
DIPLOMARBEIT

Development of a short-time-implementation

tool for FMC

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines

Diplom-Ingenieurs unter der Leitung von

ao. Univ.Prof. Dr. Burkhard Kittl

E311

Institut für Fertigungstechnik

eingereicht an der Technischen Universität Wien

Fakultät für Maschinenwesen und Betriebswissenschaften

von

Roland Schmalhofer

Matnr. 0226033

Esterhazyg. 31/1/11; 1060 Wien

Wien, am 2. Juni 2008

1

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 



CONTENTS 2

Contents

1 Introduction 6

1.1 Common . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Application areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Rentability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Standard components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.1 Machining Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.2 Work piece transport and handling . . . . . . . . . . . . . . . . . . 11

2 ProCO - Functional speci�cation 13

2.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Separation from other systems . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Functions and design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Work�ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.2 Design - mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.3 Runtime - Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.4 Store and recall of con�gurations . . . . . . . . . . . . . . . . . . . 23

2.5.5 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.6 Adding a component . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 ProCO - Technical speci�cation 29

3.1 Programming - framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Program architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 mainForm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 ComponentProperties . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.4 IOControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.5 DataStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.6 ListController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.7 Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.8 PortProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.9 ProcessListController . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.10 RuntimeController . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



CONTENTS 0.0

3.3 ERM - Entity Relationship Model . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Exemplary Realisation 47

4.1 Con�guration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Event Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 DI/DO - Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Common aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.2 Robot program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Turning machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Work piece . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7 ProCO - con�guration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.8 Start - up (Preparation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Conclusion 60

3



LIST OF FIGURES 4

List of Figures

1 Manual connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Automated connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Articulated robot [oA08] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 SCARA robot [KR08] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Connection Hard-, Software . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 Main-mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

8 Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

9 ProCO - Work�ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

10 Adding the components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

11 Process-order-determination . . . . . . . . . . . . . . . . . . . . . . . . . . 19

12 Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

13 Parameters - Identi�er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

14 Loop - Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

15 Runtime - Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

16 Open - Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

17 Port - properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

18 Component - properties 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

19 Component - properties 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

20 Component - properties 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

21 Usage of the draw - function . . . . . . . . . . . . . . . . . . . . . . . . . . 30

22 Usage of the getHit - function . . . . . . . . . . . . . . . . . . . . . . . . . 35

23 Starting of a new run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

24 Usage of the executeSteps - function . . . . . . . . . . . . . . . . . . . . . 37

25 Checkfree - function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

26 ERM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

27 DataSet [ee08] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

28 Schematic concept: FMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

29 FMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

30 Palett . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

31 Event Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

32 NI 6528 Pinout [Ins07] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

33 ABB IRB 2000[Geb08] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

34 Gildemeister CTX 210 [Gil08] . . . . . . . . . . . . . . . . . . . . . . . . . 56



LIST OF FIGURES 0.0

35 Produced workpiece . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5



1 INTRODUCTION 1.1

1 Introduction

1.1 Common

Manufacturing (lat. manu facere = �making by hand�) includes all necessary processes

for the production of a component. Generally, manufacturing processes intend to achieve

added value for a product in order to �nally sell it as dearly as possible. This is just one

of the reasons why our economy is inconceivable without manufacturing.

Most of the production processes are closely connected with the need of many human

resources, which however, renders manufacturing fairly expensive. Consequently, many

companies attempt to automise production processes to a great extent. Therefore au-

tomation and manufacturing engineering have become more important than ever before.

The interaction between mechanical engineering and modern information technology of-

fers a set of new possibilities. So, novel control tools for manufacturing systems can be

developed that are not just �exible in their applicability: modern software systems should

be user-friendly and easy to use in the �rst place.

The demand to build up a user-friendly control system for manufacturing

cells is the focus of my thesis and the related software system named ProCO

(ProductionControl). The aim of this study is to create a software tool that en-

ables us to control the activation and deactivation of the single components,

i.e. robots, turning machines, conveyor belts, while the concrecte program-

ming of the machines, e.g. CNC programmes or robot movement control, is

done on the machines themselves. So, the main task of the tool is con�ned to

the execution (start) and the recognition of the termination of the machines.

The tool does not interfere with running programmes on the machines or with

the information �ow of the manufacturing cells. The activation/deactivation

commands themselves are mainly done by simple digital input/output signals.

Almost every machine supports this kind of control innately. The start sig-

nals can also be replaced by user de�ned DLL functions so that solutions for

special cases (e.g. when machines provide other ways of control that digital

I/O's) can be realised, too.

The source code of ProCO has about 6000 lines of code. The development of

ProCO is the �rst part of this study. The second part of this thesis is based

on an exemplary realisation which shows the use of ProCO in practice.

6



1 INTRODUCTION 1.2

The main aim of ProCO is that the building of an execution process should be kept

as simple as possible. The user is not required to have any experience in common pro-

gramming languages. The only disadvantage is that such a system does not cover all

scenarios. However, this is not the aim of the system developed. It ideally �ts for ad-hoc

solutions which should be implemented in a short time and is used for a small or medi-

um batch size. One important characteristic of ProCO should be that the software-sided

design time lasts less than one hour for a medium complex production �ow. This will be

realised by an intuitive design which keeps the adjustment time short for a new user.

1.2 Application areas

The main application areas are small systems whose single components were used up to

now in a manual and not connected way. So, a high level of automatisation can be reached

especially in the �eld of work piece handling. A �rst impression of the usage of ProCO

should be given in the following example.

Figure 1: Manual connection

The �gures 1 and 2 show what such automation could look like. In the example above

a company produces parts which are �rst of all cut by di�erent chip removal - machines. In

a second step the �ash will be removed and the �nished parts will be brought to a packing

7



1 INTRODUCTION 1.3

Figure 2: Automated connection

station, where they will be boxed for shipping. All these actions were done manually (See

�gure 1). Now, the company wants to automate this process. Figure 2 shows the possibili-

ties of automation. The arrows from the host computer to the components illustrate, that

the component is started by the host and receives signals from the components telling the

host computer that they have completed their execution. Hence, the communication is

bi directional. In this example, two robots and two transportation systems are pictured.

With a clever arrangement of the components it is mostly possible to get on with just

each one of them. So it could be used just one robot for the loading of the milling machine

and the transport to the �ash removal station.

This system is a simpli�ed model. In fact, there must be systems to span the workpieces

for the machining at the milling and the turning machine. Such systems could be con-

trolled by ProCO as well.

It is well known that not every task can be done in a cost-e�ective way by automated

systems. The packing for instance could be a too complex activity to be managed by a

robot. In this case special systems would be too expensive for the small batch size.

8



1 INTRODUCTION 1.4

1.3 Requirements

The intention is to develop a control system for small manufacturing cells. It has to be

possible to store, reorganise and execute the process �ow of machine control. It should be

possible to execute more than one process simultaneously so that an optimal use of the

whole cell can be ensured. To achieve this, it is essential to implement a waiting queue

logic that ensures that no overlapping occurs.

The communication with the components is con�ned to the sending of a start command

and the recognition of the end of the component execution. This shall be realized with

digital inputs/outputs.

The whole project, including the components and process orders, should be saved in a

single �le. The installation of an additional database system should not be necessary; it

should simply be possible to transfer projects from one computer to another.

A further important aspect is the possiblity to customise the control so that other ways

of initial methods in addition to digital I/O's can be used. An example would be RS 232

C. This can be realised by the implementation of DLL interfaces. Thereby, users would

have the option to write own function and include it in the execution processes. Another

demand is that errors must be handled.

The execution process itself would ensure an automatic process �ow by activating the

single components in a linear or a parallel way. In addition, good visualisation, which is

the active component and which shows what actually happens in the cell, is paramount.

The system should be programmed in a way to make future enhancements easy to imple-

ment.

1.4 Rentability

As described in Common above, the time available to produce/develop new products is

getting shorter and shorter so that the demand for �exible and fast-production structures

increases steadily.

The most important aspect is the fact that, because of changes in the market, enterprises

can modify very quickly their production programme. It is in general not very expensive

or time-consuming to implement these changes.

Another advantage is that if the production volume increases, a manufacturing cell can

be easily extended. New CNC machines, for example, can be included in the existing

system. Furthermore, di�erent products can be manufactured without basic changes in

the arrangements of the respective con�guration.

9



1 INTRODUCTION 1.5

Further positive and measurable side e�ects are:

• shorter cycle times

• smaller stocks

• less and shorter downtimes, in a technical and organisational context

• lower costs for human resources

• higher period of use of the machines because of 2nd and 3rd shifts of production

• and, as a result, lower production costs

The importance of such a manufacturing cell has to be checked in every case:

If the number of pieces produced is low while the �exibility demanded is high, it will

perhaps be more useful to work just with stand-alone CNC machines.

The other case is that almost no �exibility is needed, because just one speci�c product is

produced and the output is very high. A manufacturing cell is the best solution, provided

that the above criteria are taken into consideration.

1.5 Standard components

The main components of an MC are in general the same. (q.v.[Kie98])

1.5.1 Machining Units

The most commonly used variants are:

• CNC lathe

• boring and milling machine

• assembly stations

• grinding machine

• special purpose machine

Chip removing machines are a special �eld of interest in this study. Particularly in

their application in �exible manufacturing cells, it must be veri�ed that the machine �ts

for manufacturing cells. There is a wide range of criteria which must be ful�lled. Two of

them are of special interest for the software developed:

10



1 INTRODUCTION 1.5

Programme Calls The machine must be able to start a speci�c CNC (DIN 660251)

programme by an initial signal (eg. RS 232 C, 20 mA ...) from the start to the end.

Another very practicable variant would be for a CNC programme to run in an endless

loop and for the machine to stop at a speci�c point that has been pre-de�ned in the

programme and that is usually realised by a special M-code command. The exact number

of that command depends on the type and the producer of the machine.

Possibility of loading It must be possible to load the machine in an automatic way.

Variants could be the loading by a pallet changer or via a robot. Automatic door-opening

is a prerequisite for this solution. Size compatibility is another need. The geometric pre-

conditions, such as the height or width provided for the pallet places must be the same

as for the single components (e.g. conveyor belts and turning machine). The supply of

material via rod loaders for turning machines is also a very practicable solution.

1.5.2 Work piece transport and handling

The chaining of the single stations is a basic demand of manufacturing cells. There is a

wide range of implementation areas of such systems, depending on the size of the work

pieces and the number of parts produced.

The main issue is the transportation of the work pieces. It must be possible too to start

transportation processes via an initial signal by the host computer on which the developed

software is running. The solution is mostly reached by an SPS-controlled system that has

digital inputs/outputs and that can be set in order to start a speci�c action or to con�rm

the completion of the respective order.

The common forms of realisation are rail-bounded transport carts, robots or pallet han-

dling systems.

The aim of these transport systems is the reduction of the cycle-time and the production

costs by avoiding interim storages, by employing better feeding-conceptions at the ma-

chines, as well as by a better machine-usage quota.

The transport within the system, in general, is mostly handled with pallets. A chang-

ing pallet, for example, is the top part of a handling table with a �xed chuck device.

It can be completely moved into the machine, so it does not have to be spanned anew

before the machining. An alternative is to use the pallet just as an underlay. One or more

pieces are put onto it and are then moved into the machine via robots or changing devices.

1English-speaking: G - code

11



1 INTRODUCTION 1.5

Robots are a further basic component in handling materials and work pieces in a very

�exible way. They can be programmed and adapted for various problems, because it is

possible to move in six axes and to put di�erent grippers on the robot arm. Thereby,

small and large, as well as light and heavy pieces can be moved this way. Robots can be

generally well controlled by host systems. Programmes which are programed at the robot

itself can be called and executed by start signals (eg. DI/DO, ...).

A distinction is drawn between articulated robots(�g. 3 Articulated robot2 and �g. 4

SCARA robot3 ) and portal robots:

Figure 3: Articulated robot [oA08] Figure 4: SCARA robot [KR08]

Portal robots have a wide action area. Furthermore, the accessibility of the machines

is very good, because the setting is e�ected from the top.

26 - axes robot
3A special variant of robots. It can only handle in 4 axes. Lifting can be done with just one axis. Ideal

for handling in one axis.

12



2 PROCO - FUNCTIONAL SPECIFICATION 2.4

2 ProCO - Functional speci�cation

2.1 Goals

The software system that has been developed in the course of this research project provides

for creating, managing, reorganising, storing and executing production processes within

a manufacturing-cell.

It allows to rebuild the process as a computer model within little time. Another important

aspect is the simplicity of these design activities. It can be reached by the orientation by

the common windows behaviour and an intuitive design that makes it possible to learn the

functioning of the system without reading the manual �rst. Methods like drag-and-drop

and navigation within descriptive lists replace the necessity of programming-knowledge.

This method enables nearly every computer user to build a manufacturing-process.

2.2 Separation from other systems

There are many systems on the market that allow us to control a production process.

However, well-experienced experts to handle such systems are needed, which leads to the

question: What if the user wants to implement a small system with simple and de�ned

parameters?

In this case, the result of such software packages would be large models that need much

time to be developed. So, the aim of this study should be to build a system that pur-

posefully leaves out some options, with the advantage of having a smaller and clearer

system.

2.3 Hardware

ProCO is programmed in the .NET Framework in the version 1.1 of Microsoft. Therefore,

it is runnable on Windows XP and Vista-based computers. The requirements in the CPU

power and the main memory are not complicated. It works with every computer on which

the OS's listed above are running.

For the communication with the production-components, the systems works with nearly

every Digital-I/O-Card of NI (National Instruments), one of the market leaders for such

peripheries. It does not matter if it is a PCI, PCI Express or an USB component. ProCO

can be con�gured with parameters for each of these products. It will be described in great

detail in the following research how to do this.

13



2 PROCO - FUNCTIONAL SPECIFICATION 2.4

2.4 Activities

Figure 5: Activities

The �gure above demonstrates the common order of the required cycle in realising a

manufacturing cell.

Basic planning The �rst step is the design process. It must be de�ned which prod-

uct/product group will be built/assembled and which actions have to be taken to realise it.

Furthermore, it must be clari�ed which components, such as turning machine(s), robot(s)

or cleaning stations, to name but a few, are necessary. The last step is to design the

layout, i.e. which component is to be placed where. This is a fundamental contribution to

the e�ciency of such a system. Transport systems can be made more e�ective through a

smart assignment of robots or other handling systems, for example.

Execution planning This part includes all planning activities which must be done on

the host computer, especially on the corresponding software tool (ProCO). This is the

part that will be executed by ProCO, and it is the central part of this work.

The bold border in the �gure underlines this.

Speci�c details of this step will be given in the following chapters, in particular when

the example of a realised �exible manufacturing cell is discussed (at a later stage). The

essential points are:

14



2 PROCO - FUNCTIONAL SPECIFICATION 2.4

Figure 6: Connection Hard-, Software

• de�nition of the order of the single machines

• determination of the communication-channels (eg. Digital I/O or via special DLL

functions: RS 232, COM-calls via TCP/IP - Networks ...)

• determination of stop criterias (eg. emergency stop, failure in the process, ...) which

must be observed during the production process

• determination of parameters which can be de�ned later in the control section

Component Control The activities in this part are mainly taken on the components

themselves. These are the programming of the machines (DIN 66025, robot control lan-

guage, SPS control cycles, ...) or installing and connecting sensors.

Manufacture Describes the process of the real production sequence. It is the realisation

of the two parts Execution planning and Component control.

Control At this stage, the software tool is responsible for the appropriate execution

of the programmed sequences. Multi-threading must be managed, too, which means that

multiple orders can be delivered to the manufacturing-cell and the software has to manage

15



2 PROCO - FUNCTIONAL SPECIFICATION 2.5

- by the help of queues - which component can be used by which order process. An

e�cient implementation algorithm can help to save time. Error-handling will also be of

great importance in this respect. So the ports which are de�ned by the user as error ports

must be checked for incoming error signals.

2.5 Functions and design

Figure 7: Main-mask

Figure 7 shows the main-screen. It pictures the most relevant control elements.

The system is divided into two parts:

• Design

• Runtime

These areas can be reached via the two buttons on the top of the screen (�g. 8)

The design mode allows to create the process sequence. In the runtime mode the developed

Figure 8: Modes

16



2 PROCO - FUNCTIONAL SPECIFICATION 2.5

process and the manufacturing system can be started. The control elements in the rest of

the screen change depending on the current mode.

2.5.1 Work�ow

Figure 9 shows an overview of the steps to take to build a complete model. The process

Adding the components is pictured in great detail in �gure 10. The single steps and the

meaning of the attributes will be described in the following chapters.

The label XOR next to the branchings means that just one of the following steps can be

chosen. All other branchings are seen as conditional.

Figure 9: ProCO - Work�ow

17



2 PROCO - FUNCTIONAL SPECIFICATION 2.5

Figure 10: Adding the components

2.5.2 Design - mode

In the �gure 7 on page 16 the design mode is illustrated. There are two large areas: the

visual panel which allows us to arrange the single components in a graphics panel via drag

and drop and the second in which the execution order of the activation/deactivation of

the machines can be determined.

Visual panel The visual panel is shown later in the runtime mode. This view is intended

to give a better overview during the execution in the runtime mode. Thus, the user can

quickly control which components are activated.

The pictures which represent the components can be determined in the relevant property

sheet (q.v. Chapter Adding a component). The most popular graphic formats can be used

(eg. .jpg, .gif, .bmp, ...). Nearly every graphic programme is able to create such pictures.

Illustrations for the commonly used components (e.g. turning machines, conveyor belts,

robots ...) are included in the software package. As mentioned above, personalised symbols

can be created very easily.

18



2 PROCO - FUNCTIONAL SPECIFICATION 2.5

Figure 11: Process-order-determination

Process - order - determination Every component (in general) has two entries in

the list of the property sheet Process. An exception are components which are �nished

with a delay time. For this case just a start - entry exists. The list shown in �gure 11 has

four columns:

• No

This represents the position in the order of the process chain. Alternatively, this

cell contains the markers LS (loop start) or LE (loop end). These markers either

describe the start of a loop in this line (LS) or that the end of a loop is reached (LE)

• Name

Gives the name of the component. Alternatively, the data of a loop are listed in this

cell. In this case, the index of the loop is put in bracket, so that it is easier to �nd

the corresponding start-and-end entries. A further piece of information is the count

of the loop. There are two possibilities: via a parameter or via a �xed number. These

options are delineated in the next chapters.

• Action

This marker determines whether it is the activation (S...Start) or the deactivation

(F...Finish) of the component. It is empty, if the entry is a loop de�nition.

• Interface

It displays the interface that is used for this action (Digital I/O, COM ...). It is

empty if the entry is a loop de�nition.

The two buttons Up and Down are intended for the reorganisation of the order. When

a line in the list is selected, reorganisation is executed by clicking on one of the buttons

pushed one position higher or lower in the sequence. The numbers are automatically re-

counted. The order can be changed by the property sheets, too (see chapter Adding a

19



2 PROCO - FUNCTIONAL SPECIFICATION 2.5

component).

The second tab is named Loop. It creates the de�nition of a speci�c area which is to

be repeated several times.

The list contains three columns:

Figure 12: Loop

• No

This is the identi�er of the loop (Loop - ID). It is given in the process list (see

column name in brackets).

• StartPos

It is the �rst position which will be repeated in the execution mode.

• EndPos

This is the last postion of repetition.

The button New creates a new loop. With the button Save the changes of an already

existing or a new entry are written into the data set. Delete removes an existing loop.

The parameter Count represents the number of times a loop is repeated. There are two

options: The �rst one is to de�ne a constant number, the second one is to determine a

parameter.

In ProCO four parameters are provided. If the users decides to choose the option param-

eter, they have the chance to enter the number of repetition in the runtime mode. This

can be used, for instance, to determine the exact number of parts that shall be produced.

Every parameter can be given a meaningful caption. It will be shown in the runtime -

mode.

The loops created are shown on the right position in the process - order - list in the

20



2 PROCO - FUNCTIONAL SPECIFICATION 2.5

Figure 13: Parameters - Identi�er

Figure 14: Loop - Entry

tab Process. The number in the list is replaced by the marker LS (loop start) or LE (loop

end). The column Name contains the loop ID in brackets and the kind of count. This is

n=Parx, if the option Parameter was chosen or n=x if a constant count was chosen (x

stands for the number of counts).

The lines which include loops are furthermore marked with a gray background - colour.

These lines can be moved via the Up/Down - buttons, too. The informations about the

start-/end-postion is synchronised with the tab Loop.

2.5.3 Runtime - Mode

To execute the production sequence created, the user must switch to the runtime mode.

Instead of the process list and the parameter identi�ers, two new control elements appear.

The �rst is the status panel. It shows:

• the current date and time

• which component is started and which output signal is set or

• for which component the procedure is waiting (including the corresponding input

channel) to be �nished

The second control elements are the text �elds, which can be used to enter the values for

the parameters that were used in the process order determination. The label for the text

21



2 PROCO - FUNCTIONAL SPECIFICATION 2.5

Figure 15: Runtime - Mode

22



2 PROCO - FUNCTIONAL SPECIFICATION 2.5

�elds are the identi�ers which were given in the design - mode. Only those parameters

that were really used are shown.

After the declaration of the parameters the sequence can be started with the start button.

The process can be stopped at any time with the stop button. Attention: when a robot

is started, it will start the programme that is programmed at the robot and will �nish it!

The visual panel looks very similar to the one in the design mode. The di�erence is

the fact that it is no longer possible to change the arrangement via drag-and-drop. Dur-

ing the execution, the active component picture is replaced by the image, which is de�ned

for the active state (also see chapter property sheet)

2.5.4 Store and recall of con�gurations

Figure 16: Open - Dialog

The whole con�guration (process order, content of the visual panel) can be saved in

a �le. The format of the �le is XML (eXtensible Markup Language). Is is designed to be

human-legible. Therefore, the user can gain a �rst impression of the set-up by opening the

�le in a simple text editor. Actually, it would be possible to write the whole con�guration

in a text editor. This, however, is not recommendable because of the bad overview and

the complexity of these �les.

The �les can be easily saved and opened by the standard windows dialogues (see �gure

16). It can be activated by the menu entry File.

23



2 PROCO - FUNCTIONAL SPECIFICATION 2.5

2.5.5 Settings

Figure 17: Port - properties

The basic technical settings can be set up in the dialogue port - properties (�gure 17).

The possible modi�cations are:

Physical Channel It is necessary to adapt these points to the user's NI DI/DO Card.

Every channel has eight ports. There are cards with just 8 or 16 ports; here, the user just

enters the physical channel address for the �rst and the second one listed in the manual

of the card. Also, if more than one card is installed on one computer, this property must

be adapted as well as if it is the same procedure for the output channel.

Invert channels In general, the activation of a component is started when the channel

signal is switched from 0 to 1, but some machines give the signal the other way round.

The component is kept inactive by choosing the signal 1 and is working by the decreasing

of the signal level to 0. This can be achieved by marking the checkbox of this speci�c

port.

Pulse time The last property is the pulse time. It determines how long the level is kept

to 1 (or 0; see above). For special applications, it is sometimes necessary to prolong or

shorten the period.

24



2 PROCO - FUNCTIONAL SPECIFICATION 2.5

2.5.6 Adding a component

A component can be added to the data set by clicking the New button, which is positioned

over the process list. A dialog called Component properties (see �gure 18) will be opened.

This is the same dialogue that appears after a double click on a component in the visual

panel. In this case, the dialogue is used to edit the component properties.

Figure 18: Component - properties 1

The dialogue in question contains the attributes for a component. The input can be

�nished by clicking on the OK button. The property sheets contain three tabs, Common,

Error - Handling and Availability.

The attributes are listed in detail in table 1.

The second tab contains the elements for the error handling. Generally speaking, there

are three ways of handling an occurred error which are shown in table 2.

The third sheet (see �gure 20) represents the availability con�guration. It allows to

de�ne conditions that must be ful�lled so that the system may recognise the component

as free during the runtime mode. This is necessary for conveyor belts, for example. It

25



2 PROCO - FUNCTIONAL SPECIFICATION 2.5

Name De�nes the name of the component. This string will be used in the

process list.

Description Further information about the machine used can be saved in this

area. For example, the exact type data or special data about the

usage.

Activation De�nes the interface which is used for the activation. Next to the

combo box, the position of the component in the process order is

listed. It can be entered directly via the position number. It will

be inserted at the given position. Later reordering can be done via

this �eld or via the up/down - buttons in the process order list.

The data are automatically synchronised. The activation can be

done by a digital output or via a function in an DLL �le written

by the user. For this reason, two text �elds are intended. The �rst

one contains the �le and the class in the �le (eg. dll�le.Class1 )

separated by a dot. A �le can contain more than one class. The

second �eld contains the name of the function (eg. robotact). All

these data are case sensitive. This means that it is important to pay

attention to writing uppercase letters in these �elds. The functions

of the dll �les are functions with no return values (respective void

in C or C#) and no parameters.

Deactivation De�nes the interface for deactivation. The order position has the

same behaviour like the one in the activation area. Alternatively

to the possibility of de�ning a digital input for the recognition of

the �nish status the user can de�ne a speci�c delay time. The com-

ponent is started. The system waits for the time de�ned and will

then continue with the sequence. The unit for this attribute is ms.

When checking the option Delay, the order position �eld becomes

inactive. The activation can be triggered either by a digital output

or via a user written function in a DLL �le, too. The conditions

are the same like in the activation area. The function has no pa-

rameters but a return value of the type integer. When the return

value becomes 1, the sequence is continued. The system executes

the function continiously until the return value becomes 0.

Visualisation This attribute contains the path of the pictures which are shown in

the visual panel. One for the active and one for the inactive status.

Table 1: Attributes: Component

26



2 PROCO - FUNCTIONAL SPECIFICATION 2.5

Recognition via DI The combo box allows to select an Digital Input Port

which tells the control system when an error occurred

by setting the signal to 1.

Recognition via Timeout When the time between the start (attribute Activation)

and the �nish (attribute Dectivation) is longer than the

given timeout an exception with an error message will

be shown and the execution will be stopped.

No handling The option None ignores errors.

Error - Msg This text area contains the message that is shown when

the error occurs.

Table 2: Attributes: Error - Handling

Figure 19: Component - properties 2

must be ensured that the position after the belt line is free for using it.

The �rst combo box in the mask allows for selecting the input channel, the second repre-

sents the value . By clicking the Add Button a condition, can be added.

27



2 PROCO - FUNCTIONAL SPECIFICATION 2.5

Figure 20: Component - properties 3

The basic necessity of this function results from the possibility of the system to exe-

cute more than one process at the same time (Mulit - threading4). So, many process

procedures can be started. Consequently, it is important to determine when a component

can be used by a process.

4Threads make it possible for a computer program to split itself and generates so further processes,

which are running autonomously.

28



3 PROCO - TECHNICAL SPECIFICATION 3.2

3 ProCO - Technical speci�cation

This chapter will give insight into the technical background of the development of ProCO.

It exclusively presents its basic functions. The whole source code has about 6000 lines of

code. For detailed information, consider the source code itself.

3.1 Programming - framework

The realisation, of the software that was described in the last chapter is done in the

programming language C#, which is a part of the Microsoft Visual Studio. In this study

the Microsoft .NET Framework in the version 1.1 is used.

C# was released in the year 2000 and integrates concepts of Java, C, C++ and Delphi.

It is a procedural, object oriented language. It tries to give a simple, modern and robust

environment for developers.[Wik08a]

C# is based on components. All objects are described as components. They are the core

elements of this language. [Wik08a]

3.2 Program architecture

The following subchapter describes the class architecture and the design of the code used.

Within the scope of this study, I shall refrain from discussing too speci�c programming

details. The subsequent enumeration is intended to provide a concise outline of the most

important functions.

3.2.1 mainForm

This class determines the graphical user interface (GUI). It is responsible for the adjust-

ment of the single control elements. Furthermore, it is designed to react to activities,

such as mouse clicks, drag-and-drop operations or data input. The list below gives a short

overview of the most important functions:

public void initializeListView()

Initialises the ListView for the process order. It adds the title columns and sets the size

of it.

public void initializeLoopListView()

Initialises the ListView for loop management.

29



3 PROCO - TECHNICAL SPECIFICATION 3.2

private void visualPanel_MouseDown(...)

private void visualPanel_MouseUp(...)

private void visualPanel_MouseMove(...)

private void visualPanel_Paint(...)

Manages the drag-and-drop operations: If the current mode is the design mode, the

MouseDown function saves the current start position of the mouse pointer and identi�es

the component clicked on via the getHit function in the ListController. The function

MouseMove is called when the mouse is moved in the visual Panel. First of all, it is checked

if the left mouse button is pressed and if a component was hit in the MouseDown area.

If both conditions are ful�lled, the di�erence between the start position and the current

position is calculated and the values are refreshed in the component moved. The new

starting point is the current point. This procedure is repeated for every movement. The

MouseUp - function deselects the currently selected component.

The Paint function calls the public void paintAll(Graphics g) in the ListController

class, so that it refreshes the visual panel. (see subchapter ListController).

Figure 21: Usage of the draw - function

private void Down_Click(...)

private void Up_Click(...)

Speci�es the behaviour of the re-ordering buttons at the process list. With these two but-

tons, the execution position of component can be easily changed. Furthermore, start-and-

end positions of loops can be changed. All this can be done in the Component Property

dialogue or in the Loop tab. In the process list, the user has one place for all rearrange-

ment functions.

private void Save_Click(...)

private void Load_Click(...)

Manages the loading and saving of the created XML �les.

30



3 PROCO - TECHNICAL SPECIFICATION 3.2

private void loopListView_DoubleClick(...)

private void looptype1_CheckedChanged(...)

private void btnLoopSave_Click(...)

private void btnLoopNew_Click(...)

private void btnLoopDelete_Click(...)

private void loopListView_Click(...)

Manages the loop entries. The new - function creates a new loop, the save - function saves

changes in an existing loop or saves a new loop while the delete - function removes a

loop from the execution process.

private void btnNew_Click(...)

Creates a new component and shows it as a grey rectangle in the visual panel. The new

item is listed in the process list at the end, with the start entry coming before the end

entry. Now the user can change the properties of the new component by double clicking it.

private void btnRuntime_Click(...)

private void btnDesign_Click(...)

Switches between the two modes.

3.2.2 Component

This class manages the component properties and the arrangements of them in the visual

panel.

public void draw(Graphics g)

Every Component �knows� how to draw itself. It loads the images for the activated and

deactivated status. The activation status is checked by means of a member variable of the

component class. This variable can be set by other classes.

public bool hit(Point p)

Returns true if the co-ordinates in the variable p hit the component in the visual panel.

This function is needed to detect which component is dragged or double clicked in the

visual panel in the design mode. If no component is found on the position p, the return

value is false.

31



3 PROCO - TECHNICAL SPECIFICATION 3.2

3.2.3 ComponentProperties

Manages the window ComponentProperties, which allows for the change of the states

of a component. Most of the functions are self-explanatory and are used for the GUI

management.

It has the following main functions:

• Filling all combo box lists.

• Read-out of the values of the �tting component out of the dataset.

• Filling all values into the text �elds, combo boxes and radio buttons.

• Management of the Availability tab (delete and add functionality).

• Saving all changes if the OK button is clicked.

• Displacement of the current component if the Delete button is clicked.

3.2.4 IOControl

public IOControl(DataStructure ds, mainForm form)

The constructor initialises the IO card with the pre-cast functions of National Instru-

ments. This is done by the following commands:

digitalWriteTask = new Task();

digitalWriteTask.DOChannels.CreateChannel(

physicalChannelx,"",ChannelLineGrouping.OneChannelForAllLines);

This is done for every channel used.

public void SetCardO()

public void GetCardI()

The class holds a boolean array with the currant values for the input-and-output channels.

These functions write these data from the array to the card outputs/inputs.

This is done by the following commands:

DigitalSingleChannelWriter writer = new

DigitalSingleChannelWriter(digitalWriteTask.Stream);

writer.WriteSingleSampleMultiLine(true, output);

public int SetOutput(int no, int impulse)

Negotiates the value of the port under no speci�ed output for the time indicated in

impulse.

32



3 PROCO - TECHNICAL SPECIFICATION 3.2

public void ResetIO(DataStructure ds)

Resets all output channels to the default values. It also provides the invert status of the

speci�c port.

public bool GetInput(int no)

Returns the value of the in the variable no speci�ed input port.

public float checkingInput(int no, int msec)

Watches an input port till it becomes a �true� value, which means 1 if the invert option

is not checked or 0 if it is checked. Checking time is restricted to the time span msec.

Thereafter, the function returns to a time-out error if the corresponding option is chosen

in the Component Property dialogue.

public void setPhysChan()

This function reads out the addresses of the physical channels of the dataset and writes

them into member variables of the IOControl class. These options can be set in the Port

Property dialogue.

3.2.5 DataStructure

This class is responsible for the ERM management. It saves all data used in the software

tool.

public void MakeComponentsTable(DataTable componentsTable)

public void MakeAvailibilityTable(DataTable availibilityTable)

public void MakeLoopTable(DataTable loopTable)

public void MakeParameterTable(DataTable parameterTable)

public void MakePhysChanTable(DataTable physChanTable)

public void MakePortTable(DataTable portTable)

Creates the data structure of the single tables, including the column types, as it is de-

scribed in the chapter on ERM. Every column in every table is created by the AddCol

function, which is described later, as follows:

eg.: AddCol("StartPos", "System.Int32", loopTable);

public void AddPhysChan(...)

public void AddAvailibility(...)

33



3 PROCO - TECHNICAL SPECIFICATION 3.2

public void AddPort(...)

public void AddParameter(...)

public void AddLoop(...)

public void AddProcess(...)

Adds an entry to the speci�c table. The concrete values are given in the parameters.

public DataColumn AddCol(...)

Is a help - function for the Add functions listed above.

3.2.6 ListController

The main variable of this class is a component array. It holds all component entries used

and manages them.

public void Add(Component c)

Adds a component to the array.

public void paintAll(Graphics g)

Calls the draw function of every component entry in the array.

public void showDialogComponent(...)

Opens the component property dialogue.

public Component getHit(Point p)

This function checks every component in the array if the position (coordinates in the visual

panel) p hits it. This is done by calling the function public bool hit(Point p) in the

Component class. If a �tting component is found, the component is returned. Otherwise

null is returned.

3.2.7 Port

Holds the data for the port entries.

3.2.8 PortProperties

Manages the window PortProperties, which allows for changing the states of the ports.

To be more precise:

34



3 PROCO - TECHNICAL SPECIFICATION 3.2

Figure 22: Usage of the getHit - function

• the physical channels,

• the impulse time and

• the invert status.

Most of the functions are self-explanatory and are used for the GUI management.

3.2.9 ProcessListController

public void refreshOrder(...)

Refreshes the order of the process list when a component gets another process position.

This is a very complex function. For the concrete realisation, consider the source code of

ProCO.

public void fillProcessList()

Reads the data out of the data structure and �lls the process order list, as shown in the

chapter on Design - mode.

public void fillLoopListView()

Fills the loop list with the �tting values.

3.2.10 RuntimeController

public Thread startThread(RuntimeController rtc)

This function is executed when the start button is pressed in runtime mode. It is managed

as a thread. Thereby, it is possible to start more than one process threads at the same

time. (see �gure 23)

public void startProcessing()

This function is indirectly called by the startThread function. It calls the executeSteps -

35



3 PROCO - TECHNICAL SPECIFICATION 3.2

Figure 23: Starting of a new run

function with the start value 0 and the end value as the length of the process list. In this

way, it executes the whole process list. (see �gure 23)

public void executeSteps(int start, int end, int count, int loopID)

This function carries out the steps that lie between the start-and-end position for the

times given in the variable count . This architecture is necessary to realise a recursive

procedure which is used to execute any count of loops within loops that lie in other loops

themselves and so on. (see �gure 24)

The single process steps are performed. Before start entries are executed, it is checked if

the component is �free� by means of the function checkfree. If it is free, it is allocated.

If not, the procedure will wait in a loop until checkfree returns true and a member

variable waiting is set with the component ID for that component for which one is

waiting. Thereby, other processes are able to recognise if a process exists that has been

started earlier and that is waiting for the same component. In this case, this process

will have priority. The DLL invocation is triggered by the following code. First of all, an

instance of the class which is identi�ed by the string in the variable FileClassName is

created; thereafter, the function (String MethodName) is called:

36



3 PROCO - TECHNICAL SPECIFICATION 3.2

Figure 24: Usage of the executeSteps - function

object calcDisp = null;

Type calcObj=null;

calcObj = Type.GetTypeFromProgID(FileClassName);

calcDisp = Activator.CreateInstance(calcObj);

calcObj.InvokeMember(MethodName,

BindingFlags.InvokeMethod, null, calcDisp, null);

public bool checkfree(int compID)

37



3 PROCO - TECHNICAL SPECIFICATION 3.2

Figure 25: Checkfree - function

This function checks if a speci�c component is �free�. It checks if the component is used

at the moment, as well as if the conditions which are given in the availability table are

ful�lled.

Furthermore, this function checks if another process exists that was started before this

process. In this case, the process, that was started �rst has priority. That is why every

process has a member variable runID. This variable identi�es in which order the processes

were started. (see �gure 25)

public void checkingErrorPorts()

It is called as a thread by the function startcheckerrors when the �rst process is execut-

38



3 PROCO - TECHNICAL SPECIFICATION 3.3

ed. It observes the ports that are de�ned in the single component properties in the error

handling tabs in the part Recognition. If an error occurs, the execution will be stopped

and a message will be shown.

public void startcheckerrors(RuntimeController rtc)

See above.

3.3 ERM - Entity Relationship Model

In the �gure 26, the Entity - Relationship - Model of ProCO is depicted. In this notation,

the attributes are primary keys, which means that the value of these attributes is unique

and the row can be identi�ed by this value. They are marked with the tag PK and the

parameter name is underlined. Foreign keys is taken to mean that the value refers to an

entry in another table that is marked with the tag FK.

ParameterID Contains the unique primary key for the parameter.

Name Name of the parameter

Table 3: Attributes: Parameter

LoopID Contains the unique primary key for the loop.

StartPos Gives the start position of the loop in the process list.

EndPos End position in the process list. The process steps between the start

and the end position will be repeated for the speci�ed number of

times.

Type Contains the type of the count for repetition. 0 means that the value

given in the attribute count is used. 1 means that the parameter

which is referred to in the attribute ParameterID is used for the

number of repetition.

Count see above.

ParameterID see above.

Table 4: Attributes: Loop

The implementation is achieved with the DataSet type of the .NET framework. The

hierarchical structure of this class is pictured in �gure 27.

Each DataSet contains one or more DataTables. These DataTables contain DataColumns

and DataRows. (see �gure 27)

The data are not readout via conventional SQL statements. These are regularly used for

39



3 PROCO - TECHNICAL SPECIFICATION 3.3

Figure 26: ERM

40



3 PROCO - TECHNICAL SPECIFICATION 3.3

CompID Contains the �rst part of the compound key for the process. It refers

to the component which is involved in this process step.

action Contains the second part of the compound key for the process. It

contains one char: 'S' for start or 'F' for �nish.

Pos Position in the process list.

Type This marker de�nes how the process step is started or �nished.

The possibilities are explained in the chapter Adding a component :

digital IO, delay, DLL functions.

Sleep see above.

PortID see above.

DLL Saves the information about the used DLL �le. (see chapter Adding

a component)

Fct Saves the name of the function. (see chapter Adding a component)

Table 5: Attributes: Process

ParameterID Contains the unique primary key for the parameter.

Name Name of the parameter

Table 6: Attributes: Parameter

PortID Contains the unique primary key for the port. In this table, all

available ports are listed

IOType 0 for input port and 1 for output port.

PortNo The number of the port.

Invert In general, the activation of a component is started when the chan-

nel signal is switched from 0 to 1, but some machines give the signal

the other way around. The components are kept inactive by assign-

ing them the signal 1; they work by the decreasing of the signal

level to 0.

Impulse Gives the time, that the level (1 or 0; see above) is set.

Table 7: Attributes: Port

normal databases. The readout process is done by select commands which are a func-

tion of the DataTable class. The contents of the parameter for this function are similar

to the where statement in a SQL statement. The result (return value) of the function is

a DataRow Array (DataRow[]) with the entries �tting the select statement.

eg. DataRow[] Iports = portTable.Select(''IOType = 1'');

41



3 PROCO - TECHNICAL SPECIFICATION 3.3

CompID Contains the unique primary key for the component. A component

in this context can be every element in the production process. Eg.

robots, conveyor belts, turning machines ...

Name This name is shown later in the process list in the main mask.

Description This attribute contains further information about the component.

eg. detailed model information ...

posX Saves the information about the position in the visual panel in the

main mask.

posY see above.

posWidth Saves the information about the dimensions of the corresponding

picture.

posHeight see above.

picPathact Represents the path of the corresponding picture that is shown,

when the component is active during the execution of the process

in the runtime mode.

picPathinact Path of the picture that is shown when the component is inactive

and during the implementation in the design mode.

ErrorType Gives the mode of error handling. 1 stands for error recognition via

an input channel. When an error occurs, the component sends a

signal to the host computer. When 1 is chosen, the software throws

an exception with the text given under the attribute ErrorMsg.

When 2 is chosen, the software recognises an error via a timeout,

which means that an error is messaged if the component does not

send a �nish signal during the time speci�ed under the attibute

TimeOut (in ms). 3 means that no error handling shall be e�ected.

ErrorPortID see above.

TimeOut see above.

ErrorMsg see above.

Table 8: Attributes: Components

The values of the selected items can be easily changed by editing the contents of the

entries:

eg. Iports[0][PortNo] = 3;

The mapping of relations is pronouncedly di�erent from SQL mapping. The DataTable

class has a further sub class, viz. DataRelation. The creation of such a relation is done

in the following way:

42



3 PROCO - TECHNICAL SPECIFICATION 3.4

Figure 27: DataSet [ee08]

e.g. DataRelation dr = new DataRelation(

''CompPort'', // user - defined name of the relation

ds.Tables[''Port''].Columns[''PortID''], // higher - level table

ds.Tables[''Components''].Columns[''ErrorPortID''] // lower - level table

);

The child - or parent - rows can be selected like this:

DataRow[] drPort = drComp.GetChildRows(ds.Relations[''CompPort'']);

In this example, ds is the DataSet and drComp is an instance of the table Components.

3.4 XML

XML (eXtensible Markup Language) is a markup language - a language that describes how

a text is structured or formatted. It is not dedicated to one special purpose. It can be used

in various cases. Furthermore, it allows for extending it with personally de�ned elements.

The main bene�t is to create a framework for structured data. An XML document just

contains characters and no binary data; thus, it is �humanly legible�. So hierarchical and

structured data can be saved and easily exchanged between di�erent systems. Moreover,

it is a fee - free open standard.[Wik08b]

XML has two levels of correctness:

• Well-formed

A document is well formed provided that it conforms to all XML syntax rules. An

43



3 PROCO - TECHNICAL SPECIFICATION 3.4

error in this context would be a start tag without an end tag.

• Valid

A document is valid if it conforms to special semantic rules. These are mostly user

de�ned. An error in this context would be an unde�ned element in the document

contained. [Wik08b]

The structure of an XML document is quite simple. All data are enclosed by a start and
an end tag.

eg. <name>Frank Miller<\name>

Every element can contain further sub-elements that have the same structure. These
structures can be seen as a kind of tree. The most important thing in this context is that
there is only one root element (also called document element).
A more complex example with a hierarchical structure is the following one. It is an ex-
ample of a simple telephone directory:

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>
<phonebook>

<entry>
<name>Frank Miller</name>
<no>+41 1 456789012</no>
<no>+41 1 345678901</no>

</entry>
<entry>

<name>Pat Huber</name>
<no>+41 34 45679012</no>

</entry>
</phonebook>

C# supports the XML concept on a high level. When the data is saved by the means

of the data type DataSet, which is a class of the .NET framework, the element can be

easily saved by the command DataSet.WriteXml(''filename.xml''). The equivalent is

the command DataSet.ReadXml(''filename.xml'').

The concrete realisation of the model described in the chapter ERM looks like the
following listing:

<?xml version="1.0" standalone="yes"?>
<NewDataSet>

<Components>
<CompID>0</CompID>
<Name>line 1</Name>
<Description />

44



3 PROCO - TECHNICAL SPECIFICATION 3.4

<posX>215</posX>
<posY>16</posY>
<posWidth>142</posWidth>
<posHeight>63</posHeight>
<Pathact>C:\Diplomarbeit\Final\pics\con2_act.gif</Pathact>
<Pathinact>C:\Diplomarbeit\Final\pics\con2_inact.gif</Pathinact>
<ErrorType>2</ErrorType>
<TimeOut>3000</TimeOut>
<ErrorMsg />

</Components>
...

<Process>
<CompID>0</CompID>
<Action>F</Action>
<Pos>10</Pos>
<Type>0</Type>
<Sleep>0</Sleep>
<PortID>0</PortID>

</Process>
<Process>

<CompID>0</CompID>
<Action>S</Action>
<Pos>9</Pos>
<Type>0</Type>
<Sleep>0</Sleep>
<PortID>24</PortID>

</Process>
...
<Loop>

<LoopID>0</LoopID>
<StartPos>5</StartPos>
<EndPos>8</EndPos>
<Type>0</Type>
<Count>4</Count>

</Loop>
...
<Port>

<PortID>1</PortID>
<IOType>0</IOType>
<PortNo>1</PortNo>
<Invert>0</Invert>
<Impulse>500</Impulse>

</Port>
...
<Parameter>

<ParameterID>1</ParameterID>
<Name>Throughput</Name>

45



3 PROCO - TECHNICAL SPECIFICATION 3.4

</Parameter>
...
<PhysChan>

<ChanID>1</ChanID>
<Text>Dev1/port0/line0:7</Text>

</PhysChan>
...

In fact, the whole ERM is represented in the XML �le. This listing is not the whole �le.

It is intended to give a �rst impression of the �le.

46



4 EXEMPLARY REALISATION 4.3

4 Exemplary Realisation

4.1 Con�guration

The system, described below consists of the following parts:

• Conveyor belts

• Robot (ABB IRB 2000)

• Turning machine (Gildemeister CTX 210)

• (Rod loader)

The system can be expanded in any order, e.g. by further turning machines or robots.

The implementation - steps for new components remain the same. So, for this study it is

enough to integrate just each one of these standard - components. A �rst impression can

be gained from the �gures 28 and 29.

4.2 Event Order

The process is very simple. An empty pallet is fed into the system at the position no.

1 (see �g. 28). The pallet is brought by the conveyor belts to position no. 2. Now, the

turning machine begins to produce the turning work pieces. The raw - material comes

from the rod loader. It is controlled by the turning - machine via M - commands. The

�nished pieces are taken out of the extraction place of the turning machine by the robot.

The exact extraction - process will be described later in this sub - chapter.

Every pallet has four storage areas for �nished work pieces. These areas can be changed

easily, depending on the work piece dimensions and the accessibility for the robot. If the

determined number of products is produced, the pallet will be brought via the conveyor

belts to the start position no. 1 again.

A graphical outline of the Event - order is shown in �gure 31.

4.3 DI/DO - Card

The physical control of the components is executed in this example via Digital Input /

Digital Output Channels. On closer inspection, a PCI - card of the leading enterprise

National Instruments is used.

The model NI 6528 provides 24 digital input und 24 digital output channels. The whole

device is software con�gurable. It can be controlled by special software or by various

47



4 EXEMPLARY REALISATION 4.3

Figure 28: Schematic concept: FMC

Figure 29: FMC

Figure 30: Palett

48



4 EXEMPLARY REALISATION 4.3

Figure 31: Event Order

progamming - languages like Visual Basic, Visual C++ or Visual C#.

In �gure 32, the pinout is depicted. The input channels must be set in the following

way: The pin with the higher voltage must be connected to the PX.Y+ pin and the one

with the lower voltage to the PX.Y- pin. For the output channels, it is not important

which one of the cables provides higher and lower voltage.[Ins07]

A cable leads from the PCI card to two panels, one with the pins 1 to 50 for input channels,

the other one with the pins 51 to 100 for the output channels. Pins 49 and 99 are used

for a 4.5 to 5.25V power supply from the computer. These pins are not relevant for this

examination. All pins, except for 50, 100, 49 and 99 are isolated.[Ins07]

From -60 VDC till 1 VDC the incoming signal is stated as a low level voltage, from 3.2

VDC till 60 VDC it is stated as a high level voltage. In this context it is operated with

0 VDC and 20 VDC. Voltages over 60 VDC or under -60 VDC should not be exceeded.

The result could be detrimental.[Ins07]

49



4 EXEMPLARY REALISATION 4.4

Figure 32: NI 6528 Pinout [Ins07]

The concrecte pinout for the components used on the panel is as follows (�gure 9 and

�gure 10):

50



4 EXEMPLARY REALISATION 4.4

P0.0- Conveyor belt: Line 1

P0.0+

P0.1- Conveyor belt: Line 2

P0.1+

P0.2- Conveyor belt: Line 3

P0.2+

P0.3- Conveyor belt: Line 4

P0.3+

P0.4- Conveyor belt: Error - State

P0.4+

P0.5- Conveyor belt: Emergency stop

P0.5+

P0.6- Robot

P0.6+

P1.0- Turning machine

P1.0+

Table 9: Pinout: Input

P3.0- Conveyor belt: Line 1

P3.0+

P3.1- Conveyor belt: Line 2

P3.1+

P3.2- Conveyor belt: Line 3

P3.2+

P3.3- Conveyor belt: Line 4

P3.3+

P3.4- Robot

P3.4+

P3.6- Turning machine

P3.6+

Table 10: Pinout: Output

51



4 EXEMPLARY REALISATION 4.4

4.4 Robot

4.4.1 Common aspects

As mentioned above, an ABB - robot is used in this manufacturing cell. It can be pro-

grammed via a hand-held unit. The common way to determine the position is via teach

- in. That means that the robot arm is moved manually by the hand-held unit to the

desired position and this position will be saved. Every POS command, which is described

later, has six values saved internally: three for the position of the three axes and three for

the orientation of the robot arm. This model of the robot has 16 in- and output ports for

the communication with a host computer.

Figure 33: ABB IRB 2000[Geb08]

The exact speci�cation of the robot as per the nameplate:

ABB IRB2000

52



4 EXEMPLARY REALISATION 4.4

L8941.5019-001

(7723220)

3x380V / 50Hz / 3,1 kW

IO Card: DSDXB001

In the rack on the right hand side card no. 1 is situated, on the left hand side card no. 2.

Both cards are connected by ribbon cable to the terminal block of the control cabinet

4.4.2 Robot program

The listing below is the code used for this application.

10 V=2000 mm/s MAX=2000 mm/s

20 ROBOT KOORD

30 TCP 0

40 KOORDV 0

50 SETZE R1=0

70 POS V=50%

80 LÖSCHE AUSG6 VERZÖG 0.5 s

90 WARTE BIS EING9=1

100 LÖSCHE AUSG10 VERZÖG 0.5 s

120 SETZE R1 = R1 + 1

130 SPRUNG 150 WENN R1 <> 5

140 SETZE R1 = 1

150 POS V = 50 %

160 KARTES KOORD

170 POS V = 10 %

180 POS V = 10 %

190 POS V = 4 %

200 POS V = 2 %

202 WARTE 0.5 s

210 WARTE 0.5 s

220 POS V = 5 %

221 WARTE 0.5 s

230 SETZE AUSG6 VERZÖG 0.5 s

240 POS V = 10 %

250 POS V = 1 %

260 POS V = 1 %

270 POS V = 1 %

280 LÖSCHE AUSG6 VERZÖG 0.5 s

290 WARTE 1.5 s

300 POS V = 10 %

310 POS V = 20 %

320 POS V = 10 %

330 POS V = 50 %

340 SPRUNG 380 WENN R1 = 1

350 SPRUNG 460 WENN R1 = 2

360 SPRUNG 530 WENN R1 = 3

370 SPRUNG 620 WENN R1 = 4

380 POS V = 20 %

390 POS V = 10 %

400 POS V = 10 %

410 POS V = 10 %

420 SETZE AUSG6 VERZÖG 0.5 s

430 WARTE 1 s

440 POS V = 10 %

450 SPRUNG 690

460 POS V = 25 %

470 POS V = 5 %

480 POS V = 5 %

490 SETZE AUSG6 VERZÖG 0.5 s

500 WARTE 1 s

510 POS V = 5 %

520 SPRUNG 690

530 ROBOT KOORD

540 POS V = 30 %

550 POS V = 20 %

560 POS V = 5 %

580 SETZE AUSG6 VERZÖG 0.5 s

590 WARTE 1 s

53



4 EXEMPLARY REALISATION 4.4

600 POS V = 5 %

610 SPRUNG 690

620 ROBOT KOORD

630 POS V = 15 %

640 POS V = 5 %

650 SETZE AUSG6 VERZÖG 0.5 s

660 WARTE 1 s

670 POS V = 5 %

680 SPRUNG 690

690 SETZE AUSG10 VERZÖG 0.5 s

710 SPRUNG 70

PROGRAMM ENDE

10 Determines the standard and the maximal moving speed of the robot arm. The

following statements, like POS V = 5 % refer to this standard speed.

20 In this programme two di�erent co-ordinate systems are used: ROBOT and KARTES.

The Cartesian system has the advantage that the moving between two points is done on a

direct line. The robot co-ordinate system moves faster and more e�ciently, but the exact

moving activities are not exactly predictable. As a result, it can be dangerous to use this

mode when obstacles are near to the robot arm.

KOORDV = Coordinate shift.

30, 40 TCP = Tool - Center - Point. The whole programming is done with teach - in.

So the zero shift is not important in this context and is, therefore set to zero.

50 SETZE = set. This command is used to set a variable (register). In this case the

register 1 is initialised to 0. Register 1 is used to save the index of the next work - piece

that will be placed on the pallet. All in all, the pallet assumes four positions in this case.

70 POS = move the arm to a speci�c position. The position saved is given via tech - in.

The position at line 70 is the basic start position. It moves to the point with 50 percent

of the standard - speed.

80 LÖSCHE = delete. It means to set the digital output (= AUSG) with the index, that

follows this statement (6). VERZÖG (= delay) gives the waiting time after the output

channel is set in seconds (0.5 s).

DO (= digital output) 6 in this context is used to open (= set, SETZE) or close (= delete,

LÖSCHE) the gripper.

90 WARTE = wait. The robot waits until the digital input (= EING) reaches value 1. Then

it continues with the execution of the batch. It is used to tell the robot to pick up the

work - piece from the turning machine.

54



4 EXEMPLARY REALISATION 4.4

100 DO 10 is reset to 0. This channel is used to inform the host computer, that the

work piece is put on the pallet, moving is completed and robot is ready to manage the

next job.

120 Register 1 is increased. That means that the next index - position on the pallet is

moved towards the following process.

130 When register 1 has the value 5, it is set back to 1. Otherwise, the next line (140)

will be skipped.

150 The position directly in front of the turning machine is approached.

160 The following movements are done on a small area, viz. in the extraction place of

the turning machine. So, for the reasons stated above the Cartesian system is chosen.

170 - 270 The robot gripper is positioned to the left of the work piece in the extraction

place. The robot shifts the work piece slowly to the right, i.e. to a speci�c position. This

is necessary to have a de�ned position of the product. The open gripper is moved to a

position, so that the work piece is between the brackets of the gripper.

The delays are important to guarantee that the work piece is no longer in motion.

230 Now the gripper is opened.

280 Gripper is closed.

300 - 330 The robot arm is moved out of the extraction place. It is important to pay

attention that there are no collisions. For this reason, more POS commands are necessary.

340 - 370 The position of the next place on the pallet is checked; it will be jumped to

the speci�c position.

380 - 410, 460 - 480, 530 - 560, 620 - 640 The robot arm is moved above the

depositing position on the pallet (four positions on the palett = four cases).

420f, 490f, 580f, 650f The grip is opened again. The robot waits for one seconds in

order to make sure that the work piece has reached its �nal position.

440, 410, 600, 670 The arm is moved away from the pallet.

55



4 EXEMPLARY REALISATION 4.7

450, 520, 610, 680 The programme jumps to line 690.

690 DO 10 is set to 1. It tells the host computer that the moving process has �nished.

710 The programme jumps back to line 60. Here it waits for the next start signal.

4.5 Turning machine

The turning machine used was produced by Gildemeister, type speci�cation CTX 210.

CTX is the indication for universal - turning machines.

Figure 34: Gildemeister CTX 210 [Gil08]

Technical speci�cation:

• drive power: 7.5 kW

• range of speeds: 20 - 6.000 1/min

• Number of tools in turret: 12 pcs.

• Diameter of chuck: 165 mm

4.6 Work piece

Figure 35 illustrates the work piece that is produced in this exemplary realisation.

56



4 EXEMPLARY REALISATION 4.7

Figure 35: Produced workpiece

4.7 ProCO - con�guration

This chapter describes the speci�c con�guration that is necessary for the system to be

realised:

Name Activation Deactivation Error-Handling Availibility AP DP

Line 1 DO 0 DI 0 DI 5 DI 0 = 0 1 2

Line 2 DO 1 DI 1 DI 5 DI 1 = 0 3 4

Turning machine DO 6 DI 8 TimeOut: 240000 none 5 6

Robot DO 4 DI 6 TimeOut: 60000 none 7 8

Line 3 DO 2 DI 2 DI 5 DI 2 = 0 9 10

Line 4 DO 3 DI 3 DI 5 DI 3 = 0 11 12

Table 11: Components

Components AP ... Position in the process - list for activation

DP ... Position in the process - list for deactivation

Loops The �rst loop with the index 0 repeats the starting of the turning machine and

the starting of the robot four times. That is the count of the places on the pallet.

57



4 EXEMPLARY REALISATION 4.7

No StartPos EndPos Count

0 5 8 4

1 1 12 Par1

Table 12: Loops

The second loop can be determined in the runtime - mode. It sets the count of repetition

of the whole sequence.

No Name Action Interface

LS (1) LoopStart n=Par1

1 Line 1 S DO 0

2 Line 1 F DI 0

3 Line 2 S DO 1

4 Line 2 F DI 1

LS (0) LoopStart n=4

5 Turning machine S DO 6

6 Turning machine F DI 8

7 Robot S DO 4

8 Robot F DI 6

LE (0) LoopEnd

9 Line 3 S DO 2

10 Line 3 F DI 2

11 Line 4 S DO 3

12 Line 4 F DI 3

LE (1) LoopEnd

Table 13: Process - list

Process - list This leads to the process list. The list is created automatically by ProCO,

i.e. by the information given above.

ParameterID Name

1 Throughput

Table 14: Parameters

58



4 EXEMPLARY REALISATION 4.8

Parameters

4.8 Start - up (Preparation)

It is important to start at �rst ProCO. Thereby, it is ensured that all output ports have a

de�ned signal. Otherwise, it could happen that a machine starts immediately during the

preparation process.

The next step is to arm the single components. Applied to the concrete example, this

means to start the robot programme so that it is in the start position and waits for

the start signal on the input channel de�ned. It is the same process as with the turning

machine. Only if this step is made, the manufacturing should be started.

This must be done just once in a manufacturing period. More process cycles can be

operated without restarting the system. Just when machines are switched o�, e.g. at the

end of the day, this procedure has to be started again before the next production - period

begins.

59



5 CONCLUSION 5.0

5 Conclusion

The implementation of manufacturing cells is mostly a creative process. Especially, when

existing components that have been used autonomously are connected to an automated

system. If one did not paid attention to the �tness for use in manufacturing cells at the

time of purchase, such problems arise. So, in this case individual solutions must be found

or the components must be extended by appropriate modules. But the expenditures will

be amortised within a fairly short period of time by shorter cycle times.

A further important issue is the fast practicability of such systems. Particularly for single

orders with a high number of pieces, a temporary use of automated connections is an

important factor. ProCO, the system developed, has the aim to provide a tool designed

for such situations. It tries to help companies to raise their �exibility in the �eld of pro-

duction.

60



REFERENCES 5.0

References

[ee08] experts exchange.com. Datatable structure. http://www.experts-

exchange.com/Microsoft/Development/.NET/Q_23343849.html, 20.3.2008.

[Geb08] Gebrauchtroboter.com. Daten abb irb 2000. www.gebrauchtroboter.com,

25.2.2008.

[Gil08] Gildemeister. Gildemeister ctx 210, produktspezi�kation.

http://www.gildemeister.com/de,drehmaschinen,ctx210?opendocument,

27.3.2008.

[Ins07] National Instrument. User guide, ni 6528. http://www.ni.com, 2007.

[Kie98] Hans B. Kief. Ffs-handbuch. 4. Au�age, 1998.

[KR08] KUKA-Roboter. www.kuka.com, 15.2.2008.

[oA08] The University of Agder. Robot laboratory.

http://www.uia.no/en/portaler/om_universitetet/teknologi_og_realfag/ingenioervitenskap/

mekatronikk/hovland, 15.2.2008.

[Wik08a] Wikipedia. C sharp. http://en.wikipedia.org/wiki/C_Sharp_20.3.2008.

[Wik08b] Wikipedia. Xml. http://en.wikipedia.org/wiki/XML, 25.2.2008.

61


