
Master’s Thesis

Extending Mondrian Memory
Protection

carried out at the

Automation Systems Group
Vienna University of Technology

under the guidance of
Priv. Doz. Dipl.-Ing. Dr. techn. Christopher Krügel
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Christopher Krügel for the inspiration for the topic and their many com-
ments and suggestions that helped me keep headed in the right direction.
Also, the fellow students at the SecLab offered a great environment to work
and have a good time in.
My parents Arno and Maria deserve a very big thank you for supporting me
during my studies and also on everything else I have ever done. To my elder
brother Philipp, who taught me computer programming in the first place,
and his partner Theresa, my younger brother Maximilian, and my sister Eva
Maria, I also want to say thank you for supporting me and being a very
important part of my life.
Of course, a very special and warm thank you to my partner Manuela for
her encouragement and endless hours of listening to my, at times probably
quite geeky, thoughts and ideas. At last, I want to thank all my friends for
making sure I occasionally spent a night away from my computer and took
me out for a beer or two.



ii

Abstract

Most modern operating systems implement some sort of memory protection
for user processes. Hence, it is possible to set access permissions that de-
termine whether a region of memory allocated for a process can be read,
written, or executed by this process. Mondrian memory protection is a tech-
nique that extends the traditional memory protection scheme and allows
fine-grain permission settings. Instead of being able to set access permis-
sions on a page-level, Mondrian memory protection supports different access
permissions for individual words. However, this protection scheme is still
limited to only two permission bits that have a pre-defined semantics. This
is not sufficient to implement more complex security techniques, for example,
a race condition detection system.
The presented solution proposes an extension to the simple Mondrian protec-
tion scheme that provides more flexibility to user programs and the operating
system. Based on our extended architecture, we implement mechanisms to
protect sensitive data structures on the heap and on the stack. Moreover,
we present the implementation of a technique to detect race conditions. Our
experiments demonstrate that the system can provide the expected protec-
tion and ability to detect races with reasonable overheads. Furthermore, our
results show that even large systems such as the GNU C Library and the
Apache web server contain problems related to race conditions.
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Zusammenfassung

Speicherschutz für Anwenderprogramme ist ein Konzept, das vom Großteil
der heutzutage verwendeten Betriebssysteme bereitgestellt wird. Dieses er-
möglicht es, für die einzelnen Speicherbereiche eines Prozesses unterschiedliche
Zugriffsberechtigungen für Lese- und Schreib-Operationen sowie das Ausfüh-
ren von Code zu setzen. Eine Erweiterung der traditionellen Schutzmecha-
nismen ist Mondrian Memory Protection. Dieses Schema erlaubt das genaue
Spezifizieren unterschiedlicher Berechtigungen auf Wort-Basis anstelle der
traditionellen Speicherseiten-Basis. Allerdings ist auch hier die Spezifikation
auf zwei Zugriffsbits limitiert. Zusätzlich ist die Bedeutung der einzelnen
Bitkombinationen vorgegeben, was es unmöglich macht, damit komplexere
Sicherheitstechniken, wie beispielsweise einen Race Condition Detector, zu
implementieren.
Der Ansatz, der in dieser Arbeit präsentiert wird, ist eine Erweiterung der
einfachen Mondrian Memory Protection. Sie soll eine größere Flexibilität für
Anwenderprogramme und das Betriebssystem ermöglichen. Aufbauend auf
unserer Architektur zeigen wir die Implementierung von Mechanismen zum
Schutz von heiklen Datenstrukturen im Heap und Stack Speicher. Des Wei-
teren präsentieren wir eine Technik zum Erkennen von Race Conditions, die
auf der vorgeschlagenen Architektur basiert.
Unsere Experimente beweisen, dass das System, bei akzeptablem Mehrauf-
wand, den gewünschten Schutz und die Möglichkeit zum Erkennen von Race
Conditions bietet. Zusätzlich zeigen die Ergebnisse, dass sogar große Sys-
teme, wie die GNU C Bibliothek und der Apache Webserver, Probleme in
Zusammenhang mit Race Conditions aufweisen.
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Chapter 1

Introduction

1.1 Motivation

Most modern operating systems implement some sort of memory protection
for user processes [16, 31, 33]. That is, it is possible to set access permissions
that determine whether a region of memory allocated for a process can be
read, written, or executed by this process. Typically, for operating systems
that support paged virtual memory, the granularity of these access permission
are on a per-page basis. This means that a process or the operating system
can assign different protection settings to each individual page of the process
(where the size of a page is typically between 1 and 8 KB [33]).
The page-based protection is useful to mark the text portion of a process
as non-writable, preventing unintentional modifications of the code due to
programming errors. Another use of access permissions is to flag the data
and stack segments as non-executable1. This increases the security [27, 32]
as an attacker can no longer execute shellcode that he injects into the heap
or the stack (e.g., by exploiting a buffer overflow vulnerability).
While memory protection is a useful technique to improve the reliability and
security of processes, it is fairly coarse-grain. The reason is that permission
settings can only be applied to complete pages. This limits the flexibility,
especially when there are small memory fragments located close to each other
that would require different permission settings. A standard example for
such a memory area is the stack. A stack stores both data (such as function

1Provided that the hardware provides the necessary means to set different permissions
for read and execute access, such as the No eXecute bit [22].
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parameters or local variables) that a process must be able to read and write,
as well as function return addresses, which should never be modified by the
application. Because data and return addresses are stored in the same page,
the least restrictive protection settings must be applied. As a result, a return
address can be modified by an application function. This leads to the problem
of buffer overflow exploits that trick a memory write operation to change the
return address on the stack to a value of the attacker’s choice.
Mondrian memory protection [37, 38] is a technique that extends the tradi-
tional memory protection scheme and allows fine-grain permission settings.
More precisely, instead of being able to set access permissions on a page-
level, Mondrian memory protection supports different access permissions for
individual words. This allows a process to use different memory protection
settings for different words on the stack. However, Mondrian memory protec-
tion is still limited to only two permission bits with a pre-defined semantics.
Similar to the bits at the page-level, these permission bits control read, write,
and execute access. This might not be sufficient in all cases. For example,
in order to keep track of the memory accesses of multiple threads to detect
race conditions, the available mechanism is insufficient. Unfortunately, race
conditions are an important problem and lead to bugs and security problems
that are difficult to track down [10, 11, 34, 36]. This problem is exacerbated
by the increasing use of parallel programming and multi-threaded applica-
tions.
In this thesis, we propose an extension to the simple Mondrian protection
scheme that provides more flexibility to user programs and the operating
system. More precisely, instead of two protection bits, we propose to use
30-bit protection labels that can be assigned to each memory word. These
labels can be freely used as a basic mechanism to implement different tech-
niques such as return address protection, heap protection, or race condition
detection. The protection labels are controlled via a simple interface that
allows user programs controlled access to protection information. In case of
a protection fault, the operating system invokes a user-defined module in the
kernel that can implement a flexible policy to handle the exception.

1.2 Organization of this thesis

In this thesis, we first describe existing memory protection schemes and
the general mechanisms that our extended system supports in Chapters 2
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and 3, respectively. Chapter 4 handles the details of implementing the mech-
anisms using CPU extensions as well as operating system adaptions. Then,
we discuss concrete techniques that leverage the general memory protection
mechanisms to realize return address protection on the stack, heap memory
protection, as well as a race condition detection in Chapter 5.
Finally, we describe our experiments that demonstrate that the system can
provide the expected protection and ability to detect races with reasonable
overheads in Chapter 6. In a last chapter, we put our work into context with
previous publications on memory protection and race condition detection.



Chapter 2

State of the art

In this chapter, we explain memory protection as it is available on current
Intel x86 CPUs. Furthermore, we deal with the idea of Mondrian memory
protection as described in [38].

2.1 Intel x86 memory management

Intel’s x86 processor family provides two basic concepts for protecting mem-
ory [23]:

Segmentation allows to split the memory address space visible to a user appli-
cation into multiple segments. In this addressing mode, every logical memory
address is represented by a segment:offset tuple. Thus, for every access to
memory, one of the six segment registers (code segment register CS, stack
segment register SS and data segment registers DS, ES, FS, and GS) has to
be provided. If no such register is provided for the access, the register most
appropriate for the operation is chosen (e.g. the stack segment register is au-
tomatically used when pushing a value on stack). Figures 2.1 and 2.2 show
how these registers are used to access a memory address.
Each segment register either points into the global descriptor table or into
the local descriptor table, holding the segment’s

• base address used for translating the logical address into a linear or
physical address,

• size (limit),
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Figure 2.1: Logical to linear memory translation. [23]

• access control information, as well as

• status information.

For every segment, the operating system can provide four bits for control-
ling memory access, including read-only, read-write, and execute-only access
types. To achieve portability with most architectures, Linux only employs
very limited use of segmentation [30], however. In fact, Linux only employs
a non-standard segment register when accessing thread specific data. By
default, logical and linear addresses coincide and access is restricted through
the use of paging, only.

Paging is Intel’s second concept for memory protection: Modern operating
systems divide the linear address space visible to a user program into sec-
tions of equal size, typically called pages. Each memory page allocated for
a program is represented by a page table entry in the program’s page direc-
tory / page table hierarchy. The page hierarchy is used by the operating
system and the CPU’s memory management unit to map virtual memory
pages to the corresponding physical frames in the RAM1. This mapping is
necessary to find the location in physical memory that corresponds to an

1When referring to physical addresses, a memory region holding data of a virtual page
is called a frame.



2.1. INTEL X86 MEMORY MANAGEMENT 6

Figure 2.2: Example segmentation of a memory address space using two
segments. [23]

address in the virtual address space. Figure 2.3 shows how a virtual memory
address is resolved into a physical memory frame using this hierarchy and
the per process unique control register CR3.
Figure 2.4 shows the structure of a page table entry: Each entry contains
the page’s physical base address used for the address mapping 2, a set of bits
to store access statistics, and two bits informing the CPU whether a page is
read-only and whether access is restricted to supervisor code.
On every access to a virtual memory address, the CPU consults the mapping
(or possibly the TLB3) to find the respective physical memory. It then checks
the aforementioned access bits. When an invalid access is detected, the CPU
raises a page fault. This signals the operating system’s kernel that a problem
has occurred and allows for a proper reaction to resolve the problem (e.g.,
by terminating the offending process).
Summarizing, the use of paging has four implications: For one thing, each
process has an unique address spaces (i.e. page hierarchy). This allows
the kernel to protect processes from one another. Secondly, processes can-
not destroy read-only memory regions (e.g. text mappings) by writing to
such addresses accidentally. Furthermore, the operating system’s kernel can
protect vital memory structures by marking them as supervisor pages and

2Virtual pages have to be aligned onto a 4 KByte boundary. This leaves the 10 least
significant bits to be used for other purposes.

3The Translation Lookaside Buffer stores mapping information for all recently accessed
pages.
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Figure 2.3: Linear to physical memory translation. [23]

lastly, paging does not provide a method for marking memory regions as
non-executable.

2.2 Mondrian memory protection

While Intel x86’s memory protection techniques are useful in improving the
system’s stability as well as reliability and security of processes, it is fairly
coarse-grain. As mentioned in the introduction already, the reason is that
permission settings can only be applied to complete pages. This limits the
flexibility, when having to apply the least restrictive protection settings to
different adjacent memory areas.
Mondrian4 memory protection [37, 38] is a technique that extends Intel’s
traditional memory protection scheme and allows fine-grain permission set-
tings: Similar to the x86 architecture, Mondrian memory protection employs
two bits to store four different access permissions (no, read-only, read-write,
and execute-read) for every memory region available in the system. However,
instead of storing the permission information in the per-process unique page

4The authors of [38] called their protection system Mondrian memory protection
(MMP), because figures of protection ranges occasionally resembled works by the epony-
mous early twentieth century artist.
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Figure 2.4: Page-table entry of a 4 kibibyte page. [23]

hierarchy, Mondrian memory protection uses an additional permissions ta-
ble. This allows the system to store protection information for each memory
word (instead of the page-level granularity of the x86 architecture). More-
over, every thread is a member of one protection domain, possibly sharing
the permission table with other threads of the same domain.
On every access to a memory address, the CPU’s protection enhancement
consults the currently executing thread’s protection domain register to look
up the address protection bits stored in the corresponding protection ta-
ble. To reduce the memory overhead introduced by the protection tables,
the implementation in [38] provides different possibilities for storing the ta-
ble’s structure. This allows to adjust the size of the region the protection
information applies to.
Figure 2.5 shows a design overview of Mondrian memory protection. To
avoid repeated look ups of access permissions, a permissions lookaside buffer
(PLB) caches entries from the permissions table. Furthermore, every address
register contains an additional sidecar register. This sidecar register stores
the last table segment accessed through the corresponding address register.

Summarizing, Mondrian memory protection proposes finer-grained memory
protection than Intel’s x86 standard. Each word in the memory address space
can be assigned two permission bits. This overcomes the problem of least
restrictive protection on the stack, where read-only and writable memory ad-
dresses are stored adjacently. To minimize the memory overhead for storing
permission information, multiple words sharing common permissions can be
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Figure 2.5: Mondrian memory protection system design. [38]

grouped. Furthermore, a permissions lookaside buffer and sidecar registers
are used to increase the system’s performance.



Chapter 3

Description of our approach

In Chapter 2, we described Intel’s standard x86 protection as well as Mon-
drian memory protection schemes. Despite the simplicity and broad accep-
tance of the former and flexibility of the latter, they share one shortcoming -
which is the fact that one cannot associate more than two bits of protection
information with a memory region. Moreover, the pre-defined meaning of
the four possible bit combinations significantly limits the flexibility of the
protection system.
These two drawbacks are the starting point of the extended Mondrian mem-
ory protection technique described in this chapter: While trying to combine
the simplicity of x86 memory protection with the fine granularity of the origi-
nal Mondrian memory protection, this implementation allows a user-specified
examination of expanded protection information stored for memory regions.
For this purpose, the protection architecture is split into the following three
components:

• The first component implements the protection hierarchy. This pro-
tection hierarchy stores, for each process, a mapping between 30-bit
protection labels and memory addresses. That is, it is possible to as-
sociate a 30-bit protection label with each word in the process address
space. This is a generalization of the two bits used by the original
Mondrian memory protection. This component also provides an inter-
face that lets user processes and the OS kernel modify the protection
settings.

• The second component is responsible for checking memory accesses.
To this end, the system uses a special protection control register. The
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content of this control register is compared with the protection label
associated with the memory location that is accessed. In case there is
a mismatch, a protection fault is invoked. In addition to the control
register, there are two bit-masks that allow to refine (or modify) the
value of the control register prior to this comparison, depending on
whether the process performs a read or a write operation.

• The third component, called the protection fault handler, implements
the response to a protection fault. This handler code is realized as a
loadable kernel module, which allows users to define complex policies
that can be exchanged while the system is running. In the protection
fault handler, the system can change the protection settings of certain
memory areas, as well as the content of the protection control register
(and the associated bit-masks).

3.1 Protection hierarchy

Similar to the page hierarchy, which is used in the x86 architecture to per-
form a mapping from virtual to physical addresses, our extended Mondrian
memory protection uses a two-level hierarchy of protection tables. That is,
there is a protection directory that stores entries that point to protection
tables. Each protection table, in turn, has entries that point to protection
pages. Each allocated word of virtual memory is represented by an entry in
the protection page. The newly introduced register CR6 serves as entry point
into the protection hierarchy. An overview of the protection hierarchy can
be seen in Figure 3.1.
To save space when the protection labels of all words in a particular page are
identical, we use three different levels of granularity:

• High granularity protection: This method adds 30 bits of protection
information to every word in the virtual address space. The protection
information is stored in a protection page allocated in the process’
virtual address space, but is protected from direct access by user code.

• Low granularity protection: This method stores protection information
directly into the entry of the protection table, allowing to specify 30
bits of protection information for a complete page of virtual memory.
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Figure 3.1: Protection hierarchy.

• Minimal granularity protection: This method stores protection infor-
mation directly into the entry of the protection directory, allowing to
specify 30 bits of protection information for a set of 1024 adjacent pages
of virtual memory.

The structure of the individual entries in Figure 3.1 can be seen in Fig-
ures 3.2, 3.3, 3.4, and 3.5. The meanings of the individual fields and bits
are as follows:

Figure 3.2: Structure of the newly introduced control register CR6.
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Control register CR6:

• Active bit (bit 0): Indicates whether the extended Mondrian mem-
ory protection system is currently active. If this bit is cleared, bits 1
through 31 my be used arbitrarily by the programmer.

• Allow user interaction bit (bit 1): Indicates whether non-supervisor
code may inspect/modify protection information. For details on pro-
tection information interaction, refer to later sections.

• Protection directory base address (bits 12 through 31): Specifies
the most significant bits of the virtual address of the first byte in the
protection directory. This forces the protection directory to be aligned
on a 4-KByte boundary.

Figure 3.3: Structure of a protection directory entry.

Protection directory entry:

• Present bit (bit 0): Indicates whether the protection directory entry
should be used during a protection look up. If this bit is cleared, bits
1 through 31 may be used arbitrarily by the programmer.

• Table direct protection mode active (bit 1): Indicates if the 1024
pages referenced by this protection directory entry use minimal gran-
ularity protection. If the bit is set, bits 2 through 31 hold protection
information directly.

• Protection table base address (bits 12 through 31): Specifies the
most significant bits of the virtual address of the first byte in the pro-
tection table. This forces protection tables to be page-aligned.
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Figure 3.4: Structure of a protection table entry.

Protection table entry:

• Present bit (bit 0): Indicates whether the protection table entry
should be used during a protection look up. If this bit is cleared,
bits 1 through 31 may be used arbitrarily by the programmer.

• Page direct protection mode active (bit 1): Indicates if the page
referenced by this protection table entry uses low granularity protec-
tion. If the bit is set, bits 2 through 31 hold protection information
directly.

• Page protection entry (bit 2): Indicates if the page referenced by
this protection table entry is a protection page. As protection pages lie
in the user address space, applications must be prevented from tam-
pering with the protection information directly. This bit is therefore
the equivalent to the supervisor bit of x86 memory protection.

• Protection page base address (bits 12 through 31): Specifies the
most significant bits of the virtual address of the first byte in the pro-
tection page. Thus, page-alignment is required for protection pages.

Figure 3.5: Structure of a protection page entry.
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3.2 Memory access control

When performing a memory access, the CPU has to do a look up of the pro-
tection information for the corresponding address. This is done by navigating
through the protection hierarchy, starting from the current value of the con-
trol register CR6 (as described in the previous section). When high granularity
protection is used, the protection table entry looked up by the CPU serves as
pointer to a protection page, which contains the 30-bit protection label used
for memory access control. Otherwise, in case of low or minimal granularity
protection, the corresponding bits of the protection directory/table entry are
directly used for access control (thus the term table/page direct protection
mode).
In case no protection information is found (because the protection directory
or protection table does not contain a corresponding entry or protection has
been disabled through the corresponding bit in the control register CR6),
the access to the memory address is immediately granted. Also, note that
regardless of the granularity level, it is possible that a memory access requires
looking up more than one protection label. Typically, this happens when a
multi-byte access is unaligned or spans two pages. In these cases, the memory
protection checks all protection labels. Access is only granted when all labels
permit it.
Once a 30-bit protection label is retrieved, it can be used to perform an ac-
cess control decision. That is, given this label and additional information,
the system must decide whether an access should be granted or whether a
protection fault should be thrown. The aforementioned additional informa-
tion that allows the access decision to be made is the value of a new processor
register, the protection control register CR5. In addition, there are two access
bit-masks, called a read-mask and a write-mask.
To reach an access control decision, the system takes the 30-bit protection
label obtained during look up and performs a logic AND operation with the
appropriate access bit-mask (depending on whether this is a read or write
access). The result of this operation is a protection token. Similarly, the
values currently stored in the control register CR5 and the mask are ANDed,
obtaining a control token. Comparing both tokens decides if the current
memory access should be granted or not. More precisely, a protection fault
is raised in case the two tokens do not match. Figures 3.6 and 3.7 show two
examples for access control decisions that yield different results.
Early tests of our protection system showed that it is very desirable to have a
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Hex Binary
Protection label 0x000271d0 0b00000000000000100111000111010000

CR5 0x000211d0 0b00000000000000100001000111010000

Read mask 0x8003fffc 0b10000000000000111111111111111100

Result Protection violation

Figure 3.6: Access control decision for a read access yielding a protection
violation.

Hex Binary
Protection label 0x000271d0 0b00000000000000100111000111010000

CR5 0x070271d0 0b00000111000000100111000111010000

Read mask 0x8003fffc 0b10000000000000111111111111111100

Result Read access granted

Figure 3.7: Access control decision for a read access granting the memory
access.

mechanism that allows deactivation of the protection examination for a single
instruction or memory access. To handle such situations, we introduced two
read-and-clear bits in the CPU’s flag set, one for read- and one for write-
accesses.
The CPU consults these flags before signalling a protection violation. If the
according flag bit is set, the fault is skipped and both bits are reset to zero.
The use of two flag bits instead of just one comes from the fact that some
x86 assembler instructions1 may cause multiple accesses into memory that
might want to be handled individually.

1E.g. cmpxchg mem32 reg32 compares register EAX with memory address mem32,
modifying either register reg32 or memory mem32, depending on the result of the com-
parison.
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3.3 Memory access policies

As previously mentioned, the extended Mondrian memory protection does
not specify any specific meaning for the individual bits protecting a memory
address. The system only performs access control checks as outlined above.
The way in which the protection labels and the content of the protection
register (together with the bit-masks) are used is completely up to the user
of the system. In Chapter 5, we demonstrate the flexibility of the approach
by showing how different applications can be implemented on top of the
general architecture.
To specify rules or policies for using the memory protection system, the user
has two mechanisms. On the one hand, a program (or a compiler) can use
a set of newly introduced instructions to manipulate the memory protection
settings (labels) during process execution. The following set of new machine
instructions has been introduced allowing a process to read, set, or modify
protection information:

• prot_mov reg, mem: Load the protection information of a memory
address into a register,

• prot_mov mem, reg/imm: Set the protection information of a memory
address to an immediate or register’s value,

• prot_and mem, reg/imm: AND the protection information of a memory
address with an immediate or register’s value, and

• prot_or mem, reg/imm: OR the protection information of a memory
address with an immediate or register’s value.

In addition to this first mechanism, the user can load a kernel module into the
operating system that defines the protection fault handler. This protection
fault handler can be arbitrarily complex and runs in the context of the kernel.
Thus, it has full control over both the control registers and the memory
protection information. Also, the kernel module is notified whenever a new
process or thread is started, or when the operating system schedules a new
thread. This allows the system to react to events that might require to load
thread- or process-specific protection values.



Chapter 4

System implementation

4.1 Instruction set extension

This section deals with the details of providing extended Mondrian memory
protection. To provide the instructions to modify the protection labels, the
instruction set of the x86 processor needs to be extended. Also, we had
to add additional control registers and a cache similar to a translation look-
aside buffer, which is responsible for caching the protection labels for recently
accessed memory locations.
The open source system emulator Qemu [8] served as base for our implemen-
tation. Besides the necessary processor extensions, we extended the code for
translating virtual addresses to also look up protection labels and to do the
necessary access control checks. Similar to the occurrence of a page fault,
protection faults are passed to the emulated system using interrupts, and
thus, need no special extensions. Furthermore, this section explains addi-
tional extensions made to Qemu. These extensions are not part of the actual
protection system but were necessary to evaluate the experiments described
in Chapter 6.

Qemu internals

When simulating a guest system on a host computer, there are two general
approaches: Virtualization allows to run the guest’s machine code on the
host directly. Obviously, this requires some sort of support by the under-
lying hardware and operating system alike. Emulation, on the other hand,
is a much simpler approach and does not require any specific hardware or
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operating system support. The big disadvantage is that emulated systems
are much slower, in general.
Qemu uses a combination of both approaches, unifying simplicity of emula-
tion and some speed advantages of virtualization: Every block of machine
code executed by the guest system is first translated into code understandable
by the host system. Register manipulations are translated into code storing
the new values in Qemu’s internal memory structures and every memory ac-
cess inside this translation block (or TB) is sanitized by simulating a memory
management unit, checking presence of the accessed pages and accordance
of their protection bits and access type. This TB is then run directly on the
host’s CPU and cached to minimize the overhead of translation in case the
the same code is executed repeatedly.

Control register extension

Due to Qemu’s code translation approach, it is very easy to add new items to
the CPU instruction set. To add the control registers CR5, CR6, and CR7 (this
control register will be discussed shortly), only the functions responsible for
code translation and Qemu’s internal CPU state structure had to be adjusted.
Setting the CR5 read- and write-masks and the read-and-clear flags mentioned
in Section 3.2 was implemented using the two least significant bits of CR5.
As protection labels can only hold 30 bits of information, these two extra
bits in the control register are used as shown in Table 4.1.

Bits 1 and 0 Meaning
0x00 Remaining bits (bits 31 through 2) are used

as new value of the control register
0x10 Read-and-clear flags for disabling read- and

write-protection are set depending on the
remaining bits 3 and 4, respectively

0x01 Remaining bits are used as CR5 read -mask
0x11 Remaining bits are used as CR5 write-mask

Table 4.1: Bits 0 and 1 of control register CR5.
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Access control enforcement

As described in the previous chapter, every access to a page protected by our
extended Mondrian memory protection requires enforcement of the memory
access policies. For this reason, TB code not only includes memory access
sanitation, as mentioned in Section 4.1, but also resolves the protection label
for the accessed memory address.
The code then checks access permissions using CR5 and the appropriate mask,
as described in Section 3.2. In case of an access violation, the page fault
method is used to trigger an interrupt. The emulated guest system can
distinguish between a casual page fault and a protection violation using the
extended error code table, as shown in Table 4.2.

Bit Bit mask Meaning

Standard x86:
0 0x0000000000 Accessed page not found

0x0000000001 Page access violation
1 0x0000000000 Read access

0x0000000010 Write access
2 0x0000000000 Kernel mode access

0x0000000100 User mode access
3 0x0000001000 Access to reserved bit
4 0x0000010000 Access was instruction fetch

Extended Mondrian memory protection:
5 0x0000100000 Protection violation
6 0x0000000000 4-byte access (possibly unaligned)

0x0001000000 8-byte access (possibly unaligned)
7 0x0010000000 Reserved for kernel internal use
8 0x0100000000 Reserved for race detection system
9 0x1000000000 Protection violation is user protection

information interaction

Table 4.2: Error code signalling a page fault or protection violation.

The x86 memory management unit employs a TLB to store the physical base
addresses of recently accessed pages. Qemu’s Mondrian memory protection
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extension additionally stores the protection table entry found during the look
up. Thus, the protection label can be fetched directly from the TLB when
using minimal or low granularity protection. For high granularity protection,
the virtual address of the protection page can be taken from the TLB allowing
to skip parsing the protection hierarchy.
To quicken access control even further, the extended TLB also holds the phys-
ical base address of the associated protection page. This allows to reference
protection labels directly, even if high granularity protection is employed.
The drawback of this last enhancement is the fact that when a protection
page is swapped out (i.e. removed from RAM), all references to this now
unavailable memory frame have to be removed from the TLB.

Protection manipulation instructions

To keep compliance with existing compilers and code inspection tools (such
as debuggers and disassemblers), the machine instructions to access the mem-
ory protection settings were realized by adding another control register CR71.
Furthermore, unlike access to other control registers, user mode code is al-
lowed to access and modify the content of this register.
To implement the protection instructions, each bit assigned to this register
was given a special meaning, indicating source and destination registers as
well as the requested modification operation. That is, the prot* instructions
introduced in Section 3.3 are expressed as instructions that modify the control
register CR7.
Figure 4.1 shows the bit layout used when interacting with the control reg-
ister. The meaning of the individual bits is as follows2:

• Operation (bits 1 and 0): Defines the requested operation: Get (0x00),
Set (0x01), AND (0x10), and OR (0x11).

• Address Register (bits 4, 3, and 2): The register holding the mem-
ory address to be inspected/modified: EAX (0x000), ECX (0x001), EDX
(0x010), EBX (0x011), ESP (0x100), EBP (0x101), ESI (0x110), and EDI

(0x111).

1Although only control registers CR1 through CR4 and CR8 may be used currently, Intel
has specified the op-codes for CR1 through CR15. Thus, most compilers and code inspection
tools can already handle code using these registers.

2Bits 31 through 29 will be dealt with in the following sections.
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Figure 4.1: Structure of the newly introduced control register CR7.

• Address Pointer (bit 5): Specifies whether the address register holds
the memory address directly (bit 5 cleared) or points to a memory
location holding the memory address (bit 5 set).

• Address Displacement (bits 9 through 6): An optional displacement
added to the memory address. We only allow word-aligned displace-
ment - a displacement of 2 therefore means 8 bytes.

• Address Displacement Signedness (bit 10): The sign of the op-
tional address displacement: If this bit is set, the displacement is sub-
tracted from the memory address.

• Value Register (bits 13, 12, and 11): The register holding the value to
be used for the label manipulation or the register/memory receiving the
obtained label value. Register bit representation analogous to address
register.

• Value Pointer (bit 14): Specifies whether the value register holds the
value directly (bit 14 cleared) or points to a memory location holding
the value (bit 14 set).

• Value Displacement (bits 18 through 15): An optional displacement
added to the value address.
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• Value Displacement Signedness (bit 19): The sign of the optional
value displacement.

For a better understanding of the bit fields described above, the following
code snippets show the symbolic code instructions and how they can be
represented in c / assembler code:

Clear the protection label of variable bar:

1 int bar = 0x0;
2

3 /*

4 * prot_set %eax , 0x0

5 *

6 * = ------------SDispPValSDispPAddOp

7 * 0x00001801 = 0xb00000000000000000001100000000001

8 * set protection label of address in %eax to value

9 * in %ebx

10 */

11

12 asm volatile(
13 "movl %0, %%eax\n"
14 "movl %1, %%ebx\n"
15 "movl %2, %%cr7\n"
16 :
17 : "r" (&bar),
18 "i" (0x0),
19 "r" (0 x00001801)
20 : "%eax");

Set the most significant bit of the protection label of variable foo indirectly
using a pointer with displacement:

1 int foo = 0x0;
2 int *p_foo = &foo;
3 p_foo += 2;
4

5 /*

6 * prot_or -0x8(%ebx), 0x80000000

7 *

8 * i.e.
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9 *

10 * prot_or 0xfffffff8 (%ebx), 0x80000000

11 *

12 * = ------------SDispPValSDispPAddMd

13 * 0x000034af = 0xb00000000000000000011010010101111

14 * OR protection label of address 0xfffffff8 (%ebx)

15 * with value in %esi

16 */

17

18 asm volatile(
19 "movl %0, %%ebx\n"
20 "movl %1, %%esi\n"
21 "movl %2, %%cr7\n"
22 :
23 : "r" (p_foo),
24 "i" (0 x80000000),
25 "r" (0 x000034af)
26 : "%eax");

Clearly, changing an address’ protection label requires high granularity pro-
tection for the page holding the address’ memory. For this reason, the CPU
will first check for the required level of protection. If this level is not present,
a protection violation will allow the kernel to react appropriately.

Performance measuring extension

Measuring performance of an application or the whole operating system is a
non-trivial task, in general. For this purpose, most processor architectures
provide a set of instructions to accumulate certain events, like occurrences
of page faults, instructions executed, and so forth. Qemu does not provide
such a processor extension at the moment, however. But the performance
impact introduced by our extended Mondrian memory protection, though
not a primary issue in this thesis, is an interesting topic. We thus introduced
a set of instructions that allow to monitor and document execution of certain
code segments.
Bit 31 in Figure 4.1 enables this new performance interface. If a new value,
having bit 31 set, is moved into CR7, the remaining bits are used as a com-
mand to the performance unit. A list of available commands is shown in
Table 4.3.
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Value Bit mask Register included
0x80000000 0x1000 ... 00000000 New process created
0x80000001 0x1000 ... 00000001 Process closing
0x80000002 0x1000 ... 00000010 Thread scheduling
0x80000003 0x1000 ... 00000011 Report output activation

Table 4.3: CR7 values activating the performance interface.

Every op-code expects an additional parameter in register EAX. This pa-
rameter is used as 32-bit key to allow the inspection of multiple processes
simultaneously. As soon as the performance unit is activated, it counts

• the number of times the process was scheduled,

• the number of machine code instructions (supervisor and user) exe-
cuted,

• the number of milliseconds the process was running (measured on the
host system),

• TLB misses, i.e. the number of times the memory management unit
had to navigate through the page hierarchy to resolve the physical
address of a virtual page,

• TLB protection misses, i.e. the number of times the extended memory
management unit had to navigate through the protection hierarchy to
resolve the protection table entry of a virtual page,

• TLB protection hits, i.e. the number of times the extended memory
management unit fetched the protection table entry from the TLB in-
stead of navigating through the protection hierarchy, and

• the number of page faults and protection violations

that occurred during the execution of the process.
As soon as a monitored process stops execution (i.e. the process closing
notification is triggered), Qemu prints a report to stdout. To limit the
amount of output, all processes are inspected, but only data whose key has
been activated through the report output activation notification is actually
printed.
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Debugging extension

Debugging an operating system’s kernel is a cumbersome task, because most
errors will inevitably lead to a complete system crash. This normally renders
debugging output to logfiles or the system’s console useless. To accommodate
this situation, we have introduced two new debugging interfaces using bits
29 and 30 of the control register CR7 as shown in Figure 4.1.
The basic debugging interfaces (BDI) allows to send 29-bit debugging labels
(bits 28 through 0 of the control register CR7) to the CPU. Qemu reacts to
such an event and prints the label to stdout. This allows the programmer
to track the control flow nicely and greatly improves error finding.
The extended debugging interfaces (EDI) works similar to the basic interface
but allows up to 8 32-bit debugging labels to be passed simultaneously. In-
stead of passing the label to CR7 directly, they are taken from the processor’s
registers, depending on which of the 8 least significant bits of CR7 is set.
Table 4.4 shows the mapping between CR7 bit-masks and registers used for
debugging.

Value Bit mask Register
0x20000000 0x001000 ... 000000 EAX

0x20000001 0x001000 ... 000001 EBX

0x20000002 0x001000 ... 000010 ECX

0x20000003 0x001000 ... 000011 EDX

0x20000004 0x001000 ... 000100 ESP

0x20000005 0x001000 ... 000101 EBP

0x20000006 0x001000 ... 000110 ESI

0x20000007 0x001000 ... 000111 EDI

Table 4.4: CR7 values printing individual register values using the extended
debugging interface.

4.2 Kernel adaptions

To allow the individual components of our extended architecture to provide
the protection hierarchy to the CPU and synchronize executing threads with
the protection tables, we had to hook several functions in the operating
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system. For this, we used the Linux kernel, since it allows easy inspection
and modification of the source code.
Since compiling the whole kernel is a time consuming process, we did not
include all of our extensions in the kernel’s code directly. We rather decided
to introduce a struct holding function pointers and a set of stub-functions
that can be used to call these functions. By default, all function pointers
dereference into an empty function. This leaves the original kernel intact,
introducing only a negligible performance impact.
All code instrumenting our extended Mondrian memory protection was im-
plemented inside a loadable kernel module. On module insertion, all nec-
essary function pointers are redirected into appropriate functions inside the
module. Likewise, all pointers are reset to their original value when the
module is removed. This allows the code to be tested and exchanged easily
without recompiling or restarting the whole system and thus greatly accel-
erates the development cycle.
Furthermore, the kernel internal structs task_struct and mm_struct were
enlarged by two data pointers to let the protection system store thread- and
task-specific data, respectively.

Task creation and destruction

The kernel uses four different routines to handle the creation and destruc-
tion of a process or thread: dup_task_struct (called by copy_process dur-
ing the fork or vfork system calls) calls the thread initialization routine
for every thread created. A hook inside this function allows the protection
module to allocate memory for the thread-specific data pointer stored inside
task_struct. Likewise, mm_init calls the task-specific initialization rou-
tine, if the fork system call creates a new process (i.e. does not create a
sub-thread for the current process).
free_task and mmdrop call the functions freeing the respective memory
structures. Note that despite what the names suggest, dup_task_struct

and task_struct are thread -specific, because in Linux every thread is a full
standalone task that shares certain memory regions with other tasks. Thus,
mm_struct and mm_init are process-specific.
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Process execution

The execve system call can be used to start new applications. Linux does
this by replacing the code section of the currently executing program and
resetting all memory regions used by the process. During the call to execve,
Linux internally calls the thread- and task-creation hooks. This manages the
resetting of all memory regions automatically as described in the previous
section.
In Section 6.1, we discuss the performance penalty introduced by the ex-
tended Mondrian memory protection. To minimize this overhead, the pro-
tection hierarchy is maintained but not activated (refer to Section 3.1 for
protection activation), by default. During the process execution hook in our
module, the binary’s filename is used to determine if protection should be
activated. More precisely, the protection is activated if the filename matches
the simple "^.*/detrace$" regular expression. This allows us to use the ex-
tended Mondrian memory protection for targeted programs only by using a
symbolic link named ./detrace connected with the real application’s binary
file.
Using the same filename-based activation logic, the kernel uses the process
execution hook to activate Qemu’s performance measuring extension. The
location of the thread’s mm_struct structure is used as key, because it is
shared by all threads of a process. Thus, Qemu is able to accumulate the
statistics for a complete application.
A last operation done by this hook is to initialize protection of the process’
stack by expanding its size from 0 to the stack’s default size. Stack expansion
will be described in more detail shortly.

Thread scheduling

In the Linux kernel, the function __switch_to is used to change the currently
executing process. A hook, placed inside this function, allows the module to
load the correct protection hierarchy into memory and set control registers
CR5 and CR6 and the read- and write-masks used for protection examination
appropriately. The specific values set depends on what the protection system
is currently being used for. In Chapter 5, we describe a few exemplary ap-
plications based on our generic framework and deal with how these registers
and masks have to be set.
Similar to process execution, the thread scheduling hook notifies the perfor-
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mance interface about the thread switch, also.

Page allocation / deallocation

The Linux kernels offers two possibilities for user applications to allocate new
memory pages: For one thing, the mmap system call can be used to allocate
memory regions explicitly. For another, the kernel automatically expands an
application’s stack if insufficient memory was allocated previously.
Each page that is mmapped into the memory context of the running applica-
tion invokes a function hook inside do_mmap_pgoff. The protection module
will then insert the new page into the protection directory and protection
table, appropriately. The new entry is marked to be using low granularity
protection and its protection label is set to the value currently stored in
control register CR5.
When an application pushes large amounts of data onto stack memory, the
stack’s base address is likely to exceed the pages that were allocated for this
purpose. Since breaching this limit usually accesses an unmapped memory
area, the CPU will, in turn, raise a page fault. Linux handles this situ-
ation by calling the expand_stack function that simply allocates another
page for stack memory and continues execution of the application. Similar
to do_mmap_pgoff, expand_stack uses a function hook to call the stack ex-
pansion code inside the protection module. The module will add all newly
inserted pages between the previous and new stack base address into the
protection hierarchy and initialize the protection table’s entries.
Alike the explicit allocation of memory pages, the do_munmap kernel function
contains a hook to notify the protection module, as well. In contradiction
to the allocation process, deallocation is a two-step process, however: In a
first step, the kernel informs the module that a certain page is about to
be removed. This step is necessary because some functions require to have
memory pages mapped at a specific address. If this address, however, has
previously been mapped by our module to hold protection information of
a page using high granularity protection, mapping the address once again
either fails or overwrites the stored protection labels.
To accommodate this situation, the protection module relocates the protec-
tion page by allocating a new page, copying its content to the new location,
and adjusting the protection hierarchy accordingly. In the second step, the
page is finally taken off the protection hierarchy and its protection page, if
present, is freed.
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System call interface

Our extended Mondrian memory protection adds a new system call to the
Linux kernel. This sys_prottable, with signature

1 long sys_prottable(
2 int mode ,
3 int val1 ,
4 int val2 ,
5 unsigned long __user *ret);

uses the first parameter mode to provide a set of sub-functions using the
multiplexer pattern. Amongst other functionality, commonly used during
the debugging of our implementation, the system call offers the following
functions:

SYS__NOTIFY_FREE: Allows to reset protection information of a range of ad-
dresses. A reset or clear protection label contains a special bitmask that will
trigger a protection violation on the next access to the memory. The fault
handler, described in the next section, can use this bitmask information and
overwrite the protection label with the value currently stored in CR5.

SYS__NOTIFY_TRANSFER_OWNERSHIP: Changes the protection labels of a range
of addresses to a specified value.

SYS__NOTIFY_COPY_OWNERSHIP: Copies the protection labels of a range of
addresses to another range of addresses.

SYS__NOTIFY_RANGE_DISABLE_PROTECTION: Sets a special bitmask to the
protection labels of a range of addresses. When the fault handler detects
a protection violation on such a disabled address, the fault is ignored and
access is granted.

SYS__SET_PROTECTION_ATTRIBUTES: Allows to activate or deactivate the ex-
tended Mondrian memory protection on the currently executing thread or
all threads of the currently executing process.

SYS__NOTIFY_LONGJMP: This function is used by the stack protection system
described in Chapter 5. It works similar to SYS__NOTIFY_FREE but only
manipulates certain bits of the protection label.
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SYS__GET_PROTECTION_LOG: This function is used by the race condition de-
tection system described in Chapter 5. It copies certain data about the
running process gathered by the kernel into a user provided memory region.

SYS__NOTIFY_LOCK: This function is used by the race condition detection
system, also. It is used to notify the system about a change of an user-land
synchronization object. To allow the notification of kernel synchronization
objects, kernel code may use a lock notification hook.

Although some of these functions can be emulated by user code using the
protection information manipulation instructions mentioned in Section 3.3,
using a system call has two advantages: For one thing, handling protection
information using CR7 manipulation is a non-trivial and error-prone job. The
well-defined and tested interface facilitates this to a large extend. For another
thing, the user-land code can only manipulate 4 bytes at a time. Besides
being a much slower approach, it does not take into account the protection
granularity of the page. If, for instance, the protection label of a whole
page should be changed and the page uses low granularity protection, the
SYS__NOTIFY_TRANSFER_OWNERSHIP function can do this by changing the
page’s protection table entry only.

Protection fault handling

As can be seen in Table 4.2, our extended Mondrian memory protection uses
bit 5 of the page fault error code to differential between casual page faults and
protection violations. For this reason, the do_page_fault function, called
by the interrupt handler, includes a hook calling the protection fault handler.
This protection fault handler can be used to implement various protection
schemes. However, every handler includes a base system that extracts in-
formation about the pending protection violation. Furthermore, it enforces
certain mandatory constraints to ensure stability of the operating system.
Figures 4.2 and 4.3 show the flow chart of this handler code. In the re-
mainder of this chapter, we describe this common base system, whereas the
individual application-specific fault handlers are described, along with their
respective systems, in Chapter 5.

The first constraint, the base fault handler has to ensure, is that the kernel is
not running in an atomic context. Code running in such a context may not
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Figure 4.2: Upper half of the common protection fault base handler.

execute any functions that might cause the current thread to be suspended.
Regardless of how the application-specific fault handler intends to react to
the protection violation, the base handler immediately stops its execution in
such a situation. Access to the memory is granted using the read-and-clear
CPU flags introduced in Section 3.2. Thus, tough unlikely, it is possible
that malicious code accesses protected memory regions while the kernel is
running in an atomic context. Although this weakens our implementation of
the memory protection architecture to a small degree, we accept this for the
sake of maintaining the system’s stability easily.
Next, the base fault handler checks if the protection violation is due to an
unallowed user code manipulation of a protection label. As described in Sec-
tion 3.1, the protection module can detain non-supervisor code from using
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the protection information manipulation instructions. Furthermore, every
direct memory access to a protection page by code running in ring3 is han-
dled as well. In both case of illegal access, the base fault handler stops the
malicious process by causing a segmentation fault, without consulting the
application-specific fault handler.

Figure 4.3: Lower half of the common protection fault base handler.

After ensuring that protection for the current thread is activated, the fault
handler’s base system fetches all protection table entries necessary for the
protection examination. In case at least one entry indicates the use of low
granularity protection, the system has the following three options:

1. If any entry’s protection label indicates a cleared page, the protection
label is set to the value stored in control register CR5 and the access is
retried.

2. If every entry’s label indicates that protection for the whole page should
be disabled, the access is granted in the same manner as described for
protection violations in an atomic context.

3. If none of the two previous options match, the low granularity protec-
tion of every accessed page is expanded into high granularity. There-
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fore, a protection page is allocated, filled with the entry’s protection
label, entered into the protection hierarchy, and protected from direct
accesses from user code. Eventually, the access is also retried.

Otherwise, if every page accessed has already been expanded to high granu-
larity protection, the protection labels are loaded from the appropriate pro-
tection pages. The code can identify the number of protection labels nec-
essary by looking at the address and error code provided for the protection
violation: By default, only one protection label is resolved. However, both,
having bit 6 of the error code set or an unaligned fault address requires an
additional label to be examined. The predominant case only requires one
single label, the maximum of three labels, on the other hand, is very rare. It
can only happen when a protection violation is raised during an unaligned
quad-byte access.
For every protection label, options 1 and 2 described above handling cleared
and disabled memory addresses are checked once more. If neither of them
can resolve the protection violation, the protection fault base handler has
done its job and the application-specific fault handler is called.



Chapter 5

Application of extended
Mondrian memory protection

We claim that our extended Mondrian memory protection architecture pro-
vides a versatile framework to implement different techniques that allow pro-
cesses (and threads) to protect sensitive memory regions. These memory
regions can be control data (such as return addresses), process management
information, or thread-shared data buffers. To demonstrate the versatility of
our system, we built three applications on top of the proposed architecture.
More precisely, Sections 5.1 and 5.2 show how stack and heap areas can be
protected against memory corruption attacks. In Section 5.3, we discuss how
the architecture can be leveraged to implement a race condition detection
system. While each system application is not novel per se, we show how easy
each mechanism can be expressed in the context of our protection scheme.
This should help the reader understand and appreciate the flexibility and
expressiveness of our novel system architecture.

5.1 Stack Protection

The problem of insufficient validation of user-provided input data has been
known for a long time. Although many different techniques have been intro-
duced to protect programs against memory corruption, buffer overflow and
stack smashing exploits still belong to one of the most popular attack vectors.
A possible way to leverage our architecture to protect against a buffer over-
flow that targets a return address on the stack is to make this address write-
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protected. That is, the compiler can use our extended memory protection
system to add code to the function prologue that sets the return address as
read-only. Thus, when there is a vulnerability inside the body of the function,
the attacker cannot overwrite the return address and hijack the control flow
of the program. Of course, when the function returns, the memory location
on the stack that stores the return address has to be unprotected (i.e., write
access has to be enabled again).
In addition to protecting only the function return addresses, we can also add
protection boundaries around each local buffer. Such protection boundaries
(often called canaries [15]) are realized as write-protected words that are put
around each local buffer. As a result, whenever the process attempts to access
an out-of-bounds value directly before or after the buffer, the write-protected
canary is accessed. This raises a protection fault. Canaries around a local
buffer protect against overflows that do not attempt to modify the function
return address, but that target another local variable that is adjacent to the
exploited buffer.
To add the necessary code that uses our architecture to protect the return
address and the local buffers, we have modified the code generation back-end
of the tiny c compiler [9]. The protection code is quite straightforward. To
ensure that a certain memory word (such as the return address or a boundary
around a buffer) cannot be modified, we set the most significant bit of its
protection label. Moreover, the kernel component sets the most significant
bit of the write-mask and clears this bit of the control register CR5. Thus,
every write access to a canary will lead to a mismatch of the protection and
control tokens, causing a protection violation. Likewise, the most significant
bits of the canary words are cleared on function exit, restoring the original
protection label of the memory addresses.
To see an example for the way in which our protection works, consider the
following source code fragment:

1 int function(char arg1 , int *arg2)
2 {
3 char *p;
4 char buffer [128];
5 .....
6 }

The symbolic machine code that is generated for this code can be seen below.
Note that the compiler inserts 4-byte canary words before and after the buffer
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statically allocated on stack. Moreover, the function return address and the
saved stack pointer (frame pointer) are write protected.

1 <function >:
2 ; function prologue
3 push %ebp
4 mov %esp , %ebp
5 sub $0x8c , %esp
6

7 ; protect function ’s return address
8 ; and saved stack pointer
9 prot_or $0x80000000 , %ebp + $0x4

10 prot_or $0x80000000 , %ebp
11

12 ; protect canaries around ’buffer ’
13 prot_or $0x80000000 , %ebp - $0x8
14 prot_or $0x80000000 , %ebp - $0x8c
15

16 ; original code of function
17 ...
18

19 ; unprotected canaries
20 prot_and $0x7fffffff , %ebp - $0x8c
21 prot_and $0x7fffffff , %ebp - $0x8
22

23 ; protect function ’s return address
24 ; and saved stack pointer
25 prot_and $0x7fffffff , %ebp
26 prot_and $0x7fffffff , %ebp + $0x4
27

28 ; function epilogue
29 leave
30 ret

The memory layout on the stack generated by a regular compiler, a compiler
that uses StackGuard (with a canary before the function return address),
and our proposed technique are shown in Figure 5.1.

tcc stack protection extension

tcc is a compiler for the i386 CPU instruction set on Windows and Unix
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Stack memory

. . .
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Return addr.
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buffer[124-127]

. . .
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buffer[0-3]

. . .

(a)

Stack memory

. . .
arg2
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p

buffer[124-127]
. . .

buffer[0-3]
. . .

(b)

Stack memory Prot. page

. . . . . .
arg2 r/w
arg1 r/w

Return addr. read-only
Saved esp read-only

p r/w
Canary word read-only
buffer[124-127] r/w

. . . . . .
buffer[0-3] r/w

Canary word read-only
. . . . . .

(c)

Figure 5.1: Stack layouts with (a) no, (b) StackGuard [15], and (c) our
extended Mondrian memory protection.

systems. Because it is very small1, it allows easy manipulation and extension
of its source code. Furthermore, it is extremely fast[9] when compared with
other compilers such as gcc [2].
To generate the output binary, the compiler uses a straight-forward one-time
pass through the source code: Starting at the top of each input file, the parser
generates a tree of symbols for a small block of input code and passes it to
the code generator. Typically, such a small block consists of a single-line c
instruction, a variable allocation, or a function head declaration. The code
generator then traverses the generated symbol tree recursively and writes
machine code directly to the output buffer.
If the compiler cannot resolve a reference (e.g. to a externally defined variable
or function), the memory address for the variable, jump or function call is
temporarily filled with a default value and its location in the output buffer
is stored in a global relocation list. After all input files have been handled,
the compiler uses this list to search for previously undefined references and
overwrites the temporary values with the correct memory addresses found
by the parser.

1The whole source, including lexer, parser, code generator and linker, is only about
30000 lines of code.
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Besides the necessity for a relocation list, this one-pass approach introduces
another difficulty, that is particularly interesting for our stack protection
extension: When generating code for a function prologue, the code generator
does not have any knowledge about the amount of memory that should be
allocated on stack for local variables in the function. This is due to the fact
that the function body itself has not been analyzed by the parser. Consider
the following, extended code snippet from before:

1 int function(char arg1 , int *arg2)
2 {
3 char *p;
4 char buffer [128];
5

6 .....
7 p = buffer;
8 buffer [27] = ’c’;
9 .....

10

11 .....
12 char c = arg1;
13 .....
14 }

and the generated function prologue

1 <function >:
2 55 push %ebp
3 89 e5 mov %esp ,%ebp
4 81 ec 88 00 00 00 sub $0x88 ,%esp
5 ..... .....

When the code for decrementing the stack pointer by 0x88 (128 byte for
the array, 4 byte for the pointer, and another 1 + 3 byte for variable c and
alignment) is generated, the local variable declarations have not been ana-
lyzed. Even if the parser continues to analyze the source code until the first
non-variable declaration instruction is found before generating the function
prologue, the declaration of variable c still remains hidden.
For this reason, tcc fills the 9 bytes for stack memory allocation with a
default value and remembers their location in the output buffer. After the
function body has been generated (i.e. during generation of the function
epilogue), the instructions for correctly decrementing the stack pointer are
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written over the temporary place holder, previously stored at the remembered
position.
Dealing with our stack protection, the same problem comes up as well: When
the function prologue is generated, the compiler has no knowledge of the
number and size of local buffers (i.e. arrays) and cannot know where to put
canary words. Thus, we use the approach above and simply increase the size
of the temporary place holder to fit the original function prologue and our
protection code.
Looking at binaries generated by a first implementation of our compiler ex-
tension, it was salient that the code areas for protecting and unprotecting
canaries were identical to a big extend. To eliminate this redundancy, we
removed the second code for canary manipulation and inserted an intelligent
jump instruction instead. The new prologue and epilogue for the extended
function provided above can be seen in the following binary / assembler sec-
tion. Since the source is rather tricky and looking at the whole function at
once is rather confusing, we divide it into logical subsections and explain
each part individually.

1 <function >:
2 55 push %ebp
3 89 e5 mov %esp ,%ebp
4

5 ; protect location of return address and
6 ; saved stack pointer
7 50 push %eax
8 53 push %ebx
9 b8 00 00 00 80 mov $0x80000000 ,%eax

10 bb 17 00 00 00 mov $0x17 ,%ebx
11 0f 22 fb mov %ebx ,%cr7
12 bb 57 00 00 00 mov $0x57 ,%ebx
13 0f 22 fb mov %ebx ,%cr7
14 5b pop %ebx
15 58 pop %eax

As described in Section 4.1, control register CR7 can be used to manipulate
protection labels. Referring to Figure 4.1, the values indirectly set to CR7

through register EBX in lines 11 and 13 can be dismantled to the following
symbolic instructions:



5.1. STACK PROTECTION 41

Value Disp. Addr. Addr. Address Operation
Register Sign Disp. Ptr. Register

0x17 = 0b000 0 0000 0 101 11

EAX + none no EBP prot_or

0x57 = 0b000 0 0001 0 101 11

EAX + 4 byte no EBP prot_or

Register EBP contains the stack base address, after the return address and
saved stack pointer have been pushed. Therefore, protecting offsets 4 and 0
of this register refers to these to values, respectively. Since we use registers
EAX and EBX to hold temporary values, both registers are saved on the stack
to be restored after the CR7 manipulation.
After protecting the function return information, ESP is decremented to al-
locate space for local variables and canary words and the control flow jumps
to the canary protection code:

16 81 ec 90 00 00 00 sub $0x90 ,%esp
17 e9 41 00 00 00 jmp function_protect
18

19 function_body:
20 ..... .....
21

22 ; function body
23

24 ..... .....
25

26 eb 0e jmp function_unprotect
27

28 function_protect:
29 50 push %eax
30 53 push %ebx
31 b8 00 00 00 80 mov $0x80000000 ,%eax
32 bb 17 00 00 00 mov $0x17 ,%ebx
33 eb 0c jmp function_protection
34

35 function_unprotect:
36 50 push %eax
37 53 push %ebx
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38 b8 ff ff ff 7f mov $0x7fffffff ,%eax
39 bb 16 00 00 00 mov $0x16 ,%ebx

The two code sections at the end of this snippet set up the operation and value
used for the next CR7 manipulation. When called from the function prologue,
everything is set up as in the previous snippet. Otherwise, register EAX clears
the protection label’s most significant bit as the following dismantling shows:

Value Disp. Addr. Addr. Address Operation
Register Sign Disp. Ptr. Register

0x16 = 0b000 0 0000 0 101 10

EAX + none no EBP prot_and

40 function_protection:
41 ; set protection label for canary below buffer
42 81 ed 8c 00 00 00 sub $0x8c ,%ebp
43 0f 22 fb mov %ebx ,%cr7
44 81 c5 8c 00 00 00 add $0x8c ,%ebp
45

46 ; set protection label for canary above buffer
47 81 ed 08 00 00 00 sub $0x8 ,%ebp
48 0f 22 fb mov %ebx ,%cr7
49 81 c5 08 00 00 00 add $0x8 ,%ebp

For every canary word that was inserted by the compiler, this code uses
registers EBP, EAX, and EBX to change the read-only state of the protection
information appropriately.

50 ; decide if we are unprotecting or protecting
51 ; protecting : jump back to function body
52 ; unprotecting: jump to function epilogue
53 0f ba e0 1f bt $0x1f ,%eax
54 5b pop %ebx
55 58 pop %eax
56 73 05 jae function_epilogue
57 e9 7a ff ff ff jmp function_body

Eventually, the value of EAX is used to determine if the code was called
during the function prologue or epilogue. In the first case, the control flow
jumps back to the beginning of the function and executes the function’s body.
Otherwise, the remaining epilogue is called:
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58 function_epilogue:
59 ; unprotect location of return address and
60 ; saved stack pointer
61 50 push %eax
62 53 push %ebx
63 b8 ff ff ff 7f mov $0x7fffffff ,%eax
64 bb 16 00 00 00 mov $0x16 ,%ebx
65 0f 22 fb mov %ebx ,%cr7
66 bb 56 00 00 00 mov $0x56 ,%ebx
67 0f 22 fb mov %ebx ,%cr7
68 5b pop %ebx
69 58 pop %eax
70

71 c9 leave
72 c3 ret

Before the function exists, saved stack pointer and function return address
have to be unprotected. The values assigned to CR7 should be self-explanatory
by now: 0x16 was already used previously and 0x56 also unprotects the mem-
ory address in register EBP, but with an offset of 4.

Protection fault handler

As mentioned in the beginning of this section, extending the base protection
fault handler is straight-forward: If the stack protection-specific handler is
called, only the most significant bit of the protection label has to be exam-
ined. If this bit is set during a write access, a read-only canary or protected
function return information is overwritten. In such a situation, the fault
handler terminates the current process using a segmentation fault.
Furthermore, as described above already, bit 31 of control register CR5 must
be cleared and of the write-mask be set for every application that uses the
stack protection.

Non-local control flow modification

Some programs rely on non-local control flow modifications. That is, at some
point of execution, all registers, including the current instruction pointer and
the stack base pointer, are saved to memory. Later, this snapshot can be used
to resume the program exactly like it was done after taking the snapshot.
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The GNU C Library [3], for example, provides such functionality through
the setjmp / longjmp function pair.
When doing non-local control flow modifications, the memory addresses pro-
tected on stack since taking the snapshot are not unprotected. This is because
the functions called between taking and resuming the snapshot do not return
anymore. For this reason, the GNU C Library has been altered to handle
this problem: Whenever a snapshot is resumed, all stack addresses between
the current and restored stack base pointer are unprotected automatically.
This leaves required protection information untouched but clears the freed
stack range.
The system call functionality SYS__NOTIFY_LONGJMP provides an interface
for doing this task. The only change that had to be done to the C Library
was thus to include the system call and setting the function parameter (the
stack range) appropriately.

5.2 Heap Protection

Similar to the problem of smashing stack buffers, heap buffer overruns have
gained attention over the last few years. Although usually more complicated
than stack smashing, it is possible to change a program’s control flow by
modifying the content of certain data structures stored on the heap.
Doug Lea’s Malloc [25], the memory allocator the GNU C Library imple-
mentation is based on, uses in-band management information to maintain
currently allocated chunks of memory. If data is copied into an allocated
buffer without checking its length properly, it is possible to overwrite the
management information of an adjacent chunk, possibly causing a memory
corruption. This memory corruption can be leveraged to eventually overwrite
control data, hijacking the program’s control flow.

1 struct malloc_chunk {
2 size_t prev_size;
3 size_t size;
4

5 struct malloc_chunk* fd;
6 struct malloc_chunk* bk;
7 .....
8 };

Malloc stores free chunks in circular doubly-linked lists. Figure 5.2 and the
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Figure 5.2: In-band information of a free chunk [3].

code snippet above show the structure of such a free chunk. When the user
application wants to allocate a memory region, these lists are searched for an
item that fits the requested size best. Using the unlink macro (simplified)
shown below, malloc takes the chosen chunk off its list and returns its head
memory address to the application.

1 /* Take a chunk off a bin list */

2 #define unlink(P, BK , FD) {
3 FD = P->fd;
4 BK = P->bk;
5 FD ->bk = BK;
6 BK ->fd = FD;
7 }

If a buffer overrun of an adjacent allocated chunk previously changed the
free chunk’s fd and bk pointers, dereferencing fd allows an attacker to write
arbitrary four bytes of data to a location of his/her choosing. Using our
memory protection architecture, we have introduced a mechanism for pre-
venting heap based buffer overruns. As the heap management information
must only be modified from within the allocation code inside the GNU C
Library, we can keep the memory management information write-protected
while the user code is executing. Only when heap management data needs
to be modified, the read-only memory locations are unprotected. Once the
management information is updated, the C library can write-protect this
data again. When an attacker later exploits a vulnerability and attempts to
overwrite this data, a protection fault is raised.
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Malloc heap protection extension

Inside the malloc_chunk structure, the member variable size is the first
memory location that must not be tampered with by code outside the library.
Thus, we use this as a read-only border to protect the chunk’s memory in-
formation. The GNU C Library uses various functions that interact with the
lists of free chunks, including

• malloc: Allocates a memory area and must thus be able to take chunks
off the lists,

• realloc: Changes a chunk’s size. If this cannot be done directly (be-
cause the memory behind the chunk is already in use), the allocation
of a new chunk and copying the current content to the new buffer is
necessary. Thus, this function must also interact with the lists of free
chunks, and

• free: Malloc does not allow two adjacent chunks to be free. Thus,
whenever a chunk adjacent to a free chunk is freed, the two chunks are
merged, changing the first size variable accordingly.

To limit the changes done to the original source to a minimum, we have
introduced a macro that can be used instead of manipulating the protected
variable directly. An exemplary use of this macro is shown in the code snippet
below:

1 Void_t*
2 _int_malloc(mstate av , size_t bytes)
3 {
4 .....
5 /* inspected/selected chunk */

6 mchunkptr victim;
7 .....
8

9 // victim ->size |= NON_MAIN_ARENA;

10 alter_protected_size(victim , |= NON_MAIN_ARENA);
11 .....

The alter_protected_size macro is realized very similar to the canary
protection code explained in the previous section. Its exact implementation
can be seen in the following source listing:
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1 #define unprotect_address(__p)
2 {
3 asm volatile(
4 "push %%eax\n"
5 "push %%ebx\n"
6 "push %%ecx\n"
7 "mov %0,%%ecx\n"
8 "mov $0x7fffffff ,%%eax\n"
9 "mov $0x6 ,%%ebx\n"

10 "mov %%ebx ,%%cr7\n"
11 "pop %%ecx\n"
12 "pop %%ebx\n"
13 "pop %%eax\n"
14 ::"r"(__p));
15 }
16

17 #define protect_address(__p)
18 {
19 asm volatile(
20 "push %%eax\n"
21 "push %%ebx\n"
22 "push %%ecx\n"
23 "mov %0,%%ecx\n"
24 "mov $0x80000000 ,%%eax\n"
25 "mov $0x7 ,%%ebx\n"
26 "mov %%ebx ,%%cr7\n"
27 "pop %%ecx\n"
28 "pop %%ebx\n"
29 "pop %%eax\n"
30 ::"r"(__p));
31 }
32

33 #define alter_protected_size(__p , __code)
34 {
35 unprotect_address (&(__p ->size));
36 __p ->size __code;
37 protect_address (&(__p ->size));
38 }
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Protection fault handler

Since our heap protection works exactly like the previously described stack
protection, they share a common protection handler. For further information
on the inner workings of this handler, refer to Section 5.1.

5.3 Race Condition Detection

To show a third application for leveraging our extended Mondrian memory
protection architecture, we have made our own implementation of the race
condition detection algorithm described in [29]. In this section, we describe
the original detection algorithm and how our implementation differs from
that. Section 6.3 then provides an overview of applications tested with our
system, as well as of actual race condition bugs that we found.

In [29], the author describes a data race (condition) as follows:

A lock is a simple synchronization object used for mutual exclu-
sion; it is either available, or owned by a thread. The operations
on a lock mu are lock(mu) and unlock(mu).

A data race occurs when two concurrent threads access a shared
variable and when

• At least one access is a write, and

• the threads use no explicit mechanism to prevent the ac-
cesses from being simultaneous.

Eraser race detection algorithm

In order to be able to detect possible race conditions in a program, Eraser [29]
uses four bytes of shadow memory for each memory word in the applica-
tion’s address space. As long as a memory address has been accessed by
a single thread only (identified by its PID2), this memory address is owned

exclusively by this thread. To indicate this fact, the shadow memory con-
tains the owner’s PID.

2In Unix-based operating systems, every thread has a system wide unique ID, called
process identification number. If multiple streams of execution share a common memory
context, they are called threads of a process, indicated by a common thread group ID.
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Eraser employs a binary rewriting tool that patches every memory access with
a call to the race condition checking routine. That is, whenever memory is
read or modified, the routine compares the shadow memory’s content and the
process’ PID. As soon as a thread accesses a memory location whose shadow
memory contains a different PID, the detection algorithm knows that the
data at this memory location is shared. Thus, the first requirement for a
data race stated above is met. To test whether there is a real data race,
the second requirement needs to be checked as well. To this end, the system
employs the lock-set algorithm:
As part of the lock-set algorithm, the system instruments all calls to syn-
chronization procedures to notify the detection system about changes of each
thread’s currently held locks. This allows the system to determine the set
of locks that a thread holds at any point in time. Also, the semantics of
the shadow memory is different for shared memory regions. Instead of the
owner’s PID, the shadow memory of each shared memory location contains
two status bits3 and an ID that tells the detection algorithm which set of
locks have been held previously by threads accessing this memory location.
This set is called the lock-set for this location. Initially, at the moment when
a memory location is marked as shared, the memory’s lock-set is set to the
locks held by the accessing thread.
On every access to a shared memory location, the lock-set set is recalculated
by intersecting the set of locks currently held by the running thread with the
set identified by the ID in the shadow memory. If the intersection obtained
through this lock refinement ever yields an empty set, the detection algorithm
has found a data race and can issue a warning.
Figure 5.3 shows the state graph a memory location traverses before the
warning is issued: Initially, every address is in virgin state, indicating that
no thread has yet accessed the memory. Once the first thread accesses the
location, it changes to state exclusive. As soon as a new thread accesses
the location, it changes to states shared or shared modified, depending on
whether the access is a read or a write. In these two last states, the lock-set
refinement has to be done on every access to the memory address.
Eraser distinguishes between the two last states to support the use of read-
/write locks: Programmers often use single-writer, multiple-reader locks to

3The status bits indicate that the memory location should be treated as shared and
keep track of whether there has been a write access to the memory location since it has
been marked as such.
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Figure 5.3: Race condition detection state machine [29].

allow one thread to generate data and make it available to others. To sup-
port this programming paradigm, the lock-set refinement has to be extended:
On every write access to a shared memory location, the lock-set set is recal-
culated by intersecting the set of locks currently held in write mode by the
running thread with the set identified by the ID in the shadow memory. For
read accesses, the refinement remains unchanged and the set is intersected
with the locks held in any mode. Furthermore, race condition warnings for
memory addresses in the shared state are postponed until their state changes
to shared modified.

Extended Mondrian detection algorithm

To implement the lock-set algorithm on top of our architecture, we require
a mechanism to detect the case in which multiple threads access the same
memory area. Moreover, we require a way to represent the locks that a
thread currently holds. Finally, it is necessary to have a representation for
the lock-sets that store, for each shared memory region, the set of locks that
were held while accessing this region.
We use an approach that is similar to the original system, but instead of
a shadow memory, we use the 30-bit protection labels to hold the shadow
memory’s content. When using the race condition detection module, the
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kernel puts the 16 bits of the current thread ID4 into bits 3 through 19 of
the control register CR55, clearing all other bits. Likewise, bits 3 through
19 of the read- and write-masks are also set. This ensures that a protection
violation occurs whenever a process accesses a memory address that it does
not own exclusively.
When the kernel protection fault handler identifies a shared memory access,
it marks the target of this memory address as shared. This is achieved by
setting bit 30 of the protection label to 1. By also setting this bit in both
access bit-masks, every further access to that memory location will trigger
a protection fault. This allows the protection fault handler to compare and
update the set of locks held during the memory access. When a memory
region is marked as shared, the 28 least significant bits can be used to store
the lock-set ID (which indicates the locks that were held while accessing
this memory region). Similar to the original algorithm, bit 29 is used to
differentiate between the shared and shared modified states. Bit 31 is left
unused to allow compatibility with the previously explained stack and heap
protection mechanisms.
The following example shows two threads accessing a common memory lo-
cation addr. We assume that addr is initially owned exclusively by a thread
with a thread ID (TID) of 1. Thus, the protection label stores this TID
(recall that the first three least significant bits are unused). It can be seen
how the accesses to this variable change the memory’s protection information
until a race condition is detected. The race is detected when the first thread
writes to the shared memory region while holding lock m1. The reason is
that, previously, the same memory was accessed by Thread 2 using only lock
m2. Thus, the lock-set is empty, indicating a bug.

4Our detection algorithm uses the difference between process ID and thread group ID
instead of using the PID directly. The first, main thread of a process thus has a thread ID
of 0. This brings the advantage that when this thread is forked, the protection labels can
be copied directly into the new process and need not be modified to match the new PID.

5Bits 0 and 1 of control register CR5 are reserved and may not be used. Bit 2 is not
used for historical reasons.
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CR5 Protection Locks Thread 1 Thread 2
label of addr held (TID 1) (TID 2)

0b0000...001000 {} = ID(0)
0b01000 lock(m1);

{m1} = ID(1)
.. write(addr);

.. unlock(m1);

{} = ID(0)

0b10000 lock(m2);

{m2} = ID(2)
.. read(addr);

0b0110...000010

.. unlock(m2);

{} = ID(0)

0b01000 lock(m1);

{m1} = ID(1)
.. write(addr);

0b0100...000000

Lock-set acquisition

Of course, we require a mechanism to identify which locks are currently held
by a process. To this end, we insert hooks into the operating system kernel
that get notified when a kernel semaphore is locked or unlocked. In addition,
the extended system call interface mentioned in Section 4.2 is used to get
notifications about user-land locking operations.
Looking at various Unix applications, we found that a vast majority of pro-
grams uses the broad range of synchronization functions provided by the
GNU C Library. For this reason, we patched the library’s

• mutex,

• semaphore,

• read/write lock, and

• spinlock



5.3. RACE CONDITION DETECTION 53

functions to include a call to the new kernel interface. All other means for
mutual exclusion offered by the library are included inherently, because they
internally rely on one of the basic functions above.
To identify a lock inside the detection system, every synchronization object
(regardless of kernel or user-land) passed to the system interface requires
an application-unique key. To achieve this, we used the object’s virtual ad-
dress. While this works well for casual mutexes and semaphores, it does not
for read/write locks. Holding such a lock in read-only mode must be differ-
entiable from those locks held in read-write mode to allow correct lock-set
refinement. Since the structs storing the locks inside the C Library are guar-
anteed to be word-aligned, however, we can achieve this by simply passing
the lock’s ID increased by 1 or 2, depending on the function the call is made
from.
Whenever a call to the locking interface is made, the race detection-specific
protection module generates a new ID representing the lock-sets held by the
current thread. This information is stored inside the thread-specific data
buffer referenced by the pointer inside the task_struct mentioned in Sec-
tion 4.2. For read/write locks in read-only mode, only the thread’s read-lock
ID is modified, for all other types of locks, the read- and write-lock IDs are
updated.

Lock-set identification

As described in the previous section, lock-sets associated with memory ad-
dresses as well as those held by the individual threads are represented using
an identifier unique within all threads of a process. For this purpose, the
process-specific data buffer, referenced through mm_struct, includes a table
of singly-linked lists of lock-sets. The index into the table, where the lock is
stored, is used as ID for the lock-set algorithm. Indices 0 and 1 have pre-
defined meanings representing the empty lock-set and the lock-set holding
all possible locks (as the system cannot know which/how many locks will
be used by the application, this lock-set cannot be represented by a casual
list). Additionally, index 2 represents the empty set for addresses that did
not trigger a race condition warning previously. This situation is also repre-
sentable with lock-set ID 0 while having bits 29 and 30 of the protection label
set (i.e. the address is in state shared but not shared modified). Since this
extra index was quite nice for debugging during the first implementations
of the race detection system, however, it retained its meaning into the final
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implementation.
When a lock is added to or removed from a lock-set, the protection module
uses the lock-set ID to find the associated singly-linked list of locks in the
lock-set table. This list is then duplicated and the lock is inserted or taken
out of the newly generated list. To retrieve the ID of this modified set, the
module tries to find a clone of this set inside the lock-set table. If one is
found, this combination of locks has been used previously. Thus, the newly
generated set is deleted and the previous ID found is used. If no such lock
combination is found in the table, however, the lock-set’s head element is
stored in the first free table position and its index is used.
Since each modification of a lock-set requires the comparison of several singly-
linked lists, we have made three attempts to increase performance: For one
thing, we have changed the singly-linked lists to be sorted by ascending lock
IDs. This introduced an additional runtime overhead when inserting a lock,
because the lock’s position has to be found inside the lock-set prior to the
insertion. Deleting a lock from a set and comparing two lock-sets, on the
other hand, can be performed much faster in the average case, legitimating
the additional overhead.
The second potential improvement we introduced was a lock-set cache. We
figured that a small set of lock-sets is likely to be used in the majority of
cases. That means, searching the table for a lock-set often yields the same
index. Thus, we have added a cache holding the results of recent search
operations. Whenever the module looks for a particular lock-set inside the
table, the cached IDs are used for comparison first. If no result is found using
these IDs, the remaining table is searched. In either case, the returned ID is
pushed on top of the cache, removing the ID’s previous position or the last
item in cache. Measuring average runtimes of the system before and after
the improvement did not show any significant changes. The performance
increase by possibly avoiding to search the whole table for a lock-set was
evened out by the extra overhead necessary for maintaining the cache. Since
the system’s performance did not worsen and we figure it might still have a
positive impact on some applications, we decided to keep the lock-set cache
as part of the race detection-specific protection module.
A last modification we experimented with was introducing a hash value to
fingerprint a lock-set. That is, the head element of each singly-linked list
additionally contains a hashed value of all lock IDs contained in the lock-
set. Whenever two lock-sets are compared, their individual hash values are
inspected first. If they differ, the two lock-sets cannot match. Otherwise,
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the lock-sets have to be compared in the traditional manner to eliminate a
possible hash collision. Sadly, this attempt did not produce the expected
results. Quite contrary, the average runtimes changed for the worse. Experi-
ments showed that this was due to a insufficient hash function that produced
an overwhelming number of hash collisions. However, the complexity of an
acceptable hash function and therefrom resulting overhead made us abandon
the idea.

Protection fault handler

Once the race detection-specific fault handler is called by the base system,
the accessed protection labels have all been resolved, disabled labels have
been discarded and cleared labels have been assigned to the current thread.
Furthermore, all accessed addresses have been expanded to high granularity
protection. Thus, the fault handler only has to mark the addresses to be
shared and do the lock-sets refinement:
For this, the code first inspects bit 30 of the protection label. If this bit is
set, the address has already been marked as shared. Otherwise, the memory
address is initialized to state shared (i.e. bits 30 and 29 are set) and ID 1 is
entered as initial lock-set. Furthermore, if the protection violation occurred
during a write access, the state is changed to shared modified (i.e. bit 29 is
cleared).
In a next step, the code checks if the memory’s lock-set has already been
refined to the empty set. In this case, a warning has already been issued and
the fault handler continues with the next label. Otherwise, the corresponding
lock-set is looked up in the lock-set table and intersected with one of the two
lock-sets of the current thread. As mentioned previously, the lock-set used
for the intersection is the set of locks held in write mode during a write
access or that of locks held in any mode otherwise. If the intersection yields
the empty set and the address is in state shared modified, a race condition
warning is issued. In either case, the new ID is saved in the protection label.
Eventually, after all labels have been examined, the fault handler grants
access to the memory address using the read-and-clear CPU flags mentioned
in Section 4.1.

All user-land, as well as kernel synchronization functions internally rely on
some mechanism to modify a memory location atomically. Normally, such a
mechanism is provided by the CPU’s instruction set directly. For instance,
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the GNU C Library’s code for mutual exclusion on i386 architectures is based
on Intel’s x86 lock prefix. Consider the following code, taken from the
library’s code for read/write locks:

1 /* Get the lock held in %ebx. */

2 movl $1 , %edx
3 LOCK cmpxchgl %edx , (%ebx)
4

5 jnz 1f
6 .....
7 1:

Using the LOCK cmpxchgl instruction combination, it is possible to compare
a memory address with a register and, depending on the result of the com-
parison, modify one of the two in a single instruction. Furthermore, because
the LOCK prefix is used, this instruction happens atomically, ensuring that no
other thread (running on a second CPU) can access the memory location at
the same time.
The race detection system described so far is not capable of handling this
common approach for guaranteeing atomicy. For this reason, the protection
violation error code has been extended (as already indicated in Table 4.2).
When raising a protection fault, Qemu sets bit 8 of the error code in case the
executing instruction was prefixed by a lock instruction. The fault handler
then uses this extra information and extends the thread’s lock-set with an
additional lock before doing the refinement. Finally, before the fault handler
returns, the thread’s lock-set is restored to its previous, original state.

Memory reuse

We have not dealt with one problem of the race condition detection system
yet that can introduce a big amount of false positives: When a common
memory buffer is used temporarily by two different threads without interfer-
ence of the other thread, the detection system still erroneously issues a race
condition warning. Consider the following function:

1 void function ()
2 {
3 char *buf = (char*) malloc (0x100);
4 memset(buf , 0x0, 0x100);
5 .....
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6 free(buf);
7 }

If this function is called by two independent, non-concurrent threads, it is
quite likely that the second thread will reference the same memory address
as the first thread did. During its first execution, the function implicitly set
all protection labels of buffer buf to its thread ID. Thus, when the second
thread tries to write to buf, the corresponding protection labels will mark
the addresses as shared. Although there is no race condition present, the
protection fault handler will still issue a race condition warning. This is
because no explicit locking is used when accessing the buffer previously owned
by another thread.
The same problem arises when multiple threads are run successively with-
out providing specific stack memory. The Native Posix Thread Library [19]
(NPTL), the thread management library included in the GNU C Library,
will most likely use the same memory area as stack for every single thread.
Again, because the first thread will get exclusive ownership of the stack mem-
ory, every access by a subsequent thread will issue a race condition warning.
To circumvent these situations, every allocation function in the GNU C Li-
brary has been altered to use the system call interface SYS__NOTIFY_FREE.
Before a buffer is returned to the user application, the library clears the
buffer’s protection information. This allows the protection fault handler to
give each thread exclusive ownership of the buffer during the first access to
its memory.

Detection overhead

When comparing our system to Eraser, we note that our memory footprint
is much smaller: While Eraser incurs 100% memory overhead (every word is
described by 4 bytes of shadow memory), our protection system uses differ-
ent granularity levels for different memory areas. Although shared memory
pages require the same amount of extra memory, we can use low granular-
ity protection on memory areas such as the threads’ stacks, read-only data
sections, and code mappings, reducing the overhead drastically.

detrace: A tool for automatic race detection

To ease the process of finding race conditions in an application, we have cre-
ated a small tool, automating this process. detrace (detect raceconditions)
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is a perl program that allows to interact with the protection module in a very
simple manner and provides an easily understandable output of all generated
data.
When detrace is started, it executes the program provided as argument.
By changing the LD_PRELOAD environment variable, the patched version on
the GNU C Library is dynamically loaded into the program instead of the
default library installed on the system. This allows the user to test completely
unmodified applications without having to install the altered version of the
library.
detrace waits for the termination of the provided binary (it also allows to
directly kill the executed program at any time) and then fetches all data
collected by the protection module through the module’s system call inter-
face SYS__GET_PROTECTION_LOG. For every race condition warning that was
issued, the tool tries to extract information on the source code corresponding
to the warning and symbols associated with the accessed memory location.

A typical invocation of the tool can be seen below:

1 $ detrace.pl ./ program program -argument
2

3 +----------------------------------------------+
4 | Welcome to detrace 0.1.10 (2008 -01 -31)
5 +----------------------------------------------+
6

7 INFO: Writing all output to directory ./ output/
run_DeGPY

8 INFO: Executing binary ’./ program program -argument ’
9 INFO: PID =3557

10 INFO: Binary ’./ program program -argument ’ terminated
11 INFO: Waiting for binary to finish execution ...
12 INFO: Binary finished!
13 INFO: Making sure binary terminated ...
14 INFO: Retrieving protection information from binary
15 INFO: Retrieving symbol information from binary
16 INFO: Retrieving dynamic relocation information from

binary
17 INFO: Extracting dynamic library mapping information
18 INFO: Extracting race information ...................

...... done
19 INFO: Extracting lock information
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20 INFO: Extracting inspection information done
21 INFO: Extracting lockset information
22 INFO: detrace run finished successfully
23 INFO: Have a nice day ;-)

Eventually, detrace splits the gathered information into multiple files. For
instance, all race conditions for addresses in heap memory, issued by the
program’s code directly (that is, not issued by a dynamically linked library)
is gathered in a single file:

1 $ cat ./ output/run_DeGPY/races_heap_main
2

3 address: 0x08049140
4 thread : 0x2
5 process: 0xe62
6 eip : 0x8048a2d file mutex.c, line 213.
7 symbol : mutex1 +0x4
8 --
9 address: 0x08049170

10 thread : 0x2
11 process: 0xe62
12 eip : 0x8048a37 file mutex.c, line 215.
13 symbol : unprotected_counter
14 --
15 address: 0x08049174
16 thread : 0x3
17 process: 0xe62
18 eip : 0x80489f4 file mutex.c, line 202.
19 symbol : incorrectly_protected_counter



Chapter 6

Evaluation

This chapter provides details on the performance and memory overhead in-
troduced by our extended Mondrian memory protection. We also discuss the
effectiveness of the previously introduced system applications, in particular,
the race detector.

6.1 Performance

Although our implementation did not focus on performance issues primarily,
we have attempted to estimate the performance penalty factor introduced.
Table 6.1 shows averaged results of measuring ten executions of the following
three applications:

1. gpg2: Encrypting a binary file with a symmetric key using gpg2 [5]
demonstrates usage of heap memory. For this application, we were
unfortunately unable to measure the performance impact introduced
by the stack protection mechanism, as the compiler chosen (tcc) was
not compatible with the gpg2’s source code.

2. sudoku: A straight forward implementation1 of a solver for the popular
puzzle. This program does not make use of data allocated in heap
memory, but uses the stack extensively due to its recursive design.

3. ClamAV daemon: An open source (GPL) anti-virus toolkit for UNIX [1].
For better performance on multi-processor systems, the toolkit’s dae-

1For details, refer to http://pubpages.unh.edu/~pas/hacks/sudoku/
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mon allows to scan files or directories concurrently using multiple threads.
Since it is very handy to measure the daemon’s response times, we used
this program to measure the impact of activating the race condition de-
tection system.

Analyzing the results in Table 6.1, we can see that the run-time penalties
for using the stack and the heap protection are relatively small, making it
suitable for deployment in production systems. The overhead for the race
detector seems excessive at first glance. However, these numbers are in the
same range as for the original Eraser [29] system. Moreover, the race detector
is targeted for the testing phase of applications, prior to their deployment.
In this phase, even a significant performance penalty can be easily tolerated
when the system is able to identify hard-to-detect errors.

Table 6.1: Performance penalties introduced by the extended Mondrian mem-
ory protection. The values show the relative increases compared to the origi-
nal system (and thus, include also the overhead introduced by the Mondrian
memory system). Page and protection fault values are given in absolute
numbers.
Mode Exec. Instructions TLB Page Prot.

Time Executed Miss. Faults Faults
(ring0 / ring3) (abs.) (abs.)

gpg2:
Original system 1.000 1.000 (1.000 / 1.000) 1.000 319 0
MMP present 1.058 1.004 (1.134 / 1.000) 1.090 319 0
Heap protected 1.478 1.011 (1.383 / 1.000) 1.104 344 13
sudoku:
Original system 1.000 1.000 (1.000 / 1.000) 1.000 109 0
MMP present 1.069 1.011 (2.230 / 1.000) 1.091 115 0
Heap protected 1.248 1.015 (2.604 / 1.000) 1.095 115 1
Stack protected 1.438 1.018 (2.418 / 1.000) 1.103 111 1
Stack & Heap p. 1.487 1.022 (2.701 / 1.000) 1.300 129 2
ClamAV daemon:
Original system 1.000 1.000 (1.000 / 1.000) 1.000 263 0
MMP present 1.107 1.042 (1.071 / 1.000) 1.441 273 0
Race detection 37.464 23.366 (134.0 / 1.166) 71.596 342 143.627
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6.2 Memory Overhead

As mentioned in previous sections, the additional memory required for storing
protection labels depends on the granularity level chosen. For minimal and
low granularity protection, only the additional protection hierarchy has to
be stored, occupying the same amount of memory as the memory necessary
to store the page directory and the page tables.
Since stack- and heap-protection as well as the race condition detection sys-
tem all require high granularity protection, their memory requirements can
become significantly large. To keep the overhead as small as possible, all
pages are protected using the low granularity level by default. Only when
finer-grain protection is required for a certain address, the system switches
to high granularity protection for this page only.
The lazy expansion of protection pages considerably reduces the memory
overhead for read-only data and code areas, heap memory (if no heap pro-
tection is active), stack memory (if no stack protection is active), as well as
large memory mappings spanning more than one page.
To get a feeling for the memory overhead that can be expected in practice,
we measured the additional pages (with a size of 4 KB) that our system re-
quired during the experiments to store the necessary protection information.
The heap protection for gpg2 required 13 additional pages. For the stack
and the heap protection for the sudoku application, the system needed one
additional page each. For storing the race detection information, 101 addi-
tional pages were necessary. Thus, in all cases, the overhead incurred was
less than 500 KB.

6.3 Effectiveness of System Applications

For the stack and heap protection, we developed a number of small applica-
tions that contained vulnerabilities that would allow an attacker to launch
different attacks to corrupt stack and heap memory. As expected, all exploits
that modified write-protected data structures were correctly identified. Thus,
for the reminder of this section, we focus in more detail on the effectiveness
of the race condition detector.
To test the effectiveness of the race condition detection system, we have
examined a number of large, multi-threaded applications:
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• hand-crafted applications to test the GNU C Library’s locking opera-
tions as well as heap-allocation and thread management code,

• several chat server implementations (such as OpenNaken or chat1d),

• a small multi-user game server (Space Tyrant Game Universe),

• ClamAV’s scan daemon, and

• the Apache web server [4].

As the detection system is a dynamic analysis tool, only those code regions
that are actually executed are examined. Thus, we cannot guarantee the
absence of race conditions for a complete application. However, on the posi-
tive side, each warning is a strong indication of an actual error because the
potential race condition was produced by an actual program run.
In the following subsections, we discuss in more detail a subset of the race
condition errors that we found during our experiments (and that we believe
are most interesting):

GNU C Library, mutex locking

We developed a number of small applications to test the individual locking
strategies offered by the Linux kernel and GNU C Library. The following
code snippet (taken from mutex.c) is run concurrently by multiple threads
and was included in all implementations. Of course, to test different locking
mechanisms, the calls to the mutex functions were replaced appropriately.

1 pthread_mutex_t mutex1 , mutex2;
2 int counter;
3 int unprotected_counter;
4 int incorrectly_protected_counter;
5

6 void *concurrently_run_function ()
7 {
8 int local_counter_copy;
9

10 pthread_mutex_lock (& mutex1);
11 pthread_mutex_lock (& mutex2);
12

13 counter ++;
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14 local_counter_copy = (counter == 1) ? 0 : 1;
15

16 printf("Counter value: %d\n", counter);
17

18 pthread_mutex_unlock (& mutex2);
19 pthread_mutex_unlock (& mutex1);
20

21 pthread_mutex_lock(
22 (local_counter_copy)?(& mutex1):(& mutex2));
23 incorrectly_protected_counter ++;
24 pthread_mutex_unlock(
25 (local_counter_copy)?(& mutex1):(& mutex2));
26

27 unprotected_counter ++;
28 }

The function uses two locks for mutual exclusion, while the variables counter,
unprotected_counter and incorrectly_protected_counter are accessed
using both, no, and inconsistently used locks, respectively. Running this pro-
gram with an active race condition detector (e.g. inside the detrace tool),
we obtain the results shown in Table 6.2.

Table 6.2: Automatically generated report from the race condition detection
system applied to the mutex testing application.

Address Symbol Location
1 0x080c9358 _IO_stdfile_1_lock+0x8 ioputs.c (Line 2 -

in listing shown)
2 0x080c9350 _IO_stdfile_1_lock ioputs.c (Line 2)
3 0x080c6830 unprotected_counter mutex.c (Line 23)
4 0xb7f9dbd8 n/a (stack location) pthread_join.c

5 0x080c6834 incorrectly_protected_counter mutex.c (Line 20)
6 0xb6f99d94 n/a (stack location) pthread_join.c

7 0x080c6180 _IO_2_1_stdout_+0x14 genops.c (Line 8)
8 0x080c61e8 n/a genops.c (Line 8)

Whereas race conditions 3 and 5 were anticipated, the other 6 warnings
need closer examination: Looking at the source location provided for race
conditions 1 and 2, the following code can be found:
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1 void *__self = THREAD_SELF;
2 if (( _IO_stdout).owner != __self)
3 {
4 lll_lock (( _IO_stdout).lock , LLL_PRIVATE);
5 (_IO_stdout).owner = __self;
6 }

While the accesses to _IO_stdout and (_IO_stdout).owner are race con-
ditions, this does not have any impact in practice. The reason is the fol-
lowing: Although it is possible that multiple threads enter the body of the
if-statement at the same time and invoke lll_lock (which is a race condition
error), this function then performs correct locking.

Race conditions 7 and 8 reveal the following source lines:

1 int
2 _IO_flush_all_lockp (int do_lock)
3 {
4 ..
5 }
6

7 int
8 _IO_cleanup ()
9 {

10 /* We do *not* want locking. Some threads might

11 use streams but that is their problem , we flush

12 them underneath them. */

13 int result = _IO_flush_all_lockp (0);
14

15 ..
16 }

This clearly shows that a race condition is present, but this race was delib-
erately tolerated by the developers.
Finally, race conditions 4 and 6 are reported because the New Posix Thread
Library attempts to reset each thread’s THREAD_SELF variable (stored at the
bottom of the stack) to -1 once this thread has died. As the current imple-
mentation of our race detection system is not aware of a thread’s termination,
it cannot eliminate this false positive automatically.
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GNU C Library, read/write locking

Looking at a similar binary as in the previous section (replacing the mutex

with a read/write lock), the report reveals another interesting code loca-
tion in the library’s code for unlocking the synchronization object:

1 .text
2

3 .globl __pthread_rwlock_unlock
4 .type __pthread_rwlock_unlock ,@function
5 .align 16
6 __pthread_rwlock_unlock:
7 ...
8 mov 0x19(%edi) ,%ecx
9 call __lll_lock_wait

10 ...

Line 8 of the code snippet uses the read/write lock in register EDI to load
the lock’s __shared variable into register ECX, passing it as parameter to
function __lll_lock_wait.

1 typedef union
2 { struct
3 {
4 int __lock;
5 ...
6 unsigned char __flags;
7 unsigned char __shared;
8 unsigned char __pad1;
9 unsigned char __pad2;

10 int __writer;
11 } __data;
12 ...
13 } pthread_rwlock_t;

As can be seen from the declaration of the structure pthread_rwlock_t

above, __shared is only one byte long. Moreover, it is unaligned. Since
the read operation (on Line 8 of the code) loads four bytes, this access also
touches the struct’s variables __pad1, __pad2, and the first byte of __writer.
As this byte belongs to the next memory word, the Mondrian protection
system also checks the protection label that belongs to the __writer variable.
This leads to a race condition warning, because the __writer variable is
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accessed with locks by other threads. If the 4-byte access is replaced by a
single-byte access, the warning disappears as expected.

ClamAV daemon

To demonstrate that the detection system can also handle larger applications,
we have checked the anti-virus software ClamAV for possible race conditions.
Although the examination reported ten race conditions, we discuss as exam-
ple only one case.
This bug report refers to the unsynchronized access to variable progexit

(in file serverth.c). Looking at the appropriate source code shown below,
we were surprised to see that the variable access is actually protected by a
mutex. However, searching for other references to the progexit variable, we
found code that accesses this variable without holding the exit_mutex, thus
confirming the race condition warning.

1 static void scanner_thread(void *arg)
2 { ...
3 switch(ret) {
4 case COMMAND_SHUTDOWN:
5 pthread_mutex_lock (& exit_mutex);
6 progexit = 1;
7 ...
8 pthread_mutex_unlock (& exit_mutex);
9 break;

10 ...
11 }

Apache web server

In addition to its large code base, the Apache web server introduced another
burden to the detection tool: Besides using a pool of threads to handle
pending tasks, Apache uses, as most web servers, the fork system call to
duplicate the currently running process. This allows the server be more
responsive but forces the protection system to be aware of task duplications
to copy the current protection information into the new process.
Furthermore, examining the original version of the server with the race de-
tector showed a plethora of false positives. This resulted from the fact that
Apache includes its own heap memory allocator: Instead of relying on the
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GNU C Library directly, the code manages pools of memory regions. Every
pool can include several subpools and memory areas that can be deallocated
collectively. We have thus employed the same approach to clear the protec-
tion information of a memory buffer as done for the Malloc code in the C
library. Using the system call interface, we were able to patch the memory
allocator by including only two new lines in the allocator’s source code.

In total, our system found 33 potential race conditions for Apache. Analo-
gously to the ClamAV section, we only deal with one example race condition
that was reported during our examination. Moreover, a few other error lo-
cations are shown in Table 6.3.
Looking at the source location reported for the fourth race condition in Ta-
ble 6.3, we see the following function:

1 static void * APR_THREAD_FUNC worker_thread (...)
2 {
3 ...
4 /* FIXME: should be synchronized - aaron */

5 requests_this_child --;

The comment clearly provides a strong confirmation for the correctness of
this error report.

Table 6.3: Automatically generated (incomplete) report from the race con-
dition detection system applied to the Apache web server.

Address Symbol Location
1 0x080c373c exploded_cache_gmt+0x3c util_time.c, line 125
2 0x08153058 n/a fdqueue.c, line 345
3 0x081531d0 n/a worker.c, line 892
4 0x080c3ca4 requests_this_child worker.c, line 896
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Related Work

As mentioned previously, the general protection framework that we designed
is an extension of the Mondrian memory protection idea [37, 38]. In contrast
to the original design, we have extended the two protection bits (that have
predefined semantics) with 30-bit protection labels that can freely be used
by the operating system and the running processes. This flexible framework
allowed us to build different techniques to protect sensitive information from
being overwritten, as well as to implement a race detection algorithm.
While Mondrian memory protection was used to define different protection
domains, these domains have mostly been used to put different kernel mod-
ules in separate compartments so that one faulty module does not lead to a
complete OS crash [39]. Our approach offers more flexibility (through larger
protection labels and user-defined policies defined in the kernel). This al-
lowed us to directly implement a number of different mechanisms on top of
our architecture.

Memory corruption protection. Our stack and heap protection tech-
niques are related to numerous systems that aim to detect or prevent attacks
that exploit memory corruption bugs. Here, we can only provide a brief
overview of these techniques, discussing a few systems that stand as exam-
ples for certain categories. One of the earliest techniques to prevent buffer
overflows from overwriting the return address was StackGuard [15]. This
system modifies the compiler so that a special canary word is stored next to
the return address. This canary is later checked when the function returns.
When a modification is detected, this indicates a buffer overrun. StackGuard
was later improved by systems such as RAD [14]. RAD is also a compiler



70

modification, but it protects the return address by inserting code that stores
a copy of the return address at a safe location when a function is invoked
and using this safe copy on function return. A system that works similar to
StackGuard, but that protects heap management information, is presented
in [28].
In addition to systems that modify the compiler to protect information such
as return addresses or heap management information, researchers have pro-
posed static analysis systems to detect possible unsafe code that might lead
to memory corruption. One of the first techniques uses integer range analysis
for checking buffer accesses for indexes that are out of bounds [35]. This pro-
posal has been followed by numerous others, using for example static program
analysis [7, 18] or model checking [13]. Also, there are approaches [24, 26]
that aim to retrofit C programs with type safety. To this end, programs have
to be (slightly) modified to conform to new programming languages that are
very similar to C, but that lack constructs for which the compiler cannot
guarantee the absence of memory errors.
Finally, there are techniques that use a combination of static and dynamic
program analysis to provide strong security guarantees such as control flow
integrity [6] or data integrity [12]. Clearly, these techniques can identify
attacks in which return addresses (or other pointers) are overwritten to hijack
the execution of a process.

Race condition detection. Similar to memory corruption bugs, race con-
ditions [10] are an important class of program errors that have received sig-
nificant attention from the research community. Again, there are static and
dynamic techniques to approach the problem and to analyze code for the
presence of race conditions.
Static techniques [11, 20, 21] use compile-time analysis of the program source
code, reporting all potential races that could occur in a program execution.
Dynamic techniques [29, 34], on the other hand, execute the program and
analyze a history of its memory accesses and synchronization operations.
This has the advantage that only feasible program paths are seen. However,
dynamic approaches have the limitation that they can typically not inspect
all possible execution paths.
Dynamic approaches are usually either based on a lock-set approach or on
the happens-before relationship. Systems that use a lock-set approach (such
as Eraser [29]) require that all shared variable accesses are protected by a
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lock. In case the system identifies different accesses to a shared variable for
which there is no lock consistently held, a potential race condition is identi-
fied. Systems [17] that leverage the happens-before relationship attempt to
establish a partial temporal ordering between all data accesses. If there is a
data access for which no such order can be found, the system has detected
a race condition. In general, systems that are based on the happens-before
relationship are more general, since they can be applied to non-lock-based
synchronization operations. However, they are typically less efficient in find-
ing race conditions (i.e., they produce more false negatives).
Given our system applications (stack protection, heap protection, and race
condition detection), we are aware of the fact that they are not novel con-
tributions per se. However, they demonstrate the flexibility of our novel
memory protection architecture. Thus, by introducing a versatile and gen-
eral protection system, we believe that we have introduced an architecture
that can serve as the basis for future security techniques.
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Summary and conclusion

Traditional memory protection, as implemented in Intel’s x86 architecture,
has the shortcoming of being very coarse-grain. A previous implementation of
Mondrian memory protection improved the granularity of protected memory
regions, but still lacks flexibility and precision of the protection information
that is stored.
In this thesis, we present an extended version of Mondrian memory protec-
tion. It allows the system to store generalized protection labels of 30 bit for
every word in an application’s memory context. A user-defined kernel mod-
ule allows to specify rules that are examined during memory access by the
CPU. Through this, a broad field of applications can be covered by building
on top of our general framework.
To demonstrate the usability and effectiveness of our extended Mondrian
memory protection, we have implemented a system that provides stack and
heap protection as well as dynamic race condition detection. We used our
system on a number of large, real-world applications. Our evaluation con-
firms that the protection mechanisms effectively prevent certain classes of
memory corruption errors. Moreover, the race condition detector shows that
even well-known code bases such as the GNU C Library and the Apache web
server contain problems related to race conditions.
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