
Master’s Thesis

A Case Study and

Experimental Evaluation of

Web Services in Mobile

Computing
carried out at the

Information Systems Institute

Distributed Systems Group

Vienna University of Technology

under the guidance of

o.Univ.Prof. Dr. Schahram Dustdar

as the contributing advisor responsible

by

Bernhard Wehinger

Dammstrasse 6, A-2100 Korneuburg

Matr.Nr. 9926255

Vienna, 21. February 2008

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

i

Danksagung

Ich bedanke mich bei meiner Familie, die mir während der nicht

immer ganz einfachen Studienzeit unablässig zur Seite gestanden ist.

Besonderer Dank gilt dabei meinen Eltern, die mir durch finanzielle

und moralische Unterstützung dieses Studium ermöglicht haben.

Ich danke auch Daniel Schall für die professionelle Betreuung

während der Entstehung dieser Arbeit.

ii

Abstract

Today more and more people make use of mobile digital assistants

and Smartphones, as the capabilites and performance of those de-

vices are getting improved constantly. Through the expansion of the

infrastructure for mobile internet, the devices can go online nearly ev-

erywhere and at any time. So why not make use of all these devices

that have enough computing power and resources to potentially act as

servers? The goal of this work is to evaluate the feasibility of an OSGi

based context-aware collaboration framework on lightweight devices

like Pocket PCs and mobile phones running Java for mobile devices.

The framework developed in the course of this thesis aims at support-

ing collaboration in ad-hoc and mobile teams. The assumption is that

no centralized infrastructure exists, thus collocated devices and ser-

vices need to be discovered in ad-hoc mode. Particular attention will be

given at standard Web services, hosted on mobile devices, as communi-

cation means between devices and a mobile Context Store for context

information retrieval and aggregation.

iii

Zusammenfassung

Mobile digitale Helfer wie Pocket PCs und Smartphones haben in vie-

len Bereichen unseres Lebens Einzug genommen, da diese Geräte im-

mer schneller und ihre Möglichkeiten ständig erweitert werden. Durch

die Erweiterung der Infrastruktur für mobiles Internet, kann man na-

hezu immer und überall online gehen. Es liegt deshalb nahe, mobile

Geräte, die über genügend Rechenkapazität und Resourcen verfügen,

als Server für diverse Services zu nutzen. Ziel dieser Arbeit ist es,

Context Informationen auf einem mobilen Gerät zur Verfügung zu

stellen. Das entwickelte Framework basiert auf OSGi und läuft auf

allen Geräten die J2ME/CDC mit Personal Profile unterstützen. Weit-

ers wird angenommen, dass keine zentralisierte Infrastruktur zur

Verfügung steht, was einen Discovery Mechanismus für Geräte und

Services erfordert. Besondere Aufmerksamkeit wird dabei Standard

Web Services gewidmet, die auf den mobilen Geräten gehostet werden

müssen und als Kommunikationsmethode dienen.

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Mobile / Ad-hoc Teams in Collaborative Environ-

ments . 2

1.2 Problem Description . 5

1.3 Contributions . 6

1.3.1 Evaluation of Web Services on Mobile Devices . . 6

1.3.2 Architecture for Mobile Collaboration using Web

Services . 7

1.4 Overview of Thesis . 7

2 Background 8

2.1 Interaction Styles . 8

2.1.1 HTTP . 9

2.1.2 REST . 10

2.1.3 SOAP . 11

2.1.4 JXTA . 12

2.2 Mobile Devices . 13

2.2.1 Limited Capabilities 13

2.2.2 Mobile Devices Frameworks 13

2.3 Summary . 19

3 The Role of SOA and Web Services in Mobile Computing 20

3.1 Technology Overview . 20

3.2 Web Services Toolkits . 27

3.3 Service Deployment . 32

v

3.4 Service Discovery . 37

4 Case Study - Collaboration in Mobile and Ad-hoc Teams 52

4.1 Context-Aware Mobile Computing 52

4.2 Context Model . 56

4.3 Architecture . 61

4.4 Design and Implementation 75

4.4.1 Developing Services for Mobile Devices 75

4.4.2 Data Persistency 77

5 Evaluation 79

5.1 Testsetup . 79

5.1.1 Configurations . 79

5.1.2 Footprint of the Framework 80

5.1.3 Testsetup . 80

5.2 Performance study . 81

5.2.1 Stresstest . 84

5.2.2 Conclusion . 85

5.3 Implementation Aspects 86

5.3.1 AMIGO . 86

5.3.2 OSGi . 87

5.3.3 SLP . 87

6 Summary and Conclusion 88

A Knopflerfish on a PPC using J9 89

A.1 The Knopflerfish Framework 89

A.2 Java Runtime Environment 89

A.3 Executing the JVM . 90

vi

A.4 Preparing J9 for Knopflerfish 92

A.5 Setting up Knopflerfish . 93

A.6 Programming OSGi bundles 94

B Code Listings 95

B.1 CFW-API-Bundle ANT build file 95

B.2 Service Binder Configuration 96

B.3 Context Model SQL . 97

B.4 Test Data Set . 102

B.5 Example Server Configuration 108

C Technical information 111

C.1 Footprint . 111

C.2 Package Structure . 112

C.3 Service imports and exports 113

vii

List of Figures

1 .NET Compact Framework Modules 15

2 CDC Profiles . 17

3 CDC/CDLC Architecture 18

4 SOA Paradigm . 20

5 OSGI Architecture . 33

6 Active Discovery using SLP 41

7 Passive Discovery using SLP 42

8 Typical DA Discovery . 43

9 Service Discovery using the WS-Discovery protocol . . . 45

10 Service Discovery with Discovery Proxy present 46

11 Context Model . 60

12 Architecture: Server configuration 62

13 Architecture: Client configuration 63

14 Bundle dependencies . 65

15 Administration Bundle . 69

16 The Activity Manager on a Pocket PC 71

17 The Activity List on a Pocket PC 71

18 Add Activity . 72

19 Task with new Activity . 72

20 Activity List on the remote peer 73

21 Details of the new activity on the remote peer 73

22 Test setup . 81

23 Time intervals for performance metering 82

24 Performance . 83

25 Average Performance . 84

viii

List of Tables

1 Components of the framework 64

2 Average, minimum and maximum request time 84

3 Components of the framework packaged as Bundles . . . 111

1

1 Introduction

The variety of mobile devices is increasing rapidly and the technical

infrastructure for communication and data transfer is constantly im-

proved and expanded nowadays. Thus there is a substantial interest in

leveraging this progress of the communication and information tech-

nology to support collaborative scenarios.

This work is done as a part of the inContext project, which aims at de-

veloping a toolkit to support the creation of collaborative services with

focus on mobility and teams. Due to the advancements of mobile and

wireless technologies, people, who rely on mobile devices like laptops,

Smartphones etc., are more flexible in choosing their working environ-

ment and can use the tools they need nearly everywhere. Mobility and

heterogeneity of devices cause connectivity, availability and bandwidth

issues [33].

To eliminate some of these issues from the outset, this work concen-

trates on standard Web services to take advantage of the platform in-

dependent nature of Web services, which allow applications of all kinds

to interact with each other [36].

1.1 Motivation

The aim of this work is to allow people and teams to query and share

context information using off-the-shelf mobile devices. Being able to

share context using mobile devices enables people to benefit from con-

text sensitive applications anywhere and not only when a connection

1.1 Motivation 2

to fixed devices, which provide context information, is established. In a

mobile environment with constantly moving devices, a software archi-

tecture supporting mobile collaboration has to ensure that the devices

are aware of each other. The foundation of this work is a discovery

mechanism for making the mobile devices aware of each other and to

exchange context data using a Web service provider on a lightweight

device.

1.1.1 Mobile / Ad-hoc Teams in Collaborative Environments

Most companies organize their employees in teams and each of them is

contributing to a common goal. When a team needs expert knowledge

from one or more specialists of other companies, who are maybe located

in a foreign country or different time zone, the workflow, communica-

tion, data exchange etc. will become much more complex. Nimble teams

emerge [37], which are a special form of a collaboration teams that are

tightly coupled, short-lived and very flexible in their team configura-

tion. An example of a nimble team is a taskforce. Because of the perva-

siveness of mobile devices, the ability to connect to the internet nearly

always and everywhere and the advanced integration into our daily

life, those teams are no longer bound to one location. Flexible working

schedules and the fact, that people are often engaged in more than one

task or project at the same time require new context-aware means of

communication and collaboration to be developed.

As one can imagine, experts of companies often have to switch between

the teams they are consulting. Therefore a very important requirement

for any software supporting human workflows is to keep track of the

1.1 Motivation 3

context of the user. Consider for example a car manufacturing com-

pany having problems adjusting the control unit for an antilock brake

system. The knowledge of an expert of the company producing this con-

trol unit is needed to assist the engineering team solving the problem.

But most likely this unit is sold to other car makers as well and they

maybe have some similar troubles using it, so the same specialist has

to support many teams virtually at the same time. Therefore software

services supporting the specialist have to “know” which team he is part

of, where he is located, which device he is using and on which task he

is working at the moment to provide relevant information like status

of the other team members, documents, files etc. Context information

is vital to effectively support knowledge workers in their workflow and

helps workers to select and provide relevant information to other team

members.

Due to the importance of context in nimble/mobile teams, it is neces-

sary to investigate a way to enable team members to search for infor-

mation. There are two different types of search queries.

First, the system should enable people to query the context of co-

workers. For example it could be important to know, where the other

team members are located or which status they have at the moment.

Consider a team leader planning a meeting to discuss future topics of

the project. He has to check the availability of his colleagues and has

to reflect about whom he is inviting. Imagine that there are some im-

portant specialists whose attendance at the meeting is absolutely nec-

essary. In this case it is of paramount importance for the team leader

to know the location of his specialists or if they are currently engaged

1.1 Motivation 4

in some other temporally critical activities and need not be disturbed.

This information helps the team leader to choose the right time and

the right place for the meeting.

If it is not possible to arrange a meeting because team members are

indespensable, the team leader could decide to switch to a videoconfer-

ence instead of a personal meeting. If we take a look at this case, we

can see, that many challenges arise here. Several prerequisites must be

satisfied to successfully establish a videoconference. The team leader

or the system has to know, which mobile device the team members are

currently using e.g. Smartphone, Pocket PC or notebook and whether

all of these devices fulfill the needs of a video conference. Furthermore,

the network bandwidth of the remote devices plays an important role,

as the video conferencing system might need to stronger compress the

video stream for proper presentation on a Pocket PC with UMTS than

on a laptop with T1 connection and there are many more aspects of

team collaboration scenarios, that show the importance of context of

users and devices to increase the efficiency of teamwork.

Besides the ability to search for context details, project workers must

also be able to lookup information concerning the current project or

only a task of the team, for example files, documents, meeting protocols,

activity history of team members etc.

Finally the combination of the two search domains (context informa-

tion and artefacts concerning the currently ongoing project) empowers

the user to execute very useful queries. For acquiring these details, a

mechanism must be provided to query mobile devices.

1.2 Problem Description 5

1.2 Problem Description

Using toolkits and frameworks available today, it is possible to con-

sume Web services from mobile devices. For example kSOAP is a SOAP

library with a small footprint which can be used on mobile devices run-

ning Java-based applications to communicate with SOAP based Web

services. Also the .NET Compact Framework from Microsoft offers the

possibility to integrate SOAP based Web services seamlessly into .NET

compact based programs.

But the situation is different when it comes to providing Web services

on a mobile device. There exist only few Web service toolkits for mobile

and especially lightweight devices. Popular Web service toolkits like

Apache Axis are way to heavyweight to run on a mobile device with

limited resources. Although there are editions available where only the

core components are included, these toolkits cannot be used on Smart-

phones or PDAs. In this work possibilities of providing Web services on

lighweight mobile devices will be investigated.

The goal of this work is to demonstrate the feasibility of a lightweight,

platform-independent framework for providing context information on

devices with limited hard- and software capabilities. The proof-of-

concept implementation as presented in this thesis in Section 4 aims at

demonstrating the feasibility of an OSGi-based framework, which acts

as hosting environment for a Context Store and Web services to allow

communication between devices using standard protocols (i.e. SOAP).

The evaluation will show, if the limited nature of mobile devices (band-

width, performance, memory etc.) allows the provision of Web services

in a reasonable manner or if it is even possible.

1.3 Contributions 6

Since it cannot always be assumed that mobile devices are connected

to a network providing a centralized infrastructure, this thesis follows

the paradigm of a decentralized architecture, which requires a service

discovery mechanism. Due to the strong mobility, loose coupling is nec-

essary, because it is most likely that mobile devices with wireless con-

nection move out of network coverage from time to time. This work also

describes current service discovery and registration mechanisms.

1.3 Contributions

1.3.1 Evaluation of Web Services on Mobile Devices

Different Web services technology options currently exist to design and

develop Web services-based applications for mobile devices. This thesis

provides a detailed comparison of different Web services toolkits. We

will take a look at the toolkit features, but also on the advantages and

drawbacks of the tools such as deployment options on mobile devices.

The comparison mainly focuses on Web service providers, which are

available for the mobile Java platform.

Furthermore, this work analyzes the deployment and run-time require-

ments of Web services on mobile devices, starting with an introduc-

tion to mobile devices frameworks and an analysis of their suitability

for Web service deployment. Finally, a detailed guideline for deploying

Web services using OSGi with the IBM J9 JVM including libraries and

configurations will be given.

1.4 Overview of Thesis 7

1.3.2 Architecture for Mobile Collaboration using Web Ser-

vices

Based on the discussion of different Web service toolkits, we introduce

an architecture for mobile collaboration using Web services. The pro-

posed architecture and system allows Web services to be designed, de-

ployed, and managed in a mobile computing infrastructure. The archi-

tecture is based on the SOA paradigm and allows services to be reg-

istered, discovered, and invoked in a distributed environment. Our ar-

chitecture supports both ad-hoc and infrastructure mode in registering

and discovering services.

1.4 Overview of Thesis

This thesis is organized as follows: Section 2 introduces to mobile de-

vices and their limited capabilities, outlines mobile devices frameworks

available today and their suitability to host Web services. This sec-

tion also gives an overview about the REST architectural style and

the JXTA P2P framework. Section 3 deals with the SOA paradigm,

technologies and toolkits for creating Web services and their deploy-

ment and presents a detailed discussion of service discovery protocols.

Section 4 describes the architecture for mobile collaboration developed

during this work. In section 5 the reader can find the results of the eval-

uation of the proof-of-concept implementation. The appendix includes

additional information on the prototype.

8

2 Background

2.1 Interaction Styles

In this thesis particular attention is given on both roles in a service-

oriented system: the service consumer and the service provider. Cur-

rent specifications and implementations of mobile Web services for the

Java platform such as JSR 172 [15] only support the design and de-

velopment of Web services consumer on mobile devices. However, JSR

172 does not address how to host Web services (service provider role)

on mobile devices. As highlighted in the motivation example, in the

framework it is equally important to be able to consume and also to

provide Web services on mobile devices.

Convential Web services mainly utilize the Simple Object Access Pro-

tocol (SOAP). SOAP is a message format based on XML, which makes

the message creation and parsing calculation intensive. Sangyoon Oh

presents an interesting approach to cope with this problem with his

Handheld Flexible Representation. Using this framework, applications

are able to negotiate the message and streamformat for communica-

tion. Performance gain opposite to conventional SOAP based Web ser-

vices is reached through a binary encoding of the messages. This ad-

dresses the slow performance of mobile devices, and the limited avail-

ability of high speed networks.

Mobile Web services are difficult to deploy, because of the limitations of

the devices like memory, processing power, bandwidth. However, this

work investigates, if conventional SOAP based Web services developed

2.1 Interaction Styles 9

with toolkits available today deliver useful results on current average

mobile devices.

2.1.1 HTTP

The Hypertext Transfer Protocol [9] is the main protocol used on the

Internet to transfer information between clients and servers and origi-

nated from the need of a way to publish and retrieve HTML (HyperText

Markup Language) documents. HTTP is a request/response protocol

where typically the client (often referred to as user agent) sends a re-

quest to a server using a transmission control protocol connection to

the remote port 80 (default).

Example request:

GET /information/index.html HTTP/1.1
Host: www.remotehost.net

In this request the user agent challenges the server

www.remotehost.net to send him the HTML document index.html

in the directory information. HTTP/1.1 specifies the protocol

version. This is the most basic version of a HTTP request, it can be

specified more detailed using additional fields in the header of the

request (e.g. accept-language, accept-encoding, etc.).

If the document is found, the server answers with a positive response.

If the document is not found, the server responds with the correspond-

ing status code (HTTP/1.1 404 Not found). Many other responses are

possible, but listing all of them would be beyond of the scope of this

work.

2.1 Interaction Styles 10

Example of a positive response:

HTTP/1.1 200 OK
Date: Tue, 25 September 2007 12:31:16 GMT
Server: Apache/1.3.27 (Unix) (Red-Hat/Linux)
Accept-Ranges: bytes
Content-Length: 1255
Connection: close
Content-Type: text/html; charset=UTF-8

<html> [...] </html>

The header tells the client, that the document was found. The content-

type identifies the document as a HTML document, which is encoded as

UTF-8 and 1255 bytes (accept-ranges) long (content-length). Once the

document is received, the user agent can process the document (e.g. a

browser will display the file, a search engine robot will parse and index

it, etc.).

2.1.2 REST

The term REST was first introduced in Roy Thomas Fieldings PhD

thesis and stands for REpresentational State Transfer [38]. REST is

not a technology, but an architectural style and a different approach to

realize service oriented or web oriented architectures. REST basically

makes use of the HTTP protocol, which is used to operate on resources

identified by URIs (Uniform Resource Identifiers).

• GET (Retrieves a resource, which can be either data or a URI to

another resource)

2.1 Interaction Styles 11

• POST (Modifies details of a resource on the server)

• PUT (Creates a new resource on the server)

• DELETE (Removes a resource from the server)

Due to the usage of HTTP, REST is a rather lightweight possibility to

create service oriented applications. The message format can be chosen

freely, but the design principles of HTTP can lead to some problems.

HTTP is a stateless protocol, which requires the client to submit all

information the server needs to fulfill the request. It is also not pos-

sible to implement transactions and do a rollback in case of a failure.

The synchronous communication of HTTP can lead to timeouts, if an

operation takes too much time.

2.1.3 SOAP

SOAP (Simple Object Access Protocol) is a protocol standard of the

W3C [24], which allows distributed (web) applications and objects to

communicate with each other. The SOAP messages are XML-based and

contain information like namespaces, endpoint, remote procedure and

parameters to be used. It can therefore be called a RPC mechanism.

SOAP is platform and language independent and can be used with

various transport protocols (binding) like HTTP and SMTP/POP3. The

most common case is to use HTTP, because this standard protocol is so-

phisticated and in most cases firewalls are configured to pass through

HTTP requests, which allows clients to operate almost anywhere.

2.1 Interaction Styles 12

As with all XML-based protocol the biggest trade-off is the low perfor-

mance due to the large overhead caused by the markup language.

Take a look at the appendix for SOAP messages produced by prototype

developed during this work.

2.1.4 JXTA

JXTA is an open source P2P protocol specification originally conceived

by Sun Microsystems [44]. It consists of a set of XML messages and

was designed to overcome the shortcomings of existing peer-to-peer sys-

tems. An example for that would be a music filesharing system based

on the peer-to-peer technology, which has the disadvantage, that it is

intended for one purpose only. JXTA is intended to be more versatile

and applicable in many fields of distributed computing.

Applications based on JXTA are set atop a small and thin layer, which

provides powerful primitives and services the application can make use

of. Two key features of JXTA are platform independence and ubiquity,

which enables it to run on nearly every device and operating system

available.

JXTA is defined as a set of protocols and the technology is not based on

APIs, which different programming languages and heterogenous de-

vices running completely different software stacks greatly benefit of.

Also the choice of the transport protocol itself is up to the developer.

Besides TCP/IP, HTTP, Bluetooth, many others are possible options.

2.2 Mobile Devices 13

2.2 Mobile Devices

2.2.1 Limited Capabilities

Mobile devices are constraint in their processing power and rely on

batteries with limited capacity and thus require a careful design of

mobile applications to optimize resource consumption such as CPU cy-

cles and memory usage. Limited hardware capabilities and constraint

resources of mobile devices lead to software libraries and mobile com-

puting frameworks that are tailored to the needs of those devices. For

example, frameworks available for mobile platforms offer libraries to

access wireless network interfaces and to design user interfaces that

are suitable for representing an application on a mobile screen. On the

other hand, some libraries (e.g., XML libraries) are not available on

mobile devices, thus making it challenging to reuse existing applica-

tions and tools that were developed for PCs and desktops. As we will

see in Section 3 Apache Axis is an example for that issue.

2.2.2 Mobile Devices Frameworks

The .NET Compact Framework

In January 2002 Microsoft announced the first release of the .NET

Framework. The .NET platform is based on the Common Language

Infrastructure (CLI), which enables access to the Framework Class Li-

brary (FCL) with multiple languages, e.g. C#, VB.net, C++, J#.

.NET is theoretically platform independent, but Microsoft certainly

2.2 Mobile Devices 14

provides the platform only with its own operating system Windows in

all facets. Due to the limited nature of pocket devices, Microsoft has

created the .NET Compact Framework, which is a modified and more

lightweight variant of the platform for its mobile operating systems.

In Windows Mobile 2003 SE version 1.0 of the .NET Framework is al-

ready integrated in the ROM of the Pocket PCs and Smartphones. Still,

it is upgradable to version 2.0, but it has to be installed in the work-

ing memory of the Pocket PC. Since Windows Mobile 2003 SE is rather

outdated these days, it is only deployed on older devices. The upgrade

to version 2.0 is therefore a rather big trade off to make, because it con-

sumes a considerable amount of internal memory. Windows Mobile 5.0

yet incorporates the new version of the .NET Framework.

As mentioned above, the capacities of pocket devices are very limited.

Therefore the .NET Compact Framework does not provide all of the

services and functions as the full version. In fact, the size of the redis-

tributable in version 1.0 was shrunk to around 12% of the size of the

full platform. Figure 1 shows a comparison between the .NET Frame-

work and the .NET Compact Framework [5]. Modules marked red are

available, yellow means partially available and the grey modules are

not available in the compact distribution.

The .NET Compact Framework in combination with the Microsoft Vi-

sual Studio IDE offers a very simple way to consume Web services in

mobile applications. In this project Web services with SOAP binding as

means for communication between the mobile devices are used, but this

approach requires the ability to host Web services on lightweight de-

vices. Unfortunately Microsoft did not integrate a small footprint Web

2.2 Mobile Devices 15

Figure 1: .NET Compact Framework Modules

services provider in the .NET Compact Framework and to the authors

knowledge there are no additional packages or commercial products

available which enhance it to host Web services.

This significant limitation makes the .NET Compact Framework drop

out of the field of competitors of possible platforms for this project.

Java 2 Micro Edition - J2ME

Similar to the .NET Compact Framework the J2ME Platform is an ex-

ecution environment with a subset of features of the full Java SE plat-

form based on version 1.4.2. Unlike .NET CF there is not only one run-

time environment. J2ME is modular and can be adapted to meet the re-

quirements of the developed application in a flexible manner. J2ME is

designed to run on embedded devices ranging from high-end Personal

Digital Assistants (PDA), high-end Mobile and Smartphones over set-

top boxes and printers to low-end Mobile Phones and limited devices.

Since the spectrum of such devices is manifold, many developers favor

the modular nature of this platform to develop perfect fit applications.

2.2 Mobile Devices 16

A J2ME execution environment consists of a configuration, a profile

and optional packages.

Connected Device Configuration - CDC A Configuration consists

of a basic set of APIs and Java virtual machine features. The footprint

of an execution environment with the Connected Device Configuration

is ranging from around 2 Mb to 9 Mb and thus runs only on embedded

devices with more advanced resources such as PDAs and Smartphones.

But on the other side, the CDC features the full Java Virtual Machine

specification, including full support for class loading and core library

features, which enables developers to reuse their knowledge of the Java

SE technology and existing libraries and tools for this platform [41].

A CDC based environment has to be started with a Profile, which is an

additional set of APIs that support a narrow set of devices [41]. Profiles

enable developers to support different categories of devices. Currently,

there are three Profiles available for CDC:

• Foundation Profile

• Personal Basis Profile

• Personal Profile

For a short description of the properties of the Profiles [41] see Figure

2.

As we see in Figure 2, the Personal Basis Profile includes all of the

features of the Foundation Profile whereas the Personal Profile is set

on top of the Foundation and Personal Basis Profile.

2.2 Mobile Devices 17

Figure 2: CDC Profiles

A CDC environment can be further enhanced with optional packages,

such as

• RMI (subset of the Java SE RMI, enables remote method invoca-

tion and hides network communication and network protocols)

• JDBC (subset of the JDBC 3.0 API, provides means to access tab-

ular data sources)

• AGUI (modified implementation of Swing)

• Security (Security framework based on Java SE)

• Web services (enables access to Web services from Java ME

clients)

Connected Limited Device Configuration - CLDC As the name

implicates, this Configuration is designed to run on devices with lim-

2.2 Mobile Devices 18

ited capabilities like low-end mobile phones with a typical memory ca-

pacity around 600KB of RAM (including the Mobile Device Information

Profile, MIDP) and 1,5MB of ROM/Flash. Despite the requirement of

a small footprint, the CDC based execution environment must have

enough performance to run properly on a device typically featuring a

50 to 200 MHz processor.

In most cases the profile, that is set on top of the CDLC, is the Mobile

Information Device Profile (MIDP). Like other Profiles, it is a set of

APIs and libraries, that facilitate the handling of the limited resources

of the devices the platform is deployed on. Those devices typically have

e.g. small display, current entry limited by battery capacity, networking

etc. and in version 2.0 even a game API has been included.

Figure 3: CDC/CDLC Architecture

To summarize, CDC is the choice for current PDAs and Smartphone,

whereas CDLC is per definition designed for older and more limited

devices like low-end mobile phones, featuring at least a 16-bit CPU

and a total of 160 KB (192 KB in CLDC version 1.1) memory available

to the Java platform. A limited connection to some kind of network is

2.3 Summary 19

also required. For a comparison of the most common Java platforms

available see Figure 3 [42].

We decided to use at least the CDC with the Personal Profile, because

features like Reflection and Class Loading are important to implement

a context model.

2.3 Summary

Providing Web services on mobile devices is difficult due to the lim-

ited hardware capabilities and restricted software APIs. Mobile devices

frameworks today still do not address the role of a lightweight device

as a Web service provider, which has thus to be achieved by thirdparty

toolkits or frameworks. In contrast to JXTA, SOAP and REST based

services allow information providers to be developed independently

from information consumers through service negotiation and intercom-

munications standards. Web services can facilitate the development of

distributed applications in a heterogeneous environment, which is the

common case in mobile computing.

20

3 The Role of SOA and Web Services in Mo-

bile Computing

3.1 Technology Overview

SOA Paradigm

A service in terms of middleware is a procedure, method or object with

a stable and published interface that can be invoked by clients [39].

Here it is important to say, that the invocation is done by a program

running on the client side. A Web service can be described similarly but

as the name implicates there is an additional requirement, namely the

possibility to invoke the service over the Web. Web services are often

developed and managed independently since services can be provided

by different companies. Thus, applications following the SOA paradigm

(Figure 4 [39]), are constructed of loosley coupled Web services in most

cases.

Figure 4: SOA Paradigm

3.1 Technology Overview 21

Service registration

To make Web services known to possible consumers, it requires a mech-

anism to publish the description of Web services. This is achieved by a

service registry (e.g. UDDI - Universal Description, Discovery and Inte-

gration). Services, that are present in the service registry can be looked

up regarding certain criteria and the registry returns the endpoint of a

Web service to the client.

Service binding

Once the client has retrieved a proper endpoint from the service reg-

istry, it has to negotiate the communication method with the Web

service. WSDL (Web Service Description Language) is an appropriate

means for this purpose. Based on the information of a WSDL document

of a Web service the client is able to interact with the service. To sum

it up, the service binding is the negotiation of the message format the

service understands and the protocol atop which those messages are

transported.

Service invocation

When the service binding is complete, the last step of the client is the

invocation of the service and the retrieval of the results. The WSIF

(Web Services Invocation Framework [26]) facilitates the invocation of

Web services for Java-based applications dramatically. It enables the

developer to interact with the service through a simple Java API. The

3.1 Technology Overview 22

only requirement is that the service is described with WSDL. The in-

vocation can be done stubless and completely dynamic at runtime.

Web Services

Web services are part of the Service Oriented Architecture paradigm

and consist of a set of XML based standards [36], to interconnect loosley

coupled applications mainly over the WWW. There are various defini-

tions of the term “Web services”, ranging from very generic to very spe-

cific [39]. An example for the first case would be any application that is

identified in the web through an URL (Uniform Resource Locator) and

accessible to other applications. Such an application could be a simple

script or a more complex service, where APIs are provided (e.g. Amazon

Web services).

The W3C defines the term Web service as follows [25]:

A Web service is a software application identified by a

URI, whose interfaces and bindings are capable of being de-

fined, described, and discovered as XML artifacts. A Web ser-

vice supports direct interactions with other software agents

using XML based messages exchanged via internet-based

protocols.

Web services are kind of a buzzword nowadays and have evolved along

the expansion of the Internet infrastructure. Because of the ubiquity of

the web and broadband everywhere, Web services have become a broad

field of research in computer science.

3.1 Technology Overview 23

Message Encoding

In most cases Web services make use of XML as a message encod-

ing format, because it is flexible, human readable and a standard for

platform independent data interchange. XML stands for eXtensible

Markup Language. It is the direct successor of the SGML and became

a W3C recommendation on the 10. February 1998. XML is a text-based

markup language mainly designed to describe data of various kinds as

opposed to HTML, which has been designed to display documents in

a web browser. XML is not a programming language, it simply struc-

tures and stores data, which can be processed by machines. Unlike in

HTML, the tags of XML are not fixed and can be defined freely to fit

the user’s requirements. As we can see in the following example, the

tags in most XML documents are designed to be human readable too.

Listing 1 shows an example of an XML document.

Listing 1: Example XML Document

<?xml version="1.0" encoding="ISO-8859-1" ?>

<note>

<to>Mark</to>

<from>Mary</from>

<heading>Reminder</heading>

<body>Don’t forget me this weekend!</body>

</note>

3.1 Technology Overview 24

WSDL

WSDL (Web Service Description Language) is a language to describe

Web services in terms of their operations, messages, datatypes and

communication protocols [10]. WSDL files are defined in XML.

Types This element defines the datatypes, which are used by the Web

service.

Example:

Listing 2: WSDL Element
<xs:element name="addRecord">

<xs:complexType>
<xs:sequence>

<xs:element name="artist" type="xs:string" />
<xs:element name="title" type="xs:string" />
<xs:element name="titleID" type="xs:int" />

< / xs:sequence>
< / xs:complexType>

< / xs:element>

Listing 2 defines a complex element named addRecord, which consists

of three subelements that hold the information.

Message This section of the WSDL file defines the messages which

are used by the PortType definition to describe the data format.

Example:

Listing 3: WSDL Message
<message name="addRecordRequest">

<part name="parameters" element="wsdl:addRecord" />
< / message>
<message name="addRecordResponse">

3.1 Technology Overview 25

<part name="parameters" element="wsdl:addRecordResponse" /
>

< / message>

In the message section of the WSDL file the messages passed between

the Web service requester and provider are defined. We can see in

Listing 3 that the above defined complex element addRecord is used

as a parameter for the message addRecordRequest. The message

addRecordResponse also refers to an element as parameter that has

to be defined in the elements section.

PortType The PortType describes the Web services operations and

the messages, which are used to exchange data.

Example:

Listing 4: WSDL PortType
<portType name="MusicStoreServicePortType">

<operation name="addRecord">
<input message="wsdl:addRecordRequest" />
<output message="wsdl:addRecordResponse" />
<fau l t name="duplicateEntry" message="

wsdl:duplicateEntryFault" />∗
< / operation>
<operation name="removeRecord">

<input message="wsdl:removeRecordRequest" />
<output message="wsdl:removeRecordResponse" />
<fau l t name="recordNotFound" message="

wsdl:recordNotFoundFault" />∗
< / operation>

< / portType>

This PortType defines two operations addRecord and

removeRecord. Each operation has an input and an output whose

format is defined by messages. In this case it is the above defined

3.1 Technology Overview 26

addRecordRequest and addRecordResponse message. In case of a

failure the duplicateEntryFault message is returned to the Web

service requester.

Binding The Binding section defines the protocol and message for-

mat for each port.

Example:

Listing 5: WSDL Binding
<binding name="MusicStoreServiceBinding" type="

wsdl:MusicStoreServicePortType">
<soap:binding s ty le="document" transport="http://schemas.

xmlsoap.org/soap/http" />
<operation name="addRecord">

<soap:operation soapAction="http://musicstore.com/
addRecord" />

<input>
<soap:body use="literal" />

< / input>
<output>

<soap:body use="literal" />
< / output>
<fau l t name="duplicateEntry">

<soap : fau l t name="duplicateEntry" use="literal" />
< / f au l t>

< / operation>
< / binding>

This binding defines that the Web service is using HTTP as a transport

protocol and SOAP as the message format.

3.2 Web Services Toolkits 27

3.2 Web Services Toolkits

gSOAP

gSOAP is a SOAP toolkit implemented in C++ and intended to be plat-

form independent [51]. It is an approach for a SOAP-to-C++ language

binding for being able to realize C++ application as a SOAP based Web

service. gSOAP is fast, reliable and secure and predestinated for be-

ing deployed on mobile devices. It features a WSDL parser and gen-

erator, and also a stub/skeleton compiler. Due to high interoperability

with other SOAP toolkits gSOAP is the best solution to realize SOAP

based Web services on devices with limited capabilities (implemented

in C++). As gSOAP is written for C++ it was unfortunately not usable

for the proof-of-concept implementation presented in this work. We use

OSGi as a deployment container for the framework, which is set atop

the Java platform.

SOAP and J2ME

To deploy and manage services on a mobile Java platform it is recom-

mended to use one of the frameworks available (e.g. OSGi, Jade). The

act as a container for applications and provide services (e.g. OSGi pro-

vides a HTTP server) which is shared among all applications in the

container. In this project, the OSGi middleware is used as a container

(See Section 3.3 for a detailed description of OSGi).

The focus on Web services on mobile devices as communication means

between the containers required an investigation and evaluation of

3.2 Web Services Toolkits 28

Web service toolkits for J2ME. Unfortunately there are not too many

competitors in the field of Web service providers for J2ME and all of

them suffer from different shortcomings. Schall et al have done a com-

parison of Web Services on Embedded Devices [36]. Based on this work

this section deals with Web service toolkits for J2ME and shows their

advantages and disadvantages. Experiences made while experiment-

ing with the toolkits are added to the description of each technology.

Apache Axis

There are two Web service bundles available for the Knopflerfish

OSGi framework. One of them is the Apache Axis bundle, which was

originally written for J2SE. It is port of the standard Apache Axis

server which requires a servlet version 2.3 environment, whereas the

Knopflerfish framework only provides a servlet version 2.1 environ-

ment. During porting the Apache Axis server to OSGi, no changes have

been made to the Apache Axis classes, so all code specific to the OSGi

port is made as pure “extensions” [22].

Due to te fact that it was not intended to run on a limited environ-

ment, it has a very large footprint, but also the greatest functionality.

It allows to expose any service registered in the OSGi framework as a

SOAP service. The only constraint is that the service must not expose

any datatypes not supported by SOAP. Apache Axis also provides the

possibility to generate WSDLs from its Web services. It can be run on

the IBM J9 JVM, but only by adding additional boot classes borrowed

from the J2SE 1.4.2 JRE. The missing classes must be included in the

bootclasspath of the JVM and explicit access to those classes must be

3.2 Web Services Toolkits 29

allowed in the initialization file of the OSGi framework.

Though Apache Axis can be deployed on a lightweight device on the

IBM J9 JVM, it is definitly not the best option, because the footprint

is simply too large. The Apache Axis 1.4 OSGi bundle with all required

libraries consumes approximately 2 Megabytes of system memory.

kSOAP-osgi

The second bundle available for Knopflerfish OSGi is the ksoap-osgi

bundle. The bundle is based on kSOAP2, which is a SOAP library for

constrained Java environments, such as applets or J2ME applications

(CDC/CDLC/MIDP) [18]. The bundle has been developed to be able to

remotely control Knopflerfish frameworks running on headless or em-

bedded devices.

Besides this functionality, it is also possible to register SOAP servlets

in the HTTP server of Knopflerfish. Those servlets (or better services)

have to extend the SoapServlet of the kSOAP2 package. Primitive pa-

rameters and return values can be transferred directly, whereas com-

plex datatypes have to be constructed manually, complex return values

must be parsed manually and envelops for SOAP calls have to be gen-

erated manually. The functionality of this bundle is very basic, some

useful features like automatic envelope generation and response mes-

sage parsing are missing.

3.2 Web Services Toolkits 30

jSOAP

jSOAP is a implementation of SOAP 1.1 for Java, which allows provid-

ing and consuming Web services. Due to its small footprint it is suit-

able for deployment on devices with limited capabilities. It requires a

servlet environment, which is provided by the Knopflerfish framework,

but the documentation lacks the information, if version 2.1 is suffi-

cient. The servlet required for hosting a Web service is not generated

automatically, it has to be written manually. Furthermore, the services

exposed have to be configured seperately by an XML configuration file,

which is parsed on startup of the servlet. This file contains the service

and parameter names, the parameter types and count and the expected

type of the return value to ensure a proper mapping of the service to

the Java interface. jSOAP also features a WSDL generator, which is

helpful to expose an abstract description of the service. On the whole,

jSOAP appears to be a sophisticated toolkit with lots of features, but

the concept is not as convenient for the developer due issues like con-

figuration efforts, manual request generation and transmission etc. as

the approach mentioned below.

AMIGO

Amigo (full project name is “Ambient Intelligence for the networked

home environment”) is a middleware based on OSGi, which was de-

veloped by a joint venture of fifteen european companies and research

establishments in mobile and home networking, software development,

consumer electronics and domestic appliances. The goal of Amigo is to

3.2 Web Services Toolkits 31

make visible the full potential of home networking and to overcome

issues like complex installation procedures and interoperability prob-

lems between heterogenous components of a networked home environ-

ment [1] and to lead this new technology to a broader acceptance. The

result is a middleware of open, standardized and interoperable services

based on OSGi.

The services are packages as OSGi bundles which makes it very easy

to select and deploy specific services. The most interesting part of the

middleware for this work was the Amigo Service Exporter, which pro-

vides the possibility to export Java objects as SOAP based Web services.

There are two bindings available for the service exporter, a kSOAP

binding and a Apache Axis binding. Due to the above mentioned prob-

lems of Apache Axis running with the IBM J9 JVM, the kSOAP binding

was used for this project.

The service exporter makes extensive use of the Reflection API while

registering any object as a Web service. This is very convenient for the

developer, because no additional service descriptions except the class

definition is needed. To the authors knowledge, there is no other toolkit

available enabling the developer to provide Web services in such a sim-

ple way.

The Amigo workgroup provides a tutorial [2] how to use the middle-

ware, which seems to be sufficient at first sight, but with ongoing in-

tensive engagement, missing details become obvious. Enabling the dy-

namic stub generation mechanism was not possible, because this fea-

ture is unfortunately not documented in the tutorial. Also the handling

of datatypes, except the simple string example in the tutorial, is not

3.3 Service Deployment 32

mentioned. Lack of documentation is the biggest disadvantage of the

Amigo middleware.

3.3 Service Deployment

OSGi

Making Web services available on a mobile device requires a suitable

platform. One approach for this task is OSGi. OSGi is a specification

proposed by a consortium of various companies like Ericsson, IBM,

Nokia etc.

The OSGi Alliance introduces to OSGi as follows [30]:

“The OSGiTMspecifications define a standardized, component oriented,

Computing environment for networked services that is the foundation

of an enhanced service oriented architecture.”

An OSGi framework is a lightweight Java-based platform, which pro-

vides many standard services like Security, Logging, Configuration

Management, HTTP service etc. and allows the convenient develop-

ment of service oriented software applications for embedded devices.

Those applications are encapsulated in so called “bundles”, which can

be installed, started, stopped and removed on the fly, without inter-

rupting the operation of the device or the rest of the framework. One

big advantage resulting from this is the fact that only one Java Vir-

tual Machine is needed for multiple Java based applications. Security

3.3 Service Deployment 33

and life cycle management is done by the framework implementation

(Figure 5 [30]).

Figure 5: OSGI Architecture

Bundles can make use of the services provided by the framework itself

or by other installed bundles and are able to provide their own services.

OSGi features a service discovery mechanism, which allows bundles to

listen for service registration events using LDAP filters. Once such an

event is triggered, the listening bundle is notified, and code based on

the type of the event can be executed.

Due to the bundle structure and dynamic life cycle management, OSGi

is the perfect partner when it comes to modularity. Libraries and ser-

vices can be easily encapsulated into multiple separat bundles, which

helps to maintain the outline in a complex software project.

Popular implementations of the OSGi specifications are

• Oscar [20]

• Equinox [4]

3.3 Service Deployment 34

• Concierge [3]

• Knopflerfish [16]

All those Implementations require at least a JVM with CDC and the

Personal Profile. There is also a commercial implementation of OSGi

for the CLDC made available by the german company ProSyst called

“mBedded Server CLDC Edition” [21].

The OSGi-Bundle

An OSGi-Bundle is a JAR (Java Archive) containing the Java classes

and a MANIFEST file. The bundle can be added to the OSGi framework

either during bootstrapping or later at runtime using the console or a

user interface. When a bundle is being installed, the MANIFEST is

parsed. This file contains metadata about the bundle e.g.

• Name, Version

• Bundle classpath, pointing to included resources in the JAR (e.g.

libraries)

• Package imports

• Package exports

• Dynamic imports

• Link to the bundle activator

3.3 Service Deployment 35

The use of the name and the version of the bundle is obvious, the name

is used for identification and the version is used for versioning pur-

poses. More interesting are the next 3 points on the list.

The bundle classpath points to resources included in the bundle, which

are needed to execute the contained application. Such resources can be

JARs or directories.

In the package imports section, the packages that are required to run

the bundle are listed. Note that these packages are not included in

the bundle itself, they must be provided by the framework or by other

bundles. The OSGi framework tries to resolve all these dependencies at

startup. If they cannot be resolved, the installation of the bundle fails.

A bundle can export any packages that are included in its classpath.

These packages are made available to other bundles in the framework.

It is a mechanism, that is very useful for purposes like sharing a library

with other bundles. In this case, the library only has to be included in

one bundle but can be imported by others.

Dynamic imports are packages that are not verified by the framework

whilst installing the bundle. This mechanism has to be used with care,

because the programmer has to ensure, that those dynamic packages

are available when the bundle is started, otherwhise the framework

terminates due to a NoClassDefFoundException.

The bundle activator is a class that implements the BundleActivator

interface of the framework implementation. It is called when a bundle

is started (not on install) and responsible for the proper initialisation

/ startup and proper shutdown respectively. A bundle activator is not

3.3 Service Deployment 36

mandatory. Bundles without activator can be seen as resource bundles,

but they only make sense, if they include resources or packages that

are shared with other bundles. Otherwhise it would only increase the

footprint of the framework deployment.

OSGi Services

One of the benefits of the service oriented architecture of OSGi is that

bundles can not only import packages provided by other bundles or the

framework itself, they can search for services using standard LDAP fil-

ters and make use of them as long as they are available. Yes, if you

see a problem here, you are right. This can be tricky sometimes. Ser-

vices always have to be tracked and checked for availability, because

the bundle providing the service can be removed at runtime. This fact

poses the requirement of a robust and fault tolerant programming style

to the application developer. The status of services can be tracked us-

ing the events mechanism of the OSGi framework. Bundles can listen

to events concerning any active service using the LDAP filters again.

On the basis of the event types decisions can be made (e.g. stop the

bundle etc.)

Besides the consumption of services, it is of course also possible to

provide services. A OSGi service is basically any Java object instance,

that is registered with the framework using a name and properties (for

LDAP filtering and service selection) but an instance of an implemen-

tation of a well-known interface would be tidy.

But what if an object must not be used by multiple bundles? OSGi also

3.4 Service Discovery 37

has a solution for that - the service factory. This mechanism creates a

new service instance for every bundle requesting a service.

Managing service dependencies can be very complex and laborious

sometimes, depending on the number of service that are used in a bun-

dle. I will get back to this point later.

For more information on OSGi services and their use, please refer to

the documentation of the particular OSGi implementation you are us-

ing. Knopflerfish provides an excellent tutorial on OSGi services [16].

3.4 Service Discovery

In a service oriented architecture the process of finding a service in

the network meeting certain requirements is called Service Discovery.

Basically there are at least two actors involved in the discovery process.

The Service Consumer wants to query a certain service and is starting

the search on the network. This can be either done by a broadcast based

protocol, where the Service Provider is answering if the criteria are

matching or by a (well known) Service Registry, where Service Provider

register their services and endpoints. This Service Registry can be used

by Service Consumers to look up the service needed.

In a mobile environment, several challenges arise. Because of the mo-

bile nature of portable devices, it is unpredictable when those devices

go on- or offline. Thus, if a service registry is used for the discovery,

there has to be a mechanism to manage the orphaned service entries.

Imagine the case that a mobile device has registered a service in the

registry. Imagine also, that this device moves unpredictably out of net-

3.4 Service Discovery 38

work coverage after the registration. Now the Service Registry holds

an entry that is pointing to a device that is not available anymore. An-

other problem is, that in a mobile environment is is likely that a device

has no access to a service registry. In this case it cannot make use of

services that devices in proximity are providing.

Thus, using a broadcast based approach seems to be the better solution

for ad-hoc networks. Service providers are listening on the network and

responding to requests if the criteria match. The service consumer is

not able to invoke the service, which is most likely available. In this

section three Service Discovery Protocols will be presented.

Service Discovery Protocols

Ubiquitous computing and service oriented architectures in mobile

computing require means to discover services provided by mobile par-

ticipants in ad-hoc or infrastructure networks. Many service discovery

protocols have evolved like

• INS

• Ninja SDS

• IBM DEAPspace

• Jini

• UPnP

• Rendezvous

3.4 Service Discovery 39

• Salutation

• SLP

• Bluetooth SDP

which support the advertising, discovery and usage of services. As I

needed such a mechanism for my project, I investigated three service

discovery protocols and examined them for suitability.

Service Location Protocol - SLP

The Service Location Protocol standard is being developed by the Ser-

vice Location Protocol working group (SRVLOC) which has been active

in the Internet Engineering Task Force (IETF) for several years [40].

The first version of the SLP was published as a Proposed Standard

RFC in 1997. Two years later, in June 1999, the group announced ver-

sion 2 of SLP, which replaced version 1 and is still the currently used

standard.

The SLP enables applications on networked devices to search for avail-

able services on the network. The protocol allows not only the retrieval

of the service name, the application using it is able to obtain location,

address, domain name or other configuration details. SLP does not re-

strict the discovery to types of services. Hence it is possible to search for

services using certain characteristics. If a service has been discovered,

SLP allows a detailed lookup of its attributes.

3.4 Service Discovery 40

Components The “actors” using the Service Location Protocol are

called agents:

• User Agent (searches for a specific service on the network)

• Service Agent (advertises a service on the network)

• Directory Agent (collects information about available services and

responds to discovery requests)

Discovery For service discovery, SLP provides several operational

modes. First of all the most intuitive case is a client searching for a cer-

tain kind of service. The client (User Agent) sends a multicast query-

ing for the service he wants to use, and waits for an answer from online

service providers (Service Agent). If a Service Agent can fulfill the User

Agent’s request it sends a unicast telling the client that it provides the

service. From now on the communication between the two parties is

done via unicast.

The second case is a kind of “passive” service discovery. When a Service

Agent joins the network, it announces (advertises) its services via mul-

ticast to other peers. User Agents listening for new service announce-

ments can judge if they need the new service or not. In case the new

service is exactly that the peer has been waiting for, he responds to the

new Service Agent via unicast and invokes the service. As in the first

case, from now on communication is done via unicast.

Discovering a Directory Agent can be achieved in the same manner

mentioned above. A Directory Agent can be described as a special

3.4 Service Discovery 41

Figure 6: Active Discovery using SLP

kind of Service Agent, which provides a service for easier discovery

of other Service Agents. It helps to reduce the network load, because

User Agents do not longer have to multicast their service discovery re-

quests. Another method of making Service and User Agents aware of

a Directory Agent is using the Dynamic Host Configuration Protocol.

Peers can be updated with the location of a Directory Agent whilst ob-

taining an IP-address. If a Directory Agent is present and known to

the peers it acts like a dispatcher for services. Discovery requests and

advertisements are not longer multicasted over the network, they are

unicasted to the Directory Agent, which stores new services and their

locations or tells User Agents, where they find services with requested

types and properties. Figure 8 shows the two typical methods of discov-

ering a Directory Agent [40].

Service Agents using SLP are requested to register their services with

3.4 Service Discovery 42

Figure 7: Passive Discovery using SLP

a Directory Agent, if one is present. It is obvious, that in a frequently

changing mobile computing environment, where peers are loosely cou-

pled technical difficulties like network problems can arise. The ques-

tion is now, how to handle for example an interrupted connection

whereby a Service Agent becomes unavailable whilst its services are

still registered with the Directory Agent. SLP addresses this issue with

timeouts. Services registered with a Directory Agent have a timeout

which must not be set higher than 18 hours. Service Agents thus have

to renew their service registration periodically to ensure proper lookup.

Service Agents leaving the network should send a Service Deregister

message of their services to the Directory Agent. If a Service Agent fails

or leaves without deregistering, the timeout takes care of orphaned ser-

vices.

3.4 Service Discovery 43

Figure 8: Typical DA Discovery

Multicast Convergence Algorithm The Multicast Convergence

Algorithm helps to improve the scalability of the Service Location Pro-

tocol. Imagine a User Agent requesting a service. All Service Agents

providing a matching service are responding. If the same request is is-

sued again after a certain period of time, the client will most likely get a

large amount of answers from the same Service Agents, which causes

unnecessary traffic on the network. The designers of SLP solved this

problem by letting the User Agent transmit a previous responder list.

When a Service Agent gets a request, he first checks if he is on the list.

If so, he does not respond to the client. This method helps to keep the

amount of unneeded messages very low.

SLP is a very lightweight discovery protocol, which is mainly string

based. Services can be browsed by types and attributes, which is suffi-

cient for our project. A typical Service URL is for example:

service:type:protocol://server-address:port/endpoint

3.4 Service Discovery 44

This is what a Service Agent returns to a User Agent in case of a match.

As we can see here and as it is hinted in the name of the protocol, it only

allows the retrieval of service addresses. If a client wants to access a

service, the parameters needed have to be negotiated with the Service

Agent in advance.

WS-Discovery

WS-Discovery is another specification of a service discovery protocol,

which is supported by famous companies like Microsoft, BEA, Canon,

Intel and webMethods. As SLP, the protocol allows the retrieval of

service locations in high dynamic networks, with frequently changing

peers. To achieve this, WS-Discovery uses the same means as SLP, as

it takes advantage of the multicast mechanism to reach a broad group

of peers on the network.

Discovery WS-Discovery provides two types of services discovery re-

quests. A service can be looked up by type or by name. When a client

joins a network and needs a certain service which is only constrained

by a type, he sends a probe message via multicast to the peers on the

network. Target services, which match the probe message, respond di-

rectly to the client. But services can also be resolved by name. The

procedure is the same as above, only the request sent by the client dif-

fers slightly. In this case it is a resolution request message, which is

answered by the target service matching the name (Figure 9 [43]).

Similar to SLP WS-Discovery addresses scalability with two nearly

identical mechanisms. The first can be compared with the Advertise-

3.4 Service Discovery 45

Figure 9: Service Discovery using the WS-Discovery protocol

ment in SLP. A client providing a certain target service joining the net-

work sends an announcement message. This mechanism ensures that

clients, which probably need a service, are always kept up to date by

listening to those announcement messages. Network traffic is reduced

because frequent probing to check the network for service changes is

not necessary anymore.

The second mechanism is the Discovery Proxy. The WS Discovery Proxy

is a kind of service, which keeps a list of available target services on the

network. By listening to probe or resolution messages it detects clients,

which do not know about its existence. If so, it informs the client about

the presence of a Discovery Proxy, causing the client to switch to the

Discovery Proxy specific protocol. Service requests are from now on not

sent by multicast, the lookup is done directly at the discovery proxy,

which lowers the number of multicasts significantly (Figure 10 [43]).

In case the Discovery Proxy fails or leaves the network, the clients

3.4 Service Discovery 46

Figure 10: Service Discovery with Discovery Proxy present

switch back to multicast discovery. The default timeout value in the

specification is 5 seconds.

In contrast to SLP, WS-Discovery does not use a proprietary message

format. The clients communicate using the Simple Object Access Proto-

col (SOAP) which is based on XML. Exact examination and description

of the messages is beyond the scope of this work. For further informa-

tion the reader is advised to take a look at the WS-Discovery specifica-

tion [43].

Universal Plug and Play - UPnP

The UPnP Forum introduces to Universal Plug and Play as follows [47]:

“UPnP technology defines an architecture for pervasive peer-to-peer

network connectivity of intelligent appliances, wireless devices, and

PCs of all form factors. It is designed to bring easy-to-use, flexi-

ble, standards-based connectivity to ad-hoc or unmanaged networks,

3.4 Service Discovery 47

whether in the home, in a small business, public spaces, or attached to

the Internet. UPnP technology provides a distributed, open networking

architecture that leverages TCP/IP and the Web technologies to enable

seamless proximity networking in addition to control and data transfer

among networked devices.”

As we can see here, the presented technology is intentionally very simi-

lar to the two discovery protocols discussed above. It also enables peers

to announce their services and system properties and offers the possi-

bility to search for certain services on the network. But UPnP is more

powerful than WS-Discovery and SLP as it features eventing and pre-

sentation of the devices.

The actors in UPnP are called controlled devices (or just simply de-

vices) and control points. A “device” can be compared with the Target

Service in WS-Discovery and with the Service Agent in SLP. Control

points represent the client side and are very similar to clients in WS-

Discovery and User Agents in SLP.

The major elements of UPnP are

• Step 0: Adressing (Clients get a network address)

• Step 1: Discovery (Clients find interesting devices)

• Step 2: Description (Clients learn about the capabilities of found

devices)

• Step 3: Control (Clients access found devices and send commands)

• Step 4: Eventing (Clients listen to the state of found devices)

3.4 Service Discovery 48

• Step 5: Presentation (Devices expose a user interface)

Each element is depending on the elements listed above. If a control

point wants to control a device, it is necessary that it has a network

address to be able to communicate with the devices. It is also necessary

that it has discovered the device it wants to control. Additionally it has

to be able to lookup the way it should access the service via description.

So step 3 (Control) requires at least step 0-2 to work properly.

Addressing To be able to communicate with each other, hosts need to

have an IP address assigned. This can be achieved in two ways. When

a client joins a network, he first tries to find a DHCP server. If one is

found, a valid IP address is obtained, and the client is ready for start-

ing discovery. If no DHCP server is found, the client auto-configures

using Auto-IP, which is simply a randomly selected IP address in the

169.254/16 range. To avoid collisions, the client has to test, if the cho-

sen IP address exists on the network. In case another peer is already

using the selected address, the client tries another IP address in this

range using an implementation dependent algorithm until he gets a

free one. If Auto-IP is used for addressing, the client must periodically

check the availability of a DHCP server to obtain a “real” IP address,

to be able to use the network infrastructure to the full extend.

Once the client has obtained the IP address, it is able to advertise

its own services or to search for services provided by other peers in

a conceptually very similar manner as SLP and WS-Discovery. Basi-

cally there are two methods to discovery services. The client can listen

for advertisements on a standard multicast address and judge which

3.4 Service Discovery 49

services announced are of interest for it. This can be seen as a sort

of passive discovery as opposed to “active” discovery, where a client

sends a message with search parameters to discover a required ser-

vice. Detailed description of the messaging and discovery algorithms

shall not be mentioned here. For further information please check the

UPnP specification [47].

Description After having discovered a device, the description of the

device and its services becomes important. Via description the client

gets vendor-specific information about the device itself, definitions of

the embedded devices, the URLs for control, eventing and presentation

and a list of all exposed services. Description is vital to tell the client

how to interact with the discovered devices.

Control When a client has discovered a device and queried the de-

scription to get interaction information, it is ready to invoke the desired

service. This step is called control in UPnP. Control commands are sent

as SOAP messages using HTTP. After having issued a command, the

client receives either a result in case of success or a failure message,

if the operation couldn’t be completed successfully from the controlled

device.

Eventing Eventing is a mechanism to monitor the state of controlled

devices. After Discovery and Description (Step 1 and 2) the client has

retrieved the endpoint URLs for Eventing and is now able to subscribe

to events produced by the monitored device. After receiving the sub-

scription the controlled device sends a message with the current state

3.4 Service Discovery 50

variables in the XML format and a time value how long the subscrip-

tion will be active to the client. In this time period the subscriber will

receive continuous updates of the state variables. After the time-to-live

the subscription has to be renewed by the client, else the controlled

device stops sending updates.

Presentation After the UPnP device has transmitted the client the

Presentation endpoint URL, the control point can retrieve the presen-

tation web page into a suitable browser. This page is completely vendor

specific, it can be implemented to either monitor the status of the UPnP

device or control the device to a certain extend. The only constraint for

the presentation page is the format, which has to be HTML version 3.0

or later. Design and implementation issues are left to the vendor. An

example for such a presentation page would be the web interface of a

consumer router, where settings can be configured using a web browser

of choice.

Summary

SLP is a binary protocol, which uses key-value pairs as description

mechanism. WS-Discovery and UPnP are based on XML and have all

the advantages and drawbacks XML based protocols have compared to

binary protocols. Due to the verbose nature of XML, XML-based proto-

cols are much easier to debug, because the messages sent are human

readable in contrast to protocols, which rely on binary messages. The

great extensibility and flexibility of XML is dearly bought with a large

overhead, that is caused by the XML format. For the proof of concept

3.4 Service Discovery 51

implementation presented in this work, SLP was used. The powerful

description mechanisms of WS-Discovery and UPnP are not necessary,

because every participating device in the network intending to query a

ContextStore has to carry the API bundle, in which all necessary infor-

mation to access the service is included. The only thing that must be

known is an appropriate endpoint.

52

4 Case Study - Collaboration in Mobile and

Ad-hoc Teams

4.1 Context-Aware Mobile Computing

Context

To be able to understand what context is and how it can be utilized

for collaboration environments, we have to take a look at existing work

in the field of context aware and ubiquitous computing. According to

Dey et al. [28] the term “context-aware” was first introduced by Schilit

and Theimer [31] who state that context can be referred to as loca-

tion, identities of nearby people and objects and consequently changes

to those objects. Many other definitions have been made by other au-

thors, but they only enumerate what belongs to context from their point

of view, which makes the determination of context very difficult. What’s

included in context information or not changes constantly with the sit-

uation a user resides in. Therefore a simple enumeration is not very

applicable in my opinion. Synonyms or too specific definitions are also

not very helpful because they are extremely hard to apply practice [28].

Schilit et al. [32] lead Dey et al. [28] to their definition context as they

see context as a question of “where you are, who you are with, and what

resources are nearby”. Furthermore context is “the constantly chang-

ing execution environment”. They include the following aspects of the

environment:

• Computing environment e.g. available processors, devices accessi-

4.1 Context-Aware Mobile Computing 53

ble for user input and display, network capacity connectivity and

costs of computing

• User environment e.g. location, collection of nearby people, and

social situation

• Physical environment e.g. lightning and noise level

Dey et al. [28] define context as follows:

“Context is any information that can be used to characterize the

situation of an entity. An entity is a person, place or object that is

considered relevant to the interaction between a user and an

application, including the user and applications themselves.”

This definition makes it very easy for the application developer to de-

termine whether a piece of information can be considered as context

or not. In addition they state, that researchers exploring context have

concentrated their efforts on implicit information pertaining because

they see still more potential of this approach to enhance the human

computer interaction. Dey et al distance themselves from this point of

view as they consider also explicit information as a part of context.

Context modelling

To be able to make use of context information in any application, it

is inevitable to deliberate a well designed context model. According to

[54] early approaches to context modelling have mainly been designed

4.1 Context-Aware Mobile Computing 54

for the usage with one application. As one can imagine such proprietary

models are not very desirable when it comes to context sharing between

multiple applications or application classes, which is the reason why

current research is concentrating on generic models to enable context

aware applications to interoperate with each other. A more detailed dis-

cussion of context modelling would be out of the scope of this work, as

the focus lies on architectural concerns of the whole framework not on

the modelling of context. For further information the reader is advised

to take a look at the context modelling survey of Strang and Linnhoff-

Popien [54].

Related Projects

Many efforts have been made to take advantage of context information

in collaborative environments because context aware applications are

smarter than conventional software products and are rather able to

support a user in his everyday work.

A project, which has similar goals as the framework, I am proposing in

my work, that means technical and functional flexibility, is UbiCollab

[46]. It aims at satisfying the needs of various different mobile workers

strongly depending on the type of cooperation between them. Another

focus lies on the compatability of the proposed collaboration environ-

ment with new hardware available on the market. Those two aspects

played an important role while constituting the requirements of my

framework, such as modularity, platform independency etc.

The architecture of UbiCollab is somewhat different. The authors rely

4.1 Context-Aware Mobile Computing 55

on a client server architecture and have implemented an API for ex-

tending the service platform with plugins, whereas I am favouring the

service oriented architecture. For communication XML-RPC is utilized,

having the disadvantage that there are no XML-RPC servers (known

to me) running on lightweight devices. This implicates that the device

running the UbiCollab service platform must be a rather heavyweight

machine with enough resources to bear the XML-RPC server. This is

the main difference between the two works, because I need a way to

provide lightweight Web services on lightweight devices.

Hydrogen [52] is another approach to make applications on mobile de-

vices context aware, which addresses issues like the lightweightness

of mobile devices (lack of system resources, computing power, memory

etc.), extensibility, robustness, meta-information and context-sharing.

The work was done a few years ago, so the hardware has changed a

bit until now, but the workgroup around Hofer et al. nearly used the

same device configuration (J9, WinCE, Pocket PC). The framework is

split into three layers (Application, Management, Adaptor) and each

participating device has its own ContextServer. When a device detects

an other device in proximity the two servers exchange their context

information. This transaction is called context-sharing. The architec-

ture differs here drastically, because in my framework only few (but

at least one) devices need to have a context server (ContextStore) in-

stalled. The acquisition and communication process between client and

server is completely hidden. Clients can use the remote context server

as if it was local. Communication in Hydrogen is done with a propri-

etary XML protocol.

4.2 Context Model 56

4.2 Context Model

The context model is designed in UML which can be mapped to vari-

ous resource description languages like RDF or OWL. These languages

are defacto standard for context modelling as they store entities and

their relations and are thus capable of reasoning. On the other hand

UML can be mapped to object oriented languages like Java, which is

used for this project. Following the object oriented paradigm we can

make use of the benefits of object oriented technology like encapsula-

tion, reusability, inheritance etc. The main reason to decide in favor

of the object oriented paradigm is that toolkits for RDF or OWL are

rather heavyweight and reasoning requires a lot of resources. Due to

the limited capabilities of mobile devices this approach did not seem to

be appropriate.

To store the context information there are also several posibilites. The

use of XML is an option, as it has several advantages. Sharing of in-

formation is easy as it can be done by simply exchanging the whole

XML document. The structure of the document can be described with

XML schema and information can be retrieved using technologies like

XPath. The drawback of XML is again the large overhead and that

it becomes computationally intensive as larger as the file gets, which

is not appropriate for the target devices. Using SQL is another option.

There are several implementation for SQL databases available for Java

which are lightweight and fast. SQL also provides select and filtering

mechanisms for data retrieval. Databases also manage concurrent ac-

cess automatically which ensures consistend data. In this project the

hSQLDB [7] for data persistency is used.

4.2 Context Model 57

Use Case

To deliberate a context model it is always helpful to have a use case

where most of the entities and their relations can be extracted. The

assumption is that all actors and their skill profiles of the following

use case are known to the system. The management of a company has

decided to give Steve the supervision of TASK X. To accomplish TASK

X a number of activities have to be completed. Steve generates a list

and inserts the activities into the system. For ACTIVITY 1 Steve has

to meet with COWORKER 1 to discuss several details of ACTIVITY 1.

He looks up the current location of COWORKER 1 and realizes that

he is only a few miles away from Steve’s current position and decides

to arrange a personal meeting. TASK X is very time critical, so Steve

has to find out the fastest way of contacting COWORKER 1. He queries

his current status and sees that he is currently online. Another query

delivers Steve the communication capabilities of COWORKER 1 and

his preferred device. It turns out that COWORKER 1 wants to be con-

tacted by GoogleTalk. Steve writes an invitation and due to the fact

that COWORKER 1 is online he receives an acknowledgement imme-

diately. He meets with COWORKER 1 at LOCATION X and starts the

discussion of ACTIVITY 1. During the meeting the system supports the

retrieval of related artifacts stored anywhere on participating devices.

At a certain point their opinions diverge and they decide to request

expert knowledge from a specialist of their company. The system pro-

vides a mechanism to search for users having certain skills or even

skill profiles, so it’s rather simple for them to find an expert having

the knowledge they need to successfully complete the discussion about

4.2 Context Model 58

ACTIVITY 1. They pick out the most suitable candidate for this task

(=EXPERT 1) and initiate the contact as described above. The lookup of

EXPERT 1’s location tells Steve and COWORKER 1 that he is not able

to join the meeting, but they find out that EXPERT 1 has the possibility

to join a video conference. The system confirms that the currently used

device of EXPERT 1 supports video conferences and the network has

enough bandwidth to allow a proper audio/video stream. After the video

conference Steve and COWORKER 1 can bring their meeting to a suc-

cessful ending. COWORKER 1 is added as team member and EXPERT

1 is given the choice whether he wants to become a team member or

not. The activity is marked as “ended” and the progress of ACTIVITY 1

is written to the context database. Whenever one of the two colleagues

works on ACTIVITY 1 an entry in the context database is made. There-

fore it is possible to query a list of co-workers, who are currently busy

with ACTIVITY 1. At the end of TASK X Steve has the possibility to

estimate the efforts made to complete ACTIVITY 1.

Queries resulting from the use case

• Get the current location of a user.

• Get communication capabilities of a user.

• Get preferred device of communication.

• Get status / status message of a user.

• Get artefact.

• Get users filtered by certain skills / skill profiles.

4.2 Context Model 59

• Get current device of user.

• Get current network profile of device.

• Get current activity of user.

• Get involvements of user X in activity X.

The context model has to be able to store and retrieve the information

requested by these queries. An UML of the context model can be found

in Figure 11 on page 60.

4.2
C

ontext
M

odel
60

Skill

id : int identity
name : varchar(100)
description : varchar(1000)...

NetworkProfile

id : int identity
connectionType : varchar(20)...
bandwidth : varchar(20)
flatrate : varchar(5)
wireless : varchar(5)

Location

id : int identity
name : varchar(100)
description : varchar(1000)
logitude : varchar(100)
latitude : varchar(100)
street : varchar(200)
city : varchar(100)
province : varchar(100)
country : varchar(100)
contactnumber : varchar(100)...
contact : varchar(200)

1..*

1..*

1..*

+availableProfile1..*

CommunicationCapability

id : int identity
type : varchar(50)
description : varchar(1000)...

Team

id : int identity
name : varchar(100)
description : varchar(1000)...
size : int

SkillSkillprofile

1..* 11..* 1

DeviceNetworkProfile

starttimestamp : timestamp(0)...
endtimestamp : timestamp(0)...

1..*
1

1..*
+currentProfile

1

UserLocation

starttimestamp : timestamp(0)...
endtimestamp : timestamp(0)...

1..*

1

1..*

+hostingLocation

1

UserDevice

starttimestamp : timestamp(0)...
endtimestamp : timestamp(0)...

Membership

started : timestamp(0)...

1

1..n

1

+in
1..n

UserSkillProfile

UserCC

address : varchar(200)...

1..*
1

1..*
1

Device

id : int identity
name : varchar(100)
type : varchar(100)
resolution : varchar(20)
os : varchar(20)
screenlayout : varchar(20)...
memory : int
storagecapacity : int
freestorage : int
calculatingcapacity : int
formats : varchar(500)
status : varchar(50)
preferreddeviceof : User

1..*

1

1..* +deviceInProfile

1

1..*

1

1..*

+usedDevice

1

User

id : int identity
firstname : varchar(100)
lastname : varchar(100)
userposition : varchar(50)
status : varchar(50)
statusmessage : varchar(1000)...

1..*

1

1..*

+locatedUser

1

1..*

1

1..*

+owner

1

1..*

1

1..*

1

1

1

1

+member
1

1..*

1

1..*

+owner1

1..*

1

1..*

1

Task

id : int identity
name : varchar(100)
description : varchar(1000)
starttimestamp : timestamp(0)...
deadline : timestamp(0)
status : varchar(100)
priority : int

0..*

1

0..*

+owner

1

SkillProfile

id : int identity
name : varchar(100)
description : varchar(1000)... 1..*1 1..*1

1..*

1

1..*

1

UserActivity

starttimestamp : timestamp(0)...
endtimestamp : timestamp(0)...
progress : varchar(2000)

1..*

1

1..*

+activityPerformer 1

Artifact

id : int identity
name : varchar(100)
type : varchar(100)
size : int
modified : timestamp(0)
status : varchar(20)
keywords : varchar(1000)...

0..*

1

0..*

+hostingDevice 1

1..*

1

1..*

+owner

1

Activity

id : int identity
name : varchar(100)
description : varchar(1000)...

11..n 1

+compose

1..n

1

0..*

1
+requiredSkillProfile

0..*

1..*
1

1..*

+activity

1

0..*

1

0..*

+relatedActivity 1

File: D:\eigene dateien\diplomarbeit\grafiken\context-model-hsql.mdl 16:59:25 Dienstag, 28. August 2007 Class Diagram: Logical View / Main Page 1

Figure 11: Context Model

4.3 Architecture 61

4.3 Architecture

There are a few requirements which have to be satisfied to develop

a framework for constructing context-aware applications, targeted for

mobile devices. The most important requirements are:

• Lightweightness: The framework has to be kept lightweight to

meet the limited capabilities of the targeted platform.

• Storage of context information: At least one device in the network

has to act as “server” and thus has to store all context informa-

tion.

• Hosting of context information: The devices on the network have

to be able to communicate with each other for information ex-

change.

• Advertising and discovery: Due to the decentralized architecture,

mobile devices need to be aware of each other and of the services

one or more of them is/are providing.

• Integration of external sensors: The framework should have the

possibility to incorporate external sensors like GPS or ultrasouns

sensors.

To meet the “Lightweightness” requirement, the proposed architecture

is based on the OSGi Architecture, which has been designed to run on

the targeted devices. The Context Store component, as the name in-

dicates, stores and provides context information. The service provider

makes the Context Store accessible over the network using standard

4.3 Architecture 62

Web services. OSGi also comprises standard services that the service

provider indirectly makes use of. As we can see in Figure 12 the service

provider uses the AMIGO toolkit to establish a Web service, whereas

AMIGO uses the bundled HTTP server of the OSGi framework. The

Service Advertiser is responsible for the announcement of the Context

Store on the network. The counterpart of this is the Service Discovery

component, which does exactly the opposite, namely search for Context

Stores that are accessible online.

http bundle

amigo
core

discovery
service

advertising
service

service
provider

service
consumer

OSGi Services

amigo
ksoap binding

amigo service
import / export

configuration
managementlog4j

Amigo Services

tasks
context store

users

devices

gps sensor

User
Application

Context Framework

Network

3rd party
bundles ...

(additional
sensor)

...

Figure 12: Architecture: Server configuration

Components

To encapsulate the functionality of the framework the OSGi bundle

application design paradigm has been used and the functionality of the

4.3 Architecture 63

http bundle

amigo
core

discovery
service

service
consumer

OSGi Services

amigo
ksoap binding

amigo service
import / export

configuration
managementlog4j

Amigo Services

gps sensor

User
Application

Context Framework

Network

3rd party
bundles ...

(additional
sensor)

...

Client side configuration

Figure 13: Architecture: Client configuration

framework has been devided into 8 OSGi bundles. In this section the

components, their roles and tasks will be introduced in detail. Figure

14 on page 65 shows the bundle dependencies in detail. The sizes of the

bundles give a rough impression of the footprint of the bundle.

cfw-context-store-api

This bundle contains the entities that represent the context informa-

tion and the interface to the Context Store, which is implemented by

the cfw-context-store bundle. As the name already implicates, this bun-

dle has been introduced to make other bundles aware of how to access

the Context Store bundle. The entities are also needed here, because

only full entities and arrays of entities respectively are transferred

between the Context Store and a client. This API bundle is a simple

4.3 Architecture 64

Bundle Function

Context Store Stores and provides context information

Service Discovery Searches for Context Stores

Service Advertiser Advertises a Context Store for remote ac-

cess

Service Provider Makes a Context Store available for others

via SOAP-based Web services

Service Consumer Required to access a Context Store either

remotely or locally (hides the type of the

service)

User application Communicates with the framework using

OSGi services

GPS Example for an external Sensor connected

to the framework. Also other sensors like

ultrasound or bluetooth are imaginable.

Table 1: Components of the framework

“library”-bundle without any functionality. The only thing it does is ex-

porting two packages to the OSGi framework and thus has no activator.

cfw-context-store

The Context Store bundle is responsible for storing the context infor-

mation submitted by the local or remote devices. It consists of three

components

• Database

4.3 Architecture 65

ContextStore

ContextStore API

ContextProvider

ContextAdvertiser

SLP Bundle

AmigoCore Bundle

AmigoServiceExporter

ServiceBinder

log4j Bundle

HTTP Bundle

AmigoKsoapBinding

JSDK

OSGi LOG Bundle

OSGi Config Mgmt

ContextConsumer

ContextLocator

ContextClient

GPS

requires / depends on

Figure 14: Bundle dependencies

4.3 Architecture 66

• Persistence Engine

• API Implementation

The context database is built atop hsqldb [7], a 100% pure Java rela-

tional database, which is very lighweight and efficient. It is originally

written for Java 2 SE, but there also exists a CDC port of the library [8].

The only difference between those packages is, that the original version

uses the JDBC driver API to connect to the database. This way is not

supported by CDC-JDBC, which caused the developers to implement

an alternative. The acquisition of a data source is well documented

in the package. The hsqldb library in version 1.8.0 has a footprint of

495KB.

As mentionend in Section 2.1, the CDC profile requires a optional

JDBC package to be able to handle databases. In this case, I used the

reference JDBC implementation for CDC (JSR169) of Sun [11], which

has to be built and included in the bootclasspath of the JVM.

The database is accessed via relational persistence engine called Mr.

Persister [19]. The use of this engine leverages the database access

dramatically, because objects can be stored and updated easily without

forming custom SQL queries. I have also written a database abstrac-

tion class, in which I made use of the reflection API to create generic

methods for easy inserting, updating and getting objects in/out of the

database.

Due to the use of the above mentioned libraries and the database ab-

straction, the implementation of the Context Store API could be kept

very simple and concise. Most of the methods implemented are in-

4.3 Architecture 67

tended to deliver context information out of the database. They basi-

cally consist of a SQL query and a call to the database API. An example

would be

CS.getArtifactsOfUser(int userId);

This method retrieves all artifacts of a user with User ID userId in form

of an Array of Artifact-objects, provided by the API bundle. Here only

a few methods have been implemented, because it is rather straight

forward and the interface and implementation can be extended easily.

The implementation done by me only satisfies demonstration purposes.

On startup, this bundle creates an instance of the Context Store imple-

mentation and registers it as an OSGi Service. If a cfw-context-provider

bundle is installed and started, the Context Store bundle uses its ser-

vice, to make the Context Store instance accessible for remote devices.

If an advertiser service is present, it also announces the service on the

network using SLP.

cfw-context-provider

This bundle is the implementation of the Service Provider and slightly

dropping out of the scheme, because of the architecture of AMIGO. This

bundle uses the Gravity Service Binder [6], because the AMIGO Ser-

vice exporter requires it to do so. The only purpose of this bundle is

to export a locally present ContextStore OSGi service as an AMIGO

service. If no local service is present, the bundle is inactive, because in

this case no Context Store is present, which can be exposed as a Web

Service.

4.3 Architecture 68

cfw-context-advertiser

This part of the framework represents the Service Advertiser regis-

ters a service to the OSGi service pool, which is used to advertise a

Context Store on the network. The bundle makes use of the jSLP bun-

dle provided by the ETHZ [13] make other devices connected to the

network aware of a running Context Store. It gets the host name, the

http-port of the OSGi framework and forms an endpoint URL, which is

published.

cfw-context-locator

The context locator is the implementation of the Discovery Service and

has been designed to be the counterpart to the above mentioned con-

text advertiser. This bundle also makes use of the jSLP bundle to find

Context Stores. It registeres a locator OSGi service, which can be used

by other bundles to retrieve those endpoint URLs.

cfw-gui

This bundle is based on the Knopflerfish AWT framework desktop bun-

dle and has been modified to check the status and take control over

the context framework. It can be used to start and stop components of

the framework and has mainly been developed for testing purposes. It

shows only components of the context framework, and leaves the other

bundles installed in the OSGi container untouched (see screenshot in

Figure 15).

4.3 Architecture 69

Figure 15: Administration Bundle

cfw-random-ops

The random operations bundle has been developed to test the stability

of the Context Store. It demonstrates how many requests per interval

the Context Store can handle and if there are any collisions if several

concurrent requests are received. The bundle also shows problems like

crashes or exceptions, in case the interval is shorter than the total re-

quest time and if the requests are queued properly. The bundle uses an

algorithm based on fibonacci numbers, where the interval I are calcu-

lated using the equation

I = 1
f
∗ 1000ms

where f is sequentially taken out of the set of the first 20 fibonacci

numbers. Five requests are sent using the current interval, then the

4.3 Architecture 70

next fibonacci number is used. This ensures that the intervals are get-

ting shorter, and the load on the Context Store gets heavier. This bun-

dle was used during the performance evaluation, to calculate the typi-

cal request times.

cfw-threadpool

This bundle is based on an existing threadpool implementation taken

from the JGrinder project [12] and is designed to be a kind of a stress

test for the Context Store. On startup, the bundle spawns up a cus-

tomizable number of threads, which concurrently send a request to

the Context Store. Receiving multiple requests at the same time shows

whether the Context Store is able to handle concurrent requests with-

out failure. See evaluation for results.

cfw-demo

To demonstrate the usage of the framework, this sample application

has been implemented. It basically is an activity manager, which lists

all the tasks the team of the mobile device user is responsible for. The

user can now take a closer look at the activities of the task, modify de-

tails of them or add new activities to the task. At the startup of the

bundle, the connection to a Context Store is established, either if it

is installed locally or situated remotely and the list of tasks is fetched.

This process is hidden from the user. As already mentioned, this bundle

has been written to show how to fit the components of the framework

together and to view the SOAP messages, which are sent to and re-

4.3 Architecture 71

ceived from the Context Store using the TCP Monitor from the Apache

Axis package. Here are a few screenshots of the demonstration bundle:

Figure 16: The Activity Manager on a Pocket PC

Figure 17: The Activity List on a Pocket PC

4.3 Architecture 72

Figure 18: Add Activity

Figure 19: Task with new Activity

Server and Client Configuration

The framework is designed modular using the OSGi bundle mecha-

nism. Functionality has been encapsulated in components, which have

4.3 Architecture 73

Figure 20: Activity List on the remote peer

Figure 21: Details of the new activity on the remote peer

been kept as small as possible, to ensure easy management and great-

est flexibility possible.

Due to this structure, a system running the framework has to be config-

ured according to the tasks it has to fulfill. The framework is designed

to run in two main configurations: A “server” configuration, providing

4.3 Architecture 74

and collecting context information and a “client” configuration sending

and retrieving context information. Of course those configurations can

be modified adding components (e.g. additional sensors), but the vital

parts of the framework and the dependencies have to be installed.

Server Configuration

The server configuration is an OSGi container running at least the

cfw-context-store bundle, the cfw-context-provider bundle, the cfw-

advertiser bundle and their dependencies. This configuration starts

up the Context Store, which is registered locally as an OSGi service

and registered in the Knopflerfish HTTP server as an AMIGO Service.

The cfw-advertiser bundle publishes the endpoint of the AMIGO ser-

vice and ensures that it is found via SLP.

For administration purposes, this configuration can be extended with

the cfw-gui bundle, which allows certain service to be started and

stopped at runtime.

Client Configuration

The client configuration is the counterpart to the above mentioned

server configuration. It consists of the cfw-context-locator bundle, the

cfw-context-consumer bundle and their dependencies. This configura-

tion enables a potential developer to find and access any device running

a server configuration on the net. The consumption of a ContextStore

service is very easy, because the ContextStore can be acquired with

4.4 Design and Implementation 75

a simple method call. All the internas like discovery, binding etc. are

hidden from the developer.

For demonstration purposes and as a how-to tutorial, I have written

four bundles, which show the usage of the framework. Hence, the usage

of the administration bundle (cfw-gui) is recommended in the client

configuration, to selectively start the demonstration bundles.

Due to the flexibility of the framework, client and server configurations

can be combined. Both can run on a single device. The framework recog-

nises this case and establishes communication between the server and

the client using the OSGi services. Communicating over HTTP using

AMIGO would not make sense here, because it is much slower and eats

up resources of the device.

4.4 Design and Implementation

4.4.1 Developing Services for Mobile Devices

Platform

The choice of the platform to set the framework atop was very impor-

tant. The decision was made taking the following aspects into account:

• Lightweightness

• Platform-Independency

• Modularity

4.4 Design and Implementation 76

Considering various possibilities, the framework is built atop the

Knopflerfish OSGi implementation [16], which is a very lightweight

one and made available as open source. OSGi also has the advantage,

that it requires a Java Virtual Machine, which is available for many

embedded and lightweight mobile devices. Remember that nearly all

mobile phones today feature at least J2ME. So Java perfectly satisfies

the second point on the list, the platform-independency. As mentioned

in the technology review section, applications for OSGi are packed as

seperat bundles, which enables the developer to encapsulate different

types of functionality.

Apache ANT

Apache Ant is a build tool based on JAVA. It is similar to “make” on

UNIX based systems. Build files are written using XML, which makes

it easy to define complex dependencies and configurations of build tar-

gets. Another advantage of Ant is, that it is platform independent (be-

cause based on Java). For this project it is required to build the AMIGO

stubs, which are generated using an external Java library, that is called

during the Ant task.

Managing Service Dependencies in Deployment

As mentioned in the OSGi Services section above, managing services

and their dependencies can be quite laborious when the number used

services increase (Service A requires B, but B requires C and D etc).

The Gravity Service Binder is an attempt to facilitate the OSGi service

4.4 Design and Implementation 77

management. Service dependencies don’t have to be managed manu-

ally anymore, the dependencies can be defined in an XML configuration

file (see example on page 96) and the rest is done by the service binder.

This reduces the amount of code necessary for dependency manage-

ment dramatically.

Knopflerfish Bundle IDE for Eclipse

The developers of the Knopflerfish framework provide bundle IDE for

Eclipse, which alleviates the development of bundles for the OSGi

framework. It overtakes tasks like checking dependencies with other

bundles and packing all resources of a bundle to a JAR. It also features

a manifest editor for OSGi bundles with auto completion functions,

which enable the user to create sophisticated and consistent bundle

manifests. Finally, the plugin integrates the Knopflerfish OSGi Frame-

work into Eclipse, allowing to set up special startup configurations with

a user interface to check bundle dependencies before runtime.

4.4.2 Data Persistency

JSR169 - JDBC for CDC

The Connected Device Configuration Profile requires a kind of

“database layer” to be able to operate with hsqlDB. This is done by

JSR169, which specifies a JDBC library for the CDC profile. JDBC

(Java Database Connectivity) is a uniform API to different kinds of

databases, but especially designed for use with relational databases.

4.4 Design and Implementation 78

In this project the reference implementation from Sun [14] is used.

hsqlDB - 100% pure Java Database

hsqlDB [7] is a very lightweight relational database engine written in

Java, which seemed to be the optimal choice for storing the context

information on a mobile device. The developers of this open source soft-

ware offer also many special versions of the product (e.g. a version for

embedded devices, applets, servers etc.). There is also a special CDC

version available, which fitted perfectly in my setup.

Relational Persistence

To facilitate the data management I used Mr Persister [19] as a rela-

tional persistence engine. With this tool, Java objects can be mapped

to table records and vice versa. This reduces the coding efforts storing

or fetching data from the database to a minimum, because some odd

tasks like forming custom sql queries for storing or updating records

are not necessary anymore. Mr PersisterTMis also very lightweight and

perfectly compatible with hsqlDB.

79

5 Evaluation

5.1 Testsetup

5.1.1 Configurations

For testing purposes the two configurations mentioned above were

used. A server configuration hosting the Context Store, which consisted

of

• cfw-context-store

• cfw-context-store-api

• cfw-context-provider

• cfw-context-advertiser

• cfw-context-consumer

• cfw-context-locator

• cfw-gui

• and dependencies

The client configuration requires nearly the same components but of

course the Context Store is not included. The GUI bundle is also not

needed.

5.1 Testsetup 80

5.1.2 Footprint of the Framework

The files needed on the mobile devices occupied around 1,86 MB. This

does not include the space required for the IBM J9 JVM, which occu-

pies again 14,3 MB of memory including the libraries (db-enabler, jdbc

and miscellaneous classes) are required by the extension class loader

to initialize the JVM properly for execution of the framework.

The largest component in the framework is the Context Store itself.

The bundle occupies 645 KB as it contains the database engine, the

relational persistence engine and the implementation of the Context

Store interface. This bundle is not needed in the client configuration

because it is accessed over the network on a remote device. In this

case, the footprint can be reduced by this amount of bytes. However,

if we take a look at the space solely the IBM J9 JVM occupies, these

645 KB do not make a big difference.

Detailed footprint information can be found in the table in the Ap-

pendix on page 111. Also the Figure 14 on page 65 gives an impression

of the bundle sizes.

5.1.3 Testsetup

A client configuration was deployed on a PC (Intel Core 2 Quad, 4x

2,4GHz, 3GB system memory), which is connected to a 100MBit switch.

The server configuration was deployed on a HP Mobile Messenger

(iPAQ hw6915), which has been associated with a Netgear WG601v1

802.11g access point. The access point was also connected to the switch

as you can see in figure 22. The average ping time between desktop and

5.2 Performance study 81

the HP Mobile Messenger was typically around 5-6ms.

Netgear WG602v1
Access point HP iPAQ hw6915

Mobile device
Intel Core 2 Quad Q6600

Desktop

100MBit100MBit

54MBit

Zyxel 100MBit Switch

Network latency 5-6ms

Figure 22: Test setup

The Context Store was started on the mobile device, with advertising

enabled. Next, the random operation bundle was started on the deskop

computer and the client initialized the discovery mechanism properly.

The Context Store was found instantly and the random operation bun-

dle began to send requests to the Context Store.

5.2 Performance study

This performance study gives an impression of the behaviour of the

framework on an average Pocket PC, which it is targeted to run on.

An additional assumption is, that the framework is used in small and

medium nimble teams respectively, which in average have around 10

members. Depending on the results, we will be able to estimate, if it is

possible to develop responsive applications based on the framework.

5.2 Performance study 82

networkall contextstore

Figure 23: Time intervals for performance metering

Averaging request time 10 to 40 we can see that the total time from a

request to the Context Store until a response from the Context Store

is around 657ms. This time includes the time needed for the SOAP

envelope generation at client side, the time for the SOAP parsing at

Context Store side and vice versa. We also have to add the network

latency, which in my tests was around 2,5-3ms in one direction. The

average access time of the Context Store was around 300ms. We can

now calculate the average time that Amigo needs for the SOAP enve-

lope generation and parsing and the mapping of Java objects to XML

and the other way round using

tsoapgen + tsoapparse + tmapping = ttotal−tcontextstore−tnetwork

2
.

On the client side amigo needs to generate a request (tsoapgen) and

5.2 Performance study 83

send it over the network. The Context Store has to parse the request

(tsoapparse) and map the contents to Java objects (tmapping). This is done

by Amigo and therefore not measurable in detail. If we assume, that

the request and response consumes approximately the same amount

of time, we can estimate the time Amigo needs to do its work. Taking

the network latency of 3ms per direction into account, Amigo needs in

average 352ms exchange request and response.

600

700

800

900

1000

t

0

100

200

300

400

500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 10
1

10
3

10
5

10
7

10
9

11
1

11
3

11
5

11
7

11
9

12
1

12
3

12
5

12
7

12
9

13
1

trequest
(ms)

Request Number

Total

Store

Amigo

Figure 24: Performance

The chart was cut off at the beginning, because the first request always

required around 8 seconds to complete. When the first request arrives,

the database connection is established and the persistence engine is

initialized. This outlier is therefore not displayed in the diagram. When

taking a look at the rest of the chart, we can see, that the average total

request time lies a little above 500ms. Exact values can be found in

Table 5.2.

5.2 Performance study 84

Store
45%

Amigo
54%

Network
1%

Figure 25: Average Performance

AVG SD MIN MAX
Total 657 ms 199.29 250 ms 906 ms
Store 299 ms 152.02 12 ms 567 ms
Amigo 358 ms 78.82 233 ms 584 ms
Network 2.73 ms 0.25 2.5 ms 3 ms
Request rate 1.81 0.70 1.10 3.55

Table 2: Average, minimum and maximum request time

5.2.1 Stresstest

Using the cfw-threadpool bundle multiple virtually simultaneous re-

quests can be fired at the Context Store. My tests have proven that

the Context Store has no problems dealing up to 100 and maybe even

more of simultaneous requests. This implicates that the built-in HTTP

server of the Knopflerfish framework seems to work really stable and

that the requests are queued properly. The limiting factor here is the

5.2 Performance study 85

execution time on the Context Store side, because the requests cannot

be processed all at the same time. The stresstest was stopped at 100

requests, because it is considered unlikely that in the target field of the

framework (nimble teams with 10 team member average) the Context

Store receives more than 100 simulaneous requests.

5.2.2 Conclusion

The performance study has shown, that the Context Store is able to

process at least 1 and at maximum 3 requests per second from other

mobile devices, which can be considered to be acceptable for a small or

medium mobile team. Of course it depends on the type of application,

that is built atop the framework, but for basic information exchange

this is enough (e. g. nobody can change or add activities in less than

one second).

As expected, the communication overhead resulting from the use of

Web services is considerable. We can say that at least half of the re-

quest time is needed by AMIGO to generate and parse the soap mes-

sages, which has to be done twice in each case. But Web services do

not only cause large overhead in the world of lightweight and mobile

devices, this is also an issue when building applications for “normal”

devices, like desktop PCs and servers. However, they have many ad-

vantages like interoperability, ubiquity and loose coupling.

5.3 Implementation Aspects 86

5.3 Implementation Aspects

5.3.1 AMIGO

Popular SOAP toolkits, which are available as open source projects for

Java and running with the Personal Profile, have been considered in

this work. Most of them require the programmer to create XML con-

figurations, that describe the mapping between the methods and the

exposed Web service. This description has to include the method name,

the parameters and the return values to properly map an interface to

a Web Service. Amigo has a different approach as it tries to generate

the service from the class definition by making extensive use of the

Java Reflection API, which tremendously facilitates the development

of a complex interface.

But the other side of the coin is, that the usage tutorial provided by the

developers is insufficient when dealing with complex objects or data

types. The examples provided work well, but they are simple and not

practicable in a “real” application. The handling of various datatypes is

very unfirm, maybe because Amigo fully relies on the kSOAP2 project,

which has proven not to be rock solid during my tests. It took me weeks

to figure out a way to handle the Amigo libraries, which easily could

have been avoided with proper documentation.

There are also some features, which could not be used, because of the

lack of documentation. The performance of the dynamic stub gener-

ation would have been very interesting, but I was not able to get it

working. This would even more alleviate the development process and

make it possible to change the interface at runtime.

5.3 Implementation Aspects 87

5.3.2 OSGi

OSGi for has proven to be a very sophisticated concept and the im-

plementations available, especially the Knopflerfish framework, work

like a charm. Due to the bundle concept, the developer is automatically

encouraged to encapsulate application functionality. For a framework

development, this is very useful, because components can be combined

according to the users needs.

A drawback is the slow startup of the framework, but this issue is

more Java than OSGi related. The bootstrapping of the JVM on an

up-to-date Pocket PC still takes a couple of seconds and not till then

the execution of the application is started. Another point is, that the

security features of OSGi can make it tricky to fulfill the developers

requirements.

5.3.3 SLP

The SLP implementation [13] used for this project is working fine in

the latest version of the distribution. In this version the SocketTime-

outException bug was fixed, which caused the bundle to stop working

after the first discovery. The documentation is good and the tutorial

allows to quickly pick up the usage of the bundle.

88

6 Summary and Conclusion

This thesis gave an overview about the current status of Web services

in mobile computing. The survey has shown, that the hosting of SOAP

based Web services on mobile lightweight devices is possible but there

is still need for sophisticated toolkits. Currently available libraries suf-

fer from problems like instability and require lots of programming and

configuration efforts to build Web service based applications. Sophisti-

cated Web service toolkits like Apache Axis cannot be run on mobile de-

vices, because they require too much resources. The platforms needed

for deployment are often not available for mobile devices.

This work also presented a proof of concept implementation of a SOA

based collaboration framework, which enables the developer to host

context information on a lightweight device using Web services. The

framework is based on OSGi and thus following the Service Oriented

Architecture paradigm.

The deployment of Web services on mobile devices is still linked with

several difficulties. But although there are still problems hosting Web

services on mobile devices today due to several issues like limited re-

sources, lack of processing power and memory, limited wireless net-

work throughput, it is likely that those problems are solved in the near

future through the expansion of mobile networks and the constant ex-

tension of the capabilities of mobile devices.

89

A Knopflerfish on a PPC using J9

A.1 The Knopflerfish Framework

Setting up Knopflerfish OSGi on a Pocket PC requires a desktop pc or

laptop and of course: a Pocket PC. Those, who do not own or do not have

access to a Pocket PC, can use the Microsoft Device Emulator bundled

with the Microsoft Visual Studio. Maybe this is the better way to play

around with the framework, because the virtual devices are highly con-

figurable, can be connected to the local network and internet without

spending any money for WiFi and LAN adapters. Memory of the device

can also be extended, which also helps to avoid resource bottle necks.

For communication purposes with the host machine a shared directory

can be configured, that is accessible through the storage card in the

Pocket PC emulator.

There are several OSGi implementations on the web. One of them is

Knopflerfish OSGi, which we chose to use for our purposes. Although

the framework seems to be ready to install, many problems and pit-

falls arise when deploying it on a Pocket PC running Windows Mobile

2003SE.

A.2 Java Runtime Environment

Since there is no native support for Java in WM2003 an appropriate

Java Virtual Machine has to be installed on the Pocket PC. There

are several competitors on the market for example NSIcom CrEme,

A.3 Executing the JVM 90

SavaJE OS, Sun Personal Java, Blackdown J2RE, Esemertec Jeode,

IBM J9 JVM etc. For my project the JVM at least had to support class

loading and Pocket PC, that’s why most of the competitors where not

usable. Only the NSIcom CrEme and the IBM J9 JVM support the Per-

sonal profile (PPRO), which is needed for class loading. Additionally

the IBM J9 JVM is the cheaper choice, which was the reason for the

decision to use it in this project.

The IBM WebSphere Studio Device Developer includes the WebSphere

Everyplace Micro Environment (WEME), which consists of two device

profiles (PPRO10 and MIDP20). Since the MIDP profile does not sup-

port class loading we have to install the Personal Profile, which re-

quires a lot more memory (around 8mb), but is also more powerful.

The installation normally completes without any troubles, but it gets

very challenging when trying to run a java program.

A.3 Executing the JVM

First of all, the Pocket PC only offers a hidden possibility to execute

applications. It’s the well known “Run” prompt, which we all have seen

on the popular Microsoft Windows operating system. To display this

command one has to press and hold main enter button on the Pocket

PC and tap on the clock with the stylus. In this prompt the JVM can be

executed. In fact, this method is not very satisfying, because the field

is very small, and the execution commands of Java programs typically

become very long.

The next possibility to execute the JVM is a command prompt similar

A.3 Executing the JVM 91

to the DOS command or unix/linux shell. SymbolicTools provides such

a tool, called PocketConsole, which is nearly a perfect port of the Win-

dows NT command shell and much more comfortable than the “Run”

command line.

Another alternative for the two mentioned above is to connect the

Pocket PC via active sync to a desktop pc and create a shortcut file,

executing the JVM with all necessary parameters. The shortcut can

be created using the copy and paste method on the Pocket PC. If the

emulator is used, the best way of sharing the shortcut with the host

computer, is to but it on the shared space (Storage Card). This method

seems to be the best possibility, because typing on the desktop pc is

much easier than tapping around on the Pocket PC touch screen, but

it has some perfidies, which will be mentioned later. Creating a short-

cut with the Pocket Explorer produces a file with the extension *.lnk,

which is simply a text file containing the execution string, something

like this:

38#”\Program Files\J9\PPRO10\bin\j9.exe”

The number at the beginning of this string indicates the length of the

following command. In case the command is edited and thus becoming

longer than the original, this indication also has to be modified to suit

the new strings length or must be set even higher. IBM [23] suggests

setting it to 255, but tests have proven, that the command is not ex-

ecuted correctly if the length exceeds this boundary. As a solution for

this problem I recommend to use the command shell.

A.4 Preparing J9 for Knopflerfish 92

A.4 Preparing J9 for Knopflerfish

To start the J9 JVM we have to browse to ”\Program

Files\J9\PPRO10\bin”

where we find two executables (”j9.exe” and ”j9w.exe”). The first one is

the console version of the JVM and the second starts the JVM with-

out opening a window. For testing and debugging purposes the usage

of the first version is strongly recommended, because most likely the

application will not run the first time. A strange behaviour of the in-

stalled JVM is that it tries to start with the never installed Foundation

Profile, which can only be avoided by adding the switch “-jcl:ppro10”,

which forces the JVM to start with the right profile.

It should also be mentioned, that the default installation does not in-

stall all necessary libraries for running the Knopflerfish OSGi. If we try

to run the jar package of the framework, we get a ZipException, which

points to the fact that we have to copy the j9zlib22.dll library to the bin

directory. This extension empowers the JVM to handle compressed jar

archives.

The next step is to obtain the current version of the Knopflerfish frame-

work from their website [16]. Depending on the storage capacity of the

device we are able to choose between different packages of the frame-

work. The bundles can be obtained and installed separately. For our

purposes we chose to download the full package because the virtual

storage card in the emulator has nearly unlimited capacity due to the

fact that it’s only a shared directory on the host hard disk.

A.5 Setting up Knopflerfish 93

A.5 Setting up Knopflerfish

Running the Knopflerfish framework is not possible without some mod-

ifications of the configuration files. The main problem is that the Pocket

PC does not support a “current directory”, which is the directory a com-

mand is called from. Knopflerfish searches for its configuration files in

the current directory by default, which results in an error if the frame-

work is not called from the root of the fixed memory on the Pocket

PC. The fwdir, which is the directory where the framework stores per-

sistent bundle information, is also stored there. Although it offers an

option to specify which configuration files to use, the framework pro-

duced an error during several tests. A solution is to put the properly

configured init.xargs, which holds the commands and settings for ini-

tialisation of the Knopflerfish OSGi framework and restart.xargs, re-

quired for restarting the framework using the previous settings and

persistent data in the fwdir, in the root of the Pocket PCs fixed memory

to avoid all those problems. The props.xargs fire holds the manually

configured system properties of the framework. It is of paramount im-

portance that the options in init.xargs and restart.xargs reference to

the right location of this file, if it is not stored in the same directory (in

our example the root of the fixed memory of Pocket PC).

The framework is able to start on the Pocket PC under J9 Personal

Profile with the default bundles, but the desktop interface bundle has

to be excluded. It is not compatible with the AWT libraries of the J9.

This can be done by simple commenting the startup command in the

configuration file.

Starting the framework for the first time, invokes the installation of

A.6 Programming OSGi bundles 94

the bundles configured in the init.xargs file and the bootstrapping. In

our tests we used the above mentioned method of executing the startup

command per shortcut, which seemed to work fine, but after bootstrap-

ping the framework exited with a dubious error message “Error: Un-

known Option:”. This leads to the assumption that invoking the J9

per shortcut passes an extra argument, which is not recognized by the

framework. Therefore the less user friendly command shell must be

used to initialize and start Knopflerfish.

A.6 Programming OSGi bundles

The Knopflerfish community provides an excellent eclipse plugin,

which is very helpful for creating OSGi bundles for the framework.

It can be obtained via web update of the eclipse platform [17]. The

plugin enables the user to integrate the two possibly most popular

OSGi frameworks Oscar and Knopflerfish with the corresponding bun-

dle repositories.

The plugin allows creating runtime configurations very easily, the (de)

activation of every single bundle and always points out the bundle de-

pendencies. Execution environment profiles are selectable e.g. CDC-

1.0/Foundation-1.0, which makes the testing of the bundle for the tar-

get platform very easy. The GUI access to the bundles manifest files

and the automatic jar generation definitely one of the greatest advan-

tages. The usage of the plugin for bundle development is highly recom-

mended.

95

B Code Listings

B.1 CFW-API-Bundle ANT build file

Listing 6: ANT build file to generate stubs
1 <?xml version="1.0" encoding="iso-8859-1" ?>
2 <pro jec t name="amigo_custom_bundle" basedir="." default="

all">
3
4 <property name="out.dir" value="out" />
5 <property name="src.dir" value="src" />
6 <property name="bundle.name" value="cfw-context-store-api

-1.0.0.jar" />
7 <property name="req.libs.dir" value="D:/java/osgi/_amigo/

libs" />
8 <property f i l e ="build.properties" />
9

10 <path id="classpath">
11 < f i l e s e t dir="${req.libs.dir}">
12 <include name="*.jar" />
13 < / f i l e s e t>
14 <dirse t dir="D:/java/osgi/cfw-context-store-api/out" />
15 < / path>
16
17 <taskdef resource="macrodefs.xml" c lasspathref="classpath

" />
18
19 <target name="all" depends="bundlification" />
20
21 <target name="init">
22 <delete dir="${out.dir}" />
23 <mkdir dir="${out.dir}" />
24 < / target>
25
26 <target name="compile" depends="init">
27 <javac srcd i r="${src.dir}" destdir="${out.dir}" source=

"1.3" target="1.4">
28 <classpath re f id="classpath" />
29 <include name="**/*.java" />
30 < / javac>
31 < / target>

B.2 Service Binder Configuration 96

32
33 <target name="java2stub" depends="compile">
34 <java2stub
35 type="class"
36 sourcepath="${src.dir}"
37 genericStub="${genericStub}"
38 inter faces="${amigoServices}"
39 destdir="${out.dir}"
40 velocityDesc="${velocityDescription}"
41 docletpathref="classpath"
42 classpath="${out.dir}"
43 />
44 < / target>
45
46 <target name="bundlification" depends="compile,java2stub"

>
47 < !−− <copy f i l e ="metadata.xml" tod i r="${out.dir}" /> −−>
48 <jar manifest="bundle.manifest" d e s t f i l e ="${out.dir}/${

bundle.name}" basedir="${out.dir}" />
49 < !−−<delete f i l e ="${out.dir}/metadata.xml" />−−>
50 < / target>
51 < / p ro jec t>

B.2 Service Binder Configuration

Listing 7: Example of a Service Binder Configuration File
1 <?xml version="1.0" encoding="UTF-8"?>
2 <bundle>
3 <component c lass="org.simpleclient.impl.ServiceImpl">
4 <provides serv ice="org.simpleclient.interfaces.

SimpleClientServiceA" />
5 <provides serv ice="org.simpleclient.interfaces.

SimpleClientServiceB" />
6 <property name="provider" value="Beanome.org" type="

string" />
7 <requires
8 serv ice="org.simpleservice.interfaces.SimpleService

"
9 f i l t e r ="(version=*)"

10 card ina l i ty="1..n"
11 po l i cy="static"
12 bind−method="setServiceReference"
13 unbind−method="unsetServiceReference"

B.3 Context Model SQL 97

14 />
15 < / component>
16 < / bundle>

B.3 Context Model SQL

Listing 8: Database script of the context model
1 create table user (
2 id int identity ,
3 firstname varchar (100) not null ,
4 lastname varchar (100) not null ,
5 userposit ion varchar (100) default ’null’ ,
6 status varchar (50) default ’offline’ ,
7 statusmessage varchar (1000) default ’null’
8) ;
9

10
11 create table communicationcapability (
12 id int identity ,
13 type varchar (50) ,
14 descr ipt ion varchar (1000)
15) ;
16
17
18 create table usercommunicationcapability (
19 user int not null ,
20 communicationcapability int not null ,
21 address varchar (200) not null ,
22 foreign key (user) references user (id) on delete cascade

on update cascade ,
23 foreign key (communicationcapability) references

communicationcapability (id) on delete cascade on
update cascade ,

24 primary key (user , communicationcapability)
25) ;
26
27
28 create table team (
29 id int identity ,
30 name varchar (100) not null ,
31 descr ipt ion varchar (1000) default null ,
32 size int default 1
33) ;

B.3 Context Model SQL 98

34
35
36 create table membership (
37 started timestamp (0) default current timestamp ,
38 owner int not null ,
39 team int not null ,
40 foreign key (owner) references user (id) on delete cascade

on update cascade ,
41 foreign key (team) references team (id) on delete cascade

on update cascade ,
42 primary key (owner , team)
43) ;
44
45
46 create table s k i l l (
47 id int identity ,
48 name varchar (100) not null ,
49 descr ipt ion varchar (1000) default ’null’
50) ;
51
52
53 create table s k i l l p r o f i l e (
54 id int identity ,
55 name varchar (100) ,
56 descr ipt ion varchar (1000)
57) ;
58
59
60 create table s k i l l s k i l l p r o f i l e (
61 s k i l l int ,
62 s k i l l p r o f i l e int ,
63 foreign key (s k i l l) references s k i l l (id) on update

cascade on delete cascade ,
64 foreign key (s k i l l p r o f i l e) references s k i l l p r o f i l e (id) on

update cascade on delete cascade ,
65 primary key (s k i l l , s k i l l p r o f i l e)
66) ;
67
68
69 create table u s e r s k i l l p r o f i l e (
70 owner int ,
71 s k i l l p r o f i l e int ,
72 foreign key (owner) references user (id) on update cascade

B.3 Context Model SQL 99

on delete cascade ,
73 foreign key (s k i l l p r o f i l e) references s k i l l p r o f i l e (id) on

update cascade on delete cascade ,
74 primary key (owner , s k i l l p r o f i l e)
75) ;
76
77
78 create table task (
79 id int identity ,
80 name varchar (100) not null ,
81 descr ipt ion varchar (1000) default ’null’ ,
82 starttimestamp timestamp (0) default current timestamp ,
83 deadline timestamp (0) default null ,
84 status varchar (100) default ’pending’ ,
85 p r i o r i t y int default 5 ,
86 team int ,
87 foreign key (team) references team (id) on update cascade
88) ;
89
90
91 create table a c t i v i t y (
92 id int identity ,
93 name varchar (100) not null ,
94 descr ipt ion varchar (1000) default ’null’ ,
95 task int ,
96 foreign key (task) references task (id) on update cascade
97) ;
98
99

100 create table userac t iv i ty (
101 user int ,
102 a c t i v i t y int ,
103 starttimestamp timestamp (0) default current timestamp ,
104 endtimestamp timestamp (0) default null ,
105 progress varchar (2000) default ’null’ ,
106 foreign key (user) references user (id) on update cascade ,
107 foreign key (a c t i v i t y) references a c t i v i t y (id) on update

cascade
108) ;
109
110
111 create table l o cat ion (
112 id int identity ,

B.3 Context Model SQL 100

113 name varchar (100) not null ,
114 descr ipt ion varchar (1000) default ’null’ ,
115 longitude varchar (100) default ’null’ ,
116 lat i tude varchar (100) default ’null’ ,
117 street varchar (200) default ’null’ ,
118 c i t y varchar (100) default ’null’ ,
119 province varchar (100) default ’null’ ,
120 country varchar (100) default ’null’ ,
121 contactnumber varchar (100) default ’null’ ,
122 contact varchar (200)
123) ;
124
125
126 create table user locat ion (
127 owner int ,
128 locat ion int ,
129 starttimestamp timestamp (0) default current timestamp not

null ,
130 endtimestamp timestamp (0) default null ,
131 foreign key (owner) references user (id) on update cascade

,
132 foreign key (l o cat ion) references locat ion (id) on update

cascade
133) ;
134
135
136 create table device (
137 id int identity ,
138 name varchar (100) not null ,
139 type varchar (100) default ’null’ ,
140 reso lut ion varchar (20) default ’null’ ,
141 os varchar (20) default ’null’ ,
142 screenlayout varchar (20) default ’null’ ,
143 memory int default 0 ,
144 storagecapacity int default 0 ,
145 freestorage int default 0 ,
146 calculat ingcapac i ty int default 0 ,
147 formats varchar (500) default ’null’ ,
148 status varchar (100) default ’null’ ,
149 preferreddeviceof int default 0 ,
150 owner int ,
151 foreign key (preferreddeviceof) references user (id) ,
152 foreign key (owner) references user (id) on update cascade

B.3 Context Model SQL 101

153) ;
154
155
156 create table a r t i f a c t (
157 id int identity ,
158 name varchar (100) not null ,
159 type varchar (100) default ’null’ ,
160 size int default 0 ,
161 modified timestamp (0) default current timestamp ,
162 status varchar (20) default ’null’ ,
163 keywords varchar (1000) default ’null’ ,
164 owner int not null ,
165 device int not null ,
166 a c t i v i t y int default 0 ,
167 foreign key (owner) references user (id) on update cascade

,
168 foreign key (device) references device (id) on update

cascade on delete cascade ,
169 foreign key (a c t i v i t y) references a c t i v i t y (id) on update

cascade
170) ;
171
172
173 create table userdevice (
174 user int ,
175 device int ,
176 starttimestamp timestamp (0) default current timestamp not

null ,
177 endtimestamp timestamp (0) default null ,
178 foreign key (user) references user (id) on delete cascade

on update cascade ,
179 foreign key (device) references device (id) on delete

cascade on update cascade
180) ;
181
182
183 create table networkprofi le (
184 id int identity ,
185 connectiontype varchar (20) default ’null’ ,
186 bandwidth varchar (20) default ’null’ ,
187 f l a t r a t e varchar (5) default ’false’ ,
188 wireless varchar (5) default ’false’
189) ;

B.4 Test Data Set 102

190
191
192 create table devicenetworkprof i le (
193 device int ,
194 networkprofi le int ,
195 starttimestamp timestamp (0) default current timestamp not

null ,
196 endtimestamp timestamp (0) default null ,
197 foreign key (device) references device (id) on delete

cascade on update cascade ,
198 foreign key (networkprofi le) references networkprofi le (id

) on delete cascade on update cascade
199) ;

B.4 Test Data Set

Listing 9: Database script of the test data set
1 insert into user (id , firstname , lastname , userposit ion)

values
2 (0 , ’null’ , ’null’ , ’null’) ;
3 insert into user (id , firstname , lastname , userposit ion)

values
4 (1 , ’Martin’ , ’Brown’ , ’CEO’) ;
5 insert into user (id , firstname , lastname , userposit ion)

values
6 (2 , ’Erika’ , ’Smith’ , ’Leading Assistant’) ;
7 insert into user (id , firstname , lastname , userposit ion)

values
8 (3 , ’Thomas’ , ’Schultz’ , ’Programmer’) ;
9

10
11 insert into communicationcapability values
12 (0 , ’null’ , ’null’) ;
13 insert into communicationcapability values
14 (1 , ’gsm’ , ’Standard GSM connection’) ;
15 insert into communicationcapability values
16 (2 , ’3g’ , ’UMTS video telephony’) ;
17 insert into communicationcapability values
18 (3 , ’phone’ , ’Standard phone, fixed location’) ;
19 insert into communicationcapability values
20 (4 , ’fax’ , ’Telefax capability’) ;
21 insert into communicationcapability values
22 (5 , ’email’ , ’E-Mail Messaging capability’) ;

B.4 Test Data Set 103

23 insert into communicationcapability values
24 (6 , ’icq’ , ’ICQ, I seek you, instant messaging service’) ;
25 insert into communicationcapability values
26 (7 , ’msn’ , ’MSN, Microsoft Network, instant messaging

service’) ;
27 insert into communicationcapability values
28 (8 , ’gtalk’ , ’JABBER, Google Talk, instant messaging

service’) ;
29
30
31 insert into usercommunicationcapability values
32 (0 , 0 , ’null’) ;
33 insert into usercommunicationcapability values
34 (1 , 2 , ’+34 (9399) 8928042 - 342’) ;
35 insert into usercommunicationcapability values
36 (2 , 2 , ’+23 (2355) 8678678’) ;
37 insert into usercommunicationcapability values
38 (3 , 2 , ’+12 (9223) 234556’) ;
39 insert into usercommunicationcapability values
40 (1 , 4 , ’m.brown@darkside.org’) ;
41 insert into usercommunicationcapability values
42 (2 , 4 , ’e.smith@cloudnr9.org’) ;
43 insert into usercommunicationcapability values
44 (3 , 4 , ’t.schultz@coderunderground.net’) ;
45 insert into usercommunicationcapability values
46 (1 , 7 , ’m.brown’) ;
47 insert into usercommunicationcapability values
48 (2 , 6 , ’e.smith’) ;
49 insert into usercommunicationcapability values
50 (3 , 5 , ’4568765123’) ;
51
52
53 insert into team values
54 (0 , ’null’ , ’null’ , 0) ;
55 insert into team values
56 (1 , ’Workgroup for Project A’ , ’Experts with knowledge

required for Project A’ , 10) ;
57 insert into team values
58 (2 , ’Taskforce B’ , ’Experts with special skills for time

critical projects’ , 233) ;
59
60
61 insert into membership values

B.4 Test Data Set 104

62 (null , 0 , 0) ;
63 insert into membership values
64 (current timestamp , 1 , 2) ;
65 insert into membership values
66 (current timestamp , 2 , 2) ;
67 insert into membership values
68 (current timestamp , 2 , 1) ;
69 insert into membership values
70 (current timestamp , 3 , 1) ;
71
72
73 insert into s k i l l values
74 (0 , ’null’ , ’null’) ;
75 insert into s k i l l values
76 (1 , ’Java basics’ , ’Basics of the Java programming

language’) ;
77 insert into s k i l l values
78 (2 , ’C++ advanced’ , ’Advanced knowledge of the C++

programming language’) ;
79 insert into s k i l l values
80 (3 , ’Soft skills’ , ’Special social abilities’) ;
81
82
83 insert into s k i l l p r o f i l e values
84 (0 , ’null’ , ’null’) ;
85 insert into s k i l l p r o f i l e values
86 (1 , ’Skillprofile 1’ , ’Description for Skillprofile 1’) ;
87 insert into s k i l l p r o f i l e values
88 (2 , ’Skillprofile 2’ , ’Description for Skillprofile 2’) ;
89
90
91 insert into s k i l l s k i l l p r o f i l e values
92 (0 , 0) ;
93 insert into s k i l l s k i l l p r o f i l e values
94 (1 , 1) ;
95 insert into s k i l l s k i l l p r o f i l e values
96 (2 , 1) ;
97 insert into s k i l l s k i l l p r o f i l e values
98 (2 , 2) ;
99 insert into s k i l l s k i l l p r o f i l e values

100 (3 , 2) ;
101
102

B.4 Test Data Set 105

103 insert into u s e r s k i l l p r o f i l e values
104 (0 ,0) ;
105 insert into u s e r s k i l l p r o f i l e values
106 (1 ,1) ;
107 insert into u s e r s k i l l p r o f i l e values
108 (2 ,2) ;
109 insert into u s e r s k i l l p r o f i l e values
110 (3 ,1) ;
111 insert into u s e r s k i l l p r o f i l e values
112 (3 ,2) ;
113
114
115 insert into task values
116 (0 , ’null’ , ’null’ , null , null , ’null’ , 0 , 0) ;
117 insert into task values
118 (1 , ’Specification’ , ’Goal is the complete specification

of the project’ , current timestamp , ’2008-01-01
12:00:00’ , ’pending’ , 1 , 1) ;

119
120
121 insert into a c t i v i t y values
122 (0 , ’null’ , ’null’ , 0) ;
123 insert into a c t i v i t y values
124 (1 , ’Requirement analysis’ , ’Requirment analysis in all

fields of the project’ , 0) ;
125 insert into a c t i v i t y values
126 (2 , ’Softwaredesign’ , ’UML design of the software part’ ,

0) ;
127
128
129 insert into userac t iv i ty values
130 (0 , 0 , null , null , ’null’) ;
131 insert into userac t iv i ty values
132 (1 , 1 , ’2005-01-02 13:00:00’ , ’2005-01-02 16:00:00’ , ’

Discussed details’) ;
133 insert into userac t iv i ty values
134 (2 , 2 , ’2005-02-03 11:00:00’ , ’2005-02-03 14:00:00’ , ’

Discussion completed’) ;
135 insert into userac t iv i ty values
136 (3 , 2 , ’2005-05-01 08:00:00’ , ’2005-05-02 16:00:00’ , ’50%

accomplished’) ;
137 insert into userac t iv i ty values
138 (2 , 1 , current timestamp , null , ’null’) ;

B.4 Test Data Set 106

139 insert into userac t iv i ty values
140 (3 , 1 , current timestamp , null , ’null’) ;
141 insert into userac t iv i ty values
142 (1 , 2 , current timestamp , null , ’null’) ;
143
144
145 insert into l o cat ion values
146 (0 , ’null’ , ’null’ , ’null’ , ’null’ , ’null’ , ’null’ , ’null

’ , ’null’ , ’null’ , ’null’) ;
147 insert into l o cat ion values
148 (1 , ’Company Headquaters’ , ’description’ , ’34.2348234’ , ’

16.3224234’ , ’Oxfordstreet 34’ , ’London’ , ’’ , ’Great
Britain’ , ’+34 (4523) 898945’ , ’Jim Grandy’) ;

149 insert into l o cat ion values
150 (2 , ’Company Outpost’ , ’description’ , ’14.789789’ , ’

13.879798’ , ’Downingstreet 1’ , ’New London’ , ’’ , ’
Alaska’ , ’+11 (8978) 234234’ , ’Jeanne Ho’) ;

151
152
153 insert into user locat ion values
154 (0 , 0 , current timestamp , null) ;
155 insert into user locat ion values
156 (1 , 1 , ’2005-01-02 13:00:00’ , ’2005-01-02 16:00:00’) ;
157 insert into user locat ion values
158 (2 , 1 , ’2005-02-03 11:00:00’ , ’2005-02-03 14:00:00’) ;
159 insert into user locat ion values
160 (3 , 2 , ’2005-05-01 08:00:00’ , ’2005-05-02 16:00:00’) ;
161 insert into user locat ion values
162 (2 , 2 , current timestamp , null) ;
163 insert into user locat ion values
164 (3 , 1 , current timestamp , null) ;
165 insert into user locat ion values
166 (1 , 1 , current timestamp , null) ;
167
168
169 insert into device (id , name, type , resolution , os ,

screenlayout , memory, storagecapacity , freestorage ,
calculat ingcapacity , formats , preferreddeviceof , owner)
values

170 (0 , ’null’ , ’null’ , ’null’ , ’null’ , ’null’ , 0 , 0 , 0 , 0 , ’
null’ , 0 , 0) ;

171 insert into device (id , name, type , resolution , os ,
screenlayout , memory, storagecapacity , freestorage ,

B.4 Test Data Set 107

calculat ingcapacity , formats , preferreddeviceof , owner)
values

172 (1 , ’workmate’ , ’laptop’ , ’1024x768’ , ’Windows XP’ , ’
horizontal’ , 1024 , 30000 , 11923 , 2130 , ’pdf,doc,xls’ ,
1 , 2) ;

173 insert into device (id , name, type , resolution , os ,
screenlayout , memory, storagecapacity , freestorage ,
calculat ingcapacity , formats , preferreddeviceof , owner)
values

174 (2 , ’dataslave’ , ’server’ , ’800x600’ , ’Debian 3.1rev5’ , ’
horizontal’ , 4096 , 450000 , 293223 , 4800 , ’pdf,doc,xls,
psd,tif,jpg’ , 2 , 1) ;

175 insert into device (id , name, type , resolution , os ,
screenlayout , memory, storagecapacity , freestorage ,
calculat ingcapacity , formats , preferreddeviceof , owner)
values

176 (3 , ’digiti’ , ’pda’ , ’320x240’ , ’Windows Mobile 2003 SE’ ,
’vertical’ , 64 , 32 , 17 , 400 , ’doc,xls,jpg’ , 3 , 3) ;

177
178
179 insert into a r t i f a c t (id , name, type , size , modified ,

status , owner , device) values
180 (0 , ’null’ , ’null’ , null , null , ’null’ , 0 , 0) ;
181 insert into a r t i f a c t (name, type , size , modified , status ,

owner , device) values
182 (’report1.xls’ , ’Spreadsheet’ , 23422 , current timestamp ,

’opened’ , 1 , 2) ;
183 insert into a r t i f a c t (name, type , size , modified , status ,

owner , device) values
184 (’whitepaper.doc’ , ’Microsoft Word Document’ , 151422 ,

current timestamp , ’locked’ , 2 , 1) ;
185 insert into a r t i f a c t (name, type , size , modified , status ,

owner , device) values
186 (’specifications.pdf’ , ’Portable Document File’ , 54622 ,

current timestamp , ’closed’ , 2 , 2) ;
187 insert into a r t i f a c t (name, type , size , modified , status ,

owner , device) values
188 (’HSqlDB.java’ , ’Java Source Code’ , 3422 ,

current timestamp , ’deprecated’ , 3 , 3) ;
189
190
191 insert into userdevice values
192 (0 , 0 , current timestamp , null) ;

B.5 Example Server Configuration 108

193 insert into userdevice values
194 (1 , 1 , ’2005-01-02 13:00:00’ , ’2005-01-02 16:00:00’) ;
195 insert into userdevice values
196 (2 , 3 , ’2005-02-03 11:00:00’ , ’2005-02-03 14:00:00’) ;
197 insert into userdevice values
198 (3 , 2 , ’2005-05-01 08:00:00’ , ’2005-05-02 16:00:00’) ;
199 insert into userdevice values
200 (2 , 1 , current timestamp , null) ;
201 insert into userdevice values
202 (3 , 2 , current timestamp , null) ;
203 insert into userdevice values
204 (1 , 3 , current timestamp , null) ;
205
206
207 insert into networkprofi le (id , connectiontype , bandwidth ,

f la t rate , wireless) values
208 (0 , ’null’ , ’null’ , ’false’ , ’false’) ;
209 insert into networkprofi le (id , connectiontype , bandwidth ,

f la t rate , wireless) values
210 (1 , ’DSL’ , ’2048x512’ , ’false’ , ’false’) ;
211 insert into networkprofi le (id , connectiontype , bandwidth ,

f la t rate , wireless) values
212 (2 , ’Cable’ , ’5120x1024’ , ’true’ , ’true’) ;
213 insert into networkprofi le (id , connectiontype , bandwidth ,

f la t rate , wireless) values
214 (3 , ’GPRS’ , ’86’ , ’false’ , ’true’) ;
215
216
217 insert into devicenetworkprof i le values
218 (0 , 0 , current timestamp , null) ;
219 insert into devicenetworkprof i le values
220 (2 , 1 , ’2006-05-05 12:00:00’ , ’2006-12-01 16:00:00’) ;
221 insert into devicenetworkprof i le values
222 (1 , 1 , current timestamp , null) ;
223 insert into devicenetworkprof i le values
224 (2 , 2 , current timestamp , null) ;
225 insert into devicenetworkprof i le values
226 (3 , 3 , current timestamp , null) ;

B.5 Example Server Configuration

Listing 10: Example server configuration
1 #−Dorg . osgi . framework . dir =\Storage Card\ osgi \runtime−osgi /

B.5 Example Server Configuration 109

fwdir
2 #−Dorg . knopf ler f i sh . verbosity=10
3 −Dlog4j . conf igurat ion= f i l e : / / / Storage Card / Client1 / l og4 j .

propert ies
4 −Dat . tuwien . infosys . cfw . gps . commport=COM5
5 −Dorg . osgi . framework . system . packages=javax . sql , javax .

microedition . i o
6 −Dat . tuwien . infosys . cfw . debug=true
7 −Dorg . osgi . serv ice . http . port=8080
8 −Dorg . knopf ler f i sh . gosg . jars= f i l e : / Storage Card / Client1 /

jars /∗
9 #−Dorg . knopf ler f i sh . framework . bundlestorage= f i l e

10 #−Dorg . knopf ler f i sh . framework . bundlestorage . f i l e . reference=
true

11 #−Dnet . s lp . in ter faces =127.0.0.1
12
13 − i n i t
14 − i n i t l e v e l 1
15 − i n s t a l l amigo core . jar
16 − i n s t a l l cfw−metering −1.0 .0 . jar
17 − i n s t a l l ht tp a l l −2.0 .0 . jar
18 − i n s t a l l amigo ksoap binding . jar
19 − i n s t a l l j s lp−osgi −0.99.2. jar
20 − i n s t a l l jsdk −2.2. jar
21 − i n s t a l l amigo ksoap export . jar
22 − i n s t a l l cm all −2.0 .0 . jar
23 − i n s t a l l l o g a l l −2.0 .0 . jar
24 − i n s t a l l servicebinder1 . 1 . jar
25 − i n s t a l l log4j bu . jar
26 − i n i t l e v e l 2
27 − i n s t a l l cfw−context−store−api −1.0 .0 . jar
28 − i n i t l e v e l 3
29 − i n s t a l l cfw−context−provider −1.0 .0 . jar
30 − i n s t a l l cfw−context−advertiser −1.0 .0 . jar
31 − i n i t l e v e l 4
32 − i n s t a l l cfw−context−store −1.0 .0 . jar
33 − i n i t l e v e l 5
34 − i n s t a l l cfw−context−consumer−1.0 .0 . jar
35 − i n i t l e v e l 6
36 − i n s t a l l cfw−context−locator −1.0 .0 . jar
37 − i n i t l e v e l 7
38 − i n s t a l l cfw−context−c l i ent −1.0 .0 . jar
39 − i n s t a l l cfw−demo−1.0 .0 . jar

B.5 Example Server Configuration 110

40 − i n s t a l l cfw−gui −1.0 .0 . jar
41 − i n s t a l l cfw−random−ops−1.0 .0 . jar
42 − i n s t a l l cfw−threadpool −1.0 .0 . jar
43 −s t a r t l e v e l 10
44
45 −launch
46 −start amigo core . jar
47 −start ht tp a l l −2.0 .0 . jar
48 −start amigo ksoap binding . jar
49 −start j s lp−osgi −0.99.2. jar
50 −start amigo ksoap export . jar
51 −start cm all −2.0 .0 . jar
52 −start l o g a l l −2.0 .0 . jar
53 −start servicebinder1 . 1 . jar
54 −start cfw−context−provider −1.0 .0 . jar
55 −start cfw−context−advertiser −1.0 .0 . jar
56 −start cfw−context−consumer−1.0 .0 . jar
57 −start cfw−context−locator −1.0 .0 . jar
58 −start cfw−gui −1.0 .0 . jar

111

C Technical information

C.1 Footprint

Bytes Bundle name
660899 cfw-context-store-1.0.0.jar
325359 log4j bu.jar
294741 framework.jar
136521 amigo ksoap binding.jar

99193 cfw-gui-1.0.0.jar
91766 http all-2.0.0.jar
70173 servicebinder1.1.jar
66076 jslp-osgi-0.99.2.jar
62507 cm all-2.0.0.jar
36063 log all-2.0.0.jar
34555 jsdk-2.2.jar
28808 amigo core.jar
23049 cfw-gps-1.0.0.jar
13893 cfw-context-store-api-1.0.0.jar
10143 cfw-threadpool-1.0.0.jar
9402 cfw-demo-1.0.0.jar
6412 cfw-context-client-1.0.0.jar
6232 cfw-random-ops-1.0.0.jar
6095 amigo ksoap export.jar
4952 cfw-context-provider-1.0.0.jar
4620 cfw-context-consumer-1.0.0.jar
4312 cfw-context-advertiser-1.0.0.jar
4222 cfw-context-locator-1.0.0.jar
2865 cfw-metering-1.0.0.jar

Table 3: Components of the framework packaged as Bundles

C.2 Package Structure 112

C.2 Package Structure

B
un

dl
e

im
po

rt
s

ex
po

rt
s

co
nt

ex
t-

st
or

e-
ap

i
(a

.a
.t

.v
.c

)1 .
co

nt
ex

ts
to

re
(a

.a
.t

.v
.c

).c
on

te
xt

st
or

e.
en

ti
ti

es
co

nt
ex

t-
st

or
e

at
.t

uw
ie

n.
in

fo
sy

s.
cf

w
(a

.a
.t

.v
.c

).e
nt

it
ie

s
co

nt
ex

t-
lo

ca
to

r
ch

.e
th

z.
ik

s.
sl

p
(a

.a
.t

.v
.c

).l
oc

at
or

or
g.

os
gi

.fr
am

ew
or

k
co

nt
ex

t-
ad

ve
rt

is
er

(a
.a

.t
.v

.c
).c

on
te

xt
st

or
e

(a
.a

.t
.v

.c
).a

dv
er

ti
se

r
ch

.e
th

z.
ik

s.
sl

p
or

g.
os

gi
.fr

am
ew

or
k

co
nt

ex
t-

pr
ov

id
er

(a
.a

.t
.v

.c
).c

on
te

xt
st

or
e

(a
.a

.t
.v

.c
).c

on
te

xt
pr

ov
id

er
co

m
.fr

an
ce

te
le

co
m

.a
m

ig
o.

co
re

or
g.

os
gi

.fr
am

ew
or

k
or

g.
un

go
ve

rn
ed

.g
ra

vi
ty

.s
er

vi
ce

bi
nd

er
co

nt
ex

t-
co

ns
um

er
(a

.a
.t

.v
.c

).c
on

te
xt

st
or

e
(a

.a
.t

.v
.c

).c
on

te
xt

co
ns

um
er

(a
.a

.t
.v

.c
).l

oc
at

or
co

m
.fr

an
ce

te
le

co
m

.a
m

ig
o.

co
re

or
g.

os
gi

.fr
am

ew
or

k
co

nt
ex

t-
cl

ie
nt

(a
.a

.t
.v

.c
).c

on
te

xt
co

ns
um

er
(a

.a
.t

.v
.c

).m
et

er
in

g
(a

.a
.t

.v
.c

).c
on

te
xt

st
or

e
(a

.a
.t

.v
.c

).c
on

te
xt

st
or

e.
en

ti
ti

es
(a

.a
.t

.v
.c

).l
oc

at
or

or
g.

os
gi

.fr
am

ew
or

k
gp

s
or

g.
os

gi
.fr

am
ew

or
k

or
g.

di
no

po
lis

.g
ps

to
ol

.g
ps

in
pu

t
(d

yn
am

ic
)j

av
ax

.m
ic

ro
ed

it
io

n.
io

Imports / Exports of the framework bundles
(a.a.t.v.c) = at.ac.tuwien.vitalab.cfw

C.3 Service imports and exports 113

C.3 Service imports and exports

B
un

dl
e

us
es

/r
eg

is
te

rs

co
nt

ex
t-

st
or

e-
ap

i

co
nt

ex
t-

st
or

e
re

gi
st

er
s

(a
.a

.t
.v

.c
).c

on
te

xt
st

or
e.

C
on

te
xt

St
or

e

us
es

(a
.a

.t
.v

.c
).c

on
te

xt
pr

ov
id

er
.C

on
te

xt
St

or
eP

ro
vi

de
r

us
es

(a
.a

.t
.v

.c
).a

dv
er

ti
se

r.C
on

te
xt

St
or

eA
dv

er
ti

se
r

co
nt

ex
t-

lo
ca

to
r

re
gi

st
er

s
(a

.a
.t

.v
.c

).l
oc

at
or

.C
on

te
xt

St
or

eL
oc

at
or

us
es

ch
.e

th
z.

ik
s.

sl
p.

L
oc

at
or

co
nt

ex
t-

ad
ve

rt
is

er
re

gi
st

er
s

(a
.a

.t
.v

.c
).a

dv
er

ti
se

r.C
on

te
xt

St
or

eA
dv

er
ti

se
r

us
es

(a
.a

.t
.v

.c
).c

on
te

xt
st

or
e.

C
on

te
xt

St
or

e

us
es

ch
.e

th
z.

ik
s.

sl
p.

A
dv

er
ti

se
r

co
nt

ex
t-

pr
ov

id
er

re
gi

st
er

s
(a

.a
.t

.v
.c

).c
on

te
xt

pr
ov

id
er

.C
on

te
xt

St
or

eP
ro

vi
de

r

us
es

(a
.a

.t
.v

.c
).c

on
te

xt
st

or
e.

C
on

te
xt

St
or

e

us
es

co
m

.fr
an

ce
te

le
co

m
.a

m
ig

o.
co

re
.A

m
ig

oS
er

vi
ce

E
xp

or
te

r

co
nt

ex
t-

co
ns

um
er

re
gi

st
er

s
(a

.a
.t

.v
.c

).c
on

te
xt

co
ns

um
er

.C
on

te
xt

St
or

eC
on

su
m

er

us
es

(a
.a

.t
.v

.c
).c

on
te

xt
st

or
e.

C
on

te
xt

St
or

e

us
es

(a
.a

.t
.v

.c
).l

oc
at

or
.C

on
te

xt
St

or
eL

oc
at

or

co
nt

ex
t-

cl
ie

nt
us

es
(a

.a
.t

.v
.c

).c
on

te
xt

co
ns

um
er

.C
on

te
xt

St
or

eC
on

su
m

er

gp
s

re
gi

st
er

s
(a

.a
.t

.v
.c

).g
ps

.G
P

SS
er

vi
ce

Used / Registered OSGi services of the framework
(a.a.t.v.c) = at.ac.tuwien.vitalab.cfw

REFERENCES 114

References

[1] AMIGO - Ambient intelligence for the networked home envi-

ronment. http://www.hitech-projects.com/euprojects/

amigo/index.htm. 03.08.2007.

[2] AMIGO Full Tutorial v2. http://amigo.gforge.inria.fr/

obr/tutorial/amigo_full_tutorial_v2.zip. 03.08.2007.

[3] Concierge OSGi. http://flowsgi.inf.ethz.ch/concierge.

html. 13.07.2007.

[4] Equinox OSGi. http://www.eclipse.org/equinox.

13.07.2007.

[5] Erste Schritte mit dem .NET Compact Frame-

work. http://www.microsoft.com/germany/

msdn/library/net/compactframework/

ErsteSchritteMitDemNETCompactFramework.mspx.

11.07.2007.

[6] Gravity Service Binder. http://gravity.sourceforge.net/

servicebinder/. 03.08.2007.

[7] hsqlDB - 100% pure Java Database. http://hsqldb.

sourceforge.net/. 02.10.2007.

[8] hsqldb-cdc - A port of HSQLDB 1.8.0 from J2SE to the CDC plat-

form. http://sourceforge.net/project/showfiles.php?

group_id=102914\&package_id=157873. 27.07.2007.

REFERENCES 115

[9] HyperText Transfer Protocol. http://www.w3.org/

Protocols/. 25.09.2007.

[10] Introduction to WSDL. http://www.w3schools.com/wsdl/

wsdl_intro.asp. 12.07.2007.

[11] JDBC Optional Package for CDC/Foundation Profile - Final Re-

lease (April 8, 2004). http://java.sun.com/products/jdbc/

download.html\#cdcfp. 27.07.2007.

[12] JGrinder - A persistent Solution. http://jgrinder.

sourceforge.net/. 03.12.2007.

[13] jSLP OSGi - SLP service discovery on OSGi platforms.

http://jslp.sourceforge.net/jSLP-OSGi/index.html.

26.07.2007.

[14] JSR-000169 JDBC Optional Package for CDC/Foundation

Profile. http://jcp.org/aboutJava/communityprocess/

final/jsr169/. 02.10.2007.

[15] JSR-000172 J2METMWeb Services Specification. http://jcp.

org/en/jsr/detail?id=172. 06.12.2007.

[16] Knopflerfish - Open Source OSGi. http://www.knopflerfish.

org. 13.07.2007.

[17] Knopflerfish eclipse plugin. http://www.knopflerfish.org/

eclipse_plugin.html. 24.01.2007.

[18] kSOAP 2. http://ksoap2.sourceforge.net. 30.07.2007.

REFERENCES 116

[19] Mr PersisterTM- Complete Relational Persistence for Java. http:

//www.jenkov.com/mrpersister/introduction.tmpl.

02.10.2007.

[20] Oscar OSGi Framework. http://forge.objectweb.org/

projects/oscar. 13.07.2007.

[21] ProSyst mBedded Server CLDC Edition. http://http:

//www.prosyst.com/products/osgi_se_cldc_ed.html.

13.07.2007.

[22] The Knopflerfish Axis port. https://www.knopflerfish.org/

svn/knopflerfish.org/trunk/osgi/bundles_opt/soap/

axis.html. 30.07.2007.

[23] Using J9W instead of J9 on Pocket PC devices. http://

www-1.ibm.com/support/docview.wss?uid=swg21209017.

24.01.2007.

[24] W3C SOAP Specification. http://www.w3.org/TR/soap.

12.07.2007.

[25] Web Services Architecture Requirements. http://www.w3.org/

TR/2002/WD-wsa-reqs-20021011#IDAGWEBD. 28.09.2007.

[26] WSIF - Web Services Invocation Framework. http://ws.

apache.org/wsif/. 02.10.2007.

[27] . Biegel, V. Cahill. A framework for developing mobile, context-

aware applications. In Second IEEE Annual Conference on Perva-

sive Computing and Communications 2004, pages 361–365. Per-

Com, 2004.

REFERENCES 117

[28] A. K. Dey, G. D. Abowd. Towards a Better Understanding of Con-

text and Context-Awareness. In Proceedings of the 1st interna-

tional symposium on Handheld and Ubiquitous Computing, pages

304–307. Springer Verlag, London UK, 1999.

[29] A. K. Dey, G. D. Abowd, A. Wood. Cyberdesk: A framework for

providing self-integrating context-aware services. In Knowledge-

Based Systems, pages 3–13. 1999.

[30] OSGi Alliance. About the OSGi service platform.

http://www.osgi.org/documents/collateral/

TechnicalWhitePaper2005osgi-sp-overview.pdf.

12.02.2007.

[31] B. Schilit, M. Theimer. Disseminating active map information to

mobile hosts. IEEE Network, 8(5), pages 22–32, 1994.

[32] B. Schilit, N. Adams, R. Want. Context-aware computing applica-

tions. In 1st International Workshop on Mobile Computing Sys-

tems and Applications, pages 85–90. 1994.

[33] C. Dorn, D. Schall, S. Dustdar. Granular context in collabora-

tive mobile environments. In International Workshop on Context-

Aware Mobile Systems (CAMS06), Oct. 31 - Nov. 1, Montpellier,

France. Springer Verlag, 2006.

[34] C.F. Sørensen, M. Wu, T. Sivaharan, G.S. Blair, P. Okanda, A.

Friday, H. Duran-Limon. Context-aware middleware for applica-

tions in mobile ad hoc environments. In ACM/IFIP/USENIX In-

ternational Middleware conference 2ndWorkshop on Middleware

REFERENCES 118

for Pervasive and Ad-Hoc Computing (online proceedings). ACM/I-

FIP/USENIX, 2004.

[35] D. Schall, C. Dorn, S. Dustdar. Mobile Computing: Context-Aware.

In Encyclopedia of Wireless and Mobile Communications. Taylor &

Francis, 2008.

[36] D. Schall, M. Aiello, S.Dustdar. Web services on embedded devices.

In J. Web Infor. Syst. Vol.1, No. 1. Troubador Publishing Ltd, 2005.

[37] D. Van Thanh, I. Jørstad, S. Dustdar. Mobile multimedia collabo-

rative services. In Ismail Khalil Ibrahim, editor, Handbook of Re-

search on Mobile Multimedia. Idea Group Publishing, USA, 2006.

[38] Fielding, Roy Thomas. Architectural Styles and the Design of

Network-based Software Architectures. PhD thesis, University of

California, Irvine, 2000.

[39] G. Alonso, F. Casati, H. Kuno, V. Machiraju. Web Services: Con-

cepts, Architectures and Applications. Springer Verlag, 2004.

ISBN 3-540-44008-9.

[40] E. Guttman. SERVICE LOCATION PROTOCOL: Automatic dis-

covery of IP network services. IEEE Internet Computing, pages

71–80, 0708 1999.

[41] Sun Microsystems Inc. CDC: Java Platform Technology for Con-

nected Devices. http://java.sun.com/products/cdc/wp/

cdc-whitepaper.pdf. 09.02.2007.

REFERENCES 119

[42] Sun Microsystems Inc. CLDC HotSpot Implementation Virtual

Machine. http://java.sun.com/j2me/docs/pdf/CLDC-HI_

whitepaper-February_2005.pdf, 2005.

[43] J. Beatty, G. Kakivaya. Web Services Dynamic Discovery

(WS-Discovery). http://specs.xmlsoap.org/ws/2005/04/

discovery/ws-discovery.pdf, 2005.

[44] Li Gong. JXTA: A Network Programming Environment. IEEE

Internet Computing, 2001.

[45] F. Rosenberg M. Baldauf, S. Dustdar. A Survey on Context Aware

Systems. International Journal of Ad Hoc and Ubiquitous Com-

puting, 2006.

[46] M. Divitini, B. A. Farshchian, H. Samset. UbiCollab: Collabora-

tion support for mobile users. In ACM Symposium on Applied

Computing, pages 1191–1195. ACM, 2004.

[47] Members of the UPnP Forum. Upnp device architec-

ture 1.0. http://www.upnp.org/resources/documents/

CleanUPnPDA101-20031202s.pdf, 2003.

[48] R. Muntz P. Castro. Managing Context Data for Smart Spaces.

IEEE Personal Communications, Vol.7, No.5, October 2000.

[49] J. Pascoe. Adding generic contextual capabilities to wearable com-

puters. In 2nd International Symposium on Wearable Computers,

pages 92–99. 1998.

[50] P.D. Costa, L.F. Pires, M. van Sinderen, J.P. Filho. Towards a

service platform for mobile context-aware applications. In 1st

REFERENCES 120

International Workshop on Ubiquitous Computing, pages 48–61.

IWUC, 2004.

[51] R. A. van Engelen, K. A. Gallivan. The gSOAP Toolkit for Web Ser-

vices and Peer-To-Peer Computing Networks. In 2nd IEEE Inter-

national Symposium on Cluster Computing and the Grid. IEEE,

2002.

[52] T. Hofer, W. Schwinger, W. Retschnitzegger. Context-Awareness on

Mobile Devices - the Hydrogen Approach. IEEE Computer Society,

2002.

[53] T. Strang. Service Interoperability in Ubiquitous Computing En-

vironments. PhD thesis, L-M University Munich, 2003.

[54] T. Strang, C. Linnhoff-Popien. A Context Modeling Survey. In

Proceedings of the 2005 joint conference on Smart objects and am-

bient intelligence: innovative context-aware services: usages and

technologies table of contents, Grenoble, France, pages 265–270.

ACM Press, New York, NY, USA, 2005.

Index
.NET Compact, 13

AMIGO, 30

ANT, 76

Apache Axis, 28

Architecture, 61

Architecture, OSGi, 33

Binding, WSDL, 26

CDC, 16

CLCD, J2ME, 17

Conclusion, 88

Configurations, 72

Context, 52

Context Model, 56

Convergence Algorithm, SLP, 42

Evaluation, 79

Footprint, 80, 111

Framework Components, 62

Gravity Service Binder, 76

gSOAP, 27

hsqlDB, 78

HTTP, 9

Implementations, OSGi, 33

J2ME, 15

JRE, 89

jSOAP, 30

JSR169, 77

JXTA, 12

Knopflerfish, 89

Knopflerfish IDE, 77

kSOAP and OSGi, 29

Message, WSDL, 24

Mobile Teams, 2

MrTMPersister, 78

Optional packages, J2ME, 17

OSGi, 32

OSGi Bundle, 34

OSGi Services, 36

Package Structure, Table of, 112

Performance, 81

PortType, WSDL, 25

Profiles, J2ME, 16

Queries, 58

REST, 10

Service Binding, SOA, 21

INDEX 122

Service Discovery Protocols, 38

Service invocation, SOA, 21

Service registration, SOA, 21

Services, Table of, 113

SLP, 39

SOA Paradigm, 20

SOAP, 11

SOAP and J2ME, 27

Stresstest, 84

Testsetup, 79

Types, WSDL, 24

UPnP, 46

Web Services, 22

WS-Discovery, 44

WSDL, 24

XML, 23

