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A Resource Management Scheme
for the TT-SoC Architecture

The advance of computer chip manufacturing technology makes it possible to con-
struct full-featured systems on a single chip, yielding a number of advantages. One
of which is that very efficient interconnects with high data rates are possible, since
each component is part of the chip.

However, there is the risk that the different components, if not properly separated,
influence each other. Thus, even a low priority application might cause the op-
eration of a highly critical real-time task to fail. To avoid such a situation the
interactions between applications must be encapsulated. To this end the TTSoC
architecture uses a central time-triggered on-chip interconnect. This interconnect
is protected by a guard, denoted Trusted Interface Subsystem (TISS), at each
micro component to guarantee the correct operation.

The objective of this thesis is the design and implementation of a resource man-
agement infrastructure for the TT-SoC architecture. Resource management is
important when resources are limited, which is not unusual for embedded sys-
tems. In particular, on battery operated devices power consumption should be
kept at a minimum. Dynamic resource management enables efficient usage of the
resources, since they may be allocated on demand and freed when they are no
longer needed. For the proposed resource management solution, the components
which are involved, their mutual interfaces and the algorithms that run on the
components are described and evaluated. Care is taken that the encapsulation,
which is encouraged by the TT-SoC architecture, is preserved. This is achieved
by dividing the system into trusted and non-trusted parts and by protecting the
access to the components within the trusted part.





Ein Resourcenverwaltungssystem
für die TT-SoC Architektur

Der Fortschritt der Chipfertigungstechnik ermöglicht es, ein voll funktionsfähiges
System auf einem einzelnen Chip unterzubringen, wodurch sich viele Vorteile er-
geben. Einer der Vorteile ist die sehr effiziente Kommunikation der Komponenten
untereinander.

Es besteht jedoch die Gefahr, dass die mitunter sehr verschiedenen Komponen-
ten, sofern sie nicht entsprechend voneinander abgegrenzt sind, sich gegenseitig
beeinträchtigen. Dadurch kann selbst eine Applikation mit niedriger Priorität die
Funktion einer sicherheitskritischen Echtzeitanwendung stören. Um das zu vermei-
den, benötigt man deterministische und vor unbeabsichtigten Eingriffen geschützte
Schnittstellen. Die TT-SoC Architektur, die auf einem zeitgesteuerten On-Chip
Netz aufbaut, wurde für diese Zwecke entworfen. Zugriffe auf das On-Chip Netz
werden vom sogenannten Trusted Interface Subsystem (TISS) überwacht, wodurch
eine korrekte Funktionsweise gewährleistet werden kann.

Das Ziel dieser Arbeit ist der Entwurf und die Implementierung einer Infrastruk-
tur zur Ressourcenverwaltung für die TT-SoC Architektur. Ressourcenverwaltung
ist für Systeme wichtig, in denen nur wenig Ressourcen zur Verfügung stehen. Im
besonderen in batteriebetriebenen Geräten muss auf eine geringe Leistungsaufnah-
me geachtet werden. Dynamische Ressourcenverwaltung erlaubt effiziente Nutzung
der Ressourcen, da diese nur bei Bedarf angefordert werden und nach Gebrauch
wieder für andere Anwendungen nutzbar sind.

In dieser Arbeit wird ein Lösungsansatz zur Ressourcenverwaltung vorgestellt. Wei-
ters werden die dafür notwendigen Komponenten, die gegenseitigen Schnittstellen
und die verwendeten Algorithmen erläutert. Es wird dabei darauf geachtet, dass
“Encapsulation” (Abkapselung), eine wichtige Eigenschaft der TT-SoC Architek-
tur, nicht beeinträchtigt wird. Dies wird dadurch erreicht, indem das System in
vertrauenswürdige und nicht vertrauenswürdige Teile unterteilt wird, wobei der
Zugriff auf Komponenten im vertrauenswürdigen Bereich überwacht wird.
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Chapter 1

Introduction

1.1 Motivation

The advances in chip manufacturing technology have made it possible to integrate
a whole full-featured system on a single die. And still, the hardware structures are
becoming smaller, allowing to put a great amount of functionality in small chip
areas. It has become feasible to build multiple distributed application subsystems
on a single chip. The advantages are promising: cost savings due to reduction of
the number of hardware parts and increased reliability since on-chip interconnects
are less susceptible to physical stress than connections on the PCB. Furthermore,
a performance gain can be expected as data exchange can be done more efficiently
and finally, power dissipation is cut when using a single chip.

However, the possibilities offered by this evolution are countered by challenges
to the development of such highly integrated systems. The complexity of these
systems becomes insurmountable if proper measures are not taken. Development
gets error-prone as there are too many issues to be addressed at the same time.
The most important technique to cope with this complexity is abstraction. By re-
lying on well specified interfaces, the main focus can be put on the actual applica-
tion development. In System-on-Chips (SoCs), the interconnect between different
components is becoming more and more difficult to handle since the signal delay
of on-chip wires is no more negligible with current technology. This complexity
can be hidden from application developers using a Network-on-Chip (NoC) infras-
tructure to connect all components of the system. The challenge here is to design
an efficient, yet flexible network with small overhead so that the cost does not
outweigh the benefits. This issue is addressed by many research projects by now
and appropriate solutions have been found already. However, hardly any of the
solutions can be used in the context of safety-critical real-time application, which
are very demanding in terms of reliability and need the provision of guarantees on
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communication properties.

The result is that the System-on-Chip solutions cannot be exploited by safety-
critical real-time applications. For example, an electronic system in a car may
be built of one application subsystem for electronic stability control, another for
a multimedia system and a third for motor control. The classical approach is to
form three distinct systems that share nothing except the battery as the common
power source. With three systems this is not a big issue, but nowadays cars feature
many more application subsystems than those mentioned already. Each system
must be provided with the resources it needs during peak load. If the systems are
combined on the same chip, resources can be shared and less resources are required
in total if two systems never run at peak load at the same time. Often, the risk
that one application subsystem has adverse effects on the execution of another is
too big if they were put on the same chip if they are not properly separated. Thus,
safety-critical real-time applications are mostly excluded from the benefits of SoC
solutions.

1.2 Contribution

The context for the findings presented in this thesis is how safety-critical real-time
systems can make use of chip technology and profit from SoC architectures.
For this, the Time-Triggered System-on-Chip (TT-SoC) architecture, an architec-
ture designed for real-time safety-critical applications, is used as a basis for the
design. Primary focus in this thesis is the dynamic resource management scheme
that enables efficient use and sharing of resources in the SoC. It is explained how
dynamic resource management can be realized even in the co-existence of appli-
cation subsystems of different degree of criticality. In other words how it can be
prevented that an application subsystem can negatively influence another appli-
cation subsystem on the same SoC, sharing the same resources.
To prove the utility of the proposed architecture, the SoC design is then imple-
mented on a Field-Programmable Gate-Array (FPGA) and the performance and
behavior of the resource management facilities is evaluated.

1.3 Structure of this Thesis

The remainder of the thesis is organized as follows. Chapter 2 introduces the
concepts on which the work is based and presents related work. In Chapter 3, the
TT-SoC architecture, on which the System-on-Chip (SoC) designed in this thesis is
based, is explained. The refined design of the SoC, for which resource management
is implemented, is detailed in Chapter 4. Furthermore, the mechanisms working
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together to make dynamic resource management possible are explained. Chapter 5
goes into the details of how the design was implemented and thoroughly describes
the interfaces between the components. How the design was evaluated along with
the results obtained can be found in Chapter 6. And, finally, Chapter 7 closes with
the conclusions drawn from the work and what is left to do in future projects.
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Chapter 2

Basic Terms and Concepts

2.1 Real-Time Systems

Real-time systems differ from conventional computer systems by having to provide
results which must not only be correct in the value domain, but also have to arrive
within a specified time interval (deadline). A system is called a hard real-time
system if a violation of the deadline renders the result useless. In some systems
this may lead to a system failure. If deadlines in a soft real-time system are missed,
the quality of service is degraded (e.g. a frame is dropped). While usual systems
try to optimize the average case, hard real-time systems focus on the worst case,
since the timing requirements must be met in every single case. An exhaustive
overview on the topic of real-time systems is available in [Kop97].

Real-time requirements do not only have an impact on the algorithms used in com-
putations, but equally on the communication mechanisms. Especially the Medium
Access Control (MAC) schemes must be devised carefully. For example, Carrier
Sense Multiple Access (CSMA), which is used in Ethernet, cannot be used in real-
time application without adding a flow-control mechanisms to an upper network
layer. Using plain CSMA, it cannot be guaranteed that any packet arrives in
time during high-load situations if access to the network is not coordinated. How-
ever, Kopetz et al. [KAGS05] have developed a variant of Ethernet called Time-
Triggered Ethernet that guarantees collision free access to the Ethernet medium
by synchronizing and coordinating the network nodes.

For the system described in this thesis, the Time-Division Multiple Access
(TDMA) access scheme is used that works very well for real-time systems. It
is explained in the next section.

5



2.2. PULSED DATA STREAMS TERMS & CONCEPTS

2.1.1 TDMA

Node0 Node1 Node2 Node3 Node0 Node1 Node2 Node3 t

Figure 2.1: Time-Division Multiple Access (TDMA)

In TDMA, all network nodes are assigned a certain time interval where they are
allowed to transmit data over the network. Each time interval is repeated period-
ically (cf. Figure 2.1). Obviously, these assignments must be exclusive so that in
no case two nodes are ever sending simultaneously.

The big advantage of TDMA is that every node can rely on the network being
available during its time share which is crucial for real-time applications. The
drawback of TDMA is, that the network is much less flexible. If additional nodes
are connected they must be assigned a time share before they can send messages.
Furthermore, all nodes must be synchronized to a global time base for obvious
reasons.

2.2 Pulsed Data Streams

Pulsed data streams are a novel communication primitive proposed by Kopetz
in [Kop06]. They were developed for TDMA networks to allow the coexistence of
messages with short periods and messages with long periods. The problem with
messages with long periods is that their duration may be long, thus they block the
communication medium for too long a time so that messages with short periods
are no more possible as illustrated in Figure 2.2.

The solution to this is simple but effective: divide message “2” into multiple parts
and send the individual parts over a longer time interval leaving gaps of inactivity
between the parts. The parts are called “Fragments”. Similarly, divide message
“1” so that it fits between the Fragments of message “2” (see Figure 2.3). These
fragmented messages are called “pulsed data streams”.

Summing up the above, a pulsed data stream is a periodic message that is split up
into individual fragments. The size of a fragment is determined by the underlying
communication system. The length of the Pulse period is a non-positive power of
2 seconds to reduce the complexity of the communication system. The distance
between two neighboring fragments is determined by the Fragment Period of a
pulse, which must be a non-positive power of 2 seconds as well. The four param-
eters that define a pulsed data stream are the Pulse Period, the Fragment Period,
the Number of Fragments and the Phase Offset (cf. Figure 2.3).
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Figure 2.2: Problems of mixing long and short periods
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Figure 2.3: Spreading messages to pulsed data streams

Pulsed data streams follow the time-triggered paradigm which states that actions
(e.g. transmission of packets) are triggered at predefined time instants. This
allows very low latencies in a variety of applications, since the sending instants are
defined a priori. For example, consider a control application where a sensor must
be read, its data has to be sent to the control unit, which calculates the control
values. The control values are then sent to the actuators to be applied. Proper
alignment of both pulsed data streams makes it possible to generate a seamless flow
of actions, which is not possible in event-triggered networks where transmission
latencies depend on the network load.

2.3 System-on-Chip (SoC)

“The definition of an SoC is simply a chip where an entire system is designed into
a single ASIC” (taken from Siewert [Sie06]). In the past, it was not possible to
put all components that comprise a computer system on a single chip. So every
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component resided in its own chip, connected to the others via the connections on
the Printed Circuit Board (PCB). In the 1970s and 1980s, attempts were made to
build integrated circuit networks that use an entire silicon wafer to host a collec-
tion of components, but these were thwart by manufacturing complexities. Since
the 1990s, as technology evolved, SoC architectures are used in a number of appli-
cations. They have numerous advantages. One of which is reduced cost compared
to multiple chips since only one chip must be packaged, tested and mounted to the
PCB. Second, the interconnection of components within a chip is more efficient in
terms of power consumption, cost and throughput. Third, modular design of the
SoC is achieved using Intellectual Property (IP)-Cores. An IP-Core is a hardware
description of a component that can be integrated into the chip. IP-Cores from
different vendors may co-exists on the SoC. Disadvantages of the SoC is an ad-
ditional complexity in the system design and that a single chip corresponds to a
single fault containment region. In other words, the reliability required for safety-
critical applications cannot be achieved by having three instances of a component
in the same SoC for use with Triple Modular Redundancy (TMR).

2.3.1 NoC

In [LG02], Benini pointed out that for a sound SoC design, the system should
be seen as a “micro-network of components”. This on-chip network is called the
NoC. With the advance of manufacturing technology the timing of on-chip wiring
becomes more and more complex. With an NoC the complexities can be hidden
from the cores in an elegant way. In [JT03], Jantsch comes to the same conclusion,
that NoC are needed to “keep up with the pace of technology advances”.

2.4 Message Scheduling Techniques

As already mentioned in Section 2.1, communication in real-time systems must be
coordinated in order to be able to guarantee worst case end-to-end delays and to
guarantee an upper bound on the jitter. This coordination is achieved basically
by telling each network node at which instants in time they are allowed to send.
Scheduling is the process to find correct values for the sending instants. However,
it is not always trivial to find valid values for the sending instants. Messages
may depend on others, have strict timing requirements or have to co-exist with
message of different period lengths. A general overview on scheduling in distributed
embedded systems can be found in [Kop97]. The terms relevant in the context of
this thesis are explained below.
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2.4.1 Online vs. Offline Scheduling

Since scheduling can be such a resource demanding task, it is often done during the
design phase of the system. Then it is called Offline Scheduling. If communication
demands can change during run-time of the system, all possible cases must be
scheduled and stored in different configurations. Thus, the system can adapt
online, even if it is not capable to do the scheduling itself.

The alternative to Offline Scheduling is Online Scheduling. In this case the schedul-
ing is performed during run-time according to requests of the network nodes. The
main advantage of Online Scheduling over Offline Scheduling is that it is much
more flexible. The message schedule is not limited to a certain set of pre-generated
schedules, but may attain any possible configuration. However, this brings in a
disadvantage. There may be situations where the scheduling fails which could
compromise system stability if not handled properly. Another disadvantage is
that Online Scheduling requires processing power in the running system. Since
computational resources in typical embedded systems are scarce this implies that
most Online Scheduling algorithms are non-optimal. A non-optimal scheduler is
a scheduler that may fail to find a solution even if a solution exists. Most on-
line schedulers use heuristics for finding solutions which can fail in unusual cases.
However, online schedulers do not require memory for storing the pre-generated
schedules.

2.4.2 Basic Techniques

Full Enumeration

Full Enumeration is a simple concept: try out all possible values until a valid
solution is found. It is easy to implement, but in general it has an exponential
time complexity. Therefore, it is hardly suitable for Online Scheduling. Often, it
is even impossible for Offline Scheduling, because the number of items to check for
a solution is too large.

Branch and Bound

Branch and Bound is a technique invented for solving optimization problems. It
uses the two tools Branch and Bound to explore the problem space more efficiently
than plain Full Enumeration. Assuming that function f(. . . ) is to be minimized,
it starts with the set of solution candidates. Then, using Branch the set is di-
vided to subsets (“Branches”) to which tighter constraints apply. Based on these
constraints the bounds for function f(. . . ) in all branches are evaluated in the
Bound step. Branches with a lower bound that lies above the upper bound of
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any other branch obviously cannot lead to the minimal solution. Therefore, they
are excluded from further investigation. Branch and Bound are repeated until a
solution is found. The topic was covered comprehensively by Clausen in [Cla99].

An example of how Branch and Bound can be used effectively for combined task
and message scheduling is given by Abdelzaher and Shin in [DS94].

2.5 Related Work

As it is generally accepted that NoCs are a promising approach to counter the
complexity of highly integrated SoCs, much research is done on the topic.
In addition to working on different topologies and hardware realizations of NoCs,
the issue of controlling an NoC by software is addressed. Without software con-
trol, resources (i.e. power consumption and network bandwidth) cannot be used
efficiently.

In [ANM+05], Avasare et al. presented an algorithm that performs flow control
on end-to-end channels in best effort NoCs. They propose to install a monitor
application on a centralized Operating System (OS) that collects statistics of all
NoC nodes. If the network is congested at a node an algorithm is used to lower
the message injection rate of affected nodes. When the network load subsides
the injection rate is increased again. This mechanism assures that the network
can be operated just below saturation, where maximum throughput is achieved.
Furthermore, based on this NoC they developed heuristics to make use of hardware
that is reconfigurable at run-time which are described in [NMAM05]. The paper
addresses the issue of task migration in such systems.

Radulescu et al. have developed a real-time capable, TDMA based NoC called
Æthereal, which is reconfigurable at run-time. It is based on end-to-end connec-
tions which may be established or released at run-time via a single or multiple
configuration ports. The configuration ports are accessed solely through the NoC
itself. Active connections have a guaranteed lower bound on throughput and a
guaranteed upper bound on latency. A detailed description is given in [RDP+05].

Hansson et al. propose an alternative to global reconfiguration schemes
in [HCG07]. They point out that the negative effects of a global reconfigura-
tion can be avoided if partial reconfiguration is done. For this, the system is
divided into parts which may be configured individually without disrupting the
other parts.
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Chapter 3

Time-Triggered System-on-a-Chip
Architecture

In this chapter the Time-Triggered System-on-Chip (TT-SoC) architecture, for
which dynamic resource management is implemented, will be presented.

The goal of this architecture is not primarily to optimize for highest performance
of the SoC, but to provide an infrastructure that may host multiple application
subsystems with different levels of criticality, where no application subsystem can
have a negative effect on another application subsystem even in the presence of
implementation faults in one of the application subsystems.

One of the most important requirements is the provision of services for safety-
critical real-time applications. The next section presents some key properties of
the TT-SoC architecture. Later follows the structure of the TT-SoC architecture
and the resource management facilities. The TT-SoC architecture is discussed
comprehensively in the PhD theses of Christian El Salloum [Sal08] and Bernhard
Huber [Hub08].

3.1 Properties / Characteristics

In this section the properties that characterize the TT-SoC architecture and dif-
ferentiate it from other SoC architectures are listed.

Real-Time The support for real-time applications is a key feature of
the TT-SoC architecture. It inflicts the requirement that all latencies
caused by the TT-SoC are predictable.

Encapsulation This is a very powerful property, that distinguishes
this particular SoC architecture from many others. Encapsulation
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means that every component in the TT-SoC is fully independent from
the other components from a functional point of view. In other words,
a faulty component “F” cannot disturb the correct operation of compo-
nents that do not depend on the results of component “F”. The same is
true for communication channels. Thus, encapsulation allows mixture
of certified safety-critical application subsystems and untrusted appli-
cation subsystems that provide additional non-critical services, with-
out having adverse effects on the safety-critical one. Another benefit
of encapsulation is that failures can be tracked down to the respon-
sible component more easily. Furthermore it enforces composability.
In short, a system features composability, if different modules may be
developed independently and if the integration of further components
does not affect the correct functioning of the other components in any
way.
Encapsulation is achieved by the introduction of a trusted region, which
components are certified to the highest required level of criticality.
All configuration data relevant for the TT-SoC architectural elements
which enters the trusted region is validated by trusted components to
guarantee system integrity.

Support for Resource Efficiency In embedded systems resources
may be scarce and must be used efficiently. Especially the power dissi-
pation should be minimized as embedded devices are often battery pow-
ered. Resource efficiency must be reflected in the system design. The
system has to be capable to adapt dynamically to changing resource
demands during run-time. Examples for this are frequency scaling or
complete shutdown of unneeded components, and avoidance of redun-
dant transmissions. However, measures taken to improve the resource
efficiency must not compromise the other properties of the system.
Thus, 100% reliable resource management facilities are to be used.

3.2 Structure

The structure of the TT-SoC is depicted in Figure 3.1. The central element is the
NoC which connects all micro components. For the NoC, the micro components
can be considered as clients using the network service. From the point of view
of the NoC there is no difference between the individual micro components. The
interface to the NoC is identical for all micro components.

The TT-SoC architecture, however, distinguishes between micro components ded-
icated to TT-SoC services on the one hand and micro components that imple-
ment the application on the other hand. The dedicated micro components are
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Figure 3.1: TT-SoC components overview

shown in the upper half in Figure 3.1. They comprise the Trusted Network
Authority (TNA), the Resource Management Authority (RMA), the Diagnostic
Unit (DU) and the Gateway. They are introduced in the sections after the micro
component description. A typical micro component (as shown in Figure 3.2) is
built up of three parts : the Trusted Interface Subsystem (TISS), the Communica-
tion Network Interface (CNI)/Middleware Layer and the host. They are discussed
below.

3.2.1 Trusted Interface Subsystem (TISS)

The TISS is the access point of the micro components to the NoC. It has to
ensure that the hosts can access the NoC exclusively during the time-slots al-
located for them. Neither sending nor receiving may be permitted in all other
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Figure 3.2: A typical micro component

time-slots. Thus, a faulty host cannot interfere with the communication of proba-
bly safety critical jobs. Furthermore, if an intruder is able to break into an unsafe
micro component, he cannot eavesdrop the exchange of sensitive data between
safe micro components. The active time-slots for each TISS must be configured
via the Configuration and Planning (CP)-Interface of the TISS. Obviously, only
a trusted component is entitled to fulfill this task. The TISS has an interface to
access the Global Time Base which is compared against the preconfigured time-
slots to determine the active time-slots. Since the global time is of interest to the
CNI/Middleware Layer and the host, the TISS forwards the current time to the
CNI/Middleware Layer.

3.2.2 CNI/Middleware Layer

The CNI/Middleware Layer provides higher level access to the NoC. Since the
TISS must be trusted it has to be certified to the highest criticality level of any host
in the SoC. To ease certification it is stripped down to a minimum of functionality.
This lack of functions is filled by the CNI/Middleware Layer, so that access to the
NoC is eased for the hosts. Depending on the host, there may be different versions
of the CNI/Middleware Layer. For example, the TNA, which has to be certified as
well, does not need a CNI/Middleware Layer with a rich feature set, so a minimal
version suffices.

3.2.3 Host

The hosts perform the computational tasks. A host can be a processor within the
SoC, an external processor or any logic circuit that can make use of the NoC. In
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most cases, a host has an I/O interface to read sensor values, drive actuators or has
an additional network or bus interface to connect to the outside world. However,
hosts without further interfaces that are used solely for performing computational
operations may be useful in some applications as well.

3.2.4 Dedicated Hosts

Dynamic resource management is accomplished mainly by the cooperation of two
dedicated micro components, the Resource Management Authority (RMA) and
the Trusted Network Authority (TNA). Their role is described in the following
sections. Thereafter, the components Diagnostic Unit (DU) and Gateway are
presented which offer additional services to the TT-SoC application subsystems.

Resource Management Authority (RMA)

The RMA is the core of the dynamic resource management. It receives resource
requests from other hosts via the NoC and calculates the resource allocation for
the whole SoC. As the algorithms that perform this task can get very complex,
it may not be reasonable to certify the RMA, thus it cannot be guaranteed to
be free of design faults. Therefore, the results must be checked for validity and
for syntactical correctness. A separate micro component, the TNA, is entitled to
perform this delicate task. Thus, the resource allocation computed by the RMA is
sent to the TNA again via the NoC. In fact, the RMA does not need an interface
other than to the NoC.

The three principal resources to be managed by the RMA are: computational
resources, communication resources and power. Computational resources include
I/O allocation and memory allocation. The management of communication re-
sources consists of creating a conflict-free message schedule that complies with the
requirements (bandwidth, latency and phase alignments) of all micro components
in the system. Finally, power management may lower clock frequencies and/or
lower core voltages to reduce power dissipation significantly, when performance is
not critical. The RMA may even completely disable a micro component, in which
case it must be reactivated by another micro component of the same Distributed
Application Subsystem (DAS).

Trusted Network Authority (TNA)

The TNA realizes together with the NoC and the TISSs the trusted part of the
resource management. It has to ensure that no invalid resource allocation may
ever be activated during system uptime. For this, it has to verify that the resource
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allocation received from the RMA does not violate any requirements of the system.
First, collisions must not exist. For example, a sending slot may not be assigned to
two different hosts. And, second, all resources needed by safety-critical application
subsystems or dedicated architectural elements of the TT-SoC architecture (e.g.
RMA, TNA) must be provided.
If these tests are passed, the TNA is also responsible for the establishment of the
resource allocation. This is done via a separate dedicated channel to the CP-
interfaces of the TISSs.

The second task of the TNA is to enable clock synchronization. The ability of the
TT-SoC to synchronize to the clock of another system (which is not necessarily
an SoC) allows to form clusters of systems. Since the global time-base is of inte-
gral importance to a time-triggered system as the TT-SoC, a trusted component
has to perform external clock synchronization. The clocks is adjusted using rate
correction to avoid discontinuities in time.

Diagnostic Unit (DU)

The DU collects status and diagnosis information from different parts of the TT-
SoC. In particular, abnormal operation is recorded to locate the source of faults.
All structural elements of the SoC (TNA,RMA,TISSs, hosts) can report such is-
sues. For example, the TNA reports if the verification of the resource allocation
fails. The TISSs report when a hosts violates its timing specifications (e.g. queue
overflow, invalid time-slot).

Gateway

A Gateway host allows to connect the TT-SoC to other networks. In principal
any network may be connected to the SoC via a gateway, but if inter-network
real-time communication channels are needed, time-triggered protocols ease the
interconnect and make it possible to use a minimum of buffers. Examples are
TTP or Time-Triggered Ethernet. Furthermore, Gateway hosts enable intercon-
nection of multiple TT-SoCs to form a cluster. This is necessary to construct
ultra-dependable systems, which cannot be realized with only a single chip be-
cause of the relatively high soft error rate of deep submicron devices. In [Con02],
Constantinescu analyzes the dependability of devices of this technology.

3.3 Network-on-Chip

The NoC provides the communication channels between the micro components.
Although in an SoC it is easily possible to establish links between two micro
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components outside the NoC, doing so results in loosing all benefits provided by
the NoC.

The structure of the NoC is not restricted to a particular topology. Some commonly
used topologies are shown in Figure 3.3.

(a) Bus (b) Ring (c) Star (d) Mesh

Figure 3.3: Commonly used network topologies

In conventional cabled networks mesh-like topologies (Figure 3.3(d)) are not always
practicable. In an SoC “wires” are relatively cheap so mesh structures, which offer
the highest throughput, can be realized more easily and therefore are a promising
topology for NoCs.

Medium Access Control (MAC) The NoC must be real-time capable as all
components of the TT-SoC. Therefore, TDMA (see Section 2.1.1), which guaran-
tees collision-free operation, is used for all interactions with the NoC.

Communication Primitives All communication on the NoC is done using
“pulsed data streams” (see Section 2.2). Pulsed data streams group multiple
TDMA timeslots, called fragments, to a single message so they need not be allo-
cated individually. The fragments are spread in such a way that long messages do
not inhibit messages of very short periods.

Ports The access to the NoC from higher network layers is done via Ports.
There are two different kinds of ports: Data-Link Ports (D-Ports) and Logical
Ports (L-Ports). D-Ports are comparable to the ports in IP-based networks. An
NoC interface has a number of D-Ports that may be assigned to individual com-
munication channels and form the physical interface to the NoC. There may be
some special ports with fixed numbers (e.g. port 0 for diagnostic data) but oth-
erwise the assignment of port numbers to channels is arbitrary and should not be
of interest to the application that is actually using the port. Applications operate
on the higher level L-Ports. An L-Port identifies the semantics of the data on
the channel. For instance the temperature reading of a sensor, a voltage level or
the left channel of an audio stream. If an L-Port is activated, the RMA assigns
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a currently unused D-Port which is then used for the transmission of the data
identified by the L-Port. The advantage of this separation is that the software is
independent from the low-level D-Ports. If the configuration changes, the D-Port
numbers may change but the L-Port remain the same. Thus, even the relocation
of the source of a channel is transparent to the receivers.
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Chapter 4

Design of the Resource
Management Solution

In this chapter the design of the SoC with dynamic resource management is pre-
sented. Also the resource allocation procedure and the algorithms used in the
realization are explained.

4.1 Resource Management Cycle

The resource management is a permanently active periodic process. Its course of
actions is depicted in Figure 4.1. In [Hub08], this resource management cycle is
motivated.

Hosts

1
RMA

TNA

3

RMA
67

4
Resource
Control

5

2

8

Figure 4.1: The resource management cycle

All of the micro components that dynamically allocate resources take part in the
process. The other micro components may have static allocations that are always
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active, or have their allocations done by another micro component of the same
application subsystem.
After the completion of all eight steps a new resource allocation becomes activated.
The period length of the process called reconfiguration period is a system param-
eter defined at system design time. It depends on the dynamics of the application
and the performance of the RMA and the TNA. Furthermore, very short cycles re-
sult in a considerable “non-productive” network load, since resource management
messages must be exchanged at very short intervals.

Since the TT-SoC is a time-triggered architecture for real-time systems, the send
and receive instants of all messages are defined a priori. Therefore, the beginning of
all steps has a fixed offset within the period, which dictates the maximum duration
for all steps. Similar to the period length the instants are system parameters chosen
during system design.

In the following, the steps depicted in Figure 4.1 are explained.

1st step: hosts request Resources In the first step, the hosts have
to specify the resources they currently need. Since they are not in
the position to allocate or deallocate resources themselves, they send a
request to the RMA.

2nd step: RMA computes resource allocation In the second
step, after the receive instant of the last resource request, the RMA
calculates the new resource allocation based on the recently received
requests. At that time no more resource requests can be issued for the
current cycle.

3rd step: RMA transmits the resource allocation The third
step consists of sending the resource allocation to the TNA in order to
have it verified and applied.

4th step: TNA verifies the resource allocation The correctness
of the results of the RMA are verified in the fourth step to make sure
that no conflicts exist and that resources for critical components are
allocated.

5th step: TNA writes the configuration If the configuration
proves to be correct, it is written to the configuration registers of the
TISSs in step five.

6th step: TNA reports verification result The RMA needs to
know whether the allocation was correct to react on errors and to no-
tify the hosts. The RMA may try a different allocation algorithm on a
verification failure or at least output diagnostic information.
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7th step: RMA notifies hosts The hosts must be informed if their
requests could be satisfied. Since there is no communication channel
between the TNA and the hosts, the RMA has to notify the hosts based
on the verification result from the TNA. Furthermore, it is possible
that a host’s resources were altered by a request from another host. In
short, this step assures that every host in the system is aware of the
resources it will be assigned to after the oncoming reconfiguration.

8th step: Activation of the new configuration To avoid inconsis-
tent intermediate configurations, the whole new allocation is activated
at a predefined instant for all components.

4.2 Resource Management Authority (RMA)

The RMA implements the actual dynamic resource management. It is equipped
with possibly a number of algorithms that are able to distribute the available
resources to the hosts according to the resources they requested.

Tasks

Process Requests It is unpractical to realize the resource requests
issued by the hosts as complete descriptions of all required resources
since that would be a waste of network bandwidth. Therefore, a table
of application modes, where each table entry describes the resources
needed in this mode is employed. Thus, before the allocation com-
putations can even start, the requests must be translated to detailed
resource requirements.

Compute Resource Allocation After the processing, the resources
can actually be assigned to the hosts.

Provision of Resource Usage Information It is not sufficient to
inform the hosts if their request was successful. The knowledge how to
access the resources must be included. In the implementation presented
in this thesis, the hosts need to know the network ports for requested
messages in order to use the network.

Interfaces

Hosts ⇒ RMA Used to request or relinquish resources
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RMA ⇒ TNA Used to transmit the resource allocation to be verified
and applied.

TNA ⇒ RMA Used to receive the status of the verification.

RMA ⇒ Hosts Used to inform the hosts which resources they were
assigned to and how to access them.

4.3 Trusted Network Authority (TNA)

The TNA implements the guard function to assure that no corrupted resource
allocation may enter the system. This makes it possible to use dynamic resource
management even in systems of applications of mixed criticality. Without the
TNA, there would be the risk that a fault in the resource allocation algorithm could
lead to a resource shortage in crucial components leading to catastrophic failures.
Through the TNA such a scenario is made impossible as the TNA maintains a list
of guaranteed resources. The TNA checks that these resources are assigned in all
allocations and hinders the activation of the allocation if the check fails.

Tasks

Detect Resource Conflicts Verify that no resource allocations con-
flict with each other.

Detect Missing Allocations Verify that all guaranteed resources
are provided.

Apply Resource Allocation Write the configuration registers to ef-
fectuate the assignment of the resources to the hosts.

Interfaces

RMA ⇒ TNA Used to receive the proposed resource allocation.

TNA ⇒ RMA Used to return the verification result.

TNA ⇒ TISS CP Used to write the resource configuration.
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4.4 Scheduling Constraints

In addition to the apparent requirement that any two fragments must not be sched-
uled at the same phase the hardware implementation imposes three constraints.

1. The distance between two fragments must not be smaller than one bus
clock tick (macrotick).

2. The distance between two fragments concerning the same host (but
from different pulses) must not be smaller than MAX EVENT RATE.
That is the time the hosts takes to switch between two pulses.

3. “Same Period Constraint”: For each period a host can only process
one pulse at a time (refer to Section 5.3.2 for details). This means
that pulses of the same period that require attention from at least
one common host may not be interleaved (i.e. fragments of one pulse
cannot be placed between two fragments of the other pulse).

4.5 Scheduler for Pulsed Data Streams

Message scheduling is generally a non-trivial problem. However, with pulsed data
streams the problem space becomes much larger because messages are allowed to
overlap. Furthermore, while searching for a solution Constraint 3 must be satisfied
and restrictions on the placement of messages defined by the system designer must
be respected. This makes scheduling a very complex task. The proposed algorithm
was designed to run on-chip under tight timing constraints. It cannot be expected
that it is able to solve all possible scheduling problems. Nevertheless, it performs
well for situations where the bus is operated well below full load.

4.5.1 Inputs

The input for the scheduling algorithm is a list of pulsed data stream definitions.
Each pulse definition contains the following parameters:

Logical Port ID used to identify the pulse (irrelevant for scheduling,
but must be kept for later usage).

Pulse Period determines the frequency of the pulse.

Fragment Period determines the distance between two neighboring
fragments. To keep the scheduling effort manageable this value must
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be specified. Alternative, possibly offline, scheduling algorithms might
be able to select the fragment period dynamically since in many appli-
cations the actual fragment period is of little importance as long as the
desired number of fragments is delivered within the pulse period.

Pulse Length the number of fragments. This attribute along with
the fragment period determines the Pulse Duration which is the time
interval between the start of the transmission of the first fragment and
the end of the transmission of the last fragment. Figure 4.2 shows
pulsed data streams in the first row and their duration in the second
row.

Set of involved hosts is a bitfield that selects the Hosts acting as
sender or receiver of the pulse. It is required in order to account for
“Constraint 3”.

Lower Bound the system designer can use this field to specify that a
pulse must be scheduled after a certain phase.

Upper Bound the system designer can use this field to specify that
a pulse must be scheduled before a certain phase. “Lower Bound” and
“Upper Bound” control the possible phase of the first fragment. If their
values are equal, the phase offset of the pulse is predefined and will not
be modified by the algorithm.

4.5.2 Preparations

The algorithm inserts one message after the other into the schedule. The more
messages that were scheduled the harder it gets to find places for the remaining
messages. So the pulses are ordered with those most difficult to schedule first.

The ordering is based directly on the input values mentioned in the last section,
but it has proved useful to calculate one further value for use in the sorting process.
It models the constraint that pulses of the same period that have a common host
must not overlap. If we consider pulses in this relation they can be regarded as
blocks rather then pulses. Figure 4.2 illustrates this. It can be seen that there is
much space for the fragments of a pulse in the first line but only very small blocks
can fit in between the others. For a given period and a set of hosts the length of
the blocks determines if it is easy to fit all blocks into the period. So the sort-index
is the ratio length of all blocks to period length. The procedure that calculates
the values can be found in Section 4.6, Listing 4.1
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Figure 4.2: Pulses of the same period and at least one common host

4.5.3 Scheduling order

The pulses are sorted according to the following criteria:

1 Ascending fragment period
Pulses with shorter fragment periods fit harder between the fragments
of other pulses, so they are scheduled first.

2 Ascending pulse period
Pulses with shorter pulse periods occur more often so it is more difficult
to find a space for all occurrences.

3 Ascending upper bound
To avoid that a pulse without an upper bound takes a valid place for
a restricted pulse, most restricted pulses are scheduled first.

4 Ascending lower bound
Although a high lower bound is more restrictive than a low lower bound,
pulses with low lower bounds are preferred. This is because the pulse
schedule is built up from left to right. Any gaps in the structure must
be filled with so-called placeholders. So a pulse with a low lower bound
could enable scheduling of a pulse with a high lower bound without use
of a placeholder.

5 Descending sort-index
As explained in Section 4.5.2, pulses that compete with many other
pulses of the same host are prioritized. Note that at this decision level
the pulses have the same pulse period.

6 Descending fragment count
The last criterion is simply the pulse length since longer pulses are
more difficult to schedule.
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4.5.4 Algorithm Properties

The dynamic resource allocation relies on a scheduling algorithm that arranges
the pulses so that all bandwidth and timing requirements can be satisfied. Since
the computational effort of the scheduling algorithm is rather low, it is possible
to do the calculations online during system operation. Compared to static offline
scheduling it is the more flexible and less memory intensive solution.

The scheduling algorithm developed for the resource management builds up the
schedule in a tree structure. The nodes of the tree are the pulses that were already
assigned a phase. The leaves represent phase offsets that can be used by yet
unscheduled pulses. The leaves impose restrictions to pulses that may be scheduled
at the respective phase.

The algorithm starts with the single Leaf A that represents all slots (as shown
later on in Figure 4.5). It has no restrictions except that the phase offset is
zero. The first pulse is set at this location. If the lower bound of the first pulse
lies above “0” a placeholder that starts at phase “0” must be inserted. More on
placeholders follows later. The pulse becomes the root node and its leaves represent
the fragments remaining free. The second pulse will be checked against the leaves
until an appropriate leaf (=sequence of slots) is found. The order in which the
leafs are tested is not arbitrary. First it is attempted to place the pulse at more
restrictive leaves. If a leaf is found the pulse is inserted as a new node. If the leaf
offered slots that were not used by the pulse these slots will be pointed to by the
leaves of the new pulse node. Restrictions of the replaced leaf are inherited to the
newly appearing leaves.

The following Section demonstrates the construction of the tree by means of an
example execution.

4.5.5 Example Execution

For a better understanding an example execution is presented here. To simplify
the demonstration we assume that the network is able to transmit one fragment
at each time instant in the 64-bit time format. In other words one fragment every
2−32s or 232 fragments per second. We refer to those time instants as timeslots or
short slots to be consistent with TDMA terminology. The number of slots of a
period is simply its length divided by the slot length.

2−X

2−32 = 232−X

Table 4.1 lists the properties of the pulses used in the example. Bounded pulses
are discussed later on. The pulses are already ordered according to the properties
mentioned above.
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Number Period (Length
in slots)

Fragment Period
(Length in slots)

Fragment
Count

Duration
in slots

Pulse 1 2−27 (32) 2−30 (4) 3 9
Pulse 2 2−26 (64) 2−29 (8) 2 9
Pulse 3 2−26 (64) 2−28 (16) 3 33
Pulse 4 2−23 (512) 2−26 (64) 2 65

Table 4.1: Pulses to be Scheduled in the Example Execution

The pulses listed in Table 4.2 are not scheduled in the example execution but they
are used in discussions to demonstrate the kinds of pulses that may be placed at
a specific location. They are labeled with special characters.

Number Period (Length
in slots)

Fragment Period
(Length in slots)

Fragment
Count

Duration
in slots

Pulse * 2−28 (16) - (-) 1 1
Pulse # 2−25 (128) 2−27 (32) 3 65

Table 4.2: Pulses for Demonstrations

Figures

At each step the tree and slot allocation is illustrated. The elements building up a
tree diagram are explained in Figure 4.3. The meaning of the relations will become
clear later on.
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Tree node: 
scheduled 

pulse

Leaf:
free slots

''Extends''
relation

''Subphase''
relation''Subperiod''

relation

Figure 4.3: Elements of a tree diagram

The slot allocation diagrams show all slots of the longest period appearing so far.
For each slot it can be seen which pulse or which leaf it belongs to. Figure 4.4
explains the different elements of those diagrams.
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Slots 0 - 31

Slots 32 - 63

First Fragment Indicators Leaf Fragments (free slots)

Slots that have changed at the 
current step are shifted downScheduled Pulse Fragments

Figure 4.4: Elements of a slot allocation diagram

Initial State

The algorithm starts with the tree depicted in Figure 4.5(a). To the right of the
tree, Figure 4.5(b) shows one cycle of Period 2−27 which is 32 slots long. It can
be seen that Leaf A covers all phases. This means that Leaf A has no restrictions
at all and any pulse may be scheduled there.

A

(a)
Tree

(b) Slot Allocation

Figure 4.5: Initial tree and slot reservation

Pulse 1

Pulse 1 replaces the only Leaf A. See Figure 4.6 for the new situation. Since
Pulse 1 does not use all slots provided by Leaf A the new leaves B, C, D and E
are created. The reason why we need 4 leaves is that the slots of a single leaf must
be describable in the form of a pulsed data stream. So the tree structure reflects
the structure of pulsed data streams which makes it easy to check if a pulse fits
into the slots of a certain leaf.
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1
B

E CD

e

(a) Tree (b) Slot Allocation

Figure 4.6: Slot allocation and message tree after Pulse 1

Leaf B Take a look at Leaf B. It covers the space left free because Pulse 1 has
only 3 fragments but 8 would fit into the 32 slots that make up one cycle of period
2−27 . This type of leaf is called “extension” because the slots are the extension
of the fragments of Pulse 1. Note that in the tree figures (e.g. Figure 4.6(a))
“extension” leaves are connected to the right side of the pulse node and marked
with an “e”.

In Figure 4.6(b) we can see the pulse structure of Leaf B. It is 5 fragments long
with period 2−18 and fragment period 2−21 , starts in slot 12 and has a duration
of 17 slots.

Basically, three different types of pulses may replace Leaf B :

• Pulses which pulse period is longer than or equal to 32 slots, which
fragment period is longer than or equal to 4 slots and which have a
duration of maximal 17 slots.
The next pulse in our example, Pulse 2, satisfies those requirements
and will actually be scheduled at Leaf B ’s position.

• Pulses with a pulse period of 16 slots and only one fragment. Note that
the fragment period for single fragment pulses is meaningless. This case
is illustrated in Figure 4.7.
Cases like this are not handled by the algorithm, which means that
even if Pulse 2 possessed these properties it would not be scheduled
there. The reason is that the scheduling of the succeeding pulses would
be more complex.

Figure 4.7: Pulse * : short pulse period

• Pulses having a fragment period that is longer than or equal to 32
slots. These pulses are called “orthogonal” to Pulse 1 because their
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fragments are orthogonal to the fragments of Pulse 1 if the period
cycles are arranged in rows.
This arrangement is exemplified in Figure 4.8. Each row represents one
cycle of period 2−18 . All four rows together form one cycle of period
2−16 (4x32 = 128 slots), the pulse period of Pulse #.

Figure 4.8: Orthogonal Pulse #

Leaves C, D, E The leaves C, D and E fill the gaps between the fragments of
Pulse 1. They all have similar properties, only the phases (1, 2, 3) are different.
They appear because the fragment period of Pulse 1 does not cover all phases.
They are called “subphase”-leaves.

The big difference to Leaf B is that no fragments of Pulse 1 can collide with a
pulse that is to be scheduled at one of the “subphase”-leaves. The consequence is
that there is no restriction on the pulse period and the pulse duration as opposed
to Leaf B. The only requirement is that the fragment period must be longer than
or equal to 2−30 (4 slots) which is guaranteed by the ordering of the pulses (cf.
Section 4.5.3).

Pulse 2

Pulse 2 is first checked against Leaf B. It is more restrictive than the other leaves
so it should be used if possible so that the other leaves are saved for more difficult
cases.
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Pulse 2 actually fits at Leaf B and replaces Leaf B in the tree. The pulse period
and the fragment period of Pulse 2 are longer than those of Pulse 1 and the pulse
is shorter than 20 slots, so not all slots offered by Leaf B are used. These slots are
covered by creating new leaves as children of Pulse 2. These leaves are named F,
G and H. The new tree and slot allocation can be found in Figure 4.9. The pulse
period of Pulse 2 is the double of the pulse period of Pulse 1. So the pulse occurs
only once in two cycles of Pulse 1 ’s period.
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(a) Tree (b) Slot Allocation

Figure 4.9: Slot allocation and message tree after Pulse 2

Leaf F Similar to the “extension” Leaf B of Pulse 1, Leaf F is the “extension”
leaf of Pulse 2. However, the phase of Leaf F is very near to the end of period 2−19

so only pulses with one fragment or “orthogonal” pulses (cf. Figure 4.8) can fit at
its place. The pulse period of such one fragment pulses must be at least 64 slots
long (the pulse period of Pulse 2 ). Likewise the fragment period of “orthogonal”
pulses must not be shorter than 64 slots.

Leaf G Pulse 2 has only one “subphase” leaf G. Unlike the “subphase” leaves
of Pulse 1 (C, D and E ) Leaf G restricts both duration and pulse periods, because
it inherits the properties of Leaf B.

Note: the number of “subphase” leaves calculates as:

fragment period length of Pulse 2
fragment period length of Pulse 1

− 1.

Leaf H The first “subperiod” leaf is Leaf H. It comes to existence because
Pulse 2 occurs only in every second cycle of the dominating period. So the slots
of Leaf B in the unused other cycle have to be covered by a new leaf: Leaf H.

Note: the number of “subperiod” leaves calculates as:

period length of Pulse 2
period length of Pulse 1

− 1.
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Pulse 3

The duration of Pulse 3 (33 slots) is too long for leaves F, G and H. So Leaf C is
chosen for the placement of Pulse 3. Figure 4.10 shows the updated tree and slot
allocation.
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(a) Tree (b) Slot Allocation

Figure 4.10: Slot allocation and message tree after Pulse 3

The leaves of Pulse 3 are obtained like those of Pulse 1 only the different fragment
period of Leaf C must be taken into account. The result is the “extending” Leaf I
and three “subphase” leaves J, K and L.

Pulse 4

The last pulse in this example is very easy to fit since its fragment period is
longer than the pulse periods of the other pulses. So it fits even at the most
restrictive Leaf F because it is “orthogonal” to the prior pulses. This can be seen
in Figure 4.11.

Like every pulse that does not use up the whole period length, Pulse 4 has an
“extending” Leaf M. Furthermore it has a “subphase” Leaf N.

4.5.6 Restricted Pulses

Upper Bounds

When moving down the tree the phase offsets increase. Figure 4.12 illustrates this
for our example. The tree from Figure 4.11(a) was redrawn but now the node
elements are labeled with the phase offsets.

The reason is trivial. When a leaf is replaced, the position of new leaves (“extend-
ing”,“subphase” or “subperiod”) is always after the first fragment of the original
leaf.

This property is used for scheduling of pulses restricted by an upper bound. To
find a location for such a pulse the tree is traversed as usual but if a node with a
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(a) Tree (b) Slot Allocation

Figure 4.11: Slot allocation and message tree after Pulse 4

phase offset higher than the upper bound is reached the search in that branch of
the tree is aborted.

Lower Bounds

The lower bound is checked when an appropriate leaf is found. If the lower bound
is higher than the phase of the leaf the pulse cannot be placed immediately there.
But a placeholder may be inserted and the pulse can be placed at its “extending”
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Figure 4.12: Phase offsets of the tree elements

leaf.

Assume that Pulse 2 of our example is bounded within 16 ≤ phase < 64. Then,
it cannot be placed at phase 12 as before. But if we put a placeholder at phase 12
we may use its “extending” leaf for Pulse 2. The outcome is found in Figure 4.13.
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(a) Tree (b) Slot Allocation

Figure 4.13: Use of a placeholder

This time, the “subphase” and “subperiod” leaves are child nodes of the place-
holder because its fragment period and pulse period are equal to those of Pulse 2.
Pulse 2 does not even have an “extending” leaf because there is no more space
left in the dominating period.

For pulses with lower bounds the tree is traversed normally but if a suitable leaf
for the pulse is found which violates the lower bound, the leaf is recorded and
the traversal is continued. If there is a leaf that satisfies the lower bound the
pulse is scheduled there and the placeholder solution is discarded. If not, the first
placeholder solution in the traversal is taken and subsequent solutions are ignored.
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4.5.7 Constraint 3

So far Constraint 3 (see Section 4.4) was not taken into consideration. It demands
that two pulses with the same pulse period and at least one common host may not
be interleaved.

Constraint 3 necessitates an extra check before the phase offset of a pulse can be
set. To be able to efficiently perform this check an ordered set of the previously
scheduled pulses is required for each period. The data structure proposed for this
purpose are Red-Black Trees which guarantee a worst case time complexity of
O(log n) for both insertion and search of elements. Red-Black Trees are balanced
binary trees where nodes are colored either red or black. The colors are subject to
two rules, which are also called balance conditions:

1. A red node has a black parent.

2. Every path from the root to a leaf contains the same number of black
nodes.

Due to these conditions the longest path from the root to a leaf is at most twice
as long as the shortest path from the root to another leaf. Red-Black trees are less
strictly balanced than AVL-Trees. Therefore, insertion and deletion of nodes is
generally faster with Red-Black trees, but searching is generally faster with AVL
Trees.
More on Red-Black Trees and an implementation example can be found in [Hin99].

If there is a conflicting pulse with the same period and at least one common host
which would overlap, it is attempted to place the pulse after the conflicting pulse.
This process may be repeated until the end of the period is reached or the upper
bound of the pulse is exceeded. However, if the pulse fits after the conflicting
pulse(s) a placeholder may be inserted so that the pulse may be placed there. But
similar as with the lower bound, the placeholder possibility is recorded and only
exploited if no other position can be found.

4.5.8 Static pulses

As mentioned above, the phase offset of a pulse can be static. Especially pulses
to or from a gateway connecting to another time-triggered network (e.g. Time-
Triggered Ethernet [KAGS05]) can take advantage of static pulses to reduce mem-
ory requirements for buffering and to preserve real-time characteristics.

It is difficult to integrate static pulses into the dynamic tree structure employed
by the algorithm. The problem is that static pulses must be placed first so that its
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slots are not taken by other pulses. However the algorithm relies on the ordering
of the pulses by ascending fragment period.

In the solution presented here placeholders are used to reserve the slots of static
pulses. Usually the placeholders require more bandwidth than the represented
static pulse, because a part of the slots must be reserved for preservation of the
tree structure. Therefore, static pulses should be avoided if possible.

For example lets take the pulse configuration from Section 4.5.5, Table 4.1. This
time assume that Pulse 2 is static with phase offset 9. Figure 4.14 shows how
Pulse 2 is represented in the tree structure.

x

C B

e A

y

D
e

(a) Tree (b) Slot Allocation

Figure 4.14: Integration of a static pulse with phase offset 9

Pulse x is required for the root and Pulse y actually reserves the fragments of the
static pulse shown in the upper line.

The scheduling of the succeeding Pulse 1 is restricted because Pulse y ’s fragment
period is longer than that of Pulse 1. So the child nodes of Pulse y cannot be used
for Pulse 1. However, leaves A, B and C can be used.

If we assume a fixed phase offset of 8 for Pulse 2, the situation depicted in Fig-
ure 4.15 is reached. This time only one placeholder z is needed, but with a higher
fragment period. Otherwise there would be no place available where Pulse 1 may
be put.

z
A

D BC

e

(a) Tree (b) Slot Allocation

Figure 4.15: Integration of a static pulse with phase offset 8
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4.6 Listings

This section includes the code listing for the preparation prior to scheduling from
Section 4.5.2.

1 ana lyzePer iods ( PulseType pu l s e s [ 1 . . n ] )
2 {
3 foreach ( per iod p)
4 {
5 load [ 1 . . number o f hosts ] = 0 ;
6 // c a l c u l a t e load on i n d i v i d u a l ho s t s
7 // fo r the current per iod va lue :
8 foreach ( pu l s e m o f per iod p)
9 {

10 foreach ( host h)
11 {
12 i f h sends m or h receives m then
13 load [ h ] = load [ h ] + m. l ength
14 }
15 }
16 // the sum of the load on concerned hos t s
17 // i s the sor t−index
18 foreach ( pu l s e m o f per iod p)
19 {
20 m. so r t i nd ex = 0
21 foreach ( host h)
22 {
23 i f h sends m or h receives m then
24 m. so r t i nd ex = m. s o r t i nd ex + load [ h ]
25 }
26 }
27 }
28 }

Listing 4.1: Computation of the usage of the pulse periods for use in sorting

4.7 Verification

The most challenging task of the resource allocation verification is to verify the
conflict free network operation. The verification is done by checking each pair of
pulses for a collision. The structure of pulsed data streams complicates collision
detection. It is not possible to decide whether two pulses collide only by comparing
start and end times of the transmission. The next Section explains which tests are
necessary to find out whether two pulses conflict.

4.7.1 Verification Tests

Figure 4.16 shows the flow-chart of the verification algorithm.

A description of the individual tests follows:
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Figure 4.16: Collision detection between two pulses

1 First, it must be tested if “Constraint 3”(Section 4.4) applies in which
case the next two tests are skipped, because the two pulses must not
overlap.

2 If the pulses may overlap it is checked whether the pulses are aligned
such that a collision is impossible. The test is performed by projecting
the phase offset of both pulses into the smaller fragment period. For
instance, in Figure 4.17(a) the projected phase offset of all fragments
of “Pulse 1” is 0. The fragments of “Pulse 2” project to phase 2. So
the test is passed and there cannot be a collision.

In Figures 4.17(b) and 4.17(c) both pulses are projected to the same
phase. In the first case there is no collision while in the second there
is one. So further tests are required.

3 If the pulses may overlap another situation (depicted in Figure 4.17(d))
must be checked for. The whole “Pulse 2” fits between two fragments
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of “Pulse 1”. The projected phases are the same so test 2 fails. Test 4
ensures that the pulses do not overlap thus fail for the given scenario.
So test 3 is required to detect cases as the one shown in Figure 4.17(d)
as correct.

4 This is the most complex test. Its steps are illustrated in Figure 4.7.1.
To find out if the pulses overlap, the start phase of the pulse with longer
period length is projected into the shorter period (Figure 4.18(b)).
Then, the ending phases of both pulses are calculated by adding the
duration of the respective pulse (Figure 4.18(c)). The ending phases
may lie outside the period, but from this representation it is easy to
tell whether the pulses overlap. Obviously, the ending phase of the first
pulse must be before the starting phase of the second pulse (marked “a”
in Figure 4.18(c)). Also, the ending phase of the second pulse must be
before the start phase of the next occurrence of the first pulse (marked
“b” in Figure 4.18(c)).

(a) Interleaved pulses (b) Same phases - no collision

(c) Same phases - collision (d) Pulse between two fragments

(e) Legend

Figure 4.17: Possible pulse relations

This algorithm is independent of the scheduling algorithm. On the one hand this
is important if a failure causes the scheduling algorithm to work out of specifi-
cation. On the other hand different scheduling algorithms can be used without
modification of the TNA.
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(a) Pulse 1 and Pulse 2

(b) Projection of Starting Fragments

(c) Calculation of Ending Phases and Compar-
ision

(d) Legend

Figure 4.18: Steps performed during test 4
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Chapter 5

Implementation

5.1 Environment

Since FPGAs enable testing of hardware prototypes, the SoC components are
custom logic cores written in VHDL. An FPGA makes it possible to synthesize
logic circuits described in a hardware description language like VHDL. Different
hardware approaches can be tested very easily. When the hardware design is stable
and a large volume of this type of hardware is needed the design may be realized
as an Application Specific Integrated Circuit (ASIC). ASICs are optimized to the
very function they have to perform and thus offer more performance than FPGAs.

5.1.1 Hardware

As hardware platform for the SoC the Nios II Development Board Stratix II Edition
was chosen. The heart of the board is the Stratix II EP2S60 FPGA chip which
hosts the whole TT-SoC. The board provides the resources necessary to build
an instance of the TT-SoC architecture with 8 micro components. A detailed
description of the board can be found in [Alt07b]. Table 5.1 sums up the most
relevant features for the implementation provided by the board. Figure 5.1 gives
a picture of the board.

Static RAM 2 MB
Dynamic RAM 32 MB
Logic Elements 48352
Memory Bits 2544192
I/O 8 LEDs, 2 7-Seg digits, 4 buttons, 1 two line LCD

Table 5.1: Stratix II EP2S60 features
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Figure 5.1: The Nios II Development Board, Stratix II (EP2S60) RoHS

5.1.2 System-on-Chip Implementation

In Figure 5.2 the different hardware modules that form the SoC and their intercon-
nections are illustrated. The core was generated using Altera’s SOPC Builder and
consists of 8 Nios processors along with modules driving the peripherals. Cores
(RMA and application hosts) access the NoC via the Transport Layer (TL) In-
terface. For best portability and extensibility this interface conforms to the Open
Core Protocol (OCP) specification, a comprehensive, bus-independent and config-
urable interface between Intellectual Property (IP) cores and on-chip communica-
tion subsystems. The specification is available in [OCP05]. The Nios processors
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Figure 5.2: Hardware modules overview

provide only the Altera specific Avalon interface ([Alt07a]) which necessitate OCP-
to-Avalon adapters between CPUs and TLs. The TL allows high-level access to the
NoC. It buffers the message data and forwards it to the Data Link Layer (DLL).
More detailed information about the TL can be found in Section 5.3.3.

The DLL (Section 5.3.2) is the entry point to the trusted area (in the figure marked
by the lock) which can be assumed to be free of design errors. It grants access
to the network only for the pulses pre-configured by the TNA. Each DLL has
access to the Global Time Base of the SoC to coordinate network access. The
NoC clock maintains the 64-bit wide chip-global time. For instance, if a host
needs timestamps to measure intervals or simply wants to read the current clock
it may obtain a snapshot of the time via the 32-bit DLL interface.

The NoC interconnect is a kind of demultiplexer that selects the data from the
sending DLL and distributes it to all DLLs. However, only those that were con-
figured to receive the corresponding pulse forward the data to the associated TL.

The TNA has very limited communication requirements. It has to receive one
pulse from the RMA that carries the resource allocation. And, after checking the
resource allocation and possibly reconfiguring the TISSs, it has to emit a pulse (in
fact just a single fragment) to signal success or failure to the RMA. Therefore,
a downscaled version of the TL suffices and is by the way easier to certify. This
TL has a RAM interface which is accessed via an Avalon-to-RAM adapter since
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Nios processors do provide only an Avalon interface. The DLL is the same as
for application hosts and the RMA. In addition to the network access the TNA
has direct access to the configuration memory of all DLLs. This is indicated in
Figure 5.2 using the white bus lines.
The TNA has its own 18 KBytes on-chip memory because the TNA program size
is only about 10 KBytes. The FPGA memories are dual-port capable, so the
instruction and data bus operate on different ports to allow fast parallel access on
both busses.

The RMA uses the static RAM for storage of program code and data, because it
offers very good performance and on-chip memory is saved for the network layers
namely DLL and TL.
Since memory is a scarce resource and the test application needs not run under
real-time constraints the dynamic RAM is shared by the application hosts. Thus,
performance on the hosts is degraded, but valuable on-chip FPGA memory blocks
and the on-board SRAM are saved for RMA, TNA and the NoC so the dynamic
resource management can be done efficiently.

Table 5.2 summarizes the FPGA resource usage.

DL TL TL Small Nios Nios RMA Total (%)
ALUTs 1800 1200 85 870 1783 38294 (75%)
ALMs 1300 760 227 577 1151 24127 (55%)
Memory KB 16384 71936 16384 9216 69504 939776 (37%)

Table 5.2: FPGA resource usage

5.2 Time and Durations

5.2.1 Time format

Time on the SoC is represented as 64-bit values similar to the Network Time
Protocol (NTP) time format (Figure 5.3). The difference is that NTP is per
definition based on Coordinated Universal Time (UTC) which is not a requirement
in this implementation. Thus, if no external time synchronization is performed, the
seconds are counted from the system start. The horizon is approximately 136 years
which should suffice for embedded applications. If larger values are needed they
may be handled by application software. The theoretic granularity of the format is
232.8 ps. However, the achievable resolution of the on-chip clock implementation
is only 14.9 ns. Therefore the last six bits (denoted “dead bits”) are always set to
“0”.
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Figure 5.3: 64-bit time representation

5.2.2 Periods

Many mechanisms on the SoC (especially networking) have periodic behavior.
To reduce complexity of the calculations and operations periods are restricted to
negative powers of 2 of a second. This allows to encode the period lengths in 5-bit
integers. See Table 5.3 for the values and meanings.

0 1 s 8 3.91 ms 16 15.26 us 24 59.6 ns
1 500 ms 9 1.95 ms 17 7.63 us 25 29.8 ns
2 250 ms 10 976.56 ms 18 3.81 us 26 14.9 ns
3 125 ms 11 488.28 us 19 1.91 us 27 7.45 ns
4 62.5 ms 12 244.14 us 20 953.67 ns 28 3.73 ns
5 31.25 ms 13 122.07 us 21 476.84 ns 29 1.86 ns
6 15.62 ms 14 61.04 ns 22 238.42 ns 30 0.93 ns
7 7.81 ms 15 30.52 ns 23 119.21 ns 31 0.47 ns

Table 5.3: Theoretical Period Durations

5.2.3 Phase Offset Alignment

A periodic action is defined by its period (one of the 32 period values) and the
phase offset. The bit length of the phase offset depends on the period length.
For period 0, all 26 bits are significant (excluding “dead bits”), period 2 is 4 times
shorter and thus needs only 24 bits. Phase offsets are stored in 32-bit words. There
are two ways how to store the offset values, which are compared in Figure 5.4:

Left-Aligned

The MSB of the 32-bit word is the MSB of the offset value. This representation
does not depend on the time format. The 32-bit value can be interpreted as the
fraction of the period. For example an MSB of “1” and all others bits “0” denotes
the phase exactly in the middle of a period cycle, for any period length. This
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representation can be used to specify relations between phases independent of the
period length.

Right-Aligned

The LSB of the 32-bit word is the LSB of the offset value (without dead bits).
This representation is closely related to the time-format. Offset values of different
periods are directly comparable. For internal calculation such as pulse scheduling
this representation is better suited.

08162432

Dead BitsLeft aligned 24-bit phase offset

Dead Bits Right aligned 24-bit phase offset

Figure 5.4: Left vs. right alignment

5.3 Network-on-Chip Implementation

The NoC for which dynamic resource management is developed, is based on the
collaborative work of Gerhard Engleder and Roman Seiger. Their master theses
focus on the NoC design. Gerhard Engleder has designed the system clock (see
Section 5.3.1) and the DLL (more in Section 5.3.2). Roman Seiger researched the
TL (refer to Section 5.3.3). Both layers were implemented and tested on Altera
Cyclone II Development Boards.

In this implementation the NoC is realized as a single channel bus which means
that at one instant at most one fragment is permitted to be in transmission. The
basic communication type are pulsed data streams because they make it possible
to interleave the transmission of messages of very long periods and messages of
very short periods.

The bus structure, because of its simplicity, is a good starting point for research
on the topic of dynamic resource management. Later, when the design has proved
its validity, more complex topologies can be investigated.
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5.3.1 Clock and Timing

On Cyclone II and Stratix II FPGA technology the NoC modules (TL and DLL)
can be run at a clock frequency of 75 MHz (a period length of 13.33ns). This
frequency drives all components of the SoC, except for the DDR-RAM controller
that needs to be run at 100 MHz.

The clock module maintains the global time that uses the binary SoC time format
with 6 dead bits. The resulting frequency of the clock is 67.11 MHz (226 Hz)
which corresponds to a clock resolution of 14.9 ns. A tick of this clock is called
a Microtick. The NoC needs 4 Microticks (equals one Macrotick) to process a
fragment of a message. So, the maximum frequency on the network is 16.77 MHz
(59.6 ns). Since a fragment has a size of 128 bits the achievable transfer rate totals
5.59 Gbit.

5.3.2 Data Link Layer (DLL)

The DLL provides low level access to the preconfigured pulsed data streams of the
NoC. It signals the higher layer when a fragment has arrived or when a fragment
can be sent, which port the fragment belongs to and the number of the fragment
within the pulse. Furthermore, it relays the data of the fragments on the assigned
time-slots. The DLL does not use a buffer, instead it logically connects the output
wires from the TL to the input wires of the NoC interconnect on the appropriate
time-slots. The full description of the DLL can be found in the Gerhard Engleder’s
master thesis [Eng07].

To better understand the constraints imposed on the scheduling of the pulses,
which have been presented in Section 4.4 and the background behind the TISS
Configuration interface described in Section 5.5.8, the implementation of the DLL
is briefly explained here.

A hardware module that reads the properties of the first pulse of a period and
waits until the real-time clock reaches the phase offset of the pulse exists for each
of the possible pulse periods. At this point the receive or send operation for the
first fragment is triggered. Then, the fragment period length is added to the phase
offset to obtain the time of the second fragment where the next action is taken.
This is repeated until the last fragment was handled. Afterward, the properties of
the next pulse in the list are retrieved. Since this process is periodic, the pulse list
needs to be stored in a cyclic list.

It is obvious that this system cannot handle overlapping pulses on the same DLL
and that the pulse lists must be ordered. In addition, due to the relatively high
hardware cost of these modules only 10 out of the 32 period lengths defined in
Section 5.2 are implemented. Choosing these 10 periods is in the responsibility of
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the TT-SoC system designer. The values are declared as constants in an VHDL
source file where they are easily accessible. Thus, changing them requires to rebuild
the FPGA image.

Table 5.4 lists the periods used throughout the development of the dynamic re-
source management system along with a description of what they were needed
for.

Period Length Used for
0 1 s

Early tests1 500 ms
2 250 ms
4 62.5 ms

Reconfiguration periods5 31.25 ms
6 15.62 ms

10 976.56 ms

More advanced timing tests
15 30.52 ns
17 7.63 us
19 1.91 us

Table 5.4: Implemented Period Durations

5.3.3 Transport Layer (TL)

The function of the TL is to provide an interface to the NoC that can be used
conveniently by a host implemented on a microprocessor. The TL buffers all
message data and is capable of raising interrupts on network events. Via the
TL the configuration memory of the DLL can be accessed read-only by the host.
Furthermore, the TL effects the system mode settings. For example it asserts the
processor reset signal if the watchdog period expires without an update of the
host’s lifesign.

Apart from the network and resource management functions already mentioned,
the TL offers access to the real-time clock. It can be configured for a periodic or
single-shot timer interrupt using the global time-base accessible via the DLL. Many
more network features that are too specific in this context and implementation
details can be found in Roman Seiger’s master thesis [Sei07].

5.3.4 Pulse Selection

The RMA comprises several resource agents, each responsible for managing the
application mode requests of one particular DAS. Thus, after reception, the ap-
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plication mode requests from the jobs of a DAS are forwarded to the respective
resource agent.

For each job of the DAS the resource agent calculates or looks up in a table
the 12-bit wide activation-bitfield of the active pulse groups. Each bit represents
a particular group of pulses, e.g. the group of audio streams to possibly four
speakers, that have to be scheduled if the bit is set. The pulse definition (see
Section 5.5.2) contains a similar 12-bit membership-bitfield to determine to which
group or groups the pulse belongs to. If in the activation-bitfield any of the groups
that a pulse belongs to is set the RMA will schedule the pulse. This is the case if
the bitwise AND of both bitfields is non-zero.

Guaranteed pulses are always active. Since the RMA is not realized as a trusted
component (otherwise its functionality could be directly moved to the TNA) it
does not make sense to allow deactivation of guaranteed pulses. The deactivation
could lead to the problem that while the pulse is inactive its time-slots are taken
by another pulse and reactivation of the pulse is no more possible, which must not
happen for guaranteed pulses.

Of course pulses of this type can be realized as sporadic pulses, so that data is
only sent (and thus power is only consumed) if necessary, but the bandwidth must
remain reserved during the whole uptime of the system.

5.4 Reconfiguration Timing

The reconfiguration process is a periodic real-time task that consists of 8 steps.
The time window of each step is illustrated in Figure 5.5. The detailed values can
be found in Table 5.5. Steps that are highlighted in gray are network transfers.

The largest parts are occupied by computational steps. The network transfers take
only a small part of the time and can be shortened further, in case the fragment
period is decreased. The presented solution is a tradeoff between using not too
much bandwidth but still providing enough time for the calculations.

Since the processor of the TNA is less powerful than the one of the RMA, the time
reserved for verification is comparable to that reserved for the much more complex
task of schedule generation.

0 8 16 24 31.5

1 2 3 4a 5 6 7

t [ms]

4b

Figure 5.5: Reconfiguration timing
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# Action Start
[ms]

End
[ms]

Duration
[ms]

1 Application Mode Requests 0.00 0.97 0.97
2 Resource Allocation 0.97 15.63 14.66
3 Forward Resource Allocation 15.63 20.02 4.39

4a Verification and config write 15.63 28.32 12.69
4b Transmission D-Port/L-Port mapping 15.63 28.32 12.69
5 Verification Result 28.32 28.80 0.48
6 Config-change Notification 29.30 30.76 1.46
7 Config switch 31.49 31.50 0.01

Table 5.5: Timing of the reconfiguration steps

5.5 Interfaces

This section contains detailed descriptions of the interfaces required for resource
management. After an overview of the entire resource management process in the
following section, the individual interfaces are described in detail.

5.5.1 Overview

Figure 5.6 gives an overview of the architectural elements and their interfaces that
participate in the resource management process.

The following list gives a short introduction to each of the interfaces:

1a The pulse definition represents a database comprising all pulses (except
the guaranteed pulses) that are transmitted via the NoC. Out of this
information, the RMA constructs the pulse schedule (see Section 5.5.2).

1b Similar to 1a, but for guaranteed pulses, which must also be provided
to the TNA to enable the TNA to check the existence of all guaranteed
pulses in the pulse schedule and that their properties are correct.

2 Via the Host-to-RMA interface, mode requests from the jobs inform
the RMA which resources are required (see Section 5.5.3).

3 Since the RMA is not a trusted component, the resource allocation
must be sent to the TNA for verification. This is done via the RMA-
to-TNA interface (see Section 5.5.6).

4 During the verification of the schedule the RMA sends the proposed
mapping of L-Ports to D-Ports via the RMA-to-Host interface to the
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Figure 5.6: Interfaces overview

hosts so that they can prepare the new port setup. However, if the
resource allocation turns out to be invalid the mapping loses its validity
(see Section 5.5.5).

5 The TNA uses the TNA-to-RMA interface to send back the verification
result to the RMA, which is exploited by the RMA to notify the hosts
(see Section 5.5.7).

6 In case the verification turns out to be successful, the TNA reconfigures
the TISSs via the TNA-to-TISS interface (see Section 5.5.8).

7 As a last step, the RMA-to-Host interface is exploited by the RMA to
inform the hosts of the upcoming configuration (see Section 5.5.3).

5.5.2 Pulsed Data Stream Definition Layout

As explained in the beginning of Chapter 4 all possible pulsed data streams have
to be defined in advance. For each micro component the pulses are defined in a list
of pulse definition entries shown in Figure 5.7. The pulse with ID “-1” signals the
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end of the list. The list cannot change during run-time, but the subset of active
pulses is configurable as described in Section 5.3.4.

There are guaranteed pulses that must exist during the whole runtime of the
system. They are required for the flawless operation of the system. Unlike the
other pulses, these guaranteed pulses cannot be activated or deactivated. In order
to specify a pulse as a guaranteed pulse, the G-flag has to be set to “1”.

A pulse is defined by its period and phase offset, its fragment period and its
length (i.e. the number of fragments). These data is stored in the fields Period,
FragPeriod, and PulseLen. Note that out of optimization purposes PulseLen is
given as the number of fragments reduced by one. The period lengths and the
phase offset are encoded as described in Section 5.2. For the pulse period only the
10 period values implemented by the DLL (cf. Section 5.3.2) are valid. For the
fragment period all of the 32 period lengths are valid as long as all fragments fit
into the period length. This is expressed in the following inequality:

PulseLen ∗ 2−FragPeriod < 2−PulsePeriod

During normal operation the phase offset is calculated by the RMA and needs not
be specified. However, in order to be able to write the startup configuration, the
TNA needs to know the phase offset to set up the NoC. So, for any guaranteed
pulse a phase offset value must provided in the field InitialPhase.

The range for the phase offset of any message is restricted to the period length
of the pulse. This range can be further restricted using the fields LowBound and
UppBound. For example two pulses can be restricted in such a way that is it
assured that one is finished before the other starts. LowBound gives the minimum
phase offset of the first fragment while UppBound gives the maximum phase offset
of the first fragment. For feasible scheduling the scheduling margin UppBound −
LowBound should not be set below the time distance between the fragments (i.e.
the fragment period length). The only exception to this are static pulses where
UppBound − LowBound = 0. In this case the phase offset is fixed and cannot be
changed by the RMA. Static pulses must be treated specially by the algorithm
and need reservation of otherwise free sending slots thus require more bandwidth.
The reason for this was explained in the presentation of the scheduling algorithm
in Section 4.5.8.
If no restrictions apply LowBound = “0′′ and all bits of UppBound are “1”.

The meaning of the BitField field depends on the flag G. If the pulse is a guaranteed
pulse (G=1) each bit of the field represents a micro component of the system. The
position of the bit corresponds to the ID of the TISS of the micro component.
Each micro component, for which the respective bit is set, is receiver or sender of
the pulse. Since each micro component has its own outgoing pulse list, the sending
micro component can be identified.
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If the pulse is not guaranteed (G=0), BitField serves the decision of whether
the pulse has to be scheduled in the current configuration or not as explained in
Section 5.3.4.

To identify the pulse, the logical port identifier (LogicalPort) of the sender job
is included in the pulse definition. The logical port ID has a hierarchical structure
(Figure 5.8) similar to the application hierarchy. At the highest level the DAS ID
identifies the Application Subsystem, the job ID identifies the sending job within
the DAS and the Port ID distinguishes between the different pulses of a job.

Using the data described above, the RMA generates a conflict free schedule for
the pulses and assigns L-Ports to D-Ports. At the TNA the schedule is received
and checked for collisions. The TNA has the data of all guaranteed pulses and
checks whether the parameters are correct and whether the bounds LowBound and
UppBound are not violated.
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Figure 5.7: Pulsed data stream definition layout
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Figure 5.8: Logical port identifier

Constraints

The initial phase offsets of guaranteed pulses must be conflict-free. Otherwise, the
transmission of guaranteed pulses might fail.
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G 1-bit If G = 1 the pulse is guaranteed and is therefore always
scheduled.

Bitfield 12-bit If G = 0 the pulse will only be scheduled if the bitwise
AND-operation of Bitfield and Hostmode is non-zero.
If G = 1 the pulse will be scheduled for the micro com-
ponents given in Bitfield.

Period 5-bit One of the 32 possible values for the period of pulsed
data streams.

FragPeriod 5-bit One of the 32 possible values for the fragment period of
pulsed data streams.

PulseLen 8-bit Index of last fragment of the pulsed data stream (i.e.
length of the pulse - 1).

LogicalPort 24-bit Value of the logical port id (L-Port ID) assigned to the
pulsed data stream.

LowBound 32-bit Left-aligned, the earliest phase where the first fragment
may be scheduled.

UppBound 32-bit Left-aligned, the latest phase where the first fragment
may be scheduled.

R Reserved

Table 5.6: Pulsed data stream definition attributes

In addition, a micro component cannot handle more than one pulse of the same
pulse period at the same time. Thus, these messages must not possess a config-
uration of UppBound and LowBound which would result in their overlapping. For
the same reason the sum of the durations of the pulses of the same period of one
micro component must not exceed the length of the pulse period, because they
can only be scheduled one after the other.

Depending on the DLL parameters, only a subset of the 32 possible values for
the pulse periods is implemented. In configurations comprising pulses with un-
supported period lengths, those pulses are ignored by the TISS. The value of the
fragment period is restricted by the design of the TISS to 23, since the shortest
fragment period achievable by the TISSs is 2−23s.

5.5.3 Micro Component-to-RMA Interface

This interface separates the architectural elements for resource management from
the application. Via this interface, jobs can issue resource requests to the RMA.
The other way round, this interface is exploited by the RMA to inform the jobs
which resources will be made available for them.

The jobs transmit an identification of the application mode at which they have to
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run. The RMA looks up in a local table to identify the resources that are required
for a specific application mode.

Regardless of whether a micro component has requested a mode change or not,
the RMA sends to the job the number of the actually active application mode. On
the one hand, this is used to signal a resource allocation problem: If the actual
mode differs from the requested mode, the job is able to detect that his resource
request has been declined. On the other hand, it enables a job to change the mode
of another job within the same DAS. For instance in order to realize a “controller”
job within a DAS, which is responsible for allocating the resources for all jobs if
necessary.

Since both messages (Job-to-RMA and RMA-to-Job) contain the application mode
number their structure (as depicted in Figure 5.9) is very similar. However, the
message from the RMA contains an additional SysMode field that carries infor-
mation about the system mode to which the micro component will be set. The
system mode cannot be affected directly by the micro components, but is based
on application modes and the system state. The system mode consists of one bit
for turning a micro component on or off and the period of the watchdog timer.
More about the system mode follows in the next section.
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Figure 5.9: Micro component-to-RMA interface

ApplicationMode 12-bit Number that identifies the application mode of the
application (either by the job or assigned by the
RMA).

SysMode 8-bit Return message from the RMA only: describes
the system mode after the next reconfiguration in-
stant, for details see Figure 5.10.

Table 5.7: Micro Component-to-RMA Interface Attributes
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5.5.4 System Mode Information

Currently, the system mode contains 2 types of information (cf. Figure 5.10):
the service level (one bit for modes “on” and “off”) and the watchdog period.
The watchdog period determines the maximum time interval between two lifesigns
before the host is reset. The lifesigns must be issued from the host via the TL.
If the time between the sending of two lifesigns is exceeded, it is assumed that a
failure at the host has occurred, which potentially can be resolved by performing
a reset of the host.

08

WDPeriod SR

Figure 5.10: System mode byte

S 1-bit Service level of the host. The service level is restricted
to values “0” (micro component switched off) and “1”
(micro component turned on).

WDPeriod 5-bit Frequency of the life-sign for the watchdog timer. The
value “0x1F” disables the watchdog functionality.

Table 5.8: System Mode Attributes

5.5.5 Port Mapping

The assignment of D-Ports to L-Ports is not statically defined at design time of
a micro component. This allows dynamic and thus efficient assignment of D-Port
numbers to a particular pulsed data stream by the RMA. The transmission of the
mapping information to the micro components is achieved by separate pulses from
the RMA to each of the individual micro components. In these pulses, the L-Port
IDs along with the D-Port numbers are listed (cf. Figure 5.11).

The first two bytes of the logical port IDs (DAS ID and Job ID) are constant for
all pulses of the same micro component so they are transmitted only once in the
first word (DAS ID and job ID).

Each of the remaining 15 words contains two pulse entries totaling in 30 such
entries. Currently, the design of the system is restricted to 62 pulses, it is a fair
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assumption that a single micro component deals with at most half of the possible
pulses in the system.

The entries are numbered from pulse 0 (P0 ) to pulse 29 (P29 ). One entry consists
of two bytes. The low order byte PX L-Port together with DAS ID and job ID
form the L-Port identifier presented in Figure 5.8. The high order byte PX D-Port

gives the Data Link Layer Port where the pulse data can be accessed.

The separation of the pulse containing the port mapping from the RMA response
pulse to the jobs is done in order to achieve a more efficient resource usage. Since
the L-Port/D-Port mappings for all micro components is of considerable size, the
gap in the network usage during the verification activities performed by the TNA
is perfectly suited for their transmission.
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Figure 5.11: Port mapping

DAS ID 8-bit ID of the DAS the job belongs to.
Job ID 8-bit ID of the job within the DAS.
PX L-Port 8-bit L-Port of the Xth pulsed data stream.
PX D-Port 8-bit D-Port of the Xth pulsed data stream.

Table 5.9: Port mapping

5.5.6 RMA-to-TNA Interface

After having gathered the application mode requests of all DASs, the RMA calcu-
lates the resource allocation for the individual micro components. The main task
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is to assign the phase offsets of the activated pulses. In addition, the System Mode
of the hosts is determined. This information has to be transmitted to the TNA
where it will be checked for validity. The layout of the pulse that is sent from the
RMA to the TNA is depicted in Figure 5.12.

In fragment 0 of this pulse, the fields RecfgPhase and RecfgPeriod determine the
instant when the next reconfiguration activity is performed (i.e. the point in time
when the configuration that is currently transmitted to the TNA becomes active).
Usually, these values remain constant throughout the entire uptime of the system,
since they represent system parameters that are determined at design time.

The TNA has to acknowledge the validity of the resource allocation so that the
RMA can inform the micro components about the success of their resource re-
quests. The acknowledgment or reject message is automatically disseminated by
the TNA after a well-specified delay, which represents the amount of the time that
is granted to the TNA software to verify the configuration. If the TNA software
crashes or fails to meet the deadline, the RMA might receive an old acknowl-
edge message (since communication between RMA and TNA is established by a
guaranteed periodic time-triggered pulsed data stream). To avoid that the RMA
mistakes an old message as valid the field RequestID is used. The TNA has to
perform a mathematical operation on this value and responds with the result. Due
to this value the RMA can decide, whether the TNA has correctly performed this
operation.

The SysModeX fields determine the system mode for each micro component. The
field possesses the same syntax as the SysMode attribute in the RMA-to-Job re-
sponse message as described in Section 5.5.4.

The following fragment is reserved for future use. For instance, it can be expected
that the SysMode fields are extended if more advanced power scaling mechanisms
are supported by the hardware of the SoC. For this purpose, this reserved fragment
can be exploited.

The calculated schedule of all pulses is specified in the following fragments (frag-
ments 2-63). Each fragment holds a single pulse description, so a maximum of 62
active pulses is possible. Up to 20 pulsed data streams are used for configuration
purposes. At least 42 pulses (that is an average of 7 outgoing pulses for each micro
component hosting a job) are free for application usage.

The temporal characteristics of a pulsed data stream are specified in the fields
Period, FragPeriod, PulseLen, and Phase. The SendMC field states the ID of the
micro component sending the particular pulse. In addition, the TNA has to know
which micro components are involved in the reception of the pulsed data stream
and at which D-Port they expect the data for use in the verification process.
For instance, this information is necessary, if the additional constraints defined
in the subsection ”Constraints” of Section 5.5.2 (e.g. two pulses with the same
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pulse period must not be interleaved) are fulfilled by the communication schedule.
The fields D-Port0 to D-Port7 serve this purpose. Each entry holds the D-Port
number at the corresponding micro component at which the data of the pulse is
stored. To disable the reception of the pulse at a certain host, the flags F0 to
F7 may be used. Setting flag FX to “1” invalidates the value of D-PortX and
disconnects hostX from the pulse. The advantage of using a zero active flag here
is that if a port is valid, the 8-bit value composed of D-Port and F can be used
by the TNA without the need to toggle the Most Significant Bit (MSB). The
data link layer supports port numbers from “0” to “118”. See TISS CP Interface
(Section 5.5.8) for details.

The only field not yet discussed is Guaranteed Index. It is the index to the pulse
in the table of guaranteed pulses. The field is used by the TNA to check the
properties of guaranteed pulses and to check whether all guaranteed pulses have
been scheduled.

For the verification algorithm within the TNA, the ordering of the pulses is of
high importance. The pulses have to be ordered by ascending period values (i.e.
descending period cycle lengths). Pulses of the same period must be ordered by as-
cending phases. This requirement substantially simplifies the TNA. Furthermore,
this ordering is already provided by the scheduling algorithm.

RecfgPhase 32-bit Left-aligned, the phase offset at which future configura-
tion changes take place.

RecfgPeriod 5-bit The periodicity of the reconfiguration cycle.
RequestID 16-bit The identification of the request used to match the re-

sponse from the TNA to the actual request.
SysModeX 8-bit The new system mode of micro component with ID X.

See Figure 5.10 for the details.
Phase 32-bit Right-aligned phase of the first fragment of the pulse.
Period 5-bit Period of the pulsed data stream.
FragPeriod 5-bit Fragment period of the pulsed data stream.
SendMC 3-bit The index of the host that is the sender of the pulsed

data stream.
PulseLen 8-bit Index of the last fragment of the pulsed data stream (i.e.

length of the pulse - 1).
D-PortY 7-bit D-Port number at micro component with ID Y.
FZ 1-bit Equals “0” if D-PortZ is valid or “1” if micro component

with ID Z does not receive the pulse.
Guaranteed Index 6-bit Index into the table of guaranteed pulses or -1 if the

pulse is not a guaranteed pulse.

Table 5.10: RMA-to-TNA Interface Attributes
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Figure 5.12: RMA-to-TNA interface

5.5.7 TNA-to-RMA Interface

After the verification of the resource allocation, the TNA disseminates its response
back to the RMA. In case the proposed resource allocation is valid, the TNA
returns an acknowledge message to the RMA and updates the TISSs via their CP
interfaces. Otherwise the detected violation of the constraints is reported to the
RMA. The layout of the response is described in Figure 5.13. The error codes
reporting the detection of a violation of the schedule follow in Table 5.12.

5.5.8 TNA-to-TISS Interface

The TNA configures the micro components via the CP interface of the TISS. This
interface is separated from the NoC in order to simplify the access, which enables
the TNA to directly alter the configuration of the micro components independently
of ongoing communication on the NoC.

This interface is realized as a memory interface with an 11-bit address bus and
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MsgCount 8-bit If Result=“0” (no error) this field indicates the number
of active pulses in the current configuration. The value
is undefined otherwise.

Result 8-bit Indicates whether the verification was successful. In case
a violation was found, the problem source is indicated.
The values and their meanings are listed in Table 5.12

RequestID 16-bit The updated value that has been disseminated from the
RMA in order to identify a particular reconfiguration
request.

Table 5.11: TNA-to-RMA interface attributes

a 32-bit data bus. The 3 most significant bits of the address are used to address
one of the 8 TISSs in the system. The remaining 8 bits allow for addressing the
256 words of the memory interface of each TISS (cf. Figure 5.14).

08

OffsetID

11

Figure 5.14: TISS address

In order to allow for updating the TISS configuration during operation of the SoC,
the configuration memory block is realized in each TISS as a shadow buffer, i.e. the
configuration memory is doubled. Each write access of the TNA operates solely
on the inactive shadowed configuration block. The last step when writing the
configuration memory is to update the valid flag V to ”1”. This signals the TISS
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0 OK Verification successful, no violations found.
1 COLLISION At least one pulse cannot be scheduled at the given

phase because resources (e.g. bus) are not avail-
able.

2 BAD ORDER PERIOD The messages are not ordered as required by the
verification algorithm of the TNA (descending pe-
riod length).

3 BAD ORDER PHASE The messages are not ordered as required by
the verification algorithm of the TNA (ascending
phase offset).

4 MISSING At least one pulsed data stream that is defined as
guaranteed pulsed data stream is missing in the
schedule.

5 DUPLICATE The L-Port/D-Port mapping contains two pulses
allocated to the same D-Port.

6 MISMATCH At least one of the guaranteed pulsed data streams
has invalid (temporal) properties.

Table 5.12: TNA verification result values

ID 3-bit Identification of the TISS (by means of the ID of the
micro component the TISS belongs to).

Offset 8-bit Word offset in the configuration memory of the TISS.

Table 5.13: TISS address structure

that a reconfiguration of the entire micro component is requested. At the next
reconfiguration instant (which is determined by RecfgPeriod and RecfgPhase of
the active configuration block) the TISS switches the configuration blocks and
starts working with the new configuration. Future write accesses operate on the
old (now inactive) block. Furthermore the TISS toggles the read-only active flag A

so that it can be observed that the change was performed.

In addition to the fields containing configuration management data A, V,
RecfgPeriod, RecfgPhase the TISS configuration contains the operation mode
(S) of the host and the configuration of the watchdog service WDPeriod (cf. Fig-
ure 5.10).

The remainder of the configuration memory is reserved for holding the Message
Descriptor List (MEDL) of the micro component. The MEDL is a list of all pulsed
data streams sent or received by the particular micro component.

The data structures of these pulse configurations are realized as cyclic linked lists.
For each of the 32 periods there is a list of pulses of that period. The pointers
(cf. PointerX in Figure 5.15) give the word offset of the first list element. The
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Figure 5.15: TNA-to-TISS interface

reserved value “0” represents an empty list if no pulse of the respective period
exists. Within a list, it is important that the list elements are sorted by ascending
phase offsets.

Each list element contains the description of the pulsed data stream (Phase,
FragPeriod, PulseLen and D) and the pointer to the next list element. The last
list elements points back to the first element. The memory-offset of the pulse
relates to the D-Port number in the following way:

portdl = offset−18
2

The D-Port number is important for the identification of a pulsed data stream at
the higher levels of the TISS such as the TL.

5.5.9 Network-on-Chip Interfaces

So far, only the high-level interfaces directly related to resource management have
been discussed. Figure 5.16 gives an overview of the low-level NoC interfaces. The
details are not in the scope of this document. Here is a short summary:

1 The interface between the full-featured Transport Layer (TL) and the
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RecfgPeriod 5-bit Period of future reconfiguration cycles, usually a system
parameter that remains constant.

WDPeriod 5-bit Frequency of the life-sign for the watchdog timer. The
value “0x1F” disables the watchdog functionality.

A 1-bit Active bit, read-only, reflects which of the two configu-
ration blocks is active.

S 1-bit Service level of the host (on/off).
V 1-bit Valid bit, must be written to “1” to finalize configuration

updates.
RecfgPhase 32-bit Left-aligned, the phase at which future configuration

changes take place, usually a constant system param-
eter.

PointerX 16-bit Offset to the pulsed data stream of period 2−Xs with
the minimum phase (the first element in a linked list) or
“0” if there is no such pulsed data stream.

Phase 32-bit Left-aligned instant of the first fragment of the pulse.
FragPeriod 5-bit Fragment period of the pulsed data stream (time be-

tween 2 succeeding fragments).
D Direction bit, if D=“1” the pulsed data stream is out-

going, if D=“0” it is incoming.
PulseLen 8-bit Index of the last fragment.
NextPointer 16-bit Points to the offset of the succeeding pulsed data stream

or the offset of the first pulsed data stream if this is
the last one in this period (linked list of pulsed data
streams).

Table 5.14: TNA-to-TISS interface attributes

hosts is a memory-mapped OCP interface. A more detailed description
is available in Roman Seiger’s master thesis [Sei07].

2 The interface between the minimal TNA Transport Layer and the TNA
is a simple memory-mapped interface. Since this TL was developed
especially for the TNA its description is found in this document in
Section A.1.

3, 4 The interfaces regarding the DLL are thoroughly explained in Gerhard
Engleder’s master thesis ([Eng07]).
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Figure 5.16: NoC interfaces

5.6 RMA/TNA Implementation

This section details the implementation of the two major components of the re-
source management system: the RMA and the TNA. First, the hardware is de-
scribed and then the details of the software implementation follow.

5.6.1 Hardware

The software of the two main components responsible for the resource management
runs on dedicated Nios II processors. To meet the high computational require-
ments of the RMA the most powerful Nios II was chosen, while the TNA manages
with less costly hardware. More about Nios II processors is available in [Alt07c]).
Table 5.15 gives the basic properties of the processors.

5.6.2 RMA Software

The program flow of the RMA is cyclic as depicted in Figure 5.17.

1 During initialization the Transport Layer is set up for the ports to and
from the TNA and the micro components. The initial application mode
is applied.
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RMA TNA
Nios II Type fast economy
Clock Speed 75 MHz 75 MHz
Instruction Cache 4096 Byte -
Data Cache 2048 Byte -
Pipeline 6 stages 1 stage
Features Hardware multiplier, dy-

namic branch prediction
-

Table 5.15: RMA / TNA processor properties
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Figure 5.17: RMA program flow

2 The parameters of the pulses for the current application mode are
loaded.
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3 The resource allocation is calculated by the scheduling algorithm.

4 The resource allocation is put into the NoC buffer to be sent to the
TNA.

5 The mapping of L-Ports to D-Ports is put into the NoC buffer to be
sent to the micro components.

6 All upcoming events are triggered from outside the processor. There-
fore they are handled in Interrupt Service Routines (ISRs) which allows
the processor to be put in sleep mode1. The main disadvantage of ISRs,
which is unpredictability, does not apply here since the interrupts are
time-triggered and thus easily predictable. The small overhead of the
ISR is negligible.

The following events are handled sequentially by ISRs. The first and
the third are network events, the second is a timer interrupt:

a Host request received:
This is the first phase of the reconfiguration. Any incoming
host application mode request is forwarded to the Resource
Agent of the respective DAS. The Resource Agent is a func-
tion that takes the application mode request of any of its
jobs and returns the new system mode for all jobs of the
DAS.

b Schedule generation:
It cannot be assured that the last job actually disseminates
an application mode request, so the resource allocation cal-
culations are triggered by a separate timer interrupt and
not after evaluating the last request. The TL is configured
to raise the interrupt shortly after the last possible reception
of the last request message. The ISR simply sets a flag so
that the main procedure starts with the calculations instead
of going to sleep again.

c TNA result received:
The hosts must be informed of the successful mode change,
so the mode values are put in the network memory to be
sent to the hosts. This is the last task of the RMA in the
reconfiguration cycle.

7 The reconfiguration cycle resumes at step 2.

1The Nios II does not support sleep modes, but the design does not target the Nios architecture
in particular
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Data Structures

Pulsed Data Stream (PSD) Objects The algorithm mainly works with PSD
objects. Each of these objects represents a pulsed data stream and holds the
following data:

Period: Pulse Period

FragPeriod: Fragment Period

PulseLen: Fragment Count

LowBound: Minimum allowed phase

UppBound: Maximum allowed phase

Phase: Phase offset within the pulse period. The Phase is assigned
when the scheduling algorithm has found a valid phase for the pulsed
data stream. Phase is bounded by LowBound and UppBound.

All fields except Phase are initialized from the pulse definitions (see Section 5.5.2).
All PSD objects are stored in an array which is the input for the scheduler.

Phase Hash Table As soon as a valid phase has been found for a pulse, its
Phase field is updated and it is added to the Phase Hash Table. The Phase Hash
Table allows to quickly (i.e. in nearly constant time) locate the pulse with a specific
Phase. It uses the Modulo operation as hashing function and linked lists to handle
hashing collisions. The size of the Phase Hash Table may be adjusted, more than
twice the number of defined PSDs is recommended. In any case the size should be
a prime number to reduce hash collisions to a minimum.

Period Lists In addition to being added to the Phase Hash Table, a pulse is
added to the list corresponding to its Period when its Phase is assigned. 32 lists
exist, one for each of the 32 possible periods.
The PSDs in these Period Lists are sorted by ascending Phase. Firstly, they are
used while checking the “Same Period Constraint”. Secondly, they aid in writing
out the pulse data for the TNA in the correct order. They are realized using STL
maps [SL95].

The Tree In Section 4.5, the tree built up by already scheduled pulses was
introduced. In the implementation this tree does not explicitly show up because
the pulse objects do not reference their child objects or leaves directly. Instead,
a pulse object carries the necessary information to compute the Phases of child
nodes, which can be looked up using the Phase Hash Table.
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Child Relationships Before presenting the implementation, a short recapitu-
lation of the relations between parent and child nodes is given here that may be
useful to understand the internals of the algorithm. Figure 5.18 illustrates the
relations in graphical form. Its elements were explained in paragraph “Figures” in
Section 4.5.5.
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Figure 5.18: Child relationships

The list of relationships follows:

Extension The fragments of the child pulse are aligned with the
fragments of the parent pulse. In Figure 5.18(b), this is true for
Pulse 1 → Pulse 2 as well as Pulse 2 → Leaf F. An extension pulse can
itself be extended by a further extension pulse. This way, a chain of
extension pulses can be formed. Obviously, the chain cannot be longer
than the period length of the first pulse (in our case Pulse 1 ). There-
fore, this period is called Dominating Period. But other restrictions
apply as well: both the fragment period and the pulse period of the ex-
tending pulse must be longer than the respective period of the parent
pulse. Disrespecting these restrictions risks collisions with Subphase
and/or Subperiod pulses.

Subphase For pulses in this relationship the first fragment of the child
pulse is in between the first two fragments of the parent pulse and has
an offset from the first fragment of the parent pulse that is a multiple
of the fragment period length of its own parent.
In Figure 5.18(b), this is true for Pulse 1 → leaves C, D, E and
Pulse 2 → Leaf G. The dominating period for these pulses is the dom-
inating period for the parent pulse. Consider Leaf B and its parent
Pulse 1. As Pulse 1 is the first pulse, it is not dominated by any pulse,
so the same applies to Leaf B. Leaf G on the contrary, is the child
of Pulse 2, which is dominated by the period of Pulse 1. Looking at
Figure 5.18(b), it can be seen that the fragments of Leaf B are not
interrupted, while the fragments of Leaf G are interrupted by the next
occurrence of Pulse 1, which confirms the above postulations.
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Subperiod For pulses in this relationship the first fragment of the
child pulse has an offset from the first fragment of the parent pulse that
is a multiple of the period length of its own parent. In Figure 5.18(b),
only the relation Pulse 2 → Leaf H matches this description. Pulse 1
is 32 slots long and Leaf H ’s first fragment is 32 slots after Pulse 2 ’s
first fragment. The restrictions for subperiod pulses can be seen in Fig-
ure 5.18(b). They are similar to those for Pulse 2 (extending relation),
only the pulse period must be longer than the pulse period of Pulse 2
instead of the pulse period of Pulse 1.

Scheduling Algorithm

The scheduling algorithm has to traverse the tree of scheduled pulses to find a
location for the next pulse. Thus, it is implemented as a recursive function with
the following parameters:

phase identifies the location in the tree.

nextPulse the next pulse to be scheduled.

dominatingPeriod in this subtree, no pulse may exceed the bounds
of this period, otherwise it collides with a prior pulse.

minFragmentSubperiod in this subtree, the algorithm must not ex-
ploit subphases shorter than this period.

minPeriodSubperiod in this subtree, the algorithm must not exploit
subperiods shorter than this period.

First, the procedure checks whether Phase P is occupied with a lookup in the Phase
Hash Table. If it is not occupied, it checks whether the “Same Period Constraint”
is violated if nextPulse is scheduled at P. If this is not the case either, the pulse is
scheduled at P, its Phase field is updated and it is added to both the Phase Hash
Table and the Period List. The function returns True to indicate success and the
abortion of the traversal.

Otherwise, if Phase is occupied by a pulse called occPulse here, its children are
enumerated and the procedure is called for them. This is demonstrated in List-
ing 5.1.
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Child Phases In this phase, the child relations presented in Paragraph “Child
Relationships” are investigated to find a place for nextPulse.

First of all, if occPulse is the first pulse in a chain of extension relations, its
period is the dominating period and must be handed down in the tree. Otherwise,
the dominating period has already been set and remains untouched. The check is
performed in Line 2.

The first possible child is the “extending” phase just after occPulse, its phase is
calculated in Line 7. This phase may only be used if the period of nextPulse is
longer than the period of occPulse.

Then, “subphases” and “subperiods” are tried. Both are handled using the func-
tion doSubphases, but with different parameters. The doSubphases procedure
starts with a given phase. It adds the duration of the SubPeriod and calls
schedule for the result. Then the duration is added a second time and schedule

is called again. The process continues until the duration of MainPeriod is reached.
See Figure 5.19 for an example. The behavior of doSubphases relates to the defi-
nition of subphase and subperiod children from Paragraph “Child Relationships”.
For subphases of Pulse 2 (Figure 5.18), it starts with phase 12, and adds the period
length of the fragment period of Pulse 1 to get to phase 16, which is the position
of subphase Leaf G. It then proceeds to phase 20 which is the second fragment
of Pulse 2, so the enumeration is stopped. The subperiods of Pulse 2 are found
similarly: this time the pulse period of Pulse 1 is added, so phase 44 (Leaf H ) is
reached in the first step. The enumeration stops at the second step as the next
instance of Pulse 2 is encountered.

There are different cases to consider. If occPulse is the first in the chain (e.g.
Pulse 1 in Figure 5.18), it has only “subphase” children. So one call to doSub-
phases is required (Line 17). In this case, the Fragment Period of occPulse serves
as the parameter MainPeriod, because the time-slots in between the fragments
will be used. The Sub Period is dictated by the caller of schedule (the par-
ent of occPulse). It may be that every time-slot is still free (e.g. subphases of
Pulse 1 ), but it is also possible that only a portion of the time-slots can still be
used (e.g. subphases of Pulse 2 ). The restrictions for children must be specified
when calling doSubphases. In this case, only the fragment period is important
to avoid collisions with siblings. The fragment period is passed as parameter
minFragmentSubperiod.

If occPulse itself is “extending” another pulse (e.g. Pulse 2 ), it can have both
“subphase” and “subperiod” children. However, as with the “extending” children,
they may not be used if the period of nextPulse is too short. The elabora-
tion of “subphases” (Line 17) works similar to the case presented above. The
difference is that more restrictions apply. First, the dominating period must be
respected. Second, the pulse period of children cannot be shorter than the pulse
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period of occPulse.

For “subperiods”, occPulse determines the parameters MainPeriod=
occPulse.period while SubPeriod takes the value handed down from the
parent of occPulse. The fragment period restrictions from the parent of
occPulse apply for subperiod pulses, so the parameter minFragmentSubperiod

remains constant. However, the pulse periods are dictated by occPulse, so
minPeriodSubperiod=occPulse.period for subsequent nodes.

1

2 i f ( per iod == MAX PERIOD)
3 newDomPeriod = occPulse . per iod ;
4 else
5 newDomPeriod = per iod ;
6

7 newPhase = phase + PERIOD LEN( occPulse . f p e r i od )
8 ∗ occPulse . PulseLen ;
9

10 i f ( nxtPulse . per iod >= occPulse . per iod )
11 {
12 schedu le ( newDomperiod , newPhase , occPulse . fpe r i od , occPulse . per iod ) ;
13 }
14

15 i f ( per iod == MAX PERIOD)
16 {
17 doSubphases ( occPulse . fpe r i od , minFragmentSubperiod , phase ,
18 MAX PERIOD, occPulse . fpe r i od , minPeriodSubperiod ) ;
19 }
20 else
21 {
22 i f ( nxtPulse . per iod >= occPulse . per iod )
23 {
24 doSubphases ( occPulse . fpe r i od , minFragmentSubperiod , phase ,
25 newDomPeriod , occPulse . fpe r i od , occPulse . per iod ) ;
26

27 doSubphases ( occPulse . per iod , minPeriodSubperiod , phase ,
28 newDomPeriod , minFragmentSubperiod , occPulse . per iod ) ;
29 }
30 }

Listing 5.1: Enumeration of Child-“Phases” and Invocation of the Schedule Pro-
cedure

Checking the “Same Period Constraint” After a possible location has been
found for nextPulse, it must be verified that no other pulses with the same period
and common hosts overlap with the pulse. For this, the Period List of the period
of nextPulse is searched for such pulses. Remember that Period List is sorted by
the starting phase of the contained pulses.

The first part is easy. Verify that all pulses which begin within the start and end
phase of nextPulse do not have a host in common with nextPulse. For this,
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Main period:  32 slots

Sub periods: 4 slots
Starting phase
schedule is called for phases at 1-7

Figure 5.19: Example of doSubphases with MainPeriod=2−18 (32 slots) and
SubPeriod=2−21 (4 slots)

Period List can be iterated from the start phase to the end phase of nextPulse.
If there is a pulse with a common host another location must be found.

The second part is a bit tricky. Pulses that start before nextPulse, but end after
the beginning of nextPulse must be investigated. A second list similar to Period
List, but sorted by the ending phases, would not help. Pulses that start before
nextPulse and end after nextPulse would go undetected (cf. Figure 5.20).

Figure 5.20: nextPulse is enveloped by an already scheduled pulse

Furthermore, it is not possible to go back only to the first pulse that has a host
in common with nextPulse. This is illustrated in Figure 5.21. Here, we go back
from nextPulse to find oldPulse2, which has Host 3 in common with nextPulse

and ends well before nextPulse. But there also is oldPulse1, which has Host 1
in common with nextPulse and overlaps nextPulse, which is not allowed.

Thus, the only possible strategy is to continue until all hosts participating in
nextPulse have been found in a pulse prior to nextPulse. Alternatively, if the
number of pulses is not very high, the check may be started right from the very
first pulse in the period instead.

Figure 5.21: Trap when checking the “Same Period Constraint”
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5.6.3 TNA Software

The TNA program flow is illustrated in Figure 5.22.

1 During initialization the network interrupt handler is set up, the inter-
rupt is activated and the real-time clock module is initialized. In case
there is no external clock for synchronization, the clock simply starts
at zero. Furthermore, the initial pulse configuration is loaded.

2 The current pulse and system mode configuration is written to the
TISSs. Initially the configuration contains only the guaranteed pulses.
Note that the configuration is not activated immediately.

3 Finally, the configuration is marked “valid”. This informs the TISSs
that a configuration switch must be performed at the defined reconfig-
uration phase. Since there is no way to signal all TISSs at once, they
must be signaled sequentially. Care must be taken that this step is
completed for all TISSs before the reconfiguration phase. If the setup
of some TISSs is incomplete at the reconfiguration phase, the config-
uration becomes inconsistent and “guaranteed” pulses may fail. To
avoid such a situation, this step is omitted if the reconfiguration phase
is too close by.

4 While the RMA processes the host requests, the TNA can be put in
sleep mode. However, it is not necessary to wait until the whole allo-
cation message has been received, so the reception of a fragment wakes
up the TNA. This way the idle time can be reduced.

5 Each fragment carries the description of a pulse. So each newly received
pulse description is checked for collisions with previously received de-
scriptions.

6 If no collisions between pulses were found other properties of the re-
source allocation are checked. For example it must be checked that the
service levels of RMA and TNA equal “1”. If more fine-grained service
level settings are supported, it must be checked if the service levels are
high enough that the timing requirements of RMA and TNA are met.

7 The verification result is put into the message buffer to be sent to the
RMA, which in turn forwards it to the hosts. This must happen before
the new configuration becomes active so that the hosts can prepare for
the new configuration.

8a If the resource allocation is valid the reconfiguration process is started.
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8b Otherwise nothing happens and the TNA waits for the next allocation
message.

Write
TISSs Fragment

received
interrupt

Initialization

1

2

4

3

5

6

Set 
Valid Flag

Sleep Trigger
Coll. Detect.

General
Verification

Collision
Detection

Send
Result

7a

7b

Figure 5.22: TNA program flow

Verification Algorithm

Recall that the TNA has to verify three items.

A Pulses are primarily ordered first by ascending pulse period and then
by ascending phase.

B All guaranteed pulses are scheduled and their properties are correct.

C No collisions exist in the pulse schedule.

A The first item is easy to solve. For every received pulse definition (except
the first one) it is checked whether the period value is higher than the one of
the previous pulse. If they are equal the phase of the new pulse must be higher,
otherwise the ordering requirement is violated.
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B Thanks to the Guaranteed Index field the second item is trivial as well. On
reception of a pulse definition the Guaranteed Index field is checked. If its value
is not “-1” a lookup of the pulse definition of the corresponding guaranteed pulse
is done, which is then compared to the received pulse. The Phase must be within
LowBound and UppBound. All other values (Period, FragPeriod D-Port0-7 , F0-7
and SendMC) must match exactly. Otherwise a MISMATCH (cf. Table 5.12) error is
generated.
To detect missing guaranteed pulses, a bitfield is used. There is one bit for each
guaranteed pulse. The bitfield is initialized to zeros. For each matching guaranteed
pulse, a bit is set to “1”. In the end all bits must be “1” otherwise the MISSING

error is returned. In the current implementation less than 64 guaranteed pulses
are supported. Therefore two 32-bit words suffice to store the bitfield.

C As pointed out during the presentation of the verification algorithm in Sec-
tion 4.7.1, to find out whether a pulse schedule is conflict-free each pair of pulses
in the schedule is checked for a collision. This results in n2−n

2
checks for n pulses.

In Section 4.7.1, the 4 tests required for each such check were introduced. Here,
the implementation of each test is described.

First, it should be noted that the data structure used by the algorithm to represent
a pulse is identical to the definition of the pulses in the RMA-to-TNA interface (cf.
Section 5.5.6). Thus, no extra processing is required when data is retrieved from
the NoC input buffer. The structure is repeated in Figure 5.23 for convenience.

PeriodFragPeriodPulselenSend
MC

Phase Word 0

Word 1

Ports 0

Ports 1

08162432

D-Port3 D-Port2F2F3 D-Port1F1 D-Port0F0

D-Port7F7 D-Port4F4

D-Port3F3

D-Port5F5D-Port6F6

R Guaranteed
Index

Figure 5.23: Data structure for pulsed data streams in the TNA

In the following description of the individual test conditions as well as in the code
listings, the pulse with shorter Fragment Period will be referred to as SFP while
the pulse with longer Fragment Period will be called LFP. Analogous, SPP and
LPP will be used to indicate the pulses with shorter or longer Pulse Period. Note
that SFP and SPP are the same pulse in most cases, but exceptions are possible.
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Test 1 Test whether the “Same Period Constraint” applies. First, the Period

values of both pulses are compared. If unequal the test succeeds. Otherwise it must
be tested whether the pulses have a host in common. This test can be efficiently
performed by combining the D-Port and F fields to the two 32-bit words Ports0

and Ports1 (see Figure 5.23). This reduces the test to the expression found in
Listing 5.2. Recall that flags F0-7 are “0” if the port is connected. The bitwise
OR of the F flags evaluates to “0” if the port is active in both pulses which means
that the pulses have a common host. The bitwise OR is performed for Ports0

and Ports1 . Then a bitwise AND is used to preserve any zeros already detected.
In the final result all flags are “1” in case the pulses have no host in common.

1 boolean have common host (PSD p1 , p2 )
2 {
3 r e turn ( ( p1 . Port0 OR p2 . Port0 ) AND ( p1 . Port1 OR p2 . Port1 )
4 AND 0x80808080 ) <> 0x80808080
5 }

Listing 5.2: Test for common host of two pulses

Test 2 Test whether the fragments of the two pulses are interleaved. The phases
of both pulses are projected to the shorter Fragment Period. If the projected
phases are not equal, it is impossible that two fragments of the pulses are in the
same time-slot and the test succeeds.
Since all period lengths are a power of 2, the projection can be done using a
bitwise AND operation. PeriodLength-1 gives the mask for the AND operation.
Example values can be found in Table 5.16.

1 boolean i n t e r l e a v ed (PSD sfp , l f p )
2 {
3 fb i tmask = PERIOD LEN( s fp ) − 1 ;
4 r e turn ( ( s fp . phase AND fb i tmask ) <> ( l f p . phase AND fb i tmask ) ) ;
5 }

Listing 5.3: Test for pulse interleaving

Test 3 Test whether one of the pulses fits between two fragments of the other
pulse. The code is shown in Listing 5.4. For this test, the phase of the SFP is first
aligned with the phase of the LFP (Line 3) and then projected to the fragment
period of the LFP (Line 4). Thus, a check whether the duration of the SFP
surpasses the Fragment Period Length of the LFP suffices to decide the test.
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Period
Length

Bitmask

0
100000000000000000000000000000000
11111111111111111111111111111111

1
10000000000000000000000000000000
1111111111111111111111111111111

30
100
11

31
10
1

Table 5.16: Period values and masks

1 boolean f i tbe tween (PSD sfp , l f p )
2 {
3 pro j e c t ed = ( s fp . phase − l f p . phase )
4 AND (PERIOD LEN( l f p . ) −1) ;
5

6 r e turn ( p ro j e c t ed + MSG DURATION( s fp ) < PERIOD LEN( l f p ) ) ;
7 }

Listing 5.4: Test for fitting of a pulse fits between two fragments of another pulse

Test 4 Verify that the pulses do not overlap. See Listing 5.5 for the code. Using
the same technique as in test 3, the phase of the LPP is aligned with and projected
to the pulse period of the SPP. After that, all that is left to do is to check whether
the LPP actually starts after the end of SPP and that LPP ends before the next
instance of SPP.

1 boolean over lap (PSD spp , lpp )
2 {
3 p ro j e c t = ( lpp . phase − spp . phase ) AND (PERIOD LEN( spp . per iod ) ) ;
4

5 i f ( p r o j e c t < MSG DURATION( spp ) ) re turn 0 ;
6

7 i f ( p r o j e c t + MSG DURATION( lpp ) > PERIOD LEN( spp . per iod ) ) re turn 0 ;
8 else r e turn 1 ;
9 }

Listing 5.5: Test for pulse overlapping
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Chapter 6

Results

This chapter presents an evaluation of the performance of dynamic resource man-
agement in the TT-SoC described in this thesis. The main part is concerned with
the evaluation of properties of the scheduling algorithm that is the heart of the
resource management system.

6.1 General Function

The implementation as presented in Chapter 5 was tested on the Stratix FPGA
Board with a small test application. The test application is kept rather simple.
Its structure can be found in Figure 6.1. The pulses defined for this application
are listed in Table 6.1.

There is one push-button that is connected to Host 3. The state of the button
is sent using pulses marked with an “A”. The state is first sent to Host 4 which
forwards it to Host 5 until it reaches Host 7 after 4 hops. Depending on the state
of the button the hosts send requests to the RMA to either activate or deactivate
their outgoing pulse marked with a “B”. The pulses of type “B” carry an integer
that is incremented at each host. If the button is pressed this integer constantly
increases with each period, otherwise it remains constant which is also the case if
a single host in the ring is non-functional. All messages are also received at the
Diagnostic Unit (DU), where the system is supervised. The state of the hosts and
the current value of the “B” pulses is observed via the JTAG UART console on
the PC.

After pressing and holding the button, the DU reports that the RMA scheduled
all 31 pulses from Table 6.1 and the success of the verification by the TNA. As
expected, the integer value starts counting. Upon release of the button the 4 pulses
of type “B” are no longer scheduled and 27 pulses remain and the integer counter
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Figure 6.1: Test application overview

stops.

Furthermore the DU outputs the timing properties of the actions performed by
RMA and TNA. The actions along with the execution time values are listed in
Table 6.2 and are explained below.

Pulse Set Generation Before being able to construct a schedule, the
RMA goes through the definitions of the pulses and collects all pulses
that were requested by the hosts to a list for the PSD scheduler.

Schedule With the list of active pulses, the RMA invokes the schedul-
ing algorithm, that assigns the phases for all pulses. Furthermore it
stores the results to the output buffer for transmission to the TNA.

80



RESULTS 6.2. IN-DEPTH TESTS

# Function
1-6 Host to RMA requests
7 RMA to TNA config
8 TNA to RMA result
9-14 RMA to Host result
15-20 RMA to Host port mapping
21-22 DU control pulses
23-27 Type “A” pulses
28-31 Type “B” pulses

Table 6.1: Pulses in the Test Application

Cache-Flush The RMA CPU uses a data cache. Therefore, when the
output buffer is completely written, some data may be left in the cache.
The cache-flush assures that the output buffer is up-to-date.

Verify Overtime The actual time the TNA required for verification
is not available since the verification algorithm starts running when
the first fragment is received and pauses while waiting for the next
fragment. The time given here denotes how much time after the last
received fragment is required for the completion of the verification.

RMA Slack This is how much time to the RMA deadline was left.
The deadline is the sending instant of the first fragment of the config-
uration to the TNA. It is one parameter of the reconfiguration timing
which is determined in the design phase. If the deadline is missed, the
reconfiguration process is delayed by one cycle of the reconfiguration
period. The reconfiguration timing was discussed in Section 5.4.

TNA Slack This is how much time to the TNA deadline was left.
The deadline is the sending instant of the result of the verification to
the RMA. It is part of the reconfiguration timing parameters. If the
deadline is missed, there is the risk that the TNA is outpaced by the
RMA. If the RMA constantly sends new allocations and the TNA fails
to verify them in time, no reconfiguration takes places at all.

6.2 In-Depth Tests

In this section the algorithmic functions that make up the dynamic resource man-
agement system are evaluated. This concerns mainly the scheduling and verifica-
tion procedures. The different tests try to point out the achievable performance
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Step Time [ms] for 31 pulses
(button pressed)

Time [ms] for 27 pulses
(button released)

Pulse Set Generation 0.1305 0.1195
Schedule 3.0131 2.4867
Cache Flush 0.0025 0.0024
RMA Total 3.1461 2.6086
RMA Slack 8.5661 9.1036

Verify Overtime 0.1617 0.0817
Write TISSs 0.3445 0.3121
TNA Total 0.5062 0.3938
TNA Slack 10.1750 10.5315

Table 6.2: Execution Times for the Test Application

from different points of view. The first section explains the reference marks used
in the evaluation of the scheduling algorithm derived from the fundamental lim-
its of the system. Section 6.2.2 gives details about time and space complexity of
the functions, Section 6.2.3 and Section 6.2.4 discuss the resource efficiency of the
scheduling algorithm. Finally some ideas of possible improvements are presented
in Section 6.2.5.

6.2.1 Fundamental Limits

To be able to judge the capability of the scheduling algorithm to use time-slots
efficiently, reference marks are required to which the results can be compared. The
best reference mark is, in fact, an optimal scheduler. An optimal scheduler always
finds a solution provided it exists. Thus, the degree of “non-optimality” of the
PSD Scheduler is the portion of pulse sets that can be scheduled by the optimal
scheduler but not by the PSD Scheduler. With PSDs however, it is difficult to
build an optimal scheduler since PSDs may be interleaved which leads to a huge
number of possible arrangements. Therefore, in this analysis, the limits imposed
by the resources were chosen for evaluation of the PSD Scheduler. The limited
resources are on the one hand the number of available time-slots on the bus and
on the other hand the “Same Period Constraint” (see Section 4.4).

Limit 1: Time-Slots The network implementation presented in the previous
chapter is able to transmit 223 = 8388608 fragments per second. The same number
is assumed for the tests, although during this theoretic evaluation any power of 2
could be used for this system parameter. The sum of all fragments of all pulses
can not exceed this value.
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Limit 2a: Same Period Constraint Since two pulses of the same period can
not be handled by a single host at the same time, they must not be interleaved,
instead they have to be scheduled one after the other. This means that the summed
duration of pulses of the same period with a common host must not exceed the
duration of the period.

Limit 2b Limit 2a can only be reached if the pulses are packed together tightly.
It requires that the first fragment of a pulse resides in the time-slot after the
last fragment of the previous pulse as shown in Figure 6.2(a). It is very unlikely
that the scheduling algorithm is able to pack pulses this way. A more realistic
arrangement can be seen in Figure 6.2(b). This is how the scheduling algorithm
would arrange the three pulses if only those three were in the set. So Limit 2 is
split in a part “a” which is the limit possible if an optimal scheduler was used and
a part “b” which is the Limit expected from our scheduler.

The calculation of Limit 2b is similar to Limit 2a, but the duration of a pulse
is prolonged. This is illustrated by the differently sized grey bars in Fig-
ures 6.2(a) and 6.2(b). In Figure 6.2(a) the duration of a pulse ends just after its
last fragment. It is calculated as FragmentPeriodLength ∗ (FragmentCount −
1) + TimeSlotLength. In Figure 6.2(b) the duration of a pulse includes also
the rest of the fragment period begun by the last fragment. It is calculated as
FragmentPeriodLength ∗ FragmentCount.

(a) Improbable pulse arrangement: 9 free slots in
this period

(b) Realistic pulse arrangement: 0 free slots in this
period

(c) Legend

Figure 6.2: Arrangements of pulses within a period
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6.2.2 Test 1: Pulse Set Size

Scheduling Algorithm

In the first test the impact of the number of pulses on the execution time was
observed. For this the test set was built up from many small pulses with different
periods from different hosts so that a large number of pulses is possible.

The basic test set consists of 32 pulses listed in Table 6.3. For test sets with more
than 32 pulses the pulses of the basic test set are used multiple times.

Any two pulses in the basic set differ in period length or do not have common
hosts, so the “Same Period Constraint” does not apply to any such pair. However,
it does apply when multiple instances of the basic test set are used. But then, the
restrictions imposed by the constraint are very low in relation to the number of
pulses.

No Period (Length
in slots)

Frag. Period
(Length in slots)

Frag.
Count

Duration
in slots

Hosts Slots
per sec

1 2−6 (131072) 2−13 (1024) 5 4097 1,2 320
2 2−6 (131072) 2−13 (1024) 5 4097 3,4 320
3 2−6 (131072) 2−13 (1024) 5 4097 5,6 320
4 2−6 (131072) 2−13 (1024) 5 4097 7,8 320
5 2−7 (65536) 2−14 (512) 5 2049 1,2 640
6 2−7 (65536) 2−14 (512) 5 2049 3,4 640
7 2−7 (65536) 2−14 (512) 5 2049 5,6 640
8 2−7 (65536) 2−14 (512) 5 2049 7,8 640

...
29 2−13 (1024) 2−20 (8) 5 33 1,2 40960
30 2−13 (1024) 2−20 (8) 5 33 3,4 40960
31 2−13 (1024) 2−20 (8) 5 33 5,6 40960
32 2−13 (1024) 2−20 (8) 5 33 7,8 40960

Table 6.3: Pulses of the Basic Test Set

Limit 1 Summing up the number of slots per second for all pulses gives the bus
usage of the test set. For our 32 pulse test set this sum is: 326400 = 5 ∗ 4 ∗ (26 +
27 + 28 + ...+ 213). The division of available slots by used slots tells us how many
instances of the pulses in the test set can be scheduled successfully: 8388608

326400
= 25.7.

Multiplied by the size of the test set the value for Limit 1 is obtained as 822 pulses.

Limit 2a To calculate Limit 2a, each period is filled with as many pulses as
possible, one pulse tightly packed to the other. The number of pulses that fit into
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a certain period is given by: b PeriodLength
PulseDuration

c. As mentioned before each pulse of the
32 pulse test set counts for a different period. So the limit is calculated separately
for each pulse and then summed up. Due to rounding down, the maximum number
of pulses equals 31 for all periods. Therefore, Limit 2a is 32 ∗ 31 = 992.

Limit 2b For Limit 2b the pulse duration is modified. The value then calculates
as: b PeriodLength

FragmentCount∗FragmentPeriodLength
c, which equals 25 for all 32 types in the basic

test set. Therefore, Limit 2a is 32 ∗ 25 = 800.

Results Two aspects are the most important in the evaluation. On the one hand,
how close to the theoretical limit is the scheduling algorithm able to successfully
operate, and on the other hand, how does the number of pulses affect execution
time. Both questions can be answered by looking at Figure 6.3. The size of the
pulse set is plotted against the x-axis. The grayed regions mark the pulse sets
where not all of the pulses could be scheduled. We would expect that there is one
last schedulable pulse set and that all larger sets fail. In other words that there is
one continuous grey region. This is not the case, however. The reason is that if we
append a pulse with a short fragment period it will be treated very early and may
have severe effects on the tree structure. In Figure 6.4 this effect is illustrated.
The first set that fails has 709 pulses. Its tree structure is shown on the left-hand
side (Figure 6.4(a)). On the right-hand side (Figure 6.4(b)) the set with 718 pulses
is shown. This set is the first of the long successful series after the first grey bar.

The same effect is responsible for the jumps in the execution time. The largest
jump is 44.8 ms between the sets of size 605 and size 606 (for details see Table 6.4).
The corresponding tree structures can be found in Figures 6.5(a) and 6.5(b). In
the tree with 605 pulses, there are many chains that reach down to the middle,
while the tree with 606 pulses is broad, and only some chains reach as far down.
Long chains mean that for each node of the chain, the chain had to be traversed in
the scheduling algorithm, which obviously takes more time than if the tree spreads
into short branches.

Set Size Execution time Limit 1 (%) Limit 2a (%) Limit 2b (%)
605 481.726 27.54 38.7 25.8
606 437.606 27.05 38.7 25.8
708 637.749 14.45 25.8 10.2

Table 6.4: Properties of remarkable Executions

Limits The first failure occurs with the test set containing 709 pulses. Table 6.5
shows how close to the limits the algorithm has been successful before failing.
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Figure 6.3: Execution-time of the scheduling procedure

(a) 709 pulses : unschedulable (b) 718 pulses : schedulable

Figure 6.4: Effect of the tree structure on schedulability

The results are quite well. However, the primary focus of this test were the time
requirements for large pulse sets.
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(a) 605 pulses : 481.726ms (b) 606 pulses : 437.606ms

Figure 6.5: Effect of tree structures on the execution-time

Limit 1 85.55%
Limit 2a 74.2%
Limit 2b 89.8%

Table 6.5: Limits Test 1

Time Complexity From Figure 6.3 we conclude that the time complexity of
the algorithm is O(n2). The result is not very surprising as the algorithm tries
“difficult” locations first. Mostly, it travels through almost all nodes before finding
a suitable location.

Space Complexity The memory required by the algorithm is linear to the
number of pulses (O(n)). This is because the algorithm does not save the leaves
of the pulse trees in memory, it only stores the nodes and derives the leaves from
the node’s properties whenever required.

Scheduling Algorithm Helper Functions

Figure 6.6 shows the execution-time of the helper functions for increasing pulse
set sizes.
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Here is a short summary of their purpose:

Sorting Sorts the pulses according to the criteria listed in Section 4.5.3
before they can be scheduled.

Store Stores the pulse schedule to the transmission buffer.

Cleanup Releases temporary memory allocated during scheduling.

Analyze Calculates an indicator value used for sorting as described in
Section 4.5.2.

Compared to the actual scheduling algorithm (Figure 6.3) the impact of those
functions on the total execution-time is insignificant. Except for the sorting they
are executed in linear time.
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Figure 6.6: Execution-time of helper functions

Verification Algorithm

The execution-time of the verification algorithm is plotted in Figure 6.7 for all three
versions of the Nios II processor. For comparison the graph of the scheduling time
is shown as well.
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The time-complexity of the verification algorithm is O(n2). This is because every

pair of pulses is checked for collisions. So, n(n−1)
2

checks are performed. This is
confirmed by Figure 6.7 where the graphs look like quadratic functions.

There are no jumps in the graphs of the verification algorithm because it does not
depend on the tree structure, which is the source of the jumps in the scheduling
time graph. In fact, the verification algorithm ignores the fact that a tree structure
is used for scheduling.

The difference in the execution time between the Nios architectures is a constant
factor. The medium Nios is 3.4 times faster than the tiny Nios and the fast Nios
Nios is almost 4 times faster than the tiny Nios and 1.17 times faster than the
Medium Nios.

The scheduling algorithm was run on a fast Nios processor. Compared to the
verification on a fast Nios, scheduling is about 4 times slower than verification.
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Figure 6.7: Execution-time of the verification algorithm on different Nios II archi-
tectures

6.2.3 Test 2: Limit 1

This test evaluates the performance of the scheduling algorithm with respect to
the theoretical limit 1. In other words it is tested how much of the bandwidth
can be used for the application and how much bandwidth should remain free to
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be sure that a pulse set can be scheduled.

For this test random test sets are generated on which the scheduling procedure is
executed. In this test the “Same Period Constraint” (Limit 2) is ignored to put
the focus specifically on Limit 1.

Description of Test 2

The test is started with a single pulse in the test set. If the scheduling procedure
succeeds, another pulse is added to the set and scheduling is retried. The process
is repeated until the scheduling fails for the first time. Then, the percentage of
theoretically free time-slots is calculated similar to the calculation of the Limit 1
values in Test 1.

The Test is repeated 100,000 times with different random seeds in order to get
meaningful results.

Random Test Sets

Test sets are generated by pseudo-random number generators. A systematic ap-
proach to test set generation was not taken to reduce coherency between the pulses
in the test sets. With systematic approaches there is the risk of testing only some
kinds of relations between pulses. However, random tests may also miss very rare
problematic cases.

For random number generation the Boost library [Daw04] implementations were
used. Uniform random numbers are generated using the Mersenne Twister
MT19937 [MN98]. Non-uniformly distributed random variables are obtained by
applying transformations on the uniform random variable.

All properties that define a pulsed data stream (cf. Section 2.2) must be deter-
mined by random numbers. Remember that period durations are expressed as
negative powers of two. The randomized properties are:

Pulse Period The pulse period is a uniformly distributed random number in
the interval [0, 15]; that is the range 30.52µs to 1s

Fragment Period The success of the algorithm depends heavily on the relation-
ship between pulse period and fragment period values. The algorithm performs
best if the fragment period is the pulse period plus a constant offset for all pulses
in a pulse set. It performs worst if pulses with long pulse periods have very short
fragment periods and vice-versa. However, the worst case is not very realistic, but
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can occur if the fragment period is chosen using a uniformly distributed random
value.

In order to obtain meaningful results the test was done three times (2a, 2b, 2c)
with different policies for the choice of the Fragment Period.

a) Constant Factor The Fragment Period value is the Pulse Period
increased by 5 (that is 25 times shorter than the Pulse Period). As
explained above this yields the best results.

b) Normal Distribution The Fragment Period is a random number
that is normally distributed around PulsePeriod+5. See Table 6.6 for
the parameters of the normal distribution. Good results are expected
for this Test.

c) Uniform Distribution The Fragment Period is a random number
that is uniformly distributed on the closed interval [PulsePeriod+2, 20].
Average results can be expected.

Mean (µ) Pulse Period + 5
Std. Dev. (σ) 2

Table 6.6: Parameters for the Normal Distribution used for the Fragment Period

Pulse Length (Number of Fragments) The maximum number of fragments
of a pulse is determined by the factor

PulsePeriod
FragmentPeriod

.

However, it is unlikely that the maximum number is used for a pulse because
it disallows any other pulses of the same period on the same host (“Same Pe-
riod Constraint”). Thus, the random variable for the number of fragments was
modeled using a descending probability density function, which makes very high
numbers unlikely. The probability density function is plotted in Figure 6.8(a), the
distribution function in Figure 6.8(b).

Results of Test 2

The result of each test run is the percentage of free time-slots where the scheduling
algorithm could no longer find a valid schedule.

The percentage scale was divided to classes of 1%. For each test run the count of
the respective class was increased. The resulting histogram after 100,000 runs is
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Figure 6.8: Probability functions for the number of fragments

shown in Figure 6.9. The height of the bars indicate the portion of test runs that
failed when confronted with the percentage of free resources shown on the x-axis
but succeeded when more resources were free.
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Figure 6.9: Histogram of the results of test 2

The result is not surprising. When choosing the Fragment Period with constant
offset from the Pulse Period more than half of the test runs failed only if there
were less than 3% free time-slots corresponding to a bus load of more than 97%.
The observed worst case was 30% (cf. Table 6.7). The test-runs form a high peak

92



RESULTS 6.2. IN-DEPTH TESTS

at the left hand-side which means that there are not many test-runs that fail with
much resources still free.
With normally distributed Fragment Period values, the result is still quite good,
the worst case of 41% is acceptable. The peak is broader, but still centered at a
good resource percentage value.
With the rather unrealistic uniformly distributed Fragment Period values quite
much bandwidth is wasted but it is still acceptable for applications that do not
heavily depend on the NoC. The peak is centered around 29% and reaches into
percentages of more than half.

Fragment Period Policy Worst % Free Best 10% Quantile
Constant Offset 30% 0%

Normal Distribution 41% 2%
Uniform Distribution 58% 21%

Table 6.7: Worst case and best case results of test 2

Figure 6.10 shows the cumulative sum of the classes representing the distribution
functions. From these functions, the quantiles can be read out. The y-axis dis-
plays the portion of test-runs that could successfully schedule test sets where the
percentage of resources given on the x-axis was free.

Following the horizontal line at 0.9 we come across the intersections at 0.085, 0.16
and 0.385 which means that 90% of the test-runs succeed when given 8.5% free
resources for constant offset fragment periods, or 16% free resources for normally
distributed fragment periods or 38.5% free resources for uniformly distributed frag-
ment periods.
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Figure 6.10: Distribution functions of the results of test 2

6.2.4 Test 3: Limit 2

This test is similar to the second Test but this time the “Same Period Constraint”
is no longer ignored. The Test aims to observe how tightly the algorithm can pack
pulse blocks of the same period.

Like in Test 2 random test sets are used for the analysis and each test run starts
with a set of one pulse which grows until no schedule can be found. The properties
of the random test sets are equal to those in Test 2.

Results of Test 3

Limit 2 is divided in a part “a” and a part “b” as explained in Section 6.2.1.
The results for both parts are plotted as histograms (Figure 6.11 and Figure 6.12)
analogous to those in Test 2. The worst case values are summed up in Tables 6.8
for part “a” and Table 6.9 for “b”.

In both histograms there are gaps in between the white bars. These gaps come
from the reduced granularity if the Fragment Period is always 1

32
of the Pulse

Period. Adding 1 Fragment to a pulse adds 1
32
th of the period (3.125%) to the

Limit.
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Figure 6.11: Histogram of the results of test 3a

The histograms do not show the regularity of the histograms from Test 2. They do
not look like bell curves as in the previous histogram. This is because the schedul-
ing algorithm implements a structured approach to utilize time-slots efficiently,
but it lacks a strategy that is capable of arranging pulses within a period equally
well.

The results are not as good as those of Test 2. The worst case percentages (see
Tables 6.8 and 6.9) are quite high. There is more uncertainty about how efficiently
the resources can be used and a higher percentage of the resources is wasted.

Again, the distribution functions were plotted as well. They can be found in
Figures 6.13 and 6.14. These functions make apparent that the Fragment Period
policies have very small influence on the “Same Period Constraint”. The individual
functions do not differ as much as those in Figure 6.10 especially in the more
realistic Limit 2b (Figure 6.14).

Fragment Period Policy Worst % Free Best 10% Quantile
Constant Offset 40% 2.5%

Normal Distribution 45% 2%
Uniform Distribution 48% 2%

Table 6.8: Results of test 3a
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Figure 6.12: Histogram of the results of test 3b

Fragment Period Policy Worst % Free Best 10% Quantile
Constant Offset 49% 2%

Normal Distribution 59% 3%
Uniform Distribution 62% 4.5%

Table 6.9: Results of test 3b
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Figure 6.13: Distribution functions of the results of test 3a
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Figure 6.14: Distribution functions of the results of test 3b
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6.2.5 Possible Improvements

The overall performance of the algorithm is good, but there is still potential for
improvements.

One approach to reduce execution time would be to try to avoid that the algorithm
has to traverse mostly the whole tree of scheduled pulses for each pulse that is to
be scheduled. A possible solution could try to schedule more than one pulse in
one traversal. Another possibility is to store the leaves rather than the nodes, so
that they can be accessed directly.

The verification algorithm is kept simple to avoid bugs that may compromise
the trusted behavior of the TNA. However, if performance is critical a more
sophisticated verifier could exploit the fact that the pulse list from the RMA is
sorted.

The greatest issue however, is that the algorithm does not perform very well with
respect to Limit 2. The situation could be improved by extending the analysis
phase before the actual scheduling. During analysis it is evaluated how much
time of each period for a particular host is taken by the pulses. This information
is used only to prioritize pulses of “congested” periods. An extended analyzer
could arrange the pulses for each period in advance and put phase constraints on
the pulses so that the scheduler keeps the arrangement. This way, inconvenient
arrangements can be avoided. However, such an analyzer is quite complex as one
pulse appears in the periods of multiple hosts. It is therefore not possible to focus
on a single period at a time.
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Chapter 7

Conclusion

7.1 Summary

The TT-SoC architecture, as presented throughout this thesis, has the potential to
make SoC solutions attractive to safety-critical real-time applications. The archi-
tecture provides encapsulation, a property which is important for the independent
development of different application subsystems. On the one hand, it allows the
seamless integration of a new subsystem into an existing SoC design and, on the
other hand, it prevents fault propagation over the boundaries of application sub-
systems. The architecture facilitates on-chip diagnosis through monitoring and
reporting and may be operated in conjunction with other systems using gateway
nodes.

In this thesis, a resource management scheme for the TT-SoC architecture was
designed and implemented. It is the first FPGA implementation of the TT-SoC
architecture and serves for the demonstration of the capabilities of the architec-
ture. The resource management enables efficient use of resources (i.e. power,
bandwidth, computational resources, . . . ) through resource sharing. A host in an
SoC component is only allocated the resources it needs at the moment. They can
be freed as soon as they are no longer required.

The establishment of a trusted region prevents resource conflicts in the running
system at all times. All configuration values entering the trusted region are val-
idated by the components of the trusted region (the TNA and the TISSs). The
validation occurs not only in the value domain but also in time domain, which is
especially important for network resources.

These mechanisms ensure that a misbehaving host cannot have adverse effects on
the correct operation of hosts in different application subsystems. Thus, the re-
quired quality of service for application subsystems of high level of criticality can
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be guaranteed even in the presence of uncertified application subsystems on the
very same chip.
The support for resource efficiency is a key feature of the architecture and was
the primary motivation for this thesis. A solution for the components involved
in the resource management, namely the RMA and the TNA, was designed and
implemented on an FPGA. The design of the RMA comprises the interfaces to
and from application hosts, which is based on application modes to save network
bandwidth, the interface to the TNA and the scheduling algorithm for the on-chip
network.
The scheduling algorithm demonstrates how pulsed data streams, the communica-
tion primitive used in the TT-SoC architecture, can be handled efficiently using
trees. It may inspire algorithms developed for ensuing implementations of the
TT-SoC architecture.

For the TNA, the interface to the RMA was defined and the CP interface to the
TISS was described. Furthermore, a simple and efficient algorithm for verification
of the schedule of pulse data streams was explained, which is independent of the
particular scheduling algorithm used in the generation.

The resource management cycle, the periodic process that enables dynamic allo-
cation of resources, was explicated. The sequence of operations and their timing
was presented for the implementation.

The implementation of the TT-SoC architecture was tested on current FPGA
hardware and the performance was measured. The run-time of the algorithms and
the quality of the results with respect to fundamental limits was surveyed.

The results showed that the goals claimed by the TT-SoC architecture (encapsu-
lation, resource efficiency) are achievable with current technology. Even the early
FPGA prototype delivered a performance that is adequate for today’s applications.
The efficiency of the online scheduling and verification algorithms allowed short
reconfiguration cycles (32.5 ms) for quick adaptation to dynamic environments. It
may be concluded that the TT-SoC architecture is fit for practical purposes.

7.2 Outlook

The implementation presented in this thesis is an FPGA prototype for the TT-SoC
architecture. Its purpose was to elevate the capabilities of the architecture and to
detect possibilities for improvements before more complex implementations were
to be approached.

The main drawback of the presented implementation is that a bus is used for
message exchange. The choice was made to reduce complexity and to be able to
focus on the TT-SoC architecture as a whole. As a first improvement an alternate
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version of the bottom layer of the NoC was started that is based on a switched
network using a mesh topology.
Furthermore, it was observed that 128-bit long fragments limit the achievable
maximum frequency too much (in this implementation: fmax = 75MHz). Smaller
fragments at a higher speed are likely to achieve similar performance at less re-
source cost.
Both changes will require a modification of the resource management solution, in
particular scheduling and verification of the communication resources. However,
the concept and mechanisms of the resource management cycle remain valid.

The prototype implementation is a proof of concept of the TT-SoC architecture.
The key properties claimed for TT-SoC (real-time support, encapsulation, sup-
port for resource efficiency, abstraction) were established that demonstrate the
potential of the architecture. As such, with further research and refinements, it
can be expected that the TT-SoC will gain importance for real-time applications,
especially when subsystems of differing degree of criticality need to be joined in
an SoC.
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Appendix A

External Interfaces

A.1 TNA-TL Interface

The interface from the TNA to the TL is a simple memory interface with a 32-
bit data bus, a 16-bit address bus and an interrupt request signal. Only 11 of
the 16 bit of the address bus are significant the others provide address space for
extensions. The most significant bits 15 and 14 in the address choose between
control register or pulse data access (cf. Figure A.1).

If R=“0” the pulse data memory is addressed. The pulse data memory buffers
the data for the incoming pulse and the outgoing pulse. Remember that this TL
cannot handle more than those two pulses. Data written to this area is sent via
the outgoing pulse, incoming data can be retrieved by reading from the area. The
buffer sizes are limited to the very basic requirements. The incoming buffer is 512
words (128 fragments) long to hold the resource allocation message from the RMA.
The outgoing buffer comprises only 4 words (1 fragment) because the verification
result is very short.

If R=“1” the control registers are addressed. The bit C further differentiates be-
tween clock registers (C=“1”) and TL registers (C=“0”). The clock registers are
used to initialize the NoC clock. Those registers enable synchronization with an
external clock and must be used to initialize the clock on startup even if no external
clock is present. Details about their usage is available in [Eng07].

The resulting memory structure of the TNA-TL interface is illustrated in Fig-
ure A.2. The flags M, I, N can be reset by writing a logical “1” to their location.
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A.1. TNA-TL INTERFACE EXTERNAL INTERFACES

Fragment 7-bit Gives the index of the last received fragment. “0”
is the first fragment.

M 1-bit Modified flag. Is set if the content of the incoming
buffer has changed.

I 1-bit Interrupt flag. Is set upon reception of a fragment.
Reflects also the state of the interrupt signal.

N 1-bit New pulse flag. Is set upon reception of the first
fragment.

TIMEL 32-bit Access to the split second part of the NoC real-
time clock. When TIMEL is read the upper 32-bit
of the time stamp are buffered and can be retrieved
by reading TIMEH. This allows to read a consistent
64-bit value.

TIMEH 32-bit Access to the second part of the NoC real-time
clock.

0816

Word OffsetR C Res.

Figure A.1: TNA address bus
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EXTERNAL INTERFACES A.1. TNA-TL INTERFACE

Incoming Data0 / Outgoing Data0

Incoming Data512

Incoming Data4
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Figure A.2: TNA-TL memory interface layout
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Appendix B

Acronyms and Abbreviations

ASIC Application Specific Integrated Circuit

CNI Communication Network Interface

CP Configuration and Planning

CPU Central Processing Unit

CSMA Carrier Sense Multiple Access

DAS Distributed Application Subsystem

DLL Data Link Layer

D-Port Data-Link Port

DSP Digital Signal Processor

DU Diagnostic Unit

FPGA Field-Programmable Gate-Array

IP Intellectual Property

ISR Interrupt Service Routine

L-Port Logical Port

LSB Least Significant Bit

MAC Medium Access Control

MEDL Message Descriptor List
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ACRONYMS AND ABBREVIATIONS

MSB Most Significant Bit

NoC Network-on-Chip

NTP Network Time Protocol

OCP Open Core Protocol

OS Operating System

PCB Printed Circuit Board

PLL Phase-Locked Loop

PSD Pulsed Data Stream

RAM Random Access Memory

RMA Resource Management Authority

SoC System-on-Chip

TDMA Time-Division Multiple Access

TISS Trusted Interface Subsystem

TL Transport Layer

TMR Triple Modular Redundancy

TNA Trusted Network Authority

TT-SoC Time-Triggered System-on-Chip

UTC Coordinated Universal Time

VHDL Very High Speed Integrated Circuit Hardware Description Language
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