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Kurzfassung der Dissertation

Das Thema dieser Dissertation kann als �Numerische Methoden für
stochastische Di�erentialgleichungen� im weitesten Sinne wiedergegeben wer-
den. Tatsächlich handelt es sich um eine Zusammenstellung von Arbeiten
in vier verschiedenen Forschungsgebieten, bei denen jeweils sowohl Numerik
als auch Stochastik eine Rolle spielen. Bei allen vorgestellten Problemen
handelt es sich entweder direkt um numerische Probleme, oder sie stehen in
einer engen Beziehung zu solchen. Die Berufung auf Stochastik ist hingegen
so zu verstehen, dass diese Fragestellungen stochastische Methoden verwen-
den, sofern sie sie nicht direkt auf stochastische Probleme beziehen. Genauer
gesagt ist hier unter Stochastik das weit kleinere Gebiet der stochastischen
Analysis zu verstehen, das heiÿt wir betrachten die Lösungen stochastis-
cher Di�erentialgleichung. Eine weitere Verbindung der verschiedenen Prob-
leme, welcher im folgenden sehr verkürzt vorgestellt werden sollen, besteht
in der groÿen Betonung ihrer jeweiligen Geometrie. Tatsächlich spielen ge-
ometrische Beobachtungen in allen hier behandelten Fragestellungen eine
wesentliche Rolle. Schlieÿlich soll noch bemerkt werden, dass Anwendungen
in der Finanzmathematik in allen vorgestellten Bereichen im Hintergrund
stehen. In Kapitel 2 und Kapitel 3 ist dieser Zusammenhang sehr nahe-
liegend und direkt, aber auch in Kapitel 4 und Kapitel 5 lässt sich insofern
eine Verbindung zur Finanzmathematik herstellen, als dass die dort behan-
delten Verfahren in �nanzmathematischen Anwendungen (in naheliegender
Art und Weise) Verwendung �nden können.

Kapitel 1 besteht aus einer kurzen Einführung in stochastische Analy-
sis, hauptsächlich zur Fixierung einer einheitlichen Schreibweise, sowie Ein-
führungen in die Theorie stochastischer partieller Di�erentialgleichungen,
das heiÿt stochastischer Di�erentialgleichungen auf unendlichdimensionalen
separablen Hilberträumen, und in die Numerik stochastischer Di�erential-
gleichungen. Kapitel 2 behandelt zunächst die Geometrie der iterierten Itô-
Stratonovich Integrale der Brown'schen Bewegung. Als erste Anwendung
dieser Betrachtungen stellen wir die �Cubature on Wiener space� Methode
von Terry Lyons und Nicolas Victoir vor, eine Methode zur schwachen Ap-
proximation von Lösungen stochastischer Di�erentialgleichungen. Während
die bisherigen Teile von Kapitel 2 hauptsächlich, aber nicht ausschlieÿlich,
Zusammenstellungen schon bekannter Ergebnisse beinhaltet, sind die weit-
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eren Abschnitte des Kapitels neu. Darin stellen wir eine explizite Formel
für die Berechnung der Momente der iterierten Itô-Stratonovich Integrale
vor, sowie einen Algorithmus zur Berechnung der Momente der zugehörigen
(Lévy) Flächen (areas) basierend auf der Darstellungstheorie der Strukturen,
welche die Geometrie der iterierten Itô-Stratonovich Integrale beschreiben.

Das Kubaturverfahren am Wienerraum wird schlieÿlich in Kapitel 3 auf
den unendlichdimensionalen Fall verallgemeinert, das heiÿt auf stochastische
partielle Di�erentialgleichungen, die bestimmte Regularitätsbedingungen er-
füllen. Es ist vielleicht erwähnenswert, dass dies das erste, auf Kubatur
am Wienerraum beruhende, Resultat für unbeschränkte Koe�zienten ist.
Auÿerdem stellen wir eine Erweiterung für stochastische partielle Di�eren-
tialgleichungen vor, welche durch Sprungprozesse (mit endlicher Aktivität)
angetrieben werden. Neben den theoretischen Resultaten wird die Methode
auch anhand zweier numerischer Beispiele illustriert. Die neuen Resultate
in Kapitel 2 und Kapitel 3 sind in Zusammenarbeit mit Josef Teichmann
entstanden.

Während die Themen der Kapitel 2 und 3 eng miteinander verbunden
sind, behandeln die beiden folgenden Kapitel jeweils für sich ein separates
Thema. Im Falle von Kapitel 4 handelt es sich um schwache numerische Ap-
proximation von re�ektierten Di�usionen, das heiÿt von Lösungen stochastis-
cher Di�erentialgleichungen, welche an den Grenzen eines bestimmten Gebi-
etes re�ektiert werden. Die Bedeutung dieser Prozesse liegt in der stochastis-
chen Repräsentation der zugehörigen parabolischen partiellen Di�erential-
gleichungen mit Neumann Randwertbedingungen. Aus numerischer Sicht
sind re�ektierte Di�usionen unangenehm, da die üblichen schwachen Eu-
lerverfahren nur mit schwacher Ordnung 1/2 konvergieren. Wir präsentieren
zwei neue Approximationsverfahren. Das erste Verfahren nutzt einen Kor-
rekturterm, der aus der Fehlerentwicklung des Eulerverfahrens konstruiert
werden kann, und liefert Konvergenzordnung 1. Allerdings lässt es sich im
Allgemeinen nur in Dimension eins anwenden. Das zweite Verfahren ist ein
adaptives Verfahren, welches in jeder Dimension angewendet werden kann,
auch bei Problemen, welche die Regularitätsvoraussetzungen üblicher Ver-
fahren mit höherer Ordnung als 1/2 nicht erfüllen. Empirische Tests weisen
auf eine Verbesserung der Konvergenzrate über 1/2 hin, aber Rate 1 konnte
nicht erreicht werden. Kapitel 4 basiert auf Zusammenarbeit mit Anders
Szepessy und Raul Tempone.

Kapitel 5 beinhaltet eine Implementierung eines neuen �Simuliertes An-
nealing� Verfahrens von Fabrice Baudoin, Martin Hairer und Josef Te-
ichmann. �Simuliertes Annealing� ist ein bedeutendes Verfahren zum
Au�nden globaler Minima nicht-konvexer Funktionen durch stochastischer
Störung eines Gradienten�usses. Baudoin, Hairer und Teichmann konnten
das Verfahren auf kompakte homogene Räume von Liegruppen ausdehnen.
Angewendet auf Optimierungsaufgaben im Rn bedeutet das, dass hypoellip-
tische, also nicht-elliptische stochastische Störungen verwendet werden kön-
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nen. Die Ergebnisse dieses Kapitels entstanden in Zusammenarbeit mit Josef
Teichmann und Richard Warnung.
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Abstract

The present thesis addresses four di�erent topics which can be broadly sub-
sumed under �Numerics of stochastic di�erential equations�. More precisely,
all the treated problems are concerned with or related to questions of nu-
merical analysis or approximation. Moreover, all these numerical problems
are either stochastic in nature, i. e. can be formulated in terms of stochastic
di�erential equations, or are approached using stochastic methods, viz. meth-
ods involving stochastic di�erential equations. The problems are treated in
a geometric way in the sense that special emphasis is placed on the geometry
of the problem at hand and geometric methods are often employed. More-
over, several of the problems are motivated by mathematical �nance. This
is at least true for Chapter 2 and Chapter 3, but also the other two chap-
ters can naturally �nd applications to �nancial mathematics. Thus, we have
identi�ed the four main threads of the present thesis: numerics, stochastic
analysis, geometry and �nancial mathematics.

After a brief introduction into stochastic analysis in �nite dimensions
(here mainly to �x notations) and in�nite dimensions, and to numerical
methods for stochastic di�erential equations given in Chapter 1, Chapter 2
starts with a discussion on the geometry of iterated Itô-Stratonovich integrals
of Brownian motion, which is the starting point for the subsequent sections
and also for Chapter 3. Then a major application is presented, namely the
method of �Cubature on Wiener space� by Terry Lyons and Nicolas Victoir,
a method for weak approximation of solutions of stochastic di�erential equa-
tions. It should be stressed here that these parts are mainly collections of
known results, albeit maybe taken into a new perspective. Then we switch to
the problem of computing higher moments of the iterated Itô-Stratonovich
integrals and the corresponding areas. We provide one explicit formula for
the moments of the iterated Itô-Stratonovich integrals and one algorithm for
the calculation of the moments of the Itô-Stratonovich areas using represen-
tation theory.

In Chapter 3, we extend the �Cubature on Wiener space� method to an
appropriate class of stochastic partial di�erential equations, i. e. stochas-
tic di�erential equations on separable Hilbert spaces. Notice that this is
the �rst variant of the �Cubature on Wiener space� method that allows for
unbounded driving vector �elds, even in �nite dimensions. Moreover, a �hy-
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brid� extension to stochastic partial di�erential equations driven by jump
di�usions (with �nite activity) is presented. All the new results in Chap-
ter 2 and Chapter 3 are based on joint work with Josef Teichmann.

Chapter 4 proposes two new algorithms for weak approximation of re-
�ected di�usions, i. e. stochastic di�erential equations re�ected at the bound-
ary of a given domain. One algorithm uses an error expansion of the usual
Euler method for re�ected di�usions in order to construct a correction term
which allows to improve the asymptotic order of convergence from 1/2 for
the Euler method to 1. The algorithm, however, is often only applicable for
dimension one. Furthermore, an adaptive algorithm for general dimensions
is constructed, which is also suitable for problems, where the regularity con-
ditions of usual higher order methods fail. Chapter 4 is based on joint work
with Anders Szepessy and Raul Tempone.

Simulated annealing is a well-known stochastic method for global opti-
mization of non-convex functions. Chapter 5 contains an implementation of
the algorithm presented by Fabrice Baudoin, Martin Hairer and Josef Teich-
mann [4], which extends simulated annealing to homogenous spaces of Lie
groups. In the context of global optimization on Rn, this methods allows
hypo-elliptic implementations of simulated annealing. Chapter 5 is based on
joint work with Josef Teichmann and Richard Warnung.
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Chapter 1

Introduction

1.1 Prerequisites from stochastic analysis

In this section we collect the basic concepts, notations and results from
the theory of stochastic analysis which we are going to routinely use in the
subsequent parts of the text. The main aim of this part is to �x notations.
The reader is referred to excellent books like Revuz and Yor [68], Karatzas
and Shreve [40], Protter [64], Ikeda and Watanabe [38] and Øksendal [62]
for more information on this subject and, in particular, on all the properties
mentioned in this section.

Let B = (Bt)t∈[0,∞[ = (B1
t , . . . , B

d
t )t∈[0,∞[ denote a d-dimensional Brow-

nian motion de�ned on the �ltered probability space
(
Ω,F , (Ft)t∈[0,∞[, P

)
,

which is assumed to satisfy the usual conditions of right continuity and com-
pleteness. Frequently, we will only consider equations up to some �xed, �nite
time horizon T > 0. In this case, we will consider Brownian motions only
de�ned on [0, T ] without special notice.

We are mainly interested in the Brownian motion as the driving noise for
stochastic di�erential equations (SDEs). Given a collection of vector �elds,
i. e. smooth maps, V, V1, . . . , Vd : Rn → Rn, we consider the corresponding
SDE

(1.1) dXx
t = V (Xx

t )dt+
d∑
i=1

Vi(Xx
t )dBi

t, t ∈ [0, T ],

with initial value Xx
0 = x ∈ Rn.

De�nition 1.1.1. A (strong) solution to the SDE (1.1) is an (Ft)t∈[0,T ]-
adapted stochastic process (Xx

t )t∈[0,T ] with continuous paths such that

Xx
t = x+

∫ t

0
V (Xx

s )ds+
d∑
i=1

∫ t

0
Vi(Xx

s )dBi
s

1



2 CHAPTER 1. INTRODUCTION

for all t ∈ [0, T ]. In particular, the Lebesgue and Itô integrals in the
above equation have to be well-de�ned, e. g. we may require the (strong)
L2-condition that

E

(∫ t

0

(
‖V (Xx

s )‖+
d∑
i=1

‖Vi(Xx
s )‖2

)
ds

)
<∞

for all t ∈ [0, T ].

By a solution to an SDE we will always understand a strong solution.
Even though we have formulated the de�nition of an SDE in terms of

the Itô stochastic integral, it is often more convenient to work in terms of
the Stratonovich integral. To this end, introduce a vector �eld V0 : Rn → Rn
de�ned by

(1.2) V0(x) = V (x)− 1
2

d∑
i=1

DVi(x) · Vi(x),

where Df(x) ·h denotes the directional derivative of the function f in direc-
tion h at the point x, where x, h ∈ Rn. A (strong) solution of the SDE in
Stratonovich form

(1.3) dXx
t = V0(Xx

t )dt+
d∑
i=1

Vi(Xx
t ) ◦ dBi

t, t ∈ [0, T ],

is the process Xx as de�ned in De�nition 1.1.1.

Remark 1.1.2. Of course, the solution Xx of the Stratonovich SDE (1.3)
satis�es the integral equation

Xx
t = x+

∫ t

0
V0(Xx

s )ds+
d∑
i=1

∫ t

0
Vi(Xx

s ) ◦ dBi
s,

where �◦dBi
s� denotes the Stratonovich di�erential with respect to the Brow-

nian motion.

Remark 1.1.3. Recall that vector �elds V : Rn → Rn can be identi�ed with
�rst order di�erential operators via

V f(x) = Df(x) · V (x).

For convenience, we will usually assume that our vector �elds are C∞-
bounded, i. e. they are in�nitely often di�erentiable and the derivatives of
order ≥ 1 are bounded � in particular, the vector �elds themselves do not
need to be bounded. Most of what follows will, of course, also hold under
much weaker assumptions, namely linear growth and Lipschitz conditions.

We cite the classical existence and uniqueness theorem for SDEs.
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Proposition 1.1.4. Assume that the vector �elds V, V1, . . . , Vd are C∞-
bounded. Then for all x ∈ Rn there is a unique strong solution Xx =
(Xx

t )t∈[0,T ] of equation (1.1) with initial value x. Moreover, Xx has mo-
ments of every order.

At one point we will need to know whether the solution of a particular
SDE stays in a certain submanifold of the space. This leads to the invariance
problem for SDEs.

De�nition 1.1.5. Given a submanifoldM ⊂ Rn. M is called locally invari-
ant under (1.1) if for all x ∈M there is a strictly positive stopping time τx

such that
Xx
t ∈M, for all 0 ≤ t ≤ τx, a. s.

Proposition 1.1.6. A submanifold M ⊂ Rn is locally invariant with respect
to the SDE (1.1) if and only if

Vi(x) ∈ TxM, for all x ∈M, i = 0, . . . , d.

For a proof of this classical theorem see Appendix A.1.1.
We end this section by pointing out the connection between SDEs and

partial di�erential equations (PDEs). Using the interpretation of vector �elds
as di�erential operator, we introduce the second order di�erential operator

(1.4) Lf(x) = V0f(x) +
1
2

d∑
i=1

V 2
i f(x)︸ ︷︷ ︸

=Vi(Vif)(x)

, x ∈ Rn,

and consider the heat equation

(1.5)


∂

∂t
u(t, x) = Lu(t, x), (t, x) ∈ [0, T ]× Rn,

u(0, x) = f(x), x ∈ Rn,

where f : Rn → R and L is understood to act on the x-variable of u only.

Proposition 1.1.7 (Feynman-Kac Formula). Under appropriate regular-
ity conditions on the vector �elds and on f , the solution of the heat equa-
tion (1.5) is given by

u(t, x) = E(f(Xx
t )).

We will sometimes assume that the stochastic processes under consider-
ations have smooth transition densities. Recall that the transition density
pt(x, y) of the n-dimensional stochastic process Xx with initial value x ∈ Rn
at time t > 0 and y ∈ Rn is de�ned by

E(f(Xx
t )) =

∫
Rn
f(y)pt(x, y)dy

for all bounded measurable functions f : Rn → R. Of course, this de�nition
only makes sense if the law (Xx

t )∗P of Xx
t is absolutely continuous with

respect to the Lebesgue measure.
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De�nition 1.1.8. A stochastic process Xx with initial value x is called
hypo-elliptic if its transitional density is smooth in (t, x, y).

It is not surprising that hypo-ellipticity is usually very hard to check.
There is, however, a very simple su�cient condition found by Hörmander [36]
and Malliavin [54], see also Nualart [61].

De�nition 1.1.9. The SDE (1.1) satis�es Hörmander's condition if the Lie
algebra generated by

(1.6) {V1, . . . , Vd, [V0, V1], . . . , [V0, Vd]}

spans the whole space Rn at each point x ∈ Rn, where V0 denotes the
Stratonovich corrected drift vector �eld (1.2).

Indeed, Xx is hypo-elliptic if its governing SDE satis�es Hörmander's
condition. Actually, for smoothness of (y, t) 7→ pt(x, y) it is already su�cient
that (1.6) is satis�ed at the initial value x.

1.2 Stochastic analysis in Hilbert spaces

We recapitulate the concepts and results of stochastic analysis on in�nite
dimensional Hilbert spaces which are most relevant to us. The interested
reader is referred to da Prato and Zabczyk [18] for more information on this
subject, see also Carmona and Tehranchi [11]. Furthermore, we discuss the
restriction of SDEs in a Hilbert space to a subspace, which is only a Fréchet
space. For background information on functional analysis see, for instance,
Yosida [89] or Werner [87].

1.2.1 The abstract Cauchy problem in Hilbert spaces

Once and for all, let H be a real, separable Hilbert space with norm ‖·‖H
and inner product 〈· , ·〉H . As a preparation for the stochastic case, we would
like to take a short look at the deterministic, linear abstract Cauchy problem

(1.7)


d

dt
u(t) = Au(t) + f(t), t ∈ [0, T ],

u(0) = x,

where x ∈ H and A is a linear, but (possibly) unbounded operator, A :
D(A) ⊂ H → H, and f : [0, T ] → H is measurable. The obvious problem
which we are facing when trying to make sense of problem (1.7) is that we
somehow need to make sure that u(t) ∈ D(A), for all t ∈ [0, T ]. In general,
this endeavor fails and we cannot solve (1.7). Therefore, we need to restrict
our setting.
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Remark 1.2.1. Usually, H will be a Hilbert space of functions and A a partial
(integro-) di�erential operator de�ned on a subspace of (weakly) di�eren-
tiable elements of H. Then equation (1.7) naturally corresponds to a PDE
or PIDE (partial integro-di�erential equation).

De�nition 1.2.2. A family S = (St)t∈[0,∞[ of bounded linear operators
H → H is called C0-semigroup if

(i) StSs = St+s, for all s, t ∈ [0,∞[,

(ii) S0 = idH , the identity operator on H,

(iii) lim
t↘0
‖Stx− x‖H = 0, for all x ∈ H.

The (in�nitesimal) generator A of the C0-semigroup S is the linear operator
A de�ned by

Ax = lim
t↘0

Stx− x
t

, x ∈ D(A),

where D(A) ⊂ H is the set of all x ∈ H such that the above limit exists.

In the next Proposition 1.2.3 we collect some well-known facts about C0-
semigroups and their generators for future reference. The proofs of these
results are standard and can be found in most text books on functional
analysis.

Proposition 1.2.3. Let S = (St)t∈[0,∞[ denote a C0-semigroup on H with
generator A.

(1) A is a closed, densely de�ned linear operator on H.

(2) x ∈ D(A) implies Stx ∈ D(A), for all t ≥ 0.

(3) d
dtStx = AStx = StAx for x ∈ D(A) and t ≥ 0.

(4) There is a constant c ∈ R such that the resolvent set ρ(A) contains
the interval ]c,∞[ and, moreover, ‖St‖L(H) ≤Mect, for all t ∈ [0,∞[,
where M > 0 is another constant and ‖·‖L(H) denotes the operator
norm on the space L(H) of bounded operators on H.

(5) The map t 7→ St is continuous in the uniform norm in L(H) if and
only if A is a bounded operator. In that case, we have

St = etA =
∞∑
k=0

1
k!
tkAk

for t ≥ 0.

Later on, we will also need the Yosida approximation of the unbounded
operator A.



6 CHAPTER 1. INTRODUCTION

De�nition 1.2.4. Let A be the generator of a C0-semigroup. For λ ∈ ρ(A),
the Yosida approximation Aλ ∈ L(H) is de�ned by

Aλx = λA(λ−A)−1x, x ∈ H.

Since the Yosida approximation is a bounded linear operator, the correspond-
ing C0-semigroup is denoted by (etAλ)t∈[0,∞[.

The Yosida approximations approximate the generator in the sense that

lim
n→∞

Anx = Ax, x ∈ D(A),(1.8)

lim
n→∞

etAnx = Stx, x ∈ H,(1.9)

where the convergence is uniform in t on compact subsets of [0,∞[. Note
that the limits in equations (1.8) and (1.9) make sense because we know that
n ∈ ρ(A) for all n ∈ N su�ciently large by Proposition 1.2.3 (1).

Coming back to the ordinary di�erential equation (ODE) (1.7), we now
impose the condition that A is the generator of a C0-semigroup S.1 We
distinguish between three types of solutions. u : [0, T ] → H is called strict
solution if u is di�erentiable, u(t) ∈ D(A), t ∈ [0, T ] and (1.7) holds for
t ∈]0, T ]. We cannot expect to �nd strict solutions for each x ∈ H. Indeed,
even in the homogeneous case, i. e. for f ≡ 0, it is easy to see that a strict
solution for x ∈ D(A) is given by

u(t) = Stx, t ∈ [0, T ],

which fails to be strict for x ∈ H \ D(A) in general.
As usual in functional analysis, we can arrive at a more general concept

of a solution by testing with linear functionals. An H-valued function u is
called weak solution of (1.7) if, for all t ∈ [0, T ],

〈u(t) , y〉H = 〈x , y〉H+
∫ t

0
〈u(s) , A∗y〉H ds+

∫ t

0
〈f(s) , y〉H ds, ∀y ∈ D(A∗),

where A∗ denotes the adjoint operator of A.
The third concept comes from the variation of constants formula for

ODEs in �nite dimensions. u : [0, T ] → H is called mild solution of equa-
tion (1.7) if

u(t) = Stx+
∫ t

0
St−sf(s)ds, ∀t ∈ [0, T ].

Note that the above equation actually could serve as de�nition of u provided
that the integral exists. While it is obvious that any strict solution u is also
both a weak and a mild solution, it is not so simple to see that the latter
two concepts are basically equivalent.2

1Note that the Hille-Yosida theorem, see Werner [87, Theorem VII.4.13] gives a crite-
rion for the existence of a semigroup with generator A.

2If f is absolutely integrable, then there is a unique weak and mild solution u given by
the variation of constants formula. See da Prato and Zabczyk [18, Proposition A.4].
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1.2.2 Stochastic partial di�erential equations

Next we want to introduce stochastic di�erential equations inH, i. e. stochas-
tic perturbations of (1.7). Since Hilbert spaces are usually function spaces
and the operators are usually di�erential operators, SDEs in in�nite dimen-
sions are often called stochastic partial di�erential equations (SPDEs).

As before, let B denote a d-dimensional Brownian motion for some �nite
d ∈ N. Consider the equation

(1.10)


dXx

t =
(
AXx

t + α(Xx
t )
)
dt+

d∑
i=1

βi(Xx
t )dBi

t, t ∈ [0, T ],

Xx
0 = x ∈ H.

If α, β1, . . . , βd : H → H are vector �elds, this is the direct in�nite dimen-
sional analogue to (1.1).

Remark 1.2.5. Equation (1.10) is an SDE with in�nite dimensional state
space but only driven by a �nite number of Brownian motions. The theory of
the corresponding equations with in�nitely many Brownian motions is well-
established and basically works completely analogous. There are, however,
some technical points to observe due to the following observation: assume
that B = (Bi

t)i∈N, t∈[0,∞[ is an in�nite collection of independent Brownian
motions. Given a Hilbert space U with orthonormal basis (ONB) (ei)i∈N,
we cannot de�ne a process

Xt =
∞∑
i=1

Bi
tei

taking values in U because the above sum diverges (in L2), since

E
(
‖Xt‖2U

)
=
∞∑
i=1

E
((
Bi
t

)2) =∞.

Consequently, one needs to work with cylindrical Brownian motions and the
�(in�nite dimensional) volatility matrix� needs to be a Hilbert-Schmidt type
operator. We refer to da Prato and Zabczyk [18] for a full treatment of the
general case.

We are content to stay in the framework with a �nite number of Brownian
motions because

• we believe that the main di�culties generally have to do with the
in�nite dimensionality of the state space and the unboundedness of
the generator, not with the number of Brownian motions,

• we are mainly motivated by examples from �nance, where a �nite num-
ber of sources of randomness is usually already satisfactory, and
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• numerical simulation anyhow requires to restrict one-self to �nitely
many Brownian motions.

Remark 1.2.6. In the literature, SPDEs are often de�ned as equations of the
form

(1.11)
∂

∂t
u(t, x) = Au(t, x) + F (u(t, x))Ẇ (t, x),

where t ∈ [0, T ], x ∈ Rn and Ẇ is a space-time white noise on [0, T ] ×
Rn. This approach is roughly equivalent to the da Prato-Zabczyk approach
of (1.10), but always uses an in�nite number of Brownian motions. The
reader is referred to Nualart [61] and Walsh [86] for more information about
this point of view.

Coming back to the SPDE (1.10), we may report the �rst bene�t of our
restriction to a �nite number of Brownian motions: the theory of stochastic
integration works exactly as in the �nite dimensional case! In particular,
Itô's isometry and Itô's formula look just as usual. Nevertheless, we have
to consider several concepts of solutions to (1.10), just as in the in�nite
dimensional deterministic case (1.7). Before doing so, let us impose some
conditions on the coe�cients of the equation.

Assumption 1.2.7. A is the generator of a C0-semigroup S = (St)t∈[0,∞[

on H and the vector �elds α, β1, . . . , βd : H → H are C∞-bounded, i. e. they
are C∞ in the sense of Fréchet derivatives and all their derivatives � but not
necessarily the vector �elds themselves � are bounded (as maps from H to
the respective space of multi-linear functions on H).

The above assumption in particular implies that the coe�cients are glob-
ally Lipschitz and have linear growth.

De�nition 1.2.8. Fix x ∈ H and consider a continuous, predictable process
Xx = (Xx

t )t∈[0,T ] with values in H.

(1) Xx is called strong solution of the SPDE (1.10) if Xx
t ∈ D(A) a. s. and

(1.12a) Xx
t = x+

∫ t

0

(
AXx

s + α(Xx
s )
)
ds+

d∑
i=1

∫ t

0
βi(Xx

s )dBi
s,

for t ∈ [0, T ].

(2) Xx is called weak solution of (1.10) if for all y ∈ D(A∗) we have

(1.12b) 〈Xx
t , y〉H = 〈x , y〉H +

∫ t

0

(
〈Xx

s , A
∗y〉H + 〈α(Xx

s ) , y〉H
)
ds

+
d∑
i=1

∫ t

0
〈βi(Xx

s ) , y〉H dB
i
s, t ∈ [0, T ].
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(3) Finally, Xx is a mild solution of the SPDE (1.10) if it satis�es the
variation of constants formula

(1.12c) Xx
t = Stx+

∫ t

0
St−sα(Xx

s )ds+
d∑
i=1

∫ t

0
St−sβi(Xx

s )dBi
s,

t ∈ [0, T ].

Note that we implicitly require all the integrals in (1.12) to exist.

Remark 1.2.9. Mild or weak solutions of an SPDE are, in general, no semi-
martingales. Indeed, if a, say, mild solution Xx had a Doob-Meyer decom-
position, Itô's formula reveals that it would have the form (1.12a). But
this decomposition only exists if Xx actually also was a strong solution.
Consequently, we cannot pass to Stratonovich formulations of SPDEs. In
particular, there is no Itô formula for mild solutions of SPDEs! However,
see [63] and [72], where Itô formulas for f(Xx

t ) are provided under additional
smoothness assumptions on the functional f .

Under minimal assumptions, any strong solution of an SPDE is also
a weak solution and any weak solution is a mild solution, but usually weak
and mild solutions coincide. We concentrate on the concept of mild solutions
which is most suitable for our purposes.

Proposition 1.2.10. Given Assumption 1.2.7, the SPDE (1.10) has a mild
solution Xx for any x ∈ H which is unique among all processes Y satisfying

P

(∫ T

0
‖Ys‖2H ds <∞

)
= 1.

Moreover, the solution has bounded moments in the sense that

sup
t∈[0,T ]

E(‖Xx
t ‖

p
H) ≤ Cp,T (1 + ‖x‖pH)

for any p ≥ 2.

Proof. The result is stated, under weaker conditions, in da Prato and
Zabczyk [18, Theorem 7.4].

An important approach in the context of SPDEs is to use the Yosida
approximations An of the generator A, see De�nition 1.2.4, solve the cor-
responding SPDE and try to infer properties of the solution of the original
problem from the solutions of the �approximate problems�. More precisely,
consider the solution Xx,n of the SDE

(1.13) dXx,n
t =

(
AnX

x,n
t + α(Xx,n

t )
)
dt+

d∑
i=1

βi(X
x,n
t )dBi

t, t ∈ [0, T ],

with Xx,n
0 = x ∈ H. Since An is a bounded operator, any mild solution

of (1.13) is also a strong solution, so all the concepts of solutions coincide.
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Proposition 1.2.11. Let X be the mild solution of (1.10) and let Xx,n be
the solution of (1.13), provided that n ∈ N is large enough such that the
Yosida approximation An of A exists. Then

lim
n→∞

sup
t∈[0,T ]

E
(
‖Xx

t −X
x,n
t ‖

2
H

)
= 0

for any x ∈ H.

Proof. Once again, we refer to da Prato and Zabczyk [18, Proposition 7.5].

The preceeding discussion remains virtually unchanged if the SPDE is
driven by Lévy processes of �nite activity, i. e. the jump parts of the Lévy
processes are compound Poisson processes. In the general Lévy setting,
Filipovi¢ and Tappe [23] provide the existence and uniqueness theorem, but
have to impose a contractivity assumption on the generator A. In the �nite
activity case, we would also like to mention the decomposition theorem of
Forster, Lütkebohmert and Teichmann [25].

Let Lt = (L1
t , . . . , L

e
t ), t ∈ [0,∞[, be a vector of e independent compound

Poisson processes with jump rates µj > 0 and jump distribution νj , i. e. νj
is a probability measure on R, j = 1, . . . , e. This means that

(1.14) Ljt =
Nj
t∑

k=1

Zjk, t ∈ [0,∞[,

where N j
t is a Poisson process with intensity µj and (Zjk)k∈N is a sequence of

independent, identically distributed random variables with distribution νj ,
j = 1, . . . , e. We assume that the jump distribution νj admits all moments,
j = 1, . . . , e. See Protter [64] for more information on Poisson and Lévy
processes. Furthermore, let δ1, . . . , δe : H → H be C∞-bounded vector
�elds. Similar to (1.10), consider the jump driven SPDE
(1.15)
dXx

t =
(
AXx

t− + α(Xx
t−)
)
dt+

d∑
i=1

βi(Xx
t−)dBi

t +
e∑
j=1

δj(Xx
t−)dLjt , t ∈ [0, T ],

Xx
0 = x ∈ H.

Then, in analogy to De�nition 1.2.8, a strong solution Xx of (1.15) is a
càdlàg process satisfying

(1.16a) Xx
t = x+

∫ t

0
(AXx

s− + α(Xx
s−))ds+

d∑
i=1

∫ t

0
βi(Xx

s−)dBi
s

+
e∑
j=1

∫ t

0
δj(Xx

s−)dLjs,
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t ∈ [0,∞[, whereas a mild solution Xx is a càdlàg process satisfying

(1.16b) Xx
t = Stx+

∫ t

0
St−sα(Xx

s−)ds+
d∑
i=1

∫ t

0
St−sβi(Xx

s−)dBi
s

+
e∑
j=1

∫ t

0
St−sδj(Xx

s−)dLjs,

t ∈ [0,∞[. (We shall not need the concept of a weak solution in this case.)

1.2.3 Stochastic di�erential equations in D(A∞)

Analysis of stochastic partial di�erential equations is severly restricted by
the fact that some of the most important tools of �nite dimensional stochas-
tic analysis, like the Itô formula, are only available for strong solutions of
SPDEs, but not for mild or weak ones, see Remark 1.2.9. The general exis-
tence and uniqueness theorem, however, only guarantees the existence of mild
solutions, and a quick glance at the deterministic, homogeneous case reveals
that there cannot be strong solutions for all initial data in H even for simple
problems. Indeed, the solution Xx

t = Stx of the deterministic, homogeneous
abstract Cauchy problem is only a strong solution if x ∈ D(A). If we restrict
ourselves to the space D(A) instead, we immediately face the same problem:
Stx is in the domain of the (unbounded) operator A : D(A) → D(A) if x
lies in the subspace { y ∈ D(A) | Ay ∈ D(A) } ⊂ D(A). If we iterate this
procedure until we arrive at the �in�nitely often di�erentiable� elements in
H, then we might have a chance to actually succeed. In this section, we
want to carry out that program. The more general concepts can be found
in Nagel [1], whereas the applications to SPDEs are given in Filipovi¢ and
Teichmann [24].

For the rest of the section let (A,D(A)) be the generator of a C0-
semigroup (St)t∈[0,∞[ on the Hilbert space H. Consider the space D(A)
and de�ne the graph norm thereon, i. e.

(1.17) ‖x‖2D(A) = ‖x‖2H + ‖Ax‖2H .

Since A is a closed operator, (D(A), ‖·‖D(A)) is a Hilbert space � the inner
product is, of course, given by polarization. Actually, the domain of an
operator endowed with the graph norm is a Hilbert space if and only if the
operator is closed. By recursion, we also de�ne spaces D(An) for all n ∈ N
by

(1.18) D(An+1) = { x ∈ D(An) | Ax ∈ D(An) } , n ∈ N.

Furthermore, we set

(1.19) D(A∞) =
⋂
n∈N
D(An).
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Note that each D(An) and also D(A∞) are dense subspaces of H. The
following example taken from Nagel [1, Example A-I 1.10] shows that this is
not true for general closed operators.

Example 1.2.12. Consider the Banach space H = C([0, 1]) and the closed
operator B with D(B) = C1([0, 1]) de�ned by

Bx(u) = f(u)
d

du
x(u), u ∈ [0, 1],

for some nowhere di�erentiable function f . Then D(B2) = {0}.

The next proposition is also taken from Nagel [1]. Since it might not be
familiar to the reader, we repeat the proof here.

Proposition 1.2.13. Let us endow each of the spaces D(An), n ∈ N, with
a norm

‖x‖2D(An) = ‖x‖2H +
n∑
k=1

∥∥∥Akx∥∥∥2

H
.

Then each space (D(An), ‖·‖D(An)) is a Hilbert space. Moreover, the restric-

tion (St
∣∣
D(An)

)t∈[0,∞[ of S to D(An) is a C0-semigroup on the Hilbert space

D(An) with generator (A,D(An+1)).

Proof. We start with n = 1. Note that D(A) is invariant under St, t ∈
[0,∞[, therefore we can restrict St to D(A). By de�nition of ‖·‖D(A) and
boundedness of St on H, the restriction of St to D(A) is bounded thereon.
Analogously one shows that

lim
t↘0
‖Stx− x‖D(A) = 0, x ∈ D(A),

establishing that the restriction of (St) to D(A) de�nes a C0-semigroup.
We claim that the generator (A′,D(A′)) of that semigroup is given by
(A,D(A2)). To this end, let x ∈ D(A′). Consequently,

A′x = lim
t↘0

Stx− x
t

in D(A),

where the limit is understood in the topology of the Hilbert space
(D(A), ‖·‖D(A)). By construction of ‖·‖D(A), this implies that

A′x = lim
t↘

Stx− x
t

= Ax in H,

since x ∈ D(A). Thus,(A′,D(A′)) ⊂ (A,D(A2)). For the reverse direction,
let x ∈ D(A2), i. e. x ∈ D(A) and Ax ∈ D(A). Therefore, we have

∃ lim
t↘0

Stx− x
t

= Ax in H,

∃ lim
t↘0

StAx−Ax
t

= A2x in H,
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implying that Stx−x
t converges to Ax in D(A). Consequently, D(A2) ⊂

D(A′).
We have now established that (A,D(A2)) is again the generator of a

strongly continuous semigroup on the Hilbert space D(A). Since the do-
mains of generators of C0-semigroups endowed with the graph norm are
again Hilbert spaces, this shows that (D(A2), ‖·‖D(A2)) is a Hilbert space
and the proposition follows by induction.

De�nition 1.2.14. (D(An), ‖·‖D(An)) is called n-th Sobolev space and the
restriction of S to it is called the n-th Sobolev semigroup, n ∈ N.

Let λ ∈ ρ(A), then the resolvent R(λ,A) = (λ − A)−1 : H → D(A) is
an isomorphism from the Hilbert space H to the Hilbert space D(A) with
inverse (λ − A) : D(A) → H. Since the analogous statements hold true for
the Hilbert spaces D(An) and D(An+1), we get the following commutating
diagram (the hierarchy of Sobolev spaces):

(1.20) H
St //

R(λ,A)
��

H

D(A)
St //

R(λ,A)
��

D(A)

λ−A

OO

D(A2)
St // D(A2)

λ−A

OO

D(An)
St //

R(λ,A)
��

D(An)

D(An+1)
St // D(An+1)

λ−A

OO

We still need to endow D(A∞) with a topology.

De�nition 1.2.15. D(A∞) is endowed with the initial topology of the
canonical injections D(A∞) ↪→ D(An).

Proposition 1.2.16. D(A∞) is a Fréchet space, i. e. a complete, metrizable
locally convex vector space.

Proof. Obviously, the topology on D(A∞) is the locally convex topology
generated by the family of (semi-)norms

pn(x) = ‖x‖D(An) , x ∈ D(A∞), n ∈ N.
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Since it is generated by a countable family of semi-norms, the topology can
be metrized, e. g., by

d(x, y) =
∞∑
n=0

1
2n

pn(x− y)
max(1, pn(x− y))

, x, y ∈ D(A∞),

and only completeness is left to be shown. Given a Cauchy sequence (xn)n∈N,
then the sequence is also a Cauchy-sequence for each norm pk, k ∈ N. By
completeness of D(Ak),

∃ lim
n→∞

xn = x(k) ∈ D(Ak)

and x(k) = x(l) for l ≤ k. Consequently, all these limits coincide and de�ne
an element x ∈ D(A∞). Naturally, x = limn→∞ xn also in the topology of
D(A∞).

It is still true that S restricted to D(A∞) de�nes a semi-group with
generator A, so we can include D(A∞) in the Sobolev-hierarchy. We shall
see that this is an exceptional situation in the sense that di�erential equations
in Fréchet spaces usually do not even have local solutions. We will impose
quite strict assumptions on the coe�cients of the SPDE in order to get a
solution of the SPDE in D(A∞) using the hierarchy of Sobolev spaces (1.20).
For a good introduction to analysis on Fréchet spaces see Hamilton [32] and
the following considerations are closely based on that article.

We begin with the de�nition of a derivative of maps. Unlike in the case
of Banach spaces, we can only use the notion of Gateaux derivatives.

De�nition 1.2.17. Given two Fréchet spaces F and G and a continuous
map f : F → G, the derivative of f at the point x ∈ F in direction h ∈ F is
de�ned as

Df(x) · h = lim
t→∞

f(x+ th)− f(x)
t

,

provided that the limit exists, in which case f is called di�erentiable at x in
direction h. We say that f is continuously di�erentiable if it is di�erentiable
for all x ∈ F in all directions h ∈ F and the function

Df : F × F → G

is continuous.

Remark 1.2.18. It is important to understand Df as a function F ×F → G,
and not as a function with values in the space of (bounded) linear operators,
since the latter space has an even worse topology. Indeed, one can show that
the dual space of a Fréchet space F is a Fréchet space if and only if F is a
Banach space.
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Higher derivatives are de�ned analogously, e. g. the second derivative is
de�ned by

D2f(x) · (h, k) = lim
t→0

Df(x+ tk) · h−Df(x) · h
t

,

and a function is two times continuously di�erentiable if Df ∈ C1(F×F ;G).
Many of the standard results of calculus still hold in principle, but sometimes
they have to be stated in a di�erent way.

The inverse function theorem does, however, not hold for Fréchet spaces,
see Hamilton [32] for counterexamples and much background information.
Moreover, Fréchet spaces are bad places for ODEs, as the following example
shows.

Example 1.2.19 (Hamilton [32], Counterexample I.5.6.1). De�ne the
Fréchet space

F = { f ∈ C∞(R;R) | ∀x /∈ [0, 1] : f(x) = 0 } .

The derivative operator d
dx : F → F is obviously smooth since it is a contin-

uous linear operator. Consider the ODE

(1.21)
d

dt
ft =

d

dx
ft, f0 = f ∈ F.

A (local) solution (ft)0≤t<ε of (1.21) necessarily satis�es

ft(x) = f(t+ x), 0 ≤ t < ε, x ∈ R.

Note, however, that x 7→ f(t + x) ∈ F if and only if f(y) = 0, ∀y ∈
[0, t[. In particular, if we choose f such that f(x) 6= 0, ∀x ∈]0, 1[, then the
equation (1.21) is not locally solvable for this initial value.

Remark 1.2.20. The operator d
dx of Example 1.2.19 is continuous, the semi-

group et
d
dx , however, does not even exist locally on F . Similar examples

show that also uniqueness may fail if local solutions exist.

The Fréchet space D(A∞) has a particular structure, since it is a pro-
jective limit of the Hilbert spaces D(An), n ∈ N, so we might hope that
things, after all, work out nicely in D(A∞). Note, however, that any Fréchet
space can be written as projective limit of a sequence of Banach spaces, see
Schaefer [73].

Fortunately, we can avoid all problems caused by the topology on D(A∞)
by imposing stricter conditions on the coe�cients of the SPDE, following
Baudoin and Teichmann [5].

Assumption 1.2.21. Additionally to Assumption 1.2.7, let α, β1, . . . , βd :
H → D(A∞) such that they are C∞-bounded when understood as maps
α, β1, . . . , βd : (D(An), ‖·‖D(An))→ (D(An), ‖·‖D(An)), for all n ∈ N.
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Proposition 1.2.22. Given vector �elds satisfying Assumption 1.2.21.
(1) Fix n ∈ N and x ∈ D(An) and interpret the SPDE (1.10) as an SDE in
the Hilbert space D(An). Then there is a unique mild solution in D(An),
which is a strong solution if the initial value lies in the dense subspace
D(An+1) ⊂ D(An). Moreover, the solution Xx coincides with the solution of
the equation in D(An−1) with the same initial value x ∈ D(An) ⊂ D(An−1).
(2) For given x ∈ D(A∞) there is a solution of (1.10) with continuous tra-
jectories in D(A∞).

Proof. Fix x ∈ D(An). By a direct application of Proposition 1.2.10 for
the Hilbert space D(An), we �nd that there is a mild solution Xx,n =
(Xx,n

t )t∈[0,T ] for any x ∈ D(An). This solution is unique in the sense
that each solution is a version of Xx,n. The C0-semigroup Sn generated
by (A,D(An+1)) is nothing but the restriction of S to D(An), see Proposi-
tion 1.2.13. Therefore, since the restriction of Sn to D(An+1) coincides with
Sn+1, it is clear that Xx,n = Xx,n+1 provided that x ∈ D(An+1), again in
the sense of being versions of each other. Consequently, we may omit the
superscript n.

Moreover, if x ∈ D(An+1), then Xx is a semi-martingale in D(An) and
Itô's formula applied to

Xx
t = Stx+

∫ t

0
St−sα(Xx

s )ds+
d∑
i=1

∫ t

0
St−sβi(Xx

s )dBi
s

gives

Xx
t = x+

∫ t

0

(
AXx

s + α(Xx
s )
)
ds+

d∑
i=1

∫ t

0
βi(Xx

s )dBi
s,

implying that Xx is a strong solution (of the equation in D(An)). This shows
(1).

For x ∈ D(A∞) let Xx be the mild (and strong) solution of (1.10) in any
(and therefore all) D(An), n ∈ N. More precisely, not that Xx,n is a version
of Xx,1, for any n ∈ N. Consequently, Xx = Xx,1 is unique in that sense.
Xx is continuous in all the Sobolev spaces D(An), therefore Xx

t ∈ D(A∞)
and the process is continuous there.

Under Assumption 1.2.21, Xx is a strong solution of equation (1.10) in
D(An) for any x ∈ D(An+1) � and therefore a semi-martingale. Thus, it
makes sense to consider its Stratonovich formulation, cf. (1.3) in the �nite-
dimensional setting. To this end, introduce a (densely de�ned) vector �eld
β0 : D(An+1) ⊂ D(An)→ D(An) de�ned by

(1.22) β0(x) = Ax+ α(x)− 1
2

d∑
i=1

Dβi(x) · βi(x), x ∈ D(An+1).
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Of course, β0 corresponds to the vector �eld V0 de�ned in (1.2). For x ∈
D(An+1) ∩ D(Am+1), n,m ∈ N, the derivatives of βi : D(An) → D(An)
and βi : D(Am) → D(Am) coincide for i = 1, . . . , d by de�nition of the
graph norms. Consequently, we get the Stratonovich drift vector �eld β0 on
D(An+1) ⊂ D(An) simply by restricting β0 : D(A) → H to D(An+1). For
x ∈ D(An+1), the solution Xx of (1.10) on D(An) satis�es the Stratonovich
SDE

(1.23) dXx
t = β0(Xx

t )dt+
d∑
i=1

βi(Xx
t ) ◦ dBi

t, t ∈ [0, T ]

with initial value Xx
0 = x. Equation (1.23) is an immediate consequence of

the fact that Xx is a semi-martingale on D(An) for x ∈ D(An+1) and the
Itô Formula.

1.3 Approximation of SDEs

Back to the �nite dimensional setting, consider once again the stochastic
di�erential equation (1.1). In many situations, the solution Xx of the SDE
is not directly needed but the true quantities of interest are of the form

E(f(Xx
T ))

for some function f : Rn → R. For instance, f might be the (discounted)
payo� function of a (European) option. Then E(f(Xx

T )) corresponds to an
arbitrage-free price of the option, provided that (1.1) describes the dynamics
of the underlying under a martingale measure. Or we need to solve the heat
equation

∂

∂t
u(t, x) = Lu(t, x)

with initial condition u(0, x) = f(x), where L is the partial di�erential op-
erator de�ned in (1.4). By the Feynman-Kac formula, Proposition 1.1.7, we
have u(t, x) = E(f(Xx

t )).
In most situations we are not able to solve (1.1) explicitly: we cannot

give a formula expressing Xx
T as a function of B and we cannot give a direct

way to sample from the distribution (Xx
T )∗P of Xx

T . Therefore, we need to
approximate the solution Xx or its law. We will introduce some notations
and give some remarks on the basis of the Euler scheme, which is the most
simple numerical approximation scheme for SDEs. The standard reference
for approximation of SDEs is Kloeden and Platen [42].

Given a �xed partition 0 = t0 < t1 < · · · < tN = T of [0, T ] with size N
and a �xed initial value x ∈ Rn, introduce a discrete-time stochastic process
(XN

k )Nk=0 by recursively de�ning X
N
0 = x and

(1.24) X
N
k+1 = X

N
k + V (XN

k )∆tk +
d∑
i=1

Vi(X
N
k )∆Bi

k, k = 0, . . . , N − 1.
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Since X
N
k is regarded as an approximation of Xx

tk
, we have to choose ∆tk =

tk+1 − tk, k = 0, . . . , N − 1. The choice of ∆Bk, however, is not so simple.
We shall distinguish between two cases.

Case A. ∆Bi
k = Bi

tk+1
− Bi

tk
, k = 0, . . . , N − 1, i = 1, . . . , d. More sloppily,

we shall write ∆Bk = ∆Bk.

This choice seems natural having the Euler method for ODEs in mind,
and it is feasible for numerical implementations, since ∆Bk ∼

√
∆tkY , if Y

is a d-dimensional standard normal random variable, symbolically we write
Y ∼ N (0, Id). Moreover, all the increments of B are independent. Of course,
standard normal random variables can be sampled fairly easily, and therefore
X
N
k can be sampled in Case A.

Remark 1.3.1. Notice, however, that sampling the random increments in
higher order schemes is, in general, a di�cult task.

Case B. Let (εk)N−1
k=0 be any family of independent, identically distributed

d-dimensional random variables such that the moments of ε0 of order up to
3 � and, consequently, of any εk � coincide with the corresponding moments
of a d-dimensional standard normal random variable. Then set

∆Bk =
√

∆tkεk, k = 0, . . . , N − 1.

The only condition on ∆Bk in Case B is that it has the same moments as
∆Bk. Therefore, it makes sense to choose εk as simple as possible among all
random variables with this condition. Especially for computational purposes,
this leads to

(1.25) εik =

{
+1 with probability 1/2
−1 with probability 1/2

, i = 1, . . . , d, k = 0, . . . , N − 1,

which we understand in the sense that all εik, i = 1, . . . , d, k = 0, . . . , N − 1
are independent of each other.

Remark 1.3.2. (∆Bk)N−1
k=0 of Case A trivially satis�es the above moment

condition of Case B. Therefore, Case A is a special case of Case B.

There is a big probabilistic di�erence between Case A and Case B: while
∆B is, by construction, de�ned on the same probability space (Ω,F , P ) as
B, this is not necessarily true for ∆B chosen according to Case B. In fact,
the requirements of Case B are only formulated in terms of the distribution
of ∆B, so these random variables could be de�ned on any probability space.
Especially if we work with the discrete choice (1.25), there is no need to use
such a complicated probability space as Ω � which essentially encompasses
the Wiener space. Therefore, in Case B, Xx

T and X
N
N , the discrete approxi-

mation, are random variables de�ned on di�erent probability spaces, so there
is no direct way to compare them.
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De�nition 1.3.3. The Euler scheme with choice of ∆B according to Case
A is called strong Euler scheme and the resulting random variables X

N

are called strong (Euler) approximations of Xx. Conversely, in Case B, the
scheme is called weak Euler scheme and the approximating random variables
X
N
are called weak (Euler) approximations of Xx.

As already anticipated above, two types of convergences of the approxi-
mations to the exact random variables can be studied. For the de�nitions,
let X

N
N be the approximation of Xx

T given by any numerical scheme based
on a time-partition (tNk )Nk=0 with

∆(tN ) = max
k=0,...,N−1

∆tNk

converging to 0 for N →∞.

De�nition 1.3.4. The family of random variables (XN
N )N∈N converges

strongly to Xx
T if

lim
N→∞

E
(∣∣∣Xx

T −X
N
N

∣∣∣) = 0.

The scheme has strong order γ > 0 if there is a constant C > 0 such that

E
(∣∣∣Xx

T −X
N
N

∣∣∣) ≤ C∆(tN )γ .

Of course, the notion of strong convergence does only make sense for
strong schemes, because the approximation needs to be de�ned on the same
probability space as the exact solution.

De�nition 1.3.5. Let G be a (su�ciently large) family of functions Rn → R.
The family of random variables (XN

N )N∈N converges weakly to Xx
T if

lim
N→∞

E
(
f
(
X
N
N

))
= E(f(Xx

T )), for all f ∈ G.

The scheme has weak order γ > 0 if for all f ∈ G there is a constant C =
C(f) > 0 such that∣∣∣E(f(Xx

T ))− E
(
f
(
X
N
N

))∣∣∣ ≤ C∆(tN )γ , for all N ∈ N.

Classically, weak convergence is de�ned in terms of G = Cb(Rn), the
family of bounded continuous functions, but no order of convergence can be
obtained in that case. For getting a rate of convergence, more regularity
is necessary. Moreover, in practical applications one is often interested in
the moments of a random variable. Therefore, G is often chosen to include
polynomials up to some degree.

Of course, it is a basic result of numerics of SDEs that the strong Euler
scheme converges strongly to the true solution with strong order 1/2 and
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that the weak Euler scheme converges weakly with weak order 1. For the
strong approximation result one only needs the standard (uniform) Lipschitz
and linear growth condition, the situation for the weak convergence is a
little bit more complicated. Essentially, Kloeden and Platen [42, Theorem
14.1.5] show that a weak order 1 holds for �C4+ε-bounded� test functions
provided that the coe�cients of the SDE are �C2+ε-bounded�, where (k+ ε)-
times di�erentiable means k times di�erentiable with ε-Hölder continuous
kth derivative.

Note that the strong di�erentiability conditions on the test functions
cannot be relaxed in general. This reveals a certain gap between strong and
weak approximation: in fact, given a uniformly Lipschitz test function f �
which is not C2 � and let X

N
N be a strong approximation of Xx

T . If the
coe�cients of (1.1) satisfy mild regularity conditions, then X

N
N converges

strongly with order 1/2 and we may conclude that∣∣∣E(f(Xx
T ))− E

(
f
(
X
N
N

))∣∣∣ ≤ ‖∇f‖∞E(∣∣∣Xx
T −X

N
N

∣∣∣) ≤ ‖∇f‖∞∆(tN )
1
2 .

Consequently, we get a weak order of convergence 1/2 for a family of func-
tions f , for which the usual theory does not give convergence at all. While
it is perfectly possible to use strong schemes, i. e. schemes based on Case A,
for weak approximation of random variables, and study their weak rate of
convergence, it is, of course, not possible to use weak schemes, i. e. schemes
based on Case B, for strong approximation, simply because they do not need
to be de�ned on the same probability space as the random variable, which
needs to be approximated.

In fact, the weak convergence of strong schemes can be extended to much
larger classes of test functions, as was shown by Bally and Talay [2].

Proposition 1.3.6. Assume that the driving vector �elds of (1.1) are C∞-
bounded and satisfy a uniform Hörmander condition. Then the strong Euler
scheme converges weakly with weak order 1 for all bounded measurable func-
tions f .

Remark 1.3.7. Bally and Talay [2] even prove the existence of an error ex-
pansion for the strong approximation for bounded measurable functions in
the sense of Talay and Tubaro [80].



Chapter 2

Iterated Stratonovich integrals

This chapter is concerned with a study of the iterated Itô-Stratonovich inte-
grals of the d-dimensional Brownian motion. Of course, the analysis of these
processes, and in particular of the corresponding �areas� like the Lévy area,
have a long tradition, going back to the calculation of an explicit formula for
the Laplace transform of the Lévy area by P. Lévy.

We are interested in the iterated integrals because of two reasons. Firstly,
they appear prominently in the stochastic Taylor expansion, i. e. an ex-
pansion of the solution of an SDE similar to the Taylor expansion in the
deterministic case, see Subsection 2.1.1 below. As a consequence, iterated
integrals play an important rôle in the numerical analysis of SDEs, in par-
ticular for the construction of higher order Taylor methods. Moreover, the
more recent theory of T. Lyons [52] has impressively shown the central posi-
tion of the iterated integrals in the theory of stochastic di�erential equations
well beyond of the stochastic Taylor expansion.

On the other hand, iterated integrals of Brownian motions can be un-
derstood as natural Brownian motions on certain important nilpotent Lie
groups, see Section 2.1. In some sense, we have turned this relationship
around by considering these Lie groups as the natural geometry of the iter-
ated Itô-Stratonovich integrals of the Brownian motion. This is the content
of the �rst Section 2.1. Afterwards, we present the �Cubature on Wiener
space� method by T. Lyons and N. Victoir [51] as an important application
of this geometric analysis. (Both Section 2.1 and Section 2.2 strongly rely
on the above mentioned paper.)

Finally, we consider the question of moments of iterated integrals. In
Section 2.3 we present an explicit formula for all moments of the iterated
integrals of the Brownian motion, again strongly using their geometry, while
in the last Section 2.4 we present an algorithm for e�cient computation of
the moments of the corresponding area processes using the representation
theory of the geometry of the iterated integrals.

21
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2.1 Geometry of iterated Stratonovich integrals

2.1.1 Stochastic Taylor expansion

Although iterated Stratonovich integrals of Brownian motion are interesting
objects per se, our motivation for studying them stems from the stochastic
Taylor expansion, where they play a similar rôle as polynomials do in the
deterministic Taylor expansion.

Let Bt = (B1
t , . . . , B

d
t ), t ≥ 0, denote a d-dimensional Brownian motion

on the �ltered probability space (Ω,F , (Ft), P ) satisfying the usual condi-
tions. We introduce a notation which will help us to write down many
formulas in the following sections in a more concise way.

De�nition 2.1.1. Let f : [0, T ] → Rd or f : [0,∞[→ Rd, f(t) =
(f1(t), . . . , fd(t)). Then we de�ne a 0th component of f by setting

f0(t) = t, t ∈ [0, T ] or t ∈ [0,∞[,

respectively. In particular, we set B0
t = t for the Brownian motion.

As usual, let V0, . . . , Vd : Rn → Rn be C∞-bounded vector �elds on
Rn. We also require the vector �elds themselves to be bounded. Recalling
Remark 1.1.3, we understand that V 2 is a second order di�erential operator
for any vector �eld V , i. e.

V 2f(x) = D2f(x) · (V (x), V (x)) +Df(x) ·DV (x) · V (x), x ∈ Rn.

Let Xx = (Xx
t )t∈[0,T ] denote the strong solution of the Stratonovich

SDE (1.3) driven by the vector �elds V0, V1, . . . , Vd with initial value x ∈ Rn.

De�nition 2.1.2. Let A denote the set of all multi-indices with values in
{0, 1, . . . , d}, i. e.

A =
∞⋃
k=0

{0, 1, . . . , d}k ,

which contains the empty multi-index ∅. The generic element of A will be
denoted by I = (i1, . . . , ik). A degree deg is de�ned on A by

deg(I) = deg((i1, . . . , ik)) = k + # { j ∈ {1, . . . , k} | ij = 0 } ,

i. e. the degree function counts zeros twice. We will also use

Am = { I ∈ A | deg(I) ≤ m } , m ∈ N.

De�nition 2.1.3. Let f : [0, T ] → Rd or f : [0,∞[→ Rd be either a deter-
ministic function of bounded variation or a d-dimensional Brownian motion.
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For I ∈ A \ {∅} we de�ne the iterated integral of f by

f I(t) = f (i1,...,ik)(t) =
∫

0<t1<···<tk<t
df i1(t1) · · · df ik(tk)

=
∫ t

0

∫ tk

0
· · ·
∫ t1

0
df i1(t1) · · · df ik(tk).

Moreover, f∅(t) ≡ 1. In the case of of a f being a Brownian motion, the above
integrals are understood in the sense of Stratonovich stochastic integrals and
we accordingly call them iterated Itô-Stratonovich integrals.

Notice that the iterated Itô-Stratonovich integral is not de�ned path-
wise, but only up to a set of measure zero. According to De�nition 2.1.1,
also dt-integrals may show up in iterated integrals. The unusual choice of
the degree function can now be clari�ed by considering iterated Stratonovich
integrals. Indeed, for any multi-index I and any t ≥ 0 we have the equality-
in-law

(2.1) BI
t ∼ tdeg(I)/2BI

1 ,

which is a generalization of the fact Bt ∼
√
tB1 for Brownian motion.

Proposition 2.1.4 (Stochastic Taylor expansion). For �xed m ∈ N let f ∈
Cm+1
b (Rn). Consider the solution Xx of the SDE (1.1). Then

(2.2) f(Xx
t ) =

∑
I=(i1,...,ik)∈A
deg(I)≤m, k∈N

Vi1 · · ·Vikf(x)BI
t +Rm(t, x, f).

The remainder term satis�es

(2.3) sup
x∈Rn

√
E
(
Rm(t, x, f)2

)
≤ Ct

m+1+1{t>1}
2 sup

I∈Am+2\Am
‖Vi1 · · ·Vikf‖∞ ,

i. e. the remainder is of order O
(
t
m+1

2

)
for t→ 0.

Proof. The key idea of the proof of Proposition 2.1.4 is iterated application
of the Itô formula. Indeed, for f ∈ Cm+1

b (Rn) and x ∈ Rn, Itô's formula in
the Stratonovich formulation reads

(2.4) f(Xx
t ) = f(x) +

d∑
i=0

∫ t

0
(Vif)(Xx

s ) ◦ dBi
s.

Each of the functions Vif : Rn → R satis�es the conditions of Itô's formula
and by applying it again to the integrands in (2.4) we get

f(Xx
t ) = f(x) +

d∑
i=0

(Vif)(x)Bi
t +

d∑
i,j=0

∫ t

0

∫ s

0
(VjVif)(Xx

u) ◦ dBj
u ◦ dBi

s.
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By iterating this procedure further and collecting all terms of deg ≤ m we
arrive at (2.2), where the remainder term is a linear combination of iterated
Stratonovich integrals of functions of Xx. Then, the estimate (2.3) follows
by rewriting those Stratonovich integrals in Itô integrals and applying the
Itô isometry repeatedly. For details, see Kloeden and Platen [42] and Lyons
and Victoir [51].

The stochastic Taylor expansion is the starting point of stochastic nu-
merical analysis, see Kloeden and Platen [42] for details on stochastic Taylor
expansions and many methods originating from it.

Ignoring the remainder term, the only stochastic ingredients of the
stochastic Taylor expansion are the iterated Stratonovich integrals of Brown-
ian motion and a better understanding of them can give ideas for interesting
new methods for numerical treatment of SDEs. In the stochastic Taylor
expansion, the iterated integrals of Brownian motion play the rôle of poly-
nomials in the classical, deterministic Taylor expansion.

Indeed, assume that n = 1 and consider the constant vector �elds V (y) =
y, y ∈ R. Let x = 0, then Xx

t = t, and (2.2) reads

f(t) = f(0)+f ′(0)t+
1
2
f ′′)(0)t2+· · ·+ 1

bm/2c!
f (bm/2c)(0)tbm/2c+Rm(t, 0, f),

where byc denotes the biggest integer smaller than y. We have used

B
(0,0,...,0)
t =

1
|(0, 0, . . . , 0)|!

t|(0,0,...,0)|,

where |·| denotes the usual length of a multi-index. Thus, we can see the
correspondence between iterated Itô-Stratonovich integrals in the stochastic
Taylor formula and polynomials in the classical Taylor formula.

As a �rst step, we �encode� the iterated Stratonovich integrals of order
up to m as a random variable with values in an appropriate algebra. Before
we go back to iterated Stratonovich integrals, we need to study this algebra
in some detail, in order to exploit its properties later on.

2.1.2 Free nilpotent Lie groups

Let Ad,1 denote the space of all non-commutative polynomials in d+ 1 vari-
ables e0, . . . , ed including the constant polynomials. Ad,1 is the free associa-
tive algebra with unit generated by e0, . . . , ed over the �eld of real numbers.
We follow this de�nition with a series of remarks.

Remark 2.1.5. In this text, we shall only consider associative algebras over
the �eld R of real numbers which have a unit. Therefore, we will usually omit
the full speci�cation � even in de�nitions � and only call them �algebras�.
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Remark 2.1.6. Ad,1 satis�es the universal property of free algebras in d + 1
generators, i. e. for any algebra C and any function f : {e0, e1, . . . , ed} → C
there is a unique algebra homomorphism f̃ : Ad+1 → C extending f . In the
following, all our �free� structures are actually free in the sense of universal
algebra, i. e. they will also satisfy the respective universal properties. We
will, however, not go into details here. For the simple proof of the above fact
and much more information on the algebra needed in this text, see Serre [75].
A very useful monograph focusing on free Lie algebras is Reutenauer [67].

Remark 2.1.7. Obviously, the monomials in Ad,1 correspond to the multi-
indices in {0, . . . , d} by A → Ad,1, I = (i1, . . . , ik) 7→ eI := ei1 · · · eik (and
e∅ = 1, the unit element in Ad,1). In order to give algebraic meaning to
this map, one can equip A with a multiplication ∗ de�ned by concatena-
tion of multi-indices. Then (A, ∗) is a monoid and the map is a monoid-
homomorphism into the monoid of monomials.

Following Remark 2.1.7, we extend the degree function from A to Ad,1
by

(2.5) deg(ei1 · · · eik) = deg((i1, . . . , ik)),

i. e. e0 has twice the weight of the other generators. As usual, the degree of
a polynomial � i. e. of an element of Ad,1 � is de�ned as the maximum of the
degrees of the respective monomials.

Remark 2.1.8. The de�nition of the degree on Ad,1 now gives e0 a special
rôle among the generators of Ad,1, and this justi�es the peculiar notation
for the algebra. In the end, as already prepared in De�nition 2.1.1, e0 will
be associated to t, whereas the other generators will be associated to the
components of Brownian motion. In particular, if we are not interested in
a drift component at all, then we may omit e0 and we simply write Ad for
the corresponding free algebra and, analogously, for all the other algebraic
constructs below.

De�nition 2.1.9. Fix m ∈ N. The free step-m nilpotent associative real
algebra with unit in d generators of degree 1 and one generator of degree 2 is
the space of all non-commutative polynomials in e0, . . . , ed of degree less or
equal m. We denote it by Amd,1.

Remark 2.1.10. Amd,1 is isomorphic to Ad,1 factorized by the ideal generated
by the monomials of degree greater than m. Thus, it also has the structure
of an algebra, with the relations eIeJ = 0 for deg(I ∗J) > m. Therefore, the
algebra is really nilpotent.

Remark 2.1.11. As mentioned in Remark 2.1.6, the free step-m nilpotent
algebra Amd,1 satis�es the universal property of free step-m nilpotent algebras,
i. e. for any step-m nilpotent algebra C and any map f : {e0, . . . , ed} → C
there is a unique extension f̃ : Amd,1 → C of f as a homomorphism of step-m
nilpotent algebras.
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The degree function deg induces a grading on the algebra: if Wk denotes
the linear span of all monomials of degree k, then

(2.6) Amd,1 = R⊕W1 ⊕ · · · ⊕Wm,

where R 'W0 = 〈{1}〉R and 1 refers to the unit element of the algebra. Here,
〈A〉R denotes the linear span of a set A over R. Indeed, Wk ·Wl ⊂ Wk+l,
k, l ∈ N, keeping in mind that Wk = {0} for k > m. According to the
grading, we will write x = x0 + · · ·+ xm for x ∈ Amd,1, where xi ∈ Wi is the
projection of x onto Wi, i = 0, . . . ,m. For t ∈ R, we de�ne the canonical
dilatation ∆t : Amd,1 → Amd,1 by

(2.7) ∆t(x) = x0 + tx1 + t2x2 + · · ·+ tmxm, x ∈ Amd,1.

Note that ∆t is an algebra-homomorphism.
We de�ne the exponential function on Amd,1 using the usual power series

expansion, i. e.

(2.8) exp(x) =
∞∑
k=0

xk

k!
.

Remark 2.1.12. Note that Amd,1 is a �nite-dimensional vector space, thus
the exponential function is well de�ned � and smooth � using the natural
topology on Amd,1. If we used the same de�nition in the non-truncated algebra
Ad,1, as in Lyons and Victoir [51], we would get convergence problems and
would need to work in the completion of Ad,1 with respect to some non-
elementary topology. Finite dimensionality of all the spaces involved is one
of the bene�ts of working in the nilpotent setting from the beginning.

The logarithm is de�ned for x ∈ Amd,1 with x0 > 0 by

(2.9) log(x) = log(x0) +
m∑
k=1

(−1)k−1

k

(x− x0

x0

)k
,

with log(x0) being the logarithm of x0 interpreted as a real number. Note
that we may truncate the power series of the logarithm due to nil-potency:
(x− x0)m+1 = 0. Thus, the logarithm is a polynomial (for �xed x0).

Recall that any algebra carries the structure of a Lie algebra with respect
to the commutator [x, y] = xy − yx. We now consider the Lie algebra
generated by e0, . . . , ed.

De�nition 2.1.13. The free step-m nilpotent Lie algebra with d generators
of degree 1 and one generator of degree 2 is denoted by gmd,1. The free step-
m nilpotent Lie group Gmd,1 is de�ned as the exponential image of the Lie
algebra gmd,1.
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De�nition 2.1.13 needs some clari�cation. One should think of gmd,1 as
the sub-Lie algebra of the Lie algebra Amd,1 generated by {e0, . . . , ed} ⊂ Amd,1.
For a direct construction of gmd,1, de�ne a map e[·] : A → Ad,1 recursively by
e[∅] = 0, e[(i)] = ei, i ∈ {0, . . . , d}, and

(2.10) e[(i1,i2,...,ik)] = [ei1 , e[(i2,...,ik)]],

(i1, . . . , ik) ∈ A, k > 1. Then

(2.11) gmd,1 =
〈{
e[I]

∣∣ I ∈ Am }〉R .

Notice that { eI | I ∈ Am } gives a basis of Amd,1, whereas
{
e[I]

∣∣ I ∈ Am } is
not a linearly independent set, e. g. e[(1,2)] = [e1, e2] = −[e2, e1] = −e[(2,1)].
Similarly, Gmd,1 = exp(gmd,1) ⊂ Amd,1.

By the Baker-Campbell-Hausdor� formula

(2.12) exp(y) exp(z) = exp
(
y+z+

1
2

[y, z]+
1
12

([y, [y, z]]− [z, [z, y]])+ · · ·
)
,

for y, z ∈ gmd,1, G
m
d,1 is a subgroup of the Lie group 1 ⊕ W1 ⊕ · · · ⊕ Wm.

Furthermore, by continuity of the logarithm, Gmd,1 is even a closed subgroup,
consequently it is a Lie group in its own right and gmd,1 is its Lie algebra. The
tangent spaces are given by

(2.13) TxG
m
d,1 =

{
xw

∣∣ w ∈ gmd,1
}
, x ∈ Gmd,1.

gmd,1 inherits the grading of the algebra via Uk = gmd,1 ∩Wk, k = 1, . . . ,m,
hence,

gmd,1 = U1 ⊕ · · · ⊕ Um.

By de�nition, z0 = 0 for z ∈ gmd,1 and x0 = 1 for x ∈ Gmd,1. Note that

exp : gmd,1 → Gmd,1

is smooth and bijective and, hence, the logarithm � being its inverse � is
a global chart for the manifold Gmd,1. (For more information on di�erential
geometry see, e. g., Jänich [39].)

Example 2.1.14. The simplest non-trivial example is the case d = 2 and
m = 2 without drift. That is, we set e0 = 0 and consider A2

2, the space
spanned by 1, e1, e2 and e2

1, e1e2, e2e1, e2
2. The corresponding Lie algebra

g2
2 is spanned by e1, e2 and [e1, e2]. The Lie group G2

2 is called Heisenberg
group.

The Heisenberg group has the following faithful representation as a ma-
trix group:

G2
2 '


1 a c

0 1 b
0 0 1

 ∣∣∣∣∣∣ a, b, c ∈ R
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with the usual matrix multiplication as group operation. The corresponding
Lie algebra � i. e. the tangent space at the unit element I3 =

(
1 0 0
0 1 0
0 0 1

)
� is

then given by

g2
2 '


0 x z

0 0 y
0 0 0

 ∣∣∣∣∣∣ x, y, z ∈ R


and is a representation of g2
2. The Lie bracket of two matrices is de�ned as

the usual commutator of matrices. We can think of the Heisenberg group
as R3 with the (non-commutative) multiplication (x1, x2, x3) ? (y1, y2, y3) =
(x1 + y1, x2 + y2, x3 + y3 + x1y2).

If we identify e1 and e2 with E1 =
(

0 1 0
0 0 0
0 0 0

)
and E2 =

(
0 0 0
0 0 1
0 0 0

)
, respec-

tively, then we have [E1, E2] =
(

0 0 1
0 0 0
0 0 0

)
, which veri�es that the Lie algebra

is spanned by E1, E2 and [E1, E2]. We will come back to this example later
on.

Notice that similar representations exist for general Heisenberg groups
G2
d.

2.1.3 Iterated Stratonovich integrals in Gm
d,1

Let Y y = (Y y
t )t∈[0,∞[, y ∈ Amd,1, denote the stochastic process

(2.14) Y y
t = y

∑
I∈Am

BI
t eI .

As long as y is invertible, e. g. for y = 1, Y y encodes the iterated Stratonovich
integrals of degree up tom as a stochastic process in Amd,1, since the collection
of all eIs forms a linear basis of Amd,1. Y y is the solution of an Amd,1-valued
SDE. Indeed,

dY y
t = y

 ∑
I∈A

deg(I)≤m−2

BI
t dt eI e0 +

d∑
i=1

∑
I∈A

deg(I)≤m−1

BI
t ◦ dBi

t eI ei


= y

∑
I∈A

deg(I)≤m

BI
t eIe0 dt+ y

d∑
i=1

∑
I∈A

deg(I)≤m

BI
t eIei ◦ dBi

t,

where we used freeness of the algebra Amd,1 in the �rst line and its nil-potency
in the second line. Consequently, Y y is the unique solution of the SDE

(2.15)


dY y

t = Y y
t e0dt+

d∑
i=1

Y y
t ei ◦ dBi

t,

Y y
0 = y ∈ Amd,1.
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De�ning vector �elds Di(y) = yei, i = 0, . . . , d, on Amd,1, we immediately
recognize that equation (2.15) is of the general form (1.3) of an SDE in
Stratonovich formulation for the vector �elds D0, . . . , Dd. If we restrict Di

to Gmd,1, then we get a left-invariant vector �eld Di on Gmd,1 � not surprisingly
coinciding with the element ei ∈ gmd,1 under the identi�cation of left-invariant
vector �elds on a Lie group with elements of its Lie algebra. We will freely
switch between the perceptions of Di as vector �elds on Gmd,1 and on Amd,1,
depending on convenience.

Remark 2.1.15. The canonical dilatation ∆ allows us to express the equality
in law BI

t ∼
√
t
deg(I)

, see (2.1), in a particularly nice form, namely

Y 1
t ∼ ∆√t(Y

1
1 ).

Now we are �nally in the position to reveal the connection between it-
erated Stratonovich integrals of Brownian motion and certain Lie groups: it
turns out that Gmd,1 precisely gives us the geometry of the iterated integrals.

Proposition 2.1.16. Given an initial value y ∈ Gmd,1, Y
y
t ∈ Gmd,1 a. s. for

all t ≥ 0. In particular, Y 1
t ∈ Gmd,1 almost surely.

Proof. Since Y y
t = yY 1

t , we only need to consider the initial value y =
1 ∈ Gmd,1. By (2.15), Y 1 solves the Stratonovich-SDE driven by the vector
�elds Di(y) = yei, i = 0, 1, . . . , d. This already implies that Gmd,1 is locally
invariant with respect to the SDE (2.15), i. e. for all y ∈ Gmd,1 there is a
strictly positive stopping time τy such that Y y

t ∈ Gmd,1 for all t ≤ τy a. s.,
compare De�nition 1.1.5 and Proposition 1.1.6.

Gmd,1 is a closed subset of Amd,1, since it is the pre-image of the closed set
gmd,1 ⊂ Amd,1 under the continuous map log. Let τ be the �rst hitting time of
Amd,1 \Gmd,1. Then Y 1

τ ∈ Gmd,1 on {τ <∞} and, consequently, local invariance
implies existence of a positive stopping time τ̃ such that Y 1

t remains in Gmd,1
up to time τ + τ̃ , showing that P (τ <∞) = 0.

Hence, Y y
t , y ∈ Gmd,1, really takes its values in the Lie group Gmd,1, which is

a much smaller dimensional manifold � e. g. dim g3
2,1 = 8 whereas dimA3

2,1 =
20, i. e. the iterated integrals of two Brownian motions up to order 3 evolve
on an 8-dimensional submanifold of the 20-dimensional space A3

2,1. Put
di�erently, collecting the iterated Stratonovich integrals of Brownian motion
in the process Y 1 is a concise way of expressing the well-known relations
between the iterated integrals.

On the other hand, Gmd,1 is not a linear space and it is often desirable to
work in a vector space instead of a manifold. Therefore, we use the global
chart and de�ne a stochastic process

(2.16) Zt = log(Y 1
t ), t ≥ 0,

on gmd,1, which contains all the information of Y 1.
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Proposition 2.1.17 (Chen-Strichartz formula). Let Sk denote the symmet-
ric group in k elements. For σ ∈ Sk let

e(σ) = # { j ∈ {1, . . . , k − 1} | σ(j) > σ(j + 1) }

be the number of inversions of σ. Then

Zt = log(Y 1
t ) =

∑
I∈Am\{∅}

ΛIt e[I],

where, for a multi-index I = (i1, . . . , ik) ∈ A \ {∅},

ΛIt =
∑
σ∈Sk

(−1)e(σ)

k2
(
k−1
e(σ)

)Bσ−1(I)
t

with σ((i1, . . . , ik)) = (iσ(1), . . . , iσ(k)) for σ ∈ Sk.

Proof. Apply Proposition A.1.2 in the Appendix to the (d+ 1)-dimensional
semi-martingale (t, B1

t , . . . , B
d
t )t∈[0,∞[ and project the formal Lie series down

to gmd,1.

Remark 2.1.18. The Chen-Strichartz formula roughly says that Zt is a linear
function of Y 1

t . Recall, however, that the set {e[I] | I ∈ A\{∅}} is not a basis
of gmd,1. Thus, in a second step one would need to expand the Chen-Strichartz
formula with respect to a basis of gmd,1.

Example 2.1.19 (Continuation of Example 2.1.14). In the case of the
Heisenberg group, a basis of g2

2 is given by {e1, e2, [e1, e2]} and we have
Zt = B1

t e1 +B2
t e2 +At[e1, e2], where

At =
1
2

∫ t

0
B1
s ◦ dB2

s −
1
2

∫ t

0
B2
s ◦ dB1

s =
1
2

∫ t

0
B1
sdB

2
s −

1
2

∫ t

0
B2
sdB

1
s

denotes Lévy's area.

The setting Amd,1 provides a nice way to write the expected value of iter-
ated Stratonovich integrals.

Proposition 2.1.20. For t ≥ 0 and y ∈ Amd,1 we have

E
(
Y y
t

)
= y exp

(
te0 +

t

2

d∑
i=1

e2
i

)
.

Proof. Proposition 2.1.20 is not surprising considering the SDE (2.15) for
Y y. Indeed, the in�nitesimal generator of Y y

t is given by L = D0+1
2

∑d
i=1D

2
i ,

again interpreting the vector �elds Di(y) = yei as �rst-order di�erential
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operators. Thus, u(t, y) = E(λ(Y y
t )) satis�es the Kolmogorov backward

equation
∂

∂t
u(t, y) = Lu(t, y)

with initial condition u(0, y) = λ(y) for any linear functional λ : Amd,1 → R.
Formally, this can be expressed by u(t, y) = etL(λ)(y).

Now denote

v(t, y) = λ
(
y exp

(
te0 +

t

2

d∑
i=1

e2
i

))
.

v(t, y) solves the equation

∂v

∂t
(t, y) = λ

(
y exp

(
te0 +

t

2

d∑
i=1

e2
i

)(
e0 +

1
2

d∑
i=1

e2
i

))
= Lv(t, y)

and the result follows by uniqueness of the solution of the Kolmogorov back-
ward equation.

Remark 2.1.21. E(Y y
t ) /∈ Gmd,1 since its logarithm is not in the Lie algebra.

Of course, Proposition 2.1.20 is not an interesting result in its own right,
it is rather a convenient way of writing the easily obtained recursive formulas
for the expected value of an iterated Stratonovich integral. Nevertheless, it
is the starting point to the applications presented in the next two sections.

2.2 Cubature on Wiener space

�Cubature on Wiener space� is a weak approximation scheme in the sense
of De�nition 1.3.3 for solutions of standard SDEs of the type (1.3). Just
like most other weak schemes, it is a deterministic scheme with determin-
istic a-priori error bounds in terms of the function f and the vector �elds
V0, . . . , Vd � we use the Stratonovich formulation � provided that one is able
to do the integration step explicitly. Usually, this is not possible and one has
to revert to (Quasi) Monte Carlo routines, notice, however, that Schmeiser,
Sore�, and Teichmann [74] allow for very high dimensional integration by
using inherent recombination possibilities in the cubature on Wiener space
method. The method was introduced by Lyons and Victoir [51]. A similar
method has been studied by Kusuoka [43], [44]. Mathematically, the method
is very attractive because it combines results from di�erent areas like numer-
ical analysis (classical cubature formulas), algebra (nilpotent Lie groups as
in Section 2.1) and di�erential geometry (Chow's theorem) together with
stochastic analysis. We start our presentation of the method with a short
look onto classical cubature formulas.
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2.2.1 Classical cubature formulas

Cubature (also known as quadrature) formulas are a classical technique for
numerical integration, see Stroud [78] and Überhuber [83]. Before giving a
de�nition of the notion of a cubature formula, let us recall that the support
suppµ of the Borel measure µ on Rn, i. e. µ is a measure de�ned on the
Borel σ-algebra of Rn, is the complement of the biggest open set O ⊂ Rn
with µ(O) = 0.

De�nition 2.2.1. Given a positive Borel measure µ on Rn and m ∈ N such
that all moments up to order m exist, i. e.∫

Rn
‖x‖k µ(dx) <∞, k = 0, . . . ,m.

A �nite sequence of points x1, . . . , xN ∈ suppµ and weights λ1, . . . , λN > 0
is called cubature formula of degree m if∫

Rn
p(x)µ(dx) =

N∑
i=1

λip(xi)

for all polynomials p of degree less or equal to m on Rn.

Given a cubature formula as in De�nition 2.2.1 and a function f : Rn →
R, then we can approximate∫

Rn
f(x)µ(dx) ≈

N∑
i=1

λif(xi).

The approximation is good if f can be approximated by polynomials of
degree less or equal m su�ciently well. Note that f only needs to be de�ned
on suppµ for the integral

∫
fdµ to make sense, therefore we require that

all the points of a cubature formula lie in suppµ, see Stroud [78] for more
information on this point.

Even though construction of cubature formulas is a non-trivial task, es-
pecially in higher dimensions, and especially if one wants to avoid an unnec-
essarily large size N of the cubature formula, there is a very general existence
result. Let Amn,com denote the free, commutative, step m nilpotent algebra in
n generators e1, . . . , en, where the convention of Remark 2.1.5 is still used.

Remark 2.2.2. Obviously, we get Amn,com by factorizing the alge-
bra Amn of De�nition 2.1.9 with respect to the ideal generated by
{ eiej − ejei | 1 ≤ i, j ≤ n }. Moreover, we may identify Amn,com with the
space of polynomials on Rn with degree less or equal m.

Theorem 2.2.3. Given a �nite, positive Borel measure µ on Rn and m ∈ N
such that µ has �nite moments of order up to m. Then there is an integer
1 ≤ N ≤ dimAmn,com such that a cubature formula of degree m with size N
exists for µ.
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Theorem 2.2.3 is known as Chakalov's theorem, since it was �rst proved by
Chakalov [12] in the case of compactly supported Borel measures. Later on, it
was extended by Putinar [65] and Curto and Fialkow [17] to non-compactly
supported measures with �nite (m + 1)-st moments. Theorem 2.2.3 was
�nally proved by Bayer and Teichmann [7], and the presentation here is
based on the latter paper.

Let us recall some basic notions and results from convex analysis, for
more details see Rockafellar [70]. For any set A ⊂ Rn, let convA denote its
convex hull and convA the (topological) closure of convA. Note that A is
convex for any convex set A, but the converse is not necessarily true: the
convex hull of a closed set A is, in general, not closed unless A is compact.
Similarly, the convex cone generated by A ⊂ Rn is denoted by coneA and
its closure by coneA.

Convex sets can be characterized by their supporting hyperplanes and
supporting half-spaces. Given a convex set C ⊂ Rn and a point x ∈ ∂C, then
there is a vector nx such that C is touched by the hyperplane

{nx = nx(x)} = { y ∈ Rn | 〈nx , y〉 = 〈nx , x〉 }

at x and contained in the corresponding half-space

{nx ≤ nx(x)} = { y ∈ Rn | 〈nx , y〉 ≤ 〈nx , x〉 } .

C is the intersection of all supporting half-spaces of C. Moreover, assuming
that C is not contained in a hyperplane of Rn, i. e. intC 6= ∅, then x ∈ C is
a boundary point if and only if x is contained in at least one supporting hy-
perplane of C. In the case of a convex cone C, all the supporting hyperplanes
are homogeneous, i. e. contain the origin 0.

A point x ∈ C lies in the relative interior of the convex set C if

∀y ∈ C ∃ε > 0 : x− ε(y − x) ∈ C.

The relative interior of C is denoted by riC. Note that intC ⊂ riC, where
intC denotes the interior of C. If C is contained in a proper hyperplane of
Rn, then riC contains the interior of C with respect to the topology of the
hyperplane.

Let us �rst prove a special case of Theorem 2.2.3, namely the case m = 1.

Theorem 2.2.4. Let µ be a positive Borel measure with
∫

Rn ‖x‖µ(dx) <
∞ and let A ⊂ Rn be a measurable set such that µ is concentrated on A,
i. e. µ(Rn \A) = 0. Then the barycenter of µ,

bary(µ) =
∫

Rn
xµ(dx) ∈ Rn,

is contained in coneA.



34 CHAPTER 2. ITERATED STRATONOVICH INTEGRALS

Proof. Without loss of generality, we may assume that A is not contained
in a proper hyperplane of Rn, more precisely, that there is no B ⊂ A such
that µ(A \ B) = 0 and B is contained in a proper hyperplane of Rn, since
otherwise we may reduce the dimension of the space and proceed with B
instead of A.

For x ∈ ∂(coneA), consider any supporting half-space {nx ≤ 0} of coneA
at x. Obviously, the linear functional y 7→ 〈nx , y〉 is absolutely integrable
and we get

〈nx , bary(µ)〉 =
∫

Rn
〈nx , y〉µ(dy) ≤ 0,

since 〈nx , y〉 ≤ 0 for all y ∈ A. Consequently, bary(µ) lies in the intersection
of all the supporting half-spaces of coneA, i. e. bary(µ) ∈ coneA.

In order to show that bary(µ) ∈ coneA, we will re�ne the above argument
and actually show that 〈nx ,bary(µ)〉 < 0 for any x ∈ A and any supporting
half-space nx. First note that

µ ({ y ∈ A | 〈nx , y〉 < 0 }) > 0,

since otherwise µ(A\(A∩{nx = 0})) = 0, in contradiction to the assumption
in the beginning of this proof. On the other hand, the existence of the �rst
moment implies that µ(B(0, ε)c) < ∞ for any ε > 0. Combining these two
facts, we �nd the existence of ε = ε(x, nx) > 0 such that

0 < µ ({ y ∈ A | 〈nx , y〉 ≤ −ε }) <∞.

Consequently, we get a bound

(2.17) 〈nx , bary(µ)〉 ≤ −εµ ({ y ∈ A | 〈nx , y〉 ≤ −ε }) < 0,

showing that bary(µ) ∈ int coneA ⊂ coneA.

Notice that the proof actually shows that bary(µ) ∈ ri(coneA).

Corollary 2.2.5. Let µ be a positive Borel measure concentrated on A ⊂ Rn
with �nite �rst moment. Then there exists 1 ≤ N ≤ n, points x1, . . . , xN ∈ A
and weights λ1, . . . , λN > 0 such that for any polynomial p of degree 1∫

Rn
p(x)µ(dx) =

N∑
i=1

λip(xi).

Proof. By Theorem 2.2.4 and Carathéodory's theorem for cones, see Rock-
afellar [70, Theorem 17.1, Corollary 17.2], there are points and weights as in
Corollary 2.2.5 such that

bary(µ) =
N∑
i=1

λixi,

which immediately implies the corollary.
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Corollary 2.2.6. Given a positive measure µ on the measurable space (Ω,F)
concentrated on A ∈ F . For any Borel-measurable map φ : Ω → Rn such
that ∫

Ω
‖φ(ω)‖µ(dω) <∞

there are an integer 1 ≤ N ≤ n, points ω1, . . . , ωN ∈ Ω and weights
λ1, . . . , λN > 0 such that

∫
Ω
p(φ(ω))µ(dω) =

N∑
i=1

λiφ(ωi)

for any polynomial p : Rn → R of order 1.

Proof. We repeat the idea of the proof of Theorem 2.2.4 in the current set-
ting, i. e. we prove the statement by induction on n. For n = 1, we distinguish
between two situations: either φ is constant µ-almost everywhere, or it is
not. In any case, the statement follows immediately.

Now assume that the statement holds for n − 1. If there is B ∈ F ,
B ⊂ A, such that φ(B) is contained in a proper hyperplane of Rn and
µ(A \ B) = 0, then we may reduce the problem to the (n − 1)-dimensional
case by replacing A by B. Therefore, we may suppose that this is not the
case. Choose x ∈ ∂(coneA) and a corresponding supporting hyperplane
given by nx. Then

〈nx , bary(φ∗µ)〉 =
∫

Ω
〈nx , φ(ω)〉µ(dω) ≤ 0,

which implies that bary(φ∗µ) ∈ coneφ(A).
If bary(φ∗µ) ∈ ∂(coneφ(A)), then, with x = bary(φ∗µ), any correspond-

ing hyperplane nx satis�es

0 = 〈nx , x〉 = 〈nx , bary(φ∗µ)〉 =
∫
A
〈nx , φ(ω)〉µ(dω).

Since the integrand on the right hand side is non-negative, we may conclude
that 1A 〈nx , φ〉 = 0 µ-almost everywhere, i. e.

µ (A \ { ω ∈ Ω | 〈nx , φ(ω)〉 = 0 }) = 0.

Consequently, bary(φ∗µ) ∈ ∂(coneφ(A)) would imply that φ takes its values
inside the proper hyperplane {nbary(φ∗µ) = 0} outside a set of µ-measure 0,
in contradiction to our assumption. Thus, bary(φ∗µ) ∈ int(coneφ(A)) ⊂
coneφ(A), and the statement follows again by appealing to Carathéodory's
theorem.
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Remark 2.2.7. Notice that φ(A) is not necessarily Borel measurable. If it
were Borel measurable, or more precisely, if it were measurable with respect
to the completion of the Borel σ-algebra under the measure φ∗µ, then Corol-
lary 2.2.6 would immediately follow from Corollary 2.2.5 by replacing A by
φ(A) and µ by φ∗µ, respectively. The proof in Bayer and Teichmann [7] is
incorrect by omitting this implicit assumption.

Remark 2.2.8. Theorem 2.2.4 and its corollaries do not require µ to have
�nite mass, because only �nite �rst moments are necessary.

Remark 2.2.9. If µ has �nite mass, then we can add φ0(ω) ≡ 1 in Corol-
lary 2.2.6 and get 1 ≤ N ′ ≤ n+1, points ω1, . . . , ωN ′ , weights λ1, . . . , λN ′ > 0
with λ1 + · · ·+ λN ′ = µ(Ω) � and likewise for the setting of Theorem 2.2.4.

Remark 2.2.10. In particular, if µ is a probability measure on Rn, then
bary(µ) ∈ convA. This result is well-known and goes back to Riesz [69] for
compactly supported measures.

Proof of Theorem 2.2.3. De�ne a map φ : Rn → Amn,com by

(2.18) φ(x1, . . . , xn) =
m∑
k=0

∑
(i1,...,ik)∈{1,...,n}k

xi1 · · ·xikei1 · · · eik .

The signi�cance of φ is that it linearizes the problem: polynomials are now
simply linear functionals in φ. Amn,com is a �nite dimensional vector space,
therefore the notion of the Borel σ-algebra is well-de�ned on Amn,com and
φ � being continuous � is measurable. By assumption, the conditions of
Corollary 2.2.6 are satis�ed with Ω = Rn and A = suppµ and we get the
statement of the theorem, see also Remark 2.2.9.

Remark 2.2.11. Theorem 2.2.3 has a relation to the truncated moment prob-
lem, cf. Curto and Fialkow [17]. Given a non-empty, closed set A ⊂ Rn
and a �nite sequence of real numbers ci1,...,ik , (i1, . . . , ik) ∈ {1, . . . , n}k with
k ≤ m. The sequence represents the sequence of moments up to order m of
a probability measure with support suppµ ⊂ A if and only if

(2.19)
m∑
k=0

∑
(i1,...,ik)∈{1,...,n}k

ci1,...,ikei1 · · · eik ∈ conv φ(K).

Indeed, if there is a probability measure supported in A with the prescribed
moments, then the moments satisfy (2.19) by Chakalov's theorem. On the
other hand, any member of conv φ(A) can be written as a convex combination
of elements of φ(A), and thus corresponds to the moments of the underlying
�nitely supported measure.

Theorem 2.2.3 is an essentially unconstructive theorem, since it relies
on Carathéodory's theorem. Indeed, the construction of cubature formulas
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is usually a highly non-trivial task, especially if the size should be close to
the optimal size for the particular measure. See Victoir [85] for ideas about
construction of cubature formulas avoiding �unnecessary� symmetries.

2.2.2 Cubature on Wiener space

Most of the problems addressed in this text are motivated by the calculation
of functionals of solutions of SDEs. As usual, let Xx = (Xx

t )t∈[0,T ] denote
the solution of the Stratonovich SDE (1.3) with initial value Xx

0 = x driven
by the vector �elds V0, . . . , Vd on Rn. For a given and �xed, say, bounded
measurable function f : Rn → R, we want to compute

(2.20) E(f(Xx
T )) =

∫
Ω
f ◦Xx

T (ω)P (dω).

Without loss of generality, we may assume that the probability space
(Ω,F , P ) is the canonical probability space of Brownian motion, i. e.Wiener
space C0([0, T ];Rd) of continuous functions starting at 0 equipped with its
Borel σ-algebra with respect to ‖·‖∞ and with the Wiener measure P . Con-
sequently, the problem to calculate (2.20) is actually a numerical integration
problem on a high dimensional space, namely on C0([0, T ];Rd). Therefore,
it is natural to ask one-selves whether cubature can help integrating (2.20).

Considering De�nition 2.2.1, we �rst have to choose a suitable class of
�polynomials� on the Wiener space. It is easy to see that the class of proper
polynomials � i. e. polynomials in linear functionals on C0([0, T ];Rd) � is
not adequate regarding cubature. First, there are too many polynomials on
Wiener space, but more importantly, there are extremely important func-
tionals on C0([0, T ];Rd) that cannot be described well by polynomials. For
instance, Lévy's area � introduced in Example 2.1.19 for d = 2 � is a mea-
surable function on Wiener space, but it is not continuous, not even on sub-
spaces of functions regular enough such that the stochastic integrals make
sense path-wise as Riemann-Stieltjes integrals. This problem is treated in
much detail by Lyons [52].

Motivated by the stochastic Taylor expansion, see Proposition 2.1.4,
Lyons and Victoir [51] choose the iterated Stratonovich integrals as ana-
logues to the polynomials in �nite dimensions.

De�nition 2.2.12. Fix T > 0 and m ∈ N. A �nite sequence of weights
λ1, . . . , λN > 0 and paths ω1, . . . , ωN ∈ C0([0, T ];Rd) forms a cubature for-
mula on Wiener space of degree m if the paths ω1, . . . , ωN are of bounded
variation and

(2.21) E(BI
T ) =

N∑
i=1

λiω
I
i (T ), ∀I ∈ Am,

where we use De�nition 2.1.3 for iterated integrals of Brownian motion and
for paths of bounded variation.
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Remark 2.2.13. By the scaling property (2.1) of iterated Stratonovich inte-
grals, cubature formulas for any T > 0 can be constructed from a cubature
formula for T = 1 by rescaling. Note, however, that the paths are getting
rougher with smaller T .

Remark 2.2.14. The integrals on the right hand side are well-de�ned because
the cubature paths are required to have bounded variation on [0, T ]. Note
that ωI(T ) may be interpreted as evaluation of the random variable BI

T (ω)
for a path ω ∈ C0([0, T ];Rd) of bounded variation. Then the formula (2.21)
in De�nition 2.2.12 can be written as

E(BI
T ) =

N∑
i=1

λIB
I
T (ωi),

in more direct analogy to De�nition 2.2.1.

Kusuoka [43], [44] introduces a similar concept. He calls a family ZI ∈⋂
1≤p<∞ L

p(Ω,F , P ), I ∈ A, m-moment similar if Z∅ = 1 and

(2.22) E(ZI1 · · ·ZIk) = E(BI1
T · · ·B

Ik
T ),

for k ∈ N and I1, . . . , Ik ∈ A with deg(I1)+ · · ·+deg(Ik) ≤ m. Note that any
cubature formula on Wiener space of degree m gives an m-moment similar
family of random variables by setting

(2.23) ZI =

{
BI
T (ωi) with prob. λi, i = 1, . . . , N, deg(I) ≤ m,

0, deg(I) > m.

Indeed, the family of random variables de�ned by (2.23) trivially satis-
�es (2.22) for k = 1. The Chen-Strichartz formula implies that BI1

T · · ·B
Ik
T

can be expressed as linear combination � with deterministic weights � of
iterated Stratonovich integrals of degree smaller than m provided that
deg(I1) + · · · + deg(Ik) ≤ m, k ≥ 1. (In particular, see (A.5) for an ex-
plicit formula.) Consequently, (2.22) holds for any k. On the other hand,
moment similar families of random variables do not need to respect the ge-
ometry of iterated integrals in the sense that the support of the random
vector (ZI : I ∈ Am) does not need to be contained in the support of
(BI

T : I ∈ Am), which is isomorphic to Gmd,1. Moreover, even though the
class of moment similar random variables is larger than the class of cubature
formulas on Wiener space, it does not seem to be easier to construct moment
similar families of random variables.

The proof of existence of cubature formulas on Wiener space is taken from
Teichmann [81] � which is an adaption of the original proof by Lyons and
Victoir [51] � and relies on the algebraic setting introduced in Section 2.1.
Therefore, we shall �rst translate De�nition 2.2.12 into that setting. Recall
that we denote the vector of all iterated Stratonovich integrals of order up
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to m � understood as process taking values in Gmd,1 ⊂ Amd,1 � by (Y 1
t )t∈[0,∞[,

cf. (2.14). For any ω ∈ C0([0, T ];Rd) of bounded variation, we de�ne a
function t 7→ Φ(ω)1

t by the analogous formula

(2.24) Φ(ω)1
t =

∑
I∈Am

ωI(t)eI , t ∈ [0, T ].

yt = Φ(ω)1
t satis�es the ODE

(2.25)


dyt =

d∑
i=0

yteidω
i(t),

y0 = 1,

cf. equation (2.15). Of course, Φ(ω)1
t ∈ Gmd,1 for any t ∈ [0, T ] and any path

of bounded variation ω.
Now we may rephrase the de�ning equation (2.21) as

(2.26) E(Y 1
T ) =

N∑
i=1

λiΦ(ωi)1
T .

We shall show existence of paths of bounded variation ωi and weights λi,
i = 1, . . . , N , in two steps: First we show that the left hand side of (2.26)
can be written as convex combination of elements of Gmd,1, then we show that
any element of Gmd,1 is the endpoint of the solution of an ODE (2.25) starting
at the neutral element 1 for some path of bounded variation ω.

Lemma 2.2.15. For any T > 0 we can �nd N ∈ N, points y1, . . . , yN ∈ Gmd,1
and positive weights λ1, . . . , λN such that

E(Y 1
T ) = exp

(
Te0 +

T

2

d∑
j=1

e2
j

)
=

N∑
i=1

λiyi.

Proof. The law (Y 1
T )∗P of Y 1

T is a Borel probability measure on the �nite
dimensional vector space Amd,1 with

supp((Y 1
T )∗P ) = Gmd,1 ⊂ Amd,1.

Therefore, the statement of the lemma is implied by Chakalov's theorem, see
Corollary 2.2.5.

For the second step, we need a version of Chow's theorem from sub-
Riemannian geometry given in Lemma 2.2.16 below. For a proof we refer to
Montgomery [59].
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Lemma 2.2.16. Let M be an n-dimensional smooth manifold. Assume that
there are d < n vector �elds denoted by D1, . . . , Dd such that the tangent
space TxM at x ∈ M is spanned by D1(x), . . . , Dd(x) together with all the
iterated Lie brackets [Di, Dj ](x), [Di, [Dj , Dk]](x), . . . , i, j, k = 1, . . . , d at
any x ∈ M . Then for any two points x, y ∈ M and any T > 0 there is a
function ω : [0, T ]→ Rd of bounded variation such that the solution z of the
ODE 

dzt =
d∑
i=1

Di(zt)dωi(t), t ∈ [0, T ],

z0 = x,

satis�es zT = y. In other words, any two points of M can be joined by a
horizontal path, i. e. a path tangent to the distribution spanned by D1, . . . , Dd.

Proposition 2.2.17. Cubature formulas on Wiener space exist for any time
T and all positive integers m and d.

Proof. By Lemma 2.2.15, we need to show that the points yi ∈ Gmd,1 can be
represented as

yi = Φ(ωi)1
T

for paths ωi of bounded variation, i = 1, . . . , N . Note that the Lie group
Gmd,1 satis�es the assumption of Lemma 2.2.16 for the vector �elds Dj(y) =
yej , j = 0, . . . , d. Consequently, we can �nd paths of bounded variation
ωi : [0, T ] → Rd+1, i = 1, . . . , N , joining 1 to xi. A closer look to the
construction reveals that these paths of bounded variation can actually by
chosen such that, by abuse of notation, ω0

i (t) = t. Hence, they can be
regarded as paths of bounded variation with values in Rd and added 0-th
component t, which shows (2.26) and concludes the proof.

The existence proof of cubature formulas on Wiener space includes
two separate constructions, both of which are di�cult to perform explic-
itly, namely the construction of a classical cubature formula on the (typi-
cally high-dimensional) space Amd,1, cf. Lemma 2.2.15, followed by the con-
struction of paths of bounded variation joining 1 to the cubature points,
cf. Lemma 2.2.16. Therefore, it is not surprising that the actual construc-
tion of cubature paths is a di�cult task.

Example 2.2.18. For m = 3, let the positive weights λ1, . . . , λN and the
points x1, . . . , xN ∈ Rd form a classical cubature formula of degree 3 for the
standard Gaussian measure on Rd, e. g. N = 2d, {x1, . . . , xN} = {+1,−1}d
and λi = 2−d, i = 1, . . . , N . (Of course, the size of this cubature formula is
far away from being optimal.) Then a cubature formula on Wiener space of
degree m = 3 for d Brownian motions is given by ωi(t) = tzi, t ∈ [0, 1], and
λi as before, i = 1, . . . , N .
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For degree m = 5 and d = 2 Brownian motions, Lyons and Victoir [51]
construct piecewise linear cubature paths. They also show how to do this
for m = 5 and arbitrary d.

2.2.3 Weak approximation using cubature formulas

For the convenience of the reader, we provide a very short resumé of �nite-
dimensional numerical approximation schemes based on cubature formulas
on Wiener space. Naturally, the prime reference is once again Lyons and
Victoir [51]. While they are dealing with many questions regarding cubature
on Wiener space, Kusuoka [43], [44] is almost exclusively interested in weak
approximation based on the more general framework of m-moment simi-
lar families of random variables, see Subsection 2.2.2. Note, however, that
Kusuoka gave the �rst convergence proof for Lipschitz claims for schemes
based on m-moment similar families of random variables, which is, a-fortiori,
also a convergence proof for the cubature scheme.

As we shall see, the general weak approximation scheme based on cuba-
ture formulas is, from a numerical point of view, prohibitively costly in some
situations. Schmeiser, Sore�, and Teichmann [74] try to remedy this in full
generality by introducing recombination techniques, see also Sore� [76]. A
related numerical approach was introduced by Ninomiya and Victoir [60].

As usual, the weak approximation scheme is based on the stochastic
Taylor expansion, Proposition 2.1.4. Let us introduce yet another shorthand
notation: for f ∈ Cm(Rn) and a multi-index I = (i1, . . . , ik) ∈ Am, let

(2.27) VIf(x) = V(i1,...,ik)f(x) = Vi1 · · ·Vikf(x), x ∈ Rn,

and

(2.28) V[I]f(x) = V[(i1,...,ik)]f(x) = [Vi1 , [Vi2 , . . . , [Vik−1
, Vik ] · · · ]]f(x),

where V0, . . . , Vd are the driving vector �elds of the Stratonovich-SDE (1.3)
under consideration. As usual, its solution is denoted by Xx = (Xx

t )t∈[0,T ]

for initial values x ∈ Rn. For the sake of simplicity, let us assume that T < 1,
since we are only interested at the asymptotic analysis at this stage. This
allows us to get rid of the �1{T>1}�-terms.

Let λ1, . . . , λN > 0 and ω1 = ω
(T )
1 , . . . , ωN = ω

(T )
N : [0, T ]→ Rd, denote a

cubature formula on Wiener space for the interval [0, T ] and �xed degree m.
We emphasize the (simple) dependence of the cubature paths on the horizon
T because we shall later change T and, consequently, also the cubature paths
by rescaling to the new T . By de�nition of cubature formulas on Wiener
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space, the stochastic Taylor expansion implies

E(f(Xx
T )) =

∑
I∈Am

VIf(x)E(BI
T ) +O(T

m+1
2 )

=
N∑
j=1

λj
∑
I∈Am

VIf(x)ωIj (T ) +O(T
m+1

2 )(2.29)

for f ∈ Cm+1(Rn;R). By a slight abuse of notation, see Remark 2.2.14, let
Xx
T (ω) denote the solution xT of the ODE

(2.30)


dxt =

d∑
i=0

Vi(xt)dωi(t), t ∈ [0, T ],

x0 = x ∈ Rn,

where ω : [0, T ] → Rd is a path of bounded variation. Taylor expansion of
f(Xx

T (ω)) up to degree m in the sense of deg yields

(2.31) f(Xx
T (ω)) =

∑
I∈Am

VIf(x)ωI(T ) +O(T
m+1

2 )

provided that ω = ω(T ) has the correct scaling

ω
(T ),I
T =

√
T

deg(I)
ω

(1),I
1 .

Combining equation (2.29) and equation (2.31) for the cubature paths
ω1, . . . , ωN , we immediately get

(2.32) E(f(Xx
T )) =

N∑
i=1

λif(Xx
T (ωi)) +O(T

m+1
2 ).

The quantity of interest on the left hand side of equation (2.32) is approx-
imated by a weighted sum of solutions of ODEs on the right hand side.
Therefore, the task of solving an SDE is replaced by the task of solving N
ordinary di�erential equations. Furthermore, note that the error term on
the right hand side is deterministic and can be computed a-priori. More-
over, (2.32) respects the geometry of the SDE in the sense that the solutions
Xx(ωi), i = 1, . . . , N , of the ODEs stay on invariant manifolds of the solu-
tion Xx to the SDE. Once again, this is a remarkable di�erence to the usual
Euler scheme. Of course, this property is only preserved in actual computa-
tions, if the ODE-solver used to solve (2.30) respects invariant manifolds of
the ODE as good as possible.

Formula (2.32) represents the one-step version of the cubature on Wiener
space scheme. In the computation process, the original interval [0, T ] is
divided into su�ciently many smaller intervals and the one-step scheme is
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iteratively applied to all the smaller intervals. More precisely, �x a (possibly
non-uniform) partition 0 = t0 < t1 < · · · < tM = T of [0, T ]. We denote the
time increments by ∆ti = ti+1 − ti, i = 0, . . . ,M − 1. Next we construct
cubature paths on [0, T ] by concatenating cubature paths on the smaller
sub-intervals: �x (i1, . . . , iM ) ∈ {1, . . . , N}M and de�ne a path ω(i1,...,iM ) :

[0, T ] → Rd of bounded variation by setting ω(i1,...,,iM )(t) = ω
(∆t0)
i1

(t) for
t ∈ [0, t1] and, recursively,

ω(i1,...,iM )(t) = ω(i1,...,iM )(tk) + ω
(∆tk)
ik+1

(t− tk), t ∈]tk, tk+1],

k = 1, . . . ,M − 1. We associate the weight λi1 · · ·λiM to the path ω(i1,...,iM )

and approximate

(2.33) E(f(Xx
T )) =

∑
(i1,...,iM )∈{1,...,N}M

λi1 · · ·λiM f(Xx
T (ω(i1,...,iM )))

+ CT max
k=0,...,M−1

(∆tk)
m−1

2 .

Note that the order of the rest term is reduced from m+1
2 to m−1

2 by the
iteration procedure: in each step we have an error of order m+1

2 and summing
up these local errors gives a total error of order m−1

2 .

Remark 2.2.19. Repeating an observation already made in Remark 2.2.13,
we note that the cubature path ω(i1,...,iM ) is getting rougher and rougher
with higher M .

Proposition 2.2.20. Let f ∈ Cm+1
b (Rn;R) and let the vector �elds

V0, . . . , Vd be C∞-bounded. Then (2.33) holds with a constant C which is
independent of x and the partition.

Proof. This is Lyons and Victoir [51, Theorem 10].

Xx
T (ω(i1,...,iM )) is the solution of the following problem: start at x and

follow the ODE (2.30) driven by ω(∆t1)
i1

until time t1. Then, from time t1
to time t2, follow the ODE driven by ω(∆t2)

i2
and so on until time T . Once

again, the task of computing a solution of the SDE (1.3) is replaced by the
task of computing solutions of the corresponding ODEs (2.29), but this time
we have to solve NM ODEs. Indeed, in general there is a di�erence between
following a path ωi �rst and a di�erent path ωj afterwards and following ωj
�rst and ωi thereafter. Obviously, the number of ODEs gets too large even
for e�cient ODE solvers and only moderate partition sizes M .

One way out of the exponential decrease of the numerical expense of the
cubature method is by doing Monte-Carlo simulation on the tree. Note that∑

(i1,...,iM )∈{1,...,N}M
λi1 · · ·λiM = 1,
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therefore we can regard the right hand side of (2.33) as the expected value of
a discrete random variable taking value f(Xx

T (ω(i1,...,iM ))) with probability
λi1 · · ·λiM , (i1, . . . , iM ) ∈ {1, . . . , N}M . We stress that this is completely
analogous to the usual weak Euler-Maruyama scheme: precise integration
of the corresponding discrete random variable is not possible, therefore one
uses Monte-Carlo simulation for the integration.

A completely di�erent approach is presented in a still unpublished work
by Schmeiser, Sore�, and Teichmann [74].

Unfortunately, the smoothness conditions of Proposition 2.2.20 on the
function f are unrealistically strong. Indeed, using the prime motivating ex-
ample of mathematical �nance, not even one of the simplest possible payo�
function f , the one corresponding to the European put option, is contin-
uously di�erentiable. The results of Kusuoka [43], [44] allow us to extend
the method to more realistic scenarios, where the payo� function f is only
assumed to be Lipschitz continuous.

Theorem 2.2.21. Additional to the usual assumption of C∞-boundedness,
let the vector �elds V0, . . . , Vd satisfy the UFG condition: there is l ∈ N such
that

(2.34) ∀I ∈ A \ {∅, (0)} : V[I] ∈
〈{
V[J ]|J ∈ Al \ {∅, (0)}

}〉
C∞b (Rn)

,

where 〈A〉C∞b (Rn) denotes the C
∞
b (Rn)-module generated by the set A. Fur-

thermore, �x a cubature formula of degree m and γ > m− 1. Then there is
a constant C > 0 such that

E(f(Xx
T )) =

∑
(i1,...,iM )∈{1,...,N}M

λi1 · · ·λiM f(Xx
T (ω(i1,...,iM ))) + C

‖∇f‖∞
M (m−1)/2

for any function f satisfying a uniform Lipschitz condition provided that the
time mesh is given by

ti =
iγT

Mγ
, i = 0, . . . ,M.

Proof. See Kusuoka [44, Theorem 4].

2.3 Moments of iterated integrals

In the course of our considerations of the geometry of iterated Stratonovich
integrals, we have encountered the remarkable formula

(2.35) E(Y 1
t ) = exp

(
te0 +

t

2

d∑
i=1

e2
i

)
,
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see Proposition 2.1.20. Recall that Y 1 is the Gmd,1-valued process of all it-
erated Stratonovich integrals of Brownian motion up to degree m, in the
sense of the degree deg de�ned in De�nition 2.1.2. As we have remarked
earlier, the above equation encodes the steps of iterative applications of Itô's
formula to compute the �rst moment of iterated Stratonovich integrals. The
goal of this section is to derive a similar representation for higher moments
of iterated Stratonovich integrals, which can be used to calculate them in an
e�cient way.

In fact, we will follow two approaches: �rst we will derive an explicit
formula, similar to the one above. Then, in Section 2.4, we will use repre-
sentation theory in order to get an algorithm for computation of moments.

The theoretical background for the derivation of the explicit formula is
rather simple. Given k vector spaces W1, . . . ,Wk, k ∈ N, let us consider
their tensor product W1 ⊗ · · · ⊗Wk. Recall the universal property of the
tensor product: Let

ϕ : W1 × · · · ×Wk →W1 ⊗ · · · ⊗Wk, (w1, . . . , wk) 7→ w1 ⊗ · · · ⊗ wk

be the natural embedding of W1 × · · · ×Wk into the tensor product W1 ⊗
· · · ⊗Wk. Furthermore, let F be a vector space and let

ψ : W1 × · · · ×Wk → F

be a k-multi-linear map. Then there is a unique linear map

ρ : W1 ⊗ · · · ⊗Wk → F

such that ψ = ρ ◦ ϕ.

W1 × · · · ×Wk
ψ //

ϕ

��

F

W1 ⊗ · · · ⊗Wk

ρ

55llllllllllllllll

In our setting, we will use

Am,⊗kd,1 = Amd,1 ⊗ · · · ⊗ Amd,1,

the k-fold tensor product of Amd,1 with itself, and Yt = Y 1
t ∈ Amd,1, the vector

of iterated Stratonovich integrals as introduced in (2.14).

Lemma 2.3.1. Given a homogenous polynomial p : Amd,1 → R of degree k.

Then we can �nd a linear functional p̃ : Am,⊗kd,1 → R such that

p(y) = p̃(y⊗k), y ∈ Amd,1,

where we used the notation

y⊗k = ϕ(y, . . . , y) = y ⊗ · · · ⊗ y ∈ Am,⊗kd,1 .
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Proof. By homogeneity of p, there are l ∈ N, linear functionals λj1, . . . , λ
j
k :

Amd,1 → R and real numbers aj , j = 1, . . . , l, such that

p(y) =
l∑

j=1

ajλj1(y) · · ·λjk(y)

for all y ∈ Amd,1. We can, therefore, extend p to a k-multi-linear functional

p : Amd,1 × · · · × Amd,1 → R,

e. g. by setting

p(y1, . . . , yk) =
l∑

j=1

ajλj1(y1) · · ·λjk(yk).

Obviously, p(y) = p(y, . . . , y), notice, however, that the extension is by no
means unique.

The existence of p̃ directly follows from the universal property of the
tensor product Am,⊗kd,1 (with F = R) now.

By Lemma 2.3.1, an explicit formula for

E
(
Y ⊗kt

)
= E

(
Yt ⊗ · · · ⊗ Yt

)
corresponds to an explicit formula for the kth moments of Yt. Therefore,
Theorem 2.3.2 below is the natural generalization of equation (2.35). Be-
fore formulating the theorem, we need to de�ne the appropriate exponential
function. Let us de�ne a multiplication on Am,⊗kd,1 by specifying

(2.36) (y1 ⊗ · · · ⊗ yk) (z1 ⊗ · · · ⊗ zk) = (y1z1)⊗ · · · ⊗ (ykzk)

for y1, . . . , yk, z1, . . . , zk ∈ Amd,1 and extending it to Am,⊗kd,1 × Am,⊗kd,1 as a bi-
linear map. We de�ne an exponential function

exp : Am,⊗kd,1 → Am,⊗kd,1

using the multiplication (2.36), i. e. by

exp(y) =
∞∑
k=0

yk

k!
, y ∈ Am,⊗kd,1 ,

with y0 = 1⊗ · · · ⊗ 1, the neutral element of the multiplication. Notice that
the above series is, in fact, a polynomial by nil-potency of Amd,1, provided
that at least one factor of each summand of y ∈ Am,⊗kd,1 is of degree larger
than 0.
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Theorem 2.3.2. Given the process Y 1
t = Yt of iterated Stratonovich integrals

de�ned in (2.14) with initial value y = 1 ∈ Amd,1. Then

E
(
Y ⊗kt

)
= exp

(
t(e0 ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ e0)

+
t

2

d∑
i=1

(e2
i ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · 1⊗ e2

i )

+ t
d∑
i=1

(ei ⊗ ei ⊗ 1⊗ · · · ⊗ 1 + ei ⊗ 1⊗ ei ⊗ 1⊗ · · · ⊗ 1 + · · ·

+ 1⊗ · · · ⊗ 1⊗ ei ⊗ ei)
)
.

In particular, let p denote a homogenous polynomial of degree k on Amd,1 and

let p̃ be the corresponding linear functional on Am,⊗kd,1 . Then

E(p(Yt)) = p̃(exp(Ht)),

where Ht denotes the logarithm of the right hand side in the above formula.

Proof. We use the same strategy as in the proof of Proposition 2.1.20. First
we compute the SDE solved by Y ⊗kt . By multi-linearity of the tensor product,
i. e. of the map ϕ, we have

dY ⊗kt =
(
Yt

d∑
i=0

ei ◦ dBi
t

)
⊗ Yt ⊗ · · · ⊗ Yt

+ Yt ⊗
(
Yt

d∑
i=0

ei ◦ dBi
t

)
⊗ · · · ⊗ Yt + · · ·

+ Yt ⊗ Yt ⊗ · · · ⊗
(
Yt

d∑
i=0

ei ◦ dBi
t

)
=

d∑
i=0

((
Ytei

)
⊗ Yt ⊗ · · · ⊗ Yt

+ Yt ⊗
(
Ytei

)
⊗ · · · ⊗ Yt + · · ·

+ Yt ⊗ Yt ⊗ · · · ⊗
(
Ytei

))
◦ dBi

t.

De�ne linear vector �elds D⊗ki : Am,⊗kd,1 → Am,⊗kd,1 by

D⊗ki (y1 ⊗ · · · ⊗ yk) = (y1ei)⊗ y2 ⊗ · · · ⊗ yk
+ y1 ⊗ (y2ei)⊗ · · · ⊗ yk + · · ·
+ y1 ⊗ y2 ⊗ · · · ⊗ (ykei),
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i = 0, . . . , d, then we have

(2.37) dY ⊗kt =
d∑
i=0

D⊗ki
(
Y ⊗kt

)
◦ dBi

t,

corresponding to equation (2.15) for Yt. Indeed, notice that D⊗ki is the
push-forward of the vector �eld Di under the map

y 7→ y⊗k,

i = 0, . . . , d.
Let L⊗k denote the in�nitesimal generator of the Markov process Y ⊗kt ,

i. e.

L⊗k = D⊗k0 +
1
2

d∑
i=1

(
D⊗ki

)2
.

Fix a linear functional p̃ : Am,⊗kd,1 → R. In order to emulate the proof of

Proposition 2.1.20, we need to compute L⊗kp̃(y⊗k), y ∈ Am,⊗kd,1 . Note that
D⊗ki p̃ is the linear functional de�ned by

D⊗ki p̃(y1 ⊗ · · · ⊗ yk) =
∂

∂ε

∣∣∣∣
ε=0

p̃
(
y1 ⊗ · · · ⊗ yk + εD⊗ki (y1 ⊗ · · · ⊗ yk)

)
= p̃
(
D⊗ki (y1 ⊗ · · · ⊗ yk)

)
,

i = 0, . . . , d, y1, . . . , yk ∈ Amd,1. Moreover,
(
D⊗ki

)2
p̃ is the linear functional

on Am,⊗kd,1 de�ned by(
D⊗ki

)2
p̃(y1 ⊗ · · · ⊗ yk) = p̃

((
D⊗ki

)2(y1 ⊗ · · · ⊗ yk)
)
,

again for i = 0, . . . , d and y1, . . . , yk ∈ Amd,1. In order to obtain a concise
notation, let us introduce

κ(r; y) = 1⊗ · · · ⊗ y︸︷︷︸
r

⊗ · · · ⊗ 1,

κ(r, r; y) = 1⊗ · · · ⊗ y2︸︷︷︸
r

⊗ · · · ⊗ 1,

κ(r, s; y) = 1⊗ · · · ⊗ y︸︷︷︸
r

⊗ · · · ⊗ y︸︷︷︸
s

⊗ · · · ⊗ 1,

for y ∈ Amd,1 and r ∈ {1, . . . , k}, s ∈ {1, . . . , k} with r < s in case both r and
s appear in the formula. Then

D⊗ki (y1 ⊗ · · · ⊗ yk) = y1 ⊗ · · · ⊗ yk
( k∑
r=1

κ(r; ei)
)
,
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with the multiplication de�ned in (2.36), and

(
D⊗ki

)2(y1⊗· · ·⊗yk) = y1⊗· · ·⊗yk
( k∑
r=1

κ(r, r; ei)+2
∑

r<s∈{1,...,k}

κ(r, s; ei)
)
,

i = 0, . . . , d.
Let, for z ∈ Am,⊗kd,1 ,

u(t, z) = E
(
p̃
(
zY ⊗kt

))
= p̃
(
E
(
zY ⊗kt

))
.

u solves the heat equation

(2.38)


∂

∂t
u(t, z) = L⊗ku(t, z),

u(0, z) = p̃(z).

Now let

v(t, z) = p̃

(
z exp

(
t

k∑
r=1

κ(r; e0) +
t

2

d∑
i=1

k∑
r=1

κ(r, r; ei)

+ t
d∑
i=1

∑
r<s∈{1,...,k}

κ(r, s; ei)
))

.

We claim that v solves (2.38), too, which implies the theorem by uniqueness
of the solution of the Kolmogorov backward equation. Indeed, v(0, z) = p̃(z)
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and

∂

∂t
v(t, z) = p̃

(
z
∂

∂t
exp
(
t

k∑
r=1

κ(r; e0) +
t

2

d∑
i=1

k∑
r=1

κ(r, r; ei)

+ t

d∑
i=1

∑
r<s∈{1,...,k}

κ(r, s; ei)
))

= p̃

(
z exp

(
t

k∑
r=1

κ(r; e0) +
t

2

d∑
i=1

k∑
r=1

κ(r, r; ei)

+ t
d∑
i=1

∑
r<s∈{1,...,k}

κ(r, s; ei)
)
·

·
( k∑
r=1

κ(r; e0) +
1
2

d∑
i=1

k∑
r=1

κ(r, r; ei) +
d∑
i=1

∑
r<s∈{1,...,k}

κ(r, s; ei)
))

= L⊗kp̃

(
z exp

(
t

k∑
r=1

κ(r; e0) +
t

2

d∑
i=1

k∑
r=1

κ(r, r; ei)

+ t

d∑
i=1

∑
r<s∈{1,...,k}

κ(r, s; ei)
))

= L⊗kv(t, z).

Remark 2.3.3. Notice that we have never used nil-potency of Amd,1 in the
proof of Theorem 2.3.2. Therefore, the theorem also holds true in the non-
truncated situation, if the exponential is understood as a formal series, giving
us all moments of all iterated Stratonovich integrals of Brownian motion.

Remark 2.3.4. Similar results hold for all Lévy processes on the group Gmd,1.

Example 2.3.5. In order to calculate the second moments of Yt, we need
to compute E(Yt ⊗ Yt). Theorem 2.3.2 for k = 2 gives

E(Yt ⊗ Yt) =

exp
(
t(e0 ⊗ 1 + 1⊗ e0) +

t

2

d∑
i=1

(e2
i ⊗ 1 + 1⊗ e2

i ) + t

d∑
i=1

ei ⊗ ei
)
.

2.4 Calculation of moments of Zt

The aim of this section is to construct a method to compute moments of
the Stratonovich areas of B, i. e. of the process Zt = log(Y 1

t ) introduced
in (2.16). The areas are important in numerical analysis of SDEs as well
as in the theory of SDEs. In the former �eld, they are related to higher
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order (weak and strong) methods for discretization of SDEs like the Milstein
scheme, see Kloeden and Platen [42]. On the other hand, the rough paths
theory of T. Lyons [52] has shown that Itô-Stratonovich areas lie at the heart
of the theory of stochastic di�erential equations.

Of course, we could simply apply the Chen-Strichartz formula, see Propo-
sition 2.1.17, to the explicit formula for the moments of Y 1

t given in Theo-
rem 2.3.2. Recall, however, that we cannot directly read out the moments of
Zt from the Chen-Strichartz formula since it does not give us an expansion
of log(E(Y 1

t ) in terms of a basis of gmd,1. Therefore, Theorem 2.3.2 in con-
nection with Proposition 2.1.17 does not give us an explicit formula for the
moments of Zt, since we will have to perform a basis expansion �rst.

The second method, which we will present in the remainder of this sec-
tion, does neither rely on the explicit formula for the moments of Y 1

t given
in Theorem 2.3.2 nor on the Chen-Strichartz formula. Instead, it uses rep-
resentation theory, as sketched in (2.39).

(2.39) gmd,1
ρ (=id) //

exp

��

h

expH

��

gmd,1

expm̃
��

Amd,1 ⊃G
m
d,1

R (=id)
// H Am,m̃d,1

R denotes a representation of the algebra Amd,1 and ρ denotes the correspond-
ing representation of gmd,1. More precisely, we will choose the spaces H and
h so that we may identify gmd,1 with h such that H, however, covers objects
of higher degree than Amd,1. In fact, H will be chosen to be an appropriate
factor algebra of Am̃d,1 for some m̃ > m large enough. We will construct the
moments of Zt by combining two formulas: the �rst formula expresses R(Y 1

t )
in terms of Zt, the second formula gives an expression of E(R(Y 1

t )) in terms
of expH . Both together will give an algorithm allowing the computation of
moments of Zt.

2.4.1 Algebra of iterated integrals

We need to go back to the algebraic setting of free nilpotent algebras, Lie
algebras and Lie groups, see Subsection 2.1.2. Now we focus more on the
algebraic properties of that framework, not on the geometric ones as before.

Recall the free step-m nilpotent Lie algebra gmd,1 generated by d generators
{e1, . . . , ed} of degree 1 and one generator e0 of degree 2. We have remarked
earlier that the linear generators in (2.11) do not form a basis of gmd,1. Now we
want to perform calculations in gmd,1, therefore we cannot ignore this issue any
more and need to specify a basis, namely the Hall basis, see Reutenauer [67].

We consider letters corresponding to the generators of gmd,1 and denote
the alphabet by A, i. e.

A = {e0, e1, . . . , ed} .
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By a word we understand a monomial in the letters. On the set A∗ of all
words in A we de�ne a product ∗ by concatenation, i. e.

(ei1 · · · eik) ∗ (ej1 · · · ejr) = ei1 · · · eikej1 · · · ejr .

Usually we will omit the symbol ∗ in the notation. Note that the set A∗ of
all words equipped with the concatenation product forms the free monoid
generated by the letters e0, . . . , ed with the empty word as neutral element,
see Remark 2.1.7. We specify a total order < on the letters, e. g. e0 < e1 <
· · · < ed, and follow the construction of the ordered set (H,<), H ⊂ A∗,
of Hall words as presented by Reutenauer [67]. Note the Hall set (H,<) is
not uniquely determined and that the de�nition of Hall sets is not canonical,
i. e. other authors sometimes use other but essentially equivalent concepts
under this name. Instead of giving a formal de�nition, we give the following
constructive description of Hall words.

Lemma 2.4.1 (Properties of Hall words). (i) Each letter is a Hall word and
each Hall word h ∈ H, which is not a letter, admits a standard factorization
h = h′h′′, h′, h′′ ∈ H with h′ < h′′ and h < h′′.
(ii) Given two Hall words h < k ∈ H, hk is a Hall word with standard fac-
torization hk, if and only if h is a letter or h′′ ≥ k, where h = h′h′′ is the
standard factorization of h.
(iii) Each word has a unique decreasing factorization into Hall words,
i. e. given w ∈ A∗ there is a unique k ∈ N and there are unique h1 ≥
h2 ≥ · · · ≥ hk ∈ H such that w = h1 ∗ · · · ∗ hk = h1 · · ·hk.

Proof. See Reutenauer [67], Corollary 4.7 and the paragraph below it.

De�nition 2.4.2. The Hall polynomial Ph corresponding to the Hall word
h ∈ H is de�ned recursively by

Ph =

{
h, h ∈ A, i. e. h = ei for some i ∈ {0, . . . , d} ,
[Ph′ , Ph′′ ], h has standard factorization h = h′h′′.

Note that there are only �nitely many Hall polynomials Ph ∈ gmd,1 due to
nil-potency in gmd,1.

Let |w| denote the length of the word w ∈ A∗. For a letter a ∈ A de�ne
the partial length of w with respect to a as the number of times a occurs in
w. The partial length is denoted by |w|a. A polynomial

∑n
i=1 λiwi, wi ∈ A∗,

λi ∈ R \ {0}, i = 1, . . . , n, is called �nely homogeneous if

(2.40) ∀a ∈ {e0, . . . , ed} : |w1|a = |w2|a = · · · = |wn|a .

Fine homogeneity implies homogeneity of the polynomial with respect to the
length |·| as well as with respect to the degree deg.



2.4. CALCULATION OF MOMENTS OF ZT 53

Lemma 2.4.3. The set of all Hall polynomials forms a basis of the Lie
algebra gmd,1. More precisely,

PH = {Ph | h ∈ H, deg(h) ≤ m}

is a basis of gmd,1 called Hall basis. All Hall polynomials are �nely homoge-
nous.

Proof. See Reutenauer [67, Theorem 4.9 (i)]. Fine homogeneity is given by
construction, since taking Lie brackets does not destroy this property.

We de�ne an order on PH by simply letting Ph < Pk if h < k, h, k ∈ H.
Let N = #PH = dimR gmd,1 and write

(2.41) PH = {f1, . . . , fN} , f1 < f2 < · · · < fN .

The expectation formula (2.35) only covers the �rst moment. Of course,
it also contains higher moments of iterated integrals of low degree. Neverthe-
less, in order to get information about higher moments of iterated integrals
of high degree, this is not su�cient and we will have to embed gmd,1 into
enveloping structures of higher degree. More precisely, we consider represen-
tations of gmd,1, where polynomials of higher order than m exist (in the sense
that they are non-trivial).

De�nition 2.4.4. Given a Lie algebra h, the universal enveloping algebra
ι : h → U(h) is an algebra1 U(h) together with a homomorphism ι of Lie
algebras such that the universal property holds: for any algebra C and any
Lie algebra homomorphism φ : h → C there is a unique homomorphism
φ̃ : U(h)→ C of algebras such that the following diagram commutes:

h � � ι //

φ

��

U(h)

φ̃}}{{
{{

{{
{{

A

ι is injective by the Poincaré-Birkho�-Witt theorem below.

Proposition 2.4.5 (Poincaré-Birkho�-Witt theorem). Given an ordered ba-
sis { fi | i ∈ I } of the Lie algebra h, then{

ι(fi1) · · · ι(fik)
∣∣∣ k ∈ N, (i1, . . . , ik) ∈ Ik, i1 ≥ i2 ≥ · · · ≥ ik

}
gives a basis of the universal enveloping algebra U(h).

Proof. See Serre [75, Theorem III.4.3 and Lemma III.4.5].

1Recall Remark 2.1.5.
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Let ι : gmd,1 → U(gmd,1) be the universal enveloping algebra of the free
nilpotent Lie algebra gmd,1. By the above comment, ι is injective, therefore
we may identify gmd,1 with ι(gmd,1) ⊂ U(gmd,1). Consequently, given an element
fi ∈ PH of the Hall basis of gmd,1, fi will also denote the corresponding element
ι(fi) ∈ U(gmd,1), i = 1, . . . , N .

Lemma 2.4.6. Given two Lie algebras with their respective universal en-
veloping algebras ι : g ↪→ U(g) and ε : h ↪→ U(h) and a surjective homomor-
phism of Lie algebras π : g→ h. De�ne π̃ : U(g)→ U(h) by π̃ ◦ ι = ε ◦ π.

g π //
� _

ι
��

h� _

ε
��

U(g) π̃ // U(h)

Then ker(π̃) ∩ g = ker(π), ker(π̃) = 〈ker(π)〉, the ideal in U(g) generated by
ker(π), and

U(h) = U(g)/ ker(π̃).

Proof. By the universal property of the enveloping algebra with A = U(h)
and φ = ε ◦ π, π̃ is a uniquely de�ned algebra homomorphism.

Choose a basis { fi | i ∈ I } of g, I being a totally ordered set, such that
there is an I′ ⊂ I with the properties that { π(fi) | i ∈ I′ } is a basis of h and
π(fi) = 0 for i ∈ I \ I′. Then the products π(fi1) · · ·π(fik) = π̃(fi1 · · · fik),
i1 ≥ · · · ≥ ik ∈ I′, form a basis of U(h), implying surjectivity of π̃. Con-
sequently, U(h) = U(g)/ ker(π̃). The equations for the kernels of π and π̃
follow immediately. Indeed,

kerπ =
〈{
fi
∣∣ i ∈ I \ I′ }〉R ,

ker π̃ =
〈{

fi1 · · · fik
∣∣∣ k ∈ N, (i1, . . . , ik) ∈ Ik, ∃ 1 ≤ l ≤ k : il ∈ I \ I′

}〉
R
.

Lemma 2.4.6 gives an explicit representation of U(gmd,1) in terms of the
universal enveloping algebra of gd,1, the free Lie algebra generated by A. Let
Ad,1 be the free algebra2 generated by A. By the universal property of the
free algebra, Ad,1 is a universal enveloping algebra of gd,1 and we extend the
de�nition of the degree function to Ad,1, as well as the grading. That is,
analogously to (2.6) and the corresponding decomposition of gmd,1,

Ad,1 =
∞⊕
n=0

Wn,

gd,1 =
∞⊕
n=0

Un.

2Once again, recall Remark 2.1.5.
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Note that it is not necessary to introduce di�erent notations for Wn ⊂ Amd,1
and Wn ⊂ Ad,1 since both spaces Wn are isomorphic as long as m ≥ n. The
same is true for Un.

Corollary 2.4.7. Let π̃ : U(gd,1) → U(gmd,1) be the extension as in
Lemma 2.4.6 of the canonical projection π : gd,1 → gmd,1. Then

U(gmd,1) = U(gd,1)/ ker(π̃)

and ker(π̃) =
〈⊕

k>m Uk
〉
U(gd,1)

, the U(gd,1)-ideal generated by the Lie poly-

nomials of degree greater than m.

Proof. The corollary follows by Lemma 2.4.6 noting that kerπ =
⊕

k>m Uk.

For m̃ ≥ m consider the ideal Jm,m̃ =
〈⊕m̃

n=m+1 Un
〉

Am̃d,1
generated by

all Lie monomials of degree higher than m in the algebra Am̃d,1. Jm,m̃ is
isomorphic to

〈
gm̃d,1/g

m
d,1

〉
again in Am̃d,1. De�ne

(2.42) Am,m̃d,1 = Am̃d,1/Jm,m̃.

Note that gm̃d,1 understood as subset of Am̃d,1 is reduced to gmd,1 by factoring
with respect to Jm,m̃. Form ≤ µ ≤ ν de�ne a projection prν,µ : Am,νd,1 → Am,µd,1

by cutting o� all components of degree larger than µ. More precisely, let
x ∈ Aνd,1 be a representative of the class [x]m,ν = x+ Jm,ν ∈ Am,νd,1 and let

(2.43) Πν,µ : Aνd,1 =
ν⊕
i=0

Wi → Aµd,1 =
µ⊕
i=0

Wi

be the projection cutting o� all terms of higher order than µ. Then we de�ne

(2.44) prν,µ
(
[x]m,ν

)
=
[
Πν,µx

]
m,µ
∈ Am,µd,1 .

prν,µ is a well-de�ned algebra homomorphism, since Πν,µ(Jm,ν) ⊂ Jm,µ and
Πν,µ is an algebra homomorphism. The family of projections prν,µ, ν ≥ µ ≥
m, is compatible in the sense that

prµ,κ ◦ prν,µ = prν,κ, m ≤ κ ≤ µ ≤ ν.

Thus, we can de�ne the projective limit

(2.45) Am,∞d,1 = proj lim
m̃→∞

Am,m̃d,1

with the projections prm̃ : Am,∞d,1 → Am,m̃d,1 , m ≤ m̃ <∞.
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Lemma 2.4.8. The universal enveloping algebra U(gmd,1) can be embedded
into the algebra Am,∞d,1 .

Proof. Recall the universal property of the projective limit: for any algebra
C and any family of algebra homomorphisms pm̃ : C → Am,m̃d,1 such that
pµ = prν,µ ◦pν form ≤ µ ≤ ν, there is a uniquely determined homomorphism
of algebras φ : C → Am,∞d,1 such that pm̃ = prm̃ ◦φ for m ≤ m̃ <∞.

Am,md,1 Am,m+1
d,1

prm+1,moo Am,m+2
d,1

prm+2,m+1oo · · ·oo Am,∞d,1
oo

C

pm

OO

C

pm+1

OO

C

pm+2

OO

· · · C

φ

OO

By the universal property of the universal enveloping algebra, see De�ni-
tion 2.4.4, for any m̃ ≥ m there is a uniquely determined φ̃m̃ : U(gmd,1) →
Am,m̃d,1 with φm̃ = φ̃m̃ ◦ ι, where φm̃ denotes the embedding of gmd,1 in Am,m̃d,1 .
Obviously, the family φm̃ satis�es the compatibility condition. By the de�n-
ing equation of φ̃m̃, compatibility extends to the family φ̃m̃, m̃ ≥ m. The
universal property of the projective limit then yields the existence of an al-
gebra homomorphism φ : U(gmd,1) → Am,∞d,1 ful�lling φ̃m̃ = prm̃ ◦φ. This
construction is visualized in (2.46).

(2.46) U(gmd,1) φ //

φ̃m̃

##GG
GG

GG
GG

G
Am,∞d,1

prm̃
��

gmd,1
?�

ι

OO

φm̃ // Am,m̃d,1

We need to show injectivity of φ, i. e. that ker(φ) = {0} ⊂ U(gmd,1). An
element y ∈ Am,∞d,1 is equal to 0, if and only if all its projections prm̃(y) =

0 ∈ Am,m̃d,1 , see Lang [45]. We claim that for any �xed x ∈ U(gmd,1) \ {0} and
all m̃ large enough, we have prm̃(φ(x)) = φ̃m̃(x) 6= 0 ∈ Am,m̃d,1 .

Fix a basis { fi | i ∈ I } of gmd,1 indexed by a totally ordered set I. We
may assume that all the Lie polynomials fi, i ∈ I, are sums of monomials of
the same degree deg(fi), e. g. by choosing the Hall basis PH . Fix m̃ > m
and consider

〈deg > m̃〉 =
〈{ fi1 · · · fik | k ∈ N, i1 ≥ · · · ≥ ik ∈ I, deg(fi1) + · · ·+ deg(fik) > m̃ }〉R

Actually, this subspace of U(gmd,1) is an ideal. By nil-potency of Am̃d,1, we get
that 〈deg > m̃〉 ⊂ ker(φ̃m̃). Thus, we may regard φ̃m̃ as a homomorphism of
algebras φ̃m̃ : U(gmd,1)/ 〈deg > m̃〉 → Am,m̃d,1 .
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We show that this homomorphism is an isomorphism by construct-
ing its inverse. Let ψ denote the embedding of the set of generators
A = {e0, e1, . . . , ed} into gmd,1 ↪→ U(gmd,1)/ 〈deg > m̃〉. Since Am̃d,1 is free
over A, the universal property of the free algebra implies the existence of a
uniquely determined homomorphism of step m̃-nilpotent algebras ψ̃ : Am̃d,1 →
U(gmd,1)/ 〈deg > m̃〉 extending ψ.

A� _

��

� � ψ // gmd,1� _

ι

��
Am̃d,1

ψ̃

// U(gmd,1)/ 〈deg > m̃〉

Jm,m̃ ⊂ ker(ψ̃), since U(gmd,1) is isomorphic to the free algebra with genera-
tors e0, . . . , ed, where the ideal generated by the Lie polynomials of degree
greater than m is factored out, see Corollary 2.4.7. By this factorization,
Jm,m̃ understood as a subset of the free algebra is mapped to 0 ∈ U(gmd,1).
Thus, ψ̃ can be extended to a homomorphism of algebras from Am,m̃d,1 to

U(gmd,1)/ 〈deg > m̃〉. The composition φ̃m̃ ◦ ψ̃ : Am,m̃d,1 → Am,m̃d,1 is a homomor-
phism of algebras. ψ(ei) = ei implies that

ψ̃
(
[ei]m,m̃

)
= [ei]〈deg>m̃〉,

where [ei]〈deg>m̃〉 = ei + 〈deg > m̃〉 with ei ∈ U(gmd,1). Consequently, since
φm̃(ei) = [ei]m,m̃, we get

φ̃m̃
(
ψ̃
(
[ei]m,m̃

))
= φ̃m̃

(
[ei]〈deg>m̃〉

)
= [ei]m,m̃

for each i = 0, . . . , d. Analogously, we get for the elements of the Poincaré-
Birkho�-Witt basis

ψ̃ ◦ φ̃m̃
(
[fi]〈deg>m̃〉

)
= ψ̃([fi]m,m̃) = [fi]〈deg>m̃〉.

Since these elements generate the algebras Am,m̃d,1 and U(gmd,1)/ 〈deg > m̃〉,
respectively, we can conclude that

φ̃m̃ ◦ ψ̃ = idAm,m̃d,1
, ψ̃ ◦ φ̃m̃ = idU(gmd,1)/〈deg>m̃〉,

showing that both φ̃m̃ and ψ̃ are bijective and the inverses of each other.
Now for some element fi1 · · · fik of the Poincaré-Birkho�-Witt basis of

the universal enveloping algebra, let m̃ = deg(fi1) + · · · + deg(fik). Then
fi1 · · · fik 6= 0 ∈ U(gmd,1)/ 〈deg > m̃〉 and thus by bijectivity,

φ̃m̃
(
fi1 · · · fik

)
6= 0 ∈ Am,m̃d,1 ,

which shows that
φ
(
fi1 · · · fik

)
6= 0 ∈ Am,∞d,1 .
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Using (2.41), the above proof implies that

{ [fi1 ]m,m̃ · · · [fik ]m,m̃ | k ∈ N, N ≥ i1 ≥ . . . ≥ ik ≥ 1, deg(fi1) + · · ·+ deg(fik) ≤ m̃ }

forms a basis of Am,m̃d,1 .

2.4.2 Calculation of moments

Now we have �nished setting up the stage and we can return to the process
Y y of all iterated Stratonovich integrals of degree less or equal to m as
de�ned in equation (2.14). Since we are no longer working with one �xed free
nilpotent algebra Amd,1 as before, we indicate the degree m by an additional
superscript, i. e.

dY y,m
t =

d∑
i=0

Di(Y
y,m
t ) ◦ dBi

t, Y y,m
0 = y,

where Di(y) = yei, y ∈ Amd,1, as before, i = 0, . . . , d. Furthermore, we recall
the convention that �dB0

t = dt�, see De�nition 2.1.1, and the de�nition of
the sets of multi-indices A and of multi-indices Am of degree less or equal
m. Following equation (2.16), let

(2.47) Zmt = log(Y 1,m
t ) =

N∑
i=1

Zi,mt fi ∈ gmd,1, t ≥ 0,

where PH = {f1, . . . , fN} denotes the Hall basis of gmd,1 and the right hand
side of (2.47) is the expansion of Zmt in terms of the Hall basis.

By the Chen-Strichartz formula, Proposition 2.1.17, we can calculate the
coe�cients Zi,m, i = 1, . . . , N of Zm by expanding e[I], I ∈ Am, in terms of
the Hall basis.

For convenience in working with the Hall and the Poincaré-Birkho�-Witt
basis, we introduce another set of multi-indices. Let

(2.48) Ã =
∞⋃
r=0

{1, . . . , N}r .

The generic element of Ã will be denoted by J = (j1, . . . , jr), where we
understand j1, . . . , jr ∈ {1, . . . , N} and r ∈ N. We de�ne a degree function
on Ã by d̃eg(∅) = 0 and

(2.49) d̃eg(J) = d̃eg((j1, . . . , jr)) = deg(fj1)+· · ·+deg(fjr), J ∈ Ã\{∅} .

Moreover, we again set

Ãm =
{
J ∈ Ã

∣∣∣ d̃eg(J) ≤ m
}
, m ∈ N.
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Lemma 2.4.9. For m, m̃ ∈ N with 1 ≤ m ≤ m̃ we have the following
formula

[
Y 1,m̃
t

]
m,m̃

=
∑
J∈Ãm̃

1
r!
Zj1,mt · · ·Zjr,mt [fj1 ]m,m̃ · · · [fjr ]m,m̃.

For an element f of the Hall basis of gmd,1, [f ]m,m̃ is understood as the equiv-

alence class of f ∈ Am,m̃d,1 .

Proof. Starting with the same (in�nite) set of Hall words (H,<) as in
Lemma 2.4.1, we construct the Hall basis {g1 < · · · < gM} of gm̃d,1, M =
dimR gm̃d,1. Note that {f1, . . . , fN} ⊂ {g1, . . . , gM} in a natural way such
that the order in {f1, . . . , fN} is preserved. This is true, because the order
on both sets of Hall polynomials comes from the (same) order on the Hall
words. For j ∈ {1, . . . , N}, let k(j) be the unique k ∈ {1, . . . ,M} such that
fj = gk.

By de�nition,

Y 1,m̃
t = exp

( M∑
k=1

Zk,m̃t gk

)
= 1 +

m̃∑
i=1

1
i!

( M∑
k=1

Zk,m̃t gk

)i
.

Applying the algebra-homomorphism Πm̃,m and using Y 1,m
t = Πm̃,m(Y 1,m̃

t ),
we get

Y 1,m
t = 1 +

m̃∑
i=1

1
i!

( M∑
k=1

Zk,m̃t Πm̃,m(gk)
)i

= 1 +
m∑
i=1

1
i!

( N∑
j=1

Z
k(j),m̃
t fj

)i
,

since Πm̃,m(gk) = 0 for gk ∈ {g1, . . . , gM} \ {f1, . . . , fN}. Thus,

N∑
j=1

Z
k(j),m̃
t fj = log(Y 1,m

t ) = Zmt =
N∑
j=1

Zj,mt fj ,

implying that Zk(j),m̃
t = Zj,mt , ∀j ∈ {1, . . . , N}.

By the proof of Lemma 2.4.8, we see that [g]m,m̃ = 0 if g ∈ {g1, . . . , gM}\
{f1, . . . , fN}. As above, we get

[
Y 1,m̃
t

]
m,m̃

= 1 +
m̃∑
i=1

1
i!

( N∑
j=1

Zj,mt [fj ]m,m̃

)i
=
∑
J∈Ãm̃

1
r!
Zj1,mt · · ·Zjr,mt [fj1 ]m,m̃ · · · [fjr ]m,m̃.
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For the next de�nition, let us specify an embedding of Amd,1 into Am̃d,1,
m̃ ≥ m, as follows. Write y ∈ Amd,1 as y = y0 + y1 + · · · + ym according
to (2.6). De�ne a corresponding element y′ ∈ Am̃d,1 by its decomposition
y′ = y0 + y1 + · · ·+ ym + ym+1 + · · ·+ ym̃ with ym+1 = 0 ∈Wm+1, . . . , ym̃ =
0 ∈Wm̃. Note that Πm̃,m(y′) = y, but y′ is certainly not the only element of
Am̃d,1 with this property. Put di�erently, the projection Πm̃,m : Am̃d,1 → Amd,1
is canonical, but the embedding y 7→ y′ is not. We de�ne an exponential
function expm̃ : W1 ⊕ · · · ⊕Wm ⊂ Amd,1 → Am,m̃d,1 by setting

(2.50) expm̃(y) = [1]m,m̃ +
m̃∑
k=1

1
k!

[y′]km,m̃, y ∈W1 ⊕ · · · ⊕Wm ⊂ Amd,1.

Now we can formulate the analogue of Proposition 2.1.20 for the exponential
function de�ned above.

Theorem 2.4.10. For �xed m, m̃ ∈ N, m̃ ≥ m ≥ 2 and �xed t > 0 we have

E
([
Y 1,m̃
t

]
m,m̃

)
= expm̃

(
te0 +

t

2

d∑
i=1

e2
i

)
.

Proof. By linearity of the factorization map Am̃d,1 → Am,m̃d,1 , we have

E
([
Y 1,m̃
t

]
m,m̃

)
=
[
E
(
Y 1,m̃
t

)]
m,m̃

=
[
exp
(
te′0 +

t

2

d∑
i=1

(e2
i )
′
)]

m,m̃

= expm̃
(
te0 +

t

2

d∑
i=1

e2
i

)
,

where the exponential in the second line is to be computed in Am̃d,1, as indi-
cated by the � ′�. Note that we used the equality expm̃(y) = [exp(y′)]m,m̃ for
y ∈ Amd,1 with y = te0 + t

2

∑d
i=1 e

2
i ∈ Amd,1 in order to pass from the second

to the third line.

The moments of Zt, or more precisely of Z1,m
t , . . . , ZN,mt are contained

in the expected value of
[
Y 1,m̃
t

]
m,m̃

for m̃ large enough. Since this expected
value is given by Theorem 2.4.10, we need to extract the moments of Zm out
of the expected of

[
Y 1,m̃
t

]
m,m̃

, which amounts to solving a system of linear
equation (A.11) with a triangular matrix with diagonal entries equal to 1,
see Theorem A.1.11. Because the construction is rather technical, we have
moved it to the appendix, Subsection A.1.3.



Chapter 3

Cubature on Wiener space in

in�nite dimension

This chapter is based on the joint article [6] with Josef Teichmann.

3.1 Theoretical results

We want to construct a weak approximation scheme in the sense of De�-
nition 1.3.3 for stochastic partial di�erential equations. Before going into
details, let us brie�y review the setting as given in Section 1.2.2.

Let H be a separable, real Hilbert space. We consider the stochastic
(partial) di�erential equation (1.10) for a di�usion process Xx with values
in H with dynamics

dXx
t = (AXx

t + α(Xxt))dt+
d∑
i=1

βi(Xx
t )dBi

t

or � in the presence of jumps � the stochastic di�erential equation (1.15) for
a jump-di�usion process Xx with values in H with dynamics

dXx
t = (AXx

t− + α(Xx
t−))dt+

d∑
i=1

βi(Xx
t−)dBi

t +
e∑
j=1

δj(Xx
t−)dLjt .

A : D(A) ⊂ H → H denotes an, in general, unbounded linear opera-
tor, α, β1, . . . , βd, δ1, . . . , δe : H → H denote C∞-bounded vector �elds,
i. e. smooth vector �elds with bounded derivatives (of degree ≥ 1). (Bt)t≥0 =
(B1

t , . . . , B
d
t )t≥0 denotes a �nite dimensional Brownian motion on the Wiener

space (Ω,F , P ), and (Ljt )t≥0 a compound Poisson process with jump-rate µj
for j = 1, . . . , e, see equation (1.14). The Brownian motion and the com-
pound Poisson process are assumed to be independent and together generate
the �ltration (Ft)t∈[0,∞[. A is the generator of a C0-semigroup denoted by
(St)t≥0.
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Recall the notions of strong and mild solutions of the above SPDEs,
cf. De�nition 1.2.8 and equation (1.16). Notice that mild solutions, in gen-
eral, are no semi-martingales, which is problematic in light of the cuba-
ture on Wiener space method, see Proposition 2.2.20, which is based on the
Stratonovich formulation of the underlying �nite dimensional SDE.

Of course, neither strong nor mild solutions can usually be given explic-
itly, which makes numerical approximation necessary. We are interested in
weak approximation of the solution in the sense that we want to approximate
the value

Ptf(x) = E(f(Xx
t ))

for a suitable class of test functions f : H → R at points x ∈ H. As in
the �nite dimensional setting, the function (t, x) 7→ Ptf(x) solves the Kol-
mogorov equation in the weak sense, see for instance da Prato and Zabczyk
[18] in the di�usion case.

Let us assume for a moment that there are no jump-components: usually,
in�nite dimensional SDEs are numerically solved by �nite element or �nite
di�erence schemes, see, for instance, Hausenblas [33], Yan [88], Gyöngy [29]
and [30]. This means that the original equation is projected onto some �nite
dimensional subspace Hh ⊂ H and A is approximated by some operator Ah
de�ned thereon. This procedure, which corresponds to a space discretization
of the stochastic PDE, is followed by a conversion of the stochastic di�erential
equation on Hh to a stochastic di�erence equation by discretizing in time,
using an Euler method or a related scheme. Finally, the stochastic di�erence
equation is solved by Monte-Carlo simulation, which may be interpreted
as a discretization on the Wiener space. For general information about
approximation of �nite dimensional SDEs see Kloeden and Platen [42].

We want to tackle the problem in the reverse order: we want to do
the discretization on the Wiener space Ω �rst, reducing the problem to a
deterministic problem. Then, the deterministic problem can be solved by
standard methods for numerical treatment of deterministic PDEs, e. g. by
standard �nite element or �nite di�erence methods. The bene�t of this
order is that once the discretization on the Wiener space has been done,
we can use the well-established theory of the corresponding deterministic
problems, without complications from stochasticity. Our method of choice
for discretization on Ω is cubature on Wiener space, as amply introduced
in the preceeding Chapter 2. In the spirit of these methods we shall obtain
weak approximation schemes of any prescribed order.

Before going into details, let us motivate the use of cubature formulas
in this context. Recall the notation introduced in (2.30) and adopt it to
the current situation, i. e. let Xx

t (ω) denote the solution of (1.10), formally
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rewritten in Stratonovich form, if each �dBi
t� is replaced by �dωi(t)�, i. e.

(3.1) dXx
t (ω) = (AXx

t (ω) + α(Xx
t (ω))− 1

2

d∑
i=1

Dβi(Xx
t (ω)) · βi(Xx

t (ω)))dt

+
d∑
i=1

βi(Xx
t (ω))dωi(t)

for a curve function ω = (ω1, . . . , ωd) : R≥0 → Rd of bounded variation.
Notice that Xx

t (ω) is the weak solution of a partial di�erential equation
(or partial integro-di�erential equation). Then, as in the �nite dimensional
situation, we would like to approximate Ptf(x) for �xed t > 0 and x ∈ H
by a weighted sum of f(Xx

t (ω)) for paths ω of bounded variation chosen
according to a cubature formula on Wiener space, see Proposition 2.2.20 for
�nite dimensional cubature on Wiener space and De�nition 1.3.3 for general
weak approximation. As we have just seen, the cubature on Wiener space
method for weak approximation of SDEs can be easily generalized to an
in�nite dimensional setting, at least on a conceptual level.

Here also the main advantage of cubature methods in contrast to Taylor
methods gets visible. The time-discretization in the realm of cubature meth-
ods always leads to reasonable expressions, namely to equations of type (3.1).
If we wanted to apply the usual discretization methods in time like the Euler-
Maruyama-Monte-Carlo method, we might run into problems. Indeed, the
naive Euler scheme is well-suited for the di�erential formulation (1.10) of the
problem,

X0 = x and Xn = (AXn−1 + α(Xn−1))
t

n
+

d∑
i=1

βi(Xn−1)∆nB
i,

for n ≥ 1, but this might immediately lead to some Xn /∈ D(A). Even in
the case of an existing strong solution, there is no reason why the discrete
approximation should always stay in D(A). Hence the naive implementation
does not work.

Only the mild formulation (1.12c) seems to be suitable for using an Euler-
like method. If one understands the semigroup S well, one can approximate
Xx
t by expressing the integrals in (1.12c) as Riemannian sums, involving

evaluations of St−s, which yields a sort of strong Euler method (see for in-
stance the book of Prévôt and Röckner [63] for strong convergence theorems
in this direction).

We do not discretize the integral in formulation (1.12c), but (weakly)
approximate the Brownian paths so well by paths of bounded variation, that
those paths can be used to obtain a weak approximation of the integrals and
�nally of Xx

t .



64 CHAPTER 3. CUBATURE IN INFINITE DIMENSION

In the presence of jumps, things do not get more complicated, since
the short time asymptotics of a jump-di�usion can be easily derived from a
di�usion's short-time asymptotics by conditioning on the jumps. The arising
picture is the following. Discretizing the equation (1.15) means to allow a
certain number of jumps between to consecutive points in the time grid.
Between two jumps we apply a di�usion cubature formula to express the
short-time asymptotics. Finally, we integrate with respect to jump times
and sizes using Monte-Carlo simulation. Therefore, we have a kind of hybrid
method between cubature and Monte-Carlo simulation in mind.

3.1.1 Cubature for equations without jumps

In this subsection we shall assume that there are no jumps, i. e. we consider
equation (1.10). Recall the hierarchy of Sobolev spaces as introduced in Def-
inition 1.2.14 and De�nition 1.2.15. In addition to our standard Assump-
tion 1.2.7 of C∞-boundedness of the vector �elds, we impose the following
assumption, which is slightly weaker than Assumption 1.2.21.

Assumption 3.1.1. The di�usion vector �elds α, β1, . . . , βd map D(An)→
D(An) for each n ≥ 0 and are C∞-bounded thereon, i. e. as maps from the
Hilbert space (D(An), ‖·‖D(An)) into itself.

Note that Proposition 1.2.22 still holds true under Assumption 3.1.1, as
a short look at the proof reveals. There are subtle phenomena of explosion,
which can occur in this setting: for instance it might be that the law of
a strong solution process Xx solving equation (1.10) is bounded in H but
unbounded in D(A), where it is a mild solution. Due to such phenomena
the discussion after Theorem 3.1.5 is in fact quite subtle.

Moreover, we assume that we always take a �xed cubature formula, which
we rescale properly for the interval under consideration.

Assumption 3.1.2. Once and for all, we �x one cubature formula onWiener
space in the sense of De�nition 2.2.12 of degree m ≥ 1 on the interval [0, 1].
Denoting the paths of this cubature formula with ω̃1, . . . , ω̃N , we will, by
abuse of notation, denote by ωl(s) = ω̃l(s/

√
t), s ∈ [0, t], l = 1, . . . , N , the

corresponding cubature formula for [0, t].

Recall the de�nition of the vector �eld β0 given in (1.22), i. e.

(3.2) β0 = Ax+ α(x)− 1
2

d∑
i=1

Dβi(x) · βi(x).

β0 is de�ned for x ∈ D(A). As a vector �eld taking values in D(An), it is only
well-de�ned on D(An+1). Consequently, for x ∈ D(An+1), we may reformu-
late the SDE (1.10) � understood as equation in D(An) � in Stratonovich
form, see (1.23).
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Now we formulate the stochastic Taylor expansion in some D(Ar(m)) with
a degree of regularity r(m) ≥ 0 depending on m ≥ 1, cf. Proposition 2.1.4
for the �nite dimensional version. For the estimation of the error term, we
will use the extended support esupp(Xx

t ;ω1, . . . , ωr) de�ned by

(3.3) esupp(Xx
t ;ω1, . . . , ωr) = supp(Xx

t ) ∪ {Xx
t (ω1), . . . , Xx

t (ωr)},

where t > 0, x ∈ H, and ω1, . . . , ωr are paths of bounded variation. Despite
Assumption 3.1.2, let us, for one moment, enter the dependence of the cu-
bature formula on the interval [0, t] explicitly into the notation, in the sense
that ω(t)

1 , . . . , ω
(t)
N are the paths of bounded variation scaled in such a way

that they, together with the weights, form a cubature formula on [0, t]. Then
we denote

ST (x) =
⋃

0≤s≤t≤T
esupp(Xx

s ;ω(t)
1 , . . . , ω(t)

r ).

Remark 3.1.3. If the support theorem holds in in�nite dimensions, we can re-
place the extended support by the ordinary support of Xx

t , since the solution
of the corresponding ODE driven by paths of bounded variation lie in the
support of the solution of the SDE according to that theorem. However, up to
our knowledge, the support theorem has not been established for our setting
so far. Furthermore, notice that it does not matter, in which topology the
support is understood, because we only need that P (Xx

t /∈ supp(Xx
t )) = 0.

Theorem 3.1.4. Let m ≥ 1 be �xed, then there is r(m) ≥ 0 such that for
any f ∈ C∞(H;R), x ∈ D(Ar(m)), and 0 < t < 1 we have

f(Xx
t ) =

∑
k≤m, (i1,...,ik)∈A
deg(i1,...,ik)≤m

(βi1 · · ·βikf)(x)B(i1,...,ik)
t +Rm(t, f, x), x ∈ D(Ar(m)),

with√
E(Rm(t, f, x)2) ≤ Ct

m+1
2 max

m<deg(i1,...,ik)≤m+2
sup

0≤s≤t
|E(βi1 · · ·βikf(Xx

s ))|

≤ Ct
m+1

2 max
m<deg(i1,...,ik)≤m+2

sup
y∈St(x)

|βi1 · · ·βikf(y)| .

We can choose r(m) =
⌊
m
2

⌋
+1, where

⌊
m
2

⌋
denotes the largest integer smaller

than m
2 .

Proof. The proof is the same as in the �nite dimensional situation, but one
has to switch between di�erent spaces on the way.

Fix m and f as above and x ∈ D(Ab
m
2 c+1). We interpret the equa-

tion in D(Ab
m
2 c+1). By the above remarks, we can express the SDE in its

Stratonovich form (1.23). By Itô's formula,

(3.4) f(Xx
t ) = f(x) +

∫ t

0
(β0f)(Xx

s )ds+
d∑
i=1

∫ t

0
(βif)(Xx

s ) ◦ dBi
s.
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The idea is to express (βif)(Xx
s ) again by Itô's formula and insert it in

equation (3.4). This is completely unproblematic for i ∈ {1, . . . , d}. For
i = 0, recall that

(β0f)(x) = Df(x) ·Ax+Df(x) ·
(
α(x)− 1

2

d∑
i=1

Dβi(x) · βi(x)
)
.

By re-expressing (3.4) in Itô formulation, applying Itô's formula, and re-
expressing it back to Stratonovich formulation, we see that

(β0f)(Xx
s ) = (β0f)(x) +

∫ s

0
(β2

0f)(Xx
u)du+

d∑
i=1

∫ s

0
(βiβ0f)(Xx

u) ◦ dBi
u,

where

(3.5) (β2
0f)(x) = D2f(x)(Ax,Ax) +Df(x) · (A2x+Aα(x) + · · · ) + · · · ,

provided that all the new vector-�elds are well-de�ned and the processes
(βiβ0f)(Xx

u) are still semi-martingales. Both conditions are satis�ed if x ∈
D(A2) � notice that the maps D(Ak+1) → D(Ak), x 7→ Ax are C∞, k ∈ N.
By induction, we �nally get

f(Xx
t ) =

∑
(i1,...,ik)∈A

deg(i1,...,ik)≤m

(βi1 · · ·βikf)(x)B(i1,...,ik)
t +Rm(t, f, x)

with

Rm(t, x, f)

=
∑

(i1,...,ik)∈A, i0∈{0,...,d}
deg(i1,...,ik)≤m<deg(i0,i1,...,ik)

∫
0<t0<···<tk<t

(βi0 · · ·βikf)(Xx
t0)◦dBi0

t0
· · ·◦dBik

tk
.

Note that Rm is well-de�ned for x ∈ D(Ab
m
2 c+1) because integration of non-

semi-martingales with respect to dt is possible, which corresponds to the
index i0 = 0.

As in the �nite dimensional case, we re-express Rm in terms of Itô inte-
grals and use the (one-dimensional) Itô isometry several times, until we arrive
at the desired estimate. Notice that we re�ne the estimate of the values of
y 7→ βi1 · · ·βikf(y) on the support of the process Xx

s for 0 ≤ s ≤ t.

We recall the notation Ptf(x) = E(f(Xx
t )) for bounded measurable func-

tions f : H → R. Analogously to Proposition 2.2.20 in �nite dimensions, we
get



3.1. THEORETICAL RESULTS 67

Theorem 3.1.5. Fix T > 0, m ≥ 1, r(m), x ∈ D(Ar(m)) as in Theo-
rem 3.1.4, a cubature formula on Wiener space of degree m as in De�ni-
tion 2.2.12 and a partition 0 = t0 < t1 < · · · < tp = T . Under Assump-
tion 3.1.1, for any f ∈ C∞(H;R) with

sup
0≤t≤T

sup
y∈ST (x)

|βi1 · · ·βikPtf(y)| <∞

for all (i1, . . . , ik) ∈ A with m < deg(i1, . . . , ik) ≤ m + 2, k ∈ N, there is a
constant D independent of the partition such that∣∣∣E(f(Xx

T ))−
∑

(l1,...,lp)∈{1,...,N}p
λl1 · · ·λlpf(Xx

T (ωl1,...,lp))
∣∣∣

≤ DT max
r=1,...,p

(tr − tr−1)(m−1)/2,

where the ODE de�ning Xx
T (ω) is, again, understood as the mild solution to

an ODE in D(Ar(m)) for any path ω of bounded variation.

Proof. The proof follows Kusuoka [43], [44], see also Kloeden and Platen [42].
For f : H → R and x ∈ H let

Q(t)f(x) =
N∑
l=1

λlf(Xx
t (ωl)),

where ω1, . . . , ωl are scaled to form a cubature formula on [0, t]. Denote
∆tr = tr − tr−1, r = 1, . . . , p, the increments of the time partition given in
the statement of the theorem. By iterating the operators Q(∆tr) (and the
semigroup property of ODEs), we immediately obtain

(3.6)
∑

(l1,...,lp)∈{1,...,N}p
λl1 · · ·λlpf(Xx

T (ωl1,...,lp)) = Q(∆tp) ◦ · · · ◦Q(∆t1)f(x).

By ordinary Taylor expansion, keeping in mind the degree function deg, we
note that

Q(t)f(x) =
N∑
l=1

λl
∑

k≤m, (i1,...,ik)∈A
deg(i1,...,ik)≤m

(βi1 · · ·βikf)(x)ω(i1,...,ik)
l (t) + R̃m(t, x, f),

where x ∈ D(Ar(m)) and

R̃m(t, x, f) =
N∑
l=1

λl
∑

(i1,...,ik)∈A, i0∈{0,...,d}
deg(i1,...,ik)≤m<deg(i0,...,ik)∫

0≤t0≤···≤tk≤t
(βi0 · · ·βikf)(Xx

t0(ωl))dωi0l (t0) · · · dωikl (tk).
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In the following, C denotes a constant independent of the partition and x
which may change from line to line. We can estimate the approximation
error by∣∣∣R̃m(t, x, f)

∣∣∣ ≤ C sup
0≤s≤t, l=1,...,N

max
m≤deg(i0,...,ik)≤m+2

|βi0 · · ·βikf(Xx
s (ωl))| t

m+1
2 .

Combining this result with Theorem 3.1.4, we may conclude that

(3.7)
∣∣Ptf(x)−Q(t)f(x)

∣∣ ≤ C sup
y∈St(x)

|βi0 · · ·βikf(y)| t
m+1

2 .

By telescopic sums,

PT f(x)−Q(∆tp) ◦ · · · ◦Q(∆t1)f(x) =
p∑
r=1

Q(∆tp) ◦ · · · ◦Q(∆tr+1)(Ptrf(x)−Q(∆tr)Ptr−1f(x)).

For the estimation of the rear term

Ptrf(x)−Q(∆tr)Ptr−1f(x) = (P∆tr −Q(∆tr))Ptr−1f(x),

we may use (3.7) with f(x) being replaced by Ptr−1f(x), giving us

|PT f(x)−Q(∆tp) ◦ · · · ◦Q(∆t1)f(x)| ≤
p∑
r=1

∣∣Ptrf(x)−Q(∆tr)Ptr−1f(x)
∣∣

≤ C
p∑
r=1

sup
y∈S∆tr (x)

m≤deg(i0,...,ik)≤m+2

∣∣βi0 · · ·βikPtr−1f(y)
∣∣ (∆tr)m+1

2

≤ C sup
y∈ST (x), 0≤t≤T

m≤deg(i0,...,ik)≤m+2

|βi0 · · ·βikPtf(y)|
p∑
r=1

(∆tr)
m+1

2 ,

from which we may easily conclude the theorem.

Remark 3.1.6. Gyöngy and Shmatkov [31] show a strong Wong-Zakai-type
approximation result, where they also need to impose smoothness assump-
tions on the initial value x. Otherwise, the assumptions in [31] are di�erent
from ours, they allow densely de�ned vector �elds and general adapted co-
e�cients, on the other hand, the generator A needs to be elliptic.

Remark 3.1.7. Under the previous assumptions we can also prove a Donsker-
type result on the weak convergence of the �cubature tree� to the di�usion.
This result will be proved elsewhere.
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Remark 3.1.8. If f is smooth then we can show by (�rst and higher) variation
processes, as introduced for instance in Baudoin and Teichmann [5], that
x 7→ Ptf(x) is smooth on D(An).

Fix n ≥ 0. Let J0→t(x) · h denote the �rst variation process of Xx
t in

direction h ∈ D(An), i. e.

J0→t(x) · h =
∂

∂ε

∣∣∣∣
ε=0

Xx+εh
t ∈ D(Ak).

Recall that J0→t(x)·h is de�ned as mild solution of the stochastic di�erential
equation

dJ0→t(x) · h =
(
A(J0→t(x) · h) +Dα

(
Xx
t

)
· J0→t(x) · h

)
dt

+
d∑
i=1

Dβi
(
Xx
t

)
· J0→t(x) · h dBi

t,

J0→0(x) · h = h,

for h ∈ H, x ∈ H, t ≥ 0. Notice that the above equation depends explicitly
on Xx, i. e. it is a stochastic di�erential equation with stochastic coe�cients.
Therefore, it is often more convenient to think of the pair

(
Xx
t , J0→t(x) · h)

as solution of an SDE in H2.
Since J0→t(x) · h is the mild solution to an SDE of the type (1.10), it is

bounded in L2(Ω,F , P ;D(An)) and we may conclude that

∂

∂ε

∣∣∣∣
ε=0

Ptf(x+ εh) = E
(
Df(Xx

t ) · J0→t(x) · h
)

exists and is bounded by boundedness of Df and integrability of the �rst
variation. Similarly, we get existence and continuity of higher order deriva-
tives on D(An).

Example 3.1.9. We shall provide examples, where the previous conditions
are satis�ed, i. e. where we obtain high-order convergence of the respective
cubature methods. Indeed, the following conditions allow us to conclude
that the requirements of Theorem 3.1.5 are satis�ed.

Assume that there are smooth vector �elds α̃, β̃1, . . . , β̃d such that

α = α̃ ◦R(λ,A)r(m), βi = β̃i ◦R(λ,A)r(m),

for i = 1, . . . , d and some λ ∈ ρ(A). Furthermore, we assume that

• α̃, β̃1, . . . , β̃d map D(Ak+r(m)) to D(Ak+2r(m)) for any k ∈ N,

• the restrictions of α̃, β̃1, . . . , β̃d to the Hilbert space D(Ar(m)) have
bounded support, and
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• the function f is of the type f = g ◦ (R(λ,A)r(m)) for bounded, C∞-
bounded functions g : H → R.

Under these assumptions we can readily check that the law of the mild
solution Xx

t starting at the initial value x ∈ D(Ar(m)) has bounded support
inH: outside a ball of radiusR > 0 inH the solution process is deterministic,
Xx
t = Stx on some interval, hence by the uniform boundedness theorem there

is a large R such that the image of the ball with radius R > 0 under the
maps St lies in a ball with radius R′ > 0 on [0, T ].

For smooth functions f of the stated type we have

sup
0≤t≤T

sup
y∈H,‖y‖≤R′

|βi0 · · ·βikPtf(y)| <∞,

since we only take the supremum over bounded sets, namely the extended
support of Xx

t for 0 ≤ s ≤ t, deg(i0, . . . , ik) ≤ m+ 2.

Remark 3.1.10. The previous assumptions in Example 3.1.9 on the vector
�elds are not too restrictive since we can always obtain them by a linear
isomorphism and (smoothly) cutting o� outside a ball in D(Ar(m)). Both
operations are numerically innocent. Under Assumption 3.1.1 we can ap-
ply the following isomorphism to the solution of our stochastic di�erential
equation (1.10):

R(λ,A)−r(m) : D(Ar(m))→ H.

This isomorphism transforms the solutions Xx
t on D(Ar(m)) to a H-valued

process

Y y
t = R(λ,A)−r(m)X

R(λ,A)r(m)y
t

satisfying an SDE, where the transformed vector �elds (if well de�ned) factor
over R(λ,A)r(m) such as previously assumed in Example 3.1.9, namely

(3.8) dY y
t = (AY y

t + ((R(λ,A)−r(m) ◦ α ◦R(λ,A)r(m))(Y yt))dt

+
d∑
i=1

(R(λ,A)−r(m) ◦ βi ◦R(λ,A)r(m))(Y y
t )dBi

t,

In order to obtain the conditions in Example 3.1.9, we must (smoothly)
cut o� the vector �elds α, β1, . . . , βd outside sets of large norm ||.||D(Ar(m)),
which is an event � under Assumption 3.1.1 � of small probability (recall that
the vector �elds are Lipschitz on D(Ar(m)) and, therefore, second moments
with respect to the norm ||.||D(Ar(m)) exist). Notice that the cut-o� vector
�elds do not have an extension toH since continuous functions with bounded
support on D(Ar(m)) do generically not have a continuous extension on H.
For (Y y

t )t≥0 we can take initial values y ∈ H, however, those initial values

correspond to quite regular initial values x = R(λ,A)r(m)y ∈ D(Ar(m)) for
the original process (Xx

t )t≥0.
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From the point of view of the process Y we have hence proved that

f(Y y
T ) = g ◦ (R(λ,A)r(m)) ◦ (R(λ,A)−r(m))(Xx

T ) = g(Xx
T )

is weakly approximated by evaluating f on the cubature tree for Y . This
is equivalent to evaluating g on the cubature tree for X for approximating
E(g(Xx

T )).

3.1.2 The cubature method in the presence of jumps

The extension of cubature formulas to jump di�usions seems to be new even
in the �nite dimensional case. We shall heavily use the fact that only �nitely
many jumps occur in compact time intervals almost surely.

We shall �rst prove an asymptotic result on jump-di�usions. In the whole
Subsection 3.1.2, Xx denotes a mild solution of (1.15).

Lemma 3.1.11. Let f : H → R be a bounded measurable function, then we
obtain

(3.9) E(f(Xx
t )) =

∑
n1,...,ne≥0

µ
n1
1 ···µ

ne
e

n1! · · ·ne!
e−tµ1n1−...−tµenetn1+...+ne×

× E(f(Xx
t ) | N j

t = nj for j = 1, . . . , e)

for t ≥ 0.

Proof. We condition on the jump times (but not on the jump sizes) and
read o� the results by inserting the probabilities for a Poisson process with
intensity µj to reach level nj at time t.

This result gives the time-asymptotics with respect to the jump-structure
of the process Xx. This can now be combined with the original cubature
result for the di�usion between the jumps, in order to obtain a result for
jump-di�usions. We denote by τ jn the jump-time of the Poisson process
N j for the n-th jump. We know that for each Poisson process the vector
(τ j1 , . . . , τ

j
k −τ

j
k−1, t−τ

j
k) is uniformly distributed if conditioned on the event

that N j
t = k ≥ 1. The uniform distribution is on the k-simplex t∆k ⊂ Rk+1.

This allows us to apply an original cubature formula between two jumps of
order m − 2n1 − . . . 2ne, since we gain, for each jump, one order of time-
asymptotics from the jump structure.

Assume now that the jump distributions νj are concentrated at one point
zj 6= 0, i. e. ∆Lj

τ jk
= zj for j = 1, . . . , e and k ≥ 1. If we want to consider a

general jump-structure this amounts to additional integration with respect
to the jump distribution νj .

We de�ne an approximation due to cubature on Wiener space for the
conditional expectations.

E(f(Xx
t ) | N j

t = nj for j = 1, . . . , e)
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of order m−2n1− . . . 2ne with n1 + . . .+ne ≤ m+1
2 . Expressed in words, we

are going to do the following: from the initial value x ∈ D(Ar(m)) on we solve
the stochastic di�erential equation (1.15) along the cubature paths ωl with
probability λl > 0 until the �rst jump appears. We collect the end-points of
the trajectories, add the jump size at this point and start a new cubature
method from the resulting point on. Notice that we can take a cubature
method of considerably lower degree since every jump increases the local
order of time-asymptotics by t. The jump times are chosen independent
and uniformly distributed on simplices of certain dimension nj such that
n1 + . . . + ne = n. We denote the cubature trajectory between jump τ jq−1

and τ jq for 1 ≤ q ≤ nj with ωl,j,q. If nj = 0 no trajectories are associated.
Hence we obtain the following theorem:

Theorem 3.1.12. Fix m ≥ 1. Consider the stochastic di�erential equa-
tion (1.15) under the condition N j

t = nj for j = 1, . . . ,m with n1 +. . .+ne =
n along concatenated trajectories of type ωl,j,q. Choose a cubature method of
degree

m′ = m− 2n ≥ 1.

Concatenation is only performed with increasing q-index and a typical con-
catenated trajectory is denoted by ωl1,...,ln, where we have in mind that the
intervals, where the chosen path is ωlr,j,q, come from an N j-jump and have
length τ jq − τ jq−1.

Then there is r(m′) ≥ 0 such that∣∣E(f(Xx
t ) | N j

t = nj)

−
N∑

l1,...,ln=1

λl1 . . . λlnE(f(Xx
t (ωl1,...,ln)) | N j

t = nj)
∣∣

≤ Ct
m′+1

2 max
(i1,...,ik)∈A

deg(i1,...,ik)≤m+2

sup
y∈supp(Xx

s ),
0≤s≤t

|βi1 · · ·βikE(f(Xy
τq ,t(ωlq+1,...,ln)) |N j

t = nj)|,

where Xx
t (ω) denotes the solution of the stochastic di�erential equation (1.15)

in Stratonovich form

dXx
t (ω) = β0(Xx

t−(ω))dt+
d∑
i=1

βi(Xx
t−(ω)) ◦ dBi

t +
e∑
j=1

δj(Xx
t−)dLjt ,

along trajectory ω.

Proof. By our main Assumption 3.1.1 we know that the linkage operators
x 7→ δj(x) are C∞-bounded on each D(Ak), hence, through concatenation
the errors, which appear on each subinterval [tn−q, t[, are of the type y 7→
E(Xy

τq ,t(ωlq+1q,...,ln)) for some 1 ≤ q ≤ n. Taking the supremum yields the
result.
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Combining the previous result with Lemma 3.1.11 yields, under certain
conditions on the vector �elds (see the discussion after Theorem 3.1.4 in
the previous subsection), by the triangle inequality that there is a constant
D > 0 such that

(3.10)
∣∣E(f(Xx

t ))−
∑

2(n1+...+ne)≤m

N∑
l1,...,ln=1

µ
n1
1 ···µ

ne
m

n1! · · ·ne!
e−tµ1n1−...−tµene×

×λl1 . . . λlnE(f(Xx
t (ωl1,...,ln)) | N j

t = nj)
∣∣ ≤ Dtm+1

2 ,

By iteration of the previous result, we obtain in precisely the same man-
ner as in Subsection 3.1.1 a cubature method of order m by applying several
cubature methods of order m′ ≤ m between the jumps.

For the implementation, one has to simulate the uniform distributions
on the simplices t∆k and the jump distribution. Since the integrals on the
simplices t∆k are with respect to jumping-times, we cannot expect more reg-
ularity than continuity for those integrands, and hence one has to be careful
to implement other methods than a Monte-Carlo simulation. For instance,
classical cubature methods will not work due to increasing derivatives of
higher order with respect to the time variable.

3.2 Numerical experiments

We test the cubature method for two concrete examples: one toy example,
where explicit solutions of the SPDE are readily available, and another, more
interesting example. Since cubature on Wiener space is a weak method, we
calculate the expected value of a functional of the solution to the SPDE in
both cases, i. e. the outputs of our computations are real numbers. Notice,
however, that the cubature method will be implemented for a class of in�nite
dimensional Heath-Jarrow-Morton models in the �nancial numerics package
Premia.

The results presented here are calculated in MATLAB using the built-
in PDE-solver pdepe for solving the deterministic PDEs given by inserting
the cubature paths into the SPDE under consideration. This PDE solver
depends on a space grid given by the user as well as on a time grid, which is
not very critical because it is adaptively re�ned by the program.

We do not use recombination techniques for cubature on Wiener space
as in Schmeiser, Sore� and Teichmann [74] and use the simplest possible
cubature formula for d = 1 Brownian motions:

ω
(T )
1 (t) = − t√

T
, ω

(T )
2 =

t√
T
, t ∈ [0, T ]

with weights λ1 = λ2 = 1
2 de�ne a cubature formula of degree m = 3 on

[0, T ]. Consequently, solving an SDE on a Hilbert space with cubature on
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Wiener space for the above cubature formula and p iterations means solving
2p PDEs. This starts to get restrictive even for a very simple problem for,
say, p = 10 � where one already has to solve more than one thousand PDEs.
One possibility to overcome these tight limitations is to use �a Monte-Carlo
simulation on the tree�. Recall that a p-step cubature method approximates

E(f(Xx
T )) ≈

∑
(j1,...,jp)∈{1,...,N}p

λj1 · · ·λjpf(Xx
T (ωj1,...,jp)).

Since
∑
λj1 · · ·λjp = 1, we can interpret the right hand side as the expec-

tation of a random variable f(Xx
T (ω·)) on the tree {1, . . . , N}p. Therefore,

we can approximate the right hand side by picking tuples (j1, . . . , jp) ∈
{1, . . . , N}p at random � according to their probabilities λj1 · · ·λjp � and
calculating the average of the corresponding outcomes f(Xx

T (ωj1,...,jp)). Of
course, by following this strategy we have to replace the deterministic er-
ror estimates by a stochastic one, which heavily depends on the standard
deviation of f(Xx

T (ω·)) understood as a random variable on the tree.
Consider the Ornstein-Uhlenbeck process Xx

t de�ned as solution to the
equation

(3.11) dXx
t = ∆Xx

t dt+ φdBt

on the Hilbert space H = L2(]0, 1[). ∆ denotes the Dirichlet Laplacian on
]0, 1[, i. e. ∆ is a negative de�nite self-adjoint operator on H with D(∆) =
H1

0 (]0, 1[) ∩ H2(]0, 1[) extending the classical Laplace operator de�ned on
C∞c (]0, 1[). It is easy to see that ∆ is dissipative and therefore, by the
Lumer-Phillips theorem, it is the generator of a C0 contraction semigroup
(St)t≥0 on H. φ ∈ H is some �xed vector.

In this case, the de�nition of a mild solution

(3.12) Xx
t = Stx+

∫ t

0
St−sφdBs

already gives a representation of the solution provided that the heat-
semigroup St applied to the starting vector x and to φ is available. We
choose x(u) = sin(πu), u ∈]0, 1[, and may conclude that

Stx = e−π
2tx

because x is an eigenvector of ∆ with eigenvalue −π2. Consider the linear
functional Φ : H → R given by

(3.13) Φ(y) =
∫ 1

0
y(u)du, y ∈ H.
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We want to compute

E(Φ(Xx
1 )) = E

(∫ 1

0
e−π

2
sin(πu)du+

∫ 1

0

∫ 1

0
S1−sφ(u)dBsdu

)
=
∫ 1

0
e−π

2
sin(πu)du = 0.3293× 10−4.

p Error
1 −0.3601× 10−4

2 −0.2192× 10−4

3 −0.1226× 10−4

4 −0.0652× 10−4

5 −0.0334× 10−4

6 −0.0172× 10−4

7 −0.0084× 10−4

8 −0.0031× 10−4

9 −0.0002× 10−4

10 −0.0013× 10−4

Table 3.1: Error for the cubature method in the OU-case (absolute error)

In Table 3.1, the error, i. e. the output of the method minus the true
value given above, are presented. p is the number of cubature steps, i. e. the
number of iterations of the one-step cubature method. We use a uniform grid
with respect to the cubature formula. The discretization in space, i. e. of
]0, 1[, used by the PDE solver contains 50 uniform points, the discretization
of the time-interval � additional to the one induced by the cubature method
� contains 500 points. The stochastic perturbation factor φ is chosen to be
φ(u) = sin(πu), i. e. φ ∈ D(∆∞) even. We see a very fast decrease of the
error in this simple situation. On the other hand, the variance of the random
variable on the tree considered before is clearly too high for the Monte-Carlo
simulation on the tree to work. Indeed, Φ(Xx

1 ) has true standard deviation
of

(3.14) sd(Φ(Xx
1 )) =

√
2
π4

(1− e−2π2) = 0.1433.

Assuming that the central limit theorem applies, con�dence intervals around
the solution given by a Monte-Carlo method are proportional to the standard
deviation divided by the square root of the number of trajectories. Conse-
quently, we would roughly need to calculate 1012 paths on the tree in order
to achieve a similar level of exactness as in Table 3.1! Indeed, note that the
standard deviation of the solution is of order 10−1, while the error in the last
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Figure 3.1: Relative errors for the OU-process (equation (3.11)) and the
process with nonlinear volatility (equation (3.15)). In the latter case, both
initial values x(u) = sin(πu) � referred to as �regular case� � and x given
by (3.18) � referred to as �irregular case� � are used.

row of Table 3.1 is of order 10−7. The equation

10−1

√
m
≈ 10−7

then gives m ≈ 1012. Note that this heuristics is also con�rmed by our
experiments, where Monte-Carlo simulation on the tree clearly fails. The
data are also shown in Figure 3.1 and Figure 3.2, where the failure of the
Monte-Carlo simulation on the cubature tree can be seen.

Remark 3.2.1. The failure of Monte-Carlo simulation on the tree also applies
to any other (naive) Monte-Carlo approach to problem (3.11), including the
usual �nite element or �nite di�erence approaches.

As a more realistic example we consider the heat equation with a stochas-
tic perturbation involving a Nemicky operator. More precisely, consider

(3.15) dXx
t = ∆Xx

t dt+ sin ◦Xx
t dBt,

with x(u) = sin(πu). Even though we do not know the law of the solution
Xx

1 of (3.15), we are still able to calculate E(Φ(Xx
1 )) explicitly because Φ is
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Figure 3.2: Relative errors for the OU-process (equation (3.11)) using the
cubature method and the Monte-Carlo simulation on the cubature tree

a linear functional. Indeed, Xx
1 is given by

(3.16) Xx
1 = S1x+

∫ 1

0
S1−s sin ◦Xx

s dBs

and, consequently,

Φ(Xx
1 ) = Φ(S1x) +

∫ 1

0
Φ(S1−s sin ◦Xx

s )dBs.

The expectation of the (one-dimensional) Itô-integral is 0 and we get the
same result as before, i. e.

E(Φ(Xx
1 )) = Φ(S1x) = 0.3293× 10−4

for x(u) = sin(πu). Nevertheless, we believe that this example is already
quite di�cult, especially since the cubature method actually has to work
with the Stratonovich formulation

(3.17) dXx
t =

(
∆Xx

t −
1
2

cos ◦Xx
t sin ◦Xx

t

)
dt+ sin ◦Xx

t dBt.

In particular, the equation (in Stratonovich form) has a non-linear drift and
a non-linear volatility.
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l Error
1 −0.2907× 10−4

2 −0.2163× 10−4

3 −0.1467× 10−4

4 −0.0961× 10−4

5 −0.0622× 10−4

6 −0.0385× 10−4

7 −0.0228× 10−4

8 −0.0142× 10−4

9 −0.0086× 10−4

10 −0.0040× 10−4

Table 3.2: Results of the cubature method for (3.15) (absolute error)

Note that we expect the standard deviation of the solution of the above
equation to be smaller than before, because (sin ◦Xx

t )2 decreases as Xx
t de-

creases in t. The space discretization used by the PDE-solver has size 50,
which already seems to be su�cient, because using a �ner discretization (100
grid points) does not change the results signi�cantly. Table 3.3 shows the

l m Error Stat. Error
5 32 0.0567× 10−4 0.1498× 10−4

10 1000 −0.0325× 10−4 0.0179× 10−4

15 1500 −0.0184× 10−4 0.0172× 10−4

20 2000 0.0128× 10−4 0.0170× 10−4

25 2500 0.0179× 10−4 0.0145× 10−4

30 3000 0.0596× 10−4 0.0167× 10−4

Table 3.3: Results of the cubature method with Monte-Carlo simulation on
the tree for (3.15) (absolute error)

results using Monte-Carlo simulation on the tree. m denotes the number of
trajectories followed, while the �Statistical Error� in the table is an indicator
for the error of the Monte-Carlo simulation. More precisely, the values in the
last column are the empirical standard deviations of the result divided by
the square root of the number of trajectories. Comparable to the Ornstein-
Uhlenbeck process, the convergence of the pure cubature method is very fast,
see Table 3.2. The (empirical) variance is, however, quite large such that the
Monte-Carlo aided method does not work at all. Note that the statistical
error in Table 3.3 is of the order of the total computational error, which can
be almost completely attributed to the Monte Carlo simulation.
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To test the method further we also try more irregular data. Let

(3.18) x(u) =
1
2

√√√√1− 2
∣∣u− 1

2

∣∣√∣∣u− 1
2

∣∣ .

The exact value of the quantity of interest E(Φ(Xx
1 )) = Φ(S1x) is calculated

by solving the corresponding heat equation numerically. This gives the value
E(Φ(Xx

1 )) = 0.3002×10−4. x given in (3.18) is in L2(]0, 1[) but its derivative
is no longer square-integrable. Consequently, x /∈ D(A) and the theory does
not provide an order of approximation. Nevertheless, probably due to the
smoothing-properties of the Laplace operator, numerical results show the
same behavior as before, see Figure 3.1.

If we replace the heat equation (3.11) by an evolution equation of the
form

(3.19) dXx
t =

d

du
Xx
t dt+ sin ◦Xx

t dBt,

then we still see the same kind of behavior if we �x the space-discretization for
the PDE-solver. This time, the PDEs require a much �ner space resolution
in order to give reliable numbers.
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Chapter 4

Re�ected di�usions

In this chapter, algorithms for approximations of re�ected di�usions, i. e. of
SDEs which are de�ned in a certain domain such that the solution is re�ected
at the boundary of the said domain in a certain, well-speci�ed sense. From a
numerical point of view, these stochastic di�erential equations are interest-
ing because they provide stochastic representations for (suitable) parabolic
PDEs with Neumann boundary conditions. Moreover, certain applications
in �nancial mathematics also exist, e. g. in the context of look-back options.
Unfortunately, the speed of convergence of standard numerical methods is
unsatisfactory slow, therefore we have constructed an adaptive Euler scheme
for re�ected di�usion. Furthermore, we give a second scheme, which, how-
ever, can only be applied in certain circumstances.

This chapter is based on joint work with Anders Szepessy and Raùl Tem-
pone. Since this is still work in progress, even though in already rather ad-
vanced shape, a more detailed and polished presentation of this work shall
appear later in an article.

4.1 Introduction

4.1.1 Theory of re�ected di�usions

Let B = (Bt)t∈[0,∞[ be a Brownian motion de�ned on (Ω,F , (Ft)t∈[0,∞[, P ).
Informally, a re�ected di�usion will be the solution of a stochastic di�eren-
tial equation �re�ected� at the boundary of a domain D, i. e. the re�ected
di�usions

• (locally) solves the governing SDE in the interior intD,

• stays in D almost surely and

• satis�es �some boundary behavior� at the boundary ∂D of the domain.

In stochastic analysis, properties of a process at the boundary of a domain
are closely linked with the so-called local time of the process. Consequently,

81
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we will �rst brie�y recall the de�nition of local times, for more information
see Revuz and Yor [68]. For simplicity, we only consider the one dimensional
situation. The following De�nition 4.1.1 uses [68, Corollary VI.1.9].

De�nition 4.1.1. Given a continuous semi-martingaleX = (Xt)t∈[0,∞[ with
values in R and a �xed number a ∈ R. The local time of X at a is the
stochastic process de�ned by

Lat (X) = lim
ε→0+

1
ε

∫ t

0
1[a,a+ε[(Xs)d 〈X ,X〉s ,

where 〈X ,X〉 denotes the quadratic variation of X. If X is a continuous
locale martingale, we may equivalently write

Lat (X) = lim
ε→0+

1
2ε

∫ t

0
1]a−ε,a+ε[(Xs)d 〈X ,X〉s .

The process La = (Lat (X))t∈[0,∞[ is a continuous increasing stochas-
tic process, and the corresponding random measure is a. s. supported by
{ t | Xt = a }. Moreover, we have Tanaka's formula

(4.1) |Xt − a| = |X0 − a|+
∫ t

0
sign(Xs − a)dXs + Lat .

Let us now specialize to the case of a Brownian motion. In the sequel,
let Lt = L0

t (B) be the local time of the Brownian motion at 0. By Tanaka's
formula,

|Bt| =
∫ t

0
sign(Bs)dBs + Lt,

where

βt =
∫ t

0
sign(Bs)dBs

is, again, a standard Brownian motion. β is known as Lévy transformation
of the Brownian motion B. Its natural �ltration coincides with the �ltration
generated by the process |B|, which is called Brownian motion re�ected at
0. In this case, we have a rather simple formula for the local time by

(4.2) Lt = sup
0≤s≤t

(−βs).

Now we give a formal de�nition of a re�ected di�usion and an existence
and uniqueness result based on Saisho [71]. First we have to impose some
regularity conditions on the domain. Let D ⊂ Rd be an open set and con-
sider, for x ∈ ∂D = D \ intD, the set of inward normal unit vectors Nx
de�ned by

Nx =
⋃
r>0

Nx,r, Nx,r =
{
y ∈ Rd

∣∣∣ ‖y‖ = 1, B(x− ry, r) ∩D = ∅
}
,

where B(x, r) denotes the sphere with radius r centered at x. We impose
the following uniform condition on D.
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Assumption 4.1.2. There exists a constant r > 0 such that Nx = Nx,r 6= ∅
for every x ∈ ∂D.

Remark 4.1.3. Note that Assumption 4.1.2 does not require uniqueness of the
inward normal unit vector, in particular, non-di�erentiable domains are not
excluded. In [71], an alternative local assumption is provided. We choose
the above uniform condition because it will be satis�ed by our numerical
examples.

Let B be a d-dimensional Brownian motion and consider a drift vector
�eld V : D → Rd and di�usion vector �elds V1, . . . , Vd : D → Rd, which are
assumed to be bounded and Lipschitz continuous. We consider the Skorohod
equation

(4.3) dXx
t = V (Xx

t )dt+
d∑
i=1

Vi(Xx
t )dBi

t + n(t)dZxt ,

with initial value Xx
0 = x ∈ D, Zx0 = 0 ∈ R, and an adapted process n(t)

satisfying n(t) ∈ NXx
t
provided that Xx

t ∈ ∂D.

Remark 4.1.4. The theory and the numerical analysis of re�ected di�usions
works just as well in the non-autonomous case, i. e. if the above vector �elds
V, V1, . . . , Vd are time-dependent � sometimes with obvious modi�cations.
For simplicity, we formulate our results only in the autonomous situation.

De�nition 4.1.5. A pair (Xx, Zx) = (Xx
t , Z

x
t )t∈[0,∞[ of continuous adapted

processes with values in D and [0,∞[, respectively, are strong solutions of
the Skorohod equation (4.3) if Xx

0 = x, Zx0 = 0, Zx is an increasing process
satisfying

(4.4) Zxt =
∫ t

0
1∂D(Xx

s )dZxs

for all t ∈ [0,∞[ and the integrated version of equation (4.3) holds true,
where n(t) is a given adapted process such that n(s) ∈ NXx

s
provided that

Xx
s ∈ ∂D.

Remark 4.1.6. For general domains as in Assumption 4.1.2, the solution
of (4.3) depends on the choice of the process n. In most situations, however,
the boundary of D will be regular enough such that there is almost always
a unique inward pointing normal vector. Then n(t) = n(Xx

t ) is a function
of the position for t such that Xx

t ∈ ∂D.

Remark 4.1.7. Equation (4.3) de�nes a re�ected di�usion with normal re-
�ection. It is also possible to consider oblique re�ections. The existence and
uniqueness result requires, however, that the oblique re�ection is uniformly
non-parallel to the boundary.
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Remark 4.1.8. Equation (4.4) means that the random measure induced by
the increasing process Zx is concentrated on { t | Xx

t ∈ ∂D }. Therefore, we
informally call Zx local time. Notice, however, that this practice is incorrect
because Zxt is not the local time in the sense of De�nition 4.1.1. Indeed, let
d = 1 and consider V ≡ 0 and V1 ≡ 1 and the domain D =]0,∞[. If we start
at x = 0, we have

Xt = Bt + Zt,

noting that the inward pointing normal vector is given by n ≡ 1. Given
a Brownian motion W and its Lévy transform βt =

∫ t
0 sign(Ws)dWs, the

re�ected Brownian motion satis�es

|Wt| = βt + Lt

by Tanaka's formula, where Lt denotes the local time ofWt at 0. Comparing
these two equations, we see that Zt is not the local time of B, but it is the
local time of a Brownian motion W such that

Bt =
∫ t

0
sign(Ws)dWs,

i. e. Zt = Lt(W ). Moreover, Xt = |Wt|. Of course, we have the equalities in
law

Xt ∼ |Bt| and Zt ∼ Lt(B).

Proposition 4.1.9. Under the above assumptions, the Skorohod equa-
tion (4.3) has a unique strong solution.

Proof. This is [71, Theorem 5.1].

Re�ected di�usions give stochastic representations of parabolic PDEs
with Neumann boundary conditions. We refer to Freidlin [26] for more de-
tails. Recall the de�nition of the in�nitesimal generator L in (1.4). For
simplicity, we con�ne ourselves to the Neumann problem with normal Neu-
mann condition.

(4.5)


∂

∂t
u(t, x) = Lu(t, x), (t, x) ∈ [0, T ]×D,

u(0, x) = f(x), x ∈ D,
∂

∂n
u(t, x) = h(x), x ∈ ∂D,

where f : D → R and h : ∂D → R are su�ciently regular functions, n(x) is
assumed to be the unique inward normal vector at x ∈ ∂D and we denote

∂

∂n
u(t, x) = 〈∇u(t, x) , n(x)〉 ,

the normal derivative of u(t, x) at x ∈ ∂D. By a solution of (4.5) we under-
stand a function u ∈ C1,2([0, T ]×D) satisfying the above PDE.
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Proposition 4.1.10. Assume that the solution u of problem (4.5) has
bounded time-derivative, gradient and Hessian matrix for all (t, x) ∈ [0, T ]×
D. Then we have the stochastic representation

u(t, x) = E
(
f(Xx

t )−
∫ t

0
h(Xx

s )dZxs
)
.

Proof. The proposition is a special case of [26, Theorem II.5.1]. Nevertheless,
we repeat the simple and instructive proof.

Fixing T > 0 and applying Itô's formula to u(T − t,Xx
t ) gives

u(0, Xx
T ) = u(T, x) +

∫ T

0

(
Lu(T − t, x)− (

∂

∂t
u)(T − t,Xx

t )
)
dt

+
n∑
i=1

∫ T

0
〈∇u(T − t,Xx

t ) , Vi(Xx
t )〉 dBi

t

+
∫ T

0
〈∇u(T − t,Xx

t ) , n(Xx
t )〉 dZxt .

Note that dZxt is concentrated on {Xx
t ∈ ∂D}, consequently we may replace

the integrand in the last term by ∂
∂nu(T − t,Xx

t ) = h(Xx
t ). Furthermore,

the Lu− ∂
∂tu = 0 by the PDE. Taking expectations concludes the proof.

4.1.2 Approximation of re�ected di�usions

We give a review of the some approximation methods for re�ected di�u-
sions as introduced above. We �rst present the standard Euler approach, see
Costantini, Pacchiarotti and Sartoretto [16]. This approach yields a method
with weak order of convergence 1

2 � in particular, they give a simple example,
where this convergence rate is precise. Note that their algorithm allows for
mixed Neumann and Dirichlet (corresponding to stopped di�usions) bound-
ary conditions, as in our second example. On the other hand, they only
consider normal re�ection. Gobet [28] has constructed an algorithm based
on a half-space approximation of the the boundary of the domain. In cer-
tain cases, he can prove a convergence with rate 1. Finally, Bossy, Gobet
and Talay [10] have found a method with order one based on symmetriza-
tion, provided that the boundary condition satis�es h ≡ 0 (also for oblique
re�ections).

Since the algorithm in [16] is the basis of our algorithms, as well as of
the two other algorithms mentioned above, we shall give a rather detailed
description. For simplicity, assume that #Nx = 1 for each x ∈ ∂D. Fur-
thermore, assume that we can �nd a unique projection Π(x) ∈ ∂D for each
x /∈ D. Fix T > 0 and an initial condition x ∈ D. Algorithm 4.1.11 is, in fact,
a straight-forward discretization of the Skorohod equation (4.3). Indeed, we



86 CHAPTER 4. REFLECTED DIFFUSIONS

have

Xx
ti+1
≈ Xx

ti + V
(
Xx
ti

)
∆ti +

d∑
j=1

Vj
(
Xx
ti

)
∆Bj

i + n
(
Xx
ti

)
∆Zti .

Setting

X̂i+1 = Xx
ti + V

(
Xx
ti

)
∆ti +

d∑
j=1

Vj
(
Xx
ti

)
∆Bj

i ,

we get
Xx
ti+1
− X̂i+1 ≈ n

(
Xx
ti

)
∆Zi+1,

or
∆Zi+1 ≈

∥∥∥Xx
ti+1
− X̂i+1

∥∥∥ .
This motivates the following algorithm.

Algorithm 4.1.11. Fix a uniform time discretization 0 = t0 < t1 < · · · <
tN = T , i. e. ∆ti = ti+1 − ti = T

N , i = 0, . . . , N − 1. Moreover, �x an
i. i. d. sequence of random variables (∆Bi)N−1

i=0 such that the moments of
order up to three of ∆B0 (and hence of all ∆Bi) coincide with those of an n-
dimensional normal random variable with covariance matrix T

N idn, cf. Case
B in Section 1.3.

(1) Set X
N
0 = x, Z

N
0 = 0, and i = 0.

(2) Set

X̂N
i+1 = X

N
i + V

(
X
N
i

)
∆ti +

n∑
j=1

Vj
(
X
N
i

)
∆Bj

i .

(3) Set

X
N
i+1 =

{
X̂N
i+1, X̂N

i+1 ∈ D,
Π(X̂N

i+1), X̂N
i+1 /∈ D,

Z
N
i+1 =

Z
N
i , X̂N

i+1 ∈ D,
Z
N
i +

∥∥∥Π(X̂N
i+1)− X̂N

i+1

∥∥∥ , X̂N
i+1 /∈ D.

(4) Increase i by one. If i < N , go back to (2).

(5) Calculate

F
N = f

(
X
N
N

)
−
N−1∑
i=0

h
(
X
N
i+1

)
∆ZNi .
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The solution u(T, x) ≈ E
(
F
N)

is then calculated by Monte Carlo simu-

lation from the distribution F
N
given in Algorithm 4.1.11 above.

If u is su�ciently regular (e. g. u ∈ C3
b ([0, T ] × D) and the random

variables ∆Bi are either bounded or Gaussian, then we have

(4.6)
∣∣∣u(T, x)− E

(
F
N
)∣∣∣ ≤ C

N1/2
,

where ∆ZNi = Z
N
i+1−Z

N
i , i = 0, . . . , N − 1. This result is [16, Theorem 3.4,

Theorem 3.6], together with a remark in [28].
The basic idea of the half-space approach of [28] is that the solution of the

Skorohod equation (4.3) with constant coe�cients can be given explicitly, if
D is a half-space, compare the one-dimensional version (4.2) given above,
noting that the rôle of β is now played by B.

More precisely, assume that we have already constructed X
N
l and Z

N
l ,

l = 0, . . . , i. In order to construct X
N
i+1 and Z

N
i+1, we project X

N
i to the

boundary (along the normal direction), �nding the point X̃. Now we cal-
culate the exact solution (X̂N

i+1, Ẑ
N
i+1) at time ti+1 of the re�ected di�usion

problem with constant coe�cients V
(
X
N
i

)
and V1

(
X
N
i

)
, . . . , Vn

(
X
N
i

)
and

for the domain given by the half-space bounded by the tangent hyperplane
on D at X̃. If the new point X̂N

i+1 ∈ D, then we set X
N
i+1 = X̂N

i+1 and

Z
N
i+1 = Z

N
i +ẐNi+1. Otherwise, we project X̂

N
i+1 back to D, X

N
i+1 = Π(X̂N

i+1),
and add an additional increment to the local time. The quantity of interest
u(T, x) is now similarly approximated as in (4.6), with one di�erence: now
the approximation of the local time may increase in a subinterval [ti, ti+1],
i. e. ∆ZNi > 0, even though X

N
i+1 ∈ intD. Consequently, we need to replace

the term h
(
X
N
i+1

)
by h

(
Π
(
X
N
i+1

))
this time.

Under some regularity conditions, Gobet [28] proves weak convergence of
this method to the solution of the Neumann boundary problem (4.5). The
rate of convergence is 1

2 , but it is 1 in case of co-normal re�ection, i. e. if the
re�ection is along the (normalized) direction

γ(x) = 〈V1(x) , n(x)〉V1(x) + · · ·+ 〈Vd(x) , n(x)〉Vn(x).

However, Gobet conjectures that this order of convergence holds for more
general situations.

Finally, Bossy, Gobet and Talay [10] have constructed a symmetrized
Euler scheme. But for one di�erence, the scheme is equal to Algorithm 4.1.11.
This di�erence is the calculation of X

N
i+1 from X̂N

i+1 in the case X̂N
i+1 /∈ D:

instead of merely projecting X̂N
i+1 to ∂D as in Algorithm 4.1.11, the new

point X
N
i+1 ∈ intD is found by projecting onto ∂D and then following the

direction γ of re�ection further into the interior of the domain, such that
X
N
i+1 and X̂N

i+1 have the same distance to ∂D along the direction γ. The
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algorithm converges with order 1 provided that h ≡ 0, but in that case also
for oblique re�ection.

4.2 New algorithms for re�ected di�usions

Both our algorithms are based on the Algorithm 4.1.11 of Costantini et
al. [16]. Let us �rst give an error expansion for this method, which is a slight
variation of the proof of Proposition 4.1.10.

De�nition 4.2.1. Let X
N
i , Z

N
i , i = 0, . . . , N , be the approximations of Xx

and Zx based on the grid 0 = t0 < · · · < tN = T and Gaussian increments
∆BN

i = Bti+1 − Bti . We de�ne a continuous process in continuous time by

X
N
t = X

N
i for t = ti, i = 0, . . . , N , and

X
N
t = X

N
i + V

(
X
N
i

)
(t− ti) +

d∑
j=1

Vi
(
X
N
i

)
(Bj

t −B
j
ti

),

for ti < t < ti+1, i = 0, . . . , N − 1.

Of course, X
N
t is only de�ned for theoretical purposes. As in the proof of

Proposition 4.1.10, we consider the function v(t, x) = u(T − t, x). Obviously,
v solves the Neumann problem

(4.7)


∂

∂t
v(t, x) + Lv(t, x) = 0,

v(T, x) = f(x),
∂

∂n
v(t, x) = h(x),

where t ∈ [0, T [ and x needs to be chosen appropriately, cf. equation (4.5)
for the Neumann problem solved by u. Moreover, v has the stochastic rep-
resentation

(4.8) v(t, x) = E

(
f(XT )−

∫ T

t
h(Xs)dZs

∣∣∣∣ Xt = x

)
.

In order to get an error representation, we �rst rewrite v(T, x)−v(0, x) using
telescopic sum as

E
(
f
(
X
N
N

))
− v(0, x) =

N−1∑
i=0

E
(
v(ti+1, X

N
i+1

)
− v
(
ti, X

N
i

))
(4.9)

=
N−1∑
i=0

E
(
v(ti+1, X

N
i+1

)
− v
(
ti+1, X̂

N
i+1

))︸ ︷︷ ︸
(I)

+
N−1∑
i=0

E
(
v
(
ti+1, X̂

N
i+1

)
− v
(
ti, X

N
i

))︸ ︷︷ ︸
(II)

.
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Here we implicitly assume that v also makes sense on D
c
, since X̂N

i+1 /∈ D is
possible. We will come back to this point later.

For the expansion of (II), note that

X̂N
i+1 −X

N
i =

∫ ti+1

ti

dX
N
s ,

by De�nition 4.2.1 above. Consequently, Itô's formula yields

v
(
ti+1, X̂

N
i+1

)
− v
(
ti, X

N
i

)
=
∫ ti+1

ti

( ∂
∂t
v
)(
s,X

N
s

)
ds+

∫ ti+1

ti

L
X
N
i
v
(
s,X

N
s

)
ds+ · · ·

=
∫ ti+1

ti

(
L
X
N
i
− L

)
v
(
s,X

N
s

)
ds+ · · · ,

where we used the PDE to re-express ∂
∂tv = −Lv. Moreover, �· · · � denotes a

martingale term with expectation 0 and the di�erential operator Ly, y ∈ Rn
�xed, is the in�nitesimal generator of the SDE with constant vector �elds
V (y), V1(y), . . . , Vd(y), i. e.

Lyg(x) =
d∑
j=1

V j(y)
∂

∂xj
g(x) +

1
2

d∑
i,j=1

aij(y)
∂2

∂xi∂xj
g(x),

where a(y) = σ(y)σ(y)T and σ(y) = (σij(y))di,j=1 with σij(y) = V i
j (y). Tak-

ing expectations, we get

(II) =
∫ ti+1

ti

E
((
L
X
N
i
− L

)
v
)
s,X

N
s

))
ds.

On the other hand, (I) is expanded by ordinary, path-wise Taylor expan-
sion. Indeed, notice that

X
N
i+1 = X̂N

i+1 + n
(
X
N
i+1

)
∆ZNi .

Thus,

(I) = v
(
ti+1, X

N
i+1

)
− v
(
ti+1, X

N
i+1 − n

(
X
N
i+1

)
∆ZNi+1

)
=

∂

∂n
v
(
ti+1, X

N
i+1

)
∆ZNi

−
∫ 1

0
(1− θ) ∂2

∂n
(
X
N
i+1

)2 v(ti+1, X
N
i+1 − θ∆Z

N
i n
(
X
N
i+1

))
dθ
(
∆ZNi

)2
,

where ∂2

∂n does not denote the second normal derivative in the sense of the
normal derivative of the normal derivative, but

(4.10)
∂2

∂n(y)2
g(x) =

∂2

∂ε2

∣∣∣∣
ε=0

g(x+ εn(y))
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x, y ∈ Rd. By the boundary condition, ∂
∂nv
(
ti+1, X

N
i+1

)
= h

(
X
N
i+1

)
at the

boundary (otherwise, ∆ZNi = 0).
Re-inserting the changed terms (I) and (II), we get an error expansion

for

(4.11) v(0, x) = E

(
f
(
X
N
N

)
−
N−1∑
i=0

h
(
X
N
i+1

)
∆ZNi

)
in the form

(4.12) v(0, x)− v(0, x) =
∫ T

0
E
((
L
X
N
btc
− L

)
v
(
t,X

N
t

))
dt

−E
(N−1∑
i=0

(
∆ZNi

)2 ∫ 1

0
(1−θ) ∂2

∂n
(
X
N
i+1

)2 v(ti+1, X
N
i+1−θ∆Z

N
i n
(
X
N
i+1

))
dθ

)
,

where btc = max { ti | i ∈ {0, . . . , N} , ti ≤ t }, t ∈ [0, T ]. Naturally, this
immediately gives an error expansion for u(T, x) = v(0, x).

Remark 4.2.2. The error expansion (4.12) naturally splits into two parts.
The �rst part, i. e. ∫ T

0
E
((
L
X
N
btc
− L

)
v
(
t,X

N
t

))
dt

is well understood since this is the �rst order term for the usual Euler-
Maruyama method for (non-re�ected) SDEs, provided that the equation can
be extended outside of D. We will refer to this part as interior error, since
its main contributions are discretization errors in the interior of the domain.

Much more interesting for our study is the second term in the error
expansion,
(4.13)

E

(N−1∑
i=0

(
∆ZNi

)2 ∫ 1

0
(1− θ) ∂2

∂n
(
X
N
i+1

)2 v(ti+1, X
N
i+1 − θ∆Z

N
i n
(
X
N
i+1

))
dθ

)
,

which measure the contribution from the re�ection. In order to assert the
meaning of (4.13), let us take a �rst look at it. Assume that the equation is
nice enough such that ∂2

∂n2 v is uniformly bounded on [0, T ] × D. Then the
integral term can be bounded by some constant, and we are left with

CE
(∑N−1

i=0

(
∆ZNi

)2)
.

Heuristically, the number of hits at the boundary, i. e. the number of indices
i such that ∆ZNi 6= 0, increases like

√
N with the number of time-steps.

On the other hand, given a hit takes place, then ∆ZNi ≈
√

∆ti, since ∆ZNi
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is, asymptotically, the modulus of the increment of a Brownian motion, or
the increment of a Brownian motion conditioned to be positive. Combining
these heuristic observations, we get

CE
(∑N−1

i=0

(
∆ZNi

)2) ≈ C√N × 1
N
≈ C√

N
,

as it should be by the results of [16].

We present two new algorithms. The �rst algorithm is based on further
analysis of the above error expansion and yields a convergence order 4

5 . The
scope of this algorithm is, however, very limited, since it only works in di-
mension d = 1 or in dimensions d > 1 provided that we can extend the
inward pointing normal vectors n to a vector �eld de�ned on D such that

[n, V ](x) = [n, Vi](x) = 0, x ∈ D, i = 1, . . . , d.

The second algorithm is an adaptive algorithm, which is applicable in any
dimension. Numerical experiments indicate that in convergence with a rate
between 1

2 and 1, but the rate is unknown to us. We believe that this
algorithm is especially useful for domains with non-smooth boundaries and
con�icting boundary conditions.

4.2.1 The algorithm with correction term

Since the error term (4.13) is of order
√

∆t, it seems to be a promising idea
to carry the expansion one step further. If a calculation is still feasible,
we may hope to get a better order of convergence for the re�ection error.
Indeed, the main idea of the algorithm presented in this subsection is to
construct a correction term such that the error expansion of the Euler algo-
rithm with correction starts with the term of order 1, instead of order 1/2 as
in (4.12). Of course, the computation of the correction term will introduce
additional complexity into the algorithm. It will turn out, however, that the
resulting algorithm is still more e�cient than the ordinary Euler scheme, Al-
gorithm 4.1.11, since the computation of the correction term is comparably
cheap in comparison to the approximation of the re�ected di�usion.

Remark 4.2.3. It is well known that the interior error decreases with an or-
der one of convergence in terms of ∆t under mild conditions on the problem.
Consequently, we can concentrate on the error from the re�ection. Further-
more, for many considerations we may assume that the coe�cients of the
SDE in the interior intD are constant.

Remark 4.2.4. The arguments presented here will stay on the heuristic level
as in Remark 4.2.2 above. Rigorous arguments are possible using the tech-
niques of [16], but will only be presented in a subsequent article.
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A second order Taylor expansion of the term A in the error expan-
sion (4.9) gives

v(0, x)− v(0, x) =
∫ T

0
E
((
L
X
N
btc
− L

)
v
(
t,X

N
t

))
dt

(4.14)

− 1
2
E

(N−1∑
i=0

(
∆ZNi

)2 ∂2

∂n
(
X
N
i+1

)2 v(ti+1, X
N
i+1

))

+
1
2
E

(N−1∑
i=0

(
∆ZNi

)3×
×
∫ 1

0
(1− θ)2 ∂3

∂n
(
X
N
i+1

)3 v(ti+1, X
N
i+1 − θn

(
X
N
i+1

)
∆ZNi

)
dθ

)
.

Consequently, let us de�ne
(4.15)

v(0, x) = E

(
f
(
X
N
N

)
−
N−1∑
i=0

h
(
X
N
i+1

)
∆ZNi +

1
2

N−1∑
i=0

(
∆ZNi

)2
∂2
nv(ti+1, X

N
i+1

))
,

where ∂2
nv(ti+1, X

N
i+1

)
is a computable approximation

∂2
nv(ti+1, X

N
i+1

)
≈ ∂2

∂n
(
X
N
i+1

)2 v(ti+1, X
N
i+1

)
.

Remark 4.2.5. If we could work with the exact value for the second normal
derivative, in the sense of equation (4.10), then equation (4.14) would give
a precise error expansion for v. Indeed, with the same heuristics as before,
this approximate error expansion indicates a convergence of order 1. Of
course, this presupposes that the approximation ∂2

nv can be calculated with
su�cient accuracy and e�ciency.

We present a scheme for e�cient computation of ∂2
nv applicable in di-

mension one. Unfortunately, we have not found su�ciently e�cient methods
to approximate the second normal derivative of v in more generality, but un-
der special circumstances. For the remainder of the subsection, we assume
d = 1. Consequently, all the normal derivatives are, in fact, ordinary deriva-
tives with respect to the space variable x, possibly with a sign, and the
domain is an interval D =]a, b[, where one of a, b ∈ R ∪ {±∞} may be ±∞.
More precisely, the Neumann boundary condition reads

(4.16)
∂

∂x
v(t, a) = h(a),

∂

∂x
v(t, b) = −h(b),

provided that both a and b are real numbers. For simplicity, we will only con-
sider the case a = 0 and b = +∞, the extension to the general case is trivial.
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vx = ∂
∂xv solves the following PDE with Dirichlet boundary conditions

(4.17)


∂

∂t
vx(t, x) + L̃vx(t, x) = 0, (t, x) ∈ [0, T [×D,

vx(T, x) = f ′(x), x ∈ D,
vx(t, x) = h(x), (t, x) ∈ [0, T [×∂D.

In (4.17), the di�erential operator L̃ is no longer of the same form as L, but
it still allows for a stochastic representation using the Feynman-Kac formula.
Indeed, if

Lg(x) = V (x)g′(x) +
1
2

(V1(x))2g′′(x),

then

L̃g(x) = V ′(x)g(x) + (V (x) + V ′1(x))g′(x) +
1
2

(V1(x))2g′′(x)

has the stochastic representation

vx(t, x) = E

(
f ′(XT ) exp

(∫ T

t
V ′(Xs)ds

)
1[T,∞[(τt,x)

∣∣∣∣Xt = x

)
(4.18)

+ E

(
h(Xτt,x) exp

(∫ τt,x

t
V ′(Xs)ds

)
1[t,T [(τt,x)

∣∣∣∣Xt = x

)
,

where
τt,x = inf

{
s > t

∣∣ Xt,x
s ∈ ∂D

}
,

see (4.19). Consequently, in order to compute vx(t, x) one needs to solve a
stopped di�usion following the well known SDE

(4.19) dXt,x
s = V (Xt,x

s )ds+ V1(Xt,x
s )dB1

s , s > t,

started at time t and Xt,x
t = x and stopped when hitting the boundary ∂D.

Remark 4.2.6. Notice that stopped di�usions are much simpler problems
than re�ected di�usions. As already indicated in the beginning of this sub-
section, the computation of the correction term amounts to additionally
solving a number of simple problems (compared to the re�ected di�usion),
namely the stopped di�usions, in order to obtain a faster convergence rate
for the re�ected di�usion.

The idea for the approximation ∂2
nv is the following. First note that

∂2
nv(t, x) is only needed for x ∈ ∂D, i. e. x = 0, because otherwise ∆Z = 0
owing to the use of Algorithm 4.1.11, see (4.15). We approximate vxx(t, 0) =
∂2

∂x2 v(t, x) by a �nite di�erence quotient, i. e.

vxx(t, 0) = −vx(t, 0)− vx(t,∆x)
∆x

+O(∆x)(4.20)

= −h(0)− vx(t,∆x)
∆x

+O(∆x),
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for ∆x > 0 su�ciently small. vx(t,∆x) is then approximated by a stopped
di�usion. Notice that we do not need to perform an �inner� Monte Carlo sim-
ulation for this computation. Indeed, let G(t, x) denote the random variable
under the expectation in (4.18), i. e.

G(t, x) = f ′(Xt,x
T ) exp

(∫ T

t
V ′(Xt,x

s )ds
)
1[T,∞[(τt,x)

+ h(Xt,x
τt,x) exp

(∫ τt,x

t
V ′(Xt,x

s )ds
)
1[t,T [(τt,x).

Notice that G(t, x) is independent of Ft. Consequently, we have

E

(N−1∑
i=0

vxx
(
ti+1, X

N
i+1

)(
∆ZNi

)2) ≈ E(N−1∑
i=0

vx(ti+1,∆x)− h(0)
∆x

(
∆ZNi

)2)

= E

(N−1∑
i=0

E(G(ti+1,∆x))− h(0)
∆x

(
∆ZNi

)2)

= E

(N−1∑
i=0

G(ti+1,∆x)− h(0)
∆x

(
∆ZNi

)2)
,

by independence of G(ti+1,∆x) and ∆ZNi . In order to get a workable algo-
rithm, we need to �x an approximation G(t,∆x) of G(t,∆x). Then, we can
�nally set

(4.21) ∂2
nv
(
tI+1, X

N
i+1

)
=
G(ti+1,∆x)− h(0)

∆x
.

Remark 4.2.7. Of course, ∂2
nv as in (4.21) is not a true approximation of vxx,

only its expected value is. ∆x is a critical parameter for the algorithm and
needs to be chosen depending on N and on the approximation method G.

We use two di�erent methods G, namely the uniform Euler method, see
Gobet [27], and an adaptive Euler scheme, see Dzougoutov et al. [21]. It is
well known that the uniform Euler scheme converges with the rate 1

2 , whereas
the adaptive scheme has the order 1.

Let us �rst consider the uniform scheme, i. e. let (XN,ti+1,∆x
j )Nj=i+1 be the

Euler approximation of the SDE started at X
N,ti+1,∆x
i+1 = ∆x and calculated

along the uniform grid ti+1 < ti+2 < . . . < tN = T . More precisely, we have

X
N,ti+1,∆x
j+1 = X

N,ti+1,∆x
j + V

(
X
N,ti+1,∆x
j

)
∆tj + V1

(
X
N,ti+1,∆x
j

)
∆B1

j ,

j = i + 1, . . . , N − 1. Moreover, let τN,ti+1,∆x be the �rst hitting time of
the discrete process X

N,ti+1,∆x at Dc � we set τN,ti+1,∆x = ∞ if no hitting
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occurs. For t = tk+1 ≥ ti+1 let

I(ti+1, t) = exp
( k∑
j=i+1

V ′
(
X
N,ti+1,∆x
j+1

)
∆tj

)
and de�ne the stopped di�usion started at ∆x approximated by a uniform
Euler scheme

(4.22) G
un(ti+1,∆x) =

(
f ′
(
X
N,ti+1,∆x
N

)
1{T,∞}

(
τN,ti+1,∆x

)
+ h
(
X
N,ti+1,∆x

τN,ti+1,∆x

)
1{ti+2,...,tN−1}

(
τN,ti+1,∆x

))
I
(
ti+1, τ

N,ti+1,∆x
)
.

Of course, if the boundary has been hit before j = N , G
un

can already be
computed and the iteration does not need to be continued until time T .

Remark 4.2.8. Since we solve the stopped di�usion with the same grid as
the outer re�ected di�usion, we do not need to sample additional Brownian
increments.

We still have to choose the parameter ∆x. Notice that we approximate
the second derivative vxx with the error

vxx(t, 0) =
E
(
G(t,∆x)

)
− h(0)

∆x
+
O(
√

∆t)
∆x

+O(∆x),

where ∆t = T/N . Optimizing the error with respect to ∆x yields

(4.23) ∆x = const×(∆t)1/4 = const×
( T
N

)1/4
.

This gives an error from the approximation of the correction term of order

E

(N−1∑
i=0

O((∆t)1/4)
(
∆ZNi

)2) = O(
√
N)×O(N−1/4)×O(N−1) = O(N−3/4).

However, we have an additional complexity due to the simulation of G. In-
deed, since E

(
τN,t,∆x

)
= O(∆x), the additional work is of orderN×O(∆x)

T =
O(N3/4) per re�ection at the boundary. Since these re�ections take place
O(
√
N) times, the additional and, hence, the total work is O(N5/4). There-

fore, the rate of convergence with respect to the total work K ≈ const×N5/4

is expected to be O(K−3/5).
Remark 4.2.9. Of course, all the arguments in the preceeding paragraph are
highly heuristic. For example, the number of hits at the boundary (of the
re�ected trajectory) and the time until stopping (of the stopped trajectory
using the same Brownian increments) are certainly not independent. How-
ever, independence would hold if we sampled new, independent increments
of Brownian motion for the stopped di�usion. Nevertheless, all the above
observations seem to be consistent with the results of numerical experiments.
Rigorous proofs need to be provided in a forthcoming paper.
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Remark 4.2.10. E
(
τN,t,∆x

)
= O(∆x) is motivated by the following consider-

ation. Let B∆x
t be a Brownian motion started at B∆x

0 = ∆x > 0 and denote
by τ∆x the �rst hitting time of B∆x

t at 0, if B∆x
t hits 0 before time T , and

τ∆x = T otherwise. The distribution of τ∆x is given by

P (τ∆x ∈ ds) =
∆x√
2πs3

e−
∆x2

2s ds, s ∈ [0, T [,

P (τ∆x = T ) =
2

2π

∫ ∆x/
√
T

0
e−

s2

2 ds,

see Karatzas and Shreve [40]. The �rst two moments of τ∆x can be explicitly
calculated and an expansion in ∆x gives

E(τ∆x) =
2
√

2T√
π

∆x+O(∆x2),

E((τ∆x)2) =
4
√

2T 3

3
√
π

∆x+O(∆x3).

We do not give a detailed description of the adaptive algorithm for
stopped di�usions. We just mention that the adaptive algorithm has an
(empirical) rate of convergence 1 in the general case. If the coe�cients of
the equation are constant, i. e. if there is no error stemming from the dis-
cretization in the interior of the domain, then the adaptive algorithm for the
stopped di�usion problem converges exponentially fast. Therefore, we can
now approximate the second derivative vxx with an error

vxx(t, 0) =
E
(
G
ad(t,∆x)

)
− h(0)

∆x
+
O(∆t)

∆x
+O(∆x),

where G
ad(t,∆x) denotes the stopped di�usion started at ∆x computed with

the adaptive algorithm (noting that the discretization grid is random, too).
Minimizing the error gives

(4.24) ∆x = const×
√

∆t = const×
√
T

N
.

Consequently, the error from the approximation in the correction term is
this time

E

(N−1∑
i=0

O(
√

∆t)
(
∆ZNi

)2) = O(
√
N)×O(1/

√
N)×O(1/N) = O(1/N).

However, note that we still have an additional work of order O(N5/4), which
leads to the total convergence rate O(K−4/5). Only in case of constant
coe�cients, the additional work is still of O(N), therefore giving us the
desired order O(N−1).

Concluding, we propose the following algorithm for one dimensional prob-
lems.



4.2. NEW ALGORITHMS FOR REFLECTED DIFFUSIONS 97

Algorithm 4.2.11. Fix a uniform time discretization 0 = t0 < t1 < · · · <
tN = T , i. e. ∆ti = ti+1 − ti = T

N , i = 0, . . . , N − 1. Moreover, �x an
i. i. d. sequence of random variables (∆Bi)N−1

i=0 such that the moments of
order up to three of ∆B0 (and hence of all ∆Bi) coincide with those of an
one dimensional normal random variable with variance T

N , cf. Case B in
Section 1.3.

(1) Set X
N
0 = x, Z

N
0 = 0, set i = 0.

(2) Set

X̂N
i+1 = X

N
i + V

(
X
N
i

)
∆ti +

d∑
j=1

Vj
(
X
N
i

)
∆Bj

i .

(3) Set

X
N
i+1 =

{
X̂N
i+1, X̂N

i+1 ∈ D,
Π(X̂N

i+1), X̂N
i+1 /∈ D,

Z
N
i+1 =

Z
N
i , X̂N

i+1 ∈ D,
Z
N
i +

∥∥∥Π(X̂N
i+1)− X̂N

i+1

∥∥∥ , X̂N
i+1 /∈ D.

(4) If ∆ZNi > 0, calculate either G
un(ti+1,∆t1/4) or G

ad(ti+1,
√

∆t) and
compute the approximate second order normal derivative ∂2

nv(ti+1, 0)
according to (4.21).

(5) Increase i by one. If i < N , go back to (2).

(6) Calculate

F
N = f

(
X
N
N

)
−
N−1∑
i=0

h
(
X
N
i+1

)
∆ZNi +

1
2

N−1∑
i=0

(
∆ZNi

)2
∂2
nv(ti+1, X

N
i+1

)
.

Remark 4.2.12. In the d-dimensional situation with d > 1, we can use the
same �nite di�erence approximation as (4.20), i. e.

vnn(t, x) =
vn(t, x+ ∆xn(x))− h(x)

∆x
+O(∆x),

where vn and vnn are the needed normal derivatives, x ∈ ∂D. Unless n(x)
is a constant vector (corresponding to a half-space domain), we do not get
a PDE for vn. However, using the stochastic representation of the original
problem, we get

vn(t, x+ ∆xn(x)) = E
(〈
∇v
(
τ,Xt,x+∆xn(x)

τ

)
, Jt→τ (x+ ∆xn(x))n(x)

〉)
,
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where Xt,x+∆xn(x) denotes the solution of the SDE started at time t with
X
t,x+∆xn(x)
t = x+∆xn(x) and τ denotes the �rst hitting time of Xt,x+∆xn(x)

at ∂D (or τ = T if no such hit occurs before T ). Jt→s(x+∆xn(x)) is the �rst
variation, i. e. the (path-wise) Jacobi matrix of the map y 7→ Xt,y

s evaluated
at y = x+ ∆xn(x). By the boundary condition,〈

∇v
(
τ,Xt,x+∆xn(x)

τ

)
, n
(
Xt,x+∆xn(x)
τ

)〉
= h

(
Xt,x+∆xn(x)
τ

)
,

but
Jt→τ (x+ ∆xn(x))n(x) 6= n

(
Xt,x+∆xn(x)
τ

)
in general. Nevertheless, we might boldly use

vn(t, x+ ∆xn(x)) ≈ E
(
h
(
Xt,x+∆xn(x)
τ

))
,

giving us an additional error of

E
(〈
∇v
(
τ,Xt,x+∆xn(x)

τ

)
,

Jt→τ (x+ ∆xn(x))
(
n(x)− Jt→τ (x+ ∆xn(x))−1n

(
Xt,x+∆xn(x)
τ

))〉)
.

Assuming that n is de�ned as a vector �eld on D, we can write down the
SDE of its pull-back Jt→τ (x+ ∆xn(x))−1n

(
X
t,x+∆xn(x)
τ

)
, namely

Jt→τ (x+ ∆xn(x))−1n
(
Xt,x+∆xn(x)
τ

)
− n(x) =∫ τ

t
[V0, n]

(
Xt,x+∆xn(x)
s

)
ds+

n∑
l=1

∫ τ

t
[Vl, n]

(
Xt,x+∆xn(x)
s

)
◦ dBl

s.

This shows that the above approximation is exact if and only if [Vl, n] = 0,
l = 0, . . . , n, which is the case if and only of n commutes with L. But in the
latter case, we might have worked with the stochastic representation of vn
to begin with. If this is not the case, one can bound the error, using the Itô
isometry, by √

C1E(τ) + C2E(τ2).

By the above Remark 4.2.10, this error bound (divided by ∆x) does not
converge for ∆x→ 0.

4.2.2 The adaptive algorithm

The idea of adaptive algorithms for SDEs is the following: given a certain
computational error that one is willing to tolerate, one wants tominimize the
work in order to guarantee that the computational error is smaller than the
error tolerance. A few remarks are in order. First, for �work� we substitute
the number of time-steps used. In fact, since the number of time-steps will be
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random, we try to minimize the average number of time-steps. Notice that
all our comments only refer to the algorithm discretizing the SDE in order
to produce random samples for the �nal Monte Carlo simulation. For the
general theory of adaptive weak algorithms for SDEs see Szepessy, Tempone
and Zouraris [79].

Contrary to Algorithm 4.2.11, the adaptive algorithm works in all dimen-
sions d. As already mentioned before, its advantages are generally expected
to show in situations with inherent singularities. We do not have a proof
for a certain convergence rate, but notice that for problems with very low
regularity most traditional convergence results fail, too. In particular, we
have examples in mind where the uniform Euler scheme presented in Algo-
rithm 4.1.11 has a smaller order of convergence than 1

2 .
Our starting point is the error expansion (4.13), which we rewrite as

(4.25) E

(N−1∑
i=0

(
∆ZNi

)2 ∣∣∣vnn(ti+1, X
N
i+1

)∣∣∣)

where we use the shorthand notation

vnn
(
ti+1, X

N
i+1

)
=
∫ 1

0
(1− θ) ∂2

∂n
(
X
N
i+1

)2 v(ti+1, X
N
i+1 − θ∆Z

N
i n
(
X
N
i+1

))
dθ.

De�ne auxiliary functions ∆tN : [0, T ]→ R by ∆tN (t) = ∆ti = ti+1− ti and
Z
N : [0, T ]→ R by Z

N (t) = Z
N
i+1 for t ∈]ti, ti+1]. Let Ñ denote the number

of hits at the boundary for the given time grid. We approximate

(4.26) E
(
Ñ
)
≈ E

(∫ T

0

dZ
N (t)√

∆tN (t)

)
.

Remark 4.2.13. We do not have a valid theory for (4.26), but the approx-
imation is justi�ed by numerical experiments. Note, however, that (4.26)
is certainly only valid for a uniform time grid. For an adaptive, and there-
fore non-uniform time grid we expect a much higher number of hits at the
boundary, since we expect to re�ne close to the boundary. (Recall that we
only consider the re�ection error from the boundary.) Indeed, numerical
experiments show that e. g. E

(
Ñ
)

= O(N0.9) for some particular re�ned
meshes, in comparison to E

(
Ñ
)

= O(
√
N) for uniform meshes as suggested

by (4.26).

We want to minimize (4.26) subject to the constraint that the error
term (4.25) is smaller than a given error tolerance TOL. In order to avoid
non-adapted stochastic processes entering the picture at this stage, let us
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approximate the error term by

E

(N−1∑
i=0

(
∆ZNi

)2 ∣∣∣vnn(ti+1, X
N
i+1

)∣∣∣) ≈
E

(N−1∑
i=0

∣∣∣vnn(ti+1, X
N
i+1

)∣∣∣∆ZNi E(∆ZNi ∣∣XN
i , ∆ti

))
.

An easy calculation shows that

E
(
Z
N
i

∣∣XN
i = x, ∆ti = ∆t

)
= −xΦ

(
− d(x)√

∆t

)
+

√
∆t
2π

exp
(
−d(x)2

2∆t

)
,

where Φ denotes the cumulative distribution function of the standard Gaus-
sian distribution, provided that D is a half space, and d(x) is the distance
of x to the re�ecting boundary ∂D. In the general case we use the above
equation as an approximation, where we think of the tangent hyperplane on
D at x, cf. [28]. Moreover, the derivative of the quantity is given by

∂

∂∆t
E
(
Z
N
i

∣∣XN
i = x, ∆ti = ∆t

)
=

1
2
√

2∆tπ
exp
(
−d(x)2

2∆t

)
.

Combining these results and rewriting everything in terms of integrals
instead of sums, we get the Lagrangian of the minimization problem at hand:

(4.27) L(∆t) = E

[∫ T

0

dZ(s)√
∆t(s)

+ λ

(∫ T

0

∣∣vnn(s,X(s)
)∣∣E(∆Z(s)

∣∣X(s), ∆t(s)
)
dZ(s)− TOL

)]
.

L is understood as a function de�ned on the set of positive, piecewise con-
stant functions on [0, T ]. Note that we have tacitly omitted the dependence
on N in the above equation, because N is now a function of the mesh func-
tion ∆t, which is no longer �xed. The derivative in direction of the piecewise
constant function φ is then given by

L′(∆t)·φ = E

[∫ T

0

(
− φ

2∆t(s)3/2
+λφ

∣∣vnn(s,X(s)
)∣∣

2
√

2∆t(s)π
exp
(
−
d
(
X(s)

)2
2∆t(s)

))
dZ(s)

]
.

L′(∆t) · φ = 0 for all functions φ implies

(4.28) const =
1
λ

=
∆t(t)√

2π
exp
(
−
d
(
X(t)

)2
2∆t(t)

) ∣∣vnn(t,X(t)
)∣∣

for all t ∈ [0, T ]. Notice that (4.28) can already be understood as a re-
�nement rule, because it shows the dependence of the grid on the position.
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There is, however, no direct dependence on the tolerance level TOL included,
yet. To this end, we have the re-insert the expression (4.28) into the error
representation (4.27), giving us the const in (4.28). More precisely, we get
(4.29)

∆t(t) = 2
√

2π
TOL +E

(∫ T
0 X(s)Φ

(
−d
(
X(s)

)
√

∆t(s)

) ∣∣vnn(s,X(s)
)∣∣ dZ(s)

)
E
(∫ T

0
dZ(s)√

∆t(s)

)
exp
(
−d
(
X(s)

)2

2∆t(t)

) ∣∣vnn(t,X(t)
)∣∣ .

This term is too complicated for the implementation. Two simpli�cations
are immediately possible. First note that the second term in the numerator
of (4.29) is always positive. Omitting this term therefore means that the
mesh is re�ned too often. Moreover, the term seems insigni�cant as com-
pared to the exponential term in the denominator. Secondly, we may again
apply (4.26), this time in the other direction, which gives a term E

(
Ñ
)
in

the denominator. In practice, we do not know this expected value, especially
since it highly depends on the grid, which is no longer �xed. Therefore, the
idea is to run the adaptive algorithm once in order to compute an approx-
imation for E

(
Ñ
)
, and then a second time, using the approximation and a

di�erent batch of (pseudo) random numbers, in order to compute the quan-
tity of interest. These two simpli�cations lead to

(4.30) ∆t(t) ' 2
√

2π
TOL exp

(
d
(
X(t)
)2

2∆t(t)

)
E
(
Ñ
) ∣∣vnn(t,X(t)

)∣∣ .
There is still the unknown term

∣∣vnn(t,X(t)
)∣∣ left in equation (4.30). We

propose two possible approaches to it, depending on the problem at hand.

• If the problem is simple enough or we have some a-priori information,
we can replace

∣∣vnn(t,X(t)
)∣∣ by the constant 1 or by some approx-

imation based on our knowledge of the problem, respectively. For
instance, if v is well behaved but for one singularity at a known point
x0 ∈ Rn, we could replace

∣∣vnn(t,X(t)
)∣∣ with 1 far away from x0 and

with 1/ ‖x− x0‖α close to x0, with α depending on the type of singu-
larity. Notice, however, that in this situation the true computational
error can only be proportional to the error estimate given by the local
error density (4.30). Therefore, it is not possible to guarantee � within
the limitations of a Monte-Carlo setup and our further assumptions �
the computational error to be bounded by TOL, but one has to observe
the dynamics of the results for smaller and smaller TOL.

• In general,
∣∣vnn(t,X(t)

)∣∣ can be approximated by the discrete dual
functions, see [79] for more details. The use of the dual functions in-
troduces some subtleties into the algorithm, because they are computed
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by backward recursion. Thus, they are not adapted to the �ltration.
In this case, the error representation based on the local error density is
precise, again under the limitations of the setup, in particular keeping
in mind that the discrete dual functions are only approximations of the
true second normal derivative.

Let us summarize the adaptive algorithm. In the following, t will denote
a partition of [0, T ], i. e. t = (ti)

N(t)
i=0 with 0 = t0 < · · · < tN(t) = T . Given a

partition t, we will denote ∆tti = ti+1 − ti, 0 ≤ i ≤ N(t)− 1. Moreover, B
t
,

X
t
, Z

t
will denote discrete processes de�ned on the grid t, i. e. B

t = (Bti)
N(t)
i=0

and we will also use ∆Bt
i = Bti+1 −Bti , ∆Zt

i = Z
t
i+1−Z

t
i, 0 ≤ i ≤ N(t)− 1.

Algorithm 4.2.14 (Re�nement). Given a time grid t, the Brownian motion
B

t
sampled according to t, the process X

t
sampled on t and a local error

tolerance TOL. Set i = 0.

(1) Compute a local error density by

li =
1

2
√

2π
E
(
Ñ
) ∣∣∣vnn(ti, X t

i

)∣∣∣ exp
(
−
d
(
X

t
i

)2
2∆ti

)
∆ti,

where
∣∣∣vnn(ti, X t

i

)∣∣∣ is chosen by one of the two approaches mentioned

above.

(2) If li < TOL and i < N(t)− 1, then set i = i+ 1 and go back to (1). If
li < TOL and i = N(t)− 1, then stop. Else go to (3).

(3) Insert t = ti+ti+1

2 into t, i. e. set t = (t0, . . . , ti, t, ti+1, . . . , tN ), and
sample the corresponding Brownian motion Bt using a Brownian bridge
between Bti and Bti+1, i. e.

Bt = Bti +
1
2

(Bti+1 −Bti) +
1
2

√
ti+1 − tiY,

where Y ∼ N (0, idd) independent of all previously sampled random
variables. Furthermore, insert the new term X

t
i+1 = 0 (or any other

value). If ti+1 < T , set i = i + 2 (note that the size of the grid has
changed) and go back to (1), else stop.

Remark 4.2.15. In practice, it is advisable to set a bound on the possible
re�nements, e. g. one could �x some ∆tmin and only re�ne between ti+1 and
ti of li ≥ TOL and ti+1 − ti > ∆tmin. Moreover, to ensure convergence of
the algorithm one should re�ne all steps until ∆ti < ∆tmax for some �xed
∆tmax. This guarantees convergence for ∆tmax → 0, at least with the speed
of the uniform Euler scheme � but, in fact, much faster in most situations.
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Remark 4.2.16. Of course, it is also possible to sample the Brownian motion
in a weak way. In this situation, one has to use the weak analogue of the
above Brownian bridge formula.

Algorithm 4.2.17. Start with an initial mesh t and the corresponding Brow-
nian motion B

t
.

(1) Set X
t
0 = x, Z

t
0 = 0, and i = 0.

(2) Set

X̂ t
i+1 = X

t
i + V

(
X

t
i

)
∆ti +

d∑
j=1

Vj
(
X

t
i

)
∆Bj

i .

(3) Set

X
t
i+1 =

{
X̂ t
i+1, X̂ t

i+1 ∈ D,
Π(X̂ t

i+1), X̂ t
i+1 /∈ D,

Z
t
i+1 =

{
Z

t
i, X̂ t

i+1 ∈ D,
Z

t
i +
∥∥∥Π(X̂ t

i+1)− X̂ t
i+1

∥∥∥ , X̂ t
i+1 /∈ D.

(4) Increase i by one. If i < N(t), go back to (2).

(5) Re�ne the grid t using Algorithm 4.2.14. If the grid has changed during
re�nement, then set i = 0 and go back to (2), using the re�ned grid.

(6) Calculate

F
t = f

(
X

t
N(t)

)
−
N(t)−1∑
i=0

h
(
X

t
i+1

)
∆Zt

i.

4.3 Numerical experiments

4.3.1 One-dimensional example

We start with a one-dimensional example, which mainly serves as illustration
of the algorithm with correction, cf. Algorithm 4.2.11. Because we are only
interested in the error coming from the re�ection at the boundary, we use
a problem without interior discretization error, i. e. in the interior of the
domain D = [0,∞[. The solution process X is the driving Brownian motion
B re�ected at the boundary ∂D = {0}. The Neumann boundary condition
and the initial condition are �xed as follows:

(4.31)


∂

∂t
u(t, x) = −1

2
∆u(t, x), (t, x) ∈ [0, 2]× [0,∞[,

u(2, x) = e2(sin(
√

2x) + cos(
√

2x)), x ∈ [0,∞[,
∂

∂x
u(t, 0) =

√
2et, t ∈ [0, 2].
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Obviously, problem (4.31) has the explicit solution

(4.32) u(t, x) = et(sin(
√

2x) + cos(
√

2x)).

Remark 4.3.1. In [16], the authors prove that the uniform Euler algorithm
for the Brownian motion re�ected at 0 (but with di�erent boundary and
initial conditions) does not converge faster than with rate one half. We have
changed the boundary conditions because the third derivative of the solution
of their problem vanishes, which would lead to untypically fast convergence
rates for the algorithm with second order correction terms, because its lead-
ing order error term involves the third derivative. As can be easily checked,
the third derivative of (4.32) does not vanish for x = 0.

We compute the value u(0, x0) for x0 = 0.5 using three di�erent methods:
the uniform Euler method, cf. Algorithm 4.1.11, the uniform Euler method
with second order correction term computed using a stopped di�usion ap-
proximated by the adaptive algorithm of [21], cf. Algorithm 4.2.11. Finally,
we also compute the outcome with the adaptive Algorithm 4.2.17. Notice
that the exact value is u(0, 0.5) = 1.4099.

N M Error S
2 80 080 0.3811 0.0416
4 80 320 0.5986 0.0386
8 56 400 0.6252 0.0448

16 62 800 0.5417 0.0420
32 75 600 0.4493 0.0382
64 101 200 0.3581 0.0329

128 152 400 0.2461 0.0269
256 254 800 0.1822 0.0208
512 459 600 0.1330 0.0155

1024 869 200 0.0881 0.0113
2048 1 688 400 0.0638 0.0081
4096 3 326 800 0.0496 0.0058

Table 4.1: Results of the uniform Euler Monte-Carlo algorithm for prob-
lem (4.31)

Table 4.1 gives the results for the uniform algorithm. Here, and in all
the subsequent examples, M denotes the number of paths used in the Monte
Carlo simulation for u(0, 0.5). The �Error� in the table is the computational
error in the sense that

Error = u(0, 0.5)− u(0, 0.5),

where u(0, 0.5) denotes the computed approximation to the true value
u(0, 0.5). S gives an estimate for the possible �statistical� error component
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caused by the computation of the expected value of the random variable
F
N
constructed in Algorithm 4.1.11 by Monte-Carlo simulation. Indeed, let

F
N
i denote the ith sample of F

N
, i = 1, . . . ,M . Ideally, these samples are

independent and identically distributed samples of F
N
, which allows us to

appeal to the central limit theorem, giving

√
M
(
E
(
F
N)− 1

M

M∑
i=1

F
N
i

)
−−−−→
M→∞

N (0, σ2),

where the convergence is understood as convergence in distribution and σ2

denotes the variance of F
N
. Heuristically, we may assume thatM is already

large enough that the convergence in the central limit theorem has already
taken place, i. e.

Error ≈ N
(

0,
σ2

M

)
,

where σ2 denotes the empirical variance of the sample
(
F
N
i

)M
i=1

. This gives
us a 90%-con�dence interval,

(4.33) E
(
F
N)− u(0, 0.5) ∈

[
Error− 1.65× σ√

M
, Error + 1.65× σ√

M

]
with probability close to 0.9. We denote

(4.34) S = 1.65× σ√
M

and report it in Table 4.1 and all the subsequent tables.

Remark 4.3.2. S as de�ned in (4.34) is an indicator for the size of the sta-
tistical error, possibly overlapping the error from the time discretization in
the observed computational error. Recall that the computational error can
be decomposed as

u(0, 0.5)− 1
M

M∑
i=1

F
N
i︸ ︷︷ ︸

=u(0,0.5)

= u(0, 0.5)− E
(
F
N)︸ ︷︷ ︸

=Edisc

+E
(
F
N)− 1

M

M∑
i=1

F
N
i︸ ︷︷ ︸

=Estat

.

Edisc can be naturally interpreted as the error caused by the time-
discretization of the dynamics of the (re�ected) SDE, whereas Estat is the
�statistical� error caused by Monte-Carlo simulation, i. e. the integration er-
ror. In this study, we are only interested in the discretization error Edisc,
since we want to analyze the behavior of special time-discretization algo-
rithms. Consequently, we need to make sure that our results are not over-
shadowed by the statistical error. In practice, we chooseM large enough such
that S = S(M) is much smaller than the observed computational error. For
a thorough treatment of the types of errors involved in Euler Monte-Carlo
schemes, we refer to [79].
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Remark 4.3.3. Continuing the discussion in Remark 4.3.2, we would like to
stress that the statistical error is, in practice, a very important part of the
overall computational error, and the strategy advocated in Remark 4.3.2,
namely to choose M large enough such that the statistical error can be
neglected, is not suited for true computations, but only for the purpose of
analysis of algorithms as mentioned above. Indeed, such a strategy grossly
increases the over-all amount of work for the computations, as the statistical
error usually is the dominant part of the error decomposition.

Heuristically, we may argue as follows: assume that we compute a quan-
tity of interest u = E(F ) by Monte-Carlo simulation withM paths, sampling
from an approximation F

N ≈ F , i. e. we approximate

u ≈ 1
M

M∑
i=1

F
N
i = uN,M .

Assume that F
N

converges to F with a weak rate γ in the sense of De�ni-
tion 1.3.5 (for G containing the identity function). Using the above decom-
position of the computational error, we obtain∣∣uN,M − u∣∣ ≤ C1

Nγ
+

C2√
M
.

Given an error tolerance ε = ε1 + ε2, let us impose an error tolerance of ε1
for the discretization error and of ε2 for the statistical error. This means we
have to choose

N = N(ε1) =
(C1

ε1

)1/γ

and
M = M(ε2) =

(C2

ε2

)2
.

Write ε1 = λε and ε2 = (1− λ)ε, 0 < λ < 1, and minimize the total work

(4.35) N(ε1)×M(ε2) = Cλ−1/γ(1− λ)−2ε−(2+1/γ).

Equation (4.35) is already quite remarkable, because it shows that the work
is proportional to ε−(2+1/γ), which implies that the total work can no longer
be improved dramatically if γ > 1. Minimizing (4.35) with respect to λ gives
λ = 1

2γ+1 , e. g. for γ = 1 the error tolerance for the statistical error should
already be 2/3 of the total error tolerance.

The results in Table 4.1 show the typical convergence order 1
2 of the re-

�ected uniform Euler method, as theoretically described. See also Figure 4.1
for comparisons of the di�erent algorithms used.

Table 4.2 shows the results for the algorithm with second order correction
term, cf. Algorithm 4.2.11. The correction term G

ad
is calculated using the
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Figure 4.1: Absolute value of the computational error for problem (4.31).
The dotted lines show con�dence areas for the true error in the sense of
equation (4.33) and the dashed lines in black are reference lines of order
1/N and 1/

√
N , respectively. Notice that the �Average number of time-

steps� is understood as the work in the sense of Example 4.3.4 in the case of
the algorithm with a second order correction term and as average size of the
re�ned mesh in the case of the adaptive algorithm. The dashed line for the
adaptive algorithm corresponds to the error estimate computed for the re-
�nement algorithm and is clearly proportional to the observed computational
error.

adaptive Euler algorithm for stopped di�usions presented in [21]. The local
error tolerance parameter is chosen to be

TOL =
1

log(N)
,

which is consistent with the observation that the error decreases exponen-
tially fast, implying an approximation error proportional to 1

N for the cor-
rection term using the above local error tolerance.

As before, N is the size of the uniform base grid of the discretization of the
re�ected di�usion. Work denotes the average work per realization, i. e. for
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N Work M Error S
2 2.45 5 400 −3.1856 0.2928
4 7.74 6 600 −1.4092 0.1838
8 19.35 11 400 −0.7224 0.1163

16 43.66 30 600 −0.3743 0.0647
32 92.22 107 400 −0.2014 0.0333
64 193.13 414 600 −0.0690 0.0166

128 401.43 1 643 400 −0.0255 0.0083
256 831.52 6 558 600 −0.0036 0.0041
512 3065.85 5 262 880 −0.0144 0.0046

Table 4.2: Results of the uniform Euler Monte-Carlo algorithm with sec-
ond order correction term calculated using an adaptive algorithm for prob-
lem (4.31).

one single realization, the corresponding work is N plus the total work for
each stopped di�usion, which is computed in order to get the respective
correction terms. The work of one trajectory of the adaptive algorithm of
the stopped di�usion is understood as in the following example.

Example 4.3.4. Assume that we start with the initial mesh t0 = {0, 1, 2},
i. e. the initial step-size is N(t0) = 2. In the �rst step, the mesh is re-
�ned everywhere, i. e. t1 = {0, 0.5, 1, 1.5, 2}, N(t1) = 4. Then only the
second half of the mesh is re�ned, i. e. t2 = {0, 0.5, 1, 1.25, 1.5, 1.75, 2} with
N(t2) = 6. Finally, yet another re�nement in the middle of the mesh takes
place, i. e. t3 = {0, 0.5, 1, 1.125, 1.25, 1.5, 1.75, 2} with N(t3) = 7. Then
the re�nement stops. The total work of this trajectory is given as follows.
First we compute the process along t0, which gives Work0 = 2. After the
re�nement, the whole process has to be computed again, along t1, giving

Work1 = Work0 + 4 = 6.

For the re�nement from t1 to t2, we only need to recompute the process for
the second half of the mesh, i. e. for t > 1. Therefore,

Work2 = Work1 + 4 = 10.

For the �nal re�nement, the process has to be recomputed after the newly
inserted point, i. e. again for t > 1. Consequently,

Work3 = Work2 + 5 = 15,

which is the �nal work along this trajectory. While this number might not
record the actual work of the computer, i. e. the time spent on the compu-
tation, it should be proportional to it.



4.3. NUMERICAL EXPERIMENTS 109

Notice that the hitting time at the boundary is increasing with the �ne-
ness of the mesh: i. e. if t1 ⊂ t2, then the observed stopping times satisfy
τ(t1) ≥ τ(t2). The reason for this behavior is that there is no interior er-
ror, i. e. up to the true �rst hitting time the discrete approximation of the
process is exact. Consequently, the �rst observed hitting time can only take
place at or after the �rst true hitting time.

The results of the algorithm with correction show an empirical order of
convergence one, i. e. like 1/N , even if the total work in the above sense is
used as reference. As remarked above Algorithm 4.2.11, this is only possible
since the approximation is precise in the interior of the domain. Compare also
Figure 4.1, which shows the superiority of the algorithm with correction over
the other two proposed algorithms. (Notice that the con�dence interval for
the last but second result of this algorithm could not be plotted in Figure 4.1,
because it contains negative numbers. Therefore, this con�dence interval was
changed manually.)

Finally, Table 4.3 shows the results of the adaptive Algorithm 4.2.17
applied to problem (4.31).

TOL N M Error S
125.00× 10−3 3.68 20 051 0.5864 0.0776
62.50× 10−3 6.49 20 204 0.5342 0.0754
31.25× 10−3 10.08 20 819 0.5025 0.0735
15.63× 10−3 17.34 23 276 0.4485 0.0689
7.81× 10−3 28.20 33 107 0.3794 0.0577
3.91× 10−3 43.61 72 428 0.2466 0.0390
1.95× 10−3 66.82 229 715 0.2251 0.0219
0.98× 10−3 102.56 858 860 0.1481 0.0113
0.49× 10−3 152.79 691 088 0.0976 0.0126
0.24× 10−3 225.44 2 704 354 0.0739 0.0064
0.12× 10−3 330.04 10 757 418 0.0530 0.0032
0.05× 10−3 508.65 13 000 000 0.0374 0.0029
0.02× 10−3 734.23 13 000 000 0.0303 0.0029
0.01× 10−3 1055.59 13 501 772 0.0208 0.0029

Table 4.3: Results of the adaptive Euler Monte-Carlo algorithm for prob-
lem (4.31).

TOL is the local error tolerance used for the adaptive algorithm, cf. Al-
gorithm 4.2.14. The second order normal derivative in the local error
term (4.30) is approximated by the constant 1. The size of the uniform
initial grid is always 2, which is, of course, unrealistically small but probably
useful for the theoretical understanding of the re�nements. The value N as
reported in the second column of Table 4.3 corresponds to the average size
of the �nal mesh (after re�nements). Notice that this value is proportional
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to the work in the sense of Example 4.3.4.
The observed computational error of the adaptive algorithm lies between

the errors for the uniform Euler algorithms with and without correction term,
as expected. For high TOL, the dynamics of the computational error is simi-
lar to the error dynamics of the uniform Euler algorithm without correction.
For smaller values of TOL, however, it seems to be rather proportional to the
error of the uniform Euler algorithm with correction, see Figure 4.1. There-
fore, it is rather di�cult to compute a meaningful empirical convergence
rate.

4.3.2 Two-dimensional example

For multi-dimensional examples the choice of the domain D is critical for the
applicability of algorithms, which usually require some smoothness assump-
tions on D. In the following, we present two examples in dimension d = 2
based on a rectangular domain D presented in Figure 4.2.

Figure 4.2: Domain of the two-dimensional example.

The �rst example is an ordinary re�ected di�usion in D, where the exact
solution is known. It is not an optimal example in so far as that other
methods, in particular Gobet's half-space scheme, [28], seem to be better
suited for this problem.

(4.36)


∂

∂t
u(t, x) = −1

2
∆u(t, x), (t, x) ∈ [0, 1]×D,

u(1, x) = (2 cos(x1 − x2) + cos(x1 + x2)), x ∈ D,
∂

∂n
u(t, x) = h(t, x), (t, x) ∈ [0, 1]× ∂D,
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where h(t, x) is the normal derivative of the exact solution

(4.37) u(t, x) = (2 cos(x1 − x2) + cos(x1 + x2))e−(1−t)

at x ∈ ∂D. Once again, the solution of the corresponding re�ected SDE is
a Brownian motion orthogonally re�ected at the boundary of D. This time,
we only implemented the uniform Euler method, Algorithm 4.1.11, and the
adaptive method, cf. Algorithm 4.2.17, since Algorithm 4.2.11 is not directly
applicable. We compute

u(0, x0), for x0 = (10, 0.2) ∈ D,

which evaluates to
u(0, 10, 0.2) = −0.9473.

Remark 4.3.5. Since is is rather unlikely for a path started at x0 to ever
hit another boundary of D but the bottom boundary [0, 20] × {0}, even an
implementation based on the explicit form of the distribution of a Brown-
ian motion re�ected at a half-space and its local time might be a serious
alternative in this particular case.

N M Error S
2 28 000 −0.1686 0.0146
4 36 000 −0.1312 0.0126
8 52 000 −0.1128 0.0103

16 84 000 −0.0788 0.0080
32 148 000 −0.0610 0.0060
64 276 000 −0.0448 0.0043

128 532 000 −0.0356 0.0031
256 1 044 000 −0.0229 0.0022
512 2 068 000 −0.0163 0.0016

1024 4 116 000 −0.0118 0.0011

Table 4.4: Results of the uniform algorithm for problem (4.36).

The results of the uniform algorithm, which is also used as benchmark for
this example, are presented in Table 4.4. Notice that the theoretical rate of
convergence N−1/2 is, once again, nicely recovered by our empirical results.

Table 4.5 shows the results of the adaptive Algorithm 4.2.17. For calcu-
lation of the error density, see (4.30) and Algorithm 4.2.14, we replace the
estimator for the second normal derivative vnn by the constant 1. As before,
the initial grid only has size 2 for the adaptive algorithm. Once again, N (
in the above table as well as in Figure 4.3) denotes the average size of the
�nal grid produced by re�ning according to Algorithm 4.2.14. Of course, the
average computational work in the sense of Example 4.3.4 is much higher
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TOL N M Error S
1.2500 3.81 28 000 −0.1291 0.0144
0.6250 7.00 36 000 −0.1030 0.0124
0.3125 12.35 52 000 −0.0835 0.0102
0.1563 20.96 84 000 −0.0632 0.0079
0.0781 34.55 148 000 −0.0498 0.0059
0.0391 54.24 276 000 −0.0330 0.0043
0.0195 84.96 532 000 −0.0274 0.0031
0.0098 129.44 1 044 000 −0.0156 0.0022
0.0049 194.50 2 068 000 −0.0121 0.0016
0.0024 290.19 4 116 000 −0.0078 0.0011
0.0012 426.58 8 212 000 −0.0065 0.0008

Table 4.5: Results of the adaptive algorithm for problem (4.36).
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Figure 4.3: Absolute value of the error for problem (4.36). The dotted
lines show con�dence intervals for the true error in the sense of (4.33). The
reference lines are lines with slopes 1/

√
N and 1

N2/3 , respectively. The dashed
line in color is proportional to the error estimate computed for the re�nement
algorithm.
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than the value N , but proportional to it. The empirical order of convergence
(in terms of N , and consequently also in terms of overall work) is

Error ' 0.44×N−0.67,

if, however, the �rst two lines in Table 4.5 are discarded, then the same
computation yields an empirical order of convergence like

Error ' 0.67×N−0.76,

i. e. the results seem to indicate an order of convergence of 3/4. Notice,
however, that the computational cost for the adaptive results are higher than
those for the uniform algorithm for all the results of Table 4.4 � in the sense
that obtaining the same level of exactness using the uniform algorithm was
computationally cheaper than for the adaptive algorithm. This, however,
changes fast if the desired level of precision is increased.

Figure 4.4: Domain for the two-dimensional example with mixed boundary
conditions. The solid line denotes the re�ecting boundary, the �empty� lines
belong to the stopping boundary.

The second example is a mixed Neumann-Dirichlet boundary value
problem. More precisely, let D =]0, 20[×]0, 10[ as before, and let DN =
]0, 10[×{0} be the Neumann boundary, see Figure 4.4. Consider the prob-
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lem
(4.38)

∂

∂t
u(t, x) = −1

2
∆u(t, x), (t, x) ∈ [0, 2]×D,

u(2, x) = 10 exp
(
−
√

(10− x1)2 + x2
2

)
, x ∈ D,

∂

∂n
u(t, x) = x1, (t, x) ∈ [0, 2]×DN ,

u(t, x) = 10 exp
(
−
√

(10− x1)2 + x2
2

)
, (t, x) ∈ [0, 2]× (∂D \DN ).

Notice that the solution u(t, x) of (4.38) has singularities at x = (0, 0) and at
x = (10, 0), where the Neumann and the Dirichlet boundaries collide. The
stochastic representation is given by a Brownian motion Xx

t re�ected at DN

and killed when hitting ∂D \DN . More precisely, �x t ∈ [0, T ], let Xt,x
s be

a Brownian motion re�ected at DN and started at Xx
t = x ∈ D and let τ t,x

be its �rst hitting time at ∂D \DN (after t). Then

(4.39) u(t, x) = E

(
g
(
Xt,x

min(2,τ t,x)

)
−
∫ min(2,τ t,x)

t
h
(
Xt,x
s

)
dZt,xs

)
,

where h(x) = x1, x ∈ DN ,

g(x) = 10 exp
(
−
√

(10− x1)2 + x2
2

)
, x ∈ D,

and Zt,x denotes the local time corresponding to Xt,x. Once again, we
compute u(0, x0) with x0 = (10, 0.2), close to the singularity at (10, 0).
Using the commercial �nite-element package FEMLAB, see [15], we have
computed

u(0, 10, 0.2) = 4.352,

which is used as reference value for the reported computational errors.
Since the stochastic representation (4.39) involves sampling from a mixed

re�ected-stopped di�usion, we cannot directly use the algorithms presented
before. An adaption of the uniform Euler Algorithm 4.1.11 to the present
situation is very simple, since we only additionally have to observe the �rst
hitting time of X at the killing boundary ∂D \DN . More precisely, we start
with X0 = x0 and Z0 = 0 and τ = 2. Then, for i = 0, . . . , N−1, we compute

X̂i+1 = Xi + ∆Bi, Xi+1 = Π
(
X̂i+1

)
.

If X̂i+1 ∈ D, we set Zi+1 = Zi. If X̂i+1 /∈ D, but Xi+1 ∈ DN , then we
compute

Zi+1 = Zi +
∥∥∥Xi+1 − X̂i+1

∥∥∥ .
If, however, Xi+1 ∈ ∂D \ DN , then we set Zi+1 = Zi and τ = ti+1 and
stop the procedure. In any case, the approximate version of the stochastic
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representation is given by the discretized version of (4.39), where Xx is
replaces by X, Z is replaced by Z and τ is replaced by τ .

Remark 4.3.6. Notice that the simulation of the mixed re�ected-killed dif-
fusion as given above introduces a third source of error: besides the interior
error and the error from the re�ection at the re�ecting boundary, there is
also the error in determining the �rst hitting time at the killing boundary.
Even very small perturbations of the Brownian path or even of the start-
ing vector x0 can lead to big changes in the �rst hitting time at the killing
boundary. A-fortiori, the convergence of the �rst observed hitting time of the
discretized process to the �rst hitting time of the true, continuous solution
is not unproblematic. This is probably the reason for the big advantage of
using adaptive schemes for stopped di�usions as in Dzougoutov et al. [21].

N M Error S Ntot

2 20 020 −3.3371 0.0643 1.79
4 20 040 −3.1662 0.0681 3.18
8 20 080 −2.7336 0.0687 5.63

16 20 160 −2.2720 0.0715 10.04
32 20 320 −1.7794 0.0710 18.12
64 20 640 −1.2920 0.0698 33.39

128 21 280 −1.0527 0.0698 63.16
256 22 560 −0.7367 0.0673 118.4
512 25 120 −0.5640 0.0639 228.9

1 024 30 240 −0.4172 0.0581 445.7
2 048 40 480 −0.2975 0.0505 861.2
4 096 60 960 −0.1921 0.0404 1 704
8 192 101 920 −0.1617 0.0315 3 357

16 384 183 840 −0.1311 0.0236 6 669
32 768 347 680 −0.0878 0.0171 13 247
65 536 675 360 −0.0556 0.0122 26 331

131 072 1 330 720 −0.0342 0.0087 52 427

Table 4.6: Results of the uniform Euler Monte-Carlo algorithm for prob-
lem (4.38).

Table 4.6 gives the results of the uniform Euler scheme for equa-
tion (4.38). While N denotes the size of the uniform grid, Ntot denotes the
average grid size until the algorithm stops. Since the iteration only needs to
be computed until the �rst (observed) hitting time of the discretized process
at the killing boundary, this value corresponds to the �nal grid size of an
adaptive scheme for a stopped di�usion. Note that Table 4.6 shows that the
uniform Euler scheme still seems to converge with order 1

2 in the singular
situation (4.38), even though the starting vector x0 = (10, 0.2) is close to one
singularity of the solution u. Indeed, a numerical estimate gives an estimated
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order of convergence of 0.46 with respect to Ntot provided that the �rst four
results of Table 4.6 are discarded and similar results hold for convergence
with respect to N . Comparison with Table 4.4 shows that a much larger
grid size N (or Ntot) is necessary to achieve a similar level of precision for
the more irregular problem (4.38) than for (4.36), even if the relative error
is considered.

For the adaptive algorithm, the necessary changes to Algorithm 4.2.17
correspond precisely to the adaptions to the uniform algorithm prescribed
above. We need, however, also to change the local error density as given
in Algorithm 4.2.14. Basically, the new local error density is chosen to be
the sum of the local error density already given in Algorithm 4.2.14 and
the corresponding local error density given in Dzougoutov et al. [21]. More
precisely, we choose

li = l
(ref)
i + l

(stop)
i ,

where l(ref)i is given as before, i. e.

l
(ref)
i =

1
2
√

2π
E
(
Ñ
) ∣∣∣vnn(ti, X t

i

)∣∣∣ exp
(
−
d
(
X

t
i

)2
2∆ti

)
∆ti,

where d(x) now denotes the distance of x to the re�ecting boundary only.
We choose vnn according to

(4.40)
∣∣∣vnn(ti, X t

i

)∣∣∣ =
1∥∥∥X t

i − xsing
∥∥∥β + TOLα

,

where xsing = (10, 0), the place of one singularity of u, and α and β are two
parameters. β gives the order of the singularity of u at xsing, which general
theory suggests to be 1

2 . We have also used β = 0, which corresponds
to not using the a-priori information on the singularity at xsing. Adding
TOLα smoothes the singularity out, we choose α = 2. Moreover, since
we are only interested in the asymptotic speed of convergence, we may set
E
(
Ñ
)

= 1. Of course, this implies that the actual computational error
can only be proportional to TOL and to the error estimate used for the
re�nements.

For the de�nition of l(stop)
i we have [21, Theorem 2.1 and formula (2.8)]

in mind. Intuitively l
(stop)
i is decomposed of two factors: the probability

that the process Xx hits the killing boundary in the interval ]ti, ti+1] for the
�rst time but the discrete approximation does not hit the killing boundary,
and, secondly, the path-wise error from non-detecting the hit at the killing
boundary provided that this happens. Following [21], let P̂X,i be the condi-
tional probability that the process Xx hits the killing boundary for the �rst
time during the interval ]ti, ti+1] given the past history Xx

0 , X
x
t1 , . . . , X

x
ti+1

,
i = 0, . . . , N − 1. Moreover, PX,i denotes the conditional probability that
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the process hits the killing boundary during the interval ]ti, ti+1] given Xx
ti

and Xx
ti+1

(and the implicit assumption that the process has not been killed
before), i = 0, . . . , N − 1. Obviously, we have

P̂X,i = PX,i

i−1∏
j=0

(1− PX,j), i = 0, . . . , N − 1.

For the computations we approximate PX,i by

(4.41) PX,i = exp
(
−2

dist
(
Xi

)
dist

(
Xi+1

)
∆ti

)
, i = 0, . . . , N − 1,

where dist denotes the distance to the killing boundary, i. e. in our situation
we have

dist(x) = dist(x, ∂D \DN ), x ∈ D.

P̂X,i is then computed by the same formula as P̂X,i, but based on the ap-
proximations PX,i, i = 0, . . . , N .

Remark 4.3.7. Notice that (4.41) gives exactly the conditional probability
for a Brownian motion W to hit a hyperplane through 0 during the interval
]ti, ti+1] conditioned on Wti = Xi and Wti+1 = Xi+1. In the general case,
this formula can be used as an approximation based on local replacement of
the killing boundary with its tangent hyperplane.

If the true solution process is killed during the interval ]ti, ti+1], but the
discrete process is not, then the contribution of the stopped di�usion to the
stochastic representation (4.39) is g

(
Xmin(τ ,2)

)
for some τ > ti+1 instead of

g
(
Xti+1

)
. (In fact, we ignore the dependence of the integral term in (4.39)

on the stopping time τ right now.) Therefore, the path-wise error from the
wrong detection of the �rst hitting time is given by

g
(
Xti+1

)
− g
(
Xmin(τ ,2)

)
,

and we set

l
(stop)
i =

(
g
(
Xti+1

)
− g
(
Xmin(τ ,2)

))
P̂X,i, i = 0, . . . , N − 1.

Remark 4.3.8. l(stop)
i is not adapted to the �ltration. See [21] and [79] for

detailed discussions of the subtle di�culties arising from this fact.

The empirical rate of convergence for the results of the adaptive Euler
algorithm in Table 4.7 is γ = −1.05, and it even changes to

Error ' 69×N−1.3

if the �rst three entries in the table are discarded. This empirical conver-
gence rate is in apparent contradiction to the one-dimensional example, see
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TOL N M Error S
0.3086 3.37 5 500 −3.5984 0.1284
0.1715 5.26 6 000 −3.3227 0.1293
0.0953 7.89 7 000 −2.6912 0.1247
0.0529 9.55 9 000 −2.5931 0.1058
0.0294 13.57 13 000 −1.9168 0.0888
0.0163 19.02 21 000 −1.4781 0.0703
0.0091 24.74 37 000 −1.2832 0.0532
0.0050 33.20 69 000 −0.8673 0.0390
0.0028 43.73 133 000 −0.5987 0.0279
0.0016 55.35 261 000 −0.4496 0.0198
0.0009 67.82 517 000 −0.2922 0.0140
0.0005 87.57 1 029 000 −0.1894 0.0128
0.0003 113.33 2 053 000 −0.1269 0.0070
0.0001 147.43 4 101 000 −0.0851 0.0049

Table 4.7: Results of the adaptive Euler Monte-Carlo algorithm with β = 0
and α = 2 for problem (4.38).

Table 4.3, and to the two-dimensional problem (4.36), see Table 4.5, where
we have clearly observed empirical convergence rates below 1. It seems plau-
sible that the fast convergence of the adaptive algorithm in the case of mixed
Neumann and Dirichlet conditions is caused by the extremely fast conver-
gence of the adaptive algorithm for stopped di�usions. Indeed, from the
problem formulation (4.38) it is rather apparent that the Dirichlet bound-
ary condition contributes to the solution much stronger than the Neumann
boundary. This explains why the slower convergence rate of the adaptive
algorithm for re�ected di�usions is overshadowed by the faster convergence
of the adaptive algorithm for stopped di�usions, at least as far as the results
reported in this study reach. In the end, the asymptotic rate of convergence
should again be lower than 1, as before.

Notice in particular that the estimated error used for the re�nement
algorithm as depicted in Figure 4.5 shows the same asymptotic behavior as
the computational error. Furthermore, a comparison to Table 4.6 shows that
comparable levels of precision can be obtained with a much lower grid size
using the adaptive algorithm with β = 0. In particular, in this situation the
adaptive algorithm is also much more e�cient in terms of computer time.

Even faster convergence can be obtained by using β = 1
2 , see Table 4.8.

However, Figure 4.5 shows that the error estimate used for the re�nement
part deviates rather strongly from the actual computational error in this
case. The empirical rate of convergence of the results in Table 4.8 is even
slightly larger than for Table 4.7.
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Figure 4.5: Absolute value of the error for problem (4.38). The reference
lines have slopes 1/N and 1/

√
N , respectively. The dashed line in color is

proportional to the error estimate computed for the re�nement algorithm,
whereas the dotted lines correspond to 90% con�dence intervals around the
error.

TOL N M Error S
0.3086 4.40 9 000 −3.2112 0.1024
0.1715 6.39 13 000 −2.5444 0.0848
0.0953 9.07 21 000 −1.9312 0.0680
0.0529 11.41 37 000 −1.7854 0.0511
0.0294 15.73 69 000 −1.2149 0.0375
0.0163 21.22 133 000 −0.7889 0.0273
0.0091 27.52 261 000 −0.6025 0.0194
0.0050 36.51 517 000 −0.3061 0.0138
0.0028 47.06 1 029 000 −0.1938 0.0098
0.0016 61.68 5 125 000 −0.0691 0.0044
0.0009 78.06 10 245 000 −0.0124 0.0031

Table 4.8: Results of the adaptive Euler algorithm with α = 2 and β = 1/2
for problem (4.38).
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Chapter 5

Implementation of hypo-elliptic

simulated annealing

This chapter is based on the Bayer, Teichmann and Warnung [8], which, in
turn, is largely based on Baudoin, Hairer and Teichmann [4].

Given a potential U on some state space E. By this we mean that
U : E → R is a rather general function possessing a global minimum minU
with, possibly non-unique minimizer (set) arg minU . Simulated Annealing
is a stochastic algorithm to �nd the global minimum.

It was �rst proposed by S. Kirkpatrick, C. D. Gelett and M. P. Vecchi [41]
and, independently, by V. �erny [84] for �nite state space E. Both articles
are motivated by combinatorial optimization problems, in case of Kirkpatrick
and his co-authors more precisely by applied problems of physical design of
computers. The algorithm itself was motivated by a problem from statistical
mechanics, namely the problem of �nding low-temperature states of mate-
rials by slowly lowering the temperature, known as annealing. Already in
1953, Metropolis et al. [55] had proposed a simple but powerful algorithm
allowing to simulate groups of atoms in equilibrium at a certain temperature.
Consequently, the simulated annealing algorithm � for a �nite state space
and in discrete time � consists of applying the Metropolis algorithm over and
over again while lowering the �temperature� until the minimum is reached.
Of course, for the purposes of optimization, the �temperature� is just the
name of a parameter borrowed from the Metropolis algorithm.

Before going further, let us very brie�y recall the Metropolis algorithm: in
order to calculate the equilibrium value of a quantity of interest in statistical
mechanics, one has to integrate with respect to the Gibbs measure

(5.1) µTU (dx) = CTU exp(−U(x)/T )λ(dx),

where U is a potential on the phase space E of the system, e. g. the potential
energy, T is the temperature and λ(dx) is a volume element in the phase
space. Finally, CTU is the normalizing constant such that µTU is a probability

121
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measure. In particular, we assume that U ≥ 0 and
∫
E exp(−U(x)/T )dx <

∞. Since the dimension of the phase space is usually very large, Monte-Carlo
simulation is the method of choice for calculating integrals with respect to
µTU . Therefore, we need to have an e�cient way of sampling points from the
distribution µTU , and this is provided by the Metropolis algorithm.

When the temperature T is slowly decreasing to 0, the mass of µTU at
areas with large values of the potential are decreasing. Since the total mass
stays constant, the e�ect is that the measure is concentrated more and more
around arg minU . If we assume that there is a unique minimizer

x0 = arg min
x∈E

U(x),

then limT→0 µ
T
U = δx0 , a Dirac measure at x0, where convergence is under-

stood in the sense of convergence of distributions, provided that the tem-
perature is decreased slowly enough. If T → 0 too fast, then the paths
may get stuck in local minima. A similar result holds if arg minU is a �-
nite set. On the other hand, if the volume of arg minU is positive, then
the limiting distribution is the uniform distribution. Also in the interme-
diate case, i. e. arg minU is in�nite but has volume 0, precise descriptions
of the limiting distribution are possible provided some regularity conditions
are satis�ed. For more information see Hwang [37].

The simulated annealing technique consists in constructing a Markov
chain (in discrete time), where the transition probabilities are given as in
the Metropolis algorithm but with temperature T being decreased from step
to step. In comparison to other, local optimization techniques, the random-
ization with the Metropolis algorithm allows the Markov chain to overcome
local minima of the potential.

As already indicated above, the simulated annealing method makes, of
course, also sense for continuous optimization problems. Then E is a Eu-
clidean vector space. See the excellent review article of M. Locatelli [50]
for more information about this context, in particular about useful tech-
niques for speeding up the rather slow overall convergence of the method �
i. e. the decreasing of the temperature T � without sacri�cing convergence
to arg minU .

We are more interested in a related technique which could be called
simulated annealing in continuous time. The basic idea of this method is to
add a random perturbation to a gradient �ow, which allows it to overcome
local minima. Let the state space be given by E = Rn and introduce the
non-autonomous Langevin equation

(5.2) dXx
t = −1

2
∇U(Xx

t )dt+
√
σ(t)dBt,

with initial value Xx
0 = x ∈ Rn. Here, Bt denotes an n-dimensional Brow-

nian motion and σ : [0,∞[→ [0,∞[ is called temperature. Under certain
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regularity conditions on U , the process Xx
t will, for any initial value x, con-

verge to arg minU in law provided that the temperature σ(t) converges to 0
slowly enough for t→∞.

Recently, F. Baudoin, M. Hairer and J. Teichmann [4] have proved a
hypo-elliptic version of the above convergence result. By hypo-elliptic we
mean that we may work with a d-dimensional Brownian motion with d < n,
i. e. the dimension of the Brownian motion might be lower than the space
dimension. Of course, we have to pay a price: the drift term of the di�usion
needs to be changed and we have to use non-trivial volatility vector �elds.

Remark 5.0.9. The classical view to (elliptic) simulated annealing can be de-
scribed as follows: we are given a potential U and perturb the corresponding
gradient �ow with an n-dimensional Brownian motion B. It turns out that
the Gibbs measure for U is a �locally invariant� measure (in a sense to be
made precise below) for the resulting perturbed gradient �ow.

Conversely, the point of view underlying hypo-elliptic simulated anneal-
ing is: given a process W (in turn driven by a d-dimensional Brownian
motion with d < n) and the Gibbs measure of the potential U , how do we
have to choose the drift in order to obtain a Markov process such that the
Gibbs measure is locally invariant for the process? It will turn out that this
drift term can be interpreted as a horizontal gradient related to W .

The potential bene�ts of hypo-elliptic simulated annealing are two-fold:
�rst simulation of normal random variables is numerically quite expensive in
many situations, therefore a reduction of the number of Brownian motions
might speed up the method in certain cases, especially if we can identify
�unproblematic� dimensions by inspection of the potential before starting
the optimization. Moreover, it might allow us to extend simulated annealing
to in�nite dimensional situations, where the elliptic formulation (5.2) is not
feasible. Let us mention that in�nite dimensional optimization is an inter-
esting subject in certain applications, for instance in calibration of the jump
measure of models driven by Lévy processes in �nance.

On the other hand, [4] actually allows the extension of simulated anneal-
ing to Lie groups with a natural sub-Riemannian geometry such as Heisen-
berg groups. Until now, the extension of simulated annealing to compact
Riemannian manifolds has been successfully carried out, see Holley, Kusuoka
and Stroock [35], but the extension to Lie groups without such a structure
is new.

In the present study, we have implemented the abstract theory of [4], in
order to see whether numerical calculations based on it are feasible.
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5.1 Theory and implementation of hypo-elliptic

simulated annealing

5.1.1 Simulated annealing in continuous time

In this section, we once again consider elliptic simulated annealing. More
precisely, we report the results of L. Miclo [57], which are representative for
the �eld. Let U : Rn → R be a potential satisfying

Assumption 5.1.1. U ∈ C2(Rn;R) such that both U and ‖∇U‖ converge
to in�nity as ‖x‖ → ∞. Moreover, we assume boundedness of

‖∇U‖2 −∆U

from below, where ∆, as usual, denotes the Laplace operator, and ‖·‖ denotes
the Euclidean norm on Rn.

We may, without loss of generality, assume that U ≥ 0.

Remark 5.1.2. Assumption 5.1.1 basically means that U grows like ‖x‖α for
some 1 < α ≤ 2 outside some compact set. For di�erent growth conditions,
which include potentials increasing like ‖x‖α for 0 < α < 1, see Zitt [90].
See also Chiang, Hwang and Sheu [14] for a di�erent method of proof and
Holley and Stroock [34].

For a deterministic function σ : [0,∞[→]0,∞[, consider the stochastic
di�erential equation (5.2) driven by an n-dimensional Brownian motion B =
(Bt)t∈[0,∞[ de�ned on the �ltered probability space (Ω,F , (Ft)t∈[0,∞[, P ). As
before, it will be helpful to take a look at the autonomous situation at �rst.

Fix σ > 0 and consider the homogeneous Markov-process

(5.3) dY y
t = −1

2
∇U(Y y

t )dt+
√
σdBt

with Y y
0 = y ∈ Rn. It is well-known that Y y

t converges, for t → ∞, to its
invariant measure, which coincides with the Gibbs measure µσU introduced
before.

Note that µσU is a reversible measure for the process Y y = (Y y
t )t∈[0,∞[,

i. e. the in�nitesimal generator, see (1.4),

(5.4) Lσf = −1
2
〈∇U ,∇f〉+

σ

2
∆f

(de�ned for f : Rn → R smooth enough) is a symmetric operator on
the Hilbert space L2(Rn, µσU ). The self-adjoint negative extension of Lσ

(Friedrich's extension) will also be denoted by Lσ � and in the sequel we will
always refer to the extension. It is well known, e. g. see Reed and Simon [66],
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that Lσ has a discrete, non-positive spectrum. The largest eigenvalue is 0
and the second-largest is given by the formula

(5.5) λσ = −σ
2

inf
{
‖∇f‖L2(µσU )

∣∣∣∣ ‖f‖L2(µσU ) = 1 and
∫

Rn
fdµσU = 0

}
.

The spectral gap λσ controls the convergence of the distribution of Y y
t towards

the equilibrium, i. e. towards the measure µσU . Roughly speaking, given
f : Rn → R measurable and integrable such that∫

Rn
f(x)µσU (dx) = 0,

then E(f(Y y
t )) converges to 0 for t→∞ like eλ

σt, as can be seen by Fourier
expansion in terms of the eigenvectors of Lσ in L2(Rn, µσU ).

Note that simulated annealing in the sense of equation (5.2) also works
on compact Riemannian manifolds for elliptic di�usions, see Holley, Kusuoka
and Stroock [35].

Moreover, we would also like to mention recent results of I. Pavlyukevich,
who considers the Langevin equation (5.2) driven by α-stable Lévy processes.
Under suitable regularity conditions � and, of course, not too fast cooling
� he �nds that the solution converges, in law, to a Markov chain jumping
between the local minima of the potential. In particular, if there are only
�nitely many local minima, the Lévy driven simulated annealing process can
identify them and we can then �nd the global minimum by comparison of
all the local minima.

5.1.2 The setting of hypo-elliptic simulated annealing

Before being able to explain what we understand by hypo-elliptic simulated
annealing, we want to introduce the setting, in which it will be available.

The state space of hypo-elliptic simulated annealing will be compact ho-
mogenous spaces, in particular compact nilmanifolds, i. e. compact homoge-
nous spaces with respect to the action of a nilpotent Lie group. More pre-
cisely, let G be a connected, �nite dimensional Lie group with Lie algebra g,
which we understand as the space of left-invariant vector �elds on G. More-
over, we denote the right-invariant Haar measure on G by λ. We mainly
have the following examples in mind, which provide a natural link to opti-
mization problems in Euclidean vector spaces. The following examples are
used as a reminder on the de�nitions of Section 2.1.

Example 5.1.3. Fix p generators denoted by {e1, . . . , ep} and let Amp denote
the space of all non-commutative polynomials of degree less than or equal
to m. By usual � non-commutative � multiplication of polynomials (and
cutting o� all terms of order higher than two), Amp is an associative algebra
with unit, namely the free associative, step m nilpotent algebra with unit
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generated by p generators, see De�nition 2.1.9. Note, however, that we do
not use the special degree deg as in Section 2.1, but rather the ordinary
degree of polynomials. Again, we introduce the commutator bracket

[x, y] = xy − yx, x, y ∈ Amp ,

and note that Amp endowed with [·, ·] is a Lie algebra. We consider the sub-
Lie-algebra generated by {e1, . . . , ep} and denote it by gmp , the free, step m
nilpotent Lie algebra with p generators, cf. De�nition 2.1.13.

The step m nilpotent Lie group is the Lie group corresponding to the Lie
algebra gmp , and it can be constructed as follows. Consider the exponential
map exp : gmp → Amp de�ned by

(5.6) exp(x) = 1 + x+
1
2
x2 + · · ·+ 1

m!
xm, x ∈ gmp ,

where the multiplication is understood in the sense of Amp , i. e. all terms of
degree larger than m are cut o�. As in De�nition 2.1.13,

Gmp = exp(gmp )

is the free, step m nilpotent Lie group with p generators, which is known
as Heisenberg group for m = 2 � notice that this group is more commonly
denoted by Hdim(g2

p) and g2
p is mostly denoted by hdim(g2

p), where dim g2
p =

1
2(p2 + p).

Remark 5.1.4. The exponential map exp : gmp → Gmp is a global chart of the
Lie group Gmp . Thus, a global optimization method for Gmp will immediately
give us a global optimization method for the vector space gmp and hence for
any Euclidean vector space with the same dimension.

Of course, the orthogonal groups are not nilpotent groups, however, sim-
ilar results as in [4] also apply in this situation.

Example 5.1.5. The special orthogonal group SO(n) of orthogonal n × n-
matrices with determinant one is a connected Lie group. Its Lie algebra is
the space so(n) of skew-symmetric matrices. For n = 3, a simple formula for
the Haar measure is available. Indeed, use the parameterization of SO(3)
by Euler angles, i. e.

SO(3) = {gϕhψgθ | ϕ, θ ∈ [0, 2π], ψ ∈ [0, π]}

with

gϕ =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 , hψ =

1 0 0
0 cosψ − sinψ
0 sinψ cosψ

 .
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Then the normalized Haar measure on SO(3) is given by∫
SO(3)

f(x)λ(dx) =
1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0
f(gϕhψgθ) sin(ψ)dϕdψdθ

for bounded measurable functions f : SO(3)→ R.

We will next introduce the notion of a homogenous space, see Michor [56].
Let M be a smooth, �nite dimensional manifold and consider a right action
r : M ×G→M of the Lie group G on M , i. e. a smooth map such that

r(r(x, h), g) = r(x, hg) ∈M, ∀g, h ∈ G, x ∈M.

An action is called transitive if M is one single orbit, i. e. if for all x, y ∈M
we can �nd a g ∈ G such that y = r(x, g). If we �x some point o ∈ M , we
can de�ne a surjective map π : G→M by

(5.7) π(g) = r(o, g), g ∈ G.

A manifold M with a transitive G-action as above is called homogenous
space. If the Lie group is nilpotent, then M is also known as nilmanifold.
We will additionally require the manifold M to be compact. Below, we give
a few examples of homogenous spaces.

Remark 5.1.6. We have the following construction in mind. Let G denote a
Lie group as before and Γ ⊂ G a discrete, co-compact subgroup of G and
consider the factor group Γ�G, i. e. the space of all left cosets of G with
respect to Γ, Γ�G = {Γg | g ∈ G}. Then G transitively acts on Γ�G
by r(Γg, h) = Γ(gh). Consequently, Γ�G is a homogenous space, which is
compact by assumption on Γ.

Example 5.1.7. Take the Heisenberg group G2
p (cf. Example 5.1.3) and let

it act on itself, i. e. let r(g, h) = gh, g, h ∈ G2
p. Obviously, this de�nes a

transitive group action. Using the exponential map exp : g2
p → G2

p once
again, it is not di�cult to construct a discrete subgroup. For simplicity, we
only consider the case p = 2. De�ne e3 = 1

2 [e1, e2] ∈ g2
2 and let

l22 = 〈{e1, e2, e3}〉Z,

the Z-module generated by e1, e2, e3. Of course, we understand l22 ⊂ g2
2.

The exponential image L2
2 = exp(l22) ⊂ G2

2 is a discrete subgroup of the
Heisenberg group. Indeed, �x

x = x1e1 + x2e2 + x3e3 ∈ l22,

y = y1e1 + y2e2 + y3e3 ∈ l22.

By the Baker-Campbell-Hausdor� formula

exp(x) exp(y) = exp
(
x+ y +

1
2

[x, y] +
1
12

([x, [x, y]]− [y, [y, x]]) + · · ·
)
,
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see Serre [75], we get

exp(x) exp(y) = exp
(
x+ y +

1
2

[x, y]
)

= exp
(

(x1 + y1)e1 + (x2 + y2)e2 + (x1y2 − x2y1 + x3 + y3)e3

)
∈ L2

2

because the coe�cients with respect to e1, e2, e3 are again in Z � we needed
to choose e3 = 1

2 [e1, e2] because of the � 1
2 � term in the Baker-Campbell-

Hausdor� formula. Noting that exp(x)−1 = exp(−x), this shows that L2
2 is

a discrete subgroup of G2
2. We get a compact nilmanifold M = L2

2�G2
2, the

so-called Heisenberg torus.

Remark 5.1.8. L2
2 is not a normal subgroup of G2

2, consequently the Heisen-
berg torus is not a group anymore.

Example 5.1.9. The same construction as in Example 5.1.7 also works in
the case of step m-nilpotent free Lie groups. In particular, for p = 2 and
m = 3, we may de�ne a basis of g3

2 by e3 = 1
2 [e1, e2], e4 = 1

12 [e1, [e1, e2]] and
e5 = 1

12 [e2, [e1, e2]]. Once again, a discrete subgroup is given as exponential
image L3

2 = exp(l32) of the Z module

l32 = 〈{e1, e2, e3, e4, e5}〉Z ⊂ g3
2.

Example 5.1.10. The special orthogonal group SO(3) is itself a compact
Lie group, therefore the right action of SO(3) on itself trivially makes it a
compact homogenous space.

Finally, we have to relate the remaining available structures to the ho-
mogenous space. We assume that there is a measure λM on M which is
invariant under the action, i. e. for any g ∈ G and any bounded measurable
function f : M → R we have∫

M
f(r(x, g))λM (dx) =

∫
M
f(x)λM (dx).

Given a left invariant vector �eld V on G, i. e. V ∈ g, we de�ne a vector
�eld VM on M by

(5.8) (VMf) ◦ π = V (f ◦ π)

for all smooth functions f : M → R, where we recall the de�nition of π given
in (5.7).

Remark 5.1.11. In the setting of Remark 5.1.6, but under some minor ad-
ditional assumption, there is always a measure on Γ�G which is invariant
under the right action of G. Moreover, a celebrated formula of A. Weil, see
Elstrodt [22], relates it in terms of the Haar measures on Γ and G. Moreover,
Weil's formula implies uniqueness of the invariant measure.
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Example 5.1.12. A Haar measure for the Heisenberg group G2
p is given

by the Lebesgue measure on g2
p. More precisely, the Haar measure λ on G2

p

is the image measure of the Lebesgue measure on g2
p under the exponential

map, i. e. ∫
G2
p

f(x)λ(dx) =
∫

g2
p

f(exp(y))dy

for bounded measurable functions f : G2
p → R.

Example 5.1.13. We give an explicit construction of the invariant measure
as guaranteed in Remark 5.1.11 in the case of the Heisenberg torus L2

2�G2
2

de�ned in Example 5.1.7. To this end, we introduce special coordinates
on L2

2�G2
2, which allow us to identify the Heisenberg torus with the three

dimensional torus T3, where we think of the torus T as [0, 1[ and denote the
rest class operation by [·], i. e. [x] = x mod 1 for x ∈ R.

Let z = z1e1 + z2e2 + z3e3 ∈ g2
2. We de�ne a map φ : g2

2 → T3 by

φ(z) = ([z1], [z2], [z3 − [z2]z1 + [z1]z2]).

Then L2
2�G2

2 ' T3 via the di�eomorphism φ ◦ exp−1 : L2
2�G2

2 → T3.
The invariant measure is then given by the Lebesgue measure on T3, more
precisely it is the image measure of the Lebesgue measure under the map
exp ◦φ−1 : T3 → L2

2�G2
2.

For future reference, let us summarize the setting developed in this sec-
tion.

Assumption 5.1.14. Let G be a connected, �nite dimensional Lie group
with Lie algebra g and right-invariant Haar measure λ. The state spaceM is
a compact homogenous space with respect to G and λM denotes a positive,
�nite measure invariant with respect to the right action of G on M .

Remark 5.1.15. Assumption 5.1.14 is often too restrictive, since it only allows
us to work in a manifold which is di�eomorphic to the torus, but not in the
Euclidean space. In many situations, we may, however, ignore this fact and
still work in the full space. Indeed, provided that we may �nd, for each ε > 0
a compact subset of Rn such that the process under consideration remains
in the set until some large time T with probability larger than 1− ε, we may
rescale the problem in such a way that the process always stays in the torus,
with probability larger than 1 − ε, where the torus is understood as subset
of Rn. Then we can apply our theory, with the speci�cation that observed
trajectories leaving the torus at some point are rejected.

On the other hand, a much more elegant approach to the non-compact
situation works by suitable modi�cation of the potential outside a compact
set. Note that the potential needs to be modi�ed in a time-dependent way.
We will come back to this possibility shortly
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5.1.3 Hypo-elliptic simulated annealing

This section is devoted to a presentation of the results of Baudoin, Hairer
and Teichmann [4]. In our point of view, their result has two di�erent con-
sequences for global optimization:

(1) It allows simulated annealing style global optimization on Lie groups.

(2) It can be seen as hypo-elliptic simulated annealing algorithm in Eu-
clidean vector spaces of certain dimensions.

The connection of these two points is very simple, because the Euclidean
spaces of (2) will be the Lie algebras of the Lie groups of (1).

Before getting more concrete, let us delve a little bit into the ubiqui-
tous notion of hypo-ellipticity, see also De�nition 1.1.8 and the related Def-
inition 1.1.9. Just as the stronger notion of ellipticity, it has its origins
in the theory of (semi-linear) partial di�erential equations. In the con-
text of stochastic di�erential equations, the notions are important in their
own right, and, at least in the case of hypo-ellipticity, maybe even eas-
ier to understand than in the broader PDE context. Consider a general,
n-dimensional (Stratonovich) stochastic di�erential equation driven by a d-
dimensional Brownian motion, i. e.

(5.9) dXx
t = V0(Xx

t )dt+
d∑
i=1

Vi(Xx
t ) ◦ dBi

t,

where Xx
0 = x ∈ Rn, V0, V1, . . . , Vd : Rn → Rn are smooth vector �elds

satisfying usual growth and Lipschitz conditions and Bt = (B1
t , . . . , B

d
t ),

t ∈ [0,∞[, is a d-dimensional Brownian motion, see also (1.3). Unlike before,
we do not require that n = d!

The SDE (5.9) is called elliptic if the vector �elds V1, . . . , Vd span the
whole space Rn for each x ∈ Rn, i. e. if

∀x ∈ Rn : 〈{V1(x), . . . , Vd(x)}〉R = Rn,

where 〈·〉R again denotes the linear hull of a set. In particular, an SDE can
only be elliptic for d ≥ n, that is we need at least as many Brownian motions
as space dimensions. The prime example of an elliptic di�usion is the n-
dimensional Brownian motion itself, corresponding to the Laplace operator
in the PDE formulation. Therefore, we may say that elliptic di�usions have
the same local behavior as the Brownian motion. In particular, they �ll up
the space in the sense that

P (Xx
t ∈ O) > 0

for any x ∈ Rn, any open, non-empty set O ⊂ Rn and any t > 0. This now
provides us with a probabilistic intuition for the classical continuous-time
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simulated annealing: the process (5.3) traverses, in law, the whole search
space thus allowing it to identify the global minimum of the potential U .
Provided that the variance of the stochastic perturbation is decreased slowly
enough, the process then converges to the global minimum. For obvious
reasons, (5.3) may be called elliptic simulated annealing.

Recall that the di�usion process Xx of (5.9) is called hypo-elliptic, if it
has a smooth transition density pt(x, y) in the sense that y 7→ pt(x, y) is
the density of Xx

t . Hörmander's theorem states that the di�usion (5.9) is
hypo-elliptic if the Lie algebra generated by the vector �elds at each point
x ∈ Rn spans the whole space. More precisely, the Hörmander condition, see
De�nition 1.1.9, states that

{V1(x), . . . , Vd(x)} ∪ {[Vi, Vj ](x) | i, j ∈ {0, . . . , d}}∪
∪ {[[Vi, Vj ], Vk](x) | i, j, k ∈ {0, . . . , d}} ∪ · · ·

is a generating set for Rn for each x ∈ Rn, where we implicitly assume
that the vector �elds are C∞-bounded, see Hörmander [36]. The proof that
Hörmander's condition implies hypo-ellipticity in the above stochastic sense
goes back to P. Malliavin [54]. In fact, Hörmander's condition only needs to
be satis�ed in the initial value x ∈ Rn of Xx.

Going further, there are conditions available, which do not only ensure
existence and regularity but even positivity of the density, i. e. that the
process again enters every open set with positive probability, see Ben Arous
and Léandre [9], without being elliptic. Hence, the intuitive explanation
of the success of simulated annealing should also apply to the hypo-elliptic
situation.

In what follows, we mainly have the Heisenberg groups, Example 5.1.3,
in mind. Given any group G satisfying Assumption 5.1.14, we have to �x
some way to introduce stochasticity into our system.

Assumption 5.1.16. Fix d ≥ 1 and left invariant vector �elds V1, . . . , Vd
on G. We assume that Hörmander's condition holds true, i. e. the sub-Lie-
algebra of g generated by V1, . . . , Vd equals g, where we used the well-known
identi�cation of g with the space of left invariant vector �elds on G.

Fix a d-dimensional Brownian motion Bt = (B1
t , . . . , B

d
t ) and consider a

stochastic process on G solving the Stratonovich SDE

(5.10) dXx
t =

d∑
i=1

Vi(Xx
t ) ◦ dBi

t

with initial value x ∈ G. For readers unfamiliar with stochastic integration
on manifolds, we refer to Ikeda and Watanabe [38]. Notice, however, that
in all the above examples, the Lie group is naturally embedded into some
vector space, therefore we may use ordinary stochastic calculus as de�ned
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thereon. (In Example 5.1.3, this vector space is given by the respective
nilpotent algebra Amp .)

In any case, by the existence and uniqueness theorem for SDEs, there is
a unique strong solution of (5.10) in G. Moreover, the process Xx

t is hypo-
elliptic on G. Conceptually, Xx

t will play the rôle of Brownian motion in the
elliptic situation, cf. (5.2). By hypo-ellipticity, Xx is well-suited for this task,
since it will allow us to search globally on G, because it traverses everywhere
in distribution. There are, however, some subtle di�erences to the ellip-
tic situation, i. e. to the situation of dynamics driven by an n-dimensional
Brownian motion, which a�ect the appropriate choice of drift.

Geometrically, the choice of the drift as gradient of the potential U as
in (5.2) corresponds to a Riemannian geometry, where the gradient is the
direction of steepest decent with respect to the Riemannian metric. In the
setting of Assumptions 5.1.14 and 5.1.16, however, there is no Riemannian
geometry available, or, if the group happens to be endowed with a Rieman-
nian structure, it is not appropriate for the problem at hand. Indeed, while
the n-dimensional Brownian motion can locally go in each direction of the
n-dimensional space without discrimination, the �hypo-elliptic Brownian mo-
tion� Xx

t can only follow horizontal directions, i. e. directions given as linear
combinations of V1(Xx

t ), . . . , Vd(Xx
t ). Therefore, the appropriate geometry

on G is the sub-Riemannian geometry generated by the driving vector �elds
V1, . . . , Vd, see Montgomery [59]. Roughly speaking, the sub-Riemannian
distance between two points x, y ∈ G is the in�mum of the length of all
paths joining x and y, which are always tangential to the space generated
by V1, . . . , Vd along the way. To identify the natural notion of �gradient�
in the present setting, having simulated annealing in mind, is one of the
accomplishments of [4].

To this end, let us denote the in�nitesimal generator of (5.10) by L, i. e.

(5.11) Lf(x) =
1
2

d∑
i=1

V 2
i f(x), x ∈ G,

for smooth functions f : G→ R. Following, for instance, Revuz and Yor [68],
we de�ne the carré-du-champs operator Γ by

(5.12) Γ(f, g)(x) = L(fg)(x)− f(x)Lg(x)− g(x)Lf(x), x ∈ G,

again for smooth functions f, g : G→ R. We can calculate

(5.13) Γ(f, g)(x) =
d∑
i=1

Vif(x)Vig(x).

This shows that the map Γ(f, ·) = (g 7→ Γ(f, g)) is a vector �eld, i. e. a �rst
order di�erential operator, for any �xed f , which, moreover, is horizontal in
the sense that

Γ(f, ·)(x) ∈ 〈{V1(x), . . . , Vd(x)}〉R
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for any x ∈ G. It turns out that Γ(f, ·)(x) is precisely the natural horizontal
gradient of f in the current setting. Consequently, under appropriate con-
ditions on the potential U : G → R, the stochastic di�erential equation for
simulated annealing on G � corresponding to the Langevin equation (5.2) in
the elliptic setting � will be given by

(5.14) dXx
t = −1

2
Γ(U, ·)(Xx

t )dt+
√
σ(t)

d∑
i=1

Vi(Xx
t ) ◦ dBi

t,

with initial value x ∈ G. Notice that the usual global existence and unique-
ness theorems for SDEs do not work for equation (5.14), because Γ(U, ·)
might not satisfy common growth and global Lipschitz conditions, even if
U is �well-behaved�, i. e. regular enough for elliptic simulated annealing. It
is, however, possible to show existence and uniqueness using a special tech-
nique devised in Li [49] based on the theory of Dirichlet forms, provided that
U : G→ R is a smooth function with∫

G
exp(−U(x))λ(dx) <∞,

see [4, Proposition 2.1].
Let pt(x, y), x, y ∈ G, denote the density of the law of Xx

t with respect
to λ, i. e.

E(f(Xx
t )) =

∫
G
f(y)pt(x, y)λ(dy)

for any bounded measurable function f : G → R. By hypo-ellipticity, we
know that pt : G×G→ R is a smooth function for any t > 0. Furthermore,
let d : G×G→ [0,∞[ be the sub-Riemannian or Carnot-Carathéodory metric
on G generated by V1, . . . , Vd, i. e.

d(g, h) = inf
γ

∫ 1

0

√
〈γ̇(s) , γ̇(s)〉G ds,

where the in�mum is taken along smooth curves γ : [0, 1]→ G with γ(0) = g
and γ(1) = h, which are horizontal in the sense that

γ̇(s) ∈ 〈{V1(γ(s)), . . . , Vd(γ(s))}〉R, s ∈ [0, 1],

and where 〈· , ·〉G denotes a suitable smooth section of inner products on TG.
See Montgomery [59] for details.

We will now use the state space M as given in Assumption 5.1.14. In
particular, all the vector �elds V1, . . . , Vd and Γ(U, ·) will be interpreted as
vector �elds on M using the extension by the action given in (5.8). Conse-
quently, we consider the simulated annealing equation on M , which is given
by (5.14) interpreted in M , i. e.

(5.15) dXx
t = −1

2
ΓM (U, ·)(Xx

t )dt+
√
σ(t)

d∑
i=1

VM
i (Xx

t ) ◦ dBi
t,
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where the initial value is given by x ∈ M and the potential U : M → R is
a smooth function and ΓM is the carré-du-champs operator with respect to
the vector �elds VM

1 , . . . , VM
d .

Remark 5.1.17. By compactness of M , existence of the SDE (5.15) is un-
problematic, therefore we do not need the above mentioned existence result
for the Langevin equation on the Lie group G. However, if U comes from
a related potential on G, for which (5.14) has a global strong solution, then
we may actually work in G. We will come back to this point later.

As in (5.1), de�ne the Gibbs measure on M by

(5.16) µTU (dx) = CTU exp(−U(x)/T )λM (dx), x ∈M,

where CTU is once again a normalizing constant such that µTU is a probability
measure.

Theorem 5.1.18. Given Assumptions 5.1.14 and 5.1.16, let U0 =
minx∈M U(x) for the potential U on M with Gibbs measure µTU . There are
constants R, c > 0 such that the solution Xx

t of the annealing equation (5.15)
for any x ∈M with

(5.17) σ(t) =
c

log(R+ t)

satis�es: for any δ > 0 let Aδ = {x ∈M | U(x) ≥ U0 + δ}, then

P (Xx
t ∈ Aδ) ≤ C

√
µUσ(t)(Aδ) −−−→t→∞

0,

where C denotes a constant independent of t. Consequently, the law of Xx
t

converges weakly to a measure supported on arg minU .

Proof. We give a short sketch of the proof given in [4], the above Theo-
rem 5.1.18 corresponds to Theorem 4.8 therein.

The analysis �rst considers a very special, time-dependent potential,
namely W τ (x) = − log pτ (x0, x) for some �xed x0 ∈ M . The corresponding
in�nitesimal generator

Lτ = L− 1
2

Γ(W τ , ·) =
1
2

d∑
i=1

V 2
i −

1
2

Γ(W τ , ·),

is the in�nitesimal generator of the Langevin equation

(5.18) dY y
t = −1

2
Γ(U, ·)(Y y

t )dt+
√
σ

d∑
i=1

VM
i (Y y

t ) ◦ dBi
t

with constant σ = 1 and U = W τ for �xed τ > 0. Regarded as self-adjoint
operator on L2(M,µ1

W τ ), Lτ has a spectral gap of size

aτ =
1

2Kτ
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for some constant K > 0. By compactness, we have

(5.19)
∣∣d(x0, x)2 − tW t(x)

∣∣ ≤ D and
∣∣U(x)− d(x0, x)2

∣∣ ≤ D
for some constant D. This allows us to recover the spectral gap if we use the
potential U in equation (5.18) and a general constant σ. More precisely, the
in�nitesimal generator Lσ of (5.18) satis�es

Lσ =
σ

2

d∑
i=1

V 2
i −

1
2

Γ(U, ·)

and has a spectral gap aσ of size

aσ ≥ 1
K

exp
(
−4D
σ

)
.

Now let u(t) denote the norm of the Radon-Nikodym derivative of the
law of Xx

t solving (5.15) with respect to the Gibbs measure µσ(t)
U computed

in L2(µσ(t)
U ), where σ(t) is given as in the statement of the theorem with

c = 4D and R su�ciently big. Then we may conclude that u(t) is (uni-
formly) bounded from above, which proves the result by the Cauchy-Schwarz
inequality.

Remark 5.1.19. In fact, the proof relies on the following properties of the
state space M and the potential U .

(1) The operator Lτ de�ned on the Lie group G has a spectral gap as
an operator on L2(µW

τ

1 ). The spectral gap is of size aτ > 0 for a
su�ciently regular function a.

(2) M is a homogenous space with respect to G. We are given vector �elds
V1, . . . , Vd satisfying Assumption 5.1.16 such that the induced Carnot-
Carathéodory metric and the induced heat-kernel on M satisfy that
there is a constant D > 0 and some x0 ∈M with

∀x ∈M, ∀t ∈]0, 1[:
∣∣d(x0, x)2 + t log pt(x0, x)

∣∣ ≤ D.
(3) The potential is close to the Carnot-Carathéodory metric in the sense

that there is a constant D > 0 and x0 ∈M such that

∀x ∈M :
∣∣U(x)− d(x0, x)2

∣∣ ≤ D.
The current setting introduced in Assumption 5.1.14 turns out to be conve-
nient, because there all these conditions are automatically satis�ed. Indeed,
by the Driver-Melcher inequality, cf. Driver and Melcher [19], (1) is satis�ed
for any connected, �nite dimensional, nilpotent Lie group. On the other



136 CHAPTER 5. HYPO-ELLIPTIC SIMULATED ANNEALING

hand, it is known since the recent paper by Li [48] that the inequality in (2)
is not satis�ed for the Heisenberg group (acting on itself). However, by a
result of Léandre [46, 47], we have

lim
t→0

t log(pt(x0, x)) = −d(x0, x)2

uniformly on any compact nilmanifold M . Therefore, the above inequality
is satis�ed on compact nilmanifolds. The last point (3) is a condition on
the potential, which is trivially satis�ed in a compact setting. Otherwise, it
somehow means that we can a-priori give a compact set, in which arg minU
lies.

Remark 5.1.20. The condition (2) in Remark 5.1.19 can always be satis�ed,
even in a non-compact situation, if we are allowed to modify the potential
outside of a compact set, e. g. because we know from the beginning that
arg minU ⊂ K for some known compact set K. Then we can consider a
bump function 0 ≤ ϕ ≤ 1 with compact support, such that ϕ|K ≡ 1, and
de�ne

Ut(x) = ϕ(x)U(x)− (1− ϕ(x))t log pt(x0, x).

This potential certainly satis�es (2), since it is equal to t log pt(x0, ·) outside
of a compact set, and we can still rely on Léandre's result inside the compact
support of ϕ.

Of course, the modi�cation is harmless for global optimization, if we
make sure that arg minU ⊂ K.

5.1.4 Implementation

Let us brie�y describe the setting for the implementation. Theorem 5.1.18
provides the basis for the hypo-elliptic simulated annealing as a global op-
timization problem for the potential U on the homogenous space M (over
the Lie group G with Lie algebra g), having Assumption 5.1.14 and 5.1.16
in mind.

If we want to solve an optimization problem given on M , i. e. with a
potential U : M → R, then we can directly solve the corresponding hypo-
elliptic equation onM . This case seems to be realistic if G is itself a compact
Lie group and M = G, e. g. for G = SO(n). Usually, embedding M into
a Euclidean space RN , N large enough, and applying a straight-forward
Euler scheme thereon will not give satisfying results, since the approximate
solution might rapidly leave M . However, specialized algorithms for SDEs
on manifolds are available, see, for instance, Malham and Wiese [53]. In our
situation, we can use the exponential coordinates of the Lie group.

For optimization on Rn, we use the following approach. We choose a
free Lie group, i. e. we are in the situations introduced in Example 5.1.3 and
the compact nilmanifold M is constructed as in Example 5.1.7, respectively.
Therefore, keeping Example 5.1.13 in mind, we have a di�eomorphism φ :
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M → Tn, where T, once again, denotes the torus and n = dim g is the
dimension of the Lie group. In the following, we will always identify the
torus Tn with the nilmanifold M using φ.

We start with a family of smooth vector �elds V1, . . . , Vd : Rn → Rn,
which we will also interpret as vector �elds on the torus. Understood as
vector �elds on the Lie algebra g, they have to be left invariant in the sense
that their push forward under exp : g→ G is a left invariant vector �eld on
the Lie group G.

Remark 5.1.21. Left-invariance of the vector �elds guarantees that the in-
�nitesimal generator of the simulated annealing process on the group G
de�ned in (5.14) is a symmetric operator on the Hilbert space L2(G,µTU ).
Therefore, left-invariance is a critical requirement on the vector �elds, and
one cannot expect convergence otherwise, cf. the proof of Theorem 5.1.18.

As before, let Y y denote the Langevin equation

(5.20) dY y
t = −1

2
Γ(U, ·)(Y y

t )dt+
√
σ(t)

d∑
i=1

Vi(Y
y
t ) ◦ dBi

t

on Tn.
In order to solve the global minimization problem in Rn for the potential

U : Rn → R, we assume that

• there is a compact set K ⊂ Rn with arg minU ⊂ K which is a-priori
given,

• the vector �elds V1, . . . , Vd : Rn → Rn are such that the Langevin
equation (5.20) understood as SDE in Rn has a global solution.

Basically, we have three options in this moment. First, we may solve the
hypo-elliptic simulated annealing equation (5.20) on the torus Tn. To this
end, we need to choose the torus Tn in such a way that K ⊂ Tn ⊂ Rn and
restrict it to a potential on Tn. More precisely, we can (easily) di�eomor-
phically transform the space Rn such that the potential takes its minimum
in [0, 1[n, i. e. such that K ⊂ [0, 1[n' Tn. (More precisely, we need to make
sure that K ⊂]δ, 1 − δ[n for some δ > 0.) Notice that this transformation
can be performed explicitly since we have assumed that K is a-priori given.
Then we need to restrict U to a potential on Tn, which we will denote by
U |Tn . In fact, a closer look reveals that we only need to restrict Γ(U, ·) to Tn,
which can be simply done by extending it as a periodical function outside
of [0, 1[n. By Theorem 5.1.18, Y y

t converges in distribution to a measure
concentrated on

arg min
x∈Tn

U |Tn(x).

By construction, the arg min of the restricted potential corresponds to the
arg min of the original potential on Rn by reverting the above transformation.
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On the other hand, we may treat the hypo-elliptic annealing equation as
an equation on Rn. Since equation (5.20) understood as an SDE on Rn has
a strong solution, for any �xed time T > 0 and any ε > 0 we may �nd a
compact set C ⊂ Rn such that

P (∃t ∈ [0, T ] : Y y
t /∈ C) ≤ ε.

Consequently, by rescaling the problem in such a way that C ⊂ [0, 1[n, the
solution Y y of equation (5.20) understood as equation in Rn does not leave
the torus Tn understood as a subset of Rn with probability 1− ε until time
T . Consequently, we may change the vector �elds V1, . . . , Vd : Rn → Rn and
the potential U : Rn → R to give us vector �elds V1, . . . , Vd : Tn → Rn and a
potential U : Tn → R and then consider the equation (5.20) as equation on
Tn, such that the solutions coincide with probability 1 − 2ε. Summarizing,
the hypo-elliptic simulated annealing algorithm on Rn is given as follows.

(1) Fix a time T > 0, until which the solution of the non-autonomous
Langevin equation should be computed, and an initial value y ∈ Rn.
Furthermore, �x the cooling schedule σ(t).

(2) Fix a numerical scheme for the Langevin equation, in particular, �x
a time discretization of size N and a number M of trajectories to be
approximated.

(3) Solve the equation given the parameters �xed in 1 with the numerical
scheme de�ned in 2.

(4) Find the realized minimum of the potential for the simulated paths.

Remark 5.1.22. In (1), the choice of the cooling schedule is problematic,
since the constants c and R in Theorem 5.1.18 are usually very di�cult to
compute, if at all. Therefore, the usual approach is to guess them, run the
simulated annealing algorithm and check whether the process can traverse
local maxima of the potential. Moreover, notice that the constants c and R
actually are constants for the problem on Tn. Therefore, they depend on ε:
decreasing ε means that c and R need to be increased.

Remark 5.1.23. The convergence in Theorem 5.1.18 is a convergence in dis-
tribution, therefore we may use a weak discretization scheme for the equa-
tion (5.20) (understood as equation in Rn). Discrete pseudo random numbers
for weak schemes can be much faster generated than their continuous coun-
terparts necessary in strong schemes. Moreover, higher order weak Taylor
schemes are feasible, in contrast to their strong counterparts (in dimensions
d > 1).

Remark 5.1.24. Since the convergence of the simulated annealing algorithm
to the minimum is a convergence in distribution, one should always solve the
Langevin equation along several paths, not only along one path.
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The third and most elegant option has already been described in Re-
mark 5.1.20.

5.2 Numerical examples

5.2.1 Two test problems

Let us �rst present the test potentials used in the sequel. In order to test
hypo-elliptic simulated annealing as well as to compare it to the elliptic
algorithm we considered the following two potentials U : Rn → R.

The Rastrigin potential (see e. g. Törn and Zilinskas [82]), is de�ned by

U(x) = 10n+
n∑
i=1

(x2
i − 10 · cos(2πxi)).(5.21)

Obviously this potential has its unique global minimum at the origin. The
plot of the potential in R2 in Figure 5.1 shows that the potential has in�nitely
many local minima due to the cosine term. Obviously it grows like ‖x‖2 for
big x.

Figure 5.1: Rastrigin potential in R2

The second potential that we consider is an adoption of the Drop Wave
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potential (see e. g. Molga and Smutnicki [58]), de�ned by

U(x) = 1 +
‖x‖2

100
− 2 + 2 cos(12‖x‖)

‖x‖2 + 2
.(5.22)

Again we �nd the unique, global minimum at the origin. Note that the
potential usually called Drop Wave potential is de�ned without the term
1 + ‖x‖2/100. We added this term in order to have non-negativity and
again growth of the order of ‖x‖2. In the following we will refer to (5.22)
simply as the Drop Wave potential. The plot in R2 in Figure 5.2 shows
that this potential o�ers di�erent features than the Rastrigin potential. As
it only depends on the norm of x it is radially symmetric. But it features
potential walls that would be impossible for deterministic gradient �ows
to traverse. Moreover, hypo-elliptic simulated annealing does not use the
Euclidean geometry, anyway.

Figure 5.2: Drop Wave potential in R2

We considered the simulated annealing algorithm applied to the above
potentials in dimension three, �ve and six. As mentioned before we are not
free to apply the hypo-elliptic algorithm to any dimension. In particular,
using the Heisenberg groups only dimensions (p2 + p)/2 are possible, which
is the reason why, e. g., dimension four can not be treated by our approach.
We were able to derive useful and e�cient set-ups for dimensions three and
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six, while dimension �ve does not seem feasible to us as explained in Re-
mark 5.2.1. Details on the corresponding vector �elds follow below.

The SDE for the elliptic approach is given by (5.2) with as many Brow-
nian motions as space dimensions. For the hypo-elliptic approach we �xed
the following set-up.

For dimension three we considered two independent Brownian motions
(B1

t )t≥0 and (B2
t )t≥0, the volatility vector �elds

V1(x) =

 1
0
−x2

 , V2(x) =

 0
1
x1

(5.23)

and the horizontal gradient given by formula (5.13), i. e.

Γ(U, ·)(x) =

 Ux1(x)− x2Ux3(x)
Ux2(x) + x1Ux3(x)

x1Ux2(x)− x2Ux1(x) + (x2
1 + x2

2)Ux3(x)

 ,(5.24)

where we used the notation Uxi for
∂U
∂xi

for i = 1, 2, 3. This choice of the
vector �elds leads to the following SDE

dY y
t = −1

2
Γ(U, ·)(Y y

t )dt+
√
σ(t)V1(Y y

t )dB1
t +

√
σ(t)V2(Y y

t )dB2
t .(5.25)

Note that the SDE (5.20) is written in Stratonovich form. Due to the choice
of the vector �elds in the case of (5.25) the Stratonovich correction term is
zero and the Itô form coincides with the Stratonovich form.

In dimension six we used three independent Brownian motions
(B1

t )t≥0, (B2
t )t≥0 and (B3

t )t≥0 and applied the following vector �elds:

V1(x) =



1
0
0
−x2

−x3

0

 , V2(x) =



0
1
0
x1

0
−x3

 , V3(x) =



0
0
1
0
x1

x2

 .(5.26)

In this setting the horizontal gradient given by formula (5.13) equals

Γ(U, ·)(x) =



Ux1(x)− x2Ux4(x)− x3Ux5(x)
Ux2(x) + x1Ux4(x)− x3Ux6(x)
Ux3(x) + x1Ux5(x) + x2Ux6(x)

x1Ux2(x)− x2Ux1(x) + (x2
1 + x2

2)Ux4(x) + x2x3Ux5(x)− x1x3Ux6(x)
x1Ux3(x)− x3Ux1(x) + (x2

1 + x2
3)Ux5(x) + x2x3Ux4(x) + x1x2Ux6(x)

x2Ux3(x)− x3Ux2(x) + (x2
2 + x2

3)Ux6(x)− x1x3Ux4(x) + x1x2Ux5(x)

 .

(5.27)
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Thus in dimension six the SDE for the hypo-elliptic setting is given by

(5.28) dY y
t = −1

2
Γ(U, ·)(Y y

t )dt

+
√
σ(t)V1(Y y

t )dB1
t +

√
σ(t)V2(Y y

t )dB2
t +

√
σ(t)V3(Y y

t )dB3
t .

Again the Stratonovich form equals the Itô form.
Finally we have to consider the order of the drift term. Both poten-

tials (5.21) and (5.22) are of growth of the order two and the partial deriva-
tives grow linearly. Thus we have order two in the �rst two components of the
drift (5.24) resp. in the �rst three components of (5.27). The crucial point
making the numerical treatment of the SDE (5.25) resp. (5.28) subtle is that
the third component of (5.24) and the last three components of (5.27) have
growth like a polynomial of degree three. Thus, we can reduce the number
of Brownian motions by using slightly more complex volatility vector �elds
but we have to use a much more complex drift term. The higher order of
the drift forces us to reduce the step size of the time discretization in order
to avoid numerical instability. Additionally the evaluation of the drift part
is usually more costly than in the elliptic case.

Remark 5.2.1 (The �ve dimensional case). We wanted to �nd a hypo-elliptic
simulated annealing algorithm in dimension �ve using only two Brownian
motions. Possible volatility vector �elds are

V1(x) =


1
0
−1

2x2

−
(

1
12x1x2 + 1

2x3

)
− 1

12x
2
2

 , V2(x) =


0
1

1
2x1
1
12x

2
1

1
12x1x2 − 1

2x3

 .(5.29)

Consider that the highest order among the components of the vector �elds
in (5.29) is two, while the vector �elds used in (5.23) and (5.26) are a�ne
functions in x. One can show that this is true for any choice of left-invariant
vector �elds using two Brownian motions for �ve space dimensions. This
higher order of the volatility vector �elds is re�ected in a higher order in the
components of the drift calculated according to (5.13). To deal with such a
drift we had to choose the step size of our discretization scheme extremely
small (∆t ≈ 10−6) in order to avoid numerical explosion phenomena. But
then for a numerical solution of the corresponding SDE up to the horizon
T = 2500 approximately 2, 500, 000, 000 evaluations of the drift and genera-
tions of Brownian increments would be necessary. Furthermore note that we
simulated between 100 and 500 paths together in order to get a feeling for
the distribution. Due to the exceptional run time needed we dismissed such
an algorithm.

Remark 5.2.2. Recently, we have also implemented a test problem in SO(3).
There, the elliptic simulated annealing algorithm is clearly inferior to the
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hypo-elliptic one, because the reduction of the number of Brownian motions
is not compensated by a more complex drift and volatility vector �elds, since
there is no such thing as a ��at�, constant tangential vector �eld on SO(3).

For the discretization of the SDEs (5.2) and (5.20) we chose a standard
strong Euler scheme in the sense of De�nition 1.3.3.

Furthermore we had to choose the constants c and R in the cooling
schedule σ(t) in (5.17). The numerical analysis in Section 5.2.2 shows that
the choice of c in the case of our problems depends on the dimension. For
both potentials we chose the same c for the hypo-elliptic algorithm as for
the elliptic one and a higher c for the problem in dimension six. Namely,
we took the ad-hoc choice of R = 2 for both problems and empirically chose
for the Rastrigin potential c to be c = 15 for the elliptic and for the hypo-
elliptic algorithm in dimension three and even c = 100 for dimension six. For
the Drop Wave potential we used c = 1 for both algorithms in dimension
three. Since annealing for the Drop Wave potential in dimension six does
not exhibit remarkable di�erences to dimension three, we omit a detailed
description.

Note that the choice of c is crucial for the performance of the algorithm.
If c is chosen too small then the algorithm gets stuck in local minima. On
the other hand it can, in practice, not be chosen arbitrary high as the tem-
perature decays logarithmically in time. If we stop the algorithm at high
temperature then the variance of the end points of the sample paths is sim-
ply too high to allow any analysis of the global minimum.

Remark 5.2.3. Recall that the convergence Theorem 5.1.18 only holds for
the problem on the compact homogenous space Tn, not on Rn. Therefore,
we may anyway not expect convergence of the algorithm in Rn. The above
comments are to be understood as referring to the underlying process on
the torus, which, by construction, coincides with the process on Rn with
probability 1− ε. See also, however, Remark 5.1.20.

Remark 5.2.4. While solving an SDE numerically, the horizon T is usually
�xed. We need to increase the horizon when going further in the annealing
process. Therefore using a uniform grid with step size ∆t the discretization
error depends on the step size ∆t as well as on the horizon T . The following
estimate [42, Theorem 14.5.1] of the weak error holds for a �xed horizon T

|E[g(Y y
T )]− E[g(Y y

T (∆t))]| ≤ C(T )∆t,

where Y y
T (∆t) denotes the end point at T of a discretization of the SDE (5.25)

using a step size of ∆t and g is a suitable test function. The constant C in
fact depends on the horizon T in a linear way. Thus if we want to keep
the error bound constant while increasing the horizon from to kT for some
k > 0 then we have to reduce the step size from ∆t to ∆t

k . For simplicity,
we chose the step size ∆t su�ciently small for the highest horizon T under
consideration and used this value also for smaller horizons.
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We could use the rather big step size of ∆t = 0.01 for the Drop Wave
potential as the drift vector �eld in (5.25) resp. in (5.28) did not cause any
numerical problems for this choice. The Rastrigin potential is more di�cult
to handle and we used a step size of ∆t = 0.001. But as the order of the
drift components does not depend in the dimension of the problem we could
use the same ∆t in dimension six as in dimension three.

Remark 5.2.5. As an alternative to the strong Euler scheme a weak Euler
scheme with e. g. {+1,−1}-valued random variates with the correct expec-
tation and covariance matrix could have been used as well (see Kloeden and
Platen [42, Chapter 14] for details). Weak schemes often reduce run-time
as the generation of normal variates is more complex than the generation of
discrete ones.

5.2.2 Results and interpretation

In Tables 5.1� 5.5 we show certain statistics of the samples resulting from
the algorithms applied to the Rastrigin as well as to the Drop Wave poten-
tial in dimension three respectively six. The tables provide four statistics
calculated from 500 paths. Recall that both potentials have their global
minimum at the origin. Therefore the norm of the end points tells us how
close to the global minimum the points are in the mean. Furthermore, the
empirical 80% quantile of the norm is displayed. This means that considering
just one path we can expect that the norm of the end point is smaller than
q0.8(norm) with a probability 0.8. The other two statistics tell us how close
the observed function values are to the minimum of the potential. Therefore
we display the average value of the function values as well as the smallest
value in the sample. Notice that the Rastrigin potential has rather high
function values even very close to the origin, e. g. U(0.1, 0.1, 0.1) = 5.7595
and U(0.2, 0.2, 0.2) = 20.8495. Therefore the numbers in Table 5.1 and Ta-
ble 5.2 are more satisfying than they look at �rst sight. The same reasoning
applies to dimension six in Table 5.5.

Remark 5.2.6. We have also tested shifted potentials where the global min-
imum is attained at points x0 6= 0. Since we did not �nd remarkable di�er-
ences we concentrated on the non-shifted case, note however the Rastrigin
example in dimension six below.

Consider that the convergence of both algorithms � the elliptic as well
as the hypo-elliptic simulated annealing algorithm � is slow. Moreover, note
that the convergence of the computed statistics is not monotonous. The fact
that the temperature decays at a rate of

√
1/ log(t) for t → ∞ of course

causes the slow convergence. Furthermore, the path-wise non-monotonicity
of the algorithms is indeed their strength. The paths also climb up areas
of high values of the potential in order to �nally reach the global minimum.
This nature of simulated annealing can be seen in the tables.



5.2. NUMERICAL EXAMPLES 145

Figure 5.3 shows the histograms of 500 paths at t = 1 and t = 4000
of the hypo-elliptic simulated annealing algorithm applied to the Rastrigin
potential in dimension three. The starting position for all paths was (5, 5,−5)
and the constant c was chosen to be c = 15. We see that the paths quickly
explore the space in the beginning. The statistics in Table 5.2 show that
the distance of the paths from the origin decreases slowly but steadily. As
mentioned before this slow convergence is unavoidable in our setting.

In Figure 5.4 we illustrate the failure of the annealing if the constant
c is chosen too small. The histograms of the position of the end points at
t = 4000 show that the �rst and the second components of most of the paths
are stuck around the values 2 and 3 which is far away from the optimal 0.
The scatter plot in Figure 5.4 also shows that the end points of the paths
are stuck in local minima. One sees the failure of the algorithm in Table 5.3
as the statistics improve much less after t = 512 than in Table 5.2.

Figure 5.5 shows hypo-elliptic simulated annealing of 500 paths for the
Drop Wave potential in R3. The starting point of all paths is (5, 5,−5).
The histogram of the position of the end points at t = 4000 shows that
local minima are less attractive than for the Rastrigin potential (compare
Figure 5.3). The in�uence of the randomness is less damped and thus the
end points fall in a larger range. Nevertheless the concentration at the global
minimum makes convergence plausible. Table 5.4 gives the corresponding
statistics.

Finally to illustrate the performance of hypo-elliptic simulated annealing
for problems in dimension six, we present the statistics in Table 5.5. After
trying several values for the constant c we chose the rather high value c = 100
in order to avoid paths getting stuck in local minima.

Table 5.1: Statistics of elliptic simulated annealing for the Rastrigin potential
in R3, c = 15 starting at (5, 5,−5)

time mean(norm) q0.8(norm) mean(f) min(f)
0 8.66 8.66 50.25 50.25
1 5.43 7.04 55.25 4.45
256 1.81 2.41 8.84 1.14
512 1.78 2.39 7.89 0.29
1024 1.69 2.30 7.30 0.43
2048 1.62 2.25 6.77 0.12
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Table 5.2: Statistics of hypo-elliptic simulated annealing for the Rastrigin
potential in R3, c = 15 starting at (5, 5,−5)

time mean(norm) q0.8(norm) mean(f) min(f)
0 8.66 8.66 50.25 50.25
1 5.92 8.46 68.85 6.89
256 1.88 2.43 10.19 0.02
512 1.78 2.35 8.42 0.17
1024 1.67 2.28 7.41 0.51
2048 1.58 2.18 6.50 0.32

Table 5.3: Statistics of hypo-elliptic simulated annealing for the Rastrigin
potential in R3, with c = 3 starting at (5, 5,−5)

time mean(norm) q0.8(norm) mean(f) min(f)
0 8.66 8.66 50.25 50.25
1 5.38 6.20 50.19 8.89
256 3.42 3.99 16.81 4.48
512 3.37 3.78 16.26 4.56
1024 3.33 3.74 16.00 4.38
2048 3.31 3.67 15.14 3.85

Table 5.4: Statistics of hypo-elliptic simulated annealing for the Drop Wave
potential in R3, c = 1 starting at (5, 5,−5)

time mean(norm) q0.8(norm) mean(f) min(f)
0 8.66 8.66 1.75 1.75
1 9.25 11.17 1.77 0.78
256 3.67 5.51 0.79 0.12
512 2.82 4.28 0.63 0.12
1024 2.43 3.62 0.57 0.12
2048 1.97 2.97 0.47 0.12

Table 5.5: Statistics of hypo-elliptic simulated annealing for the Rastrigin
potential in R6, c = 100 starting at (5, 5,−5, 5,−5, 5) with the potential
shifted such that the minimum 0 is attained at x0 = (10, 10, 10, 10, 10, 10),
where dist means the distance from x0.

time mean(dist) q0.8(dist) mean(f) min(f)
0 12.25 12.25 150.00 150.00
1 20.87 23.95 477.10 168.03
256 11.00 13.12 182.01 50.60
512 9.37 11.53 148.89 42.73
1024 8.15 10.54 127.52 30.37
2048 7.39 9.69 114.21 26.29
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(a) t = 1

(b) t = 4000

Figure 5.3: Hypo-elliptic simulated annealing of the Rastrigin Potential in
3D with histograms for components 1 (top left), 2 (top right) and 3 (lower
left), and a scatter plot of the simulated points (lower right) with c = 15
starting at (5, 5,−5).
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Figure 5.4: Hypo-elliptic simulated annealing of the Rastrigin Potential in
3D with histograms for components 1 (top left), 2 (top right) and 3 (lower
left), and a scatter plot of the simulated points (lower right) at t = 4000
with c = 3 starting at (5, 5,−5).

Figure 5.5: Hypo-elliptic simulated annealing of the Drop Wave potential in
3D with histograms for components 1 (top left), 2 (top right) and 3 (lower
left), and a scatter plot of the simulated points (lower right) at t = 4000
with c = 1 starting at (5, 5,−5).
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(a) t = 1

(b) t = 4000

Figure 5.6: Hypo-elliptic simulated annealing of the Rastrigin Potential in
6D with histograms for components 1, 2, 3, 4, 5 and 6 (from top left to lower
right) at t = 1 in 5.6(a) and t = 4000 in 5.6(b) with c = 100 starting at
(5, 5,−5) with the potential shifted such that the minimum 0 is attained at
(10, 10, 10, 10, 10, 10).
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Appendix

A.1 Proofs and constructions

A.1.1 Proof of Proposition 1.1.6

We re-formulate Proposition 1.1.6 in a slightly more general way and give
the straight-forward proof.

Proposition A.1.1. Let N be a �nite-dimensional smooth manifold,
V0, V1, . . . , Vd C∞-bounded smooth vector �elds thereon and B a d-
dimensional Brownian motion as usual. Consider x ∈ N and the solution
Xx = (Xx

t )t∈[0,∞[ of the Stratonovich SDE

dXx
t = V0(Xx

t )dt+
d∑
i=1

Vd(Xx
t ) ◦ dBi

t,

for details see Ikeda and Watanabe [38]. Given a submanifold M ⊂ N such
that the vector �elds V0, . . . , Vd are tangential to M , then M is locally in-
variant under X in the sense of De�nition 1.1.5. Conversely, if M is locally
invariant, then V0, . . . , Vd are tangential to it.

Proof. Let m = dimN , n = dimM , �x x0 ∈M and consider a submanifold
chart φ of M around x0, i. e. φ : U → W is a di�eomorphism, where
x0 ∈ U ⊂ N , 0 ∈W ⊂ Rm are open sets, φ(x0) = 0 and

φ(M ∩ U) = (Rn × {0}) ∩W,

in the sense that

Rn × {0} =
{
y ∈ Rm

∣∣ yn+1 = 0, . . . , ym = 0
}
.

Let Yt = φ(Xx0
t ), 0 ≤ t < τx0 , where τx0 denotes the �rst exit time of U

by the process Xx0 . Obviously, Y0 = 0 and Itô's formula implies

dYt = φ∗V0(Yt)dt+
d∑
i=1

φ∗Vi(Yt) ◦ dBi
t,
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where φ∗V (y) = Tφ−1(y)φV (φ−1(y)) ∈ Rm is the push-forward of the vector
�eld V . Notice that

φ∗V : Rn × {0} ∩W → Rn × {0}

for vector �elds V tangential to M .
If V0, . . . , Vd are tangential toM , then Yt ∈ Rn×{0}∩W for 0 ≤ t < τx0 ,

implying that Xx0
t ∈M for 0 ≤ t < τx0 . Conversely, ifM is locally invariant

under X, i. e. Xx0
t ∈ M for 0 ≤ t < τ for some positive stopping time

τ ≤ τx0 , then Yt ∈ Rn × {0} up to the same stopping time, implying that
φ∗Vi(y) ∈ Rn×{0} for i = 0, . . . , d and y in a neighborhood around 0 ∈ Rm.
This implies that V0, . . . , Vd are tangential to M in a neighborhood of x0.
Consequently, since x0 ∈ M was chosen arbitrarily, we may conclude that
V0, . . . , Vd are tangential to M .

A.1.2 Proof of the Chen-Strichartz formula

Let X = (X1
t , . . . , X

d
t )t∈[0,∞[ denote a d-dimensional continuous semi-

martingale. In slight modi�cation of De�nition 2.1.2, let

A =
∞⋃
k=0

{1, . . . d}k

be the set of all multi-indices in {1, . . . , d} and let |I| be the length of the
multi-index I ∈ A. Similar to Chapter 2, let

(A.1) XI
t = X

(i1,...,ik)
t =

∫
0<t1<···<tk<t

◦dXi1
t1
◦ · · · ◦ dXik

tk

for a multi-index I = (i1, . . . , ik) ∈ A, denote the iterated Itô-Stratonovich
integral of the semi-martingale X. Recall that the Stratonovich integral of a
continuous semi-martingale X with respect to a continuous semi-martingale
Y is de�ned by ∫ t

0
Xs ◦ dYs =

∫ t

0
XsdYs +

1
2
〈X ,Y 〉t ,

where 〈X ,Y 〉 denotes the quadratic covariation of X and Y , see Protter [64].
Moreover, let f ∈ C2(Rd) and recall that the Itô formula for the continuous
semi-martingale X reads

(A.2) f(Xt) = f(X0) +
d∑
i=1

∫ t

0

∂

∂xi
f(Xs) ◦ dXi

s

when using the Stratonovich integral.
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Consider the stochastic process

(A.3) Yt =
∑
I∈A

XI
t eI

where, for I = (i1, . . . , ik) ∈ A,

eI = ei1 · · · eik

and (A.3) is considered as a formal series. More precisely, let Ad denote the
free algebra1 generated by A = {e1, . . . , ed} and let us denote by Ad the
corresponding space of formal series in A. As in (2.6), let

Wk = 〈{ eI | I ∈ A, |I| = k }〉R

denote the subspace of polynomials of homogeneous degree k, k ∈ N. Natu-
rally, any x ∈ Ad can be written as

x =
∞∑
k=0

xk

with xk ∈Wk, where the in�nite sum is again understood as a formal series.
Let gd ⊂ Ad denote the free Lie algebra generated by A. x ∈ Ad is called a
Lie series if

∀k ∈ N : xk ∈ gd.

The space of all Lie series is denoted by gd ⊂ Ad. Note that gd ⊂ gd.
The exponential function and the logarithm are de�ned as usual, i. e. for

x ∈ Ad let

exp(x) =
∞∑
k=0

1
k!
xk ∈ Ad

and for y ∈ Ad with y0 = 1 let

log(y) =
∞∑
k=1

(−1)k−1

k
yk ∈ Ad.

We prove the following version of the Chen-Strichartz formula.

Proposition A.1.2. For I ∈ A and t ≥ 0 let

ΛIt =
∑
σ∈S|I|

(−1)e(σ)

|I|2
(|I|−1
e(σ)

)Xσ−1(I)
t ,

1Recall Remark 2.1.5.
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where Sk denotes the symmetric group in k elements, e(σ) =
# { j | σ(j) > σ(j + 1) } and σ(I) = (iσ(1), . . . , iσ(k)) for I ∈ A, |I| = k,
σ ∈ Sk and k ∈ N. Then

Yt = exp(Zt) = exp
( ∑
I∈A\{∅}

ΛIt e[I]

)
,

where
e[I] = e[(i1,...,ik)] = [ei1 , [· · · , [eik−1

, eik ] · · · ]

for the generic element I = (i1, . . . , ik) ∈ A, k ∈ N.

Remark A.1.3. The fact that log(Yt) is a Lie series goes back to Chen [13],
whereas the explicit formula above is due to Strichartz [77]. See also Bau-
doin [3] for the generalization to the case of a d-dimensional Brownian mo-
tion.

For the proof of Proposition A.1.2, we will need a few results from the
theory of free Lie algebras. In order to formulate them, we need three more
notions, taken from Reutenauer [67]. De�ne the linear maps

r : Ad → gd,

D : Ad → Ad

by specifying that

r(eI) = e[I],

D(eI) = |I| eI

for I ∈ A \ {∅} and by r(1) = D(1) = 0. Moreover, a homomorphism of
algebras

δ : Ad → Ad ⊗ Ad,

the tensor product of Ad with itself, is de�ned by extension of

δ(ei) = ei ⊗ 1 + 1⊗ ei, i = 1, . . . , d.

Notice that both r, D and δ preserve the degree |·| of monomials, where

|eI | = |I| .

Therefore, the mappings can be easily extended to

r : Ad → gd,

D : Ad → Ad,
δ : Ad → Ad ⊗ Ad.

We cite (a part of) Reutenauer [67, Theorem 3.1].
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Lemma A.1.4. Let y ∈ Ad. The following statements are equivalent.

(1) y ∈ gd.

(2) δ(y) = y ⊗ 1 + 1⊗ y (Friedrich's criterion).

(3) δ(exp(y)) = exp(y)⊗ exp(y).

(4) y0 = 0 and r(y) = D(y).

Remark A.1.5. Recall that the Baker-Campbell-Hausdor� formula (2.12)
states that

log(exp(y) exp(z)) ∈ gd

for y, z ∈ gd. Dynkin [20] has given an explicit expression for the above term,
which can be easily obtained from part (4) of Lemma A.1.4, provided that
we already assume as granted that log(exp(y) exp(z)) ∈ gd. Indeed, by the
de�nition of the logarithmic series,

log(exp(y) exp(z)) =
∞∑
k=1

(−1)k−1

k
(exp(y) exp(z))− 1)k

=
∞∑
k=1

(−1)k−1

k

( ∑
l+m>0

ylzm

y!z!

)k
=
∞∑
k=1

∑
l1+m1>0,...,lk+mk>0

(−1)k−1

k

yl1zm1 · · · ylkzlk
l1!m1! · · · lk!mk!

.

For a homogenous Lie polynomial yn of degree |yn| = n, (3) in Lemma A.1.4
implies that 1

nr(yn) = yn. Assuming y, z ∈ A, we, hence, obtain Dynkin's
formula

log(exp(y) exp(z)) =
∞∑
k=1

∑
l1+m1>0,...,lk+mk>0

(−1)k−1

k

1
l1 + · · · lk +m1 + · · ·mk

r(yl1zm1 · · · ylkzlk)
l1!m1! · · · lk!mk!

.

For general y, z ∈ gd, Dynkin's formula is obtained by passing to the free
algebra generated by y and z.

Proof of Proposition A.1.2. We follow the second proof given in
Strichartz [77]. The strategy of the proof can be summarized as fol-
lows.

(1) Prove that Zt ∈ gd by applying Friedrich's criterion, in the form of
Lemma A.1.4 (3).
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(2) Use the same reasoning as in Remark A.1.5 above to pass from poly-
nomials to Lie polynomials.

(3) The formula given in Proposition A.1.2 is �nally obtained by some
combinatorial simpli�cations.

In order to prove that Zt ∈ gd, we need to show that

δ(Yt) = Yt ⊗ Yt,

and we do so by showing that both processes satisfy the same stochastic
di�erential equation.2 Since Yt solves the SDE

dYt =
d∑
i=1

Ytei ◦ dXi
t ,

with initial value Y0 = 1, compare equation (2.15), Yt ⊗ Yt solves the initial
value problem

d(Yt ⊗ Yt) = Yt ⊗ Yt
( d∑
i=1

ei ◦ dXi
t ⊗ 1 + 1⊗

d∑
i=1

ei ◦ dXi
t

)
,

Y0 ⊗ Y0 = 1⊗ 1.

We compute the SDE satis�ed by δ(Yt) by applying Itô's formula, see (A.2).
Using linearity and multiplicativity of δ, we obtain

dδ(Yt) = δ(dYt)

= δ
(
Yt
∑d

i=1
ei ◦ dXi

t

)
= δ(Yt)δ

(∑d

i=1
ei ◦ dXi

t

)
= δ(Yt)

( d∑
i=1

ei ◦ dXi
t ⊗ 1 + 1⊗

d∑
i=1

ei ◦ dXi
t

)
.

Moreover, δ(Y0) = 1⊗ 1, which implies that

δ(Yt) = Yt ⊗ Yt,

and consequently Zt ∈ gd.
Next, we collect all terms of a given degree in the formal series de�ning

Zt, which will allow us to apply Lemma A.1.4 (4). Let

A=k = { I ∈ A | |I| = k }
2At this point, we need to endow Ad with a topological structure. We choose the

initial topology of the projections Ad → Wk, k ∈ N. That is, convergence in Ad means
convergence of all the projections to the �nite dimensional subspaces Wk.
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and let A0 = A \ {∅}. Given a multi-index I ∈ A0 and k ∈ N such that
1 ≤ k ≤ |I|, let

Ak0(I) =
{

(I1, . . . , Ik) ∈ Ak0
∣∣∣ I = I1 ∗ · · · ∗ Ik

}
,

i. e. Ak0(I) collects all the possible ways of writing I by concatenation of k
non-trivial multi-indices. Then

Zt = log(Yt) =
∞∑
k=1

(−1)k−1

k
(Yt − 1)k

=
∞∑
k=1

(−1)k−1

k

(∑
I∈A0

XI
t eI

)k
=
∞∑
k=1

(−1)k−1

k

∑
(I1,...Ik)∈Ak0

XI1
t · · ·X

Ik
t eI1 · · · eIk

=
∞∑
m=1

∑
I∈A=m

m∑
k=1

(−1)k−1

k

∑
(I1,...,Ik)∈Ak0(I)

XI1
t · · ·X

Ik
t eI1 · · · eIk

=
∞∑
m=1

Zmt .

Notice that the last line gives precisely the decomposition of Zt into homoge-
nous polynomials Zmt of degree m, m ∈ N. Since we have already established
that Zt ∈ gd, we may conclude that Zmt ∈ gd is a homogenous Lie polynomial
of degree |Zmt | = m and part (4) of Lemma A.1.4 implies that

Zmt =
1
m
r(Zmt ),

m ∈ N. Therefore, we get

(A.4) Zt =
∞∑
m=1

∑
I∈A=m

m∑
k=1

(−1)k−1

km

∑
(I1,...,Ik)∈Ak0(I)

XI1
t · · ·X

Ik
t e[I].

In order to complete the proof, we are left to show that

ΛIt =
m∑
k=1

(−1)k−1

km

∑
(I1,...,Ik)∈Ak0(I)

XI1
t · · ·X

Ik
t =: ZIt

for multi-indices I of length m and m ∈ N. As a �rst step in this direction,
let us replace products of iterated integrals (as in (A.4)) by sums of iterated
integrals (as in the de�nition of ΛIt ).

For �xed I ∈ A=m, 1 ≤ k ≤ m and (I1, . . . , Ik) ∈ Ak0(I), let q0 = 0 and

qj+1 = qj + |Ij+1| , j = 0, . . . , k − 1.
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Notice that qk = m. Moreover, let

Sm(q1, . . . , qk) = { σ ∈ Sm | ∀j ∈ {0, . . . , k − 1} : σ(qj + 1) < · · · < σ(qj+1) } .

We claim that

(A.5) XI1
t · · ·X

Ik
t =

∑
σ∈Sm(q1,...,qk)

X
σ−1(I)
t .

We give a heuristic proof of (A.5), which can be made precise using Itô's
formula. Let, for any l ∈ N, ∆l

t denote the open l-dimensional simplex with
base length t, in the sense that

∆l
t =

{
x ∈ Rl

∣∣∣ 0 < x1 < x2 < · · · < xl < t
}
.

Furthermore, let

At(q1, . . . , qk) = ∆q1
t ×∆q2−q1

t × · · · ×∆qk−qk−1

t ⊂ Rm.

Letting Sm act on Rm in the usual way, i. e. by

σ(x) = (xσ(1), . . . , xσ(m)), x ∈ Rm, σ ∈ Sm,

it is simple to see that

(A.6) At(q1, . . . , qk) =
⋃

σ∈Sm(q1,...,qk)

σ(∆m
t )

(up to a set of m-dimensional Lebesgue measure 0). The union on the right
hand side of (A.6) is a disjoint union. Notice that

XI1
t · · ·X

Ik
t =

∫
At(q1,...,qk)

◦dXi1
t1
◦ · · · ◦ dXim

tm .

Inserting the equality (A.6) and appealing to �nite additivity yields

XI1
t · · ·X

Ik
t =

∑
σ∈Sm(q1,...,qk)

∫
σ(∆m

t )
◦dXi1

t1
◦ · · · ◦ dXim

tm

=
∑

σ∈Sm(q1,...,qk)

∫
∆m
t

◦dX
iσ−1(1)

t1
◦ · · · ◦ dX

iσ−1(m)

tm

=
∑

σ∈Sm(q1,...,qk)

X
σ−1(I)
t ,
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which proves (A.5).3

Now we can rewrite, still �xing m ≥ 1 and I ∈ A=m,

ZIt =
m∑
k=1

(−1)k−1

km

∑
(I1,...,Ik)∈Ak0(I)

∑
σ∈Sm(q1,...,qk)

X
σ−1(I)
t

=
∑
σ∈Sm

m∑
k=1

(−1)k−1

km
d(m, k, σ)Xσ−1(I)

t ,

where

d(m, k, σ) =
# { 0 < q1, < · · · < qk = m | ∀j ∈ {0, . . . , k − 1} : σ(qj + 1) < · · · < σ(qj+1) } .

A short combinatorial argument in [77] shows that

d(m, k, σ) =

{(m−e(σ)−1
k−e(σ)−1

)
, k ≥ e(σ) + 1,

0, else.

3This argument can be made precise in the case of semi-martingales in the following
way. Let m = 2 and choose I = (1, 2) and k = 2. Then the claim is that

X1
tX

2
t = X

(1,2)
t +X

(2,1)
t ,

note that S2(1, 2) = S2 in this case. Using the above argument, we have

At(1, 2) =]0, t[2= ∆2
t ∪ σ(∆2

t ),

where σ = (12) ∈ S2 and we have neglected the diagonal in At(1, 2). But, of course,
equation (A.5) simply follows from Itô's formula in this situation. More precisely, the
above argument involving unions of permutations of the simplex is a short-hand description
of the necessary applications of Itô's formula in order to expand the left hand side of (A.5)
into iterated integrals of order m.
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For �xed σ ∈ Sm, we compute, using n = m−e(σ)−1 and j = k−e(σ)−1,

m∑
k=1

(−1)k−1

km
d(m, k, σ) =

m∑
k=e(σ)+1

(−1)k−1

km

(
m− e(σ)− 1
k − e(σ)− 1

)

=
(−1)e(σ)

m

n∑
j=0

(−1)j

j + 1 + e(σ)

(
n

j

)

=
(−1)e(σ)

m

n∑
j=0

(−1)j
∫ 1

0
xj+e(σ)dx

(
n

j

)

=
(−1)e(σ)

m

∫ 1

0
(1− x)nxe(σ)dx

=
(−1)e(σ)

m
B(n+ 1, e(σ) + 1)

=
(−1)e(σ)

m

(m− e(σ)− 1)!e(σ)!
m!

=
(−1)e(σ)

m2
(
m−1
e(σ)

) ,
where we have used the elementary identity for the Beta function:

B(x, y) =
Γ(x)Γ(y)
Γ(x+ y)

.

Collecting everything, we obtain

ZIt =
∑
σ∈Sm

(−1)e(σ)

m2
(
m−1
e(σ)

)Xσ−1(I)
t ,

which concludes the proof.

A.1.3 Construction for calculating moments

Continuing Subsection 2.4.2, we would like to calculate the moments of Zmt ,
m ∈ N, t > 0, using the formula for the expected value of

[
Y 1,m̃
t

]
m,m̃

given
in Theorem 2.4.10. Now we �x m ∈ N and drop the dependence of Zm on
m again from the notation, i. e. we want to calculate

E
(

(Z1
t )k1 · · · (ZNt )kN

)
,

where we recall that Zkt denotes the kth coe�cient of Zt with respect to
the Hall basis PH = {f1, . . . , fN} of gmd,1 and k1, . . . , kN are natural num-

bers. Note that the (k1, . . . , kN )-moment of Zt is contained in E
([
Y 1,m̃
t

]
m,m̃

)
provided that k1 deg(f1) + · · · + kN deg(fN ) ≤ m̃. We can, however, not
directly extract the value, because we can only read out the coe�cients of
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Symbol De�nition Generic element degree
A

⋃∞
n=0 {0, . . . , d}

n I = (i1, . . . , ik) deg
Ã

⋃∞
n=0 {1, . . . , N}

n J = (j1, . . . , jr) d̃eg
NN K = (k1, . . . , kN ) d̃eg

Table A.1: Multi-index sets

E
([
Y 1,m̃
t

]
m,m̃

)
with respect to the Poincaré-Birkho�-Witt basis. In this sub-

section we shall show that e�cient calculation of the moments of Zt given
E
([
Y 1,m̃
t

]
m,m̃

)
is possible.

Fix m̃ ≥ m and let (· , ·) denote the unique inner product on Am,m̃d,1 such
that the Poincaré-Birkho�-Witt basis is an orthonormal basis with respect
to (· , ·). For J = (j1, . . . , jr) ∈ Ã with j1 ≥ · · · ≥ jr and d̃eg(J) ≤ m̃, let

(A.7) V J
t =

([
Y 1,m̃
t

]
m,m̃

, fj1 · · · fjr
)
.

Equation (A.7) is an equation in Am,m̃d,1 and we are allowed to omit the [·]m,m̃
in [fj1 ]m,m̃ · · · [fjr ]m,m̃ by appealing to the isomorphism between Am,m̃d,1 and
U(gmd,1)/ 〈deg > m̃〉. The quantities E(V J

t ) will be considered as known and
we will use them to calculate the moments of Zt. But �rst we will still have
to add some shorthand notations.

The set NN will also be an important class of multi-indices for us and we
will denote the generic element of NN by

K = (k1, . . . , kN ) ∈ NN .

By abuse of notation, we de�ne the degree d̃eg also on NN by setting

d̃eg(K) = d̃eg((k1, . . . , kN )) = k1 deg(f1) + · · ·+ kN deg(fN ).

Table A.1 shows the sets of multi-indices, which we have de�ned so far.
In the same fashion as the de�nition of Am, we introduce Ãµ and NNµ ,

Am = { I ∈ A | deg(I) ≤ m } ,

Ãµ =
{
J ∈ Ã

∣∣∣ d̃eg(J) = µ
}
,

NNµ =
{
K ∈ NN

∣∣∣ d̃eg(K) = µ
}
.

Note, however, that we replaced the �≤� by an �=� in the de�nitions of Ãµ
and NNµ . A multi-index J ∈ Ã is called ordered if j1 ≥ j2 ≥ · · · ≥ jr. This
name is justi�ed by the Poincaré-Birkho�-Witt theorem, Proposition 2.4.5,
according to which the basis of the universal enveloping algebra can be in-
dexed by the ordered multi-indices J ∈ Ã � in terms of the Hall basis. Let
us write Ãoµ for all ordered multi-indices in Ãµ.



162 APPENDIX .

For J, J ′ ∈ Ãm̃ such that J , but not necessarily J ′ is ordered, let

(A.8) βJJ ′ =
(
fj′1 · · · fj′s , fj1 · · · fjr

)
,

where J ′ = (j′1, . . . , j
′
s). By Lemma 2.4.9, the coe�cients of Y m,m̃ de�ned in

equation (A.7) satisfy, for J ∈ Ãm̃ ordered,

V J
t =

∑
J ′=(j′1,...,j

′
s)∈Ãm̃

1
s!
βJJ ′Z

j′1
t · · ·Z

j′s
t(A.9)

=
∑
K∈NNm̃

αJK(Z1
t )k1 · · · (ZNt )kN ,

where

(A.10) αJK =
∑

J ′=(j′1,...,j
′
s)∈Ã

χ1(J ′)=k1,...,χN (J ′)=kN

1
s!
βJJ ′ , J ∈ Ãom̃, K ∈ NNm̃,

with χl(J) = # { 1 ≤ k ≤ r | jk = l } for l = 1, . . . , N and any J ∈ Ãm̃.
Remark A.1.6. Note that the functions χl, l = 1, . . . , N , provide a one-to-one
correspondence between Ãoµ and NNµ . More precisely, the map

χ = (χ1, . . . , χN ) : Ãoµ → NNµ

is bijective.

To get a better idea of where we are heading to, let us rewrite the sys-
tem (A.9) of linear equations in a more compact matrix form

(A.11) Vt = AZ∗t ,

where Vt denotes the vector of all coe�cients V J
t , A denotes the (square)

matrix of all αJKs, and Z
∗
t denotes the vector of polynomials in Zt �of degree

less than m̃�, i. e.

Vt = (V J
t )J∈S

1≤µ≤m̃ Ãoµ
,

A = (αJK)J∈S
1≤µ≤m̃ Ãoµ, K∈

S
1≤µ≤m̃ NNµ

,

Z∗t =
(
(Z1

t )k1 · · · (ZNT )kN
)
K∈

S
1≤µ≤m̃ NNµ

.

Our quantity of interest is given by

E(Z∗t ) = A−1E(Vt),

and E(Vt) is assumed to be given. Therefore, we want to show that A can
be inverted in an e�cient way.
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Lemma A.1.7. Given J = (j1, . . . , jr) ∈
⋃

1≤µ≤m̃ Ãoµ and K =

(k1, . . . , kN ) ∈
⋃

1≤µ≤m̃NNµ as before. If d̃eg(J) 6= d̃eg(K), then αJK = 0.

Proof. We claim that βj1,...,jr
j′1,...,j

′
s

= 0 if J ′ = (j′1, . . . , j
′
s) ∈ Ã with d̃eg(J ′) 6=

d̃eg(J). Indeed, expanding a polynomial fj′1 · · · fj′s in the Poincaré-Birkho�-
Witt basis is done using an algorithm, which, at each step, expresses some
polynomial

fl1 · · · flqflq+1 · · · flp = fl1 · · · flq+1flq · · · flp + fl1 · · · [flq , flq+1 ] · · · flp ,

where flq < flq+1 . [flq , flq+1 ] is a linear combination of Hall-polynomials (or 0
by nil-potency). By this operation, neither the degree nor the length nor the
partial length with respect to any letter is changed. Therefore, the coe�cient(
fj′1 · · · fj′s , fj1 · · · fjr

)
= 0 for any such J ′ with d̃eg(J ′) = d̃eg(K) 6= d̃eg(J),

which shows that αJK = 0 by (A.10). See Reutenauer [67, Section 4.2] to
learn more about the algorithm.

If we arrange the rows and columns of the matrix A according to the
degree, i. e. such that higher rows and further left columns correspond to
smaller degrees, then, according to Lemma A.1.7, A has the form of a block
diagonal matrix. More precisely, with Aµ =

(
αJK
)
J∈Ãoµ, K∈NNµ

, µ = 1, . . . , m̃,
we have

(A.12) A = diag(A1, . . . , Am̃) =

A1

. . .
Am̃

 .

Of course, a block diagonal matrix is invertible if and only if all of the blocks
on the diagonal are invertible. So we are left with studying invertibility of
many smaller matrices. Note, that in some sense we got rid of m̃: if we want
to express a monomial in (Z1

t , . . . , Z
N
t ) of d̃eg-degree µ in terms of a linear

combination of V J
t s, then we need to invert the matrix Aµ. Actually, in the

proof of Lemma A.1.7, we have also shown the following

Lemma A.1.8. Given J = (j1, . . . , jr) ∈ Ãoµ, K = (k1, . . . , kN ) ∈ NNµ ,
1 ≤ µ, such that

∃a ∈ A : |fj1 · · · fjr |a 6=
∣∣fkNN · · · fk1

1

∣∣
a
.

Then αJK = 0.

Under the assumptions of Lemma A.1.8 it is easy to see that

µ = 2 |fj1 · · · fjr |e0 +
d∑
i=1

|fj1 · · · fjr |ei .
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For �xed (l0, . . . , ld) ∈ Nd+1 with 2l0 + l1 + · · ·+ ld = µ, let

(A.13) Al0,l1,...,ldµ =
(
αJK
)
,

where J runs over all multi-indices in Ãoµ with |fj1 · · · fjr |e0 =
l0, . . . , |fj1 · · · fjr |ed = ld and K runs over all multi-indices in NNµ with

|fk1
1 · · · f

kN
N |e0 = l0, . . . , |fk1

1 · · · f
kN
N |ed = ld. Then, again after rearrang-

ing the columns and rows, we have

(A.14) Aµ = diag
(
Al0,...,ldµ

∣∣∣ (l0, . . . , ld) ∈ Nd+1, 2l0 + l1 + · · ·+ ld = µ
)

and invertibility of Aµ is equivalent to invertibility of all the Al0,...,ldµ .
Fix 1 ≤ µ and (l0, . . . , ld) ∈ Nd+1 with 2l0 + l1 + · · · + ld = µ. In

order to study the structure of Al0,...,ldµ , we introduce another grading on the
Poincaré-Birkho�-Witt polynomials and thus on the whole algebra U(gmd,1):
The bracket degree deg[ ] counts the number of Lie brackets appearing in the
de�nition of a Poincaré-Birkho�-Witt polynomial. More precisely, deg[ ] is
recursively de�ned: for a letter a ∈ A set deg[ ](a) = 0, for a Hall word
h ∈ H with standard factorization h = h′h′′ set deg[ ](Ph) = 1+deg[ ](Ph′)+
deg[ ](Ph′′), and for a Poincaré-Birkho�-Witt polynomial fj1 · · · fjr , j1 ≥
· · · ≥ jr set deg[ ](fj1 · · · fjr) = deg[ ](fj1)+ · · ·+deg[ ](fjr). For convenience,
we also de�ne deg[ ](0) = +∞. The following lemma shows that deg[ ] is
consistent with our interpretation of counting Lie brackets in the sense that
the bracket degree of the bracket of two polynomials is always greater than
the sum of their bracket degrees.

Lemma A.1.9. Given fj , fl ∈ PH and write [fj , fl] =
∑k

r=1 γrfir with
γr 6= 0, for all r ∈ {1, . . . , k}. Then

∀r ∈ {1, . . . , k} : deg[ ](fir) > deg[ ](fj) + deg[ ](fl).

Proof. Let fj = Ph and fl = Pk for Hall words h, k ∈ H. We prove the
claim by induction on the pair (h, k) which is equipped with lexicographic
order, i. e. (h1, k1) < (h2, k2) if and only if either |h1|+ |k1| < |h2|+ |k2| or
|h1| + |k1| = |h2| + |k2| and additionally sup(h1, k1) < sup(h2, k2) for Hall
words h1, h2, k1, k2. The smallest pairs (h, k) with respect to this order are
pairs of letters, and for them the claim is obvious. Now assume the claim to
be proven for all pairs smaller than (h, k). We may assume that h < k. We
distinguish between three cases.
(i) If h is a letter, then hk is a Hall word with standard factorization hk.
Thus, [fj , fl] = Phk and deg[ ]([fj , fl]) = deg[ ](Phk) = deg[ ](fj)+deg[ ](fl)+1
by de�nition, which shows the claim.
(ii) If h is a Hall word with standard factorization h′h′′, such that h′′ ≥ k,
then hk again is a Hall word with standard factorization hk and we proceed
as in (i).
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(iii) Otherwise, we may assume that h = h′h′′ is a Hall word but not a letter
and h′′ < k. By Lemma 2.4.1, h < h′′ < k and by the Jacobi identity we
have

[Ph, Pk] = [[Ph′ , Ph′′ ], Pk] = [[Ph′ , Pk], Ph′′ ] + [Ph′ , [Ph′′ , Pk]].

Since |h′| , |h′′| < |h| we can apply the induction hypotheses to get

[Ph′ , Pk] =
∑
i

λiPui , [Ph′′ , Pk] =
∑
j

µjPvj ,

for some non-zero numbers λi and µj and Hall words ui and vj such that

deg[ ](Pui) > deg[ ](Ph′) + deg[ ](Pk)

deg[ ](Pvj ) > deg[ ](Ph′′) + deg[ ](Pk).

Furthermore, the proof of Reutenauer [67, Theorem 4.9] shows that

|ui| =
∣∣h′∣∣+ |k| |vj | =

∣∣h′′∣∣+ |k|
u′′i ≤ sup(h′, k) v′′j ≤ sup(h′′, k),

implying that (ui, h′′) < (h, k) and (vj , h′) < (h, k), as well. By the induction
hypothesis,

[Pui , Ph′′ ] =
∑
ν

λiνPuiν ,

[Ph′ , Pvj ] =
∑
κ

µjκPvjκ ,

λi,ν , µjκ 6= 0, where for any i, j, ν, κ,

deg[ ](Puiν ) > deg[ ](Pui) + deg[ ](Ph′′) > deg[ ](Ph′) + deg[ ](Pk) + deg[ ](Ph′′),

deg[ ](Pvjκ) > deg[ ](Pvj ) + deg[ ](Ph′) > deg[ ](Ph′′) + deg[ ](Pk) + deg[ ](Ph′)

Since deg[ ](Ph) = deg[ ](Ph′) + deg[ ](Ph′′) + 1, we can conclude that

deg[ ](Puiν ) > deg[ ](Ph) + deg[ ](Pk),

deg[ ](Pvjκ) > deg[ ](Ph) + deg[ ](Pk).

By

[Ph, Pk] =
∑
i

λi[Pui , Ph′′ ] +
∑
j

µj [Ph′ , Pvj ] =
∑
i,ν

λiλiνPuiν +
∑
j,κ

µjµjκPvjκ ,

we have proved the induction hypothesis for h, k.
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Now de�ne deg[ ] for multi-indices J = (j1, . . . , jr) ∈ Ãoµ and K =
(k1, . . . , kN ) ∈ NNµ by deg[ ](J) = deg[ ](fj1 · · · fjr) and deg[ ](K) =
deg[ ](f

kN
N · · · f

k1
1 ) and rearrange the rows and columns in the matrix Al0,...,ldµ

accordingly.

Lemma A.1.10. Given J = (j1, . . . , jr) ∈ Ãoµ, K = (k1, . . . , kN ) ∈ NNµ , µ ≥
1 and 2l0 + l1 + · · ·+ ld = µ, and assume that |fj1 · · · fjr |ej = |fkNN · · · f

k1
1 |ej =

lj for j = 0, . . . , d.
(i) If deg[ ](K) > deg[ ](J) then αJK = 0.
(ii) If deg[ ](K) = deg[ ](J) then

αJK 6= 0 ⇐⇒ αJK = 1 ⇐⇒ J = (N, . . . , N︸ ︷︷ ︸
kN

, . . . , 1, . . . , 1︸ ︷︷ ︸
k1

).

Proof. Part (i) is clear by the algorithm performing the expansion of
a polynomial in terms of the Poincaré-Birkho�-Witt basis together with
Lemma A.1.9 (interchanging Hall words produces a higher bracket degree).

Given deg[ ](J) = deg[ ](K) and assume that J 6=
(N, . . . , N︸ ︷︷ ︸

kN

, . . . , 1, . . . , 1︸ ︷︷ ︸
k1

). By the same argument as for part (i) we get

αJK = 0.
Now assume J = (N, . . . , N︸ ︷︷ ︸

kN

, . . . , 1, . . . , 1︸ ︷︷ ︸
k1

). By de�nition,

αJK =
∑

J ′=(j′1,...,j
′
s)∈Ã, gdeg(J ′)=gdeg(K)

χ1(J ′)=k1,...,χN (J ′)=kN

1
s!
βj1,...,jr
j′1,...,j

′
s

=
1
k!

∑
σ∈Sk

βj1,...,jrjσ(1),...,jσ(k)︸ ︷︷ ︸
=1

= 1,

where Sk is the group of permutations of {1, . . . , k}.

Lemma A.1.10 shows that Al0,...,ldµ is a triangular square matrix whose
diagonal entries are equal to 1. Lemmas A.1.7, A.1.8 and A.1.10 together
give the following theorem.

Theorem A.1.11. Fix a natural number m̃ ≥ m. Then the matrix A given
in (A.11) is a block diagonal matrix

A = diag
({

Al0,...,ldµ

∣∣∣ 1 ≤ µ ≤ m̃, 2l0 + l1 + · · ·+ ld = µ
})
.

Each block Al0,...,ldµ is, in turn, a triangular square matrix with non-zero
diagonal entries. Thus, A is invertible (and the inversion is feasible even
for high dimensions).
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A.2 Notations

(A,D(A)) The unbounded operator A with domain D(A)
〈A〉R The linear span of A over the �eld R, sometimes also the free

R vector space generated by A
〈A〉R If A is a set and R a ring, then 〈A〉R denotes the R-module

generated by A
A Topological closure of a set A
Ac Complement of the set A
∂A Boundary of the set A, i. e. ∂A = A \ intA
Ad,1 Free algebra, see Subsection 2.1.2
Amd,1 Free nilpotent algebra, see De�nition 2.1.9
BI
t Ith iterated Itô-Stratonovich integral of B, see De�ni-

tion 2.1.3
B(x, ε) Ball of radius ε around x
C(F ;G) Set of all continuous functions F → G
C(F ) C(F ;R)
Cmb (F ;G) Set of all m-times di�erentiable bounded functions
C∞(F ;G) Set of all smooth functions F → G
C0([0, T ];Rd) Wiener space, i. e.

{
f ∈ C([0, T ];Rd)

∣∣ f(0) = 0
}
.

C∞b (Rn) Set of in�nitely di�erentiable bounded functions
convA Convex hull of the set A
coneA Convex cone generated by the set A
coneA Closed cone hull generated by A
D(Ak) kth Sobolev space, see De�nition 1.2.14
∆t Canonical dilatation, see (2.7)
deg Degree function counting 0s twice, see De�nition 2.1.2
eI See Remark 2.1.7
e[I] See (2.10)
esupp Extended support in the sense of (3.3)
‖f‖∞ Supremum norm of a function f
gmd,1 Free nilpotent Lie algebra, see De�nition 2.1.13
Gmd,1 Free nilpotent Lie group, see De�nition 2.1.13
Id d-dimensional identity matrix
idH Identity map H → H
intA Interior of the set A
L(H) Space of bounded linear operators on the Banach space H
riA Relative interior of the set A
ρ(A) Resolvent set of the operator A
R(λ,A) Resolvent map of A at λ ∈ ρ(A)
suppµ Support of the measure µ
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VI See (2.27)
V[I] See (2.28)
X∗P Image measure of the probability measure P under the ran-

dom variable X, i. e.
∫
f(x)(X∗P )(dx) =

∫
f(X(ω))P (dω)

X ∼ Y The random variables X and Y have the same law
X ∼ N (m,C) The random variable X has a normal distribution with mean

vector m and covariance matrix C
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