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Preface

The aim of this diploma thesis is to give an introduction in the mathematical
modeling of actin filament dynamics. At the beginning we want the reader
to get a grasp at the ideas that inspired us for writing this work as it is.

This diploma thesis is written under the background of a large model for
the movement of a fish keratocyte cell. The prime goal of this master model
is the description of a steady cell movement. We imagine that during this
steady movement the processes inside the cell also run at constant levels.
The filament distribution and the protein concentrations are in a stable dy-
namic equilibrium during this steady movement.

This seems very natural from the biological point of view, but from the
mathematical point of view it is not so clear. Which processes shall be
included in the model and how are they modeled to get a steady state fil-
ament distribution? We assume that the main processes in actin networks
are polymerization and depolymerization, therefore we will try to get sta-
tionary distributions using these two processes as the main components of
our models.

An important question arises when modeling actin filament dynamics: Do
the filaments know of each other, and if there is knowledge how does it affect
the filament’s evolution.
In our work we will present two models with complete different ideologies:
Our first model includes information between filaments, but in our second
model there is no communication between them.

In our second model we will add a fragmentation effect to the two aforemen-
tioned processes. This will lead to a linear model for the ending distribution
with the underlying idea that the filaments do not communicate with each
other. A filament polymerizes, breaks or is created out of a longer filament
by fragmentation, but they have no information from other filaments.
Despite this fact there exists a steady state length distribution of the fila-
ments, where all initial distributions converge to.
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In contrary the first model will have a balancing effect between polymeriza-
tion and depolymerization through information by depolymerizing proteins
in the cell. These proteins regulate the depolymerization probability of a
filament, and over this probability the filaments know how many other fila-
ments are present.
This effect will be displayed in the non-linear flux function of our first model.
The properties of the flux function and the control of the total filament num-
ber by a non-standard boundary condition will lead to a very simple steady
state distribution of the filaments.

The viewpoints of these two models will also differ in another point. There
will be no information over the starting points of the filaments in the second
model, only in the first model this will be used to regulate the total filament
number by the boundary condition.

Summing up, we try to highlight the most important topics in the modeling
of actin filament dynamics. There is a lot of knowledge accumulated in this
work and we hope to communicate our main ideas to the reader.
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Chapter 1

Introduction

The movement of cells is crucial for live. A lot of important processes base
on the transport of information and matter by cells. Three prominent ex-
amples are the flagellum based movement of sperm cells to fertilize an egg,
the migration of white blood cells to an inflammation site and the travel of
fibroblasts to a wound site for wound healing.
In cellular biology the ability of cells to move spontaneously and actively is
called cell motility. During this process energy is consumed. This movement
is often highly directed along some kind of gradient or towards other points.
There exist a lot of different techniques that cells use for locomotion like
flagella, cilia and lamellipodia. In all these types the protein actin plays a
major role.

In this work we will focus on lamellipodia driven cells, which are renowned
for their steady movement. The lamellipodium is a large flat prolongation
of the cell at its mobile edge.
It has a thin sheetlike form, and its most important substructure is the cy-
toskeleton, which is a flat meshwork of actin filaments. The lamellipodium
pulls the cell across a substrate and is its main source of locomotion (see
[1]). Lamellipodia are found primarily in very mobile cells, in particular
the keratocytes of fish and frogs, which are involved in the quick repair of
wounds. Figure 1.1 shows a fish keratocyte and its lamellipodium. During
movement the shape of this lamellopdium is very stable.

In lamellipodia driven cells the movement is caused by the growth of the
actin cytoskeleton. Therefore, to analyze their locomotion means to investi-
gate the behavior and the properties of the cytoskeleton. The basic building
parts of this skeleton are the filaments themselves, and therefore we analyze
actin filament dynamics in order to gain more insight in the cell’s movement.

The dynamic behavior of actin filaments has been the subject of research
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2 CHAPTER 1. INTRODUCTION

and mathematical modeling for three decades now (see [2] and [3]) and it is
still not completely understood.

Figure 1.1: Picture of a fish keratocyte

1.1 Goals

In this master thesis we will give a short introduction to modeling actin
filament dynamics. This includes a brief overview over the most important
facts of actin and the effects that influence its temporal evolution.
The main part will be the derivation and discussion of a simple model for
the time evolution of actin filaments in the lamellipodium of a fish kerato-
cyte. A second model will be presented, which features other aspects, to
show another approach to the topic and to broaden the understanding.
We conclude by giving a short overview over other approaches in the liter-
ature and the most important actin influencing proteins.

The original idea behind this master thesis is to extend the model of a mov-
ing fish keratocyte cell given in the thesis of Dr. Dietmar Ölz (see [4]) by a
model for the length distribution of the actin filaments. Altough we aim to
extend his model, our work is mainly complementary to his.

The main goal of this master thesis is the understanding of the presented
models and their behavior in order to be able to use them in further works.



1.2. A SHORT INTRODUCTION TO ACTIN 3

The main aspects in our analysis for this will be:

• the constitutive equation of the models,

• its mathematical properties,

• possible steady state solutions and convergence to them,

• essential boundary and initial conditions and

• the physical and biological interpretation.

This work comprises modeling a biological process and in biology lots of
different factors influence the events. We want to present a simple model
for actin dynamics, that is the starting point for further investigations. Of
course we have to make many assumptions and skip dependencies, which we
consider not important in order to keep it simple and straight.

This work is applied mathematics and our main interest lies in the modeling
of the processes. In some places we will skip rigorous argumentation and
sketch only our ideas.

1.2 A short introduction to actin

Actin is a structure protein which occurs in all eukaryotic cells. Its main
function is the building of actin filaments. These filaments serve as building
parts of the cytoskeleton, for the stability of the cell shape and for intracel-
lular transport means.
A very good introduction to this topic is given in [5], where we have a lot of
information from.
In vitro1 actin filaments are flexible and buckle easily, but in vivo23 cells
create a dense network of short branched filaments by thightly coupling
nucleation, branching, and cross-linking of filaments in the lamellipodium.
The stiffness of the network enables new filaments to exert force on the
membrane and and provides the structural basis for polymerization driven
protrusion of the cell’s leading edge.

There is a special mechanism for the creation of filaments: First the nu-
cleotide Adenosine Triphosphate binds to an actin monomer. After that an
ATP loaded actin monomer can bind to another actin monomer, the energy
for this process comes from the hydrolysis of ATP to ADP where a phos-
phate molecule is dissociated. This binding of two monomers is also called

1In vitro means during experiments in the laboratory
2In vivo refers to observations in natural surroundings
3The term in silico refers to observations from computations alone
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polymerization.
So actually chains of actin monomers can evolve by a huge number of
monomers connecting with each other, they create actin filaments. Exactly
spoken a filament consists of two chains of polymerized actin monomers,
that are wrought together helix-like.
At the beginning of the filament creation the association of two or three
actin proteins is very unstable, but after they have formed a so called nu-
cleus, the polymerization is very rapid.

Polymerized actin forms filaments with two distinct ends. The barbed (or
plus) end is the preferred polymerization site for monomers, whereas the
pointed (or minus) end favors depolymerization. Of course there happen a
lot more processes than just polymerization and depolymerization activity in
an actin network like the cytoskeleton of the fish keratoctze’s lamellipodium.

The processes and activities of actin filaments are heavily influended by other
proteins. They can be grouped by the effect they have on the filaments:

• Severing proteins: These proteins normally bind between two adjacent
ADP actin monomers of a filament and weaken their connection, so
the actin filament breaks apart at this point.

• Capping proteins: They bind to an ending and magnify or inhibit
polymerization and depolymerization there.

• Sequestering proteins: These proteins sequester actin monomers to
prevent polymerization.

• Crosslinking proteins: They may link filaments together or to the sub-
stratum.

The turnover of actin filaments and the depolymerization of actin monomers
at the filament’s ends can be very rapid according to the cell’s needs.

For further informations on proteins see appendix chapter B in this work.

1.2.1 The modeling of actin dynamics

Actin dynamics and especially actin filament polymerization has been exten-
sively studied, see [6] for a short introduction. A pioneer work on this field
is Oosawa and Asakura (1975) (see [7]), where they describe a nucleation-
elongation model characterized by an unfavorable nucleation step followed
by a more favorable elongation after a stable nucleus is formed. Elongation
here simply means polymerization.
The model presented in this pioneer work is expanded in [3], where four
main elements for modeling actin filament dynamics are proposed:
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• nucleation,

• polymerization and depolymerization,

• fragmentation and

• annealing

Nucleation is the creation of a nucleus, which consists of roughly three actin
monomers, and is the commencing point for the polymerization of a fila-
ment.
Polymerization and depolymerization are self explanatory and refer to the
actins ability to add or remove actin monomers from the ends of existing
actin filaments. The barbed (or plus) end prefers polymerization and the
pointed (or minus) end promotes depolymerization.
The expression fragmentation refers to the breaking of an actin filament
into two smaller filaments. This is caused by severing proteins and/or large
mechanical forces on the filament.
Annealing is the merging of two small filaments into one large filament. It
is still not clear if and how this really affects actin dynamics.

Of course there is a lot more activity going on in the actin network, but
these four elements cover the most important processes. Recent approaches
to actin dynamics modeling use some or all of these elements.
In our main model we will include nucleation, polymerization and depoly-
merization, and in the second model we will skip the nucleation and add
fragmentation. Of course different effects will be observable in these models.

In all the approaches we have listed so far, actin is the focal point of all
observations. This is one ideology of coping with actin filament dynamics.
But there exists another concept of analysis characterized by seeing actin
as a component of a more complex system. For further informations see
chapter A in the appendix. However, we will follow the idea of actin beeing
in the center of the analysis.

1.3 Assumptions and notations

This work is meant to give an introduction to actin filament dynamics in
lamellipodia, so we will adress only the most important facts.
As we mentioned above, one of this work’s main goals is the extension of a
bigger model in the thesis of Dr. Ölz by a model for the density of actin
filaments. Therefore, we will use the notation introduced in his thesis. We
will also adopt his assumptions concerning our work, and introduce new
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ones suiting our cause.

When we speak of the actin network and a filament we have the standard
array as shown in figure 1.2. We use this figure to explain some of our struc-
tural assumptions.

top view:

cross section:

actin
filaments

lea
din

g e
dg

e

lamellipodium
cell
body

filament
density:

filaments:

Figure 1.2: schematic picture of a keratocyte

Structural Assumption 1.1. There is one main direction of filaments,
where a huge number of almost parallel filaments exist. This main direction
is preserved during the cell’s movement.

There is a lot of information gathered in this assumption. Recent research
suggests there actually exist two main directions of filaments in the main
area of the lamellipodium, as seen in figure 1.2, but they are symmetric in
respect to the mirror axis of the cell. Hence this symmetry we assume there
is only one main direction for our calculations.
We set our main axis along this main direction, and name it the x-axis. It
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starts at x = 0 at the front edge of the cell and goes inward. When we say
inside the cell, we mean the region x > 0.
The idea of the main direction also yields the parallelity assumption. The
large number of filaments is a biological fact and justifies the continuum
calculations we are going to do.
This axis is static relative to the cell. When the cell moves into an arbitrary
direction, the main direction stays the same inside the cell.

Structural Assumption 1.2. All filaments are parallel to the x-axis. They
start with their barbed ends at the leading edge at x = 0 and go in the positive
x direction.

Actin filaments are oriented, and in the lamellipodium almost all the barbed
ends point to the front edge. The assumption, that all filaments start at the
edge, is very strong but it simplifies our calculations immensly.
From now on, we refer to the barbed end (at x = 0) also as the beginning
of a filament, and to the pointed end as the end or ending of a filament.
Furthermore, we will call the negative x direction left and the positive x
direction to the right. This follows basic intuition looking at our setup.
In chapter 3 we will show another model and will modify this assumption
slightly.

Structural Assumption 1.3. Polymerization only occurs at the barbed
end and depolymerization only happens on the pointed end of a filament.

Although this is not exactly true, the rate constants in [8] justify this as-
sumption. The polymerization rate at the barbed end is much larger than
at the pointed end. On the other hand the depolymerization rate at the
pointed end of a filament is much higher than at the barbed end.

Structural Assumption 1.4. The concentration of actin monomers and
other proteins have a constant influence on the actin filament dynamics.

We consider all actin monomers and other proteins to be in a stable con-
centration. That means that there are no changes in the properties of these
proteins and thus no changes in the influences of these proteins. In the case
of actin monomers, at every time there are enough free monomers for all
processes to happen in the cell. The number of free monomers is not a lim-
iting factor in the processes, thus there are always enough actin monomers
for the polymerization or nucleation to happen at x = 0.
In our model we only deal with actin, the influence from other proteins is
included in rate constants and other factors.

After our assumptions we introduce the notations used in this work. To
describe the actin dynamics we will use the density of the actin filaments
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η(t, x) (as seen in figure 1.2) and the density of the (pointed) ends of the
actin filaments %(t, x). The density of endings can be seen as the continuous
limit of the number of endings divided by the total number of filaments.
This follows the derivation of this quantity as seen in the next chapter. In
analogy the same ist true for the density of filaments.

η(t, x) = density of filaments at position x at time t

%(t, x) = density of filament endings at position x at time t

We go to the discrete level for showing the connection between them. The
number of endings at a point is simply the difference in the number of fila-
ments between the corresponding positions. In the continous case %(t, x) is
the negative derivative of η(t, x) with respect to x.
In the other direction the number of filaments is just the sum of endings right
of the corresponding point. For this we have to assume that %(t,∞) = 0,
which means there is no filament with infinite length. Then η(t, x) is simply
the integral of all endings right of the point x.

Since every filament starts at x = 0, the state of a filament can be described
either by its length, or by the position of its ending, the information is the
same. In conclusion we have:

%(t, x) = −∂xη(t, x)

η(t, x) =
∫ ∞

x
%(t, y) dy

This is a bijective connection, therefore we can do the calculations with
either %(t, x) or η(t, x). We will mostly use %(t, x), because our modeling
approach is based on the endings. In figure 1.3 an example for η and % are
given.

Remark 1.5. In the main part of our work x describes a position variable,
this is clear according to its introduction. A common approach in literature
(see [9] and many others) is to analyze the actin filament length distribution,
and in these models x is a length variable. But because we have assumption
1.2 our density of endings %(t, x) describes exactly the length distribution
of our actin filaments. So it is not necessary to distinguish between x as a
postion or a length variable in our main model.
In chapter 3 we will show an approach using x as a length variable but the
notation will stay the same.
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Figure 1.3: connection between η and %
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Chapter 2

Polymerization and
nucleation model

Now we derive a simple model for actin filament dynamics. In this model
we will include the effects of

• polymerization,

• depolymerization and

• nucleation.

We start by modeling the two first effects by our constitutive equation and
will introduce the nucleation later in the boundary condition. We use a com-
mon approach in PDE modeling: First we will make a discrete model for
the filament’s ends. Then we will make a homogenization limit for getting
a PDE describing the temporal evolution of the filament ending density.
This approach will get us a hyperbolic transport equation. For the comple-
tion of the model we also have to give an initial and a boundary condition.
The latter one will be a challenge, because we will see, that the boundary
condition will affect the system immmensly.
For the analysis of the system we will give an introduction to the topic of
conservation laws, and we will also show the results of numerical simulations.
Summarizing we will discuss the behavior of the system and the convergence
to a proposed steady state distribution.

2.1 Derivation of the model

The actin filaments are one dimensional structures according to our struc-
tural assumptions. For our modeling approach we will treat actin filaments
as simple chains of monomers. Altough this is not exactly true in reality, it
is a very good approximation for our model.

11
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We start by discretizing the x axis into parts of equal length ∆x. We enu-
merate these intersection points from left to right with the index j starting
with j = 1, 2, 3, . . .. Here ∆x corresponds to the typical length of one actin
monomer. In our model we are looking at the endings of the filaments, and
these ends are located on the intersection points. An ending at j = 1 gives
a filament of length 1 monomer, an ending at j = 2 gives a filament of
length 2 monomers, in general an ending at j = ` gives a filament of length
` monomers (see figure 2.1).
For the means of clarification: an end going to the right means a filament
gets longer, one going to the left means a filament gets shorter. When an
end goes from position j = 1 to the left the corresponding filament dissolves,
its monomers go into the global monomer pool and the filament is not con-
sidered any more.

During this whole work we will describe time with the variable t. For the
model we discretize time, meaning we look at our system in timesteps of
equal length ∆t and enumerate them with index n. ∆t can be interpreted
as a characteristic time for the polymerization of one monomer at the barbed
ends. The timestep n = 0 corresponds to the initial time t = 0, timestep
n = 1 corresponds to the time t = ∆t, in general timestep n = ` corresponds
to the time t = `∆t.

t

j=1 j=2x=0
t=0

n=1

n=2

monomer
ending

j=3 polymerization
x

depolymerizationtimestep

Δ x

Figure 2.1: model scheme

After the discretization, we look at only one filament and note what can
happen to the ending of this single filament. Through the polymerization of
one actin monomer at the filament’s beginning (at the barbed end; x = 0),
the whole monomer chain is moved one postion to the right, and therefore
the ending of the filament moves one position to the right.



2.1. DERIVATION OF THE MODEL 13

At the filament’s end depolymerization of one or two monomers can occur
with a certain probability. When one monomer depolymerizes the ending
travels one position to the left, the depolymerization of two monomers moves
the ending two positions to the left.
Nucleation can only happen at the leading edge and means that one new
ending, and therefore one new filament, comes into life. This effect will be
covered by the boundary condition.

It is important to mention here: We have set ∆t as the characteristic time
for the polymerization of one monomer, and we assume that during one
timestep either one or two depolymerization steps can occur. This is a very
strong and confining assumption. But our efforts for a simple balancing
model led us to this ratio of polymeriaztion and depolymerization.

These were the effects for the ending of one filament, now we look at a con-
tinuum of endings and its behavior. According to structural assumption 1.1
we have a huge number of filaments and therefore ends, so this is justifiable.
We define rn

j and discuss the change of this quantity in time.

rn
j := number of filament endings at position j at timestep n

At first we consider depolymerization in an auxiliary timestep. Depolymer-
ization only happens on the pointed ends, which are at the right end of the
filament. So the depolymerization of one monomer means that the end of
this filament moves one postion to the left. We suppose that during one
timestep only the depolymerization of one or two monomers at the pointed
end can happen, as we mentioned above.

r
n+ 1

2
j = rn

j + p2(rn
j+2)r

n
j+2 + p1(rn

j+1)r
n
j+1 − p1(rn

j )rn
j − p2(rn

j )rn
j

Depolymerization yields the new number of endings at position j is equal to
the old number plus the number of endings that come from position j + 2
plus the number from j + 1 minus the number of endings that travel to
position j − 1 minus the number of endings travelling to j − 2. Here we
haved used the following:

p1 : = probability that endings travel one position to the left
= probability for the depolymerization of one monomer

p2 : = probability that endings travel two positions to the left
= probability for the depolymerization of two monomers

These probabilities depend on the number of endings at that position. Our
idea behind p1 and p2 is, that for an increasing number of endings they
should decrease, so their derivatives should be negative.
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This comes from a biological fact: there is only a limited number of depoly-
merizing proteins at each point. Therefore few endings at a point would
have a higher probability of depolymerization, because there are more pro-
teins present to depolymerize them, and a high number of endings would
have a small probability of depolymerization. We imagine p1(%) and p2(%)
having a form similar to a decaying function, see figure 2.2. For our model
derivation p1(rn

j ) and p2(rn
j ) are just discrete values from these functions.

b -

6

0

p(%)

p1(%)

%

Figure 2.2: characteristic form of the depolymerization probability p1(%)

We will talk later about p1 and p2 in the section over the flux function, and
in the numerics section we will give an explicit example for p1 and p2.
Furthermore it is important to mention, that p1 and p2 only influence the
local behavior, because they affect only two positions apart. This is impor-
tant for the limit n →∞.

After the auxiliary step we incorporate polymerization. We assume that
during one timestep one monomer is polymerized at the barbed ends of all
filaments, so all other monomers and also the filament’s end are shifted one
position to the right.

rn+1
j = r

n+ 1
2

j−1

These two processes together give:

rn+1
j = rn

j−1 + p2(rn
j+1)r

n
j+1 + p1(rn

j )rn
j

− p1(rn
j−1)r

n
j−1 − p2(rn

j−1)r
n
j−1 j = 2, 3, . . . (2.1)

If you change the order of polymerization and depolymerization the result
rn+1
j stays the same, so equation (2.1) is independent of the two processes’

order.

In order to calculate rn+1
j in equation (2.1) we have to know rn

j−1, therefore
it only holds for j = 2, 3, . . .. This represents the absence of a boundary con-
dition, or in other words a rule for rn

1 . We only know that, in each timestep
each ending is moved one position to the right, but we have not defined yet
what happens at j = 1. We will work on this matter later.
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Now we will do some calculations with the expression (2.1). We subtract rn
j

at the left and right side and extend the right hand side. Then we divide
both sides by ∆t and extend the right hand side by ∆x.

rn+1
j − rn

j = −(rn
j − rn

j−1) + p2(rn
j+1)r

n
j+1

=0︷ ︸︸ ︷
−p2(rn

j )rn
j + p2(rn

j )rn
j −p2(rn

j−1)r
n
j−1

+ p1(rn
j )rn

j − p1(rn
j−1)r

n
j−1

rn+1
j − rn

j

∆t
= − ∆x

∆t

(rn
j − rn

j−1)
∆x

+
∆x

∆t

p2(rn
j+1)r

n
j+1 − p2(rn

j )rn
j

∆x

+
∆x

∆t

p2(rn
j )rn

j − p2(rn
j−1)r

n
j−1

∆x
+

∆x

∆t

p1(rn
j )rn

j − p1(rn
j−1)r

n
j−1

∆t

We set a := ∆x
∆t the characteristical velocity of polymerization.

rn+1
j − rn

j

∆t
= a

(
− (rn

j − rn
j−1)

∆x
+

p2(rn
j+1)r

n
j+1 − p2(rn

j )rn
j

∆x

+
p2(rn

j )rn
j − p2(rn

j−1)r
n
j−1

∆x

+
p1(rn

j )rn
j − p1(rn

j−1)r
n
j−1

∆t

)
(2.2)

The idea now, is to make a so called homogenization limit: we let ∆x and
∆t tend to zero (the ratio between them is fixed ∆x

∆t = a), but before this
we introduce some other things.
For this technique we assume that rn

j is the discretization of a sufficiently
smooth (in x and t) function %(t, x), which is interpreted as the density of
endings because rn

j is the number of endings.

rn
j = %(n∆t, j∆x) = %(t, x)

Then we can use the taylor expansion for rewriting rn+1
j , rn

j−1 and rn
j+1, also

assuming that p1 and p2 are sufficiently smooth.

rn+1
j = %(t + ∆t, x) =

= %(t, x) + ∆t ∂t%(t, x) +O(∆t2)
rn
j−1 = %(t, x−∆x) =

= %(t, x)−∆x ∂x%(t, x)±O(∆x2)
rn
j+1 = %(t, x + ∆x) =

= %(t, x) + ∆x ∂x%(t, x) +O(∆x2)
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We insert this in eqation (2.2), fix x and t, make the limit ∆t → 0 and
∆x → 0. During the limit we mind the following changes occur:

rn
j → %(t, x)

rn+1
j − rn

j

∆t
→ ∂t%(t, x)

rn
j − rn

j−1

∆x
→ ∂x%(t, x)

p2(rn
j+1)r

n
j+1 − p2(rn

j )rn
j

∆x
→ ∂x(p2(%(t, x))%(t, x))

p2(rn
j )rn

j − p2(rn
j−1)r

n
j−1

∆x
→ ∂x(p2(%(t, x))%(t, x))

p1(rn
j )rn

j − p1(rn
j−1)r

n
j−1

∆x
→ ∂x(p1(%(t, x))%(t, x))

All in all we get the following equation for the density of the endings:

∂t%(t, x) = a
(

− ∂x%(t, x) + ∂x(p2(%(t, x))%(t, x)) +

+ ∂x(p2(%(t, x))%(t, x)) + ∂x(p1(%(t, x))%(t, x))
)

So the number of endings rn
j transforms into the density of endings %(t, x).

We simplify the last expression and skip the dependencies of % to get our
final equation.

∂t% = −∂x

(
a%

(
1− 2p2(%)− p1(%)

)) ∀(t, x) ∈ (0,∞)× (0,∞) (2.3)

By definig the flux function f(%) we can rewrite (2.3) in a shorter way and
in analogy to classic conservation laws.

f(%) :=
(
a%

(
1− 2p2(%)− p1(%)

))
(2.4)

∂t% + ∂xf(%) = 0 (2.5)

So this is the equation that governs the movement of our filament’s endings.
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2.2 The flux function

Now we take a look at the properties of the flux function f(%) from equation
(2.4). The analysis of this funcion is essential for the understanding of the
system’s behavior.

Our original idea on p1 and p2 was, that they are decreasing as shown in
figure 2.2. Their derivative should be negative and they should tend to zero
for a high number of endings. With these properties for p1 and p2, sim-
ple considerations reveal that the flux function f(%) would have the shape
shown in figure 2.3 with one inflection point at %i.

b -

6

0 %%i

f(%)

f(%)

b

Figure 2.3: complete flux function

However, if we assume, that %i is very large compared to characteristic den-
sities of the system, we would stay in the domain 0 ≤ %(t, x) < %i all the
time. In this domain the flux function is convex, which helps us because the
theory of convex flux functions is far better understood than non-convex
ones.
So for the remainder of this work we assume that %i is large compared to
characteristical ending densities, and therefore we only look at the domain,
where the flux function is convex.

From this assumption together with considerations concerning p1 and p2 we
derived postulations on f . A function f(%) that satisfies these postulations
is an admissable flux function for our system. For the rest of this work we
will only use f and skip using p1 and p2.
We postulate four properties for a function to be an admissable flux function,
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and simply call these four properties (∗ f):

(∗ f)





f(%) is smooth,

f(% = 0) = 0,

f(%) has exactly one positive zero and

∂ 2
% f(%) > 0.

The second property is explained looking at the original derivation of the
flux function in equation (2.4): the flux is zero, when the density is zero.
The third is equal to (1 − 2p2(%) − p1(%)) having exactly one positve zero,
and the last postulate yields the convexity. All together a flux function f(%)
shall have the characteristic form seen in figure 2.4.

b -

6

b
0 %

f(%)

%∗%

Figure 2.4: characteristic form of the flux function f(%)

The crucial information that will be important for our system is included in
this characteristic form of the flux function, therefore we only postulate the
requirements on f(%) and skip p1 and p2. A flux function with the afore-
mentioned properties will lead to the existence of a non-trivial steady state
of our system.

From now on we call the positive zero %∗ and the density, where the mini-
mum of the flux function occurs, %. It is clear that % < %∗.

Our original considerations on this matter started with p1(%) and p2(%),and
it turned out, that only the shape of f(%) is important. Our thoughts on
this topic were, that for an increasing number of % the probabilies p1(%) and
p2(%) should decrease. This comes from the biological fact of a limited num-
ber of depolymerizing proteins at each point, like we have mentioned before.
We will give an example for p1(%), p2(%) and f(%) later in this chapter.

So far we have only talked about the reasons for the characteristic shape of
the flux function, but not its meaning. It is important to understand the
mathematical properties for our further calculations.
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The flux function (as seen in figure 2.4) shows that small densities (0 < % <
%∗) have a negative flux, and big densities (% > %∗) have a positive flux.
This tells us something about the transition of the endings.
The propagation speed of the densities is given by the derivative f ′(%), so
very small densities (% < %) have a negative propagation velocity and middle
to large densities (% > %) have a positive speed.
For readers not used to these terms, this topic will be discussed thoroughly
in the conservation law section of this chapter.

2.3 The initial and boundary condition

In the first chapter we have already made the assumption, that there is no
filament of infinite length. This imposes some kind of boundary condition
at x = ∞:

%(t,∞) = 0 ∀t ∈ [0,∞)

2.3.1 The initial condition

Right now our model only consists of equation (2.5). It is incomplete, be-
cause it lacks side conditions.
At first we give an initial condition for our model, that represents the initial
density of the endings.

%(t = 0, x) = %0(x) ∀x ∈ [0,∞) (2.6)

The initial density %0 shall be piecewise smooth. An assumption we will also
later impose on the solution.

2.3.2 The boundary condition

Next we will focus on the boundary x = 0, which represents the cell’s leading
edge where all the filaments begin. We have to explain what happens there
in order to complete our model. We give this boundary condition so that
our problem is well posed.

It turns out, that this boundary condition is highly non-trival and gathers
a lot of knowledge. It was one of our main works on this model.
At first we present our idea behind the boundary condition, and then we
will state it without further explanation.
At this point we are still missing knowledge about conservation laws to fully
understand how the boundary condition exactly works. Its mechanism will
be explained after the introduction to the conservation laws, because we will
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use the information given there.

At this point we have a constitutive equation which describes the behavior
of the actin filament endings in the interior of the cell. But how is this
behavior regulated? Our main idea is the following:

• when the number of filaments is too small, new filaments should be
nucleated at the boundary and

• when there are too many filaments, they system can evolve uncon-
strained.

So we want to control the system through the total number of filaments,
which is reasonable according to the biological background.
But after stating this, immediately three questions arise:

• How does the boundary know about the interior of the cell? Mathe-
matically and biologically?

• What is nucleation?

• What does unconstrained evolution mean in the first case and what
happens in that case?

The first question is easily answered: We assume that all flaments start at
x = 0. So at the cell’s edge there is information present how many fila-
ments exist in total, because each filament ending in the interior refers to
a filament and has a corresponding beginning at the boundary. It is clear
that the total number of endings is equal to the total number of filaments,
therefore we do not have to distinguish between these two numbers.

With nucleation we mean an increase in the number of filaments. Our idea
is, that new endings (=new filaments) are created at the boundary, and then
travel inside the cell (=the filaments grow).
We actually assume there exist enough nuclei at the boundary x = 0 and
they are only stimulated to grow into real filaments, because real nucleation
has another time scale than polymerization.

The third question is a little bit more problematic. It will turn out, that
in the case of too many filaments present, at first parts and then the whole
density will start moving to the left. When travelling left an ending may
cross the boundary x = 0, this means the corresponding filament is dissolved
and the total number of filaments decreases.
The constitutive equation of (∗%ponu) demands this behavior. The density
with too many filaments will first move to the right a little, and then start
moving to the left. Then the number of filaments decreases. We will explain
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this behavior rigorously later.

So our approach seems very natural, because we have created some kind of
regulating mechanism, which will work well:

• When the number of filaments is too high it decreases according to
the constitutive equation and

• when it is too low we increase it by nucleation at the boundary.

For now we only state the boundary condition and explain its building parts
according to our idea. After the conservation law introduction we will return
to the boundary condition for a deeper analysis.

We start with the quantity we want to control: the total number of filaments,
wich we will define as m(t). As we recall this is equal to the total number
of endings.

m(t) :=
∫ ∞

0
%(t, x)dx

= total number of endings
= total number of filaments

By definition m(t) is equal to η(t, 0) which is indeed the number of total
filaments.

What we do now is clear: we compare m(t) to a refernce number of endings
M . This gives the number of missing filaments, which has to be positive.
Then we define the number of endings that shall be nucleated ν(t), in order
reach the reference number, by scaling the aforementioned difference.

ν(t) :=
α

a

(
M −m(t)

)
+

= number of newly nucleated filaments
M := reference number of filaments
α := growth factor ; α ∈ (0, 1]

Here a is the polymerization velocity from the derivation, and the growth
factor α regulates the nucleation of new filaments, we assume α to be con-
stant for simplification reasons, although other dependencies are conceivable.
The small plus sign right under the brackets in the definition of ν(t) refers
to the term’s positive part.

So ν(t) gives the number of endings, that should be nucleated. But we en-
counter a problem here: When the present density of endings at the bound-
ary is very low %(t, 0) < % there is actually a negative flux that prevents
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the new endings to enter the system. So new endings are only nucleated,
when the nucleation dominates the outward flow. This seems natural but
it is eventually very hard to describe mathematically, because the existing
ending density at x = 0 may influence the nucleation of new endings.

We simply write down the possible cases and the reactions of the system at
the boundary, respective the value of the ending density at the boundary.
We refer to this boundary behavior as %(t, 0) = %b(t), but this is just nota-
tion. The cases are true for every time t ∈ [0,∞).

%b :=





1. ν(t) ≥ %(t, 0) > % ⇒ %(t + τ, 0) = ν(t + τ) τ > 0

2. ν(t) > % ≥ %(t, 0)

a. f(ν(t)) > f(%(t, 0)) ⇒ %(t + τ, 0) = ν(t + τ) τ > 0

b. f(ν(t)) ≤ f(%(t, 0)) ⇒ no boundary condition

3. % ≥ ν(t) ≥ %(t, 0) ⇒ no boundary condition

4. %(t, 0) ≥ ν(t) > % ⇒ %(t + τ, 0) = ν(t + τ) τ > 0

5. %(t, 0) > % ≥ ν(t) ⇒ %(t + τ, 0) = % τ > 0

6. % ≥ %(t, 0) > ν(t) ⇒ no boundary condition

(Note: For t = 0 you have to insert: %(t, 0) = %(0, 0) = %0(0))
So we have not explicitly defined the boundary condition, rather implicitly.
At every timestep we look at the present density at the edge %(t, 0) and
compare it with % and ν(t), and decide how the system will react in the
next instant.
The entry no boundary condition means, that the system can evolve uncon-
strained (we will use this term to refer to this state) according to the rules
of conservation laws. We will see that in this case endings may only flow
outwards and no lack of information occurs.

This exotic boundary condition yields, that new endings (=new filaments)
are only really nucleated, when they dominate the outward flow.
This is a rather uncommon boundary condition, but it describes the desired
mechanisms perfectly. After the conservation laws introduction we will re-
turn to the boundary condition to give further explanations and show that
the problem is well posed.
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2.4 The model

Now we hold on for a moment and recapitulate our findings. All in all we
have equations (2.4), (2.6) and the boundary condition from the last section:

Complete polymerization and nucleation modell (∗%ponu):

∂t% + ∂xf(%) = 0 ∀(t, x) ∈ (0,∞)2

%(0, x) = %0(x) ∀x ∈ [0,∞)

%(t, 0) = %b(t) ∀t ∈ (0,∞)

The flux function has properties according to section 2.2 and the boundary
condition is defined in section 2.3.2. We will use (∗%ponu.1) to refer to the
constitutive equation of the model, (∗%ponu.2) for the initial condition and
respective (∗%ponu.3) for the boundary condition.

For a better understanding we will use the expressions and definitions in-
troduced in [10]. We look at the first equation of our system (∗%ponu.1),
and find, that it has the form of a scalar conservation law. By applying the
derivative onto the flux function we get a slightly different notation. Since
we postulated the smoothness of f(%) we are allowed to do this.

∂t% + f ′(%)∂x% = 0 (2.7)

And this is the exact form of a first order quasilinear partial differential
equation. For this type of equation, we will use the common method of
characteristics for the analysis. In the next section this approach will be
introduced thoroughly.
We mention here that the non-linearity of the problem comes from the flux
function, and displays some kind of communication between the filaments.

Right now we want to explain why (∗%ponu.1) is called a conservation law.
This is because in interior of the domain, the mass (=sum of endings) is
conserved, and new mass (=new endings) can only enter the system via its
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boundaries. We see this by simply integrating the equation over the domain:

∂t% + ∂xf(%) = 0 /

∫ ∞

0
. dx

∫ ∞

0
(∂t% + ∂xf(%)) dx = 0

∫ ∞

0
∂t% dx +

∫ ∞

0
∂xf(%) dx = 0

∂t

∫ ∞

0
% dx = −

∫ ∞

0
∂xf(%)dx

∂t m(t) = − f(%(t, x = ∞))︸ ︷︷ ︸
=0

+f(%(t, x = 0))

∂t m(t) = f(%(t, 0)) (2.8)

So the total number of endings changes according to the flux of the endings
at the boundary x = 0. This is natural but we will draw a lot of conclusions
from that later.

Before going furhter we want to mention, that (∗%ponu.1) and (2.7) of course
describe the same equation. We will use the form which suits our demands
at best for the following analysis.

2.5 Introduction to conservation laws - Part 1

For the following analysis of our system and for a better understanding, we
give an introduction to conservation laws. Hereby we follow the approach
given in [10].

We start by applying the method of characteristics to our problem (∗%ponu).
The idea behind this method is simple: We want to convert our PDE into a
system of ODEs. Suppose %(t, x) solves (∗%ponu) and fix an admissable point
(t, x). We would would like to calculate %(t, x) by finding some curve lying
in the coordinate region, connecting (t, x) with a point (0, x0) and along
wich we can compute %(t, x). Because we have an initial condition for time,
we know %(0, x0). We hope then to be able to calculate % all along the curve,
and so in particular at (t, x).

In this two dimensional case this procedure is equal to building the solution
surface %(t, x) over the (t, x) plane out of space curves. The projections
of these space curves to the (t, x) plane are the aforementioned connect-
ing curves. This whole procedure is accomplished by trying to find a new
parametrization (s, x0) of the solution surface, where the space curves only
depend on the parameter s and their starting point only depends on x0.
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Having this representation of the solution we could transform back to the
original parameters, but this is not always possible in the general case. For
further informations see [10].

Now we apply this method to our problem, but we exclude the boundary
condition (∗%ponu.3) at first and analyze its effect later. So our system
consists of:

∂t% + f ′(%)∂x% = 0 (2.9)
%(0, x) = %0(x)

We choose a new parametrization (s, x0) for the solution surface % = %(t, x)
such that it is now described by the following equations: (We use x =
x(s, x0), t = t(s, x0) and %(t, x) = %̂(s, x0) )

∂t

∂s
= 1

t(0, x0) = 0
∂x

∂s
= f ′(%̂(s, x0)) (2.10)

x(0, x0) = x0

∂%̂(s, x0)
∂s

= 0

%̂(0, x0) = %0(x0)

Of course this system can be seen as a transformation of the original system
via:

∂%(t, x)
∂s

=
∂%̂(s, x0)

∂s
=

∂%̂

∂x

∂x

∂s
+

∂%̂

∂t

∂t

∂s

We start solving system (2.10) by solving the first equation using its initial
condition.

∂t

∂s
= 1 ⇒ t = s + const(x0)

t(0,x0)=0
= s

t = s (2.11)

So s and t are equal. Next we switch to the last equation of the transformed
system and its initial condition.

∂%̂(s, x0)
∂s

= 0 ⇒ %̂(s, x0) = const(x0) = %̂(0, x0) = %0(x0)

%̂(s, x0) = %0(x0) (2.12)

This is very interesting, since it shows that %̂ and therefore % is constant
along the charcteristics, % is independent of s and has the value of the initial
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point %(0, x0) along the characteristic.
Exactly spoken the space curves (s, x(s), %(x(s))) are called characteristics
of the system, but we will also call their projections to the (t, x) plane
characteristics.
At last we focus on the remaining equation

∂x

∂s
= f ′(%̂(s, x0)) = f ′(%0(x0)) ⇒

x = f ′(%0(x0))s + const(x0)
x(0,x0)=x0= f ′(%0(x0))s + x0

x = f ′(%0(x0))s + x0 (2.13)

We summarize or findings starting with the charcteristics. We simply insert
(2.11) in (2.13) to get

x = f ′(%0(x0)) t + x0 (2.14)

So the characteristics are straight lines in the (t, x) plane. They start at
the value x0 and have a slope of f ′(%0(x0)). So their slope depends on the
density of the initial point %0(x0), and on the first derivative of the flux
function. It is very important, that f ′(%0(x0)) can be interpreted as the
velocity of the density, since the characteristics travel in x direction with
this velocity.
Equation (2.12) yields that along characteristics % is constant. So constant
densities travel with the aforementioned velocity (see figure 2.5).
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Figure 2.5: characteristics

These are some very important and useful informations, and we will keep
them in mind.
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We would like to transform %̂(s, x0) back to have an explicit solution of
the form % = %(t, x), but this is not possible in the general case and also
not possible for our setting. The only thing, we can achieve is an implicit
representation of %(t, x) by rewriting (2.14) and using (2.12)

x0 = x− f ′(%0(x0)) t

%(t, x) = %̂(s, x0) = %0(x0) = %0(x− f ′(%0(x0))) = %0(x− f ′(%(t, x)))
%(t, x) = %0(x− f ′(%(t, x)))

Altough this equation can not be solved in the general case, we have ex-
tracted a lot of information of system (2.10) so far, like the characteristics
and that the densities are constant along them. We also know the propaga-
tion speed of the densities.

All our findings so far are only true as long as the characteristics with dif-
ferent densities do not intersect.
We recall the characteristic form of our flux functionf(%) from figure 2.4.
So the derivative of the flux function could have the form seen in figure 2.6
(left) and therefore intersections of characteristics are possible, see figure 2.6
(right).
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Figure 2.6: intersection of characteristics

Crossing characteristics: So it is possible for characteristics to intersect.
Since (2.12) shows that % is constant along the characteristics given in (2.14),
an apparent contradiction arises. The resolution is that our system (∗%ponu)
does not in general have a smooth solution, existing for all times t > 0.
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2.6 Introduction to conservation laws - Part 2

In this section we give a brief overview over chapter 3.4.1 in [10] and its
most important facts in order to understand the most important properties
of conservation laws. The facts we will give can be applied to general con-
servation laws and especially to our problem.

The result of the last chapter suggests, we must devise some way to interpret
a less regular function % “solving” our system. But the PDE (the constitutive
equation from system 2.9)

∂t%− f ′(%)∂x% = 0

does not even makes sense, if % is not differentiable. The idea is to multiply
this equation by a smooth function v, integrate over the whole domain and
use integration by parts, thereby transferring the derivatives onto v.
This kind of solution is called integral solution. We skip the details here and
refer to [10] for further information.

From now on, we assume that % has a simple structure: it is piecewise
smooth. Then we can deduce another important fact for the integral solu-
tions of conservation laws: the velocity of a shock curve σ, by the Rankine
- Hugoniot condition:

σ =
f(%l)− f(%r)

%l − %r
(2.15)

Here f denotes the flux function, %l means the limit of the density from
the left and respectively %r from the right. Obviously the speed σ can vary
according to the values of %l and %r (see figure 2.7).

We now try to solve a similar problem as shown in figure 2.7, now assuming
%0 with %l < %r. At first this problem seems trivial. The Rankine Hugoniot
condition applies and we get a shock curve. But we can construct another
solution that satisfies the requirements for an integral solution too (see fig-
ure 2.8).

The right picture in figure 2.8 shows a rarefaction wave, where characteris-
tics with all densities between %l and %r start. It is also an integral solution
of our system.
Thus we see that integral solutions are not in general unique. Presumbly
the class of integral solutions include various “nonphysical” solutions, which
we want to exclude.

Entropy condition: To build a “physically correct” solution, we expect %
to be the limit of solutions %ε of an approximating solution. The idea is to
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Figure 2.7: velocity of a shock curve

include a diffusion term in our system, let the diffusion tend to zero, and
watch the behavior of the solution.

We say % is an entropy solution of the system (2.9), if %ε solves

∂t% + f ′(%)∂x% = ε∂2
x% (2.16)

%(0, x) = %0(x)

and %ε tends to % in some sense.

%ε ε→0−→ % a.e.

For further details we refer to [10]. We also want to state that this kind of
convergence is very hard to prove.
An entropy solution is sometimes also called viscosity solution, because the
limit process is called viscosity limit.

This definition of a physical solution is somehow not useful. However it can
be shown that this definition is equal to a definition reached from far simpler
considerations:
We know that we typically encounter the crossings of characteristics and
resultant discontinuities in the solution, if we move forward in time. But we
can hope, that if we start at some point, some time T > 0 and go backwards
in time along a characteristic, we will not cross any others. In other words,
let us consider the class of, say, piecewise-smooth integral solutions of (2.9)
with the property, that if we move backwards in t along any characteristic,
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Figure 2.8: left: unnatural shock right: rarefaction wave

we will not encounter any discontinuities in %.

This consideration together with the assumption that f(%) is uniformly con-
vex (which is true since we postulated it) shows that shocks can only occur
when the following is true:

%l > %r

When it is the other way round %l < %r, a rarefaction wave occurs. In the
first case the propagation speed of a shock is limited by:

f(%l) > σ > f(%r)

This definition of a physically correct solution is much more usable than the
first one, and because it is very important for us, we want to repeat it one
more time:
When there is a discontinuity in % with %l > %r it propagates as a shock
according to the Rankine-Hugoniot condition. From a discontinuity with
%l < %r a rarefaction wave emerges. This is a conclusion from the fact, that
no new characteristics can spread from a shock.
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2.7 The influence of the boundary condition

With the knowledge of the last two sections we are ready to cope with the
boundary condition. We start by recalling the characteristic form of the flux
function and the idea of the boundary condition:

b -

6

b
0 %

f(%)

%∗%

Figure 2.9: characteristic form of the flux function f(%)

• When the number of filaments is too high, the system may evolve
unconstrained,

• when it is too low we increase it by nucleation, but new filaments only
enter when they dominate the outward flow.

What the first point means is clear now, we do not give any additional in-
formation and let the system evolve according to the theory of conservation
laws. With the characteristic form of the flux function, characteristics with
a negative slope (f ′(%) < 0), created from rarefaction waves or low densi-
ties, are possible. These will travel to the left over the boundary, and simply
vanish there. During this process the total number of endings decreases.

We recall: When the characteristics do not cross, the speed of a density
is f ′(%). In the unconstrained case this is important, because the maximal
possible value of the ending density at the boundary %(t, 0) t > 0 can only
be % (remember f ′(%) = 0). This is clear, since lower densities (% < %) have
a negative speed and would travel to the left, and from the boundary no
characteristics with higher density enter. So a characteristics with density %
exactly at the boundary would have no velocity, and therefore the boundary
value would stay constant. (Note: In this case the flux is negative, and after
some time, ν(t) would dominate the outward flow.)

The second point is also clear: Only when the newly generated endings
ν(t) would enter the system, they are set as a boundary condition. This
means, only if the new information from ν(t) has a positive speed, it is set
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as boundary condition. So there are some points that have to be satisfied
in order that ν(t) is set as a boundary condition:

• ν(t) > %: The new endings shall have a positive speed.

• ν(t) > %(t, 0): The new endings shall have a higher density than the
one present at the boundary in order for a shock to emerge. (The
initial denisty is an exception here.)

• σ = f(ν(t)−f(%(t,0))
ν(t)−%(t,0) > 0: The aforementioned shock shall have a positive

velocity.

These are the requirements for new endings to really enter the system.

Now we recall the boundary condition from the section 2.3.2 and look at it
under the viewpoint of the newly acquired knowledge:

1. ν(t) ≥ %(t, 0) > % ⇒ %(t + τ, 0) = ν(t + τ) τ > 0

2. ν(t) > % ≥ %(t, 0)

a. f(ν(t)) > f(%(t, 0)) ⇒ %(t + τ, 0) = ν(t + τ) τ > 0

b. f(ν(t)) ≤ f(%(t, 0)) ⇒ no boundary condition

3. % ≥ ν(t) ≥ %(t, 0) ⇒ no boundary condition

4. %(t, 0) ≥ ν(t) > % ⇒ %(t + τ, 0) = ν(t + τ) τ > 0

5. %(t, 0) > % ≥ ν(t) ⇒ %(t + τ, 0) = % τ > 0

6. % ≥ %(t, 0) > ν(t) ⇒ no boundary condition

Case 1. is clear: the new endings dominate the outward flow and will have
a positive velocity, the same is true for case 2.a., so ν(t) is set as bound-
ary value. On the contrary in the cases 2.b., 3. and 6. the outward flow
dominates or is equal to the new endings, so no action is taken, and the sys-
tem can evolve unconstrained according to the theory of entropy solutions.
Cases 4. and 5. cope with big initial densities at the boundary, but function
exactly like the others.
So with the conservation law knowledge the boundary condition is just a
triviality. Of course the cases of the boundary condition can change dynam-
ically, but that reflects the nature of the system.

We want to highlight case 2a.: It shows that low ending densities are hin-
dered from entrance, when there are nearly no other endings present. Thus,
the presence of some endings promotes the growth of new ones. In biologi-
cal terms, when the depolymerizing proteins deal with present endings, new
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endings can be nucleated easier. All in all this can be seen as some entrance
resistance.

We also want to give a graphic approach for the better understanding of the
boundary condition through figure 2.10.
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Figure 2.10: influence of the boundary condition

The left side of figure 2.10 shows the unconstrained state, the endings can
travel to the left over the boundary and dissolve. The right side shows, when
the total number of filaments is too low, new ones are nucleated and they
really enter the system. Of course the distinction between the cases depends
on the total number of filaments, not seen in these pictures.
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2.8 Numerics

Now after having studied the basic properties of conservation laws we move
further to the numerical simulations. We have seen that it is very unlikely
to explicitly solve our system (∗%ponu), so we aim at finding other means for
the description of the system’s behavior.

With the information of the last sections, we have a very good point to com-
mence from. Through the characteristics we know how different densities
move and we know about shocks and rarefaction waves. But even with this
information it is hard to describe the evolution of the system. Therefore we
will use numerical simulation to our aid. We will simulate different scenar-
ios and look how the system evolves. We will compare this behavior with
our previous findings and will draw important conclusions. The main goal
of this section is to get information about the qualitative behavior of the
system.

However, this task will not be easily accomplished, because the numerical
simulation of partial differential equations is difficult. In our case we at-
tempt to solve a non-linear (the flux function f is nonlinear) conservation
law numerically. We will run into additional problems compared to linear
equations, because the nonlinearity makes everything harder.
A very good introduction to the topic of numerical simulation of partial
differential equations is [11]. For the simulation of conservation laws and
especially their nonlinear versions we recommend [12]. We draw a lot of
information from the second book.

For our simulations we take a very natural approach. We commence from
our very first equation (2.1) and derive a numeric scheme according to our
modeling approach.

rn+1
j = rn

j−1 + p2(rn
j+1)r

n
j+1 + p1(rn

j )rn
j − p1(rn

j−1)r
n
j−1 − p2(rn

j−1)r
n
j−1

rn+1
j = rn

j − rn
j + p2(rn

j+1)r
n
j+1 + p1(rn

j )rn
j

+ p2(rn
j )rn

j − p2(rn
j )rn

j︸ ︷︷ ︸
=0

+rn
j−1 − p1(rn

j−1)r
n
j−1 − p2(rn

j−1)r
n
j−1

rn+1
j = rn

j − (rn
j − p2(rn

j+1)r
n
j+1 − p2(rn

j )rn
j − p1(rn

j )rn
j )

+ rn
j−1 − p2(rn

j )rn
j − p2(rn

j−1)r
n
j−1 − p1(rn

j−1)r
n
j−1
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By defining the numerical flux function F

F (rn
j , rn

j+1) := rn
j − p2(rn

j+1)r
n
j+1 − p2(rn

j )rn
j − p1(rn

j )rn
j (2.17)

we can rewrite the above equation into a much simpler form.

rn+1
j = rn

j −
(
F (rn

j , rn
j+1)− F (rn

j−1, r
n
j )

)
(2.18)

This is the exact from we need for applying a conservative method for nu-
merical simulation of conservation laws (see [12]).
We define a time stepsize k and a space stepsize h, and are able to write
down our numeric scheme according to the last equation.

rn+1
j = rn

j −
k

h

(
F (rn

j , rn
j+1)− F (rn

j−1, r
n
j )

)
(2.19)

We will use this equation as our prime rule for our numerical simulations. In
this context we see rn

j as the density of endings at postion j at timestep n.
j = 1 stands for the left boundary and the boundary condition is included
in the definition of rn

1 . Furthermore, n = 1 represents time t = 0 and the
initial condition is included via r1

j .

A very important property of our numerical flux function is, that by setting
the second argument of F (rn

j , rn
j+1) to rn

j we exactly get our original flux
function. This is also a necessary condition for the applicability of this
scheme.

F (rn
j , rn

j ) = rn
j − p2(rn

j )rn
j − p2(rn

j )rn
j − p1(rn

j )rn
j = f(rn

j )

We could have also used the normal flux function f instead of the numerical
one in the simulations, meaning we could have simply rediscretized equation
(∗%ponu.1).
Of course there exist a lot of other numerical schemes for conservation laws,
including flow directions and so on, but our approach is very natural accord-
ing to the derivation of the model and it yields qualitative good outputs.

In the simulations we do not use f directly, we take the original approach
with p1 and p2 as the flux function’s main building parts. We have used the
following functions (see figure 2.11), according to the idea that they represent
the probabilty for a one or two step depolymerization of a monomer.

p1(%) := e−0.0704 % (1− 0.6 e−0.0704 %)
p2(%) := 0.6 e−0.1408 %



36 CHAPTER 2. POLYMERIZATION AND NUCLEATION MODEL

p1(%)

p2(%)

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

Figure 2.11: depolymerization probabilities p1(%) and p2(%)

Thus the resulting flux function (see figure 2.12) is

f(%) = %(1− 2p2(%)− p1(%))

f(%) = %
(
1− 1.2 e−0.1408 % − e−0.0704 %(1− 0.6 e−0.0704 %)

)

f(%)

%∗%
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Figure 2.12: flux function f(%)

Because we use the original derivation of the flux function, our densties
have to stay under %i = 25, 62 in the simulations. We have to check two
conditions to ensure this: α

a M < %i and %0(x) < %i ∀x. And both conditions
are satisfied.
The positive zero of this flux function is

%∗ = 5.00

The minimum of the flux function is at

% = 2.23 .
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We could also prescribe a flux function, instead of starting with p1 and p2,
but then we could have to adapt our numerics scheme, because it is derived
from the original modeling approach.
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2.8.1 Experiment 1

We have a simple initial condition: % = 0 everywhere, except between j = 10
and j = 25, where the density is % = 10. We want to know how this simple
initial condition evolves.
The parameters used are: h = 0.1 (space stepsize), k = 0.1 (time stepsize),
a = 1 (polymerization velocity), α = 0.25 (growth factor) and M = 100
(reference number of endings/filaments).
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In the following we show the temporal evolution of the filament density.
The pictures dircetly correspond to the ending densities on the left, the
connection is explained on the next page.

Evolution of the filaments
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At first we explain the given figures:
On the left page we have the temporal evolution of the ending density. Each
picture represents the density of the endings at a given timestep. Exactly
spoken the values of rn

j are depicted, which are the discretization of %(t, x)
according to our modeling.
The main goal of this work is a model for the filament density and therefore
we also show the filament density (on the right page) corresponding to the
ending density seen on the left. We depict the number of filaments kn

j , which
are seen as the discretization of η(t, x), derived from the number of endings
via

kn
j := number of filaments at point j at timestep n =

N∑

i=j

rn
i

This connection is analog to the relation between % and η:

η(t, x) =
∫ ∞

x
%(t, y) dy

The x-axis of each picture is the common x-axis of our modeling approach.
The caption of the axis refers to the number j of the intersection points. We
remember, we have discretized the x-axis into equal parts of length ∆x and
started numerating these points with j = 1, 2, 3, . . . . The boundary x = 0
is represented by the point j = 1, the first point to the left.
The y-axis of the shown pictures gives the value for the ending (respective
the filament) density.

For the evolution of the system we have arranged the pictures according to
their temporal structure. We start with timestep n = 1 showing the initial
condition and commence with increasing time step number, left to right, top
to bottom. The number of the timestep is written left under the densities.
Also the total number of endings, which is equal to the total number of
filaments, is displayed right under each picture.
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Observations from experiment 1

We focus on the ending density, because it is the main building part of our
modeling approach. The filament density is a byproduct of our calculations
and just shown for clarification.

First, we clearly notice the formation of a shock at the right of the ending
density, and also a rarefaction wave at the left side. This is in very good
accordance with our findings from the conservation laws. The form of the
shock on the right side is blurred by the numerics.

We also observe there exist two distinct phases:
In the first phase the system evolves unconstrained. At the beginning the
total number of filaments is greater than the reference number m(t) > M .
The plateau travels to the right and decreases in width. Then it completely
vanishes and the remaining peak keeps travelling to the right, loosing height
in the process.
Meanwhile the rarefaction wave to the left hits the boundary and endings
start flowing over the boundary. This means filaments are dissolved and so
the total number of filaments decreases.

The number of filaments is strictly decreasing, reaching the point when
m(t) = M and the nucleation of new filaments begins. Because the outward
flow of the system is still stronger, it dominates over the nuleation and the
filament number is decreasing unperturbed.

On a certain point the nucleation starts dominating the outward flow, this
is the beginning of the second phase:
A right travelling wave emerges, and this wave balances the whole density
as it moves to the right. The number of filaments is decreasing very slowly
now and the number of nucleated endings rises accordingly.
After some time a uniform distribution of the ending density settles, which
is stationary.

It seems that the ending density converges to a stationary steady state with
a formidable simple form. In this form the nucleation and the outward
flow seem to chancel each other, also the shock to the right is stationary.
Furthermore the balanced number of filaments is not the reference number,
it is lower.
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2.8.2 Experiment 2

Also in experiment 2 we have a rather simple initial condition. Two ag-
gregations of endings, with a steep slope. At the top they have a density
of % = 10, otherwise no endings. Will we observe a similar behavior as in
experiment 1?
The parameters used are: h = 0.1, k = 0.1, a = 1, α = 0.15 and M = 150.
Evolution of the endings
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Evolution of the filaments

Analog to experiment 1 we present here the filament densities corresponding
to the ending densities to the left.
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Observations from experiment 2

Here not enough filaments are present from the beginning, this is the most
important difference to experiment 1. So new filaments are nucleated right
from the start. Because a large number of filaments is missing, a large num-
ber of filaments is nucleated. These new endings emerge in a wave from the
boundary.

Meanwhile the two endings aggregations move, a shock-like shifting to the
right and a rarefaction wave to the left. They are behaving similarly to the
mass in experiment 1. The two peaks move to the right losing height in the
process.
The nucleation wave from the boundary also moves to the right, its front
decreasing in height and starting to devour the first peak.
The mass is constantly increasing and so the number of newly nucleated
filaments sinks at the boundary. But it is still large enough to transport the
whole nucleation wave to the right.

As the time passes the nucleation wave flattens and its front is only slightly
higher than the rest.
The first aggregation is incorporated into the wave from the left. The right
one has flattened out and starts moving to the left, we have seen this be-
havior in another scale from the big mass in experiment 1.

Eventually the nucleation wave devours the remaining parts of the second
aggregation and balances itself in a uniform stationary distribution. We
have seen this shape in experiment 1, although its evolution was different.

So we guess there exists a unique stationary density, where our system con-
verges to. Of course we did a lot of other simulations not shown here, all
confirming this conjecture.
By comparing the results of experiment 1 and 2 we see, that this stationary
distribution has a value near the zero of our flux function. But they differ
in the length of the distribution. Furthermore, we have to investigate the
stationary number of filaments.

2.9 Analysis of the system

In this section we want to analyze the behavior of our polymerization and
nucleation model, using our gathered knowledge and findings.

Initially we want to state that there exists a steady state for the ending
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density. Further we will use this to show that the system will converge to
this steady state. All the proofs will be heuristic and not rigorous. However,
we will state an idea how everything can be done exactly.

2.9.1 The steady state

The numerical experiments from the last section suggest that there exists a
steady state for the ending density. Now we will show the derivation and
the properties of this steady state.

We start by recalling the constitutive model equation (∗%ponu.1):

∂t% + ∂xf(%) = 0

A steady state solution means ∂t% = 0 and there are no changes in the
density any more. For a conservation law equation and its theory the flux
therefore has to be zero. According to the characteristic shape of our flux
function (see figure 2.4) we have two values for % where the flux is zero:

f(% = 0) = 0 and f(% = %∗) = 0

We assumed that our solutions should be piecewise smooth functions, so
we can actually build a density function with interchanging values of % = 0
and % = %∗ with flux zero all over the distributionThe only. But due to
the occurence of shocks and rarefaction waves, such functions would not be
stationary. There actually exists only one stationary shape of a density in
time, it has the following form:

%(x) =

{
%∗ for x ∈ [0, L]
0 for x ∈ (L,∞)

The shock at the right end of this distribution is stationary since the Rankine
- Hugoniot condition states

σ =
f(%∗)− f(0)

%∗ − 0
= 0

The only remaining question is, what is the value of L? Of course, the first
guess would be L = M/%∗, so that the area under the density (=total num-
ber of fialments) would be M , the reference number of filaments. But then
ν(t) would be zero, and in the next instant a rarefaction would emerge.

So we also have to guarantee the stability state at the boundary. The sim-
plest solution to this is that the newly nucleated filaments are equal to the
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prevailing density in the domain ν(t) = %∗. Simple calculations reveal that
therefore the number of filaments has to be constant at a distinct value.

ν(t) =
α

a

(
M −m(t)

)
+

= %∗

m(t) = M − a

α
%∗

m∞ := M − a

α
%∗

We call this the equilibrium number of filaments, and observe that it is
always lower than M . So when this number of filaments m∞ is present, our
boundary value is equal to the desired value ν(t) = %(t, 0) = const. = %∗.
So we can calculate L over the area under the density distribution to match
m∞

L =
M

%∗
− a

α

So all in all we get the following steady state distribution, which will stay
constant at all times. All other conceivable distributions are not stationary,
but this one is.

%∞(x) :=





%∗ for x ∈
[
0, M

%∗ − a
α

]

0 for x ∈
(

M
%∗ − a

α ,∞
) (2.20)
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Figure 2.13: characteristic form of the steady state density %∞

Of course, inserting (2.20) in (∗%ponu) shows that is indeed a solution.
It is very interesting that the number of filaments does not tend to the
refernce number M , but to the equilibrium number m∞. And we want to
mention one more time, when this number is present it does not change any
more. We recall equation (2.8):

∂tm(t) = f(%(t, 0)) = f(%∗) = 0 ⇒ m(t) = const. = m∞

So everything fits perfectly, because the steady state observed in our numer-
ical simulations matches the one from theoretical considerations.
We are quite clear that this is the only steady state and hope that the
absence of a rigorous proof is made up by the arguments we have given.
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2.9.2 Convergence to the steady state

In the last section we have shown the existence of a steady state %∞(x) for
our system (∗%ponu), and of course now we want to show the convergence to
this steady state. Like in the previous section we give heutistic arguments
for the convergence rather than a rigorous proof.
We divide our argumentation in two cases depending on the total mass,
because the total mass influences the density at the boundary and therefore
regulates the flux via equation (2.8).

1. m(t = 0) ≤ m∞

2. m(t = 0) > m∞

The first case is when the starting number of filaments is smaller than the
equilibrium number, in the second case it is greater. We will need this simple
calculation later:

m(t = 0) ≤ m∞(
M −m(t = 0)

) ≥ (
M −m∞

)
α

a

(
M −m(t = 0)

)
+︸ ︷︷ ︸

=ν(0)

≥ α

a

(
M −m∞

)
+︸ ︷︷ ︸

=%∗

ν(0) ≥ %∗ > % (2.21)

First case: m(t = 0) ≤ m∞
So the starting number of filaments is lower than the equilibrium number.
The shown calculation (2.21) yields, that instantly new filaments are nucle-
ated, and this keeps going on.

ν(t) = %(t, 0) ≥ %∗ > %

⇒ ∂tm(t) = f(%(t, 0)) ≥ f(%∗) = 0

The number of filaments m(t) rises to the equilibrium number of filaments
m∞ and accordingly the newly generated filaments ν(t) = %(t, 0) decrease
to %∗. This behavior represents the solution of the following ODE, derived
from equation (2.8) and the boundary condition:

∂tm(t) = f(%(t, 0)) = f(ν(t)) = f(
α

a
(M −m(t)))

∂tm(t) = f(
α

a
(M −m(t)))

m(0) = m0 (2.22)
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This behavior is exactly what we observed in numerical experiment 2: The
filament number gradually rose to the equilibrium number, while the bound-
ary value dropped to %∗. When these points were reached, they stayed fixed
and the remaining density evolved into the equilibrium density %∞(x).

This is exactly what happens in the analytical system, although the ex-
act values won’t be reached that quickly: as the filament number and the
boundary value evolve, the characteristics from the newly nucleated end-
ings produce a shock wave that propagates inwards. Commencing from the
boundary, these characteristics gradually change the existing ending density
into the equilibrium density %∞(x).

When the starting number of filaments is equal to the equilibrium number,
the boundary value of %∗ will stay exactly fixed, and the same things as
mentioned before will occur. So this is a special case of the aforementioned
considerations.

All in all this is a very strong result, and it seems that the boundary con-
dition alone regulated the whole density to the steady state. So in the first
case the convergence to the steady state is clear.

Second case: m(t = 0) > m∞
In this case our total number of filaments is larger than the equilibrium
number, and in analogy to (2.21) we derive that for this case the number of
filaments keeps decreasing.

m(t = 0) > m∞(
M −m(t = 0)

)
<

(
M −m∞

)
α

a

(
M −m(t = 0)

)
+︸ ︷︷ ︸

=ν(0)

<
α

a

(
M −m∞

)
+︸ ︷︷ ︸

=%∗

ν(0) < %∗

So the density at the boundary after the starting time is either given by a
small number of nucleation or the unconstrained evolution of the existing
endings. And this does not change in a short time intervall. In the un-
constrained case we recall from the section over the boundary condition’s
influence %(t, 0) ≤ % < %∗. So in either case the boundary value is lower
than %∗:

%(t, 0) < %∗

⇒ ∂tm(t) = f(%(t, 0))

{
< 0 for 0 < %(t, 0) < %∗

= 0 for %(t, 0) = 0
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Hence the number of endings is decreasing as long as the boundary value
is greater than zero, and the filament number is larger than the eqilibrium
number. In this case the filament number does not constantly decrease, e.g.
when the boundary density is zero. The decline in the filament number de-
pends on the evolution and the positions of the existing ends in the domain.

So far we have seen that ∂tm(t) = f(%(t, 0)) ≤ 0 is true for this case. The
problem is when there is an equal sign in this equation and stays during
the evolution, because then the filament number would not decrease. This
would be the case when no mass would travel to the left and when no end-
ings would flow over the boundary. But this is not possible, because the
constitutive equation guarantees that after some time all endings will be
dissolved.
In numerical experiment 1 we have seen that the starting mass is transported
to the right at the beginning. But after some time the peaks decrease in
height and all endings start travelling to the left, so eventually all endings
would dissolve, if there would be no nucleation boundary condition.
This is in perfect accordance with conservation law theory. The character-
istics from the initial condition have a velocity according to their density,
so high densities have a positve velocity at first. But after crossing the
zero characteristics from the right (remember density % = 0 has a negative
velocity according to our characteristic flux function shape f ′(0) < 0) they
vanish, and the velocity from the remaining characteristics gets less and less.
From the biological point of view it is also very reasonable. A high density
of endings would mean a large number of filaments with equal length, and
according to the idea of p1 and p2 their depolymerization probability would
be very low. But as they grow longer in each step, their number decreases
gradually. After their number has shrunken far enough, they depolymerize
normally.

So the number of endings really decreases after some time. We again refer to
numerical experiment 1 as a very good example: At first the endings move to
the right, but eventually their number gets lower and lower. At some point
the nucleation starts, but the net number of filaments is still decreasing.
Commencing from the boundary a wave flattens out the whole distribution
while the boundary value rises to %∗ and the number of filaments sink to the
eqilibrium number.

Depending on the initial conditions, the decrease of the number of filaments
can be rather unsteady, but it happens.
Altough this behavior is not as nice as in case 1, it is exactly what we wanted
and is in perfect accordance with the idea of our boundary condition. The
number of filaments is controlled, but the true equilibrium number is be-
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low the reference number we gave at first. Summing up, in either case the

ending density converges to the equilibrium density. We did not prove ths
rigorously, but we explained the underlying ideas extensively. Altough we
have said nothing about the velocity and the type of the convergence this is
very interesting.

We want to conclude this section by stating that the boundary condition
has a very strong influence on the system. Our idea was that it regulates
the number of filaments, and it really accomplishes this task. The system
behaves according to our wishes.

2.10 Viscosity limit

So far we have described the behavior of the system with arguments, not
rigorous proofs. As we have noted proving something in this setting of a non-
linear conservation law with a non-standard boundary condition is somehow
complicated. However, we have a good idea how this could be done.

Commencing from the idea of entropy solutions (see equation (2.16)), we
imagine our system (∗%ponu) to be the limit of a system disturbed by a
diffusion term. We call the new disturbed system (∗%diff ):

∂t% + ∂xf(%) = ε ∂2
x%

%(0, x) = %0(x)

%(t, 0) =
α

a

(
M −

∫ ∞

0
%(t, x)dx

)
+︸ ︷︷ ︸

=ν(t)

The system is similar to (∗%ponu) except the diffusion term and the bound-
ary condition.
The idea now is to let ε tend to zero, this limit is called the viscosity limit.

The problem now is, that you have to do this limit for the whole system.
You do not simply solve the system and make the limit ε → 0 in the solution.
So you have to check that the constitutive equation, the boundary condi-
tion, the initial condition and the solution itself tend to their counterparts
in (∗%ponu).

This is a highly non-trivial problem, because the convergence itself is not
clear, nor its type of convergence. Even for our main problem (∗%ponu) we
have not rigorously given the corresponding function spaces, and for the
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extended problem as mentioned here this problem gets worse, because you
have to include this in the convergence proofs.

This whole technique is used, because the first equation in the system
(∗%diff ) is a parabolic equation, and in general parabolic equations are far
better understood than hyperbolic equations (where our main problem be-
longs to). The idea is to use this knowledge and then return to the original
problem.

2.10.1 Boundary layer

The idea of the viscosity limit is very natural and at first sight the con-
vergence should work in some way. The most apparent difference between
the two systems is in the boundary condition of (∗%diff ), because it reads

%(t, 0) = α
a

(
M −∫∞

0 %(t, x)dx
)

+
. So in this setting ν(t) is set as boundary

value all the time. But how does that work, when in the original system
also other boundary values are possible?

In the limit process ε → 0 drastic changes in % near the boundary are possi-
ble. This behavior is called a boundary layer process. With this we are able
to cope with the different boundary values in our systems.

Such a difference occurs in two cases:

1. ν(t) = %(t, 0)diff < %(t, 0)ponu (≤ %)

2. ν(t) = %(t, 0)diff > %(t, 0)ponu

The first case represent the situation, when mass is flowing out, but there
is no or not enough nucleation (because the filament number is still high
enough). And the second case can be an example for point 2.b. from our
(∗%ponu) boundary condition when the number of newly nucleated filaments
would be too low to actually enter the system.

We show how this works only for the first case, the second works similarly.
Without loss of generality we asume, that ν(t) = 0 and %(t, 0)ponu = %r ≤ %
(%r > 0), so there is a difference in the boundary values of the two systems.
We want to produce a situation as shown in figure 2.14 with our density %
in the limit ε → 0. % varies drastically in a short change of x, therfore we
introduce a variable that describes this fast change.
We start with the constitutive equation of (∗%diff )

∂t% + ∂xf(%) = ε ∂2
x%
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Figure 2.14: boundary layer

and by defining the boundary layer variable ζ := x
ε we can rewrite the last

equation. This variable varies rapidly when ε changes and is used only near
x = 0 to describe this fast processes. Furthermore we will use the notation
%̂(t, ζ) = %(t, ζ ε︸︷︷︸

=x

).

∂t%̂ + 1
ε ∂ζf(%̂) = 1

ε ∂2
ζ %̂ / ∗ ε

ε ∂t%̂ + ∂ζf(%̂) = ∂2
ζ % / lim ε → 0

∂ζf(%̂) = ∂2
ζ %̂

In the limit ε → 0 a time independent second order ODE remains for %̂,
with the following boundary conditions:

%̂(0) = 0

∂ζ %̂ = 0 for large ζ

We solve the ODE by simply integrating it one time and use the second
boundary condition, getting

∂ζ %̂ = f(%̂) + const.
∂ζ %̂ = f(%̂)− f(%r) (2.23)

Together with the first boundary condition this yields the exact form we
wished as shown in figure 2.14. A rapid jump from %(x = 0) to %r. The
careful reader may note, this is only true for %r ≤ %, but for the boundary
value %r from unconstrained ending movement only values lesser or equal %
are possible, as we have noted before.

So in this case the occuring boundary layer solves the problem with the
differences in the boundary values. The second case works similarly, and
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therefore we have solved the first most apparent problem for the visosity
limit.

2.11 Summary

In this chapter we derived a simple model for the evolution of actin filament
endings based on the effects of polymerization, depolymerization and nucle-
ation. Commencing from the behavior of one end, we looked at the behavior
of an ending continuum and made a continous limit to get a partial differ-
erential equation.

This PDE describes the evolution of the filament endings in our system and
therefore we also know the evolution of the filaments, which was our original
goal. The system itself consists of a non-linear conservation law constitu-
tive equation, a non-standard boundary condition and an initial condition.
The non-linearity in the equation comes from depolymerization probabilities
which incorporate some kind of information between the filaments.

The two most remarkable features of our model are the non-linear flux func-
tion and the non-standard boundary condition. Commencing from the bio-
logical fact of a limited number of depolymerization proteins, the flux func-
tion promotes the polymerization of many filaments with equal length and
encourages the depolymerization of a small number of equally long filaments.
The boundary condition simply regulates the total filament number.

A short introduction to conservation laws provided the most important
knowledge to understand the behavior of our system. Our theoretic con-
siderations are in perfect accordance with the findings from numerical sim-
ulations. In both cases we find the same steady state distribution for the
endings, where the system converges to.

There are two distinct phases in the evolution of the endings. When the total
number of endings is larger than the equilibrium number, the endings may
evolve and depolymerize freely, and when the filament number is smaller,
new filaments are nucleated until the equilibrium number is reached. The
number of filaments tends to the equilibrium number and during this process
the equilibrium ending density evolves to its characteristic shape as seen in
figure 2.15.
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The equilbrium ending density has a very simple form: It has constantly
the value of the positive zero of the flux function up to a point determined
by the system’s parameter, and after that it is equal to zero. Therefore
the equilibrium filament density is simply linear decreasing (see figure 2.15).
These two shapes are very simple, but this is not surprising since we derived
our model from basic simple mechanisms.
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Figure 2.15: steady state of ending and filament density

Summing up, the system converges to the equilbrium ending distribution
determined by the system’s parameters but independent of the initial con-
dition.
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2.12 Outlook and discussion

Like we said before, we tried to keep our model as simple as possible on one
hand but produce a stationary distribution based on biological facts on the
other. There are a lot of points and assumptions that are disputable, but
they serve also as a good starting point for further analysis and models.

We derived our flux function under the assumption, that locally one poly-
merization step and two depolymerization steps balance each other. Maybe
the number or ratio of these steps should be changed. Furthermore the
depolymerization probabilities only depend on the total number of endings
at a point, but they could also depend on the region of the cell, e.g. the
depolymerization of long filaments and polymerization of short ones could
be encouraged.

Another idea is to loosen the assumption of the constant protein influences
by introducing protein concentrations or protein distributions inside the cell.
So some constants in our model could be protein concentration dependent.

So far we have only talked about extensions of the model, but also rigorous
mathematical proofs for the model’s behavior, as it stands, have to be done.
This will be some work because of the non-standard boundary condition.
We have given an idea how this could be done, but maybe other easier ways
are possible.

Actually there are a lot of ideas how to extend and improve our model, but
we should not forget our goal to reach a stationary actin distribution in the
end. And with more factors this goal gets harder to achieve.
One has to keep in mind the complexity of the model on one hand and the
correctness of the results on the other hand, because the first and foremost
role of mathematical modeling is to reproduce observable biological facts.
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Chapter 3

Polymerization and
fragmentation model

The model we present in this chapter is the simplification of a model from a
recent research work modeling actin filament dynamics (see [13]). The main
focus in this paper was to analyze and model the influence of the severing
protein ADF/cofilin on actin dynamics. A short introduction to this paper
is given in chapter A of this diploma thesis.

The following effects will be included in the presented model:

• polymerization and

• fragmentation.

Our main reason for presenting this model is to broaden the reader’s un-
derstanding of modeling actin dynamics by showing another approach. As
we said before, the main work of this master thesis is the model in the
previous chapter. The findings of the model in this chapter are mainly com-
plementary. For this polymerization and fragmentation model we will only
highlight and show the most important topics. Other effects than in the
previous chapter will occur here.

At first we will state the model and explain its components, then we will
find a steady state and prove the convergence to it. Concluding we will
summarize and discuss the model’s properties.

The main difference to the polymerization and nucleation model is that in
this chapter x is a length variable, not a position variable. So x refers to the

57
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length of filaments and therefore the meaning of % and η changes:

%(t, x) = distribution of filaments with length x at time t

η(t, x) = number of filaments with length greater than x at time t

Of course the following relations stay true:

%(t, x) = −∂xη(t, x)

η(t, x) =
∫ ∞

x
%(t, y) dy

This looks all similar to chapter 2, but the meaning is different. We want
to underline this fact strongly.

This change in the meaning of %(t, x) also affects our structural assumptions
a little. Our main direction axis does not start at a given point, it only
gives the direction. Stuctural assumptions number 1.1., 1.3. and 1.4. hold
unchanged. We only have to change assumption 1.2. into:

Structural Assumption 1.2.∗ All filaments are parallel to the x-axis. The
barbed end of the filaments are nearer to the leading edge than the pointed
end.

We do not give information over the position of the filaments inside of the
cell except from the orientation, we only want the orientation unchanged,
so the barbed end of an filament is nearer to the cell’s leading edge.
The original structural assumption is not reasonable here, because the lo-
cation of the edge (x = 0 in the former chapter) has no influence on the
model. All the processes are simply happening inside the cell.

We have not made any assumptions over the exact p of the filaments, but
of course we could assume that all filaments start at the leading edge and
then we would have the exact setup as in chapter 2.

3.1 The model

Now we state the model and explain its properties. For further informations
see chapter A or [13].
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Complete polymerization and fragmentation model (∗%pofra):

∂t%(t, x) + v∂x%(t, x) = κ
(∫ ∞

x
%(t, y) dy − x%(t, x)

)
∀(t, x) ∈ (0,∞)2

%(0, x) = %0(x) ∀x ∈ [0,∞)
%(t, 0) = 0 ∀t ∈ (0,∞)

We will refer to the constitutive equation as (∗%pofra.1), use (∗%pofra.2) for
the initial condition and respective (∗%pofra.3) for the boundary condition.
Furthermore we will skip the dependencies of % and will write them only for
a better understanding.

Now we explain the meaning of the building parts of (∗%pofra.1):

∂t%(t, x) + v∂x%(t, x)︸ ︷︷ ︸
(1)

= κ
(∫ ∞

x
%(t, y) dy

︸ ︷︷ ︸
(2)

−x%(t, x)︸ ︷︷ ︸
(3)

)

The left hand side (1) reminds us of a conservation law similar to the previous
chapter.

∂t%(t, x) + v∂x%(t, x)

Here f ′(%) = v and therefore the velocity of the densities would be v which
is in this case the net polymerization velocity (the velocity of polymerization
minus the velocity of depolymerization). We assume

v = const. > 0

So v is positive and we have polymerization included in our model.

The second term (2) represents fragmentation by severing a filament at
position x. This expression can be interpreted as some kind of source term:
A long filament gets cut at length x and so the number of filaments with
length x increase.

κ

∫ ∞

x
%(t, y) dy

But this whole term without the κ is η(t, x), the number of filaments longer
than x. So the increase of filaments with length x is proportional to the
number of filaments with length greater than x.
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The positive constant κ here is a severing rate for the filaments.

When a filament is cut there actually remain two smaller filaments. But in
this model we assume, that only the filament with the original barbed end
remains, and the fragment with the original pointed end is dissociated.

The last term (3) gives the removal of a filament of length x by cutting
anywhere between length 0 and x.

−κx%(t, x)

This is some kind of sink term: When a filament of length x is cut, the
number of filaments with length x decrease. We observe that the decrease
gets lower proportional to x, meaning very short filaments are very unlikely
to break, and very long filaments are very likely to break.

So far we have talked about the composition of the system’s constitutive
equation, but we have not classified it. (∗%pofra.1) is a linear integro partial
differential equation.
Furthermore it also has a very interesting property we encountered in con-
servation laws, because it conserves the total number of filaments. We define
in analogy to the second chapter:

m(t) :=
∫ ∞

0
%(t, y) dy = total number of filaments < ∞

The careful reader may note, that η(t, x) is equal to the number of filaments
by definition:

η(t, 0) =
∫ ∞

0
%(t, y) dy = m(t)

To show this conservation property we simply integrate (∗%pofra.1) over the
whole domain and do some calculations. We assume % decays fast for x →∞
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∂t% + v∂x% = κ
(∫ ∞

x
%(t, y) dy − x%(t, x)

)
/

∫ ∞

0
. dx

∫ ∞

0
(∂t% + v∂x%) dx = κ

∫ ∞

0

(∫ ∞

x
%(t, y) dy − x%(t, x)

)
dx

∫ ∞

0
∂t% dx + v

∫ ∞

0
∂x% dx = κ

(∫ ∞

0

∫ ∞

x
%(t, y) dydx−

∫ ∞

0
x%(t, x)dx

)

(
v

∫ ∞

0
∂x% dx = v

(
%(x = ∞)︸ ︷︷ ︸

=0

− %(x = 0)︸ ︷︷ ︸
=0

)
= 0

)

∂t

∫ ∞

0
% dx = κ

(∫ ∞

0
1
∫ ∞

x
%(t, y) dydx

︸ ︷︷ ︸
integration by parts

−
∫ ∞

0
x%(t, x)dx

)

( ∫ ∞

0
1
∫ ∞

x
%(t, y) dydx = x

∫ ∞

x
%(t, y) dy

∣∣x=∞
x=0

︸ ︷︷ ︸
=0

−
∫ ∞

0
x(−%(t, x))dx

)

∂t m(t) = κ
(∫ ∞

0
x%(t, x)dx−

∫ ∞

0
x%(t, x)dx

)

∂t m(t) = 0

So the number of filaments is constant, it is equal to m0, which is the number
of filaments in the initial condition.

m(t) = const. = m(t = 0) =
∫ ∞

0
%0(y) dy =: m0

As a consequence of this η(t, 0) does not change either. It is constantly equal
to m0.

η(t, 0) = m(t) = m0

3.2 Steady state

In this section we will calculate the steady state distribution for our system
∗%pofra. We simply assume a steady state exists, do the calculations, and
then we will see this assumption is justified.

A steady state means, there are no changes in the distribution any more,
the distribution does not change in time

∂t% = 0

Because there are no changes in time we can skip the time dependencies in
this calculation and write

%(t, x) = %(x)
η(t, x) = η(x)
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Before doing the calculations, we recall the definition of η and its derivative,
because we will use this later (Note: here we use η without time depen-
dency).

η(x) =
∫ ∞

x
%(y)dy

η(x)′ = ∂xη(x) = −%(x)
η(x)′′ = −%(x)′

We begin our work by recalling the constitutive equation.(∗%pofra.1)

∂t% + v∂x% = κ
(∫ ∞

x
%(t, y) dy − x%

)

Then we use the prliminary results earlier in this this section to rewrite this
equation into

0 + v
(− η(x)′′

)
= κ

(
η(x) + xη(x)′

)
= κ

(
xη(x)

)′

Summed up, we get the following ordinary differential equation, together
with its initial conditions.

−v η(x)′′ = κ
(
x η(x)

)′ (3.1)
η(0) = m0

η(0)′ = −%(0) = 0

To solve (3.1) we simply integrate the whole equation one time getting

−v η(x)′ = κx η(x) + c1

By inserting the second initial condition η(0)′ = 0 we get, that the constant
is zero c1 = 0. Then we bring all η terms on one side and the rest to the
other side

η(x)′

η(x)
= −κ

v
x

We integrate again and, that leads us to

ln(|η(x)|) = −κ

v

x2

2
+ c2

We apply the exponential function to the right and left side. The absolute
value goes away, because η is always positive.

η(x) = exp(−κ

v

x2

2
) exp(c2)
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The second initial condition η(0) = m0 yields the final solution.

η(x) = m0 exp(−κ

v

x2

2
)

So we have calculated the steady state number of filaments greater than
length x. We will call this function η∞, its negative first deravitive is the
steady state distribution of filaments with length x, called %∞, we originally
searched.

η∞(x) = m0 exp(−κ

v

x2

2
) (3.2)

%∞(x) = m0
κ

v
x exp(−κ

v

x2

2
) (3.3)

Of course the number of filaments in the steady state does not change and
stays the number of filaments from the initial distribution m0 =

∫∞
0 %0(y) dy.

By inserting %∞(x) into (∗%pofra), we see that it is indeed a solution of our
system, and ∂t%∞ = 0. Thus, all our calculations were justified.

%∞(x)

0

0.05

0.1

0.15

2 4 6 8 10 12 14

Figure 3.1: Characteristical form of the steady state length distriution %∞

Now we want to hold on for a moment and think about, what this steady
state density tells us:
There are only very few long filaments, because the distribution decreases
exponentially for large lengths. There is clearly a peak in the distribution
which tells us, that most of the filaments have short to medium length.
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η∞(x)

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14

Figure 3.2: Characteristical form of the steady state η∞

3.3 Convergence to the steady state

In the last section we derived a steady state for the length distribution of
the filaments. Our hope is now that all distributions converge to this staedy
state.

We have observed, that all distributions %(t, x) tend to the steady state form
%∞ in some sense. To prove this will be some work, but before going to the
calculations we have to specify the type of convergence. There exist strong
and weak forms of convergence, and we want to show the following

∂t

∫ ∞

0

(
%(t, x)− %∞(x)

)2

2%∞(x)
dx < 0 for %(t, x) 6= %∞(x) (3.4)

∂t

∫ ∞

0

(
%(t, x)− %∞(x)

)2

2%∞(x)
dx = 0 for %(t, x) = %∞(x) (3.5)

This represents an L2 weighted distance that decreases in time, and stops
decreasing, when the steady state distribution is reached. Of course this is
a very weak result of convergence.

To prove this convergence will take some time and we start by some prelim-
inary steps. First we look at the left hand side quantity in (3.4) and (3.5)
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and find out, that we can rewrite it in an easier way.

∂t

∫ ∞

0

(
%(t, x)− %∞(x)

)2

2%∞(x)
dx = ∂t

∫ ∞

0

%(t, x)2 − 2%(t, x)%∞(x) + %∞(x)2

2%∞(x)
dx

= ∂t

∫ ∞

0

%(t, x)2

2%∞(x)
dx− ∂t

∫ ∞

0

2%(t, x)%∞(x)
2%∞(x)

dx

+∂t

∫ ∞

0

%∞(x)2

2%∞(x)
dx

= ∂t

∫ ∞

0

%(t, x)2

2%∞(x)
dx− ∂t

∫ ∞

0
%(t, x) dx

︸ ︷︷ ︸
=m0

+∂t

∫ ∞

0

%∞(x)
2

dx

︸ ︷︷ ︸
=

m0
2

= ∂t

∫ ∞

0

%(t, x)2

2%∞(x)
dx− ∂tm0︸ ︷︷ ︸

=0

+ ∂t
m0

2︸ ︷︷ ︸
=0

∂t

∫ ∞

0

(
%(t, x)− %∞(x)

)2

2%∞(x)
dx = ∂t

∫ ∞

0

%(t, x)2

2%∞(x)
dx

D(%(t, x)) := ∂t

∫ ∞

0

%(t, x)2

2%∞(x)
dx

So with this definition we only have to check (3.4) and (3.5) on D(%), which
is a small but very helpful improvement.
For the sake of simplification we skip the dependencies of % and %∞, we will
only write them if they are not clear in the context. When we write %(x) we
actually mean %(t, x), so we may skip only the temporal dependency when
we see it fit.

In the next preliminary step, we rewrite the right hand side of the constitu-
tive equation (∗%pofra.1) and introduce a new notation for shortening.

κ
(∫ ∞

x
%(t, y) dy − x%(t, x)

)
= κ

(∫ ∞

y=0
%(t, y)1[x,∞)(y) dy −

∫ ∞

y=0
%(t, x)1[0,x](y)dy

)

= κ

∫ ∞

y=0
%(t, y)1[x,∞)(y)− %(t, x)1[0,x](y) dy

Q(t, x, %(t, x)) := κ

∫ ∞

y=0
%(t, y)1[x,∞)(y)− %(t, x)1[0,x](y) dy

We observe, that Q is by definition linear in %. In this definition we have
used the index function 1:

1A(x) :=

{
1 x ∈ A (A is a set)
0 else



66CHAPTER 3. POLYMERIZATION AND FRAGMENTATION MODEL

When the context is clear, we will also only write Q(%) for Q(t, x, %(t, x)).
With the definition of Q at hand we can write (∗%pofra.1) in a much shorter
and compacter way.

∂t% + v ∂x% = Q(%) (3.6)

We only need one last auxiliary result before going to the main part of the
proof. We insert the steady state %∞ in the constitutive equation of our
system (∗%pofra.1) and mind that its time derivative is zero ∂t%∞ = 0. Then
the remaining part, using the notation of Q, reads

v ∂x%∞ = Q(%∞) (3.7)

These were all preliminary results we need. Now we switch to the main
part: the proof of the convergence. We show now, that (3.4) and (3.5) hold.
All calculations are presented but we will explain only important points in
detail, the rest is self explanatory. Furthermore, we use all the things we
have mentioned so far in this section.
We commence from (∗%pofra.1) in its short version (3.6).

∂t% + v ∂x% = Q(%)

∂t% = −v ∂x% + Q(%) / ∗ %

%∞

(∂t%)
%

%∞
= −v (∂x%)

%

%∞
+ Q(%)

%

%∞
/

∫ ∞

x=0
. dx

∫ ∞

x=0
(∂t%)

%

%∞
dx = −v

∫ ∞

x=0
(∂x%)

%

%∞
dx +

∫ ∞

x=0
Q(%)

%

%∞
dx

∫ ∞

x=0
∂t

( %2

2 %∞

)
dx = v

∫ ∞

x=0
−∂x

(%2

2

) 1
%∞

dx +
∫ ∞

x=0
Q(%)

%

%∞
dx

We have just used (∂t%)% = ∂t

(
%2

2

)
for the last step, which is also true

for ∂x. In the next step we use integration by parts to shift the derivation
inside the first right integral. We assume the boundary terms are zero, this
is a good guess since the nominator is quadratic and the denominator only
linear. For the remaining part on the shifted derivative we use (3.7).
Additionally we assume that all conditions are met to change the order of
the integral and the time derivative on the left side. After this change we
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have exactly D(%) on the left side.

∂t

∫ ∞

x=0

%2

2 %∞
dx

︸ ︷︷ ︸
=D(%)

= −v
( %2

2 %∞

)∣∣∞
x=0

︸ ︷︷ ︸
=0

+v

∫ ∞

x=0

%2

2
∂x

( 1
%∞

)
dx +

∫ ∞

x=0
Q(%)

%

%∞
dx

∂tD(%) =
∫ ∞

x=0

%2

2
−1
%2∞

v∂x%∞︸ ︷︷ ︸
=Q(%∞)

dx +
∫ ∞

x=0

%

%∞
Q(%)dx

∂tD(%) =
∫ ∞

x=0

%

%∞
Q(%)− %2

2 %2∞
Q(%∞) dx

∂tD(%) =
∫ ∞

x=0

%

%∞

(
Q(%)− %

2 %∞
Q(%∞)

)
dx

To get rid of the %
%∞ term we introduce an auxiliary integration step. Moving

on, we will use the linearity of Q in the % argument.

∂tD(%) =
∫ ∞

x=0

∫ %
%∞

n=0

(
Q(%)− n Q(%∞)

)
dn dx

∂tD(%) =
∫ ∞

x=0

∫ %
%∞

n=0

(
Q(%)− Q(n %∞)

)
dn dx / ∗ (−1)

−∂tD(%) =
∫ ∞

x=0

∫ %
%∞

n=0

(
Q(n %∞)− Q(%)

)
dn dx /insert definition of Q

−∂tD(%) = κ

∫ ∞

x=0

∫ %
%∞ (x)

n=0

∫ ∞

y=0
n%∞(y)1[x,∞)(y)− n %∞(x)1[0,x](y)−

−%(y)1[x,∞)(y) + %(x)1[0,x](y) dy dndx

−∂tD(%) = κ

∫ ∞

x=0

∫ ∞

y=0

∫ %
%∞ (x)

n=0

(
n%∞(y)− %(y)

)
1[x,∞)(y)︸ ︷︷ ︸
=1[0,y](x)

−

−
(
n%∞(x)− %(x)

)
1[0,x](y) dy dndx

−∂tD(%) = κ

∫ ∞

x=0

∫ ∞

y=0

∫ %
%∞ (x)

n=0

(
n%∞(y)− %(y)

)
1[0,y](x)dn dy dx−

−κ

∫ ∞

x=0

∫ ∞

y=0

∫ %
%∞ (x)

n=0

(
n%∞(x)− %(x)

)
1[0,x](y) dn dy dx

In the first integral we now interchange the order of integration, assuming
the prequisites for Fubini’s theorem are met. In the second integral we
change the names of the variables: we interchange x and y. This is just a
transformation of variables, so it is legal.
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Then we combine the two integrals.

−∂tD(%) = κ

∫ ∞

y=0

∫ ∞

x=0

∫ %
%∞ (x)

n=0

(
n%∞(y)− %(y)

)
1[0,y](x)dndxdy −

−κ

∫ ∞

y=0

∫ ∞

x=0

∫ %
%∞ (y)

n=0

(
n%∞(y)− %(y)

)
1[0,y](x) dn dxdy

−∂tD(%) = κ

∫ ∞

y=0

∫ ∞

x=0

∫ %
%∞ (x)

n= %
%∞ (y)

(
n%∞(y)− %(y)

)
1[0,y](x)dndxdy

At this point we already see, that the left side is greater or equal zero:
−∂tD(%) ≥ 0. To see this ,we distinguish two cases: if %

%∞ (x) ≥ n ≥ %
%∞ (y)

(so the integration over n goes in the positive direction) then the integrand is
also positive

(
n%∞(y)−%(y)

)
≥ 0. And in the other case we have a negative

direction and a negative integrand, so all in all we get −∂tD(%) ≥ 0.
In the next step we execute the integration over n by variable transformation.

−∂tD(%) = κ

∫ ∞

y=0

∫ ∞

x=0

∫ %
%∞ (x)

n= %
%∞ (y)

(
n%∞(y)− %(y)

)
1[0,y](x)dndxdy =

=
m = n%∞(y)− %(y)
dm = dn

=

−∂tD(%) = κ

∫ ∞

y=0

∫ ∞

x=0
1[0,y](x)

∫ %
%∞ (x)

n= %
%∞ (y)

mdm dxdy

−∂tD(%) = κ

∫ ∞

y=0

∫ ∞

x=0
1[0,y](x)

m2

2

∣∣∣
%

%∞ (x)

n= %
%∞ (y)

dxdy

−∂tD(%) =
κ

2

∫ ∞

y=0

∫ ∞

x=0
1[0,y](x)

(
n%∞(y)− %(y)

)2∣∣∣
%

%∞ (x)

n= %
%∞ (y)

dxdy

−∂tD(%) =
κ

2

∫ ∞

y=0

∫ ∞

x=0
1[0,y](x)

(( %(x)
%∞(x)

%∞(y)− %(y)
)2 −

− ( %(y)
%∞(y)

%∞(y)− %(y)
)2

︸ ︷︷ ︸
=0

)
dx dy

−∂tD(%) =
κ

2

∫ ∞

y=0

∫ ∞

x=0

( %(x)
%∞(x)

%∞(y)− %(y)
)2

︸ ︷︷ ︸
=:R(%)

1[0,y](x)dxdy (3.8)

With the definition of R(%) :=
(

%(x)
%∞(x)%∞(y) − %(y)

)2
we have only left to

show two points:

R(%) ≥ 0
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Which is clear since the definition of R(%) is quadratic. And the second point
is to show, that R(%) is only zero iff % = %∞, which is also very obvious.

R(%) = 0 ⇔
( %(x)

%∞(x)
%∞(y)− %(y)

)2
= 0 ⇔ %(x)

%∞(x)
%∞(y)− %(y) = 0 ⇔

⇔ %(x)
%∞(x)

%∞(y) = %(y) ⇔ %(x)
%∞(x)

=
%(y)

%∞(y)
separation

= λ = const. ⇔

⇔ % = λ %∞ ⇔
∫

%∞dx =
∫

%dx = m0

⇒ λ = 1
⇔

⇔ % = %∞

Together with (3.8) we have now shown that

∂tD(%) < 0 for % 6= %

∂tD(%) = 0 for % = %∞

Which is the exact proof for (3.4) and (3.5).

3.4 Summary

In this chapter we have presented another model for actin filament dynam-
ics. The most important change compared to our first model is using x as a
length variable. Some very intetersting considerations come with that fact.
The interpretation of % and η in the two presented model is different. How-
ever, through the assumption that all filaments start at the cell’s edge in
the (∗%pofra) setting, we are exactly in the setting of the polymerization and
nucleation model.

The new effect described in this chapter is fragmentation, which refers to
breaking of a long filament into two smaller parts. It is included by the
terms on the right hand side of the constitutive equation.
The probabilty of a breach is equal in each point of the filament, and a
natural extension would be a length dependent breaking probabilty.
This fragmentation effects each filament, but there is no communication be-
tween the filaments.

We have eplicitly derived a steady state distribution Furthermore, we proved
that all distributions tend to the steady state in a weak way. These results
are much stronger than in the last chapter, where our arguments were mainly
heuristic.
The steady state distribution reflects the fragmentation effect in a good
manner: the long filaments are cut apart, only the short ones remain.
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One of the problems with this model is actually its length dimesion. In our
nucleation model the density only propagated a finite way, and its steady
state is also bounded in length. But in this fragmentation model the fil-
aments in the steady state distribution can have any length due to the
expontial function in its definition. This leads to problems with the finite
length of the cells. Of course we can neglect long filaments due to their
exponentially low number, but the problem stays.

3.5 Outlook

As we said at the beginning of this chapter (∗%pofra) is actually the simpli-
fication of a model in [13], where its original form is more complex. From
this source we have a lot of ideas how to extend our polymerization and
fragmentation model e.g. with a length dependent breaking probability like
we mentioned before, or with a non-constant density dependent velocity v
perhaps even a non-linear transport term akin chapter 2. There exist a lot
of conceivable extensions, but more complex systems are normally harder to
solve.

From our point of view we are of course interested in a merge of our two pre-
sented models. But there are a lot of open questions to be solved concerning
this problem.



Chapter 4

Conclusion

In this master thesis we have presented two models for the temporal evo-
lution of actin filaments. Their main components were polymerization and
depolymerization and they both converged to a steady state distribution,
but their underlying ideologies were completely different.

In the first model information about the exact postion of the filaments was
given and used for the interaction of the filaments. This resulted in a non-
linear conservation law equation. The total number of filaments was con-
trolled by a non-standard boundary condition, that represented nucleation.
The basics of conservation law theory helped us to determine the behavior
of the system and also its steady state.

We used a different approach in the second model. We looked at the length
distribution of the filaments and included a fragmentation effect in the de-
scription. There was no communication between the filaments, but despite
this fact we directly showed the convergence to a steady state.

We see, that there are different biological processes that lead to a stable
steady state. But apart from polymerization and depolymerization we only
described one additional effect to reach this equilibrium. Of course, the next
challenge will be to add these processes together and analyze the merged
system. Furthermore, there are other processes, like the annealing of fila-
ments, that have to be observed and maybe included in a complete model.

There exist lots of ideas for the extension of the models on their own let
alone their merge. But the first point will be a thorough discussion with
biologists, because the first and foremost role of mathematical modeling is
to reproduce observable biological facts.

Modeling the dynamcis of actin filaments is a great challenge and will stay
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a large research topic in the future, because a complete model for actin dy-
namics is far from being complete. We hope to have performed a small part
of work in order to reach this goal, by providing a good introduction with
this diploma thesis.

We hope to have helped Dr. Ölz by providing new ideas for his master
model. Furthermore, we hope to have given the reader new insights and an
enjoyable time reading this work.



Appendix A

Models in the literature

In this chapter we want to present three selected works and their different
approach to modeling actin filament dynamics.

In the model we have derived and analyzed in chapter 2, we used x as a posi-
tion variable, and we have assumed a lot of influences from the surrounding
lamellipodium. But in the literature there exist a huge number of other ap-
proaches to cope with the problem of actin dynamics, each assuming other
sideconditions.
The main goal of these works is to show particular effects, but even now
with a lot of researchers working on this topic a complete model for actin
filament dynamics is far from completion.

Actin filament dynamics have been studied both analytically and computa-
tionally in the last three decades and the studies fall into two broad cate-
gories (see [2]):
The first is characterized by a focus on individual actin filaments, or actin
networks, as a component of a more complex system. The questions adressed
include the mechanisms for force generation and the mechanism for symme-
try breaking in filament networks. A recent review of this approach is given
in [14].
The second approach focuses on spontaneous polymerization of highly pu-
rified actin monomers. Experimental conditions can be controlled more
precisely than in vivo situations, and this leads to simpler mathematical
models that can be analyzed in detail. The main interest here is the steady
state length distribution and the statistical properties of the dynamics of
an ensemble of actin filaments. Our model from chapter 2 falls into this
category, but it also features aspects of the other category.
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A theoretical approach to actin filament dynamics (see [2])

Jifeng Hu, Anastasios Matzavinos and Hans G. Othmer

We start with a paper that classicaly falls under the second category. Its
main aim is to understand the temporal evolution of the length distribution
in vitro in order to understand what the relevant timescales are for estab-
lishment of a time invariant distribution.

In this paper only polymerization and depolymerization is modeled, and a
very simple kinetic scheme is used to describe the processes.
We will give a short sketch of the model: Let Mn denote a filament of length
n, and let Cn be the corresponding concentration, then we have the following
scheme:

M1 + M1
k+
1 M­
k−1

M2
k+
2 M­
k−2

M3
k+
3 M­
k−3

M4 · · · Mn
k+

n M­
k−n

Mn+1

where k+
n and k−n are kinetic constants reported from other papers. k±1 and

k+
2 ± are very distinct to the rest and through this fact also nucleation is

included in this work.
Assuming mass action kinetics for the monomer addition and release, the
above kinetic scheme leads to a system of ordinardy differential equations

dC1

dt
= −2(k+

1 C2
1 − k−1 C2)−

N∑

n=3

(k+
n−1C1Cn−1 − k−n−1Cn)

...
dCn

dt
= (k+

n−1C1Cn−1 − k−n−1Cn)− (k+
n C1Cn − k−n Cn+1)

...
dCN

dt
= (k+

N−1C1CN−1 − k−N−1CN )

In this model a closed system is considered, so there is a maxiaml length of
filaments N . A thermodynamically open system would be N →∞.

Then numerical simulations are done, and the results are analytically dis-
cussed. Easy calculations show that there exists a steady state for this
model, and the convergence to it is confirmed by free energy considerations.

In the main analysis the different stages in the evolution of the length dis-
tribution are discussed. There exist three distinct regimes: The initial stage
characterized by formation of a maximum peak heigtht in the distribution,
the subsequent polymerization driven advective phase in which the mean
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length increases, and a slow final stage in which monomers are redistributed
among filaments and the length distribution evolves to the steady state dis-
tribution.

For future works of this group there exist ideas to incorporate annealing
and fragmentation in the model. Also the influence of other proteins in
actin network formation in vivo are mentioned and how to include this in
the model.

Stochastic severing of actin filaments by actin depolymerizing fac-
tor/cofilin controls the emergence of a steady state dynamical
regime (see [13])

Jeremy Roland, Julien Berro, Alphee Michelot, Laurent Blanchion and Jean-
Louis Martiel

Now we present a paper which goes a different way. The behavior of the
actin monomers is simulated on a molecule basis using a stochastic simula-
tion algorithm (see [15]). The different states of actin are distinguished and
also the protein ADF/cofilin is introduced. We mention this paper, because
the model presented in chapter 3 is derived as a minor result here.

The main goal of this work is to show that ADF/cofilin regulation maintains
actin filaments in a highly dynamical state compatible with the cytoskele-
ton dynamics observed in vivo. Therefore this work falls into the second
category mentioned at the beginnning of this chapter.

In this paper a minimal kinetic model is developed, which describes key
details of actin filament dynamics in the presence of actin depolymerizing
factor (ADF)/cofilin. The molecular mechanisms are limited to

• the spontaneous growth of filaments by actin polymerization,

• the ageing of actin subunits in filaments,

• the cooperative binding of ADF/cofilin to actin and

• filament severing by ADF/cofilin.

We give a sketch for the main model, where the aforementioned effects are
included: First each polymerized ATP-actin subunit hydrolizes its ATP in-
dependently in a first order reaction that is not influenced by surrounding
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subunits. Second, ADF/cofilin accelerates phosphate dissociation. Then
ADF/cofilin binds cooperatively to subunits in the filament. It is assumed,
that ADF/cofilin severs filaments only between two adjacent decorated sub-
units only. Finally the set of chemical reactions (in the presence of a large
excess of actin monomers) is simulated.
The gillespie algorithm (see [15]) is used to determine the evolution of the
filament and the chemical transformation of the subunits. This molecule
based approach provides precise information on the dynamics of actin.

One of the main findings is, that the key issue of actin filament length con-
trol is the severing ability of ADF/cofilin.

A minor result of this work is presented in its appendix, but is very important
to us: The corresponding model for the length distribution of the filaments
is given, which is the basis for our model in chapter 3.
We will introduce this model and its notation:

L = filament length
t = time

F (L, t) = number of filaments with length L at time t

ν = global (de)polymerization rate
δ = length of one actin monomer

r5 = severing rate of F-ADP - (ADF)2
P (L) = filament severing probability at

a distance L from postion x = 0

So in this context L is naturally a length variable.
To get the quantity F (L, t) an integrodifferential equation has to be solved:

∂F (L, t)
∂ t

= ν
(
F (L− δ, t)− F (L, t)

)

︸ ︷︷ ︸
(1)

+ r5P (L)
∫ ∞

L
F (s, t) ds

︸ ︷︷ ︸
(2)

− r5F (L, t)
∫ L

0
P (s) ds

︸ ︷︷ ︸
(3)

The first term (1) represents filament elongation (or shortening) by monomer
addition at the filament barbed end (x = 0). The second term (2) represents
the fragmentation by severing the filament at position L. The last term (3)
gives the removal of a filament of length L by cutting anywhere between
x = 0 and L.
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Since a typical filament length L is much larger than δ, one uses the taylor
expansion of the first term to obtain:

∂F (L, t)
∂ t

= − νδ︸︷︷︸
=:v

∂F (L, t)
∂L

+ r5︸︷︷︸
:=κ

P (L)︸ ︷︷ ︸
=1

∫ ∞

L
F (s, t) ds− r5F (L, t)

∫ L

0
P (s)︸︷︷︸

=1

ds

This is the general form of the equation for the evolution of the filament
length density.
For chapter 3 we do some moderate modifications: We assume ν is constant,
P (L) ≡ 1 and introduce another notation . We also use % instead of F and
x instead of L (so x is also a length variable!) to state the equation we used.

∂t%(t, x) + v∂x%(t, x) = κ
(∫ ∞

x
%(t, y) dy − x%(t, x)

)
(A.1)

Returning to the paper we have presented here, we want to conclude by
mentioning that all the calculations done in it refer to a general actin net-
work. But there exist also ideas to extend the model to in vivo situations
like the cytoskeleton in the lamellipodium of a fish keratocyte.

A minimal model of locomotion applied to the steady gliding
movement of fish keratocyte cells (see [16])

A. Mogilner and E. Marland and D. Bottino

At last we present an article, which gives a different view. The focus of
this work is in describing the steady movement of the fish keratocyte. Actin
itself plays only a describing role, so this model is a representative for the
first category mentioned at the beginning of this chapter.

The fish keratocyte is seen as a simple system because its movement can be
intersected into just three substeps of motility. First, growth of the actin
network leads to the extension of the leading edge of the cell. Secondly
graded substratum-coupled anchoring is developed, so that at the front the
lamellipodium adheres to the surface much more firmly than at the cell’s
rear. Finally, the lammellipodial cytoskeleton is contracted, causing forward
translocation of the cell body.

We give only the basic ideas for the model underlying these three processes
mentioned in this paper:
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The protrusion is generated by polymerization of actin alone. The idea is
that the free energy of the polymerization is used through the brownian
ratchet mechanism. The effective polymerization rate of actin is derived via
a thermodynamic equilibrium, when the growth of the filaments is stalled.
Nothing more is stated over the polymerization of actin. The rate of pro-
trusion is simply calulated over a force equilibrium.
The forward translocation is accomplished by myosin motor cells. They
break the actin network apart by pulling the actin filaments together into
bipolar bundles. In this process the whole cell is pulled forward. The con-
centrations of myosin, the actin network and the actin bundles are used
along a cross section of the cell to describe this mechanism. These three
quantities are the core components of this system.
The adhesion is accomplished by integrin proteins that connect the cy-
toskeleton with the substratum through the cell membrane. In the last
point the system is closed by a model for the nucleation of actin, where the
nucleation depends on the concentration of integrin at the edge.

All in all a self consistent 1-D model of a steady moving cell is derived and
some simulations are made. The characteristic timescales for all processes
are of the same order of magnitude, so they are made at the same time.

We presented this paper because it shows actin as a small building part of
a greater model, and also introduces other proteins influencing cell motility.



Appendix B

Proteins

So far we have only talked about actin, but there exist a lot of other pro-
teins that influence the behavior and the properties of the actin network in
the lamellipodium. In this chapter we want to give a short introduction to
the most important proteins of actin filament dynamics. Great parts of this
summary are taken from [2].

The proteins controlling acin filament turnover can be grouped by their
function as follows:

• Severing proteins: these sever actin filaments to generate more fila-
ment ends assembly or disassembly. They include the ADF (actin
depolymerizing factor)/cofilin family of proteins and gelsolin.

• Capping proteins: Other proteins function to cap filament ends to reg-
ulate addition or loss of actin subunits (capping protein, gelsolin, the
Arp 2/3 complex), to nucleate filament growth (the Arp 2/3 complex,
formin), or to enhance subunit dissociation by cofilin.

• Sequestering proteins: These sequester actin monomers to prevent
spontaneous nucleation of filaments (β-thymosins) or interact with
actin monomers to enhance nucleotide exchange (profilin).

• Crosslinking proteins: these crosslink the actin filaments and can in-
duce a sol to gel transition. An example is α-actinin. Others such as
vinculin, talin and zyxin link the cortex (the network adjacent to the
membrane) to the plasma membrane.

This classification is not exclusively because some proteins execute two or
more functions, like twinfilin. The protein twinfilin is known for its regulat-
ing effects on actin dynamics. It sequesters actin monomers and caps the
barbed ends of filaments, thus inhibiting polymerization there.
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The Arp 2/3 complex, so called because it contains the actin related pro-
teins Arp2 and Arp3, nucleates new actin filaments, probably in response to
signals. In vitro the Arp 2/3 induces branching of actin filaments, caps the
slow growing (pointed) ends of filaments, and nucleates actin assembly.

The mechanism by which ADF/cofilin proteins control the filament size dis-
tribution is not completely clear. Initially severing was thought to be a
major factor but there exist forms of cofilin that increase actin polymeriza-
tion without severing the filaments.
Gelsolin is also a strong actin fragmenter, but it also acts as a capper and
as a nucleation site. Still the exact role of gelsolin is not understood.

The interplay of all these factors produces a dynamically actin network and
a varying distribution of actin filament length. But the complete process of
actin filament dynamics is far from being understood.
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