
Master’s Thesis

Maintainability Aspects of the
Website Development Life

Cycle

carried out at the

Information Systems Institute
Distributed Systems Group

Technical University of Vienna

under the guidance of
Univ.Prof. Dr. Schahram Dustdar

and
Univ.Ass. Dipl.Ing. Dr. Clemens Kerer

and
Univ.Ass. Dipl.Ing. Martin Vasko

as the contributing advisors responsible

by

Markus Krumpöck
Kogelweg 11, 2631 Sieding

Matr.Nr. 9571186

Vienna, August 2008

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

i

0.1 Abstract

The development of websites often happens in an “ad hoc” manner. There-
fore changes in requirements (for example a graphic redesign) often lead to a
complete rebuild from scratch. To make things even worse, websites and web
applications are, due to a highly dynamic web, more often object of changes,
compared to classical software for the desktop, since they not only consist of
software but also content and the rollout of changes is much more easy. The
variety of programming languages and technologies for the development of
dynamic web applications and the availability of many different frameworks
and template engines make things more complicated.

Therefore the goal of this thesis is to develop some “best practices” and
guidelines for how to design and implement websites for maintainability in
order to create websites with a long lifetime without doing complete rebuilds.

The thesis will try to clarify which main points should be considered when
designing a website for maintainability and scalability in informational archi-
tecture, layout, web applications and so on and to keep the effort to maintain
a website within a reasonable extend. Additionally, it should be possible to
add new functionality easily without the need for a complete change in the
architecture.

In this thesis we will try to demonstrated how maintainability has been
achieved in a real world case study done between 2003 and 2008, which con-
sisted of about 6.700 documents after the redesign for maintainability based
on these guidelines in 2003 and has increased to more than 55.000 documents
nowadays in 2008.

ii

0.2 Zusammenfassung

Die Entwicklung von Websites geschieht in vielen Fällen noch immer “ad-
hoc”. Daraus resultiert, dass Änderungen in den Anforderungen (etwa ein
grafisches Redesign) oftmals zu einer völligen Neuimplementierung führen.
Erschwerend kommt hinzu, dass Websites und Webapplikationen aufgrund
der hohen Dynamik des Webs wesentlich häufiger Änderungen unterworfen
sind als klassische Software für den Desktop, da diese nicht nur auf Soft-
ware bestehen sondern auch aus Inhalten und Änderungen wesentlich ein-
facher ausgerollt werden können. Die Vielfalt an verschiedenen Programmier-
sprachen und Technologien für die Implementierung dynamischer Webapp-
likationen sowie die Verfügbarkeit verschiedenster Frameworks und Template
Engines verkomplizieren die Situation zusätzlich.

Daher ist es Ziel dieser Diplomarbeit die Erstellung von “Best Practices”
und eines Leitfadens, wie man besser wartbare Websites konzipieren und im-
plementieren kann.

Diese Arbeit wird versuchen welche Hauptpunkte bei der Konzipierung einer
Website hinsichtlich Wartbarkeit und Skalierbarkeit hinsichtlich der Informa-
tionsarchitektur, des Layouts, der Webapplikationen usw. zu berücksichtigen
sind und wie die Wartung mit vertretbarem Aufwand durch- geführt werden
kann. Neue oder zusätzliche Funktionalität sollte hinzugefügt werden können
ohne dass eine komplette Änderung der Architektur notwendig ist.

In dieser Arbeit möchte ich zeigen wie Wartbarkeit in einer von 2003 bis
2008 durchgeführten Fallstudie erreicht wurde, wobei die Website nach dem
Redesign basierend auf diesen Leitlinien aus etwa 6.700 Dokumente bestand
und mittlerweile (Stand Juni 2008) auf über 55.000 Dokumente angewachsen
ist.

iii

Contents

0.1 Abstract . i
0.2 Zusammenfassung . ii

1 Problem Description 1
1.1 Problem Definition . 1
1.2 Motivation . 2
1.3 Organization of this Thesis . 3

2 Review of the state of the art / Related Work 4
2.1 Programming Languages and Technologies 4
2.2 Template Engines . 4
2.3 Frameworks . 7

2.3.1 MVC Frameworks for the Web 7
2.3.2 Presentation Frameworks 10

2.4 Web Content Management Systems / Wikis 11
2.5 Rich Internet Applications . 13
2.6 Model Driven Architecture (MDA) 13

3 Definitions 15
3.1 Maintainability . 15
3.2 Portability . 17
3.3 Scalability . 17

3.3.1 Horizontal Scalability 18
3.3.2 Vertical Scalability . 18

3.4 Reusability . 18
3.5 Usability . 18
3.6 Accessability . 19

4 Development Life Cycle 21
4.1 Concepts and Patterns . 21
4.2 Informational Architecture . 24
4.3 Realization of the Layout . 30
4.4 Implementation . 32

4.4.1 Static vs. Dynamic Web Pages 33
4.4.2 Architecture for Static Generation 36
4.4.3 Repository for Media - Filesystem vs. Database 38
4.4.4 Business Logic . 40

4.5 Testing . 41
4.6 Deployment . 42

iv

4.7 Operating, Monitoring . 43

5 Case study 45
5.1 Problems before the Redesign 45
5.2 Goals and Non-Goals . 47
5.3 Data Migration . 50
5.4 Informational Structure and Layout 53
5.5 Implementation . 54
5.6 Content Management and Deployment 56
5.7 Operating . 58
5.8 Statistical Data . 63
5.9 Additional new Functionality 64
5.10 Possible Improvements . 71

6 Summary and conclusion / Future Work 78
6.1 Summary . 78
6.2 Future work . 79

A List of Figures, Tables and Listings 81

1

1 Problem Description

1.1 Problem Definition

In the past it has been a common practice to implement websites in an “ad
hoc” manner, due to a document centered view instead of using an overall
concept. Since websites are growing fast and becoming more and more com-
plex the results of the development process are often thrown away and the
website is completely rebuilt from scratch. Instead, it would be more cost
efficient to design and implement websites from the beginning with focus on
maintainability, especially since website are a matter of frequent changes.

Unfortunately, maintainability is a non-functional requirement, and there-
fore often is not seen by the customer as a necessary characteristic, because
it does not change the behaviour or look of the website or web application,
but only causes additional costs - at least in the short term. So in general
it takes some work to convince the customer to design for maintainability
which will produce higher initial costs but will be more cost efficient in the
long term.

Another problem is that websites are often optimized for a “nice look” -
in the worst case even for a certain browser version or screen resolution, so
they are optimized for the customer’s perception. For example if the cus-
tomers wants to use a certain font which is not widely used the text elements
have to be implemented as graphics which are hard to maintain - each time
you want to change the labeling you have to generate a new graphic instead
of simply changing the text.

To make things worse, there are a lot of different and maybe incompatible
technologies, like programming languages, template engines and frameworks,
content management systems and so on which complicates it to build a main-
tainable system based on a common concept.

There are a lot of other examples what can wrong in order to make a web-
site hard to maintain, e.g. copying the same element (graphic, style, code,
content, navigation,) again and again instead of reusing it, or mixing up
style and content, so they can not be exchanged without bothering the other,
and so on. Therefore one of the goals of this thesis to focus on the things
that can go wrong, how to avoid them and to present some best practices in
order to have a guideline when designing and implementing websites.

1.2 Motivation 2

1.2 Motivation

Various studies [1] have shown that that the costs for the maintenance phase
in software engineering typically has been around two third of the overall
costs in the past, but even can be more than 90 percent.

Since websites are changed more frequent than classical software for the desk-
top because they not only consist of software, but also documents, images,
audio, video and other media content, informational infrastructure, layout
and so on the percentage may be even higher for websites.

Therefore the goal would be to decrease the cost for the maintenance phase.
This thesis will show some techniques and concepts in order to reduce the
effort for maintenance and therefore costs.

To implement maintainable websites may only be useful if the site a cer-
tain size (e.g. measured in number of documents) and if it is used over a
longer period in time. A website with only a few documents (maybe smaller
than 50) or a short lifetime (e.g. only for one event like a concert or election)
may not be designed for maintainability because it adds overhead in effort
for design and implementation and therefore additional costs.

To decide when to design a website for maintainability one has to compare
the cost estimation without design for maintainability against cost estimation
with design for maintainability over the total lifetime of the website (that is,
the TCO, Total Cost of Ownership over the whole lifetime). Of course this
is not only a decision for the hole site, but also for every single additional
feature where you can decide to prepare it for modifications or assume that
it will not be changed in the future.

Bommer et al. ([2], pp. 39-40) say in their book about software mainte-
nance that it is always a bet whether it pays off or not on the long term
to invest effort for quality characteristics of software, but you have to take
this bet into account if your are a project manager, whether you would like
to or not. In the long term it will always pay off to invest in quality issues
like preparing the software for the maintenance phase initially, because such
issues can only hardly be added after the design, but rather every design
decision has to take into account the effects regarding maintenance.

Another advantage of designing for maintainability is the possibility for reuse
of some parts (mainly business or presentation logic, but also layout, infor-

1.3 Organization of this Thesis 3

mational structure, ...) in other projects.

Designing for maintainability also offers better support for a distributed
development with distributed role. In bigger web projects usually differ-
ent people with different knowledge and abilities work together, for exam-
ple graphic designers, programmers, content managers, administrators, cus-
tomer, project manager so on. When separating the different layers (layout,
business logic, content, ...) you get the possibility to change one layer with-
out bothering the other, so each role can change its artefacts independent
of the other role - the only thing which has to be defined are the interfaces
between the different layers.

1.3 Organization of this Thesis

This master’s thesis is organized as follows:

Chapter 2 discusses the state of the art in web engineering and technolo-
gies for website and web application development as well as related work.

Chapter 3 provides definitions for maintainability, reusability, scalability, us-
ability and accessability.

Chapter 4 discusses the single steps and tasks in the website development
life cycle and what should be taken care of regarding maintainability.

Chapter 5 presents a real world case study done from 2003 to 2008, which
has been designed and implemented with focus on maintainability, scalabil-
ity, usability and performance.

Chapter 6 presents a summary and suggestions, what further could be done
to improve maintainable website development.

4

2 Review of the state of the art / Related

Work

2.1 Programming Languages and Technologies

Websites and web applications nowadays are based on client side technolo-
gies like (X)HTML, WML, DHTML, CSS, Java Script, Flash, Java Applets
and server side technologies. The latter can be distinguished in scripting
languages like PHP, PERL, Python and Ruby or precompiled languages like
Java or the ones based on ASP.NET (C#, VB.NET). XML and XLST could
be in use either on the client side or on the server side, but mainly is used
for transformation of content in XML format in other output formats like
XHTML, WML or PDF with help of a XLST transformation on the server
side, due to poor support for XLST by the browser suppliers.
The Common Gateway Interface (CGI) [3] defines an interface for server
sided applications between the web server and the external application, usu-
ally written in one of the scripted languages above. The main disadvantage
of this technology is the low performance, because every CGI call from the
browser is executed in a new process, the script is interpreted every time once
again, databases connections have to be reestablished for every call and so on.

To avoid this disadvantages there have been implemented several other tech-
nologies, for example modules which can be integrated in the web server
process (e.g. mod perl and mod python for the Apache web server) which
are loaded only once when the web server starts up instead of loading them for
every client request, or precompiled technologies based on the Java technol-
ogy (JSP, Servlets, Java Server Faces, ...), which are compiled automatically
only once after a modification in the source code and can reuse database
connections over several calls (“persistent connections”).

Most template engines, content management systems and frameworks for
web applications use one or more of the technologies and languages described
above.

2.2 Template Engines

In order to separate the content from the business logic, template engines
have been implemented, which are able to process templates with placehold-
ers for variables or files to include.

2.2 Template Engines 5

The templates may be written in one of the common languages for web
applications or they may have their own syntax - depending on the engine.
The advantage of having the same programming language for the templates
and the business logic is, that you don’t have to learn a new language, but
the disadvantage is that it is more easy to mix up content and business logic.
In addition, the syntax of the template engine may be easier to learn for
webdesigners which only have knowledge of HTML, CSS or Javascript, but
are no programmers.

[4] gives an overview of different template engines, the programming lan-
guages they use and a comparison of the functionality they offer.

Examples for popular template engines are:

• Smarty (PHP) [5]

• Template Toolkit ([6], [7]); Mason (PERL)

• Webmacro (Java)

Some template engines also offer the functionality to generate the output
(which may be in several formats, like HTML and PDF) as static documents
for all documents of a website, while for other you have to create a wrapper
if you want to get a static version of all the final documents. The advan-
tage of having static copies of the generated output is an improvement in
performance, because the documents have to be processed only once after a
modification and not for every request for the document. Template engines
may also offer dynamic caching functionality.

A template for the Template Toolkit may look like the following example:

Listing 1: Sample template for the Template Toolkit

1

2 [% INCLUDE header t i t l e=” S e l e c t a j ou rna l ” %]
3 . . .
4 <tr>

5 <td>

6 <select name=j ou r n a l i d >

7 [% FOREACH jou rna l = j ou rna l s −%]
8 <opt ion value=”[% jou rna l . id %]”
9 [% IF formdata . j o u r n a l i d == jou rna l . id %]

10 s e l e c t e d=” s e l e c t e d ”

2.2 Template Engines 6

11 [% END −%]>[% jou rna l . d e s c r i p t i o n %]</option>

12 [% END %]
13 </select>

14 </td>

15 . . .
16 [% INCLUDE f o o t e r %]

The calling PERL code may look like this:

Listing 2: Calling PERL code for the Template Toolkit

1 #!/ usr / b in / p e r l
2

3 print ”Content−type : t ex t /html\n\n” ;
4

5 use CGI : : Carp qw(fata l sToBrowser) ;
6 use CGI ’ : standard ’ ;
7 use Template ;
8

9 my $template = Template−>new () ;
10

11 my %formdata ;
12 $formdata{ ’ j o u r n a l i d ’} = param(” j o u r n a l i d ”) ;
13

14 # ge t l i s t o f hashes , where each entry has a id an a d e s c r i p t i o n
15 my @journals = getJournals f romDatabase () ;
16

17 my %data = (
18 j o u rna l s => \@journals ,
19 formdata => \%formdata
20) ;
21

22 $template−>proce s s (’ template ’ , \%data)
23 | | die ”Template p roce s s f a i l e d : ” , $template−>e r r o r () , ”\n” ;
24 %%\end{verbatim}

The INCLUDE keyword includes another HTML file, where title is a variable
in the included HTML file, so the same header file may be reused for different
purposes. The PERL code is the program which is called from the browser via
CGI, gets the data from the database and passes the values to the template
where they are displayed in a loop via the FOREACH statement.

2.3 Frameworks 7

2.3 Frameworks

The Frameworks described below may be based either directly on a common
programming language for web applications or on a template engine.

[8] gives an overview of the most common frameworks for web applications
and a comparison of features, e.g. if they support AJAX, the Model-View-
Controller design pattern (MVC), internationalization (i18n) and localization
(l10n), object relational mapping (ORM), template engines, caching, form
validation and several other features.

2.3.1 MVC Frameworks for the Web

In order to separate the three different layers - content (Model), layout (View)
and business logic (Controller) a lot of frameworks have been implemented
which support the MVC design pattern, so it is easier to modify one layer
without affecting the two others.

The MVC pattern was first described in 1979 [9] by Trygve Reenskaug, when
working on Smalltalk at Xerox PARC. The original implementation is de-
scribed in [10].

[11] gives an overview of common frameworks for the web which uses sepa-
ration of concerns via the MVC pattern.

The most important MVC frameworks grouped by concept for the web
namely are:

Java - Model 2

When using Java for implementing the view Java Server Pages (JSP) have
been used in the beginning. The so called “Model 1” approach uses JSP for
the view, but also includes the controller in the same page(s). For the model
JavaBeans are used.

The “Model 2” architecture (see figure 1 on page 8) tries to separate the
controller and view by using Java Servlets for the controller and only JSP
for the view, the model is still implemented as JavaBean.

One framework that uses the Model 2 architecture is Apache Struts [13], but

2.3 Frameworks 8

Figure 1: Java Model 2 approach

also frameworks implemented in other programming languages like Struts4PHP
[14].

An in detail description of the Model 2 approach can be found at [12]

Frameworks based on XLST and XML / Model 2X

These frameworks highly make usage of XML - XML files are transformed
into a final output format by using an XLST stylesheet. When using several
different XLST sheets the output can be generated in various different for-
mats and layouts (e.g. for printing, for display on screen, as PDF document,
as HTML document,), always using the same XML content as input.

Apache Cocoon ([15], [16], [17]) uses a pipelining mechanism, where a XML
file and its content can be processed and transformed into another XML
structure which is pipelined into another transformer, so in every step a
transformation of the content may be done by another processor, for ex-
ample one processor for reading files, one for accessing a database, one for
adding data from a webservice and so on. Figure 2 on page 9 shows an
example for processing XML data by using a Cocoon pipeline [18].

For a short overview of Apache Cocoon also see my paper published in the
Linux Magazine [19]. Frameworks with similar concepts are:

• StrutsCX [20], MyXML [21] (Java)

• Apache AxKit [22] (PERL)

2.3 Frameworks 9

Figure 2: Cocoon XML pipelining mechanism

Figure 3: Model 2 X approach using XLST instead of JSP

The “Model 2X” approach [23] tries to replace the JSP from the “Model 2”
approach described above by XLST, as implemented in StrutsCX [20] for ex-
ample (see figure 3 on page 9). The main advantage is to have also business
and presentation logic separated from each other.

Java Server Faces and related

JavaServer Faces (JSF) [24] is a framework for the development of user in-
terfaces for web applications based on Servlets and Java Server Pages (JSP).
JSF uses a component-based approach where the state of UI components is
saved when the client requests a new page and then is restored when the
request is returned. By default JSF uses JavaServer Pages for the view but
can also make use of other technologies like XUL. Pages are not written in

2.3 Frameworks 10

HTML as with JSP but as higher level components instead.

Based on JSF there are libraries which offer a set of reusable components like
drop down menus, calendars, registers, trees, pageable sortable tables, form
validation, WYSIWYG-Editor, like Apache MyFaces (Trinidad, Tabago, Tom-
ahowk, ...) [25]

Ruby on Rails and related

Rails [26] is an open source framework implemented in Ruby for rapid devel-
opment of database-backed web applications according to the Model-View-
Control pattern, which is reached by using concepts and patterns like “Don’t
Repeat Yourself” (DRY), “convention over configuration” and “scaffolding”.

Convention over configuration means an end to verbose XML configuration
files - there aren’t any in Rails. Instead of configuration files, a Rails ap-
plication uses a few simple programming conventions that allow it to figure
out everything through reflection and discovery. This is used for the object-
relational (OR) mapping for example - the name of a table should be the
same as the name of the object, so it only has to be defined once (don’t
repeat yourself), Rails can retrieve this information from the database.

Rails also provides a mechanism called “scaffolding” which means that it
can automatically construct some of the models and views needed for a basic
website for creating, reading, updating, and deletion (CRUD) of database
entries.

Similar frameworks to Ruby on Rails are:

• Grails [27] (implemented in Groovy, which is a scripting language based
on Java)

• Symfony [28], CakePHP [29] (PHP)

• Catalyst [30] (PERL)

• Grok [31] (Python / Zope)

2.3.2 Presentation Frameworks

(X)HTML/CSS frameworks

2.4 Web Content Management Systems / Wikis 11

(X)HTML/CSS frameworks provide templates for the implementation of the
layout of a website or web application, based on W3C web standards and well
tested with several common browsers. “‘Yet Another Multicolumn Layout”
(YAML) [34] and Mollio [35] are examples for such frameworks.

Frameworks for DHTML, AJAX and JavaScript

There exist several frameworks for easier development of client side script-
ing. The functionality they offer may be support for drag and drop, form
validation, auto completion search forms, animation, and so on.

Prototype [36] is a JavaScript Framework that aims to ease development of
dynamic web applications, featuring a unique, easy-to-use toolkit for class-
driven development and a AJAX library.

script.aculo.us [37] provides an easy-to-use, cross-browser user interface JavaScript
library for animation, drag and drop, AJAX controls, DOM utilities and unit
testing, as an an add-on to the Prototype framework.

jsVal [39] is a JavaScript program used for validating HTML Forms on the
client side. This allows HTML forms to be validated in the browser without
having to send a request to the server. For security reasons, input validation
always has be done on the server side in order to prevent any kind of injec-
tion through unverified and unsanitized user input, validation at client side
should only be used as a kind of “pre-validation” to give the user immedi-
ate feedback. On problem of this approach is that the form validation has
be maintained on client side and on server side, thus doubling the effort for
maintenance.

2.4 Web Content Management Systems / Wikis

Content Management Systems (CMS) are used to create, edit, manage, and
publish content on the web. Features they offer may be access control, ver-
sioning, support for workflow in order to allow controlling, revision and re-
lease for the public, ability for full text searches, a repository for several
different media types like images, audio and video files, PDF and Office doc-
uments, ability to enhance the functionality via plugins or extension, and so
on.

They may be directly implemented in one of the common programming lan-

2.4 Web Content Management Systems / Wikis 12

guages, or be based on a template engine or one or more of the frameworks
described above.

There are hundreds or even thousands of content management systems around,
either commercial or free open source, implemented in any of the common
languages for the web, with different sets of features.

The possibility for comparison of CMS gives [32], a list of common CMS
gives [33].

The reason why there are so many of them may be that every CMS is opti-
mized for a special purpose or customer, so it may be hard to find a system
which also fits the needs for the current project (e.g. the informational
structure may only support two levels in the hierarchy, the layout is fixed,
the business logic can not be extended, ...). On the other hand even if there
is a CMS which fits all your needs then it may have a lot of functionality
you don’t need for your project, so the software may be very complex and
hard to learn how to operate and use it. In addition because there a so many
content management systems it make take a long time to evaluate which one
fits your needs and once you have selected one to learn the administration
and usage of it - therefore CMS are often implemented from scratch for a
new project.

Wikis (from the Hawaiian word for “fast”) are similar to Content Manage-
ment Systems, but usually don’t have that rich set of features. Therefore
they are often used for intranets and as Knowledge Management systems,
but usually not for websites and web applications.

Some well known open source content management systems are:

• Typo3, Mambo / Joomla, Drupal, ez Publish, Midgard (PHP)

• Alfresco (Java)

• Apache Lenya, Daisy (Apache Cocoon / Java)

• Plone (Zope / Python)

• Bricolage (PERL)

2.5 Rich Internet Applications 13

2.5 Rich Internet Applications

One of the latest trends are frameworks and technologies to develop “rich in-
ternet applications” (RIA), which should offer the features and functionality
of traditional desktop applications. The advantage of this kind of applica-
tions is that there should be no or only little need for local installation but
having the same rich feature set as traditional desktop applications. In addi-
tion, some of this frameworks allow the applications to be run offline. Some
of this frameworks are around for some years, but most are quite new, so
their APIs are subject to change.

Frameworks for RIA are:

• Google Gears

• Adobe AIR , Adobe Flex

• Microsoft Silverlight (formerly WPF/E)

• Sun JavaFX

• Mozilla Prism, Mozilla WebRunner

• Java Web Start

• OpenLaszlo [38]

2.6 Model Driven Architecture (MDA)

The Model Driven Archticture (MDA) approach supports the automatic gen-
eration of code and other artefacts from a descriptive, platform independent
model (PIM) using an appropriate domain specific language, like the Uni-
fied Modeling Language (UML) or the Web Modelling Language (WebML),
in order to improve the quality of software and to reduce the development
effort and time.

On one hand the model is much more readable and therefore analyzable
then the source code itself and therefore may be also used as part of the
documentation or to communicate with the customer since it may be also
understood by non technical persons by using graphics. Therefore the func-
tonial expertise is separated from the technical expertise.

On the other hand it may allow to generate code for different environments
(platforms, frameworks and programming languages), therefore supporting

2.6 Model Driven Architecture (MDA) 14

portability and reusability by using the model as an additional abstraction
layer ([42], pp. 16).

One of the disadvantages is that this approach requires an high degree of
formalization of the specification in order to be able to generate code auto-
matically, which is not always easy to obtain, since the specification usually
is written in a natural language which is not precise and may be ambiguous.
Therefore usually not the hole code can be generated automatically - at least
not with reasonable effort, since an additional generator, sometimes called
cartridge, has to be implemented, which may not make much sense from an
economical point of view.

Depending on the used MDA tool the portion of automatically generated
code may be between 40 and 80 percent (see [41], page 173). Usually only
repetitive code (like definitions of classes, methods and interfaces, get- and
set-methods, methods for database access,) is generated automatically,
where the business logic or at least parts of it (depending on the MDA tool)
may have to be implemented manually. Therefore it is important to dis-
tinct between automated generated artefacts and manual artefacts ([40], pp.
10). There are different approaches to handle this - either the manual and
generated code may be completley separate or they may be mixed. In the
second case either the manual code is integrated in the generated code by
using added protected regions and user sections in the generated code. Or
the generated code may be integrated into the manual code by using include
and import mechanisms or by inheritance, depending on the artefacts (for
example HTML code or Java code) and the possibilities the releated frame-
works and technologies offer.

MDA was launched by the Object Management Group (OMG) which pro-
vides specifications, standards and guidelines, for example the MDA Guide
[43].

AndroMDA [45] is an Open Source MDA Generator but only supports Java,
openArchitectureWare [46] is a powerful open source generator framework
that can read any kind of model (XMI, XML, any textual representation)
and transform it in any kind of textual output. It has an explicit representa-
tion of the source metamodel, and uses templates to generate the output. The
target languages include C, C++, C#, Java, Perl, Python, Ruby, Javascript,
XSLT, JSP, PHP, ASP.NET, VB.NET and much more.

15

3 Definitions

According to ISO 9126 [47] there are six quality characteristics in software
engineering, where each of them includes several subcharacteristics:

• Functionality

• Reliability

• Usability

• Efficiency

• Maintainability

• Portability

3.1 Maintainability

The ISO 9126 standard defines “Maintainability” as follows:

A set of attributes that bear on the effort needed to make specified mod-
ifications. (ISO 9126: 1991, 4.5)

Modifications may include corrections, improvements or adaptation of soft-
ware to changes in environment, and in requirements and functional specifi-
cations. (ISO 9126: 1991, 4.5)

Subcharacteristics for Maintainability are:

• Analysability:
Attributes of software that bear on the effort needed for diagnosis of
deficiencies or causes of failures, or for identification of parts to be mod-
ified. (ISO 9126: 1991, A.2.5.1)

Examples of techniques which improve the analysability are the use
of well known design patterns, coding standards, use of comments,
providing up to date documentation and Refactoring.

• Changeability:
Attributes of software that bear on the effort needed for modification,
fault removal or for environmental change. (ISO 9126: 1991, A.2.5.2)

3.1 Maintainability 16

The environmental change may concern the software environment (for
example the operating system, the programming language, as well as
the hardware environment. Thus this may also imply design for Porta-
bility and Scalability.

• Stability:
Attributes of software that bear on the risk of unexpected effect of
modifications. (ISO 9126: 1991, A.2.5.3)

For example to support this characteristic every unit and module should
have one single and well documented purpose and no unexpected side
effects. In addition, changes should be necessary in only one single
location. If changes have to be done on different locations it may be
forgotten to do the modification in every place.

• Testability:
Attributes of software that bear on the effort needed for validating the
modified software. (ISO 9126: 1991, A.2.5.4)

For example, when splitting the code in small units automatic unit
testing can be used, which reduces the manual test effort after modifi-
cations.

IEEE 90 [48] defines “Maintainability” as “...the ease with which a software
system or component can be modified to correct faults, improve performance,
or other attributes, or adapt to a changed environment...”.

Maintainability in software engineering is one of the non functional require-
ments (also called qualities, quality attributes, quality goals or quality of
service requirements), which specify criteria that can be used to judge the
operation of a system, rather than specific behaviors as functional require-
ments do. For this reason it is often hard to communicate the need for this
requirements to the customer and to explain and to justify the additional
initial costs.

Since a website not only consists of documents and web applications, but
also a hardware and software environment and a lot of other components,
I would like to mainly focus on maintainability according to the above def-
initions, but also keep portability and scalability in mind when discussing

3.2 Portability 17

about maintainability for websites. In my opinion the three qualities porta-
bility, scalability and maintainability are strongly related, since scalability
could mean to be able to handle a higher number of levels in the naviga-
tion, a higher number of users or a higher number of documents or entries
in the databases. If a system or architecture scales out well than it is also
maintainable, since the architecture does not have to be changed when being
confronted with an increase in any of these items.

Regarding to websites following components may be subject to change (among
other things):

• content

• design / layout

• informational structure

• changes in software requirements, new or additional functionality

• traffic and load generated by users

• hardware environment

• software environment (operating system, frameworks, template engine,
programming language, database engine, web server, ...)

3.2 Portability

According to to ISO 9126 [47] “Portability” is defined as follows:

A set of attributes that bear on the ability of software to be transferred
from one environment to another. (ISO 9126: 1991, 4.6) The environment
may include organizational, hardware or software environment. (ISO 9126:
1991, 4.6)

3.3 Scalability

Scalability is the ability to either handle growing amounts of work in a grace-
ful manner, or to be readily enlarged. Regarding to websites the changes
concerning scalability may not only be in the load and traffic generated by
users and therefore performance of the web server(s), but also in the infor-
mational structure, namespaces, and so on.

3.4 Reusability 18

From point of view of the hardware, it can be differentiated between hori-
zontal and vertical scalability:

3.3.1 Horizontal Scalability

Horizontal Scalability means to have only one system which is getting bigger
and bigger as more load is produced by users. The advantage is that one
system is easier to maintain than several systems, because no shared storage
is necessary, no data or programs have to be synchronized or distributed.
The disadvantage is, that it usually scales only to a certain measure, at some
point the costs for additional performance gain are disproportional - a this
point it may be better to use vertical scaling instead if possible. In addition,
having only one single system is a single point of failure.

3.3.2 Vertical Scalability

If a website and the web applications are prepared for vertical scalability
it is easy to add additional computers or nodes if the load generated by
users grows. Another advantage is to gain fault tolerance by redundant
servers (as long as there is no single point of failure in the concept, e.g. one
shared storage). The disadvantage of the schema is, that this concept usually
needs some kind of shared storage, data distribution or data synchronization
in is therefore harder to maintain. Also some load balancing mechanism
(round robin DNS, explicit load balancing hardware) is necessary, which
ideally should not be designed as a single point of failure.

3.4 Reusability

Reusability is the likelihood a segment of source code can be used again to
add new functionalities with slight or no modification. Reusable program
components reduce implementation time, increase the likelihood that prior
testing and use has eliminated bugs and localizes code modifications when a
change in implementation is required. [51]

Examples of design features and patterns for software reuse are parameteriza-
tion, implementing generic code, modularity, support for internationalization
and localization and use of Service Oriented Architecture (SOA).

3.5 Usability

Usability is a quality attribute that assesses how easy user interfaces are to
use. The word “usability” also refers to methods for improving ease-of-use

3.6 Accessability 19

during the design process.

Usability is defined by five quality components:

• Learnability: How easy is it for users to accomplish basic tasks the first
time they encounter the design?

• Efficiency: Once users have learned the design, how quickly can they
perform tasks?

• Memorability: When users return to the design after a period of not
using it, how easily can they reestablish proficiency?

• Errors: How many errors do users make, how severe are these errors,
and how easily can they recover from the errors?

• Satisfaction: How pleasant is it to use the design?

On the Web, usability is a necessary condition for survival. If a website is
difficult to use, people leave, if users cannot find the product on the site,
they cannot buy it either.

Usability can be improved by the use of usability guidelines from earlier
studies in other projects or published research, testing users or by analyzing
the log files of the website, doing “web usage mining”. [49], [50]

3.6 Accessability

Accessibility refers to the practice of making websites usable by people of all
abilities and disabilities. When sites are correctly designed, developed and
edited, all users can have equal access to information and functionality.

For example, when a site is coded with semantically meaningful HTML, with
textual equivalents provided for images and with links named meaningfully,
this helps blind users using text-to-speech software and/or text-to-Braille
hardware. When text and images are large and/or enlargeable, it is easier
for users with poor sight to read and understand the content. When links
are underlined (or otherwise differentiated) as well as colored, this ensures
that color blind users will be able to notice them. When clickable links and
areas are large, this helps users who cannot control a mouse with precision.
When pages are coded so that users can navigate by means of the keyboard
alone, or a single switch access device alone, this helps users who cannot use
a mouse or even a standard keyboard. When videos are closed captioned

3.6 Accessability 20

or a sign language version is available, deaf and hard of hearing users can
understand the video. When flashing effects are avoided or made optional,
users prone to seizures caused by these effects are not put at risk. And when
content is written in plain language and illustrated with instructional dia-
grams and animations, users with dyslexia and learning difficulties are better
able to understand the content.

When sites are correctly built and maintained, all of these users can be ac-
commodated while not impacting on the usability of the site for non-disabled
users. [52]

The Web Accessibility Initiative [53], a project by the World Wide Web
Consortium (W3C) [54], published the Web Content Accessibility Guidelines
(WCAG), so websites can be valitated against this guidelines.

21

4 Development Life Cycle

In this chapter I would like to present common tasks in the website devel-
opment life cylce, what should be payed attention on if a website should be
built for maintainability and how this could be achieved.

First of all the Informational Architecture has to be defined, that mainly
is which content should be presented in which way and how it should be
organized. Afterwards the layout and templates will be created for each doc-
ument type. After that, technologies and frameworks have to been choosen
which support the required functionality so developers can start with the
implementation. After testing the website and applications the website will
be deployed and launched to a life system, where it has to be monitored,
in order to improve the service and correct errors. Finally, after the go life
there will be changes in the requirements, so the hole process starts again.

In the thesis I would like to focus on the maintainability aspects of each
of these phases and which things to keep in mind in every of these phases in
order to improve the maintainability of the website.

4.1 Concepts and Patterns

Whenever possible and applicable following concepts should be taken into
account in order to improve the maintainability of a website. Some of them
(for example DRY, Automation) are relevant for the hole development life
cylce while others only may concern the coding itself.

• Usage of a well documented and scalable architecture, based on well
know Design Patterns. Design patterns are general reusable solu-
tions to a commonly occurring problem in software design and can
speed up the development process by providing tested, proven devel-
opment paradigms. Reusing design patterns helps to prevent subtle
issues that can cause major problems, and it also improves code read-
ability for coders and architects who are familiar with the patterns.
Design patterns gained popularity after the publication of the book
“Design Patterns. Elements of Reusable Object-Oriented Software”
[55] by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides, which are often referred to as the GoF or Gang of Four. An
example for a well known design pattern which improves the maintain-
ability of websites is the Model-View-Controller pattern (MVC).

4.1 Concepts and Patterns 22

• Separation of Concerns (SoC): in case of web site development
this may be achieved by the usage of the Model-View-Controller
(MVC) design pattern, and separation of content, presentation logic
and business logic from each other, so if one of the elements has to be
changed, the others should not be affected. Most current frameworks
for web application development support this design pattern. In addi-
tion, SoC in web site development may also be achieved by separating
the style from the content by using stylesheets.

• Modularity, that is, splitting code into small, easy to test modules
with well defined interfaces, or the use of pipelining for processing data
in different independent steps.

• DRY - Don’t repeat yourself (e.g. found in Rails, also known as
Single Point of Truth) is a concept trying to reduce duplication. The
philosophy emphasizes that information should not be duplicated, be-
cause duplication increases the difficulty of change, may decrease clar-
ity, and leads to opportunities for inconsistency. DRY is a core principle
of Andy Hunt and Dave Thomas book “The Pragmatic Programmer”
[56]. They apply it quite broadly to include database schemas, test
plans, the build system, even documentation. When the DRY prin-
ciple is applied successfully, a modification of any single element of
a system does not change other logically-unrelated elements. Addi-
tionally, elements that are logically related all change predictably and
uniformly, and are thus kept in sync. [59]. If your are about to dupli-
cate some information you should change your architecture or coding,
in order to be able to reuse this information on both places you need
it. If this is not possible (e.g. because the information is required in
another file format) at least only one single place should exist where
the information is maintained, the information used on a second place
should be at least generated automatically, so you can’t forget about
the different places where the information it used.

• The Model Driven Archticture (MDA) approach supports the au-
tomatic generation of code from a descriptive model, usually defined
in the Unified Modeling Language (UML). On the one hand the model
is much more readable and therefore analyzable and may be also used
as part of the documentation to communicate with the customer since
it may be also understood by non technical persons by using graphics,
on the other hand it may allow to generate code for different platforms
and language, therefore supporting portability.

4.1 Concepts and Patterns 23

• Reuse of Code, that is the use of existing and well tested software,
e.g. modules, libraries or frameworks. Some characteristics that make
software more easily reusable are modularity, loose coupling, high cohe-
sion, information hiding and separation of concerns. For newly written
code to use a piece of existing code, some kind of interface, or means
of communication, must have been defined.

• Convention over Configuration (e.g. found in Rails). Instead of the
extensive usage of XML configuration files, Rails application uses a few
simple programming conventions that allow it to figure out everything
through reflection and discovery. This is used for the object-relational
(OR) mapping for example - the name of a table should be the same as
the name of the object, so it only has to be defined once (don’t repeat
yourself), Rails can retrieve this information from the database.

• Scaffolding is a technique supported by some model-view-controller
frameworks (e.g. Rails and related), in which the programmer may
write a specification that describes how the application database may
be used. The compiler uses this specification to generate code that
the application can use to create, read, update and delete (CRUD)
database entries, effectively treating the template as a scaffold on which
to build a more powerful application.

• Refactoring of source code means modifying it without changing its
behavior (sometimes also referred to as “cleaning it up”). Refactor-
ing neither fixes bugs nor adds new functionality. Rather it improves
the understandability (and therefore maintainability) of the code and
changes its internal structure and design, and removes dead code, to
make it easier to comprehend, more maintainable and amenable to
change. [58]. To support refactoring automatic testing should be es-
tablished in order to be able to check if the behavior really has not
been changed by refactoring. (also see Martin Fowler et al. [57])

• Pipelining (e.g. found in Apache Cocoon, the Unix-Shell, ...), that
is, processing the content of an file with one processor, convert it to
another format (e.g. using XLST when the data is in XML style), and
piping the output of this conversion into another processor, having the
possibility to combine several different processors.

• Automation. In order to improve maintainability, as many tasks as
possible should be automated - automation is one of the key factors
to achieve a maintainable website. Tasks that can be automated can

4.2 Informational Architecture 24

be (among others): testing (e.g. module/unit testing, checking links
or mail addresses, ...) generation of code (e.g. Scaffolding) and other
artefacts, e.g. images, documents in various file formats (PDF, HTML,
XML, ..), static HTML files for performance reasons, and so on. Ac-
cording to the DRY pattern everything should be generated from one
single source.

• Documentation. Use of documentation standards and maintaining
an up to date documentation, which is especially important for inter-
faces. According to DRY and Automation as much of the documenta-
tion should be generated automatically as possible, e.g. from special
tags and comments within the source code. After changes to the source
code or other components the documentation has to be updated. Doc-
umentation also should styleguides for the layout and a description of
the architecture in order to prevent the architecture from deterioration
when people who built the site leave the project.

• Coding Standards, that is, use of coding standards and development
guidelines, defining namespaces, usage of useful comments, in order to
create readable and consistent code. Namespaces are also important
for the addresses of the documents (uniform resource locators - URLs)
since they should not be changed for usability reasons after launching
the website.

• Monitoring, that is. usage of utilities and tools for diagnosis of the
operative live system, e.g. monitoring the logfiles and system perfor-
mance and creating an automatic notification in case of unusual events,
high system load and possible security incidents for example. Also these
tools can be used for web usage mining to improve stability and usabil-
ity and to find problems and program errors.

4.2 Informational Architecture

According to Rosenfeld and Morville ([60], page 4) the information architec-
ture is defined as follows:

• The combination of organization, labeling, and navigation schemes
within an information system.

• The structural design of an information space to facilitate task com-
pletion and intuitive access to content.

4.2 Informational Architecture 25

• The art and science of structuring and classifying web sites and in-
tranets to help people find and manage information.

• An emerging discipline and community of practice focused on bringing
principles of design and architecture to the digital landscape.

The following issues try to focus on the maintainability aspects of the infor-
mational architecture, which are independent of the programming language,
template engine or any other framework used for the website.

Reuse of informational components

A typical web page consists of several different content areas ([61], Web
page anatomy, page 4), like

• Header, usually consisting of the logo of the company or organization
with a link to the home page and a search form

• Navigation areas (local or global)

• Content area

• Footer

• Areas for advertising

Some of them are repeated on every web page of a website or web application
(like the header or the footer), some of them are unique for every page (like
the content), some are repeated on all pages of a single section. For example
the global navigation will be repeated on every page, containing the main
navigational elements where the local navigation menu is only repeated on
every page of a subsection of the website. When designing the layout for a
web page these different areas have to be identified in order to split them up
in different files, so they can be reused on different pages.

Frames vs. Non-Frames.

In earlier days of web development there was a highly usage of HTML frames
to implement such repetitive areas like navigation. The advantage of using
frames is the ease in development by just adding a few HTML tags, but there
are several disadvantages regarding usability using frames. e.g. the content
of the frames can hardly be bookmarked and printed, when entering a website

4.2 Informational Architecture 26

from a search engine the user may only see the content of one frame, but not
the surrounding frameset and the contents in the other frames, the buttons
for navigation in the browser (back / forward) don’t work as expected by
the user and so on (also see Jakob Nielsen, Why Frames Suck (Most of the
Time) [62]).

For this reasons frames will not available anymore in the newer HTML stan-
dards (e.g. HTML 5) from the W3C.

Due to the usability problems with frames other methods and technologies
have to be established to support the reuse of web page areas, like the func-
tionality of most template engines to include content from other separate
files.

Scalable informational architecture

In some projects I have seen layouts which only support an information
structure of two levels, there has not been the possibility to add a third or
even more levels. In order to be scalable (and therefore extensible and main-
tainable) the information architecture and the layout should support some
kind of hierarchical navigation. For example the global navigation menu
provides the first level of the hierarchy, where the local navigation menu
provides all further levels. Since the content for the local navigation menu
changes for every level, there should be added some breadcrumb naviga-
tion, so the users sees the full path to the current local navigation menu
and can easily figure out where he currently is located in the hierarchy and
does not get lost. From point of usability the width of the page should be
constant, so the user does not have to scroll to the right, therefore the global
navigation may be aligned horizontal, because it should not change (much)
over time and contain only a few elements. Since the number of elements in
the local navigation may highly vary it would be better to align it vertically,
so the user only has to scroll down, but not to the right.

In the navigation the link to the current page should be disabled (because it
does not make sense to link to the same page you currently are on) but rather
should be highlighted instead, in order to show the user where he currently
is located. Ideally the framework should support a way where this can be
done automatically based on the address of the current document.

Since the addresses of the documents (URLs) should not be changed for

4.2 Informational Architecture 27

usability reasons once they have been established it is important to create a
guideline for the namespace for documents and the different document
types. If a URL has to be changed after going live for good reasons at least
an redirect to the new URL should be configured, so users get to the new
address automatically without interruption. Also other websites, search en-
gines may link to your website, so they would have to update their links when
changing addresses on your site. In addition, content should not disappear
from a website, it only should be “archived” but still available on the web
with the same address. Therefore it is important to have some timestamps
on every page, like a created date and a last modified date, so the users
can estimate how appropriate and up-to-date the content is or if it may be
obsolete [63].

Users often don’t want to learn the navigational structure of the website
since this may be time consuming (at least if the site has a bad structure or
bad labelling of the navigational items, or it is only a one time visit). For
this reason many sites offer a search form to allow users a full text search in
the hole website or only in some parts of the site or in special databases (e.g.
a knowledge database, user forum, ...) or only even in the meta information
like title, author, summary, and so on. For performance reasons these search
engines use an index, which has been built automatically in advance and
contains a list of all words and the documents in which they appear, every
time the website is updated or at least on a regular base. In general it is
time consuming to build such a search tool including the program to generate
the index for full text search for different document types like HTML, MS
Word or PDF. Therefore many search engines like Swish-E [65], ht:Dig [66]
or Perlfect [67] offer a template system which can be used to integrate these
search engines into the website. Good search engines also offer some kind of
error tolerant approaches in order to support the user when misspelling the
search term.

Some sites also offer a Sitemap or Table of Contents (TOC) to get
an quick overview of the structure of the website. Some also offer an Index
with the most important keywords, so the user gets used to the wording
the organization uses and to search by this keywords. This pages should be
generated automatically if possible in order to be up-to-date and to reduce
the effort for maintenance, although my experience in my projects has shown
that this approach is also quite hard to maintain if not all starting pages (e.g.
one for each subdirectory) should show up on the sitemap, so you would have
to maintain a blacklist for pages that should not be included.

4.2 Informational Architecture 28

To improve the visibility of the website to the most important search engines
like Google, Yahoo and MSN in order to increase the traffic to the website
(Search Engine Optimization, SEO, in order to acquire new customers
or to increase the volume of the ad impressions) they offer the possibility to
upload a sitemap to these search engines including all document addresses of
the website. These sitemaps should be generated as well automatically after
an update and submitted to the search engine [64]. For SEO also the type
of document addresses are important - in general addresses should look like
static addresses instead of having a lot of dynamic parameters added to the
URL, even if the page is generated on the fly based on these parameters a
rewrite should be used to show static addresses to the browser respectively
robot.

When designing the information structure it should be also prepared for
web usage mining in order to improve the usability; the namespace of the
documents has an affect on the possibility to analyze the logfiles. In
addition, the address of the documents is analyzed by search engines, URLs
that match the keyword the user has searched for will get an better ranking
and therefore show up earlier in the search results.

For indexing by the own search engine or other foreign search engines some
meta information has to be added on every web page, like title, keywords,
language, author. This meta information will be analyzed by the search
robots and documents which match the search term in the meta information
will be ranked higher.

The content should be split up into smaller chunks of information
instead of having all information on one single big page. This increases the
download speed and decreases the time the user has to wait to get the in-
formation displayed on the screen, especially if the document embeds other
documents, like images. In addition the user does not have to scroll down
(at least not that much). For example an page to get an overview of the
contents of an archive may consist of one page per year (or month, week,...
depending on the amount of articles per time unit) instead of one page for
all articles or issues. Using smaller chunks of information scales well, while
using one single big file does not scale well. When splitting up the content
usually some additional intermediate navigational pages or pages to get an
overview of the content have to be added. Also, smaller chunks improve
the possibilities for web usage mining, because you know more exact and in
greater detail in which pice of the information the user has been interested
in. Smaller chunks are also more easy to read than one big page.

4.2 Informational Architecture 29

Multi-lingual websites

Some websites have to be presented in different languages (e.g. English and
German) to the user or to support regional differences, e.g. in the currency or
due to different legal requirements to support and reach more users from dif-
ferent markets. Therefore the website has to support internationalization
(often referred to as “i18n”) so it can be adapted to various languages and
regions without engineering changes and localization (“L10n” or “l10n”)
which is the process adapting software for a specific region or language by
adding locale-specific components and translating text. While translating ex-
isting text to other languages may seem easy, it is more difficult to maintain
the parallel versions of texts throughout the life of the product. For instance,
if a message displayed to the user is modified, all of the translated versions
must be changed. This in turn results in somewhat longer development cycle
[68].

One way to handle different languages for a website is by the use of Con-
tent Negotiation [69] defined in RFC2616 section 12 [71]. Using this mecha-
nism the user can configure his browser to tell the web server which are his
preferred languages (including their priorities) and the server tries to reply
according to that requests. Using the Apache web server one has to put a
HTML file for each language for each document in the web tree, for example
“index.de.html” and “index.en.html” in order to support the German and
English language. [70]

Support for different end user devices or document formats

One and the same content sometimes should be presented to different end
user devices, e.g. the browser, the mobile phone, PDA, television screen,...
or in different document layouts or formats for different purposes, e.g. as
HTML document for the browser, as printable document without naviga-
tion and advertising, as PDF document, as WML document for the mobile
and so on. Ideally, all this different kinds of final document formats should
be generated from one single source of the content, in order to maintain
only this one single source to reduce the effort for maintenance and to avoid
inconsistencies. Therefore the framework should support the generation of
different kinds of final document formats from one single source.

4.3 Realization of the Layout 30

4.3 Realization of the Layout

When the information structure has been defined usually a graphic designer
has to create a layout, one layout each for the most important document
types of the site. Therefore he or she creates “comp”s (an abbreviation of
the phrase comprehensive dummy, which is a term that comes from the
print design world and is a complete simulation of the printed layout before
it goes to press), which are images of a an layout that are created before
beginning to prototype the design in HTML. Comps usually are created by
using graphic programs ([61], page 2).

Graphics vs. Text

One common pitfall which may decrease the maintainability of the layout
is the usage of graphics instead of textual elements for navigation elements
and headings. Since only a restricted set of fonts is available on different
operating systems and browsers graphic designers often use graphics to keep
their preferred font throughout all operation systems. This graphics are gen-
erally harder to maintain than simple text elements, because you have to
know the way the graphic has been produced, you have to install the fonts
on your computer, you need an graphic program (ideally the same as initially
has been used), and so on. If you don’t know the way how the graphics have
been produced you may have to recreate all graphics, otherwise the look of
the new graph icon may differ from the old ones. Instead, when adding an
element or changing the content of the element it is much more easy when
simply using a textual description.

Another problem with graphics for navigational elements or headings is that
the text could not be read by a program, like a spider of a search engine or a
screen reader, therefore also decreases the accessability. For this reason the
HTML standard defines ALT and TITLE tags for images which contain a
textual description if it is not possible to show the image to the client, but
these tags again increases the maintenance effort, since you have to change
HTML tags in addition the the graphic.

One possible workaround if the font is not available but the use of this font
is a mandatory requirement (e.g. in order to maintain the corporate iden-
tity) can be the automatic generation of the graphic elements, including the
HTML tags from one single source (e.g. a repository with all navigational
elements).

4.3 Realization of the Layout 31

Stylesheets

In order to separate the content from the style of the presentation the Cas-
cading Style Sheet (CSS) standard has been established by the W3C.
CSS is a stylesheet language used to describe the presentation of a document
written in a markup language. Its most common application is to style web
pages written in HTML and XHTML, but the language can be applied to
any kind of XML document, including SVG and XUL.

Prior to CSS, nearly all of the presentational attributes of HTML docu-
ments were contained within the HTML markup; all font colors, background
styles, element alignments, borders and sizes had to be explicitly described,
often repeatedly, within the HTML. CSS allows authors to move much of
that information to a separate stylesheet resulting in considerably simpler
HTML markup.

In the earlier days, when the support for the CSS standard was not well
implemented by the different browsers, layout designers used pixel graph-
ics as placeholder to get the exact layout the wanted and made highly use
of nested tables to get same kind of grid in order to align the different
elements on one page. Both lead to HTML code which is hard to read an
therefore to maintain. Some design programs and layout designers still make
use of nested tables and pixel graphics, which should be avoided.

Another advantage of stylesheets is that it can be used to presented the
same content to different devices in a different way, e.g. using one stylesheet
to display the document to the browser and one stylesheet to present a print-
able version of the same document, but without navigational or advertising
elements or another version to present to speech readers to provide an acces-
sible version of the document, for example:

<link rel="stylesheet" type="text/css"

media="all" href="print.css" />

<link rel="stylesheet" type="text/css"

media="print" href="print.css" />

Additional, when using CSS the style for a hole website can be maintained
in one single stylesheet, so when changing the font style or size or even the
alignment of content boxes or navigational areas in the stylesheet the change

4.4 Implementation 32

is applied to all documents which refer to this stylesheet.

The term “cascading” says that it is possible to inherit stylesheet def-
initions, e.g. having one global stylesheet for the hole site, which may be
overruled by a local style sheet for a single section, which may be overruled
by different style sheets in every single document (although, from point of
view of maintainability as much as possible should be defined in a global
stylesheet to decrease the number of different styles and to keep the design
easy to maintain). [72]

Another technology to present the same content in different ways to different
clients or in different document formats is the use of Extensible Stylesheet
Language Transformations (XSLT), which is an XML-based language
used for the transformation of XML documents into other XML or “human-
readable” documents. In theory, this conversion could also be done on the
client side by the browser, but in practice this conversion is only done on the
server side, due to poor support for XLST by the browser suppliers.

For example, Apache Cocoon makes highly use of XLST. By using the For-
matting Object Processor (FOP) Cocoon is even able to convert XML docu-
ments into binary output documents, like PDF, PS, PCL, and RTF, driven by
XSL formatting objects (XSL-FO). In addition, Cocoon supports the mech-
anism of pipelining, where XML documents can be transformed by different
specialized processors in several steps, feeding the output of one processor
into the input of another processor.

4.4 Implementation

This thesis mainly references to open source frameworks, tools and program-
ming languages, since they are available for free, usually are well documented,
the source code is available, so you can analyze the functionality in detail if
you need to or you can modify the source code in order to adopt it to your
own needs, although this is not recommended because it would decrease the
maintainability, since upgrades to newer releases are harder to handle. If
you need some extra functionality for a framework you should instead use
the extension mechanism the framework offers or try to incorporate the mod-
ification into the standard version by working together with the developers.

The programming languages used are PERL (Practical Extraction and Re-
port Language) and PHP (PHP Hypertext Processor, [73] [74], [75]) because
they provided by most web hosters. Also for both languages a lot of mod-

4.4 Implementation 33

ules are available through the Comprehensive Perl Archive Network (CPAN)
respectively the PHP Extension and Application Repository (PEAR). PHP
has been created in 1995, while PERL is available since 1987, therefore both
languages are quite stable and well tested. In addition both languages are
quite well suited for text processing (like the generation of HTML code) due
to the integrated support of regular expressions. Development environments
for both languages usually come with most Linux distributions, but they are
also available for other operating systems.

For the support of templates with PERL the Template Toolkit ([6], [7])
has been choosen which has been implemented in 1996, for PHP no template
engine is mandatory, since PHP itself is an template engine, but Smarty [5]
would be a good choice, since it offers additional functionality like a fine-
grained caching mechanism which allows caching of all or parts of a rendered
web page, or leaving parts uncached. The disadvantage of template engines
like the Template Toolkit or Smarty are that they use their own syntax, so
you have to learn another “programming language” besides from PERL re-
spectively PHP.

4.4.1 Static vs. Dynamic Web Pages

One of the fundamental design decisions in web site development is if a web
page has to be static or dynamic.

When a web page is requested by a user clicking a hyperlink or entering
a URL, the web server returns the document to the users computer and the
browser displays it. On a static web page, this is all that happens. The user
only may interact with the document through clicking available links but the
document has no capacity to return information that has not already been
generated before.

On a dynamic web page the user can make requests (often through a form)
for data contained in a database on the server that will be assembled on the
fly according to what is requested. For example the user might want to find
out information about a theatrical performance, such as theater locations and
ticket availability for particular dates. When the user selects these options,
the request is relayed to the server using an intermediary script embedded
in the page’s HTML. The intermediary tells the server what information to
return. Such a web page is said to be dynamic. [77]

4.4 Implementation 34

There are two methods how dynamic web pages are created. In the first
method called the client side scripting the dynamic behaviour is initiated by
the keyboard or the mouse. The second method uses the server side scripting
where the source of actual page being supplied changes or there is change
in the sequence of the pages. The response is decided by conditions as in a
posted HTML form, URL parameters, session cookies, types of browser used,
passage of time, or state of the database or server. Simultaneous use of both
techniques can also be made to create dynamic pages, e.g. for forms it is a
good style to validate them both on client and server side - the validation
on the client side gives immediate feedback to the user while the validation
on the server side is necessary for security reasons in order to ensure that
the parameters have not been modified for a break in attempt by parameter
injection.

Web pages use two basic types of presentation technologies. For the client
side scripting, the web page presentation has to be using the “Rich Interface
Pages” technology. Here scripting languages like Javascript and Flash are
used. In case of the server side scripting, languages such as PHP, PERL and
ASP are used. [78]

The main advantages of static web pages over dynamic web pages are:

• Optimal performance. Static pages are very quick to process by
the web server, the usage of the central processing unit is very low
since only a file from the filesystem (which may be even cached in the
memory) has to be read and delivered to the client.

• Security aspects. Dynamic web pages allow the input of parameters,
which can be modified by the user. If these parameters are not vali-
dated properly it is possible to use them for break in attempts to our
system by SQL injection, Shell injection, FORM POST hijacking, and
so on. With static web pages you don’t have to handle parameters,
therefore these security risks do not appear, making development and
maintenance much more easy.

• Search engine optimization. Static web pages are easier to index
by search engine robots, since they only have a static address, while
dynamic pages may have a lot of parameters where each of them can
have a lot of values. Therefore search engines prefer static addresses
to addresses with parameters, because with dynamic addresses there is

4.4 Implementation 35

also the risk to run into an endless loop when indexing, because of the
endless possibilities to combine parameters and values.

• Configuration. Web servers that provide only static pages are much
easier to configure and thus to maintain, since they only serve files from
the filesystem, where dynamic web pages usually need an additional
programming language and other frameworks, where the web server
has to be configured to handle the communiction with this additional
environments.

• Caching. In order to reduce load and traffic and to increase download
speed caching mechanisms have been established everywhere - in the
browsers, intermediate proxies of the internet providers or companies
or prior to the actual web servers as reverse proxy in order to reduce the
load to the actual web servers. With static web pages caching is much
more easy, while with dynamic web pages usually only some parts of
the web page can be cached on the server side, so it hasn’t be processed
again and again after the first request.

• Web usage mining is much more easy with static web pages, since
the content the user got is defined by the address of the document
which shows up in the log files of the web server. With dynamic pages
there may be additional parameters sent from a HTML formular via
a HTTP POST request which do not show up in the log files of the
server, therefore you may have to implement additional mechanisms to
record the requested information. Also, the content sent back to the
client may change over time, since the content of the database where
the information comes out from may change over time.

• Platform independence. Static pages can be copied to any web-
space, where dynamic web pages depend on the platform, like pro-
gramming language, template engine or frameworks. Even an offline
version to copy the content on DVD or CD-ROM is no problem with
static pages.

• Load distribution to different servers of a cluster is easier with static
web pages, since no state has to be maintained - each request can
be answered by any host of the cluster with static pages while with
dynamic pages - especially ones which have to maintain a user session
and not only request information but also do updates to a database - it
may be important that every time the same host answers the requests
for one user session, depending on the architecture of the cluster.

4.4 Implementation 36

For the above reasons wherever possible static web pages should be preferred
to dynamic web pages in order to be scalable by reducing the system load
and to be easier to handle and therefore to maintain. Unfortunately it is
not always possible to use static web pages, since they don’t offer that much
possibilities to interact compared to dynamic web pages. Although it is pos-
sible to use client side scripting with static web pages it is not possible to use
server side scripting. For example it is not possible to access to a database
with static web pages to retrieve information or to buy items in an online
shop. Also the handling of user sessions for personalization or user tracking
is not possible. The additional functionality of course comes with additional
complexity, which makes web sites harder to maintain.

In order to take advantage of both concepts dynamic content can be in-
tegrated into static web pages using AJAX (“Asynchronous JavaScript and
XML”) or inline frames, which may be used to integrate rotating advertising
banners for example.

Some bigger websites also divide their web servers or clusters into servers
respectively clusters for static and for dynamic delivery, so every cluster
could be optimized for each purpose.

If the content of a website or at least some areas like an online archive
changes only very rarely it may be a good idea to generate static web pages
or documents, where the original documents may be based on template en-
gines or dynamic web pages. This may happen offline in order to decrease
the system load on the productive system, after the static pages have been
generated they can be transfered to the live system. Some frameworks (like
Apache Cocoon) also offer the possibility to generate an offline copy of the
pages, another solution may be to create a static mirror of the site with tools
like “wget” (a free software package for retrieving files using HTTP, HTTPS
and FTP, which has many features to make retrieving large files or mirroring
entire web or FTP sites easy) [79].

4.4.2 Architecture for Static Generation

An architecture for static generation of a website could look like the follow-
ing. This approach also has been used in the case study described in the
next chapter.

4.4 Implementation 37

For each single template or document type following steps are executed:

• Since every document of one type or all documents for one section have
to be generated, a wrapper is necessary which selects all document
identifiers and feeds them into the program to generate all documents
of one type based on the template.

• For each document the business logic is used to get all the data needed
for that document from the database. The business logic returns one
or more data objects, which are passed over to the presentation logic
in the next step.

• The presentation logic (mainly consisting of loops and handling of con-
ditions) takes the data objects and creates the output document, which
can either be based on a template (which usually has its own syntax
but may be more ease to learn for web designers) or be directly im-
plemented in the presentation logic (which usually is more easy, since
the same programming language can be used, but may be harder to
maintain for web designers which are not used to that language). In
this step mainly the content is generated, while the navigation, headers,
footers, advertising, and so on are not yet included - only the definition,
which elements to use and the parameters they need are defined in this
step, the inclusion itself will be done in the next global step, in order
to be able to provide context sensitive navigation menus and to check
for the existence of other files.

The implementation of this approach could be also used to present the docu-
ments as dynamic web pages with small modifications: the content type has
to be returned to the browser, which is not necessary when creating static
documents and the way the input parameters are handled have to be changed
from parsing input parameters from the shell to parsing CGI parameters. In
this case also the first step is omitted.

The common general part, which is independent of the document class or
template processes all the documents generated in the steps above (the hole
website or the sections of the website which a generated):

• In this step the documents created in the previous step are processed by
the template engine, that is to include the templates which previously
only have been referenced. Since in the local navigation the link for the
current page should be disabled and highlighted in this step it is checked

4.4 Implementation 38

if the current page is the same as the one referenced by one of the
navigational elements. Also, if one navigational “master” template is
used for several similar subsections where some items in the navigation
may not show on every of the subsections, a check for existing can be
integrated in this step - therefore all pages of one subsection have to be
created at once in order to be able to check the existence of the other
navigational elements.

• Since now the page is complete, all pages can be processed with an pro-
gram to clean up the markup (e.g. HTML Tidy [82]). This guarantees
that all tags are well formed, and the generated HTML source code is
readable (and therefore easier to analyze and maintain) due to conse-
quent indentation. This step could be also used to reduce whitespaces
in the output in order to improve the download speed for the client
(while this also could be done by compressing the document sent to
the client by using the Apache module mod gzip, for example).

• In the next step a validation of the generated HTML code can be done,
that is to ensure that is in conformance with the standards defined by
the World Wide Web Consortium (W3C). This step has not to be done
for every generation, it should be sufficient if its done after the imple-
mentation of a new document type. Valid HTML code according to
the W3C improves the accessability since screen readers are supported
better for example, but also make it easier for any other program (e.g.
spiders) to parse the web pages.

• In this step the generated web pages should be checked for broken links,
errors in this step as well as in the steps before should be reported into
a log file for the generation process.

• If the steps before have been successful then the generated pages can
be moved from the temporary location to the final location, that is
deployed to the productive system.

4.4.3 Repository for Media - Filesystem vs. Database

Actually there is an ongoing debate about whether to store media in the
database or whether to store media on the fileystem and just store the ref-
erence in the database, see for example [81].

In general I would use the filesystem as repository for documents (PDF,
images, audio and video files, ...) and only the database for metadata since

4.4 Implementation 39

both are optimized for this two purposes: a database is designed to store
data to be searched and retrieved - it would be a rare case when you send
a query to a database that consists of an image blob, that is search for an
image that matches certain binary data.

This approach offers also the advantage to be able to deliver the files stati-
cally from the filesystem by the web server, while with storing media in the
database every page has to be created dynamically on request. Therefore
this approach benefits from all advantages of static web pages. In addition,
it is more easy to handle documents in a filesystem, for example in shell
scripts, since your are able to use standard tools for automatic generation
and processing of PDF documents and images, while when storing them in a
database you would have to implement wrappers which handle the manage-
ment of the files in the database.

Main arguments for using a database to store binary data are to have one
single point and mechanism for backups and data replication, as well as the
support for consistency - if you store the binary data in the filesystem and
only the reference in the database you have to check if the file really exists -
otherwise you will run into broken links.

To go even further in a project I realized for the Austrian Mountain Res-
cue Service I even used the filesystem as repository for metadata, a database
has not been used at all. Every article of the content management system
has been stored in one directory, where each article could have any number
of additional documents attached to the article, as well as any number of
subdirectories. The hierarchy of the articles and the navigation structure
is built automatically from the hierarchy of the articles. Each article re-
spectively directory has one file for metadata as well as one for comments
and one to store the order in which the subdirectories should show up on
the website (which can be changed by the content management system by a
single mouse click - articles can be moved up and down in the hierarchy as
well as the sort order within one hierarchy level can be changed by clicking
on different arrows). Every single article can be easily locked by creating a
lockfile in that directory if someone currently is changing the article, in order
to ensure that another person is not able to modify that article at the same
time and therefore overwrites the changes of the other person. The advan-
tage of this approach is consistency, since you have only one single location
for each article and the easy handling, since you can easily move around
every article in the filesystem and therefore hierarchy. If an article has been
expired or deleted you can easily move the directory into an archive outside

4.4 Implementation 40

from the web tree, you can restore a single article easily. This approach also
allows to have different versions of one article, where one version may be
already released, while another version has to be reviewed and replaces the
other version after release. All articles are stored outside the webtree and
are delivered to the client via a wrapper script, which allows to check the
permissions for each document and user. To provide static URLs the Apache
module mod rewrite is used.

4.4.4 Business Logic

The business logic consists of the functional algorithms which handle informa-
tion exchange between a database and a user interface, that is, the business
logic delivers to and gets its data from the presentation logic, which validates
the input and presents the data to the user. The presentation logic may be
implemented on the client side (e.g. with JavaScript, DHTML, AJAX, RIA,
...) or on the server side, included in (HTML) templates.

Coding and documentation standards

Coding standards or coding conventions are a set of rules or guidelines used
when writing the source code for a computer program. Especially when work-
ing in a team following a particular programming style will help programmers
quickly to read and understand source code conforming to the style as well
as helping to avoid introducing faults.

The standard include rules for indentation, that is the whitespaces to struc-
ture control blocks and blocks of code, vertical alignment, spaces and tabs,
usage of appropriate names for variables, functions or methods, classes and
files, using names in upper or lower case or mixed (CamelCase), usage of un-
derscore for names, rules for comments and documentation and so on. One
example are the GNU coding standards [80].

In order to format the source code (generated automatically or manually)
properly some “code beautifiers” exist, like Tidy for HTML [82] and PERL
[83] or the PEAR class PHP Beautifier [84].

Documentation should be automatically generated from the source code as
far as possible in order to be consistent and up to date. Tools which support
this are phpDocumentor [85] for PHP, Javadoc for Java or Doxygen [87] for
C++, C, Java, Python, PHP, C# and some more languages. They usually

4.5 Testing 41

are able to create the documentation in different output formats (for example
HTML and PDF) from comments within the source code, where special tags
have to be used.

Database Abstraction Layer

In order to enable independence of the underlying database management
system an abstraction layer should be used, usually there is for every pro-
gramming language at least one library available which implements generic
access methods for several database management systems. For example for
PERL “DBI” is the standard database interface module, where Java uses
JDBC (Java Database Connectivity), and with PHP the Pear::DB class
can be used (among some others). In addition, only standard SQL state-
ments defined by the ANSI standard should be used, proprietary features of
a database management system should be avoided as far as possible in order
to be portable to another database management system.

Business Logic via SOAP

In order to provide an platform independent implementation the Simple Ob-
ject Access Protocol (SOAP) or XML-RPC (XML Remote Procedure Call)
could be used to include content from webservices, whether they are provided
from a third party or by yourself on the same or another platform.

For example, Apache Cocoon provides SOAP logicsheets (xsp.SOAPHelper)
based on eXtensible Server Pages (XSP) to include content from webser-
vices. [88] shows an example how to use the functionality of the Cocoon
SOAP logicsheet to query the Googles webservice. In addition there has
been an integration of Apache Axis [90] (which is an implementation of the
SOA protocol) into Cocoon - the AxisRPCReader allows to serve SOAP re-
quests from your Cocoon application.

4.5 Testing

Testing should be automated as far as possible. Things that could be easily
automated are the validation of HTML, CSS and WAI according to the W3C
standards, and the check for broken links.

4.6 Deployment 42

Unit Testing can be done with frameworks like JUnit [91] and PHPUnit
[92], which is focused on the source code and modules, while HttpUnit [93]
allows to test the functionality of the web application since HttpUnit also
emulates the relevant portions of browser behavior, including form submis-
sion, JavaScript, basic HTTP authentication, cookies and automatic page
redirection.

Regarding to website also spellchecking can be relevant before releasing a
document.

Automated testing also supports refactoring in order to produce readable
and therefore maintainable source code.

For websites also a load and performance tests may be relevant. This can
be accomplished by using Apache JMeter [94] or using the native Apache
HTTP server benchmarking tool (ap, [95] that comes with the Apache web
server.

In order to ensure that all mail addresses on a website are valid they should
be check as well. Unfortunately, there is no generic method to prove the
validity of an email address. In the earlier days of the internet some mail
servers also provided a method to verify the validity of an email address, but
this feature has disappeared from most servers to prevent spamers from dis-
covering mail addresses. So, what one can do to verify the validity of email
addresses is to check if the format is compliant to RFC822 [96]. This is es-
pecially important if you allow someone to enter an email address in an form
field on your website or content management system, maybe for subscribing
to a newsletter. The second thing that can be done is to check if there is
an MX record in the Domain Name System for the domain of a given email
address. If there is no MX record, the mail address is invalid. If you are
owner of a domain, you usually also have access to the mail system, so one
could scan the website for mail addresses and look them up in the directory
(e.g. LDAP database) where they are stored.

4.6 Deployment

In an ideal world there should be three different independent systems: a
development system, a test system and a productive system, where the test
system should have the same resources as the productive system in order
to be able to perform load tests. The development environment is used to
implement modifications and new functionality, so users on the productive

4.7 Operating, Monitoring 43

system don’t run into errors. The test system should be a copy of the produc-
tive system as far as possible (except new development and modifications) in
order to be able to test modifications. In some cases development and testing
may be done on the same system, while development or testing never should
be done on the same system as the productive system in order to provide
continuous operation of the productive system ([116], Chapter 3).

In smaller projects there may not be a dedicated test and development sys-
tem, so each developer may have its own virtual host on his computer for
every project.

Once the development has been finished it will be deployed to the test sys-
tem, where the customer may test if it matches his requirements, and after
that is deployed to the life system.

In order to analyze errors which appeared in the life system but also for
web usage mining in order to improve the usability in addition to the (error)
logfiles of the web and database server application logging should be imple-
mented. All logfiles should be automatically monitored and unusual events
should be forwarded automatically to the webmaster.

For the source code some kind of versioning should be establish (for ex-
ample by using CSV or Subversion) in order to be able to roll back to an
previous version, if the new version seriously fails.

For efficient data synchronization between the different systems tools like
Unison [112] (which allows bidirectional synchronization) or rsync (synchro-
nization only in one direction) can be used, which can make use of a secure
tunnel over SSH.

4.7 Operating, Monitoring

To be able to do a restore of the data in case of disaster, if the provider
quits his service, or if some files are deleted by accident an automatic backup
mechanism has to be established.

As to provide a stable platform and continuous business operation some
kind of monitoring the system load, memory usages, number of busy and
idle server, traffic, hits per second, availability and other system parameters
have to be checked on a regular base, an alert should be created and sent to
the webmaster automatically if a threshold value is reached.

4.7 Operating, Monitoring 44

After a security hole has been detected in a program available security up-
dates should be applied as soon as possible in order to close this security
hole and therefore reduce the risk of being misused - this process should be
automated as far as possible.

In addition, a web application firewall (for example mod security [97] for the
Apache web server) could be established in order to reduce the security risks.

All logfiles should be automatically monitored and unusual events should
be forwarded automatically to the webmaster. In case of a frequent invalid
URL a redirect could be established in order to support the users to find
what they actually looked for.

45

5 Case study

The goal of this case study done from 2003 till 2008 was to redesign the
company website of an Austrian publishing company, which mainly publishes
scientific medical journals on a regular base but also medical books, where
some of them have been transformed into web applications. The website is
mainly in German, where some parts exists in English as well.

5.1 Problems before the Redesign

The old website was relatively unstructured because it has been grown through
the years (starting in the second half of the 90s) without a clear concept - nei-
ther regarding informational structure, nor the design, nor data maintenance
or operating. It consisted of several subsites like a portal for cardiovascu-
lar diseases, a database for cardiology in Austria, a database for medicinal
plants, the subsite for books, one subsite for each journal and so on, which
where not integrated, each subsite had its own design and navigational con-
cept.

The content has been maintained redundant from different persons and for
different purposes. For example, the titles, authors, links to summaries, ...
for articles have been manually maintained in a “Table of Contents”, a big
non-scalable single HTML document, for each journal. Additionally, a list of
authors has been manually maintained for each journal. Some articles, which
have been rated “scientific interesting” by the company have been entered
in a database to be searchable by metadata (authors, title, keywords, sum-
mary), while others where only stored as PDF documents, where the links to
them has been maintained manually in the table of content. Some articles,
especially older ones, only appeared in the table of content, without linking
it to a PDF or entry in the database.

Articles of a special kind (e.g. reports from congresses) were cluttered around
the header as linked-image to gain special attention from the users.

Some journals also (still) have different issues for different countries with
nearly the same content (the content of the articles is the same through-
out the different issues, the issues only differ in the articles they choosed to
publish) except pharmaceutical news and advertising (due to legal reasons,
depending on the approval of a drug for one country), so a lot of articles had
to be maintained more than once for different issues.

5.1 Problems before the Redesign 46

The big single table of contents for each journal also forced the user to wait
longer than necessary for the requested page. Therefore, depending on the
size of the files, they where maintained partially redundant, once as a hole ta-
ble, and once as small table, where only newer issues of a journal where listed.

The old website was based on frames, which has some usability problems,
and did not make use of stylesheets - the design was maintained in each single
HTML document, so content and design (and for the few existing applica-
tions, like the search engine, also the business logic) were mixed together,
which made a change in layout difficult. Additionally, for each subsite and
each new project (e.g. new databases and/or different structuring of existing
content), a new design has been developed, which is not cost effencient.

There has been no overall navigational structure, so you could not gain a
overview of the hole site or jump between different subsites. Also, a common
search functionality was missing. There only has been a input form to search
the meta data (where only some of the articles have been entered). If a new
journal had to be added, the input form for the search had to be modified
for each single journal, because of the drop down for selecting the journal to
search in.

The data was also stored on different servers to reduce hosting costs, which
made it difficult to check if all manually maintained pages, links and content
really where in the right place. In fact, such a check never happened and
no one had ever a look into the error logfiles of the web servers to check for
bad links and to correct them. Additionally, many links started with the IP
address rather than the domain name (due to temporarily problems with the
domain name system), which led to invalid URLs after changing the web-
hoster and caused problems for a long time after the relaunch because many
other websites also linked to this IP address URLs.

The files were stored in a single directory and had no defined namespace,
with made it more difficult to find the right one.

Several different portals, projects and web applications have been imple-
mented during the years, every of them with a different layout, different
navigational structure, different concepts, and so on, which made it more
and more difficult to maintain the different subsites and increased the main-
tenance costs. The different subsites did not reference each other, there was
no overall concept for navigation, no possibility to search in all subsites and
so on.

5.2 Goals and Non-Goals 47

Figure 4: www.kup.at - homepage of a journal before the redesign

Figure 4 on page 47 shows the homepage of one journal before the re-
design, which a based on frames, cluttered with abstracts in the header to
gain special attention from the user and includes the content tables of all
issues in one single HTML file.

5.2 Goals and Non-Goals

The main goals were to get rid of above problems by designing and imple-
menting an overall concept for layout and navigation (and therefore reduce

5.2 Goals and Non-Goals 48

implementation cost by not reinventing the wheel for each subproject and
subsite) and to reduce manual maintenance effort and thus reducing mainte-
nance costs while improving the quality and consistency of data. Therefore as
much as possible should be generated automatically (e.g. tables of contents
for the issues, list of authors and keywords per journal, PDF documents,
images,...). Also new functionality should be added, like a database with im-
ages from the articles, full text search for the complete site, newsletters for
user notification on new issues, interfaces to be able to query the databases
from other sites and so on. Based on the analysis of the web server logfiles
the site should also be continuously improved regarding usability. The data
and business logic should be reusable to present the same data in different
context (e.g. the search engine can be used for on the fly queries entered by
users or to generate a portal consisting of articles for predefined search terms).

Internationalization and localization were none of the mandatory require-
ments, although there has been one English journal (by the time drafting
the concept in 2003 the English journal was discussed not being published
any longer, nevertheless in 2007 the journal still existed) and some English
and French articles in the mostly German journals. Nevertheless, there are
country specific issues for some journals (special issues for Austria, Germany
and Switzerland) due to legal reasons.

Portability also has been none of the requirements, the website had to work
only in one dedicated environment, that is operating system, web server
software, programming language and so on. Although, some months after
launching the redesign there was the requirement to run the website and all
web applications on a notebook for presentation purposes on another oper-
ating system - which worked without problems and only slight modifications.

In order to improve the usability the use of HTML frames were not allowed in
the new website in order to get printable, bookmarkable pages. Independent
of the page the user enters the website he always should have access to the
navigation menus.

The web pages should be split up in smaller information units instead of one
big file, for example before the redesign all books published by the company
where listed on one single page, including the detailed description, which
caused long download times, forced the user to wait and to scroll down a lot
instead of getting a quick overview of all offered books and getting into more
detail on extra pages per book.

5.2 Goals and Non-Goals 49

Another requirement by the customer was to generate parts of the PDF
documents automatically, in order to decrease manual maintenance effort
and therefore reduce costs.

The website should be prepared for advertising and sponsoring at differ-
ent locations (e.g. in the global header and footer, in the local navigation
menus, in PDF documents, in newsletter mails, ...) in order to refinance
the implementation and internal and external maintenance costs. In order
to increase the user retention a newsletter should be implemented, where
users could be informed about new issues from their subscribed journals but
also about new offerings on the website which may be of interest for them.
Additionally an online shop to be able books and to subscribe to the printed
issues of the journals should be implemented.

Another requirement was to deliver better analysis and reports of the web
site usage by implementing additional logfiles and doing web usage mining,
which is necessary to provide profound numbers to the sponsors and adver-
tisers and to improve the usability of the website in order to attract more
and more users and therefore increase the ad impressions. In order to at-
tract more users the decision has been taken that there must not be a user
registration, every content has to be available for free, the website will be
only financed by sponsors and advertising and is seen as additional adver-
tising platform for the company itself. By having all documents available
for free the content is fully searchable by search engines like Google, Yahoo
and MSN. Also, scientific organizations and universities can reference to the
articles online.

All subsites had to be available on one single domain (while before the re-
design the website was distributed across different providers, e.g. one part
was hosted by the Medical University of Vienna, one by EUnet).

Since the information of the scientific articles was distributed across three
different sources (manually maintained tables of content, databases, PDF
documents) on different hosts a data migration and unification had to be
done.

Before the redesign the only dynamic web pages where the ones for the
search interface to the database for scientific articles, where the layout was
mixed up with the business logic in the Java code. In the new system sep-
aration of concerns should be implemented in order to separate the layout
from the business logic to be able to exchange one without affecting the order.

5.3 Data Migration 50

Another goal was that the maintenance of the content could be done be
employees of the company, while in the past it has be done by an external
webmaster (since there was no separation of concerns, at least content and
style was mixed up).

An unified navigation for all subsites and subprojects (like a portal for car-
diovascular diseases, a database for cardiology in Austria, a database for
medicinal plant, the subsite for books, and so on) should be implemented,
including the possibility to do a full text search.

Figure 5 on page 51 shows the portal for cardiovascular disease before
the redesign, where the layout differs from the layout for the journals (while
including content from the journals), an overall navigation between the two
subsites is missing.

Figure 6 on page 52 shows the database for cardiology in Austria before the
redesign, where the layout differs from other subsites, an overall navigation
between the subsites is missing.

5.3 Data Migration

One of the main problems with implementing the redesign was the migration
and merging of legacy data, that is, data which has not been entered into a
database, but rather maintained manually in HTML files. Since there have
been three different sources for the articles (tables of contents for each jour-
nal, a database with metadata of some articles and some documents available
as PDF) there also were also a lot of inconsistencies which had to be uncov-
ered and solved.

Since the manually maintained table of contents had different structures even
within one table the migration could be made only semiautomatically, that
is, manually prepare the table of contents, so the could be processed by a
program, handling all entries the same way. One difficulty was to find a
reasonable tradeoff between manually preparing the input files and imple-
menting a script for automatic processing of the manually prepared input
files. The more effort you put into manually preparing the input files, the
less effort is it to implement the parsing and processing by a program and
vice versa. For example, even for a human reader it was difficult to detect,
if some information belonged to the previous or the next entry, even when

5.3 Data Migration 51

Figure 5: www.kup.at - portal for cardiovascular diseases before the redesign

5.3 Data Migration 52

Figure 6: www.kup.at - database for cardiology in Austria before the redesign

5.4 Informational Structure and Layout 53

looking at the pages in the browser.

Fortunately, I found some structures in the text, which where unique for
some attributes. For example, page numbers always have the format pp.
23-25 or p. 35 and authors always were of the format “F1. Surname1, F2.
Surname2”. URLs could be detected by a starting “http:”, the ID of an
article and the name of the PDF file could be determined by parsing the
URL, which always had the same structure. Everything else was taken as
title (there were also some “articles” without authors and/or page numbers
and so on). If - after removing all HTML tags - there was more than one
newline without content, an entry has been taken as new article. The pro-
gram displayed a warning message, if one entry had an attribute twice or an
required attribute was missing, so I could iteratively improve the input files
and the processing script until there were no warnings. If for an article also
an entry in the database was found, the information has been taken from the
databases, which I assumed was more accurate.

Since in the past the number(s) of the issue(s) in which an article appeared
has not been entered into the database, this information was taken from the
tables of content as well. If an article appeared in more than one issue, the
article has been created only once in the database (if any entry did not yet
exist) with an reference to the different issues.

Finally I made some crosschecks using the three data sources which have been
merged before, for example, if for each link to an PDF file in the database
really existed a PDF an vice versa. The detected conflicts where solved man-
ually.

5.4 Informational Structure and Layout

The informational structure and layout has been designed mostly according
to the guidelines from the previous chapter. The only exception is because
at time of implementing the layout CSS was not yet well supported by all
browsers in order to provide a complete layout, arranging the alignment of
the different content elements. Therefore CSS only has been used for for-
mating the textual elements but not for the layout - instead nested HTML
tables have been used which are hard to maintain.

The different areas of a web page include a global header, consisting of a

5.5 Implementation 54

company logo, a search form for three different type of searches (scientific
articles, images database and full text search), global navigation and global
advertising, where the ad banners initially have been included statically,
which turned out to be not efficient to maintain, therefore later have been
included via an inline frame and therefore could be exchanged and rotated
easily, where the position of the banner and the start and end time is defined
by an employee of the company by an database entry. The content area was
divided into two columns - one for local menus including local navigation
and local advertising (which initially also was included static, but later was
implemented using AJAX since it was not possible to use an inline frame
because the height would have to be fixed, while the height of the local ad
banners is not predefined and may vary) and one for the actual content.
Finally a global footer is added on every page, containing again the global
navigation and space for global advertising.

For the local navigation for all journals the same template has been used
but some links (e.g. congress reports, guidelines, abstracts, country specific
issues for Austria, Germany and Switzerland, , ...) do not exist for all jour-
nals, therefore a check has been necessary for the existence of these files, a
link will be only generated if the related file exists. For this reason all files
of a journal have to be generated at once, in order to be able to check the
existence of the other links in the local navigation.

Figure 7 on page 55 shows the homepage of one journal after the redesign,
which is not based on frames anymore and includes the content table for only
one issue per page.

5.5 Implementation

Because of the advantages of static web pages listed in chapter 4 the static
generation of the documents was preferred to dynamic web pages wherever
possible. Since most of the content is uploaded once and not changed any-
more afterwards and there are only a few updates - updates are done about
once a month - all documents can be pregenerated. The only things which
have to be dynamic are pages where user interaction is necessary, like the
search engine where the user enters search terms or the online shop for order-
ing printed issues of the journals or books, but most of the content is static.
The implementation has been done according to the rules and patterns de-
fined in the previous chapter.

5.5 Implementation 55

Figure 7: www.kup.at - homepage of a journal after the redesign

5.6 Content Management and Deployment 56

Figure 8: www.kup.at - fault tolerant database administration frontend to
enter keywords

5.6 Content Management and Deployment

In order to allow the employees of the company to enter new journal issues,
scientific articles, images, books and so on by themselves user interfaces have
been implemented.

To reduce typos, misspellings and different spellings for the same word a
user interfaces has been implemented which offers similar terms to the user
for entering the names of the authors and keywords, where the user can keep
the one entered or select one of the presented already existing terms.

Figure 8 on page 56 shows a part of the database administration fron-
tend to enter new articles. When entering authors or keywords for an article
they are checked against existing authors respectively keywords, and similar
terms are presented to the users in order to avoid misspellings.

Since content is usually only entered once and not changed afterwards there
are no user interfaces to change or delete entries from the database for cost
reasons. In cases of typos or changes a generic web based database frontend
(phpMyAdmin [104]) can be used. Since changes can be made directly to the
database and therefore the consistence may be violated by deleting entries
which are still referenced (which is possible since the database management
system MySQL did not support foreign references in earlier implementations)

5.6 Content Management and Deployment 57

consistency checks are done automatically when regenerating the indices for
the search engines and interfaces.

If a PDF document or image has to be replaced because of an mistake or
the metadata in the database has been changed or corrected it can be done
by uploading the new document to the original directory for the particular
document type while the automatically generated document can be deleted
from the webtree. With the next regeneration step started by the user all
missing PDF documents and images are automatically created. The replace-
ment of the documents is done by using the Secury Copy Protocol (SCP)
with a native Windows Client for SCP.

In order to decrease the time for generation of images, HTML files and PDF
documents the user can select which parts and sections to regenerate and if
only new documents which do not yet exist or if all documents should be
recreated, independent if they existed before.

In the first phase after the relaunch there was an extra internal host for the
content management system, located a the customers site, eneration of static
documents and indices was always done on this host offline, which reduced
the system load to the productive system. After generation and revision by
the content manager the changes where transfered to the productive system
by using Unison [112], a file synchronization tool using a secure tunnel via
SSH, which allows to transfer only the files that have been modified since the
last synchronization.

The concept with the additional content management system for offline gen-
eration at the customers site turned out to be hard to handle for the employ-
ees, especially the synchronization. Also the deployment of templates and
changes in the business logic was difficult, since the host was not reachable
from the outside, so only the employees would have been able to deploy such
changes which they got by mail.

Therefore after one year the additional host for offline generation and con-
tent management was shut down, and the functionality was migrated to the
productive system. Since all documents and indices where static changes to
the database had no immediate impact on the online content, only after the
generation of the static content the changes are online, where the genera-
tion is done in a temporary directory (since it may take hours for the whole
site if regenerating everything) and all regenerated parts are put together
online, therefore the online website always is in a consistent state. The only

5.7 Operating 58

disadvantage of this concept is the additional system load generated by the
regeneration of database indices and static documents.

In addition to the productive system (and in earlier days the host for content
management and offline generation) there always has been a development
and test system to develop modifications and new functionality. Since this
test system is located at the developers site and not acting as a static server
to the internet in order to present the additional functionality or modifica-
tions to the customer usually a copy of the existing programs has been made,
which finally replaced the old versions.

Figure 9 on page 59 shows the user interface to start the automatic gen-
erating of the website, which includes options to check the consistency of
the database, checking links, regenerating the database indexes, generating
a thesaurus, generating all or only new PDF documents and images, and web
pages for different subsites.

5.7 Operating

• Backups. To be able to do a restore of the data (currently 18 GB of
data have to be backuped) in case of disaster, if the provider quits his
service, or if some files are deleted by accident several backup mecha-
nisms have been implemented.

One is based on rsnapshot [105], which uses rsync and hard links,
therefore it is possible to keep multiple, full backups instantly avail-
able, where the disk space required is just a little more than the space
of one full backup, plus incrementals. rsnapshot is used to create disc
to disc backups, it allows to get an older version of a file or to quickly
restore files which have been deleted by accident. Of course, a disc to
disc backup does not help in case of a crash of the harddisc (although,
currently a RAID-1 system is in use where two identical harddiscs are
used for mirroring the data - if one of the discs fails the system can
still operate using the other disc. The failed disc can be exchanged in
the meantime by a new one.)

Another backup system to backup files to a non-trusted FTP server
(which is offered by the provider in the sames size as the RAID-1 hard
discs) uses ftplicity [106] respectively duplicity [107]. Duplicity backs
up directories by producing encrypted tar-format volumes and upload-
ing them to a remote or local file server. Because duplicity uses librsync,

5.7 Operating 59

Figure 9: www.kup.at - user interface to start the automatic generation of
the website

5.7 Operating 60

the incremental archives are space efficient and only record the parts
of files that have changed since the last backup. Because duplicity uses
GnuPG to encrypt and/or sign these archives, they will be safe from
spying and/or modification by the server.

In addition to the two backup systems described above all files are
synchronized to a local development and test system using the Unison
file synchronization tool [112] via SSH where it can be copied to some
DVDs and an external USB harddisc.

• Monitoring

As to provide a stable platform and continuous business operation the
system load, memory usages, number of busy and idle server, traffic,
hits per second, availability and other system parameters have to be
checked on a regular base. This has been solved by using a round
robin database provided by the RRDTools [108] which allows to store
and rotate time related data with different time intervals while using
a constant disc space and based on a script developed by Ivan Ristic
presented in in his book “Apache Security” [109], page 209 to 217. The
script has been extended to also include the CPU load average and
the current memory usage. Figure 10 on page 61 shows this monitor
for the CPU load, memory usage, traffic and number of servers for the
Apache web server.

This figures can be used for sizing the server platform, that is estimate
the hardware needs for the future, but also for finding out some unusual
system activity like Denial of Service (DoS) attacks, too many concur-
rent requests and therefore a backlog of the requests, search engine
robots which create high system load by indexing dynamic web pages
(although this is disallowed by the file robots.txt in the root directory
of the webtree) in an endless loop and so on.

Basic availability is checked from the outside from another host by us-
ing “mon” [110], which tests for the availability by sending ICMP echo
requests and doing basic HTTP requests on a regular base. In case of
a serious problem (that is, if one of the tests failed several times) an
alert is created, which is sent to the webmaster.

In addition, all logfiles are checked by “logcheck” [111], which filters
out normal system events and sends a summary of real errors and un-

5.7 Operating 61

Figure 10: www.kup.at - monitor for the hits per second, traffic, number of
busy and idle Apache servers, memory usage and CPU load average

5.7 Operating 62

usual system events to the webmaster. If for example an invalid URL
appears for several times (e.g. by mistyping by the user) a redirect may
be created for this URL in order to support the users to find the con-
tent. To provide further error tolerance for typos in URLs the Apache
module mod speling has been activated, which allows one wrong letter
in the URL and also supports case-insensitivity. Wrong URL and un-
usual events that should not be reported in the future can be included
in list of regular expression which should be ignored.

In order to reduce the traffic the Apache module mod gzip has been
activated, which tries to send compressed content to the customer, if
the client accepts this kind of reply. This may slightly decrease the
performance on server side since documents have to be compressed be-
fore returning them to the client, but increases the download speed on
client side.

• Security

After a security hole has been detected in a program available security
updates should be applied as soon as possible in order to close this
security hole and therefore reduce the risk of being misused. For the
operating system (Linux Debian) and all installed packages this can
be done automatically by using the Debian package “cron-apt” [113],
which gets updates every night and deploys them automatically.

As the web page for ordering journals and books has been misued by
entering a random mail address the attacker wanted to send spam mails
to (so called “Form Post Hijacking”) no automatic order confirmation
is sent to the inserted mail address anymore, the confirmation is only
sent to the company itself - they have to decide if it is a spam mail or
a real order. Another approach to get rid of this problem could be the
use of CAPTCHA (Completely Automated Public Turing test to tell
Computers and Humans Apart), asking a user to complete a simple
test which the computer is able to generate and grade, but unable to
solve, for example the user has to type the letters or digits of a dis-
torted image that appears on the screen. This approach would reduce
the comfort for the users and therefore has not been choosen.

In addition, if there are to much requests from one single IP address
which turns out to be some kind of misbehaviour (for example using
order confirmations as spam mails or doing many concurrent request)
an IP address may be locked out temporarily or permanent by config-

5.8 Statistical Data 63

Table 1: Case Study - Statistical Data
June 2003 August 2003 June 2008

Metadata in the database for
- scientific articles: 1.510 1 3.440 7.176
- images: n/a 554 10.859
Number of journals: 15 15 20
journal issues: n/a 598 1054
Database tables 31 37 89
PDF documents: 2.679 2.679 6.266
Images (including thumbnails): 153 1.158 31.627
HTML documents: 180 2.885 17.468
Videos: n/a n/a 292
Total number of documents: 3.012 6.722 55.361
Number of Templates: n/a 24 144
Lines of Code: 7.793 2 7.423 3 35.449 3

Overall data size: 18 GB
Traffic per month: 11,5 GB 14 GB 141 GB
Visits per month: 41.554 44.342 226.526
Page views per month: 198.446 299.817 3.749.140

uring Apache to send “HTTP 403 forbidden” replies to this IP address,
so no further request will be answered to that address.

5.8 Statistical Data

Table 1 on page 63 compares the website in numbers before the going live
in June 2003 to the numbers in August 2003 after the relaunch and to June
2008.

The numbers of HTML documents have increased from 180 before the re-
launch to 2.885 after the relaunch, since they have been maintained manually

11.510 scientific interesting articles have been entered into a database in addition to
manual maintained HTML files while 1.169 articles where only added manually to the
HTML files. These articles have been added into the database during the semiautomatic
data migration

2The code has been written in Java. Only the search engine and database administra-
tion frontend for scientific arcticles have been available, templates have not been used, so
business and presentation logic are mixed up in the source code

3The code has been written in PERL, the search engine is not included, since an
external component (Swish-E) has been used for this purpose

5.9 Additional new Functionality 64

before and automatically generated after so it is much easier to add another
document class. In addition the content has been split up in smaller units
per page, e.g. the table of content has been maintained in one big HTML file
before the relaunch, where after the relaunch every issue got its own HTML
page, and the list of authors and keywords which are referenced by one jour-
nal have been split up into one page per initial letter and journal instead of
only one page per journal for all initial letters. All this pages are generated
automatically.

From August 2003 to June 2008 the number of HTML documents has in-
creased from 2.885 to 17.468. The reasons for the increase in number of
documents are on the one hand additional entries in the database, that is,
new articles, issues and journals, but on the other hand a lot of new classes
of document types have been introduced - since now everything is created
automatically from one single source it is much more easy to maintain addi-
tional document classes.

For example new theme portals have been created which are generated com-
pletely automatically. The only thing which is predefined are the queries to
use for each subject in the theme portal to search for articles in the database.

The articles in the database only doubled within the five years, where the
number of templates and different document types increased from 24 to 144
and the number of database tables increased from 37 to 89, so the main
source of growth were additional document types which were easy to add
with the new overall concept, since only the content of the new document
types had to be discussed, but not the informational structure or the layout,
also in general functionality from the business logic could be reused for new
templates.

5.9 Additional new Functionality

• Image database Figure 11 on page 65 shows the search engine for
the image database, which has been implemented after the relaunch
and only took four hours to implement, since most concepts could be
taken from the search engine for scientific articles and business logic
could be reused. Before the relaunch every project had its own layout
and concepts, so it took longer to discuss, implement and test layout,
navigation, functionality and so on.

5.9 Additional new Functionality 65

Figure 11: www.kup.at - search engine for the image database

5.9 Additional new Functionality 66

• Automatic generation of PDF documents. For scientific articles
it had been an requirement to add a title page and a final page. The
title page should look like the first page of the printed issue of the
journal, but containing the author, title and issue of the article. The
final page contains a formular for subscribing the print version of the
journals and advertising for the publishing company, but also the pos-
sibility to offer advertising space to sponsors. These two pages had
been added manually in the past, after the redesign they have been
created automatically, where the content is taken from the database
and templates have been implemented for each journal. In addition,
metadata from the database is copied automatically to the metadata
of the PDF document, which is used by search engines for indexing.
Per default only PDF documents are created which do not yet exist in
order to reduce the time for generation. Sometimes it is necessary to
recreate all PDF documents of one journal, for example if the template
for the first page has been changed or there is a new sponsor for the
advertising page, therefore there is an additional option to regenerate
all PDF documents of one journal. Figure 9 on page 59 shows the
user interface to start the automatic generation.

• Automatic generation of images. After uploading the images to the
directory outside the webtree in original size they are resized into three
different sizes for different purposes, that are, detailed view, thumbnail
and small thumbnails for navigation. To the images for detailed view
an additional bar with annotation text is added automatically, where
the text is taken from the database and depends on the type of the
image (images of scientific articles, books, presentation slides, ...). For
images of scientific articles also some keywords are added automatically
into the database, depending on the journal and the keywords of the
article, so the person who uploads the image does not have to enter this
keywords manually. In addition for images IPTC [98] meta information
is added automatically for each image from the database. As with PDF
documents only images are created which do not yet exist in order to
reduce the time for generation.

• Approximate error tolerant search engine. By doing web usage
mining I found out, that about 20 percent of all queries to the search
engine done by users returned no match at all. Reasons may be that
there is no relevant content for the search term entered by the user,
but also different spellings or misspellings. Therefore I implemented a
error tolerant mechanism to present users similar terms out of the key-

5.9 Additional new Functionality 67

words and authors if the search returns no matches. The implementa-
tion is based on agrep (approximate grep) [102] which is a fuzzy string
searching program, developed by Udi Manber and Sun Wu. It selects
the best-suited algorithm for the current query from a variety of the
known fastest (built-in) string searching algorithms, including Manber
and Wu’s bitap algorithm based on Levenshtein distances [103]. The
algorithm tells whether a given text contains a substring which is “ap-
proximately equal” to a given pattern, where approximate equality is
defined in terms of Levenshtein distance - if the substring and pattern
are within a given distance k of each other, then the algorithm consid-
ers them equal. In case of the search engine k is the minimum number,
where at least one author respectivley keyword is found. By offering a
list of “did you mean one of this terms?” the queries which returned
no match could be reduced by 6 percent.

Figure 12 on page 68 shows the approximate error tolerant search
- if no database entry matches the search term entered by the users
similar search terms are presented to the user in order to correct maybe
misspelled search terms.

• Auto completion. In order to further help the users to find what
they want and to reduce the misspellings and problems with different
spellings when entering search terms an auto completion functionality
has been implemented for all search forms, that is if a user types a
letter a list of possible search terms pops up, if he types a second letter
the list will show the words which match this two letters. The more
letters he types the less search terms will appear in the pop up, finally
the user should be able to select the search term from this small list. If
the term does not show up in the pop up then there is no content for it
in the database. Therefore for different search forms querying different
databases and tables different lists of search terms have to be prepared,
which are generated automatically after updates to the databases.

• Stemming. In order to further improve the quality of the results of
the search engines stemming has been implemented, that is, every word
is reduced to its stem, where the stem does not have to be a valid word,
but words with the same stem could be considered as identical. This
mechanism also supports the user by finding entries which match the
same meaning, but with different endings for example (e.g. plural vs.
singular). The word index of the databases is already reduced to its
stem (which is generated automatically after updates to the databases),

5.9 Additional new Functionality 68

Figure 12: www.kup.at - approximate error tolerant search

5.9 Additional new Functionality 69

so if a user enters a search term the single terms are also reduced to
their stems and compared to the stems in the index - if they match the
entry is returned to the user.

• Thesaurus, Morphosaurus. As to support users to find what they
want an Thesaurus has been built which is generated automatically.
Although it is only based on substrings - if one term contains another
term as substring, then the substring is considered as generic term
while the first term is a subtopic, where the terms are taken from key-
words and summaries of the scientific articles - the results are quite
good. If two terms have the same generic term they are considered as
related and are presented to the user as well. Very promising results
have been delivered by the “Morphosaurus”, where we cooperated with
the Department of Medical Informatics in Freiburg [118]. The results
of Morphosaurus have been integrated in our automatically built the-
saurus as well. Figure 11 on page 65 shows the search engine for the
image database including the terms of the thesaurus and morphosaurus
in the head of the search result.

• Z39.50, OAI, OpenURL and XML - Interfaces. In order to
enable other websites to search our content we implemented several
interfaces to our database.

We have installed and configured a server which supports the Z39.50
standard: Zebra [99] is a high-performance, general-purpose structured
text indexing and retrieval engine. It reads structured records in a va-
riety of input formats (e.g. email, XML, MARC) and allows access to
them through exact boolean search expressions and relevance-ranked
free-text queries.

In order to support the Open Archive Initiative (OAI) [100] standard
we have implemented an OAI repository for our scientific articles using
an implementation from the Virginia Tech university [101].

In order to improve the visibility to search engines (Search Engine
Optimization, SEO) the list of available documents is generated and
submitted to Google Sitemaps automatically.

After an update to the database the indices for Z39.50, OAI, full text
search and search in meta data of articles and images can be automati-
cally regenerated, the files for the Google Sitemap are regenerated after

5.9 Additional new Functionality 70

every update and uploaded automatically to the servers of Google.

• Performance optimization of the search engine. Due to the im-
plementation of a lot of new features like auto completion, thesaurus,
stemming and so on it became necessary to improve the performance
of the search engine - therefore it has been reimplemented (without
changing the user interface), based on static generated flat files where
all relations where denormalized instead of accessing directly to the
database (which is in third normal form and therefore includes a lot of
joins which decrease performance and does not scale well, e.g. for every
keyword an additional join would be necessary). For performance rea-
sons the search engine only returns the identifiers of the entries which
match the search terms, when presenting the results to the user only
the detailed information for the entries presented to the user (usually
20 entries per page) are read from the database, so the load to the
database is constant for every query, independent of the number of en-
tries. Some entries should not show up in the search result, therefore
a list of to ignore expressions for articles has been implemented as well
as a list of stopwords which are ignored.

• Full text search. In order to offer an performant full text search to
the user an ready to use full text search engine has been configured,
which also indices the content of the PDF documents (currently 1.5 GB
of data). To improve the performance of indexing these documents an
additional caching mechanism has been implemented, which stores the
result of the conversion from PDF to text format. Since search engines
use the meta information of the HTML and PDF documents every
document had to have this information, which is added automatically
for both document types.

• Portability. Although portability has not been one of the initial re-
quirements some months after launching the redesign there was the
requirement to run the website and all web applications on a note-
book for presentation purposes (just in case if no network connection
is available or other possible troubles which can appear when giving
a presentation) on another operating system - which worked without
problems with some small modifications (e.g. in the configuration dif-
ferent paths have been selected automatically depending on the current
operating system).

• Newsletter. In order to increase the user retention and traffic (and
therefore incoming by advertising) a newsletter has been implemented,

5.10 Possible Improvements 71

where users could be informed about new issues from their subscribed
journals but also about new offerings on the website which may be of
interest for them. At the time of subscribing to the newsletter the user
has to enter a valid mail address, which is validated against RFC822
and checked if MX records exists for that domain. Afterwards an mail
is sent to the address entered by the user with a unique link the user
has to click in order to confirm this mail address is valid and the owner
of the mail address really wants to subscribe to the newsletter and
the address has not been misused by someone else - this mechanism is
called “double opt in”. The content of the newsletter itself is created
automatically for new journal issues which have not yet been sent, while
the content manager can add manually some free text, for example
announcements of new offerings on the website. The newsletter can be
sent to all subscribers by a few mouse clicks, the content manager does
not have to type anything.

• Video- and audio streaming. As to present short video clips for
e-learning purposes, presentations from conferences and in addition to
the scientific articles in the printed journal issues first a streaming server
based on Quicktime / Darwin has been implemented. Since it turned
out that this may lead to problems with firewalls at the client side,
we decided to use the Macromedia Flash technology for this purpose,
where the video files are stored as FLV files, the audio files are stored
as MP3, for conference presentations one single generic Flash appli-
cation has been created to present the video respectively audio file to
the user, which allows to pass the identifier of the video/audio to the
Flash application. For this reason conference presentations are gener-
ated completely automatically, the content manager has only to upload
the media files. Figure 13 on page 72 shows the video stream of a
conference presentation. Right to the video the slides can be found, a
click on the thumbnails of the slides leads to a larger view of the slides.

5.10 Possible Improvements

Issues which are not yet solved in an optimal manner and therefore future
projects may be one of the following:

• Automatic conversion of full text. In order to increase the number
of ad impressions and therefore revenue one goal was to convert the
content which is mainly contained in PDF documents automatically

5.10 Possible Improvements 72

Figure 13: www.kup.at - video stream of a conference presentation including
the slides

5.10 Possible Improvements 73

into HTML documents. While this worked in principal, there were
several problems, which brought us to the decision not to take this
approach. One problem was that the documents where generated using
Adobe Pagemaker, but the stylesheets in Pagemaker for creating the
full text files had not been used according to their meaning, but rather
according to what they look like. In addition a lot of text has been
formated without using any stylesheet. Therefore the conversion could
be done only semi automatically, which would have been too much
effort for the employees and therefore is not maintainable. To support
the automatic conversion from Adobe Pagemaker respectively InDesign
to HTML documents in the future stylesheets would always have to be
used according to their meaning. The usage of “Tagged PDF” [114]
where the logical structure is expressed via “tags” would also increase
the accessability.

• High availability Currently the productive system only consists of
one hosts which is a single point of failure. One thing which improves
the fault tolerance is a RAID-1 system, where two identical harddiscs
are used for mirroring the data - if one of the discs fails the system
can still operate using the other disc. The failed disc can be exchanged
in the meantime by a new one. The provider offers several internet
connections to the internet backbone, therefore a failure of one of the
internet connection should not be a problem. Other problems with the
hardware, e.g. the memory will cause a system halt, also problems
with the software may bring the system down or cause it not to work
properly anymore. Therefore some redundant systems would be nice
to have in order to ensure business continuity by providing failover if
one of the systems fails. The redundant hardware also could be used to
reduce the load to each single system by implementing a load balancing
mechanism.

• Load balancing If the load increases additional servers may be nec-
essary to build a cluster and distribute the load, therefore a load bal-
ancing mechanism and synchronization of the data may be necessary,
although load performance tests and the round robin database monitor
of the web sever show that currently there is no bottleneck with the
current memory or central processing unit, the single server can scale
for some years based on the growth in the past since nearly all web
pages are static and only a few dynamic web pages are in used. The
main problem in the past where two downtimes because of some over-
load situations and therefore system downtimes because of too many

5.10 Possible Improvements 74

concurrent requests at the same time which filled up the memory, where
load balancing would not help that much. This problem has been solved
by decreasing the number of maximum concurrent apache servers ac-
cording to the available memory and by changing to an new hardware
with four times as much memory.

For load balancing usually a load balancer (that is additional hard-
ware) is necessary which decides which traffic to route to which host -
this load balancer(s) usually are quite expensive, in addition the may be
a single point of failure unless you have at least two of them. Therefore
the simplest and cheapest approach for load balancing would be to use
round robin DNS, which does not need any additional hardware and no
single point of failure is introduced. This approach adds for every host
in the cluster the IP addresses if the hosts for a single hostname. If
there are multiple entries in the DNS for the same hostname the DNS
resolution on the client side decides which hosts of the list of hosts to
use. According to [117] page 64 this leads to an uniform distribution
over a large time period.

Data synchronization between the different hosts could be realized by
using Unison file synchronization (in both directions) or rsync (in one
single direction) using an encrypted connection via SSH or data repli-
cation can be done using DRBD (Distributed Replicated Block De-
vice) [115]. Database replication can be done by using Master/Slave-
Replication, where updates to the databases always must be done to
the Master and are replicated to all slaves afterwards. If the Master
fails another Slave has to be configured as Master, where the switchover
could be done manually or automatically. In order to have one single
source for logfile analysis a syslog(-ng) server could be configured on
one of the hosts, all other hosts log to the syslog server. An alternative
technology would be using mod log spread (see [116] page 263 and fol-
lowing).

Further concepts to build high performance website can be found in
Cal Henderson “Building Scalable Web Sites” [116] (pp. 202-256) and
Theo Schlossnagle “Scalable Internet Architectures” [117].

• Improve generation mechanism. Since the generation of the com-
plete site takes some hours and since between two times of generating
the complete site some documents may not by requested by users at all,
in this cases the generation of the document was unnecessary. There-

5.10 Possible Improvements 75

fore the use use of a caching mechanism instead of complete generation
of all documents would make sense, that is, to generate the document
only when it is requested for the first time and to serve it afterwards
from the filesystem cache. In addition it would be nice to have a user in-
terface to be able to regenerate single documents (for example only the
summary page for a single scientific article, e.g. by deleting the cached
document so it has to be regenerated when requesting it the next time)
instead of regenerating the hole section (that is, all summaries for all
scientific articles) which would be more efficient and faster.

• Scalability. Currently all documents of one document type are stored
in one single directory which may cause performance problems with
some filesystems (see [116] page 246) since there may be thousands of
files of one document type. Newer Linux file systems like ReiserFS
and Ext3 on a 2.6 kernel don’t have this problem anymore, since they
use a hash of filenames to lookup the inode entry, therefore the time
for looking up an entry remains relatively constant. In order to avoid
such problems anyway a more scalable directory structure may be used
(for example such as the one used by the popular mail transfer agent
(MTA) postfix for storing mails in the mail queue, where the number
of files per directory is constant, for each digit of the ID one subdi-
rectory is created). To achieve better read and write performance, it
nearly always a good idea to add the “noatime” flag when mounting a
filesystem, where atime is short for access time. By default Unix stores
the time a file was last accessed (for read or write), which reduces per-
formance. Adding the noatime flag will give a boost in performance
[116], page 247).

• Automatic bounce management for the newsletter. At the time
of subscribing to the newsletter the user has to enter a valid mail ad-
dress, which is guaranteed by using double opt in. As time goes by
mail addresses may became invalid, since a person may leave a com-
pany, the domain name changes, the user changes to another provider,
the account has been canceled, the account may be permanently over
quota since it is not used anymore by the user and so on. There-
fore the newsletter is also sent to some invalid mail addresses which
are sent back to the newsletter owner as undeliverable. Currently this
bounced mails are handled manually, in order to improve maintenance
this should by handled automatically - invalid mail addresses should
be removed automatically when mails bounce for several times.

• Using CSS instead of layout tables. At time of implementing the

5.10 Possible Improvements 76

layout CSS was not yet well supported by all browsers in order to do
a complete layout. Therefore CSS only has been used for formating
the textual elements but not for the layout - instead nested HTML
tables have been used which are hard to maintain. In addition, the
layout could not be changed by just modifying one single stylesheet,
but rather the layout is fixed in all (currently 144) templates, which
makes it hard to change the layout, for example to add a third vertical
column for advertising.

• Text mining. In order to automatically build an thesaurus a program
has been implemented which tries to find common co-occurences of
(key)words, that is words that often appear together and therefore are
considered as related in some kind. This implementation has been
relatively time consuming and took long to return with the results, in
addition it found some very interesting and really related terms, but
also some terms which are not related at all and therefore would have
to be excluded manually. Although, text mining (find co-occurences of
terms, clustering of related documents, ...) would be a very interesting
issue. Some promising results have been delivered by “Morphosaurus”,
where we cooperated with the Department of Medical Informatics in
Freiburg [118]. The results of Morphosaurus have been integrated in
our automatically built thesaurus as well.

• Automatic generation of summaries. The Open Text Summarizer
[119] is an open source tool for summarizing texts. The program reads
a text and decides which sentences are important and which are not.
Several academic publications have benchmarked it and praised it. This
program could be used to generate summaries of the PDF documents
automatically.

• Improved logfile analysis. Currently no generic framework or overall
concept for web usage mining is in use, for every single point of interest
another program to analyze the logfile is implemented. In the future
it would be nice to have a general framework to be able to analyze the
data like in an Business Warehouse or OLAP system. An interesting
question to analyze may be for example the percentage of which PDF
documents are loaded by the users (a PDF document may be only
loaded partially due to the HTTP Byte-Range retrieval). In order to
further improve usabilitity and to meet users needs for example one
could offer only the most used options on the regular page (found by
web usage mining) and all other options on a page with further options.
It may also be of interest if the newsletter mails are actually read - this

5.10 Possible Improvements 77

could be implemented by using HTML newsletters (currently the mails
are sent as plain text, since every client accepts this kind of information)
and using pixel graphics or by using links with an unique identifier for
each recipient instead of uniform links.

• Dictionary English-German. Currently all keywords are translated
manually, that is German keywords and English keywords have to be
entered for each article. To avoid this additional effort a dictionary
for translation of German keywords into English keywords could be
implemented, so the user has to enter the translation only once and
not for every single article every time a word is (re)used - the user
should be only prompted for an translation if the translation does not
yet exist.

• User interfaces to delete and update databases entries. In order
to further improve the database consistency interfaces for updating
and deleting databases entries should be implemented since the entity
relationship model may be hard to understand because of the growing
number of database tables and the user may miss some relationship.
Currently only a generic database frontend is used to maintain updates
and deletions. In addition an WYSIWYG editor could be implemented,
so the user does not have to understand HTML, which is currently
necessary for some kind of content (e.g. the editorial board, imprint,
guidelines for authors, ...).

• Offline versions for delivery on CD-ROM or DVD. For some
people it might be interesting to get an offline version of some databases
or journals (as for most of them exists a printed copy). Since most
content is static this would not be a great deal, the main challenge
would be to offer the search functionality.

78

6 Summary and conclusion / Future Work

6.1 Summary

Since there are a lot of different technologies, frameworks and content man-
agement systems for building websites it is hard to choose the one which fits
your needs for the current project. Because there are so many of them (which
may be optimized for a special purpose or company) a lot of time would be
needed to evaluate which is the right one for your project, in addition it may
be a lot of effort to learn how to operate, extend or modify this framework
or content management system to fit your needs. Therefore content man-
agement systems for websites are often implemented from scratch - in this
case you need some guidelines how to build a website in order to keep it
maintainable with reasonable effort.

In this thesis I developed an approached to build a maintainable website.
First, a general overview of the state of the art and the different technologies
and frameworks was given, while in the next chapter the different steps and
tasks in the website development life cycle where presented with focus on
maitainability.

The real world case study done from 2003 to 2008 (which is still ongoing
and online) showed how to build such a website and to keep it maintainable
by generating as much as possible automatically from one single source. Also
the use of static documents instead of dynamic pages has a lot of advantages,
which has been made use of in this project. At first it took some effort to
convince the customer to build such an overall concept, but in the end -
after being online for five years now - it turned out that this concept still
works, is scalable and still maintainable without changes to the architecture
or concepts. In addition, a lot of new features have been implemented in
this five years, some of them also increased the income and were able to im-
prove other commercial figures by adding additional possibilities for sponsors
and advertisers, like paid content, advertising in PDF documents, additional
space for advertising, sponsoring of video presentations, but also by increas-
ing the traffic and therefore reach more users.

Nevertheless, there is still room for improvement, as we saw at the end of
the last chapter.

Spoken in general maintainability is not an “add on” which can be added af-
terwards if there is enough time at the end of a project phase (which actually

6.2 Future work 79

never is) but rather is a permanent process and every design decision has been
taken with taking the consequences and effects regarding to maintainability
into account.

6.2 Future work

For faster development of maintainable websites it would be desirable to be
able to use an integrated framework, which unites the advantages of native
programming languages for implementing web sites and web applications
(that is, flexibility and the availability of modules for the most important
functionality needed for websites) and the functionality of generic frame-
works, template engines and content management systems. So, the goal for
such a system could be an framework, which offers modules for frequently
needed functionality, like newsletters, full text search, generic content man-
agement, automatic building of sitemaps and tables of contents, support for
internationalization and localization and so on. The behaviour of this mod-
ules should be configurable, the layout should be configurable from one source
for all modules, so a single informational or navigational element could be
reused for different modules. Besides it should be also possible to use your
favorite programming language to implement your own business logic respec-
tively web application.

Another goal could be to develop a library with user interface components like
the ones offered by Apache MyFaces [25] for different programming languages
like PERL and PHP, but independent of the framework or template engine
used. This library could ease the development of user interfaces for web ap-
plications, since it offers ready to use components for calenders, WYSIWYG
editors, pageable and sortable tables or lists, tabs, navigation trees, panels,
progress bars, and much more. The layout of this components should be
customizable by using cascading stylesheets.

Another approach could be some kind of meta model or abstraction layer
for different programming languages, where the meta model could be auto-
matically mapped into any supported programming language, so platform
and language independent websites could be implemented. This could be
solved by using a framework to support model driven architecture (MDA)
web application development by defining the UML model and automatic
generation of the source code in different languages (PERL, PHP, Java, ...),
so the definition would be language independent and the platform could be
changed more easily, so the application would be more portable [44]. For
example AndroMDA [45] is an Open Source MDA Generator but only sup-

6.2 Future work 80

ports Java, openArchitectureWare [46] is a powerful open source generator
framework that can read any kind of model (XMI, XML, any textual repre-
sentation) and transform it in any kind of textual output. It has an explicit
representation of the source metamodel, and uses templates to generate the
output. The target languages include C, C++, C#, Java, Perl, Python,
Ruby, Javascript, XSLT, JSP, PHP, ASP.NET, VB.NET and much more.

81

A List of Figures, Tables and Listings

List of Figures

1 Java Model 2 approach . 8
2 Cocoon XML pipelining mechanism 9
3 Model 2 X approach using XLST instead of JSP 9
4 www.kup.at - homepage of a journal before the redesign . . . 47
5 www.kup.at - portal for cardiovascular diseases before the re-

design . 51
6 www.kup.at - database for cardiology in Austria before the

redesign . 52
7 www.kup.at - homepage of a journal after the redesign 55
8 www.kup.at - fault tolerant database administration frontend

to enter keywords . 56
9 www.kup.at - user interface to start the automatic generation

of the website . 59
10 www.kup.at - monitor for the hits per second, traffic, number

of busy and idle Apache servers, memory usage and CPU load
average . 61

11 www.kup.at - search engine for the image database 65
12 www.kup.at - approximate error tolerant search 68
13 www.kup.at - video stream of a conference presentation in-

cluding the slides . 72

List of Tables

1 Case Study - Statistical Data 63

Listings

1 Sample template for the Template Toolkit 5
2 Calling PERL code for the Template Toolkit 6

REFERENCES 82

References

[1] Jussi Koskinen. Software Maintenance Costs. Information Technol-
ogy Research Institute, Finland http://users.jyu.fi/~koskinen/

smcosts.htm, 2003.

[2] Christoph Bommer, Markus Spindler, Volkert Barr. Software-Wartung:
Grundlagen, Management und Wartungstechniken. dpunkt, 2008.

[3] National Center for Supercomputing Applications. Common Gateway
Interface. http://hoohoo.ncsa.uiuc.edu/cgi/

[4] Comparison of Template Engines. http://en.wikipedia.org/wiki/

Template_engine_%28web%29#Comparison_of_template_engines

[5] Smarty PHP Template Engine. http://www.smarty.net/

[6] Template Toolkit. http://www.template-toolkit.org/

[7] Darren Camberlain et al. Perl Template Toolkit. O’Reilly & Associates,
first edition, 2004.

[8] Comparison of Web application frameworks. http://en.wikipedia.

org/wiki/Comparison_of_web_application_frameworks

[9] Trygve Reenskaug. Model-View-Controller Pattern. Xerox PARC, 1978.
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

[10] Steve Burbeck. Applications Programming in Smalltalk-80: How
to use Model-View-Controller. 1987. http://st-www.cs.uiuc.edu/

users/smarch/st-docs/mvc.html

[11] Model View Controller Frameworks for the Web. http://en.

wikipedia.org/wiki/Model-view-controller#Implementations_

of_MVC_as_web-based_frameworks

[12] Java Model 2. http://www.javaworld.com/javaworld/jw-12-1999/

jw-12-ssj-jspmvc.html

[13] Apache Struts. http://struts.apache.org/

[14] Struts4PHP. http://www.struts4php.org/

[15] Apache Cocoon. http://cocoon.apache.org/

REFERENCES 83

[16] Bill Brodgen, Conrad D’Cruz and Mark Gaither. Cocoon 2 Program-
ming. Sybex, Inc., 2003.

[17] Matthew Langham and Carsten Ziegeler. Cocoon: Building XML Appli-
cations. New Riders, first edition, 2002.

[18] Getting Started With Cocoon 2. http://www.xml.com/lpt/a/2002/07/
10/cocoon2.html

[19] Markus Krumpöck. Serving XML with Apache Cocoon. Linux
Magazine, Issue 06. http://www.linux-magazine.com/issue/06/

ApacheCocoon.pdf. 2001.

[20] StrutsCX. http://it.cappuccinonet.com/strutscx/

[21] MyXML. http://www.infosys.tuwien.ac.at/myxml/homepage.html

[22] Apache AxKit. http://axkit.org/

[23] Model 2 X. http://www.javaworld.com/javaworld/jw-02-2002/

jw-0201-strutsxslt.html

[24] Java Server Faces (JSF). http://java.sun.com/j2ee/

javaserverfaces/

[25] Apache MyFaces. Trinidad, Tobago, Tomahawk. http://myfaces.

apache.org/trinidad/ http://myfaces.apache.org/tobago/,
http://myfaces.apache.org/tomahawk/

[26] Ruby on Rails. http://www.rubyonrails.org/

[27] Grails. http://grails.org/

[28] Symfony. http://www.symfony-project.org/

[29] CakePHP. http://cakephp.org/

[30] Catalyst. http://www.catalystframework.org/

[31] Grok. http://grok.zope.org/

[32] Comparison of Content Management Systems. http://www.cmsmatrix.
org/

[33] http://en.wikipedia.org/wiki/List_of_Content_Management_

Systems

REFERENCES 84

[34] Yet Another Multicolumn Layout (YAML). http://www.yaml.de/en/
home.html

[35] Mollio CSS/HTML Templates. http://www.mollio.org/

[36] Prototype - a JavaScript Framework. http://www.prototypejs.org/

[37] script.aculo.us - a JavaScript Framework based on Prototype. http:

//script.aculo.us/

[38] OpenLazlo. http://www.openlaszlo.org/

[39] jsVal. http://jsval.fantastic-bits.de/

[40] Roland Petrasch, Oliver Meimberg. Model-Driven Architecture: Eine
praxisorientierte Einfhrung in die MDA. Dpunkt Verlag, 2006.

[41] Klaus Zeppenfeld, Regine Wolters. Generative Software-Entwicklung mit
der Model Driven Architecture. Spektrum Akademischer Verlag, 2005.

[42] Georg Pietrek et al. Modellgetriebene Softwareentwicklung. MDA und
MDSD in der Praxis. Entwickler.Press, 2007.

[43] MDA Guide Version 1.0.1. http://www.omg.org/docs/omg/03-06-01.
pdf

[44] Code Generation Network. http://www.codegeneration.net/

[45] AndroMDA Open Source MDA Generators. http://www.andromda.

org/

[46] openArchitectureWare. http://www.openarchitectureware.org/

[47] ISO (1991). International Standard ISO/IEC 9126. Information technol-
ogy – Software product evaluation – Quality characteristics and guide-
lines for their use, International Organization for Standardization, In-
ternational Electrotechnical Commission, Geneva.

[48] IEEE 90. Institute of Electrical and Electronics Engineers. IEEE Stan-
dard Computer Dictionary: A Compilation of IEEE Standard Computer
Glossaries. New York, NY: 1990.

[49] Jakob Nielsen. Usability 101: Introduction to Usability. August 25, 2003
http://www.useit.com/alertbox/20030825.html

[50] Jakob Nielsen. Designing Web Usability. New Riders, third edition, 2000.

REFERENCES 85

[51] Reusability. http://en.wikipedia.org/wiki/Reusability

[52] Web Accessablilty. http://en.wikipedia.org/wiki/Web_

accessibility

[53] Web Accessibility Initiative (WAI). http://www.w3.org/WAI/

[54] World Wide Web Consortium. http://www.w3.org/

[55] Erich Gamma et al. Design Patterns. Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1999.

[56] Andrew Hunt and David Thomas. Der Pragmatische Programmierer.
Carl Hanser Verlag, 2003.

[57] Martin Fowler et al. Refactoring. Improving the Design of Existing Code.
Addison-Wesley, 1999.

[58] Refactoring. http://en.wikipedia.org/wiki/Code_refactoring

[59] http://en.wikipedia.org/wiki/Don’t_repeat_yourself

[60] Louis Rosenfeld and Peter Morville. Information Architecture for the
WWW. O’Reilly & Associates, second edition, 2002

[61] Jason Beaird. The Principle of Beautiful Web Design, Sitepoint, 2007.

[62] Jakob Nielsen. Why Frames Suck (Most of the Time). http://www.

useit.com/alertbox/9612.html. December 1996

[63] Jakob Nielsen. Top 10 Web Design Mistakes of 2003. http://www.

useit.com/alertbox/20031222.html

[64] Google Sitemaps. https://www.google.com/webmasters/sitemaps/

[65] Swish-E. http://swish-e.org/

[66] htdig. http://www.htdig.org/

[67] Perlfect Search. http://www.perlfect.com/freescripts/search/

[68] http://en.wikipedia.org/wiki/Internationalization_and_

localization

[69] Content Negotiation. http://en.wikipedia.org/wiki/Content\

_negotiation

REFERENCES 86

[70] Apache Content Negotiation. http://httpd.apache.org/docs/2.0/

content-negotiation.html

[71] Fielding, et al. Hypertext Transfer Protocol – HTTP/1.1 - 12
Content Negotiation. http://www.w3.org/Protocols/rfc2616/

rfc2616-sec12.html

[72] Cascading Style heet (CSS).http://en.wikipedia.org/wiki/
Cascading_Style_Sheets

[73] PHP Hypertext Processor. http://www.php.net/

[74] Rasmus Lerdorf and Kevin Tatroe. Programming PHP. O’Reilly & As-
sociates, Inc., first edition, 2002.

[75] George Schlossnagele. Advanced PHP Programming. sams, 2004.

[76] PERL - Practical Extraction and Report Language http://www.perl.

org/

[77] What is dynamic and static? - a definition from Whatis.com.
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_

gci348104,00.html

[78] Static and dynamic webpage designing. http://ezinearticles.com/
?Static-And-Dynamic-Webpage-Designing&id=1199113

[79] GNU Wget. pathhttp://www.gnu.org/software/wget/

[80] GNU coding standards. http://www.gnu.org/prep/standards/

standards.html

[81] Database vs. Filesystem for storing files. http://en.wikibooks.org/
wiki/Programming:WebObjects/Web_Applications/Development/

Database_vs_Filesystem http://asktom.oracle.com/pls/asktom/

f?p=100:11:0::::P11_QUESTION_ID:1011065100346196442

[82] HTML Tidy. http://tidy.sourceforge.net/

[83] PERL Tidy. http://perltidy.sourceforge.net/

[84] PHP Beautifier. http://pear.php.net/package/PHP_Beautifier

[85] phpDocumentor. http://www.phpdoc.org/

[86] Javadoc. http://java.sun.com/j2se/javadoc/

REFERENCES 87

[87] Doxygen. http://www.stack.nl/~dimitri/doxygen/

[88] Pankaj Kumar. MyGoogle: A Simple Cocoon Application that
Uses Google’s SOAP API. http://www.pankaj-k.net/sdwest2002/

readme.html

[89] AxisRPCReader. http://cocoon.apache.org/2.1/userdocs/

optional/axisrpc-reader.html

[90] Apache Axis. http://ws.apache.org/axis/

[91] JUnit. http://www.junit.org/

[92] PHPUnit. http://www.phpunit.de/

[93] HttpUnit. http://httpunit.sourceforge.net/

[94] Apache JMeter. http://jakarta.apache.org/jmeter/

[95] ab - Apache HTTP server benchmarking tool. http://httpd.apache.
org/docs/2.3/programs/ab.html

[96] RFC822 - Standard for the format of ARPA Internet text messages.
http://www.freesoft.org/CIE/RFC/1123/100.htm

[97] ModSecurity: Open Source Web Application Firewall. http://www.

modsecurity.org/

[98] IPTC Information Interchange Model. http://en.wikipedia.org/

wiki/IPTC-NAA-Standard

[99] Zebra - Z39.50 server. http://www.indexdata.dk/zebra/

[100] Open Archive Initiative. http://www.openarchives.org/

[101] OAI-PMH2 XMLFile File-based Data Provider. http://www.dlib.

vt.edu/projects/OAI/software/xmlfile/xmlfile.html

[102] agrep - Implementation for Unix. ftp://ftp.cs.arizona.edu/agrep/

[103] S. Wu and U. Manber, Agrep – A Fast Approximate Pattern-Matching
Tool. Usenix Winter 1992 Technical Conference, San Francisco (January
1992), pp. 153-162.

[104] phpMyAdmin. http://www.phpmyadmin.net/

[105] rsnapshot. http://www.rsnapshot.org/

REFERENCES 88

[106] ftplicity. http://www.heise-online.co.uk/security/

Backups-on-non-trusted-FTP-servers--/features/79882

[107] duplicity. http://duplicity.nongnu.org/

[108] Round Robin Database. http://oss.oetiker.ch/rrdtool/

[109] Ivan Ristic. Apache Security. http://www.apachesecurity.net/,
O’Reilly Media, 2005.

[110] mon - Service Monitoring Daemon. http://mon.wiki.kernel.org/

index.php/Main_Page

[111] logcheck - a logfile scanner. http://logcheck.org/

[112] Unison, a file synchronization tool. http://www.cis.upenn.edu/

~bcpierce/unison/

[113] cron-apt. automatic update of packages. http://packages.debian.
org/etch/cron-apt

[114] What is Tagged PDF? http://www.planetpdf.com/enterprise/

article.asp?ContentID=6067

[115] Distributed Replicated Block Device. http://www.drbd.org/

[116] Cal Henderson. Building Scalable Web Sites. O’Reilly Media, first edi-
tion, 2006.

[117] Theo Schlossnagle. Scalable Internet Architectures. Sams, 2006.

[118] Morphosaurus. http://morphwww.medinf.uni-freiburg.de/

[119] OpenTextSummarizer. http://libots.sourceforge.net/

