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“Programming today is a race between software engineers

striving to build bigger and better idiot-proof programs,

and the Universe trying to produce bigger and better idiots.

So far, the Universe is winning.”

– Rick Cook
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Abstract

The aim of collision avoidance is to find a path to an object’s target without colliding

with other static or moving obstacles. Furthermore, the length of this path should

be minimized while still ensuring there is no crash with other objects. The demand

for such a system is huge, as collision avoidance is essential for most robots but also

for applications like autonomous vehicles.

This master’s thesis goal is to design, to implement and to evaluate a collision

avoidance algorithm for a multi-agent system with quickly moving objects. The

obvious choice was to reuse an existing robot soccer framework from the IHRT

institute of the Vienna University of Technology. While the IHRT has a long and

successful tradition in playing robot soccer, the current system is lacking a proper

collision avoidance module. Additionally – and even more important – robot soccer

serves as a prime example for a multi-agent system because it needs intelligent

interaction between robots.

The algorithm itself is divided in two parts: First we try to find information about

the next collision for each robot and categorize it into one of three possible types

(head-on, perpendicular or angular collision). Using this information, the algorithm

aims to prevent the anticipated collision by using one of two strategies: The path

of an individual robot is modified by either changing its direction or its speed.

The system is evaluated with two robots moving on predetermined and random

paths. We count the number of collisions and calculate the average speed with

and without using the collision avoidance module. Thus we find out whether the

proposed algorithm works well and where its drawbacks are.
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Zusammenfassung

Das Ziel von Kollisionsvermeidung ist es einen Pfad zum Ziel eines Objektes zu

finden ohne mit anderen statischen bzw. beweglichen Hindernissen zu kollidieren.

Zusätzlich soll dieser Pfad möglichst kurz sein ohne jedoch das Risiko einzugehen,

mit anderen Objekten zu kollidieren. Der Bedarf an ein solches System ist hoch,

da die meisten Roboter eine Kollisionsvermeidung benötigen, aber auch andere An-

wendungen wie selbstfahrende Fahrzeuge profitieren davon.

Das Ziel dieser Diplomarbeit ist es, einen Algorithmus zur Kollisionsvermeidung

in einem Multiagentensystem zu entwerfen, zu implementieren und zu testen. Die

Wahl fiel darauf, ein existierendes Roboterfußball-Framework des IHRT Instituts der

Technischen Universität Wien als Basis dafür zu verwenden. Denn obwohl das IHRT

eine lange und erfolgreiche Tradition im Roboterfußballspielen hat, fehlt bisher ein

ordentliches Kollisionsvermeidungsmodul. Außerdem – und noch viel wichtiger –

kann man Roboterfußball als Paradebeispiel für ein Multiagentensystem ansehen

da es intelligente Kommunikation zwischen den einzelnen Robotern benötigt.

Der Algorithmus wird dazu in zwei Teile gespalten: Als erstes versuchen wir möglichst

viele Informationen über die nächste Kollision zu erhalten und kategorisieren diese

in drei unterschiedliche Kollisionstypen (frontal, rechtwinkelig oder schräg). Auf

Grund dieser Informationen versucht der Algorithmus die bevorstehende Kollision

mit Hilfe von zwei Strategien zu vermeiden: Wir verändern den Pfad von einzelnen

Robotern indem wir entweder deren Richtung oder deren Geschwindigkeit ändern.

Das System wird evaluiert, indem man zwei Roboter auf vordefinierte bzw. zufällige

Pfade schickt. Nun zählen wir die Anzahl der Kollision und berechnen die Durch-

schnittsgeschwindigkeit sowohl mit ein- als auch ausgeschalteter Kollisionsvermei-

dung. Dadurch können wir herausfinden, ob der vorgeschlagene Algorithmus gut

funktioniert und wo es noch Probleme gibt.
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Chapter 1

Introduction

Collision avoidance is usually part of a path planning problem where individual

objects try to find a path to their targets without colliding with other static or

moving obstacles while minimizing the needed detour. Early works in robot path

planning problems date back to the late 1960’s, but most research was done in the

1980’s [Lau98]. At that time, robots were usually slow and most research focused

on static problems, so there is an increasing need for research with fast robots in

highly dynamic environments.

Collision-free path planning is needed in a wide ranges of scientific fields. Usually

it is found everywhere where autonomous objects have to move around with artificial

intelligence. This ranges from all sorts of robots to autonomous vehicles but is also

important for the entertainment industry in order to create stunning computer

games with realistic artificial intelligence.

This thesis implements and evaluates such a collision avoidance system for a

multi-agent system of individual robots. The Vienna University of Technology al-

ready has an existing robot soccer team called AUSTRO which lacks, however,

proper collision prevention. Instead of creating the system for an artificial world,

implementing it for the existing robot soccer system was a logical step and has many

advantages and interesting challenges:

• The framework is available and we can focus on implementing the advanced

1
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motion planning.

• A robot soccer team is a typical example of a multi-agent system where all

individual actors must work together intelligently to reach a common goal.

• Robot soccer is a highly dynamic game with quickly changing speeds and

directions of the individual agents. This makes it hard to predict paths.

• Wrong sensor data

The positions and angles of the robots are calculated by doing image process-

ing on a video stream. This is prone to errors and we will have to see how it

affects the performance of the collision prevention.

The proposed collision avoidance algorithm uses a geometric approach in a vir-

tual 4D world where future robot positions and their (possible) collisions are cal-

culated. Each robot searches for its next collision and ,,communicates” with the

colliding robot to avoid the collision if necessary.

1.1 Multi-Agent systems

A multi-agent system (MAS) consists of multiple autonomous agents (also called

entities) which interact by means of communication [Flo01]. This system can achieve

goals which are difficult or impossible to reach by individual agents.

Robot soccer is a fitting example for a successful MAS as it is impossible for

an individual robot to win any game. But even a full team of individual robots

will not perform well unless they cooperate. For example, the strategy module of

the AUSTRO team uses an advanced pass system where two robots work together

[Wür05]. Instead of both heading towards the ball in an offense situation, only one

is trying to catch the ball and is passing it to the second robot which is waiting in

the center for the pass.
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1.2 Robot soccer leagues

The first public robot soccer tournament was the Micro-Robot World Cup Soccer

Tournament at KAIST, Korea, 1995. It was organized by Jong-Hwan Kim who

later established the FIRA (Federation of International Robot-soccer Association)

in 1997. This association holds annual events in various categories [FIR98]:

SimuroSot is a pure simulation league which consists of a soccer server and two

clients with their game strategies.

KheperaSot is an autonomous robot soccer league that is played as a one-on-one

soccer game with commercially available Kherpa robots (130 × 90 cm) and a

tennis ball.

AndroSot is played with remote controlled robots.

MiroSot works with an external vision system and the small (7.5 × 7.5 cm) robots

are controlled by a host computer which interprets the vision signals and calcu-

lates a strategy. This league will be explained more thoroughly in Chapter 2.

NaroSot can be compared to the MiroSot league, but the robots are even smaller

(4× 4 cm).

RoboSot has larger robots (35 × 35 cm) and can therefore work autonomously

without a host computer.

HuroSot is FIRA’s humanoid robot league where robots must walk on two legs.

It is noteworthy that many of those leagues are not just for playing soccer anymore,

but also include other interesting challenges like a Marathon run for the HuroSot

league. This thesis focuses, however, on the MiroSot robots only.

The second large robot soccer organization is the RoboCup, which was first

announced in 1993 and had its first World Cup in 1997 which took place in Nagoya,

Japan [KAK+97, RCB98]. RoboCup’s aim is quite ambitious:
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“By 2050, develop a team of fully autonomous humanoid robots that

can win against the human world champion team in soccer.”

Currently RoboCup’s leagues are quite similar to FIRA’s, but two interesting leagues

are added:

Four Legged Robot League: Similar to the humanoid robots but they can walk

on four instead of just two robots, making it easier to keep the balance.

Rescue League: The aim is to find as many victims as possible in a designated

area.

1.3 Applications

This collision avoidance system is implemented for robot soccer, which could make

people think it is just needed for entertainment. This is not true at all, as there are

a lot of more serious applications which need a reliable way to detect and prevent

collisions:

• Automotive vehicles will become more and more important as over 90% of all

traffic accidents are due to human errors [JJG02]. Many of them could be

avoided if smart computer systems could replace tired, incautious or drunken

drivers. But even for careful drivers, assisting technologies for detecting colli-

sions can be helpful.

At the CES 20081 General Motors have recently announced they are planning

to develop a self-driving car within 10 years. Also the robot-cars participating

in the annual DARPA Urban Challenge2 are becoming better every year.

• Surveillance robots [AMT01] can be helpful to monitor large warehouses against

thieves, but they need to have protective technology in order not to crash into

expensive goods and destroy them.

1Consumer Electronics Show
2http://www.arpa.mil/grandchallenge/
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• Airplanes have had assisting devices to detect mid-air collisions for a long time.

In most countries, all aircraft with more than 30 passenger seats must have

such a system, usually the TCAS II (Traffic alert and Collision Avoidance

System) [TCA00].

1.4 Benefits

The benefits of well-working collision avoidance in robotics vary from application to

application. Usually it is more important the more expensive and fragile the robots

are. One obvious advantage is that by avoiding collisions, you can prevent damage

to the robots. While this is an important factor, it is not that important for our

RobySpeed robots which are very robust and comparatively cheap to other, bigger

robots. In comparison, when the collision avoidance module of autonomous vehicles

makes a mistake, every crash can cost tens of thousands of Euros and even lead to

the death of the passengers.

Apart from this apparent benefit, robots can often get faster to their destinations

without colliding, even when they need to take a small detour or have to slow down

before the obstacle. There is, however, a trade-off between safety and speed. The

shorter the detour is, the less time is needed to get to the destination, but that

includes the risk of still colliding if there is a small calculation or measurement error.

In robot soccer, we usually take the unsafer approach of a shorter detour, because

speed is usually more important than occasional collisions with other robots.

While all these benefits sound great, some applications may also want to have a

collision. For instance, our goal keeper should not slow down when trying to clear

the situation, just because there might be a possible collision.

1.5 Problems

A collision avoidance system always has a lot of technical problems, for robot soccer

it is even harder. The most difficult part are the enormous speeds and accelerations



6 CHAPTER 1. INTRODUCTION

with a lot of robots on a small field. To make it even worse, also the directions of

robots can change instantly, making it very hard to predict a path.

Additionally, it is faced with the same problems as other applications which get

their input from sensors. In our case it is a camera which is mounted above the field

and transmits the images to a host computer where an image recognition software

captures the positions and orientations of the robots. While the software works

really well, there still are some errors and also a little latency which makes it harder

than doing the same in a simulator with exact data.

1.6 Related work

Most path planning research has been done for static environments. Well known al-

gorithms include road-map, cell decomposition and potential field methods. LaValle

gives an exhaustive overview of them and many others in his book Planning Algo-

rithms [LaV06]. The problem is, however, that it is difficult to extend those path

planning algorithms to work in dynamic configurations with moving obstacles and

high-speed robots as well.

This was shown in [Rog04] which implemented a simulator with static as well

as dynamic obstacles, a ball and a robot – simulating robot soccer. It uses the

potential field method, whose idea is based on electrostatic or magnetic fields:

• Target points have high attractive forces around them but the attraction di-

minishes linearly to the distance from the target. Also gyroscopic forces can

be used to create swarming behaviors, like described in [CSMOS03].

• Obstacles have repulsive forces.

• These forces result in equations which are used to find paths with the maxi-

mum of attractive and the minimum of repulsive forces.

However the simulation showed that this algorithm cannot cope with the high speeds

of the soccer robots which reach up to 4m/s.
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Fortunately, collision avoidance research for moving obstacles has been increas-

ingly dealt with recently with many publications [FBT95, Rud97, FT02, RAP+04].

Most of them have a similar concept, which is also part of the proposed algorithm of

this thesis: The space domain is extended to a space-time domain where temporal

information plays an important part. The exact proposals on the implementa-

tion differ of course. For instance, Fox et al. present a dynamic window approach

[FBT95] which reduces the search space to a dynamic window, which only consists

of places reachable in a short time interval. They claim to be able to safely control

their mobile robot RHINO (Fig. 1.1) with speeds of up to 0.95m/s in dynamic

environments. However, for even faster speeds it is probably beneficial to take the

full search space into account, because the earlier a collision can be detected, the

less corrections are necessary to avoid the collision.

Figure 1.1: RHINO

1.7 Outline

As this thesis is an extension to an existing robot soccer system, we give an overview

of its software and hardware in Chapter 2. Furthermore, the current collision avoid-

ance method of the AUSTRO project is investigated and we also look at how we

can implement a better one on top of the existing code.
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Chapter 3 builds upon this knowledge and introduces our idea of an improved

collision avoidance system. First, we illustrate different types of collisions, later

we explain our algorithm to detect possible collisions and finally we show how our

algorithm actually can prevent a crash. After showing the concepts in a more

theoretical way, this chapter concludes by an outline of the actual implementation.

The evaluation of the implemented system is described in Chapter 4 where we

send two robots on certain paths with and without collision avoidance and measure

the number of collisions. This allows us to detect weaknesses of the algorithm, but

also shows where it works well.

In the final Chapter 5, we summarize the problem statement and how we solved

it and also suggest possible future improvements for further research.

Appendix A lists the full source code which was implemented for this master’s

thesis.



Chapter 2

The AUSTRO Robot Soccer

System

Robot soccer has a long tradition at the Technical University of Vienna. The first

demonstration matches date back to the year 1997 [HFE07] and nowadays even

two institutes are working on robot soccer, the ICT1 and the IHRT2. The ICT

developed an autonomous robot called TinyPhoon. If you are interested in that

robot, please refer to [NM05]. For this thesis, however, the AUSTRO soccer team

– which was developed by the IHRT – is much more relevant. They use fast robots

called RobySpeed (see Section 2.1.1 for more details).

In the meantime, the AUSTRO team has participated in a lot of FIRA European

Cups or FIRA World Cups with lots of success:

• World Champion 2004 in the MiroSot Middle and NaroSot league

• World Champion 2005 and 2006 in the Narosot league

• European Champion 2005 in the following leagues: MiroSot Middle, Large

and X-Large

1Institute of Computer Technology, https://www.ict.tuwien.ac.at
2 Institute of Handling Devices and Robotics, http://www.ihrt.tuwien.ac.at/

9
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10 CHAPTER 2. THE AUSTRO ROBOT SOCCER SYSTEM

• European Champion 2006 in the following leagues: MiroSot Extended Middle

and X-Large

• Many other titles like Olympic Gold 2004 or the First Place in the category

Robot Parade in 2003.

2.1 Hardware

As this thesis focuses on the algorithmic part of collision avoidance, only a short

overview of the hardware is given. If you are interested in more technical details,

have a look at the diploma theses from Markus Würzl [Wür05] and Bernhard Putz

[Put04].

The game is played on a 220×180 cm field with an orange golf ball. A camera is

mounted above the field, and the images are transmitted to a host computer which

interprets them and sends commands to the robots via a radio transmitter (Fig.

2.2).

2.1.1 The robots

The current robots are called RobySpeed (Fig. 2.1) and are an improvement of the

previous models Roby-Go [Nov05] and Roby-Run.

In accordance with FIRA rules, this robot’s size is limited to 7.5×7.5 cm. Despite

its small size, RobySpeed can reach a top speed of nearly 4 m/s with a maximum

acceleration of 10 m/s2.

2.2 Software

The Team AUSTRO software is a full framework for playing robot soccer. The

system can roughly be categorized into four modules:
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Figure 2.1: RobySpeed

1. Code interfacing with the hardware. This includes the frame grabber which

needs to decode the images of the camera and the radio transmitter which is

needed to send commands from the host computer to the robots.

2. The strategy module is responsible for sending movement commands to the

robots, depending on the position of the ball and the other robots. It actually

consists of multiple files, optimized for each league. Three robots playing on

a small field usually need a different strategy than those playing a full 11 vs.

11 game.

3. Movement code for positioning the robots on specified coordinates or for

changing the velocity of robots.

4. A VisualBasic GUI3 with which you can control the whole system and start

or stop the system.

This thesis focuses on the movement code, by adding a new CollisionAvoid

(whichrobot, x, y, endspeed) function. It takes the same parameters as the

existing SuperPosition() function used for positioning robots. But instead of

moving the robot straight to the specified coordinates, it tries to get there without

colliding with other robots.

3Graphical user interface
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Figure 2.2: A camera is mounted above the field
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2.2.1 Current collision avoidance system

In the current AUSTRO software version only a very primitive method is available

called AutoAvoid(). It works by defining a safefy area between the robot and its

target (illustrated by the gray rectangle in Fig. 2.3). Whenever an obstacle is

currently within this area, the robot moves to a temporary point T .

Algorithm 1 AutoAvoid (whichrobot, x, y)

1: {Let T be a temporary point:}
2: T (x, y) = Transform target (x, y) {into the coordinate system of whichrobot}
3: for all other robots R do
4: R(x, y) = Transform R {into the coordinate system of whichrobot}
5: if R(x) > 0 and R(x) < x and |R(y)| < safety margin then
6: T (x) = R(x)
7: T (y) = R(y) + safety margin
8: end if
9: end for

10: Move robot to position T

While this basic approach might work for very simple situations, it usually does

not cope with more complex collisions. The main problems are:

• It does not search for the next collision, but it only handles the last one which

it finds.

• It does not calculate where the other robot is going but only works for the

current position.

• The temporary point T is always chosen statically in one y-direction. It would

be better to choose T , depending on the exact position/direction of the other

robot.

• The whole algorithm is speed independent. No matter if the robots move with

1 or 5m/s, the detour is always the same, resulting in either a long way round

or a crash.
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Figure 2.3: The AutoAvoid function always tries to avoid the collision by finding
an immediate point T when an obstacle is currently within the gray area.

The authors of the current software version are aware of the limitations and sug-

gest an algorithm which is very similar to the one which is described and elaborated

in this paper. They call their idea the SAW algorithm (Simply Another Way), more

details are described in [Wür05], pages 98–100.



Chapter 3

Collision Avoidance

The aim of all collision avoidance systems is to find collision-free paths to their

targets for one or more objects. Depending on the application, it must handle

static but often also dynamic obstacles.

There are at least two fundamentally different ways to implement such a system.

The first approach is to build a mathematical model of the world and always try to

find a path with the least resistance. The potential field and many other methods

use this approach [Zel95], but it was shown in [Rog04] that at least the potential

field method is unsuitable for high speed soccer robots. Therefore our proposed al-

gorithm uses the second common approach that separates the system into a collision

detection and a collision prevention part. First it tries to find out the position of a

possible collision, and only if the collision is near enough we try to prevent crashing

into the obstacle. Figure 3.1 shows a graphical overview of the algorithm.

Apart from these fundamental differences how to implement collision avoidance,

it can additionally be handled at two stages in robot soccer:

1. At the strategy level

The strategy involves sending movement commands to the robots, depending

on the current situation. This usually involves following the ball, defending the

goal, or waiting for a pass. If the strategy module can check for collisions, it

15
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Figure 3.1: The basic concept of our algorithm
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might change the strategy on the fly and send robots to other target positions

which can be reached without the fear of a collision.

2. By the movement code

It is easier to implement and evaluate collision avoidance at this stage as there

is usually just one function to call which can be changed to include collision

information. However, this does not mean that preventing crashes at this

stage is less important, because even if we try to find collision-free paths at

the strategy level, we still need to check for actual collisions in the movement

code due to the high dynamics of robot soccer.

This thesis deals with collision avoidance at the movement level. Another in-

teresting research field would be to adapt the strategy to also include collision

information.

3.1 Different types of collisions

A collision is defined as a situation that two or more objects want to occupy the same

position at the same time. While all of them should be avoided, it is necessary to

differentiate between different types of collisions. Hwang et al. distinguish between

five different collision types for any two straight-line moving objects [HCL99] (Figure

3.2).

This accuracy of discrimination makes sense for airplane collision avoidance sys-

tems, but can be simplified a bit for robot soccer. First, there is no distinction

between an acute and obtuse collision, both are only detected as an angular col-

lision. Second, a San-Diego collision of the object behind moving faster than the

object ahead does not happen often in robot soccer. But even if it does, we can just

use the same collision prevention algorithm as if the object ahead was a static ob-

stacle. This leads us to three different types of collisions detected by our algorithm

(let α be the relative angle between the direction vector of both robots as shown in

Fig. 3.3):
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Figure 3.2: Collision types for two straight-line paths

3.1.1 Head-On collision

Head-on collisions must be detected very reliably as this is the most dangerous

collision which can cause damage to our robot. Additionally, a head-on collision

usually has the biggest impact on the speed and direction of the robot, which

increases the time to reach its target.

A frontal collision is detected when α is either of:

150◦ ≤ α ≤ 210◦ (3.1)

α ≤ 30◦ ∨ α ≥ 330◦ (3.2)

The first equation is for a ,,true” head-on collision, and the later for the case of a

rear-end collision which is handled like a head-on collision with a static obstacle.
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Figure 3.3: The collision angle α

3.1.2 Perpendicular collision

Perpendicular collisions happen when one robot hits another on the side in a (near-)

orthogonal angle. This is true for those α values:

60◦ ≤ α ≤ 120◦ (3.3)

240◦ ≤ α ≤ 300◦ (3.4)

3.1.3 Angular collision

All other angles are recognized as angular collisions ignoring the difference of acute

and obtuse angles as the collision handling is the same for both cases. Using these

values, each collision type occurs in a third of all times if the movements of the

robots are purely random.

3.2 Collision detection

Collision detection is defined by Stephen Cameron [Cam90] as:
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α detected collision type remarks
0 ≤ α ≤ 30 head-on frontal collision

30 < α < 60 angular obtuse collision
60 ≤ α ≤ 120 perpendicular opponent coming from left

120 < α < 150 angular acute collision
150 ≤ α ≤ 210 head-on rear-end collision
210 < α < 240 angular acute collision
240 ≤ α ≤ 300 perpendicular opponent coming from right
300 < α < 330 angular obtuse collision
330 ≤ α ≤ 360 head-on frontal collision

Table 3.1: Different collision types, depending on the collision angle

“Given two objects and desired motions, decide whether the objects will

come into collision over a given time span.”

The difficulty of this task varies, depending on the exact requirements of the ap-

plication. Robot soccer with these very small cubic robots has the advantage that

we can reduce the object’s shape to a single point without affecting the accuracy of

the algorithm noticeable.

Therefore our aim is to check when two robots occupy the same coordinates at

the same time. If we knew the exact directions and velocities of both objects for

the given time span we could integrate over the general motion equations [FBT95]:

x(tn) = x(t0) +

tn∫
t0

v(t) · cosθ(t)dt (3.5)

y(tn) = y(t0) +

tn∫
t0

v(t) · sinθ(t)dt (3.6)

However, robot soccer is such a dynamic game with quickly changing directions

and velocities that we cannot reliably predict those values for a longer period of time.

Because of that we have to replace the integral over time with simple constants for

the speed and directions. This also benefits the real-time requirement of robot
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soccer, as repeatably solving these integrals by approximation can entail a high

computational cost.

This leads to our approach of dividing the collision detection into a multi-step

process for each robot Ri which is repeated for all possibly colliding robots Rj ∈
R1..n:

1. Coordinate transformation

In order to make subsequent calculations easier, we transform Rj into the co-

ordinate system of Ri (Figure 3.4). Now the position of Ri is the new point

of origin and the x-axis reflects the direction in which this robot moves. Fur-

thermore, positive values on the y-axis are located to the left of the robot

and negative values to the right respectively. This also transforms the direc-

tion vector and we get the relative angles between the two robots which is

important for checking the type of collision.

2. Calculate intersection point

With this simplification we can obtain the intersection point with the para-

metric vector equation: (
x

y

)
=

(
x0

y0

)
+ t ·

(
a

b

)
(3.7)

(x, y) is the point we want to find, (x0, y0) the position of Rj relative to our

robot, t is an independent variable, and (a, b) the direction vector of Rj.

A collision happens when the robot crosses the x-axis, which in turn means

that y must be 0. By setting y to 0, we find out t, and can now get the

x-position where the vectors of these two robots will cross.

Careful readers will have noticed that this approach has two drawbacks:

(a) Non-moving robots do not have a direction vector.

We compensate for that by first checking the velocity v of the other robot.

If v is close to zero1 we just assume Rj to be a static obstacle which can be

handled easily: If |y0| < safety margin we indicate a (head-on) collision

1In our experiments this was true for all v ≤ 0.1m/s
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Figure 3.4: Coordinate transformation: Robot 2 is at position (2,2) in the absolute
coordinate system, but at position (1,1) relative to robot 1

at position (x0, 0). For all other values we indicate no collision. We

chose a safety margin of 10 cm for both directions but this can easily be

adjusted.

(b) If both robots are driving parallel, there is no intersection point.

Furthermore, even if they are just moving nearly parallel, the intersection

point is not reliable. Therefore we do not calculate Equation 3.7 when the

collision angle α is a head-on collision according to Table 3.1.3. Instead,

we just set the possible collision in the middle of both robots if they are

moving towards each other or otherwise indicate no collision.

3. Handle intersection point

If this intersection point from step 2 is negative (only the x-value is important,

y will always be 0 since we are working in our relative coordinate system), it
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means that a possible collision would have happened in the past and we can

move on to the next robot.

If the collision point is in front of our robot, we calculate the expected arrival

times for both robots. If the time difference is below a certain threshold, we

indicate a collision.

This algorithm is repeated for all possible obstacles and calculates the nearest

collision, including information about the expected position and time of the collision

and whether the moving obstacle is coming from the left or the right side.

3.3 Collision prevention

Section 3.2 dealt with finding the next collision. Given this information, the collision

avoidance algorithm now has all the information it needs in order to find a colli-

sion free path to the robot’s target. This thesis employs two different techniques:

Whenever possible, it just changes the direction of the robots slightly, which is of-

ten enough to prevent a collision. Unfortunately, this technique is not applicable

or useful in all situations, therefore the other solution is to just stop one robot,

prioritizing the other.

3.3.1 Changing directions

The ideal solution of preventing the collision between two moving robots is to tem-

porarily change the direction just a little, so that both robots can drive past the

other as shown in Figure 3.5.

For that, we calculate temporary points P1 and P2 for both robots. We now

redirect the robots to those points until the situation looks safe again. The exact

position of these points depend on the speed of the robots. As a rule of thumb, we

assume that the higher the speeds are, the higher the distance between Pi and the

estimated collision point is.
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Figure 3.5: Avoiding a direct collision by changing directions of both robots

Pi =

(
Ci(x)− x

±y

)
(3.8)

Ci(x) is the estimated distance of Ri to the collision point, x and y are speed

dependent values with upper and lower limits (20 cm minimum and 80 cm maximum

in our implementation).

Equation 3.8 also has two important characteristics:

1. The temporary point is always ahead of the estimated collision point. This

is important for increased fault tolerance when the estimated position does

not match the real collision point. Initially, Pi(x) was set to 0 like in Figure

3.6. It indeed has a larger safety margin if the collision point was estimated

Figure 3.6: An alternative approach to changing directions
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correctly. However, even small deviations decrease the distance between the

red and the green path noticeably. The distance between these paths in Figure

3.5 is much more constant, which means it has a higher fault tolerance.

2. y can be positive or negative, depending in which direction we want to avoid

the collision. If we can safely assume that the obstacle is to the right of the

robot, we avoid the collision by moving to the left. In all other cases (like in

Fig. 3.5 where the opponent is straight ahead), we always move to the right.

With this simple assumption we can reliably avoid that both robots move to

the same interim point and crash there.

An important feature of this algorithm is that we try to change the paths of

both robots slightly instead of just changing the direction of one robot by a larger

amount. First, it has the advantage that this keeps the value of y lower, resulting

in less slowdowns of the robots and shorter paths. Second, it distributes the costs

of moving along these extended paths equally between all involved robots. If this is

not wanted because one robot – like an offender – should always try to move along

the quickest path or if the other robot is uncontrollable (e.g. it is from the opposite

team) one could, of course, also just reroute one robot with a larger safety margin.

This technique to change the robots’ directions is used when the collision detec-

tion algorithm identifies a head-on collision, because in this scenario it is the most

reliable solution. Unfortunately, for other collision types, changing the directions

does not always result in safe paths. This is mostly the case when the collision angle

α differs considerably from a head-on collision, like in the case of a perpendicular

collision (Fig. 3.7).

A variation of this technique would be to let one robot move along its original

path and only alter the path of the other robot like shown in Fig. 3.8. This only

works if the real paths from the robots do not differ from the estimated one. In

practice however, this is hardly the case. Therefore, the next section deals with a

different approach for avoiding such collisions.
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Figure 3.7: The algorithm as described in Section 3.3.1 for a perpendicular collision.
Robots are likely to crash at position C1,2

3.3.2 Changing speeds

In cases when changing directions do not yield good results, we use a different

approach. The idea is to let one robot move along its planned path and temporarily

stop the other robot until it is safe to resume its course (Fig. 3.9).

The coordinates of P1 where R1 will stop to give way to R2 are defined by:

P1 =

(
C1(x)− x

0

)
(3.9)



3.3. COLLISION PREVENTION 27

Figure 3.8: A different approach for changing directions in case of a perpendicular
collision

Again the value of x depends on the robots’ speeds because we need to stop

earlier the faster the velocities are. Furthermore, in most cases it is not necessary

to really stop one robot, but just to slow it down. This works implicitly, as we

recalculate possible collisions and paths on each frame. Let us assume that we

want to stop one robot from an initial speed of 3m/s and it slowed down to 2 m/s

several frames later.2 When recalculating the intersection point and a collision

seems unlikely, we do not need to stop the robot anymore, but can accelerate it

again.

2Our camera outputs 60 frames per second, so each new frame just takes about 16 ms
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Figure 3.9: Avoiding a perpendicular collision by temporarily stopping one robot

3.3.3 Interaction with other agents

As the title of this thesis implies, we want to create a collision avoidance system for

a multiple agent system, where collaboration between agents is important. They

need to ,,communicate” with each other in order to intelligently avoid a possible

collision.

This interaction is required, because we need to coordinate at least two robots in

the case that one robot must give way to the other. Without any synchronization

there would be a dead-lock when both robots wait for each other. Hence it is

important that exactly one robot reduces its speed. But even when avoiding the

collision by dodging to the side, it is important to not move sideways in the same

direction.

Initially, the interaction between two robots was explicit. Whenever a collision

was detected for the first time, one of the two involved robots took over the handling
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of the collision. That robot had to handle the collision on its own until no collision

was predicted anymore. The other robot could rely on that fact and continue to

move on its original path. This strategy could solve the problem, so that not both

robots stop for each other, but it was still quite inflexible.

Therefore we changed the interaction to be completely implicit. This is done by

two simple rules:

1. Dodge-to-the-right rule

This rule is used in the case when we want to avoid the collision by changing

the direction of both robots. In a head-on collision situation it would be

counterproductive if one robot dodged to the left and the other to the right.

Therefore a very simple but effective rule is that both robots always dodge to

the right unless an obstacle is static; then the robot is also allowed to move

to the left if that is the better path.

2. Give-way-to-the-right rule

The give-way-to-the-right rule is directly derived from one the most important

traffic rules: The vehicle (or, in our case, the robot) coming from the right

side has priority (Fig. 3.9) and the one to the left has to reduce the speed (or

even stop completely) to let the other pass.

With these two simple rules we eliminated any need for explicit interaction

between two robots while making the system even more reliable.

3.4 Integration in existing RoboSoccer system

The aim of this thesis is to describe and test a collision avoidance system for multiple

agents. Therefore, we extended the existing framework with additional functions

and data structures. We did not, however, change any existing strategy code to

actually use those functions. For reference purposes, the complete source code is

given in Appendix A.
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3.4.1 New data structures

There is only one new data structure Collision which is defined as:

struct Co l l i s i o n

{
Col l i s i onType type ; // whether we have a head−on or angular c o l l i s i o n

// p o s s i b l e va lue s : NO COLLISION, HEADON COLLISION,

// PERPENDICULAR COLLISION, ANGULAR COLLISION

int c o l l i d i n g r o b o t ; // the id o f the robot with which we c o l l i d e

bool opp con t r o l l a b l e ; // true f o r our own robots , f a l s e f o r o ther robo t s

double time ; // time in mi l l i s e c ond s when the c o l l i s i o n w i l l occur

double d i s t ance ; // d i s t ance in meters when the c o l l i s i o n w i l l occur

double my speed ;

double opp speed ;

bool opp f rom r ight ; // true i f the c o l l i d i n g robot i s to our r i g h t s i d e

}

Collision is used as the connection between the collision detection and the collision

prevention part. Hence it is easy to exchange one of these two parts with another

algorithm due to the standardized interface shown above.

3.4.2 New functions

The algorithm is divided into two distinct parts, which is the logical consequence

of our two step approach illustrated in Figure 3.1:

NextCollision() is responsible for returning the next collision for the given robot.

The return value is a Collision structure as described in Section 3.4.1. If

no collision is detected, the type field is set to NO_COLLISION and the other

members are undefined.

CollisionAvoidance() is the main function which is called whenever a robot is

sent to a specific position with the intention to avoid a possible collision.

It first obtains a Collision structure by calling NextCollision() and in

the case of a collision it modifies the path of the robot by either setting an

intermediate waypoint or by slowing down one of the robots.
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Algorithm 2 NextCollision (whichrobot)

1: Collision collision
2: collision.type = NO COLLISION

3: for all other robots R do
4: angle, x, y = Transform R {into the coordinate system of whichrobot}
5: if angle ' 0 then {head-on collision}
6: collision point = (x/2, y/2)
7: else {angular or perpendicular collision}
8: collision point = (x + t · cos(angle), 0)
9: end if

{Find the time difference between both robots to the collision point}
10: tR = dist(collision point, R) / vR

11: twhichrobot = dist(collision point, whichrobot) / vwhichrobot

12: diff time = |tR − twhichrobot|
13: if diff time > ε or diff time > collision.time or tR < 0 or twhichrobot < 0 then
14: continue with next robot
15: end if

{R is now the nearest collision, update the collision information}
16: collision.time = diff time
17: collision.type = HEADON or PERPENDICULAR or ANGULAR
18: collision.distance = collision point.x
19: . . . {Setting the rest of the data structure’s fields}
20: end for

21: return collision

Algorithm 3 CollisionAvoidance (whichrobot, x, y, endspeed)

1: collision = NextCollision(whichrobot)

2: if collision.type = HEADON then
3: Change direction to the right
4: else if collision.type = (PERPENDICULAR or ANGULAR) and colli-

sion.opp from right then
5: Stop robot
6: else {No collision}
7: Call SuperPosition(whichrobot, x, y, endspeed)
8: end if



32 CHAPTER 3. COLLISION AVOIDANCE

3.4.3 GUI integration

Sometimes it can be beneficial to disable the collision avoidance module temporarily.

Therefore we added a check box to the existing graphical user interface (GUI) as

shown in Figure 3.10.

An unchecked value does not mean that CollisionAvoid() is not called. In-

stead, it sets an internal flag to false. If this flag is false, CollisionAvoid()

just forwards the arguments to SuperPosition() which is responsible for moving

a robot to a specific position without caring about possible collisions.
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Figure 3.10: Enable/disable collision avoidance globally with this checkbox
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Chapter 4

Evaluation

Whenever a scientific system is implemented, the need for an evaluation suite

emerges. This is required for numerous reasons:

• We can either verify or disprove that the algorithm and our corresponding

implementation works.

• The results should be at least slightly better than using no collision avoidance

at all. Otherwise we must admit that the algorithm (or implementation) does

not work properly for the given task.

• Future improvements to the system can easily be compared.

Our robots can move from any position on the field to any other. Thus, we

cannot test the system for all possible cases. Therefore, we need to test the most

common collisions thoroughly but also have to test some random situations.

4.1 Tests

All tests are performed by two 7.5 × 7.5 cm RobySpeed robots on the standard

soccer field for the NaroSot category (220 × 180 cm). We move both robots along

certain paths, using three different functions:

35
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1. SuperPosition()

No collision avoidance at all is used and the robots move directly to their

targets. If there were no intersecting paths, this would be the quickest way,

as there are no detours and the robots are not slowed down unnecessarily.

2. AutoAvoid()

This is the existing basic collision avoidance function from the TEAM Austro

software (Algorithm 1). Its only possibility to avoid the collision is moving

the robot to one side. It does never reduce a robot’s speed.

3. CollisionAvoid()

Our own, improved collision avoidance module as described in Chapter 3. It

can either modify the robot’s path or change its velocity, depending on which

strategy has the greater chance of finding a collision free path in the given

situation.

4.1.1 Moving along predefined paths

For the first type of tests, we define 15 fixed positions on the soccer field like shown

in Figure 4.1. By moving the robots between specific positions, we can simulate

all different collision types (head-on, perpendicular and angular) in a reproducible

manner, which is important for a meaningful evaluation. The robots are moved

with the CoordinatedMove function (Alg. 4).

In the following images we mark the start position of R1 with a green circle

and the start position of R2 with a red circle and the paths with arrows of the

corresponding color. At the end of a path, the robots return to their start positions

and start their paths again. Sometimes the paths for the two robots have a different

length, resulting in a different time needed for the path. We deliberately chose NOT

to wait for the other robot to finish its path. This design decision ensures that we

still test a certain collision type, but the exact timing and position varies between

each possible collision slightly.
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Figure 4.1: Possible targets for moving along predefined paths

Algorithm 4 CoordinatedMove ()

1: Initialize target positions[1..15]
{Set the paths for both robots}

2: path(R1) = [6, 10] {The first robot is moving from left to right}
3: path(R2) = [3, 13] {The second robot is moving from top to bottom}
4: current index(R1) = current index(R2) = 0; {start with the first waypoints}

5: for all robots R do
6: if dist(R, target positions[current index(R)]) < ε then
7: Increment current index(R) or wrap to 0
8: end if
9: Move R to target positions[current index(R)]

10: end for

4.1.2 Moving along random paths

The tests from Section 4.1.1 can simulate all types of collisions in a reproducible

manner, but real collisions are often more complex, involving even quicker path
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changes and highly curved paths. We simulate this by moving both robots along

fully random paths, like illustrated in Figure 4.2 and described in Algorithm 5.

Figure 4.2: A fully random path can be quite complex

The drawback is that each time the evaluation function is run, the paths are

different. This makes it harder to get significant data. We try to compensate for

that by increasing the time for this test. Over time, the ,,luck” of getting easy or

complex paths should even out.

This test is definitely the most difficult one for our algorithm, as the single paths

between random points can be very short and also really hard to predict.

4.2 Evaluation criteria

All tests from the previous section are performed for a certain time span and with

a variety of different maximum speeds. The higher the speeds, the shorter we run
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Algorithm 5 RandomMove ()

1: Initialize target position[] array for all robots with random positions

2: for all robots R do
3: if dist(R, target position[R]) < ε then
4: target position[R] ← new random position
5: end if
6: Move R to target position[R]
7: end for

the tests in order to prevent our robots from damage. While they are built really

robust, a head-on collision with 3 m/s could still cause expensive repairs.

While running the tests, we keep track of different properties to compare the

individual collision avoidance functions:

4.2.1 Number of collisions

For many applications, the number of collision is the most important criteria for a

successful collision avoidance system. Some may even require zero collisions for an

acceptable system.

We differentiate between a full collision with heavy impact and noticeable path

changes or speed losses and between a ,,half” collision where two robots only touch

slightly but are not really affected by that collision.

4.2.2 Average speed

For other applications with robust robots (like our RobySpeed robots) it can be more

important to keep track of the average speed of the robots for a given path. Thus,

the movement functions were adapted to keep track of the total distance which

all robots have moved. Now the average speed can be easily calculated with this

equation:

v = |d
t
| (4.1)
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v is the average velocity and t the time required for distance d. d in turn is the

shortest possible distance for the given path1 and not the distance which the actual

robot moved.

4.3 Results

4.3.1 Head-on collision

Head-on collisions were simulated by constantly moving two robots between two

points (6 and 10 in our test setup) with different start positions like shown in

Figure 4.3. Without any collision avoidance module, both robots would reliably

crash into each other in the center of the field and stuck to each other. Therefore

we only performed this test with the two collision avoidance algorithms.

Function max speed time path length collisions avg speed

1m/s 5 min 304.0m 0 0.51m/s
CollisionAvoid 2m/s 3 min 249.6m 0 0.69m/s

3m/s 2 min 294.4m 0 1.23m/s
1m/s 5 min 307.2m 0 0.51m/s

AutoAvoid 2m/s 3 min 280.6m 0 0.78m/s
3m/s 2 min 339.2m 0 1.41m/s

Table 4.1: Test results for head-on collisions

Both collision avoiding functions could handle this test case without any collision

(Table 4.1). The primitive AutoAvoid algorithm is, however, slightly faster than our

CollisionAvoid algorithm. The reason is that our algorithm uses a larger safety

margin.

We could of course optimize the safety margin for each individual test but this

contradicts scientific evaluation where you should not optimize for individual test

cases. Otherwise, the algorithm becomes biased on the test data and does not

perform as well on unknown test cases. Furthermore, the larger safety margin

should pay off in the other – more complex – tests.

1While not necessarily the fastest path, moving along straight lines between the way points
results in the shortest possible path
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Figure 4.3: Head-on collisions are simulated by R1 moving between target positions
6 and 10, and R2 moving between positions 10 and 6

4.3.2 Perpendicular collision

Like in the previous test, perpendicular collisions were also simulated by moving two

robots on straight lines. This time, however, one of the robots’ paths was rotated

by 90◦ in order to achieve a perpendicular crash situation like illustrated in Figure

4.4.

CollisionAvoid handled this test by far the best. It had the least crashes

(12 in total) and also the highest average velocity. The basic AutoAvoid function

performed only slightly better (35 crashes) than using no collision avoidance at all

(SuperPosition, which had 44 crashes). The total distance did not vary signifi-

cantly for each algorithm.
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Figure 4.4: Perpendicular collisions are simulated by R1 moving between target
positions 6 and 10, and R2 moving between positions 3 and 13

Function max speed time path length collisions avg speed

1m/s 5 min 310.8m 3.5 0.52m/s
CollisionAvoid 2m/s 3 min 260.4m 5.5 0.72m/s

3m/s 2 min 212.4m 3 0.88m/s
1m/s 5 min 290.4m 18 0.48 m/s

AutoAvoid 2m/s 3 min 267.4m 6.5 0.74m/s
3m/s 2 min 206.4m 11 0.86 m/s
1m/s 5 min 318.8m 16 0.53 m/s

SuperPosition 2m/s 3 min 263.2m 11.5 0.73 m/s
3m/s 2 min 193.6m 17 0.80 m/s

Table 4.2: Test results for perpendicular collisions

4.3.3 Angular collision

Angular collisions were simulated by moving one robot on a straight line and the

other one between the diagonally opposite corners of the soccer field (Figure 4.5).
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As a result, the algorithm had to handle both acute as well as obtuse collisions.

Figure 4.5: Test path for angular collisions are simulated by R1 moving between
target positions 1, 15, 5 and 11 and R2 moving between positions 3 and 13

Function max speed time path length collisions avg speed

1m/s 5 min 324.8m 0 0.54m/s
CollisionAvoid 2m/s 3 min 272.8m 0 0.76m/s

3m/s 2 min 220.0m 0.5 0.92m/s
1m/s 5 min 318.0m 0 0.53m/s

AutoAvoid 2m/s 3 min 258.4m 7 0.72m/s
3m/s 2 min 204.0m 7 0.85m/s
1m/s 5 min 312.4m 11.5 0.52 m/s

SuperPosition 2m/s 3 min 269.6m 2 0.75m/s
3m/s 2 min 215.2m 3 0.90m/s

Table 4.3: Test results for angular collisions

Our CollisionAvoid algorithm could handle this test case by far the best. We

only observed one very light collision whereas AutoAvoid had a total of 14 crashes,

which was only marginally better than 16.5 crashes without any collision avoidance
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module. Furthermore, this test case showed that handling collisions can also lead

to a significantly higher average speed.

4.3.4 Static obstacle

We also tested collisions with static obstacles by letting one robot rest in a fixed

position and the other robot move on paths where it would hit the first robot from

various directions (Fig. 4.6).

Figure 4.6: Test path for a collision with a static obstacle. For illustration purposes,
only the important parts of the path are drawn. The full path for R1 is: 10-6-11-
12-2-1-13-11-3-5-10.

We again abstained from performing this test without collision avoidance as the

test path contains direct collisions where both robots would get stuck to each other.

Both collision avoidance functions could, however, handle this test case flawlessly

without any collision (Table 4.4). AutoAvoid was again slightly faster due to a

smaller safety margin.
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Function max speed time path length collisions avg speed

1m/s 5 min 134.8m 0 0.45m/s
CollisionAvoid 2m/s 3 min 108.1 m 0 0.60 m/s

3m/s 2 min 84.3m 0 0.70m/s
1m/s 5 min 141.5m 0 0.47m/s

AutoAvoid 2m/s 3 min 111.4m 0 0.62m/s
3m/s 2 min 89.8m 0 0.75m/s

Table 4.4: Test results for collisions simulated by moving R1 on a path where it
would hit the static obstacle R2 from various directions.

4.3.5 Complex predefined paths

While the previous tests were quite simple and aimed at checking the performance

for a single type of collision, we also performed an additional test which could test

all types of collisions with a single path (Figure 4.7). Furthermore, the angles for

each possible collision are quite diverse.

Figure 4.7: Complex path for testing different types of collisions with different
impact angles. R1 moves on path 1-4-12-10-1 and R2 on path 5-2-14-6-5.
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The results for this test (Table 4.5) clearly indicate that CollisionAvoid out-

performs AutoAvoid in terms of the number of collisions (3.5 vs. 55). The difference

in the average speed was not as distinct but still measurable.

Function max speed time path length collisions avg speed

1m/s 5 min 281.9m 3 0.47m/s
CollisionAvoid 2m/s 3 min 242.0m 0.5 0.67m/s

3m/s 2 min 181.2m 0 0.76m/s
1m/s 5 min 282.2m 22 0.47 m/s

AutoAvoid 2m/s 3 min 227.8m 24 0.63 m/s
3m/s 2 min 182.2m 9 0.76m/s

Table 4.5: Test results for a complex path

4.3.6 Random paths

In our last test, we moved both robots to purely random destinations. This was

done about 3 times longer than all other tests in order to get more significant data.

As expected, collision avoidance is much harder for this test as the path predic-

tion works less reliably. Although our proposed algorithm has the fewest collisions

(90 in 30 minutes total running time), it is still far away from handling all collisions

properly. When running the test with AutoAvoid we counted 106.5 collisions, with

SuperPosition we counted 150.5 collisions.

Function max speed time path length collisions avg speed

1m/s 15 min 1059.8 m 25 0.59 m/s
CollisionAvoid 2m/s 10 min 1033.1 m 43 0.86 m/s

3m/s 5 min 605.6m 22 1.01 m/s
1m/s 15 min 1145.3 m 36.5 0.64 m/s

AutoAvoid 2m/s 10 min 1062.2 m 38.5 0.89 m/s
3m/s 5 min 621.7m 31.5 1.04m/s
1m/s 15 min 1152.2 m 56.5 0.64 m/s

SuperPosition 2m/s 10 min 1027.4 m 62 0.86 m/s
3m/s 5 min 613.7m 32 1.02 m/s

Table 4.6: Test results for random paths
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Conclusions

In the previous chapters we have presented our algorithm for a collision avoidance

algorithm in a multi-agent system. It was also implemented and evaluated within

an existing robot soccer framework. The basic idea of the algorithm is to divide it

into a collision detection and a collision prevention part. The collision detection is

in turn a 3-step process which is repeated for all possible obstacles:

1. Transform the obstacle in the coordinate system of our robot.

2. Calculate the possible intersection point using estimated paths of the two

robots.

3. Calculate the estimated arrival times at the intersection point. When the time

difference is below a certain threshold we indicate a collision.

The collision could then be prevented by one of two strategies, depending on the

type of collision:

• Change directions of both robots when there is a head-on collision

• Change the speed of one robot when there is either a perpendicular or angular

collision

47
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Overall, this system worked better than the previous AutoAvoid algorithm and

certainly better than using no collision avoidance at all when it comes to the number

of collisions. Counting the total number of collisions during all tests, we could avoid

about two thirds of all collisions and ended up with a total number of 106 (Fig. 5.1).

There is a big discrepancy in the individual tests though. On the one hand, all tests

with fixed paths could be handled quite well. Therefore we deduce that the actual

collision prevention part works in a satisfactory manner. On the other hand, the test

with fully random paths still resulted in a lot of crashes. The problem is that the

collision detection part has difficulties detecting quick path changes and adapting

to them.
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Figure 5.1: Statistics using data generated by running all tests. Values for
SuperPosition were interpolated because it could not run all tests.

Initially, we also thought that successfully avoiding collisions could increase the

average speed of the robots. This assumption, however, turned out to be false –
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at least with our implementation. The average speed of all systems was close to

0.7m/s and the remaining small deviations are statistically irrelevant as they could

be measurement errors.

The bottom line is that while our approach successfully decreases the number

of collisions it does not improve the overall speed of the objects. Therefore the

benefits for robot soccer are negligible as the robots are really very robust, which

they certainly showed by not suffering from any damages during the tests.

5.1 Future improvements

If somebody wants to build upon the results of this master’s thesis, the main focus

should be on researching a better path prediction module. One possibility would be

to use a Kalman filter [WB95] but it is uncertain if that can keep up with instant

path changes which occur often in robot soccer. Other interesting research areas

include:

• Integrate collision information into the strategy module. While not always

possible, sending a robot to a target where the path to it is less likely to have

a collision is always better than trying to avoid imminent collisions.

• Test/expand the system to work with more than two robots. The collision

finding algorithm already handles multiple robots well, but the collision pre-

vention part does not check whether avoiding the collision with one robot

actually results in a collision with another robot.

• Currently we try to avoid certain collisions by stopping one robot. It would

be interesting to see, if actually increasing the speed of the other robot in

certain cases would yield better results. This, however, is not easy with the

current framework because it always tries to move and accelerate robots with

the maximum possible (or user-defined) speed.
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Appendix A: Source code

NextCollision()

// ang le i s the ang le o f whichrobot to i t s aim

// re turns a ( s t a t i c ) s t r u c t to the next c o l l i s i o n

Co l l i s i o n NextCo l l i s i on ( int whichrobot , double ang le )

{
Co l l i s i o n c o l l i s i o n ;

c o l l i s i o n . type = NO COLLISION;

// TDP: po in t data s t ruc ture , TDA: ang le data s t r u c t u r e

TDP H, R;

H. i n i t ( ) ;

R. i n i t ( ) ;

R.A. x = dat . hr [ whichrobot ] . x ;

R.A. y = dat . hr [ whichrobot ] . y ;

double my vel = Pred ictRobotVe loc i ty ( whichrobot ) ;

i f ( my vel < 0 . 1 )

my vel = 0 . 1 ;

// Home robo t s :

for (unsigned int i = HT1; i < dat . n ro f r obo t s ; i++)

{
// don ’ t check f o r c o l l i s i o n with i t s e l f

i f ( i == whichrobot )

continue ;

H.A. x = dat . hr [ i ] . x ;

H.A. y = dat . hr [ i ] . y ;

// transform t h i s robot in to the coord inate system of whichrobot

H.R = Transform (H.A, R.A, ang le ) ;

double r e l a t i v e a n g l e = ATransform ( dat . hr [ i ] . a , dat . hr [ whichrobot ] . a ) ;

57
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// t h i s keeps our s i gn s f o r the s in /cos func t i ons l i k e they shou ld be

i f ( r e l a t i v e a n g l e > M PI)

r e l a t i v e a n g l e −= M PI ;

// c a l c u l a t e the time needed to the c o l l i s i o n po in t

double opp ve l = Pred ictRobotVe loc i ty ( i ) ;

double my time = 1 . 0 , opp time = 1 . 0 ;

// f ind the c o l l i s i o n po in t : 0 = y − t ∗ s in () −> t = y/ s in ( ) ;

TDP c o l l i s i o n p o i n t ;

c o l l i s i o n p o i n t . i n i t ( ) ;

double d i f f a n g l e = fabs ( PredictRobotAngle ( i ) −
PredictRobotAngle ( whichrobot ) ) ;

// −> i f the 2 robo t s are p a r a l l e l , the ang le i s e i t h e r 0 , PI or 2∗PI

// i f they stand 90 degree to each other , i t i s PI/2 or PI+PI/2

i f ( f abs ( d i f f a n g l e − M PI) < M PI/6) // check f o r f r o n t a l c o l l i s i o n

{
// p o s s i b l e c o l l i s i o n po in t i s in the middle o f the two robo t s

c o l l i s i o n p o i n t .A. x = (H.A. x + R.A. x ) / 2 ;

c o l l i s i o n p o i n t .A. y = (H.A. y + R.A. y ) / 2 ;

c o l l i s i o n p o i n t .R = Transform ( c o l l i s i o n p o i n t .A, R.A, ang le ) ;

i f (H.R. x < 0) // opponent i s d r i v i n g in the wrong d i r e c t i on

opp time = −1.0;

}
else

{
double to go = −H.R. y / fabs ( s i n ( r e l a t i v e a n g l e ) ) ;

c o l l i s i o n p o i n t .R. x = H.R. x + to go ∗ cos ( r e l a t i v e a n g l e ) ;

c o l l i s i o n p o i n t .R. y = 0 . 0 ;

c o l l i s i o n p o i n t .A = BackTransform ( c o l l i s i o n p o i n t .R, R.A, ang le ) ;

// check i f opponent not a l ready pas t c o l l i s i o n po in t

double vx = dat . hr [ i ] . PredictorX . v ( ) ;

double vy = dat . hr [ i ] . PredictorY . v ( ) ;

// opponent d r i v i n g in ”wrong” d i r e c t i on

DPoint f u t u r e p o s i t i o n = H.A;

f u t u r e p o s i t i o n . x += vx ;

f u t u r e p o s i t i o n . y += vy ;

i f ( d i s t ( c o l l i s i o n p o i n t .A,H.A) < d i s t ( c o l l i s i o n p o i n t .A, f u t u r e p o s i t i o n ) )

opp time = −1.0;

}

my time = c o l l i s i o n p o i n t .R. x / my vel ;

// continue , i f we a l ready have a c o l l i s i o n tha t happens e a r l i e r

i f ( c o l l i s i o n . type != NO COLLISION && my time > c o l l i s i o n . time )

continue ;
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i f ( opp ve l > 0 . 1 )

{
opp time ∗= d i s t (H.R, c o l l i s i o n p o i n t .R) / opp ve l ;

}
else // robot not ( r e a l l y ) moving

{
// i f the robot i s not moving , but a l ready at the c o l l i s i o n po in t

i f ( f abs (H.R. y ) < 0 . 1 )

opp time = my time ;

else

opp time = −1;

}

// i f the c o l l i s i o n po in t i s in the pas t o f one robot

// don ’ t assume a c o l l i s i o n

i f ( my time < 0 .0 | | opp time < −0.1)

continue ;

// check the type o f the c o l l i s i o n

//

// −> i f the 2 robo t s are p a r a l l e l , the ang le i s e i t h e r 0 , PI or 2∗PI

// i f they stand 90 degree to each other , i t i s PI/2 or PI+PI/2

i f ( f abs ( d i f f a n g l e − M PI) < M PI/6 | | opp ve l <= 0 . 1 ) // head−on

{
// we can ’ t use the i n t e r s e c t i o n point , as the l i n e s are too

// p a r a l l e l

i f (H.R. x > 0 .0 && fabs (H.R. y ) < 0 . 1 ) // the robot i s ahead o f us

c o l l i s i o n . type = HEADON COLLISION;

}
else

{
i f ( my time < 1 .0 && fabs ( my time − opp time ) < 0 . 3 )

{
// f i n a l l y s e t the c o l l i s i o n type i f t he re i s a p o s s i b l e

// c o l l i s i o n

i f ( f abs ( d i f f a n g l e − M PI2) < M PI/6 | |
f abs ( d i f f a n g l e − M PI − M PI2) < M PI/6 )

c o l l i s i o n . type = PERPENDICULAR COLLISION;

else

c o l l i s i o n . type = ANGULAR COLLISION;

}
}

c o l l i s i o n . i s opponent team = fa l se ;

c o l l i s i o n . d i s t anc e = c o l l i s i o n p o i n t .R. x ;

c o l l i s i o n . time = my time ;

c o l l i s i o n . my speed = my vel ;

c o l l i s i o n . opp speed = opp ve l ;

c o l l i s i o n . c o l l i d i n g r o b o t = i ;
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c o l l i s i o n . opp f rom r ight = H.R. y < 0 . 1 ; // 0.1 as s a f e t y margin

}

return c o l l i s i o n ;

}

CollisionAvoid()

// cu r r en t l y only a c t i v a t e d on dat . movetype = TEST or dat . movetype = MOUSE

void Co l l i s i onAvo id ( int whichrobot , double x , double y , double endspeed )

{
// our robot

TDP R; R. i n i t ( ) ; // TDP = poin t s t r u c t u r e

R.A. x = dat . hr [ whichrobot ] . x ;

R.A. y = dat . hr [ whichrobot ] . y ;

// the t a r g e t po in t

TDP ta rg e t ; t a r g e t . i n i t ( ) ;

t a r g e t .A. x = x ; // t a r g e t .A.{ x , y} i s the a b so l u t e coord inate system

t a r g e t .A. y = y ;

const double FOUND TARGET DIST = 0 . 1 ;

// the robot i s near enough the aim , don ’ t check f o r c o l l i s i o n anymore

i f ( ! dat . u s eCo l l i s i onAvo id | | d i s t (R.A, t a r g e t .A) < FOUND TARGET DIST)

{
// Pos i t i on ing wi thout c o l l i s i o n de t e c t i on

SuperPos i t ion ( whichrobot , x , y , endspeed ) ;

return ;

}

// the ang le between the s e l e c t e d robot and i t s t a r g e t

TDA angle ; ang le . i n i t ( ) ;

ang le .A = atan2 ( ( t a r g e t .A. y − R.A. y ) , ( t a r g e t .A. x − R.A. x ) ) ;

i f ( ang le .A < 0)

ang le .A = angle .A + 2∗M PI ;

// f ind the next c o l l i s i o n

Co l l i s i o n c o l l i s i o n = NextCo l l i s i on ( whichrobot , ang le .A) ;

// Middle Point , i f we need to circumnavigate an o b s t a c l e we dr i v e to

// t h i s point , u n t i l the way i s f r e e to the o r i g i n a l t a r g e t

TDP temp ; temp . i n i t ( ) ;
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temp .A. x = ta rg e t .A. x ;

temp .A. y = ta rg e t .A. y ;

i f ( c o l l i s i o n . type != NO COLLISION)

{
t a r g e t .R = Transform ( ta r g e t .A, R.A, ang le .A) ;

temp .R. x = ta rg e t .R. x ;

temp .R. y = ta rg e t .R. y ;

// look ahead e x a c t l y one second

// there i s no reason to check c o l l i s i o n s more than 1 sec in advance

// due to the high dynamics o f robot soccer and the high speeds

i f ( c o l l i s i o n . time <= 1 . 0 )

{
// the lower avoid is , the c l o s e r we t r y to avoid the c o l l i s i o n

// but the more prone we are to c o l l i s i o n s

double avoid = ( c o l l i s i o n . my speed + c o l l i s i o n . opp speed ) / 10 ;

i f ( avoid > 0 . 5 )

avoid = 0 . 5 ;

else i f ( avoid < 0 . 1 )

avoid = 0 . 1 ;

// code vor avo id ing the c o l l i s i o n :

switch ( c o l l i s i o n . type )

{
case HEADON COLLISION:

temp .R. x = c o l l i s i o n . d i s t anc e − avoid ;

i f ( temp .R. x < 0 . 2 ) // always at l e a s t 20 cm in advance

temp .R. x = 0 . 2 ;

// dodge to the l e f t or r i g h t

temp .R. y = c o l l i s i o n . opp f rom r ight ? avoid : −avoid ;

break ;

case PERPENDICULAR COLLISION:

case ANGULAR COLLISION:

i f ( c o l l i s i o n . opp f rom r ight )

{
temp .R. x = 0 . 0 ;

temp .R. y = 0 . 0 ;

endspeed = 0 . 0 ;

}
else // the c o l l i s i o n i s handled by the other robot

;

break ;

}
temp .A = BackTransform ( temp .R, R.A, ang le .A) ;

}
}



62 APPENDIX A: SOURCE CODE

// Final p o s i t i on i n g wi thout c o l l i s i o n de t e c t i on

SuperPos i t ion ( whichrobot , temp .A. x , temp .A. y , endspeed ) ;

}

CoordinatedMove()

// move the robo t s in a ce r t a in pa t t e rn

void CoordinatedMove 55 (bool wait )

{
int robots [ ] = {HT1, HT2} ;

int num robots = 2 ;

double borde r sa f e ty marg in = 0 . 2 ;

double min x = borde r sa f e ty marg in ;

double max x = dat . PlayGroundDimX − borde r sa f e ty marg in ∗ 2 ;

double min y = borde r sa f e ty marg in ;

double max y = dat . PlayGroundDimY − borde r sa f e ty marg in ∗ 2 ;

/∗
∗ the po s i t i on ind i c e s where the robo t s shou ld go :

∗
∗ ###################

∗ #0 1 2 3 4#

∗ #−+ | +−#

∗ #5| 6 (7) 8 |9#

∗ #−+ | +−#

∗ #10 11 12 13 14#

∗ ###################

∗/

stat ic DPoint p o s i t i o n s [ 1 5 ] ;

stat ic p o s i n i t i a l i z e d = fa l se ;

i f ( ! p o s i n i t i a l i z e d )

{
for ( int i = 0 ; i < 15 ; i++)

{
int c o l = i % 5 ;

int row = i / 5 ;

p o s i t i o n s [ i ] . x = min x + co l ∗ (max x − min x ) / 4 ;

p o s i t i o n s [ i ] . y = min y + row ∗ (max y − min y ) / 2 ;

}
p o s i n i t i a l i z e d = true ;

}
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// the robo t s w i l l go to the se po s i t i o n s in order

// make sure to only uncomment one path at a time , and terminate

// the paths with −1

stat ic int r o b o t p o s i t i o n i n d i c e s [ 2 ] [ 5 0 ] = {
{5 ,9 ,−1} , {12 ,2 ,−1} // +− l i k e c o l l i s i o n

// {5 ,9 ,−1} , {9 ,5 ,−1} // f r o n t a l c o l l i s i o n

// {6 ,−1} , {9 ,5 ,10 ,11 ,1 ,0 ,12 ,10 ,2 ,4 ,−1} // s t a t i c o b s t a c l e

// {0 ,14 ,4 ,10 ,−1} , {12 ,2 ,−1} // angular c o l l i s i o n

// {0 ,3 ,11 ,9 ,0 ,−1} ,{4 ,1 ,13 ,5 ,4 ,−1} // complex path

// {2 , 5 , 12 , 9 , −1}, {3 , 6 , 13 , −1}
// {5 , 9 , 14 , 10 , −1}, {11 ,13 ,3 , −1}
// {5 , 9 , 14 , 12 , 2 , −1}, {3 , 1 , 11 , 13 , −1}
// {0 ,4 ,9 ,5 ,10 ,14 ,9 ,5 ,−1} , {14 ,4 ,2 ,12 ,10 ,0 ,2 ,12 ,−1}
// {0 , 13 , −1}, {14 ,1 , −1}
// {1 ,13 ,11 ,3 ,−1} , {2 ,8 ,12 ,6 ,−1}

} ;

stat ic int c u r r e n t r ob o t p o s i t i o n i nd e x [ ] = { 0 , 0 } ;

stat ic bool r obo t a t t a r g e t [ ] = {true , true } ;

// when wai t ing f o r the other robot , we need to wait 20

// frames (˜0 .3 sec ) f o r the other to r e a l l y come to r e s t

stat ic wai t counte r = 20 ;

i f ( wait )

{
for ( int k = 0 ; k < num robots ; k++)

i f ( ! r obo t a t t a r g e t [ k ] )

goto go ;

wai t counter −−;

i f ( wa i t counte r <= 0)

{
for ( int k = 0 ; k < num robots ; k++)

{
c u r r e n t r ob o t p o s i t i o n i nd e x [ k ] = 0 ;

r obo t a t t a r g e t [ k ] = fa l se ;

}
wai t counte r = 20 ;

}
}

go :

// go there

double d i s t ance = 0 . 0 5 ;

for ( int i = 0 ; i < num robots ; i++)

{
double wanted x = po s i t i o n s [ r o b o t p o s i t i o n i n d i c e s [ i ]

[ c u r r e n t r ob o t p o s i t i o n i nd e x [ i ] ] ] . x ;

double wanted y = po s i t i o n s [ r o b o t p o s i t i o n i n d i c e s [ i ]

[ c u r r e n t r ob o t p o s i t i o n i nd e x [ i ] ] ] . y ;
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Co l l i s i onAvo id ( robots [ i ] , wanted x , wanted y , 0 . ) ;

i f ( wait && robo t a t t a r g e t [ i ] )

continue ;

i f ( DistFunk55 ( dat . hr [ robots [ i ] ] . x , dat . hr [ robots [ i ] ] . y ,

wanted x , wanted y ) < d i s t ance )

{
int saved index = cu r r e n t r ob o t p o s i t i o n i nd e x [ i ] ;

c u r r e n t r ob o t p o s i t i o n i nd e x [ i ]++;

i f ( r o b o t p o s i t i o n i n d i c e s [ i ] [ c u r r e n t r ob o t p o s i t i o n i nd e x [ i ]]==−1)

{
c u r r e n t r ob o t p o s i t i o n i nd e x [ i ] = 0 ;

r obo t a t t a r g e t [ i ] = true ;

}

// update t o t a l d i s t ance

double f u tu r e x = po s i t i o n s [ r o b o t p o s i t i o n i n d i c e s [ i ]

[ c u r r e n t r ob o t p o s i t i o n i nd e x [ i ] ] ] . x ;

double f u tu r e y = po s i t i o n s [ r o b o t p o s i t i o n i n d i c e s [ i ]

[ c u r r e n t r ob o t p o s i t i o n i nd e x [ i ] ] ] . y ;

dat .DDebug [ dat . u s eCo l l i s i onAvo id ? 18 : 24 ] +=

DistFunk55 ( wanted x , wanted y , fu ture x , f u tu r e y ) ;

}
}

}

RandomMove()

// t h i s func t i on moves a robot to a randomly c a l c u l a t e d p lace

// When i t a l ready i s there , f i nd another random p lace and go there

// NOTE: i t j u s t works f o r 5x5 s i z e f i e l d

void RandomMove( int whichrobot )

{
stat ic DPoint p o s i t i o n s [MAX NR OF ROBOTS ] ;

stat ic bool va l i d po s [MAX NR OF ROBOTS] =

{ false , false , false , false , false , false ,

false , false , false , false , fa l se } ;

stat ic bool i n i t i a l i z e d = fa l se ;

// avoid going nearer than 40 cm to the border



APPENDIX A: SOURCE CODE 65

const double AVOID BORDER = 0 . 4 ;

// i f we are a l ready at the random pos i t i on , c a l c u l a t e a new one

i f ( DistFunk55 ( dat . hr [ whichrobot ] . x , dat . hr [ whichrobot ] . y ,

p o s i t i o n s [ whichrobot ] . x , p o s i t i o n s [ whichrobot ] . y ) < 0 . 1 )

va l i d po s [ whichrobot ] = fa l se ;

i f ( ! v a l i d po s [ whichrobot ] )

{
int current x , cu r r en t y ;

i f ( i n i t i a l i z e d )

{
cu r r en t x = po s i t i o n s [ whichrobot ] . x ;

cu r r en t y = po s i t i o n s [ whichrobot ] . y ;

}
po s i t i o n s [ whichrobot ] . x = AVOID BORDER + ( rand ( ) /

(double )RANDMAX) ∗ (PLAYGROUND DIM X 55 − 2∗AVOID BORDER) ;

p o s i t i o n s [ whichrobot ] . y = AVOID BORDER + ( rand ( ) /

(double )RANDMAX) ∗ (PLAYGROUND DIM Y 55 − 2∗AVOID BORDER) ;

va l i d po s [ whichrobot ] = true ;

i f ( i n i t i a l i z e d )

{
dat .DDebug [ dat . u s eCo l l i s i onAvo id ? 18 : 24 ] +=

DistFunk55 ( current x , current y ,

p o s i t i o n s [ whichrobot ] . x , p o s i t i o n s [ whichrobot ] . y ) ;

}
else

i n i t i a l i z e d = true ;

}

// now go there

Co l l i s i onAvo id ( whichrobot , p o s i t i o n s [ whichrobot ] . x ,

p o s i t i o n s [ whichrobot ] . y , 0 ) ;

}
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