
Collaborative music selection with

mobile devices

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Magister der Sozial- und Wirtschaftswissenschaften

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Markus Toth
Matrikelnummer 0025690

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer: Univ. Prof. Dr. Wolfgang Klas
Mitwirkung: Mag. Stefan Leitich

Wien, 23. Juli 2008
[Unterschrift Verfasser/in] [Unterschrift Betreuer/in]

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Zusammenfassung

Musik ist ein wichtiges Werkzeug um eine bestimmte Atmosphäre für soziale Treffpunkte

in öffentlichen Räumen (wie Cafes, Bars oder Tanzlokale) zu erreichen. Die richtige

Musik wird normalerweise vom Personal des Lokals oder von einem professionellen

’Musikauswähler’, einem Disc-Jockey (DJ), ausgewählt.

Persönliche Medienbibliotheken werden immer mobiler. Tragbare Musikwiedergabegeräte

sind mittlerweile alltäglich und für viele Menschen ist es längst normal die Musik des eige-

nen Musikgeschmacks immer mit sich zu führen. Üblicherweise bestimmt eine einzelne

Person welche Musik in einem Lokal gespielt wird und dadurch sind alle aus der Zuhör-

erschaft nur passive Konsumenten der Musik. Die Möglichkeit eines jeden Zuhörers

mit der eigens mitgebrachten Musikbibliothek Einfluss auf den Musikauswahlprozess zu

haben würde in einer komplett neuen Art von interaktiver Erfahrung resultieren.

In dieser Arbeit stelle ich ein neues Konzept und die prototypischen Implementierung für

die Musikauswahl in öffentlichen Räumen vor. Das Konzept von PublicDJ basiert auf

einem rundenbasierenden Spiel für mehrere Spieler bei dem jeder Teilnehmer Lieder zu

einem Server schicken kann. Der Server analysiert die von den Spielern ausgewählte

Musik und wählt das am besten passendste Lied (basierend auf Kriterien die vor dem

Start verkündet wurden) für die nächste Runde aus. Es kann entweder auf die im

voraus händisch hinzugefügten Metadaten (wie Künstler, Genre, Veröffentlichungsjahr)

oder Metadaten, die mit Hilfe von Techniken der Audio-Merkmals-Extraktion aus den

reinen Audiodaten neu erzeugt werden, für die Anwendung der Auswahlkriterien zurück-

gegriffen werden. Dadurch ist es möglich Aufgaben wie ’Wählt Lieder aus dem gleichen

Genre!’ oder ’Wählt Lieder von demselben Künstler’ den Teilnehmern zu stellen. Die

Aufgaben sind dabei ein indirektes Werkzeug um die Musik zu steuern.

i

Dieser Prototyp für die gemeinschaftliche Musikauswahl in öffentlichen Räumen erhöht

die Interaktion und die Beteiligung des Zuhörers durch die Möglichkeit aktiv an einem

bisher komplett passiv erfahrenen Prozess teilzunehmen.

ii

Abstract

Music is an important tool to achieve a certain atmosphere in public spaces (e.g., Cafes,

Pubs, Clubs) for social gatherings. The selection of proper music tracks is usually either

done by a staff member of such a location or a professional music selector (a disc-jockey

(DJ)).

The mobility of personal media libraries is increasing. A portable music player has be-

come an everyday item and people are used to have their favorite music with them at any

time. In an usual setting a single person is determining, what a whole auditory is listening

to, degrading the listeners to passive consumers. Creating the possibility to allow ev-

ery person in the auditory getting involved in the music selection process, by using their

portable music library, would result in a totally new kind of interactive listening experience

in public spaces.

In this thesis i present a new concept for music selection in public spaces as multiplayer

game - PublicDJ, and its prototypical implementation. The concept is based upon a round

based multiplayer game, where each player can submit music tracks to a server. The

server analyses submitted tracks and selects the best matching track, based on a former

announced criteria for playback. Selection criterias can range from high-level manually

annotated audio metadata to low level-audio metadata extracted from audio using music

information retrieval techniques. This allows the implementation of tasks like for example

’Submit songs of the same genre!’ or ’Submit songs of the same artist!’, which the users

have to fulfill and can be used as a steering instrument for the music played.

This prototype for collaborative music selection in public spaces as multiplayer game,

increases interaction and involvement of listeners by providing the possibility of active

participation in a previously completely passive experienced procedure.

iii

Acknowledgments

I thank my parents for giving me the opportunity to study at the university.

I want to thank my brother Alexander for his persistent motivation

and my brother Thomas and Susanne for proofreading this work.

I thank my friends, especially Christian and Wolfgang

who gave their best to sidetrack me.

I wish to thank Stefan Leitich for allowing me to work

on Audio Playlist Generation and his continuous support.

Thanks go also to Thomas Lidy for providing me with the

audio feature extraction source code and the support he gave me.

iv

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Outline . 1

1.2.1 Theoretical Part . 2
1.2.2 Practical Part . 3
1.2.3 Conclusion . 3

I THEORETICAL PART 4

2 Metadata (ID3) 5
2.1 ID3 . 6

2.1.1 ID3v1 . 6
2.1.2 ID3v2 . 8

3 Playlist generation 11
3.1 Content-based playlist generation . 13
3.2 Metadata-based playlist generation . 15
3.3 Metadata and content-independent playlist generation 17
3.4 Combinations . 19

4 Excursion: Audio Feature Extraction 22
4.1 Rhythm Patterns (RP) - [36] . 30
4.2 Statistical Spectrum Descriptors - (SSD) [19] 31
4.3 Rhythm Histograms - (RH) [19] . 32

5 Normalization and Distance Measurement 35
5.1 Normalization . 35
5.2 Distance Measurement in Euclidean Space 37

5.2.1 City Block Distance (L1) . 38
5.2.2 Euclidean Distance (L2) . 39

v

II PRACTICAL PART 41

6 Architectural View of PublicDJ 43
6.1 Design concept . 43

6.1.1 Client Tier . 44
6.1.2 Application-Server Tier . 44
6.1.3 Data-Layer tier . 44
6.1.4 Interaction . 45

6.2 Design of a round . 49
6.2.1 Description from the Master Server’s perspective 49
6.2.2 Description from the Analysis Server’s perspective 50
6.2.3 Description from the user’s perspective (Client) 50

6.3 Usecases / Interfaces . 52
6.3.1 Admin-Master Server . 53
6.3.2 Client-Master Server . 54
6.3.3 Analysis Server-MasterServer . 55

7 Implementation details 56
7.1 Selection of the next music track . 57
7.2 Resource Management . 59

7.2.1 Load Balancing . 60
7.2.2 ETA calculation . 61
7.2.3 Transfer/Analysis Canceling Mechanism 63

8 Setup of the program environment 66
8.1 The Client - on a PocketPC . 66

8.1.1 Installation of IBM J9 Java VM on the Dell Axim x51v 66
8.2 Installation of the required packages on the workstations 67

9 PublicDJ Documentation 69
9.1 Master Server . 70

9.1.1 Threads . 72
9.1.2 Other important classes . 73
9.1.3 Configuration Files . 74

9.2 Analysis Server . 75
9.2.1 Configuration File . 76

9.3 Client-Application . 77
9.4 Admin-Application . 79
9.5 UML2 Sequence Diagrams for important Usecases 83

10 Summary 88

vi

List of Figures

2.1 Metatags: ID3 - version 1, [9] . 7
2.2 Metatags: ID3 - version 1.1 [10] . 8
2.3 Metatags: ID3 - version 2 , [11] . 9

3.1 Playlist Generation: Different basic types 11
3.2 Playlist Generation: Additional variants . 13
3.3 Playlist Generation: Combinations . 19

4.1 Feature extraction process for Statistical Spectrum Descriptors(SSD), Rhythm
Histograms (RH) and Rhythm Patterns (RP) 23

4.2 Segmentation of the audiofile and process for choosing which segments
get analyzed later and which not. 24

4.3 Illustration of a STFT applied on a 5.9ms segment 25
4.4 Process of applying the Bark Scale and the Bark Scale Table 26
4.5 Equal loudness contours for 3, 20, 40, 60, 80 and 100 phon. [36] 27
4.6 Relationship between Phon and Sone, [36] 28
4.7 Using the Fast Fourier Transformation to calculate the modulation ampli-

tude of the loudness sensation for each critical band. 29
4.8 The relationship between fluctuation strength and the modulation frequency,

[36] . 30
4.9 Only a part of the data is used when extracting Rhythm Patterns 30
4.10 Two examples for Rhythm Patterns, [18] . 31
4.11 Mean, Variance, Skewness and Kurtosis are calculated for each bark band

and the resulting 4 x 24 matrix is a Statistical Spectrum Descriptor. 32
4.12 The Rhythm Histogram is created by summing up the magnitudes for each

modulation frequency. 33
4.13 Rhythm Histograms, [18] . 34

5.1 Normalization . 36
5.2 Distance Measurement: City Block Distance - 2 Dimensions 38
5.3 Distance Measurement: Euclidean Distance - 2 Dimensions 40

6.1 Design - Three-Tiers of PublicDJ . 43
6.2 Concept: Hardware Setup . 45

vii

6.3 Interaction Concept . 46
6.4 RMI: Simplified Architecture of RMI, [24] . 47
6.5 RMI: Interfaces, [23] . 47
6.6 RMI: Architecture Layers . 48
6.7 RMI: Service discovery (1,2) and remote method invocation (3,4) 48
6.8 Round design, [16] . 49
6.9 Usecase: Admin - Master Server . 53
6.10 Usecase: Client - Master Server . 54
6.11 Usecase: Analysis Server-Master Server 55

7.1 Song selection: Concept . 58
7.2 Load Balancing: Analysis Queue and Analysis Slots 61
7.3 Load Balancing: Assignment Rules . 62
7.4 Analysis Canceling Mechanism . 65

9.1 Package Diagram Overview . 69
9.2 Package diagram Master Server . 71
9.3 State machine diagram Master Server . 71
9.4 Package diagram - Analysis Server . 75
9.5 Analysis Server Plug-in-Concept . 76
9.6 Package diagram Client-Application . 77
9.7 State Machine Diagram of the Client-Application 78
9.8 Screenshot - Client - Login and sample round 79
9.9 Package Diagram - Admin-Application . 80
9.10 Screenshot - Admin - Login . 81
9.11 Screenshot - Admin - Settings . 81
9.12 Screenshot - Admin - Prechoose File . 82

viii

Chapter 1

Introduction

1.1 Motivation

The MP3 audio file format paved the way for building up big personal music collections.

These collections got mobile with the success of MP3 players. Everyone can listen to his

or her preferred music on the go. These facts definitely have changed how we consume

music. But what if we go to a club? There you can not affect selection of music unless

the DJ in charge listens to your opinion (which seldom is the case).

PublicDJ is a prototypical implementation of a distributed round based multiplayer

game, where the length of each round is given by the length of the played music track.

Each participant can submit one music track each round and all music tracks that arrive in

time get analyzed by the server. Based on an initially announced selection criteria which

may range from high-level manually annotated audio metadata to low-level audio meta-

data extracted using music information retrieval techniques, the server chooses the best

matching track and queues it in the playlist. Several mechanisms have been developed

to cope with the limitations of time and resources and are described in greater detail in

Chapter II.

1.2 Outline

This thesis gives an overview about existing work in the field of playlist generation and

presents PublicDJ. by describing all the problems that were encountered and the solu-

1

tions that were used to solve them. Various techniques from fields ranging from audio

feature extraction over playlist generation to software engineering and user interface de-

sign were applied to overcome these problems. The main goal was to develop a usable

proof of concept that solves this challenge. The family of applications called PublicDJ is

a new approach for generating playlists the collaborative way.

This diploma thesis is split into two major parts, the theoretical part I and the practical

part II. The development of PublicDJ was the main goal of the practical part of this thesis.

The theoretical part deals with all research topics that PublicDJ touched while it was

designed, implemented and tested. The thesis concludes with a few words about the

future of PublicDJ.

1.2.1 Theoretical Part

Chapter 2 deals with the ID3-Tag which is used in the popular MP3 format. The ba-

sic layout of the different ID3-versions is explained and the evolution of this Tag-format

is described. PublicDJ was designed to analyze the metadata of MP3 files, so it was

mandatory to get a deep understanding of the stored metadata itself. It was necessary to

understand the process for extracting it properly before it was possible to use the meta-

data for any playlist generation tasks.

In Chapter 3 the research field of playlist generation is described from a top-down-

perspective. It describes playlist generation categories called Content-based Playlist

Generation, Metadata-based Playlist Generation and the self invented Metadata and

Content independent Playlist Generation and classifies the various approaches by the

method of generating playlists.

Chapter 4 is an excursion to the techniques of audio-feature-retrieval which were

used in the content-based part of PublicDJ. It is described how Rhythm patterns, Sta-

tistical spectrum descriptors and Rhythm histograms are calculated and examples are

shown which visualize the signatures of two music files of different genres. Based on the

created signatures it is possible to classify music into different genres automatically.

Chapter 5 gives a description of the applied techniques for normalization and dis-

tance measurement.

2

1.2.2 Practical Part

Chapter 6 introduces to the practical part and covers the requirements that were spec-

ified before PublicDJ was designed at all. The general design of PublicDJ, the round

design and the use case diagrams for visualization are presented in subchapters.

Chapter 7 presents the implementation details about the solutions for various en-

countered issues as used in PublicDJ.

Chapter 8 describes how to setup the program environment on a Personal Digital

Assistant (PublicDJ Client and Admin), in this specific case a Dell Axim x51v, and on the

normal workstation (PublicDJ Master Server and Analysis Server).

Chapter 9 documents the processes/threads of the PublicDJ applications and shows

UML sequence diagrams of the interaction between the processes/threads in important

usecases.

1.2.3 Conclusion

Chapter 10 outlines the current state and the possible future of PublicDJ.

3

Part I

THEORETICAL PART

4

Chapter 2

Metadata (ID3)

Metadata is data about data. Specifically, the term refers to data used to

identify, describe, or locate information resources, whether these resources

are physical or electronic. While structured metadata processed by comput-

ers is relatively new, the basic concept of metadata has been used for many

years in helping manage and use large collections of information. Library card

catalogs are a familiar example of such metadata. ([5])

An item of computer-processed metadata may describe a date, a content item or a

collection of data including multiple content items. It always depends on what kind of

data the metadata describes, it also sometimes happens that metadata describes other

metadata and in that case the described data is just seen as data and not as metadata

anymore.

Audio metadata which is stored together in the same file as the actual audio-data

makes it possible to display the name/artist/creation date of the currently played track on

the playing device (not only the filename). It allows to filter out music-tracks from a big

music collection by using defined constraints (like genre, year, artist,..). Missing audio

metadata is one of the main problems anyone writing applications for automatic playlist

generation has to face.

On the one hand there are several ways of storing audio metadata, on the other hand

there are several different formats. The most popular format so far is ID3 ([31],[30]) to-

gether with the MPEG-1 Audio Layer 3 (MP3) format. ID3 was developed as an unofficial

5

add-on for MP3 out of necessity of storing supplementary information together with the

audio data. MP3s are very small compared to WAV-files and therefore they are far better

usable for transfer over the Internet. That was another reason why MP3/ID3 got a boost

of popularity as the format was used for sharing audio files all over the world via various

file sharing tools. Later several other formats emerged (like OGG-Vorbis [45] which is

another popular format mostly adopted by the open source world) but MP3/ID3 still is the

most popular file format for audio files.

As the set of applications coded for this thesis had to deal mainly with the MP3 Format

and ID3 Metadata, ID3-Metatags are described more detailed in the following section.

2.1 ID3

The audio formats MPEG layer I, layer II and layer III (MP3) do not have a native way of

storing information about the contents except some neglectable simple yes/no parame-

ters like ’private’, ’copyrighted’ and ’original home’ (meaning this is the original file and

not a copy). A solution was introduced in 1996 by adding a small amount of extra data at

the end of the file which made it possible to get the MP3 file carry information about the

audio data and not just the audio data itself [31].

As there was far less chance to disturb decoders, the tag (as the data was called)

was placed at the end of the file. To make it easier to detect a fixed size of 128 bytes was

chosen and it was defined that the word ’TAG’ starts an ID3 TAG, which meant that there

are 125 bytes left for the actual data. So the easiest way to find a ID3v1/1.1 tag is to look

for the word ’TAG’ 128 bytes from the end of a file.

2.1.1 ID3v1

The ID3v1 tag has the following layout depicted in Figure 2.1.

Not every artist has a 30 character name so the bytes left after the artist name should

be filled with the binary value 0. The genre field is only 1 byte in size as it was not

designed to enter the full genre - it should only store a value that corresponds to a value

in a predefined list. The initial list had 80 entries ranging from 0 to 79. 1

1The programmers of Winamp, a very popular musicplayer on the Windows operating system, added 67

6

Figure 2.1: Metatags: ID3 - version 1, [9]

ID3v1.1

The initial version of ID3 was easy to implement for programmers but it was soon discov-

ered that it was nearly impossible to enhance the tags to carry even more data because

of their design. Backwards compatibility with existing software was important and there

were no fields reserved for future use, so that ID3v1.1 only brought the minor improve-

ment of an additional field for the tracknumber. As all unused fields must be filled with

zeroed bytes (0x00) Michael Mutschler2 made the assumption that all ID3v1 readers stop

reading any field when a zeroed byte is read. By shortening the comments field by 2 bytes

and zeroing the first byte there was one left for an additional field which was used to store

the track number from the CD without breaking compatibility.

additional genres in 2 steps(45 genres were introduced with ID3v2.3 [27] and additional 22 later
2Author of MP3ext [25]

7

Figure 2.2: Metatags: ID3 - version 1.1 [10]

2.1.2 ID3v2

ID3v2 was created in 1998 not being backwards compatible like ID3v1.1. It was designed

from scratch and should fix all the inflexibilities of ID3v1 and ID3v1.1. The ID3-Tag moved

from the end of the file to the beginning to allow easier Internet streaming (for example

for webradios). While the tags had a fixed size in ID3v1/ID3v1.1 they now had a variable

size which reduced the size of the new tags as long as the fields were not all completely

filled3. The tags consisted of so-called frames, each of them containing a certain kind of

metadata. Each frame can have a length of up to 16MB and the total tag size can be up

to 256MB. As shown in 2.3, ID3v2 also allows to store lyrics, pictures, general information

and much more.

A big problem for ID3-Tags was internationalization. ID3v1 Tags only allowed the ISO/IEC

8859-1 charset ([12]) which was a problem for all users in foreign countries where the

Latin alphabet is not used (which this charset is for). With ID3v2 the support for UTF-

16([42]) was added to solve that issue.

3In case the fields were all full, the ID3v2 Tag was 56 bytes bigger

8

Figure 2.3: Metatags: ID3 - version 2 , [11]

Three different versions of ID3v2 have been developed so far.

• ID3v2.2 [28] was released in March 1998. Like ID3v1/ID3v1.1 it used 3 three char-

acter frame identifiers.

• ID3v2.3 [27] was made public in February 1999 and enhanced the frame identifier

to four characters. Several frames were added and this new version introduced the

feature that multiple values could be added into a single frame by separating them

with a ’/’-character.

• ID3v2.4 [29]was released in November 2000 and so far is the latest version. Sup-

port for UTF-8 [42] was introduced which extended the character set vastly. It also

used a null byte to separate multiple values, so it was possible to use the character

’/’ in the textual data again.

So far ID3v2.3 is the most popular and therefore most widely-used version of ID3-Tags

- not because ID3v2.3 is better than ID3v2.4, but because most applications for tagging

MP3s where written before ID3v2.4. Most of the programs were able to treat ID3v2.3

correctly but could not handle ID3v2.4 properly. This is why most MP3s still use either

ID3v2.2 or ID3v2.3 tags (only early encoded MP3s still use ID3v1 or ID3v1.1 tags).

9

ID3v2 Chapters

In December 2005 the so called ’ID3v2 Chapter Frame Addendum’([26]) was made public

as an enhancement for ID3v2.3 and ID3v2.4 tags. It describes how it is possible to jump

to different positions within the audio file and how synchronized slide shows of images

and titles can be provided during playback. There is nearly no support in software for this

informal standard so far.

10

Chapter 3

Playlist generation

Playlist Generation is a field of research where some progress was noticeable in the

past years. Several papers emerged which had completely different approaches to the

problem of creating a playlist automatically.

This section gives an overview of the different main approaches to playlist generation.

When describing them in the relevant subsections some examples will be given and their

concept briefly described.

Playlist generation based on content

Content based PG

Non content based PG

Metadata
based PG

Metadata & content
independent PG

ye
s no

ye
s no

Playlist generation based on metadata

Figure 3.1: Playlist Generation: Different basic types

There are several different basic characteristics of playlist generators. The main distin-

guishing feature for playlist generation is the information method that is used for obtaining

the information on which the playlists are based on. Systems analyze the contents of the

11

music tracks, their metadata or use other information sources (3.1).

So we have three main categories for playlist generators:

• Content based playlist generation

• Metadata based playlist generation

• Content and metadata independent playlist generation

It is possible to combine these categories to improve the resulting playlists (see 3.4).

There are two additional attributes that, if applicable, can be used for distinguishing

between systems (see Figure 3.2).

• Seed song vs no seed song

• User feedback vs no user feedback

Seed songs are reference songs that are often used as an initial input by the playlist

generator. They can be used to overcome problems related to missing advance informa-

tion about the user’s listening habits as the user selects one or more songs that reflect

his/her current mood.

User feedback is a way to improve playlist generators. By considering user feedback

in the playlist generation process it is possible to customize the resulting playlist to fit to

the user’s musical preferences. Through user feedback the playlist generator can either

be improved and trained or immediately affected.

12

Seed
Song

yes no

User Feedback

yes

no

User
Feedback

No
Feedback

User
Feedback

No
Feedback

Seed Song Seed Song

No Seed
Song

No Seed
Song

Figure 3.2: Playlist Generation: Additional variants

3.1 Content-based playlist generation

Content-based playlist generators do not use any metadata but create their own informa-

tion by analyzing the raw data of the music tracks themselves. They obviously are much

more CPU-intensive than non-content-based playlist generators as they have to process

much more data. That is the reason why there are no gadgets like MP3-players or mobile

phones with built-in content-based playlist generators available.

On the one hand higher CPU-consumption is a disadvantage (maybe only a tempo-

rary one as computing power increases steadily) on the other hand it is an advantage to

be able to classify a song by its raw music data. Content-based playlist generators create

their own set of metadata for the analyzed tracks and are therefore independent from the

potentially wrong metadata that is stored within the music files.

The main problem to solve in content-based playlist generation is actually a problem

closely related to audio-analysis. The raw music data itself does not tell directly how

different the music track is compared to another in terms of genre, rhythm etc. Useful

information has to be extracted and to be interpreted in order to compute some sort of

representation of the audiofile. Depending on how this representation is used later it

might be a simple value up to a complex vector containing several computed low and

13

high level audio descriptors. The main questions here are how to concentrate the raw

music data, how to extract information and how to interpret the gained information for

generating playlists. When creating a content-based playlist generator one first has to

define which information which the generator is based on. In a second step one has to

find methods and heuristics for extracting the information from the music file.

The first time used in [20], a ’signature’ is frequently computed for every music track

involved in the playlist generation process. A signature is, compared to the raw music

data, a representation of the analyzed music track on a higher level. How a signature is

created depends totally on how it is used afterwards and its quality is highly dependent

on the steps involved in creation.

Having a signature as a representation of every music track allows comparing the

signatures. This enables an algorithm to compare how similar two music tracks are by

applying a metric on the two respective signatures. The result is a distance, depending

on the implementation or method ranging from a vector with multiple values to a simple

value, representing the difference between the two music tracks. When several songs are

compared to a reference song then the song with the smallest distance is, depending on

the quality of the used process of audio feature retrieval, the most similar one regarding

the compared feature or combination of features. Based on this information it depends

on the implementation how playlists are actually arranged.

In [21] Beth Logan tried to enhance her previous work by adding graph based playlist

generation and automated relevance feedback. Although the ideas of both extensions

were promising she noticed that there had to be some problem with the distance measure

as the playlists did not improve, they got even worse than without.

In [43] for example the Gaussian Mixture Model (GMM) is used as a signature. It

uses a seed song as reference and transforms the problem of playlist generation into

a traveling salesman problem. The songs are connected via edges, the length of the

edges represent the difference between two songs. By solving the problem iteratively the

algorithm will return a playlist containing n songs in a special order which fit to the seed

song. No user feedback is employed here.

14

3.2 Metadata-based playlist generation

Metadata-based playlist generators work with metadata that is stored in the music file.

There are several advantages of using metadata for playlist generation:

1. Accessing metadata causes low CPU load

2. Metadata might be very accurate regarding genre, author and year

3. Most audiofiles shared via filesharing tools are music files with metatags (mp3, ogg)

Metadata usually can be accessed very quickly without putting much load on the CPU.

This makes it an option for implementing automatic playlist generators directly as appli-

cations that run on various mobile devices as these devices will be able to provide the

required processing power.

Many digital audio players and several applications on mobile phones are already able

to read the ID3-Tags (and sometimes even the Ogg Vorbis Tags) enabling them to access

the metadata of the files and using it for filtering following some user defined constraints.

This means that it is easier to find the music track the user is searching for.

The drawbacks of Metadata-based playlist generation are:

• Metadata can be missing

• Metadata can be wrong

It can never be assumed that metadata is available for every music track and therefore

precautions have to be made to avoid that the playlist generator gets into a inconsistent

state because of missing metadata. Either it has to be made sure that metadata is avail-

able for all possible tracks (several playlist generators use an external database for stor-

ing the metadata) or there should be a special treatment for all files that lack metadata,

so that the playlist generation application does not lock up. If metadata is stored in the

header of the music-file itself (like ID3 in MP3s) it is good if it is accessible at all. This

can not be assumed as support for new technologies and new formats need to be added

either natively or via external libraries to program languages before a playlist generator

can be written in that language at all.

15

Another problem is when the metatags contain wrong data. Especially files acquired

via filesharing tools over the Internet are likely to have missing, wrong or partly filled

metatag. This problem can not be solved and sometimes may cause some confusion

when using metadata based playlist generators. Files with wrong metadata mess up the

resulting playlist as completely different songs than the chosen ones are added.

In [2] an approach was presented that should allow generating more efficient playlists

with ’arbitrarily complex constraints’, even with a vast number of titles. Basically the idea

was to see the problem of creating a good playlist as an optimization problem. To solve

it, cost functions are used as a representation for the problem of finding equivalent songs

and adaptive search is applied to find the songs with the lowest total costs. Musical

metadata, such as genre, tempo, duration, artist, year are used as constraints. The costs

of the constraints represent how bad the constraint is satisfied, for a given assignment of

variables. At first the constraints were defined, then an initial random playlist is created,

then the initial costs for the constraints are calculated and the problem is solved iteratively

like a cost optimization problem.

[38] presents AutoDJ - it is a playlist generation system that creates playlists based on

one or more seed songs automatically. It uses metadata from the available music song

pool as inputs it applies Gaussian Process Regression to create a function representing

the user’s preferences. Based on this function playlists are generated. When reviewing

the playlists users can remove files from it and this has direct impact on this function and

on future generated playlists. So AutoDJ uses seed songs together with user feedback.

The idea of PATS ([37]) is to create playlists by choosing a seed song from a pool of

songs which have been analyzed in advance. Then all songs are grouped with dynamic

clustering method for grouping songs based on their attribute similarity. The authors

of PATS defined that the context-of-use is important as while the same track might fit

perfectly to a party it might be totally inadequate when having a candlelight dinner. PATS

selectively weights attribute-values, as not all attribute-values are equally important in

every context-of-use. An inductive learning algorithm reveals the most important attribute-

values for a context-of-use from preference feedback that the user gives over time. The

link between the context-of-use and a playlist is established by choosing the seed song

16

as it will represent the current emotional state of the user and therefore also the context-

of-use. Implicit user feedback therefore is assumed to be given by the chosen seed song.

An approach where more than one person is involved in generating playlists is the

software called audioscrobbler1, used by the Internet radio station LastFM2. A profile

is created for every user and it changes over time depending on the user’s listening

habits. Last.FM now additionally allows users to submit ratings for all songs3 and there-

fore enables an additional way for the user to impact this profile via user feedback. A

big database stores all the input and collaborative filtering is used to calculate relation-

ships and recommendations based on the music that is listened to and rated by the

users. These relationships are of a high quality as as an algorithm calculates these re-

lations/recommendations individually for each user based on profiles and ratings from

other users which share the same musical taste.

3.3 Metadata and content-independent playlist generation

Metadata and content independent playlist generators are usually creating playlists on

the basis of user feedback. This feedback can range from a real scale-based rating

over manually skipping of disliked music tracks to motion sensors which are tracking the

percentage of the audience that is dancing.

The advantages of these approaches is that it is not necessary to extract any form of

data from the music tracks (like in most metadata-based approaches) and that no deep

analysis of the audio content is needed (like in all content-based approaches). But a new

problem arises with this advantages: there is no advance information. Content-based

and metadata-based approaches extract information from the analyzed music tracks in

order to find common attributes by which the music tracks can be classified. Based

on this information the playlists are generated and songs from within the same music

class are selected for a playlist. Unluckily this causes bad initial playlists for nearly all

metadata and content independent playlist generators. Information for basing the playlists

on is collected over time, depending on the user’s activities. When enough information is
1http://www.audioscrobbler.net/
2http://last.fm
3Last.FM uses the three buttons ’Love’, ’Skip’ and ’Ban’ as inputs

17

http://www.audioscrobbler.net/
http://last.fm

available the generated playlists will be better in terms of how accurate the user’s taste

is met. When little information is present it is likely that the user’s taste is not met at all.

Therefore a training phase might be a way of overcoming this problem.

In [35] the author tried to generate dynamic playlists based on the skipping behavior

of the user. The user’s only possible method of interacting with the player is a skip-button;

from his or her skipping behaviour new information about the user’s music preferences is

gained. All available songs are classified in advance, then music tracks similar to those

that were skipped are removed from the playlist and songs similar to accepted ones

are added. Because of its design the player does not create suitable playlists from the

beginning as it first has to collect information about the user’s listening habits.

A very similar approach was presented in [1], but instead of tracking the skipped

songs it takes the complete playlist history into account and creates a ’listener model’(a

profile of listening habits), which is then used for creating playlists that meet the user’s

demand. This can be helpful if there is no time for creating a playlist manually.

[8] presents a method to create ratings automatically for songs/artists in realtime by

analyzing the request history of a webradio station. It assumes that it is possible to

request a specific song or a specific artist on the webradio’s webpage. The more often a

song or an artist is requested the higher is the songs/artists rating. The higher the rating

is the more likely it is that the specific song or a song of the specific artist is played on the

webradio.

[39] uses audio streams that have been generated by professional DJs, which the

author calls Expertly Authored Streams (EAS), like webradios as a source for relations

between songs. The order of the songs from EAS are used as a source for an undirected

graph where the songs are the nodes and the arcs connecting the nodes are the rela-

tionship between those two songs. The weight of the arc is defined by how often the two

songs are played after each other and the author assumes that it represents similarity

between those two songs. After this has been done for enough songs (the author uses

several tens of thousands songs) a playlist can be constructed after choosing a seed

song. Depending on the intended length of the playlist songs directly connected to the

seed song are added to playlist with a likelihood proportional to the weight of the arc. The

same procedure is repeated for the selected songs until the playlist is long enough.

18

3.4 Combinations

Content based PG
Metadata
based PG

Metadata & content
independent PG

Combinations

Figure 3.3: Playlist Generation: Combinations

There are several combinations of the different basic concepts which emerged be-

cause it was discovered that better playlists can be created easier when more than one

basic concept is involved. Some basic concepts have clear disadvantages in areas where

other concepts are very good. Content-Based and metadata-based playlist generators

have the advantage of being able to obtain advance information from music tracks, con-

tent and metadata independent approaches basically use user feedback to improve the

playlists over time with the goal of matching the user’s taste better and better. So some

approaches tried to create even better playlists by joining complementary concepts.

[15] is an extension of the former mentioned [43] as it combines the audio signal-

based similarity with web-based musical artist similarity to accelerate the task of the

automatic playlist generation. For every artist a Google query is executed and the 50

top-ranked web pages are retrieved, HTML tags and common terms are removed (so

that only about 10.000 terms remain) and then all similar terms are counted. The result

is one vector per artist that contains the term weights. After normalizing the term weights

(so the vectors have the length 1) they are used for comparing the artists with each other.

The similarity of artists is seen as an indicator for similarity of their songs. Only songs

from similar artists are compared using the audio signal-based approach where playlist

generation is seen as a traveling salesman problem. Following the evaluation of the

paper this approach leads to improved quality and a significantly decreased amount of

necessary calculations compared to the only audio signal-based method.

[40] shows an approach how to create a playlist interactively by clicking on an artist

19

map which is a representation of an entire music collection. The artist map itself was

published in [41] and it is created based on metadata (artist, album, song name and

publication year) which gets fetched from web-services and features (tempo and tex-

ture/spectral information) that are computed directly from the music itself. There are four

different attributes (mood, genre, year and tempo) where the user can choose two to cre-

ate a 2-dimensional artist map. The attributes label important positions on the map to

provide context (tempo: very slow, slow, medium, fast, very fast; year: <1960,60-70,..90-

00,2000+ ; genre: Rock, Popular, Dance, Alternative...) and the artists are represented

as small dots. When zooming in the names of the artists get visible as well. The users

can set playlist points on this artist map at any zoom-level and the application creates

playlists by adding songs from the artists that are near to the playlist points. This way

users can control on which way the playlist drifts from the first to the last song.

In [34] an approach was presented that combined both content-based playlist genera-

tion (using the music similarity measure described in [33] with information from fluctuation

patterns [32]) with metadata and content independent playlist generation [35]. A java ap-

plication was implemented to allow easier evaluation of Music Information Retrieval (MIR)

technologies (especially content-based music similarity measures and playlist generation

heuristics) in everyday music consumption.

Part II(Chapter 6 - 10) presents PublicDJ, a tool that implements both metadata based

and content based playlist generation techniques. It also has the possibility of exten-

sions which enables anyone to add support for other music analysis methods. Regard-

ing content based playlist generation a very similar metrics was used with information

of Rhythm Patterns (also called Fluctuation Patterns [32]), Statistical Spectrum Descrip-

tors and Rhythm Histograms ([17],[18]) . PublicDJ is a tool for music selection in public

spaces. It is a round based multiplayer game. It starts playing a track that was prede-

fined by the Admin-application and then accepts music tracks transfered via WLAN from

Personal Digital Assistants, analyzes the tracks and just before the currently track ends

all submissions are compared. The music track with the lowest difference to the cur-

rently played track, regardless if metadata-based or content-based analysis was used,

gets played next. Implicit user feedback is given through the collaborative preselection

20

of the music tracks4 each round because the pool of music tracks consists only of tracks

that were submitted in that round.

4The music tracks were brought along by the participants themselves

21

Chapter 4

Excursion: Audio Feature

Extraction

The family of applications from PublicDJ has several options how playlists are generated

from submitted music, including both a metadata-based and a content-based approach.

This chapter is dedicated to the content-based techniques that are used and where the

Java sourcecode was provided by Dipl.-Ing. Thomas Lidy1. He also provided the imple-

mentation of Rhythm Patterns, Statistical Spectrum Descriptors, Rhythm Histograms and

classes for distance measurement, his work can be seen as the underlying core regarding

audio feature extraction. PublicDJ (or to be more exact the Analysis Server application)

is a wrapper around this core.

To calculate Rhythm Patterns, Statistical Spectrum Descriptors or Rhythm Histograms

some common tasks (Pre-Processing, Segmentation and S1 - S6 in Figure 4.1) have to

be done.

1Dipl.-Ing. Thomas Lidy, Vienna University of Technology, Institute of Software Technology and Interactive
Systems, Information and Software Engineering Group

22

Pre -Processing

Segmentation

Power Spectrum (STFT)

Specific Loudness Sensation (Sone)

Equal Loudness (Phon)

Sound Pressure Level (dB)

Spectral Masking

Critical Bands (Bark scale)

Fluctuation Strength Weighting

Modulation Amplitude Spectrogramm (FFT)

Filtering /Blurring

S 1

S 2

S 3

S 4

S 5

S 6

R1

R2

R3

Statistics

Aggregate

SSD

RH

RP

Audio Signal

Feature Extraction

Figure 4.1: Feature extraction process for Statistical Spectrum Descriptors(SSD), Rhythm
Histograms (RH) and Rhythm Patterns (RP)

Pre-Processing

The audiofile has to be a 44100 Hz / 22050 Hz / 11025 Hz WAV-File or an MP3 file with

the same frequency. If it is something else it needs to be converted because the segment

sizes of the following step are only defined for these three frequencies.

23

~ 5.9s

Audio Signal

Segments skipped
(lead -in, lead -out)

Step -width

Segments that will be analyzed

I.

II.

III.

Figure 4.2: Segmentation of the audiofile and process for choosing which segments get
analyzed later and which not.
I. Segmentation of the audiofile. The segment size depends on the sampling frequency.
It is 216 for 11 kHz, 217 for 22 kHz, and 218 samples with 44 kHz, which means it is always
about 5.9 seconds
II. One or more segments are skipped at start and end (in the figure only 1 segment at
start and end)
III. Segments are recurrently skipped with a preconfigured skip rate (in the figure this skip
rate is 2)

Segmentation

At first the whole file is partitioned into short segments of about 6 seconds. Extracting the

audio features from all segments would increase time and mandatory processing power

but the net benefit would be relatively low as the analysis of a fraction of segments already

leads to very good results. Especially segments at the start and at the end often contain

silence which would worsen the results. Figure 4.2 illustrates the segmentation process.

S1 - Power Spectrum (STFT)

By using the short time Fast Fourier Transform (STFT) with a window size of 23 ms and

an applied Hann-Window with 50 percent overlap a spectrogram is calculated for every

segment. Because of the Hann-Window with 50 percent overlap this results in 511 small

segments. The amount of samples of the 23 ms segments depend on the sampling

frequency - 256 samples at 11 kHz, 512 samples at 22 kHz, 1024 samples at 44 kHz.

24

Figure 4.3: Illustration of a STFT applied on a 5.9ms segment. Window size is 23 ms and
a Hann-Window with 50 Percent overlap is used. The STFT divides the segment further
into 23 ms parts, modifies the amplitude of them following the Hann-Window, then Fast
Fourier Transformations (FFT) are computed and finally the result gets stored in a vector
with 511 rows and variable columns depending on the frequency of the analyzed file.

Therefore the result of this step is a vector with 511 rows and 256/512/1024 columns.

S2 - Critical Bands (Bark Scale) - [4]

The Bark scale is a psycho-acoustical scale which ranges from 1-24 and corresponds to

25

.

.
.....

.

.

. ...

.

.

Columns :
11025 Hz
22050 Hz
44100 HzRows

1 2 3 4 5 6 7 118 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24

1 : 0 – 100
2: 100 – 200
3: 200 - 300
4: 300 – 400
5: 400 – 510
6: 510 – 630
7: 630 – 770
8: 770 – 920

9: 920 – 1080
10 : 1080 – 1270
11 : 1270 – 1480
12 : 1480 – 1720
13 : 1720 – 2000
14 : 2000 – 2320
15 : 2320 – 2700
16 : 2700 – 3150

17: 3150 - 3700
18: 3700 – 4400
19: 4400 – 5300
20: 5300 – 6400
21: 6400 – 7700
22: 7700 – 9500
23: 9500 – 12000
24: 12000 - 15500

.

.

1 2 3 4 5 6 7 118 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24

.....

Bark Scale critical band ranges (in Hz)

Rows

Columns

.

256
512

1024511

24

511

Figure 4.4: Process of applying the Bark Scale and the Bark Scale Table

the 24 critical bands of hearing. By applying the Bark scale to the spectrogram 24 fre-

quency bands are accumulated (the data vector per 23 ms segment is transformed from

511 rows and 256/512/1024 columns to 511 rows and 24 columns).

S3 - Spectral Masking - [4]

26

Figure 4.5: Equal loudness contours for 3, 20, 40, 60, 80 and 100 phon. [36]

Optionally a Spectral Masking spreading function is applied to the signal. The occlusion

of a quiet sound by a louder sound during simultaneous presentation is called Spectral

Masking.

S4 - Sound Pressure Level (dB) - [4]

The loudness is calculated in decibel relative to the threshold of the sense of hearing by

transforming the spectrogram to the decibel scale.

S5 - Equal Loudness (Phon) - [4]

The equal loudness levels are calculated from the sound pressure levels using the unit

Phon. The human ear does not directly translate the sound pressure level (in decibel)

to hearing sensation (in phon), it is not a linear relationship. In Figure 4.5 you can see

several equal loudness contours that show which frequencies our hearing sensation is

most sensitive to. Notice the nearly equal ascent of all curves from 500 Hz and that the

human ear is most sensitive to frequencies from 2kHz to 5 kHz.

27

Figure 4.6: Relationship between Phon and Sone, [36]

S6 - Specific Loudness Sensation (Sone) - [4]

The loudness is calculated from Phon to Sone. The loudness of 1 kHz with a sound pres-

sure level of 40 dB is defined as 1 Sone. If sound A is twice as loud as another sound B,

sound A has twice the Sone value as sound B. The relationship between Phon and Sone

can be seen in Figure 4.6.

All previous steps result in a so called Bark scale sonogram, a power spectrum which

describes human loudness sensation.

R1 - Modulation Amplitude Spectrogram (FFT)

By using a Fast Fourier Transformation (FFT) the modulation amplitude of the loudness

sensation is calculated of each critical band for each 6 second segment. This results in

a Modulation Amplitude Spectrogram. As an FFT is only defined for a datasets with a

length of a power of an additional cell is added and filled with zeros. Figure 4.7 illustrates

how the FFT is applied on the data and Figure 4.9 shows which parts of the resulting

matrix is used for further processing. In this step the size of the matrix changes from 24

x 511 to 24 x 60.

R2 - Fluctuation Strength Weighting - [4]

The effects of amplitude modulation on our sensation is depending on the frequency. Fig-

ure 4.8 shows the relationship between fluctuation strength and modulation frequency.

The coefficients calculated through the FFT in step R1 are weighted according to this

psychoacoustic model which results in a boost around 4 Hz.

28

1 2 3 4 5 6 7 118 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24

.....
.

Rows

Columns24

511 1
1

1
1

1

1

1 1 1
.
.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Fast Fourier Transformation (FFT)

511

.....
.

.

.

512

Columns24

512 .

.

512 FFTs are only defined for datasets
with a length equal to a power of two
-> 2^9 = 512 is the next valid length -
therefore an additional zero is added

Rows

´0´

Figure 4.7: Using the Fast Fourier Transformation to calculate the modulation amplitude
of the loudness sensation for each critical band.

R3 - Filtering/Blurring - [36]

The last feature extraction step is the application of a gradient filter and Gaussian smooth-

ing as it may improve likeness of the resulting Rhythm Patterns.

29

Figure 4.8: The relationship between fluctuation strength and the modulation frequency,
[36]

Columns24

512
Rows

....

....

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

2

512

DC -component
(neglected)

Row Nr.

3
4

61

60
59

62
63

511

510
509

508 Too fast fluctuations
(neglected)

Rhythm Pattern

Figure 4.9: Only a part of the data is used when extracting Rhythm Patterns.
Row 1: This Row is the DC-component, which should be zero if an WAV-audiofile is
centered around the zero line and therefore can be neglected.
Row 2 - 61: This rows are the actual Rhythm Patterns.
Row 62 - 512: All values over row 61 are neglected because they are seen as ’too fast
fluctuations’.

4.1 Rhythm Patterns (RP) - [36]

The rhythm pattern contains information on how strong and fast beats are

played within the respective frequency bands. ([36])

Rhythm Patters (RP) are the result if all steps from the initial pre-processing steps to

30

(a) Classical: Johann Strauß (b) Rock: Queens Of The Stone Age

Figure 4.10: Two examples for Rhythm Patterns, [18]

the end of R3 are applied (Figure 4.9).

Figure 4.10 shows two examples. The classical piece called ’Blue Danube Waltz’ by

Johann Strauss and rock piece named ’Go With The Flow’ by The Queens Of The Stone

Age are compared. The classical composition has a big red and yellow area in the area

of low modulation frequencies and lower critical bands, something which is typical for

classical music. The result for the rock song shows two distinctive small areas at about

5.3 Hz. The area at the lower bands represents the bass and the area in the higher bands

represents e-guitars and percussions.

4.2 Statistical Spectrum Descriptors - (SSD) [19]

After applying all steps including S6 it is possible to calculate the Statistical Spectrum De-

scriptors (see Figure 4.11). To describe the fluctuations within the critical bands a num-

ber of statistical moments are calculated per critical band. The mean, median, variance,

skewness, kurtosis, min- and max-value are calculated for each critical band and then

the Statistical Spectrum Descriptor is extracted for each segment. The complete SSD

feature vector is then generated by calculating the mean or the median of this descriptors

over all segments. Regarding to evaluations in [19] it is possible for SSD features to sur-

pass the performance of Rhythm Pattern features if used for music genre classifications

31

depending on the used audio collection.2

Columns24

511
Rows

....

.

.

.

.

.

.

.

.

.

.

Mean

Variance

Skewness

Kurtosis

Columns24

4
Rows

Statistical Spectrum
Descriptor

Figure 4.11: Mean, Variance, Skewness and Kurtosis are calculated for each bark band
and the resulting 4 x 24 matrix is a Statistical Spectrum Descriptor. Min- and max-value
were not used in Thomas Lidy’s implementation.

4.3 Rhythm Histograms - (RH) [19]

Rhythm Histogram features are a descriptor for general rhythmic characteris-

tics in a piece of audio. A modulation amplitude spectrum for critical bands

according to the Bark scale is calculated, equally as for Rhythm Patterns.

Subsequently, the magnitudes of each modulation frequency bin of all 24
2In [19] Statistical Spectrum Descriptors outperformed Rhythm Patterns when compared with the GTZAN

and ISMIRgenre collections.

32

critical bands are summed up, to form a histogram of ’rhythmic energy’ per

modulation frequency (see Figure 4.12). ([18], page 35)

Columns24

512
Rows

....

.

.

.

.

.

.

.

.

. .

Adding up
all values
per row

Rhythm
Histogram

Rhythm
Pattern

Figure 4.12: The Rhythm Histogram is created by summing up the magnitudes for each
modulation frequency.

The Rhythm Histogram feature set is created by computing the median of the his-

tograms of every processed segment. Figure 4.13 compares the Rhythm Histograms of

a classical piece and a rock piece, the same music tracks as before). The classical piece

generally has less energy and has most of it in the low modulation frequencies. The rock

piece has a distinct peak at about 5.3 Hz.

33

(a) Classical: Johann Strauss (b) Rock: Queens Of The Stone Age

Figure 4.13: Rhythm Histograms, [18]

34

Chapter 5

Normalization and Distance

Measurement

In PublicDJ (if music is compared on basis of content) all music tracks that are submitted

each round are analysed and the result of each track is stored in a seperate vector. At the

end of each round each vector is, after a normalisation step, compared with the vector

of the song that was played in that round. Depending on the chosen mode one or more

tracks are added to the playlist.

There are many algorithms for measuring distances available, but as only the City

Block Distance and the Euclidean Distance are used in the application PublicDJ I only

cover these two.

5.1 Normalization

In PublicDJ signatures are computed for every music track. Each signature is stored in

its own vector containing values each representing the characteristics of a small part of

the music track. All signature vectors have the same length and they contain real num-

bers. Before the distance between two signatures can be computed it is necessary to

normalise all the signatures. If we look at the i-th field in all vectors and check in which

range the values are and then compare it to a range from any other field it is noticeable

that it is different. It is necessary that the values in all fields of the signatures are in the

same range so all fields have the same maximum influence on the final distance value.

35

The applied approach for normalization was to compute the maximum value of all signa-

tures for the i-th field, afterwards to divide every value in the i-th field by this maximum

value (as absolute value) and do this for all fields. This results in vectors that all have

values between -1 and 1 in every field.

3

-2

3

-7

-4

-1

6-3

3

-2

3-7

4

1

-6

-2 3

7

4

16

-2

3

7

-4

1

6

3 4 276 7 3 77

Signature 1

Signature 3

Signature 2

Max Value
(absolute value)

3 71 12 3 16 4Signature 1
(normalised) 3 6 7 4 3 7 7 2 7

i => 2 40 6531 7 8 . ..

- ---

Figure 5.1: Normalization

36

5.2 Distance Measurement in Euclidean Space

In Euclidean Space the distance between two points is normally computed with the Eu-

clidean Distance (or also called 2-norm distance and L2 distance). Additionally the City

Block Distance (also called 1-norm distance or L1 distance) was used to provide a differ-

ent distance computation for comparison.

The Minkowsky Distance1 is defined as

dρ−norm =

(
n∑
i=1

(pi − qi)ρ
) 1

ρ

=⇒ Lρ (5.1)

The City Block Distance (L1, ρ = 1), the Euclidean Distance (L2, ρ = 2) and the

Chebyshev Distance (L∞, ρ =∞) are special variants of the Minkowski Distance.

d1−norm =
n∑
i=1

|pi − qi| =⇒ L1 (5.2)

d2−norm =

(
n∑
i=1

(pi − qi)2
) 1

2

=⇒ L2 (5.3)

d∞−norm = limρ→∞

(
n∑
i=1

(pi − qi)ρ
) 1

ρ

=⇒ L∞ (5.4)

1The mathematic formulas 5.1 - 5.4 are taken from [3]

37

5.2.1 City Block Distance (L1)

The City Block Distance is similar to the Euclidian Distance as it also is summing up

the absolute distances between two vectors (pi,qi), the distinction is that it is doing it on

a compound by compound basis. The difference is not squared and after summing up

the square root is not calculated, which is why it can be seen as a linear variant of the

Euclidian Distance as described afterwards.

It is also often called Rectilinear Distance, Manhatten Distance or L1 distance.

dcb =
n∑
i=1

|pi − qi| (5.5)

For two 1-dimensional points (n = 1) P = (px) and Q = (qx) (as used in PublicDJ) it

means that you only have to calculate the difference between the 2 values:

dcb−1dim = |px − qx| (5.6)

Considered in 2 dimensions (n = 2, P = (px, py) and Q = (qx, qy)), the City Block

Distance is like going from one point of a city to another but with the constraint that you

can only walk on the street grid. So the actual City Block Distance would be

dcb−2dim = |px − qx|+ |py − qy| (5.7)

A

B

4 units

3 units

Figure 5.2: Distance Measurement: City Block Distance - 2 Dimensions

38

5.2.2 Euclidean Distance (L2)

The Euclidean Distance is a very commonly used for measuring distances, thats why it

also is often called standard metric or L2 metric. It can be considered to be the shortest

distance between two points. In principle it is the square root of the sum of the squared

distances of two corresponding vector values (pn,qn).

In an Euclidean n-space the distance between two points P = (p1, p2, ..., pn) and

Q = (q1, q2, ..., qn) is defined as

de =
√

(p1 − q1)2 + (p2 − q2)2 ++ (pn − qn)2 =

√√√√ n∑
i=1

(pi − qi)2 (5.8)

For two one-dimensional points P = (px) and Q = (qx) (n = 1) (as used in PublicDJ)

this means:

de−1dim =
√

(px − qx)2 = |px − qx| (5.9)

The absolute value is used as distance is seen as a scalar value that is unsigned.

Considered in 2 dimensions (n = 2, P = (px, py) and Q = (qx, qy)) it is basically the

same as the Phytagorean theorem:

de−2dim =
√

(px − qx)2 + (py − qy)2 (5.10)

39

A

B

pythagorean distance
(shortest distance

between two points)

Figure 5.3: Distance Measurement: Euclidean Distance - 2 Dimensions

40

Part II

PRACTICAL PART

41

The practical part of this diploma thesis deals with a group of applications called

PublicDJ which together form a distributed round based multiplayer game.

This following requirements had to be met:

• There should be a client for users on a Personal Digital Assistant (PDA) with an

intuitive user interface.

• There should be a server where the clients could connect to and which implemented

all of the application logic.

• Communication should take place over Wireless LAN.

• Users should be able to send MP3s to the server.

• The server should analyze all submitted tracks and map the result to a single sig-

nature which can be used for comparing the MP3s with the currently played track

and with all other user submissions.

• The song which fits best to the currently played song should be played in the next

round and become the next reference song.

• The PDA-client-applications should work on as many devices as possible.

New mobile devices are often hard to use at the beginning because the user has

either to dig through manuals or the limited user interface was designed in a bad way.

One of the main reasons for this is that often there is no universal operating system and

software for the area of mobile devices. The programming language Java ([22]) provides

support for platform independent programming. Because of this advantage Java was

chosen for implementing all PublicDJ applications.

The following chapters cover the program design of PublicDJ (Chapter 7), the use-

cases (Chapter 8), solutions of various encountered issues (Chapter 9) and a detailed

documentation about all processes and threads as used in PublicDJ applications.

42

Chapter 6

Architectural View of PublicDJ

6.1 Design concept

The complete concept is similar to a Three-Tier architecture (see Figure 6.1)

Analysis Server

Client

Master Server

Speakers

AdministrationClient

Client Tier
Application -
Server Tier

Data -Layer Tier

Figure 6.1: Design - Three-Tiers of PublicDJ

43

6.1.1 Client Tier

The client (called ’Client’ later) runs on a Personal Digital Assistant (PDA) with Wireless

LAN and a Java-Virtual-Machine (JVM). As Remote-Method-Invocation (RMI) is manda-

tory for the communication it must be supported by the JVM. The Client also runs on a

normal computer with a proper JVM installed.

An additional administrative client (called ’Admin’) was developed for managing the

main server from a PDA as well. This application implements a user interface for manag-

ing the server, which runs without graphical user interface by default. The administrative

client can run on the same or any other computer on the network.

6.1.2 Application-Server Tier

There is a central server (called ’Master Server’) which implements the complete appli-

cation logic that also controls the communication between all components. All PublicDJ

components connect to and are controlled by the Master Server.

6.1.3 Data-Layer tier

The data-layer of PublicDJ implements the processing of music data. It is called ’Anal-

ysis Server’. Here all the algorithms for building signatures of music files are applied.

The reason for calling this part data-layer is that this part pf PublicDJ is analyzing the

audiofiles. It is the only component that actually accesses the raw audio data and uses it

for computations. The Master Server in contrast only accepts the files and stores them,

but does not process raw music data.

During the runtime of the application several music files are analyzed. The Server

is computationally relieved by outsourcing the CPU-intensive task of analyzing music

data to one or more separate servers, the Analysis Servers. They can run on the same

physical machine but they can also run on different ones. It is even possible to use a pool

of Analysis Servers that are located in the Internet

The hardware setup for this concept is visualized in Figure 6.2.

44

Wireless
Lan

Analysis Server
PDAs

(Clients)

Master Server

La
n

La nSwitch
(possibly Internet)

Speaker

AdministrationClient

Lan

.
1 - n

La n

Figure 6.2: Concept: Hardware Setup

6.1.4 Interaction

There are four applications that interact with each other. Figure 6.3 visualizes the inter-

action of the individual PublicDJ components as well as users. All applications interact

only with the Master Server.

Excursion: Remote Method Invocation (RMI)

In most programming languages it is possible to implement remote invocations between

computer programs with Remote Procedure Calls (RPC). RPC is a paradigm for imple-

menting the client-server model of distributed computing. By passing messages to a

server application it is possible to trigger the execution of methods (in the past also called

functions, subroutines or procedures) on a different computer. These messages include

which procedure to execute and which parameters are passed to the procedure.

45

Analysis ServersPDAs (Clients)

Master Server

Speakers

Administration
Client

.
1 - n

Figure 6.3: Interaction Concept

JAVA’s Remote Procedure Call mechanism is called Remote Method Invocation (RMI).

Additionally to calls of remote methods with primitive parameters like RPCs, RMI allows

to pass objects as parameters. There is no difference in the treatment of locally created

or remotely created objects it is possible to execute methods of remote objects. Therefore

it is even possible to execute methods of remote objects locally.

RMI separates the definition of behaviour and the implementation of that behaviour.

The code that defines the behaviour (defined in the interface) and the code that imple-

ments the behaviour are separated. RMI allows both to run on different network nodes.

In RMI a Java Interface is used to define a remote service and the implementation of

this remote service is defined in a class. One of Java’s main principles is that interfaces

define behaviour and classes define implementation. RMI is consistent with that principle.

Figure 6.4 shows this separation.

46

Figure 6.4: RMI: Simplified Architecture of RMI, [24]

Figure 6.5: RMI: Interfaces, [23]

A Java interface itself does not contain executable code, it is only a definition of a

service. Two classes are allowed to implement the same interface in RMI. The first one

is the implementation of the behaviour which is executed on the server. The second one

runs on the client and it acts as a proxy for the remote service (see figure 6.5). When a

client makes a remote method call on the server it actually calls a method on the proxy

object. RMI forwards the request to the remote JVM resulting in an execution at the server

implementation. Return values provided by the remote service are returned to the proxy

and then to the client’s application.

Java’s RMI consists of three abstraction layers. The first one is the Stub and Skeleton

layer which catches all method calls made by the client to the interface and redirects these

calls to a remote RMI service. The second layer interprets and manages all references

made from clients to the remote service objects and is called Remote Reference Layer.

The third one, called the Transport Layer provides basic connectivity and it is based on

TCP/IP connections between computers in a network.

Clients find remote services by using a naming or directory service. RMI can use

47

Client Program Server Program

Stub

Remote Reference Layer

Skeleton

Remote Reference Layer

Transport Layer

RMI
System

Figure 6.6: RMI: Architecture Layers

Client

1.) Naming .rebind ()2.) Naming .lookup

3.) Calling method with
parameters

4.) Replying with
return value or exception

Remote
Interface

Registry

Server

Remote
Object

Figure 6.7: RMI: Service discovery (1,2) and remote method invocation (3,4)

different directory services like the Java Naming and Directory Interface (JNDI) or the

Lightweight Directory Access Protocol (LDAP). A simple service called RMI Registry,

rmiregistry, is included in RMI. Servers announce their service by registering a Remote

Object at the RMI Registry with a unique name. The client then looks up this name at

the RMI-Registry and receives a reference to the remote object which has to fit to the

client’s remote interface. By invoking a method of the remote interface a method of the

48

corresponding remote object is executed on the server and finally either a return value or

an exception is sent back. Figure 6.7 illustrates this process.

6.2 Design of a round

A round based design was chosen for enabling interactivity between PublicDJ and the

participating people. With the start of each new round a new music track which was

selected by the Master Server in the previous round is played. Only the first track needs

to be chosen manually in most modes. The length of a round varies because it is equal to

the length of the music track that is played in that round. From the start of the round until

a certain point in time (which is chosen by the Master Server) participating people can

transfer musictracks to the Master Server. Its possible that the Master Server cancels the

transmission (because there is not enough time to finish the file transfer and to analyze

the file). After the transfer of a music file is finished the users have to wait until the start

of the next round to find out which submission was chosen.

Figure 6.8: Round design, [16]

6.2.1 Description from the Master Server’s perspective

Every new round a new musictrack (which was chosen during the round before) starts

to play. This track can be seen as the reference track for all participating users in this

49

round. Directly after a new song is started all clients are informed that the new round

has started. It is now possible to submit a new track. After a music file is chosen on a

Client it is transferred over the network to the Master Server. The Master Server regularly

calculates the Expected Time of Arrival (ETA, this is the expected time when a process

finishes) for transfers and in case it won’t be possible to transfer and analyze a file in time

it will cancel the respective transmission. As soon as a transfer is finished, the Master

Server triggers the Analysis Server to analyze the music track. The Master Server again

regularly requests the analysis progress for every analyzed file. In case it would not be

possible to finish the analysis of a file it will cancel the analysis that was started at last.

Just before the played track is finished all results of the completely analyzed music files

are compared to each other and an algorithm chooses one or more songs which are

queued into the playlist. Usually only one track is queued but in this special case of

having two or more songs with the same low distance value it will queue all of them.1

6.2.2 Description from the Analysis Server’s perspective

The Analysis Server is stateless. It simply performs the analysis-tasks that are deployed

by the Master Server and reports back the results after analysis. Regularly the Master

Server asks the Analysis Server about the progress (in percent) of all analyzed files. If

the Master Server detects that an analysis will not finish the analysis before the end of

the current round, the corresponding tasks are canceled. The only indication of the end

of a round is that the computeAnalyseDifference method (Class AnalyseFile) is called for

each completely analyzed file.

6.2.3 Description from the user’s perspective (Client)

The user connects with a mobile device that satisfies the requirements of PublicDJ. The

mobile device stores a private music collection of the user, from which he can submit

songs. When the user starts the application, a short tutorial is displayed to the user

that explains the handling of the Client application. When a round is started the user can

choose a music track which he/she thinks is appropriate and instruct the Client application
1Freeplay mode 7.1 is an example for this behavior as it queues all songs into the playlist because all

tracks get the same distance value assigned.

50

to send it to the Master Server by clicking on a button. After the transfer of the file is

finished the user sees the instructions that he/she can only wait until the next round to

see the outcome. If the submitted track fits best to the one being played by the Master

Server (compared to the the other submissions) then this track will be played next. If this

is not the case then the user can make his/her next try in this new round.

51

6.3 Usecases / Interfaces

The best way to visualize interactions is by modeling them with Unified Modeling Lan-

guage (UML - [7]) usecase diagrams. This is a way to define possible actions, the dif-

ferent user-groups as well as their relationships (which actors are able to trigger which

actions). The implementation of these actions and their effects are neglected on purpose

in usecase diagrams for simplicity which leads to easier understanding of the occurring

interactions. The users of the Admin and Client Applications are the living actors (and

usecase diagrams are usually used only to visualize interaction between users and appli-

cations), but these usecase diagrams visualize the interactions between four applications:

the Admin, Client, Master Server and Analysis Server. Therefore they become actors

from this perspective. The main reason for doing this is that there is only few interaction

between users and applications but much more between the applications themselves.

In Java, usecases are translated in general into methods of interfaces. Methods of inter-

faces are only vaguely defined, the real implementation is done in one of the applications.

The most important usecases are visualized in UML 2 sequence diagrams in 9.5 at the

end of this document.

52

6.3.1 Admin-Master Server

The Admin was designed to manage the Master Server and all connected Analysis

Servers. Therefore it needs to be able to login, modify some analysis settings, prechoose

a song for the next round, start and stop rounds. In all modes except Freeplay-mode it is

necessary to prechoose a song(as you always need a reference track for comparing the

submitted songs to). The Master Server informs the Admin when a new user logged in

or disconnected. AliveCheck() is an empty method that is only used for checking if the

Admin Application is still connected or not, therefore this can be seen as a function for

measuring the availability of the Admin.

use case Admin/ Master Server

Admin

Login

modify settings

startEverything

stopEverything

reportLogin

chooseNextSong

reportUsergone

aliveCheck

AnalysisServer

Figure 6.9: Usecase: Admin - Master Server

53

6.3.2 Client-Master Server

The Client Application has only two functions:

• login to the Master Server

• send a file to the Master Server

It was designed to make it as easy as possible for a new participant to use the Client

Application, even if he is unfamiliar with it. The Master Server uses ’aliveCheck’ to check

if a user is still connected or not, ’newRoundStart’ is needed every new round so the Client

Application is informed and pushed into the new state. ’stop’ is used for telling the Client

Application that the current round was stopped. ’Transfer File’ is used for transferring files

from the Client to the Master Server.2

Client

clientLogin

Transfer File

aliveCheck

newRoundStart

stop

use case Client / Master Server

MasterServer

Figure 6.10: Usecase: Client - Master Server

2To allow multiple transfers the files are transferred in small packages with the size of 100 KB. If a package
was received properly and the transfer was not canceled before the String ’ok’ is returned to the Client
meaning that the Master Server is waiting for additional packages, if a transfer was canceled before the
string ’canceled’ is returned.

54

6.3.3 Analysis Server-MasterServer

The Analysis Server itself can do nothing more but use the function of ’login’ on the Master

Server. Everything else is triggered by the Master Server. ’setAnalyseParameters’ is used

to change the settings either directly after login or after the settings were modified by the

Admin-Application. All settings are needed for ’Analyse Musicfile’, where the Master

Server tells the Analysis Server to analyze a specific musicfile (which is the Analysis

Server’s main task). The Master Server can request the status of the Analysis Server

including the analysis-progress for each file in percent. As always ’aliveCheck’ is used for

testing the availability.

use case Analysis Server / Master Server

aliveCheck

Analyse Musicfile

set Analyse
Parameters

login

get Analysis Status

AnalysisServer MasterServer

Figure 6.11: Usecase: Analysis Server-Master Server

55

Chapter 7

Implementation details

During the implementation the following issues had to be solved:

• How to select the next music track each round?

At the end of every round at least one music track has to be added to the playlist of

the Master Server so that a reference song exists for the next round.

• How to cope with limited resources (Wireless LAN bandwidth, processing power)?

– How to load balance the analysis tasks?

The architecture of PublicDJ allows to connect several Analysis Servers to the

Master Server. As the Analysis Servers may consist of different computers and

therefore may have different performance a mechanism was needed for load

balancing the analysis tasks properly. The goal was to analyze all submitted

music tracks as fast as possible by distributing the analysis tasks among all

Analysis Servers so they can finish them in time.

– How to compute ETAs for file transfers and analysis tasks?

The length of a round is limited by the length of the current reference song.

It takes some time to transfer a song via Wireless LAN and the analysis on

the Analysis Server can even take longer depending on the used mode. To be

able to manage file transfers and analysis tasks it is therefore mandatory to

compute estimations for how long it takes until they finish.

– When and by which criteria shall file transfers and analysis tasks be canceled?

Wireless LAN is a shared medium and while several file transfers are taking

56

place at the same time it can take a long time until all files are transferred

completely. All these files need to be analyzed afterwards and (depending on

the analysis mode and the Analysis Server’s hardware) this probably takes

even longer than the file transfers. The time for transferring and analyzing

the files is limited by the length of the round, so that mechanisms are needed

to ensure that as many songs as possible are successfully transferred and

analyzed.

The following sections present the approaches for these challenges in PublicDJ.

7.1 Selection of the next music track

PublicDJ implements a playlist generation concept that is independent from the chosen

mode. The different available modes only differ in the way signatures are created. While

a reference song is playing, song submissions are accepted and signatures are com-

puted for them depending on the selected mode. The end of the reference song causes

the round to end as well. In case of content-based modes all signatures (which are ef-

fectively vectors with multiple values) are normalized following the concept presented in

Chapter 5.1. In metadata-based modes there is no need for normalizing signatures as

the they only consist of single values. In the next step distances between the reference

song’s signature and all other signatures are computed(in content-based modes follow-

ing chapter 5.2, in metadata-based modes following the simple equations presented in

this chapter) resulting in single values. Those values represent the distances between the

signatures of the reference and the compared songs. The bigger the distance is the more

different are the songs. The music track with the lowest distance gets queued into the

playlist. If several tracks have the same lowest distance value then they all get queued.

Figure 7.1 visualizes the process of song selection.

PublicDJ features several different modes for the selection of the next music track. As

mentioned before these modes have influence on how the signatures for the music tracks

are computed. In total there are three categories: Freeplay, metadata-based modes and

content-based modes.

57

Stop accepting submissions and
stop playing the reference song

Calculating distances between the
signatures and the signature of the

reference song

Adding the song (s) with the lowest
distance to the end of the playlist

Normalizing all signatures (Content -
based modes only)

End of old round

Start of new round

Start playing the next song from the
playlist (which becomes the new
reference song) and accepting

submissions

Computing signatures for all
submitted songs while

reference song is playing

Figure 7.1: Song selection: Concept

• Freeplay

In this mode all submitted tracks are not analyzed at all and therefore are treated

exactly the same by assigning them the same default value. All tracks are just

queued to the playlist.

• Metadata based modes

In this mode the metadata of the MP3 files is extracted for calculating the distance

between the music tracks. The difference variable is set to a very high value by

default (which reflects a very big distance). It has three different submodes.

– Same_Genre

The genre field of the metadata is used for case-insensitive comparison. If the

genre strings in 2 songs are exactly the same the difference variable is set to

0, if not it will return the default value.

– Similar_Genre

In this mode the difference-variable is set to 0 if the genre-string of the ana-

lyzed song is a substring of the genre of the playing one or vice versa.

58

– Year

Nearly all MP3s use the year field. If no year is set then the difference is left

at default. If a year is set it is calculated by subtracting year2 from year1 and

then computing the absolute value. In the following equation year1 and year2

represent the years of creation of two compared songs.

distance = |(year1− year2)| (7.1)

• Content based modes

There are three different modes for content based playlist generation.

– Fluctuation Patterns

In this mode Fluctuation Patterns (also called Rhythm Patterns) are used for

computing signatures for music tracks. Fluctuation Patterns/Rhythm Patterns

are described in chapter 4.1.

– Statistical Spectrum Descriptors

In this mode Statistical Spectrum Descriptors are used for computing signa-

tures for music tracks. Statistical Spectrum Descriptors are described in chap-

ter 4.2.

– Rhythm Histograms

In this mode Rhythm Histograms are used for computing signatures for music

tracks. Rhythm Histograms are described in chapter 4.3.

7.2 Resource Management

As depicted in Figure 6.8, a round is divided into several phases. Songs are submitted

and analyzed afterwards. The extracted feature attributes are normalized, distances are

calculated and the respective best matching song is selected. Those phases are not

visible to the users, as they can start submitting their selection anytime during the round.

If the submission can’t be finished during the round, it is canceled by the Master Server

and the user is suggested to resubmit the selected song during the next round. The same

is valid for the analysis. If a song can not be analyzed totally till the end of the round, the

59

analysis of the song is canceled and the submission is not considered in the selection

process. This explains the demand for estimated time amount calculations on the Master

Server for each transmission and analysis and a management of the limited resources.

PublicDJ had to manage the following resources:

• Network bandwidth for file transfers

• CPU cycles for analyzing the music

Both are limited by the time of the currently played song. All files are transferred via

wireless LAN and this is a shared medium. It can be compared to network hubs that

were used before network switches became common. Current technology supported by

PDAs is the IEEE 802.11b1 standard which is too slow for PublicDJ. Only the latest PDAs

and smartphones feature the IEEE 802.11g2 standard which enable these devices for

PublicDJ.

If playlists should be generated with a content-based approach then the resources on the

Analysis Server are critical. Audio feature extraction can be very processor intensive and

it often takes about 20 seconds per music track. It is possible to connect several Analysis

Servers concurrently to the Master Server and to load balance for distributing the load

evenly among more computers.

PublicDJ was targeted to consider these critical issues and to implement an appropriate

solutions as shown in the next sections.

7.2.1 Load Balancing

Load Balancing the analysis tasks can improve performance if there are multiple Analysis

Servers. Every Analysis Server can itself analyze several files concurrently and it is con-

figurable via the configuration file how many simultaneous analyses should be performed.

The maximum amount of concurrent tasks reflect the performance of the used computer.

A slow workstation can be configured for only one concurrent analysis, a fast one e.g.
1IEEE 802.11b is able to transfer about 11 Mb (1̃.3 MB) per second. Because of the protocol overhead

caused by the headers of the network packages and the relatively small maximum size of the payload
compared to Fast Ethernet the average transfer speed is significantly lower (about 0̃.76 MB per second,
[6]). The average size of MP3s is about 4 MB and 5 or more users should be able to transfer concurrently
(Transferring 20 MB takes about a minute)

2IEEE 802.11g is able to transfer about real 14 Mbit/s => 1.75 MB per second (the transfer of 6 music
files with 4 MB each take about 13.7 seconds), [44].

60

Analysis Queue

Analysis Slots

1.

2.

. . . .
3.

Figure 7.2: Load Balancing: Analysis Queue and Analysis Slots
1. Analysis-tasks are assigned to the Analysis Server by the Master Server and arrive at
end of the queue where they are temporarily stored.
2. All tasks advance by one whenever a task from the analysis slots is successfully
completed and the first one is fetched from the queue . The size of the queue decreases
by one each time.
3. The first analysis-task is fetched from the queue, put into the analysis slot and started
whenever an analysis-slot is free.

for four. Additionally to the analysis slots there is an analysis task queue implemented

which temporarily stores all assigned analysis tasks in case all slots are in use. Figure

7.2 illustrates how the queue is working.

An algorithm for load balancing has been developed. Figure 7.3 shows the three

assignment rules after which the Analysis Server is chosen for receiving and later pro-

cessing the task.

7.2.2 ETA calculation

The file transfers and the analysis were implemented in such a way that it is always pos-

sible to request the progress of any analysis in percent. By requesting and storing all pro-

gresses from all Analysis Servers every few seconds it is possible to estimate when the

analysis is going to end. Under the assumption that the load progress is constant/linear

over time the last few saved points are used to compute an average progress per second

in percent. x is the number of points used for computing the progress speed in 7.2 and

7.3.

timeWindow = timen − timen−x (7.2)

61

Analysis
Server

Analysis
Queue

Analysis
Slots

Most
slots

Shortest
queue

First

1. 2. 3.

Figure 7.3: Load Balancing: Assignment Rules
1. The Analysis Server with the most free analysis-slots is chosen.
2. If all slots of all Analysis Server are full, then the shortest queue is the next criterion.
3. If all Analysis Server have the same amount of free slots or no free slots and a queue
of the same length then simply choose the first one.

progressChange = progressn − progressn−x (7.3)

If you divide the progress-change by the time-window you actually get the progressSpeed

per second.

progressSpeed =
progressChange

timeWindow
(7.4)

By dividing (1 - progress) by the progressSpeed a rough ETA is calculated.

ETA =
1− progress
progressSpeed

(7.5)

62

7.2.3 Transfer/Analysis Canceling Mechanism

Transfers need to be canceled when there is not enough time to finish the transfer of a

song and the following analysis. Analyses need to be canceled if there is not enough time

to finish an analysis before the round ends. ETAs for both the transfers and the analyses

are calculated (as described in previous section, 7.2.2) every five seconds and checks

are performed to find out which transfers and which analyses need to be canceled.

Compared to the analysis canceling mechanism the transfer canceling mechanism

is simple. Transfers simply do not consume that big amount of CPU-time compared

to audio feature extraction which is needed for content-based playlist generation - only

network bandwidth is the bottleneck. The equation 7.6 describes the implemented check

for transfers.

ETAfiletransfer + timeanalysis > timeremaining (7.6)

ETAfiletransfer is the ETA for the file transfer and the timeremaining simply is the time until

the end of the current round. timeanalysis is not an ETA, it is the average time needed

for analyzing a song based on former analyses. The Master Server stores the duration

of the last finished analysis for each Analysis Server. Every time an Analysis Server

finishes an analysis it reports this to the Master Server which updates the duration the

Analysis Server needed to analyze the song. Initially this value is predefined via the

Master Serverïs configuration file, but after a single analysis by every Analysis Server this

value is quite accurate. In equation 7.7, durationi is the duration that Analysis Server i

needed to finish its last analysis.

timeanalysis =
numberofAnalysisServers∑

i=1

durationi
i

(7.7)

This implementation proofed to be sufficient for canceling transfers.

Managing the analysis-tasks is more complicated as it takes longer to finish them than

transferring files. No task is canceled the first time the ETA is exceeding the remaining

round time. It may happen that for several reasons one file is analyzed slower than all

others over a short time and its progressSpeed is only temporarily very low. The main

63

idea behind canceling analyses is that resources of the Analysis Servers get freed so that

it is more likely that other concurrent analyses finish in time. Because of the assumption

that analyses which were started earlier are more likely to finish the last started analysis

is canceled whenever a problem occurs. Usually the additional load on the Analysis

Server that is caused by the last started analysis is the reason why it cannot cope with all

concurrent analyses anymore. Therefore it seems reasonable to cancel the last started

analysis.

The basic idea of the implemented approach was that analyses can collect marks.

Whenever the ETA of an analysis is longer than the remaining time of the current round a

mark is added to that analysis. If an analyses collects a certain amount of marks it gets

canceled. If the boundary for canceling for example is three marks then it takes three

checks to cancel an analysis(which would take 15 seconds as the checks are performed

every 5 seconds). It proofed to be sufficient to cancel only one analysis per check but this

is configurable in the Master Server’s configuration file. Figure 7.4 illustrates the basic

mechanism.

These are the rules for the marking-system:

• If the ETA of an analysis exceeds the remaining time of the current round add a

mark to that analysis.

• If an analysis has collected more marks than allowed cancel the last started analysis

on that Analysis Server (but only if there were not too many other analyses canceled

on that Analysis Server in this check)

• If an analysis was canceled the marks of all other analyses are reset after this

check.

64

time

Analysis 1 Analysis 3Analysis 2

……. Start
… allowed marks = 3

Check 1

Check 3

Check 2

……. Cancelled

……. ETA exceeds remaining time of round

Cancel analysis
that was started

at last

Reset marks on all
other analyses

Figure 7.4: Analysis Canceling Mechanism

65

Chapter 8

Setup of the program environment

8.1 The Client - on a PocketPC

In this section it is described how to setup a Dell Axim x51v so that it supports all the

given requirements.

The requirements are:

• Wireless LAN support

• A working Java VM

• RMI support for the Java VM

8.1.1 Installation of IBM J9 Java VM on the Dell Axim x51v

Not all mobile devices are the same. Only for a few a working Java VM exists. Its even

more unlikely that this JavaVM supports RMI. At the time of the experiments several Java

VMs like the Sun Java ME VM (together with the Java Wireless Toolkit 2.3 which included

the needed classes for RMI), the J9 Java VM from IBM, CrEme JVM from NSICOM (not

available anymore) and other JVMs were tested that claimed to support RMI. The only

Java VM where RMI worked properly over wireless LAN on the Dell Axim x51v has been

the J9 Java VM from IBM. Notice that the Dell Axim x51v uses Microsoft Windows CE

5.0 as an operating system and therefore it is only possible to access the Dell Axim

x51v if you have ActiveSync installed. These instructions can be directly applied on a

workstation running Microsoft Windows 2000/XP.

66

1. Make sure you have your mobile device already connected to the workstation and

that ActiveSync1 is already recognizing it properly

2. Download the J9 Java VM evaluation version provided by IBM. 2

3. Install the Java VM on your workstation. ActiveSync installs the J9 runtime to the

/Program Files/J9 directory on your PocketPC

4. Download the Workplace Client Technology, Micro Edition 5.7 Integrated Package

from IBM3 and install it on your workstation. Although usage of this application is

limited to only 30 days we need it to get access to the RMI Optional Package.

5. After installation start the Device Developer Enviroment which is based on Eclipse

2.0. Go to the help menu and start the Update Manager. Click on Sites to Visit and

select IBM WebSphere Everyplace Device Developer Technologies/Technologies/WEME

RMIOP and install the package. It will be installed to each runtime environment on

C:/Program Files/IBM/DeviceDeveloper/wsdd5.0/ive-2.2/runtimes.

6. Copy the new files to your Dell Axim x51v: since we are using the Personal Pro-

file, copy the rmip.jar and rmip_nl1.jar (optional language pack), from C:/Program

Files/IBM/DeviceDeveloper/wsdd5.0/ive-2.2/runtimes/wm2003/arm/ppro10/lib/

jclPPro10/ext to the /Program Files/J9/PPRO10/lib/jclPPro10/ext folder on your Dell

Axim x51v. This adds the RMI support to the J9 environment. This version of RMI

is compatible with the JDK1.3/JDK 1.4.2 environment and supports most of its fea-

tures.

8.2 Installation of the required packages on the workstations

The user has to install a recent Java SDK on the workstations. The advantage of using

a Java SDK of Version 1.4.2 is that it can generate 1.4.2-compatible code which directly
1ActiveSync 4.5 - http://www.microsoft.com/downloads/details.aspx?FamilyID=

9e641c34-6f7f-404d-a04b-dc09f8141141\&displaylang=en
2To do this go to their webpage(http://www-306.ibm.com/software/wireless/weme/), click on Trials

and Demos on the left sidebar, then download WebSphere Everyplace Micro Environment 6.1.1 - CDC
1.0/Foundation 1.0/Personal Profile 1.0 for Windows Mobile 5.0/ARM for PocketPC.

3Workplace Client Technology, Micro Edition 5.7 Integrated Package
http://www-306.ibm.com/software/wireless/wctme/bundle.html

67

http://www.microsoft.com/downloads/details.aspx?FamilyID=9e641c34- 6f7f-404d-a04b-dc09f8141141\&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=9e641c34- 6f7f-404d-a04b-dc09f8141141\&displaylang=en
http://www-306.ibm.com/software/wireless/weme/
http://www-306.ibm.com/software/wireless/wctme/bundle.html

works on the Dell Axim x51v with the J9 Java VM installed. This is a clear advantage and

therefore this version was used.

One of the biggest problems to solve was that the Sun Java SDK does not support the

MP3(or OGG)-Format natively. Reimplementing this wheel was out of scope of this thesis

as there was already a working jar-package from http://www.javazoom.net/mp3spi/

mp3spi.html which could be used for enhancing the JRE/SDK. This package consists

of 2 jar-files, which are used for accessing the ID3 Tags of MP3s and for getting direct

access to the raw music-data (tritonus-package, jlayer package). Some more classes

integrate them into the Java JDK/SDK via the so called Service Provider Interface.

68

http://www.javazoom.net/mp3spi/mp3spi.html
http://www.javazoom.net/mp3spi/mp3spi.html

Chapter 9

PublicDJ Documentation

All four applications (Master Server, Client, Admin, Analysis Server) were clustered in

the package PublicDJ. There are two additional packages which are imported by every

application package, interfaces and data structures. These two packages were created

to avoid unintended errors and to reduce the code in total (instead of having the same

code for the interfaces and data structures multiple times in the relevant sub-packages as

they implement common functionality required by all applications). Nevertheless the lines

of code (LOC) exceeded 9000 lines, including 896 comment lines (about 9 %). Figure

9.1 shows these structures.

client

datastructs

analysisserver

masterserver

interfaces

«import» «import» «import» «import»

«import» «import»

admin

«import»«import»

package at .ac .univie.dms .mis.publicdj

Figure 9.1: Package Diagram Overview

69

9.1 Master Server

All the other parts of PublicDJ are directly connected to the Master Server via RMI. The

Master-Server-application is the most important component of PublicDJ as it implements

the complete application logic.

The Master Server starts all other threads and is the RMI-Server for all external

applications. It accepts file transfers from PublicDJ Clients and Admins and delegates

successfully transferred files to the PublicDJ Analysis Servers to have them analyzed.

The Master Server consists of the following threads:

• The MusicPlayerDaemon Thread is responsible for playing music files. As round

lengths are directly connected to the length of the music tracks this thread also

triggers new rounds.

• The AliveDaemon Thread checks every second which User/Admin-Clients and

Analysis Servers are connected. It cleans up the internal lists (by keeping only

the alive devices in the data structures) which are used for ’RMI-multi-casting’ by

the Master Server.

• The FinishedTransferMonitor Thread periodically checks if any music files have

been transferred completely. If this is the case this thread triggers the selection of

an Analysis Server for each file.

The Master Server can be started or stopped by the Admin-Application. Every round

state change needs to be sent to all other connected entities from the Master Server via

RMI.

The Master Server itself also has several states (Figure 9.3). ’Default’ is the initial

state before the game is started. One Admin/several Clients/several Analysis servers

can already connect in that state. Depending on the analysis-mode at least one Analysis

Server has to connect (except Freeplay mode) because it is needed for all analysis tasks.

In case the administrator of PublicDJ is not satisfied with the default options (Metadata

Mode / Same Genre) he/she at least has to connect once to configure the options of the

game.

70

masterserver

+

MasterServer AliveDemon

MusicPlayerDemon

In LoggendinList

FinishedTransferMonitor

package masterserver

Figure 9.2: Package diagram Master Server

default
[Application Start]

running
[choose file]

stopped

[stop] [start]

[application end]
track prechosen by admin

[start]

sm MasterServer

Figure 9.3: State machine diagram Master Server

If an Analysis Server connects it receives the info about the currently chosen mode

for analysis. If the mode is modified it is always updated on all Analysis servers. Notice

that up to n Analysis servers can be connected. If an Analysis server connects it can be

directly used by the Master Server for analysis tasks.

If the Admin-Application connects it fetches the current settings and the current status

71

of the Master Server and allows an administrator choosing a music track for the next

round as well as starting and stopping the multiplayer game. Only one administrator can

be connected at the same time.

If a Client connects it gets added to the LoggedInList. When the multiplayer game

is started all Clients receive information about the play-mode, how many other users are

connected and the name of the upcoming audio track. Notice that a Client can always

connect to the Master Server, the user just has to wait until the next round until he/she

can join the game.

After the game is started by the Admin the Master Server performs the following steps

each round:

1. It starts to play the music track that was chosen last round

2. It informs all Clients about the start of the new round

3. It accepts 1−m incoming transfers and load balances them

4. It checks if a completely transferred file already was submitted/analyzed before by

computing and comparing MD5 sums

(a) If the file was already analyzed it just uses the stored signature

(b) otherwise it triggers an analysis at the Analysis Server to calculate the signa-

ture of this file

5. It periodically computes an ETA for each transfer, each analysis and cancels trans-

fers/analyses if needed

9.1.1 Threads

MusicPlayerDaemon

This thread plays the music every round. For MP3 decoding it relies on the MP3SPI-

package from [13]. The MusicPlayerDaemon can handle Ogg Vorbis Files as well through

the VorbisSPI-package from [14]. 1

1Both the MP3SPI and the VorbisSPI packages are Java Service Provider Interfaces in short SPI. Java
does not have native support for OGG Vorbis and MP3 ID3 files so external libraries are needed. SPIs

72

Every round is bound to the length of the played music track and therefore it also trig-

gers the ’multicast’ of the new round via RMI from the Master Server to every connected

Admin/User/Analysis Server.

AliveDaemon

This is the Garbage-Collection-Thread of the package. Every second this daemon exe-

cutes an RMI-Method called alive() on every connected Client, every Admin and every

Analysis Server. In case the remote component cannot be reached it is removed from

the internal data-structures. This is important because when a new round is triggered by

the MusicPlayerDaemon there should be no orphaned entries left or a wrong number of

users is displayed on the remote devices temporarily.

FinishedTransferMonitor

All transfers are monitored periodically by this thread. The FinishedTransferMonitor Thread

does nothing more than check every TransferData-object in the transferDataVector for fin-

ished transfers. If a transfer already finished it triggers a method on the Master Server

that starts the selection of a Analysis Server for analyzing the file.

9.1.2 Other important classes

LoggedInList

All logged-in users are stored in a data structure called LoggedInList. This is a class that

employs lists for storing the users and that offers several custom queries and operations

for easier handling from the main Master-Server-class.

In

This is a helper class for accessing the Master Server’s configuration files which are called

MasterServerCONFIG.ini, AdminDB.ini and UserDB.ini. It deals with common tasks like

are general interfaces which allow everyone to create an external package for any audio format that is not
supported. If a package is properly and completely implemented it is possible to use all methods on the
audio file as if it was natively supported. Unfortunately both the VorbisSPI and the MP3SPI were not fully
implemented which meant that it was needed to code several things in non standard way. That is the reason
why OGG Vorbis files can only be submitted in modes which do not need a conversion of the audiodata.

73

reading the configuration files line by line and passing them over to the readConfigs()-

method for interpretation of the default settings.

9.1.3 Configuration Files

The configuration file for the Master Server is called MasterServerCONFIG.ini. This is

the default one:

###START###

//file where User/Pass-combinations are stored

USERDATABASE=UserDB.ini

//file where Admin/Pass-combinations are stored

ADMINDATABASE=AdminDB.ini

//Directory where incoming Files are stored (can be relative or absolute)

SHARED_DIRECTORY=FILES

//if you want a server-gui or not. (true/false)

GUI=true

//Prechosen Analysis Algorithm

//(Freeplay - No Analysis/Metadata/Fluctuation_Patterns/Stat_Spectrum_Descr/Rhythm_Histogram)

ANALYSIS_ALGORITHM=Metadata

* relevant only for all modes except Freeplay**

//Metadata modes

//(Same_Genre/Similar_Genre/Year), content-based modes (City block metric/Euclidean metric)

CHOOSE_MODE=Similar_Genre

* relevant only for fluctuation pattern-algorithm **

SKIPPED_LEADINFADEOUT=1

CONTINOUSLY_SKIPPED_6SECS=5

###END###

The UserDB.ini and the AdminDB.ini have this layout:

###START###

username1:password1

username2:password2

...

usernameN:passwordN

###END###

74

9.2 Analysis Server

analysisserver

+

<<interface >>
IAnalysisPlugin

AnalysisServer

AnalyseFile

In

AnalysisPlugin
METATAG

AnalysisPluginFLUCTUATION
_PATTERNS

AnalysisQueue

AnalysisPluginRHYTHM _
HISTOGRAMM

AnalysisPluginFREEPLAY
AnalysisPluginSTATISTICAL _
SPECTRUM _DESCRIPTOR

package analysisserver

Figure 9.4: Package diagram - Analysis Server

The Analysis Server’s purpose is to unload the Master Server by performing the com-

putation intensive tasks on different computers. This is necessary to guarantee low la-

tency for users while they are interacting with the system and to avoid glitches while

playing the music tracks. It is possible to connect 1 − n Analysis Servers at the same

time and each one is able to perform several computations concurrently. All instances

fetch their configuration (except the configuration of how many files can be analyzed con-

currently) directly from the Master Server when connecting so it is possible to add some

more when there is demand for it. Figure 9.5 illustrates how the Analysis Server logs in

and figure 9.5 illustrates how a music file is analyzed. The AnalyseQueue was already

presented in chapter 7.2.1 and the different modes were described in chapter 7.1.

Besides the existing modes (Freeplay, Metadata[Similar Genre, Same Genre, Year],

Content-based [Rhythm Patterns, Statistical Spectrum Descriptor, Rhythm Histogram]) a

plug-in mechanism was implemented. The main idea was to make it as easy as possible

to add new plug-ins by defining the interface IAnalysisPlugin. To write a plug-in a devel-

75

oper needs to implement the methods of this Java interface properly and to add support

for the mode in the Admin application so it can be configured from there.

AnalysisPluginFREEPLAY

AnalysisPluginMETATAG

AnalysisPlugin
FLUCTUATION_PATTERNS

AnalysisPlugin
RHYTHM_HISTOGRAM

AnalysisPlugin
STATISTICAL_SPECTRUM

_DESCRIPTOR

<<interface >>
IAnalysisPlugin

AnalysisPlugin
POSSIBLE _NEW_PLUGIN

<<re alizes>>

<<rea lizes>>

<<rea lizes>>

<<realizes >>

<<realize s>>

AnalyzeFile

+ Vector analyzeFile (File file)
+ double compute _difference (
String choose _mode , Vector
reference , Vector compared)
+ double
getAnalyseProgress _Percent ()
+ setComputeDifferenceOnly

Figure 9.5: Analysis Server Plug-in-Concept

9.2.1 Configuration File

The configuration file for the Analysis Server is called AnalysisServerCONFIG.ini. This is

the default one:

###START###

SHARED_DIRECTORY=FILES

MAX_CONCURRENTLY_ANALYSED_FILES=3

###END###

76

9.3 Client-Application

The ’Client’-application is the program the end-users get to see. The graphical user inter-

face was designed as simple as possible to make it easy and failsafe to use.

The Client consists of two classes (see Figure 9.6):

• ’Client’ which implements the RMI-Interface that is used for exchanging information

between the Master Server and the mobile device

• ’ClientGui’ which implements the graphical user interface

package client

client

+

Client ClientGui

Figure 9.6: Package diagram Client-Application

The state machine diagram(9.7) shows the concept of the ’Client’-application.

After the user has logged in the Client-Application is in the state default in which it

waits until a round is started. When the Master Server starts a new round the Client-

Application enters the state newround. Now the users can either choose and submit a

music-track or can just quit. If a music-track is chosen for submission the state transfer-

File is reached - all buttons are now disabled. Now there are 3 cases that might occur.

• If a transfer error occurs the state transferFile_error is reached. The user is asked

if he/she wants to transfer the file again.

• If the transfer got canceled by the Master Server (probably because it was submitted

too late) then the state fileTransfer_canceled is entered. The user is informed that

77

the transfer got canceled and that he/she can try again the following round.

• If the transfer finishes successfully then the state finishedTransfer is reached. This

of course means that the file was transferred successfully and that analysis will start

soon.

Notice that regardless of the state in which the Client-application is, it will always

’recover’ to the state newRound when a new round is started. Using this mechanism all

clients are kept in a consistent state.

sm Client

default
[successful login]

newRound
[start new Round]

fileTransfer

finishedTransfer

[filetransfer finished]

fileTransfer _canceled

finishedTransfer _error

[error occured]

[transfer canceled]

[new round
started by server]

[application end]

[choose file]

[retry transfer]

Figure 9.7: State Machine Diagram of the Client-Application

The screenshots (Figure 9.8) give an impression how this looks like for the actual user

on the PDA.

78

Figure 9.8: Screenshot - Client - Login and sample round

9.4 Admin-Application

In contrast to the Client-Application and Master Server the ’Admin’ application is state-

less. It was a requirement to be able to login and logout anytime, so Master Server/Analysis

Server/Clients do not need a connected Admin-Application to work. It is only mandatory

that the end-user configures the Master Server and Analysis Server parameters, chooses

the first track and starts the round. Then the Admin-Application can be detached and at-

79

tached whenever needed for stopping the currently played song or for overruling the next

song.

The Admin consists of two classes (see Figure 9.9):

• ’Admin’ which implements the RMI-Interface for communicating with the Master

Server

• ’AdminGui’ which implements the graphical user interface

package admin

admin

+

Admin AdminGui

Figure 9.9: Package Diagram - Admin-Application

Figure 9.10 shows some screenshots of the GUI before and after login in to the appli-

cation.

Figure 9.11 shows several screenshots which give an impression of the user interface.

As mentioned before there are five different modes.

• Freeplay - No Analysis

It has no further options. Every submitted track is accepted and queued to the

playlist.

• Metadata

You can define the CHOOSE METHOD which reflects by which constraints the

songs have to be chosen. CHOOSE METHOD can be Same Genre, Similar Genre(currently

played song’s genre is a substring of the song or vice versa) and year.

80

Figure 9.10: Screenshot - Admin - Login

Figure 9.11: Screenshot - Admin - Settings

• Fluctuation Patterns

• Statistical Spectrum Descriptors

81

• Rhythm Histogram

The modes Fluctuation Patterns, Statistical Spectrum Descriptors and Rhythm His-

tograms all have the same options as they are all based on the same concept.

Figure 9.12: Screenshot - Admin - Prechoose File

In Figure 9.12 you can see that it is possible to override the next played song by

choosing any song from the INCOMING-directory on the Master Server.

82

sd

as
L

og
in

al
t

A
na

ly
si

sS
er

ve
r

M
as

te
rS

er
ve

r

as
L

og
in

(I
A

sS
er

ve
r)

A
ll

A
na

ly
si

sS
er

ve
rs

 a
re

 a
cc

ep
te

d
C

he
ck

 if
 th

is
 is

 a
 r

ec
on

ne
ct

se
tA

na
ly

se
Pa

ra
m

et
er

s
(a

na
ly

se
pa

ra
m

et
er

s
)

as
L

og
in

 -
tr

ue

up
da

te
 r

ef
er

en
ce

 to
 r

em
ot

e
ob

je
ct

[if
 r

ec
on

ne
ct

]

st
or

e
ne

w
 r

ef
er

en
ce

 to
 r

em
ot

e
ob

je
ct

[e
ls

e
]

9.5 UML2 Sequence Diagrams for important Usecases

83

sd

 a
dm

in
L

og
in al

t

A
dm

in
Se

rv
er

ad
m

in
L

og
in

(I
A

dm
in

Se
rv

er
, u

se
r

, p
as

s
, c

lie
nt

A
dd

re
ss

)

A
dm

in
G

ui

E
in

ga
be

 v
on

 U
se

r
/P

as
sw

or
t

es
ta

bl
is

hR
M

Ic
on

ne
ct

io
n

(S
tr

in
g

Se
rv

er
)

lo
gi

n(
St

ri
ng

 u
se

r
, S

tr
in

g
pa

ss
)

ch
ec

k
us

er
/p

as
s

us
er

/p
as

s
-p

ai
rs

 a
re

 d
ef

in
ie

d
in

 th
e

A
dm

in
D

B
.in

i w
hi

ch
 is

 p
ar

se
d

to
 a

V

ec
to

r
on

 s
ta

rt
up

 o
f

th
e

Se
rv

er
.

al
re

ad
y

co
nn

ec
te

d
?

tr
ue

tr
ue

[if
 a

dm
in

C
on

ne
ct

ed

=
=

 tr
ue

 |
|

us
er

/p
as

s
in

va
lid

]

fa
ls

e

fa
ls

e

sa
ve

 I
A

dm
in

Se
rv

er

cr
ea

te
M

ai
nS

cr
ee

n
()

[e
ls

e
]

U
se

r

84

sd

cl
ie

nt
L

og
in

al
t

C
lie

nt
M

as
te

rS
er

ve
r

cl
ie

nt
L

og
in

(I
C

lie
nt

Se
rv

er
, u

se
r

, p
as

s
,

cl
ie

nt
A

dd
re

ss
)

lo
gg

ed
In

L
is

t
C

lie
nt

G
ui

en
te

ri
ng

 u
se

r
/p

as
sw

or
d

es
ta

bl
is

hR
M

Ic
on

ne
ct

io
n

(S
tr

in
g

Se
rv

er
)

lo
gi

n
(S

tr
in

g
us

er
, S

tr
in

g
pa

ss
)

ch
ec

k
if

 u
se

r
/p

as
s

is
 a

llo
w

ed

us
er

/p
as

s
-p

ai
rs

 a
re

 d
ef

in
ed

 in
 th

e
U

se
rD

B
.in

i w
hi

ch
 is

 p
ar

se
d

in
to

 a

V
ec

te
r

at
 th

e
st

ar
tu

p
of

 th
e

se
rv

er

ch
ec

k
if

 u
se

r
al

re
ad

y
co

nn
ec

te
d

ad
dU

se
r

(_
id

, u
se

r
, i

us
, c

lie
nt

A
dd

re
ss

)

al
l l

og
ge

d
in

 u
se

rs
 a

re
 s

to
re

d
in

th

e
lo

gg
ed

In
L

is
t.

 T
he

 c
la

ss
 is

 a

da
ta

st
ru

ct
ur

e
si

m
ila

r
to

 a
 li

st
 b

ut
al

so
 o

ff
er

s
ad

di
tio

na
l u

se
fu

l m
et

ho
ds

.

U
se

rD
at

a

cr
ea

te
(_

id
, u

se
r

, n
am

e
, c

lie
nt

A
dd

re
ss

)

U
se

rD
at

a

cr
ea

te
In

st
ru

ct
io

ns
W

in
do

w
()

A
dm

in

re
po

rt
L

og
in

(_
id

)

[if
 u

se
r/

pa
ss

!=

 v
al

id
 ||

 u
se

r
al

re
ad

y
co

nn
ec

te
d

]

[e
ls

e
]

U
se

rD
at

a

cr
ea

te
(0

,
er

ro
rm

es
sa

ge
, "

",
 n

ul
l)

U
se

rD
at

a

fa
ls

e

U
se

r
se

es

in
st

ru
ct

io
nw

in
do

w

U
se

r

es
ta

bl
is

hR
M

Ic
on

ne
ct

io
n

(S
tr

in
g

Se
rv

er
) c

om
bi

ne
s

al
l s

te
ps

 n
ee

de
d

to
 s

et
up

 a
n

R
M

I
co

nn
ec

tio
n

(in
cl

ud
in

g
na

m
in

g
.lo

ok
up

()
)

 in
to

 a
 s

in
gl

e
m

et
ho

d
.

85

sd

 f
ile

T
ra

ns
fe

r

A
dm

in
 o

r
C

lie
nt

M
as

te
rS

er
ve

r

in
iti

tia
te

T
ra

ns
fe

rF
ile

(i
nt

 u
se

ri
d

,S
tr

in
g

au
di

oF
ile

N
am

e
)

tr
an

sf
er

Fi
le

(i
nt

 u
se

ri
d

,
St

ri
ng

 a
ud

io
Fi

le
N

am
e

,
by

te
[]

 fi
le

D
at

a
))

in
iti

at
eT

ra
ns

fe
rF

ile
()

 -
T

ra
ns

fe
rd

at
a

-O
bj

ek
t

tr
an

sf
er

Fi
le

 is
 e

xe
cu

te
d

as

of
te

n
as

 n
ee

de
d

un
til

 a
ll

pa
rt

s
of

 th
e

m
us

ic
tr

ac
k

ar
e

tr
an

sf
er

ed
.

ex
ec

ut
io

n
co

un
t

:
fi

le
si

ze

/ s
iz

e
of

 f
ile

D
at

a

if
 th

e
se

rv
er

 r
et

ur
ns

 f
al

se

th
is

 is
 a

n
In

di
ka

to
r

fo
r

an

er
ro

r
du

ri
ng

 tr
an

sm
is

si
on

.
tr

an
sf

er
Fi

le
()

 -
bo

ol
ea

n

in
iti

at
eT

ra
ns

fe
rF

ile
 is

 e
xe

cu
te

d
on

ce
 to

 p
re

pa
re

 th
e

tr
an

sf
er

 o
f

th
e

fi
le

 to
 th

e
se

rv
er

. A
 T

ra
ns

fe
rD

at
a

-o
bj

ec
t i

s
re

tu
rn

ed
 w

hi
ch

 a
ls

o
de

liv
er

 e
rr

or
-m

es
sa

ge
s

,i
n

ca
se

 e
rr

or
s

oc
cu

r
on

 th
e

se
rv

er
, t

o
th

e
cl

ie
nt

.

tr
an

sf
er

C
om

pl
et

e
(i

nt
 u

se
ri

d
, S

tr
in

g
au

di
oF

ile
N

am
e

, b
oo

le
an

 o
ve

rr
id

e
_c

ho
os

in
g

)

tr
an

sf
er

C
om

pl
et

e
te

lls
 th

e
cl

ie
nt

 th
at

th
e

fi
le

 w
as

 tr
an

sf
er

ed
 c

om
pl

et
el

y
an

d
w

ith
ou

t e
rr

or
s

T
ra

ns
fe

rD
at

a

cr
ea

te

tr
an

sf
er

Fi
le

(F

ile
 f

ile
)

cr
ea

te
M

ai
nW

in
do

w
()

st
at

e
=

 "
fi

le
T

ra
ns

fe
r

"

st
at

e
=

 "
fi

ni
sh

ed
T

ra
ns

fe
r

"

A
dm

in
G

ui
 o

r
C

lie
nt

G
ui

ch
an

ge
 to

 f
ile

ch
oo

se
r

ch
oo

se
 m

us
ic

fi
le

lo
op

[fi
s.

re
ad

(f
ile

D
at

a
,0

,fi
le

si
ze

)
!=

 -
1

U
se

r

86

op
t

M
as

te
rS

er
ve

r
A

na
ly

si
sS

er
ve

r

in
iti

al
iz

eA
na

ly
si

s
(a

ud
io

Fi
le

N
am

e
,r

ou
nd

, A
na

ly
si

sD
at

a
)

A
na

ly
si

sF
ile

tr
ue

cr
ea

te

A
na

ly
si

sQ
ue

ue

pu
sh

Fi
le

O
nQ

ue
ue

(A
na

ly
si

sF
ile

)

st
ar

t_
an

al
ys

is
(A

na
ly

si
sF

ile
)

st
ar

t(
)

ch
oo

se
_a

na
ly

si
s

_s
er

ve
r

()

A
na

ly
si

sD
at

a

A
na

ly
si

sD
is

ta
nc

e

cr
ea

te

[if
 c

ur
re

nt
Fi

le
A

na
ly

se
D

at
a

!=
 n

ul
l]

cr
ea

te

cu
rr

en
tly

_
co

nc
ur

re
nt

ly
_a

na
ly

se
d

_f
ile

s+
+

de
cr

em
en

t
_c

ur
re

nt
ly

_
co

nc
ur

re
nt

ly
_

an
al

ys
ed

_f
ile

s(
)

re
po

rt
Fi

ni
sh

ed
(A

na
ly

si
sD

at
a

,
A

na
ly

si
sD

is
ta

nc
e

)

no
 c

ur
re

nt
Fi

le
A

na
ly

se
D

at
a

ob
je

ct
 e

xi
st

s
w

he
n

th
e

A
dm

in
tr

an
sf

er
s

th
e

T
ra

ck

re
po

rt
Fi

ni
sh

ed
(A

na
ly

si
sD

at
a

, A
na

ly
si

sD
is

ta
nc

e
)

cu
rr

en
tly

_
co

nc
ur

re
nt

ly
_a

na
ly

se
d

_f
ile

s-
-

sd

 A

na
ly

ze
 M

us
ic

fi
le

87

Chapter 10

Summary

PublicDJ is a new approach for collaborative playlist generation with mobile devices. The

work presented in this thesis resulted in ([16]) at the Audio Mostly 2007. PublicDJ is

implemented as a distributed round based multiplayer game that supports both content-

based and metadata-based playlist generation modes. User feedback is given by all

players as they submit only the music they would like to hear in that moment. While im-

plementing PublicDJ different mobile devices and different Java-VMs have been experi-

mentally evaluated. It turned out that only a small number of devices currently support

WLAN and that only a few of the available Java VMs support RMI.

Currently the problem prevails that WLAN enabled mobile devices are rare. The vi-

sion about a crowd that acts as a joint DJ stays and falls with the spreading of WLAN

enabled mobile devices that everyone carries for daily usage. The mobile device actu-

ally does not even have to be a phone or a PDA as the functionality of many mobile

devices like MP3 players and PDAs are merged into the next generation smartphones.

The iPhone™(developed and trademarked by Apple Inc.) for example is one of the first

smartphones featuring WLAN together with a Java Virtual Machine that supports Java’s

RMI. The PublicDJ Client and Admin-Applications have been tested successfully on this

device. The time for a common use of PublicDJ has not come yet but there are good

chances that it might get commonly used in the future.

It is planned to release the sourcecode of all parts of PublicDJ that have been written

by me (which excludes third-party source code) under an open source licence. Other

developers then can review the sourcecode and improve PublicDJ by adding new func-

88

tionality. Improving the plugin-mechanism and adding new analysis-modes are the most

obvious tasks. If the Client was modified to work in the browser (the Google Web Toolkit1

probably would be the best way to achieve this) then it would be possible to host a we-

bradio instead of playing it locally.

1http://code.google.com/webtoolkit/

89

http://code.google.com/webtoolkit/

Bibliography

[1] Andreja Andric and Goffredo Haus. Automatic playlist generation based on tracking

user’s listening habits. Multimedia Tools Appl., 29(2):127–151, 2006.

[2] J.J. Aucouturier and F. Pachet. Scaling up music playlist generation. In Proceed-

ings of IEEE International Conference on Multimedia and Expo (ICME). Lausanne,

Switzerland, August 2002.

[3] Musiol Bronstein, Semendjajew and Mühlig, editors. Taschenbuch der Mathematik.

Verlag Harri Deutsch, 1977.

[4] Hugo Fastl and Eberhard Zwicker. Psychoacoustics: Facts and Models. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[5] Eric Miller Frank Manola. Rdf primer - w3c recommendation. http://www.w3.org/

TR/REC-rdf-syntax/, February 2004.

[6] M. Garg, S. Kappes. An experimental study of throughput for udp and voip traffic in

ieee 802.11b networks. In Wireless Communications and Networking, 2003. WCNC

2003. 2003 IEEE, March 2003.

[7] Object Management Group. Uml® resource page. http://www.uml.org/, January

2008.

[8] J.C. Hauver, D.B. French. Flycasting: using collaborative filtering to generate a

playlist for online radio. In Web Delivering of Music, 2001. Proceedings. First Inter-

national Conference on, November 2001.

[9] http://id3.org. Illustration of id3 version 1. http://id3.org/ID3v1?action=

AttachFile\&do=get\&target=id3v1_blocks.gif. 7th May 2008.

90

http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/REC-rdf-syntax/
http://id3.org/ID3v1?action=AttachFile\&do=get\&target=id3v1_blocks.gif
http://id3.org/ID3v1?action=AttachFile\&do=get\&target=id3v1_blocks.gif

[10] http://id3.org. Illustration of id3 version 1.1. http://id3.org/ID3v1?action=

AttachFile\&do=get\&target=id3v1.1_blocks.gif. 7th May 2008.

[11] http://id3.org. Illustration of id3 version 2. http://id3.org/ID3v2Easy?action=

AttachFile\&do=get\&target=id3v2_blocks.gif. 7th May 2008.

[12] ISO/IEC. Final text of dis 8859-1, 8-bit single-byte coded graphic character sets –

part 1: Latin alphabet no.1, 1998.

[13] JavaZoom.net-Community. http://www.javazoom.net/mp3spi/mp3spi.html.

[14] JavaZoom.net-Community. http://www.javazoom.net/vorbisspi/vorbisspi.

html.

[15] Peter Knees, Tim Pohle, Markus Schedl, and Gerhard Widmer. Combining audio-

based similarity with web-based data to accelerate automatic music playlist genera-

tion. In MIR ’06: Proceedings of the 8th ACM international workshop on Multimedia

information retrieval, pages 147–154, New York, NY, USA, 2006. ACM.

[16] Stefan Leitich and Markus Toth. Publicdj - music selection in public spaces as mul-

tiplayer game. In Audio Mostly 2007, Ilmenau, Germany, September 2007.

[17] T. Lidy and A. Rauber. Combined fluctuation features for music genre classification.

In MIREX 2005, 2005.

[18] Thomas Lidy. Evaluation of new audio features and their utilization in novel music

retrieval applications. Master’s thesis, Vienna University of Technology, 2006.

[19] Thomas Lidy and Andreas Rauber. Evaluation of feature extractors and psycho-

acoustic transformations for music genre classification. In ISMIR 2005, 6th Interna-

tional Conference on Music Information, pages 34–41, 2005.

[20] B. Logan and A. Salomon. A music similarity function based on signal analysis. In

Proceedings of the 2001 IEEE International Conference on Multimedia and Expo,

ICME 2001, August 22-25, 2001, Tokyo, Japan., 2001.

[21] Beth Logan. Content-based playlist generation: Exploratory experiments. In ISMIR

2002, 3rd International Conference on Music Information, 2002.

91

http://id3.org/ID3v1?action=AttachFile\&do=get\&target=id3v1.1_blocks.gif
http://id3.org/ID3v1?action=AttachFile\&do=get\&target=id3v1.1_blocks.gif
http://id3.org/ID3v2Easy?action=AttachFile\&do=get\&target=id3v2_blocks.gif
http://id3.org/ID3v2Easy?action=AttachFile\&do=get\&target=id3v2_blocks.gif
http://www.javazoom.net/mp3spi/mp3spi.html
http://www.javazoom.net/vorbisspi/vorbisspi.html
http://www.javazoom.net/vorbisspi/vorbisspi.html

[22] Sun Microsystems. Learn about java technology. http://java.com/en/about/.

[23] Sun Microsystems. Rmi interfaces. http://java.sun.com/developer/

onlineTraining/rmi/images/RMIInterfaces.gif. 3rd June 2008.

[24] Sun Microsystems. Simplified illustration of rmi. http://java.sun.com/developer/

onlineTraining/rmi/images/RMIArchitectureLayers_01.gif. 3rd June 2008.

[25] Martin Mutschler. Mp3ext. http://www.mutschler.de/mp3ext/.

[26] C. Newell. Id3v2 chapter frame addendum. http://id3.org/id3v2-chapters-1.0,

December 2005.

[27] M. Nilsson. Id3 tag version 2.3.0. http://www.id3.org/id3v2.3.0, February 1999.

[28] Martin Nilsson. Id3 tag version 2. http://www.id3.org/d3v2.3.0, March 1998.

[29] Martin Nilsson. Id3 tag version 2.4.0 - main structure. http://www.id3.org/id3v2.

4.0-structure, November 2000.

[30] Dan O’Neill. Id3v2 made easy. http://id3.org/ID3v2Easy. last time edited on the

17th December 2006.

[31] Dan O’Neill. What is id3 (v1)? http://id3.org/ID3v1. last time edited on the 29th

October 2006.

[32] Elias Pampalk. Islands of music: Analysis, organisation, and visualisation of music

archives. Master‘s thesis, Vienna University of Technology, 2001.

[33] Elias Pampalk. Computational Models of Music Similarity and their Application in

Music Information Retrieval. Ph.d. dissertation, Vienna University of Technology,

2006.

[34] Elias Pampalk and Martin Gasser. An implementation of a simple playlist generator

based on audio similarity measures and user feedback. In ISMIR, pages 389–390,

2006.

[35] Elias Pampalk, Tim Pohle, and Gerhard Widmer. Dynamic playlist generation based

on skipping behavior. In ISMIR 2005, 6th International Conference on Music Infor-

mation, pages 634–637, 2005.

92

http://java.sun.com/developer/onlineTraining/rmi/images/RMIInterfaces.gif
http://java.sun.com/developer/onlineTraining/rmi/images/RMIInterfaces.gif
http://java.sun.com/developer/onlineTraining/rmi/images/RMIArchitectureLayers_01.gif
http://java.sun.com/developer/onlineTraining/rmi/images/RMIArchitectureLayers_01.gif
http://www.mutschler.de/mp3ext/
http://id3.org/id3v2-chapters-1.0
http://www.id3.org/id3v2.3.0
http://www.id3.org/d3v2.3.0
http://www.id3.org/id3v2.4.0-structure
http://www.id3.org/id3v2.4.0-structure
http://id3.org/ID3v2Easy
http://id3.org/ID3v1

[36] Elias Pampalk, Andreas Rauber, and Dieter Merkl. Content-based organization and

visualization of music archives. In MULTIMEDIA ’02: Proceedings of the tenth ACM

international conference on Multimedia, pages 570–579, New York, NY, USA, 2002.

ACM.

[37] Steffen Pauws and Berry Eggen. Pats: Realization and user evaluation of an au-

tomatic playlist generator. In ISMIR 2002, 3rd International Conference on Music

Information Retrieval, 2002, 2002.

[38] John C. Platt, Christopher J. C. Burges, Steven Swenson, Christopher Weare, and

Alice Zheng. Learning a gaussian process prior for automatically generating music

playlists. In Advances in Neural Information Processing Systems 14, pages 1425–

1432, 2002.

[39] C. Herley R. Ragno, C. J. C. Burges. Inferring similarity between music objects with

application to playlist generation. In Proceedings of the 7th ACM SIGMM interna-

tional workshop on Multimedia information retrieval, 2005.

[40] Fabio Vignoli Rob van Gulik. Visual playlist generation on the artist map. In ISMIR

2005, 6th International Conference on Music Information Retrieval, 2005.

[41] Huub van de Wetering Rob van Gulik, Fabio Vignoli. Mapping music in the palm of

your hand, explore and discover your collection. In ISMIR 2004, 5th International

Conference on Music Information Retrieval,, 2004.

[42] Markus Scherer. Utf-16 for processing. http://www.unicode.org/notes/tn12/,

January 2004.

[43] Gerhard Widmer Tim Pohle, Elias Pampalk. Generating similarity-based playlists

using traveling salesman algorithms. In DAFx05, 2005.

[44] Alexander L. Wijesinha, Yeong tae Song, Mahesh Krishnan, Vijita Mathur, Jin

Ahn, and Vijay Shyamasundar. Throughput measurement for udp traffic in an

ieee 802.11g wlan. In SNPD-SAWN ’05: Proceedings of the Sixth Interna-

tional Conference on Software Engineering, Artificial Intelligence, Networking and

93

http://www.unicode.org/notes/tn12/

Parallel/Distributed Computing and First ACIS International Workshop on Self-

Assembling Wireless Networks, pages 220–225, Washington, DC, USA, 2005. IEEE

Computer Society.

[45] xiph.org. Vorbis.com faq. http://www.vorbis.com/faq/, October 2003.

94

http://www.vorbis.com/faq/

	1 Introduction
	1.1 Motivation
	1.2 Outline
	1.2.1 Theoretical Part
	1.2.2 Practical Part
	1.2.3 Conclusion

	I THEORETICAL PART
	2 Metadata (ID3)
	2.1 ID3
	2.1.1 ID3v1
	2.1.2 ID3v2

	3 Playlist generation
	3.1 Content-based playlist generation
	3.2 Metadata-based playlist generation
	3.3 Metadata and content-independent playlist generation
	3.4 Combinations

	4 Excursion: Audio Feature Extraction
	4.1 Rhythm Patterns (RP) - 641121
	4.2 Statistical Spectrum Descriptors - (SSD) DBLP:conf/ismir/LidyR05
	4.3 Rhythm Histograms - (RH) DBLP:conf/ismir/LidyR05

	5 Normalization and Distance Measurement
	5.1 Normalization
	5.2 Distance Measurement in Euclidean Space
	5.2.1 City Block Distance (L1)
	5.2.2 Euclidean Distance (L2)

	II PRACTICAL PART
	6 Architectural View of PublicDJ
	6.1 Design concept
	6.1.1 Client Tier
	6.1.2 Application-Server Tier
	6.1.3 Data-Layer tier
	6.1.4 Interaction

	6.2 Design of a round
	6.2.1 Description from the Master Server's perspective
	6.2.2 Description from the Analysis Server's perspective
	6.2.3 Description from the user's perspective (Client)

	6.3 Usecases / Interfaces
	6.3.1 Admin-Master Server
	6.3.2 Client-Master Server
	6.3.3 Analysis Server-MasterServer

	7 Implementation details
	7.1 Selection of the next music track
	7.2 Resource Management
	7.2.1 Load Balancing
	7.2.2 ETA calculation
	7.2.3 Transfer/Analysis Canceling Mechanism

	8 Setup of the program environment
	8.1 The Client - on a PocketPC
	8.1.1 Installation of IBM J9 Java VM on the Dell Axim x51v

	8.2 Installation of the required packages on the workstations

	9 PublicDJ Documentation
	9.1 Master Server
	9.1.1 Threads
	9.1.2 Other important classes
	9.1.3 Configuration Files

	9.2 Analysis Server
	9.2.1 Configuration File

	9.3 Client-Application
	9.4 Admin-Application
	9.5 UML2 Sequence Diagrams for important Usecases

	10 Summary

