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Abstract

The multi-material lightweight design concept strives to use the “best” material and
manufacturing process for each part of a structure in order to combine the advantages
of different materials. Obviously, joining techniques play a major role in the manufac-
turing of these structures. The compound casting process allows for the joining of a
casting to other parts during the casting process. That is, the casting process serves
both as a production and a joining process.

The aim of this thesis is to develop computational methods for the analysis and design
of compound castings and other multi-material structures. Both finite element methods
and asymptotic analysis techniques are used.

During the quenching (or cooling) of a compound casting residual stresses develop
due to the inhomogeneous transient temperature field and the dissimilar coefficients of
thermal expansion of the materials involved. As these stresses determine the frictional
connection and other important characteristics (e.g. the fatigue life) of the structure,
the simulation of the quenching process is of central importance.

In the case of purely contacting interfaces, i.e., if no metallurgical bonding exists, the
heat transfer at the interface is either by contact or through the gap, and the thermal
contact conductance at the bimaterial interface of the compound casting depends on
contact pressure and gap opening. A major finding of this thesis is that, in general, the
consideration of this dependence is crucial to the simulation of the quenching process
of compound castings.

During the quenching process gaps can open up at the bimaterial interface even if the
structure is geometrically simple. The opening of the gap severely reduces the thermal
contact conductance and forces heat to flow mainly parallel to the open gap.

Practical examples of steel-aluminum compound castings with form-locking and/or
frictional connection are presented. In general, the strength of these connections could
be well predicted by the finite element simulations.

Local stress concentrations can occur due to the abrupt change in material properties
at the interface of a multi-material structure. Under the assumptions of linear elasticity
theory, these stress concentrations can manifest themselves as stress singularities. The
dependence of the order of these singularities on geometrical and material parameters
is examined in a systematic way and “design charts” are developed by which the
order of the stress singularity can be directly registered. Using these charts, geometry
modifications can be determined that either minimize the order of the stress singularity
or lead to a regular stress field. Often, great improvements can be achieved through
comparatively small and local modifications of the geometry.

Keywords: compound casting, multi-material structures, quenching simulation, ther-
mal contact conductance, finite element analysis, stress singularities.
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Kurzfassung

Das Multi-Material Leichtbau-Konzept strebt danach, den “besten” Werkstoff und den
besten Herstellungsprozess für jeden Bereich einer Struktur einzusetzen. Damit können
die Vorteile unterschiedlicher Werkstoffe miteinander kombiniert werden. Fügetechnik
spielt in diesem Zusammenhang eine wichtige Rolle. Der Verbundguss ermöglicht es,
Gussbauteile während des Gießprozesses mit anderen Bauteilen zu verbinden. Das
heißt, der Gießprozess dient gleichzeitig als Herstellungs- und Fügeprozess.

Ziel der vorliegenden Arbeit ist die Entwicklung von Berechnungsmethoden zur Unter-
suchung und Gestaltung von Verbundguss-Strukturen und anderen Verbundbauteilen.
Dabei kommen sowohl Finite Elemente Methoden als auch asymptotische Methoden
zum Einsatz.

Während des Abschreckens (oder Abkühlens) eines Verbundgussbauteils entwickelt
sich auf Grund des inhomogenen transienten Temperaturfeldes sowie auf Grund der
unterschiedlichen Wärmeausdehnungskoeffizienten der beteiligten Werkstoffe ein Ei-
genspannungszustand. Da diese Eigenspannungen die kraftschlüssige Verbindung und
andere wichtige Eigenschaften (z.B. die Betriebsfestigkeit) des Bauteils bestimmen, ist
die Simulation des Abschreckvorgangs von zentraler Bedeutung.

Wenn am Interface des Verbundgussbauteils keine stoffschlüssige Verbindung vorliegt,
dann ist mit Wärmeübertragung durch Kontakt zu rechnen, und die thermische Kon-
taktleitfähigkeit am Interface hängt vom Kontaktdruck bzw. von der Spaltbreite ab.
Die vorliegende Arbeit zeigt, dass die Berücksichtigung dieser Abhängigkeit bei der
Simulation des Abschreckvorgangs von Verbundgussbauteilen äußerst wichtig ist.

Während des Abschreckvorgangs können sich Spalte am Interface des Verbundgussbau-
teils bilden. Dies ist selbst dann möglich, wenn es sich um ein geometrisch einfaches
Bauteil handelt. Durch das Öffnen des Spaltes wird die thermische Kontaktleitfähig-
keit deutlich reduziert, und der Wärmestrom ist gezwungen, hauptsächlich parallel
zum Interface zu verlaufen.

Es werden praktische Beispiele für Stahl-Aluminium Verbundgussbauteile mit form-
und/oder kraftschlüssiger Verbindung vorgestellt. Im allgemeinen konnte die Festigkeit
der Verbindung dieser Bauteile von den Finite Elemente Simulationen gut vorhergesagt
werden.

Die sprunghafte Änderung der Materialeigenschaften am Interface von Verbundbau-
teilen kann zum Auftreten lokaler Spannungskonzentrationen führen. Unter den An-
nahmen der linearen Elastizitätstheorie können sich diese Spannungskonzentrationen
in Form von Spannungssingularitäten äußern. Die Abhängigkeit der Ordnung dieser
Singularitäten von geometrischen Größen und Materialparametern wird systematisch
untersucht, und “Design Diagramme” werden erstellt, von denen die Ordnung der Sin-
gularität direkt abgelesen werden kann. Mit Hilfe dieser Diagramme können geome-
trische Änderungen bestimmt werden, welche entweder die Ordnung der Singularität
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vermindern oder zu einem regulären Spannungsfeld führen. Oft können große Verbes-
serungen durch vergleichsweise kleine und lokale Änderungen der Geometrie erreicht
werden.

Schlüsselbegriffe: Verbundguss, Verbundbauteile, Abschrecken, thermische Kontakt-
leitfähigkeit, Finite Elemente Methode, Spannungssingularitäten.

4



Acknowledgment

My deepest gratitude is to my advisor, Prof. Dr. Franz G. Rammerstorfer. He is at the
same time a great scientist, a great teacher and an honest, generous and kind-hearted
person. I am much indebted to him for his valuable feedback and challenges which
taught me to think critically and express my ideas. It has been my great pleasure and
privilege to have him as my advisor.

I would also like to thank Prof. Dr. Franz Dieter Fischer from Montanuniversität
Leoben for acting as my co-advisor.

This thesis was prepared in the course of my employment at the Institute of Lightweight
Design and Structural Biomechanics (ILSB) at the Vienna University of Technology.
The ILSB is known for its scientific excellence but also for its warm and welcoming
environment. I would like to express my appreciation to all people who contribute to
making the ILSB such a special place. Being a part of the ILSB has been a great
experience that I will cherish forever.

Many people at the ILSB contributed to the following thesis through discussion, com-
mentary and constructive criticism. Particularly, I would like to thank Prof. Dr. Helmut
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Chapter 1

Introduction

This thesis was prepared in conjunction with the author’s participation in the research
project Austrian Light Weight Structures, funded by the Austrian Research Centers
and the Austrian National Foundation. This collaborative research & development
project addressed the development of various lightweight multi-material structures.
The sub-project that the author participated in focused on steel-aluminum structures
manufactured by compound casting. It was carried out at the Institute of Lightweight
Design and Structural Biomechanics in close collaboration with Leichtmetallkompe-
tenzzentrum Ranshofen (LKR)(1) and the Institute of Materials Science and Technol-
ogy at the Vienna University of Technology(2).

Lightweight design has become very important for a great variety of industrial ap-
plications. In recent years interest in lightweight multi-material concepts has grown
remarkably. For instance, the SuperLIGHT-CAR project(3) has a multi-material phi-
losophy [Goede et al., 2008].

The multi-material concept strives to use the “best” material and manufacturing pro-
cess for each part of a structure in order to combine the advantages of different ma-
terials. Obviously, joining techniques play a major role in the manufacturing of these
structures.

The compound casting process allows for the joining of a casting to other parts during
the casting process. That is, the casting process serves at the same time as a production
and a joining process.

A spectacular example of a compound casting is the magnesium-aluminum crankcase
of BMW’s inline six-cylinder engine. An aluminum casting containing the cylinders
serves as a core around which the crankcase is cast in a magnesium alloy. [Klüting and
Landerl, 2004]

(1)http://www.lkr.at
(2)http://info.tuwien.ac.at/E308
(3)SuperLIGHT-CAR is a collaborative research & development project co-funded by the Eu-

ropean Union. It aims for the realization of multi-material lightweight vehicle structures.
http://www.superlightcar.com
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Chapter 1 Introduction

(a) Steel inserts positioned in a high
pressure die casting mold

steel

�
�

aluminum

�
�

�

(b) Steel inserts (top) and com-
pound casting (bottom).

Figure 1.1: A steel-aluminum compound casting. Pictures courtesy
of Leichtmetallkompetenzzentrum Ranshofen.

Figure 1.1 shows a steel-aluminum compound casting. Two steel inserts are positioned
in a high pressure die casting mold. During the casting process the liquid aluminum fills
the space between the mold and the inserts and a mechanical connection is formed.

1.1 Joining Fundamentals

Three main principles permit the joining of different materials: form-locking connec-
tion, frictional connection and material-locking connection.

A form-locking connection is achieved through the geometrical shape of the connected
parts. A dovetail joint is a typical example. With respect to compound castings, a
form-locking connection is a natural choice as complex shapes and undercuts can be
easily achieved.

A frictional connection is achieved through static friction between the connected parts.
If two materials with a very different coefficient of thermal expansion (e.g. steel and
aluminum) are connected using a compound casting process, large residual stresses can
develop during the cooling of the casting, resulting in a strong frictional connection.

A material-locking connection is achieved through atomic or molecular forces. With
respect to compound casting of metals, a diffusion and/or reaction zone may form
at the interface when the liquid material comes into contact with the solid material.
Ideally, a continuous metallurgical bond between the two materials is achieved.

In the solid state, iron as well as aluminum are covered by a natural oxide layer. If
a part made from one of these materials comes into contact with liquid aluminum or
magnesium during a compound casting process, the oxide layer prevents the formation
of a continuous metallurgical bond. Consequently, no material-locking connection is
obtained [Fragner et al., 2008]. In order to achieve a material-locking connection, the
oxide layer needs to be removed prior to the casting process and reoxidation must be
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Chapter 1 Introduction

prevented. Advice on how to remove the oxide layer and achieve a material-locking
connection for the material combinations steel-aluminum, aluminum-magnesium (with
magnesium as liquid material) and aluminum-aluminum can be found in [Fragner et al.,
2008] and [Papis et al., 2008].

If metallurgical bonding is achieved during a steel-aluminum compound casting process,
a thin layer of intermetallic phases(4) is formed at the interface [Fragner et al., 2006].
These intermetallic phases are known to be brittle at room temperature(5). That is,
a crack in the layer of intermetallic phases can easily propagate along the interface.
It is generally accepted that the intermetallic layer thickness should be kept below a
critical thickness of about 10μm in order to limit the detrimental effects of the brittle
intermetallics [Potesser et al., 2006], [Borrisutthekul et al., 2007].

It is difficult to achieve a perfect, continuous metallurgical bond during a real, industrial
compound casting process. Therefore, it is sometimes suggested that the material-
locking connection should merely be used in addition to a form-locking and/or frictional
connection. It should, however, be kept in mind that a crack in the brittle layer of
intermetallic phases may not only propagate along the interface but also deflect into
one of the two adjacent materials [Gross and Seelig, 2007]. Therefore, it is very well
possible that an additional (imperfect) metallurgical bond results in a reduction of
the structure’s load carrying capacity as compared to a purely form-locking and/or
frictional connection.

1.2 Aim and Outline of the Thesis

The aim of this thesis is to develop computational methods for the analysis and design
of compound castings and other multi-material structures. Both finite element methods
and asymptotic analysis techniques are used.

The thesis is organized as follows.

Chapter 2 deals with the finite element analysis of quenching and other heat treatment
processes of compound castings. During the quenching (or cooling) of a compound
casting residual stresses develop. As these stresses determine the frictional connection
and other important characteristics (e.g. the fatigue life) of the structure, the reliable
calculation of the residual stresses is of great importance.

A major finding of this thesis is that the consideration of a variable thermal contact
conductance is crucial to the simulation of the quenching process of a steel-aluminum
compound casting without material-locking connection. Therefore, Chapter 3 gives a

(4)Intermetallic phases are compounds of two or more metals that have a certain composition and a
crystal structure that is different from that of the constituent metals [Schulze, 1967]

(5)For instance, Sritharan et al. [2000] report a value of 2.0 MPam1/2 for the mode-I fracture toughness
of the four intermetallic compounds Fe2SiAl8, FeSiAl5, FeSiAl3 and FeSi2Al4.
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Chapter 1 Introduction

detailed discussion of the dependence of the thermal contact conductance on contact
pressure and gap opening.

A ductile failure damage indicator is used to predict the onset of fracture during the me-
chanical testing of steel-aluminum compound castings in this dissertation. Therefore,
a short description of the concept of damage indicators is provided in Chapter 4.

Local stress concentrations can occur due to the abrupt change in material properties
at the interface of a multi-material structure. Under the assumptions of linear elastic-
ity theory, these stress concentrations can manifest themselves as stress singularities.
Chapter 5 discusses these stress singularities and develops “design charts” for practical
use in the design of multi-material structures.

Chapters 6 and 7 present practical examples of steel-aluminum compound castings
together with finite element models for the simulation of the quenching process, ma-
chining operations and mechanical tests. The results of mechanical tests are compared
to simulation results.

In Chapters 6, simple low-pressure die-cast aluminum step-bars with various axisym-
metric steel inserts are investigated. In Chapters 7, a geometrically more complex
high-pressure die-cast steel-aluminum structure is presented. This “demo prototype
of a compound casting” is meant to demonstrate the possibilities of the compound
casting technology.

Chapter 8 presents a summary and propositions for future research.

Even though extensive use of non-linear finite element analysis is made in this disser-
tation, no introductory chapter on finite element analysis is included. For an extensive
introduction to finite element methods the reader is referred to the book by Bathe
[2002].
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Chapter 2

Finite Element Analysis of Quenching and
other Heat Treatment Processes

2.1 Introduction

When a common casting is quenched, the inhomogeneous transient temperature field
induces thermal stresses. These stresses are often large enough to cause local plastic
deformation. Due to the plastic strains, a residual stress field remains after complete
cooling of the casting. During operation of the casting, the load induced stresses are
superimposed onto the residual stress field. Thus, the presence of the residual stress
field can either be beneficial or detrimental.

Industrial interest in the simulation of quenching and other heat treatment processes
has increased during the last decade. There are several reasons for this. The ever
increasing speed of computers now allows for the simulation of geometrically complex
parts (e.g. cast aluminum alloy wheels, cylinder blocks, cylinder heads). Furthermore,
it was realized that accounting for residual stress fields caused by heat treatment
processes can dramatically enhance the accuracy of fatigue analyses. Moreover, the
prediction of distortions caused by heat treatment processes is of great interest for
certain applications (e.g. cast aluminum wheels).

Figure 2.1 shows a typical sequence of simulation steps when simulating the production
and operation of an aluminum casting. First, the casting process is simulated (A).
This is usually done using specialized CFD programs (casting simulation software)
capable of simulating mold filling and solidification. Often, a general purpose finite
element program is used for the remaining steps. Thus, at a short time after complete
solidification (when the casting can still be assumed to be stress-free) the temperature
field is transferred from the casting simulation program to the general purpose finite
element program.

Next, the quenching or cooling process is simulated (B). In the case of quenching,
thermal stresses build up so fast that creep and relaxation effects are often neglected
and a thermo-elastic-plastic constitutive law is used. In the case of a comparatively slow
cooling process, creep and relaxation effects are more important and an appropriate
constitutive model is advisable.
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Chapter 2 Finite Element Analysis of Quenching and other Heat Treatment Processes

Figure 2.1: Typical sequence of simulation steps when simulating the
production and operation of an aluminum casting.

If the cast alloy employed responds to precipitation hardening, natural or artificial
ageing is simulated next (C). While stress relaxation does not occur during natural
ageing (at room temperature), a certain degree of relaxation of the residual stresses
occurs during artificial ageing (at intermediate temperatures).

As last step in the calculation of the residual stress field, potential machining steps
have to be simulated. The machining can lead to considerable stress redistributions
(D).

Finally, the now known residual stress field is included in the subsequent simulation of
operation of the casting, such as fatigue analysis, limit load analysis or crash analysis
(E).

Solution treatment can be an additional step in the above described sequence of steps.
Also step C (natural or artificial ageing) and step D (machining) can be performed in
reversed order.

In the case of a compound casting, knowledge of the residual stress field is especially
important, as the residual stresses determine the frictional connection of the structure.
When a compound casting is quenched (or cooled down), a residual stress field can
develop not only due to the inhomogeneous transient temperature field but also due
to the dissimilar coefficients of thermal expansion of the materials involved.

The simulation of heat treatment processes of steel-aluminum compound castings is
somewhat simplified by the fact that aluminum alloys do not undergo solid-solid phase
transitions and many steels do not undergo solid-solid phase transitions in the relevant
temperature range (below the solidus temperature of the aluminum alloy).
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Chapter 2 Finite Element Analysis of Quenching and other Heat Treatment Processes

Figure 2.2: Schematic dependence of the heat transfer coefficient
h on surface temperature ϑ during quenching; initial temper-
ature: 500 ◦C; T∞ = 20 ◦C.

In this chapter some key points regarding the simulation of quenching and other heat
treatment processes of steel-aluminum compound castings are highlighted. The last
section in this chapter is devoted to the use of a consistent system of units.

The thermal contact conductance at the interface of the two materials involved turns
out to be an important issue with respect to the simulation of quenching processes of
compound castings. As the matter is described in some detail, a whole chapter has
been devoted to it, see Chapter 3.

2.2 Heat Transfer during Quenching

Heat transfer during quenching of a hot metallic component in a liquid is a very complex
process. A detailed description is beyond the scope of this thesis. More information
can be found in [ASM, 1991] and [Maniruzzaman and Sisson, 2004].

Heat transfer between a liquid and a solid is usually characterized in terms of the heat
transfer coefficient h:

h =
q̇

Ts − T∞
, (2.1)

where q̇ is the heat flux, Ts is the surface temperature and T∞ is the temperature of
the liquid away from the surface of the solid.

At least four different heat transfer mechanisms are usually distinguished when a metal-
lic component is quenched in a liquid. The four transfer mechanisms correspond to
four different temperature ranges as shown schematically in Figure 2.2.

The first stage of cooling, directly after the component has been immersed into the
liquid, is characterized by an unbroken vapor film that surrounds the component. This
stage is referred to as film boiling. As the unbroken vapor film acts as an insulator,
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the heat transfer coefficient is low during this stage. The phenomenon is also referred
to as Leidenfrost effect(1).

As the surface temperature decreases, the vapor film becomes increasingly unstable
and the heat transfer coefficient increases significantly. This stage is referred to as
partial film boiling. The surface is alternatively covered with a vapor film or liquid.
Especially in this stage the heat transfer coefficient in Figure 2.2 can only be seen as
an effective value.

As the surface temperature decreases further the partial films are replaced by bubbles
and the surface of the component is in permanent contact with the liquid. This stage is
referred to as nucleate boiling. High values of the heat transfer coefficient are associated
with this stage.

Finally, when the surface temperature decreases below the boiling point of the liquid,
the convection stage starts. Heat transfer coefficients are low as heat is only transferred
by (natural or forced) convection.

Besides surface temperature, the heat transfer coefficient depends on a number of
factors. Among those are: the properties of the quenching fluid (e.g. boiling point),
the temperature of the quenching fluid, the geometry of the quenched component, the
orientation of the component during quenching, the fluid agitation level and the surface
roughness.

For instance, the film boiling stage is known to be short in cold water (as shown in
Figure 2.2) but can be extended considerably when the water temperature approaches
the boiling temperature (100 ◦C).

In practice, establishing values for the heat transfer coefficients is a difficult task. If the
component under consideration is physically available, thermocouples can be inserted
into the component in order to record temperature curves during a quenching process.
The heat transfer coefficients assumed in the simulation can then be adjusted by trial
and error until the calculated curves resemble the measured ones. Alternatively, an
inverse heat conduction problem can be solved in order to determine the unknown heat
transfer coefficients systematically.

For the numerical simulation of a quenching process it is common practice to prescribe
the heat transfer coefficient as a function of surface temperature(2). Usually, different
curves are prescribed on different parts of the component’s surface. It should, however,
be noticed that this approach can result in inconsistencies. For instance, a film boiling
stage (associated with low values of the heat transfer coefficient) is known to occur for
a range of different initial surface temperatures (the temperature of the surface when

(1)The Leidenfrost effect can be observed in everyday life. A droplet of water that comes into contact
with a hot frying pan skitters around and does not evaporate quickly because it is protected by an
insulating vapor film.

(2)Note that radiative heat transfer can also be described using a temperature dependent heat transfer
coefficient as shown in Section 3.4.
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the component is immersed into the liquid). This effect can not be captured if the heat
transfer coefficient is taken to be only a function of surface temperature.

For the curve in Figure 2.2 it was assumed that the temperature of the surface is
500 ◦C when the component is immersed into the liquid. Let us assume that this
curve is used as input for the numerical simulation of a quenching process. The curve
might appropriately describe the heat transfer for those parts of the model surface
that have a temperature of about 500 ◦C when the component is immersed into the
liquid. However, other parts of the model surface might already have reached a lower
temperature (e.g. 400 ◦C) when the quenching process starts. In the simulation those
areas immediately experience high heat transfer coefficients (corresponding to partial
film or nucleate boiling) when they should experience an initial film boiling stage.

A solution to the above described problem would consist in a model capable of pre-
dicting the heat transfer coefficient during the different stages of a quenching process.
Such a model is – to the author’s best knowledge – not yet available. Therefore, the
heat transfer coefficients assumed for the simulation of a quenching process remain a
source of uncertainty.

2.3 Materials Used in the Present Work

Only one cast aluminum alloy and two different steels have been used in the present
work:

• Cast aluminum alloy A356.0 (Aluminum Association(3) alloy designation system)

• Steel C45E (European Standard [DIN EN 10083-2], material number: 1.1191)

• Steel S355 (European Standard [DIN EN 10025-2])

The process of finding material properties and other information about an aluminum
alloy is complicated by the fact that material designation systems are not interna-
tionally standardized. Often, it is worthwile to look for data about an alloy of equal
or approximately equal composition under different designations. Table 2.1 shows a
comparison of alloy designations for alloys of approximately equal composition for
the alloys 356.0 and A356.0. An extensive comparison of this kind, comprising many
standards and alloys, can be found in [Kammer, 2002, Table A.15].

The Aluminum Association (AA) designation system uses a preceding letter (A, B, C,
etc.) to indicate small variations in the composition limits. For example alloy 356.0 has
variations A356.0, B356.0, and C356.0. Each of these alloys has identical major alloy
contents, but has decreasing limits applicable to impurities. The fourth digit in the
AA designation system denotes casting (0) or ingot (1, 2). A former AA designation
system did not use a period and a fourth digit. An alloy designated A356 may safely be

(3)The Aluminum Association is a trade association for aluminum manufacturers based in Washington,
DC; http://www.aluminum.org
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AA DIN EN 1706 BS1 SIS2 CSA3 JIS4

356.0 EN AC-42000 or
EN AC-AlSi7Mg

LM29 4244 SG70N AC4C

A356.0 EN AC-42100 or
EN AC-AlSi7Mg0,3

LM25 - SG70P -

1 British Standard
2 Swedish Standard
3 Canadian Standard
4 Japanese Standard

Table 2.1: Comparison of alloy designations for alloys of approxi-
mately equal composition [Kammer, 2002].

Alloy 356.0 A356.0

Nominal Limits Nominal Limits

Si 7.0 6.5-7.5 7.0 6.5-7.5

Mg 0.32 0.20-0.45 0.35 0.25-0.45

Fe - ≤ 0.6 - ≤ 0.2

Cu - ≤ 0.25 - ≤ 0.2

Mn - ≤ 0.35 - ≤ 0.1

Zn - ≤ 0.35 - ≤ 0.1

Ti - ≤ 0.25 - ≤ 0.2

Table 2.2: Nominal composition and composition limits of alloys 356.0
and A356.0 in weight percent [Kaufman and Rooy, 2005].

assumed to be A356.0 by the current standard [Kaufman and Rooy, 2005]. Table 2.2
shows the nominal composition and composition limits of alloys 356.0 and A356.0.

2.4 Some Aspects of the Physical Metallurgy of Aluminum
Alloys

In this section some aspects of the physical metallurgy of aluminum alloys relevant for
the present work are highlighted. The reader already familiar with the subject can
skip this section. For an extensive treatment of the physical metallurgy of aluminum
alloys and other light metals the reader is referred to the book by Polmear [2006].

The aluminum alloy used in the present work, A356.0, belongs to the group of cast

19



Chapter 2 Finite Element Analysis of Quenching and other Heat Treatment Processes

Figure 2.3: Pseudo-binary phase diagram for Al − Mg2Si [Polmear, 2006].

alloys which respond to precipitation hardening. In these alloys a large number of
extremely small particles (nanometer range) can precipitate under certain conditions.
As these particles can act as obstacles to the motion of dislocations, the strength of
the material can be considerably increased.

A precondition for an alloy to respond to precipitation hardening is a decrease in solid
solubility of one or more alloying elements. In the case of the Al-Si-Mg-based alloy
A356.0, the solid solubility of Mg2Si decreases with decreasing temperature as shown
in Figure 2.3.

The desired fine dispersion of small precipitates is normally achieved through a heat
treatment comprising the following three steps:

• Solution treatment at high temperatures (e.g. point A in Figure 2.3); the alloying
elements are dissolved and a high concentration of vacancies is generated.

• Fast cooling (quenching) to room temperature (point B in Figure 2.3) produces
a super-saturated solid solution of the alloying elements in aluminum. Also, the
high concentration of vacancies generated in the previous step is preserved.

• Precipitation of fine particles from the super saturated solid solution at room or
elevated temperatures assisted by the high concentration of vacancies.

If the precipitation process takes place at room temperature, the process is referred to
as natural ageing. If it takes place at elevated temperatures, the process is referred to
as artificial ageing.

The increase of yield strength associated with natural ageing usually starts immediately
after quenching and may, for some alloys, continue for month or even years. In contrast,
in the case of artificial ageing yield strength usually increases to a peak value within
hours and then decreases. Normally, higher strength can be achieved through artificial
ageing than through natural ageing.

The ageing process of Al-Si-Mg-based alloys like A356.0 is particularly complex and
not yet fully understood. For an extensive review the reader is referred to the book by
Polmear [2006].
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With respect to the above described three-step heat treatment process it must be noted
that castings produced by high pressure die casting (the economically most important
casting process) can normally not be solution treated. This is because gas is entrapped
under high pressure in the pores of such a casting. When the casting is heated to high
temperatures, the entrapped gases expand, which leads to plastic deformations of the
skin (blistering) [Lumley et al., 2007].

The compound castings investigated in the experimental part of this work (manufac-
tured by low pressure die casting, see Chapter 6, and high pressure die casting, see
Chapter 7) have not been solution treated. After the casting process they were removed
from the mold as early as possible and then immediately quenched. In the subsequent
days and weeks the yield stress of the material increases due to natural ageing.

Casting and subsequent quenching leads to a lower degree of supersaturation than
solution treatment and subsequent quenching. As a consequence the alloy’s ability to
be strengthend by natural or artificial ageing is reduced.

Moreover, when the cooling rate after casting is low (cooling in air, delayed quench-
ing,. . . ), coarse precipitates may form that do not cause any significant strengthening.
Due to the formation of these coarse precipitates the supersaturation in the quenched
condition is reduced and, as a consequence, the alloys ability to be strengthend by
natural or artificial ageing is diminished.

Figure 2.4 shows the isothermal time-temperature-precipitation diagram for two alu-
minum alloys containing 7% Si and 0.3% Mg (A356.0) and 7% Si and 0.5% Mg (A356.0
with slightly increased Mg-content), respectively. The lines in Figure 2.4 indicate the
limits of precipitate solubility. It can be seen that for an intermediate temperature
range of about 200 ◦C - 400 ◦C the time for the formation of precipitates is short. This
is the critical temperature range for the formation of coarse precipitates and the asso-
ciated loss of supersaturation during cooling. Thus, especially this temperature range
must be passed through quickly in order to retain a high degree of supersaturation and
eventually a good response to natural or artificial ageing.

Figure 2.4 also indicates that the cooling rate required to obtain a high degree of
supersaturation is higher for an alloy containing 7% Si and 0.5% Mg than for an alloy
containing 7% Si and 0.3% Mg. The composition limits of alloy A356.0 are 0.25%-
0.45% Mg (see Table 2.2). Thus, two alloys, both within the composition range of
A356.0, may respond quite differently to the same thermal history.

In this context it should be mentioned that the strength values that can be attained
by natural or artificial ageing, can be estimated based on a known thermal history and
a isothermal time-temperature-precipitation diagram (like the one in Figure 2.4) using
a method called “Quench Factor Analysis” [Rometsch et al., 2003].
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Figure 2.4: Isothermal time-temperature-precipitation diagram for
aluminum alloys containing 7% Si and varying amounts of Mg
[Kaufman and Rooy, 2005].

2.5 Thermo-Mechanical Constitutive Laws

For the simulation of quenching and other heat treatment processes of an aluminum
casting a mechanical constitutive model is required. In many cases an elastic-visco-
plastic model (comprising rate-dependent plasticity and creep) would be most appro-
priate. However, the experimental determination of material parameters associated
with such a model is difficult and appropriate material parameters are hardly available
in the open literature.

If the process simulated is sufficiently fast, viscous effects can be neglected and a rate-
independent elastic-plastic model can be used. This is usually true for the simulation
of quenching processes of rather small parts, where the quenched components often
reach low temperatures only seconds after immersion into the quenching fluid.

Neglecting viscous effects results in a tendency to overestimate the residual stresses
generated by a quenching process. This tendency can be counterbalanced to a certain
degree by starting the quenching simulation at a temperature level that is high but
markedly below the solidus temperature and assuming that the component is still stress
free at that time.

Aluminum castings are either quenched after solution treatment or directly after cast-
ing. In the former case, the component usually needs to be transported from the
furnace to the quench tank. During that transport the component slowly cools in air,
so that the temperature upon immersion into the quench tank will be somewhat below
the solution treatment temperature. In the latter case the component first cools in
the mold and additionally during the transport from the mold to the quench tank, so
that the temperature upon immersion into the quench tank will be markedly below
the solidus temperature.
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In both cases it is reasonable to start the simulation at the time of immersion of the
component into the quenching fluid and to assume that the component is still stress-free
at that time. Before immersion, the temperature is high and changes comparatively
slowly, so that the build-up of considerable stresses is prevented by relaxation effects.
From the time of immersion into the quenching fluid temperature changes rapidly. As a
consequence, viscous effects can be neglected and an elastic-plastic constitutive model
is applicable.

For the quenching simulations presented in Chapters 3, 6 and 7 von Mises rate-indepen-
dent plasticity with isotropic hardening and associated flow rule has been assumed. The
yield surface is defined by specifying the value of the uniaxial yield stress as a function
of accumulated equivalent plastic strain and temperature. Thus, stress-strain curves
at a number of different temperatures have to be determined experimentally. Some
remarks about the determination of these stress-strain curves and some experimental
results for A356.0 are given in the next section.

2.6 Stress-Strain Curves for Aluminum Alloy A356.0

Determining stress-strain curves that appropriately describe the material behavior of
A356.0 during the quenching operation by means of a mechanical test (tensile or com-
pressive test) is not trivial as the results can be distorted by unintended precipitation
processes.

For instance, if a sample is quenched to room temperature after casting (or after
solution treatment) and later heated up to test temperature, precipitation effects can
severely affect the results. Unintended precipitation processes can take place at room
temperature (before the mechanical test), during the heating of the sample to the test
temperature or even during the mechanical test itself. The latter can especially be a
problem when mechanical tests are conducted at low strain rates (and thus take a long
time) and intermediate temperatures (see Figure 2.4).

Estey et al. [2004] addressed the problem described above and presented a method for
determining stress-strain curves more or less unaffected by precipitation processes. In
the paper stress-strain curves for A356.0 appropriate for the simulation of a quench-
ing process are given for the temperature range from 200 ◦C to 500 ◦C. Together
with an appropriate room temperature curve determind in collaboration with Leicht-
metallkompetenzzentrum Ranshofen these stress-strain curves served as basis for the
thermo-elastic-plastic material model used in this work (see Figure 2.7).

As mentioned before, the compound castings presented in the experimental part of
this work (see Chapters 6 and 7) were removed from the mold as early as possible
and then immediately quenched. No further heat treatment was performed. In order
to estimate the amount of natural (and artificial) ageing to be expected from these
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Figure 2.5: Die casting mold (left), quenching of step-bar sample
(middle), step-bar sample (right); pictures courtesy of Leicht-
metallkompetenzzentrum Ranshofen.

compound castings, a series of experiments has been performed in cooperation with
Leichtmetallkompetenzzentrum Ranshofen.

Step-bar samples have been produced from A356.0 by high pressure die casting (see
Figure 2.5). One part of the samples was removed from the mold as soon as possible and
quenched in water. Another part of the samples was removed from the mold as soon as
possible and cooled down in air. Subsequently, tensile test specimens were machined
from a part of the samples and room temperature tensile tests were performed. The
time between cooldown and the mechanical testing was kept as short as possible (few
hours) in order to keep the effects of natural ageing to a minimum and to obtain a room
temperature stress-strain curve suitable as input for the simulation of the quenching
process. The remaining samples were either naturally aged for three weeks or artificially
aged for 7 hours at 180 ◦C and subsequently mechanically tested. According to ageing
curves (Brinell hardness over time) reported by Kliauga et al. [2008], three weeks of
natural ageing is sufficient to reach maximum strength. Moreover, the ageing curves
given by Kliauga et al. [2008] indicate that the increase in hardness is very small during
the first hours of natural ageing, so that the stress-strain curve obtained within few
hours after the cool down of the samples closely correspond to the condition directly
after casting and quenching.

The tensile test specimens were machined from the 5 mm thick steps of the step-bar
samples. This ensures that the thermal history of the sample and the “demo prototype”
presented in Chapter 7 is similar, as the wall thickness of the demo prototype is also
about 5 mm.

Figure 2.6 shows the 0.2% proof stress determined for the different tempers. The bars
labeled “tested immediately” represent mean values from 6 measurements, the other
bars represent mean values from 3 measurements. It can be seen that the values of the
proof stress determined immediately after quenching and after air-cooling are almost
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Figure 2.6: 0.2% proof stress of A356.0 in different tempers. Bars la-
beled “tested immediately” represent mean values from 6 mea-
surements, other bars represent mean values from 3 measure-
ments.

identical (98.7 MPa and 94.5 MPa, respectively). Also, the values of the proof stress
in the naturally aged condition is almost identical for the quenched and the air-cooled
sample (113.4 MPa and 114.7 MPa, respectively). The values of the proof stress in
the artificially aged condition, however, is much higher for the quenched than for the
air-cooled sample (181.0 MPa and 138.6 MPa, respectively).

It can be concluded that for the casting process and wall thickness considered, the
increase of the 0.2% proof stress through natural ageing is in the range of 15-20%
(from about 96 MPa to about 114 MPa). Furthermore, this increase does not strongly
depend on the cooling rate after casting. Also, the relative increase of the proof stress
through natural ageing is in good agreement with the relative increase of the Brinell
Hardness reported by Kliauga et al. [2008].

The value of the proof stress after quenching and artificial ageing (181 MPa) is quite
close to the value reported for A356.0 after solution treatment, quenching and artificial
ageing (T6 condition) by Kaufman and Rooy [2005] (205 MPa).

To obtain a suitable input for the finite element simulations all measured stress-strain
curves (the ones taken from [Estey et al., 2004] and the ones determined in collaboration
with LKR) have been approximated by cubic splines as shown in Figure 2.7. Curves (1)
to (5) have been used for the quenching simulations.

For the sake of reproducibility, the numerical values of the breaks and coefficients
defining the splines are listed in Appendix A (page 122). The numbers in brackets in
Figure 2.7 refer to rows in Tables A.1 and A.2 in the appendix. The Appendix also
contains some basic definitions and considerations about splines.
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Figure 2.7: Splines approximating stress-strain curves for A356.0;
numbers in brackets refer to rows in Tables A.1 and A.2 on pages
124 and 125.

2.7 Stress-Strain Curves for Steels S355 and C45E

For the finite element simulations of quenching processes of compound castings pre-
sented in this work, the steel inserts (made from steel S355 and C45E) were assumed
to be linear elastic. Inspection of the simulation results confirmed that the von Mises
equivalent stress in the steel inserts was always clearly below the yield stress at the
respective temperature.

For the simulation of subsequent mechanical tests von Mises plasticity with isotropic
hardening and associated flow rule has been assumed, and the stress-strain curves
shown in Figure 2.8 have been used for S355 and C45E. The curves have been approx-
imated by splines. The numerical values of the corresponding breaks and coefficients
are listed in Table A.3 in Appendix A. The yield stress of C45E is very high as the
material was cold drawn.

It should be mentioned that it is by no means clear that plastic deformation of steel
inserts does not occur during the quenching or cooling of a steel-aluminum compound
casting. For instance, the stresses generated during the cooling of a thick-walled casting
surrounding a comparatively thin walled insert (e.g. a thin-walled steel-pipe) can easily
plastically deform the insert.
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Figure 2.8: Room temperature stress-strain curves for steels S355 and
C45E.

2.8 Temperature Dependence of Thermophysical and
Mechanical Properties

2.8.1 Introduction

In addition to the mechanical constitutive model discussed in the previous sections,
a number of mechanical and thermophysical material properties is required for the
simulation of the quenching (or other heat treatment processes) of a compound casting.
These are Young’s modulus, Poissons’s ratio, coefficient of thermal expansion, thermal
conductivity, mass density and specific heat of the materials involved.

In this section these material properties are given for aluminum alloy A356.0, steel
S355 and steel C45E (see Section 2.3). Low order polynomials are used to approximate
the temperature dependence of the properties in the temperature range relevant for
quenching simulations(4). For instance, the temperature dependence of a material
property p is described by:

p(ϑ) = a0 + a1ϑ+ · · · + anϑ
n, (2.2)

where ϑ is the Celsius temperature.

In some cases coefficients for these polynomials could be taken directly from the liter-
ature. In the remaining cases, suitable polynomials were fitted to the literature data
by least square approximation. While diagrams showing the temperature dependence
of the material properties are included in this section, the numerical values of the
polynomial coefficients are listed in Appendix B (page 127).

(4)Solidus temperature of A356.0 is 560 ◦C Quenching simulations usually start somewhat below that
temperature.
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Figure 2.9: Temperature dependence of Young’s modulus for A356.0,
Al-11.5wt%Si and pure aluminum as reported by different au-
thors.

Finding all required material parameters for a given material in the open literature
can be a tedious process. Two sources of information turned out to be especially
valuable. First, [SEW 310, 1992] contains thermophysical properties (Young’s modulus,
coefficient of thermal expansion, specific heat and thermal conductivity) of 72 steels
for a large range of temperatures. Also, a comprehensive list of steels not covered by
the SEW 310 is given, indicating steels with similar thermophysical properties. The
information in SEW 310 is strongly based on the work of Richter [1973, 1991]. Second,
[THERPRO], a thermophysical properties database provided by the IAEA(5), contains
thermophysical properties of a large number of materials.

Values for steel S355 were taken from [SEW 310, 1992, Table 13] and for steel C45E
from [SEW 310, 1992, Table 15]. The values reported for Young’s modulus, coefficient
of thermal expansion and specific heat of S355 are identical to those reported for C45E.
The values given for thermal conductivities of the two steels differ only slightly.

2.8.2 Young’s Modulus and Poisson’s Ratio

Values reported in the literature for Young’s modulus of aluminum alloys at high tem-
peratures are surprisingly contradictory. Figure 2.9 shows the temperature dependence
of Young’s modulus for A356.0 (Al-7wt%Si-0.35wt%Mg) as reported by Kaufman and
Rooy [2005, p. 229], Al-11.5wt%Si (hypoeutectic binary alloy) as reported by Nikanorov
et al. [2005] and pure aluminum as reported by Mondolfo [1979, p. 82].

While the values for Al-11.5wt%Si as reported by Nikanorov et al. are in good agree-
ment with the values for pure aluminum as reported by Mondolfo (the overall slightly
higher values are due to the increased silicon content), the values for A356.0 as reported

(5)International Atomic Energy Agency
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Figure 2.10: Temperature dependence of Young’s modulus for S355
or C45E [SEW 310, 1992].

by Kaufman and Rooy are significantly lower at high temperatures(6). The enhanced
drop of the Young’s modulus at these high temperatures is in discrepancy with the rule
of thumb according to which the Youngs’s modulus of a metal at one-half the melting
temperature(7) in Kelvin becomes 0.8 and at near the melting temperature reaches 0.4
of the value near absolute zero [Sinha, 2003].

For the simulations presented in this work, the well-established data for pure aluminum
(as given by Mondolfo [1979]) has been used to describe the temperature dependence
of Young’s modulus for A356.0. The temperature dependence is described by a sec-
ond order polynomial (see Figure 2.9) obtained by least square approximation. The
polynomial coefficients are given in Table B.1 (page 128) in Appendix B.

Temperature dependence of Young’s modulus for steels S355 and C45E was taken
from [SEW 310, 1992]. Identical values are reported for both steels. A second or-
der polynomial was fitted to the data - see Figure 2.10 and Table B.3 (page 130) in
Appendix B.

Temperature dependence of Poisson’s ratio has been neglected for all three materials.
Poissons’s ratio was assumed to be νa = 0.33 for A356.0, and νs = 0.3 for steels S355
and C45E.

2.8.3 Coefficient of Thermal Expansion

The coefficient of thermal expansion is an important parameter as thermal expansion
is the driving force for thermal stresses. This is especially true for compound castings,
where the different thermal expansion of the materials involved is a key issue.

(6)For a temperature of 370 ◦C the value given by Kaufman and Rooy for A356.0 (29 GPa) is less than
half the value given by Nikanorov et al. for Al-11.5wt%Si (64 GPa).

(7)The melting point of high purity aluminum is 660 ◦C; the melting range of A356.0 is approximately
560 − 615 ◦C.
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Basic Definitions

The linear coefficient of thermal expansion (CTE) relates the change in a material’s
linear dimensions to a change in temperature. The instantaneous (or tangent) linear
coefficient of thermal expansion αth

i is defined as:

αth
i (ϑ) =

d

dϑ
εth(ϑ) , (2.3)

where ϑ is the temperature and εth is the thermal strain. In the following εth is regarded
as an engineering strain and not a true strain. As the thermal strains considered in
the present work are small, the two measures do not differ significantly.

From (2.3) it follows that the thermal strain εth corresponding to a change in temper-
ature from an initial temperature ϑi to a temperature ϑ is:

εth(ϑ) =
∫ ϑ

ϑi

αth
i (τ) dτ . (2.4)

A different definition – the total (or secant) linear coefficient of thermal expansion αth
t

– is also commonly used. It is defined as:

αth
t (ϑ) =

ε0th(ϑ)
ϑ− ϑ0

, (2.5)

where ε0th is the thermal strain in a sample heated from the reference temperature ϑ0

to a temperature ϑ. The reference temperature ϑ0 is often chosen as 20 ◦C.

Hence, the thermal strain εth corresponding to a change in temperature from an initial
temperature ϑi to a temperature ϑ is:

εth(ϑ) = αth
t (ϑ)(ϑ− ϑ0)︸ ︷︷ ︸
εth for ϑ0→ϑ

−αth
t (ϑi)(ϑi − ϑ0)︸ ︷︷ ︸

εth for ϑ0→ϑi

(2.6)

Some finite element codes require the instantaneous coefficient of thermal expansion
αth

i and others the total coefficient of thermal expansion αth
t . Only if the coefficient of

thermal expansion is independent of temperature, the two are identical.

The following relations between αth
i and αth

t can easily be derived:

αth
t (ϑ) =

1
ϑ− ϑ0

∫ ϑ

ϑ0

αth
i (τ)dτ , (2.7)

αth
i (ϑ) = αth

t (ϑ) + (ϑ− ϑ0)
d

dϑ
αth

t (ϑ) . (2.8)

The temperature dependence of the coefficient of thermal expansion is often approxi-
mated by a second order polynomial:

αth
i (ϑ) = a0 + a1ϑ+ a2ϑ

2 , (2.9)

αth
t (ϑ) = b0 + b1ϑ+ b2ϑ

2 , (2.10)
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The relations between the polynomial coefficients in (2.9) and (2.10) can be computed
using equation (2.8):

a0 = b0 − b1 ϑ0 , b0 = a0 +
1
2
a1 ϑ0 +

1
3
a2 ϑ

2
0 ,

a1 = 2b1 − 2b2 ϑ0 , b1 =
1
2
a1 +

1
3
a2 ϑ0 , (2.11)

a2 = 3b2 , b2 =
1
3
a2 .

A356.0 and Pure Aluminum

Kaufman and Rooy [2005, p. 80] give an expression for the linear thermal expansion
of A356.0:

Lt(0 to 1000 ◦F) = L0 [1 + 0.91 (12.19 t+ 0.003115 t2) 10−6] , (2.12)

where t is the temperature in Fahrenheit, L0 is the length at 0 ◦F and Lt is the length
at temperature t.

Differentiating (2.12) with respect to t and conversion to ◦C yields the instantaneous
coefficient of thermal expansion αth

i in 1/◦C:

αth
i (ϑ) = 20.2938 10−6︸ ︷︷ ︸

a0

+ 18.3685 10−9︸ ︷︷ ︸
a1

ϑ , (2.13)

where ϑ is the temperature in ◦C . Using (2.11) the total coefficient of thermal expansion
can easily be computed. Choosing a reference temperature of ϑ0 = 20 ◦C we get:

αth
t (ϑ) = 20.4775 10−6︸ ︷︷ ︸

b0

+ 9.18427 10−9︸ ︷︷ ︸
b1

ϑ . (2.14)

Figure 2.11 shows a plot of Equations (2.13) and (2.14). The two curves intersect at
the reference temperature ϑ0 = 20 ◦C. Above that temperature the instantaneous coef-
ficient of thermal expansion αth

i is larger than the total coefficient of thermal expansion
αth

t .

The measurements corresponding to Equation (2.12) were done in the annealed con-
dition. In the heat treated condition values might be slightly higher. Though it is
indicated in [Kaufman and Rooy, 2005] that the applicability of (2.12) is limited to
temperatures below 315 ◦C the relation is also used for somewhat higher temperatures
in this work.

Blanke [1989, p. 162] gives a polynomial expression for the instantaneous coefficient of
thermal expansion of pure aluminum (see Table B.1 in Appendix B). For comparison,
Figure 2.12(a) shows the instantaneous coefficient of thermal expansion of pure alu-
minum and A356.0. Due to the high silicon content of A356.0 its CTE is smaller than
the CTE of pure aluminum.
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Figure 2.11: Instantaneous coefficient of thermal expansion αth
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total coefficient of thermal expansion αth
t (reference temperature

ϑ0 = 20 ◦C) of A356.0 [Kaufman and Rooy, 2005, p. 80].
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Figure 2.12: Temperature dependence of the instantaneous coefficient
of thermal expansion αth

i .

S355 and C45E

Temperature dependence of the coefficient of thermal expansion for steels S355 and
C45E was taken from [SEW 310, 1992]. Identical values are reported for both steels.
A second order polynomial was fitted to the data - see Figure 2.12(b) and Table B.3
(page 130) in Appendix B.
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Figure 2.13: Temperature dependence of mass density ρ.

2.8.4 Mass Density

The dependence of mass density ρ on temperature can be computed from the coefficient
of thermal expansion:

ρ(ϑ) = ρ0
1

(1 + εth(ϑ))3
, (2.15)

where ρ0 is the density at the initial temperature ϑi and the thermal strain εth(ϑ) is
given by Equation (2.4) or (2.6). For small strains (2.15) can be linearized:

ρ(ϑ) = ρ0 (1 − 3 εth(ϑ)) (2.16)

Figure 2.13(a) shows the temperature dependence of mass density ρ of A356.0 as com-
puted from the coefficient of thermal expansion (see Figure 2.11) using Equation (2.15)
and assuming a room temperature (20 ◦C) value of ρ0 = 2632 kg/m3. Data for A356.0
from Blumm et al. [1998] ([THERPRO]) are shown for comparison.

Figure 2.13(b) shows the temperature dependence of mass density ρ of S355 or C45E
as computed from the coefficient of thermal expansion (see Figure 2.12(b)) using Equa-
tion (2.15) and assuming a room temperature (20 ◦C) value of ρ0 = 7855 kg/m3. Data
for S235JRG2 from Rohloff and Zastera [1996] are shown for comparison.

2.8.5 Thermal Conductivity

The thermal conductivity of aluminum alloys is generally much higher than that of
steels.

Figure 2.14 shows the temperature dependence of the thermal conductivity of A356.0
as reported by Blumm et al. [1998] and pure aluminum as reported by Blanke [1989].
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Figure 2.15: Temperature dependence of thermal conductivity λ of
S355 and C45E [SEW 310, 1992].

Corresponding polynomial expressions are given in Table B.1 and B.2 in Appendix B
(page 128). It can be observed that the thermal conductivity of A356.0 is markedly
lower than that of pure aluminum.

Figure 2.15 shows the temperature dependence of the thermal conductivity of S355
and C45E as given in [SEW 310, 1992]. Corresponding polynomial expressions are
given in Table B.3 and B.4 in Appendix B (page 130). The thermal conductivities of
S355 (Figure 2.15a) and C45E (Figure 2.15b) are almost equal.

2.8.6 Specific Heat

The specific heat capacity is a measure of the amount of energy required to raise
the temperature of a unit mass of a material by 1 K. The specific heat of aluminum
alloys is considerably higher that the specific heat of steels. However, the volumetric
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Figure 2.16: Temperature dependence of specific heat cp.

heat capacity (the specific heat multiplied by the mass density) of aluminum alloys is
typically lower than or in the same order as the volumetric heat capacity of steels.

Figure 2.16(a) shows the temperature dependence of the specific heat of A356.0 as
reported by Blumm et al. [1998], and pure aluminum as reported by Blanke [1989].
Corresponding polynomial expressions are given in Table B.1 and B.2 in Appendix B
(page 128).

Temperature dependence of the specific heat for steels S355 and C45E was taken from
[SEW 310, 1992]. Identical values are reported for both steels - see Figure 2.16(b). The
corresponding polynomial expression is given in Table B.3 in Appendix B (page 130).

2.9 Consistent System of Units

Usually, finite element programs do not handle units of measurement. Instead, a con-
sistent system of units must be used for data input and interpretation of results. The
derived units of a consistent system of units can be expressed in terms of the funda-
mental units of that system without conversions factors. The International System of
Units (SI) is an example of such a system.

There are two reasons for not using the SI system for the finite element analyses pre-
sented in this work. First, many engineers simply prefer to work with certain non-SI
units. For instance, many engineers prefer Megapascal over Pascal as unit of stress.
Second, in fully coupled thermal-mechanical problems(8) the use of certain systems
of units can lead to numerically ill-conditioned matrices. Therefore, the manual of

(8)A problem where the mechanical solution depends on the temperature field and vice versa.
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the finite element program used for this work, ABAQUS(9), suggests using Megapas-
cal instead of Pascal as unit of stress for fully coupled problems [Dassault Systèmes,
2008a].

The system of units used in this work is based on the fundamental units millimeter
(mm), metric ton (t), second (s) and kelvin (K), and is here denoted as mm-t-s-K
system. The unit of stress derived from these fundamental units is Megapascal. Care
has to be taken when working with such a system of units – mistakes are easily made.
Table 2.3 lists a number of important physical quantities and their respective units
in the SI system and the mm-t-s-K system. Each row lists a physical quantity, the
exponents of mass, length, time and temperature for that quantity, and the respective
units of the quantity.

(9)http://www.simulia.com
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Table 2.3: Unit of some important physical quantities in the
mm-t-s-K-system.
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Chapter 3

Thermal Contact Conductance

3.1 Introduction

If heat flows from one body into a contacting body, a sudden temperature drop at the
interface can frequently be observed, see Figure 3.1. The interface causes a resistance
to the heat flow.

The thermal contact conductance h is defined as:

h =
q̇

ΔT
, (3.1)

where q̇ is the average heat flux flowing through the interface and ΔT is the temperature
drop at the interface as shown in Figure 3.1. The reciprocal of the thermal contact
conductance is designated as thermal contact resistance.

During the cooling or quenching of a compound casting, residual stresses develop. As
these stresses determine the frictional connection and other important characteristics
(e.g. the fatigue life) of the structure, the reliable calculation of the residual stresses is
of great importance. For this purpose, the transient inhomogeneous temperature field
that develops during the cooling or quenching has to be determined. As will be shown
by means of an example at the end of this chapter, this temperature field may strongly
depend on the thermal contact conductance at the interface between the two materials
connected.

If metallurgical bonding is achieved at the interface of a steel-aluminum compound
casting, a thin layer (in the order of microns) of different intermetallic phases exists
between the two materials. The thermal conductivity of this layer is presumably lower,
but still of the same order of magnitude as the thermal conductivity of the adjacent
metals(1). Consequently, the temperature drop at the interface will be very small, and
it will be justified to assume the thermal contact resistance to be zero.

If the interface is not metallurgically bonded, the situation is entirely different. The
surface of a casting formed when the liquid metal comes into contact with the surface of
(1)For instance, Reddy and Deevi [2000] reported values in the order of 10W/mK for the thermal

conductivity of FeAl.
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Figure 3.1: Definition of the thermal contact conductance h.

the mold (or an insert) does not simply replicate the microscopic irregularities of these
surfaces [Alonso Rasgado and Davey, 2002]. The surface of the casting can actually be
rougher or smoother than the surface of the mold (or insert) [Loulou et al., 1999a,b].

Thus, if no metallurgical bonding takes place during the manufacturing of a compound
casting, the contact at the interface between the two materials is similar to the common
contact of two engineering surfaces. Due to the roughness of these surfaces they will
touch each other only in a few points, as shown in Figure 3.1. As heat flow through
the contact interface is constrained to these contact spots, the contact interface causes
a resistance to the heat flow.

In principle, three mechanisms contribute to the heat transfer through a contact inter-
face: conduction through the actual contact spots, heat transfer through the interstitial
gas (e.g. air) and radiation. We assume that it is admissible to split up the total heat
flux q̇ into the respective parts,

q̇ = q̇s + q̇g + q̇r , (3.2)
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where q̇s is the heat flux due to conduction through the actual contact spots, q̇g is the
heat flux due to conduction through the interstitial gas and q̇r is the net heat flux due
to radiation. Then from Equation (3.1) follows that the total contact conductance h
is the sum of the contact conductance due to conduction through the actual contact
spots hs, the contact conductance due to conduction through the interstitial gas hg

and the contact conductance due to radiation hr:

h = hs + hg + hr , (3.3)

hs = q̇s/ΔT , hg = q̇g/ΔT , hr = q̇r/ΔT . (3.4)

These three contributions to the total thermal contact conductance are discussed in
the following sections.

Vast literature on thermal contact conductance exists. In this chapter only a few key
points are highlighted. For a deeper insight the reader is referred to the book by
Madhusudana [1996].

3.2 Conduction through the Actual Contact Spots

The contact conductance due to conduction through the actual contact spots hs can
be seen as the sum of the conductances of the individual spots. Hence, hs strongly
depends on the number and size of these spots, which in turn depend on the contact
pressure at the interface as shown schematically in Figure 3.4.

If the number and size of the contact spots is estimated based on theoretical considera-
tions, the contact conductance can be described as a function of the surface parameters,
material properties and the contact pressure.

In this work the following expression from [Madhusudana, 1996] (originally introduced
by Mikic [1974]) for the case of plastically deformed asperities is used:

hs = 1.13λ
tan(θ)
Rq

( p

H

)0.94
. (3.5)

In (3.5) p is the contact pressure, H is the microhardness(2) (in the unit of stress) of
the softer of the two materials, λ is the harmonic mean of the thermal conductivities
of the two materials,

λ =
2λ1λ2

λ1 + λ2
, (3.6)

tan(θ) is the effective slope of the surface roughness profiles,

tan(θ) =
√

tan(θ1)2 + tan(θ2)2 , (3.7)

(2)As the microhardness H does not refer to a fundamental material property, the magnitude of H is
open to some uncertainty.
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Figure 3.2: Ratio of the real to the apparent area of contact as a
function of contact pressure for H = 600 MPa.

and Rq is the effective root-mean-square roughness of the surfaces,

Rq =
√
R2

q1 +R2
q2 . (3.8)

It should be noted that the term p/H in Equation (3.5) is an estimation for the ratio
of the real area of contact Ar to the apparent area of contact A at the interface:

Ar

A
=

p

H
. (3.9)

Assuming H = 600 MPa for A356.0 in the as-cast condition Figure 3.2 shows Ar/A as
a function of the contact pressure p as described by Equation (3.9). It can be seen
that even for relatively high contact pressures the real area of contact is only a small
fraction of the apparent area of contact.

The thermal conductivities, λ1 and λ2, and the microhardness H in Equation (3.5)
depend on temperature. As a simplification, they are assumed as constant in this
work. Table 3.1 lists the material properties and surface parameters used for the
evaluation of Equation (3.5). Material 1 is aluminum alloy A356.0 in the as-cast
condition, material 2 is steel S355 or C45E. Figure 3.3 shows the resulting contact
conductance hs as a function of the contact pressure p. A strong increase of the
contact conductance due to conduction through the actual contact spots with contact
pressure can be observed.

3.3 Heat Transfer through the Interstitial Gas

Heat can also be transferred across the interface through the interstitial fluid filling
the voids between the actual contact spots. The situation can be represented by an
effective gas-filled gap between to parallel surfaces. The width of this microscopic gap
is here denoted as dmic – see Figure 3.4, middle and right.
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Material 1: Aluminum alloy A356.0 in as-cast condition

Material 2: Steel S355 or C45E

λ1 = 153 W/mK [Blumm et al., 1998]

λ2 = 43 W/mK [SEW 310, 1992]

tan(θ1) = tan(θ2) = 0.18

Rq1 = Rq2 = 4μm

H = 600 MPa(1) [Zhang et al., 2007b], [El Sebaie et al., 2008]
(1) Microhardness of A356.0 in the as-cast condition

Table 3.1: Material properties and surface parameters for the evalu-
ation of Equation (3.5).
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Figure 3.3: Contact conductance due to conduction through the ac-
tual contact spots hs as described by Equation (3.5) and the
material properties and surface parameters in Table 3.1.

A macroscopic gap can exist or open up at an interface due to various reasons. (For
instance, a macroscopic gap can open up due to the inhomogeneous transient temper-
ature field that develops during the quenching of a compound casting – see Chapter 6)
The width of this macroscopic gap is here denoted as dmac – see Figure 3.4, left. The
total gap d is then:

d = dmic + dmac . (3.10)

The clearance between two contact surfaces available as output variable in finite ele-
ment programs corresponds to the macroscopic gap width dmac.

Both conduction and natural convection are possible modes of heat transfer through
the interstitial gas. In the next section it is shown that in the majority of cases natural
convection heat transfer is negligible so that the heat transfer through the interstitial
gas is limited to conduction.
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Figure 3.4: Left: open interface (dmac > 0); middle: closed interface (p ≈ 0);
right: closed interface (p > 0).

3.3.1 Relevance of Heat Transfer through Natural Convection

Natural convection heat transfer in a narrow gap is negligible if the Rayleigh number,

Ra =
g γΔT d3

ν a
, (3.11)

does not exceed the critical value Racrit = 1700 [Dittmann, 1995]. The heat transfer
through the interstitial gas is then limited to conduction. In (3.11) g is the gravitational
acceleration, γ is the volumetric thermal expansion coefficient, ΔT is the difference
between the surface temperatures, d is the gap width, ν is the kinematic viscosity and
a is the thermal diffusivity. The thermophysical properties of the interstitial gas (γ, ν
and a) are evaluated at the average value of the two surface temperatures.

From (3.11) a critical gap width,

dcrit = 3

√
Racrit ν a

g γΔT
, (3.12)

can be calculated. Natural convection heat transfer is negligible if the gap width
is smaller than dcrit. Figure 3.5 shows how the critical gap width dcrit depends on
the difference between the surface temperatures ΔT for air at atmospheric pressure
as interstitial gas. Three curves for three different average values ϑm of the surface
temperatures (20 ◦C, 300 ◦C, 500 ◦C) are shown. The corresponding thermophysical
properties of air at atmospheric pressure are given in Table 3.2.

Figure 3.5 clearly shows that even for high values of the temperature difference ΔT
and low values of the average temperature ϑm the critical gap width dcrit is in the range
of several millimeters. As gaps of this width do not usually form during a heating or
cooling process (see Chapter 6) of a compound casting, the heat transfer through the
interstitial gas will normally be limited to conduction.
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Figure 3.5: Critical gap width dcrit for air at atmospheric pressure as
interstitial gas. Three curves for three different average values
ϑm of the surface temperatures are shown.

Temperature 20 ◦C 100 ◦C 300 ◦C 500 ◦C

Thermal conductivity λ [W/mK] 2.57 · 10−2 3.14 · 10−2 4.41 · 10−2 5.56 · 10−2

Thermal diffusivity a [m2/s] 2.15 · 10−5 3.33 · 10−5 6.94 · 10−5 1.13 · 10−4

Kinematic viscosity ν [m2/s] 1.54 · 10−5 2.35 · 10−5 4.92 · 10−5 8.14 · 10−5

Volumetric thermal
expansion coefficient

γ [1/K] 3.42 · 10−3 2.68 · 10−3 1.75 · 10−3 1.29 · 10−3

Table 3.2: Thermophysical properties of air at p = 105 Pa [VDI, 2002]
.

From the thermophysical properties of the interstitial gas appearing in Equation (3.12)
the kinematic viscosity ν and the thermal diffusivity a clearly depend on pressure.
Both, ν and a decrease with increasing pressure, so that dcrit becomes smaller when
pressure increases.

3.3.2 Heat Transfer through Conduction through the Interstitial Gas

The situation of heat being conducted through the interstitial gas can be represented
by an effective gas-filled gap of width d between to parallel surfaces as explained in
Section 3.3. Figure 3.6 shows the temperature distribution within the gas.

If the gap width is very small, namely of the same order of magnitude as the mean
free path of the gas molecules(3), the effect of temperature jump becomes important.
The temperature jump is caused by the incomplete energy transfer between the gas
molecules and the molecules of the adjacent solid material. The temperature jump

(3)The mean free path of air molecules is of the order of 0.07 μm at atmospheric pressure.
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Figure 3.6: Temperature distribution within the gas if the gap width
is of the same order of magnitude as the mean free path of the
gas molecules.

distance is then the distance by which the gap width d is apparently increased. In
Figure 3.6 the temperature jump distances are denoted as g1 and g2.

Thus, for the contact conductance due to conduction through the interstitial gas
Fourier’s Law of heat conduction yields:

hg =
λg

d+ g1 + g2
, (3.13)

where λg is the thermal conductivity of the gas, d is the mean (or effective) gap width
and g1 and g2 are the temperature jump distances. The temperature jump distances
must be accounted for if either the surfaces of the solid material are very smooth or
the gas pressure is low. If the surfaces of the solid materials are very smooth, the
microscopic gap width dmic becomes very small and could be of the same order of
magnitude as the mean free path. On the other hand, if the gas pressure is low, the
mean free path becomes large and could be of the same order of magnitude as the
microscopic gap dmic even for rough surfaces. In this work it is assumed that neither
is the case and the temperature jump distances are neglected. Equation (3.13) then
reads:

hg =
λg

d
. (3.14)

A comprehensive treatment of the subject of temperature jump and expressions for the
calculation of the temperature jump distance can be found in [Madhusudana, 1996].

Similar to the real area of contact (see Section 3.2), the microscopic gap width dmic

depends on the contact pressure. However, the variation of dmic with contact pressure
is relatively small. Therefore, as a simplification, a constant dmic is assumed in this
work:

dmic = 2.7Rq , (3.15)

where Rq is the effective root-mean-square roughness of the surfaces as defined by
Equation (3.8). The relation in Equation (3.15) was established experimentally by
Wahid and Madhusudana [2000] using a contact pressure of 0.433 MPa.
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Figure 3.7: Contact conductance due to conduction through the in-
terstitial gas as a function of the macroscopic gap width and the
contact pressure. Rq = 5.66μm, λg = 3.14 · 10−2 W/mK.

As a further simplification a constant thermal conductivity of the gas λg in Equa-
tion (3.14) is assumed in this work. The dependence of λg on temperature (on to a
certain extend on gas pressure) is neglected.

Finally, using the surface roughness values given in Table 3.1 and the thermal conduc-
tivity of air at 100 ◦C given in Table 3.2, Figure 3.7 shows the contact conductance
due to conduction through the interstitial gas, hg, as a function of the macroscopic
gap width dmac and the contact pressure p. For a closed interface (dmac = 0) hg does
not depend on contact pressure, because dmic is assumed constant.

3.4 Radiation

The net radiative heat flux across a narrow gap between two surfaces is given by:

q̇r = σC (T 4
1 − T 4

2 ) (3.16)

with

C =
(

1
ε1

+
1
ε2

− 1
)−1

, (3.17)

where σ = 5.6704 · 10−8 W/m2K4 is the Stefan-Boltzmann constant, ε1 and ε2 are the
surface emissivities and T1 and T2 are the absolute surface temperatures.

This can be rewritten in the following form:

q̇r = 4σC T 3
m︸ ︷︷ ︸

hr

(T1 − T2) (3.18)
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Figure 3.8: Contact conductance due to radiative heat transfer hr as
a function of the mean temperature Tm for ε1 = 0.4 and ε2 = 0.1.

with

Tm =
3

√
T1 + T2

2
T 2

1 + T 2
2

2
, (3.19)

where Tm is a mean temperature in the sense that Tm always lies between T1 and
T2. From (3.18) it can be seen that the net radiative heat flux q̇r increases with
increasing mean temperature Tm and with increasing temperature difference T1 − T2.
The term hr = 4σCT 3

m in (3.18) can be interpreted as a temperature dependant contact
conductance due to radiative heat transfer. Figure 3.8 shows hr as a function of the
mean temperature Tm assuming ε1 = 0.4 (steel) and ε2 = 0.1 (aluminum). Even for
temperatures as high as the melting point of aluminum (933 K, 660 ◦C), the values of
hr are much smaller than typical values of the thermal contact conductance associated
with conduction through the actual contact spots or conduction through an interstitial
gas (compare Figure 3.3 and 3.7). Thus, in many cases it will be well justified to
completely neglect the contribution of radiative heat transfer to the thermal contact
conductance.

3.5 Total Thermal Contact Conductance at a
Steel-Aluminum Interface

In this section the total thermal contact conductance, h, at a steel-aluminum interface is
established. The material properties used are that of steel S355 or C45E and aluminum
alloy A356.0. Air at atmospheric pressure is assumed as the interstitial gas. The
material properties and surface parameters of the solid materials are given in Table 3.1,
the properties of air are given in Table 3.2.

As only the microhardness of the softer of the two materials (the aluminum alloy) enters
Equation (3.5), and the thermal conductivity of S355 and C45E are almost identical

47



Chapter 3 Thermal Contact Conductance

Figure 3.9: Total thermal contact conductance at a steel-aluminum
interface.

(SEW 310 [1992]), the values of the contact conductance depicted in this section are
applicable to both material combinations: S355-A356.0 and C45E-A356.0.

Besides the assumptions highlighted in the previous sections, the following assumptions
were made:

• Natural convection heat transfer through the interstitial gas is neglected – see
Section 3.3.1.

• Radiative heat transfer is neglected - see Section 3.4.

The total thermal contact conductance is then the sum of the contact conductance due
to conduction through the actual contact spots as described by Equation (3.5) and the
contact conductance due to conduction through the interstitial gas as described by
Equation (3.14). Figure 3.9 shows the total thermal contact conductance as a function
of the macroscopic gap width dmac and the contact pressure p. Figure 3.9 is obtained
by adding the curve in Figure 3.3 (on page 42) the corresponding curve in Figure 3.7
(on page 46).

3.6 Sequentially Coupled and Fully Coupled Problems

If a mechanical problem involving heat transfer is analyzed, the thermal problem and
the mechanical problem can either be sequentially coupled or fully coupled. In the for-
mer case the mechanical solution (displacements, stresses) depends on the temperature
field but there is no inverse dependency. Hence, the pure heat transfer problem can be
solved first and the mechanical problem is then solved using the now known tempera-
ture field. In the latter case the mechanical solution depends on the temperature field
and vice versa. Thus, the heat transfer problem and the mechanical problem have to
be solved simultaneously.
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If the dependence of the thermal contact conductance on the contact pressure and the
macroscopic gap opening is accounted for, the thermal and the mechanical problem
are obviously fully coupled.

In terms of finite element analysis such a fully coupled problem usually requires more
computational time and more main memory than a sequentially coupled problem.
While in general these additional costs can and should not be avoided (see the example
in the following section), it might be very beneficial to avoid either the additional
computational time or the additional memory requirements in certain situations. For
these cases the following procedure is suggested:

• A plausible constant value h0 of the thermal contact conductance is chosen and
a sequentially coupled analysis is performed.

• Using the resulting values of the contact pressure and the macroscopic gap open-
ing at the interface, the “correct values” of the thermal contact conductance h
are computed (compare Figure 3.9).

• Finally, the “correct values of the temperature drop” ΔT = q̇/h are computed.

If the difference between the correct value of the temperature drop and the temperature
drop used in the analysis (ΔT0 = q̇/h0) remains small everywhere throughout the
analysis, chances are that the results of the sequentially coupled analysis are acceptable.
This might especially be the case when:

• Heat fluxes are generally low (e.g. a casting is cooled down in air). The temper-
ature drop at the interface may then always be very low.

• The magnitude of the heat fluxes is not low, but heat fluxes are mainly parallel
to the interface in question.

• The contact pressure at the interface is high throughout all the analysis, so that
h is also high and the temperature drop is small (see the example in the following
section).

3.7 Example

The example presented in this section emphasizes the importance of accounting for
a variable thermal contact conductance when simulating the quenching process of a
compound casting without metallurgical bonding. Fundamental considerations regard-
ing the simulation of the quenching process of a compound casting have been given in
Chapter 2 and 3. The general purpose finite element program ABAQUS Standard(4)

[Dassault Systèmes, 2008a] has been used to carry out the simulations.

(4)http://www.simulia.com
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Figure 3.10: Simulation of the quenching process of an axisymmet-
ric generic structure (tubular steel insert surrounded by an alu-
minum casting).

The axisymmetric generic structure shown in Figure 3.10 is considered. It consists of a
tubular steel insert with outer diameter D2 = 40 mm, wall thickness ts = 10 mm, sur-
rounded by an aluminum casting with wall thickness ta. The ratio ta/ts is varied from
0.1 to 6.0. Frictionless contact is assumed at the steel-aluminum interface and plane
stress is assumed in the axial direction. As the problem is one-dimensional, a finite
element model consisting of a single row of axisymmetric elements(5) is sufficient.

The insert and the casting are assumed to be made from steel S355 and aluminum
alloy A356.0, respectively. Information on both materials can be found in Section 2.3.
Von Mises rate-independent plasticity with isotropic hardening is assumed for both
materials (see Section 2.5). Stress-strain curves for the relevant temperature range
are given in Figure 2.7 on page 26 for A356.0 and in Figure 2.8(a) on page 27 for
S355. Further required thermophysical and mechanical material properties are given
in Section 2.8.

The simulation starts at the time of immersion of the structure into the quenching
water. At that time, it is assumed that both components (insert and casting) exhibit
a homogeneous temperature of 400 ◦C and that the structure is still stress-free.

Only the outer surface of the casting is assumed to be in contact with the quenching
water. The heat transfer coefficient is taken as a function of the surface temperature
as shown in Figure 3.10. The inner surface of the steel insert is assumed insulated.
For this choice of thermal boundary conditions, the magnitude of the thermal contact
conductance at the steel-aluminum interface is of particular importance as all thermal

(5)ABAQUS element type CAX4T: 4-node, linear, coupled temperature-displacement element
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Figure 3.11: Simulation results.

energy difference between hot and cooled-down situation initially stored in the steel
insert must flow through that interface during the quenching process.

For the thermal contact conductance h at the steel-aluminum interface two different
assumptions are considered:

• Thermal contact conductance is taken as a function of contact pressure and
macroscopic gap width, h = h(p, d), as described in Section 3.5 and shown in
Figure 3.9.

• A constant value of h = 2000 W/m2K is assumed.

A constant value of h = 2000 W/m2K is (approximately) the value obtained for zero
contact pressure in Section 3.5. It is also a typical value used at the metal-mold
interface for the simulation of casting processes, see for instance [Zhang et al., 2007a].

Figure 3.11 shows simulation results. Figure 3.11(a) shows the contact pressure at the
steel-aluminum interface after complete cooling. For variable thermal contact conduc-
tance, the contact pressure rises from 3.5 MPa to 56 MPa for ta/ts ranging from 0.1
to 6.0. Considerably lower values of the contact pressure are predicted for a constant
value of h = 2000 W/m2K. In fact, for ta/ts < 1.3 zero contact pressure (a gap) at the
steel-aluminum interface is predicted!

This can be understood by looking at Figure 3.11(b), where the magnitude of the
maximum temperature drop that occurred at the steel-aluminum interface during the
quenching process is shown.

In the case of variable thermal contact conductance, the maximum temperature drop
remains comparatively small. That is because contact pressure at the steel-aluminum
interface increases to several MPa during an early stage of the quenching simulation.
As a consequence, the thermal contact conductance rises to high values (see Figure 3.9)
and the temperature drop at the interface remains small.
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By contrast, in the case of a constant value of h = 2000 W/m2K, temperature drops
of up to 200 ◦C are predicted. That is, the aluminum casting is plastically deformed
while it “shrinks on” to the still comparatively hot steel insert. When the steel insert
finally cools down, the contact pressure at the steel-aluminum interface is decreased.
For ta/ts < 1.3 the contact pressure decreases to zero and a gap opens up!

It must be concluded that the use of constant value of the thermal contact conductance
in the order of h = 2000 W/m2K is not suitable for the simulation of the quenching
process of a compound casting. Instead, thermal contact conductance must be taken
as a function of contact pressure and gap width and a fully coupled analysis must be
performed.

In the present example, results very similar to those for variable thermal contact con-
ductance are obtained if the thermal contact conductance is assumed to be infinity
(zero thermal contact resistance). This is, however, not a general rule. More realistic
problems (more complex geometry and boundary conditions) often exhibit areas of
low contact pressure (see Chapter 7). It is even possible that gaps open up during the
quenching process (see Chapter 6).

3.8 Summary and Concluding Remarks

In this chapter the dependence of the thermal contact conductance on contact pres-
sure and gap opening at the steel-aluminum interface of a compound casting has been
discussed. Conduction through actual contact spots and heat transfer through the in-
terstitial gas mainly contribute to the heat transfer through the interface. The contact
conductance increases with increasing contact pressure and decreases with increasing
gap opening.

In general, a variable thermal contact conductance must be accounted for when sim-
ulating the quenching process of a compound casting without metallurgical bonding.
As a consequence, a fully coupled analysis is required.

Enhancements and Uncertainties

In order to simplify the model, the dependence of several parameters on temperature
in the equations describing the thermal contact conductance has been ignored. It is
straight forward to enhance the model by including these dependencies.

There is a certain degree of uncertainty regarding the pressure of the interstitial gas. If,
for instance, a macroscopic gap opens up during the quenching of a compound casting,
and this gap is connected to an ambient fluid (see for example Figure 6.6 on page
100), the gas pressure in the gap is known. If, on the other hand, such a macroscopic
gap opens up without being connected to the surroundings, the magnitude of the gas
pressure in the gap is not so obvious. Fortunately, the thermal conductivity of the
interstitial gas appearing in Equations (3.13) and (3.14) is only weakly related to gas
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pressure [VDI, 2002]. For very low gas pressures the temperature jump distances have
to be accounted for - see Section 3.3.2.

Application to the Metal-Mold Interface

The approach presented in this chapter was prepared with the interface between the
two materials of a compound casting in mind. Of course, it can basically also be
applied to the metal-mold interface when simulating a casting process (solidification
simulation). At these interfaces the thermal contact conductance usually decreases
after the onset of solidification as a gap forms due to the thermal contraction of the
casting and the thermal expansion of the mold [Santos et al., 2001].

However, fully coupled, three-dimensional numerical models of this kind comprising
the casting, the mold and possibly even parts of the structure surrounding the mold
are still computationally very expensive.
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A Ductile Failure Damage Indicator

4.1 Introduction

In chapters 6 and 7 of this dissertation a ductile failure damage indicator is used to
predict the onset of fracture during the mechanical testing of steel-aluminum compound
castings. Therefore, this chapter presents a very short introduction to ductile failure
damage indicators. It is by no means meant as a full treatment of the comprehensive
subject of damage mechanics. For an extensive introduction the reader is referred to
the book by Lemaitre and Desmorat [2005].

Ductile failure in metals occurs through the generation, growth and coalescence of
voids during plastic deformation. The generation of voids is often associated with
the fracture or the debonding from small particles.(1) After a stage of growth, the
coalescing voids form macrocracks, which eventually lead to final failure.

A number of methods have been developed to predict ductile failure. They can be
grouped generally into coupled and uncoupled methods. The former take into account
the change of the constitutive behavior of the material due to the progression of dam-
age, whereas the latter ignore this change. Uncoupled methods are also referred to as
damage indicators. A comparison of the coupled and the uncoupled approach can be
found in the book by Lemaitre and Desmorat [2005].

In general, damage indicators can be implemented more easily into existing finite ele-
ment programs than coupled methods. As damage indicators do not influence the finite
element analysis itself, the calculation of a damage indicator can be implemented as a
pure postprocessing procedure.

A number of different damage indicators have been suggested in the literature. Often,
they are of the form:

D =
∫ εeqp,f

0
f(σij) dεeqp , (4.1)

(1)In the case of Al-Si-Mg casting alloys, void generation is often associated with the cracking of eutectic
silicon particles [Polmear, 2006].
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where σij is the stress tensor, εeqp is the accumulated equivalent plastic strain and εeqp,f

is the accumulated equivalent plastic strain at failure. When the damage indicator D
reaches a critical value, the onset of fracture is predicted.

4.2 Damage Indicator Used in this Study

In the present work a damage indicator based on the work of Rice and Tracey [1969] and
Hancock and Mackenzie [1976] is used. (Rice and Tracey investigated the enlargement
of spherical voids in a triaxial stress field assuming a rigid-ideal plastic material.) Based
on the findings of these authors, a reference failure strain for the triaxial case εf can
be defined,

εf = ε0 exp
(

1
2
− 3

2
σm

σeq

)
, (4.2)

where ε0 is the critical strain in uniaxial tension, σm is the mean stress(2) and σeq is
the equivalent (here: von Mises) stress. The quotient σm/σeq is referred to as stress
triaxiality. Figure 4.1 shows a plot of εf/ε0 as described by Equation (4.2). In the
case of uniaxial tension σm/σeq = 1/3 and thus εf = ε0.

Using the reference failure strain εf , the increment of a damage indicator can be
defined:

dD =
dεeqp

εf
, (4.3)

and the following damage indicator D is obtained:

D =
1
ε0

∫ εeqp,f

0
exp

(
3
2
σm

σeq
− 1

2

)
dεeqp . (4.4)

Failure occurs, when D reaches the critical value D = 1.

(2)σm = tr(σij)/3
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Figure 4.1: Reference failure strain εf as described by Equation (4.2).
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Only one material parameter, the critical strain in uniaxial tension ε0, is needed for
the calibration of Equation (4.4). Fischer et al. [1995] have explained in detail how ε0
can be determined from the load-displacement curve and the neck diameter measured
during a tensile test.

The finite element program ABAQUS(3) has been used to carry out the simulations
presented in this work. In order to evaluate Equation (4.4), a python program(4) has
been written that reads the simulation results from an ABAQUS output database,
computes the damage indicator D at every integration point and writes D back to the
database as a new “field output object” (see Dassault Systèmes [2008b]). After the
execution of the program, D is available for postprocessing and fringe plots of D can
be used to determine to location of the onset of fracture and the corresponding load.
For examples of such fringe plots see Figure 7.13 and 7.14 on pages 115 and 116.

4.3 Discussion

It must be noted that the theoretical foundation of Equation (4.2) (the enlargement
of spherical voids in a rigid-ideal plastic material investigated by Rice and Tracey
[1969]) holds only for sufficiently high positive stress triaxialities. Thus, for low stress
triaxialities Equation (4.2) must be seen as an empirical relation (see also [Gänser
et al., 2001]).

Mohr and Henn [2007] used an interesting hybrid experimental-numerical method to
investigate the onset of fracture in the same aluminum casting alloy used in present
work (Al-7Si-Mg). The dependence of the failure strain on the stress triaxiality re-
ported by the authors (see Mohr and Henn [2007, Fig. 17]) is very similar to the
dependence described by Equation (4.2) and shown in Figure 4.1.

(3)http://www.simulia.com
(4)http://www.python.org
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Chapter 5

Stress Singularities in Multi-Material
Structures

5.1 Introduction

Local stress concentrations can occur due to the abrupt change in material properties
at the interface of a multi-material structure. Under the assumptions of linear elasticity
theory, these stress concentrations can manifest themselves as stress singularities. If
such a stress singularity occurs, the computed stresses tend towards infinity when the
singular point is approached.

In reality, of course, infinite stresses can not occur and the appearance of a stress
singularity violates assumptions of linear elasticity theory. Even though the stresses
predicted in these cases can not be interpreted directly, stress singularities correspond
to strong stress concentrations in reality. Thus, the singular points will often be the
origin of failure in the real structure.

The order of the stress singularity, which can be seen as a measure of the “severeness of
the high stresses”, and the question whether a stress singularity occurs at all depend on
a number of parameters. In this work, these parameter dependencies are considered
in a systematical way and design charts are developed by which the order of the
stress singularity can be directly registered. As the order of the stress singularity
does not depend on the type of loading applied, these design charts are very general
in application and some general statements about the proper geometrical design of
steel-aluminum interfaces can be made.

Stress singularities are a fairly well-explored area in linear elasticity. Many different
configurations are known to give rise to stress singularities. An extensive review of the
literature can for instance be found in [Sinclair, 2004a,b].

In this work, attention is focused on the three two-dimensional configurations shown
in Figure 5.1 as they are likely to appear in parts produced by compound casting. The
analysis is restricted to the combination of two homogeneous, isotropic materials, which
is in general a well-justified assumption for the material combination steel-aluminum.
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(a) End point of a perfectly
bonded interface.

(b) Corner in a perfectly
bonded interface

(c) wedge sliding on body
with smooth surface

Figure 5.1: Configurations with possible stress singularities.

The first configuration considered is the end point of a perfectly bonded bimaterial
interface. This is the point where the interface intersects the outer surface of the body
as shown in Figure 5.1(a). The second configuration is a corner in a perfectly bonded
bimaterial interface – see Figure 5.1(b). The third configuration is the case of a body
with a sharp edge (a wedge) frictionally sliding on a body with a smooth surface as
shown in Figure 5.1(c).

5.2 Mathematical Description

Using asymptotic analysis, an analytic expression can be derived that describes the
singular stress field in the vicinity of the singular point. That means that the difference
between the complete description of the stress field and the asymptotic expression
vanishes when the singular point is approached.

Several methods have been proposed for performing the asymptotic analysis: The use
of potentials together with separation of variables, introduction of complex variables
or the use of the Mellin transform [Sinclair, 2004a,b]. All these methods are math-
ematically demanding and the details of the mathematical analyses are not shown
here.

The stress field in the vicinity of the singular point can often be described in the
following form:

σij(r, θ) =
N∑

k=1

Kk

(r/L)ωk
Fij k(θ) 0 < ωk < 1 (5.1)

where r and θ are the radial and the angular coordinate of a polar coordinate system
whose origin is located at the singular point (see Figure 5.4). L is a characteristic
length of the structure. Each ωk is referred to as order of the singularity or singularity
exponent. Kk is denoted as stress intensity factor(1). The function Fij k(θ) only depends
on θ and may be discontinuous at the interface.

(1)This definition of the stress intensity factor Kk is different from the one used in fracture mechanics.
Kk has the unit of stress.
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It is assumed that the ωk values are in descending order (Re(ω1) > Re(ω2) > · · · >
Re(ωN )). Then, the sum on the right hand side of Equation (5.1) is dominated by
the first term when r approaches zero. Often all but the first term are neglected and
Equation (5.1) reads:

σij(r, θ) =
K1

(r/L)ω1
Fij 1(θ) 0 < ω1 < 1 . (5.2)

While this simplification is often justified, it should not be applied in certain special
cases as will be demonstrated in Section 5.6.

According to the above definitions the stress field is singular for ω1 positive and the
larger ω1 “the more singular it is”. As will be explained in Section 5.8.1, stress singu-
larities with ω1 ≥ 1.0 are not physically significant.

The asymptotic analysis, based on stress equilibrium equations, compatibility equa-
tions, Hooke’s law, interface conditions, and boundary conditions, usually leads to
a homogeneous system of linear equations which has nontrivial solutions only if the
determinant of the matrix of coefficients D vanishes. This leads to the eigenvalue
equation:

D(p) = 0 , (5.3)

where p is – for the sake of generality – a complex variable. If the equation has no root in
0 < Re(p) < 1, the stress field is regular. If it has one or more roots pk in 0 < Re(p) < 1,
the stress field is singular and the N singularity exponents are ωk = 1−pk. Obviously,
(5.3) could also be written in terms of ω = 1− p. However, (5.3) is the usual notation
found in the literature.

For the case of an end point of a perfectly bonded interface Equation (5.3) takes the
form:

D(θ1, θ2, α, β, p) = 0 , (5.3a)

where θ1 and θ2 are the angles describing the local geometry (see Figure 5.1(a)) and α
and β are the so-called Dundurs parameters characterizing the material combination.
The four elastic constants of the two materials enter Equation (5.3a) only through the
two Dundurs parameters α and β – as will be explained in detail in Section 5.3.

For the case of a corner in a perfectly bonded interface (Figure 5.1(b)) Equation (5.3)
takes the simpler form:

D(θ1, α, β, p) = 0 , (5.3b)

as θ2 = 360◦ − θ1 in this case.

For the case of a wedge frictionally sliding on a body with smooth surface (Fig-
ure 5.1(c)) Equation (5.3) takes the form:

D(θ2, μ, α, β, p) = 0 , (5.3c)

where μ is the coefficient of friction.
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Figure 5.2: Oscillating stress singularity; schematic representation
of Eqn. (5.4a) for constant θ. See, however, remarks in Sec-
tion 5.5.4.

Complex eigenvalues

Equation (5.3) can have real as well as complex roots pk. The mathematical description
of the singular stress field outlined above basically stays valid when ωk is complex.
The real and the imaginary part of Equations (5.1) or (5.2) are then both possible
descriptions of the singular stress field.

Assuming that the complex root ω1 = ζ1 + iη1 is the root with the biggest real part,
Eqn. (5.2) yields:

σij(r, θ) =
K1

(r/L)ζ1
sin(η1 ln(r/L)) Fij 1(θ) or (5.4a)

σij(r, θ) =
K1

(r/L)ζ1
cos(η1 ln(r/L)) Fij 1(θ) . (5.4b)

This is the oscillating stress singularity known to occur at interface cracks. The oscilla-
tion is caused by the trigonometric function in (5.4a) and (5.4b) and becomes faster and
faster as r approaches zero, because the argument of the trigonometric function goes
to infinity. Figure 5.2 shows a schematic representation of Eqn. (5.4a) for constant θ.
See, however, remarks in Section 5.5.4.

5.3 Dundurs Parameters

The material behavior of the two linear elastic isotropic materials considered here is
described by four elastic constants. Dundurs [1969] has shown that for problems like
the ones investigated here, the stress field shows a reduced dependence on the elastic
constants. The solution only depends on the four elastic constants through the two

60



Chapter 5 Stress Singularities in Multi-Material Structures

dimensionless Dundurs parameters:

α =
(G2/G1)(κ1 + 1) − (κ2 + 1)
(G2/G1)(κ1 + 1) + (κ2 + 1)

(5.5)

β =
(G2/G1)(κ1 − 1) − (κ2 − 1)
(G2/G1)(κ1 + 1) + (κ2 + 1)

(5.6)

where

κi = 3 − 4νi for plane strain, (5.7)

κi =
3 − νi

1 + νi
for generalized plane stress. (5.8)

G1 and G2 denote the shear moduli and ν1 and ν2 denote Poisson’s ratio of the two
materials.

At least for the cases with a perfectly bonded interface the physical significance of
the generalized plane stress assumption (Equation (5.8)) is questionable [Durelli and
Parks, 1972]. Even if the body under consideration is very thin, the mismatch of the
mechanical properties will lead to significant out-of-plane stresses in the vicinity of the
interface. Therefore, in this work, only the plane strain assumption (Equation (5.7))
is used.

Due to the physical limits G2/G1 > 0 and 0 < νi < 0.5, the possible values of α and β
are restricted to a parallelogram in the α-β-plane as shown (for the assumption of plane
strain) in Figure 5.3. The point (α, β) = (0, 0) corresponds to two identical materials.
Also α → 1 for G2/G1 → ∞ and α → −1 for G2/G1 → 0. ν1 nonlinearly varies along
the right vertical line and ν2 nonlinearly varies along the left vertical line as indicated
in Figure 5.3. A choice of ν1 and ν2 defines a straight line across the parallelogram
along which G2/G1 varies from 0 to ∞. An example of such a line (for ν1 = 0.2 and
ν2 = 0.3) is shown in the Figure.

This study focuses mainly on the material combination steel-aluminum. The cor-
responding material properties and the Dundurs parameters are given in Table 5.1.
Exchanging the materials (material 1 becomes material 2 and vice versa) changes the
Dundurs parameter α to −α and β to −β.

5.4 Design Charts

For the cases investigated here, the order of the singularity ω1 depends on the Dundurs
parameters (α, β), the local geometry (θ1, θ2) and possibly on the coefficient of friction
(μ). Many authors choose a local geometry and possibly a coefficient of friction, search
for the roots of Equation (5.3) and plot the singularity exponents as a function of
α and β (see Bogy [1971]; Chen and Nisitani [1993]; Churchman et al. [2003]). The
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Figure 5.3: Admissible values of the Dundurs parameters α and β for
plane strain.

Aluminum (Mat. 1) Steel (Mat. 2)

E1 = 70 GPa E2 = 210 GPa

ν1 = 0.33 ν2 = 0.29

G1 = 26.316 GPa G2 = 81.395 GPa

α = 0.4896, β = 0.1135

Table 5.1: Material combination steel-aluminum: Material properties
and Dundurs Parameters for plane strain.

resulting diagrams illustrate how the order of the singularity depends on the material
combination.

However, for the practical engineer the number of different materials (materials ex-
hibiting different elastic properties) to choose from is usually very limited, whereas the
local geometry can often easily be modified.

Therefore, the author believes that a diagram that exhibits the singularity exponent
as a function of θ1 and θ2 (or θ2 and μ) for a given material combination is a valuable
tool. As these diagrams are meant to support the practical engineer when designing a
compound casting or other multi-material structures, they are here denoted as design
charts.

To set up these design charts a program was written in Mathematica(2). Basically,
the program iterates through all possible combinations of the angles θ1 and θ2 (or θ2

(2)http://www.wolfram.com
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Figure 5.4: End point of a perfectly bonded interface.

and μ) and searches for the possibly complex roots of Equation (5.3) using Newton’s
method. A grid of values in the relevant part of the complex plane is used as starting
values for Newton’s method. This is necessary because Newton’s method requires that
the starting value is sufficiently close to the unknown root, and because (5.3) can have
several roots in the relevant part of the complex plane. Generally, only ω1 (the root
with the largest real part) is reported in this work as it dominates the singular stress
field (compare Equation (5.1)).

Additionally, the above mentioned program employs a special algorithm to compute
the lines of transition from regular to singular behavior and the lines of transition from
monotonic to oscillating singularities. The latter corresponds to the transition from
real to complex roots of Equation (5.3).

In the following sections design charts are developed for the three configurations shown
in Figure 5.1. At the end of each section examples are presented that demonstrate how
these design charts can be used to identify configurations that give rise to singular stress
fields and to modify the local geometry in order to avoid the singularity.

5.5 End Point of a Perfectly Bonded Interface

5.5.1 Introduction

The case of an end point of a perfectly bonded interface has been treated by Bogy
[1968, 1970, 1971, 1975]. The configuration is shown in Figure 5.4.

The eigenvalue equation, taken from [Bogy, 1971], reads:

D(θ1, θ2, α, β, p) = A(θ1, θ2, p)β2 + 2B(θ1, θ2, p)αβ + C(θ1, θ2, p)α2

−2D(θ1, θ2, p)β − 2E(θ1, θ2, p)α+ F (θ1, θ2, p) = 0 , (5.9)
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where

A(θ1, θ2, p) = 4K(p, θ1)K(p, θ2)

B(θ1, θ2, p) = 2p2 sin2(θ2)K(p, θ1) + 2p2 sin2(θ1)K(p, θ2)

C(θ1, θ2, p) = 4p2(p2 − 1) sin2(θ1) sin2(θ2) +K(p, θ2 − θ1)

D(θ1, θ2, p) = 2p2
(
sin2(θ2) sin2(pθ1) − sin2(θ1) sin2(pθ2)

)
E(θ1, θ2, p) = −D(θ1, θ2, p) +K(p, θ1) −K(p, θ2)
F (θ1, θ2, p) = K(p, θ1 + θ2) ,

and the auxiliary function K(p, x) is defined by

K(p, x) = sin2(px) − p2 sin2(x).

For the special case of two identical materials (α = β = 0), Equation (5.9) reduces
to:

sin2(pγ) − p2 sin2(γ) = 0 with γ = θ1 + θ2, (5.10)

which is the eigenvalue equation for the well-known case of a reentrant corner in a
homogeneous material as given by Williams [1952]. As the interface has “disappeared”,
the equation only depends on γ = θ1 + θ2. Note also that (5.10) does not depend on
the elastic properties of the material (α or β).

For the case of a reentrant corner in a homogeneous material Figure 5.5(a) shows the
singularity exponents ω1 and ω2 as a function of γ = θ1 + θ2. Figure 5.5(b) shows
only ω1 as function of θ1 and θ2. Figure 5.5(b) contains the same information as the
ω1-curve in Figure 5.5(a). It is only provided for comparison with the following design
charts.

As can be seen from Figure 5.5, the stress field is regular for γ < 180◦. As γ increases
from 180◦ to 360◦, the singularity exponent ω1 increases from 0 to 0.5. For γ = 360◦

the classical crack-tip singularity is obtained.

5.5.2 Design Chart

Figure 5.6 shows the design chart for the material combination steel-aluminum (ma-
terial 1: aluminum, material 2: steel). While Figure 5.6(a) shows the real part of the
singularity exponent ω1, Figure 5.6(b) shows the imaginary part. Values of the singu-
larity exponent for selected combinations of θ1 and θ2 are also reported in Table 5.2.

The curve of transition from regular to singular behavior is denoted by “0.0” in Fig-
ure 5.6(a). The curve of transition from real to complex ω1 (transition from monotonic
to oscillating singularity) is an envelope of the curves for real ω1. The region of oscil-
lating singularity is shaded gray.
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180 210 240 270 300 330 360
0

0.1

0.2

0.3

0.4

0.5

γ = θ1 + θ2 [degree]

ω
=

1
−
p

ω1

ω2

(a) Singularity exponents ω1 and ω2 as a func-
tion of γ = θ1 + θ2.

(b) Singularity exponent ω1 as a function of θ1 and θ2. Same infor-
mation as ω1-curve in Figure 5.5(a).

Figure 5.5: Singularity exponents for a reentrant corner in a homo-
geneous material.
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(a) Real part of the singularity exponent Re(ω1).

(b) Imaginary part of the singularity exponent Im(ω1).

Figure 5.6: Design chart for the end point of a perfectly bonded bime-
terial interface; material combination: steel-aluminum.
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θ1 θ2 ω1 = 1 − p1

90◦ 90◦ 0.09156
45◦ 180◦ 0.20231
180◦ 45◦ 0.42874
90◦ 180◦ 0.40005
180◦ 90◦ 0.49378
135◦ 135◦ 0.44941
180◦ 180◦ 0.5 + 0.036287 i

Table 5.2: Singularity exponent ω1 for the end point of a per-
fectly bonded bimaterial interface; material combination: steel-
aluminum (α = 0.4896, β = 0.1135).

All configurations corresponding to a crack terminating at the interface lie on the
straight line from (0◦; 360◦) to (360◦; 0◦). Complex singularity exponents are only
found in the vicinity of that line. Thus, only configurations resembling cracks give rise
to oscillating singularities for this material combination.

In Figure 5.6(b) it can be observed that the complex part of the singularity expo-
nent rises from Im(ω1) = 0.0 at the line of transition from real to complex ω1 to the
maximum value Im(ω1) = 0.036287 at θ1 = θ2 = 180◦.

A conclusion that can be drawn from the design chart in Figure 5.6(a) is that if one of
the angles, θ1 or θ2, is kept at 180◦ the singularity can only be removed by decreasing
the other angle to 0◦, which is difficult to implement in practice.

Figure 5.7 shows details of the design chart in Figure 5.6(a) illustrating how to avoid
singular behavior. For instance, the configuration θ1 = θ2 = 90◦ often found in practice
yields singular behavior with singularity exponent ω1 = 0.09156. Starting from that
configuration, either θ1 can be decreased below 77.6◦ or θ2 can be decreased below
81.5◦ to achieve regular behavior as shown in Figure 5.7(a). This leads to a sharp edge
at the outer surface of the component which is sometimes undesirable.

A smooth outer surface requires θ1 + θ2 = 180◦. All configurations fulfilling that
requirement lie on the straight line from (0◦; 180◦) to (180◦; 0◦) shown in Figure 5.7(b).
It can be observed that two angle windows allow for regular behavior. The first is
0◦ < θ1 < 53.8◦, the second is 109.2◦ < θ1 < 126.2◦.

Several examples demonstrating the beneficial effect of the above described geometrical
modifications are presented in the following section.

A further design chart like the one in Figure 5.6 for a hypothetical material combination
with E2/E1 = 10 is presented in Appendix C.
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(a) Decreasing θ1 or θ2.

(b) Regular behavior and smooth outer surface (θ1 + θ2 = 180◦)

Figure 5.7: Details of the design chart in Figure 5.6(a) illustrating
how to avoid singular behavior.
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Aluminum (Mat. 1) Steel (Mat. 2)

E1 = 70 GPa E2 = 210 GPa

ν1 = 0.33 ν2 = 0.29

αth
1 = 20.66 10−6 K−1 αth

2 = 11.7 10−6 K−1

Table 5.3: Material properties used for finite element analyses of the
generic structures in Section 5.5.3.

5.5.3 Examples

In this section, a number of axisymmetric generic structures are investigated that
demonstrate how the design charts (Figure 5.6) can be used to modify the local geom-
etry of a structure in order to completely avoid the singularity. The analytical solutions
represented by the design charts have been derived assuming plane strain conditions,
not axisymmetry. However, with respect to the asymptotic singular character of the
stress field, the analytical solutions obtained for plane strain conditions can also be
assumed to be valid for the axisymmetric situation.

The generic axisymmetric structures are studied using standard linear finite element
analysis. The material properties used are given in Table 5.3. All examples presented in
this section have also been analyzed assuming plane strain instead of axisymmetry(3).
The results have been very similar to those presented in this section.

For problems involving stress singularities displacement-based finite element models
(using non-singular elements) are capable of giving accurate results everywhere except
in the region of a few elements surrounding the singular point [Whitcomb et al., 1982].
Therefore, this region was made extremely small compared to the size of the region of
influence of the singularity using local mesh refinement as shown in Figure 5.8. The
results coming from 6x6 elements in each quadrant surrounding the singular point have
been ignored as also shown in Figure 5.8.

Two Structures Giving Rise to Singular Stress Fields (Examples A and B)

Figure 5.9 shows two axisymmetric generic structures giving rise to singular stress
fields. Both structures represent cylindrical steel inserts perfectly bonded to an alu-
minum disc. The insert in example A (Figure 5.9(a) and (b)) is flush with the outer
surface of the aluminum disc. The insert in example B (Figure 5.9(c) and (d)) pro-
trudes above the outer surface of the aluminum disc. Two load cases are considered:
in-plane tensile loading (referred to as load case 1) and a homogeneous temperature
change of +100 K (referred to as load case 2).

(3)The axis of rotational symmetry is then the axis of mirror symmetry.
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Results coming from
these elements have
been ignored.

Figure 5.8: Local mesh refinement near the (upper right) singular
point of the generic structure shown in Figure 5.9(c).

(a) Example A; load case 1:
Circumferential tensile loading.

(b) Example A; load case 2:
Thermal loading (ΔT = 100K).

(c) Example B; load case 1:
Circumferential tensile loading.

(d) Example B; load case 2:
Thermal loading (ΔT = 100 K).

Figure 5.9: Two axisymmetric examples giving rise to singular stress
fields; geometry and load cases.
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From the design chart (Fig. 5.6) the singularity exponents are obtained as ω1 = 0.09156
for example A (θ1 = 90◦, θ2 = 90◦) and ω1 = 0.40005 for example B (θ1 = 90◦,
θ2 = 180◦). Hence, the singularity in example B is more severe than the singularity in
example A.

In Figure 5.10 plots of the normal and shear stresses along the interface are shown.
For load case 1 (mechanical loading) the stresses are given in normalized form, that is
the stress values are divided by the value of the applied surface load density t. Each
plot of the stresses over the normalized distance along the interface is accompanied
by a corresponding double logarithmic plot. Taking the logarithm of Equation (5.2)
yields:

log(σij(r, θ)) = log(K1 Fij 1(θ))︸ ︷︷ ︸
independent of r

−ω1 log(r/L) . (5.11)

Thus, for any constant angle θ (θ = 0 along the interface) the plot of log(σij) versus
log(r/L) should approach a straight line with slope −ω1 for r/L → 0. This stays
true when log(σij/t) is plotted instead of log(σij). The double logarithmic plots in
Figure 5.10 contain triangles representing the respective slopes. In all cases the slope
of the curves is in good agreement with the predicted values for ω1.

It can also be observed how the larger singularity exponent of example B corresponds
to a larger region of influence of the singularity – compare Figure 5.10(c) to Fig-
ure 5.10(d).

It is noteworthy that in the case of pure thermal loading (load case 2) the normal
stress σnn close to the singular point is of opposite sign to the overall normal stress
(see Figure 5.10(g) and (h)).

In the following six possibilities to completely avoid the stress singularity using local
geometry modifications are studied for example A.

Example A1 and A2

Starting from the initial configuration θ1 = θ2 = 90◦ of example A either θ1 can
be decreased below 77.6◦ or θ2 can be decreased below 81.5◦ in order to avoid the
singularity (see Figure 5.7(a)).

By way of example, θ1 is chosen as 57◦ (designated as example A1) or θ2 is chosen
as 57◦ (designated as example A2). Figure 5.11 shows the locally modified geometries
as well as plots of the normal and shear stresses along the interface. The plots in
Figure 5.11 should be compared to Figure 5.10(c) and (g).

In the case of mechanical loading (load case 1) both modifications (A1 and A2) reduce
the normal and shear stress in the region of the previously singular point to a very
low level! In the case of thermal loading (load case 2) the normal and shear stress at
the previously singular point are reduced to a larger extent by modification A2. Thus,
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(a) Example A;
θ1 = 90◦, θ2 = 90◦; ω1 = 0.09156.

(b) Example B;
θ1 = 90◦, θ2 = 180◦, ω1 = 0.40005.
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(e) Example A; load case 1;
double logarithmic plot.
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(f) Example B; load case 1;
double logarithmic plot.
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(g) Example A; load case 2.
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(h) Example B; load case 2.
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(i) Example A; load case 2;
double logarithmic plot.
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(j) Example B; load case 2;
double logarithmic plot.

Figure 5.10: Two axisymmetric examples giving rise to singular stress fields;
diagrams show normal stress σnn and shear stress σnt at the interface.
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(a) Example A1;
θ1 = 57◦, θ2 = 90◦.
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(b) Example A1;
load case 1.
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(c) Example A1;
load case 2.

(d) Example A2;
θ1 = 90◦, θ2 = 57◦.
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(e) Example A2;
load case 1.
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(f) Example A2;
load case 2.

Figure 5.11: Removing the singularity from example A by either de-
creasing θ1 or decreasing θ2; only half of the meridian section is
shown.

in the case of thermal loading, decreasing the angle of the stiffer of the two materials
(material 2 is steel) seems to be the better choice.

Example A3 and A4

A smooth outer surface requires θ1 + θ2 = 180◦. As explained in the previous section,
two angle windows fullfilling that requirement allow for regular behavior: 0◦ < θ1 <
53.8◦ or 109.2◦ < θ1 < 126.2◦ – see Figure 5.7(b).

By way of example, θ1 is chosen as 45◦ (designated as example A3) or θ1 is chosen as
111◦ (designated as example A4). Figure 5.12 shows the locally modified geometries
as well as plots of the normal and shear stresses along the interface. As the interface is
not flat, “n” refers to the local normal direction and “t” refers to the local tangential
direction in Figure 5.12. Again these plots should be compared to Figure 5.10(c) and
(g).

In the case of mechanical loading (load case 1) both modifications (A3 or A4) markedly
reduce the normal and shear stress in the region of the previously singular point. In
the case of thermal loading (load case 2) the reduction of the normal and shear stress
in the region of the previously singular point is more favorable for modification A4.
Again, in the case of thermal loading, decreasing the angle of the stiffer of the two
materials (material 2 is steel) seems to be the slightly better choice.
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(a) Example A3;
θ1 = 45◦, θ2 = 135◦.
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(b) Example A3;
load case 1.
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(c) Example A3;
load case 2.

(d) Example A4;
θ1 = 111◦, θ2 = 69◦.
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(e) Example A4;
load case 1.
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(f) Example A4;
load case 2.

Figure 5.12: Removing the singularity from example A fulfilling
θ1 + θ2 = 180◦; only half of the meridian section is shown.

(a) Example A5;
θ1 = 45◦, θ2 = 135◦.
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(b) Example A5;
load case 1.
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(c) Example A5;
load case 2.

(d) Example A6;
θ1 = 111◦, θ2 = 69◦.
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(e) Example A6;
load case 1.
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load case 2.

Figure 5.13: Alternative method for removing the singularity from
example A fulfilling θ1 + θ2 = 180◦; only half of the meridian
section is shown.
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Figure 5.14: Crack lying in a bimaterial interface.

Example A5 and A6

In example A3 and A4 the singularity has been removed by locally inclining the in-
terface in the meridian section, keeping the outer surface smooth (θ1 + θ2 = 180◦),
see Figure 5.12. A similar modification (in terms of the angles θ1 and θ2) can also be
achieved while keeping the interface flat, as shown in Figure 5.13. The plots of the
normal and shear stress along the interface are similar to those of example A5 and A6
(compare Figure 5.12 to Figure 5.13).

While overall the geometry of examples A5 and A6 is more complicated than that of
examples A3 and A4, keeping the interface flat might be beneficial in certain situa-
tions.

5.5.4 Some Remarks on Interface Cracks

In this section some remarks on interface cracks (cracks lying in the bimaterial in-
terface) are made, and the stress state at the crack tip of a steel-aluminum interface
crack is discussed by way of an example. This section is by no means meant as a full
treatment of the subject of interface cracks. For an introduction to the wide topic the
reader is referred to [O’Dowd, 2008] and [Rice, 1988].

By setting θ1 = θ2 = 180◦ (see Figure 5.14) Equation (5.9) reduces to the eigenvalue
equation for the interface crack problem:

4 sin4(pπ)β2 + sin2(p2π) = 0, (5.12)

which has the solution:

p1 = ξ1 + iη1 =
1
2

+ i
1
2π

ln
(

1 + β

1 − β

)
. (5.13)

The singularity exponent ω1 = 1 − p1 then is:

ω1 = ζ1 + iη1 =
1
2

+ i
1
2π

ln
(

1 + β

1 − β

)
. (5.14)

75



Chapter 5 Stress Singularities in Multi-Material Structures

−0.5 −0.25 0 0.25 0.5
−0.2

−0.1

0

0.1

0.2

β
η 1

β = 0.1135
η1 = 0.036287

β = 0.5
η1 = 0.1748

η1 =
1
2π

ln
(

1 + β

1 − β

)

Figure 5.15: Bimaterial constant η1 as a function of Dundurs param-
eter β, plotted over the admissible range −0.5 ≤ β ≤ 0.5.

Regarding interface cracks, the imaginary part of the singularity exponent η1 = Im(ω1)
is often referred to as the bimaterial constant :

η1 =
1
2π

ln
(

1 + β

1 − β

)
. (5.15)

The bimaterial constant η1 only depends on the second Dundurs Parameter β. Fig-
ure 5.15 shows η1 as a function of β, plotted over the admissible range −0.5 ≤ β ≤ 0.5.
As indicated in Table 5.2 on page 67, η1 = 0.036287 for the material combination
steel-aluminum. For the limiting case β = 0.5 (an extremely stiff material bonded to
an extremely compliant material, see also Figure 5.3), η1 assumes its maximum value
η1 = 0.1748.

Using a complex stress intensity factor

K̂ = K̂1 + iK̂2 = |K̂| eiϕ , (5.16)

the normal and shear stress directly ahead of the crack tip may be written:

(σnn + iσnt)|θ=0 =
K̂ riη1

√
2πr

=
|K̂| e i (

ψ︷ ︸︸ ︷
ϕ+ η1 ln r)
√

2πr
, (5.17)

or, using Euler’s formula(4),

σnn|θ=0 =
|K̂|√
2πr

cos(ϕ+ η1 ln r︸ ︷︷ ︸
ψ

) , (5.18a)

σnt|θ=0 =
|K̂|√
2πr

sin(ϕ+ η1 ln r︸ ︷︷ ︸
ψ

) . (5.18b)

(4)Euler’s formula: eiϕ = cos(ϕ) + i sin(ϕ)
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r2/r1 = exp(Δψ/η1)

Δψ = ψ2 − ψ1 steel-aluminum(1) limiting case η1 = 0.1748

10◦ 1.23 · 102 2.71

45◦ 2.51 · 109 8.93 · 101

90◦ 6.31 · 1018 7.97 · 103

180◦ 3.98 · 1037 6.36 · 107

(1) η1 = 0.036287

Table 5.4: Ratio r2/r1 for the material combination steel-aluminum
and the limiting case η1 = 0.1748.

From Equation (5.18a) and (5.18b) it can be seen that for any complex stress intensity
factor K̂ = K̂1 + iK̂2 = |K̂| eiϕ normal and shear stresses occur at the interface. That
is due to the oscillating singularity the stress fields are inherently mixed mode. Mode I
and Mode II stress intensity factors equivalent to those for a crack in a homogeneous
material cannot be defined. Thus, at least in the strict sense, K̂1 is not a Mode I stress
intensity factor and K̂2 is not a Mode II stress intensity factor. For a further discussion
see [Rice, 1988].

From Equation (5.17), (5.18a) and (5.18b) it can be seen that the angle ψ, defining
the ratio of shear to normal traction at the interface (see Figure 5.14), is:

ψ = ϕ+ η1 ln r . (5.19)

ψ varies with distance from the crack tip and goes to infinity (“rotates faster and
faster”) as r → 0. As ψ is not defined at r = 0, the value of ψ at a fixed distance L̂
(independent of specimen size or crack length) is commonly used as a measure of the
“mode mix” [O’Dowd, 2008].

From Equation (5.19) it is obvious that when r changes from r1 to r2, the corresponding
change in ψ is:

Δψ = ψ2 − ψ1 = η1 ln(r2/r1) . (5.20)

For example, for the material combination steel-aluminum Δψ = 4.79◦ for r2/r1 = 10.
For the limiting case η1 = 0.1748, Δψ = 23.07◦ for r2/r1 = 10.

Inversely, the ratio of two r values corresponding to a given change in ψ is:

r2/r1 = exp(Δψ/η1) . (5.21)

Table 5.4 lists the ratio r2/r1 for some values of Δψ for the material combination
steel-aluminum and for the limiting case η1 = 0.1748.
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It must be noted that the range of physically significant values of r is limited. The
largest physically significant value rmax is given by the region of influence of the singu-
larity. For typical engineering structures rmax ≈ 10−2 m. The smallest physically sig-
nificant value rmin is in the order of a micron rmin ≈ 10−6 m. That is, rmax/rmin ≈ 104.
Evaluating Equation (5.20) at r2/r1 = 104 yields Δψmax ≈ 19◦ for the material com-
bination steel-aluminum and Δψmax ≈ 92◦ for the limiting case η1 = 0.1748. It must
be concluded that a change in ψ larger than 92◦ is impossible within a physically
significant range of r values.

Obviously, the schematic representation of the oscillating stress singularity in Figure 5.2
(page 60) is somewhat misleading. Between two adjacent zeros r1 and r2 of the function
depicted in Figure 5.2 the angle ψ changes by 180◦ – see Equations (5.18a) and (5.18b).
From Equation (5.21) follows that then r2/r1 = 3.98 ·1037 for the material combination
steel-aluminum and r2/r1 = 6.36·107 for the limiting case η1 = 0.1748. The illustration
in Figure 5.2 implies r2/r1 ≈ 2. It follows that (even for a combination of two very
different materials) it is impossible to have two zeros of the stress components within
a physically significant range of values of r.

For example, the stress state at the interface of an axisymmetric generic structure,
designated as example B, is investigated using linear finite element analysis. The
example is derived from example A (see Figure 5.10, page 72) by introducing a crack
in the middle of the bimaterial interface as shown in Figure 5.16(a). Only one load
case, namely in-plane tensile loading, is considered.

In Figure 5.16(b) a plot of the normal and shear stresses along the interface is shown.
The stresses are given in normalized form. That is, the stress values are divided by
the value of the applied surface load density t. Four singular points can be observed:
Two points where the interface intersects the outer surface of the body (r̂/L = 0 and
r̂/L = 1) and two crack tips (r̂/L = 0.45 and r̂/L = 0.55).

From Figure 5.16(c) it can be seen that the angle ψ assumes a finite value where the
interface intersects the outer surface of the body (monotonic singularities). In contrast,
as expected from Equation (5.19), ψ goes to plus or minus infinity when one of the
crack tips is approached.

Figure 5.16(d) show a plot of ψ versus log(r/L) for the upper crack tip. As can be seen
from Equation (5.19) the plot should approach a straight line with slope η1/ log(e) (5)

for r → 0. The plot in Figure 5.16(d) contain a triangle representing this slope. The
slope of the curves is in good agreement with the predicted value for log(r/L) < −2.

(5)Substitute ln(r) = log(r)/ log(e) in Equation (5.19)
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(a) Geometry.
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Figure 5.16: Example B: Axisymmetric generic structure with ax-
isymmetric crack lying in the bimaterial interface.

5.6 Corner in a Perfectly Bonded Interface

5.6.1 Introduction

The case of two isotropic dissimilar wedge regions which are connected along both of
their common faces (see Fig. 5.17, left) – the case of an interface corner – has been
treated by Bogy and Wang [1971] and later been reinvestigated by Chen and Nisitani
[1993]. Both investigations arrive at the same eigen equation for the determination of
the order of the singularity. Chen and Nisitani, however, were able to split the eigen
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Figure 5.17: Design chart for a corner in a perfectly bonded interface;
material combination: steel-aluminum (α = 0.4896, β = 0.1135).

equation into two parts:

D(θ1, α, β, p) = D1(θ1, α, β, p)D2(θ1, α, β, p) = 0 , (5.22)

D1(θ1, α, β, p) = (α− β)2p2(1 − cos(2θ1))+
−2p(α− β) sin(θ1)[sin(pθ1) + sin(p(2π − θ1))]+
−2p(α− β)β sin(θ1)[sin(p(2π − θ1)) − sin(pθ1)]+

+(1 − α2) − (1 − β2) cos(2pπ)+

+(α2 − β2) cos(2p(θ1 − π)) , (5.23)

D2(θ1, α, β, p) = (α− β)2p2(1 − cos(2θ1))+
+2p(α− β) sin(θ1)[sin(pθ1) + sin(p(2π − θ1))]+
+2p(α− β)β sin(θ1)[sin(p(2π − θ1)) − sin(pθ1)]+

+(1 − α2) − (1 − β2) cos(2pπ)+

+(α2 − β2) cos(2p(θ1 − π)) , (5.24)

and showed that the first part D1 corresponds to the singularity appearing for a pure
mode I deformation and the second part D2 corresponds to the singularity appearing
for a pure mode II deformation. Mode I here refers to a deformation that is symmetric
about θ = 0 and Mode II refers to a deformation that is antisymmetric about θ = 0.
In the case of symmetry ur is an even function of θ about θ = 0, uθ an odd, in the case
of antisymmetry, vice versa.

5.6.2 Design Chart

Figure 5.17 (right) shows the design chart for the material combination steel-aluminum.
The situation here is considerably simpler than in the previous section as the local
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geometry is described by one angle (θ1) only.

Curves corresponding to the roots of Equation (5.23) (Mode I deformation) and curves
corresponding to the roots of Equation (5.24) (Mode II deformation) are labeled “I” and
“II”, respectively. As we require that the singularity exponents ωk (see Equation (5.1),
page 58) are in descending order (ω1 > ω2 > · · · > ωN ), the solid parts of the curves
correspond to ω1 and the dashed parts of the curves correspond to ω2.

Complex roots of Equation (5.22) exist but do not occur for the material combination
steel-aluminum for any angle θ1.

For comparison the singularity exponents for a reentrant corner in a homogeneous
material (“a single wedge”) with angles θ1 or θ2 are also are also shown in Figure 5.17
– compare Figure 5.5(a) on page 65. It can be concluded that (for a general loading
situation) the singularity appearing at the corner of a steel-aluminum interface is always
considerably weaker than that of a corresponding reentrant corner in a homogeneous
material.

For a general loading situation regular behavior is only obtained for the two limit-
ing cases θ1 = 0◦ and θ1 = 360◦ and for a straight (or smooth) interface (θ1 = 180◦).
In the case of pure Mode II loading two angle windows allow for regular behavior:
97◦ < θ1 < 180◦ and 282◦ < θ1 < 360◦.

In many situations an obvious possibility to eliminate the stress singularity is to replace
the sharp corner in the bimaterial interface with a smooth curve.

5.6.3 Example

For example, the stress state at the interface of an generic structure, designated as
example C, is studied using linear finite element analysis. The geometry of the exam-
ple, a rhombic steel insert perfectly bonded to a square aluminum block, is shown in
Figure 5.18(a). Plane strain conditions and in plane tensile loading are assumed.

Attention is focused on the singular point at the right corner of the rhombic insert,
where θ1 = 225◦. As can be seen from the design chart in Figure 5.18(b), the corre-
sponding singularity exponents are: ω1 = 0.1244 and ω2 = 0.04862.

Figure 5.18(c) shows a plot of the normal stress along the interface and Figure 5.18(d)
shows the corresponding double logarithmic plot. For r/lint → 0 the double logarithmic
plot approaches a straight line with slope −ω2, not −ω1. That is, the smaller singularity
exponent ω2, not ω1, determines the stress state in the vicinity of the singular point
as the loading is purely mode I.

In other words, Equation (5.1) still properly describes the stress field in the vicinity
of the singular point. However, due to the pure Mode I loading, K1 = 0 and the
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Figure 5.18: Example C: Corner in a perfectly bonded bimaterial
interface.

asymptotic stress field is given by:

σij(r, θ) =
K2

(r/L)ω2
Fij 2(θ) . (5.25)

5.7 Wedge Frictionally Sliding on a Body with Smooth
Surface

5.7.1 Introduction

The case of a wedge in frictionless contact with a body with smooth surface has been
treated by Dundurs and Lee [1972]. The case of a wedge frictionally sliding on a body
with smooth surface, as shown in Figure 5.19, has been treated by Comninou [1976]
and Churchman et al. [2003] assuming Coulomb’s law of sliding friction at the interface.
The potentially singular point is located at r = 0.

This situation arises whenever two bodies in contact are in relative motion with respect
to one another and one of the bodies has a sharp edge at the boundary of the contact
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Figure 5.19: Wedge frictionally sliding on a body with smooth surface.

Aluminum

Steel

Figure 5.20: Compound casting with sharp edge at the boundary of
the contact surface.

surface. It is important to note that local sliding motions can occur without global
body motions. This may happen when a structure consisting of frictionally connected
parts is loaded or unloaded. As an example for such a structure, Figure 5.20 shows a
cut through an aluminum-steel compound casting without material-locking connection.
The aluminum part has a sharp edge at the boundary of the contact surface.

Sliding friction in the region of interest, i.e., for small values or r, is a prerequisite for
the applicability of the design charts developed in this section. If the interface sticks
(static friction), the case of a perfectly bonded interface applies (see section 5.5).

For the case treated here, the order of the singularity depends on the Dundurs pa-
rameters α and β, the wedge angle θ2, the coefficient of friction μ, and, surprisingly,
on the direction of relative motion. Both directions of relative motion can be treated
at the same time by allocating a sign to the coefficient of friction μ. If the wedge in
Figure 5.19 slides to the right (away from the potentially singular point), the coefficient
of friction is said to have a positive sign and vice versa. The appropriate boundary
condition at the interface is then:

σrθ = −μσθθ , σθθ < 0 (5.26)

with μ < 0 or μ > 0, depending on the direction of motion.
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The eigenvalue equation, taken from [Comninou, 1976], reads:

D(θ2, μ, α, β, p) = (1 + α) cos(pπ)
(
sin2(pθ2) − p2 sin2(θ2)

)
+

+
1
2
(1 − α) sin(pπ)

(
sin(2pθ2) + p sin(2θ2)

)
+

+μ sin(pπ)
[
(1 − α)p(1 + p) sin2(θ2)+

−2β
(
sin2(pθ2) − p2 sin2(θ2)

)]
(5.27)

5.7.2 Design Charts

Two design charts are needed here to fully describe one material combination: One
for a wedge made of material 1 sliding on a body made from material 2 and vice
versa(6). As will be shown, the two design charts are not only quantitatively but also
qualitatively different.

Figure 5.21 shows the design chart for the case of an aluminum wedge (the more
compliant material) sliding on a body made from steel (the stiffer material). While
Figure 5.21(a) shows the real part of the singularity exponent ω1, Figure 5.21(b) shows
the imaginary part. Additionally, Figure 5.23(a) show Re(ω1) for selected coefficients
of friction.

The curve of transition from regular to singular behavior is denoted by “0.0” in Fig-
ure 5.21(a). For very large, positive coefficients of friction (wedge sliding to the right)
a region of oscillating singularity (shaded gray) is found.

An important observation coming from the design chart in Figure 5.21(a) is that for
any wedge angle the order of the singularity increases with a decrease in the (signed)
coefficient of friction. That is, the singularity is always more severe when the wedge
slides to the left (μ < 0) than when the wedge slides to the right (μ > 0). As in the
paper by Churchman et al. [2003] this behavior is here referred to as “Type A”.

It is a startling observation illustrated by the design charts that an increase of the
coefficient of friction may, depending on the direction of relative motion, decrease the
order of the singularity or even change the stress field from singular to regular. For
example, an aluminum wedge width θ2 = 90◦ in frictionless contact (μ = 0) with a
body made from steel yields a stress singularity with ω1 = 0.1102, see Figure 5.21(a).
If the wedge slides to the right and the coefficient of friction increases to, say, μ = 0.2,
a regular stress field is obtained.

For absolutely very large, negative coefficients of friction the singularity exponent ω1

reaches 1.0 in Figure 5.21(a). As will be explained in Section 5.8.1, stress singularities
with ω1 ≥ 1.0 are not physically significant as such singularities would correspond
to an infinite amount of strain energy. It is therefore very likely that sliding is not
attainable in the region labeled “nonbonded strain energy” in Figure 5.21(a).

(6)Exchanging the materials (material 1 becomes material 2 and vice versa) changes the Dundurs
parameter α to −α and β to −β.
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(a) Real part of the singularity exponent Re(ω1).

(b) Imaginary part of the singularity exponent Im(ω1).

Figure 5.21: Design chart for an aluminum wedge frictionally sliding
on a body made from steel. If the wedge is sliding to the right
the coefficient of friction μ has a positive sign and vice versa.
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(a) Real part of the singularity exponent Re(ω1).

(b) Imaginary part of the singularity exponent Im(ω1).

Figure 5.22: Design chart for a steel wedge frictionally sliding on a
body made from aluminum. If the wedge is sliding to the right
the coefficient of friction μ has a positive sign and vice versa.
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Figure 5.23: Re(ω1) for different coefficients of friction.

Figure 5.22 shows the design chart for the case of a steel wedge (the stiffer material)
sliding on a body made from aluminum (the more compliant material). While Fig-
ure 5.22(a) shows the real part of the singularity exponent ω1, Figure 5.22(b) shows
the imaginary part. Additionally, Figure 5.23(b) show Re(ω1) for selected coefficients
of friction.

Obviously, the design chart in Figure 5.22 is qualitatively different from the one in
Figure 5.21. The design chart in Figure 5.22(a) shows “Type A” behavior (the order
of the singularity increases with a decrease in the coefficient of friction) for θ2 < 138◦,
only. For θ2 > 138◦ the order of the singularity decreases with a decrease in the
(signed) coefficient of friction. This behavior is here referred to as “Type B”.

As can be seen from Figure 5.22(a), the boundary between Type A and Type B behavior
is independent of the coefficient of friction. In their paper, Churchman et al. [2003]
show that this is always the case and derive a set of equations that determines the
boundary delimiting the two kinds of behavior. These equations are used but not
reproduced here.

As the boundary between Type A and Type B behavior is independent of the coefficient
of friction, for each wedge angle θ̂2 there exists a curve in the α-β-plane delimiting the
two responses. Figure 5.24(a) shows this curve for θ̂2 = 138◦. The curve passes through
(α, β) = (0.4896, 0.1135), which are the Dundurs parameters for a steel wedge sliding
on a body made from aluminum.

Figure 5.24(b) shows curves delimiting the two responses for selected wedge angles θ̂2
ranging from 0◦ to 180◦. All the curves pass through (α, β) = (1, 0). It can also be
seen from Figure 5.24(b) that only type A behavior is found for β < 0, for instance for
the case of a aluminum wedge sliding on a body made from steel.

Finally, Figure 5.24(c) shows the delimiting angle θ̂2 for Poisson’s ratio ν1 = ν2 = 0.3
as a function of α, for α ranging from 0 (G2 = G1) to 1 (G2/G1 → ∞). It can be
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Figure 5.24: Curves delimiting type A and B responses.

seen that the more different the shear moduli are, the smaller is the wedge angle θ̂2
delimiting type A and B responses.

The design charts presented in this section can be used to identify possible stress
singularities and to modify the local geometry in order to minimize the singularity
exponent. Ideally, the singularity should be completely removed. In the case of cycling
loading both directions of relative motion may occur alternately. In these cases, it is
recommended to choose an angle θ2, which for both directions of relative motion leads
to a regular stress field.

5.7.3 Examples

In this section, two generic structures designated as example D and E are studied
using linear finite element analysis. The two examples demonstrate how the design
charts can be used to modify the local geometry in order to completely remove the
singularity for the case of a wedge frictionally sliding on a body with smooth surface.
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The structures have been analyzed assuming plane strain. The material properties
used are given in Table 5.1. The coefficient of friction is assumed to be μ = 0.2.

Figures 5.25(a) and (b) show the geometries of Examples D and E, respectively. An
aluminum block is sliding on a steel body. The potentially singular point investigated
here is located at r = 0.

As shown in Figure 5.26, the analysis consists of three steps:

• Step 1: The aluminum block is loaded by a distributed load t = 100 MPa, while
the displacement u at the lower edge of the aluminum block is kept equal to zero.

• Step 2: A positive displacement u = û is prescribed at the lower edge of the
aluminum block. The displacement û is chosen sufficiently large so that a further
increase of u would not change the stress state (viewed from a coordinate system
moving with the singular point at r = 0).

• Step 3: A negative displacement u = −û is prescribed at the lower edge of the
aluminum block.

For example D the wedge angle θ2 equals 90◦. As can be seen from the design chart in
Figure 5.21(a), the stress state is singular with ω1 = 0.2584 when the aluminum block
is moving upward (step 1 and 2) and regular when it is moving downward (step 3). The
design charts also shows that decreasing the wedge angle to θ2 = 70◦, as in example D,
yields a regular stress state for both directions of relative motion.

Figures 5.25(c) and (d) show plots of the normal stress at the interface at the end
of each step for examples D and E, respectively. Figures 5.25(e) and (f) show the
corresponding double logarithmic plots.

In the case of example D the stress state is singular for step 1 (the aluminum block is
locally sliding upward when the distributed load t is applied) and step 2. The stress
state is regular for step 3, as expected from the design chart. The slope of the curves
for step 1 and 2 in the double logarithmic plot is in good agreement with the predicted
value of the singularity exponent ω1.

In the case of example E the stress state is regular for all three steps, as can be seen
in Figure 5.25(d). Step 3 leads to a local loss of contact indicated by a small region
where σnn = 0 in Figure 5.25(d).

5.7.4 Some Remarks on Fretting Fatigue

There is a close connection between the singular stress state at the boundary of a
contact surface discussed in this section and the phenomenon known as “fretting fa-
tigue”.

The term “fretting” refers to a type of surface damage found at contact interfaces
exhibiting small, oscillatory sliding motions. These sliding motions can be caused by
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(a) Example D; θ2 = 90◦, μ = 0.2,
ω1 = 0.2584 or regular stress field.

(b) Example E; θ2 = 70◦, μ = 0.2,
regular stress field
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Figure 5.25: Examples D and E: Removing stress singularities from
sliding interfaces.
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(a) Initial state. (b) Step 1. (c) Step 2. (d) Step 3.

Figure 5.26: Analysis steps for Examples D and E.

cyclic loading of the structure. In the fretting zone cracks can be initiated that severely
reduce fatigue life as compared to a configuration without contact. This reduction of
the fatigue life is referred to as “fretting fatigue”.

Methods have been developed to predict surface crack initiation under fretting fatigue
conditions based on the similarity of the singular stress field at the boundary of a
contact surface (as discussed in this section) and the singular stress field at a crack tip
– see [Giannakopoulos et al., 1998], [Nowell et al., 2006].

The design charts presented in this section can be used to modify local geometries in
order to minimize the singularity exponent or, ideally, completely remove the singular-
ity. It is reasonable to assume that these modifications help to prevent fretting fatigue
crack initiation and thereby increase fatigue life of the structure.

5.8 Closing Remarks

5.8.1 Upper Limit for the Singularity Exponent

As mentioned before, a singularity exponent ω1 larger than or equal to 1.0 is not
physically significant. To show this, the total strain energy stored in a region close to
the singular point (0 ≤ r ≤ a) is computed here for the case of a reentrant corner in a
linear elastic, purely mechanically loaded (i.e. without any eigenstrains resulting from
thermal loading or other sources) body, see Figure 5.27.

Using Einstein’s summation convention the elastic strain energy density U ′ can be
written as

U ′ =
1
2
σij εij =

1
2
σij Cijkl σkl , (5.28)

where σij and εij are the stress and strain tensor, respectively, and Cijkl is the fourth
rank compliance tensor.
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Figure 5.27: Region for which the strain energy is considered.

The total strain energy stored in the region 0 ≤ r ≤ a, see Figure 5.27, is:

U = h

∫ a

0

∫ θ2

−θ1

1
2
σij Cijkl σkl r dθ dr , (5.29)

where h is the out-of-plane thickness.

Insertion of the singular stress field as described by Equation (5.2) into Equation (5.29)
yields:

U =
hK2L2ω

2

∫ a

0
r1−2ω

∫ θ2

−θ1

Fij(θ)Cijkl Fkl(θ) dθ
︸ ︷︷ ︸

χ

dr (5.30)

The index “1” referring to the largest singularity exponent ω1 in Equation (5.2) has
been omitted here. The inner integral in Equation (5.30) yields a finite value χ,
hence:

U =
hK2L2ωχ

2

∫ a

0
r1−2ω dr =

⎧⎨
⎩
hK2L2ωχ

2
a2−2ω

(2 − 2ω)
for ω < 1

∞ for ω ≥ 1 .
(5.31)

The integral in Equation (5.31) only yields a finite value if the magnitude of the
singularity exponent ω is smaller than 1. Thus, if ω was larger than or equal to 1.0 the
strain energy stored in an arbitrarily small region around the singular point would be
infinite, which is of course impossible. It can be concluded that singularity exponents
ω1 larger than or equal to 1.0 are not physically significant.

5.8.2 Wedge Solver

Lee and Barber [2006] have presented a program called Wedge Solver (see Figure 5.28)
that can determine the asymptotic elastic stress fields at singular points for a variety
of cases. After entering the local geometry, the material properties, the boundary con-
ditions and the interface conditions, the program computes the singularity exponents
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Figure 5.28: Screenshot of the Wedge Solver Program [Lee and Bar-
ber, 2006].

ωk and outputs explicit expressions for the singular stress field. The program can be
downloaded free of charge(7).

For a small subset of parameter combinations, the results given in Sections 5.5.2, 5.6.2
and 5.7.2 have been cross-checked using the Wedge Solver program (version 1.0). As
for the results in Sections 5.5.2 and 5.7.2 the singularity exponents computed by the
Wedge Solver program are in perfect agreement with the results presented here. As
for the results in Section 5.6.2 (the case of a corner in a perfectly bonded interface),
the singularity exponents computed by the Wedge Solver program are different from
the results presented here. Because the singularity exponents computed by the Wedge
Solver program are also not in agreement with results presented in the literature (Bogy
[1971], Chen and Nisitani [1993]), the author believes that there is a bug in the program
affecting the case of a corner in a perfectly bonded interface.

5.9 Summary

This chapter has examined stress singularities which occur at bimaterial interfaces
under a variety of circumstances.

Design charts, which exhibit the singularity exponent as function of the local geometry
(or the local geometry and the coefficient of friction) for a given material combination,
have been developed for three configurations of practical importance

The singularity exponent can be seen as a measure of the “severeness of the high
stresses”. As the order of the stress singularity does not depend on the type of loading

(7)http://www-personal.umich.edu/∼jbarber/asymptotics/intro.html
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applied, the design charts are universal in application.

Using the design charts, stress singularities in a given structure can be identified and
geometry modifications can be determined that minimize the order of the singularity
or, ideally, completely remove the stress singularity. As a result, the durability of the
structure will be enhanced.

As confirmed by a number of examples presented in this chapter, great improvements
can often be achieved through comparatively small and local modifications of the ge-
ometry (see for example Figure 5.11 or 5.25).
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Chapter 6

Step-Bars with Axisymmetric Inserts

6.1 Introduction

In the framework of the project Austrian Light Weight Structures, aluminum step-bars
with various axisymmetric steel inserts were produced by Leichtmetallkompetenzzen-
trum Ranshofen (LKR)(1) using low pressure die casting. The inserts are made from
steel S355, the step bar is made from aluminum alloy A356.0. Information on both
materials can be found in Section 2.3.

The design of the inserts incorporates two possibilities of compound casting technology:
the form-locking and the frictional connection. The third possibility, metallurgical
bonding, has been consciously omitted.

A step-bar with 12 inserts located in the inner four steps is shown in Figure 6.1(a).
The inner four steps are 10 mm, 15 mm, 20 mm and 25 mm high. For the 20 mm high
step, the geometry and designation of the different inserts is shown in Figure 6.2.

(1)http://www.lkr.at

(a) Step-bar with 12 axisymmet-
ric steel inserts.

20 mm high step,
axisymmetric
model

�
�

��

(b) Region represented by the
axisymmetric model.

steel insert
casting

�
��

��

(c) Axisymmetric finite el-
ement model with insert B.

Figure 6.1: Step-bar with steel inserts and axisymmetric model. Pic-
ture (a) courtesy of Leichtmetallkompetenzzentrum Ranshofen
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Figure 6.2: Geometry and designation of the steel inserts for the
20 mm high step.

All inserts are machined from a round rod with a diameter of 20 mm. Insert A results
in a purely frictional connection, whereas inserts B to E result in a force- and form-
locking connections. In order to be able to push the inserts out during mechanical
testing(2), only “moderate” form-locking connections have been used.

During the casting process the inserts were held in place by extended ejector pins which
are normally used to eject the solidified step-bar from the mold.

After the casting process, the step-bar was removed from the mold as early as possi-
ble, transported to the quench tank and immediately quenched in water. No further
heat treatment was performed, so that the residual stresses that develop during the
quenching process persist and determine the frictional connection of the structure. As
the aluminum’s coefficient of thermal expansion is about twice that of the steel, the
aluminum basically shrinks on to the steel inserts during the quenching process.

6.2 Finite Element Simulation of Quenching and Mechanical
Testing

Fundamental considerations regarding the simulation of the quenching process of a
compound casting have been given in Chapter 2 and 3. The basic assumptions made for
the simulations presented in this section are therefore stated only briefly. The general
purpose finite element program ABAQUS Standard(3) [Dassault Systèmes, 2008a] has
been used to carry out the simulations.

Axisymmetric finite element models have been used for the simulation of the quenching
process and the subsequent push-out tests. These models approximately represent the
region in the vicinity of the middle steel insert in the 20 mm high step as shown in
Figure 6.1(b) and (c). To account for the effects of neighbouring inserts, the nodes on
the outer radius of the axisymmetric model are constrained to have the same radial
displacement.

(2)A testing machine with a maximum force of 100 kN was available.
(3)http://www.simulia.com
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Figure 6.3: Three dimensional casting simulation (thermal problem
only); colors indicate temperature in Celsius. Image courtesy of
Leichtmetallkompetenzzentrum Ranshofen.

A three-dimensional casting simulation (thermal problem only) carried out by Leicht-
metallkompetenzzentrum Ranshofen showed that the temperature distribution in the
step-bar is very inhomogeneous at the time of immersion into the quenching water,
see Figure 6.3. In the region represented by the axisymmetric finite element model,
however, an approximately homogeneous temperature of about 400 ◦C is found in the
aluminum and the steel insert. Therefore, it is assumed that at the beginning of the
quenching simulation the insert and the surrounding aluminum exhibit a homogeneous
temperature of 400 ◦C. Moreover, it is assumed that the model is still stress free at
that time (see remarks in Section 2.5).

The complete sequence of simulation steps using the axisymmetric model is as fol-
lows:

• Simulation of the quenching process.

• Expansion of the yield surface to account for the effects of natural ageing (see
Figure 2.7 on page 26).

• Simulation of push-out tests.

For the quenching simulation, the heat transfer coefficient is taken to be a function
of the surface temperature as shown in Figure 6.4. Lower values are assumed at the
inner surface of the steel insert to account for the effects of “entrapped vapor” (see
also Section 2.2).

Thermal contact conductance at the steel aluminum interface is taken as a function of
contact pressure and macroscopic gap width as described in Section 3.5.

Von Mises rate-independent plasticity with isotropic hardening is assumed for alu-
minum and steel (see Section 2.5). Stress-strain curves for the relevant temperature
range are given in Figure 2.7 on page 26 for A356.0 and in Figure 2.8(a) on page 27 for
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ϑ [◦C] 0 90 110 250 350 400

h1 [W/m2K] 200 200 2000 5000 5000 500

h2 [W/m2K] 200 200 1000 2000 2000 500

Figure 6.4: Dependence of heat transfer coefficient h on surface tem-
perature ϑ; initial temperature: 400 ◦C; T∞ = 20 ◦C.

plunger

steel insert

aluminum

die

(a) Technical drawing. (b) Axisymmetric finite ele-
ment model.

Figure 6.5: Push-out test.

S355. Further required thermophysical and mechanical material properties are given
in Section 2.8.

Coulomb’s law of friction is assumed at the steel-aluminum interface. The coefficient
of friction is assumed to be μ = 0.4. The static and the kinetic coefficient of friction
are assumed to be identical.

The geometry has been meshed with quadrilateral elements of type CAX4RT (4-node,
linear, coupled temperature-displacement element with reduced integration and hour-
glass control). For example, Figure 6.1(c) shows the mesh used for insert B. Second
order elements could not be used as spurious (nonphysical) oscillations appeared in the
solution during quenching simulation, see [Dassault Systèmes, 2008a].

To accurately model the push-out test, a deformable plunger and die have been included
in the axisymmetric finite element model, see Figure 6.5.
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The damage indicator described in chapter 4 is used to predict the onset of fracture
in the aluminum alloy A356.0 during the push-out test. The critical strain in uniaxial
tension ε0 needed for the calibration of Equation (4.4) is chosen as ε0 = 0.05.

6.3 Simulation Results and Comparison to Experimental
Data

Figure 6.6 illustrates the evolution of the temperature field (left column), the radial
stresses (middle column) and the contact pressure at the steel-aluminum interface
(right column) during the quenching process for insert A. Note that each plot has a
different color legend and that the radial deformations are scaled by a factor of 40.

It can be observed that immediately after immersion of the casting into the quenching
water a gap opens up at the steel-aluminum interface and closes again after several
seconds. The maximum width of the gap is about 17μm. As apparent from the plots
of the contact pressure (Figure 6.6, right column), only about half of the insert’s outer
surface continuously remains in contact with the surrounding aluminum during the
quenching process!

As the thermal contact conductance at the steel-aluminum interface decreases with
increasing gap width (see Figure 3.9 on page 48), heat is forced to flow mainly parallel
to the open gap and a temperature drop ΔT can be observed at the interface while
the gap is open.

After complete cooling, a high level of contact pressure (about 80 MPa) and hence a
strong frictional connection is obtained, see Figure 6.6(o).

Figure 6.7 compares the residual stress states obtained after quenching for the different
steel inserts shown in Figure 6.2. Radial stresses (left column) and the contact pressure
at the steel-aluminum interface (right column) are shown. The contact pressure is
plotted versus the normalized distance along the interface, i.e. the path length along
the interface divided by the full length of the interface.

Compared to the straight insert A, the “convex” inserts B and D yield a local increase,
the “concave” inserts C and E a local decrease of the contact pressure. Extremely
large contact pressures are obtained in the region of the “steel tip” of insert D, whereas
contact is completely lost in the region of the“aluminum tip” of insert E.

Figure 6.8 compares the measured force-displacement curves during the push-out tests
(left column) to the ones obtained by simulation (middle column).

During the push out tests, only the force and the crosshead displacement of the testing
machine were recorded. The crosshead displacement includes deformations of the test-
ing machine not reproduced by the finite element models. Thus, in terms of displace-
ment, the measured force-displacement curves (force versus crosshead displacement)
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(a) Temperature, t = 0.35 s. (b) Radial stress, t = 0.35 s.
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(c) Contact pressure, t = 0.35 s.
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(d) Temperature, t = 1.0 s.
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(e) Radial stress, t = 1.0 s.
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(f) Contact pressure, t = 1.0 s.

(g) Temperature, t = 2.6 s. (h) Radial stress, t = 2.6 s.
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(i) Contact pressure, t = 2.6 s.

(j) Temperature, t = 8.8 s. (k) Radial stress, t = 8.8 s.
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(l) Contact pressure, t = 8.8 s.

(m) Temperature, cooled
down.

(n) Radial stress, cooled
down.
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(o) Contact pressure, cooled
down.

Figure 6.6: Insert A: Temperature (Celsius), radial stress (MPa) and contact
pressure t seconds after immersion into the quenching water; radial de-
formation scaled by a factor of 40; note the different color legends.

100



Chapter 6 Step-Bars with Axisymmetric Inserts

(a) Insert A; radial stress.
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(b) Insert A; contact pressure.

(c) Insert B; radial stress.
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(d) Insert B; contact pressure.

(e) Insert C; radial stress.
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(f) Insert C; contact pressure.

(g) Insert D; radial stress.
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(h) Insert D; contact pressure.

(i) Insert E; radial stress.
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(j) Insert E; contact pressure.

Figure 6.7: Radial stress (MPa) and contact pressure after quenching for
all inserts.
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(a) Insert A, Experiment.
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(b) Insert A, Simulation. (c) Insert A, Damage indicator.
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(f) Insert B, Damage indicator.
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(i) Insert C, Damage indicator.
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(l) Insert D, Damage indicator.
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Figure 6.8: Push-out test: Comparison of measured force-displacement curves
(left column) to the ones obtained by simulation (middle column); position
where the critical value of the damage indicator is reached (right column).
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can only be qualitatively compared to the curves obtained by simulation (force over
plunger displacement).

With the exception of the model for insert A, all simulations had to be stopped when
element distortions close to the steel-aluminum interface became unacceptably large.
Especially in the case of insert D, see Figure 6.8(k), the simulated force would continue
to increase if simulation was continued.

On the simulated force-displacement curves the point where the damage indicator
reaches the critical value D = 1 is marked by a circle. The position where the critical
value of the damage indicator is reached, is shown in the right column of Figure 6.8.

In the case of insert A (purely frictional connection), the force corresponding to the
onset of sliding at the steel-aluminum interface, see Figure 6.8(b), is in good agreement
with the integral of the initial contact pressure p over the contact surface A0 multiplied
by the coefficient of friction μ:

Fmax = μ

∫∫

A0

p dA = 36.7 kN . (6.1)

6.4 Discussion

In this chapter aluminum step-bars with various axisymmetric steel inserts and a cor-
responding finite element models for the simulation of the quenching process and the
subsequent push-out test have been presented.

The simulations show that a gap opens up at the steel-aluminum interface at the
beginning of the quenching process and closes again after several seconds (see Fig-
ure 6.6). The opening of the gap severely reduces the thermal contact conductance at
the interface and forces heat to flow mainly parallel to the open gap.

The force-displacement curves recorded during push-out tests are generally in good
agreement with the ones obtained by simulation.

For all inserts investigated a strong frictional connection is obtained. The axial force
corresponding to the onset of sliding at the steel-aluminum interface is only slightly
increased by the “moderate” form-locking geometries investigated here. However, all
form-locking connections result in a marked increase of the ultimate axial load.

Insert D exhibits the highest ultimate load. However, cracks are initiated (D = 1) long
before the ultimate load is reached as shown by the simulation.

In the case of insert A (purely frictional connection), the simulation predicts a con-
tinuous decrease of the push-out force after the onset of sliding at the steel-aluminum
interface, see Figure 6.8(b). This is due to the continuous loss of contact area. Re-
markably, the measured push-out force increases to a certain extent after the onset of
sliding, see Figure 6.8(a). This could indicate that the coefficient of friction actually
increases during the sliding motion.
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Chapter 7

Demo Prototype of a Compound Casting

7.1 Introduction

In the framework of the project Austrian Light Weight Structures, the author has
designed a demo prototype of a steel-aluminum compound casting. Around 60 pieces of
the demo prototype were manufactured by Leichtmetallkompetenzzentrum Ranshofen
(LKR)(1) using high pressure die casting.

The demo prototype is meant to demonstrate the possibilities of the compound casting
technology. The design incorporates two possibilities of compound casting technology:
the form-locking and the frictional connection. The third possibility, metallurgical
bonding, has been consciously omitted.

The first part of this chapter will address the geometry and the manufacturing process
of the demo prototype. Next, a finite element analysis of the quenching process, the
machining and the mechanical testing is presented. Finally, the simulation results are
compared to experimental data.

7.2 Geometry and Manufacturing Process

The task set by LKR was to join two identical, coaxially positioned inserts made
from steel C45E by a cast aluminum node made from alloy A356.0. (Information on
both materials can be found in Section 2.3.) Moreover, the demo prototype should be
designed to carry primarily axial (compressive or tensile) and torsional loads.

Figure 7.1 shows an exploded view of the demo prototype. Only two-thirds of the
casting are shown. Figure 7.2 shows a technical drawing.

As the steel inserts have a complicated shape, they have been produced by CNC
milling. Large-scale production of similar components would require a more economical
production process, e.g. hydroforming.

(1)http://www.lkr.at

104

http://www.lkr.at


Chapter 7 Demo Prototype of a Compound Casting

polygon profile P3G

sealing insert

casting

casting

steel insert

steel insert

steel insert casting
�

��

�
�

Figure 7.1: Exploded view of the demo prototype; only two-thirds of
the casting are shown. The casting gate is not shown.

The cross section of each steel insert smoothly changes throughout its length. Outside
of the aluminum node, the steel inserts are tubular in shape. Approaching the center
of the node, the cross section changes from a circle to a polygon profile P3G (see
Figure 7.1, bottom right). The polygon profile serves as a form-locking connection
with respect to torsional loads. Approaching the center of the node further, the cross
section changes back to a circle, while the diameter also increases. This increase in
diameter serves as a form-locking connection with respect to axial tensile loads.

The polygon profile P3G is a standardized form of a shaft-to-collar connection described
in [DIN 32711-1](2). This machined shaft-to-collar connection it is not very common
because tight geometrical tolerances have to be maintained during production. For the
application presented here, obviously, no tight tolerances have to be observed.

Remarkably, the polygon profile P3G is a curve of constant width. That is, the curve’s
width, measured by the distance between two opposite parallel lines touching its bound-
ary, is the same regardless of the direction of those two parallel lines. We denote this
width as D.

The curve can be described by the parametric equation:

x(α) = [D/2 − e cos(3α)] cos(α) − 3e sin(3α) sin(α) ,
y(α) = [D/2 − e cos(3α)] sin(α) + 3e sin(3α) cos(α) , (7.1)

where e is the eccentricity and α = 0 . . . 360◦ is the parameter(3). For the steel inserts

(2)The proposed technical standard [DIN 32711-1] from Jan. 2007 contains considerably more infor-
mation than the standard from 1979.

(3)α is a parameter, not the angular coordinate of a polar coordinate system.
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Figure 7.2: Technical drawing of the demo prototype; dimensions in mm.
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Figure 7.3: Polygon profile P3G.

of the demo prototype D = 28 mm and e = 0.896 mm has been chosen. Figure 7.3(a)
shows a corresponding plot of the parametric equation (solid curve).

The geometry of the polygon profile can be approximated by six circular arcs with
radii:

r1 = D/2 + 6.5e and r2 = D/2 − 6.5e . (7.2)

Figure 7.3(a) also shows these six circular arcs (dashed curves). The difference between
the parametric equation and the circular arcs is hardly visible to the naked eye. As
shown in Figure 7.3(b) the radius of curvature of the curve described by the parametric
equation smoothly varies, whereas the radius of curvature of the curve composed of
circular arcs jumps between r1 and r2.

As the difference between the real polygon profile P3G and the curve composed of six
circular arcs is small, the latter has been used to describe the geometry of the demo pro-
totype. This simplifies the description of the geometry in standard 3D CAD programs
and the generation of CNC code to drive the milling machine.

Further information on the polygon profile P3G can be found in [Frank and Pflanzl,
1998].

The “sealing insert” shown in Figures 7.1 and 7.2 is not meant for load transmission.
It merely prevents the melt from flowing inside the steel inserts. A tubular part made
from steel C45E has been used in the present case. However, a different material or
even a removable salt core could be used.

As already mentioned, the demo prototype has been manufactured using high pres-
sure die casting. Figure 7.4(a) shows the steel inserts positioned in the casting mold.
Figure 7.4(b) show two steel inserts loosely connected by the sealing insert (top) and
a finished casting including the casting gate and four overflows (bottom). The four
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(a) Steel inserts positioned in the die
casting mold

overflow			

casting gate






(b) Steel inserts (top) and demo proto-
type after casting (bottom).

(c) Section through the demo prototype.

Figure 7.4: Manufacturing of the demo prototype. Pictures courtesy
of Leichtmetallkompetenzzentrum Ranshofen.

overflows are later broken off and the casting gate is machined off. Figure 7.4(c) shows
a cross section of the demo prototype. The cutting plane is slightly off-center, as the
release of the residual stresses cause the steel parts to separate from the aluminum
node when the structure is cut in the middle.

The pressure used to force the molten aluminum into the mold during high pressure
die casting can exceed 100 MPa. Inserts have to be able to withstand this pressure,
which can be an important factor in the design of such inserts. For instance, Figure 7.5
shows the von Mises equivalent stress in the cross section of the steel inserts of the demo
prototype loaded by a pressure of p = 80 MPa (linear elastic finite element analysis
assuming plane stress conditions).

After casting, the demo prototype was removed from the mold as early as possible,
transported to the quench tank and immediately quenched in water. No further heat
treatment was performed, so that the residual stresses that develop during the quench-
ing process persist and determine the frictional connection of the structure.
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(a) Deformation scale factor: 1. (b) Deformation scale factor: 100.

Figure 7.5: Von Mises equivalent stress in the cross section of the steel
inserts of the demo prototype loaded by a pressure of p = 80 MPa.

7.3 Finite Element Simulation of Quenching, Machining and
Mechanical Testing

Fundamental considerations regarding the simulation of the quenching process of a
compound casting have been given in Chapter 2 and 3. The basic assumptions made for
the simulations presented in this section are therefore stated only briefly. The general
purpose finite element program ABAQUS Standard(4) [Dassault Systèmes, 2008a] has
been used to carry out the simulations.

The sequence of simulation steps is as follows:

• Simulation of the quenching process.

• Expansion of the yield surface to account for the effects of natural ageing (see
Figure 2.7 on page 26).

• Simulation of the removal of the casting gate (stress redistribution).

• Simulation of mechanical tests (tensile and torsion test).

The simulation starts at the time of immersion of the demo prototype into the quench-
ing water. At that time, it is assumed that all components (aluminum node, steel
inserts and sealing insert) exhibit a homogeneous temperature of 400 ◦C and that the
structure is still stress-free (see remarks in Section 2.5). The heat transfer coefficient
is taken as a function of the surface temperature as shown in Figure 7.6. Lower values
are assumed at the inner surfaces to account for the effects of “entrapped vapor” (see
also Section 2.2).

Thermal contact conductance at the steel aluminum interface is taken as a function of
contact pressure and macroscopic gap width as described in Section 3.5.

Von Mises rate-independent plasticity with isotropic hardening is assumed for alu-
minum and steel (see Section 2.5). Stress-strain curves for the relevant temperature
range are given in Figure 2.7 on page 26 for A356.0 and in Figure 2.8(b) on page 27 for

(4)http://www.simulia.com
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ϑ [◦C] 0 90 110 250 350 400

h1 [W/m2K] 200 200 2000 5000 5000 500

h2 [W/m2K] 200 200 1000 2000 2000 500

Figure 7.6: Dependence of heat transfer coefficient h on surface tem-
perature ϑ; initial temperature: 400 ◦C; T∞ = 20 ◦C.

(a) Full-model. (b) Half-model.

(c) Interior view of half-model. (d) Interior view of half-model.

Figure 7.7: Finite element mesh.
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C45E. Further required thermophysical and mechanical material properties are given
in Section 2.8.

To account for the effect of the lay pattern generated during the milling of the inserts,
an anisotropic extension of Coulomb’s law of friction is assumed at the steel-aluminum
interface. The coefficient of friction is assumed as μa = 0.6 in axial direction and as
μc = 0.4 in circumferential direction. The static and the kinetic coefficient of friction
are assumed to be identical.

The removal of the casting gate is simulated using a simple approach. The nodal forces
that the elements representing the casting gate are exerting on the remaining part of
the model are ramped down to zero during a nonlinear analysis step.

The damage indicator described in chapter 4 is used to predict the onset of fracture in
the aluminum alloy A356.0 during the mechanical tests. The critical strain in uniaxial
tension ε0 needed for the calibration of Equation (4.4) is chosen as ε0 = 0.05.

The demo prototype was meshed with hexahedral elements of type C3D8RT (8-node,
linear, coupled temperature-displacement element with reduced integration and hour-
glass control). Second order elements could not be used as spurious (nonphysical)
oscillations appeared in the solution during quenching simulation [Dassault Systèmes,
2008a].

Figure 7.7 shows various views of the mesh. The four overflows, see Figure 7.4(b),
have not been included as their presence neither affects the thermal nor the mechanical
problem significantly.

Figure 7.7(a) shows a full-model of the demo prototype containing about 120000 nodes
or 480000 degrees of freedom (three displacement degrees of freedom and one temper-
ature degree of freedom per node). As the geometry of the demo prototype is mirror
symmetric with respect to the central plane perpendicular to the axis of the structure,
a half-model can be used – see Figure 7.7(b). If the loading is mirror symmetric, the
boundary conditions for the nodes lying in the plane of symmetry are evident. In the
case of torsional loading, however, the loading is not mirror symmetric with respect
to said plane. Nevertheless, the half-model can be used to simulate this load case
if appropriate boundary conditions are used, as explained in detail in Appendix D.
Figures 7.7(c) and (d) show interior views of the half-model.

7.4 Simulation Results and Comparison to Experimental
Data

Figure 7.8 illustrates the evolution of the temperature field during the quenching pro-
cess. Note that each plot has a different color legend.
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(a) t = 1.18 s (b) t = 6.9 s (c) t = 45.5 s

Figure 7.8: Quenching simulation: Temperature field t seconds after
immersion into the quenching water. Note the different color
legends.

casting gate ���

(a) After the quenching process. (b) After removal of the
casting gate.

Figure 7.9: Circumferential residual stresses in the cast node.

Figure 7.9 shows circumferential residual stresses in the cast node. Figure 7.9(a) shows
the state after the quenching process, and Figure 7.9(b) shows the state after natural
ageing and removal of the casting gate. As a result of the removal of the casting gate, a
certain degree of stress redistribution occurs. However, the effect is limited to a small
region close to the removed part. The extension of the yield surface associated with
natural ageing does not cause any stress redistributions.

Figure 7.10 shows the von Mises equivalent stresses after removal of the casting gate.
The stress values are depicted on an exploded view of the model. The highest values
of the von Mises stress, about 200 MPa, occur in the thin-walled region of the steel
insert. This is, however, markedly below the yield stress of the steel (≈ 690 MPa). In
the casting values from 60 MPa to 120 MPa are encountered.

Figure 7.11(a) shows the contact pressure on the inner surface of the casting after the
removal of the casting gate. Some small areas of very low contact pressure can be ob-
served. As the thermal contact conductance at the steel-aluminum interface decreases
with decreasing contact pressure (see Figure 3.9 on page 48), the heat flux “avoids”
these regions during the quenching process. This can be observed in Figure 7.11(b),
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Figure 7.10: Von Mises equivalent stress after removal of the casting
gate depicted on an exploded view of the model.

area of low
contact pressure

�
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(a) Contact pressure on the inner sur-
face of the casting after the removal
of the casting gate.

area of low
contact pressure

�
�
�

(b) Heat flux vectors in the steel insert
6.9 seconds after immersion of the demo
prototype into the quenching water.

Figure 7.11: Contact pressure and heat flux.

where the heat flux vectors in the steel insert 6.9 seconds after immersion of the demo
prototype into the quenching water are shown.

The demo prototype was designed to carry primarily axial and torsional loads. Accord-
ingly, tensile and a torsion tests have been performed (see Figure 7.12). The tensile
tests have been carried out by the Institute of Materials Science and Technology, Vi-
enna University of Technology. The torsion tests have been carried out by the Institut
für Stahlbau und Werkstoffmechanik, Fachgebiet Werkstoffmechanik, Technische Uni-
versität Darmstadt.

Tensile Tests

In Figure 7.13(a) five measured force-displacement curves are compared to the one
obtained by simulation. Final fracture in the experiments is marked by crosses. The
point where the damage indicator reaches the critical value D = 1 in the simulation is
marked by a circle. Good agreement between the simulated curve and the measured
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(a) Tensile test. (b) Torsion test, picture courtesy of (*).

(*) Institut für Stahlbau und Werkstoffmechanik, Fachgebiet Werkstoffmechanik,
Technische Universität Darmstadt.

Figure 7.12: Mechanical tests.

curves can be observed. Also, final fracture occurs in the experiments shortly after the
damage indicator D has reached the critical value D = 1.

The position where the critical value of the damage indicatorD = 1 is reached, is shown
in Figures 7.13(c) and (d). The critical value is reached practically simultaneously at
two different positions designated as “position 1” and “position 2” in Figures 7.13(c)
and (d). All five specimens fractured in a similar manner, see Figure 7.13(b), and in
all five cases the location of the crack matches “position 1” as predicted by the damage
indicator.

Torsion Tests

In Figure 7.14(a) four measured moment-angle curves are compared to the one obtained
by simulation. Final fracture in the experiments is marked by crosses. One specimen
did not fracture. The point where the damage indicator reaches the critical value
D = 1 in the simulation is marked by circle. The agreement between the simulated
and the measured curves is not as good as in the case of the tensile test. The torsional
moment required to generate a relative motion between the steel inserts and the casting
is overpredicted by the simulation.

Figures 7.14(c), (d) and (e) indicate the position where the critical value of the damage
indicator D = 1 is reached. All fractured specimens fractured in a similar manner, see
Figure 7.14(b), and in all cases the location of the crack matches the position predicted
by the damage indicator.

7.5 Discussion

In this chapter a demo prototype of a compound casting manufactured by high pressure
die casting and a corresponding finite element model have been presented.
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(a) Comparison of the measured force-
displacement curves to the one obtained
by simulation.

(b) Typical fractured specimen.
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(c) Position where the critical value of the
damage indicator D = 1 is reached.
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(d) Figure (c) with transparent steel parts.

Figure 7.13: Tensile test.

The demo prototype can resist high static loads. For example a tensile axial load of
70 kN, see Figure 7.13(a), corresponds to a uniaxial stress of approximately 320 MPa
in the steel inserts, outside of the aluminum node. A torsional load of 600 Nm, see
Figure 7.14(a), corresponds to a maximum shear stress of approximately 270 MPa in
the steel inserts, outside of the aluminum node.

Generally, the outcome of the mechanical tests is well predicted by the finite element
model. Only in the case of the torsion test, the torsional moment required to generate
a relative motion between the steel inserts and the casting is clearly overpredicted
by the simulation. A possible reason for this overprediction is that the tightening of
the clamps, see Figure 7.14(b), might have altered the residual stress state and thus,
weakened the frictional connection. The clamps are not taken into account in the
finite element model, but the torsional moment is introduced using a suitable coupling
constraint far away from the cast node.

Finite element models like the one presented in this chapter can be a valuable tool in
assisting in the design process of a compound casting. The intended gap between the
left steel insert and the sealing insert apparent in Figure 7.4(c) is an example for a
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(*) Institut für Stahlbau und Werkstoffmechanik, Fachgebiet Werkstoffmechanik,
Technische Universität Darmstadt.

Figure 7.14: Torsion test.

design modification suggested by the results of the finite element analysis of a previous
design. The gap allows the two steel inserts to axially move towards each other during
the cooling of the compound casting. This is important because high axial residual
stresses (tensile in the aluminum and compressive in the sealing insert) build up if
this relative movement is prohibited, and the additional residual stresses diminish the
structure’s load carrying capacity.
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Conclusion and Outlook

The aim of this thesis was to develop computational methods for the analysis and
design of compound castings and other multi-material structures. Both finite element
methods and asymptotic analysis techniques have been presented.

It is difficult to achieve a perfect, continuous material-locking connection during a
real, industrial compound casting process. However, excellent results can be achieved
using form-locking and/or frictional connections. Practical examples of steel-aluminum
compound castings with form-locking and/or frictional connection have been presented
in Chapters 6 and 7. In general, the strength as well as the mode of failure of these
connections could be well-predicted by the finite element models.

During the quenching (or cooling) of a compound casting, residual stresses develop
due to the inhomogeneous transient temperature field and due to the dissimilar coeffi-
cients of thermal expansion of the materials involved. As these stresses determine the
frictional connection and other important characteristics (e.g. the fatigue life) of the
structure, the simulation of the quenching process is of central importance.

For the quenching simulations, stress-strain curves that appropriately describe the
behavior of the cast alloy during the quenching operation are required. If the cast
alloy responds to precipitation hardening, special care has to be taken as the results of
a tensile or compressive test can be distorted by unintended precipitation processes.

Due to the large coefficient of thermal expansion mismatch between steel and alu-
minum, frictional connections of steel-aluminum compound castings are often so strong
that it might be questioned whether an additional form-locking connection is necessary.
However, relaxation of residual stresses may weaken the frictional connection over time.
Therefore, additional form-locking connections can also be seen as a safeguard.

The thermal contact conductance at the interface of compound castings without metal-
lurgical bonding increases with increasing contact pressure and decreases with increas-
ing gap opening. It is a major finding of this thesis that, in general, the consideration of
this dependence is crucial to the simulation of the quenching process of steel-aluminum
compound castings. (The same is presumably true for other material combinations.)
In many cases a completely different residual stress state will be be predicted if the
thermal contact conductance is assumed constant (see Section 3.7).
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During the quenching process of a compound casting, gaps can open up at the interface,
even if the structure is geometrically simple (see Chapter 6). The opening of the
gap severely reduces the thermal contact conductance and forces heat to flow mainly
parallel to the open gap.

Although this research focused on steel-aluminum compound castings, many concepts
and findings are applicable to multi-material structures in general. This is especially
true for the examination of stress singularities which may occur at bimaterial interfaces
presented in Chapter 5. Design charts have been developed which exhibit the singular-
ity exponent as function of the local geometry (or the local geometry and the coefficient
of friction) for a given material combination. Using theses charts, stress singularities
in a given multi-material structure can be identified and geometry modifications can
be determined that minimize the order of the singularity or, ideally, completely remove
the stress singularity. As a result, the durability of the multi-material structure will
be enhanced. Often, great improvements can be achieved through comparatively small
and local modifications of the geometry.

How to Reduce the Level of Residual Stresses

Due to the large coefficient of thermal expansion mismatch between steel and alu-
minum, high levels of residual stresses are generally generated during the quenching
or cooling of a steel-aluminum compound castings. These high stresses are a mixed
blessing. On the one hand, they provide for a strong frictional connection. On the
other hand, they can (among other things) reduce the fatigue life of a structure. Thus,
the question arises how the residual stresses in a steel-aluminum compound casting
can be reduced.

Obviously, a stress relief heat treatment is hardly an option as residual stresses build
up again during the subsequent cooling process.

One realistic option is a reduction of the coefficient of thermal expansion mismatch.
For instance, some high alloy chromium-nickel steels have coefficients of thermal ex-
pansion about 50% higher than those of low alloy steels. As shown in Figure 8.1,
the mismatch between aluminum cast alloy A356.0 and high alloy chromium-nickel
steel X5CrNi18-10 is considerably smaller than that between A356.0 and low alloy
steel S355. The reduction of the coefficient of thermal expansion mismatch could not
only reduce the residual stresses generated during the quenching (or cooling) of the
compound casting, but also reduce the thermally induced stresses during operation.

A further possibility to limit the residual stresses to a suitable level is the use of an
aluminum cast alloy that exhibits low yield stress during quenching and a pronounced
response to natural ageing.

Still another possibility stems from the example presented in Section 3.7. This exam-
ple has shown that (falsely) assuming low thermal contact conductance at the steel-
aluminum interface can result in a substantially lower level of residual stresses, see
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Figure 8.1: Instantaneous coefficient of thermal expansion αth
i of steels

S355 and X5CrNi18-10 [SEW 310, 1992] and aluminum cast alloy
A356.0 [Kaufman and Rooy, 2005].

Figure 3.11(a). Thus, low residual stresses can be achieved by deliberately reducing
thermal contact conductance. One way of doing this would be to introduce a low
conductance interstitial material in the interface. This could be achieved by coating
the steel inserts (See also the book by Madhusudana [1996]). Presumably, the residual
stress level could even be controlled by modifications of the coating thickness.

Propositions for Future Research

If metallurgical bonding is achieved during a steel-aluminum compound casting process,
a thin layer of brittle intermetallic phases is formed at the interface. The structural
performance of such a compound casting depends on the fracture toughness of that in-
terface. Thus, fracture mechanics parameters of these interfaces should be determined
experimentally!

Chapter 3 discusses the thermal contact conductance at a steel-aluminum interface
without metallurgical bonding. In order to establish the dependence of the thermal
contact conductance on contact pressure and gap opening, it was assumed that the
contact at the interface of the compound casting is similar to the common contact
of two engineering surfaces. While this seems to be a reasonable assumption, the
resulting dependence of the thermal contact conductance on contact pressure depicted
in Figure 3.9 (page 48) should be experimentally verified.

Coulomb’s law of friction has been assumed at the steel-aluminum interface in this
work. The static and the kinetic coefficient of friction have been assumed to be identical
and in the range of 0.4 to 0.6. While good agreement with experimental results was
generally achieved, the static and kinetic coefficient of friction should be experimentally
determined.

For the quenching simulations presented in this thesis von Mises rate-independent
plasticity with isotropic hardening and associated flow rule has been assumed for the
cast alloy. This is a reasonable assumption for the simulation of “fast”quenching
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processes. However, for the simulation of a slow cooling process or the simulation of
artificial ageing (ageing at elevated temperatures) an elastic-visco-plastic constitutive
model would be required.

In the simulations presented in this work, the effects of natural ageing of the aluminum
cast alloy have been accounted for in a simple manner. That is, subsequent to the
quenching simulation the yield surface has been expanded according to a representative
stress-strain curve measured in the naturally aged condition. In reality, the evolution of
the yield stress depends on the degree of supersaturation and thus on the local thermal
history. If a quantitative model capable of predicting the evolution of the yield stress
based on a known thermal history was available, this dependence could be accounted
for in the simulations.
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Appendix A

Cubic Splines Approximating Stress-Strain
Curves

Splines are functions defined piecewise by polynomials (see Figure A.1). At the in-
tersections of two polynomial pieces, continuity conditions (e.g. n-times continuously
differentiable) are usually assigned in order to achieve a smooth curve. Splines can
describe arbitrary functions even when using low degree polynomials and are therefore
well suited for the approximation of measured data.

A spline p(x) can be described in terms of its breaks ξ1, ξ2, . . . ξl and its polynomial
coefficients cji:

pj(x) =
k∑

i=1

(x− ξj)k−i cji j = 1, 2, . . . l , (A.1)

where l is the number of polynomial pieces and k is the number of coefficients in each
polynomial (k = 4 for a cubic spline). The polynomial pj(x) describes the spline in
the interval ξj ≤ x ≤ ξj+1.

In this work, cubic splines (k = 4) haven been used to approximate measured stress-
strain curves. Figure A.1 shows an example. Here x refers to logarithmic plastic
strain and p(x) refers to true stress in Pascal. A spline with three polynomial pieces is
used to describe the stress-strain curve. In the diagram on the left of Figure A.1 the
polynomials are plotted over the entire interval, while in the diagram on the right the
polynomials are plotted on their respective intervals only. The table on the bottom of
Figure A.1 displays the breaks ξj and the polynomial coefficients cji. Note that the
spline always passes through the points (ξj , cj4) for j = 1, 2, . . . l. The spline shown in
Figure A.1 is twice continuously differentiable at the interior breaks ξ2 and ξ3.

To obtain a spline approximation like to one shown in Figure A.1 the following proce-
dure can be followed: First, the number of polynomial pieces l and appropriate breaks
ξj are chosen. Next, continuity conditions are assigned at the interior breaks (e.g.
two times continuously differentiable for a cubic spline). Finally, the polynomial co-
efficients cji are determined by least square approximation to the measured data. In
MATLAB(1) this last step can be accomplished using the spap2 function.

(1)http://www.mathworks.com
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ξj ξj+1 cj1 cj2 cj3 cj4

j=1 0.0 0.013 7.1394E+12 -3.0695E+11 6.0337E+09 3.8866E+07

j=2 0.013 0.055 2.1008E+11 -2.8511E+10 1.6728E+09 8.1116E+07

j=3 0.055 0.105 6.5645E+09 -2.0408E+09 3.8960E+08 1.1664E+08

Figure A.1: Cubic spline approximating a measured stress-strain
curve.

Tables A.1 to A.3 display the breaks and polynomial coefficients of the splines used
for the approximation of stress-strain curves (true stress as a function of logarithmic
plastic strain) in the present work. The spline approximating the room temperature
stress-strain curve of S355 (Table A.3) is intentionally not continuously differentiable
at ξ2 = 0.02.
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tion of A356.0; numbers in brackets refer to curves in Figure 2.7
on page 26; stress in Pascal.
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Table A.2: Splines approximating stress-strain curves (true stress as
a function of logarithmic plastic strain) of A356.0 in the natu-
rally and artificially aged condition; numbers in brackets refer to
curves in Figure 2.7 on page 26; stress in Pascal.
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Table A.3: Splines approximating stress-strain curves for steels S355
and C45E at room temperature; compare Figure 2.8 on page 27;
stress in Pascal.
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Appendix B

Polynomials Approximating Temperature
Dependence of Thermophysical and
Mechanical Properties

The temperature dependence of mechanical and thermophysical material properties of
aluminum alloy A356.0, steel S355 and steel C45E have been approximated by low
order polynomials (see Section 2.8).

For instance, the temperature dependence of a material property p is described by:

p(ϑ) = a0 + a1ϑ+ · · · + anϑ
n, (B.1)

where ϑ is the Celsius temperature.

In some cases the polynomial coefficients (a0, a1 . . . an) could be taken directly from
the literature. In the remaining cases suitable polynomials were fitted to the literature
data by least square approximation.

The polynomial coefficients are reported in Table B.1 to B.4. Each row lists a material
property, the polynomial coefficients, the limits of applicability (ϑmin, ϑmax), the source
of data and the number of the figure showing the curve. SI units have been used for
all properties given in this Appendix.
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Table B.1: Polynomial coefficients describing temperature depen-
dence of material properties of pure aluminum; all properties
in SI units.

128



Appendix B Polynomials Approximating Thermophysical and Mechanical Properties

a
0

a
1

a
2

a
3

ϑ
m

in
ϑ

m
a
x

So
ur

ce
F
ig

ur
e

α
th i

2.
02

94
E

-0
5

1.
83

69
E

-0
8

-
-

-2
0

31
5

[K
au

fm
an

an
d

R
oo

y,
20

05
]

2.
12

(a
)

c p
7.

78
15

E
+

02
7.

55
79

E
-0

1
-

-
20

53
5

[B
lu

m
m

et
al

.,
19

98
]

2.
16

(a
)

λ
1.

52
97

E
+

02
-

-
-

0
45

0
[B

lu
m

m
et

al
.,

19
98

]
2.

14

Table B.2: Polynomial coefficients describing temperature depen-
dence of material properties of A356.0; all properties in SI units.
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Table B.3: Polynomial coefficients describing temperature depen-
dence of material properties of S355; all properties in SI units.

130



Appendix B Polynomials Approximating Thermophysical and Mechanical Properties

a
0

a
1

a
2

a
3

ϑ
m

in
ϑ

m
a
x

So
ur

ce
F
ig

ur
e

α
th i

1.
13

73
E

-0
5

1.
69

63
E

-0
8

-1
.4

04
3E

-1
1

-
-1

00
60

0
[S

E
W

31
0,

19
92

]
2.

12
(b

)

c p
4.

48
55

E
+

02
6.

11
00

E
-0

1
-1

.3
35

4E
-0

3
2.

05
44

E
-0

6
-1

00
60

0
[S

E
W

31
0,

19
92

]
2.

16
(b

)

λ
4.

11
87

E
+

01
3.

31
09

E
-0

2
-1

.3
71

3E
-0

4
1.

04
18

E
-0

7
20

60
0

[S
E

W
31

0,
19

92
]

2.
15

(b
)

E
2.

12
55

E
+

11
-5

.4
42

1E
+

07
-4

.3
43

9E
+

04
-

-1
00

60
0

[S
E

W
31

0,
19

92
]

2.
10

Table B.4: Polynomial coefficients describing temperature depen-
dence of material properties of C45E; all properties in SI units.
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Appendix C

Additional Design Charts

Section 5.5.2 presented a design chart for the case of an end point of a perfectly bonded
bimaterial interface. The material combination considered was steel-aluminum, hence
the ratio of Young’s moduli was E2/E1 = 3.

To demonstrate the effect of a distinctly higher ratio of Young’s moduli, a design chart
for a hypothetical material combination with E2/E1 = 10 is presented in this appendix.
The material properties and Dundurs parameters are given in Table C.1. The design
chart is shown in Figure C.1 and C.2.

E2/E1 = 10

ν1 = ν2 = 0.3

G2/G1 = 10

α = 0.8182, β = 0.2338

Table C.1: Hypothetical Material combination with E2/E1 = 10: Ma-
terial properties and Dundurs parameters for plane strain.
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Appendix C Additional Design Charts

(a) Real part of the singularity exponent Re(ω1).

(b) Imaginary part of the singularity exponent Im(ω1).

Figure C.1: Design chart for the end point of a perfectly bonded
bimaterial interface; material combination: Table C.1.
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Appendix C Additional Design Charts

Figure C.2: Detail of the design chart in Figure C.1(a) illustrating
how to avoid singular behavior while keeping a smooth outer
surface (θ1 + θ2 = 180◦).
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Appendix D

Boundary Conditions for Torsional Loading

The geometry of the demo prototype studied in Chapter 7 is mirror-symmetric with
respect to the central plane perpendicular to the axis of the structure, see Figure 7.2 on
page 106. Hence, a half-model was used for the finite element analysis, see Figure 7.7(a)
on page 110.

If the loading is mirror-symmetric (quenching simulation, tensile test) the boundary
conditions for the nodes lying in the plane of symmetry are evident. In the case
of torsional loading, the loading is not mirror symmetric with respect to said plane.
As will be explained in this appendix, it is still possible to employ the half-model if
appropriate boundary conditions are used.

For the sake of simplicity, the approach is here explained by means of the simple,
torsionally loaded structure shown in Figure D.1. The structure is similar to the demo
prototype in the sense that it exhibits the same symmetries. Figure D.1(a) shows
the complete structure, whereas Figure D.1(b) shows the half-model. Appropriate
boundary conditions are needed for the nodes lying in the x-y-plane as indicated in
Figure D.1(b).

(a) Complete structure. (b) Half-model.

Figure D.1: Structure exhibiting the same symmetries as the demo
prototype in Chapter 7.
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Appendix D Boundary Conditions for Torsional Loading

(a) Cartesian coordinate sys-
tem.

(b) Cylindrical coordinate sys-
tem.

Figure D.2: Displacements of corresponding points in the x-y-plane.

While the problem is not mirror-symmetric with respect to the x-y-plane, it is sym-
metric with respect to a 180◦ rotation about the y-axis. That is, the displacements
must also be symmetric with respect to this rotation.

In the x-y-plane, the rotation maps point A onto point B as shown in Figure D.2(a).
For the displacements follows:

uA
x = −uB

x , uA
y = uB

y , uA
z = −uB

z . (D.1)

For the nodes lying on the y-axis this implies:

ux = 0 , uz = 0 . (D.2)

If a cylindrical coordinate system is used, as shown in Figure D.2(b), the corresponding
expressions are:

uA
r = uB

r , uA
ϕ = −uB

ϕ , uA
z = −uB

z , (D.3)

and for the nodes lying on the y-axis:

uϕ = 0 , uz = 0 . (D.4)

In finite element programs Equations (D.1) or (D.3) can be accounted for using suitable
constraint equations.

Figure D.3 shows deformed finite element models (deformation scale factor: 1) of the
problem shown in Figure D.1. Colors correspond to displacements in axial direction.
While Figure D.3(a) shows a full-model, Figure D.3(b) shows a half-model employing
suitable constraint equations. The results from both models are identical.

Care has to be taken when the approach presented in this appendix is applied to the
simulation of the demo prototype presented in Chapter 7 using ABAQUS(1). If linear
multi-point constraints(2) are used to define the appropriate boundary conditions, the
(1)http://www.simulia.com
(2)Keyword: *EQUATION
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Appendix D Boundary Conditions for Torsional Loading

(a) Full-model. (b) Half-model employing
suitable constraint equa-
tions.

Figure D.3: Deformed finite element models (deformation scale fac-
tor: 1) of the problem shown in Figure D.1. Colors correspond
to displacements in axial direction.

constraints are imposed by eliminating degrees of freedom. The “eliminated nodes”
should not be involved in any contact definitions (see Figure 7.7(a) on page 110). In
the case of the demo prototype the “eliminated nodes” had to be removed from the
contact definitions in order to achieve convergence.
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