ DX \K

We define an operation ∗ : U×EG(G)→ U setting u∗g = (x, h)∗g := (x, hg)
and p : U → V G(G).
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Our construction corresponds to the one for the universal Galois cover of an
oriented graph [34].

Proposition 6.3.2: ((U, b), o′, δ′) is a based profinite 2-complex.
A different choice of b, vx’s and <x results in an isomorphism of 2-
complexes. (G(G), ((U, b), o′, δ′), ∗, p) is a universal based Galois action for
(1a, ((X, a), o, δ), ∗a, pa).

Proof : For checking that (U, o′, δ′) is a 2-complex we turn to Definitions 2.1.2 and
2.2.1. The only part of proving which does not appear to us routine is
checking the continuity of δ′. For instance 2.2.1 (b) holds since there are
no loops in U . Since X is finite the Vietoris open sets W (V1, . . . , Vn) with
Vi = V ′

i × {xi} and V ′
i is an open in EG form a basis of the topology in

FU . Set Z := {x1, . . . , xn}. If δ−1Z ⊆ K then the set δ′−1W (V1, . . . , Vn) =
⋂n
i=1 V

′
i × δ

−1Z.

Suppose that δ−1Z \K 6= ∅. Then observing δ−1Z ⊆ K if |Z| ≤ 2 we have
the cases:

(a) |Z| = 2,

(b) |Z| = 3, and

(c) |Z| > 3

In (a) and (b) one can w.l.o.g. assume that n = |Z|. Then we have

(a) Z = {e, v} is a loop. Then δ′−1W (V1, V2) = (V ′
1 ∩ V

′
2 ∩ eV

′
1) × {e} is

open.

(b) Z = {e, v, u}. Since we can assume that e is an edge not a loop (else Z
contains a 2-cell with boundary a loop and would be contained in K)
the set δ′−1W (V1, V2, V3) = (V ′

1 ∩ V
′
2 ∩ eV

′
3)× {e} is open.

(c) We must have Z = δx for some 2-cell x. Therefore w.l.o.g. we can
assume that x = x1, and βx can be ordered

x2 ≤vx · · · ≤vx xn.

Setting g1 = 1 and gi = (τκx(xi))
−1 for i ≥ 2 the set

δ′−1W (V1, . . . , Vn) = (
⋂

giV
′
i )× δ

′−1Z is open.

Thus δ′ is continuous.

Let us show that U is connected and hence is based. It is not hard to see
that (∗, p) induces a disc free continuous action on U . Let C be a connected
component of U . Then by construction, for every generator e of G the union
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C ∪ C ∗ e is connected and hence C is G(G)-invariant. Since X = U/G is
connected and so is U .

Our proof shows that (G(G), ((U, b), o′ , δ′), ∗, p) is a based Galois action.

The construction does evidently not depend upon the choice of b. Now we
show that changing vx determines a complex isomorphism. We observe that
only δ′ ↾ G × X \ K depends on the choice of vx. It suffices to consider
(U1, o

′, β′) arising by changing vx to v′x for a single point x ∈ X and provide
a complex isomorphism from U1 → U .

Assume x is a 2-cell. We see that β(f, x) = {(τκx(y)f, y) : y ∈ βx} and
β′(f, x) = {(gτκx(y)f, y) : y ∈ βx}, where g = τw1(x) . . . wk(x) such that
v′x is contained in δe for some e occuring in wk(x). Thus there is a complex
isomorphism from U → U1 by mapping (f, x) ∈ U to (g−1f, x) and (f, y) to
(f, y) if y 6= x.

In a similar fashion one shows that inverting the order ≤x yields an isomor-
phism of the desired form. Finally, when x is an edge and δx = {x, u, v} it
does not matter when vx = u or vx = v. We omit a formal proof.

It is left to prove that U is universal for (1a, ((X,a), o, δ), ∗a , pa).

Let (µ, η) : (G(H), ((Y, c), õ, δ̃), ∗, p) → (1a, ((X,a), o, δ), ∗a , pa) be a quo-
tient morphism of based Galois actions. We construct a quotient morphism
(µ′, η′) : (∗′, p′, b)→ (∗, p, y).

Because K(X,a) is finite and simply connected there is a unique embedding
ι : K(X,a)→ (Y, c) sending a to c. The selection of elements vx and orders
≤vx extends in a unique fashion to the elements of (Y, b). Because H operates
disc free one finds for each element x ∈ X \ K a unique y ∈ Y such that
vy ∈ im(ι). Form the set C by adding all these y to im(ι). One can apply the
same procedure to construct a set C ′ with respect to the unique embedding
ι′ : K(X,a) → U satisfying ι′(a) = b. For y ∈ C there are finitely many
elements hi ∈ H such that δ̃y = {y1∗h1, . . . , y2∗h2, . . . , yn∗hn}. Observe that
one can choose h1 = 1 and thus there is a morphism µ′ from G→ H sending
τκx(yi) to hi. Moreover one checks that there is a morphism η′ : U → Y
defined by sending {g} ×C ′ 7→ {µ′g} ×C. Since the compatibility condition
η′(g∗c) = η′g∗µ′c is valid (µ′, η′) is a based morphism of actions. Its image is
a closed connected subcomplex of Y and because G(H) operates dics free and
Y is connected one finds µ′ and thus η′ to be surjective. Therefore (µ′, η′) is
a quotient morphism of based Galois actions as desired.
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Corollary 6.3.3: Let B be a finite set. The action
(G, ((U,B), o′, δ′), ∗, p) :=

∐

b∈B(G, ((U, b), o′, δ′), ∗, p) is universal for an ac-
tion (H, ((Y, C), o′′, δ′′).∗′, p′) if and only if there is quotient morphism of
actions (∗′, p′, B)→ (1A, ((X,A), o, δ)∗A, pA).

Proof : Apply Proposition 6.3.2 componentwise.

Theorem 6.3.4: For every based Galois action (G, ((X,A), o, δ), ∗, p) there
exists a universal Galois action.

Proof : By Proposition 5.2.3 there is an inverse system of finite actions with projec-
tive limit (G, ((X,A), o, δ), ∗, p). By Corollary 6.3.3 each (∗α, pα, Aα) in the
inverse system has a universal action (∗̃α, p̃α, Ãα). By Corollary 4.3.3 the
morphism (µαβ , ηαβ) : (∗α, pα, Aα) → (∗β , pβ, Aβ) induces a morphism of
actions (µ̃αβ, η̃αβ) : (∗̃α, p̃α, Ãα) → (∗̃β, p̃β, Ãβ). This morphism is unique
by Proposition 5.1.4, because (µ̃α, η̃α) : (∗̃α, p̃α, Ãα)→ (∗α, pα, Aα) is a quo-
tient morphism and thus prescribes (∗̃α, p̃α) at Ãα. Thus we have an inverse
system of universal actions which has an inverse limit the action (∗̃, p̃, Ã)
(Proposition 4.2.4).

Let us prove the universal property of (∗̃, p̃, Ã). Conider a based Galois action
(+, q, B) with groupoid K and a quotient morphism (µ+, η+) : (+, q, B)→
(∗, p,A). By Proposition 5.2.3 there is an inverse system (+α, qα, Bα) with
projective limit (+, q, B). Denote (τα, πα) : (+, q, B) → (+α, qα, Bα). Take
kerµ+ and observe that for each α one has Gα := τα kerµ+ a normal sub-
groupoid in ταK. Moreover the (+α, qα, Bα)/Gα form an inverse system
for (∗, p,A). One checks that they possess universal Galois actions which
form an inverse system for (∗̃, p̃, Ã). Thus there is a quotient morphism
(∗̃, p̃, Ã)→ (+, q, B).

Corollary 6.3.5: Let (G, ((X,A), o, δ), ∗, p) then finding the universal
Galois action for (∗, p, A) is equivalent to finding an action (∗̃, p̃, Ã) and a
quotient morphism (∗̃, p̃, Ã) → (∗, p, A) such that the complex of (∗, p, A) is
simply connected.

We list useful observations:
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Corollary 6.3.6: The projective limit of an inverse system of universal
based actions is universal.
A simply connected oriented graph in the sense of [34] is a simply connected
1-complex.

Proof : The first statement is an immediate consequence of the proof of Theorem

6.3.4. For the second statement one checks that the definition of UC(Γ, T )

(see Lemma 2.3 in [34]) is coherent to Construction 6.3.1 if T = K(X,a), the

relations D = {1} and vx = d0x. Therefore the pro-C fundamental group in

the sense of [34] coincides in case of orientable graphs.



Chapter 7

Fundamental groupoids of graphs
of complexes

In this chapter we will prove a van Kampen theorem, namely the fundamental
groupoid of graphs of complexes turns out to be the fundamental groupoid
of a certain graph of groupoids.

7.1 Description of the fundamental groupoid of

a graph of groupoids

In this section we give a brief description of the fundamental groupoid of a
graph of groups. Graphs of groups first appeared in [30]. A combinatorial
approach to graphs of groups and graphs of groupoids can be found in [22].
A profinite version of graphs of groups and their fundamental groups can be
found in [32] and [33].

Definition 7.1.1: A graph of groups (G, ∂0, ∂1) consists of a totally
disconnected groupoid G and a pair of morphisms ∂i : G → G for i = 0, 1
satisfying ∂i∂j = ∂j , so that ∂iG(v) ⊆ G(v) implies ∂i ↾ G(v) = idG(v) for
all v ∈ V G. With a graph of groups we connect an oriented graph (gluing
graph) (Γ, d0, d1) whose elements coincide with V G. The di are defined
according to the equality dip = p∂i.

To define the fundamental group(oid) of a graph of groups we sketch two
approaches.
The first is taken from [32]. Consider the universal covering Γ̃ of the gluing
graph Γ and pick a 0-connected section J for Γ. Search for a J-specialization
(β, β1) into a profinite group H such that the standard graph S(G, β,H)
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is connected and simply connected. Then H is the fundamental group of
(G, ∂0, ∂1) if β is injective on fibers.

The second approach is similar to that one found in [22]. Let (G, ∂0, ∂1) be a
connected graph of groups and Γ its gluing graph. Let σ : V Γ⊔V Γ→ V Γ be
the morphism sending v 7→ v, for all v ∈ V Γ and let G′ be the subgroupoid
corresponding to the vertices of Γ. Set p : V G → Γ to be the canonical
map and set G′ ∗ F (Γ) := Uσ(G

′ ⊔ F (Γ)). There is a natural relation “∼” on
G′ ∗ F (Γ) generated by setting f · h ∼ g · f , whenever all of the following
holds

• f ∈ F (Γ)

• There is a w ∈ p−1f and a e ∈ G(w) such that either ∂0e = h, ∂1e = g
or ∂1e = h, ∂0e = g.

Then obtain the fundamental groupoid π1(G, ∂0, ∂1) by forming G′ ∗F (Γ)/∼.
To obtain the fundamental group of the graph of groups, one has to find a 0-
connected section J for Γ and amalgamate π1(G, ∂0, ∂1) along the embedding
of J into F (Γ).

In this work we focus on the category of based Galois actions and thus we
do not consider graphs of groups on their own. This approach leads to a
theory, which covers graphs of groups implicitly. Therefore constructing the
fundamental groupoid of a graph of based Galois actions yields a fundamental
group(oid) of the underlying graph of groups.

7.2 Gluing schemes and a van Kampen theo-

rem

Definition 7.2.1: A gluing scheme (∗, p, A), ∂0, ∂1) consists of a based
action (∗, p, A), and a pair of morphisms ∂i : (∗, p, A)→ (∗, p, A) for i = 0, 1
satisfying ∂i∂j = ∂j , so that ∂iC ⊆ C implies ∂i ↾ C = idC for all connected
components of the underlying profinite 2-complex. With a gluing scheme
we connect an oriented graph (gluing graph) (Γ, d0, d1) whose elements are
the connected components of the underlying complex of (∗, p, A). The di are
defined according to the equality dip = p∂i. The co-equalizer C(∂0, ∂1) will
be termed glued action.
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Theorem 7.2.2: Let ((∗, p, A), ∂0, ∂1) be a gluing scheme and C(∂0, ∂1)
the result of gluing. Let the gluing graph Γ be connected.
There is a gluing scheme ((∗̃, p̃, Ã), ∂̃0, ∂̃1) giving rise to a commutative dia-
gram

(Γ̃, d̃0, d̃1) (Γ, d0, d1)

(∗̃, p̃, Ã) (∗, p, A)

C(∂̃0, ∂̃1) C(∂0, ∂1)

πΓ

p̃ p

πA

σ̃ σ

A-injective

Here

• C(∂̃0, ∂̃1) is a universal based action for C(∂0, ∂1);

• πA is a surjective morphism of based actions which respects the mor-
phisms ∂i.

Proof : We first prove the theorem for simply connected Γ

By Theorem 6.3.4 there is a universal based action (∗̃, p̃, Ã) for the based
action (∗, p,A). Since Γ = pA there is a natural graph morphism from
Γ̃ := p̃Ã to Γ. By Proposition 5.2.1 there is for i = 0, 1 a unique morphism
of based action s ∂̃i making the following diagram commutative:

(∗̃, p̃, Ã) (∗̃, p̃, Ã)

(∗, p,A) (∗, p,A)

∂̃i

A
-i
n
je

ct
iv

e

A
-i
n
je

ct
iv

e

∂i

It is not hard to see that ((∗̃, p̃, Ã), ∂̃0, ∂̃1) is a gluing scheme. Let us show
that the connected components of Γ are in a 1-1 correspondence with those
of Γ̃. Pick a connected component C of Γ and take its preimage XC := γ−1C
in the 2-complex X of the based action (∗, p,A). The restrictions of ∂i to
XC have a coequalizer, say C0. Since C is connected, so is C0, as a result
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of gluing. It shows every connected component of C0 to be contained in a
connected component of C(∂0, ∂1).

We now claim that different connected components C1, C2 of Γ cannot be in
the same connected component of Γ̃. To see this we first find a clopen graph
partition of Γ so that the Ci are not in the same member of the partition.
Now, in the inverse images of the members of the partition in X the bonding
maps ∂i map each member of the clopen partition of X into itself. Therefore,
after collapsing components, C1 and C2 must belong to different connected
component s of Γ̃, as claimed.

We shall successively show the existence of P , λ, κ, σ̃ and give more expla-
nation about the arrows in the diagram

(∗̃, p̃, Ã)

P (∗, A, p)

C(∂̃0, ∂̃1) C̃(∂0, ∂1) C(∂0, ∂1)

A-inj

A-injκ

∃!

A-inj
σ̃

λ

We first construct σ̃. To this end we form the pullback P of the vertical
arrow on the right of the diagram and the universal arrow from C̃(∂0, ∂1)→
C(∂0, ∂1). The universal property of the pullback yields a unique arrow from
(∗̃, p̃, Ã) to P and σ̃ is defined by composition.

Since σ̃∂̃1 = σ̃∂̃0 the universal property of the co-equalizer C(∂̃0, ∂̃1) yields
a morphism λ of based action s such that the triangle on the left com-
mutes. Since σ̃ is an epimorphism, so is λ. Since the groupoid components
of C(∂0, ∂1) and C(∂̃0, ∂̃1) are in 1-1 correspondence the universal property
of the universal action C̃(∂0, ∂1) for C(∂0, ∂1) provides us with a morphism
κ of based actions. Hence we may identify the result of gluing w.r.t. the
scheme on the upper left corner of the diagram with the universal action of
the result of gluing the scheme on the right upper corner.

So, when Γ is simply connected, our theorem is proved.

In our next step we devise a gluing scheme P with Γ̃ the universal covering
of Γ and a morphism of based action s to the gluing scheme ((∗, p,A), ∂0 , ∂1).
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The action of π1(Γ) on Γ̃ will lift to an action on P with quotient the gluing
scheme ((∗, p,A), ∂0, ∂1).

Our candidate for P is the pullback in the diagram

P ((∗, A, p), ∂0 , ∂1)

(Γ̃, d̃0, d̃1) (Γ, d0, d1)
πΓ

Let β : Γ → π1(Γ) be canonically constructed from the 0-connected section
j : Γ → Γ̃ [32]. As sets we may form Ã := A × π1(Γ), X̃ := X × π1(Γ),
G̃ := G ×π1(Γ) and, finally, Γ̃ := Γ×π1(Γ). As shown in [32] form (Γ̃, d̃0, d̃1)
and let π1(Γ) act canonically on it with quotient Γ. Now lift d̃i in the
canonical fashion to morphisms of based action s ∂̃i on P .

It is not difficult to see that the connected components of Γ̃ are in a 1-1
correspondence with the connected components of Γ.

Our next task is to explain and establish the arrows in the following diagram
and to show that it is commutative

(Γ̃, d̃0, d̃1) (Γ, d0, d1)

P (∗, p,A)

C(∂0P , ∂1P ) C(∂0, ∂1)

πΓ

p

πΓP

σP σ

π̃ΓP

For defining π̃ΓP pick x with ∂0x 6= ∂1x. Then both, ∂0x and ∂1x go to the
same element in C(∂0, ∂1P ). Hence, if πΓP (y) = x we set π̃ΓP (σP∂0P (y)) :=
σx. This shows that π̃ΓP is well-defined and surjective on the underlying
spaces.

By Proposition 5.2.6 C(∂0P , ∂1P ) is a based Galois action. By construc-
tion of P one checks σπΓP∂0P = σπΓP∂1P and thus there is a unique mor-
phism C(∂0P , ∂1P ) → C(∂0P , ∂1P ) which coincides with π̃ΓP . Thus π̃ΓP is
an A-injective morphism of based Galois actions and we have completed the
construction of P .

In our final step we start from an arbitrary based action (∗, p,A) with
connected Γ and prove the theorem.
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To this end we shall explain step by step the arrows of the diagram

(Γ̃, d̃0, d̃1) (Γ̃, d̃0, d̃1)

(∗̃, p̃, Ã) P

C(∂̃0P , ∂̃1P ) C(∂0P , ∂1P )

1

p̃

A-inj

σ̃P σP

A-inj

As shown in the previous step form the pullback P and the let the right

column of the present diagram be exactly the left hand side of the previous

diagram (on page 77). Now Γ̃ is simply connected and we can construct

the universal arrow for P and let it be the gluing scheme for C(∂̃0P , ∂̃1P ).

Since C(∂̃0P , ∂̃1P ) is a universal based action for C(∂0P , ∂1P ) and the latter

a universal based action for C(∂0, ∂1), the universality of C(∂̃0P , ∂̃1P ) for

C(∂0P , ∂1P ) is established.



Chapter 8

Cayley complexes

Cayley graphs in discrete group theory are the standard models of spaces
with fundamental group a given group G. In algebraic topology a more
general concept of Cayley complex of a given group G arises. It consists of
the Cayley graph of G = 〈E|R〉, where 〈E|R〉 is a presentation of G, and
for each relation r ∈ R and every vertex in the Cayley graph, the unique
sequence of edges corresponding to r, is used as boundary for adjoining a
disc. Since the relator words correspond to circles in the graph one gets a
simply connected 2-CW complex such that factoring the action of the group
G yields a complex with fundamental group G.

In the profinite situation this method is not applicable since one cannot
transverse relations edgewise in the Cayley graph of a group.

8.1 Preliminaries and definition of the Cayley

complex

To make this introductionary explanation more exact and generalize it to
the profinite situation we cite the Cayley graph definition of [34]. Every
profinite group G is the quotient of a free profinite group F (X), where X is
a generating set converging to 1 or, more generally, X is a topological space
(embedded into G), see free presentations [25]. The definition of the Cayley
graph is given w.r.t. X.

79
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Definition 8.1.1: Let (X, ∗) be a based profinite space (∗ is the base
point), and µ : X → G a continuous map of X into a pro-C -group G such
that µ(∗) = 1. The Cayley graph Γ(G, µ,X) corresponding to the map µ
is given by

Γ(G, µ,X) = G×X, V (Γ(G, µ,X)) = G× {∗}

d0(g, x) = (g, ∗), d1(g, x) = (gµ(x), ∗).

Since FC (X) is the free pro-C group on X the map µ induces a unique
homomorphism σ : FC (X)→ G. Theorem 3.1. [34] states that X generates
G if and only if Γ(G, µ,X) is connected and πC

1 (Γ(G, µ,X)) ∼= ker σ.
We want to come to our definition of the Cayley complex and need certain
constructions involving free groups.

Construction 8.1.2: Let (X, o, δ) be a profinite 2-complex without b .
We construct a corresponding simply connected complex (C(X), o′, δ′), the
cone complex over (X, o, δ).
Take the coproduct C(X) = X ⊔ X≤1 ⊔ {0} where 0 is a single point, the
peak of C(X). Let ι and ι1 be the canonical embeddings of X and X≤1 into
C(X).
Define two maps dX(y) := {ιz : z ∈ δ(ι−1y)} and dX≤1(y) := {ι1z : z ∈
δι−1

1 y} ∪ {ιz : z ∈ δι−1
1 y} ∪ {0}. Now set

δ′y :=











dX(y) y ∈ ιX

dX≤1(y) y ∈ ι1X
≤1

δ′(y) = {0} y = 0

and

o′(y) =











o(ι−1y) y ∈ im(ι)

o(ι−1
1 y) + 1 y ∈ im(ι1)

0 y = 0

We extend the definition to based complexes ((X,A), o, δ) by choosing a point
a ∈ A and construct ((C(X), a), o′, δ′).

Proposition 8.1.3: For every based profinite 2-complex ((X,A), o, δ)
without b and every a ∈ V X∪{0} the cone ((C(X), a), o′, δ′) is a connected
and simply connected profinite 2-complex.
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Proof : The space C(X) is profinite and δ′, o′ are well defined. We show that
(C(X), o′, δ′) is a pre-complex (compare 3. (a) - (c) 2.1.1).

δ′ restricted to ιX is continuous and symmetric with respect to X,X≤1

otherwise. Thus for showing continuity of δ′ it suffices to consider sets of the
form W ({0}, U1, . . . , Un) with ι1ι

−1U1 = U1 ∩ im(ι1). Observe

δ′−1W ({0}, U1, . . . , Un) =

{0} ∪ ι∗δ−1ι∗−1W (U1, . . . , Un) ∪
(

ι∗1δ
−1ι∗1

−1W (U1, . . . , Un) ∩ ι
∗
1ι

∗
1
−1W (U1, . . . , Un)

)

which is open because ι∗, ι∗1 are the canonical liftings of ι, ι1 to the Vietoris
topology of FC(X) ([20]).

Since β′y ∩ im(ι1) 6= ∅ is equivalent to y ∈ im(ι1), and for y ∈ im(ι1) the
boundary map β′ is symmetric in X and X≤1, one has O′(β′y) = o′(y)− 1.

In particular one has for y ∈ V X that β′ι1y = {ιy, ι1y, 0} and for y ∈ EX
that β′ι1y = ι∗δy ∪ ι∗1βy ∪ {0} = {ιv, ιw, ιy, ι1v, ι1w, 0} with βy = {v,w}.

It turns out that
⋃

z∈Y δ
′z ⊆ δ′y. Thus (C, o′, δ′) is a pre-complex. To show

it is a complex it is left to check (a) and (b) of Definition 2.2.1.

Because X has no loops for all y ∈ EX the boundary has two elements.
Thus for each y ∈ EX the boundary can be ordered in the form ιv ≤ ι1v ≤
0 ≤ ι1w ≤ ιw ≤ ιy and so is a big circle. Hence condition (a) is valid.

To show (b) it suffices to take an open neighbourhood U of e where e = ι1v
and v ∈ V X. Now take U ′ = δ−1ι−1

1 U ∩ ι−1
1 U , observe that U ′ is open in X

and if x ∈ U ′ then δx ∈ U ′. Hence V = {ι1u : u ∈ U ′} and V ⊆ U is an
open neighbourhood of e such that for all 2-cells z the intersection β′z ∩ V
is empty or contains exactly two elements.

Since for every c ∈ C(X) there is an edge e ∈ im(ι1) with {c, 0} ⊂ δ′e we
conclude that (C(X), o′, δ′) is connected.

We complete the proof by showing that for every a ∈ V C(X) the complex

((C(X), a), o′, δ′) is simply connected. Assume there is a based pc-action

(G, ((Y, b), o′ , δ′), ∗, p) and a morphism of actions (µ, η) from (∗, p, a) to the

trivial action (∗a, pa, a) on C(X). For every g ∈ EG with 0 ∗ g 6= 0 and

hence for all y ∈ im(ι1) one has y ∗ g 6= y. Since the action of G is disc

free and every c ∈ C(X) is in the boundary of an element in im(ι1) we have

C(X) ∗ g ∩C(X) = ∅. But C(X) is connected and so Y is connected. Thus

for every g the equation 0 ∗ g = 0 holds and therefore (∗a, pa, a) is universal.
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Corollary 8.1.4: Let ((X,A), o, δ) be a based profinite 2-complex, C(X)
be the cone over X and S be any subcomplex of X. Then there is an injective
morphism of complexes ιS : C(S)→ C(X).

Proof : The natural embedding ιS : S ⊔S≤1 ⊔ {0} → x⊔X≤1 ⊔ {0} turns out to be

the desired complex morphism.

Lemma 8.1.5: Let ((X, a), o, δ) be a connected and simply connected
complex containing a cone C with peak 0. Let e1, e2 ∈ EX and v, w ∈

V X such that βe1 = {0, v} and βe2 = {0, w}. Consider Γ = b and set
(Y, o′, δ′) := (X, o, δ) ⊔ b b where b b := {u1, u2, e} and e is an edge. Let
(1{a,u1}, ((Y, {a, u1}), o

′, δ′),B, q) be a trivial based action. Denote the two
components of 1{a,u1} by 1a and 1u1. Define η0, η1 : Y → Y by setting

η0 ↾ X = id(X) , η1 ↾ X = id(X)
η0(u1) = 0 , η1(u1) = 0
η0(u2) = v , η1(u2) = w
η0(e) = e1 , η1(e) = e2

and define µ0, µ1 : 1{a,u1} → 1{a,u1} by setting

µ0 ↾ 1a = id(1a) , µ1 ↾ 1a = id(1a)
µ0[1u1] = 1a , µ1[1u1] = 1a

.

Let ∂i = (µi, ηi) then ((B, q, A), ∂0, ∂1) is a gluing scheme such that C(∂0, ∂1)
is a universal based Galois action.

Proof : Because b b is simply connected and (B, q, A) turns out to be a based Galois
action, (B, q, A) is universal. η1, η2 are complex morphism and µ1, µ2 mor-
phisms of profinite groupoids. The property ηi(yBg) = ηiyBµig is satisfied
for i = 1, 2 and thus ∂0, ∂1 are morphisms of based Galois actions.

Therefore ((B, q, A), ∂0, ∂1) is a gluing scheme. The free pro-C group in one

generator ẐC , acts on the universal Galois cover Γ̃ of Γ. Theorem 7.2.2

(our version of the van Kampen Theorem) yields a lifting (((B̃, q̃, Ã)), ∂̃0, ∂̃1)

of ((B, q, A), ∂0, ∂1) with underlying complex (Ỹ , õ, p̃). Observe that Ỹ =

Y × ẐC as a set. It turns out that within C(∂̃0, ∂̃1) all peaks of the cones

C × ẐC are identified by ∂̃0, ∂̃1. Thus all the cones are identified and hence

C(∂0, ∂1) = C(∂̃0, ∂̃1). The van Kampen theorem 7.2.2 yields thatC(∂0, ∂1)

is universal.
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We now look at the Cayley graph of a profinite group G and identifiy rela-
tions.
Given a generating set X of G converging to 1 then the Cayley graph of
Γ(G, µ,X) is connected and C -simply connected by the proof of Theorem
3.1 [34]. Thus interpreted as a based 1-complex it is simply connected by
Corollary 6.3.6.

Definition 8.1.6: Let FC (X) be the free group on X and Γ(FC (X), µF , X)
the Cayley graph of FC (X). A geodesic L(v, w) for two elements v, w ∈ Γ is
a minimal simply connected and connected subgraph of Γ containing v and
w.

Lemma 8.1.7: L(v, w) exists for every v, w in Γ(FC (X), µF , X). The
geodesic is unique.

Proof : Since the Cayley graph is connected and simply connected for each v,w there
is a connected simply connected subgraph containing them. Take the set of
all such subgraphs and define an order relation by inclusion. Since such
subgraphs are obviously closed the intersection over each chain is a closed
minimal subgraph, therefore a geodesic.

Assume the geodesic is not unique then there are two geodesics L,L′ with

not empty symmetric difference δ(L,L′). There are minimal closed connected

subgraphs l ⊂ L, l′ ⊂ L′ with intersection l′∩ l ⊂ V Γ and cardinality at least

2. Since V Γ is totally disconnected we can partition l ∩ l′ into two clopen

subgraphs V1, V2 of l∪l′ and partition the complement into two clopen subsets

U1, U2. Let C2 be the cyclic group with order 2 and generator a. Then define

C := l ∪ l′ × C2 and d′0, d
′
1 : C → C by setting d′0(x, g) = (d0x, g) and

d′1(x, g) = (d1x, g) if x and d1x are in the same clopen set, and d′1(x, g) =

{d1x, g · a} else. The result is a connected graph such that C2 acts on it.

The quotient C/C2 is not C -simply connected, a contradiction to Lemma A

[32].

It may be the case that L(v, w) = Γ, e.g. take the Cayley graph of Ẑ2 and
two points v = 2, w = 2−1.

Let us construct the Cayley complex for a given group G. There exists a free
presentation 〈E|N〉 of G [25], i.e. a set of generators X and an epimorphism
ϕ : FC (X)→ G. Let N = kerϕ.
For a finite group, with presentation the set of generators A and the set
of relations R, one expects the Cayley graph to contain circuits for each
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relation r ∈ R. In combinatorial group theory (see [17]) constructing the
Cayley complex means adjoining to each circuit a certain number of 2-cells.
We want to imitate this construction and extend it to the infinite case. Since
the Cayley graph of the free pro-C group FC (X) is not the projective limit
of simply connected finite graphs one is forced to add some 2-cells to get a
“Cayley” complex which is the projective limit of finite “Cayley” complexes.
Since in our setting it seems quite unnatural to adjoin 2-cells to a simply
connected complex, we will introduce two concepts: The Cayley complex
and the reduced Cayley complex. To construct the Cayley complex we will
adjoin 2-cells in a general but simple manner. In this case every Cayley
complex will turn out to be the projective limit of finite ones. To construct
the reduced Cayley complex we will adjoin 2-cell to some geodesics only.
The advandage of reduced Cayley complexes is that they are much closer
to “Cayley complexes” described in topology and discrete group theory (see
next section for examples).

Construction 8.1.8: Let G be a pro-C group with generating set X
converging to 1 and 〈X|N〉 be a free presentation of G, i.e. there is an
epimorphism ϕ : FC (X)→ G such that kerϕ = N .
Take BΓ(FC (X), µF , X) the barycentric refinement of the Cayley graph of
the free pro-C group on generators X and ∆ := BΓ(FC (X)µF , X)/N . Then
interpret ∆ as a 1-complex (∆, o, δ).
Form the cone C(BΓ) and define the space C := C(∆) × G ⊔ ∆ × G.
Setting δ′ := δ × id and o′ := o turns (C, o′, δ′) into a profinite 2-complex.
Let ιC : ∆ → C(∆) be the natural embedding. Define complex morphisms
ι0, ι1 : C → C:

ι0(g, f) :=

{

(g, f) : g ∈ C(∆)×G
(ιCg, 1) : else

ι1(g, f) :=

{

(g, f) : g ∈ C(∆)×G
(ιCg, f) : else

K(G):= C(ι0, ι1) is the Cayley complex of the pro-C group G.

Proof : We have to show that (C, o′, δ′) is a complex and that ι0, ι1 are complex

morphisms. Observe δ′(g, f) = δg × {f}. Thus C is a profinite 2 com-

plex. Because ιC is an embedding of complexes ι0, ι1 turn out to be complex

morphisms.
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Proposition 8.1.9: K(G) is a connected and simply connected complex.
Moreover there is a disc free action of G on K(G), which coincides with the
natural action of G on ∆.

Proof : By Proposition 8.1.3 each cone C(∆) × {f} is connected and simply con-
nected. Set ∂i := (id, ιi), for i = 0, 1, and (∗, p,A) to be the trivial based
action on C with A := {(1, g) : g ∈ G}. Then ((∗, p,A), ∂0, ∂1) is a gluing
scheme with all connected components, appart from BΓ/N , simply connected
and a simply connected underlying gluing graph. Theorem 7.2.2 yields that
in the lifted gluing scheme (C̃, ∂̃0, ∂̃1) the action of N on BΓ is anhilated
in C(∂̃0, ∂̃1). Thus C(∂0, ∂1) is universal. We define an action of FC (X) on
C(η0, η1).

Observe there is an action (GA, C, ⋄, q) of the connected groupoid GA with

object set A and object groups trivial. To verify this we define q and ⋄.

Let q(c) := a ∈ A with πFC (X)a = πFC (X)c and define for (g, f) ∈ q−1a

and h ∈ GA(a, a′) with a 6= a′ the action c ⋄ h := (gh, fh). For i = 0, 1

let µi : GA → GA be the unique maps such that ηi(c ⋄ f) = ηic ⋄ µif and

let ∂′i := (µi, ηi). Observe that the underlying complex of the coequalizer

C(∂′0, ∂
′
1) is C(η0, η1). The image of GA acts disc free on C(η0, η1) since it

acts disc free on ∆ which embeds into C(η0, η1). It is a routine calculation

that the image of GA within C(∂′0, ∂
′
1) generates the group G. By construction

the embedding ∆→ C(η0, η1) can be extended to an embedding of actions.

Because all peaks of the cones in C are embedded into K(G), we call x a
peak in K(G) if it is the image of a peak of a cone in C.

Corollary 8.1.10: The Cayley complex K(FC (X)) is the projective limit
of finite Cayley complexes.

Proof : By 4.2.1G acts disc free onK(FC (X))/N . Define a relation onK(FC (X))/N
by setting

g ∼ g′ ⇔







g = g′ :
∃x : x/N ∈ βg = βg′, x a peak in K(G)
∃x, ∃e ∈ EBΓ : {x/N, e} ⊂ βg ∩ βg′, x a peak in K(G)

The relation ∼ is closed since N is. By construction g ∼ g′ ⇒ o(g) = o(g′).

Thus by Lemma 2.3.4 the quotient is a profinite connected 2-complex with
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disc free action of G. It is easily seen that (K(FC (X))/N)/∼ = K(G).

Therefore we have a morphism (µN , ηN ) : (∗, p, 1FC (X)) → (∗N , pN , 1G) of

based Galois actions (G(FC (X)),K(FC (X)), ∗, p) and (G(G),K(G), ∗N , pN ).

Therefore an inverse system system for FC (X) can be extended to an inverse

system for (∗, p, 1FC (X)).

Corollary 8.1.11: Every Cayley complex K(G) is the projective limit of
an inverse system of finite Cayley complexes K(G/N).

Proof : Restrict the inverse system of (∗, p, 1FC (X)) to all projections of (∗′, p′, 1G)

and observe that, (∗′, p′, 1G) is the projective limit of the restricted system.

Next we will formally construct the reduced Cayley complex. Let FC (X) be
a free pro-C group and Γ(FC (X), X, µF , X) its Cayley graph. Let Geo(Γ, S)
be the subspace of FΓ (= hyperspace of Γ) consisting of all the geodesics of
the form L(f, f · s) with s ∈ S ≤ FC (X).
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Construction 8.1.12: Let G be a pro-C group and 〈X|N〉 be a free
presentation of G. We modifiy Construction 8.1.8.
Take BΓ(FC (X), µF , X) the barycentric refinement of the Cayley graph of
the free pro-C group with generators X. Interpret BΓ as a 1-complex
(BΓ, o, δ).
With help of Proposition 1.2.3 each geodesic L(f, f · n), f ∈ FC (X), n ∈ N
can be uniquely lifted to a geodesic LB(f, f · n) within B(Γ(FC(X), µF , X)).
For each lifted geodesic LB(f, f ·n) with n ∈ N form the cone C(LB(f, f ·n)).
Remember the definitions of ι and ιS (S = C(LB(f, f ·n))) from Construction
8.1.2 and Corollary 8.1.4. Define ι(f, n) : C(LB(f, f · n)) ⊔LB (f,n·f) BΓ →
Geo(B(Γ), N)× C(B(Γ)) by sending c to (LB(f, f · n), ιC(LB (f,f ·n))(c)) if c ∈
C(LB(f, f · n)) and c to (LB(f, f · n), ι(g)) else.
The union U :=

⋃

f∈FC (X), n∈N im(ι(f, n)) is a closed subcomplex of

Geo(B(Γ), N)× C(B(Γ)).
Set C := U ⊔ ({LB(f, f · n) : f ∈ FC (X), n ∈ N} × BΓ). Let ιC : BΓ→
C(BΓ) be the natural embedding. Define complex morphisms ι0, ι1 : C → C:

ι0(LB(f, f · n), g) :=

{

(LB(f, f · n), g) : g ∈ U
(LB(f, f · n), ιCg) : else

ι1(LB(f, f · n), g) :=

{

(LB(f, f · n), g) : g ∈ U
(LB(1, 1), ιCg) : else

Remark that LB(f, f) is a singelton and thus C(LB(f, f)) consists of 3 ele-
ments only.
There is a disc free action of FC (X) on C(ι0, ι1). Form the quotient
C(ι0, ι1)/N and define an equivalence relation ∼ (compare proof of Corollary
8.1.10):

g ∼ g′ ⇔























g = g′ :
∃x : x/N ∈ βg = βg′, x a peak in C(ι0, ι1)
∃x, ∃e ∈ EBΓ : {x/N, e} ⊂ βg ∩ βg′, x a peak in C(ι0, ι1)
g = (LB(f, f), k)/N
g′ = (LB(f, f), k′)/N

: k, k′ ∈ C(LB(f, f))/N

Then KR(G):= (C(ι0, ι1)/N)/∼ is the reduced Cayley complex of FC (X).

Proof : It is immediate that ι0 and ι1 are complex morphisms and that ∼ is a closed

relation. Thus KR(G) exists.
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Proposition 8.1.13: KR(G) is a connected an simply connected profinite
2-complex with disc free action of G.

Proof : The same argument (using Theorem 7.2.2) as in the proof of Proposition 8.1.9

turns C(ι0, ι1) into a connected and simply connected complex with disc free

action of FC (X). We refere to this action as (∗, p, 1FC (X)). Compare the

proof of Corollary 8.1.10 to deduce that ∼ is a G invariant relation. The

only part to show is that (C(ι0, ι1)/N)/∼ is simply connected. We will

sketch the argument. Observe that (C(L(f, f ·n))/N)/∼ is again a cone, i.e.

the cone C(L(f, f ·n)/N). Proposition 5.2.1 yields a surjective morphism of

based actions from (∗, p, 1FC (X))→ (∗′, p′, 1′) where (∗′, p′, 1′) is the universal

action for the action of G on (C(ι0, ι1)/N)/∼. The relation ∼ lifts to a G

invariant relation ∼′ on (∗, p, 1FC (X)) such that (∗, p, 1FC (X))/∼′ = (∗′, p′, 1′).

Observe that there is no G invariant relation on C(ι0, ι1) which is strictly

contained in ∼′. Thus (C(ι0, ι1)/N)/∼ is simply connected. Alternatively

one can define an appropriate gluing scheme and use Theorem 7.2.2 again.

8.2 Examples of Cayley complexes

Example 8.2.1: Let G := FC (X). Then KR(G) is the barycentric refined
Cayley graph BΓ(G, µG, X) and K(G) is the KR(G) together with a cone
Cg(KR(G)) for each g ∈ G (compare Construction 8.1.8).

Example 8.2.2: Let p be a natural number and Cp be the cyclic group
with order p. Then the Cayley complex K(Cp) = KR(Cp) consists of a 2p-
gon P , i.e. a big circle with 2p edges, and p cones C0(P ), . . . , Cp−1(P ) (see
Figure 8.2.1).
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Figure 8.2.1: The Cayley complex of the cyclic group C2 with generator a.
There are 2 cones amalgamated to a rectangle visualizing the barycentric
refinement of the Cayley graph of C2. The two lables 1 and a are the image
of the embedding of V Γ into BΓ. The realization of K(C2) is a sphere and
the realization of the quotient K(C2)/C2 the projective space P2 as desired.
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Example 8.2.3: Let G := C2 × C2 = {(1, 1), (a, 1), (1, a), (a, a)}. Then
the Cayley complex K(G) 6= KR(G). K(G) consist of the barycentric refined
Cayley graph BΓ({(1, a), (a, 1)}, µ, G) (see Figure 8.2.2) and 4 cones Cg(Γ)
while the reduced Cayley complex is more difficult to describe.
Let α := (a, 1) and β := (1, a) and let R := {α2, β2, αβαβ, βαβα}. Each r in
R gives rise to a geodesic LB(f, f ·r) in BΓ(FC ({α, β}), µF , {α, β}). Observe
that the pairs

(f, r) ∈ {(r, 1), (r, α), (r, β), (r, βα) : r ∈ R}

are representatives for the geodesics LB(f, f · r) which map to different sub-
graphs of KR(G).
Thus KR(G) consists of the barycentric refined Cayley graph of G and 16
adjoint cones (see Figure 8.2.3).
Remark that S2 ⊂ R3 is the unit 2-sphere and [0, 1] the unit interval in R.
The geometric realization of the complexK(G)/G is a spaceX := X0⊔[0,1]X1,
where Xi = S2/C2 for i = 0, 1.
The complex KR(G)/G turns out to resemble a finite version of a torus, i.e.
it can be realized by forming Y = X0 ⊔{0} X1 and adjoining two disc along
the path S0S1S0S1 where 0 is the starting point of simple closed paths S0

and S1 traversing a unit circle S1 ⊂ R2 ∩Xi for i = 0, 1 respectively.
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Figure 8.2.2: The barycentric refined Cayley graph BΓ of C2 × C2 viewed
as a 1-complex. Here C2 = {1, a} and thus (1, 1), (1, a), (a, 1) and (a, a) are
the vertices of the Cayley graph embedded into its barycentric refinement.
The arrows symbolize the action of C2 × C2 on BΓ, e.g. (1, 1) ∗ α = (a, 1),
(a, 1) ∗ β = (a, a).
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Figure 8.2.3: 8 cones of the reduced Cayley complex KR(C2 × C2) are indi-
cated. These cones correspond to the geodesics LB(g, g ·α2) and LB(g, g ·β2)
with g ∈ C2 ×C2. Look at the Cayley graph in figure 8.2.2. The boundaries
of the cones can be determined by traversing the simple closed pathes within
BΓ indicated by the relations of R (the oriented circuits labled by α and β,
e.g. the “outer circle” of the Cayley graph starting at (1, 1) corresponds to
the relation βαβα).
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List of abbrevations

(∗, p) Shorthand for (G, (X, o, δ), ∗, p).
(∗, p, A) Shorthand for (G, ((X,A), o, δ), ∗, p).
BGalAct The category of based Galois actions.
BasedAct The category of based actions.
ContAct The category of continuous actions.
GalAct The category of Galois actions.
Groupoid The category of (abstract) groupoids (G, ·).
Group The category of groups.
Pgroupoid The category of profinite groupoids (G, d0, d1)

and continuous groupoid morphisms.
Set The category of sets.
Top The category of topological spaces X and con-

tinuous maps.
p-OGraph The category of oriented graphs.
p-UGraph The category of unoriented graphs.

LOT Linearly ordered topological.

pc-groupoid Profinite continuous groupoid.

List of symbols

FC (X) The free pro-C group with generating set X
sort.

L(v, w) The geodesic connecting v and w. Both v and
w are vertices in the Cayley graph of a free
pro-C group FC (X).

(G, ((X,A), o, δ), ∗, p) A based action of a pc-groupoid on a profinite
2-complex.

(G, (X, o, δ), ∗, p) A continuous action of a pc-groupoid on a
profinite 2-complex.

(µ, η) A morphism of actions or based actions.
xG The orbit of x under the action of G defined

by xG := {x ∗ g : g ∈ G}.
(G, (X, o, δ), µ) A profinite action of a profinite group G on a

profinite 2-complex (X, o, δ).
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xG The stabilizer of x under the action of G de-
fined by xG := {g ∈ G : x ∗ g = x}.

(G̃, ((X̃, Ã), õ, δ̃), ∗̃, p̃) This is often used for universal Galois actions.
(Γ1 ⊔A Γ2, d0, d1) The oriented adjunction graph along the em-

bedding of A into Γ1 and Γ2.
(BΓ, dB

0 , d
B
1 ) The oriented barycentric refinement of the

graph (Γ, d0, d1).
S The class of all oriented big circles. Su is the

class of unoriented big circles.
I The class of all big lines.
ϕ In the first chapter “ϕ” is designated for rep-

resenting the class function I → S .
πI The quotient map sending a big line I to the

big circle S obtained from I.
βx The boundary of x ∈ (X, o, δ) defined by βx =

δx \ {x}.
C opp The dual category, i.e. the category with ob-

ject set Ob(C ) and C opp(A,B) = C (B,A) for
all objects A,B.

K(G) The Cayley complex of G.
Γ(G, µ,X) The Cayley graph of the pro-C group G and

generators X.
KR(G) The reduced Cayley complex of G.
U c If U is a subset of a set X, which is clear from

context, then U c is the complement of U in X.
(X, o, δ) A (pre-)complex with underlying space X, di-

mension map o and disc map δ.
((X,A), o, δ) A based profinite 2-complex, i.e. A is a set of

representatives of the connected components
of (X, o, δ).

K(X, a) A maximal simply connected and connected
subcomplex of X containing a.

(C(X), o′, δ′) The cone over a complex X. C(X) is a con-
nected and simply connected complex.

D2 A homeomorphic copy of the open unit ball in
R2.

O(A) The dimension of a subset A of a (pre-
)complex (X, o, δ) defined by O(A) :=
supa∈A o(a).

EX Subspace of edges of an (un)oriented graph or
a complex.
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U(x) The neighbourhood filter of x.
E(ϕ, ψ) The equalizer of two morphisms ϕ, ψ : X →

Y .
C(ϕ, ψ) The coequalizer of two morphisms ϕ, ψ : X →

Y .
F (Γ) The free groupoid generated by an oriented

graph Γ.
FX The hyperspace of closed subsets of X.
(

X
n

)

The space of subsets of X with cardinality at
most n.

Geo(Γ, S) The hyperspace of geodesics in Γ of the form
L(f, f · s), where Γ is the Cayley graph of a
free pro-C group FC (X) and s is a subgroup
of FC (X).

LB(f, f · n) The unique lifting of the geodesic connecting
L(f, f ·n) to the barycentric refinement of the
Cayley graph BΓ(FC (X), µF , X).

G(G) The groupoid with one vertex and vertex
group G.

(∗, p, A), ∂0, ∂1) A gluing scheme of a based action with gluing
morphisms ∂0, ∂1.

(G, ∂0, ∂1) A graph of groups with gluing morphisms ∂0

and ∂1.
(X, δ) An unoriented graph with boundary map δ :

Γ→

(

X
2

)

.

G A groupoid G. Here G is an acronym for the
algebraic (G, ·) or the profinite (G, d0, d1).

〈E|R〉 A presentation of a group by a set of genera-
torsE and a set of relations in these generators
R.

〈E|N〉 A free presentation of a free pro-C group G by
a set of generators E and a a normal subgroup
of N � FC (E) such that FC (E)/N is G.

HomC The morphisms of a category C .
C (x, y) The set of morphisms h : x → y, with x, y ∈

Ob(C ). The shorthand for C (x, x) is C (x).
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1x, 1X This symbols stand for the identity morphism
on X, or the identity element of the object
group G(x), or the trivial groupoid with object
set X.

im(F ) Denotes the image of the morphism or functor
F .

(a, b)≤ An open interval of a linearly ordered set or
LOT space (X,≤), with infimum a and supre-
mum b. If the order is clear from context
(a, b)≤ is abbreviated to (a, b). Closed and half
open intervals are [a, b]≤, [a, b)≤ and (a, b]≤.

(Xα, pαβ) Inverse system of objects Xα, i.e. α ∈ Λ is
a directed set and for all α > β there is a
morphism pαβ : Xα → Xβ such that pαγ =
pβγpαβ if α > β > γ.

kerF The kernel of a morphism F , i.e. all elements
mapped to identities.

colimF The colimit of a functor F .
(X,≤) A linearly ordered set or a LOT space.
(X∗, d0, d1) The oriented graph generated by a LOT space

(X,≤) with order relation “≤∗”.
X/∼, X/N The quotient of X modulo a relation ∼ or a

relation generated by N .
H � G H is a normal subgroupoid of G. For groups

write H �G.
H �fin G H is a normal subgroupoid of G with finite

index. For groups write H �fin G.
Ob(C ) The objects of a category C .
P A partition of some topological space.
πC1 (Γ, d0, d1) The pro-C fundamental group of the oriented

graph Γ.
∏

i∈I Xi The product of objects Xi over the index set
I, e.g.

∏

i∈I(Xi, δi) is a product of unoriented
graphs. If I is finite

∏

i∈I Xi = X1×· · ·×Xn.
∐

i∈I Xi The coproduct of objects Xi over the index
set I, e.g.

∐

i∈I(Xi, δi) is a coproduct of
unoriented graphs. If I is finite

∐

i∈I Xi =
X1 ⊔ · · · ⊔Xn.
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lim←−λ∈Λ
Xλ The projective limit of the inverse system of

the Xα formed in the respective category, e.g.
lim←−α∈Λ

(Xα, δα) is considered in the category
p-UGraph while lim←−α∈Λ

Xα is formed in the
category Top.

N The natural numbers (containing 0).
R The real numbers.
↾ The restriction of a relation, or commonly of

a function, e.g for f : A→ B and C ⊂ A one
has f ↾ C : C → B.

Sj (Pre-)complexes of spherical type. In this
work j = −1, 0, 1 only.

S(G, β,H) The standard graph of a graph of groups.
< Symbolizes either an order relation or a sub-

structure relation. In the latter case e.g. H <
G, H < G reads H is a subgroup of G and H
is a subgroupoid of G.

a+ For a ∈ (X,≤), a+ denotes the successor of a.
V X Subspace of vertices of an (un)oriented graph

or a complex.
2X The hyperspace of closed subsets of a topolog-

ical space X.
W (U1, . . . , Un) A base set of the Vietoris topology, on 2X ,

with respect to the open sets U1, . . . , Un ⊆ X.
X≤n The n-skeleton of X. Thus X≤n contains cells

x with dimension o(x) ≤ n. The symbols
X<n, X=n, X≥n and X>n are defined anal-
ogously.

Z The integers.

Ẑ The profinite completion of the group Z. ẐC

is the pro-C completion and Ẑp the pro-p com-
pletion of Z.
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