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Introduction

Choice sequences are the central concept of intuitionistic mathematics. Every difference

that can be pointed out between intuitionistic and classical mathematics is a direct

consequence of putting choice sequences at the base of intuitionistic thinking. We

will use this introduction to give a short general overview of the logical and historical

background of choice sequences. During the main part of this thesis, however, we will

focus on a special type of choice sequences, called lawless sequences.

Quite generally put, choice sequences are mappings from N into a set X where the

elements or values of the sequence are “chosen” one after another from the elements

in X. The action of choosing can be, e.g. completely restricted by a law (lawlike se-

quence) or completely random and unrestricted (lawless sequence). Between these

two extremes, other types of choice sequences are conceivable. One such type, called

hesitant sequences, will also be discussed briefly in the following chapter.

Note that no type of choice sequences is a class of static, completely given objects the

way sequences are usually conceived in classical mathematics. They are processes of

choosing (in some sense, depending on the type of sequence) at every moment a finite

number of values such that only a finite number of values is known at each point.

Traditionally, choice sequences are taken as mappings from N into N. Therefore,

throughout this thesis, we will adopt this convention (Kreisel (1968), Troelstra (1977)

and others).

Historically, at the beginning of the 20th century, one of L.E.J. Brouwer’s concerns

when he started to develop his intuitionistic philosophy of mathematics was to find

an intuitionistically adequate way to formulate a theory of sets. The utilisation of

choice sequences in this matter opened a way to grasp the intuition of the continuum,

a concept that was heavily discussed at that time. Brouwer represented every real

number by a choice sequence evolving in the mind of the mathematician, and he called

the introduction of choice sequences the “second act of intuitionism”.

The “first act of intuitionism” is to view mathematics as a subjective creation of the

mind of a mathematician. An important issue accompanying this philosophical point of

view is that properties of mathematical objects, since they are created by the mind of

the mathematician, always need to be either provable or refutable, which is only possible

1



2 Introduction

if the verification of the property requires just a finite subpart of the mathematical

object (Brouwer 1992:21ff). This is reflected in the perception of choice sequences as

processes. Thus choice sequences are only potentially infinite (at very point only a

finite initial segment is known) and are thus the prototypical incomplete objects.

How do the differences between intuitionistic and classical mathematics follow from

this? The utilisation of choice sequences leads to a different way of“doing mathematics”.

In classical mathematics we do not work directly with mathematical objects. Therefore,

to gain new information about the objects of interest, new properties are proved from

all the properties already known about the objects. More concretely: instead of working

with the objects themselves, in classical mathematics we work with all properties known

about the objects.

In some sense, classical mathematics tries to approximate the “objects of interest”

from above. Obviously, these objects form a subset (or subclass) of all mathematical

objects. However, because of the inability to refer to one of these objects directly, the

right subset of objects is cut out from the set of all mathematical objects by listing all

the properties the objects should have (this leads to the introduction of axioms) and

provably have (properties obtained from proofs). Each new property specifies an even

smaller subset of all mathematical objects. The sequence of all sets gained by adding

new properties converges towards the set containing only the objects of interest.

In intuitionistic mathematics, we work with the objects directly by collecting informa-

tion about the object one by one that not only specifies the object further but also the

set of objects it belongs to. In this light, intuitionistic mathematics approximates a

mathematical object from below.

The approximation from above is problematic for intuitionistic mathematics since it

requires that for every object and every property it is provable that the object has

or does not have this property. This requirement is of course the law of the excluded

middle. As a consequence of the first act, the law of the excluded middle, however,

does not hold generally intuitionistically. The perfect specification of a real number

needs an infinite amount of information. Since we only ever have a finite amount of

information about a mathematical object, some potential property might neither be

provable nor refutable. The introduction of choice sequences as the basic mathematical

objects as the second act is an answer to this problem.

In classical mathematics the assumption that we have access to the potentially infinite

amount of information about a mathematical object is unproblematic in the sense that

classical mathematics is based on classical logic for which the law of the excluded

middle holds.

Summing up the above discussion, intuitionistic and classical mathematics differ in the
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treatment of (information about) mathematical objects. Ideologically they form the

two extremes on a scale.

Approximation from above as in classical mathematics and approximation from below

as in intuitionistic mathematics might well be mixed. The ontology of choice sequences

presented below is one immediatee example.1 Thus the study of choice sequences can

not be seen as just an exercise in intuitionistic mathematics.

Now let us return to choice sequences themselves. Above, we introduced three different

types of choice sequences: lawlike, hesitant and lawless sequences. Lawlike and lawless

sequences are the two extremes with respect to predetermined information, whereas

hesitant sequences lie somewhere between them.

Lawlike or constructive sequences are mappings from N into N restricted or predeter-

mined by some law. This means that every value of the sequence has to be uniquely

computable from all previously given values. Therefore, this type of sequence is also

often called a lawlike or constructive function from N into N.

Hesitant sequences differ from lawlike sequences in the respect that the process starts

without any restriction on future values. However, at some moment during the process

a defining law determining all future values might become known. Thus for hesitant

sequences, a state of lawlikeness might be reached during the process whereas for lawlike

sequences the defining law is given from the beginning.

For Lawless sequences at no point during the process of choosing values, a restricting

law can be found.

As already mentioned above, these three types of choice sequences can be seen as

different examples of the determination of a mathematical object by approximation

from above or from below. Lawlike sequences are completely predetermined. Therefore,

even though only a finite number of values is known at all times, the predetermining

law itself can be seen as a complete and precise characterisation of the object which

gives a precise approximation from above. Lawless sequences, on the other hand, are

completely undetermined. Every new value chosen is new information about the object.

Thus lawless sequences are approximated from below. With hesitant sequences, both

types of approximation are mixed.

The fact that a classical treatment is possible for some types of choice sequences sug-

gests that classical mathematics is in fact a fragment of intuitionistic mathematics for

which the law of the excluded middle holds. Classical mathematics might be called the

“fragment of possibility” of intuitionistic mathematics in the sense that for an object

of this fragment every property is either provable or refutable.

The theory of lawless sequences as well as the system of intuitionistic logic and intu-

1Note, that the formalisation of choice sequences was not done by Brouwer himself. When Brouwer
talks about choice sequences in his work, he usually talks about what was later on termed lawless

sequences.
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itionistic analysis were not formalised by Brouwer but have been developed later by

other logicians, e.g. Heyting, Troelstra, Kreisel, etc. Thus intuitionistic logic is based

on intuitionistic mathematics (the “intuitionistic philosophy”), whereas classical math-

ematics is based on classical logic. Nevertheless, it is quite useful to point out the main

differences between intuitionistic logic and classical logic, since lawless sequences are a

useful tool to intuitionistically refute undesirable classical principles.

The main difference between intuitionistic logic and classical logic already pointed out

above is that the principle of the excluded middle does not hold in intuitionistic logic.

A direct consequence of this fact is the invalidity of the eliminability of double negation.

In general, from an intuitionistic point of view, for a formula to be true means that the

formula is true and that there is a prove of this fact. A negated statement, therefore,

has to be refutable or contradictory. From this point of view, the invalidity of the

elimination of double negation is apparent. A doubly negated statement is of course

weaker than a nonnegated statement. The former means that there is a proof that the

statement is not contradictory, whereas the latter means that a proof of the statement

can be obtained (Heyting 1956).

Heyting also showed that classical logic is indeed a fragment of intuitionistic logic, par-

alleling the above conceptual relation between intuitionistic an classical mathematics

(Heyting (1956)).

In the course of this thesis we will take a closer look at lawless choice sequences,

which are an exclusively intuitionistic concept and are inherently incomplete objects.

Especially their incomplete character makes them an ideal and interesting topic and

a potential tool to look at. We try to expand the notion of lawless sequences and to

apply the newly introduced objects to the linguistic field of natural language semantics.

The first chapter gives a detailed overview of the most important results obtained for

lawless sequences in the literature. The four axioms needed to characterize both the

sequences and all operations on them are motivated and explained. Furthermore, the

bar theorem and its consequence, the fan theorem, are discussed. Lastly we will give

a proof of the elimination theorem for lawless sequences. It shows that the addition of

lawless sequences to the arithmetical system IDB1 is a conservative extension.

The second chapter discusses three modifications or generalisations of lawless choice

sequences: bilateral choice sequences, indexed choice sequences and bundled choice

sequences. For all three types of sequences the technical apparatus is redefined and

the compatibility of the new process and the operations on it with the axioms given in

chapter 1 for lawless sequences is checked. Additionally, the three types of processes

will be compared to each other and we will try to give translations among the various

types of processes.

In the third chapter, one of the modifications of chapter 2 is applied to the formal
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system used in modern linguistics for the treatment of natural language semantics called

possible-worlds semantics. The system is a higher-order intensional language with a

possible-worlds semantics which is a standard Kripke semantics. The idea is that this

Kripke semantics can be substituted by choice sequences that give a potentially infinite

but locally finite semantics compatible with intuitionistic reasoning.

Chapter four introduces with short discussions four issues or interesting questions that

were opened up by the discussion in the previous three chapters.





Chapter 1

The Theory of Lawless Sequences

Lawless sequences arechoice processes from N into N, where the choice of values is

completely unrestricted, i.e. the values do not adhere to a law. Thus, no value can be

computed from previous values, and at every moment only an initial, already “chosen”

segment of the sequence is known. As it turns out, lawless sequences are easier to

handle conceptually if it is assumed that every finite sequence of values is an initial

segment of some lawless sequence. Therefore, it is permitted to specify the initial

segment of a sequence by explicitly stating a finite sequence of values. However, no

additional information can be assumed.

In the literature, the intuition behind these sequences is usually made graspable by

using the picture of casting a dice: the initial segment can be modeled by a finite

number of deliberate placings of the dice followed by an infinite number of casts (Kreisel

(1968), Troelstra (1977)).1 The freedom to deliberately place the values of the initial

segment also implies that every finite sequence is an initial segment of some lawless

sequence.

Troelstra terms unrestricted sequences without a specified initial segment as proto-

lawless sequences. The universe of proto-lawless sequences is part of the universe of

lawless sequences; a proto-lawless sequence is a lawless sequence with the empty tuple

〈〉 as the specified initial segment.

In light of the above discussion, a short comment about the difference between lawless

and hesitant sequences as described in the introduction is in order. From the short

characterization of hesitant sequences given, the idea might arise that these sequences

form a special class of lawless sequences. That this is not the case and that in fact

the set of hesitant sequences and the set of lawless sequences are disjoint, can be

seen from a simple consideration. Since lawless sequences are completely unrestricted

with respect to all future choices, the following fact is certainly true for all lawless

1The picture of casts of a dice should, however, not suggest that choice sequences are stochastic
processes.

7



8 1.1. Basic Definitions and Notations

sequences α: ¬(α = a) for a a lawlike process. ¬(α = a), however, is false for a

hesitant sequence α since a construction law might become known at some stage. By

similar reasoning, (α = a) for hesitant α and lawlike a is false as a construction law

might not yet be known. Therefore, only ¬¬(α = a) can be stated with complete

certainty and the sets H = {α| ¬¬(α = a), a lawlike} of hesitant sequences and

LS = {α| ¬(α = a), a lawlike} of lawless sequences are trivially disjoint.

In the following section we will give a few definitions and notations for the axiomati-

zation and discussion of the universe of lawless sequences and operations thereupon.

The content of this chapter was taken from various articles and books about lawless

sequences and intuitionistic mathematics covering more or less the same amount of in-

formation - Kreisel (1968), Troelstra (1977), Troelstra (1983), Troelstra and van Dalen

(1988a) and Troelstra and van Dalen (1988b) - therefore, only direct adoptions of proofs

will be cited.

1.1 Basic Definitions and Notations

Notation: For lawless sequences lowercase Greek letters, α, β, γ . . ., will be used as

variable names. The values or elements of a lawless sequence α are written as αn for

n ∈ N. Variable names for lawlike processes will be lowercase Latin letters, a, b, c, . . .,

from the beginning of the alphabet.

Sequences and tuples may be coded as a natural number with the help of the following

pairing function.

Definition 1.1. The function j is a surjective pairing2 from N
2 → N with inverses

j1 and j2, such that ∀z∃x∃y j(x, y) = z, ∀xj(j1x, j2x) = x and j(x, y) = j(x′, y′) →

x = x′ ∧ y = y′.

The pairing function j can be used recursively to code p-tuples νp(x0, . . . , xp−1) or

sequences as follows.

ν0(x0) = x0 ν1(x0, x1) = j(x0, x1) νp(x0, . . . , xp) = j(x0, ν
p−1(x1, . . . , xp))

The code number (or sequence number) n of a tuple or sequence x0, . . . , xp will be

written as n = 〈x0, . . . , xp〉. Since the pairing function is injective, the code number

can be identified with the tuple or sequence it codes. The empty sequence 〈〉 will be

identified with 0. As an abbreviation, x̂ is written instead of 〈x〉.

2Any such function is adequate. As a natural coding would serve Kleene’s primitive recursive
coding of finite sequences (Moschovakis 1986).
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Definition 1.2. Concatenation is indicated by the operator symbol ∗. The concate-
nation of the sequences 〈x0, . . . , xp〉 and 〈xp+1, . . . , xp+n〉 is thus

〈x0, . . . , xp〉 ∗ 〈xp+1, . . . , xp+n〉 = 〈x0, . . . , xp+n〉.

Definition 1.3. The length-function for sequences is given as

lth : N→ N, lth 〈〉 = 0, lth 〈x0, . . . , xp〉 = p+ 1.

Notation: An initial segment of length n, 〈α0, . . . , αn−1〉, of a sequence α is written

as αn.

Definition 1.4. The initial segment relation is well-defined for a pair containing a
choice sequence and a sequence number.

α ∈ n iff α(lthn) = n

The intial segment relation can be interpreted topologically. If for all n ∈ N the sets

of all choice sequences with the initial segment n are defined as the open sets of a

topology on the universe of choice sequences, α ∈ n is readable in the sense that α is

an element of the open set generated by the finite sequence n.

We can furthermore define an order on sequence numbers.

Definition 1.5. The order ≺ on sequence numbers is defined for sequence numbers

n,m ∈ N : m ≺ n := ∃m′ m ∗m′ = n.

Now let us turn to the axiomatization of lawless sequences, starting with the axioms

specifying the objects themselves.

1.2 Axioms Specifying the Objects

Since lawless sequences are characteristically unrestricted, only two axioms stating the

most basic requirements are formulated. For one, that every finite sequence of natural

numbers is an initial segment of some lawless sequence, and secondly, that equality for

lawless sequences is decidable.

1.2.1 Density

The density axiom formalises the condition that every finite sequence of values in N is

an initial segment of some lawless sequence.

LS1 ∀n∃α(α ∈ n)
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As a direct consequence, there are infinitely many sequences for each finite initial

segment, i.e. ∀α∀x(α ∈ n ∗ x̂ → α ∈ n). Also note, that LS1 is the only existential

axiom proposed for lawless sequences.

1.2.2 Decidability of Equality

The following axiom stating the decidability of equality for lawless sequences needs a

short preparatory explanation. The only information known about a certain lawless

sequence α at every moment is a finite initial segment αn and its “individuality” as a

process. Therefore, intensional equality, i.e. equivalence, and extensional equality of

two lawless sequences mutually entail each other.

Proposition 1.6. α ≡ β ↔ α = β where α = β :⇔ ∀n(αn = βn)

Proof. The implication α ≡ β → α = β is selfevident: if two lawless sequences are

equivalent, i.e. if they are the same process, all of their elements are identical. The

other direction, α = β → α ≡ β, follows from the information available about lawless

sequences. Since only a finite initial segment is known at every moment and all future

values are left unrestricted, a statement like ∀n(αn = βn) concerning all values of

two possibly distinct processes α and β (including future values!) implies either that

the two processes are actually the same process, i.e. α ≡ β, or that one of the two

processes is in fact not a lawless sequence since all its values are predetermined by the

other process. Thus α = β → α ≡ β.

Therefore, intensional and extensional equality are decidable: either two lawless se-

quences are given as the same process or they are not.

LS2 α ≡ β ∨ ¬α ≡ β

LS2′ α = β ∨ ¬α = β

1.3 Axioms Specifying the Operations

The nature of the operations on lawless sequences is the main focus of the theory of

lawless sequences, since the objects themselves do not offer an elaborate structure.

Studying the operations on lawless sequences leads to the observation that all such

operations are constant on an open set (with respect to the topology on Baire space

generated by sets of lawless sequences sharing the same initial segments) of the universe

of lawless sequences. A direct consequence is that all operations on lawless sequences

have to be continuous.
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1.3.1 Operations on Choice Sequences

For choice sequences in general and for lawless sequences in particular, there are two

kinds of functionals that need to be looked at: on the one hand functionals from

sequences into natural numbers, Φ : N
N → N, and on the other hand functionals from

sequences into sequences, Ψ : N
N → N

N. This of course does not exhaust all possible

functionals definable for choice sequences. The two types of functionals discussed here

play an important role in the formalisation of intuitionistic analysis. The following

definitions and formulae are valid for all types of sequences but will be given specifically

for lawless ones.

A class of functionals Φ : N
N → N can be defined from two different perspectives. One

possibility is to look at all continuous functionals from lawless sequences into natural

numbers. The second possibility is to define a class of functionals with the desired

properties inductively.

Following from LS3, the axiom of open data (see section 1.3.2), functionals are con-

tinuous if and only if they depend only on a finite initial segment. Thus, the value of

the functional for a lawless sequence α can be computed from a sufficiently long initial

segment. By making use of sequence coding, the information contained in the initial

segment can be compressed into a n ∈ N. This means that the class of continuous

functionals ContLS can be induced by a class of neighbourhood functions K0 from N

into N.

Definition 1.7. A function ξ : N → N is in K0 iff k ∈ N is a sequence number,
i.e. k = 〈α0, . . . , αp〉 an initial segment of a sequence α, and there is a functional
Φξ : N

N → N ∈ ContLS such that

ξk =

{

0 the value of Φξ(α) is not yet determined

x+ 1 Φξ(α) = x

ξk = 0 can equivalenty be interpreted as the initial segment k being too short to

compute a value for Φξ.

The functions in K0 have to obey two conditions, consistency and totality.

Consistency: ∀m∀n∀x(ξm = x+ 1→ ξ(m ∗ n) = x+ 1)

Totality: ∀α∃m∃x(α(lth m) = m ∧ ξm = x+ 1)

A handy abbreviation that also expresses the fact that ξ induces a functional Φξ is the

notation

(F1) : ξ(α) = x :⇔ ∃y(ξ(αy) = x+ 1)
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The second possibility is to define functionals from N
N into N inductively. The class of

functionals defined in this way is called the class of Brouwer operations Ind.

Definition 1.8.

Ind (i) λα.n ∈ Ind ∀n ∈ N

(ii) Φ(0),Φ(1),Φ(2) . . . ∈ Ind ⇒ Φ ∈ Ind, Φ(α) = Φ(α0)(λx.α(x+ 1))

or in other words: ∀x(Φ〈x〉 ∈ Ind)→ Φ ∈ Ind with Φn(α) := Φ(n ∗ α)

Since Ind is the smallest class of functionals satisfying the above closure conditions, we

can formulate a principle of induction.

∀n(λα.n ∈ X) ∧ [∀x(Φ〈x〉 ∈ X)→ Φ ∈ X]→ Ind ⊂ X

Same as for the class of continuous functionals, the class of inductively defined func-

tionals on (lawless) sequences can be represented by a class of neighbourhood functions

K. Parallel to Ind, the class K is also defined inductively, and, thus, all elements of K

are lawlike operations.3

Definition 1.9. K is the smallest class of functions ξ : N → N that is closed under
K1 and K2.

K1 λn.y + 1 ∈ K ∀y ∈ N

K2 ξ0 = 0 ∧ ∀x(λn.ξ(x̂ ∗ n) ∈ K)→ ξ ∈ K

The principle of induction can be adapted to K. Let

A(α,Q) :⇔ α = λn.y + 1 ∨ [α0 = 0 ∧ ∀x(λn.α(x̂ ∗ n) ∈ K)]

be the conjunction of the closure conditions, then

K3 ∀α[A(α,Q)→ Qα]→ ∀[Kα→ Qα]

states that K is the minimal class of functionals satisfying the conditions K1 and K2.

Now that the two classes of functionals on lawless sequences are defined, the central

issue is whether those two classes coincide, i.e. whether Ind = ContLS and equivalently

whether K = K0.

3Functions and functionals also have to be interpreted as processes rather than completely given
objects. They are given by an algorithm and not by their graph.
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The two subset relations Ind ⊂ Cont ⊂ ContLS, with Cont being the class of con-

tinuous operations defined on all types of sequences, are shown by induction over Ind

(Troelstra and van Dalen 1988a:226).

Proposition 1.10. K ⊂ K0

Proof. We apply K3 with α ∈ K0 for Q(α). We have to verify the premiss of K3.

λn.x + 1 ∈ K0 is obvious; and if for all x λm.α(x̂ ∗m) ∈ K0, and α0 = 0, then also

α ∈ K0. For let β be any sequence and let ∆β := λx.β(x + 1). Then β = 〈β0〉 ∗∆β,

and α(β(x + 1)) = α(〈β0〉 ∗ ∆βx); now λm.α(〈β0〉 ∗ m) ∈ K0, hence for some x

α(〈β0〉 ∗ ∆βx) 6= 0. So α(β(x + 1)) 6= 0. It is also easy to see that αn 6= 0 →

α(n ∗m) = αn; we only have to note that αn 6= 0 means n = x̂ ∗ n for some x, n′, so

α(x̂ ∗ n′) 6= 0, hence also α(x̂ ∗ n′) = α(x̂ ∗ n′ ∗ m) = α(n ∗m). This establishes the

premiss of K3 for this Q, so K ⊂ K0.

The problematic direction is ContLS ⊂ Ind. Brouwer gave a proof for the latter

direction, which, however, is not unproblematic. The central assumption for the proof

is equivalent to the possibility of cut-elimination for the system LS (Troelstra 1977).

That K0 ⊂ K holds classically is shown by the following proposition (Troelstra and

van Dalen 1988a:227).

Proposition 1.11. (classical logic + axiom of dependend choice4) K0 ⊂ K

Proof. Assume γ ∈ K0 \ K, and let γn := λm.γ(n + m), then γ〈〉 = γ ∈ K0 \ K, so

γ(〈〉) = 0 (otherwise γ would be constant and greater than zero, and therefore belong

to K). For some x0 γ〈x0〉 ∈ K0 \K, for if ∀x(γ〈x〉 ∈ K), then also γ ∈ K. Repeating this

we find successively x1, x2, . . . such that γ〈x0,x1〉 ∈ K0 \K, γ〈x0,x1,x2〉 ∈ K0 \K, etc. So

there is a sequence α, with αi = xi such that for all y γαy ∈ K0 \K. But since γ ∈ K0,

thee is a y for which γαy(〈〉) > 0, i.e. γαy is non-zero constant and therefore belongs to

K; we have thus obtained a contradiction.

The above proof uses the principle of the excluded middle at each step and is therefore

not an intuitionistically valid proof.

The problem of K = K0 will be discussed further in section 1.4 since the equality

implies Brouwer’s bar theorem and vice versa.

4The axiom of dependend choice DC −N has the following form

DC −N ∀x∃yA(x, y)→ ∀x∃φ ∈ N
N [φ0 = 0 ∧ ∀nA(φn, φ(n + 1))]

and is an equivalent but specialized form of the axiom of countable choice for two variables in N,
AC −NN . The related AC −NF for a number valued and a function valued argument of A is given
in section 1.6.1.
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A simple residue of the bar theorem is the extension principle: each Γ ∈ ContLS can

be extended to a continuous operation defined on all sequences, i.e. each Γ ∈ ContLS

has an extension Γ′ ∈ Cont.

One way to picture this extension is by using a process Abstr that is applied to non-

lawless sequences. Abstr “forgets” all additional information beyond the given initial

segment. However, Abstr is not a “good” operation on sequences, since Abstr(b) = b

cannot be proved even though extensional equality is obviously given. The prepara-

tional reasoning for LS2, i.e. α = β → α ≡ β, requires Abstr(b), the pseudo-lawless

version of b, to still be intensionally equivalent to the non-lawless b, which is false, since

all intensional information has been “forgotten”.

The construction of neighbourhood functions for functionals Ψ : N
N → N

N can be

done in analogy to the construction of the functions for ContLS and Ind. In fact, the

class of neighbourhood functions for ContLS and Ind also represent the class Cont1 of

continuous functionals. (We assume that K = K0.)

We can also formulate a biconditional relation between the neighbourhood function

e ∈ K and the induced functional (e|α) : N
N → N

N ∈ Cont1.

(e|α)(x) = y ↔ ∃z(e(x̂ ∗ αz) = y + 1)

This biconditional relation completely defines the elements of Cont1 in terms of ele-

ments in K.

1.3.2 Open Data

Since the only information about a lawless sequence that can be “worked with” is a

finite initial segment, all operations on lawless sequences have to depend only on such

a segment. This of course means that a function from lawless sequences into N has to

map all lawless sequences with the same initial segment onto the same natural number.

In the case of one lawless argument this observation can be put as follows.

A(α)→ ∃n(α ∈ n ∧ ∀β ∈ n A(β))

The above can be generalized for a function of higher arity in the form given below as

LS3. LS3 is called the axiom of open data.

LS3 ( 6= (α, α0, . . . , αp) ∧ A(α, α0, . . . , αp))→

∃n(α ∈ n ∧ ∀β ∈ n( 6= (β, α0, . . . , αp) ∧A(β, α0, . . . , αp))
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The notation 6= (α, α0, . . . , αp) is the usual abbreviation for the situation

p
∧

i=0

α 6= αi.

Note that the axiom of open data turns out be false if an operation uses any other

(intensional) information about lawless sequences instead of some arbitrary finite initial

segment, e.g. the deliberately placed initial segment. Let ΦI be the operation that

assigns to each lawless sequence the length of its deliberately placed initial segment.

Then, obviously,

ΦI(α)→ ∃n(α ∈ n ∧ ∀β ∈ n ΦI(β))

is false, since β might have been started with a different deliberate initial segment than

α even though they both start with the initial segment having the sequence number n.

A related proposition that follows from the axiom of open data shows that of two

interdependent sequences at least one sequence can not be lawless (Troelstra 1977:16).

Proposition 1.12. For α, β and γ choice sequences, such that γ(2k) = α(k) and

γ(2k + 1) = β(k), it follows that α, β and γ cannot be simultaneously lawless.

Proof. Let α 6= β. Assume γ = α, then γ(2k) = α(2k) = α(k) and thus α(2n) =

α(1) ∀n ∈ N. Open data for one lawless argument applied to ∀n(α(2n) = α(1)) gives

∃y∀ξ ∈ α ∀n (ξ(2n) = ξ(1)), which is false. Therefore, γ 6= α and analogously γ 6= β.

So 6= (γ, α, β) is satisfied and LS3 can be applied to ∀x(γ(2x) = α(x)∧γ(2x+1) = β(x))

which also gives the false conclusion ∃y∀ξ ∈ γy ∀x( 6= (ξ, α, β)∧ ξ(2x) = α(x)∧ ξ(2x+

1) = β(x)).

Two consequences of LS1−LS3 are given in the next two propositions from Troelstra

and van Dalen (1988b:650).

Proposition 1.13. ∀α¬∀x(αx 6= 0)

Proof. Assume ∀x(αx 6= 0), then by LS3 follows that ∀β ∈ αn∀x(βx 6= 0) for some

n ∈ N. This is refuted by taking a β ∈ αn ∗ 〈0〉, which is possible by LS1.

Proposition 1.14. Identity is the only lawlike operation under which the universe

of lawless sequences is closed.

Proof. Suppose α = Γβ, α 6= β. Then by LS3 ∀γ ∈ αx(γ 6= β → γ = Γβ) for some x,

which is clearly false by LS1: choose γ0 ∈ αx ∗ 〈βx+ 1〉 , γ1 ∈ αx ∗ 〈βx+ 2〉, and the

contradiction is immediate.
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1.3.3 Continuity

Weak continuity for operations on lawless sequences directly follows from the axiom of

open data, A(α)→ ∃n(α ∈ n ∧ ∀β ∈ n A(β)).

WC −N ∀α∃xA(α, x)→ ∀α∃x∃n(α ∈ n ∧ ∀β ∈ n A(β, x))

By making use of the equivalence (A ∨ B)↔ ∃x[(x = 0 ∧ A) ∨ (x 6= 0 ∧B)], a version

of WC −N for disjunctions can be derived.

WC −N∨ ∀α(Aα ∨ Bα)→ ∀α∃x(∀β ∈ αxAβ ∨ ∀β ∈ αxBβ)

A nice consequence of WC −N∨ is that it refutes the principle of the excluded middle

(∀−PEM) for universally closed formulas. The proof is taken from Troelstra and van

Dalen (1988a).

Proposition 1.15. WC −N∨ refutes ∀ − PEM .

Proof. Assume ∀ − PEM , i.e. ∀α(∀x(αx = 0) ∨ ¬∀x(αx = 0)), then by WC −N∨ we

obtain ∀α∃y(∀β ∈ αy∀x(βx = 0) ∨ ∀β ∈ αy¬∀x(βx = 0)). Now specialize α to λx.0,

then for some y, with n = (λx.0)(y)

∀β ∈ n∀x(βx = 0) ∨ ∀β ∈ n¬∀x(βx = 0)

The first disjunct is false, as may be seen by taking any β ∈ n ∗ 〈1〉; and the second

disjunct is also false, as follows by choosing β = α = λx.0.

The above proposition is one of the intuitionistically provable refutations of classical

principles by using choice sequences.

A stronger form of continuity can be expressed with the help of continuous lawlike

operations on lawless sequences, as defined in section 1.3.1. The intuitionistic interpre-

tation of the quantifier combination ∀α∃x requires a method for finding x to be given,

i.e. a proof of ∀α∃x A(α, x) contains a way of calculating x for each α. This leads to

an axiom of choice or selection principle.

∀α∃xA(α, x)→ ∃Θ∀αA(α,Θα)

The combination of this axiom of choice with LS3, which requires Θ as an operation on

lawless sequences to be continuous, implies the following stronger form of continuity.

LS41 ∀α∃xA(α, x)→ ∃Γ∀αA(α,Γα) with Γ ∈ N
N → N, continuous
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The same reasoning leads to continuity for assigning any type of lawlike object, e.g. a

lawlike sequence a, to a lawless sequence by a functional Ψ : N
N → N

N.

LS42 ∀α∃aA(α, a)→ ∃Ψ∀αA(α,Ψα) with Ψ ∈ N
N → N

N, continuous

LS41 and LS42 can also be stated by using the inducing neighbourhood functions.

LS41* ∀α∃xA(α, x)→ ∃ξ ∈ K0∀αA(α, ξ(α))

LS42* ∀α∃aA(α, a)→ ∃ζ ∈ K0∀αA(α, (ζ |α))

The strongest form of continuity expressible, is for ξ = e in LS41* and e ∈ K. Since

K is the class of inductively defined neighbourhood functions, e is a lawlike function.

The substitution of e for ξ requires the assumption, that the class of neighbourhood

functions for continuous functionals K0 and the class of neighbourhood functions for

inductively defined functionals K are in fact equal. For a discussion, see sections 1.3.1

and 1.4.

LS41** ∀α∃xA(α, x)→ ∃e ∈ K∀αA(α, e(α))

LS42** ∀α∃aA(α, a)→ ∃e ∈ K∃b∀αA(α, be(α))

where bx := λy.bj(x, y)

If we generalize LS42** for operations with more than one lawless argument, we obtain

the most general form of LS4,

LS4 ∀α1 . . .∀αp∃a(#(α1, . . . , αp) ∧A(α0, . . . , αp, a))→

∃e ∈ K∃b∀α1 . . .∀αp(#(α1, . . . , αp)→ A(α1, . . . , αp, be(νp(α1,...,αp)))

where νp(α1, . . . , αp) := λx.νp(α1x, . . . , αpx) and #(α1, . . . , αp) :=
∧

(αi 6= αj) for

i 6= j. This means that p-tuples of independent lawless sequences, α1, . . . , αp with

#(α1, . . . , αp), “behave” like a single lawless sequence with respect to e.

The special case, i.e. the generalization of LS41**, is

∀α1 . . .∀αp∃x(#(α1, . . . , αp) ∧A(α0, . . . , αp, x))→

∃e ∈ K∀α1 . . . ∀αp(#(α1, . . . , αp)→ A(α1, . . . , αp, e(νp(α1, . . . , αp)))

with the same notation as for LS4.

Some caution is required when continuity schemata for other types of choice sequences

are formulated. Since other types of information besides a finite initial segment might

be used to compute functional values, extensional equality of two sequences α and β

might not result in equality of the values assigned by a functional Γ, i.e. α = β 6→ Γα =
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Γβ. However, as long as the functionals on other types of sequences can be guaranteed

to be extensional, which more or less means that they only operate on a finite initial

segment, then the continuity schemata for lawless sequences can be adopted fully.

1.4 The Bar Theorem

Even though Brouwer took the bar theorem as a consequence of his theory of choice

sequences. The theorem does not follow from the axioms LS1−LS4 formulated in the

previous sections. Thus, in the literature, it is usually given in form of an induction

schema, BID, with additional comments regarding its status as a theorem.

BID ∀n(Pn∨¬Pn)∧∀α∃xP (αx)∧∀n(Pn→ Qn)∧∀n(∀yQ(n∗ŷ)→ Q(n))→ Q(〈〉)

As always, ∀α∃xP (αx) or more generally P (αx) are well-formed if computation of the

value of P for a sequence α requires only a finite initial segment.

BID can be interpreted as an induction principle over trees, thus the name BID (de-

cidable bar induction, Troelstra and van Dalen (1988a:224ff)).

Definition 1.16. A set T is called a tree iff 〈〉 ∈ T, ∀n(n ∈ T ∨ n 6∈ T ) and

∀nm(n ∈ T ∧m ≺ n→ m ∈ T )

For every tree T , T∼ := {n ∈ T | ∀m ≺ n(m ∈ T )} can be defined. A tree is well-

founded iff ∀α∃x¬(αx ∈ T ), i.e. for each sequence only a certain initial segment is in

the tree.

If T is well-founded, T∼ \ T are the terminal nodes of T∼.

Definition 1.17. T∼ \ T is called a bar for T . For each α we can find an x such

that αx ∈ T and ∀n ≺ αx(n ∈ T ) but αx+ 1 6∈ T .

Now, BID can be interpreted with respect to well founded trees. From ∀n(Pn∨¬Pn)

and ∀α∃xP (αx) it follows that {n| ∀m ≺ n ¬Pm} is a well-founded tree with {n| PN∧

∀m ≺ n ¬Pm} as a bar. ∀n(Pn→ Qn) and ∀n(∀y Q(n ∗ ŷ)→ Q(n)) means Q holds

on a bar and if Q holds for all successors of a node n it holds for n, i.e. Q is “inherited”

upwards. As the conclusion BID states that Q holds for the empty sequence which is

the root of the tree.

It was already stated in section 1.3.1 that the bar theorem implies K = K0 and vice

versa. Thus if a proof can be given for BID, K = K0 follows immediately. Brouwer

claimed to have a proof of BID. The proof, however, is not unproblematic, which will

be discussed after establishing the implicational relation between the bar theorem and

K = K0.
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First, it is shown (informally) that BID implies K = K0 or equivalently Ind = ContLS.

Proposition 1.18. BID implies ContLS = Ind

Proof. Since Ind ⊂ ContLS was already shown in section 1.3.1, only ContLS ⊂ Ind is

left to show. Take for P and Q in BID the predicates

Pn := ’n is sufficiently long to compute Φα for α ∈ n’

Qn := Φn ∈ Ind

where Φ is any functional of ContLS (representable by a neighbourhood function of

K0) and Φn(ξ) := Φ(n ∗ ξ). P and Q satisfy all the premises of BID: P is decidable,

since the algorithm of computing Φ should be able to determine if an initial segment

is long enough for the computation; ∀α∃xP (αx) follows from the fact that Φ is total;

∀n(∀yQ(n ∗ ŷ) → Q(n)) is the second closure condition for Ind. Finally, Q(〈〉) just

means that Φ ∈ Ind. Since this holds for any Φ of ContLS, ContLS ⊂ Ind.

Let us now look at Brouwer’s argument for the bar theorem, i.e. his proof. The main

question and the central issue when proving the bar theorem is how to be sure that

∀α∃xP (αx) is valid. We can reformulate this question by introducing two new terms:

we say a predicate P is a bar iff ∀α∃xP (αx) and n is P-barred iff ∀α ∈ n∃xP (αx).

Then the main issue becomes: how can we be certain that 〈〉 is P-barred?

Brouwer’s basic assumption is that from any “fully analysed” proof of “〈〉 is P-barred”

a proof-tree can be extracted with “〈〉 is P-barred” as its root that contains only three

types of inferences:

(I) P (n), hence n is barred (immediate inference), i.e.

Pn⇒ ∀α ∈ n∃xP (αx)

(D) for all x, n ∗ x̂ is barred, hence n is barred (downward inference), i.e.

∀x∀α ∈ n ∗ x̂∃yP (αy)⇒ ∀α ∈ n∃yP (αy)

(U) n is barred, hence n ∗ x̂ is barred (upwards inference), i.e.

∀α ∈ n∃yP (αy)⇒ ∀α ∈ n ∗ x̂∃yP (αy)

Under suitable assumptions for P , all (U) inferences can be eliminated, e.g. if P is

monotone5 or decidable. For the resulting proof-tree after the elimination of all (U)

inferences, Brouwer’s argument for BID continues as follows: assume the premise of

5A predicate P is monotone iff n ∈ P ∧ n ≺ m→ m ∈ P .
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BID to be given and establish Qn everytime ∀α ∈ n∃yP (αy) occurs in the proof-tree.

This effectively means, that one associates Pn→ Qn and ∀n(∀yQ(n∗ ŷ)→ Q(n)) with

(I) and (D) inferences respectively.

The crucial problem of the idea for a proof given above is the assumption that for any

P there can be found a “fully analysed” proof of “〈〉 is P-barred”. As stated in the

last paragraph, (U) inferences can only be eliminated under suitable assumptions for

P . Therefore, if P does not meet these requirements, the needed proof-tree might not

exist. An example due to Kleene (cf. Troelstra and van Dalen (1988a:233)) shows that

for arbitrary P , (U) inferences are not eliminable.

Thus, Brouwer’s proof of BID can not be accepted as such. However, addition of

the bar theorem as an axiom or induction schema to LS1 − 4 does not lead to an

“incoherent” theory.

A more general version of BID is the monotone bar induction BIM .

BIM ∀α∃xP (αx) ∧ ∀nm(Pn→ P (n ∗m)) ∧ ∀n(∀yP (n ∗ ŷ)→ Pn)∧ → P (〈〉)

The assumption of BIM is equivalent to the assumption of continuity for lawless se-

quences and BID (Troelstra and van Dalen 1988a:231).

1.5 The Fan Theorem

The fan theorem is a direct consequence of the bar theorem restricted to a certain kind

of finitely branching trees, called fan.

Definition 1.19. A set of finite sequences of natural numbers T is a fan iff 〈〉 ∈

T, ∀n(n ∈ T ∨ n 6∈ T ), ∀nm(n ∈ T ∧m ≺ n→ m ∈ T ), ∀n ∈ T∃x(n ∗ x̂ ∈ T ) and ∀n ∈

T∃z∀x(n ∗ x̂ ∈ T → x ≤ z).

In other words, a fan is an inhabited, decidable set of sequence numbers closed under

predecessor where each node has at least one successor and for each node there are

only a finite amount of possible successors. I.e. a fan is a tree with two additional

requirements.

Definition 1.20. A sequence α is called a branch of a fan T iff all initial segments
belong to T:

α ∈ T := ∀x(αx ∈ T )

Like the bar theorem, the fan theorem should rather be called “fan axiom”. For a
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decidable property A, the fan thorem states that, if for each infinite branch of a fan T,

there is a finite initial segment satisfying A, then there exists a uniform upper bound

to the length of the satisfying initial segment.

FAND(T ) ∀n ∈ T (An ∨ ¬An) ∧ ∀α ∈ T∃xA(αx)→ ∃z∀α ∈ T∃y ≤ zA(αy)

The fan theorem in the above form is valid for all fans, thus it can be generalised to

FAND : fan(T )→ FAND(T )

where fan(T ) expresses that the set T is a fan, i.e. that T satisfies the formulas given

in the definition of a fan.

FAND can be seen as the intuitionistic version of Koenig’s lemma. FAND is classically

equivalent to Koenig’s lemma. One direction can be seen b< considering the set TA :=

{m| ∀m′ � m¬Am′} of all inital segments whose predecessors in T do not satisfy A

for a fan T and any decidable A. TA is a tree with finite branches. Suppose that

¬∃z∀α ∈ T∃y ≤ zA(αy) or the classically equivalent ∃z∀α ∈ T∃y ≤ z¬A(αy), then

TA contains arbitrarily long branches and thus by Koenig’s lemma an infinite branch,

which contradicts ∀α ∈ T∃xA(αx). Hence, Koenig’s lemma implies FAND.

Another interpretation of FAND is restricted compactness for the fan T with the topol-

ogy generated by the basis Vn := {α ∈ T | n ∈ T} for n ∈ T : any decidable set of basis

elements {Vn| An∧n ∈ T} covering T has a finite subcover {Vn| An∧n ∈ T ∧ lth(n) ≤

z}.

FAND can be strengthened to apply also to non-decidable predicates, which (following

up on the above compactness interpretation) expresses full compactness of a fan T.

FAN(T ) ∀α ∈ T∃xA(αx)→ ∃z∀α ∈ T∃y ≤ zA(αy)

That FAN(T ) means compactness for T can be seen as follows. For any cover of T

{Wi| i ∈ I} and any inital segment αx of a branch α, we know there is a Wi containing

the basis element Vαx. Now FAN(T ) implies ∃z∀α ∈ T∃y ≤ z∃i ∈ I(Vαy ⊂ Wi). Set

all y = z. Since T is a fan, there are only finitely many initial segments of length z,

n1, . . . , np. For each ni and Vni
choose a Wj such that Vni

⊂ Wj . The resulting set

of elements of the inital cover is the finite subcover. Thus T is compact. Of course

compactness conversely implies FAN(T ).

Again, the general form of the fan theorem is

FAN : fan(T )→ FAN(T )

FAN is classically valid.
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Two more generalizations can be formulated for FAN . The first is for predicates

A(α, x):

fan(T ) ∧ ∀α ∈ T∃xA(α, x)→ ∃z∀α ∈ T∃y ≤ zA(α, y)

The second generalization is a combination of FAN with weak continuity of lawless

sequences.

FAN* fan(T ) ∧ ∀α ∈ T∃xA(α, x)→ ∃z∀α ∈ T∃x∀β ∈ αxA(β, x)

Neither the first generalization nor FAN* are classically valid.

1.6 The System LS∗ and the Elimination Theorem

1.6.1 EL and EL1

The system of elementary analysis formalises basic arithmetic and constructive func-

tions on natural numbers.

Definition 1.21. Elementary Analysis - EL:

1. variables in N; notation: x,y,z,u,v,w,n,m,...
2. variables for constructive functions (lawlike sequences); notation: a,b,c,d, ...
3. constants: 0, successor S, equality =, abstraction operator λ, recursor R, pairing

function with inverses j, j1, j2, application of functions to N Φ
4. logical constants: ∧,∨,→, ∀, ∃

For better readability the following abbreviations are adopted: ¬A :⇔ A → (S0 = 0)

and φt :↔ Φφt for a function symbol φ and a numerical term t.

For the successor, equality, pairing functions, induction with respect to formulae,

conversion and primitive recursion the usual axioms are assumed. Furthermore, the

quantifier-free axiom of choice is added.

QF −AC ∀x∃yA(x, y)→ ∃a∀xA(x, ax) (A quantifier-free)

If the choice schema for numbers is replaced with the axiom of choice for one number

valued and one function valued argument, the resulting system is called EL1.

AC −NF ∀x∃aA(x, a)→ ∃b∀xA(x, (b)x)

where (b)x := λy.bj(x, y)

The function b induces the choice function (b)x.
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A word has to be said about choice axioms and choice schemata in intuitionistic math-

ematics. Let us look at QF − AC. In intuitionistic mathematics stating ∀x∃yA(x, y)

implies that the proof of the existence of a value y for x such that A(x, y) contains

a way of computing said y. This “way of computing y” already given in the proof of

the premiss of the choice schema can be naturally represented as a choice function a.

Analogous reasoning applies for AC −NF and all other choice axioms. Therefore, the

respective choice functions are not conjured up from thin air, as it might seem, but

follow from the premisses.

1.6.2 IDB1, LS and LS*

The system IBD1 is an extension of EL1 by variables for elements of K, the inductively

defined neighbourhood functions (Brouwer operations) discussed in section 1.3.1. This

means that, additionally to the constructive functions, the functionals induced by the

neighbourhood functions in K are available for computation.

Definition 1.22. Inductively defined Brouwer operations - IDB1:

1. system EL1

2. variables for neighbourhood functions (Brouwer operations); notation: e,f, ...

For the Brouwer operations the axioms K1 to K3, the abbreviations F1 and F2, a

second abstraction symbol λ′ and new rules of term formation are added.

K1 λn.y + 1 ∈ K

K2 α0 = 0 ∧ ∀x(λn.α(x̂ ∗ n) ∈ K)→ α ∈ K

K3 ∀α[A(α,Q)→ Qα]→ ∀[Kα→ Qα]

with A(α,Q) :⇔ α = λn.y + 1 ∨ [α0 = 0 ∧ ∀x(λn.α(x̂ ∗ n) ∈ K)]

F1 e(α) = x↔ ∃y(e(αy) = x+ 1)

F2 (e|α)(x) = y ↔ ∃z(e(x̂ ∗ αz) = y + 1)

The conversion axiom for the abstractions symbol λ′ is formulated analogously to the

abstraction over constructive functions in EL and EL1.

A further extension of IDB1 by adding variables, axioms and term formation rules

for lawless sequences results in the system LS. Adding quantifier symbols for lawless

sequences gives the system LS*.
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Definition 1.23. Lawless Sequences - LS*:

1. system IDB1

2. variables for lawless sequences; notation: α, β, γ, ...
3. logical constants: ∀, ∃

For ∀α ∈ t and ∃α ∈ t we need to add the following axioms.

1) ∀α1 ∈ t1 . . .∀αp ∈ tp ∀β ∈ t(P (α1, . . . , αp)→ Q(α1, . . . , αp, β))⇒

∀α1 ∈ t1 . . .∀αp ∈ tp (P (α1, . . . , αp)→ ∀β ∈ t Q(α1, . . . , αp, β))

∀α1 ∈ t1 . . .∀αp ∈ tp ∃β ∈ t(∀γ ∈ t P (α1, . . . , αp, γ)→ P (α1, . . . , αp, β))

2) ∀α1 ∈ t1 . . .∀αp ∈ tp ∀β ∈ t(Q(α1, . . . , αp, β)→ Q(α1, . . . , αp, ))⇒

∀α1 ∈ t1 . . .∀αp ∈ tp (∃β ∈ t Q(α1, . . . , αp, β)→ P (α1, . . . , αp))

∀α1 ∈ t1 . . .∀αp ∈ tp ∀β ∈ t(P (α1, . . . , αp, β)→ ∃γ ∈ t P (α1, . . . , αp, γ))

3) ∀α1 . . .∀αn ∀α ∈ t A(α1, . . . , αn, α)↔ ∀α1 . . .∀αn ∀α(α ∈ t→ A(α1, . . . , αn, α))

∀α1 . . .∀αn ∃α ∈ t A(α1, . . . , αn, α)↔ ∀α1 . . .∀αn ∃α(α ∈ t ∧A(α1, . . . , αn, α))

For maximal writing and reading comfort, we will introduce abbreviations.

Notation:

∀̇αA(α, ~β) := ∀α( 6= (α, ~β)→ A(α, ~β))

∃̇αA(α, ~β) := ∃α( 6= (α, ~β) ∧ A(α, ~β))

∀̇αA(~α) := ∀̇α1 . . . ∀̇αpA(~α)

∃̇αA(~α) := ∀̇α1 . . . ∀̇αpA(~α)

~α ∈ ~n := α1 ∈ n1 ∧ . . . ∧ αp ∈ np

∀̇~α ∈ ~nA := ∀̇α1 ∈ n1, . . . , ∀̇αp ∈ npA

~n ∗ ~m := (n1 ∗m1, . . . , np ∗mp)

Then the axioms LS 1-4 can be written as:

LS1 ∀n∃α(α ∈ n)

LS2 ∀α∀β(α = β ∨ ¬α = β)

LS3 ∀̇[A(α, ~β)→ ∃n(α ∈ n ∧ ∀γ ∈ nA(γ, ~β))]

LS4 ∀̇~α∃aA(~α, a)→ ∃e ∈ K∀n(en 6= 0→ ∃a∀̇~a ∈ nA(~α, a))

The elimination result that will be proved in the following section implies that the

system LS is a conservative extension of IDB1, i.e. that quantification over lawless
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sequences can be regarded as a “figure of speech”, as Troelstra puts it, or a convenient

conceptional point of view instead of a further strengthening of the theory.

1.6.3 The Elimination Theorem

The elimination theorem as formulated by Kreisel (1968) shows that for theorems

containing quantification over lawless sequences provable in LS* in fact a logically

equivalent theorem not containing quantification over lawless sequences is provable in

the smaller system IDB1. In Troelstra’s words: quantification over lawless sequences

can be treated as a “figure of speech”.

Theorem 1.24. (Kreisel 1968) There exists a mapping τ of formulae of LS without

free lawless variables onto the formulae of IDB1 such that

1) τ(A) = A for a formula of IDB1

2) LS* ⊢ A ↔ τ(A)

3) LS* ⊢ A ⇔ IDB1 ⊢ τ(A)

The proof given here for 1) and 2) of the theorem is taken from Troelstra and van

Dalen (1988b) with some completions and explanations where necessary.

The logical equivalences needed to define the mapping τ are first proved as lemmas.

Lemma 1.25. LS* ⊢ ∀̇~α∃xA(~α, x)→ ∃e ∈ K∀n(en 6= 0→ ∃x∀̇~α ∈ nA(~α, x))

Proof. ∀̇~α∃xA(~α, x)→ ∃e ∈ K∀n(en 6= 0→ ∃x∀̇~α ∈ nA(~α, x)) is an easy consequence

of LS4.

The above consequence of LS4 has in fact already been mentioned in section 1.3.3 as

the special case of LS4, where the lawlike element is a number instead of a sequence

or function.

Lemma 1.26.

(i) LS* ⊢ ∀̇~α ∈ ~n(A(~α, ~β)→ B(~α, ~β))↔ ∀m(∀̇~α ∈ ~n∗mA(~α, ~β)→ ∀̇~α ∈ ~n∗mB(~α, ~β))

(ii) LS* ⊢ ∃̇α ∈ nB(α, ~β)↔ ∃m∀̇α ∈ n ∗mB(α, ~β)

Proof. (i) The direction from the left to the right is immediate. For the converse,

suppose first ~α ≡ α,~n ≡ n and assume (1) ∀m(∀̇α ∈ n ∗mA(α, ~β)→ ∀̇α ∈ nB(α, ~β).

Let 6= (α, ~β), α ∈ n,A((α, ~β)); then, by LS3, α ∈ m′ and ∀̇γ ∈ m′(γ ∈ n ∧ A(γ, ~β))

for some m′. Without loss of generality we can assume m′ = n ∗ m, hence ∀̇γ ∈

n ∗ m ∧ A(γ, ~β); therefore by our assumption (1) ∀̇γ ∈ n ∧ B(γ, ~β), and so B(γ, ~β).

Thus ∀̇α ∈ n(A(α, ~β → B(α, ~β)). For a vector ~α of length p in the statement of the

lemma we have to apply this argument p times.
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(ii) For the direction from left to right, assume ∃̇α ∈ nB(α, ~β) and α ∈ n. Now,

n doesn’t have to be long enough to compute B(α, ~β). However, there exists an m

such that α ∈ n ∗ m and n ∗ m is long enough to compute B(α, ~β). Then, by LS3,

∃m∀̇α ∈ n ∗mB(α, ~β).

For the converse assume ∃m∀̇α ∈ n ∗mB(α, ~β) and α ∈ n ∗m then α ∈ n and B(α, ~β),

thus ∃α ∈ nB(α, ~β).

Lemma 1.27. Let a be either a number variable or a variable for lawlike sequences,
then

LS* ⊢ ∀̇~α ∈ ~n∃aA(~α, a)↔ ∃e ∈ K∀m(em 6= 0→ ∃a∀̇~α ∈ ~n ∗mA(~α, a))

Proof. The direction from right to left follows directly from the definition of a in the

left hand side as either a := e(νp(α1, . . . , αp)) or a := be(νp(α1,...,αp)) with a lawlike b.

For the converse, let ~n ≡ 〈n1, . . . , np〉, and assume the left-hand side, then for some

f ∈ K ∀n(fm 6= 0→ ∃a∀̇~α ∈ ~n ∗mA(~α, a)).

We define e by

en = y + 1 := ∃n′(n1 ∗ k
p
1n � k

p
1n

′ ∧ . . . ∧ np ∗ k
p
pn � kp

pn
′ ∧ fn′ = y + 1)

It is easy to see that e ∈ K and that e satisfies the right-hand side of the statement of

the lemma.

Lemma 1.28.

(i) LS* ⊢ ∀̇α ∈ n(A(α, ~β)↔ ∀̇α ∈ n[A(α, ~β) ∧ γ = γ]

(ii) LS* ⊢ ∃̇α ∈ n(A(α, ~β)↔ ∃̇α ∈ n[A(α, ~β) ∧ γ = γ]

Proof. We prove (i) and (ii) by simultaneous induction on the logical complexity of A,

where (ii) at each step is deduced from (i). We treat only some typical cases, all other

cases follow analogously.

Case 1. A(α, ~β) ≡ B(α, ~β) ∧ C(α, ~β). Then

∀̇α ∈ n(A(α, ~β) ∧ γ = γ)

↔ ∀̇α ∈ n((B(α, ~β) ∧ γ = γ) ∧ (C(α, ~β) ∧ γ = γ))

↔ ∀̇α ∈ n(B(α, ~β) ∧ γ = γ) ∧ ∀̇α ∈ n(C(α, ~β) ∧ γ = γ)

↔ ∀̇α ∈ nB(α, ~β) ∧ ∀̇α ∈ nC(α, ~β)

↔ ∀̇α ∈ nA(α, ~β)
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Case 2. Let A(α, ~β) ≡ ∀α′B(α, α′, ~β). Without loss of generality we can suppose

6= (γ, ~β). Then the following are equivalent:

∀̇α ∈ n(∀α′B(α, α′, ~β) ∧ γ = γ)

∀̇α ∈ n(γ = γ ∧ ∀̇α′B(α, α′, ~β) ∧B(α, α, ~β) ∧ . . . ∧B(α, βi, ~β) ∧ . . .)

∀̇α ∈ n[∀̇α′(B(α, α′, ~β) ∧ γ = γ)∧

B(α, α, ~β) ∧ . . . ∧B(α, βi, ~β) ∧ . . . ∧B(α, γ, ~β))]

∀̇α ∈ n∀̇α′(B(α, α′, ~β) ∧ γ = γ)

∀̇α ∈ n∀̇α′B(α, α′, ~β)

The first equivalence holds by the meaning of ∀̇α′ and LS2. The second equivalence

holds because the outer quantifier ensures 6= (γ, α) and the inner quantifier ensures

∀α′( 6= (α′, α, ~β)→ B(α′, α, ~β)). The remaining equivalences are immediate.

Case 3. Suppose (i) has been proved; then by (ii) of lemma 1.26 ∃̇α ∈ nA(α, ~β) ↔

∃m∀̇α ∈ n∗mA(α, ~β), therefore ∃̇α ∈ n(A(α, ~β)∧γ = γ)↔ ∃m∀̇α ∈ n∗m(A(α, ~β)∧γ =

γ)↔ ∃m∀̇α ∈ n ∗mA(α, ~β)↔ ∃̇α ∈ n(A(α, ~β).

Lemma 1.29. LS* ⊢ ∀̇~α ∈ ~nt1[~α] = t2[~α] ↔ ∀̇~a ∈ ~nt1[~a] = t2[~a], where ∀~a ∈ ~n is

defined the same way as ∀~α ∈ ~n.

Proof. By induction on the complexity of a numerical term one can prove:

∃e ∈ K∀n(en 6= 0→ ∃x∀~α ∈ ~n∀~a ∈ ~n(t[~α] = t[~a] = x))

where LS*⊢ e(α1, . . . , αp) = t[α1, . . . , αp] and IDB1⊢ e(a1, . . . , ap) = t[a1, . . . , ap].

The induction requires checking all possible ways to form terms. For illustration, two

cases are considered.

Case 1. Let e1 and e2 for t1[α1, α2, x] and t2[α1, α2] be known already. We wish to

construct the corresponding f for

t3 := t1[α1, α2, t2[α1, α2]]

e1 is a functor Φ[x]; let e′1 be defined such that

e′10 = 0, e′1(x̂ ∗ n) = Φ[x]n = e1n.
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Then take for f: f := λ′n.e′1(sg(e2n)(〈e2n− 1〉 ∗ n)).

Case 2. Assume t to be defined by primitive recursion from t1 and t2, i.e.

t[α1, α2, x] = Rt1t2x, i.e.

t[α1, α2, 0] := t1[α1, α2] and t[α1, α2, Sz] := t2[j(t[α1, α2, z], z), α1, α2, x]

and assume e1 and e2 to be already constructed. Note also, that the addition of a

constant R to the language satisfying the above is a conservative extension, since it is

already proved by induction that ∀x(λn.Ref(x̂ ∗ n) ∈ K).

Now take f := Re1e
′
2 where e′2 is defined analogously to e′1 above.

The lemma follows directly from the construction of the appropriate e ∈ K. Since the

construction has already been proved, we only need to prove

∀̇~α ∈ ~n(e(α1, . . . , αp) = f(α1, . . . , αp))↔ ∀~a ∈ ~n(e(a1, . . . , ap) = f(a1, . . . , ap))

Assume ∀̇~α ∈ ~n(e(α1, . . . , αp) = f(α1, . . . , αp)) and let ~α ∈ ~n. We can find an m

such that νp(a1, . . . , ap) ∈ m, em 6= 0, fm 6= 0. Take ~α ∈ ~n, νp(α1, . . . , αp) ∈ m and

#(α1, . . . , αp). Then e(α1, . . . , αp) = f(α1, . . . , αp) = em−1, hence also e(a1, . . . , ap) =

f(a1, . . . , ap) by LS3.

The other direction follows analogously.

Now, let us define the mapping τ by giving a step by step rewriting algorithm that

transforms formulas of LS* into formulas of IDB1. The following definition is taken

nearly verbatim from Troelstra and van Dalen (1988b:663).

Definition 1.30. The mapping τ :

Step 1. The first step in defining τ(A) consists of rewriting A in terms of quantifiers

∀̇α, ∃̇α using the equivalences

∀αA(α, ~β)↔ ∀̇αA(α, ~β) ∧
∧

i≤p

A(βi, ~β)

∃αA(α, ~β)↔ ∃̇αA(α, ~β) ∧
∨

i≤p

A(βi, ~β)

The result is uniquely determined if α, ~β is a list of all the lawless variables actually

free in A. However in the steps described below we also need dummy variables. This

is uniquely determined modulo logical equivalence by lemma 1.28; the replacement

transforms any formula into an LS-provably equivalent formula.

We shall now define the effect of τ on formulas written with propositional operators

and ∀̇α ∈ t, ∃̇α ∈ t (t without lawless variables); these operations are regarded as

logical primitives in the syntactic definition. ∀̇α, ∃̇α are regarded as synonymous with
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∀̇α ∈ 〈〉 , ∃̇α ∈ 〈〉. Disjunction is treated as defined, and we take 0 = 1 as falsum.

Step 2. We first eliminate all occurences of ∃̇α ∈ n by replacements proved in lemma

1.26

∃̇α ∈ nA(α, ~β) 7→ ∃m∀̇α ∈ n ∗mA(α, ~β).

Step 3. Next we show how to transform formulas of the form ∀̇~α ∈ ~nA(~α) into formulas

with fewer logical operations within the scope of blocks ∀̇~α ∈ ~t′. This process can be

continued till we arrive at ∀̇~α ∈ ~t(P ) for P prime. The necessary replacements given

by

∀̇~α ∈ ~n(A ∧B) 7→ ∀̇~α ∈ ~nA ∧ ∀̇~α ∈ ~nB by lemma 1.28

∀̇~α ∈ ~n(A→ B) 7→ ∀~m(∀̇~α ∈ ~n ∗ ~mA ∧ ∀̇~α ∈ ~n ∗ ~mB) by lemma 1.26

∀̇~α ∈ ~n∃aA(~α, a) 7→ ∃e ∈ K∀m(em 6= 0→ ∃a∀̇~α ∈ ~n ∗mA(~α, a)) by lemma 1.27

∀̇~α ∈ ~n∀aA(~α, a) 7→ ∀a∀̇~α ∈ ~nA(~α, a)

where a is a numerical or lawlike sequence variable.

Step 4. Finally we have to show how to eliminate quantifier strings ∀̇~α ∈ ~t in front of

prime formulas, where it is assumed that ~t does not contain lawless variables. We use

∀̇~α ∈ ~t(s1[~α] = s2[~α]) 7→ ∀~a ∈ ~t(s1[~a] = s2[~a]) by lemma 1.29

and ∀̇~α ∈ ~t(φ ∈ K) 7−→ φ ∈ K if no variable of ∀̇~α occurs in φ, and

∀̇~α ∈ ~t(φ[~α] ∈ K) 7→ ∀̇~α ∈ ~t∃e(e ∈ K ∧ ∀x(φ[~α](x) = ex))

in all other cases, also by lemma 1.29.

Since it was shown in lemmas 1.26 - 1.29 that the substitutions and rewritings employed

in defining τ replace a formula by an LS*-provably equivalent one, the definition of τ

can also be read as a proof of points 1) and 2) of the elimination theorem. Point 3)

will not be proved here but can be found in Kreisel and Troelstra (1970)6.

One important consequence of point 3) of the elimination theorem is

Proposition 1.31. LS* is conservative over IDB1.

which will also stated without proof.

6The proof uses induction on the length of derivations.
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1.7 Summary

In this chapter the theory of lawless sequences as developed for the foundation of intu-

itionistic analysis has been discussed. The four axioms, LS1−LS4, specify the lawless

sequences themselves and possible types of operations on lawless sequences. Further-

more, the bar theorem and the fan theorem which both are ultimately added to the

theory as axioms were formulated. Lastly, the formal system, LS*, for arithmetic with

lawless sequences was defined and the elimination theorem was proved. The theorem

states that every provable statement containing quantification over lawless variables has

an equivalent formulation not containing lawless variables which is moreover provable

in a subsystem of LS*.

As a last remark it needs to be said that the actual sequences used for intuitionistic

analysis (cf. Troelstra and van Dalen (1988a) and Troelstra and van Dalen (1988b))

are a derived, more restricted type of choice sequence which only retain some of the

properties of lawless sequences.



Chapter 2

Three New Variants of Choice

Sequences

This chapter is dedicated to three kinds of generalisations and modifications of choice

sequences. Choices sequences, as already mentioned in the introduction, are the pro-

totypical unfinished objects. We will explore the possibilities provided by lawless se-

quences a little bit more in this direction.

The basic ideas behind the three modifications or generalisations presented in this

section are that one might want to consider either more than one class of information

or allow one class of information to develop in more than one direction.

The first subpart discusses a possible formalisation of the latter idea termed bilateral

choice sequences. Bilateral sequences are specifically taylored to model bilateral growth

(i.e. in two different directions) which is modelled by a mapping from an infinite set

with a linear order with no smallest element to some set of values.

The second subpart is dedicated to indexed choice sequences, which are proposed to

deal with different classes of information. Each value of an indexed choice sequence,

hence, is ”flavoured” with an index from an index set representing the different classes

of information. The other properties of choice sequences are left untouched.

The third subpart explores another take at the idea of having multiple classes of infor-

mation called bundled choice sequences. However, contrary to indexed choice sequences,

at every moment each branch of information of a bundled sequence is increased by the

same amount of values, modelling a uniform increase of information. To capture the

uniformity, bundled sequences are formalised with tuples as values.

The type of choice process for all three new sequence types can either be lawlike,

hesitant or lawless. However, only lawless bilateral choice sequences, lawless indexed

choice sequences and lawless bundled choice sequences will be of interest in this sec-

tion. Also, since the names of the different types start to get quite long, we will use

the term lawless sequences for the choice sequences defined in chapter 1 and abbrevi-

31
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ate lawless indexed/bilateral/bundled choice sequences with indexed/bilateral/bundled

(choice) sequences.

2.1 Bilateral Choice Sequences

The modification of choice sequences in this section, the bilateral choice sequences,

formalise the idea that a strand or class of information can develop in more than one

direction. Not to break with the picture of a choice sequence as a (linear) sequence of

values, we will only consider two directions of growth which results in a regular choice

sequence with two open ends.

Definition 2.1. Bilateral choice sequences αB are mappings from a linearly ordered

set X with no smallest element into a (possibly denumerably infinite) set Y .

For example, for this section we will chose Z for X and N for Y , i.e. αB : Z→ N.

The choice process for bilateral sequences works similarly to the one for lawless se-

quences. After a finite initial segment has been set deliberately, a finite amount of

values can be added at each moment to the initially set segment. The main difference

between lawless sequences and bilateral sequences at this point is that the values can

be added either to the left or the right of the previously chosen values, creating a

two-ended process.

A consequence of this way of chosing and adding new values is that bilateral sequences

cannot record the order of information gain. After two values are added successively,

once on the left and once on the right of the finite existing segment, there is no way to

determine which of the end values was added first. In a strictly linear structure with

a fixed root (i.e. an order with a smallest element) like regular choice sequences and

indexed/bundled choice sequences, this is not the case (cf. sections 2.2 and 2.3).

For example the sequence starts with a deliberately placed initial segment

. . . , 2, 6, 8, 6, 55, . . .

After 4 was added at the left side and 7 was added on the right side

. . . , 4, 2, 6, 8, 6, 55, 7, . . .

there is no way of determining the order in which 4 and 7 were added by simply looking

at the new finite segment.

Another consequence is that the initial segment relation and the notion of an initial

segment of length n can not be defined. Even though the sequence coding is easily

adaptable to bilateral sequences since there is no change of make up for finite segments,
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the sequence coding depends on a fixed point of reference - a starting point of the

sequence - to be at its left edge. Of course it is possible to arbitrarily set a starting

point, e.g. at αB(0) parallel to lawless sequences, but just setting a starting point does

not ensure that a definition can be given.

Let αB0 be the fixed root of the sequence. How to define αB ∈ n or αBn? For αB ∈ n

it does not suffice that there is some finite segment around αB0 that is identical to n.

Different initial segments around αB0 give different values for operations on αB and

both continuity and consistency are lost. The situation also does not improve if the

requirement that αB0 divides the finite sequence n into two equally long parts is posed.

The adoptions of this requirement restricts the sequences and all operations on them

too severely: Equally long parts on both sides of the root imply a uniform growth in

both directions of the sequence. This means that only bilateral sequences that can

be written as bundled choice sequences with tuple length two would be allowed (cf.

section 2.3).

It seems that what we need is to also have a reference point inside a finite segment

that gets mapped onto αB0. Hence, we will have to split (finite) sequences in two: a

part that lies to the left of the reference point and a part that lies to the right of the

reference point.

Definition 2.2. αB0
←−−

:= 〈αB0, αB(−1), αB(−2), . . .〉 is the leftward monolateral

sequence induced by a bilateral sequence at point αB0.

Definition 2.3. αB0
−−→

:= 〈αB0, αB1, αB2, . . .〉 is the rightward monolateral sequence

induced by a bilateral sequence at point αB0.

αB0
←−−

and αB0
−−→

divide the bilateral sequence into two normal choice sequences. These

two sequences are lawlike since they fully depend on αB0 (cf. proposition 12 in section

1.3.2). This does not matter for the definition of an inital segment for these sequences,

however. As discussed in section 1.3.1, according to the extension principle, the oper-

ations on lawless sequences can be extended to lawless sequences. For this purpose a

metatheoretical operator Abstr which forgets intensional information about sequences

was introduced. It was shown, however, that Abstr can not be defined in the system

and should only be used as an informal device.

Nevertheless, Abstr(αB0
−−→

) and Abstr(αB0
←−−

) can be treated as lawless sequences and

the inital segment of length n for αB0
←−−

and αB0
−−→

is written as usual αB0
←−−

n and αB0
−−→

n,

respectively, and is well-defined.

The question at this point is whether it is possible to define αB ∈ n with the help of the

initial segments. Even though the initial segment relation is well-defined for the two
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monolateral sequences, no satisfactory definition can be given for the original bilateral

sequence.

Consider the following definition.

Definition 2.4. The initial segment relation (to be discarded):

αB ∈ n iff ∃k∃m(k ∗m = n ∧ αB0
←−−
∈ k ∧ αB0

−−→
∈ k0 ∗m)

This definition suffers from the same problem discussed above: with more than one

possible initial segment, operations on these sequences do not obey open data and are

hence not continuous. To give an illustration let us consider the following two initial

segments of two bilateral sequences. The roots αB,10 and αB,20 are underlined.

αB,1 := . . . , 1, 2, 1, 2, . . .

αB,2 := . . . , 1, 2, 1, 3, . . .

Under the definition above, αB,1 and αB,2 both have (amongst others) the initial seg-

ments 〈1, 2〉 and 〈2, 1〉. Now let an operation on bilateral sequences be Φ(αB) = 4 for

αB ∈ 〈1, 2〉 and Φ(αB) = 5 for αB ∈ 〈2, 1〉. The axiom of open data, which we want

to maintain from lawless sequences, says: Φ(α) = x→ ∃n(α ∈ n ∧ ∀β ∈ n Φ(β)) = x.

From this we expect both αB,1 and αB,2 to get the same value assigned by Φ. However,

since Φ is defined for both possible initial segments, it can not be ensured that Φ as-

signs the same value to both sequences. A related problem for operations on bilateral

sequences is that they can in principle chose every initial segment around αB0. This

means that the value assigned to a sequence varies depending on which initial segment

is chosen.1

Therefore, αB ∈ n is also not defineable with the help of monolateral sequences without

1Restricting operations to finite initial segments that all differ in length and that are pairwise
prefix-free does also not give a solution to the problem. Open data still fails. Consider

Φ(〈1, 2, 3〉) = 5

Φ(〈2, 3, 5, 7〉) = 9

Φ(〈0, 9, 5, 6, 1〉) = 70

and

αB,1 := . . . , 0, 9, 5, 6, 1, 2, 3, . . .

αB,2 := . . . , 1, 2, 3, 5, 7, . . .

αB,1 and αB,2 share the initial segment 〈1, 2, 3〉 and thus are in the open set generated by this finite
sequence. However, for both sequences there is also another possibility for Φ to assign a value.
Therefore, αB,1 and αB,2 are expected to both be assigned the same value and different values always
relative to which initial segment happened to be chosen.
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a root being fixed in finite sequences as well, i.e. the lengths of the inital segments of

the monolateral sequences need to have a constant predefined length. This requires a

new sequence coding and a general restriction on the form of bilateral sequences which

is decidedly undesireable.

Apart from the problem with the initial segment relation and the definition of an initial

segment of length n, to set a unique starting point for bilateral sequences does not lead

to the most general definition possible. The entire discussion about the definition of

an initial segment up to this point has been led with the assumption that we have

one fixed root at αB0. The fact that the fixed root is at αB0 (and nowhere else) has

never been used at all. Hence, the position of the root can be abstracted from and the

discussion itself does not lose a crucial point.

Abstracting from the position of the root leads to the notion of a relativised root. Each

and every position inside a bilateral sequence can be set as the general point of reference

from which to look at the sequence.

No problems arise if relativised roots are worked with, i.e. if the main point of reference

is changed during the choice process. Every finite subpart of a choice process can be

an initial segment of a new choice process. The new process is still lawless, since only

finitely many values are determined by the previously started choice process. Thus,

adopting finitely many values of another sequence is the same as chosing these values

as the deliberately placed initial segment. In other words: the choice of a new root

can always be interpreted as starting a new process. This would eliminate a slightly

ugly consequence of relativised roots, namely that operations on bilateral sequences

are also relative to this root. I.e. a non-relativised operation will return different values

for different roots and would thus be inconsistent (see below).

The possibility of using relativised roots also facilitates the characterisation of bilateral

sequences. Since each and every value of a bilateral sequence can be chosen as root, the

directions the information develops into can not be properly divided; each new choice

of a root might change the position of a value from being part of the “left branch” to

being part of the “right branch”.

How can we work with bilateral sequences with relativized roots if such crucial notions

as the initial segment relation can not be defined? A way forward is to restrict op-

erations on bilateral sequences to operations on monolateral sequences belonging to a

relativised root since the initial segment relation is in this case well-defined. The restric-

tion of operations to monolateral sequences of course means that one entire direction

of development is always ignored when a value of the operation is computed. Another

consequence already mentioned above is that the operations on the monolateral branch

are always relativised to the chosen root to maintain continuity.

Since the initial segment relation for bilateral sequences can not be defined, operations
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on bilateral sequences do not exist as such. Therefore, axioms LS3 (open data) and

LS4 (continuity) can just be checked for operations on the monolateral parts. LS1 is

also problematic since it uses the inital segment relation.

LS1 ∀n∃α(α ∈ n)

Intuitively, LS1 (density) is still true for bilateral sequences. Any finite sequence can

be set as block of starting values for the bilateral sequence just as for lawless sequences.

There is a way, however, to restate LS1 for bilateral sequences using its monolateral

parts.

LS1B ∀n(∃α∃j∃αj
←−

(αj
←−
∈ n) ∧ ∃α∃j∃αj

−→
(αj
−→
∈ n))

LS1B states that for every finite sequence there is a leftward and a rightward monolat-

eral sequence of some bilateral sequence relative to some root such that this sequence

is an initial segment of this sequence.

LS2 is entirely unproblematic for bilateral sequences and can be adapted straightfor-

wardly. For the decidability of equality

LS2 α ≡ β ∨ ¬α ≡ β

LS2′ α = β ∨ ¬α = β

the argumentation in chapter 1 can be adoped without change. LS2 is a direct con-

sequence of the lawlessness of the choice process and does not depend on the type of

choice process.

To discuss LS3 and LS4, it was already stated that it suffices to look at the operations

on the monolateral parts of a bilateral sequence. The monolateral sequences are just

like lawlike choice sequences. Therefore, the discussion about operations on lawless

sequences can be adopted thanks to the extension principle.

A final word of caution concerns talking about the application of operations on bilateral

sequences. Even though the operations on the monolateral parts can be seen as being

applied to the bilateral sequences themselves - the operations are extensional - one

functional can give potentially infinitly many different values for one bilateral sequence.

This is the case since different relativised roots give different monolateral sequences

which in turn all most probably differ in their initial segments.
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2.2 Indexed Choice Sequences

Indexed choice sequences model choice processes where an index representing a class

of information is assigned to each new value or piece of information added to the

sequence. Thus the indices partition the continually increasing information into various

independent branches or classes of information about the same object.

Definition 2.5. Indexed choice sequences αI are choice sequences from N into X×I,

where X is a set of values and I is a set of indices.

Let X be N in this chapter. The set of indices can be potentially (countably) infinite;

for simplicity’s sake we will work with an enumeration of the elements of I, equating

each element of I with a n ∈ N.

In case the set of indices contains only one element, the indexed sequence is identical

to a normal choice sequence. For cardinalities of I equal to or higher than two, the

indexed sequences model choice processes with two or more branches where each index

determines a “strand of information”.

On the technical side, the addition of indices requires a new sequence coding that

takes into account the different “flavours” given by the indices. A function on indexed

sequences is given below.

Definition 2.6. Sequence coding for indexed sequences:

φ(αI) :=
∏

j∈N

αI (j)=〈xj ,ij〉

p
xj

2jp
ij
2j+1 with pk ∈ P

φ is recursively defineable and thus compatible with the requirements put forward for

a sequence coding in the first chapter. We also set φ(〈〉) = 0. By this definition,

the value of an indexed choice sequence at 0 can be interpreted as the root of the

sequence. For indexed sequences this is not of importance per se. The definition of

a root will be needed in section 2.4, where the correlation of indexed sequences and

bilateral sequences is discussed.

The notion of an initial segment of length n and the initial segment relation can be

retained with the help of the above sequence coding. αIn is defined as the finite product

∏

j=1...n
αI(j)=〈xj ,ij〉

p
xj

2jp
ij
2j+1.
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The initial segment relation

αI ∈ n iff αI(lthn) = n

is well-defined by virtue of the sequence coding being one-one.

To give a feeling for indexed sequences, without loss of generality, let the set of indices

be {0, 1}. Then, an indexed choice sequence is a mapping αI : N → N × {0, 1}. We

give an example of an indexed choice sequence in general and with concrete values:

〈〈x0, i0〉 , 〈x1, i1〉 , 〈x2, i2〉 , . . .〉

〈〈3, 0〉 , 〈5, 1〉 , 〈4, 0〉 , 〈76, 1〉 , 〈9, 1〉 , 〈91, 0〉 . . .〉

In the above example with concrete values there are two strands of information, one

belonging to the index 0

3, 4, 91 . . .

and one belonging to the index 1,

5, 76, 9, . . .

The value 〈3, 0〉 is the root of the sequence.

We can also give a picture of casting a dice analogous to the one given for lawless

sequences. For indexed sequences we have |I| many different colored dices. After

deliberately choosing an initial segment of value-color pairs, one after another a dice is

chosen from the set of dices and is cast. The color of the dice and the value cast are

then recorded together.

Let us take a look at the axioms formulated for lawless sequences LS1−LS4 and show

their compatibility with indexed sequences.

The first axiom, density, is valid for indexed sequences.

LS1 ∀n∃α(α ∈ n)

n as (a sequence number of) a finite sequence is uniquely determined by the coding,

and, since we again allow a deliberate choice of a finite initial segment, each such n

occurs as one such segment. Thus the initial segment relation is well-defined and can

be used as a definition for open sets of a topology on indexed choice sequences (cf.

section 1.1).
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For the decidability of equality

LS2 α ≡ β ∨ ¬α ≡ β

LS2′ α = β ∨ ¬α = β

the argumentation can be adoped without change from the previous section.

Before LS3 and LS4 can be discussed, the type of operations compatible with indexed

choice sequences need to be looked at. In the case of normal choice sequences, the

operations on lawless sequences were continuous functionals Φ : N
N → N or Ψ : N

N →

N
N represented by neighbourhood functions a : N→ N. The functionals (and respective

neighbourhood functions) were both characterised in two different ways: as the set of

continuous operations on lawless sequences or as a certain inductively defined class

of mappings. As a consequence of the bar theorem, these two different strategies are

shown to generate the same set of operations and the neighbourhood functions turn

out to be in fact lawlike processes.

What are possible operations on indexed sequences? Parallel to lawless sequences, we

can look at functionals ΦI : (N × I)N → N × I or ΨI : (N × I)N → (N × I)N and

look whether we can find neighbourhood functions of the type aI : N × I → N × I.

Or maybe the operations on lawless sequences can be adapted to indexed sequences,

giving operations of the type Φ : (N × I)N → N or Ψ : (N × I)N → (N × I)N with

neighbourhood functions a : N→ N.

The matter of operations on indexed sequences becomes clearer if the operations on

lawless sequences are considered more thoroughly. The beauty of the operations on

lawless sequences is that the neighbourhood functions inducing these operations turn

out to be in fact lawlike choice sequences themselves. Of course it is desirable to

reproduce this fact to be able further along to adopt results for operations on lawles

sequences proved in chapter 1. Thus, neighbourhood functions need to have the same

domain and range as indexed choice sequences. Consequently, functionals on indexed

sequences are best of the following form.

ΦI : (N× I)N → N× I

ΨI : (N× I)N → (N× I)N

We will also define the functionals on indexed sequences relative to the two possible

directions taken for functionals on lawless sequences in chapter 1.

Let ContI be the class of continuous functionals on indexed sequences of the above form.

The neighbourhood functions K0,I inducing these functionals are defined analogously

to the ones for lawless sequences.



40 2.2. Indexed Choice Sequences

Definition 2.7. A function ξ : N→ (N×I) is in K0,I iff k ∈ N is a sequence number,
i.e. k = 〈〈α0, i0〉 , . . . , 〈αp, ip〉〉 an initial segment of an indexed sequence αI , and there
is a functional Φξ : (N× I)N → N× I ∈ ContI such that

ξk =

{

〈0, 0〉 the value of Φξ(αI) is not yet determined

〈x+ 1, i〉 Φξ(αI) = 〈x, i〉

For the functions of K0,I the requirements of consistency and totality are fulfilled.

The second possibility to define functionals on indexed sequences is by an inductive

definition. The class IndI of inductively defined functionals on indexed sequences is

defined as follows.

Definition 2.8.

IndI (i) λα. 〈n, i〉 ∈ IndI ∀n ∈ N, ∀i ∈ I

(ii) Φ〈0,i〉,Φ〈1,i〉,Φ〈2,i〉 . . . ∈ IndI ⇒ Φ ∈ IndI , Φ(α) = Φ(αI0)(λx.αI(x+ 1))

or in other words:

∀x∀i ∈ I(Φ〈x,i〉 ∈ IndI)→ Φ ∈ IndI with Φn(αI) := Φ(n ∗ αI)

The inductive definition of IndI can be packed into a principle of induction.

∀n∀i(λα. 〈n, i〉 ∈ X) ∧ [∀x∀i(Φ〈x,i〉 ∈ X)→ Φ ∈ X]→ IndI ⊂ X

The neighbourhood functions KI of the inductively defined functionals are defined

parallely.

Definition 2.9. KI is the smallest class of functions ξ : N→ (N× I) that is closed
under K1I and K2I .

K1I λn. 〈y + 1, i〉 ∈ KI ∀y ∈ N, ∀i ∈ I

K2I ξ0 = 〈0, 0〉 ∧ ∀x∀i ∈ I(λn.ξ( ˆ〈x, i〉 ∗ n) ∈ KI)→ ξ ∈ KI

Note, that ξ0 is the value of the neighbourhood function assigned to the empty sequence

which has sequence number 0. Setting this value equal to 0 ensures that the empty

sequence is always too short for a functional to return a value.

The proof of proposition 1.10 which states that K ⊂ K0 for operations on lawless

sequences can be adapted to the newly defined continuous and inductively defined

neighbourhood functions for indexed sequences since the actual form of the elements

of the lawless sequnces is not used. Thus, with the appropriate changes to the proof of
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proposition 1.10, KI ⊂ K0,I . Whether K0,I ⊂ K0 holds depends on the applicability of

the bar theorem to indexed sequences.

The class of continuous functionals Cont1I of the form ΨI : (N × I)N → (N × I)N are

also induced by K0,I parallel to the functionals Cont1 for lawless sequences.

Having defined the functionals on indexed sequences, we return to the discussion of the

axioms. LS3, the axiom of open data, is repeated with the usual notation.

LS3 ( 6= (α, α0, . . . , αp) ∧ A(α, α0, . . . , αp))→

∃n(α ∈ n ∧ ∀β ∈ n( 6= (β, α0, . . . , αp) ∧A(β, α0, . . . , αp))

The axiom is valid for the operations defined above. The neighbourhood functions

inducing the functionals on indexed sequences are total and consistent and moreover

depend only on a finite sequence of values. Consistency ensures that any value other

than 0 returned by the function is and stays the same for all sequences belonging to

the open set belonging to the shortest sequence for which this value is returned.

Since all inductively defined functionals are total and depend only on a finite initial

segment and since the initial segment relation is well-defined, weak continuity is given.

All other forms of continuity follow from the combination of LS3 with a choice principle

that is in general intuitionistically valid (cf. section 1.3.3). Thus LS4 can adopted as

well.

2.3 Bundled Choice Sequences

Bundled choice sequences are another take at modelling more than one strand of in-

formation about an object. Contrary to indexed sequences, the strands of bundled se-

quences are not time-independent. At every moment in time the same (finite) amount

of information is added to all strands. This simultaneity and parallelism of the process

is formalised by chosing tuples as values.

Definition 2.10. A bundled sequence αT : N → Xm with m ∈ N is a sequence of

tuples of elements of X an enumerable set.

For X we chose N. Each element of the tuple belongs to a different strand of informa-

tion; m thus codes the number of strands.
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An example of a bundled sequence αT : N→ N
m, m = 3:

〈1, 3, 6〉 , . . . next choice: 〈10, 5, 7〉

〈1, 3, 6〉 , 〈10, 5, 7〉 , . . . next choice: 〈0, 43, 19〉 , 〈2, 4, 1〉

〈1, 3, 6〉 , 〈10, 5, 7〉 , 〈0, 43, 19〉 , 〈2, 4, 1〉 , . . . etc.

Note that even though the values of each branch are chosen simultaneously, the values

are not codependent. Bundled choice sequences are just like tuples of choice sequences,

where each ”dimension” is a separate process. Unfortunately, bundled sequences can

not be defined by using lawless sequences. The proposition 12 proved in section 1.3.2

prevents any sequences defined in this way to be lawless themselves. The above defini-

tion is conceptually identical but does not suffer from this shortcoming.

To give a picture: bundled sequences come close to the simultaneous cast of m differ-

ently coloured dices. The succession of cast values is written up for each value sepa-

rately. This analogy captures the fact that, even though each branch of information

itself behaves like a lawless sequence, all m branches form one process.

Since bundled sequences are sequences of tuples as values, a new sequence coding is

required.

〈α0, . . . , αn〉 :=
∑

j=1..n

p
πm
1

(αj)
mj p

πm
2

(αj)
mj+1 . . . p

πm
m(αj)

mj+m−1

with pi ∈ P the ith prime number and πm
i the projection onto the ith component of a

tuple with m elements.

The values of the bundled sequence, αj = 〈xj,1, . . . , xj,m〉, are themselves coded as a

natural number with the sequence coding used for lawless sequences defined in section

1.1.

With the new sequence coding, the initial segment relation and the initial segment of

length n can be easily defined. For the initial segment of length n see the definition of

the sequence coding above. The initial segment relation αT ∈ n is defined as follows.

αT ∈ n iff 〈〈x01, . . . , x0m〉 , . . . , 〈xlthn,1, . . . , xlthn,m〉〉 = n

Therefore, we expect all axioms for lawless sequences to be adoptable for bundled

sequences and operations thereupon.

The first two axioms LS1 and LS2 are applicable to bundled sequences. The initial

segment relation needed for density to be meaningful is well-defined and decidability

of identity (or equality) is a direct consequence of lawlessness.
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For the definition of operations on bundled sequences we follow the same line of ar-

gumentation given for indexed sequences in the previous section. To reproduce the

desirable property of neighbourhood functions being lawlike bundled sequences, the

functionals are of the following form.

ΦT : N
mN → N

m

ΨT : N
mN → N

mN

The class of continuous functionals ContT on bundled sequences is induced by the class

of neighbourhood functions K0,T .

Definition 2.11. A function ξ : N→ N
m is in K0,T iff k ∈ N is a sequence number,

i.e. k = 〈〈x00, . . . , x0,m−1〉 , . . . , 〈xp0, . . . , xp,m−1〉〉 is an initial segment of a bundled
sequence αT , and there is a functional Φξ : N

mN → N
m ∈ ContT such that

ξk =

{

〈0, . . . , 0〉 the value of Φξ(αT ) is not yet determined

〈x0 + 1, . . . , xm−1 + 1〉 Φξ(αT ) = 〈x0, . . . , xm−1〉

The functions of K0,T fulfill both consistency and totality.

The inductively defined functionals IndT are formed by similar conditions as the func-

tionals on indexed sequences.

Definition 2.12.

IndT (i) λα. 〈n0, . . . , nm−1〉 ∈ IndT ∀ 〈n0, . . . , nm−1〉 ∈ N
m

(ii) Φ〈0,...,0〉, . . . ,Φ〈1,...,1〉, . . . ∈ IndT ⇒ Φ ∈ IndT

Φ(αT ) = Φ(αT 0)(λx.αT (x+ 1))

or in other words:

∀ 〈n0, . . . , nm−1〉 (Φ〈n0,...,nm−1〉 ∈ IndT )→ Φ ∈ IndT

with Φn(αT ) := Φ(n ∗ αT )

The corresponding principle of induction is

∀~n(λα.~n ∈ X) ∧ [∀~n(Φ~n ∈ X)→ Φ ∈ X]→ IndT ⊂ X

with ~n := 〈n0, . . . , nm−1〉 a value of a bundled sequence of dimension m.

KT is defined as follows.
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Definition 2.13. KT is the smallest class of functions ξ : N→ (N× I) that is closed
under K1T and K2T .

K1T λn. 〈n0 + 1, . . . , nm−1 + 1〉 ∈ KT ∀ 〈n0, . . . , nm−1〉 ∈ N
m

K2T ξ0 = 〈0, . . . , 0〉 ∧ ∀ 〈n0, . . . , nm−1〉 (λn.ξ( ˆ〈n0, . . . , nm−1〉 ∗ n) ∈ KT )→ ξ ∈ KT

Proposition 1.10 is also adaptable again, giving KT ⊂ K0,T .

The discussion of the last two axioms runs analogously to the discussion given in the

previous section. LS3 and LS4 can both be adapted to the operations on bundled

sequences.

2.4 Comparison

This part of chapter 2 aims to give a comparison of the three new types of choice

sequences introduced in this chapter. The points of interest are:� Are there translations from one type of sequence into the other types of sequences?� What do the sequences model and capture idea-wise?� Are there differences between the operations?

2.4.1 Indexed and Bilateral Sequences

At first we will investigate how indexed sequences and bilateral sequences are linked.

Let us start by giving a translation tI→B from indexed sequences into bilateral se-

quences. With the choice of interpreting αI(0) of an indexed choice sequence as root,

sequences with an index set of cardinality |I| = 2 can be written parallel to bilateral

sequences.

For technical reasons, we first need to define a projection πj
i .

Definition 2.14. The function π
j
i for i ≤ j such that πj

i (〈x1, . . . , xj〉) = xi is a

projection onto the i-th component of a j-tuple.

The translation is then

tI→B(αI0) = αB(0)

tI→B(αIk ∗ αk) =







tI→B(αIk), π
2
1αk π2

2αk = 1

π2
1αk, tI→B(αIk) π2

2αk = 0

The indices of the sequence values 0 and 1 are interpreted as “add the value to the

left” and “add the value to the right”, respectively. The adresses of the values of the
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bilateral sequence are determined during the course of the recursion. This translation is

not one-one, though, suggesting that the two types of sequences can not code the same

amount of information about the choice process. The only requirement for indexed

sequences to be mapped onto the same bilateral sequence is that the relative order of

the values bearing the same index has to be identical. To illustrate this, we will look

at indexed choice sequences of the type N→ {0, 1} × {0, 1}.

The indexed choice sequences

〈〈1, 1〉 , 〈1, 0〉 , 〈0, 1〉 , . . .〉

and

〈〈1, 0〉 , 〈1, 1〉 , 〈0, 1〉 , . . .〉

can both be written as the following bilateral sequence

. . . , 1, 1, 0, . . .

As the above example shows, if the values are recoded respecting only this translation

rule, there is no one-to-one relation between indexed choice sequences and bilateral

choice sequences. The translation rule ignores both, the order of information gain

encoded in indexed choice sequences and the position of the root of these sequences.

The latter information about the sequence can be included in the translation if the

root of the indexed choice sequence is mapped to the relativised root of the bilateral

choice sequence. The order of information gain, however, cannot be coded in bilateral

sequences, as already stated in section 2.1. Therefore, the best translation available is

as follows.

tI→B(αI0) = αB(i)

tI→B(αIk ∗ αk) =







tI→B(αIk), π
2
1αk π2

2αk = 1

π2
1αk, tI→B(αIk) π2

2αk = 0

where αB(i) is the relativised root of the bilateral sequence

As an example:

The indexed choice sequence

〈〈1, 1〉 , 〈1, 0〉 , 〈0, 1〉 , . . .〉

is written as

. . . , 1, 1, 0, . . .
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and another indexed choice sequence

〈〈1, 0〉 , 〈1, 1〉 , 〈0, 1〉 , . . .〉

is written as

. . . , 1, 1, 0, . . .

where the underlined value is the relativised root of the sequence.

Since the notion of relativised root is inherently dynamic, the addition of the position

of the root in bilateral sequences is only a minor addition; the improved translation is

still not one-one. Two or more indexed sequences are translated into the same bilateral

sequence if they have the same root and if the relative order of the values bearing the

same index is identical.

By way of the translation from indexed sequences to bilateral sequences we now know

that operations on bilateral sequences (i.e. the operations on the monolateral parts)

can be adapted to the translated indexed sequence. The translation is in fact a nice

way of getting hold of all values of the same index. The operations on the monolateral

sequences can then be used to map only one branch of information onto some desired

value.

The translation from bilateral sequences to indexed sequences tB→I is a little trickier.

Bilateral sequences do not code the order of information gain. Therefore, there are

many possible translation from a given bilateral sequence of values (i.e. from already

chosen values) into indexed sequences. The only exact way to translate bilateral se-

quences into indexed sequences is thus online, i.e. translating the values as they are

chosen. Another (less accurate) way to go would be to fix an order of translation.

tB→I(αBn) = αIx where x is the position of n in the translation order and

αIx = 〈αBn, 0〉 iff αBn is left to the relativised root

αIx = 〈αBn, 1〉 iff αBn is right to the relativised root

When the online translation method is chosen, the translation is one-one and onto

since the online translation ensures that the order of information gain is reflected in the

indexed sequence. A previously fixed arbitrary translation order makes the translation

lose these properties.

The online translation then obviously allows operations on indexed sequences to be

applied to the translation of the bilateral sequence. If a fixed translation order is

chosen, the product of the translation is still an indexed sequence in its make up.

The order of information gain has however been destroyed. Operations on indexed

sequences can of course be applied to these sequences. It is, however, unclear what
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the the meaning of such an application is and whether the resulting values reflect any

property of the indexed or the bilateral sequence.

2.4.2 Indexed and Bundled Sequences

Bundled and indexed sequences both describe a simultaneous development of a sequence

in m different directions/ belonging to m different classes of information. The crucial

difference is that indexed sequences allow all branches to develop independently whereas

for bundled sequences all branches develop uniformly.

Can a translation from bundled sequences to indexed sequences be given or vice versa?

Take αT : N→ N
m. Then αT can be translated into an indexed sequence αI : N→ N×I

with |I| = m. The translation tT→I is as follows:

tT→I(αT j) = αI(mj), . . . , αI(mj +m− 1)

where

αI(mj) = 〈πm
0 (αT j), 0〉αI(mj + 1) = 〈πm

1 (αT j), 1〉 etc.

The translation does not map bundled sequences to general indexed sequences as de-

fined in section 2.2. I.e. not every indexed sequence has a corresponding bundled

sequence. The indexed sequences into which the bundled sequences are translated

are those where in an initial segment of length m · j all m different indices appear j

times.2An example:

〈1, 2, 3〉 , 〈5, 6, 7〉 , 〈9, 10, 11〉 , . . .

is translated into

〈1, 0〉 , 〈2, 1〉 , 〈3, 2〉 , 〈5, 0〉 , 〈6, 1〉 , 〈7, 2〉 , 〈9, 0〉 , 〈10, 1〉 , 〈11, 2〉 , . . .

As a translation can be given from bundled sequences into indexed sequences, the

operations on indexed sequences are also applicable to bundled sequences.

Can an inverse translation from indexed sequences into bundled sequences be given?

As it was argued above, the translation of bundled sequences only targets a subset of

all indexed sequences. Therefore it is to be expected that a ready translation from

indexed sequences into bundled sequences can not be given. The main issue for giving

a general translation is that the amounts of values of each index in an indexed sequence

2The fact that the translation orders the indices inside the indexed sequence is neglectable but
not without importance. Differently ordered values of indexed sequences model a different process of
information gain. Every reordering changes the initial segment of the sequence which determines the
position of the sequence in the universe of indexed sequences. Nevertheless the ordering of the indices
is neglectable since the observation that the translation of bundled sequences into indexed sequences
only targets a subset of all indexed sequences remains intact when different orderings are considered.
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differ whereas for bundled sequences all amounts of values are required to be the same.

Thus ”filling in” the values of the indexed sequence in tuples ”as they come” does not

guarantee well-formed bundled sequences.

The following example illustrates this.

〈7, 1〉 , 〈5, 2〉 , 〈9, 0〉 , 〈10, 0〉 , 〈11, 1〉 , 〈13, 0〉 , 〈4, 0〉 , . . .

results in the following bundled sequence by the filling in method:

〈9, 7, 5〉 , 〈10, 11, ?〉 , 〈13, ?, ?〉 , 〈4, ?, ?〉 , . . .

Since the last three tuples stay unfinished, they are not well-formed values of a bundled

sequence and hence useless for operations. We can also not be certain that these tuples

might get ”filled up” because of the lawlessness of the process.

Therefore, operations on bundled sequences are not readily applicable to indexed se-

quences, as expected.

The picture the above discussion paints is, thus, that bundled sequences are indexed

sequences with a restriction on the occurrence of indices.

2.4.3 Bilateral and Bundles Sequences

In this section we will take advantage of the results of the previous two sections.

Concerning the translation tT→B from bundled into bilateral sequences, we already

know the translations tT→I and tI→B. Therefore, we easily obtain tT→B by a successive

application of tT→I and tI→B. A direct consequence is that the operations on bilateral

sequences can be adapted to bundled sequences.

We also expect that there should be no translation tB→T from bilateral sequences into

bundled sequences since there is no tI→T . To see that this is really the case, remember

that choice sequences are processes and that operations on processes depend on a finite

initial segment.

Let αB be the following process at a fixed moment in time:

. . . , 5, 4, 1, 2, 3, . . .

Then the first idea for a translation from bilateral to bundled sequences could be to

decide that the relativised root of the bilateral sequence and everything to its left

belongs to the first branch and everything to its right belongs to the second branch of
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the bundled sequence, and then to form pairs to give the actual values of the bundled

sequence.

tB→T (. . . , 5, 4, 1, 2, 3, . . .) = 〈1, 2〉 , 〈4, 3〉 , 〈5, ?〉 , . . .

Parallel to the issue that was discussed for the translation from indexed sequences into

bundled sequences, it can not be ensured that the missing values will be filled.

A consequence concerns the operations on bilateral sequences. We cannot adapt an

operation on bundled sequences to bilateral sequences. Since the translation from bilat-

eral sequences into bundled sequences does not guarantee a well-formed initial segment

(i.e. the translation can result in a long succession of unfinished tuples), an operation

might never become applicable to the translated bilateral sequence (the neighbourhood

function of this operation always gives the value 0). This violates both totality and

continuity of the operation.

2.5 Summary

In this chapter we have looked at three different modifications or generalisations of

lawless choice sequences. We have briefly discussed their compatibility with the axioms

for lawless sequences defined in chapter 1. For this matter we also had to consider

operations on the different new types of sequences and their properties.

We then furthermore compared the three new types of sequences and tried to give

translations from one type to another, where possible. A consequence of these transla-

tions was that operations of one sequence type could be adapted to all other types of

sequences the former type could be translated into. Even though we are always talking

about“adapting”an operation to another class of sequences, we actually want to have a

translation from the various operation types into the other types, when possible. That

this translation between operations can be given with the help of the translations given

for the sequences should be quite obvious.





Chapter 3

Choice Sequences and Possible

Worlds

The property of lawless choice sequences of being incomplete, potentially infinite objects

make them an interesting tool to apply to problems in other branches of science. The

objective for this chapter will be to use lawless sequences in a framework for possible

world semantics of natural languages and to take a look at the analysis of modality.

3.1 Possible-Worlds Semantics in Linguistics

In formal linguistics today, there are quite a few different ways to deal with natural

language semantics. One rather common approach goes back to Richard Montague,

who gave a formal system for a fragment of English (Montague (1973) amongst others)

This system encompasses both the syntax and the semantics of this fragment. His work

on semantics had the most impact on modern day linguistics and provided the basis for

an influential framework in modern formal natural language semantics (Partee 2005).

When Montague’s work was introduced into linguistics, it not only provided interesting

new insights in the semantics of natural language sentences but also a way to deal with

the denotation of words without getting caught in prototype theory.1

What is the goal of this framework? Older approaches just wanted to give a trans-

lation of the content of a natural language expression into a formal language (mostly

first order classical logic). Montague not only parted with first order logic, he also

capitalized Frege’s principle of compositionality which states that the meaning of a

complex expression is built up from the meanings of its parts: the meaning of a sen-

tence like Peter sleeps is built up from the meaning of Peter and sleeps by some

1Prototype theory deals with graded categorization. Some members of a category expressed by
some linguistic expression are more typical for this category than other members. E.g. a chair might
be a more typical piece of furniture than a bed. Judgements of this kind make it difficult to define
what the meaning of “furniture” is if typical features are taken as the basis of a theory of meaning.

51
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kind of combination mechanism. By providing the structure of models for his typed

intensional language together with an interpretation function, he gave an algorithmic

way of deriving the truth condition and (given a specific model) the truth value of a

sentence. The truth condition of a sentence is the minimal set of requirements for the

world (given by a model) such that the sentence is true in this world.

We will first give Montague’s intensional language as it stands in “Proper Treatment of

Quantification in Ordinary English” (Montague 1973). Then we will discuss a few ad-

ditions and changes that were made up until now that will be needed for the discussion

of Kratzer’s analysis of modality (Kratzer 1991).

3.1.1 Montague’s Intensional Language

In “Proper Treatment of Quantification in Ordinary English”, Montague independently

sets up the syntax and the semantics for his chosen fragment of English and formu-

lates translation rules that map English expressions from his syntax onto expressions

of his semantics. As a semantic language, he formulates a higher-order typed inten-

sional language with a possible-worlds model-theoretic semantics, based on the idea of

intensional languages as put forth by Frege (1892), Church (1951) and Carnap (1947)

amongst others.

The idea of intensional languages is that even though some natural language expres-

sions or expressions in Mathematics can denote the same thing, their meaning can still

be different. For example 5− 2, 2+1 and 3 denote the same number three. The math-

ematical operations performed, however, differ greatly. In Frege’s terminology 5 − 2,

2+1 and 3 have the same Bedeutung (reference) but not the same Sinn (sense). Frege’s

Sinn of an expression was called the intension of the expression, Frege’s Bedeutung the

extension of an expression by Carnap. In the standard interpretation of the numbers

and operations it is true to write 5 − 2 = 2 + 1 = 3. Thus, in the standard model of

natural numbers, the three expressions have the same extension. However, it is easy

to think of an algebra where 5 − 2, 2 + 1 and 3 denote quite different values. So the

expressions do not have the same intension.

The above idea is formalised by an intensional language that distinguishes the two

layers of extensionality and intensionality and that has an appropriate model structure

for this task. Intensional contexts in natural language, such as “Peter believes that...”

or“it is necessary that...”, motivate a possible-worlds semantics. In intensional contexts

truth is not preserved when an expression is substitued by another expression with the

same extension, e.g. even if “Peter believes that 2+1 = 3” is true “Peter believes that

5-2 = 3” does not have to be, if Peter can add but not subtract properly.

Possible worlds model more or less conceivable alternative states of affairs. With possi-
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ble worlds, it is possible e.g. to refer to all the worlds that are compatible with Peter’s

belief concerning basic calculations or to model necessary truths or possible truths.

Montague’s intensional language (ILM)2 incorporates a typed lambda-calculus as pro-

posed by Church and Kripke frame semantics as used in modal or intuitionistic logic.

The following definitions are taken from Montague (1973:227ff).

Definition 3.1. The type system of ILM :

Basic types are e for entity expressions (individuals) and t for truth value expressions.

The set Type is the smallest set Y such that (1) e, t ∈ Y , (2) if a, b ∈ Y then 〈a, b〉 ∈ Y

and (3) if a ∈ Y then 〈s, a〉 ∈ Y .

Montague differentiates between intensional and extensional (non-intensional) types.

The basic types and the types built from clause (2) are the extensional fragment of

the type system that applies to all those natural language expressions that have no

reference to possible worlds, e.g. connectives like and and or3 that are constant across

worlds. Intensional types are used for all those expressions that depend on possible

worlds like modal expessions such as modal verbs must and can. 4

Definition 3.2. The meaningful expressions of ILM of type a, MEa:

1. Every variable and constant of type a is in MEa.
2. If α is in MEa and u is a variable in MEb then λuα is in ME〈b,a〉 (λ-abstraction)
3. If α is in ME〈b,a〉 and β is in MEb then α(β) is in MEa (function application)
4. If α, β are in MEa then α = β is in MEt

5. If φ, ψ are in MEt and u is a variable in MEa then also ¬φ, φ∨ ψ, φ∧ψ, φ→ ψ,
φ↔ ψ, ∀uaφ, ∃uaφ, �φ, Wφ, Hφ

6. If α is in MEa then ˆα is in ME〈s,a〉

7. If α is in ME〈s,a〉 then �α is in MEa

λuα denotes the function that takes arguments of the same type as the variable u and

has as a value the expression α with all occurrences of u substituted by the argument.

�φ, Wφ and Hφ are the necessity, future and past operators. The ˆ-operator returns

the intension of its argument; the �-operator returns the extension of its argument and

is thus only well-defined in cases where the argument is an intension.

Definition 3.3. The model structure of ILM :

A model of IL is a quintuple A = (A, I, J,≤, F ), where A is a set of entities, I a

set of possible worlds, J a set of moments of time, ≤ an ordering on J and F an

2Monatgue’s intensional language is usually abbreviated IL. I changed it to ILM since intuitionistic
logic is also abbreviated as IL and keeping both unchanged might lead to confusion.

3Occurrences of natural language as object language will be signalled by bold face.
4In principle it is possible to just work with the extensional fragment in natural language semantics.

However, as Montague shows in his works himself, pure extensionality is the exception in natural
language and reference to possible worlds the rule.
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interpretation function assigning all non-logical constants their interpretation relative

to a world-time-pair.

Since intensional models like above make use of possible worlds, this type of model

theoretic semantics is called a possible-worlds semantics.5 A model for the extensional

fragment would consist only of A and F since there is no reference to worlds, i.e.

A = (A,F ).

For all non-logical constants of each type there is a domain of possible denotations in

the model. The domain of possible denotations for constants of type a corresponding to

A, I and J will be written as Da,A,I,J : Dt,A,I,J is the set of truth values {0, 1}6 , De,A,I,J

is the set of entities A, D〈b,a〉,A,I,J is the set of functions from Da,A,I,J into Db,A,I,J and

D〈s,a〉A,I,J is the set of functions from the cartesian product of worlds and moments

I × J into Da,A,I,J .

For the interpretation of ILM , the interpretation function F is extended to a func-

tion J.K from complex well-formed expressions into the set of all possible domains of

denotations.7

Definition 3.4. The interpretation function J.KA,i,j,g:
JαKA,i,j,g denotes the meaning of α relative to a model A, an assignment function g

from variables of type a into Da,A,I,J , a world i and a time j.

1. If α is a non-logical constant then JαKA,i,j,g = F (α)(〈i, j〉)
2. If α is a variable then JαKA,i,j,g = g(α).
3. If α is in MEa and u is a variable in MEb then JλuαKA,i,j,g = h : Db,A,I,J → Da,A,I,J

such that for all x in that domain h(x) = JαKA,i,j,g′ where g′ is the assignment
function g except for possibly g′(u) = x (λ-abstraction)

4. If α is in ME〈b,a〉 and β is in MEb then JαβKA,i,j,g = JαKA,i,j,g(JβKA,i,j,g) (function
application)

5. If α, β are in MEa then Jα = βKA,i,j,g = 1 iff JαKA,i,j,g = JβKA,i,j,g

6. If φ, ψ are in MEt then J¬φKA,i,j,g, Jφ ∨ ψKA,i,j,g, Jφ ∧ ψKA,i,j,g, Jφ → ψKA,i,j,g,
Jφ↔ ψKA,i,j,g are defined as usual

7. If φ is in MEt and u is a variable in MEa then J∀uaφKA,i,j,g = 1 iff there is an
x ∈ Da,A,I,J such that JφKA,i,j,g′ = 1 where g′ is as above; similarly J∃uaφKA,i,j,g

8. If φ is in MEt then J�φKA,i,j,g = 1 iff JφKA,i′,j′,g = 1 for all i′ ∈ I and j′ ∈ J .
9. If φ is in MEt then JWφKA,i,j,g = 1 iff JφKA,i,j′,g = 1 for some j′ ∈ J such that
j ≤ j′ and j′ 6= j.

10. If φ is in MEt then JHφKA,i,j,g = 1 iff JφKA,i,j′,g = 1 for some j′ ∈ J such that
j′ ≤ j and j′ 6= j.

11. If α is in MEa then JˆαKA,i,j,g = h(〈i, j〉) such that for all 〈i, j〉 ∈ I×J JˆαKA,i′,j′,g =
h(〈i′, j′〉)

12. If α is in ME〈s,a〉 then J�αKA,i,j,g = JαKA,i,j,g(〈i, j〉)

5The term possible-worlds semantics is also used for the branch of natural language semantics that
uses this type of model.

6The truth values 0 and 1 are logical constants. Instead of {0, 1}, {⊤,⊥} can be used, but is
unusual in the formal semantics tradition in linguistics.

7Montague does not use the double brackets. We will use them for readability reasons.
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The parameters i and j of the interpretation function are a world from the set of

possible worlds and a moment of time, i.e. a world-time pair 〈i, j〉 ∈ I×J in the model

A, relative to which the interpretation is started. The pair 〈i, j〉 usually is the actual

world, i.e. the real world in which the interpreted sentence was uttered at the time it

was uttered. The entire cartesian product I × J is called the logical space.

The rule of function application is the central rule of ILM ’s syntax and semantics.

With this rule Montague formalises the principle of compositionality.

Definition 3.5. Truth in ILM :

if φ is in MEt, i.e. a formula, then φ is true with respect to A, i and j iff JφKA,i,j,g is

true for all assignments g.

Meaningful expressions of the intensional logic denote concepts needed for the inter-

pretation of natural language. Expressions of type 〈a, t〉 are characteristic functions

of subsets and thus denote sets of objects of type a. Similarly, expressions of type

〈a, 〈b, t〉〉 can be seen as two-place relations between objects of type a and b, etc.

Why are these expressions interesting for natural languages? As stated above Montague

gave a nice formalisation of natural language expressions. The central idea of the

formalisation is that an expression denotes the set of objects it successfully describes.

For example: The noun dog denotes the set of dogs in the model of choice. The

intransitive verb sleep denotes the set of sleeping individuals in the model. Transitive

verbs like love denotes the set of pairs of lovers and loved ones in the model and so

on. Thus the meaning of dog is the characteristic function of the set of dogs relative

to a model.8 In terms of types this means that the meanings of sleep and dog are

expressions of type 〈〈s, e〉 , t〉.

We won’t discuss the details of the application to natural language as the main interest

for this thesis is the structure of the intensional model, which will be discussed in detail

in section 3.2.

3.1.2 Modernisations of ILM

After the works of Montague were introduced into linguistic research the above system

was partly modified to fit the needs of linguists. Barbara Partee (Partee 1973) laid the

groundwork to adapting the intensional language as a semantic framework compatible

with the type of syntax done in the generative grammar tradition, which in the 1970s

was the last phase of transformational grammar (Chomsky 1957).

8Montague already builds this idea into the categorial grammar modelling the English syntax.
However, his system of categories is (apart from the intensional types) identical to the type system of
the intensional language. The translation rules from syntax into semantics only build intensions from
the exclusively extensional categories. For the detailed formulation see Montague (1973).
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During the 1970s and 80s the intensional language (or rather its application to natural

language and theories of natural language syntax) was occasionally enriched with new

rules and types but also intensionality was made easier to handle and some types

proposed for of verbal categories were altered. We will only focus on changes made by

semanticists working in or closely to generative grammar.

For example, a new intensional type i analogous to s was introduced to get direct access

to the time parameter of the model, used usually when only matters of tense were

important and reference to possible worlds was irrelevant. Also, for exclusively modal

purposes, the model structure is usually simplified to a quadruple M = (D,W,≤, F )

where D is a set of individuals, W a set of possible worlds, ≤ an order on W giving a

temporal ordering on possible worlds and F an interpretation function. Possible worlds

in this model structure are something akin to the world-time pairs in ILM . However,

in cases when even the temporal ordering ≤ is left away from the model, possible

worlds are interpreted as worlds specified for all past and future moments in time.9

The parameters of the interpretation function JαβKA,i,j,g are now usually JαβKw,M,g; a

world w ∈ W , the model M and an assignment function g. In some modern works a

time parameter t is again added.

Concerning intensionality per se, there are currently two different opinions about using

intensional types and reference to possible worlds. One possibility is to see intensions as

the default semantic value of an expression in the spirit of Montague. These accounts

also differ with respect to the possibility of having intensional types as parts of complex

types or not. The other possibility is to work extensionally most of the time and extend

the system in a conservative way to account for intensional contexts. Both treatments

of intensionality give the desired results. For both treatments also the question of overt

world variables in the system is discussed. For reasons of space, the discussion can not

be repeated here.

A new principle of composition called θ-identification was first introduced by Higgin-

botham (1985) (later in a restricted form it was called predicate modification in Heim

and Kratzer (1998)).

Definition 3.6. θ-identification:� If α is in ME〈e,a〉 and β is in ME〈e,a〉 then also αβ is in ME〈e,a〉� If α is in ME〈e,a〉 and b is in ME〈e,a〉 then JαβKw,M,g = λue[JαKw,M,g(u)∧JβKw,M,g(u)]

Predicate modification as defined in Heim and Kratzer (1998) is the restriction of θ-

identification to cases of a = t.

Now, to give a better idea of how the typed intensional language is used in formal

9This can be seen as a reflex to Montague’s definition of necessity as “necessarily always”.
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semantics, we will list the extensional and intensional types of some verbal categories.

Remember that natural language expressions denote the set of objects they describe.� sentence: t (truth value)� proper name: e (an individual, e.g. Peter, Rome...)10� noun: 〈e, t〉 (a set of individuals, e.g. dog, table...)� intransitive verb: 〈e, t〉 (a set of individuals, e.g. sleep, sneeze...)� transitive verb: 〈e, 〈e, t〉〉 (a set of pairs of individuals, e.g. kiss, love...)� relational noun: 〈e, 〈e, t〉〉 (a set of pairs of individuals, e.g. mother, brother...)

etc.

Nouns and verbs among others are called the predicates of the extensional fragment.

The types listed here are as given in Heim and Kratzer (1998).

Interestingly, the extensional denotation of a sentence is its truth value. This is an

artefact of function application and the choice of letting verbs denote sets of individuals

(or tuples of individuals). Since the verb meaning is given as the characteristic function

of the set it denotes, once the function has been applied to all arguments (i.e. once the

sentence is complete) the verb meaning returns either true or false if the tuple of

individuals is in the set. Since natural language sentences are only well-formed when

all verb arguments are given, the extensional denotation will always be a truth value.

Next we list the intensional types built from the extensional types above.� sentence: 〈s, t〉 (set of worlds)� proper name: 〈s, e〉 (a relation between worlds and individuals)� noun: 〈s, 〈e, t〉〉 (a relation between worlds and sets of individuals)� intransitive verb: 〈s, 〈e, t〉〉 (a relation between worlds and sets of individuals)� transitive verb: 〈s, 〈e, 〈e, t〉〉〉 (a relation between worlds and sets of pairs of

individuals)� relational noun: 〈s, 〈e, 〈e, t〉〉〉 (a relation between worlds and sets of pairs of

individuals) etc.

The intensional denotation of a sentence - called a proposition - is the set of worlds for

which the sentence is true. The intensional denotations of the other elements also have

traditional names. The intensional denotation of proper names is called an individual

concept, the one of nouns and verbs is called a property.

Note that the rule of function application, as it stands now, is not suitable for the

intensional types listed above.11 Therefore it will be reformulated as follows.

10For Monatgue proper names have the type 〈〈e, t〉 , t〉, same as quantifiers like every and no. For
various reasons the type of proper names was changed into e.

11Montague’s formulation still works for the extensional fragment.
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Definition 3.7. Intensional function application: If α is in ME〈s,〈b,a〉〉 and β is in

ME〈s,b〉 then JαβKw,M,g = ˆJ�αKw,M,g(J�βKw,M,g) is in ME〈s,a〉

For the definition the ˆ-operator and the �-operator were used. Intensional function

application could also be defined without these two operators by using overt world

variables. The result is the same.

The goal of this framework of semantics is to algorithmically derive the truth conditions

of a sentence. Thus, we will derive the truth condition of the sentence Peter can see

Susi. The types of the meanings of the lexical entries are: D〈s,e〉 for Peter,D〈s,e〉

for Susi and D〈s,〈e,〈e,t〉〉〉 for see. For the modal expression Montague’s treatment of

modality is kept for the moment and can is translated as the diamond ♦, which is

taken as the usual abbreviation of ¬�¬.

♦see(Susi)(Peter)

12 The meanings of the parts is then as follows. Overt world variables are used to make

the types of the expressions visible.

JPeterKw,M,g = λw. Peter

JSusiKw,M,g = λw. Susi

JseeKw,M,g = λw.λy.λx. x sees y in w

Then the truth condition of the entire sentence is:

J♦Peter see SusiKw,M,g = 1 iff JPeter see SusiKw′,M,g = 1 for some w′ ∈W

JPeter see SusiKw′,M,g = 1 iff Jsee(Susi)(Peter)Kw′,M,g = 1

Jsee(Susi)(Peter)Kw′,M,g = 1 iff Peter sees Susi in w′

thus:

J♦Peter see SusiKw,M,g = 1 iff Peter sees Susi in w′ for some w′ ∈W

The first step was application of the interpretation of the diamond, the second step was

giving the functional structure of the sentence and the third and last step was function

application of the meaning of see to the meanings of Susi and Peter. Note that the

meaning of proper names is invariant across worlds.13

12For natural language syntactic reasons the direct object Susi is the first argument of see and the
subject Peter the second.

13We choose to make proper names world invariant to escape the problem of transworld identity.
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3.1.3 Kratzer’s analysis of modality

In this section the most prominent and natural application of possible-worlds semantics,

the analysis of modal expressions like e.g. modal verbs (e.g. must, can...) or modal

adverbs (e.g. possibly, necessarily...) will be given. Examples of sentences that will

have to be analysed and given an appropriate representation are in (1).

(1) a. Peter must read a book.

b. It is possible that Peter reads a book.

In Montague’s system ILM the sentences in (1) would have the following meaning.

(2) a. J� Peter read a bookKA,i,j,g = 1 iff for all 〈i′, j′〉 ∈ I × Jsuch thatJ Peter

reads a book KA,i′,j′,g = 1

b. J♦ Peter reads a bookKA,i,j,g = 1 iff there is a 〈i′, j′〉 ∈ I×Jsuch thatJ Peter

reads a book KA,i′,j′,g = 1

The above meanings of the two sentences seem - at first glance - quite alright. Mon-

tague’s account, however, cannot distinguish between different types of modality.

Modal words are ambiguous between many types of modality (epistemic, deontic, cir-

cumstantial ...). Therefore the fact that all the examples in (3) have the same inter-

pretation presents a serious shortcoming.

(3) a. Jockl must have been the murderer. (epistemic - in view of the available

evidence)

b. Jockl must go to jail. (deotic - in view what the law provides)

c. Jockl must sneeze. (circumstantial - in view of his current disposition)

(Kratzer 1991:640)

Let us look at two different treatments of modality that take into account the different

varieties of modality in natural language (Kratzer 1991). The first is directly adapted

from modal logic. The second analysis was developed by Angelika Kratzer for natural

language semantics and is usually called Graded Modality. Both accounts will be given

in the modernized version of ILM in a model structure M = (D,W,≤, F ).

For the first account we need a few definitions (Kratzer 1991:641f).

Definition 3.8. Truth of a proposition: A proposition p is true in a world w iff

w ∈ p.

Definition 3.9. Logical consequence: A proposition p follows from a set of propo-

sitions A iff p ist true in all worlds of W in which all propositions of A are true.
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Definition 3.10. Consistency : A set of propositions A is consistent iff there is a

world in W where all propositions of A are true.

Definition 3.11. Logical Compatibility : A proposition p is compatible with a set of

propositions A iff A ∪ {p} is consistent.

Definition 3.12. Conversational background : A conversational background is a

function f : W → P(P(W )) that assigns to each world a subset of the powerset of

worlds, i.e. a set of propositions, relative to which the modality is expressed.

The phrases “in view of...” next to the examples in (3) are conversational backgrounds

for these sentences. A conversational background can either be given overtly in the

sentence or can be supplied from the context. In both cases a new parameter f for

conversational backgrounds has to be introduced.14

The main idea of the analysis is that the conversational background determines an

accessibility relation on the set of worlds W . The modal operator can then only access

the worlds that are connected via this relation to the salient world, i.e. the world with

respect to which the meaning of the sentence is determined.

Definition 3.13.

J must αKf = {w ∈W : w′ ∈ JαKf , for all w′ such that wRfw
′}

J can αKf = {w ∈ W : w′ ∈ JαKf , for some w′ such that wRfw
′}

where wRfw
′ iff w′ ∈

⋂

f(w)15

In terms of compatibility and logical consequence this means that must α picks the

set of worlds such that α follows from the conversational background and can α picks

the set of worlds such that α is consistent with the conversational background. In the

worlds picked by the modals the proposition α - the argument of must/can - is true.

The incorporation of accessibility relations into the analysis of modal expressions solves

the problem of the ambiguity of modals. Nevertheless, the analysis is not optimal.

Kratzer shows that it cannot deal with inconsistencies in the conversational background

or with conditional clauses (cf. Kratzer (1991:642f)). Therefore, she proposes her

system Graded Modality.

Modals in natural languages vary with respect to three different dimensions: modal

force, modal bases and ordering sources. The modal force determines the grade of

necessity or possibility of the modal. The modal base and the ordering source are

given via two conversational background operators f and g. The first conversational

14Another possibility is to let the assignment function g pick out the right conversational background
from the context.

15Note that only for simplicity the parameter f is the only parameter of the interpretation function
that is given.
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background f picks out the set of worlds that are accessible from the salient world

analogously to the accessibility relation above. The second conversation background g

gives a set of propositions relative to which the worlds in the modal base are ordered.

Definition 3.14. Partial ordering ≤g(w) on the modal base f(w):

For all w,w′ ∈ f(w) and for g(w) ⊆ P(W ): w ≤g(w) w
′ iff {p : p ∈ g(w) and w′ ∈ p} ⊆

{p : p ∈ g(w) and w ∈ p}

The modal base together with the ordering source determines the set of accessible

worlds. Kratzer (1991) gives two types of modal bases, circumstantial (in view of the

relevant facts) and epistemic (in view of the available information). Ordering sources

can be deontic (what the law provides), bouletic (what we want), stereotypical (what

is normal), doxastic (what we believe), teleological (what our aims are) etc. Not every

modal base can combine with every ordering source. Epistemic modal bases take or-

dering sources based on information, whereas circumstantial modal bases take ordering

sources based on laws, aims, plans or wishes. With regard to terminology, modality

with respect to a circumstantial modal base is also called root modality. Modality with

respect to an epistemic modal base is of course called epistemic modality.

Kratzer distinguishes seven grades of modal force: necessity, possibility, good possibility,

at least as good a possibility, better possibility, weak necessity and slight possibility. We

will only give the new definition of necessity (must) and possibility (can), the two

extremes of the scale. Both, necessity and possibility, can only access the optimal

worlds with respect to the ordering source.

Definition 3.15. Optimal worlds O(f,g,w):

O(f, g, w) = {z ∈ f(w) : for all u ∈ f(w) such that u ≤g(w) z : z ≤g(w) u}

The new meanings of must and can are thus:

Definition 3.16.

J must αKf,g = {w ∈W : w′ ∈ JαKf,g for all w′ ∈ O(f, g, w)}

J can αKf,g = {w ∈W : w′ ∈ JαKf,g for some w′ ∈ O(f, g, w)}

(Schwager 2008:3f)

As an example, we look at the truth condition of Peter must kill someone and Paul

can shoot a dog.

The modal force of must in the first sentence is necessity. Say the situation in/about

which the sentence is uttered is a life and death situation for Peter and Peter obviously

wants to stay alive. The modal base is circumstantial and the ordering source bouletic.

Therefore, f picks out all the worlds that are compatible with the circumstances in the



62 3.2. Using Choice Sequences

actual world, i.e. in which Peter is in the same situation, and g picks out all the worlds

in which Peter lives. Thus,

JPeter must kill someoneKf,g = 1 iff (∀w′ ∈ O(f, g, w))[Peter kills someone at w′]

The optimal worlds are those in which Peter survives the life and death situation.

The modal force of can in the second sentence is possibility. For the second context

take a situation in which there is a dog plague and the government changed the law

such that it is okay to shoot a dog on the street. Then, if the second sentence is

uttered in/about this situation, the base is also circumstantial but the ordering source

is deontic. So, the truth condition for the second sentence is,

JPaul can shoot a dogKf,g = 1 iff (∃w′ ∈ O(f, g, w))[Paul shoots a dog at w′]

In this example the optimal worlds are those in which there is a dog plague and in

which the dog shooting permission has been given.

Summing up section 3.1, we have given an a short introduction into the formal aspects

of possible-worlds semantics as used in modern linguistics. In the next section, we

will look at this system from a different point of view and propose a new model for

possible-worlds semantics. We will give sample translations compatible with the new

model for the three possible treatments of modality discussed.

3.2 Using Choice Sequences

In this section we now take a different point of view on possible worlds by modelling

the logical space with the help of choice sequences.

In ILM the cartesian product of the set of possible worlds and the set of moments of

time, I × J , forms the logical space. Thus a possible world in ILM can be interpreted

as a complete state of events at one instant of time in which every sentence is either

true or false. Another possibility is that only the pair 〈i, j〉 completely describes a state

of a certain possible world, i.e. that the moment of time j acts like an index on the

possible world i picking out the state of events of world i at time j.

The following proposal incorporates both possible interpretations. Let IL′
M be a mod-

ernised version of ILM as discussed in section 3.1.2.

Definition 3.17. A new model structure:

LetM = (W,U, F, g) be a model of IL′
M , whereW is an enumeration of possible worlds,

U a finite set of entities forming the “universe”, F an enumeration of interpretation

functions of IL′
M , and g a global variable assignment. The functions Fi, the values of
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F , induce together with U an enumeration M of extensional models extensional model

µi = (U, Fi).

The main idea is to model logical space as a finite set of sequences of extensional models

at each point in time. For the time being these sequences are taken to be lawless. In

other words, possible worlds are sequences of extensional models that grow with time.

In the following sections the make up of possible worlds, the requirements consequently

imposed on worlds by the axioms of choice sequences and the modified treatment of

modality (for worlds as choice sequences) are discussed.

3.2.1 A New World

Possible worlds are modelled by some type of lawless choice sequences. Let us discuss

the problems and merits of the four different types of choice sequences treated in the

previous chapters.

The lawless sequences of chapter 1 are ill-suited for possible worlds since they can not

describe the flow of time into past and future.

Bilateral lawless sequences can model the entire timeline, but have the decided dis-

advantage that operations are only defined for their monolateral parts. Even though

relaitivised roots can be worked with, the fact that for each operation on the sequence

either the entire past or the entire future values relative to this root have to be forgot-

ten, make them ill-suited as well.

Bundled lawless sequences seem better suited for worlds than bilateral sequences. Bidi-

mensional bundled sequences can model one direction of time with each dimension.

However, the fact that values of bundled sequences are tuples links the two directions

of time in the sense that for each new model added in the “future-dimension” there is

a new model added in the “past-dimension”. Thus the two directions of time develop

symmetrically, which is undesirable for the simple reason that we actually seem to

know more about the past than about the future.

This leaves indexed lawless sequences. Indexed lawless sequences can model the entire

timeline if the index set has cardinality two. The two directions can develop asymmet-

rically since they are not linked by any relation and operations on indexed sequences

are well-defined. Thus, we choose indexed sequences to represent possible worlds.

Definition 3.18. The parameter W of the new proposed model is an enumeration

of indexed sequences w. W : N→ (N× I)N with |I| = 2.

The reason we can take natural numbers as the first dimension of the cartesian prod-

uct is that the enumeration of assignment functions F in the model quite naturally

induces an enumeration on all extensional models. Thus each extensional model can
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be identified with a n ∈ N. For the index set of cardinality two, we will take {0, 1} just

for convenience. According to the translation from indexed sequences into bilateral

sequences, 0 will be interpreted as “adding a value to the left”, i.e. temporally in the

past, and 1 will be interpreted as “adding a value to the right”, i.e. temporally in the

future. Thus, the index set could also be written as {P, F}.

A possible world in its new definition therefore looks as in the next example.

〈7, 1〉 , 〈5, 0〉 , 〈9, 0〉 , 〈10, 0〉 , 〈11, 1〉 , 〈13, 0〉 , 〈4, 0〉 , . . .

where the information coded is:

〈µ7, F 〉 , 〈µ5, P 〉 , 〈µ9, P 〉 , 〈µ10, P 〉 , 〈µ11, F 〉 , 〈µ13, P 〉 , 〈µ4, P 〉 , . . .

which is in the coded temporal order:

. . . , µ4, µ13, µ10, µ9, µ5, µ7, µ11, . . .

Each n ∈ N completely determines an extensional model wn, a value of the possible

world w. This address n however does not reflect the real position of the model along

the timeline as can be seen in the above example. We will set w0 as the actual world and

s∗0 as the default speech time. This creates no problems linguistically since a sentence is

always interpreted relative to one time parameter. Changing the speech time can either

be solved internally in setting a new time parameter at the interpretation function or

by taking existing values as deliberately placed initial segments for a new enumeration

of worlds.

In general, the new definition of a model for IL′
M has to be interpreted dynamically,

rather than static as the model for Montague semantics is usually intended. Since both,

the set of worlds and the set of extensional models are choice sequences themselves and

therefore potentially infinite in the sense that at each moment only finite sequences

and thus finite sets of worlds and models are considered which, however, grow in time.

This is a necessary consequence of building a model with the help of choice sequences.

Even though it is usually assumed that the set of possible worlds is infinite, this fact

is, as far as we know, never used explicitly in proposed meanings for lexical elements.

Therefore, working with an at each point finite amount of worlds has no impact on the

interpretation of sentences.

The assumption that worlds behave like lawless sequences leads to certain predictions

when the axioms for choice sequences are considered. The first axiom, LS1, adapted

to possible worlds, says that every finite sequence of extensional models is a possible

initial segment of a world. This is a very peculiar state of affairs when the metaphysics

of possible worlds is considered. However, as we have no opinion concerning the meta-

physic status of possible worlds, we ignore this peculiarity. The decidability of equality,

LS2, says that either two worlds that have the same sequence of models are actually
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the same object or, if they have identical initial segments, they eventually differ in

one value. This is also desirable linguistically since we want to be potentially able to

identify the actual world.

Operations on possible worlds we have encountered in section 3.1.3 with the linguis-

tic theories of modality. Accessibility relations and conversational backgrounds map

possible worlds into sets of possible worlds. The axioms LS3 and LS4 require from

operations on the new worlds that worlds with the same initial segment get assigned

the same value, in other words that these operations are continuous. This is desirable

since worlds with the same initial segment as the actual world, in which a statement

is made, are indistinguishable from the actual world. Therefore, it is expected that

mappings that only depend on the state of events of a world should return the same

values. The two axioms also state that operations on possible worlds can only use an

initial segment of a world as argument. Thus, only given information represented by

the initial finite sequence of extensional models can be used to determine the value of

an operation.

3.2.2 Checking Lexical Items

In the previous section, the new possible worlds modelled by choice sequences were in-

troduced. A change in the model structure also leads to change in some interpretations

of types. The old possible worlds were world-time pairs, where worlds and times were

theoretically independent. The new possible worlds are bigger objects - sequences of

old world-time pairs. Thus, all linguistic objects depending on possible worlds, need

to be looked at anew from the perspective of the new model.

We will start by looking at propositions. Propositions in the old model were sets of

world-time pairs, i.e. objects of type 〈s, t〉. To capture both the modal and the temporal

level of natural language, we will add a new intensional type i. The intensional type

s for world-time pairs will be used solely for entire worlds. Thus the new definition of

types is as follows.

Definition 3.19. The revised type system of IL′
M :

Basic types are e for entity expressions (individuals) and t for truth value expressions.

The set Type is the smallest set Y such that (1) e, t ∈ Y , (2) if a, b ∈ Y then 〈a, b〉 ∈ Y

and (3) if a ∈ Y then 〈s, 〈i, a〉〉 ∈ Y .

Note, that i is not the type for instances of time as in section 3.1.2 but the type for

addresses of values of a world. The order of information gain and the timeline do not

coincide, which causes this slight interpetative flaw.
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By application of the new type system, the type of propositions becomes 〈s, 〈i, t〉〉.

This means that propositions are functions

p : (N× I)N → {0, 1}N

from worlds into functions of addresses into truth values.

The same changes are made for all other intensional objects: individual concepts have

the type 〈s, 〈i, e〉〉 properties have e.g. the type 〈s, 〈i, 〈e, t〉〉〉.

The interpretation function has to be modified minimally as well. An address value

has to be added to the world, model and assignment function parameters.

Just for technical reasons we also need the projection π
j
i defined in section 2.4.1 since

the world values are pairs of models and indices. The interpretation needs to have

access to each of the components separately.

The derivation of Peter sees Susi is repeated for the new semantics. The structure

of the sentence is

see(Susi)(Peter)

The meanings of the parts is then as follows.

JPeterKw0,s∗,M,g = λw.λi. Peter

JSusiKw0,s∗,M,g = λw.λi. Susi

JseeKw0,s∗,M,g = λw.λi.λy.λx. x sees y in π2
1(wi)

Then the truth condition of the entire sentence is:

JPeter see SusiKw0,s∗,M,g ⇔

Jsee(Susi)(Peter)Kw0,s∗,M,g ⇔

[λw.λi.λy.λx. x sees y in π2
1(wi)](λw.λi. Susi )(λw.λi. Peter)⇔

λw.λi. [λw.λi. Peter ](x) sees [λw.λi. Susi ](y) in π2
1(wi)⇔

λw.λi. Peter sees Susi in π2
1(wi)

For π2
1(wi) the parameters π2

1(w0(s∗)) are inserted. Thus:

JPeter see SusiKw0,s∗,M,g = 1 iff Peter sees Susi in π2
1(w0(s∗))

For simple, purely extensional sentences, like Peter sees Susi, above no real changes

can be felt. In the next section we will discuss modality and redefine the meanings
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given for the modal operators of the three approaches to modality given in section

3.1.3.

3.2.3 Modality Revisited

As we have seen in the previous section, modelling the logical space with choice se-

quences has no direct consequence for the interpretation of purely extensional sentences.

As soon as intensionality has to be dealt with, changes have to be expected.

The first treatment of modality we will take a closer look at, is the one by Montague

(1973). He proposes the meanings for must and can in (4).

(4) a. J�φKA,i,j,g = 1 iff JφKA,i′,j′,g = 1 for all i′ ∈ I and j′ ∈ J

b. J♦φKA,i,j,g = 1 iff JφKA,i′,j′,g = 1 for some i′ ∈ I and j′ ∈ J

Montague’s accessibility relation for � and ♦ is the universal relation on world-time

pairs in I×J . This can be remodelled quite easily in terms of worlds as choice sequences.

Since we can not quantify over the infinite amount of all world values of all worlds, a

different approach has to be found. Let us define the operator .∗, which forms a choice

sequence from the i-th value of all worlds in the enumeration W .

Definition 3.20. The operator .∗ : N → (N × I)N takes address values i and

returns lawlike indexed sequences of the form λn.wni, where wn is the nth world in the

enumeration of worlds W .

The idea is to run through all address slices and for each address slice to look at all

initial segments, which amounts to looking at all existing world values of all worlds in

W . Hence, we propose the new meanings for must and can as in (5).

(5) a. JmustKw0,s∗,M,g = λp.∀i∀n(i∗ ∈ n→ p(i∗)(lthn− 1))

b. JcanKw0,s∗,M,g = λp.∃i∃n(i∗ ∈ n ∧ p(i∗)(lthn− 1))

Note that the address slices of course are not time slices. The world values in the

functions i∗ do not have to be simultaneous with respect to model internal time. Since

must as well as can are in all three treatments of modality proposed to express time-

independent necessity and possibility.

By virtue of the substitution of a world value dependent accessibility relation for the

universal relation, the second proposal for modals in natural language gives a more

differentiated and fine grained picture.

The meanings of must and can of the second proposal are repeated in (6).

(6) a. J must αKf = {w ∈W : w′ ∈ JαKf , for all w′ such that wRfw
′}
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b. J can αKf = {w ∈ W : w′ ∈ JαKf , for some w′ such that wRfw
′}

where wRfw
′ iff w′ ∈

⋂

f(w).

The parameter f gives a set of propositions relative to the utterance world that deter-

mines the accessible worlds. We will identify f with the set of propositions f gives for

the current world of evaluation. A world w is accessible if and only if all propositions

of f are true in w. Hence, f acts as a filter on W .

This restriction by the propositions in f is easily added to the proposed modification

of Montague’s modality treatment in (5) to give the meanings of the two modals for

the new model.

Definition 3.21. Let f = {f1, . . . , fn} be a set of propositions then the proposition

f̃ = λw.λi.f1(w)(i) ∧ . . . ∧ fn(w)(i) is the conjunction of all fi ∈ f .

Thus the new proposal for worlds as choice sequences is given in (7). The parameter

list of the interpretation function is again reduced to f̃ for readability.

(7) a. JmustKf̃ = λp.∀i∀n(i∗ ∈ n ∧ f̃(i∗)(lthn− 1)→ p(i∗)(lthn− 1))

b. JcanKf̃ = λp.∃i∃n(i∗ ∈ n ∧ f̃(i∗)(lthn− 1) ∧ p(i∗)(lthn− 1))

Finally we look at Kratzer’s treatment of must and can in her Graded Modality anal-

ysis. Kratzer (1991) adds a second parameter g (not to be confused with the variable

assigment which assigns to the salient world another set of propositions. The parame-

ter f is used again as a filter on the entire set of worlds and determines the modal base.

The set of propositions g, the ordering source, then induces an order on the worlds

picked by f .16 Via the order induced by g a set of optimal worlds O(f, g, w) is defined

that determines the final set of accessible worlds. Thus the meanings of must and can

in Kratzer’s analysis is as repeated in (8).

(8) a. J must αKf,g = {w ∈W : w′ ∈ JαKf,g for all w′ ∈ O(f, g, w)}

b. J can αKf,g = {w ∈W : w′ ∈ JαKf,g for some w′ ∈ O(f, g, w)}

We will not remodel the ordering to induce the set of optimal worlds, since the definition

would require quantification over an infinite set. Instead we will define a set of maximal

consistent subsets of g. The ordering source is, amongst other reasons, used to account

for situations in which the elements of the conversational background f of the second

treatment (example (6)) are inconsistent. The optimal worlds with respect to the

ordering source are those that satisfy a maximal simultaneously satisfiable subset of g,

i.e. a maximal consistent subset.

16g is also a conversational background relative to the world of evaluation. Like for f we will identify
g with its value.
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Since g is a finite set of propositions, we can define a new parameter g̃ which is a

disjunction of propositions g̃c
i which are conjunctions over all propositions contained in

a maximal consistent subset of g.

Definition 3.22. For a finite set of propositions g = {g1, . . . , gm}, the parameter
g̃ =

∨

gc
i∈Γ g̃

c
i is a disjunction of propositions g̃c

i , which is a conjunction of all propositions
in gc

i . A set gc
i is an element of Γ, the set of maximal consistent subsets of g.

Γ =
⋃

g′⊆g
g′consistent
g′maximal

g′

To give an example, let g = g1, g2, g3, g4 be a set of propositions and let {g1, g2} be

inconsistent. Then:

g̃ =
∨

gc
i∈Γ

g̃c
i where Γ = {{g1, g3, g4}, {g2, g3, g4}}

Thus:

g̃ = g̃c
1 ∨ g̃

c
2

= λw.λi.(g1(w)(i) ∧ g3(w)(i) ∧ g4(w)(i)) ∨ (g2(w)(i) ∧ g3(w)(i) ∧ g4(w)(i))

The definitions of the meanings of must and can in the spirit of graded modality can

hence be formulated as in (9).

(9) a. JmustKf̃ ,g̃ = λp.∀i∀n(i∗ ∈ n∧f̃(i∗)(lthn−1)∧g̃(i∗)(lthn)→ p(i∗)(lthn−1))

b. JcanKf̃ ,g̃ = λp.∃i∃n(i∗ ∈ n ∧ f̃(i∗)(lthn− 1) ∧ g̃(i∗)(lthn) ∧ p(i∗)(lthn− 1))

To fully illustrate the workings of the reformulation of the two meaning postulates, we

will give a model for the sentence Peter must read a book. The modal base f is

circumstantial, e.g. “the professor wants his students to read any book to get a good

grade”, and the ordering source g is bouletic, e.g. Peter’s wishes to have free time

and to get a good grade.

The model M = (W,U, F, g) is made up of the following parts:

M = 〈w0, w1, w2〉

U = {Peter, Sense and Sensibility, Vanity Fair . . .}

F = 〈F0, F1, F2〉

g = ∅
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The three worlds have the form

w0 = 〈0, 0〉 , 〈1, 1〉 , 〈2, 0〉

w1 = 〈1, 0〉 , 〈1, 1〉 , 〈0, 1〉

w2 = 〈2, 1〉 , 〈2, 1〉 , 〈1, 1〉

the conversational backgrounds f and g relative to w00 are

f = {f0} and g = {g0, g1, g2}

with

f0 = λw.λi. the professor wants . . . π2
1(w(i)),

g0 = λw.λi. Peter has free time in π2
1(w(i)) and

g1 = λw.λi. Peter gets a good grade in π2
1(w(i)).

The three extensional models µi = (U, Fi), i = 0, 1, 2 are

µ0 :

JPeterK = {Peter}

JbookK = {Sense and Sensibility, Vanity Fair}

JreadK = {〈Sense and Sensibility, 〈Peter, 0〉〉 , 〈Vanity Fair, 〈Peter, 1〉〉 . . .}

Jf0K = 1, Jg0K = 0, Jg1K = 1

µ1 :

JPeterK = {Peter}

JbookK = {Sense and Sensibility}

JreadK = {〈Sense and Sensibility, 〈Peter, 0〉〉}

Jf0K = 0, Jg0K = 1, Jg1K = 0

µ2 :

JPeterK = {Peter}

JbookK = {Sense and Sensibility, Vanity Fair}

JreadK = {〈Sense and Sensibility, 〈Peter, 1〉〉 , 〈Vanity Fair, 〈Peter, 1〉〉}

Jf0K = 1, Jg0K = 1, Jg1K = 0
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The postulated meaning for Peter must read a book is

JPeter must read a bookKf̃ ,g̃ = 1 iff

∀i.∀n.(i∗ ∈ n ∧ f̃(i∗)(lthn− 1) ∧ g̃(i∗)(lthn− 1)→

Peter reads a book in π2
1(i

∗(lthn− 1)))

The address slices i∗ for i = 0, 1, 2 are

0∗ = 〈0, 0〉 , 〈1, 0〉 , 〈2, 1〉

1∗ = 〈1, 1〉 , 〈1, 1〉 , 〈2, 1〉

2∗ = 〈2, 0〉 , 〈0, 1〉 , 〈1, 1〉

and f̃ = f0 and g̃ = g0 ∨ g1.

Since the last entry of each finite address slice is looked at, in sum all values of the

address slices are considered. So which are the world-values that satisfy f̃ and g̃?

Only the extensional models µ0 and µ2 satisfy f̃ . Thus all values with 1 as the first

component are filtered by f from the modal base. Checking g0 and g1, we see that µ0

and µ2 each satisfy one of the two propositions. Thus they satisfy g̃ and

∀i.∀n.(i∗ ∈ n∧f̃(i∗)(lthn−1)∧g̃(i∗)(lthn−1)→ Peter reads a book in π2
1(i

∗(lthn−1)))

is true in this model and thus Peter must read a book is true.

Peter must read a book becomes false if we change Jf0K = 0 to Jf0K = 1 in µ1.

3.3 Summary

In the first part of this chapter Montague’s system ILM was introduced and some

more modern modifications of this system were given. Furthermore, we looked at three

possible treatments of modality in natural language semantics. Afterwards, in the

second part, we reformulated the models of IL′
M , a modernised version of ILM , in

terms of choice sequences. We adapted and discussed the type system of lexical items

and then translated the three treatments of modality such that the meaning postulates

of the two modals must and can were compatible with the reformulated model.
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Further Issues

The discussion in the previous three chapters, especially in chapters 2 and 3, brought

up four questions for further research that I want to illustrate in this chapter.

Issue 1 concerns other possible types of choice sequences that differ from the original

choice sequences in terms of for which element of the domain (usually N) the next

value is added to the sequence. For normal choice sequences as well as indexed choice

sequences and bundled choice sequences the next value after αn is always added at

αn+ 1. This guarantees that these choice sequences are total mappings on N.

Bilateral choice sequences are more liberal in terms of where the next value is added to

the already existing values. It is easy to see that this strategy of adding values means

that bilateral choice sequences are not necessarily total on Z. Just take the sequence

where α0 is the relativised root and all values are only added to the right or left.

As we have already seen in chapter 2, it is difficult to define the initial segment relation

for bilateral sequences and hence operations directly applied to the sequence can not

be defined without considerably restricting the strategy of adding values again.

The first question to be further examined is therefore how choice strategies which are

not as systematic and rigid as the one for choice sequences, indexed sequences and

bundled sequences influence totality of the choice process and moreover the definition

of operations on these sequences and their characteristics. The main point to consider

here is that if a choice process is not total, some positions of the domain remain

“untouched”. Thus operations depending on these positions getting assigned a value

will remain undefined for such processes.

The second issue regards the application of choice sequences to Montague semantics in

chapter 3. We substituted the model formed with the help of choice sequences for the

standard Kripke possible-worlds semantics.

Hence it is of interest quite generally to ask about the correlations between choice

sequences and Kripke semantics. A finite Kripke semantics is obviously a subpart of

a model built from choice sequences, i.e. the state of the model at a certain time. A

73



74 Chapter 4. Further Issues

comparison of Kripke semantics with an infinite set of points or worlds and choice

sequences as models seems to us to be the more interesting question.

Particularly end points of Kripke semantics, i.e. points that are accessible for some

points but from which no other point is accessible, are interesting in this regard since

for such a point �p is valid and ♦p is unsatisfiable for all formulas p.

The third area of further interest is the investigation of the behaviour of the model built

from choice sequences and the sentences that are true in this model before and after a

step of information gain. Since the set of worlds and the set of extensional models are

also enumerations growing with time, the addition of further worlds and extensional

models is bound to have an impact on the validity of intensional propositions.

The main question is thus how the different states of the model are connected to each

other (if they indeed are comparable) and the predictions made by such a dynamic

model.

The last and fourth issue, on an entirely different note, regards the modal structure of

Kratzer’s Graded Modality (Kratzer 1991). The assumption is that Graded Modality

satisfies at least the axioms of system K but not all axioms of S5.
1

Definition 4.1. The system K is the classical propositional calculus for the language
of modal logic extended by

K-axiom schema: �(φ→ ψ)→ (�φ→ �ψ)

rule of modal generalisation: if ⊢ φ then ⊢ �φ

Definition 4.2. The system S5 is the system K extended by

T-axiom schema: �φ→ φ

and either

5:♦φ→ �♦φ

or

4:��φ→ �φ

B:φ→ �♦φ

S5 is in particular characterized by models where the accessibility relation of the modal

operators is an equivalence relation, i.e. reflexive, symmetric and transitive. K poses no

restrictions on its models. Between K and S5 other systems lie with more restrictions

on models than K and less restrictions than S5 (Fitting 2007). Thus, the accessibility

1M. Baaz p.c.
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relation induced by f and g in Graded Modality has to be studied in detail to show

how the model of Graded Modality can be characterized.

We think that all of the above issues are worthwhile questions to investigate. Unfortu-

nately, we have no answers to these questions.
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