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Abstract

In the past years many statistical methods and tools have been developed for the anal-
ysis of microarrays. Although it is a well-known problem that microarrays often pro-
duce widely dispersed data, little considerations about the robustification of the current
methodology have been made. This work tests a possible approach of robustifying a
hierarchical Bayesian ANOVA model, which is specifically designed for the analysis of
microarrays, with respect to its underlying error model. Additionally, it means to pro-
vide an understanding of the differences of results compared to the standard model and
their differing biological implications.
The core of the method is the model selection of a fitting likelihood function from a
set of noncentral student’s t distributions of different degrees of freedom and normal
distributions. A hybrid MCMC sampler has been designed and implemented in Matlab
in order to perform the model inference. It has been tested with several artificial and
biological data sets.
Applying the method to different biological settings, has provided a clear answer to the
question: is student’s t distribution a more reasonable model distribution for such data
sets? Student’s t distributions with low degrees of freedom are generally preferred as
error model. More importantly the results showed that differences between the robust
(student’s t) and the standard (Gaussian) model not only occurred in the statistical in-
ference, but also led to different biological conclusions which were drawn based on Gene
Ontology analysis. Thus this work shows the importance of handling the choice of model
likelihood with great care in the field of microarray analysis.

3



Acknowledgements

It is a matter of ’mores maiorum’ to read the roll of honour to all those who have
supported the writer, which does not mean in the least that I want to say, they would
not deserve such thanks for any other reason than carrying on long-established traditions.
I am forever grateful to my advisor Peter Sykacek for bearing my circulatory collapses and
further escapades with admirable stoicism, and forcing me to overcome my minimalistic
writing tendencies with unparalleled determination. It should not go unmentioned that
I have profitted a lot from his knowledge and experience, if only I could have attained a
tad of calm realism.
My special thank you goes to Klaus Felsenstein for being my knight in shining armour
when I needed one throughout the process of getting the green light for this thesis. I am
very grateful for all his well-meant advice and impulses, as well as the pedantic criticism
only a mathematician is able to give (and to appreciate it).
Of course my thanks also go to all my colleagues of the VSC Bioinformatics who have
supported me in various ways. Speaking of friends, I want to thank my friends Kara
Ziehl for all the interesting talks and precious advice on writing style and Steffi Tauber
for all the hours she has been listening to me snivelling about the horrendous proceedings
of this works and for always providing me with a good meal to cheer me up, although I
had to prepare it myself most of the times.
Above all I want to thank my family for supporting me despite not understanding a
single word of this thesis and never having understood how someone in his/her right
mind could even think of studying maths. As an emotional support especially my sister
Kathi has been irreplaceable for me.

Whoever feels disregarded in the litany despite their self-sacrificing efforts, please forgive
me I am just human including faults like forgetfulness and ignorance at times.

4



Contents

1 Introduction 7
1.1 Symbiosis of Biology and Statistics

and The Motivation for this thesis . . . . . . . . . . . . . . . . . . . . . 7
1.2 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Introduction to Microarrays 9

3 Bayesian basics & Bayesian Robustness 11
3.1 The basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Bayesian Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Global Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Likelihood robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Mathematical Structure of the model 18
4.1 Model structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Student’s t Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 MCMC schemes 26
5.1 Markov Chain Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . 26

5.1.1 Monte Carlo integration . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.2 Markov Chain theory . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Overview over some important sampling methods . . . . . . . . . . . . . . 35
5.2.1 Metropolis Hastings Sampler . . . . . . . . . . . . . . . . . . . . . 35
5.2.2 Gibbs Samplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.3 Introduction to Reversible Jump MCMC . . . . . . . . . . . . . . 39
5.2.4 Hybrid sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.5 Theoretical consideration of Convergence . . . . . . . . . . . . . . 43

5.3 Application to the Student’s t distribution model . . . . . . . . . . . . . . 45
5.3.1 Gibbs Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.2 Metropolis-Hastings and Reversible Jump Updates . . . . . . . . . 47

5.4 General MCMC Convergence Analysis . . . . . . . . . . . . . . . . . . . . 52

6 Computational Results 55
6.1 Test Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.1 Data Set 6.1 a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2.2 Data Set 6.1 b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3 Convergence Assessments for the data . . . . . . . . . . . . . . . . . . . . 59

5



Contents

7 Biological Data Sets 64
7.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2 Matlab Results & Coda Analysis . . . . . . . . . . . . . . . . . . . . . . . 66

8 Summary 72

9 Bibliography 76

6



1 Introduction

1.1 Symbiosis of Biology and Statistics
and The Motivation for this thesis

Ever since the days of Gregor Mendel statistical analysis of experimental results has been
an indispensable part of biology especially genetics. Days have passed and the amount
of data to be analysed has grown by several magnitudes but one basic notion has still
remained the same: statistics is an irreplaceable tool for gaining results in an objec-
tive and well-founded manner. The enormous amount of data as well as the specialised
design of experiments do not only call for computational toolboxes based on statistical
methods they also require the design of statistical methods specifically focussing on the
objectives of microarray experiments. The statistics language R [2] provides researchers
with numerous packages developed and collected for such purposes by the Bioconductor
project. Still the development and improvement of statistical methods is not finished
yet and will not be so for a while, as novel measurement technology is demanding ever
more realistic models of increasing complexity to deal with newly emerging biological
questions.
Aside from the frequentistic methods, several probabilistic approaches have been made
towards dealing with biological data. Such a fully Bayesian model has to be defined
including the choice of underlying model and prior distributions. These choices are as
much guided by experience or habit as the choice of classical statistical models is, who
could imagine a regression model based on nonnormally distributed residuals after all?
However such habits have to be checked and rechecked and new approaches have led
to GLMs or other types of models. Bayesians are also all too familiar with the criti-
cism of choosing model distributions mainly for reasons of convenience (as it may occur
sometimes in case of conjugate priors) and a branch has grown focussing especially on
this aspect of modelling, robust Bayesian statistics (see [11]). It focusses on 3 major
aspects of any Bayesian model and the sensitivity of model outcomes on each of them:
prior distribution, likelihood function and loss function (i.e. the inverse utility function
[36]). It is the aim of this thesis to focus on the aspect of choosing a ’more robust’
likelihood function, if it should be appropriate for the respective data.
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1 Introduction

1.2 Structure of the thesis

Chapter 2 provides a very brief introduction to the biological and technical methodology
involved with microarrays. The same accounts for chapter 3 which gives an overview
over a part of the field of Bayesian statistics and Bayesian robustness.

Chapter 4 presents the actual model and can be viewed as the mathematical backbone
of this thesis. Furthermore it presents the actual focus of robustness in this thesis.

Chapter 5 is divided into two main parts. The first part provides an introduction to
Markov chains and Markov Chain Monte Carlo sampling. The second part presents the
sampling algorithm for the proposed robust regression model. This part can be seen as
the methodological background for the actual implementation.

In chapter 6 we use artificial data sets for testing the algorithm and report inference
results and convergence assessments.

In chapter 7 we finally demonstrate the application of the algorithm to some biological
data sets and the conclusion from our investigation.
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2 Introduction to Microarrays

The proposed model is specifically designed for the application to Microarray data. A
short introduction shall be given for all those less familiar with the biological background.
At first we focus a bit on nucleic acids, more specifically on RNA(Ribonucleic Acid) and
DNA(Deoxyribonucleic Acid). Both are built by sequences of nucleotides, but while
RNA is single stranded, DNA forms a double-helix as secondary structure. A nucleotide
is a molecule consisting of phosphatase, one of the respective sugars Ribose (for RNA)
and Deoxyribose (for DNA) and one of the 4 bases: Adenine(A), Guanine(G), Cyto-
sine(C) and Thymine(T), which is replaced by Uracil(U) in case of RNA. When forming
a double-helix only specific pairs of bases (G-C and A-T/U) can establish hydrogen
bonds required for the stability of the helix.
This is an important fact for two essential cellular processes: transcription and reverse
transcription . Transcription is a natural process occurring in all cells. Information on
the DNA is copied to a mRNA (messenger RNA) strand, which after certain chemical
postprocessing steps will be used for the creation of proteins. The process of building a
protein based on the information read from a mRNA is called translation . Depending
on the mRNA’s half life few to several 100 copies of the same protein can be created
from one mRNA. This straightforward process is the main notion behind the method
of microarrays, which aims towards estimating the amount of mRNA, in order to esti-
mate the amount of proteins. The process of reverse transcription does not occur
naturally in any cell, unless in retroviruses. It is exactly the inverse process related to
transcription as it writes the information of a mRNA strand back to DNA.

The term microarray refers to a variety of platforms, which all have in common that
high density assays are performed in parallel on a solid support. The basic concept is
to take advantage of certain hybridisation properties of nucleic acids, when interacting
with chosen complementary molecules - the probes - on the solid surface, in a way
that a quantitative measurement of a specific transcript of interest - the target - can
be conducted. What makes the results of microarrays different from the ones of former
biological techniques is that genome scale information of quantitative measurements is
obtained.

Scientists differ between three types of microarrays regarding the analysed biological
substance: tissue, protein and DNA. ”Tissue microarrays immobilize small amounts
of tissue from biopsies of multiple subjects on glass slides for immunohistochemical pro-
cessing, while protein arrays immobilize peptides or intact proteins for detection by
antibodies or other means”. [7]
The type of microarrays used in this thesis is the relatively young technology of DNA
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2 Introduction to Microarrays

microarrays, which even though they were first introduced in the 1990s, are most widely
used. For the fabrication of microarrays a variety of technologies can be used, among
them printing with fine-pointed pins onto glass slides, photolithography using pre-made
masks, photolithography using dynamic micromirror devices, as well as ink-jet printing,
or electrochemistry on microelectrode arrays.
Two main systems of DNA microarrays are commonly available:

• cDNA1 microarrays
These are also referred to as ”spotted microarrays” , and are created by robotic
spotting of PCR2 products (primarily genes and expressed sequence tags). On
cDNA chips two different types of targets respectively their interactions with the
predefined probes can be observed. In order to be able to differ between the two
labels with 2 different fluorescent dyes (usually a red-fluorescent dye, Cyanine 5
or Cy5, and a green-fluorescent dye, Cyanine 3 or Cy3) are attached to the DNA
sequences. Based on the assumption of proportionality of brightness of the light
of each frequency and the amount of DNA binding to the probes the brightness
and thus this amount of DNA is measured. This raw data is the basic input for all
further analyses.

• High-density oligonucleotide arrays
A trend towards these chips has occurred during the past years. Some of these, e.g.
Affymetrix chips, are fabricated using photolithographic chemistry on silicon chips
where light in combination with light-sensitive masking agents are used to create
a sequence one nucleotide at a time across the entire array. The main difference
between the results of these chips and the cDNA chip is the usage of just one type
of cells and thus just one colour channel.

Last, but not least in this short introduction to microarrays, it should be mentioned
that the objectives of microarray studies are crucial for determining the optimal data
analysis. These can reach from the clear aim to distinguish between 2 (or sometimes
more) groups of cells (males vs. females; patients vs. healthy control persons) to time
courses of observations coming from one or more tissue, which are often used for inferring
interactions among genes.

1complementary DNA, using the enzyme reverse transcriptase DNA, is synthesised from mRNA
2polymerase chain reaction: a molecular biological process which amplifies a DNA string generating

millions of copies
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3 Bayesian basics & Bayesian Robustness

3.1 The basics

Bayesian statistics is founded on the principle that any analysis is subjectified by its
analyst and taking this into account in form of prior beliefs and prior distributions. This
is represented in the principal theorem at the very heart of the theory.

Theorem 1 (Bayes’ Formula).

Let H be an hypothesis, D the data, then

P[H|D] =
P[D|H]P[H]

P[D]
(3.1)

In more generality this will become a statement about the uncertainty of a model pa-
rameter θ, which is represented by a prior distribution π on the parameter space Θ.
While f(x|θ) represents the likelihood function. Then inference shall be based on the
distribution of theta conditional under x, the posterior distribution,

π(θ|x) =
π(θ)f(x|θ)∫

Θ π(θ)f(x|θ)dθ
.

The denominator is usually referred to as marginal likelihood, m(x) =
∫

Θ π(θ)f(x|θ)dθ.
As an introduction types of prior distributions will be presented, as some of these will
play a role in the thesis. Before that another definition has to be presented, families
of exponential distributions shall be formally defined and there will be a focus on their
properties in some of the following considerations, since almost all distributions which
are part of the statistical model presented in the thesis belong to such a family of
distributions (see [36]).

Definition 1 (Exponential Family).

Let C : Θ → R+, h : X → R+ be real functions and R : Θ → Rk, T : X → Rk. Then an
exponential family of dimension k is a family of distributions with densities of the form

f(x|θ) = C(θ)h(x)eR(θ)T ·T (x). (3.2)

In the special case if R(θ) = θ, i.e. R(.) equals the identity idRk(.), the family is called
natural.

Since the choice of a prior distribution and with this the way of getting prior information
into a model is the key point of Bayesian analysis a short overview over types of prior
distributions, their advantages and disadvantages shall be given.
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3 Bayesian basics & Bayesian Robustness

• Natural conjugate prior . The straightforward way of managing a Bayesian
model is to choose a prior distribution with a structure similar to that of the
likelihood function. This makes the prior better interpretable in terms of the
model itself and makes adding prior information e.g. from equally structured earlier
experiments easily manageable. From the point of view of calculation this has the
added bonus of making the analytical determination of the posterior possible and
thus updating fairly easy.
When working with exponential type families the natural conjugate prior setting
has the advantage of often describing data information in form of representative
functions of the data, sufficient statistics. A more formal definition would be:
Definition 2 (Sufficient statistic).

When x ∼ f(x|θ), a statistic T (x) is said to be sufficient, if the distribution of x
conditional upon T (x) is independent of θ, i.e. p(x|T (x), θ) = p(x|T (x)).

A useful statement regarding sufficiency is made by the following factorisation
theorem.
Theorem 2 (Factorisation theorem).

The density of x can be written in the form

f(x|θ) = g(T (x)|θ)h(x|T (x))

with g being a density of T (x), iff T is sufficient.

And the resulting theorem
Theorem 3. If a family of distributions f(.|θ) is such that for a sufficiently large
sample size there exists a sufficient statistic of constant dimension, the family is
exponential if the support of f(.|θ) is independent of θ.

The converse of this theorem is a natural property of any exponential family,
i.e. such a sufficient statistic can be found for any exponential family. Thus a
natural conjugate prior belonging to an exponential family itself can be found, it
need only be compatible with the sufficient statistic. Because of their structure
natural conjugate priors are of special interest for the simulation method of Gibbs
sampling.
However using conjugate prior always has the disadvantage that information is
brought into the model, additionally only information that fits into the structure
of model and prior alike will be passed on, any other will be disregarded. Since the
conjugate prior (except for the choice of its exact hyperparameters) is predefined
by the model itself, this prior is also called objective, loosing some of subjectivity
which for example an elicited prior (see [36]) would hold. The automation of
the choice of a prior is as much an advantage as a nuisance. Thus easiness of
computation should not be the only reason for choosing such a prior, its further
advantages should still be carefully weighed against its disadvantages.

• Maximum Entropy prior . The notion of this way of spinning prior information
into a model is based on the information theoretic entity entropy which is a measure
of uncertainty.

12



3 Bayesian basics & Bayesian Robustness

Definition 3 (Entropy).

E(π) = −
∫

log (π(θ))π(θ)dθ

Using the methodology of Maximum entropy it is possible to get information about
certain characteristics of the prior into the model, as long as they can be written as
prior expectations (e.g. moments, quantiles, . . . ). A discrete prior which maximises
the entropy (and thus the uncertainty), would then be formulated as

πME(θi) =
exp (

∑
k λkgk(θi))∑

j exp (
∑

k λkgk(θj))

with λk being the Lagrange multipliers of the optimisation under the side condi-
tions Eπ[gk(θ)] = ωk, where Eπ describes the first moment of the distribution π of
functions gk of the parameter θ.
In the continuous case additionally a reference measure π0 is required.

πME(θ) =
exp (

∑
k λkgk(θ))π0(θ)∫

exp (
∑

k λkgk(η))π0(dη)

It is interesting to note that such a prior distribution will by definition be a mem-
ber of an exponential family. A drawback of the method is that is often quite
impractical and might produce impossible parameter values like negative variances
(g1(θ) = θ, g2(θ) = θ2 ω2

1 > ω2). Sometimes the moments used are incompatible
and lead to a partial rejection of available information, e.g. contradictory defini-
tions which force the analyst to drop one or more of the side conditions in order
to obtain a density at all. (For details see [36])

• Noninformative prior . One does not always have results of a prior experiment
or as in explorative studies no information at all is available, yet it is still a necessity
to convert this ’lack of information’ into a prior distribution which is a necessary
part of any Bayesian model. Since there is no ideal way of formulating a single
function which represents complete ignorance, different types of ’non-informative’
priors focus on different aspects of this lack of knowledge. One of these aspects is
invariance to parameter transformations since one might use a transformation of
the original parameter due to easier handling of the model, e.g. standard deviation
or precision instead of variance. Yet when nothing is known about the original
parameter, one is supposed to be in the dark about the transformed parameter as
well.
Along these lines a very general approach has been proposed by Jeffreys. Its notion
is to base the calculation of the prior distribution on Fisher’s information matrix
(appropriate regularity conditions assumed)

Iij = E
[
∂ log (f(x|θ))

∂θi

∂ log (f(x|θ))
∂θj

]
= −E

[
∂2 log (f(x|θ))

∂θi∂θj

]

13



3 Bayesian basics & Bayesian Robustness

The Jeffreys noninformative prior distribution would then be

πJ = [det(I)]−
1
2

which is invariant under diffeomorph parameter transformations.
A modification of Jeffrey’s approach led to the notion of reference priors ([12]).
The most notable difference between the methods is that the reference prior ap-
proach distinguishes between parameters of interests and nuisance parameters. A
way to see the method in connection with the Jeffreys prior above has been pre-
sented by Robert ([36]). It is also a constructive method for obtaining the reference
prior.
A model x ∼ f(x|ω, θ) depending on the multivariate parameter (θ, ω), where θ
is the parameter of interest and ω the nuisance parameter. In order to obtain
the reference prior one defines πJ(ω|θ) as the Jeffreys prior of ω for fixed θ and
calculates the marginal distribution

f∗(x|θ) =
∫
ω
f(x|ω, θ)πJ(ω|θ)dω

The reference prior is equal to the Jeffreys prior πJ(θ) with respect to the new
likelihood function f∗.
It is clear now that the reference prior is an extension of the notion of Jeffreys’.
The reference prior equals the Jeffreys prior in cases where a normal approximation
of the posterior is valid, which is the case for all continuous distributions as long
as certain regularity conditions (see [12]) are fulfilled. In the discrete case the
reference prior equals the uniform distribution.

For choosing the priors of the proposed model several aspects had to be taken into
account. One of these aspects is the hierarchical structure of the model. Although
it provides the statistician with some inherent amount of ’robustness’ (see below), it
requires a certain amount of manageability which is rarely a property of noninformative
priors, but is a natural property of conjugate priors. Despite belonging to an exponential
family in any case, the Maximum entropy prior need not be easy to handle. However
the main reason for not using it is that for most microarray experiments not enough
information is available a priori in order to specify any proper side conditions.
What turns the balance in favour of the natural conjugate prior for most cases is the usage
of Gibbs sampling methods and simplification of updates for Metropolis-Hastings steps,
which will be described in more detail in a separate chapter. However noninformative
priors are chosen in several cases. For the discrete state space of the degrees of freedom
parameter a uniform prior is optimal for manageability in updates as well as minimizing
the information brought in by the prior, in some cases the noninformative priors can
be even viewed as limiting distributions of the natural conjugate prior (Beta, Gamma
priors).

14



3 Bayesian basics & Bayesian Robustness

3.2 Bayesian Robustness

The aim of Bayesian robustness is to smartly choose priors, likelihood or loss functions
in such a way that they are less sensitive to changes of other model components. The
basic idea of doing this is to define a class of distributions, which may work as priors or
likelihoods, instead of choosing a single type of distribution for that purpose. The selec-
tion of natural conjugate or noninformative priors can be seen as an example for cases,
when a single type of distribution is selected with a specific goal in mind, computational
and interpretational practicality of the conjugate are weighed against compatibility with
transformations of non-informative priors. However a problem even with so-called non-
informative priors is that one single distribution cannot sufficiently express indifference
about the parameter. A good statement in that respect has been made by Walley [47]:

The problem is not that Bayesians have yet to discover the truly noninforma-
tive priors, but rather that no precise probability distribution can adequately
represent ignorance.

A robustification of the situation might be to define a class which includes both the
natural conjugate and non-informative and other types of prior distributions to cover a
larger range of possible model behaviour.
There are 2 main problems that occur, when working with exponential family distribu-
tions (see [11]):

• exponential family distributions are very sensitive against outliers.

• conjugate priors have great influence in cases when the data jars with the prior
information implicitly introduced by its specification, i.e. the informative choice of
hyperparameters is even more influential if the data itself is not fully compatible
with the parametric model structure.

3.2.1 Global Robustness

Because the concept of global robustness of priors will play a certain role in the focus of
this work, the basic ideas of this theory will be presented. The principle behind it is that
a class of prior distributions Γ is defined in such a way that it contains all ”reasonable”
distributions. The range of results determined from all models with priors in this class
serves as an indicator whether the model is sufficiently robust: if the range r(Γ) is not
”too large” the results are considered as robust. (see [11]) The concept is rather vaguely
defined and leaves it to the statistician to decide one the thresholds for ”too large” as
well as the quantity of interest.

r(Γ) = ‖ψ − ψ‖,
ψ = supπ∈Γ ψ(π, f), ψ = infπ∈Γ ψ(π, f),

(3.3)

where π represents the prior, f the likelihood function and ψ(π, f) a point estimate from
the posterior or another quantity of interest.
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3 Bayesian basics & Bayesian Robustness

As the monotony criterion

Γ′ ⊆ Γ⇒ (ψ′ − ψ′) ≤ (ψ − ψ) (3.4)

holds, the range of results can be reduced by imposing reasonable restrictions on the
class Γ and hereby gaining a subset Γ′, which has a smaller range of results.

3.3 Likelihood robustness

In the majority of cases Bayesian robustness consideration focus on the robustification
of prior distributions. There are 2 main reasons for this, firstly since the early days of
Bayesian analysis the priors as subjective part of the method have been viewed as the
weakest link of the theory thus being in the focus of most criticism. Yet logically the
likelihood function has considerable influence, as it determines the way in which the
data will influence the results. However there is no easy way of quantifying the actual
influence, which leads us to the second reason why too many considerations of likelihood
robustness have been avoided: investigation of the posterior robustness with respect to
the likelihood is not an easy task.
Shyamalkumar ([42]) has proposed a method to investigate this, which works analogously
to global robustness of priors (Berger’s original concept is defined for priors and likelihood
functions alike). Again a class of distributions Γf , from which the model likelihoods shall
be chosen, is defined and the range of results shall give indication of how robust the model
is (see equation (3.3) ).

ψ = sup
f∈Γf

ψ(π, f), ψ = inf
f∈Γf

ψ(π, f), (3.5)

Another way of investigating likelihood robustness is to choose the likelihood function
from a finite class of models M = {M1, . . . ,MI}, which might be determined e.g. by
distributions with different tail behaviour or skewness. Among these one looks for the
’optimal’ model to determine the most robust behaviour.
The advantage of this method is that unlike the determination of global infima and
suprema the complexity of calculation does not increase significantly with the increase
of sample size. Its obvious disadvantage is that only an approximation of uncertainty can
be achieved, since a finite class lacks the adaptivity of a more generally defined (infinite)
class.

Although we could choose from a broad class of symmetric, unimodal distributions for
robustification attempts, the class of possible likelihoods is limited to (non-central) t dis-
tributions with degrees of freedom varying in a predefined set and normal distributions,
in order to have models which are analytically tractable. This approach of robustifica-
tion mainly focusses on outliers of the observations. The hierarchical structure of the
proposed model makes sure a certain robustness with respect to the specification of pri-
ors is obtained.
An analysis of robustness with respect to the range of the posterior distribution or cer-
tain parameter estimates is virtually impossible since these quantities of interests are
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3 Bayesian basics & Bayesian Robustness

determined by Markov chain Monte Carlo simulation. Thus more than one run per
model has to be performed in order to reduce variation introduced by the simulation
method itself and these combined results present the estimate of the expected value of
model parameters. However performing all these simulations for all models provided by
Γ is neither computationally manageable nor of real practical interest. Thus Shyamalku-
mar’s idea of finite classes is adapted in a way that the hierarchical model itself chooses
the ’optimal’ model given the data and all other modelling components.
The goal of this thesis is to focus on the robustness of the likelihood function of a
regression model in the framework of microarray analysis. The need for such consider-
ations arises because microarrays often produce widely dispersed data. The commonly
used models for determining gene expression are based on Gaussian distribution settings
which provide analytically tractable results (e.g. see [28]). For example Baldi et al. [9]
use t-tests with appropriate adjustments for the number of tests performed. Others have
introduced fully Bayesian models based on normal distribution assumptions, as Ibrahim
et al. [26], Zhao et al. [48] and Gottardo et al. [23]. All these approaches have in com-
mon that the high probability of ’extreme’ values frequently appearing in microarray
data is not suitably represented by the normal distribution model.
A statistical technique for determining the differential expression of genes, estimating
and controlling error rates by the means of a non-parametric statistic has been intro-
duced by Tusher et al. (see [46]). Using non-parametric methods replaces the restrictive
assumptions linked with the normal distribution setting with very general ones at the
cost of losing power of tests. Such a method is robust in the sense of independence of
assumptions of underlying parametric distributions, but it is not the kind of robustness
we are aiming for. We want to stay close the parametric model of normal distributions,
but take into account data which deviates from the Gaussian distributions setting, e.g.
far outlying data points. However, as we work with a linear regression model, we still
want a symmetric unimodal, ideally parametric distribution as error distribution which
is far more specific than the assumptions of non-parametric methods. Attempts for
such models have been made, mainly focussing on Gaussian mixture distributions ([30]),
rarely on t distributions ([24]). In some ways our modelling attempt is similar to Got-
tardo et al.’s ([24]), yet in others ours is more general. In contrast to the approach by
Gottardo, we do not aim to compare the student’s t approach against other methods
of the types described above, but aim for directly comparing it to the same model in
standard setting, i.e. Gaussian error distribution. We will elaborate in more detail, once
our model has been described.
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4 Mathematical Structure of the model

4.1 Model structure

The Bayesian hierarchical model which we will use in this thesis for investigating ro-
bustness is based on a latent variable implementation of a biological indicator variable
Ig which furthermore is linked with an ANOVA type linear model:

yn,g = xTn,gβg + εn,g, n = 1, . . . , N, g = 1, . . . , G (4.1)

where for any given sample n and gene g:

yn,g is the observed gene expression,

xn,g is a vector of the underlying design matrix;

xn,g = [I(Sn,g = 1), . . . , I(Sn,g = S)]T ∈ RS×1

Sn,g
is an factor variable encoding the biological system of observation
yn,g, known from the experimental design

βg
is the vector of means fitted by the model conditional on the indicator
of (non-)differential expression

Ig
is the biological indicator which differs between differential expression
and no differential expression and thus determines the dimension of βg

εn,g noise residuals

The design matrix (x1,g, . . . , xN,g) =: Xg = X ∈ RS×N is of course independent of the
gene g, as all genes have to appear in all experiments and systems. The actual parameter
of interest in this setting is the biological indicator Ig, it will help to rank genes according
to their posterior probability of being differentially expressed. In the model this indicator
differs between between a univariate and a multivariate linear model by determining the
dimension of βg. A onedimensional parameter can be interpreted as the estimator of the
mean for a gene for which we have equal means of intensities in all biological systems;
this is the definition of ”no differential expression”.

Ig = 0 : βg,0|Ig = 0 ∼ N1(µg,0, (τg,0)−1)
βg = [βg,0, . . . , βg,0]T ∈ RS×1 (4.2)

However a multivariate vector βg contains the different estimates of means for the re-
spective groups, its dimension is naturally equal to the number of different groups. If
the estimate of a group is distinguishable from at least one of the others, the gene g is
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4 Mathematical Structure of the model

called differentially expressed.

Ig = 1 : βg|Ig = 1 ∼ NS(µg, T−1
g )

µg = [µg,1, . . . , µg,S ]T ∈ RS×1

Tg =

 τg,1 0
. . .

0 τg,S

 ∈ RS×S

(4.3)

Every gene has a certain probability of being differentially expressed, thus Ig itself will
a priori be modelled by an alternative distribution with probability p of ’success’, i.e.
differential expression.

Ig|p ∼ Bin(1, p) (4.4)

For the update of the probability p a Beta distribution is chosen as prior for this param-
eter which is the natural conjugate prior.

p ∼ Be(a, b). (4.5)

This choice is justified not only by the easiness of updating, but especially by taking into
account the ’counting’ setting, which means that the total number of ones is the value of
interest as well as a sufficient statistic in this model. Following the line of argumentation
in the previous chapter this tips the scales in favour of the conjugate prior.

The part of the model we have not focussed on yet is the noise model which usually is
a normal distribution for linear regression models. As an aim of this thesis is to provide
robustness with respect to the assumed distribution of the observations, which after
centralisation is equivalent to the distribution of the error term, the ansatz of the model
will be to allow for a wide variety of possibilities for this error distribution. The selection
of the most suitable error distribution can be handled a posteriori by model comparison
or be a part of the algorithm as well.
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4 Mathematical Structure of the model

4.2 Student’s t Model

For the ansatz we take the general framework of the model described in section 4.1.
Hereby the approach towards robustification is made using Student’s t-distributions in
the likelihood and prior setting. It is a well known fact which can be easily proved in
general, that according to its definition the non-central t-distribution can be replaced
by an hierarchical structure consisting of a Normal- and a Gamma-distribution in the
following way:

X ∼ tν(µ, σ2)⇔
X|ϕ ∼ N(µ, 1

ϕσ
2)

ϕ ∼ Ga(ν2 ,
ν
2 )

(4.6)

According to (4.6) the model is written as

yn,g|βg, ν ∼ tν(xTn,gβg, τε)
−1) ⇔

yn,g|βg, ϕ ∼ N(xTn,gβg, (ϕn,gτε)
−1)

ϕn,g|ν ∼ Ga(ν2 ,
ν
2 )

τε|g, h ∼ Ga(g, h)

(4.7)

The auxiliary parameter ϕn,g can be interpreted as a scaling factor which rescales the
variance of the normal distribution such that outlying values become more probable.
This is the robust behaviour of t distribution which we want to gain for our noise model.

A necessary condition for this model to work is to show that the marginal distribution of
yn,g is indeed a student’s t distribution. Although the interrelation between student’s t
distribution and normal distribution is well-known, it will be proved anyway for reasons
of completeness.

Lemma 1. The marginal distribution m(yn,g|ν) of yn,g is t-distributed with degrees of
freedom ν.

Proof.

p(yn,g, ϕn,g| . . .) =
ν
2

ν
2

Γ(ν2 )︸ ︷︷ ︸
=: c1

(ϕn,g)
ν
2
−1 exp (−ν

2
ϕn,g)

τ0.5

√
2π︸ ︷︷ ︸

=: c2

ϕ0.5
n,g exp (−1

2
τϕn,g(yn,g − xTn,gβg)2)

= c1c2 ϕ
ν+1
2
−1

n,g exp (−ϕn,g
1
2

(ν + τ(yn,g − xTn,gβg)2))︸ ︷︷ ︸
=: I(ϕn,g)

The structure of the expression I(ϕn,g) above is the same as a Gamma-distribution
Ga(a, b) with parameters for shape a = ν+1

2 and rate b = 1
2(ν+ τ(yn,g−xTn,gβg)2) except

for the normalisation constant. Thus the marginal distribution equals

m(yn,g) =
∫ ∞

0
I(ϕn,g)dϕn,g = c1c2

Γ(a)
ba
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which after cancelling a few terms results in

Γ(ν+1
2 )

Γ(ν2 )
τ0.5

√
νπ

(1 +
τ

ν
(yn,g − xTn,gβg)2)−

ν+1
2

p

Ig

λµ

g

n,gySn,g

a b c d

β

n,gϕ

g

Κν

τ

h

Figure 4.1: Directed Acyclic Graph representation of the model rectangular frames refer
to variables which are fixed during the updates (data, fixed hyperparame-
ters), variables in circles are updated as parts of the model

yn,g observations, i.e. normalised light intensities
Sn,g indicator to which experiment type observation yn,g belongs
βg ANOVA parameter vector for gene g
Ig indicator of differential expression
p probability of a gene to be differentially expressed
λ prior precision of βg
τ precision of the regression model
ϕn,g scaling parameter linking normal and t distribution
ν degrees of freedom of the error model
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4 Mathematical Structure of the model

An essential component of the model in figure 4.1 is a student’s t noise model of varying
degrees of freedom. This model is set up such as to allow us to consider robustness issues
with respect to outliers in the data yn,g. ν decodes the degrees of freedom of a t distribu-
tion, thus for high enough values the t distributions will be sufficiently similar to normal
distributions that differing between them does not make any sense. Therefore a cut-off
value νmax is specified for determining the value where normality can be assumed, i.e.
reaching the maximum value is equivalent with choosing a normal distribution model.
However this model is not approximated by the tνmax distribution, but an exact normal
distribution model is used. In order to implement such a setting moving between param-
eter spaces of different dimension is required and will be realised by a reversible jump
move within the MCMC algorithm.
In order to gain flexibility with respect to the choice of degrees of freedom for the t-
distribution a discrete uniform hyperprior on the set N over the parameter ν is specified:

ν ∼ UN (4.8)
N := {x ∈ R|1 ≤ x := j · cgrid ≤ νmax, j ∈ N} (4.9)

⇔ P[ν = k|K] = 1/K, k ∈ N; K = |N| (4.10)

The choice of a uniform prior on this finite set also represents our lack of information
regarding the underlying noise model. In order to improve readability the ’size’ with
respect to the counting measure of the set N, K, is used for the specification of the
uniform distribution in figure 4.1.
However the definition of the set (see equation (4.9)) offers us great flexibility in the
choice of the underlying parameter space and thus the analysis of robust behaviour.
Choosing a grid size cgrid equal to 1 or even 5 allows us to work with clearly distinguish-
able t distributions, whereas refining the grid allows us to approximate a continuous
setting for ν sufficiently well. The importance of using this discrete model lies in the
notion of including the normal model not approximately, but exactly, which will be re-
alised by a dimension changing move.

The integration of the degrees of freedom parameter into the model makes it possible to
let the model choose itself which error distribution is the most suitable. It allows us to
take such a large number of models into account The biological indicator for differential
expression follows a Bernoulli distribution

π(Ig|p) = pIg(1− p)1−Ig (4.11)

using a conjugate beta prior for the parameter p, which can be interpreted as probability
of a gene being differentially expressed

π(p) =
Γ(a+ b)
Γ(a)Γ(b)

xa−1(1− x)b−1. (4.12)

Conditional on ”differential expression” respectively ”no differential expression”, the co-
efficient vector is determined by a multidimensional respectively one-dimensional under-
lying distribution as described above in section 4.1.
As a special case of the general settings above several restrictions for the parameters
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4 Mathematical Structure of the model

involved are made. The hyperparameter µ is assumed to be fixed, i.e. µg,s = µ ∀g, s ,
e.g. taking the value of the overall sample mean, whereas the precision of βg shall be
specified by the parameter λ, which shall be common parameter for all prior precision
parameters and follows a Gamma distribution, i.e.

τg,s := λ ∀g, s (4.13)
λ ∼ Ga(c, d) (4.14)

This reduces the model parts (4.2), (4.3) to:

Ig = 0 βg,0|Ig ∼ N1(µ, (λ)−1)
βg = [βg,0, . . . , βg,0]T ∈ RS×1

Ig = 1 βg|Ig ∼ NS(µ, (λ)−1ES)
(4.15)

The following table gives an overview over the model parameters and their distributions:

yn,g ∼ N(xTn,gβg, (ϕn,gτε)
−1)

βg,0|Ig = 0 ∼ N1(µ, (λ)−1)

βg|Ig = 1 ∼ NS(µ, (λ)−1ES)

λ ∼ Ga(c, d)

τε|g, h ∼ Ga(g, h)

ϕn,g|ν ∼ Ga(
ν

2
,
ν

2
)

ν ∼ UN

Ig|p ∼ Bin(1, p)

p ∼ Be(a, b)

Table 4.1: Overview over Student‘s t model
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Robustness in this thesis

As already mentioned above, different components of a probabilistic model can be aims
for robustness considerations. The main focus of this work however is the robustification
of the likelihood function of a hierarchical ANOVA model. The standard distribution
setting for such a model would be a Gaussian error distribution (see [26], hierarchical
model [48]; Bayesian ANOVA for microarrays [28]). Using Student’s t distributions in
order to gain robustness compared to a Gaussian distribution based model has been
proposed several times, among others by Berger ([11]). In the context of microarrays
it has been used by Gottardo et al. ([24]). The fact that the student’s t distribution
has higher probability on its tails makes it a reasonable candidate for models wishing
to take outlying values into account. At the same time it shares certain properties with
the normal distribution, like symmetry and unimodality. These properties are important
for residuals of a regression model. Thus the student’s t distribution is applicable for
modelling values which behave like Gaussian values except for a higher probability of
’outlyingness’. Since we are working in the framework of ANOVA it is only necessary
to take care of outliers in the observations yn,g. This is also a good reason why this
approached is focussed mainly on robustification of the likelihood function, which is
linked to the behaviour of the observations.
To show the ansatz of the robustification in the framework of Bayesian Robustness
studies as performed by Jim Berger, for the purpose of robustification of the likelihood
a class Γ of student’s t distribution and normal distributions is defined in the following
way:

Γ = {{tν(µ, τ−1), ν ∈ N \ {νmax}}, N(µ, τ−1)} (4.16)

The definition of the set N in (4.9) makes this approach very flexible. Choosing only
a few values for ν allows us to make clear decisions of the tendency towards normality
respectively t distribution which is the general behaviour of interest for us. A finer
grid then makes it possible to have an ’almost’ smooth representation of the limited
parameter space for the degrees of freedom. This discretisation is of special importance
for the possibility to take a normal model into account instead of an approximation
which would of course be more similar to the nearest t-distributions than to the normal
distribution it is supposed to approximate. Thus an upper bound for ν is important in
order to make a clear decision when the distribution is sufficiently similar to a normal
distribution to no longer have need of robustification w.r.t outliers. ’Jumping’ to a normal
distribution model, when this bound is reached, allows us to accurately represent the
importance of using the standard approach in cases where robustification is found to be
unnecessary.
The structure of the presented model, mainly the variable dimensions of βg|Ig, makes
finding an analytical solution virtually impossible, thus the usage of sampling methods
will be essential. As the model will be treated using a MCMC algorithm, finding the right
balance between reasonable and required robustification and computational practicality
is important. Robustness cannot be studied in the way it has been presented for global
robustness, as the variation due to the sampling algorithm will be greater than the
variation between the parameters (e.g. βg) for different model settings (e.g. fixed degrees
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4 Mathematical Structure of the model

of freedom for 1 student’s t model). It will rather be the purpose of the model to indicate,
whether there exists a problem in principle with the assumption of normally distributed
data, on which further analysis steps would be based. The variable degrees of freedom
parameter ν is supposed to give an answer to that question.
As mentioned above, our model is in some ways comparable to the approach by Gottardo
et al. ([24]). However our goals differ, as we aim for comparing the model to its normal
distribution analogue, in order to answer the questions, if a student’s t model is required
at all and how ”far away” from a normal distribution in terms of degrees of freedom
we truly are. Additionally we have defined the set of t distributions to include in a
more general and flexible way. Firstly we can differ between t distributions with clearly
different degrees of freedom values which is useful in principle, but might be problematic
in other respects. Secondly we can reduce the step size far enough such that ν can be
viewed as discretisation of a continuous degrees of freedom parameter, while at the same
time we keep the advantages of the discrete setting described above. Using test data
sets we will show the advantage of using a smaller step size in addition to the larger one.
Additionally the variable dimension of βg|Ig makes a big difference between their ansatz
and our model.
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5 MCMC schemes

5.1 Markov Chain Monte Carlo Methods

As its name is telling already MCMC methods are based on 2 concepts of mathematics
respectively computational integration:

1. Markov Chains

2. Monte Carlo integration

MCMC uses the approximation of expectations by means of random draws from a given
distribution in combination with Markov chains which under certain conditions behave
like draws from a single stationary distribution. The most important background of both
theories will be presented in a short and compact way, as far as it is relevant for this
work. The detailed treatment of the following definitions and theorems is a requirement
for analysing the theoretical behaviour of the algorithm, as far as it can be deduced from
the transition kernels of its components. As this is nontrivial, it is necessary to have
a detailed understanding for the terms which are building the concept. Especially the
chapter about Markov chains will contain a lot of terms which have no obvious use for
the algorithm, but they create a basis for the following terms and statements.

5.1.1 Monte Carlo integration

The generic problem for classical Monte Carlo integration is the calculation of the fol-
lowing term:

Ef [h(X)] =
∫
X
h(x)f(x)dx (5.1)

Given the observations (X1, . . . , Xn) which have been generated from the density f(.)
the expression (5.1) can be approximated by the empirical average

hn =
1
n

n∑
i=1

h(xi) (5.2)

Due to the Strong Law of Large Numbers hn converges almost surely to Ef [h(X)].
Especially under the condition that h2 has finite expectation under f, the speed of con-
vergence can actually be assessed, which will be of importance for the construction of
convergence tests for the method. This follows as the variance of hn is

V(hn) =
1
n

∫
X

(h(x)− Ef [h(X)])2f(x)dx
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5 MCMC schemes

and its empirical estimator is

vn =
1
n2

n∑
i=1

(h(xi)− hn)2.

Thus the term

hn − Ef [h(X)]
√
vn

∼̇ N(0, 1)

5.1.2 Markov Chain theory

Definition 1 (Markov Chain).

A Markov chain is a sequence of random variables X1, X2, . . ., which fulfills the Markov
property,

P[Xn+1 = x|Xn = xn, . . . , X0 = x0] = P[Xn+1 = x|Xn = xn], (5.3)

i.e. the probability of choosing a value x at time point n + 1 given all previous values
x0, . . . , xn is independent of all but its precursor Xn = xn.

An alternative way of defining Markov chains is via the term of its transition kernel,
which is the function that determines the transition between the chains states.

Definition 2 (Transition kernel).

A transition kernel is a function K defined on X × B(X ) such that

1. ∀x ∈ X : K(x, .) is a probability measure, i.e. for every fixed value of the state
space X the function K(x, .) operates on the Borel sets and assigns a probability
(depending on x) to every set of B(X );

2. ∀A ∈ B(X ) : K(., A) is measurable, i.e. for every fixed set A the function K(., A)
operates on the state space X and is measurable.

For discrete space X the transition kernel is the matrix with entries

Kx,y = P[Xn+1 = y|Xn = x] x, y ∈ X

In the general case, the probability of reaching a set A when starting from x is

Px(X1 ∈ A) = K(x,A).

A Markov chain is then defined as sequence of random variables which fulfills the Markov
property in (5.3) and allows expressing the probability to reach a point in the set A when
coming from Xn = xn as

P[Xn+1 ∈ A|Xn = xn] =
∫
A
K(xn, dx).
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The chain is homogeneous, if the distribution of (Xt1 , . . . , Xtk)|xt0 is the same as the
distribution of (Xt1−t0 , . . . , Xtk−t0)|x0.

An important property of transition kernels is expressed in the Chapman-Kolmogorow
equations, which provide convolution formulas of the type Kn+m = Kn ? Km for the
kernel for n+m transitions.

Lemma 1 (Chapman-Kolmogorow equations).

For every (m,n) ∈ N2, x ∈ X , A ∈ B(X ),

Km+n(x,A) =
∫
X
Kn(y,A)Km(x, dy).

These equations describe that the probability to reach a set A in m + n steps when
starting from x by taking into account all interim values which can be reached from x
and allow us to reach A within a certain finite number of steps each. Such a principle
will be important for the notion of irreducibility. Another important term when dealing
with Markov chains is the following:

Definition 3 (Stopping time).

For A ∈ B(X ) the stopping time is the first index n for which the chain lands in A, i.e.

τA = inf{n ≥ 1 : Xn ∈ A},

with τA = +∞, if Xn /∈ A ∀n.

Also associated with a set A is the number of passages of (Xn) in A,

ηA =
∞∑
n=1

IA(Xn)

Related to this term is the probability of return to A in a finite number of steps,
P[τA <∞].

There are several properties to look at, when studying a Markov chain’s sensitivity to its
initial conditions. Among the first is irreducibility. The possibility of reaching any point
in the state space in a finite number of steps independently of where the chain starts is
described by this notion.

Definition 4 (Irreducibility).

For discrete state space X , a chain is irreducible, if all states communicate, i.e.

Px[τy <∞] > 0, ∀x, y ∈ X .

Given an auxiliary measure µ, the Markov chain (Xn) with transition kernel K(x, y) is
µ-irreducible if, for every A ∈ B(X ) with µ(A) > 0, there exists an n such that

Kn(x,A) > 0 ∀x ∈ X ⇔ Px[τA <∞] > 0.

It is strongly µ-irreducible if n=1 for all µ-measurable sets A.
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Certain properties are sufficient in order two imply irreducibility of a chain.

Theorem 2 (Irreducibility of (Xn)).

The chain (Xn) is µ-irreducible if and only if for every x ∈ X and every A ∈ B(X ) such
that µ(A) > 0, one of the following properties holds:

• ∃n ∈ N : Kn(x,A) > 0

• E[ηA] > 0;

• Kε(x,A) = (1− ε)
∑∞

i=0 ε
iKi(x,A) > 0 for an ε with 0 < ε < 1

Among all probability measures with respect to which a chain is irreducible, one is of
special interest, the maximal irreducibility measure. For the maximal irreducibility
measure ψ the chain is ψ-irreducible and ψ dominates all other measures µ for which
(Xn) is µ-irreducible; µ � ψ. Further theoretical statements provide even constructive
methods of determining the maximal irreducibility measure ψ through a candidate mea-
sure ([37]).

A definition of high theoretical relevance is the definition of atoms and small sets.

Definition 5 (Atom).

The Markov chain (Xn) has an atom α ∈ B(X ) if there exists an associated nonzero
measure ν such that

K(x;A) = ν(A) ∀x ∈ α,∀A ∈ B(X )

If the chain is ψ-irreducible, the atom is accessible if ψ(α) > 0.

By its definition atoms require kernels which are constant on a set A of positive measure.
Such a notion is too strong a requirement for general Markov chains. Thus the term of
small sets is introduced which does not restrict the kernel to reach every set A in a single
step with a given ’minimum’ probability. It requires that such a ’minimum’ probability
of reaching a set A exists for a positive number of steps.

Definition 6 (Small Set).

A set C is small if there exist m ∈ N∗ and a nonzero measure νm such that

Km(x,A) ≥ νm(A) > 0, ∀x ∈ C,∀A ∈ B(X )

Thus small sets are sets for which a guarantee exists that any set A ∈ B(X ) can be
reached in a given number of steps m with a positive probability which is bounded from
below by some measure νm(A) of A.
To demonstrate this idea, we consider an irreducible Markov chain on a finite set X. For
a such a chain there always exists a finite number n of steps such that any Borel set A
can be reached with positive probability. We set KN (x,A) =: νN (A) for the maximum
of these n, N , which exists, as we only have a finite number of states in X. Due to the
Chapman-Kolmogorow equations 1 this gives us a valid definition for such a bounding
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measure. Thus the set X itself is a small set. This example also shows the connection
between the notion of small sets and the irreducibility property of a Markov chain.

Another relevant property of Markov chains is periodicity.

Definition 7 (Periodicity).

A state x has period d if a return to state x must occur in multiples of d time steps, i.e.

d = gcd{n ≥ 1 : P[Xn = x|X0 = x] > 0}

(gcd denotes the greatest common divisor).
If the chain is irreducible, which implies that all its states communicate, there can only
be one value for the period.
An irreducible chain is aperiodic if it has period d=1.

Irreducibility describes a chain’s freedom of moving through the parameter space by
ensuring that the chain will enter every set. Yet this property is too weak to guarantee
that a set will also be visited often enough. This leads us to the property of recurrence,
which can be viewed in a discrete setting as a ’guarantee of a sure return’. Of course it
is satisfied for any irreducible chain on a finite space.

Definition 8 (Recurrence of a state).

In a finite state-space X , a state x ∈ X is transient, if the average number of visits to
x, Ex[ηx], is finite. If this is not he case, i.e. Ex[ηx] =∞, it is recurrent.

These properties of single states apply to the whole chain, if the chain if irreducible,
which follows from the Chapman-Kolmogorow equations. Furthermore for any Markov
chain the following definition applies

Definition 9 (Recurrence of a Markov chain).

A Markov chain (Xn) is recurrent if

1. there exists a measure ψ such that (Xn) is ψ-irreducible and

2. ∀A ∈ B(X ) with positive measure, ψ(A) > 0 : Ex[ηA] =∞ ∀x ∈ A

the chain is transient if

1. (Xn) is ψ-irreducible

2. X is transient, i.e. all states in X are transient.

In general the following classification result that recurrence and transience are dichoto-
mous properties for ψ-irreducible chains holds:

Theorem 3 (Recurrence of a ψ-irreducible chain).

A ψ-irreducible chain is either recurrent or transient.
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A more rigid property, which requires not only an infinite average number of visits for
every small set - which implies the same limiting behaviour of the chain for almost every
starting value - but applies to all states, is Harris recurrence.

Definition 10 (Harris recurrence).

A set A is Harris recurrent if Px[ηA =∞] = 1 ∀x ∈ A.
The chain Xn is Harris recurrent, if there exists a measure ψ such that (Xn) is ψ-
irreducible and for every set A with positive measure, ψ(A) > 0, A is Harris recurrent.

Two main results can be deduced.

Theorem 4 (Harris recurrence of (Xn)).

If for every A ∈ B(X ), Px[τA < ∞] = 1 ∀x ∈ A, then Px[ηA = ∞] = 1 ∀x ∈ X , and
(Xn) is Harris recurrent.

Proof. see [37], p.222

Theorem 5 (Harris recurrence of ψ-irreducible chains).

If (Xn) is a ψ-irreducible Markov chain with a small set C such that
Px[τC <∞] = 1 ∀x ∈ X , then (Xn) is Harris recurrent.

The idea behind this theorem is that if a ψ-irreducible chain can independently of its
starting point reach a small set in a finite number of steps given that such a set exists, it
can by definition of the small set reach any other set A in a finite number of steps with
positive probability.
An even higher level of stability of a chain Xn is reached if its marginal distribution
becomes independent of the chain index n, which means that for Xn and Xn+1 a common
probability distribution π exists such that Xn ∼ π,Xn+1 ∼ π. This notion leads us to
the following definitions and results.

Definition 11 (Invariant measure, positivity, stationary distribution).

A σ-finite measure π is invariant for the transition kernel K(., .) as well as for the
respective chain if

π(B) =
∫
X
K(x,B)π(dx), ∀B ∈ B(X )

When there exists an invariant probability measure for a ψ-irreducible chain, the chain is
positive - recurrence is fulfilled automatically by an irreducible chain. Recurrent chains
without such a finite invariant measure are called null recurrent.
The invariant measure π is referred to as stationary distribution if π is a probability
measure, as in that case X0 ∼ π implies Xn ∼ π ∀n. Such a chain is stationary in
distribution.

The following theorem shall clarify the connection between positivity and recurrence.
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Theorem 6 (Positive recurrence).

If the chain Xn is positive, it is recurrent.

Kac’s theorem is a rather classical result on irreducible Markov chains in a discrete
state-space. In principle it states that when the stationary distribution exists, it is given
by

πx = (Ex[τx])−1

An implication of this result is that (Ex[τx])−1 is the eigenvector associated with the
eigenvalue 1 of the corresponding transition matrix. This result can also be generalised
for the continuous case. An implication of that is the following theorem which is also
important for justifying the MCMC method.

Theorem 7 (Uniqueness of the invariant measure).

If (Xn) is a recurrent chain, there exists a invariant σ-finite measure which is unique up
to a multiplicative factor.

Without the guarantee of uniqueness the whole setting of MCMC sampling would be
rendered useless, as it depends on draws from this stationarity distribution. Without
this result one could never be sure that the stationary distribution is the ’correct’ one
given that the chain reaches stationarity at all.
The stability property of stationarity of a chain is related to another property, its re-
versibility. This notion in principle states that the dynamics of the chain is not influenced
by the direction of time. More formally this means

Definition 12 (Reversibility).

A stationary Markov chain (Xn) is reversible if the distribution of Xn conditionally on
Xn+1 = x is the same as the distribution of Xn conditionally on Xn−1 = x

Tightly linked to reversibility is the detailed balance condition.

Definition 13 (Detailed Balance Condition).

A Markov chain with transition kernel K(., .) satisfies the detailed balance condition if
there exists a function f satisfying

K(y, x)f(y) = K(x, y)f(x) ∀(x, y)

This definition provides us with a sufficient, although not necessary condition for f to be
a stationary measure associated with a transition kernel K (and its respective Markov
chain). A more general statement links this condition with the notion of reversibility.
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Theorem 8 (Detailed Balance Condition, reversibility).

Suppose that a Markov chain with transition kernel K satisfies the detailed balance con-
dition with π a probability density function. Then:

1. The density π is the invariant density of the chain.

2. The chain is reversible.

Proof. To proof (1), we consider a measurable set B. For this set the detailed balance
condition implies∫

X
K(y,B)π(y)dy =

∫
X

∫
B
K(y, x)π(y)dxdy =

=
∫
X

∫
B
K(x, y)π(x)dxdy =

∫
B

∫
X
K(x, y)dy︸ ︷︷ ︸

=1

π(x)dx

As the existence of the invariant density π is shown, reversibility follows directly from
inserting π into the detailed balance condition.

In order to be able to make a statement about the limiting distribution for which the
(unique) invariant distribution is of course a natural candidate, a sufficient condition for
(Xn) is required under which Xn is asymptotically distributed according to π. Among
the many condition one can place on the convergence of the distribution Pn of Xn the
most fundamental and important is that of ergodicity.

Definition 14 (Ergodicity).

For a Harris positive chain (Xn), with invariant distribution π, an atom α is ergodic if

lim
n→∞

|Kn(α, α)− π(α)| = 0

For the next 2 definitions the following norm of a measure µ is used:

‖µ‖ = sup|g|≤1

∣∣∣∣∫ g(x)µ(dx)
∣∣∣∣ (5.4)

A chain is geometrically ergodic, if for a real-valued function M with Eπ[|M |] <∞ and
0 < r < 1

‖Kn(x, .)− π‖ ≤M(x) · rn

A chain is uniformly ergodic, if for constants M > 0 and 0 < r < 1

sup
x
‖Kn(x, .)− π‖ ≤M · rn

Definition 15 (Total Variation norm).

The metric which is induced by the total variation norm is defined as

‖µ1 − µ2‖TV = sup
A
|µ1(A)− µ2(A)|
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Among the many statements that can be made about convergence under these conditions
the most important are

Theorem 9 (Convergence in the Total Variation norm).

If (Xn) is Harris positive and aperiodic, then

lim
n→∞

∥∥∥∥∫ Kn(x, .)µ(dx)− π
∥∥∥∥
TV

for every initial distribution µ.

The main result on which the theory of MCMC simulation is based is the ergodic theo-
rem.

Theorem 10 (Ergodic theorem).

If (Xn) has a σ-finite invariant measure π, the following two statements are equivalent:

1. If f, g ∈ L1(π) with
∫
g(x)dπ(x) 6= 0, then

lim
n→∞

1
n

n∑
i=1

f(Xi)

1
n

n∑
i=1

g(Xi)

=
∫
f(x)dπ(x)∫
g(x)dπ(x)

2. The Markov chain (Xn) is Harris recurrent.

This section means to show how certain properties of the Markov chain lead to conclu-
sions about its behaviour. The implications of these properties in the setting of different
sampling methods, especially regarding convergence, are essential for the whole theory
behind the Markov Chain Monte Carlo methodology. Practical implications are unfortu-
nately very limited,as all these notions ranging from irreducibility to convergence assume
an infinite number of draws.
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5.2 Overview over some important sampling methods

The principle of any MCMC method is that if one cannot sample from the distribution
ξ directly to use an ergodic Markov chain with stationary distribution ξ for obtaining
samples of just that distribution ξ. The most universal of sampling schemes is the
Metropolis-Hastings sampler.

5.2.1 Metropolis Hastings Sampler

The aim of the Metropolis Hastings sampler is drawing from the objective target den-
sity ξ which will be realised via an auxiliary conditional distribution q(.|.) of a proposed
value given the ’old’ value, the proposal density , which should be either easy to sim-
ulate from or symmetric (i.e.q(x|y) = q(y|x)) so that it cancels out in the acceptance
probability. Then the Metropolis-Hastings sampler works according to the following
scheme:

• For t = 0: take starting value x0

• t > 0:

1. generate proposal Yt ∼ q(y|x(t−1))

2. Either
move to the proposed value Yt with probability α(x(t−1), Yt) or

stay at the old value x(t−1) with probability 1− α(x(t−1), Yt)

where α(x, y) = min
{
ξ(y)
ξ(x)

q(x|y)
q(y|x)

, 1
}

is the acceptance probability.

The transition kernel of the Metropolis-Hastings sampler is

K(x, y) = α(x, y)q(y|x) + (1−
∫
α(x, y)q(y|x)dy)δx(y) (5.5)

Table 5.1: Generic Metropolis-Hastings sampling algorithm

If the ratio of target and proposal function in table (5.1) is increased for the proposal
compared to the old value, then the value is accepted for sure. Otherwise, if the ratio
decreases, the proposal is accepted with probability α.

The approach may be illustrated by a simple example.
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Example 1. Metropolis-Hastings Sampler for student’s t distribution

Consider a non-central student’s t-distribution model with known degrees of freedom ν
and variance 1.

X ∼ tν(θ, 1)

f(x, θ) ∝ (ν + (x− θ)2)−
ν+1
2

To ease the situation, we choose a flat prior for θ: π(θ) ∝ 1, and the proposal distribution
is standard normal N(0, 1). Given 1 sample of x (adding more samples would result in
a product of the above likelihood function), θ(t−1) and the proposal ζ drawn from N(0, 1)
the acceptance probability for run t ≥ 1 would be:

α(θ(t−1), ζ) =
(

ν + (x− ξ)2

ν + (x− θ(t−1))2

)− ν+1
2 exp (−1

2)(θ(t−1))2

exp (−1
2)ζ2

for any proposed value of θ that stays within the parameter’s support. Proposals outside
the support of the target density are necessarily rejected.

Certain conditions are required for the functions which define the Metropolis-Hastings ac-
ceptance probability and transition kernel in order to draw conclusions about properties
of the chains necessary for convergence. Even though the generic Metropolis-Hastings
algorithm is well-defined for any target and proposal distribution, certain regularity con-
ditions are of importance for ξ to be the limiting distribution of the chain:

• The support of ξ, suppξ, shall be connected, which is not necessary for the algo-
rithm to work, but very helpful for applications and important for irreducibility
and existence of a single stationary distribution

• ∪x∈suppξsuppq(.|x) ⊃ suppξ, i.e. the set of all values where the target distribution
ξ is not zero (i.e. its support) has to be contained in the union of the supports
of all possible proposals within the support of ξ. This condition is the minimal
necessary condition for ξ to be the limiting distribution of the chain.

Theorem 11 (Detailed balance condition).

Let (X(t)) be the chain produced by the Metropolis-Hastings algorithm (see table 5.1).
For every conditional distribution q whose support includes the support of ξ holds:

1. the kernel of the chain satisfies the detailed balance condition with ξ.

2. ξ is a stationary distribution of the chain.

Proof. The proof is straightforward and can be viewed as an example for the application
of the detailed balance condition. We apply the detailed balance condition (5.4) on the
kernel in equation (5.5).

α(x, y)q(y|x)ξ(x) = α(y, x)q(x|y)ξ(y)

α(x, y) = min
{
ξ(y)
ξ(x)

q(x|y)
q(y|x)

, 1
}

, thus 2 cases are possible.
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1. α(x, y) = 1

q(y|x)ξ(x) =
ξ(x)
ξ(y)

q(y|x)
q(x|y)

· q(x|y)ξ(y)

2. α(y, x) = 1

q(x|y)ξ(y) =
ξ(y)
ξ(x)

q(x|y)
q(y|x)

· q(y|x)ξ(x)

(1−
∫
α(x, y)q(y|x)dy)δx(y)f(x) = (1−

∫
α(y, x)q(x|y)dx)δy(x)f(y)

Both expressions equal zero if x 6= y, otherwise the terms on both sides are necessarily
equal.

Aperiodicity of the chain requires that with positive probability the state X(t+1) may be
equal to X(t) which is equal to

P[ξ(X(t))q(Yt|X(t)) ≤ ξ(Yt)q(X(t)|Yt)] < 1

The theoretical considerations above have shown us that irreducibility is a minimum
requirement for recurrence and positivity and thus for any notion of ’converging’ to the
invariant measure, which is our ultimate goal. Therefore our first step will be to show
irreducibility with respect to ξ. Irreducibility of the chain can already be shown using
the sufficient condition of positivity of the conditional density q, i.e.

q(y|x) > 0 ∀(x, y) ∈ suppξ × suppξ

Proposing any value in the support of ξ with positive probability independent of the
current point immediately implies that in a finite number of steps any set in this support
can be reached, which is equal to the definition of irreducibility according to Theorem
2.
Irreducibility and existence of the invariant distribution per definitionem imply positivity
of the chain and thus recurrence using Theorem 6.
In general it can be proven that any ξ-irreducible Metropolis-Hastings chain (X(t)) is
Harris recurrent. Thus it fulfills the ergodic theorem (Theorem 10). To present this
result in a more formal way the following convergence theorem is formulated.

Theorem 12 (Convergence theorem for MH algorithm).

If (X(t)) is an ξ-irreducible Metropolis-Hastings Markov chain, the following statements
hold:

• If h ∈ L1(ξ), then

lim
n→∞

1
T

T∑
t=1

h(X(t)) =
∫
h(x)ξ(x)dx
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• If in addition (X(t)) is aperiodic, then it converges in the total variation norm, i.e.

lim
n→∞

∥∥∥∥∫ Kn(x, .)µ(dx)− ξ
∥∥∥∥
TV

= 0,

for every initial distribution µ and MH-transition kernel for n steps, Kn(x, .).

5.2.2 Gibbs Samplers

The simple but excellent principle of the Gibbs sampler is to use the true conditional
distributions associated with the target distribution to generate samples from that dis-
tribution.

It is necessary that we can simulate from the conditional distribution
ξi(xi|x1, x2, . . . , xp) i = 1, 2, . . . , p. Then ∀t ≥ 1 given the value x(t) =
(x(t)

1 , x
(t)
2 , . . . , x

(t)
p ) generate

X
(t+1)
1 ∼ ξ1(x1|x(t)

2 , . . . , x(t)
p )

X
(t+1)
2 ∼ ξ2(x2|x(t+1)

1 , x
(t)
3 , . . . , x(t)

p )
...

...
X(t+1)
p ∼ ξp(xp|x(t+1)

1 , . . . , x
(t+1)
p−1 )

The transition kernel of this algorithm is

K(x(t+1)|x(t)) =
p∏
j=1

ξ(x(t+1)
j |x(t+1)

1 , . . . , x
(t+1)
j−1 , x

(t)
j+1, . . . , x

(t)
p )

Table 5.2: p-stage Gibbs algorithm

The following example illustrates the differences between Metropolis-Hastings and Gibs
sampler.

Example 2. Gibbs Sampler for bivariate normal distribution
Let x = (x1, x2) follow a bivariate normal distribution of the following type(

X1

X2

)∣∣∣∣ ρ ∼ N2

((
µ1

µ2

)
,

(
1 ρ
ρ 1

))
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Then the Gibbs algorithm will update in step t ≥ 1 as follows:

X
(t)
1 |x

(t−1)
2 ∼ N(µ1 + ρ(x(t−1)

2 − µ2), 1− ρ2)

X
(t)
2 |x

(t)
1 ∼ N(µ2 + ρ(x(t)

1 − µ1), 1− ρ2)

A single Gibbs transition can be interpreted as a special case of a single component
Metropolis-Hastings move where the acceptance probability always equals 1. Thus the 2-
stage Gibbs sampler inherits all properties of the Metropolis-Hastings Sampler. However
this is not the case for the multi-stage Gibbs sampler, which can be seen as the most
well-behaved example of a hybrid sampler. This will be described in more detail in an
extra section.

5.2.3 Introduction to Reversible Jump MCMC

The method of reversible jump Markov Chain Monte Carlo (RJMCMC) has been intro-
duced by Peter Green (see [25], [35]). It is in principle a generalisation of the Metropolis-
Hastings method, which allows for jumps between spaces Θk of different dimensionality
by defining a bijection (which is even a diffeomorphism) between well-constructed spaces
which contain the original spaces as linear subspaces and of course have the same di-
mension.
Being in the current state x = (k, θ(k)), where k is the indicator of the model and corre-
sponding parameter space and θ(k) ∈ Θk the respective model parameter, a move of type
m is proposed which would lead to state dy with probability qm(x, dy). The acceptance
probability for such a proposal move shall be αm. The algorithm requires a reversible
kernel, which means that for some invariant density π it fulfills∫

A

∫
B
K(x, dy)π(x)dx =

∫
B

∫
A
K(y, dx)π(y)dy ∀A,B ⊂ Θ

The appropriate kernel can be written as

K(x,B) =
∑
m

∫
B
αm(x, y′)qm(x, dy′) + s(x)IB(x)

s(x) =
∑
m

∫
Θm

qm(x, dy′)(1− αm(x, y′))︸ ︷︷ ︸
probability to reject proposed move m

+ 1−
∑
m

qm(x,Θm)︸ ︷︷ ︸
probability of not attempting any move

= 1−
∑
m

αm(x, y′)qm(x,Θ)

The term s(x) describes the probability of rejecting the proposed move m or not at-
tempting any move at all.
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The detailed balance condition requires that∑
m

∫
A
π(dx)

∫
B
qm(x, dy′)αm(x, y′) +

∫
A∩B

π(dx)s(x)

=
∑
m

∫
A
π(dy′)

∫
B
qm(y′, dx)αm(y′, x) +

∫
B∩A

π(dy′)s(y′)

Since the last term is the same for both lines it is sufficient that for each m the respective
summands of the first term of both lines are equal. In order to fulfill this a symmetric
dominating measure ξm on Θ is required and we assume that π(dx)qm(x, dy′) has a finite
density fm(x, y′) with respect to this measure. Then reversibility can be shown to be
fulfilled:∫

A
π(dx)

∫
B
qm(x, dy′)αm(x, y′) =

∫
A

∫
B
αm(x, y′)fm(x, y′)ξm(dx, dy′)

=
∫
A

∫
B
αm(y′, x)fm(y′, x)ξm(dy′, dx)

=
∫
A

∫
B
αm(y′, x)qm(y′, dx)π(dy′)

In order for the middle equality to hold the acceptance probability has to look like

αm(x, y′) = min
{

1,
fm(y′, x)
fm(x, y′)

}
= min

{
1,
π(dy′)qm(y′, dx)
π(dx)qm(x, dy′)

}
(5.6)

How to obtain this dominating measure ξm under the symmetry constraint is the most
complex part of the method when moving from model k1 to k2. It is supposed one has
proper densities p(θ(k1)|k1) on Rn1 and p(θ(k2)|k2) on Rn2 . The idea of Green is to embed
both spaces Θk1 and Θk2 as linear subspaces in space C1 and C1 which have the same
dimension so that the definition of a bijection is possible. Then take a look a the spaces
U1 = C1 \ Θk1 and U2 = C2 \ Θk2 with dimensions dim(U1) = m1 and dim(U2) = m2

and thus n1 + m1 = n2 + m2. The completion of the spaces Θki requires simulation of
the values ui, ui ∼ gi(ui). Let ω be the bijection ω : C1 → C2 : (θ(k1), u1) 7→ (θ(k2), u2).
The density f will look like

f(x, y′) = π(k1, θ
(k1))πk1,k2g1(u1)

f(y′, x) = π(k2, θ
(k2))πk2,k1g2(u2)

∣∣∣∣∣∂ω(θ(k1), u1)
∂(θ(k1), u1)

∣∣∣∣∣
Thus the acceptance probability will become

min

{
1,
π(k2, θ

(k2))πk2,k1g2(u2)
π(k1, θ(k1))πk1,k2g1(u1)

∣∣∣∣∣∂ω(θ(k1), u1)
∂(θ(k1), u1)

∣∣∣∣∣
}

To summarise the following table presents the algorithm in a more straightforward
manner.
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• For t = 0: take starting value x0

• t > 0: x(t−1) = (k1, θ
(t−1)
k1

)

– Select model k2 with probability πk1,k2
– Generate ui ∼ gi(ui) i = 1, 2

– (θ(k2), u2) = ω(θ(k1), u1)

– Accept θ(k2) with probability

min

{
1,
π(k2, θ

(k2))πk2,k1g2(u2)
π(k1, θ(k1))πk1,k2g1(u1)

∣∣∣∣∣∂ω(θ(k1), u1)
∂(θ(k1), u1)

∣∣∣∣∣
}

Table 5.3: Reversible Jump algorithm

5.2.4 Hybrid sampler

A more general setting than the multistage Gibbs sampler is often required if the con-
ditional distribution of a variable is not explicitly available. In this case a sampling
method combining Gibbs and Metropolis-Hastings updates will be required.

Definition 16 (Hybrid Sampling algorithm).

A hybrid MCMC algorithm is a Markov chain Monte Carlo method which utilizes several
Gibbs or Metropolis-Hastings steps. Two ways of building a hybrid kernel from the kernels
K1,K2, . . . ,Kn are possible:

• a mixture of steps is associated with the kernel

K̃ = α1K1 + α2K2 + . . .+ αnKn

(where (α1, α2, . . . , αn) is a probability distribution)

• a cycle has a kernel

K∗ = K1 ◦ K2 ◦ . . . ◦ Kn

The motivation for constructing such samplers containing not only Gibbs steps, as the
multi-stage Gibbs sampler, is that Metropolis-Hastings steps can be applied in more
general settings than a Gibbs step. This is especially of importance, when the conditional
distributions cannot be sampled from directly there is no alternative but to deviate from
the Gibbs setting.
The Hybrid sampler is built upon full conditional distributions like the Gibbs sampler.
Besag and Green [13] have pointed out that for any p-variate x, x′ ∈ suppξ and indices
I ⊂ {1, . . . , p}, where xI denotes all components of x with indices in I and xIC contains
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the components with indices not in I

ξ(xI |xIC ) ∝ ξ(x) (5.7)

ξ(x
′
I |x
′

IC
)

ξ(xI |xIC )
=

ξ(x
′
)

ξ(x)
for x

′

IC = xIC (5.8)

In this way full conditionals can by easily introduced into Metropolis-Hastings steps, as
the acceptance probability will become

α(x, y) = min
{
ξ(yI |xIC )
ξ(xI |xIC )

q(xI |yI , xIC )
q(yI |xI , xIC )

, 1
}

This formula also allows us to easily see the connection between the Gibbs update and
a single Metropolis Hastings step which is the case of I containing just one single index.
In the case of the Gibbs sampler this proposal distribution is chosen to be

q(yI |xI , xIC ) = ξ(yI |xIC ) (5.9)

independent of xI . Obviously the acceptance probability becomes 1 independently of x
and y.
Some basic properties of the individual kernels are inherited by the hybrid kernel, for
example a mixture kernel is irreducible and aperiodic if at least one of the Ki has these
properties. If one of the kernels of a cycle is irreducible and aperiodic, then the composed
kernel often is irreducible and aperiodic as well, however there exist counterexamples that
this is not always the case. For any composition where each component has the same
stationary distribution ξ, the stationary distribution of the composition will be ξ as well.
Under rather rigid assumptions a very specialised result can be obtained (see [44])

Theorem 13 (Uniform ergodicity of hybrid sampler).

If K1 and K2 are two kernels with the same stationary distribution ξ and if K1 produces
a uniformly ergodic Markov chain, the mixture kernel

K̃ = αK1 + (1− α)K2 (0 < α < 1)

is also uniformly ergodic.
Moreover, if X is a small set for K1 with m = 1, the kernel cycles K1 ◦ K2 and K2 ◦ K1

are uniformly ergodic.

Only in the case of the multistage Gibbs sampler a further statement regarding conver-
gence can be made. For his we need the positivity condition :
Let (Y1, . . . , Yn) ∼ g(y1, . . . , yn), then positivity of the marginal distributions, m(yi) >
0 i = 1, . . . , n, implies positivity of the joint distribution g(y1, . . . , yn) > 0.
A sufficient condition for positivity is the following: all conditional distributions shall
be absolutely continuous w.r.t. a dominating measure and all conditional and uncondi-
tional distributions have the same support which is connected. A connected support is
not required for the Gibbs sampler in general, but unconnected parts can make the chain
reducible and thus prohibit true convergence. Equivalence of the condition of absolute
continuity to the positivity condition can be proven ([37]), its advantage is that it is
easier to manage than the positivity condition.
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Theorem 14. If the positivity condition is fulfilled for a Gibbs Sampler, then:

1. ξ is the stationary distribution of the Markov chain.

2. For every measure µ the chain is ergodic, i.e.

lim
n→∞

‖
∫
Kn(x, .)µ(dx)− ξ‖ = 0

5.2.5 Theoretical consideration of Convergence

The sampler described in section (5.3) is a hybrid sampler containing some Gibbs-steps,
a Metropolis-Hastings update and a mixture kernel of Gibbs and reversible jump update.
Its composed transition kernel would look like that

Khybrid = ( 1
K
K(ν),(φn,g)
RJ + K−1

K
K(ν),(φn,g)
MH ) ◦ K(τ)

G

◦(K(λ)
G ◦ (0.5 · K(Ig),(βg)

G + 0.5 · K(Ig),(βg)
RJ )) ◦ K(p)

G

(5.10)

A short look shall be taken at the individual kernels of the algorithm and how much
can be theoretically deduced according to the theory of section (5.1) for each kernel and
their compositions.
At first we take a look at the Metropolis-Hastings type kernels, this shall also include
the Gibbs steps, since each of them can be viewed as special type Metropolis-Hastings
step. According to theorem 11, a sufficient condition for fulfilling the detailed balance
condition and for the posterior to be the stationary distribution of the chain is that the
support of the proposal distribution shall include the support of the posterior. This is
naturally the case for the Gibbs steps, since distributions of the same family are involved.
In the Metropolis-Hastings step for ν and ϕn,g the support of the proposal distribution
is per definitionem the set R+ × N, the same as the support of the desired posterior.
The reversible jump steps shall not bother us since these steps fulfill the detailed balance
condition by construction. For each kernel, fulfilling the detailed balance condition is
equivalent to the existence of an invariant density.
Another property that is required is irreducibility, which is fulfilled if the proposal dis-
tributions are positive on the support of ξ. This is again naturally the case since all
proposal distributions are either continuous probability distributions with the same sup-
port as the posterior or in the case of ν positive by definition. As for statements about
the composition of kernels, it is clear that each of the mixture kernels for βg, Ig and
ν, ϕn,g will inherit irreducibility from one of its components which has this property as
stated above. Irreducibility combined with the existence of invariant density implies
positivity of the chain per definitionem. Theorem 6 states that positivity implies recur-
rence. Moreover it implies Harris recurrence for all Metropolis-Hastings type kernels,
and it also is the condition required for the Convergence theorem (12) to apply.
Regarding the cycle of kernels, irreducibility and aperiodicity is inherited from a single
component with this property. Recurrence follows from recurrence of each of the com-
ponents, as the term is defined by reaching a set infinitely often, which is composed of
subsets with just this property. The existence of a dominating measure for all of the
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invariant densities is a requirement for the existence of an invariant density of the hy-
brid kernel. But as the kernels do not have a common invariant distribution little can
be stated in general about this invariant density of the hybrid kernel. A generic prove
for the existence of such an invariant measure and convergence is however beyond the
scope of this master’s thesis.
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5.3 Application to the Student’s t distribution model

Due to the choice of conjugate distributions many parameters can be updated by drawing
from closed form distributions, which is the usual way for Gibbs sampling algorithm
modules. In 2 cases a different approach will be chosen. Firstly the degrees of freedom
parameter ν will be updated by a Metropolis-Hastings updating step, which in the
special case of νmax results even in a reversible jump step (see below 5.3.2). Secondly
the coefficients β of the linear regression respectively ANOVA model and the indicator
Ig are updated by Gibbs steps alternating with a reversible jump steps.
For the calculation of the full conditional distributions the common distribution of all
modelled stochastic variables has to be derived:

p((Ig)g=1,...,G, p, (βg)g=1,...,G, ν, (ϕn,g)n1,...,N ;g=1,...,G, τε) ∝ (5.11)

∝ p(p)p(τε|c, d)p(ν|K)∏
g p(Ig|p)p(βg|Ig, µg, τg)∏
n p(ϕn,g|ν)p(yn,g − xTn,gβg|ϕn,g, Ig, τε)

(5.12)

We will take the kernel in equation (5.10) apart and present the structure of the updates
represented by the individual kernels in more detail. In order to have a better overview
over the updates they will be grouped according to the underlying sampling scheme.

5.3.1 Gibbs Updates

Gibbs updates are used for three of the model parameters, the probability of differential
expression p, the precision of each group βg, λ, and the overall model precision, τε. For
a within-dimension update of the parameter βg a Gibbs step is used as well. Their full
conditional distributions can be calculated explicitly since we are working in a conjugate
prior setting.

Update of τε

The error of the model follows a Gamma distribution. The update will be drawn from:

τε| . . . ∼ Ga(g +
NG

2
, h+

1
2

∑
n,g

ϕn,g(yn,g − xTn,gβg)2)

Update of p

An updating move for the parameter p is made by drawing p from the updated Beta
distribution

p|I ∼ Be(a+ i1, b+ (G− i1))

where I is the vector of all Ig and i1 = |{g : Ig = 1}|, i.e. the number of genes, which
are differentially expressed.

45



5 MCMC schemes

Update of λ

The hyperparameter λ determines the within-group precision for the βg. Its updated
value will be drawn from a Gamma distribution in the following way:

λ ∼ Ga(c∗, d∗)

c∗ = c+
G− i1 + i1 ∗ S

2

d∗ = d+
1
2

[
∑
g;Ig=0

(βg,0 − µ)2 +
∑
g;Ig=1

(βg − µ)T (βg − µ)]

Update of βg, within dimension

The following update is used for the vector of parameters which represent expression
levels in the case of differential expression (Ig = 1) respectively the value that represents
the overall expression level if there is no differential expression (Ig = 0):

(WD) update βg conditional on all other variables

case Ig = 0

βg,0|λ, . . . ∼ N1(µ∗, (λ∗)−1)

µ∗ =
τε
∑N

n=1 ϕn,gyn,g + λµ

λ∗

λ∗ = (τε
N∑
n=1

ϕn,g + λ)

case Ig = 1

βg|λ, . . . ∼ NS(µ∗, (Λ∗)−1)
µ∗ = (Λ∗)−1(λµ+ τεXDϕ,gY

T
g )

Λ∗ = λIS + τεXDϕ,gX
T = diag(λ∗1, . . . , λ

∗
S)

with λ∗s = (τε
N∑
i=1

ϕ(s)
n,g + λ)

According to equation (5.9) the Gibbs steps are straightforward to embed into the hybrid
sampler, as we can sample from the full conditionals directly. For every single step the
full conditional distribution is the transition kernel. This naturally implies properties
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which we require for the generic considerations regarding convergence of the algorithm.
(see [37], 5.2.2 and 5.2.5 for more detail)

5.3.2 Metropolis-Hastings and Reversible Jump Updates

There are 2 situations where we require Reversible Jump Updates respectively a Metropolis-
Hastings update.
Firstly a reversible jump move is required when the model for a gene changes between
differential and non-differential expression. The parameter Ig determines the direction
of the move, the parameter βg has to be updated from the distribution in the new pa-
rameter space, as given by the reversible jump scheme (see table 5.3).
Secondly the update of the degrees of freedom parameter ν is performed by a Metropolis-
Hastings step which simultaneously updates all the scaling parameters φn,g. A reversible
jump step is performed when the maximum value νmax is reached and the model changes
from a student’s t error distribution with auxiliary variables φn,g to a Gaussian distri-
bution.
Both of these updates represent a special setting of parameters where one parameter is
conditional on the other and operates in a conjugate prior setting. A practical statement
for the easier calculation of acceptance probabilities on a two (or more) components set-
ting can be made when dealing with distributions which fulfill certain properties. A
sufficient and also commonly used property is conjugacy of priors and a proposal distri-
bution which equals the respective posterior distribution for the parameter θ1 which is
conditionally dependent on the other one θ2. In this case the acceptance probability will
only depend on the parameter θ2. The reason why this is treated in such detail is that
this is the setting used for all Metropolis-Hastings and Reversible Jump updates in this
work.

Lemma 15 (Acceptance probability).

For a given model with likelihood f(x|θ = (θ1, θ2)) and conjugate prior distribution
π(θ1|θ2)π(θ2) the acceptance probability of moving from θ(o) to θ(n) if the proposal density
is the parameter’s posterior density of θ1 then the acceptance probability equals a term
depending only on parameter θ2

min (1,
n
pr;θ

(n)
1

(θ(n)
2 )nlh(θ(n)

2 )

n
post;θ

(n)
1

(θ(n)
2 )

n
post;θ

(o)
1

(θ(o)
2 )

nlh(θ(o)
2 )n

pr;θ
(o)
1

(θ(o)
2 )︸ ︷︷ ︸

=
m(x|θ(o)

2 )

m(x|θ(n)
2 )

χ(θ(n)
2 , θ

(o)
2 )) (5.13)

where npr;ω, npost;ω, nlh stand for the normalisation parameters of the prior and posterior
of the parameter ω respectively the likelihood function. χ(θ(n)

2 , θ
(o)
2 )) accumulates all parts

of the acceptance probability originally depending only on the old and new value of θ2.
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Proof. The proof is based on the simple idea that regrouping certain terms will lead to
a simpler expression.

π(θ(i)
1 |θ

(i)
2 )f(x|θ(i)

1 , θ
(i)
2 )

p(θ(i)
1 |θ

(i)
2 , . . .)

= m(x|θ(i)
2 ), i ∈ {o, n}

Since we are in a conjugate prior distribution setting, all terms containing θi1 have to
cancel out and the expression reduces to

nlh(θ(i)
2 )n

pr;θ
(i)
1

(θ(i)
2 )

n
post;θ

(i)
1

(θ(i)
2 )

Any constant factors (independent of θ(i)
2 ) in the normalisation factor of the likelihood

term will cancel out when calculating the fraction of the normalisation constants of the
marginal distribution. All factors related to the update of θ(i)

2 only are merged in the
factor χ(θ(o)

2 , θ
(n)
2 ).

As in case of both our reversible jump updates only one type of move is possible for
each of the parameter settings, the kernels of the reversible jump steps have the same
structure as the Metropolis Hastings kernel. As they fulfill the detailed balance condition
by construction, the existence of an invariant measure is implied. For more detailed
considerations about the theoretical properties see [37], 5.2.5.
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Update βg, Ig, reversible jump

This step proposes a move between the two parameter spaces connected with differential
expression respectively non-differential expression. There is a link between these updates
and the Bayes test for differential expression. The structure of the variable A includes
the Bayes factor for a test of ’differential expression’ against ’no differential expression’
of a gene, the proposals in the respective room encode the losses (inverse utilities) for
each of these tests.

(RJ) case Ig = 0→ Ig = 1: proposal for βg

βg|ϕ, . . . ∼ NS(µ∗, (Λ∗)−1)
µ∗ = (Λ∗)−1(λµ+ τεXDϕ,gY

T
g )

L∗ = diag(λ∗1, . . . , λ
∗
S);λ∗s = (τε

N∑
i=1

ϕ(s)
n,g + λ)

The auxiliary variable

A =

∏
n p(yn,g − xTn,gβg|Ig = 1, . . .)∏
n p(yn,g − βg,0|Ig = 0, . . .)

p(βg|µg, Tg, Ig = 1)p(Ig = 1)
p(βg,0|µg,0, τg,0, Ig = 0)p(Ig = 0)

p(βg,0|Ig = 0, . . .)p(Ig = 0)
p(βg|Ig = 1, . . .)p(Ig = 1)

= λ
S−1

2

√
λ∗∏
s λ
∗
s

p

1− p

e
−1

2
ϕ[(S − 1) ∗ λµ2 − (µ∗)TΛ∗µ∗ + λ∗(µ∗)2]

leads us to an acceptance probability of α=min{1,A}

case Ig = 0→ Ig = 1: proposal for βg,0

βg,0|ϕ, . . . ∼ N1(µ∗, (ϕλ∗)−1)

µ∗ =
τε
∑N

n=1 ϕn,gyn,g + λµ

λ∗

λ∗ = (τε
N∑
n=1

ϕn,g + λ)

The acceptance probability is α=min{1,A−1}.
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Update ν

As overdispersion, respectively underdispersion depending on the chosen value of the hy-
perparameter of the truncated Poisson distribution has caused trouble with the originally
used Poisson prior, a uniform prior has been selected as an alternative. Additionally the
uniform prior can adapt more flexibly to changes in the grid size of the underlying set.
The algorithm allows the degrees of freedom to jump to the next higher or lower value
within the ordered set N, instead of allowing jumps to any valid parameter value of the
set; this is a simple Metropolis-Hastings step. Due to the advantage of a more straight
forward implementation a rather easy updating algorithm has been chosen instead of
investing too much time into the construction of a more sophisticated algorithm.

As an additional feature the commonly used Gaussian model (see [26], [23], [48]) was
taken into account as well. As this is the standard distribution for any linear model we
would like to keep it, unless the data requires a more robust model. For this purpose a
reversible jump step will be introduced, which jumps between the t-model, consisting of
a normal-gamma-model and the auxiliary variables ϕn,g, and a Gaussian model, which
is equal to the upper model, when the ϕn,g all equal one.

A =

∏
n,g p(yn,g − xTn,gβg|ϕ

(n)
n,g, Ig, τε)∏

n,g p(yn,g − xTn,gβg|ϕ
(o)
n,g, Ig, τε)∏

n,g p(ϕ
(n)
n,g|ν(n))∏

n,g p(ϕ
(o)
n,g|ν(o))

p(ν(o)|ν(n))
∏
n,g p(ϕ

(o)
n,g|ν(o), . . .)

p(ν(n)|ν(o))
∏
n,g p(ϕ

(n)
n,g|ν(n), . . .)

=
∏
n,g

m(o)(ν(o))
m(n)(ν(n))

· p(ν
(o)|ν(n))

p(ν(n)|ν(o))

where the second line results because of the conjugate prior setting for ϕn,g. the
probability of selecting the new value ν(n) given the old value ν(o) is

p(ν(n)|ν(o)) =
{

1 ν(o) = 1 ∨ ν(o) = νmax
0.5 else

thus resulting in the following expression (g∗, h∗ see 5.3.2)

A =

(
p(ν(o)|ν(n))
p(ν(n)|ν(o))

)
·

 ν(n)

2

ν(n)

2

ν(o)

2

ν(o)

2


NG

·

(
Γ(ν

(o)

2 )Γ(g∗(n))

Γ(ν(n)

2 )Γ(g∗(o))

)NG
·
∏
n,g

(h∗n,g
(o))g

∗(o)

(h∗n,g
(n))g∗(n)
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In the special case of the reversible jump step from t distribution to normal distri-
bution the similar formula applies, the determinant of the additionally appearing
Jacobian equals 1.

• For νmax − cgrid → νmax:

A =
∏
n,g

(h∗n,g
(o))g

∗(o) Γ(ν
(o)

2 )

(ν(o)

2

ν(o)

2 )NGΓ(g∗(o))

• For νmax → νmax − cgrid:

∏
n,g

(h∗n,g
(n))−g

∗(n) Γ(g∗(n))(ν
(n)

2

ν(n)

2 )NG

Γ(ν(n)

2 )

Update ϕn,g

The auxiliary variable ϕn,g is drawn from the following Gamma distribution:

ϕn,g| . . . ∼ Ga(g∗, h∗)

g∗ =
ν + 1

2

h∗n,g =
1
2

(ν + τε(yn,g − xTn,gβg)2)
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5.4 General MCMC Convergence Analysis

Before presenting results of such convergence diagnostics, we provide an overview over
the involved notions and statistics (for more details see [19]). Since all MCMC algorithms
have to be terminated after a certain number of samples draws, determining whether
it is safe to assume that the obtained samples are truly representative of the underly-
ing distribution is important. As the samples are drawn from Markov chains they are
generally correlated. This correlation makes the draws less informative than iid draws
from the stationary distribution would be. Thus the process of exploring the stationary
distribution will be slowed down.
The theoretically more well-founded attempt of analysing the transition kernel itself in
order to determine the number of iterations required has proven not to be very fruitful
for practical use, as the resulting bounds were quite loose and too large to be of practical
value. Thus the more common approach is applying various forms of diagnostics tools
to the algorithm’s output in order to come to conclusions a posteriori. Based on this
prior information the algorithm is run for the given number of draws which will likely
ensure convergence. A critical issue for all these diagnostics is that however one might
construct a statistic, one cannot compare sample distributions to the unknown station-
ary distribution, but only to other sample distributions (either from different iterations
or from different parts of the same chain). Thus many theoreticians rightfully criticise
that all such diagnostics are fundamentally unsound which does not keep many people
from still using them due to lack of alternatives.
The following diagnostics are used in this work:

• Raftery and Lewis diagnostics
The method aims towards detecting convergence and provides bounds for the vari-
ance of the estimate of quantiles of functions of the analysed parameters. For the
calculation of the diagnostics with a given precision a minimum number of draws,
Nmin, is required under the assumption that they were independent.
The aim of the method is the estimation of a quantile q with accuracy r, which
has to be attained with probability s, P[q − r ≤ θ̂ ≤ q + r] ≥ s .
The output will be the total number of iterations to be run in order to fulfill the
criterion above and the number of iterations to be considered as ’burn-in’, i.e. the
minimum number of iterations required for the chain to approach its stationary
distribution. Additionally it provides a ’thinning number’, k, which can be seen
as a representation of correlation within the chain, as it describes how many sam-
ples have to be discarded in order to consider the k-th one an iid draw from the
stationary distribution.

• Geweke diagnostics
The notion behind the creation of this diagnostics is to use methods of spectral
analysis to assess convergence of the sampler. The main assumption is that for a
MCMC process and a given function g a spectral density Sg(ω) exists for this time
series that has no discontinuities at frequency 0. The spectral density describes the
distribution of variance of a time series with frequency; it can be obtained as Fourier
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transform of the autocorrelation function. If the conditions above are fulfilled, the
spectral density provides us with the asymptotic variance Sg(0)/n for the estimated
mean of g(θ), g(θ)n. This is a requirement for performing a two-sample t-test
given that the conditions are fulfilled under which this diagnostic approaches a
standard normal distribution according to the central limit theorem. Geweke’s
diagnostic after N iterations is the respective test statistic when comparing the N1

first iterations and N2 last iterations.

GN =
g(θ)N1

− g(θ)N2

S∗

where S∗ is the asymptotic standard error of the difference.

• Heidelberger-Welch diagnostics
This diagnostic is predicated on another approach based on the usage of methods of
spectral analysis for detecting nonstationarities in outputs of MCMC algorithms.
This procedure allows to estimate a confidence interval of specified width for the
mean if the chain does not sample from the stationary distribution already from
the beginning. The test for diagnosing convergence is based on the Brownian
bridge theory from which its null hypothesis is derived. The statistic is the sum
of mean-centered iterates divided by the standard error. The distribution of the
Cramer-von Mises statistic is then used to test the hypothesis.

• Autocorrelation, Partial Autocorrelation
Autocorrelation describes the correlation between different time points of a time
series.
Definition 17 (Autocorrelation function).

For a discrete process of length N, the autocorrelation function is defined as

R̂(k) =
1

(N − k)σ̂ε2

N−k∑
t=1

(Xt −Xn)(Xt+k −Xn)

Since for a Markov chain each state depends on the previous one, we expect the
time points to be autocorrelated. The behaviour of time series, particularly ones
generated from MCMC samplers, can be described by an autoregressive process.
Definition 18 (Autoregressive process of order p).

θt = α1θt−1 + . . .+ αpθt−p + εt εt ∼ N(0, σ2
ε)

This model is a linear regression model, where the value at time t is predicted by
the p previous values. The partial autocorrelation helps to estimate the order p
of such a model as it estimates the correlation between Xt and Xt−k that has not
been explained by Xt−1, . . . , Xt−k+1 for all k, the maximum value k for which this
partial autocorrelation is still significantly different from 0 is the autoregressive
model order.
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• Gelman-Rubin Diagnostic
Unlike the other methods presented here, the Gelman-Rubin diagnostic is applied
to multiple chains. Basically it can be viewed as an analysis of variance among two
or more chains which ideally should have started from different even overdispersed
initial values. Its goal is to find multimodality and thus determine whether at least
one of the chains gets stuck at a local peak.
Based on the empirical variances of every single chain on the one hand and all chains
combined on the other hand the Gelman-Rubin diagnostic calculates a so-called
shrinking factor . Values of this statistic which are close to 1 point towards
convergence, whereas values significantly greater than one indicate problematic
behaviour.

Method quant./graph. Theoretical basis
Raftery-Lewis quantitative 2-state Markov chain theory

Geweke quantitative Spectral analysis
Heidelberger-Welch quantitative Brownian bridge spectral analysis

Gelman-Rubin quant./qual. analysis of variance within and between chains
Autocorrelation quant./graph. Correlation of sample from a Markov chain

Partial autocorrelation graphical Correlation of sample from a Markov chain

Table 5.4: Overview over diagnostics and some properties; all these methods have in
common that they are generally applicable to any MCMC algorithm, only
take single chains into account and work for univariate parameters (see [19]
for more details)

Several of these diagnostics have been implemented in the R package coda which we will
use for our analyses. We will combine some of these diagnostic tools, in order to be able
to gain insight into several aspects of the chains’ behaviour. The tests provided by the
methods of Heidelberger-Welch and Geweke give us general insight into the occurrence
of convergence. Both allow us to compare subsets of the first 50 % of draws to the
second half, if the nullhypothesis is not accepted immediately due to slow burn-in. If
the null hypothesis of this halfwidth test is rejected, gradually the first 10%, 20%, etc.
are discarded and the rest of draws is tested against the second half. If these tests
fail every time, clearly no convergence has occurred and the only interesting diagnostic
would be Raftery-Lewis’ prediction for the estimated number of draws necessary for
convergence. However the Raftery-Lewis diagnostics can be seen as both a prediction
of run lengthes for future draws as well as a ’sanity’ check in case of convergence, if
enough draws have occurred at all in order to gain sufficiently accurate estimates of
the posterior distribution. If more than one chain is available comparing them using
the Gelman-Rubin diagnostic is advisable as comparison of more than one chain is the
only way to detect local convergence problems caused e.g. by multimodality. Plotting
the first values of the autocorrelation function helps to detect problems of slow mixing
and may empirically provide the number of values to be left out in order to get iid
draws, if it is not too large. A check of the Markov property is possible using the partial
autocorrelation function.
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Before applying the algorithm to biological data where nothing is known about the
underlying distribution we wish to explore, we have to test the program with artificial
data sets in order to perform a primary sanity check. Besides this primary goal, two
other aspects are of importance. One is the definition of state space for ν, especially the
grid length and its influence on the outcome as well as convergence results. Another is
convergence analysis the possibility of getting an estimate of how many draws will be
necessary to get sufficiently large samples from the invariant distribution.

6.1 Test Data Sets

a)
Set µ1 µ2 ν %
1 −5 5 ∞ 50
1 −1 1 ∞ 50

2 −5 5 4 50
2 −1 1 4 50

3 −5 5 10 50
3 −1 1 10 50

4 −5 5 ∞ 20
4 −1 1 ∞ 80

5 −5 5 4 20
5 −1 1 4 80

6 −5 5 10 20
6 −1 1 10 80

ν = ∞ represents the normal
distribution.

b)
i µi,1 µi,2 %
1 −5 5 10
2 −1 1 40
3 −0.1 0.1 10
4 −0.01 0.01 40
1 −2.5 2.5 10 10
2 −1 1 10 20
3 −0.5 0.5 20
4 −0.01 0.01 10 30
5 −0.001 0.001 10 20
1 −5 5 10
2 −2.5 2.5 10 10
3 −1 1 10 20
4 −0.1 0.1 10 10
5 −0.01 0.01 10 40
6 −0.001 0.001 10 10

ν ∈ {4, 10,∞}

Table 6.1: Test data sets

For testing purposes 2 types of data sets have been generated. The first was designed
as a sanity check for a generic case where 50 % of genes are differentially expressed and
the other 50 % are not, as well as a case of 20% vs. 80% differential vs. nondifferential
expression setting (see 6.1 a)). 100 respectively 200 artificial genes have been sampled
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from the respective distribution. The aim of the test was to see whether t-distributed
and normal data could be told apart, and if the t-parameter of the underlying and in
this case known distribution could be estimated accurately.
The second data set creates a more diverse range of genes with 4 to 6 stages ranging
from ’not differentially expressed’ to ’clearly differentially expressed’. The table (6.1 b))
show the values for the group means that have been tested. The generated data follows
N(µi,j , 1) and tν(µi,j , 1) (i = 1, . . . , 4/5/6, j ∈ {1, 2}) respectively.

6.2 Results

6.2.1 Data Set 6.1 a)

For the first data set and all types of distributions the set N(1) with cgrid = 1 and
νmax = 45 has been used as parameter space for ν. It is not necessary to choose a
smaller step size, as this first check should only provide an indication, if the algorithm
chooses the right direction with respect the degrees of freedom. Once the algorithm is
close enough to its final error model, the acceptance probabilities become very small and
keep the chain from moving around. This is problematic for the mixing behaviour, but
since accurate estimation of the posterior is not our goal in this test, it is not a serious
problem. However this example means to show that keeping to a relatively large grid size
for the whole simulation can be problematic and thus will be avoided in the following
test runs.
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(a) 20% differentially expressed data
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(b) 50% differentially expressed data

Figure 6.1: Ranked gene function plots for normal data according to table 6.1,a)

As one can see in the figure 6.1 all simulated ’highly differentially expressed’ genes are
indeed recognised as ’highly differentially expressed’. This is a first sanity check that
the program has the ability to identify such gene. However a trend towards staying in
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(b) normal data, time courses
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(d) t4 data, time courses
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(e) t10 data, histogram
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(f) t10 data, time courses

Figure 6.2: Histogram of ν and time courses for ν and τε for the data from 6.1,a).
The grey dashed line marks the mean of τε, respectively the median of ν.

57



6 Computational Results

the preferred model space in clear cases and hardly ever moving by chance is visible, as
the acceptance probability for such a move is extremely low. This mixing problem can
be arguable for the unambiguous ranking of genes, as several genes might have p-values
equal to 1 or 0. Graphics for the 2 types of t-distribution look similar and are therefore
not included.

The histograms in Figure 6.2 clearly show that the algorithm is able to discern the
underlying distribution even when the wide grid of cgrid = 1 is used. The time course
of the degrees of freedom parameter for the t10 data shows why the choice of 45 as
cut-off value for normality was sensible. In order to stay within a t-distribution setting
and clearly discern it from a normal distribution setting the choice of a value of νmax
above 35 was required. This stays true for t distributions with 20 or more degrees
of freedom, however 10 degrees of freedom can be viewed as the maximum value for
providing results in ranking significantly different from the normal distribution setting.
However an improved resolution of different degrees of freedom can only be obtained
with a finer grid over ν. This is discussed in the next section.

6.2.2 Data Set 6.1 b)

For the data sets constructed according to table 6.1 b), two sets will define the state
space of ν:

• N(BI), only used during a first burn-in phase has a grid length cgrid = 1 to roughly
determine the direction ν will take. The test runs on the data from 6.1 a) have
shown already that the algorithm does this accurately.

• N(SA) is defined by a finer grid length of cgrid = 0.01 and will be used for the
second burn-in phase on the fine grid, as well as updates on this grid. The reason
for using a refined grid is the possibility to better explore the posterior distribution.
For such a small grid size the resulting posterior can be viewed as discretisation of
a smooth density, which is important for the mixing of the chains. It also allows
the algorithm to perform jumps in cases when the acceptance probability would
get too small for integer steps.

Figure 6.3 illustrates the effect of the underlying model on the ranking of genes. It
shows results of different scenarios for the distributions for 200 genes. Normally, t4 and
t10 distributed data are fitted by their underlying distribution, as it was found by the
algorithm. Additionally for the t-distributed data sets a normal model has been fitted
in order to visualise the influence the model has on the ranking.
A trend is visible for these models. The normal distribution model on Gaussian data
behaves differently than t distribution and normal distribution on t distributed data, as
in any case the ranking curve for Gaussian date intersects the curves for t data. The
overall behaviour meets our expectations that a t distribution with higher degrees of
freedom has a curve closer to the normal distribution than the t distribution with lower
degrees of freedom. The more genes are used for the runs, the less apparent the difference
becomes. Additionally it can be stated that an incorrectly fitted Gaussian model differs
from the student’s t distribution, independently of how many genes are provided as input
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Figure 6.3: Ranked gene function plots for normal, t4, t10 data for set 2 according to
table 6.1,b)

data. However the significance of that difference is dependent on the respective data and
cannot be generalised.

For normal data, t10 and t4 data the behaviour of ν is as described above: ν tends more
or less directly towards its true value, or a value close by. For the normal data set the
value very rarely leaves the normal distribution setting, as the acceptance probability
for the jumping to the higher dimensional t model is extremely low. On the t4 data set
the algorithm shows the best behaviour in the sense of model selection, as the variation
of ν around its median value is very low. In contrast to this, the t10 data set has high
variation around the median of about 10. Additionally the draws of ν point towards a
bimodal posterior distribution.
Due to the finer grid the degrees of freedom stay in the range of ν which is approached
during the first burn-in phase. The following sampling steps explore the posterior dis-
tribution around this value more precisely.

6.3 Convergence Assessments for the data

A practical analysis of the resulting Markov chains has been conducted using the coda
package for statistics program R ([2]). The package provides a large inventory of diag-
nostics tools focusing on various aspects of convergence assessment.
Several aspects have been regarded in this analysis:

• Stationarity

• autocorrelation
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Figure 6.4: Histogram of ν and time courses for ν and τε for the data from 6.1,b) 2.
The grey dashed line marks the mean of τε, respectively the median of ν.
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• estimates of Burn-In length and required number of iterations

The analysis will be presented for the data of set 6.1 a, with 20% - 80% ratio of highly
differentially expressed genes.
Since the variable ν is the parameter of interest, convergence analysis has been conducted
focussing on ν. The analyses will be conducted for the t4 and t10 data which have been
selected for two reasons. Firstly these are the cases that also occur in the biological data
sets in the next chapter and thus allow us direct comparison and conclusions. Secondly
the analysis of the normally distributed data yields no further gain of knowledge and is
directly comparable to the t-distributions.

t4 data t10 data
Effective size 668 272
Required iterations 1398 7176

Table 6.2: Effective size of the 10000 samples and required number of iterations according
to Raftery-Lewis (q = 0.5, r = ±0.05, s = 0.95)
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Figure 6.5: Graphical convergence diagnostics for t4 data

The Heidelberger-Welch test compares the second half of the data to the first 50%, a
procedure also referred to as half width test, if this should fail, it discards the first 10%,
20%, etc. and continues the comparison until either the null hypothesis is accepted or the
limit of 50% is reached, which automatically implies absolute failure or in other words
that the chain has not converged yet. The chains for all 3 types of distributions have
passed the test based on the Heidelberger-Welch diagnostic instantly without requiring
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(a) Cumulative estimates of quantiles (0.025, 0.5,
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Figure 6.6: Graphical convergence diagnostics for t10 data

the elimination of values.
The estimated effective size of the chains is only a small fraction of the original sample
size, as the degrees of freedom ν are just integer-valued in this case. This causes huge
autocorrelation within the chain of the degrees of freedom values of the t-distribution
and gives us another reason, why such a coarse grid should be avoided.

As a result of the autocorrelation slow mixing can be seen as a problem for estimating
a density in case of having a coarse grids. However it is not a serious problem, as
convergence occurs very rapidly during the phase of burn-in towards the value where the
main probability mass of the density will likely be located. For recognising an underlying
t distribution it is sufficient to know that the degrees of freedom lie within a few integers
around 4 respectively 10-15 with 95% probability. The graphical representation of the
first values of the autocorrelation function shows that large values are taken, due to the
underlying jumps between integers. This is another argument for choosing a finer grid
than cgrid = 1.
In the plot of the cumulative estimates of quantiles (Figure 6.7 ) no clear trend is visible,

which would give an indication that the stationary distribution has not been reached yet.
For the t4 distribution there is no visible change after the first 1000 draws. What can also
be deduced from the graph is that estimation of any other quantile than the median of ν
is not reasonable in a case like this, as even the 2.5% quantile collapses with the mean, as
only integer values are available. The t10 results show no real trend either, fluctuations in
the outer quantiles occur in the beginning, but cease to have influence once that enough
samples have been drawn. It shall not go unmentioned that even in case of the t10 data
the true value of ν of the underlying distribution lies within the empirically estimated
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Figure 6.7: Cumulative estimates of quantiles (0.025, 0.5, 0.975) for t4 and t10 data

95% interval. In the case of a finer grid things will look quite differently as the posterior
distribution can be regarded as continuous then. Thus quantile estimates make much
more sense for getting an impression of actual convergence.

To summarise the results of the last few pages we can say that convergence does generally
occur within the chosen number of draws. This is confirmed by the Heidelberger-Welch
test which all chains have passed. The autocorrelation plots show quite drastically that
slow mixing occurs for the chains of ν. The effective sample size supports this statement.
For both data sets it is only a few hundred draws out of 10000 draws over all which can
be viewed as iid and used for estimates of e.g. quantiles. This is caused by the coarse
grid on the state space of ν which keeps the chain from moving more freely around the
median estimate of ν. This is the reason why for the biological data sets a finer grid for
ν will be used in order to avoid such difficulties and be able to get reliable estimates for
the posterior distribution of ν.
The comparison of rankings for true underlying t distribution against incorrectly fitted
normal distribution and against a true underlying normal distribution has revealed that
differences between the true underlying distributions decreases with increasing number of
genes analysed. The differences between the results of fitting correct model distribution
and the incorrectly fitted error model remain independent of the gene number. However
their significance is dependent on the individual sample and cannot be generalised.
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We want to test the algorithm not just on artificial data sets, but also in ’real life’ situ-
ations of microarray data analysis. Three data sets are selected which cover some of the
variety possible for such experiments. At first an overview over the design of these data
sets used as examples shall be given. Then the results of the Matlab runs are presented
as well as the convergence assessment using the coda package.
Additionally to the methods of convergence assessment presented in the previous chap-
ter a comparison of parallel chains will be conducted. We use four chains with widely
dispersed starting points in order to get a better impression of whether one of the chains
gets stuck at a local modus.
The simulation results for determining the validity of a student’s t distribution assump-
tion for the data are compared to runs which are based on a (fixed) normal distribution
model. For a purely statistical comparison we take a look at resulting gene rankings
which represent the a posteriori inference of the indicators Ig. In order to determine a
possible difference in biological conclusions, the biological effects of both methods are
compared by means of Gene Ontology terms.
At first the numerical setting of the tests is described. As already explained in the pre-
vious chapter, we work in a setting, where the state space of ν will be defined by the
two sets:

• N(BI), only used during a first burn-in phase has a grid length cgrid = 1 in order
to roughly determine the direction ν will take, while

• N(SA) is defined by a finer grid length of cgrid = 0.05 and will be used for the
second burn-in phase on the fine grid, as well as updates on this grid. The reason
for using a refined grid is the possibility to explore the posterior distribution in
a better way. It also allows the algorithm to perform jumps in cases when the
acceptance probability could get too small for integer steps.

The burn-in lengths have been chosen as 500 and 11000 draws have been performed in
total. The initial values of ν have been randomly drawn from the set of {15, 20, . . . , 40}.
All other variables have been initialised by randomly drawing from their prior distribu-
tions.
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7.1 Data Sets

The chosen data sets exemplify some variety of microarray experiment settings. All
details important for the following analysis will be presented very briefly.

Data Set Fly ’Gender Comparison’ Mouse testis data Endothelial cell data

experiment type group comparison time course time course
Species Drosophila melanogaster Mus musculus Homo sapiens
array type cDNA Affymetrix CodeLink Human Uniset
number of arrays 6 22 24

Design
male female

Cy3 (3×) Cy5(3×)
Cy5 (3×) Cy3(3×)

11 time points
2 measurements per
time point

8 time points
3 measurements per
time point

Table 7.1: Overview over biological data sets

• Drosophila ’Gender Comparison’

This data set represents one of the classical experimental settings, i.e. the com-
parison of one type of individuals against another, in our case this will be male
vs. female. The data set is taken from a set of experiments used for the paper
[43]. On 6 cDNA arrays the expression of 13,826 genes is measured for both types
of individuals, male and female fruit flies. The groups are coded by dye colours
which makes swapping the dyes necessary in order to take care of effects introduced
by measuring the respective light intensities, i.e. for half of these arrays the dye
colours are switched.

• Affymetrix time course of Mouse testis cells

The data comes from a series of experiments conducted at the Griswold Lab by
Shima et al. [41]. This time course means to track the gene expression in mouse
testis cells during the progression of spermatogenesis. Samples are collected at
11 time points and for each time point 2 arrays are used for the evaluation in
order to take care of some biological variation. Affymetrix chips are used for the
experiments which have just one channel to be considered.

• Endothelial cell apoptosis time course

The data has been taken from experiments conducted by Affara et al. [4]. This
data set holds another time course which observes the death of human endothelial
cells. Sample collection takes place at 8 time points, from the time of induction of
apoptosis in the cell to 24 hours after that. 3 measurements for each time point
are included in the analysis, these come from independent repeats of the exper-
iment. The RNA has been hybridised to CodeLink Human Uniset 20K gene arrays.
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7.2 Matlab Results & Coda Analysis

For the analysis the expression values were extracted using the tool FSPMA (cite?).
For normalisation the vsn transformation for variance stabilisation and normalisation of
package vsn in R has been used.
Two main findings can be reported when looking at numerical results. Firstly for all
data sets a student’s t model with degrees of freedom of around 4 and about 10 is chosen.
Secondly the inference results for this student’s t model differ from those of a normal
distribution model and have some significant impact on the biological outcome.
Before discussing the results in more detail a brief overview over the convergence assess-
ment will be given. In order to draw any conclusions about the outcome, it should be
clear that these come from the stationary distribution. All 4 chains of all 3 data sets
have passed the Heidelberger-Welch halfwidth test. This result implies the equality of
sample means of the first and second half of each chain. Furthermore the shrinking factor
of the Gelman-Rubin statistic has been calculated which is almost 1 for all data sets.
This statistic determines the homogeneity behaviour of the different chains, and values
close to 1 mean that there is hardly any difference between the chains. Thus pooling
the data for the calculation of estimates, e.g. the sample mean, for all chains is justified.
An overview over the time course of the Gelman-Rubin diagnostics of all 3 data sets is
presented in the Figure 7.1.
The effective size of the samples is quite small for all data sets. This is related to the
high autocorrelation between the draws, as the degrees of freedom parameter is varying,
once it is close to its preferred value. Although this is a nasty behaviour, if a good
estimate of the posterior density were required, this is not an unwanted effect in terms
of model selection, as the degrees of freedom parameter is determined very precisely by
our model. Additionally this behaviour has already been observed for the test data sets
of student’s t distributions.

Flies Data Mouse data Human data
Effective size 242 230 220
Required iterations 6414 8132 8240
Shrinking factor 1.05 1.06 1.00

Table 7.2: Shrinking factor of the combined chains, the average effective size of the 10000
samples and average required number of iterations according to Raftery-Lewis

Our first observation is that all data sets tend towards a student’s t distribution model.
This is little of a surprise since overdispersion is a well-known problem for microarray
data. Conveniently, even though unintendedly the observed t distributions have degrees
of freedom ν of about 4 and about 10, thus being directly comparable to the test data w.
r. t. convergence properties. For both the drosophila data set and the human endothelial
cell data set a distribution with degrees of freedom between 4 and 5 is found to be the
best error model a posteriori, as can be seen from the graphs in figure 7.2. In the case of
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the mouse data set a trend towards a degrees of freedom value of circa 10 is obvious for
all 4 chains. Thus in all three cases the data would require an error distribution which
clearly has more probability mass in the tails than the normal distribution.

Secondly and more interestingly the behaviour of gene ranking is not only found to be
statistically different when compared to ranking computed under the normal distribution
assumption, it also is consistent with the observations of the test data sets regarding this
aspect. For all three data sets the t distribution behaves more conservatively w.r.t. the
majority of genes than the normal approximation. As we can see in the graph of the
Fly data (figure 7.2) in contrast to the time course data sets a high number of genes is
differentially expressed. For this high portion of differentially expressed genes the effect
of the t distribution is visibly larger than for the other two data sets.
A less steep slope and thus higher number of recognised differentially expressed genes
not only affects the amount of genes taken into account for further investigation, but also
has an impact on biological conclusions. For this purpose Gene Ontology terms which
are linked to the observed genes have been tested. This is a simple way of classifying
the data w.r.t. certain biological aspects which have a more concrete interpretation than
the genes or gene products themselves.
The Gene Ontology method is based on the idea of defining biological processes, molecu-
lar functions or cellular components within different levels of generality which are linked
to certain genes. These terms are interconnected with specific terms of the next higher
or lower level according to their functionality which allows for a graphical representation
in form of a DAG.
For each Gene Ontology term a Fisher’s exact test for the amount of genes related to a
biological process within the 2 sets of genes is performed. In our case we test the set of
differentially expressed genes against the rest of the genome. An adjustment of p-values
is required for the multiple tests performed in this step. The webtools FatiGO [5] and
DAVID uses the FDR (false discovery rate) method by Benjamini and Hochberg for this
purpose, other correction methods are possible as well.
We compare the amount of GO terms which are significant for the inference result of
the t distribution model with the amount found for the Gaussian model. An overall
trend can be observed for all 3 data sets. The t distribution is more conservative than
normal distribution in the following sense. If few genes are differentially expressed, less
differentially expressed genes and less significant GO terms are found for the t distribu-
tion model. However these terms are usually the same terms as the ones with lowest
p-value found for the normal distribution model results. If a high amount of genes is
differentially expressed, the t distribution tends to find more GO terms.

In the fly data set a high amount of genes is highly differentially expressed between
males and females and the student’s t model tends towards higher posterior probability
of differential expression. For such large amounts of differentially expressed genes, the
usual GO analysis based on the hypergeometric distribution tends to underestimate the
number of associated GO terms. For his reason the GO term inference was done with
a counts based test implemented by Peter Sykacek in Matlab, which uses a Binomial
distribution with probability 0.5 as null hypothesis that finding active and inactive genes
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(a) Gelman-Rubin plot
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(c) Gelman-Rubin plot of human data
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(d) Ranking of human data (the x-scale is 104)
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(e) Gelman-Rubin plot for mouse data
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Figure 7.1: Gelman-Rubin plot and ranking of t distributed and normal model for mouse
data
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(d) Mouse data, time courses
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Figure 7.2: Histogram of ν and time courses for ν and τε for the 3 data sets.
The grey dashed line marks the mean of τε, respectively the median of ν.
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for inactive GO terms is equally probable and a onesided alternative that active genes
are enriched.
With this method, 72 enriched GO terms of biological processes have been found for the
student’s t model and only 49 for the Gaussian model. Many processes related to cellu-
lar metabolism and biosynthesis (e.g. ”cellular metabolic process” (GO:0044237), ”RNA
metabolic process”(GO:0016070)) are significantly enriched. Even clearer in terms of dif-
fering between male and female flies are processes like ”reproduction” (GO:0000003), ”re-
productive process” (GO:0022414), ”sexual reproduction” (GO:0019953), ”gamete gener-
ation”(GO:0007276), ”female gamete generation”(GO:0007292) and ”oogenesis”(GO:0048477)
which are all found significantly enriched for both the student’s and the Gaussian model.
A number of processes which are only found for the student’s t model are related to al-
ternative splicing, such as ”RNA splicing” (GO:0008380), ”RNA splicing, via transester-
ification reactions” (GO:0000375), ”RNA splicing, via transesterification reactions with
bulged adenosine as nucleophile” (GO:0000377) or ”nuclear mRNA splicing, via spliceo-
some” (GO:0000398). Several experiments (see e.g. [33]) have described that alternative
splicing is important for regulating sexual differentiation in fruit flies.
For the analysis of the mouse data set the webtool FatiGO [5] has been used. We have
included all genes with a posterior probability of being differentially expressed greater
then 0.95. 42 GO categories for biological processes have been identified as significant
in the set of the highest ranked genes found by the Gaussian model, 24 such categories
have been identified for the respective set of the student’s t model. As we are observing
the development of mouse testis cells, we would expect a high activity of Gene Ontology
terms related to the development of gametes. This expectation is met by both data
sets, as terms like ”sexual reproduction” (GO:0019953), ”gametogenesis” (GO:0007276),
”fertilization” (GO:0009566), ”male gamete generation”(GO:0048232), ”spermatogenesis”
(GO:0007283), ”sperm-egg recognition” (GO:0035036) are found to be significant, these
finding are similar to those described in the original paper by Shima et al. [41]. The
student’s t model very specifically finds almost only terms related to these in GO. In
case of this data set the t distribution provides a very specific focus which might not be a
disadvantage.Additionally the normal distribution model finds some biological processes
which can be of interest, such as ”tube development” (GO:0035295), ”actin cytoskeleton
organization and biogenesis” (GO:0030036) or ”skeletal development” (GO:0001501).
We have used the webtool DAVID [22] for the analysis of the endothelial cell data. For
the Gaussian model 84 GO terms of biological processes and 4 cellular components were
significant, whereas for the student’s t model 35 biological processes and 3 of cellular
components could be found. Here the difference between the results are more signif-
icant than for the other data sets. For both models the ”nucleus” (GO:0005634) and
”nucleolus” (GO:0005730) are found to be important cellular components which is con-
sistent with knowledge that nuclear condensation is an event during apoptosis. Among
the significant biological processes terms like ”negative regulation of cellular process”
(GO:0048523), ”negative regulation of biological process” (GO:0048519) can be found
which are not unexpected, as downregulation of normal processes comes along with cell
death. Also found for both models are processes linked to cellular development, such as
”developmental process” (GO:0032502), ”cellular developmental process” (GO:0048869).
Additionally, only the Gaussian model finds several terms related to mitosis, such as
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”mitosis” (GO:0007067) and ”mitotic cell cycle” (GO:0000278) which is also found by
Affara et al. [4] and cell death, ”death” (GO:0016265) and ”cell death” (GO:0008219).
Apparently the student’s t model is too conservative in this case to provide interesting
results.
To summarise the results gained by analysing three biological data sets, a student’s t
model is always found to be preferred compared to a Gaussian model during the model
selection process. Differences between the results of the t and normal distribution model
are visible for the statistical inference results where the student’s t model tends to be
more conservative w.r.t. general behaviour of the data set.
In order to check for differences between the biological implications of the 2 models, Gene
Ontology analyses have been performed. The trend is the same as for the respective in-
ference results. For high amounts of differentially expressed genes, the t model tends to
find more GO terms than the normal model. Whereas for low amounts of such genes it
provides a focus on certain terms which are also found to be significantly enriched by
the Gaussian model.
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The goal of this thesis was to test a possible approach of robustifying a hierarchical
Bayesian ANOVA model designed for the analysis of microarray data. Additionally, it
was meant to provide an understanding of the differences of results compared to the
standard model and their differing biological implications. The specific aim was to gain
robustness of the model likelihood function, i.e. the underlying error model. For this
purpose a whole set of distributions was defined from which the likelihood function could
be chosen.
Robust statistics are meant to work in a setting where not all assumptions of the stan-
dard - in our case Gaussian - model are fulfilled, but one is close enough to this setting
except for some abnormal values. Thus certain properties are shared with the standard
model, e.g. for an error model unimodal, symmetric distributions are reasonable. Ad-
ditionally the distribution should be parametric and provide an up to a certain degree
analytically tractable model. As the goal was specifically to deal with outlying values,
the distributions were to have a high probability mass in their tails. Thus the usage of
non-central student’s t distributions was a reasonable choice.

For the actual calculations and statistical inference a MCMC algorithm has been de-
signed and implemented. It made use of dimension changing moves which allow the
algorithm to switch between different parameter spaces. These were not only required
for modelling the biological setting (differential expression vs. no differential expression),
but also to gain the possibility to include the standard (Gaussian) model into the model
selection process. Aside from the implementation, some theoretical considerations of
convergence behaviour were taken, as far as they could be deduced from the individual
transition kernels. For practical handling of convergence assessment, auxiliary diagnos-
tics had to be used, such as the ones provided by the R package coda.
Before applying the algorithm to microarray data, tests with artificial data sets were
performed to assess its general behaviour. These test results met our expectations, as
the algorithm was able to accurately and precisely estimate the underlying likelihood
setting for all test data sets. Additionally it provided insights into required burn-in
numbers and run lengths, as well as mixing problems for not well-chosen specifications
of the underlying ’data set of possible likelihood functions’.
Applying the algorithm to three data sets of different biological settings has finally pro-
vided an answer to the question, if a student’s t distribution was a reasonable model
distribution for such data sets. For all three data sets student’s t distributions with
low degrees of freedom (4 or 10) were selected which significantly differ from a normal
distribution. Differences in statistical inference results also led to different biological
implications which showed the importance of handling the choice of a model likelihood
with great care.
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8 Summary

Table of mathematical expressions and functions

idR(.) identity of . in space R
I(θ) Fisher’s information (matrix)
IA indicator function
En n-dimensional unit matrix
X state space of observations
B(X ) Borel sets on X
Γ class of distributions
δx(.) Dirac Delta function with mass in x
suppf support of f; i.e. the set of points on which f is nonzero

ξ(.) target density
K(., .) transition kernel
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