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Abstract

In this diploma thesis I present a novel method for the characterization of cou-

pling e�ects in instationary multichannel invasive EEG (ECoG). It allows for the

visualization of the spatio-temporal evolution of synchronization e�ects which

are characteristic for epileptic seizures. In contrast to numerous existing meth-

ods no channel pre-selection is required in order to obtain stable results, which

is crucial for clinical application, e.g. in the pre-surgical evaluation in epilepsy

monitoring units.

The presented method is based on a linear spatio-temporal regression that

is performed for each output signal separately. Hereby, a channel selection al-

gorithm determines an optimal spatial neighborhood before the regression is

computed, whereas the constant temporal model order is �xed by simulations.

Adaptive estimation is done by means of the recursive least-squares (RLS) al-

gorithm in order to cope with the instationarity of the biosignal, which is sta-

tistically analyzed. Besides an analysis of the regression quality of RLS in

comparison to ordinary-least squares (OLS) estimation, the properties of the

RLS algorithm are examined.

Based on variances a novel measure termed extrinsic-to-intrinsic-power-ratio

(EIPR) is introduced, which is physiologically meaningful and valuable. The

visualization of the spatio-temporal evolution of this measure allows to track

the propagation of the seizure.

The results of the described method are in excellent accordance with de-

scriptions from clinical experts.
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Summary

In this diploma thesis we present a novel method for epileptic seizure propaga-

tion analysis, which allows to track the spatio-temporal evolution of the seizure

focus.

We start this work with a medical introduction in chapter 1. After a view

on medical generalities in the �eld of epilepsy we discuss pathophysiological

fundamentals and the course of the disease, followed by clinical symptomatology.

As we deal with temporal lobe epilepsy, we complete this chapter with a short

characterization of this type of seizures.

In chapter 2 we give a short overview on alternative approaches in literature.

We present common frequency domain-based dependency measures, which could

be used instead of our measure termed EIPR. This chapter is concluded by an

outlook on graphical modeling.

In chapter 3 we present the main idea of our novel method: We set up a linear

autoregressive model which does not depend on manual channel preselection.

Dynamic channel selection is automatically done during the computation by a

channel selection algorithm.

Furthermore, using the variances of intrinsic and extrinsic model coe�cients,

we introduce a novel dependency measure termed extrinsic-to-intrinsic-power-

ratio (EIPR). We interpret high values of EIPR, which result from strong ex-

trinsic contributions, as indication for epileptic activity. Plotting the evolution

of EIPR in a spatio-temporal map allows us to track the propagation of the

epileptic seizure.

In chapter 4 we discuss possible implementations for estimating the coef-

�cients of the autoregressive model. MMSE regression is presented as a �rst

choice, needing a number of mathematical assumptions � notably short-term

stationarity � which are not necessarily ful�lled by ECoG recordings.

We therefore re�ne the approach by introducing recursive least-squares es-

timation (RLS). This self-adaptive algorithm is capable of dealing with insta-

tionarity in the ECoG signal better, allowing us to omit assumptions on signal

stationarity.

In chapter 5 we �nally discuss results obtained from one patient by means of

OLS and RLS regression. In the case of RLS regression, the results show good

statistical properties (regression �t, absence of residual autocorrelation). The
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good spatial and temporal correlation of EIPR with epileptic activity reveals its

characterization as a physiologically meaningful dependency measure.

Penalizing the past of the intrinsic channel by introducing a dead time de-

grades the statistical properties, but puts more focus on extrinsic channels.

Thanks to this restriction, plotting the evolution of EIPR in a spatio-temporal

map gives a clear indication of epileptic seizure propagation. Hereby, values of

EIPR below a manually set threshold are omitted. The resulting indication of

the seizure propagation is in perfect accordance with the �ndings of clinicians

who visually inspected the raw ECoG recordings.
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Chapter 1

Introduction

As the reader might rather have a mathematical or technical background, but

not necessarily a medical one, this �rst chapter is intended to acquire the basic

knowledge needed: It starts with a short overview of the medical background of

epileptic seizures. We will then clarify the aim of epileptic seizure propagation,

why clinicians might need it and how we want to help them by setting up a

mathematical model. At the end of this chapter we will have a look at alternative

approaches which can be found in literature.

If the reader is not familiar with common medical expressions, he is recom-

mended to consult the standard medical dictionary [Wol05]1 whenever necessary.

1.1 Medical background

We are going to start at the very beginning of epileptic seizure analysis by asking:

What is seizure disorder? Understanding the pathophysiological fundamentals

of epilepsy will then lead us to the classi�cation of epileptic seizures and more

speci�cally to temporal lobe epilepsy, as data used in this work come from

patients su�ering from this speci�c form of the disease.

This short overview is compiled from [Her99] and [Bau01], which both pro-

vide a more exhaustive source for the interested reader. If needed, additional

explanations on the biology of the human brain and the basic biochemical func-

tionality of neurons can be found in [NMW02].

1.1.1 Generalities

Epilepsy is one of the most common serious neurological disorders: Its preva-

lence of 0.5 to 1% and its cumulative incidence (the probability of contracting

epilepsy until the age of 80) of 4% make it nearly as prevalent as, for example,

diabetes.

1A standard German medical dictionary would be [Gru04].
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2 CHAPTER 1. INTRODUCTION

In industrial nations the relative incidence of seizure disorders lies around 24

to 53 per 10,000 inhabitants per year, and in developing countries the number

of incidences is even two or three times higher.

Several factors in�uence the incidence of epilepsy:

Age In industrial nations we observe two maxima: The �rst peak lies in the

�rst months of life, followed by a strong decline after the �rst year. Until

the age of 10 years we observe a plateau, afterwards another decrease leads

to a minimum in adulthood. The second maximum appears after the age

of 70.

Sex Men are slightly more a�ected than women.

Socioeconomical status and race The socioeconomical status is a recipro-

cal factor: the better the status, the smaller the incidence. Race also seems

to play a certain role, as blacks apparently tend to contract epilepsy more

often than whites.

1.1.2 De�nition of epilepsy and epileptic seizure

Clinicians clearly di�erentiate between an epileptic seizure and the disease termed

epilepsy itself:

Epileptic seizure is the clinical manifestation of excessive, hyper-synchronous

discharges of neurons in the cerebral cortex. The clinical symptomatol-

ogy depends on the function of the a�ected neuronal assembly and can

comprise disorder of advanced brain functions, limitation of consciousness,

abnormal sensory or psychical perceptions, motor disorders or generalized

spasms.

Epilepsy is, as a chronic disease, a heterogeneous group of a�ections with

various syndromes and di�erent causes, but one common characteristic:

recurrent, unprovoked seizures.

Therefore doctors speak of epilepsy when unprovoked seizures appear in repe-

tition. Not considered are

• isolated, unprovoked seizures

• acute symptomatic seizures when patients su�er from an acute a�ection

of the central nervous system (infections, traumata, cerebrovascular dis-

eases), as in this case an immediate activator can be identi�ed

• febrile seizures, which are, by de�nition, acute symptomatic seizures, but

form their own subgroup due to their speci�c characteristics (age, genetic

predisposition).
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1.1.3 Pathophysiological fundamentals

Epilepsy is not caused by a single mechanism, but by several factors: Necessary

conditions for epilepsy are, on the one hand, the genetic disposition, and on the

other hand realization factors like infections, infantile damage of the brain or

metabolism disorders. However, science has not found any uniform explanation

yet, but only explains epileptic seizures as excessive neuronal discharges due to

increased excitation or a decrease of inhibitory mechanisms.

At the time of interictal spikes in EEG signals, cell membrane depolarizations

with high amplitudes are observed together with a series of high-frequency action

potentials. This period of change is usually terminated by hyper-polarization.

This electrical phenomenon is termed paroxysmal depolarization shift (PDS)2,
and many researchers consider it to be the basic electro-physiological cellular

phenomenon for focal interictal discharges. During a seizure, PDS is replaced

by a continuing depolarization leading to a change of the ional surrounding en-

vironment, which causes transmembrale electric currents. The resulting hyper-

synchronization is pathological and disturbs the normal processing of informa-

tion.

During long-lasting epileptic activities three factors play a major role:

Imbalance between inhibition and excitation contributes to the excessive dis-

charge: The chemical balance of post-synaptical neuro-transmitters is dis-

turbed, and therefore information is not correctly forwarded from one

neuron to another.

Pacemaker cells activate themselves in an auto-rhythmic way independently

of synaptic control.

Synchronization mechanisms a�ect large neuronal collectives: Synaptic and

non synaptic e�ects have a positive feedback and therefore lead to a syn-

chronization. Depending on the place of the focal excitation further re-

gions of the cortex are a�ected. The localization of the primary focus and

the extent of the secondary propagation determine the di�erent types of

seizures.3

It is exactly these synchronization a�ects which we need for exploiting our math-

ematical model. By estimating the dependencies between di�erent positions on

the cortex we try to predict the propagation of the seizure. An outlook on this

approach is given later in this chapter in section 1.3.

Epileptogenesis is summarized in �gure 1.1.4

2Discovered 1964 by Matsumoto and Ajmono-Marsan.
3For their classi�cation see subsection 1.1.5.
4Adapted from [Her99].
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Figure 1.1: Epileptogenesis. Epileptic activity is triggered by genetic
disposition and realization factors via a biochemical intermediation.

1.1.4 Course of disease

Before considering the classi�cation of epileptic seizures in the next subsection

1.1.5, we are going to have a quick look at the di�erent courses of epilepsy which

can occur:

Complete remission After initial seizures patients have seizure freedom with

complete remission, even on a long-term basis without medicamentous

therapy.

Partial remission After the initial seizure patients have seizure freedom, but

it comes to a relapse, for example in many cases when the medicamentous

therapy is abandoned.

No remission Seizures regularly occur with short-term or even missing remis-

sions.

1.1.5 Clinical symptomatology

In 1981, the Commission on Classi�cation and Terminology of the International
League against Epilepsy proposed a classi�cation of epileptic seizures, which is

still in use.

1.1.5.1 Focal (partial) seizures

Focal seizures have their initial focus in only one part of one cerebral hemisphere.

They are classi�ed into:
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Seizures with simple signs (= full preservation of consciousness) may lead

to motoric, sensory (prickling, �ashes, humming, ...) or vegetative symp-

toms (paleness, sweating, ...). Mental symptoms, however, appear more

often during complex partial seizures.

Seizures with complex signs (= limitation of consciousness) may have lim-

itation of consciousness from the seizure onset on or only successively.

Secondary generalized seizures start with an initial focus and develop into

generalized seizures.

1.1.5.2 Generalized seizures

Generalized seizures initially involve more than a minimal part of both cerebral

hemispheres.

They are classi�ed into:

Absences have the common characteristic of limitations of consciousness with

the patient suddenly pausing right in his action.

Myoclonic seizures imply sudden, short and involuntary muscle convulsions.

These convulsions can either be caused by muscle contractions (positive

myoclonus) or by loss of muscle tonus (negative myoclonus).

Clonic seizures start with loss of tonus or tonic spasms which might cause the

patient to fall to the ground. This phase is followed by recurrent clonic

convulsions.

Tonic seizures imply a sudden, strong increase of muscle tonus (partially or

globally). These seizures, lasting from 5 to 20s, may lead to downfall and

apnoe (with immediate postictal respiration onset).

Tonic-clonic seizures are the historically called �Grand Mal� seizures (with

spasms, downfalls, limitations of consciousness). Possible myoclonic con-

vulsions are followed by a tonic and then a clonic phase. The whole

seizure lasts between one and two minutes and is followed by postictal

unconsciousness.

Atonic seizures are characterized by a sudden short-term loss of tonus (par-

tially or globally, with the latter leading to downfall).

1.1.5.3 Not-classi�able seizures

Seizures which can not be classi�ed due to missing data or because they do not

�t any of the categories above are termed not-classi�able.
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1.1.6 Temporal lobe epilepsy

This subsection is dedicated to the most common form of focal epilepsy: tem-

poral lobe epilepsy. All data used in this work come from patients su�ering

from this form of focal epilepsy5, where we want to track the propagation of the

seizure from its initial focus.

Temporal lobe epilepsy occurs, as its name already says, in the temporal lobe,

lobus temporalis, which is one of the 4 lobes of the cortex:

• Frontal lobe, lobus frontalis

• Parietal lobe, lobus parietalis

• Occipital lobe, lobus occipitalis

• Temporal lobe, lobus temporalis

The temporal lobe is located at both sides of the brain and contains the primary

auditory cortex, Wernicke's area (responsible for speech comprehension) and

structures important for the memory function of the brain (declarative memory,

working memory). Figure 1.26 shows its position in the human brain in green.

Figure 1.2 (a) Figure 1.2 (b)

Figure 1.2: Temporal lobe. Lateral view on the temporal lobe (in
green) in �gure 1.2 (a) and medial view in �gure 1.2 (b).

Note that focal epilepsy can occur in all four lobes, but due to the reasons

mentioned above we only describe temporal lobe epilepsy here.

90% of all patients su�ering from temporal lobe epilepsy report aurae at

the beginning of the seizure. They are typically epigastric (reported as an

�ascending feeling� from the stomach region) or a�ective (angst), in rare cases

mental (déjà-vu, jamais-vu, hallucinations). These aurae remain either isolated,

or the seizure develops into a focal complex one.

5In some of our cases, seizures develop into the secondary generalized form.
6Source: [PP04].
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In case of a focal complex temporal epileptic seizure, which normally lasts be-

tween one and two minutes, the typical sequence of symptoms is as follows:

1. Aurae, typically epigastric or a�ective

2. Limitation of consciousness without major motor disorders (�motion-less-

stare�)

Patients pause right in their action, stare motionlessly into space with

their eyes wide open and do not react on address.

3. Oro-alimentary automatisms: chewing, smacking, swallowing or gnashing

one's teeth.

4. Repetitive automatisms of the hand: wiping or gesticulating

5. Glances in all directions

6. Movements of the whole body

7. Long-lasting postictal disorientation, confusion and speech disorder

The recommended therapy follows the three-step-schema de�ning the treatment

of focal epilepsy:

1. Medicamentous mono-therapy

2. In case of failure medicamentous combination therapy

3. If seizure control has still not been established by the administration of

drugs, the patient is termed therapy refractory. In this case, the possibility
of an epilepsy surgical intervention has to be clari�ed.

1.2 The aim of epileptic seizure propagation

Before it comes to an epilepsy surgical intervention, the patient undergoes a

permanent long-lasting presurgical examination (mostly one week) in which the

clinicians try to identify the regions a�ected by epileptic seizures and determine

important areas, i.e the one for speech recognition. As the surgical intervention

is not reversible and might have severe consequences, the precedent examination

demands the highest precision possible and is therefore conducted in two steps.

Electroencephalography (EEG) is �rst used to border the possibly a�ected

brain regions. This wide-spread technique delivers plots of the temporal

evolution of the electric cortical activity, usually recorded by 19 electrodes

placed on the head of the patient.7 These electrodes are adjusted according

to the 20-10-schema, which is shown in �gure 1.3 on page 8.8

Clinicians then manually inspect the EEG recordings. By explaining the

7Up to 128 electrodes can be used for EEG analysis.
8Source: [EH02]. In �gure 1.3 N denotes the position of the nose, A1 and A2 the location

of the ears.
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Figure 1.3: 20-10-schema for EEG electrodes placement. Connection
lines NI and A1A2 are equally divided into 10-20-20-20-20-10%. Semi-
circles NA1I and NA2Iare similarly split into 10-20-20-20-20-10%.

visible wave forms and spikes they try to deduce a �rst estimation of the

focus and the propagation of the epileptic seizure.9

In order to give an example how a typical ictal EEG recording looks like,

�gure 1.410 shows the EEG signals from a patient su�ering from temporal

lobe epilepsy.

Figure 1.4: EEG recordings. Ictal data obtained from a patient suf-
fering from temporal lobe epilepsy.

Electrocorticography (ECoG) is used afterwards, if necessary, to identify

the position of the epileptic foci in a more precise way. Electrodes consist-

ing of a metal ribbon are placed directly on regions of the exposed surface

9The interpretation of EEG signals, which itself is a vast �eld of science, is described in
detail in [EH02] and [THRK08].

10Source: [THRK08].
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of the brain which had been identi�ed by EEG before. The invasive char-

acter of this method has the advantage that the number of artefacts in the

obtained signal is reduced and that the local resolution is increased to less

than one centimeter. However, as the skullcap has to be opened, ECoG is

only applied in special cases like intrasurgical monitoring or examination

before epilepsy surgical interventions.

Figure 1.511 shows a surgeon's draft of the implemented electrodes and

an x-ray control picture. The slightly curved metal ribbons are visible in

white just above the eye holes.

Figure 1.5 (a) Figure 1.5 (b)

Figure 1.5: Implemented ECoG electrodes. Electrode positions are
marked in �gure 1.5 (a), and the X-ray control picture 1.5 (b) reveals the
electrode bands in white.

A two-minute-recording of EcoG signals obtained from this patient (using

the electrode con�guration shown in this draft) is presented below on page

10 in �gure 1.6. This plot shows ECoG signals of 28 channels, recording

time Oct. 17th, 2002 12:45:36 - 12:47:36 with epileptic seizure onset 15

seconds after the start. Channel 6 is the reference electrode and therefore

constantly near zero.

The goals of epilepsy surgery are twofold. On the one hand the epileptogenic

tissue has to be removed in order to abolish the seizures, but on the other hand

essential brain regions have to be spared in order to avoid neurological de�cits

11Source of all pictures and ECoG signals in this paragraph: C. Baumgartner: 2nd Neu-
rological Department, General Hospital Hietzing with Neurological Center Rosenhuegel; 1130
Vienna, Austria.
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Figure 1.6: ECoG recordings during an epileptic seizure. Seizure
onset 15 seconds after recording start, begin and and end of seizure indi-
cated by dashed lines.

caused by the operation.12 Thus, exact localization of the epileptogenic zone

and of essential brain regions is crucial for the successful surgical treatment of

seizures which can only be accomplished during a thorough presurgical exam-

ination. Especially in patients with seizures arising adjacent to essential brain

regions, ECoG recordings with chronically indwelling sub-dural strip and grid

electrodes or depth electrodes have to be applied.

However, the interpretation of the ECoG signals demands huge experience in

ECoG signal analysis and is subject to the personal opinion of the neurologist.

As the interpretation cannot or can only hardly be controlled, its quality only

reveals after the surgical intervention.

Furthermore, the epileptogenic zone cannot be localized adequately in about

30-50% of patients. In these cases the patients cannot be o�ered a surgical

therapy and the electrodes have to be removed without resective surgery. The

major reasons for this failure are di�culties in the visual interpretation of the

ECoG recordings due to rapid seizure spread.

Neurologists might therefore be interested in an automated tool which au-

tonomously inspects the ECoG raw data and supports them by delivering an

objective control prediction of the initial focus and the propagation of epileptic

seizures.

Achieving this goal shall therefore be the motivation for this work. In the

next section 1.3 we are going to give a brief overview of the method representing

a �rst approach in the direction of the realization of the neurosurgical tool

described above.

12Such brain regions are the primary motor and sensory cortex as well as brain areas sup-
porting language and memory functions; compare [Lüd92].
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If the reader is interested in a deeper understanding of presurgical diagnostics

and surgical intervention, he will �nd a good introduction to these topics in

chapters 16 and 17 of [Bau01] and in chapter 14 of [Her99].

1.3 Outlook on the problem resolution

A widely used approach to EEG/ECoG modeling is the use of autoregressive

(AR) models due to their numerical simplicity: Only a linear system has to be

solved in order to identify the model coe�cients. However, numerical problems

risk to arise in this step, as the considered system is highly correlated in time

as well as in the cross-sectional dimension (the di�erent channels).

In this work, we only use ECoG and not EEG raw data, because they have

� as mentioned in section 1.2 � the advantage of a reduced number of artefacts

which would complicate the algorithmic propagation analysis.

When considering ECoG recordings consisting of 28 channels,13 and esti-

mating them by means of autoregressive methods, we have to deal with the

problem of high auto- and cross-correlation, as mentioned before. This makes

it impossible to apply classical multivariate autoregressive models, as numerical

problems would preponderate when solving the AR model.14

Accordingly we could imagine a manual preselection of only few channels,

which are known to contribute in an important way. This would reduce the

complexity of the system before we could afterwards successfully apply the AR

model to this small set of time series. However, in our case, we do not want

to allow preselection, as the system should work autonomously in clinics, and

the importance of speci�c channels is not known by the doctors a priori, either.

In fact, we have to deal with the exactly opposite situation: We want to assist

surgeons in �nding out which parts of the brain are involved in the seizure.

Therefore the approach to the analysis of epileptic seizure propagation chosen

in this diploma thesis is the following:15

1. We de�ne a (univariate) spatio-temporal regression model explaining each

output signal by its own (intrinsic) present and past and the past of a set

of extrinsic neighborhood channels. This model will be de�ned in section

3.2.

2. Before the regression is computed for each output signal, a channel selec-

tion algorithm determines the optimal spatial neighborhood set for this

speci�c output channel. This algorithm assures the needed complexity

reduction (without preselecting channels!) and is explained in section 3.3

13Up to 128 electrodes could be used for recording ECoG signals.
14The mentioned numerical problems are a direct consequence of the bad conditioning of

the variance-covariance matrix Σ.
15The basic idea of this method is described in [HK07].
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3. As we deal with instationary biosignals, we estimate the model coe�-

cients in an adaptive way by means of recursive-least-squares (RLS). This
algorithm is deduced in section 4.2.

4. Based on a linear decomposition of variances of the regression terms we in-

troduce a novel measure termed extrinsic-to-intrinsic-power-ratio (EIPR)
which is physiologically meaningful and valuable. Plotting its spatio-

temporal evolution allows to track the seizure propagation in the brain.

We will have a closer look at this approach and the characteristics of this

measure in particular in section 3.4.



Chapter 2

Alternative approaches in

literature

Before going into technical details and presenting results of our work, we want

to have a quick look at alternative approaches in literature to which this short

chapter is dedicated.

The main di�erence between the method described in this work and all

others, which have been published by now, is our dropping of an initial channel

preselection. This abandonment of any preselection is, as mentioned in section

1.3, realized by the introduction of a dynamic channel selection.1

2.1 Measures derived from parametric spectra

In this section we especially want to present one approach which can be found

in numerous publications, like for example in [KKB04]: Its main idea is to �t an

AR-model to preselected EEG/ECoG channels and then calculate frequency-

domain dependencies, which are based on the estimated parametric spectra.

2.1.1 Estimation of parametric spectra

The approach described in this subsection is composed of the following steps:

1. Setting up of a parametric model: Using a channel preselection consisting

of K channels, the (relevant) EEG/ECoG data can be represented as a

vector x consisting of K signals recorded in time. At each moment n, we

therefore have x[n] = (x1[n], x2[n], ...xK [n])T .
We �t these data x[n] to a multivariate (K-dimensional) AR(p)-model

expressed as

x[n] =
p∑
s=1

Asx[n− s] + ε[n], (2.1)

1The channel selection algorithm is described in section 3.3.

13



14 CHAPTER 2. ALTERNATIVE APPROACHES IN LITERATURE

where ε[n] represents K-dimensional zero-mean white noise with covari-

ance matrix Σε.

As a result, this step delivers p matrices Âs, the estimated coe�cients of

the AR(p)-model.2

2. Estimation of parametric spectra: By transforming the model equation

(2.1) from the time to the frequency domain and denoting the transformed

vector-valued variables by capital letters, we get3

X(f) =
p∑
s=1

AsX(f)e−2iπfs + E(f)

X(f)

(
1−

p∑
s=1

Ase
−2iπfs

)
= E(f).

Denoting the contents of the brackets by A(f), the equation reads4

X(f)A(f) = E(f)

X(f) = A(f)−1E(f)

X(f) = H(f)E(f). (2.2)

The matrix H(f) is termed the transfer matrix of the system. We can

now easily calculate power spectra S(f) by evaluating

S(f) = H(f)ΣEHH(f), (2.3)

where H denotes the conjugated transpose, and ΣE is the covariance ma-

trix of the white noise E(f).
By inserting the estimated matrices Âs into (2.2), we obtain the desired

estimated power spectra Ŝ(f).

3. De�nition of measures in the frequency domain: In the last step, measures

are derived from the estimated spectra.

We are going to have a closer look at the various possibilities of de�ning

such characteristic numbers in the next subsection.

2.1.2 Measures in the frequency domain

Now we want to have a closer look at measures in the frequency domain, which

can often be found in literature.

When examining a system on dependencies in the frequency domain, it would

be obvious to have, �rst of all, a look at its coherence.

2Not to forget, the multivariate AR(p)-model has matricial coe�cients: Âs ∈ RK×K .
3i is the imaginary unit.
4A(f) is invertible.
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Ordinary coherence is the analogon of correlation in the frequency domain

and shows the coupling of two signals at a certain frequency. It is de�ned

as

k2
ij =

S2
ij(f)

Sii(f)Sjj(f)
(2.4)

and is examined, for example, in [MSAW01].

Its huge disadvantage of being unable to distinguish between direct and

indirect in�uence leads to the following improved de�nition:

Partial coherence, being the equivalent of partial correlation in the frequency

domain, is a measure of the joint variance of two signals at a certain

variance after the in�uence of all other signals has been removed. Its is

de�ned as

χ2
ij(f) =

M2
ij(f)

Mii(f)Mjj(f)
, (2.5)

where Mij is the minor of S, obtained by removing row i and column i

from S.

However, as the explanatory power of coherence by itself is not satisfying enough,

di�erent publications now follow di�erent approaches by de�ning various im-

proved dependency measures in the frequency domain. As coherence, they all

make use of the transfer matrix H(f) from (2.2) or its inverse A(f) and/or the
power spectra S(f) from (2.3).

Directed transfer function (DTF) is proposed in [KB91] and [KDTB01] as

a meaningful measure. It describes the ration between the in�ow from

channel j to channel i in respect to all in�ows to channels i:

γ2
ij(f) =

|Hij(f)|2∑k
m=1 |Him(f)|2

. (2.6)

The normalization condition

k∑
n=1

γ2
in(f) = 1

holds and implies γij ∈ [0, 1]. Values near 1 mean that most of the signal

i comes from the channel j; values near 0 indicate that there is in fact no

in�ow from channel j.

Direct directed transfer function (dDTF) is introduced in [KMK+03]. As

an improvement of the directed transfer function it distinguishes between

direct and indirect in�ows.

It is de�ned as

δij(f) = χij(f)ηij(f), (2.7)

where χij is the partial coherence (2.5) and ηij is the full frequency directed
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transfer function (�DTF)5

η2
ij(f) =

|Hij(f)|2∑
f

∑k
m=1 |Him(f)|2

.

The direct directed transfer function dDTF describes only direct relations:

Values near 0 mean that there is either no �ow from channel j to channel

i or that intermediate channels are involved; values near 1 indicate that

(only) the given channels i and j are related.

Directed coherence (DC) is presented in [BS01]. Is measures whether and

how two structures are functionally connected. Unlike the ordinary coher-

ence (2.4), DC examines the relative structural relationship by decompos-

ing it into into feedforward and feedback aspects.

Its de�nition is

γ2
ij(f) =

Hij(f)2

Sii(f)
(2.8)

and therefore coincides with DTF (2.6), if Σ = IK×K .

Partial directed coherence (PDC) is as well proposed in [BS01] for describ-

ing direct causal relations between signals. It is de�ned as

π2
ij(f) =

A2
ij(f)∑k

m=1A
2
mj(f)

. (2.9)

As the normalization in the denominator is inverse to the one of DTF

(2.6), the appropriate normalization condition here yields

k∑
n=1

π2
nj(f) = 1

and implies πij ∈ [0, 1]. Because of this normalization, πij measures the

ratio between the out�ow from channel j to channel i in respect to all

out�ows from source j � unlike DTF (2.6) describing the in�ows to the

destination i.

Similar to dDTF (2.7), large values of PDC indicate that there is a direct

transmission from channel j to channel i; values close to 0 describe a lack

of this relation.

2.1.3 Link to our approach

We want to state that our approach described in chapters 3 and 4 is fully

compatible with the use of the frequency-domain measures de�ned above in

subsection 2.1.2: In fact we do identify an AR-system as well - this is discussed

in section 3.5.

5As the denominator of ηij is independent of the frequency f , the spectral properties of
�DTF only depend on the out�ow from channel j.
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Instead of de�ning EIPR in the time-domain in section 3.4, we could cal-

culate parametric spectra and derive the associated measures in the frequency

domain (which we de�ned above in subsection 2.1.2).

2.1.4 Granger causality

Granger causality was introduced in 1969 by Granger.6 It is a statistical concept

of causality based on prediction: An observed time series xj [n] �Granger-causes�
another series xi[n], if knowledge of xj [n]'s past signi�cantly improves prediction

of xi[n].

In the basic case of a bivariate autoregressive model, spectral Granger causal-
ity is simply the non-normalized version of DTF:

I2
ij(f) = |Hij(f)|2 =

|Aij(f)|2

|A(f)|2
.

[KDTB01] even shows an equivalence between spectral Granger causality and

the non-normalized version of DTF in the multivariate case:7

I2
ij(f) =

|Mij(f)|2

|A(f)|2
. (2.10)

DTF (2.6) can therefore be interpreted in terms of Granger causality.

Furthermore, as stated in [BS01], PDC (2.9) provides a frequency-domain

picture for Granger causality descriptions and can therefore be interpreted in

the context of Granger causalities as well.

2.2 Graphical modeling

Finally, we also want to mention graphical modeling, which is a methodology to

�nd dependencies between multivariate structures (e.g. by using the coupling

indications described in subsection 2.1.2) and to visualize them in a graph: As

[Dah00] explains, channels are represented by vertices and dependencies di�erent

from zero by edges. Therefore, this approach delivers an intuitive representation

of coupling e�ects in multivariate time series. When using dependency measures,

which only take direct couplings into consideration (but suppress indirect ones),

one obviously obtains a graph which only shows direct relations.8

[Dah00], [DE03] and [Eic06] explain the theoretical background of graphical

modeling and point out the intuitive graphical representation mentioned above.

6See [Gra69] for the original article.
7Consider (i, j) = (2, 1) without loss of generality. Based on the de�nition of matrix

inversion, we then have

non-normalized DTF = |H21(f)|2 =
∣∣[A−1(f)

]
21

∣∣2 =
|M12(f)|2

|A(f)|2
.

8Compare [SWH+06] for a discussion on this distinction.
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Although graphical interaction models have de�nitely become an important

tool for analyzing multivariate data, we are not going to address the theoretical

aspects of this approach in this diploma thesis, but refer the interested reader

to the publications cited above.

Note however, for reasons of completeness, that we do use a graph by repre-

senting the novel EIPR dependencies in the spatio-temporal map in �gure 5.24

� but without explicitely calling our visualization a graph. We do not use any

theoretical results of graphical modeling, either.



Chapter 3

Method

Now that the readers has acquired the necessary medical background knowledge

and got an idea of alternative approaches to seizure analysis, we are going to

introduce our approach in this chapter.

In order to explain the basic method used for analyzing the propagation of

epileptic seizures, we are �rst going to de�ne our mathematical model, then

present the channel selection algorithm and �nally introduce the novel mea-

sure for coupling e�ects in multivariate time series termed extrinsic-to-intrinsic-
power ratio (EIPR).1

In this chapter we are going to hypothesize some properties of the time series

considered in order to set up a purely mathematical model. It is obvious that

these hypotheses will not be admissible when applying our method to ECoG

data. However, we are not going to address this aspect here, but concentrate on

the elaboration of the mathematical method. In return, we are going to discuss

the arising problems and proposed solutions in chapter 4.

3.1 Terminology

Before coming to the technical part of this work, we �rst want to clarify some

terminological questions. Although we have already used several terms intu-

itively in sections 1.3 and 2.1, we want to de�ne them properly here, as this is

needed in the oncoming mathematical context.

In the following analysis we are going to consider discrete real-valued time

series of length T consisting of K components: xt ∈ R
T×K

with t = 1..T .
However, as this work is established in the context of neurological signal treat-

ment, we are not always going to use the common mathematical terms. We

adapt our notation to the standards in the �eld of neuroinformatics and signal

processing:

1This chapter details the basic method which was initially elaborated by the business unit
neuroinformatics at Austrian Research Centers GmbH and is described in the business area
report [HK07].
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3.1.1 Naming

We therefore agree on the following terminology:

Signal We call any discrete real-valued time series a signal.

Sample We call each value of the given signal at a certain time, x[n = n0], a
sample. The index of the time axis is termed sample index n.
The resulting frequency is the sampling frequency :

fs =
length of signal [in seconds]

number of samples
.

Channel We call each component of the signal a channel. The corresponding
index is termed channel index k.

3.1.2 Conventions

Furthermore, we make use of the following conventions:

Sample indices When describing a channel of the (time-discrete) signal x ∈
RT×K

consisting of T samples and K channels, we write it in the form

xk[n], where k is the channel index and n the sample index.2

We sometimes simply call such a channel itself signal and specify the

channel index (in order to avoid confusions): xk.

Stochastic symbols As usual, the mean is denoted by E, variance by V, the
variance-covariance-matrix by Σ and estimators by ^.

3.1.3 Second-order-statistics

For the de�nition of second-order-statistics used in this work we limit ourselves

to the case of real-valued zero-mean stationary signals (which we are going to

deal with):

Cross-covariance function For any channel indices k, l and given lag s ∈ Z,
the cross-covariance function of a signal x ∈ RT×K

is de�ned as

rxkxl
[s] , E {xk[n+ s]xl[n]} ∈ R. (3.1)

Autocovariance function is a particular case of the cross-covariance function

for k = l

rxk
[s] , rxkxk

[s] = E {xk[n+ s]xk[n]} ∈ R. (3.2)

2Readers with a mathematical background would rather write, using common mathemat-
ical notation, xkn or even xkt .



3.1. TERMINOLOGY 21

Covariance function of a signal x ∈ RT×K

is a matrix function with K auto-

covariances (3.2) on its main diagonal and the respective cross-covariances

(3.1) on the other positions:

Rxx[s] ,


rx1x1 [s] rx1x2 [s] . . . rx1xK

[s]
rx2x1 [s] rx2x2 [s] rx2xK

[s]
...

. . .
...

rxKx1 [s] rxkx2 [s] · · · rxKxK
[s]

 ∈ RK×K . (3.3)

In case of a mono-channel signal, the covariance function is reduced to the

one-dimensional autocovariance function.

Note that in our real-valued case the covariance function is symmetric and

satis�es

Rxx[−s] = Rxx[+s]T .

Covariance matrix of a multi-channel signal x ∈ RT×K

�nally is the exhaus-

tive representation of all linear dependencies. In our de�nition it contains

all covariances of all lags {0...p− 1}.3
It is a block-Toeplitz matrix with each block consisting of the covariance

function (3.3) of the respective lag:

Rx,p ,


Rxx[0] Rxx[−1] . . . Rxx[−p+ 1]
Rxx[1] Rxx[0] Rxx[−p+ 2]

...
. . .

...

Rxx[p− 1] Rxx[p− 2] · · · Rxx[0]

 ∈ RKp×Kp.
(3.4)

In case of a mono-channel signal, all blocks are replaced by scalars, and

the covariance matrix takes the simpler form

Rx,p =


rx[0] rx[1] . . . rx[p− 1]
rx[1] rx[0] rx[p− 2]
...

. . .
...

rx[p− 1] rx[p− 2] . . . rx[0]

 ∈ Rp×p. (3.5)

Covariance vector In the univariate case, we also de�ne the covariance vec-
tor, which is � unlike the univariate covariance matrix � the exhaustive

representation of all linear dependencies of all lags {1...p}.
We denote it by

rx,p ,


rx[1]
rx[2]
...

rx[p]

 ∈ Rp×1. (3.6)

3Note that the covariance matrix can also be de�ned to contain all lags {0, ..., p} having
the dimension RK(p+1)×K(p+1). However, for the identi�cation of AR-systems, we only need
covariances up to lag p− 1.
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Its multivariate generalization is

rx,p ,


Rxx[1]
Rxx[2]

...

Rxx[p]

 ∈ RKp×K . (3.7)

Note that the formulae above de�ne theoretical moments. When we use

second-order-statistics estimated from data, we denote them by ^ in order to

underline the fact that we talk about empirical moments. In this case, the

stochastic mean in all de�nitions above is replaced by the empiric one, as sub-

section 4.1.5 details.

3.2 Regression model

Given the conventions from 3.1, we demand the following signal properties of

x[n] for our analysis:

Hypothesis 1: The signal x[n] is zero-mean: Ex[n] = 0.

Hypothesis 2: The signal x[n] is stationary, it especially ful�lls time-invariance

of the covariance matrix Rx,p.

3.2.1 Model de�nition

Taking these two hypotheses into consideration, we set up an autoregressive

model for estimating model coe�cients which we are going to use later for

de�ning the EIPR in section 3.4.4

For each channel of the signal xk[n] we de�ne a regressand by

x̂k[n] , ẋk[n] + ~xk[n] (3.8)

having a multivariate autoregressive model in mind:

x[n] =
∑
s>1

Asx[n− s] + ε[n], (3.9)

where ε[n] is zero-mean white noise with covariance matrix Σε.

We therefore explain a signal in (3.8) as the sum of an intrinsic regression term
ẋk[n] and an extrinsic regression term ~xk[n]:5

4The goal is not to estimate the original output signal, although we could easily do this.
We reconstruct the original output signal in chapter 5 for control purposes only.

5Due to hypothesis 1 we do not include a scalar o� set in (3.8).
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• The intrinsic regression term describes its own past contribution of the

channel xk and is de�ned as

ẋk[n] ,
∑
s∈S

as;k,kxk[n− s], (3.10)

where S is a given intrinsic lag index set and as;k,k the intrinsic model
coe�cient of channel k at lag s.

• The extrinsic regression term models past and present contributions of

extrinsic channels and is de�ned as the sum of partial extrinsic regression
terms:

~xk[n] ,
∑
l∈Lk

~xk,l[n], (3.11)

where the channels contributing to ~xk[n] are chosen according to an ex-

trinsic channel set Lk. This set is separately de�ned for the regression of

each xk
6 and built up by the channel selection algorithm in section 3.3.

The partial extrinsic regression terms in (3.11) are de�ned as

~xk,l[n] ,
∑
q∈Q

aq;k,lxl[n− q], (3.12)

where Q is a given extrinsic lag index set and aq;k,l the extrinsic model
coe�cient of the intrinsic channel k and the extrinsic channel l at lag q.

3.2.2 Remarks on the model

1. Although this general de�nition of the model would allow positive and

negative lags and therefore a non-causal regression from both past and

future (what [HK07] initially proposes), we limit it to the causal case

corresponding to (3.9)7 implying:

• Channel k is only explained by its intrinsic past. We therefore set

S = {1, 2, ...sS} in (3.10) with sS being the maximal intrinsic lag.

• Channel k is only explained by the extrinsic past of neighborhood

channels. We therefore set Q = {1, 2, ...qQ} in (3.12) with qQ being

the maximal extrinsic lag.

2. Both intrinsic and extrinsic model coe�cients in (3.10) and (3.12) do not

depend on the sample index n, but only on the intrinsic and extrinsic

lags s and q. We need hypothesis 2 for this simplifying time-invariant

modeling.

6Naturally, di�erent channels have di�erent extrinsic channel sets, as the extrinsic contri-
butions di�er from one to another.

7Compare section 3.5.
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3. Throughout the formulae, we use the following notation for describing

directed dependencies: ~xk,l[n] or aq;k,l means that we speak about the

in�uence of channel l on channel k (at a certain sample index or lag).8

3.3 Channel selection

Choosing an appropriate extrinsic channel set Lk for the calculation of the

partial extrinsic term (3.11) is a crucial part of the multichannel regression

de�ned in section 3.2.

3.3.1 Theoretical considerations

As mentioned in section 1.3, we face two problems: First of all, we deal with

a high-dimensional system (of typically K = 28 channels in applications), and

secondly, signals recorded by electrodes located spatially close together show

strong inter-correlations. Without any automatic reduction to a smaller set of

channels, which rejects inter-correlated channels, numeric problems will neces-

sarily arise.

This numerical behavior is even aggravated, as statistics, like for example

the covariance function, are not known in practice and therefore have to be

estimated from the data. This step unfortunately generates an additional es-

timation error. Thus, limiting the extrinsic channel set to a small number of

signi�cant channels helps to improve the numerical stability of the algorithm as

well.

The question is now how to dynamically9 select a small subset of channels in

an e�cient way assuring that

• important channels with signi�cant contributions are selected so that as

little information as possible is lost

• channels with high cross-correlation but little �extrinsic information� are

rejected.

An obvious approach would be to put the focus of this selection on a �natural�

parameter: the spatial position of the electrodes. One could, for example, select

a certain number of spatially nearest electrodes assuring that all of the infor-

mation in this speci�c region is well captured. The problem of this method is

that information about spatial positions of the electrodes is required.10

If these positions are not known, one could calculate ordinary correlation

coe�cients and select a subset of channels with the highest correlation coe�-

cients. However, this method is not applicable in practice, as it only selects

8Note that the notation of the intrinsic coe�cients as;k,k is coherent with this convention,
as it describes the in�uence of channel k on itself.

9As stated in 3.2, Lk is determined for each x̂k.
10Another disadvantage is the constant subset selection over time. We are going to discuss

the implementation of temporal modi�cations of the subset Lk in chapter 4.
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channels with high correlation. This might lead, more than ever, to potential

numeric problems � what we initially wanted to avoid.

Therefore, we propose an iterative channel selection algorithm which we

present in the next subsection.

3.3.2 Channel selection algorithm

A possible iterative procedure selecting an appropriate Lk for each x̂k is repre-

sented in pseudo code in algorithm 3.1.

Algorithm 3.1 Channel selection

f o r each reg re s sand x_k [ n ] , k=1. .K
e x t r i n s i c channel s e t : L = {}
extens i on pool : P = { 1 , . .K}\{k}
loop

c a l c u l a t e BIC with channel s e t L
f o r each i in P

c a l c u l a t e BIC( i ) with channel s e t L_i = {L , i }
end f o r
i_opt = arg min BIC( i )
i f BIC( i_opt ) < BIC

extend e x t r i n s i c channel s e t : L = {L , i_opt}
reduce extens i on pool : P = P \ i_opt
cont inue loop

e l s e
e x i t loop

end i f
end loop

end f o r

Its main idea is to iteratively add channels bottom-wise-up until the Bayesian
information criterion (BIC), a measure of goodness of the �t in an estimated

statistical model, is satis�ed:

min
{

ln(Serr) +
M lnT
T

}
, (3.13)

where Serr is the residual sum of squares, M the total number of parameters11

and T the number of samples.

BIC is an extension of the original Akaike information criterion (AIC):12

min
{

ln(Serr) +
2M
T

}
. (3.14)

11The total number of parameters is the sum of the intrinsic lags and all extrinsic lags:
M = sS + ch · qQ, where ch is the number of selected (extrinsic) channels.

12This famous criterion, used in numerous publications, was presented in 1974 by Akaike in
[Aka74].
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As the AIC tends to over�t, Schwarz adopted it using Bayesian arguments and

introduced the BIC in [Sch78].13 This is why (3.13) is also referred to as Schwarz
criterion (SC).

When comparing (3.13) and (3.14), we see that the BIC penalizes free pa-

rameters more than the AIC, leading to lower-dimensional models. Due to this

property, we use the BIC in the channel selection algorithm.14

In detail, the algorithm performs the following steps (compare algorithm 3.1):

1. For a given intrinsic channel xk, it starts with an empty extrinsic channel

set L and a full extension pool P containing all possible extrinsic channels.

2. Using the current extrinsic channel set, it calculates a cost function used

for the Bayesian information criterion (BIC).

3. Now the search for the best additional channel starts:

• For each additional channel i belonging to the extension pool P, an
extended regression (using L ∪ {i} as extrinsic channel set) delivers
a cost function;

• the best channel iopt (this means: the one belonging to the smallest

cost function) is preliminarily chosen.

4. If the optimal cost function is smaller than the one from the non-extended

regression performed in step 2, the associated optimal channel iopt is taken:

• the extended set L∪ {iopt} becomes the new extrinsic channel set L;

• the channel iopt is removed from the extension pool P;

• the algorithm continues at point 2.

5. otherwise

• the algorithm is left, returning a (locally) optimal extrinsic channel

set L.

If the algorithm is �nally left, this means that by adding any channel (even the

optimal among the remaining ones) the �t is impaired: The (local) minimum of

the cost function is therefore found, as demanded by the BIC criterion.

For a better understanding, �gure 3.1 illustrates an example of a possible

temporal and spatial distribution of regressors xl[n− q] (gray squares) summed

up in the regressand x̂k[n] estimating xk[n] (black square):

• Intrinsic channel k = 2

• Corresponding extrinsic channel set L2 = {1, 3, 5}
13Mathematically spoken: The BIC is a consistent estimator of the true model order, the

AIC not. For details on necessary assumptions and the proof see [HD88].
14Note that the An algorithm, which we will mention later in 3.3.3, suggests using BIC in

its core procedure as well.
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• Intrinsic lag set S = {2, 3, 4, 5}

• Extrinsic lag set Q = {1, 2, 3, 4, 5}

Figure 3.1: Temporal and spatial distribution of regressors. The
current sample n (to be estimated) is symbolized in black, selected regres-
sors in gray.

Hereby, channels (represented by lines in �gure 3.1) are selected by the

channel selection algorithm described above; intrinsic and extrinsic temporal

lags are given.

3.3.3 Remarks on the algorithm

Of course, as this algorithm does not try all possible variants in an exhaustive

way15, it can only detect local minima.

1. Its bottom-up approach is similar to the one of the An algorithm presented

in [AG89], but does not include a later dynamical removal of already

selected channels: Even if this led to an overall improvement, a channel

is preserved, once it has been added due to the optimum criterion. This

design could lead to the constellation that the algorithm chooses a local
minimum.

2. Furthermore, as this procedure is a pure channel selection algorithm, it

does not a�ect temporal lags by de�nition. It neither optimizes the intrin-

sic/extrinsic lags by increasing or decreasing the lag order of the regression

15A little thought experiment: In order to choose, for one given intrinsic channel xk, all
possible extrinsic channel subsets (including the empty one) from a total set of K = 28
channels, one would have to try

K−1∑
i=0

(K − 1

i

)
= 2

K−1
= 227 ≈ 1.34 · 108.
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model nor allows partial lag selection per channel. If a channel is selected,

all associated lags are automatically taken; if it is rejected, none of its

associated lags is used in the regression. Once again, this limitation could

lead to the detection of a suboptimal local minimum.

Room for further improvement of this algorithm is therefore given.

3.4 Dependency measure EIPR

In this section we present a novel dependency measure, the extrinsic-to-intrinsic-
power ratio (EIPR), aiming at the identi�cation of mutual dependencies of mul-

tivariate signals. EIPR can be applied to EEG/ECoG data for indicating syn-

chronization and coupling e�ects of brain regions during epileptic seizures.

Several methods based on autoregressive modeling have been proposed: In

subsection 2.1.2 we presented techniques which analyze cross-correlations and

cross-spectra of multichannel autoregressive models �tted to brain signal data.

3.4.1 Variance terms

In contrast to these approaches, we perform a direct analysis of the linear re-

gression terms16 associated to the respective channels.

Using the estimated model coe�cients a·;k,l we �rst express variances of the

intrinsic and extrinsic regression terms:

• The variance of the intrinsic regression term ẋk[n] can be written as17

σ2
ẋk

= E
{

(ẋk[n])2
}

= E


(∑

s

as;k,kxk[n− s]

)2


= E

{∑
s

∑
s′

as′;k,kxk[n− s′]as;k,kxk[n− s]

}
=

∑
s

∑
s′

as′;k,kas;k,kE {xk[n− s′]xk[n− s]}

=
∑
s

∑
s′

as;k,krxk
[s− s′]as′;k,k (3.15)

because of

E {xk[n− s′]xk[n− s]} = E {xk[(n− s′)]xk[(n− s′)− (s− s′)]}
= rxk

[s− s′].
16See (3.10) and (3.12) on page 23 in section 3.2.
17Our signals x are real-valued, therefore we do not use any absolute values in the de�nition

of the variance, but directly calculate it as σ2
x , E

{
x2
}
.



3.4. DEPENDENCY MEASURE EIPR 29

• Analogically, the variance of the partial extrinsic regression terms ~xk,l[n]
can be expressed as

σ2
~xk,l

= E
{

(~xk,l[n])2
}

= E


(∑

q

aq;k,lxl[n− q]

)2


=
∑
q

∑
q′

aq;k,lrxl
[q − q′]aq′;k,l. (3.16)

• Similarly, the variance of the (total) extrinsic regression term ~xk is given

by

σ2
~xk

= E
{

(~xk[n])2
}

= E


(∑
l∈Lk

~xk,l

)2


=
∑
l∈Lk

∑
l′∈Lk

E


(∑

q

aq;k,lxl[n− q]

)∑
q′

aq′;k,l′xl′ [n− q′]


=

∑
l∈Lk

∑
l′∈Lk

∑
q

∑
q′

aq;k,laq′;k,l′rxlxl′ [q − q
′]. (3.17)

After these theoretical considerations, we want to add three recapitulatory re-

marks for the sake of clarity:

1. If the model coe�cients and the autocovariance function of the channel

are known, so are the desired variance terms.

This is the case, because the coe�cients are estimated by the regression

model, and the autocovariance function is easily estimated by the empiric

autocovariance function from the original signal data.

2. The variance terms are time-independent, leading to time independent

dependency measures in the next subsection.

In fact, this is a logical consequence of hypothesis 2 (stationarity) implying

time-invariance of coe�cients and the covariance function. However, for

reasons of completeness, we want to indicate it here to make sure that the

reader is well aware of this property.18

3. Note that, a priori, the total extrinsic variance σ2
~xk

is not the sum of the

corresponding partial extrinsic variances σ2
~xk,l

:

σ2
~xk
6=
∑
l∈Lk

σ2
~xk,l

.

18This time-invariance will change in chapter 4.
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The inegality above only turns into an egality if all spatial correlations are

zero.

3.4.2 Dependency measures

Based on the variance terms (3.15) and (3.16) de�ned in the last subsection, we

introduce extrinsic-to-intrinsic-power ratio (EIPR) which quanti�es coupling or
synchronization e�ects of signal pairs (xk, xl):

ηk,l ,
σ2
~xk,l

σ2
ẋk

. (3.18)

Being the ratio of variances of the partial extrinsic regression term ~xk,l and

the intrinsic regression term ẋk, EIPR takes large values for large partial ex-

trinsic regression variance and small intrinsic regression variance. This is the

case when channel xl contributes signi�cant information to the explanation of

channel xk: Exactly here we want to measure a dependency.

Note that EIPR � in contrast to DTF (2.6) or PDC (2.9) presented in sub-

section 2.1.2 � is not normalized to the interval [0, 1]. It only (trivially) respects
the lower bound: ηk,l ≥ 0.

Following the logic above, we introduce a second, related measure: the total
extrinsic-to-intrinsic-power ratio (TEIPR). As the reader can guess, it is based

on the variance terms (3.15) and (3.17) and is obviously de�ned as

ηk ,
σ2
~xk

σ2
ẋk

. (3.19)

TEIPR is the ratio of variances of the (total) extrinsic regression term ~xk and

the intrinsic regression term ẋk and therefore a measure for the total synchro-

nization of one channel with neighboring brain regions. Possible applications of

this measure could therefore be the temporal allocation of epileptic seizures or

spatial determination of epileptic foci.

It is important to note that TEIPR ηk is not necessarily the sum of the

corresponding EIPRs ηk,l

ηk 6=
∑
l

ηk,l ,

unless all spatial correlations are zero.19

19Only in this case � as stated in subsection 3.4.1 � the total extrinsic variance σ2
~xk

is the

sum of the corresponding partial extrinsic variances σ2
~xk,l

allowing

∑
l∈Lk

ηk,l =
∑
l

σ2
~xk,l

σ2
ẋk

=

∑
l σ

2
~xk,l

σ2
ẋk

= (OK!) =
σ2
~xk

σ2
ẋk

= ηk.
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3.5 Link to the classical AR-model

When considering our regression model 3.8 with lag sets S = {1...sS} and

Q = {1...qQ}, we solve in fact a classical multivariate AR-system of order

p = max(sS , qQ):

x[n] =
p∑
i=1

Aix[n− i] + ε[n],

where ε[n] is zero-mean white noise with covariance matrix Σε.

Hereby, coe�cients of orders not contained in the respective lag set are set

to zero. If, for instance, sS = 4 and qQ = 4, all extrinsic coe�cients a4;k,l = 0,
whereas the intrinsic ones a4;k,k (on the main diagonal of A4) are estimated.

Furthermore, dynamic channel selection is compatible with this model as

well. As discussed in section 3.3, if a channel is selected or rejected, this is done

for all lags. Coe�cients of not selected channels are therefore simply set to zero

in all coe�cient matrices Ai, i = 1...p.
For instance, the estimated coe�cient matrix series

Âi =


âi;1,1 0 âi;1,3 · · ·
âi;2,1 â1;2,2 0 · · ·

0 0 âi;3,3 · · ·
...

...
...

. . .


would re�ect the following case:

• x1 is explained by itself and x3

• x2 is explained by x1 and itself

• x3 is only explained by itself.

Note that the diagonal never contains zeros, as the intrinsic regression term

(3.10) must be part of the autoregressive explanation of each channel xk.
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Chapter 4

Implementation

As already mentioned in the introduction to chapter 3, the theoretical model

based on the hypotheses of zero-mean and stationary data cannot be applied to

ECoG data directly.

This is why in this chapter we are going to present modi�ed versions of the

initial method which are adapted to a realistic description of neuro-biological

signal properties. However, the main idea presented in chapter 3 is still valid

and therefore stays the same.

On the following pages, we are � step by step � going to re�ne our modeling

approach in order to get closer to the real nature of ECoG signals: First, we con-

sider our raw signals to be short-time stationary and present an implementation

of the original method adapted to this new context. In a second step, we then

completely abandon any hypothesis of time-invariance and use a self-adaptive

algorithm for correctly estimating instationary signals.

Here we focus on the presentation of the method; results obtained are pre-

sented in chapter 5.

4.1 MMSE regression

For this �rst implementation step1, we follow a very natural approach by asking

ourselves a question, which we have � intentionally � completely ignored up to

now: How can all derived statistics be completely time-independent if we know

that seizures start, end and propagate during the recorded time?

This objection is, of course, true: The (second-order) statistics of ECoG

signals do not only vary, but they have to � otherwise we would not be able

to detect any seizures. Therefore, a model exclusively based on the method

described in chapter 3 would not have any explanatory power at all.

In order to arrive at a meaningful model assuring that we can see what we

want to see, we absolutely have to improve our modeling approach by segmenting

our recorded ECoG signal.

1Its idea is described in [HK07].

33
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4.1.1 Windowing

As we want to detect low-frequency changes of the seizure status2, the approach

chosen is the following: We segment our ECoG data by demanding stationar-

ity within overlapping (raw signal) blocks of a certain length. The technical

implementation of this idea is termed windowing. Figure 4.1 illustrates this

concept with the help of the exemplary window design parameters time of win-
dow Twin = 6s and time of overlap Tol = 4s.

Figure 4.1: Exemplary signal segmentation with overlapping
windows. The raw signal is transformed into windows lasting for 6s
with an overlap of 2s.

This leads to the following two hypotheses 1' and 2' which we are going to

use from now on:

Hypothesis 1': Within a window, the signal x[n] is zero-mean: Ex[n] = 0.

Hypothesis 2': The signal x[n] is short-time stationary : Within each window

it especially ful�lls time-invariance of the covariance matrix Rx,p.

We want to add two annotations on technical details for the sake of clarity:

1. When speaking about signals x[n] (or channels xk[n] respectively), the
sample index n is now, of course, limited to each window and does not
run through the whole recording time.

Let us, for example, consider a window of length Twin = 6s at a sampling

frequency of fs = 128Hz. Then each window consists of Nwin = 6s ·
128Hz = 768 samples, and the sample index is limited to n ∈ {1, ..., 768}
in every single window.

2We do not want to detect high-frequency signal components, but track �slow� changes like
seizure propagation.
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2. Hypothesis 1' is probably not respected a priori, but this does not cause

any problems: Within each window, the regression algorithm simply pro-

cesses transformed signals x̃[n] obtained by

x̃[n] = x[n]− x̄,

where x̄ is the mean of the signal x[n] in this window.3

These adaptions have convenient consequences:

• The method of chapter 3 itself can be applied to the ECoG signals in

each window under the assumption that they respect hypotheses 1' and

2': There, our regression model (3.8) from section 3.2 is valid, can use the

channel selection algorithm from section 3.3 and delivers time-invariant

coe�cients ak,l, variance terms σ2
ẋk
, σ2
~xk,l

and �nally EIPRs ηk,l.

• As the dependency measures are constant within a window, but di�er from

one to another, we observe changes of the seizure status from one window

to another. We therefore have a temporary resolution with an associated

frequency of

f =
1

Twin − Tol
.

Now that we have elaborated a real-world solution, the only aspect which still

remains unclari�ed is the estimation of the model coe�cients a·;k,l. We will

explain our approach � which we have in fact never even indicated before � in

the following subsection: minimum mean-square-estimation (MMSE).

4.1.2 Wiener-Hopf-equation

Before describing the estimation of our model coe�cients a·;k,l by means of

MMSE, let us insert a short theoretical subsection for deducing the normal

equation solving the minimal MSE-problem: the Wiener-Hopf-equation.
Minimal mean-sqare-estimation (MMSE) is a method based on Bayseian

philosophy: In contrast to the classical approach, which considers the parame-

ter of interest to be deterministic but unknown, the MMSE, being a Bayseian

approach, assumes the parameter of interest to be a random variable. Its par-

ticular realization must be estimated with the help of second-order-statistics

which are assumed to be known.

For the following, we limit ourselves to real-valued data; for a more detailed

discussion the reader is invited to consult [Kay93] and [Mar87], which contain �

apart from the formulation for the general complex case � a more detailed view

on this topic.

3When speaking about signals x[n] respecting hypothesis 1', we will from now on implicitly
assume that they have been transformed: For simplicity reasons, we will sloppily write x[n]
instead of x̃[n].
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Let x[n] ∈ R1×T be a stationary, zero-mean signal (consisting of one com-

ponent). Using an autoregressive model of order p, the estimation x̂[n] is based
on past values x[i], i < n.

The stacked vector of past values shall be denoted by

x[n−] = (x[n− 1], ..., x[n− p])T

and the vector of coe�cients

a = (a1, ..., ap)T .

The estimation error at sampling time n is therefore given by

e[n] = x[n]− aTx[n−]. (4.1)

The Wiener approach for resolution of the prediction problem consists of

minimizing the estimation of the square of the prediction error (4.1):4

E
{
e[n]2

}
→ min (4.2)

By developing (4.2) we obtain

E
{
e[n]2

}
= E

{(
x[n]− aTx[n−]

) (
x[n]− aTx[n−]

)}
=


E {x[n]x[n]}
+aTE {x[n−]x[n]}+ E {x[n]x[n−]}T a

+aTE
{
x[n−]x[n−]T

}
a

= σ2
x − aT rx,p − rTx,pa + aTRx,pa, (4.3)

where Rx,p denotes the autocovariance matrix 5 (from lag 0 to p − 1) and rx,p
the autocovariance vector (3.6), both presented in section 3.1.

Note that both Rx,p and rx,p are a priori known and - due to the hypothesis of
stationarity - independent of n. Our speci�c means in (4.3), although containing

the �nite set n−, are therefore time-independent and can be replaced by the

known, time-invariant second-order statistics Rx,p and rx,p.

Rearranging (4.3) and completing the square yields

E
{
e[n]2

}
= aTRx,pa− aT rx,p − rTx,pa + σ2

x

=

{(
aTRx,p − rTx,p

)
R−1
x,p (Rx,pa− rx,p) dep. of a

−rTx,pR
−1
x,prx,p + σ2

x indep. of a.
(4.4)

4As stated before, we are only considering the case of real-valued signals here and therefore
write E{e[n]2} instead of E

{
|e[n]|2

}
.

5Here, Rx,p is the univariate covariance matrix (3.5).
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Therefore, minimizing the MSE is equivalent6 to minimizing the part depending

on a in (4.4):

min MSE ⇐⇒ Rx,pa− rx,p = 0. (4.5)

The equation (4.5) is called Wiener-Hopf-equation and delivers, by simple in-

version, the optimal parameter vector a (in the sense of MMSE):

a = R−1
x,prx,p. (4.6)

The optimal estimation error is a simple consequence of (4.4): As its second

part, independent of a and therefore constant, cannot be minimized, the optimal

estimation error is given by:

E
{
e[n]2

}
= −rTx,pR

−1
x,prx,p + σ2

x.

4.1.3 Link to OLS

We also want to mention that the Wiener approach, departing from Bayesian

theory, delivers the same form of normal equation as the classical ordinary least-

squares (OLS) approach to AR-model identi�cation: the Yule-Walker-equation.7

As we have

Rx,p a = rx,p
rx[0] rx[1] . . . rx[p]
rx[1] rx[0] rx[p− 1]
...

. . .
...

rx[p] rx[p− 1] · · · rx[0]




a1

a2

...

ap

 =


rx[1]
rx[2]
...

rx[p]

 , (4.7)

the Wiener-Hopf-equation is formally identical with the Yule-Walker-equations.8

In fact, as we do not know the second-order-statistics in our case, we will have

to estimate them. We are going to discuss the resulting problems in subsection

4.1.5.

Equation (4.7) then becomes

R̂x,p â = r̂x,p
r̂x[0] r̂x[1] . . . r̂x[p]
r̂x[1] r̂x[0] r̂x[p− 1]
...

. . .
...

r̂x[p] r̂x[p− 1] · · · r̂x[0]




â1

â2

...

âp

 =


r̂x[1]
r̂x[2]
...

r̂x[p]

 (4.8)

and is now identical with the Yule-Walker-equation using Yule-Walker-estimates.

6Rx,p is non-singular.
7For its deduction see for example [Mar87] or [BD91].
8Compare section 2.3 in [Vai08] as well.
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4.1.4 Coe�cient estimation

After the reader has now been introduced into the concept of windowing and the

deduction of the Wiener equation, we �nally want to describe how the model

coe�cients a·;k,l are estimated.

Given our regression model (3.8) from section 3.2, we want to �nd optimal

model coe�cients a·;k,l for all channels k ∈ {1...K}.We therefore subsequently

solve K Wiener-Hopf-equations: for each (intrinsic) channel xk we calculate

ak = R−1
xk,p

rxk,p. (4.9)

We hereby use stacked vectors ak and xk:

Stacked signal sample vector xk contains all relevant samples of the intrin-

sic channel as well as the ones of extrinsic channels:

xk[n] , (xk[n− 1], ..., xk[n− sS ], ~xk[n− 1], ..., ~xk[n− qQ])T

with the partial stacked signal sample vector ~xk[n] containing samples at

time n of all extrinsic channels listed in the extrinsic channel set Lk =
{l1, ..., lL}:9

~xk[n] , (xl1 [n], ..., xlL [n]) .

Stacked parameter vector ak contains all regression parameters associated

to the samples stacked above:

ak ,
(
a1;k,k, ..., asS ;k,k, ~a1;k, ..., ~aqQ;k

)T
with

~aq;k , (aq;k,l1 , ..., aq;k,lL) .

Furthermore, in conformity with the last subsection 4.1.2, Rxk,p denotes the

covariance matrix and rxk,p the covariance vector.

This notation might seem unnecessarily complicated, but is fully justi�ed,

because it has a huge advantage: Despite our variable selection of channels

and potentially di�erent intrinsic and extrinsic lag sets, the regressand can be

written easily now � as it is the case with a �standard� AR model � as

x̂k[n] = aTk xk[n]. (4.10)

Once more, the time for an illustrative example has come, which the reader

might wish to see for the sake of clarity: let our intrinsic channel be the �rst:

9As all properties of this channel set depend on the channel k (it changes from channel to
channel!), we would have to write Lk = {lk,1...lk,Lk

} in order to express this fact correctly.
However, we prefer a sloppier notation for better readability and ask the reader to keep in
mind what we mean.
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k = 1, the intrinsic lag set S = {s1, s2} : S = 2, the extrinsic lag set Q =
{q1, q2, q3} : Q = 3 and the extrinsic channel set L1 = {l1, l2} = {2, 3}.10

We therefore solve the �rst (of our K) Wiener-Hopf-equation, delivering the

coe�cients for the �rst channel: Our stacked signal sample vector x1[n] is

x1[n] = (x1[n− s1], x1[n− s2],

x2[n− q1], x3[n− q1]︸ ︷︷ ︸, x2[n− q2], x3[n− q2]︸ ︷︷ ︸, x2[n− q3], x3[n− q3]︸ ︷︷ ︸)T ,
~x1[n−q1] ~x1[n−q2] ~x1[n−q3]

and the estimated coe�cients are calculated as

a1 = R−1
x1,prx1,p

as1;1,1
as2;1,1
aq1;1,2
aq1;1,3
aq2;1,2
aq2;1,3
aq3;1,2
aq3;1,3


=



E
{
x1[n− s1]2

}
· · ·

...
. . .

...

· · · E
{
x3[n− q3]2

}



−1

E {x1[n− s1]x1[n]}
E {x1[n− s2]x1[n]}
E {x2[n− q1]x1[n]}
E {x3[n− q1]x1[n]}
E {x2[n− q2]x1[n]}
E {x3[n− q2]x1[n]}
E {x2[n− q3]x1[n]}
E {x3[n− q3]x1[n]}


Again, we have the Yule-Walker equation (4.7).

4.1.5 Estimation of the covariance matrix

We want to �nalize the presentation of this �rst approach with the remark

that the temporal and spatial second order statistics which are needed by the

Wiener-Hopf-equations are in fact not known. We therefore have to estimate

the covariance matrix from the raw signals, which are considered to be short-

time-stationary by hypothesis 2'. This assures that we are allowed � within one

window � to compute a time-invariant empiric covariance matrix

R̂x,p =


R̂xx[0] R̂xx[−1] · · · R̂xx[−p+ 1]
R̂xx[1] R̂xx[0] R̂xx[−p+ 2]

...
. . .

...

R̂xx[p− 1] R̂xx[p− 2] · · · R̂xx[0]

 ,

which �gures as an estimator for the covariance matrix Rx,p.

In order to estimate the needed covariance functions Rxx[s], [Mar87] suggests

using the following biased estimators R̂xx[s] which guarantee the positive semi-

10We denote intrinsic and extrinsic lags by a completly symbolic notation, although the lag
sets were restricted to a more speci�c form in chapter 3. This should assure that the reader
really understands which coe�cient is placed on which position.
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de�nity of R̂x,p:

R̂xx[s] =
1
N

N−s∑
n=1

x[n+ s]x[n]T ,

where N = Twin · fs is the length of a window in samples.

This delivers an estimated parameter vector âk which we use in fact:

âk = R̂−1
xk,p

r̂xk,p.

Herby, the window length is important for the quality of the estimation of

the second-order-statistics: On the one hand, too short windows do not provide

su�cient samples to estimate the covariance matrix properly. On the other

hand, the longer the window, the more the hypothesis of short-time-stationarity

is violated.11 In both cases, the model estimation error itself is impaired by an

estimation error of the empiric covariance matrix.

If the reader is interested in (asympotical) statistical properties of the esti-

mator for the covariance matrix,12 he is invited to consult [BD91] or [HD88].

This di�culty directly leads us to the next section 4.2, where we are going

to present a more elaborated coe�cient estimation technique.

4.2 RLS regression

In section 4.1 we presented a �rst approach to the estimation of the model

coe�cients ak,l, based on windowing and MMSE.

However, this method is not very exact, imposing the simplifying but ques-

tionable hypothesis of short-time-stationarity: Whenever a seizure starts or ends

or propagates � what we want to detect � in the middle of a window, this hy-

pothesis is, by de�nition, violated. Unfortunately, as we use sliding windows,

this situation cannot be avoided � we tacitly accept it.

We implicitly assume that at least in all other cases, the hypothesis of short-

time-stationarity is respected.

On the following pages, we are going to discard this implicit assumption

of [HK07] and go one step further: We are going to use a method which is

exact in mathematical terms being able to cope with instationary signals better:

recursive-least-squares estimation (RLS).

4.2.1 Deduction of RLS algorithm

We start this section with the presentation of the exponentially-weighted recursive-
least-squares algorithm. We hereby follow the derivation presented in [Hay02],

11As we have already stated in the introduction to this section, this happens at the latest
when a seizure starts/ends/propagates.

12E.g. under which conditions R̂x,p is an asymptotically unbiased or even a consistent
estimator for Rx,p.
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but do so without detailed steps in order to make the lecture easier for the

reader and provide him with a better overview.

If the reader is interested in a detailed deduction and a deeper understanding

of the construction of the RLS algorithm, he might consult [Hay02].

For simplicity reasons, we limit ourselves to a one-dimensional description of

the algorithm; in subsection 4.2.2 we are going to give the multivariate extension

which we need for our estimation purposes.

4.2.1.1 Preliminaries and theoretical considerations

The basic idea of a recursive implementation of the method of least squares is

that

• the computation is started with prescribed initial conditions

• from sample to sample, the information contained in a new one is used to

update the old estimates.

For each sample, we now obtain estimated parameters � they are not time-

independent any more. The algorithm can therefore adapt itself to the data

and better follow instationarities than an implementation using OLS.

As in 4.1.2, let us consider a zero-mean signal x[n], n = 1...N (consisting of

one component), but not necessarily stationary now. By �tting it to an AR-

model of order p, the estimate x̂[n] is obtained from past samples x[k], k < n.

We denote our input data vector at time n (containing the last p samples)

by

x[n−] , (x[n− 1], x[n− 2], ..., x[n− p])T

and the corresponding coe�cient vector at time n by

a[n] , (w1[n], w2[n], ..., wp[n])T .

As the algorithm runs through the data samples n = p+1...N , the cost function

E [n], which is to be minimized, takes a variable length of observable data.13

This cost function E [n] makes use of a weighting factor β[n, i]:

E [n] ,
n∑

i=p+1

β[n, i] e[i]2, (4.11)

where e[i] is the di�erence between the desired response x[i] and the estimated

output x̂[i]:

e[i] , x[i]− x̂[i]

= x[i]− aT [n]x[i−]. (4.12)

13We therefore explicitly indicate the corresponding sample index: E[n] .
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The weighting factor β[n, i] ∈ (0, 1] is introduced so that data in the distant

past are �forgotten�. This ensures that the algorithm can adapt itself better to

statistical variations in case of an instationary signal.

Note that the coe�cient vector a[n] remains �xed during the time period for

which the cost function E [n] is de�ned.14

A special form of this weighting factor is the commonly used exponential weight-
ing factor (or forgetting factor) de�ned by

β[n, i] , λn−i,

where λ is a positive constant close but smaller than unity:

• When λ = 1, all past data samples stay in memory, and we have ordinary

least squares. As this case corresponds to in�nite memory, we can only

use this parameter setting with a stationary signal.

• When λ < 1, distant past data are � as mentioned above � �forgotten�:

the farther in the past, the more these data samples are extenuated. This

setting is therefore intended for instationary signals.

A past sample is usually considered to be negligible (�forgotten�) if its

attenuation factor falls below e−1. We therefore get the number M of

non-negligible samples by

λM < e−1 ⇐⇒ M >
−1
lnλ

.

At a given sampling frequency fs these samples correspond to a memory

time constant of

τλ =
M

fs
.

Table 4.1 on page 42 shows typical values of the forgetting factor λ and

corresponding memory time constants at an exemplary signal sampling

frequency of fs = 128Hz.

forgetting factor λ M non-negligible samples memory time constant τλ

0.900 10 0.08s
0.950 20 0.16s
0.990 100 0.80s
0.995 200 1.60s
0.999 1000 7.80s

Table 4.1: Memory time constants for typical forgetting factors

For the sake of clarity we want to give a short example now:

14We therefore write aT [n] instead of aT [i] in (4.12).
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Let x[n] be an instationary signal which is modeled by an autoregressive

(time-dependent) model of order p = 2 and λ � 1. At any moment n, we

therefore have

a[n] = (a1[n], a2[n])T

x[n−] = (x[n− 1], x[n− 2])T .

Let the algorithm have reached sample n = 10. Then the cost function E [10]
to be minimized yields

E [10] =
10∑
i=3

λ10−i (x[i]− a[10]Tx[i−]
)2

= λ9
(
x[3]− a[10]Tx[3−]

)2
+λ8

(
x[4]− a[10]Tx[4−]

)2
...

+λ0
(
x[10]− a[10]Tx[10−]

)2
.

As already stated, the number of summands of the cost function (and therefore

the number of data samples evaluated) grows when the algorithm steps forward

and n increases. Note that, however a[n] and x[n−] do not grow: They contain

two elements (as we assume a model of order 2) at any moment n.15

As a result of this minimization16, the algorithm delivers a coe�cient vector

estimate â[10] � and steps forward to sample n = 11, where the procedure

described above starts again delivering â[11].

Now that the reader has already got a vague idea of the RLS algorithm, we

want to continue with our theoretical considerations needed for the derivation

of the recursive algorithm.

For regularization reasons, the cost function E [n] is expanded as the sum

of two components: the sum of weighted error squares as in (4.11) and an

additional regularizing term:

E [n] ,
n∑

i=p+1

λn−i
∣∣x[i]−wT [n]x[i]

∣∣2 + δλp ‖w[p]‖ . (4.13)

In this regularizing term, δ is a positive real number termed the regularization
parameter. This term is included in E [n] to stabilize the solution by smoothing

it.

The e�ect of including the regularizing term in (4.13) is equivalent to a

reformulation of the time-average covariance matrix Φx,p[n] of the input vector

15In our case of n = 10 we have:
a[10] = (a1[10], a2[10])T and x[10−] = (x[9], x[8])T ... x[3−] = (x[2], x[1])T .
16On the next few pages, we are going to see how this is done exactly.
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x:

Φx,p[n] ,
n∑

i=p+1

λn−iRx[i−],p + δλIp×p

=
n∑

i=p+1

λn−ix[i−]x[i−]T + δλIp×p , (4.14)

where Ip×p is the p-by-p identity matrix. A covariance matrix modi�ed in such a

way is said to be diagonally loaded and has the advantage of being non-singular

and therefore invertible at all stages of computation.

Analogically, but without the use of a regularization term, the time-average
covariance vector zx,p[n] is de�ned:

zx,p[n] ,
n∑

i=p+1

λn−irx,p

=
n∑

i=p+1

λn−ix[i−]x[i]. (4.15)

The normal equation of the recursive-least-squares problem now takes the usual

form

Φx,p[n] â[n] = zx,p[n]. (4.16)

4.2.1.2 Recursive algorithm deduction

By isolating the n-th summand in the sum of (4.14), we easily �nd a recursive

representation of Φx,p[n]:

Φx,p[n] = λ

 n−1∑
i=p+1

λn−i−1x[i−]x[i−]T + δλIM×M


︸ ︷︷ ︸

Φx,p[n−1]

+ x[n−]x[n−]T

= λΦx,p[n− 1] + x[n−]x[n−]T .

Φx,p[n] is therefore computed by adding a �correcting term� to its temporal

antecessor.

Similarly, we �nd a recursive expression for zx,p[n]:

zx,p[n] = λzx,p[n− 1] + x[n−]x[n].

In order to compute the least-squares-estimate â[n], we have to compute the

inverse covariance matrix Φ−1
x,p[n]. For convenience reasons, we set

Px,p[n] , Φ−1
x,p[n].
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By using the Matrix inversion lemma17, we obtain a recursive representation

for Px,p[n] as well � the Riccati equation for the RLS algorithm:

Px,p[n] = λ−1Px,p[n− 1]− λ−1k[n]xT [n−]Px,p[n− 1], (4.17)

where k[n] is the gain vector:

k[n] =
Px,p[n− 1]x[n−]

λ+ x[n−]TPx,p[n− 1]x[n−]
. (4.18)

Let us quickly derive a property of the gain vector which we will need afterward:

By multiplying (4.18) by its right-hand-side denominator, rearranging the

result and then using (4.17), we obtain

k[n] = λ−1Px,p[n− 1]x[n−]− λ−1k[n]x[n−]TPx,p[n− 1]x[n−]

=
(
λ−1Px,p[n− 1]− λ−1k[n]x[n−]TPx,p[n− 1]

)︸ ︷︷ ︸
Px,p[n]

x[n−]

= Px,p[n]x[n−]. (4.19)

This result can be used as the de�nition of the gain vector k[n]: It is the input
data vector x[n−] transformed by the inverse of the time-average covariance

matrix Φx,p[n].

Now that we have found a recursive representation of the inverse time-

average covariance matrix and the gain vector, we want to develop a recursive

computation algorithm for the coe�cient vector estimate â[n].
By using the recursive expression of zx,p[n] (4.15) we get

â[n] = Px,p[n] zx,p[n]

= λPx,p[n] zx,p[n− 1] + Px,p[n]x[n−]x[n].

Inserting the recursive representation of Px,p[n] (4.14) yields

â[n] = Px,p[n− 1]zx,p[n− 1]− k[n]x[n−]TPx,p[n− 1]zx,p[n− 1]

+Px,p[n]x[n−]x[n]

= â[n− 1]− k[n]x[n−]T â[n− 1] + Px,p[n]x[n−]x[n].

Finally, by exploiting the relation (4.19) which we established before, we obtain

the desired recursive equation for the update of the coe�cient vector estimate

â[n]:

â[n] = â[n− 1] + k[n]
(
x[n]− x[n−]T â[n− 1]

)
= â[n− 1] + k[n]ξ[n], (4.20)

17See [Hay02] for the lemma (which is also sometimes referred to as Woodbury's identity)
and details of this step.
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where the term between the brackets is the a-priori-estimation error ξ[n]:

ξ[n] , x[n]− â[n− 1]Tx[n−]. (4.21)

Note the following important di�erence:

A-priori-estimation error or one-step-prediction error is given in (4.21). It

represents the estimation error we make by estimating the current sample

x[n] based on the old least-squares coe�cient estimate â[n − 1] that was
made one sample before.

A-posteriori-estimation error or residual error is, in general, di�erent from

the a-priori-estimation error and is given in (4.12). Here, we measure the

error by estimating the current sample x[n] by using current least-square
estimate â[n].

Figure 4.2 illustrates the di�erence between the two errors showing the estimated

samples in red and the given data points in black.

Figure 4.2: A-priori- and a-posteriori-estimation errors. The
residual error is given for sample n− 1, the one-step-prediction error for
sample n (using the estimate from sample n− 1).

It is important to note, however, that the optimum criterion leading to the

RLS algorithm minimizes the cost function E [n] (4.13), which is based on the

a-posteriori-estimation error e[n] and not on the a-priori-estimation error ξ[n].

4.2.1.3 Algorithm summary

Equations (4.17), (4.18), and �nally (4.20) with (4.21) all together form the

univariate RLS algorithm.

Algorithm 4.1 summarizes the calculation steps which we deduced before

and shows the necessary initializations at the beginning of the algorithm. Note
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that for numeric reasons18, the gain vector is computed via the intermediate

quantity π[n].

Algorithm 4.1 Univariate RLS

i n i t i a l i z a t i o n :

â[p] = 0

Px,p[p] = δ−1Ip×p

{
δ small for high SNR

δ large for low SNR

f o r n=(p+1):N

π[n] = Px,p[n− 1]x[n−]

k[n] =
π[n]

λ+ x[n−]Tπ[n]

ξ[n] = x[n]− â[n− 1]Tx[n−]
â[n] = â[n− 1] + k[n]ξ[n]

Px,p[n] = λ−1Px,p[n− 1]− λ−1k[n]x[n]TPx,p[n− 1]

end f o r

For the selection of the regularization parameter δ and the resulting conver-

gence behavior see [Hay02]. In the following, we will simply set this parameter

to unity.

4.2.2 Multivariate extension

The univariate RLS algorithm from subsection 4.2.1 takes a one-component

input signal x[n]. As we have several input channels (selected by our channel

algorithm), we cannot use this algorithm directly.

We therefore have a look at a multivariate extension proposed by [MSAW01]

which does in fact nothing else than we did in subsection 4.1.5 for estimating

the model coe�cients a·;k,l by a MMSE regression: stacking the channels and

coe�cients.

4.2.2.1 Preliminaries and theoretical considerations

Let x[n] = (x1[n], ..., xK [n]) ∈ RN×K be a K-dimensional zero-mean signal. It

is modeled by a time-dependent multivariate AR-model of order p

x[n] =
p∑
i=1

Ai[n]x[n− i] + ε[n],

where ε[n] is zero-mean white noise with covariance matrix Σε.

18Once again, the interested reader is invited to consult [Hay02] for further details.
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• We therefore have p coe�cient matrices Ai[n] ∈ RK×Kwhich shall be

stacked together in one single matrix:

A[n] , (A1[n], ...,Ap[n]) ∈ RK×Kp.

• Similarly, we build a stacked observation vector X[n−] consisting of p

signal samples at all lags i = 1, ..., p:

X[n−] , (x[n− 1], ...,x[n− p]) ∈ R1×Kp.

The normal equation for a multivariate least-squares problem is given19 by

Â = R−1
x,prx,p (4.22)

with R−1
x,p being the multivariate covariance matrix (3.4) and rx,p the multi-

variate covariance vector (3.7) de�ned in section 3.1.

As we use stacked lines in our notation, we have to transpose equation (4.22).

This leads to the normal equation of our multivariate recursive least-squares

problem:

Â[n] = zx,p[n]TPx,p[n], (4.23)

where � analogically to the normal equation for the univariate case (4.16) �

Px,p[n] is the inverse time-average multivariate covariance matrix and zx,p[n]
the time-average multivariate covariance vector.20

For a mathematically more detailed view on multiple least-squares estima-

tion, the reader is referred to [Lüt93] or [BD91].

4.2.2.2 Algorithm summary

Given this notation, [MSAW01] proposes a multivariate extension to the uni-

variate RLS algorithm. It strictly follows the univariate one and is summarized

in algorithm 4.2.

The computation order, however, di�ers from the univariate case:

• First, the inverse time-average covariance matrix Px,p is calculated di-

rectly using formula (4.17): Without using the pre-calculated gain vector,

expression (4.18) is directly evaluated in (4.17).

• The gain vector K[n] is computed afterward using relation (4.19).

Again, we simply set the regularization parameter to unity, as it is proposed in

[MSAW01].

Note that in this multivariate case we denote all entities by capital letters, as

they all are matrices or stacked vectors. For a better understanding we list the

dimensions and the meaning of each matricial entity which appears in algorithm

4.2 in table 4.2.
19This generalization was �rst published in [TB81].
20Compare the univariate de�nitions (4.14) and (4.15).
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Algorithm 4.2 Multivariate RLS

i n i t i a l i z a t i o n :

Â[p] = 0

Px,p[p] = δ−1IKp×Kp

{
δ small for high SNR

δ large for low SNR

f o r n=(p+1):N

H[n] = λ−1Px,p[n− 1]

Px,p[n] = H[n]
(

IKp×Kp −
X[n−]TX[n−]H[n]

X[n−]H[n]X[n−]T + 1

)
K[n] = X[n−]Px,p[n]

Ξ[n] = x[n]−X[n−]Â[n− 1]T

Â[n] = A[n− 1] + Ξ[n]TK[n]

end f o r

Matricial entity Dimensions Meaning

H[n] Kp×Kp -
Pp,x[n] Kp×Kp inverse time-average covariance matrix
K[n] 1×Kp gain vector
Ξ[n] 1×K a-priori-estimation error

Â[n] K ×Kp coe�cient matrix estimate

Table 4.2: Matricial entities in the multivariate RLS algorithm

If the reader wishes a visualization of the typical behavior of the multivariate

RLS algorithm, he is invited to jump to section 5.4, where we present regression

results of test signals.

4.2.3 Coe�cient estimation

Now that the reader is familiar with the RLS algorithm, we want to return to

the initial aim: estimating our model coe�cient a·;k,l[n] by means of recursive

least-squares.

Despite the improvements from subsection 4.2.2, we still have a little prob-

lem: The multivariate RLS algorithm estimates the coe�cients for all channels

(thus a·;1,l[n], ..., a·;K,l[n]) at the same time. Using this method directly would

mean that the same extrinsic channel set is used for all (intrinsic) channels. Of

course, we do not want to accept this behavior and therefore proceed in the

following way:

1. For each (intrinsic) channel xk, we use � within a window � the multi-
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variate RLS algorithm with an extrinsic channel set Lk, which is constant

within this window. Lk is determined by an adapted channel selection

algorithm, which we are going to describe in the next subsection 4.2.4.21

2. When considering the result of the RLS algorithm (the coe�cient estimate

matrix Â[n]) we realize that we calculated too much: In fact, we can only

use the line corresponding to our intrinsic channel, and we have to discard

the rest.

A logic work-around saving computation time therefore is to slightly adapt

the multivariate RLS algorithm and to calculate � instead of the whole

matrix Â[n] � only the line (corresponding to the current intrinsic chan-

nel) which we really need.22

In table 4.3 we show the new dimensions of the entities calculated in the

adapted algorithm: As indicated in bold, only Ξ[n] and Â[n] are slimmed.

Note that the algorithm 4.2 itself is hereby not a�ected.

Matricial entity Dimensions Meaning

H[n] Kp×Kp -
Pp,x[n] Kp×Kp inverse time-average covariance matrix
K[n] 1×Kp gain vector
Ξ[n] 1× 1 scalar a-priori-estimation error

Â[n] 1×Kp coe�cient vector estimate

Table 4.3: Matricial entities in the adapted multivariate RLS algorithm

3. We �nally have to copy the estimated coe�cients (corresponding to the

intrinsic channel) onto the right place of the �nal coe�cient estimation

matrix Â[n], which contains � for all intrinsic channels � the coe�cients

of all extrinsic channels and lags.

We prefer giving a practical example to describing this process theoreti-

cally, as an example quickly makes clear what happens in this step:

Let us assume we used the RLS algorithm for estimating the coe�cients

for the intrinsic channel k = 1: â·;1,l[n] . We use an AR-model of order

p = 2, and the channel selection algorithm chooses 2 extrinsic channels to

be included in the regression: x2[n], x4[n]. Our adapted RLS algorithm

therefore takes three input channels and delivers the line vector B̂[n]23

B̂[n] = ( b̂1;1,1, b̂1;1,2, b̂1;1,3︸ ︷︷ ︸ | b̂2;1,1, b̂2;1,2, b̂2;1,3︸ ︷︷ ︸ )[n].

lag 1 lag 2

21There we also explain the use of windowing: The reader might wonder why we use it
despite the application of the adaptive RLS algorithm.

22For simulations shown in section 5.5, this optimization brings computation time savings
of about 2%.

23We exceptionally call it B̂[n] here, so that we can better distinguish in the following.
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where the indices in the vector refer to the (sorted) channels used in the

algorithm: the intrinsic channel x1 has index 1, the �rst extrinsic channel
x2 has index 2, but the second extrinsic channel x4 has channel 3 (not 4).
We therefore clearly see that we have to copy these coe�cients onto the

right places by translating the indices of the subset used in the RLS algo-

rithm to the ones of the initial reference system 1...K.

Figure 4.324 illustrates this positioning for K = 5: As the intrinsic channel
is x1, only the �rst line of the �nal coe�cient matrix Â[n] is a�ected by

this operation � whereas the second line will be �lled in the next loop,

when x2 is the intrinsic channel.

Figure 4.3: RLS coe�cients positioning. Estimated coe�cients
b̂·;1,l[n] of the intrinsic channel k = 1 are copied onto correct positions in

the �nal estimation matrix Â[n].

Note that this iterative approach is equivalent to a simultaneous solution, as

described in subsection 4.2.2 in equation (4.23) of the normal equation

Â[n] = zx,p[n]T P̃x,p[n]

within a window.25 Hereby, P̃x,p[n] is the inverse time-average covariance ma-

trix masked in an appropriate way: By setting zeros on the respective places,

we could simply �switch o�� not-selected channels.

24For simplicity reasons, we omit the sampling index and the estimator hats in the �gure
as well.

25In section 3.5, we showed that this is the case for the time-invariant model.
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However, it is not e�cient in terms of computing time to use this method,

because we would

1. �rst have to determine the optimal channel set for each channel (which

delivers the estimated coe�cients as well) within a window

2. then mask the matrix Px,p[n] obtaining P̃x,p[n]

3. and �nally run the classic multivariate RLS algorithm with P̃x,p[n] in this

window (although the coe�cients are already known; they only have to

be copied to the right places, as described above).

Nevertheless, it shows that we do identify a classic multivariate AR-model.

We �nally want to indicate that the approach shown above uses the same

temporal lags for both the intrinsic and the extrinsic channels. This means that

we restrict our model from chapter 3 to the case S = Q.

4.2.4 Adaption of the channel selection algorithm

As already stated before, the extrinsic channel set Lk is determined within a

window � as it is the case with the MMSE regression from section 4.1 � for each

(intrinsic) channel xk.

The RLS algorithm itself would redundantize the use of overlapping win-

dows26, but the channel selection algorithm needs them: It determines the ex-

trinsic channel set by minimizing a cost function which uses data from a certain

time interval (a window). Therefore, the result of this optimization is the same

in this whole interval. We obtain a constant extrinsic channel set within a

window.27

As the RLS algorithm automatically delivers the one-step-prediction error,

there is no need to use the AIC criterion in the selection process any more: Its

goal is to arti�cially correct the mistake made by taking the residual error as

basis for the cost function.

Therefore, we adapt the initial algorithm 3.1 as follows:

• We use RLS regression in the algorithm instead of MMSE.

• For each intrinsic channel xk we directly take the variance of the one-
step-prediction-error as the cost function which is to be minimized by the

optimal extrinsic channel set Lk.

Algorithm 4.3 presents the channel selection algorithm for RLS with the mod-

i�cation mentioned above. Of course, all advantages and weak points of the

initial channel selection algorithm 3.1, which we discussed in section 3.3, do not

change and all positive and negative consequences occur here as well.28

26For the windowing technique see subsection 4.1.1.
27Furthermore, the RLS algorithm needs � while stepping through the samples of a window

� a constant set of channels implying a constant number of estimates. Otherwise it would not
be able to perform the update of new estimates with the help of old ones with every sample.

28As we discussed this topic in detail in section 3.3, we do not address this issue here.
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Algorithm 4.3 Channel selection with RLS algorithm

f o r each reg re s sand x_k [ n ] , k=1. .K
e x t r i n s i c channel s e t : L = {}
extens i on pool : P = { 1 , . .K}\{k}
loop

c a l c u l a t e V = Var (a−p r i o r i−e r r o r ) with channel s e t L
f o r each i in P

c a l c u l a t e V( i ) with channel s e t L_i = {L , i }
end f o r
i_opt = arg min V( i )
i f V( i_opt ) < V

extend e x t r i n s i c channel s e t : L = {L , i_opt}
reduce extens i on pool : P = P \ i_opt
cont inue loop

e l s e
e x i t loop

end i f
end loop

end f o r

4.2.5 Coe�cient stream assembly

As mentioned in the subsection before, we still use windowing in order to be

able to apply the channel selection algorithm.29

However, as the RLS algorithm delivers a stream of coe�cient matrices A[n]
within each window, the temporal resolution has changed: Its resolution is not

window-to-window, but sample-to-sample. We would therefore wish to pro�t

from this increased temporal resolution and create one continuous coe�cient

stream out of the Nwin di�erent ones.

Herby, we have to face two di�culties:

Overlapping windows First of all, the windows overlap each other � a wanted

consequence of how we designed our windowing method.30

Therefore we have to �nd an appropriate way of reconstructing one data

stream: the inverse operation of windowing.

Abrupt statistical changes Furthermore, the used channel set abruptly changes

from window to window, and so does the behavior of the coe�cient es-

timates and the derived EIPR-measure. However, if we want to �nd a

physiologically meaningful description of the epileptic seizure status, we

need a �smooth� measure which does not depend on arbitrary window

overlaps.

29In the following, we therefore use the notation de�ned in subsection 4.1.1 when speaking
about windows.

30See �gure 4.1 in subsection 4.1.1.
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Therefore we also have to be careful to assemble the di�erent data streams

in a �smooth� way.

A possible solution satisfying these two constraints is inspired by the overlap-
add-method described in [Dob01] and [Smi99]:

1. We multiply each window with a window function. This window function is

designed to fade in the coe�cients at the beginning of the current window

as smoothly as possible and to fade them out at the end of the window in

the same way.

A possible way to assure the smoothness of the data (continuity of the data

and continuity of all derivatives) is the use of the raised cosine window
function

f [n] =



0 n ∈ [1, Lz]
1
2

(
1− cos

[
n−(Lr+1)
Lr−1 π

])
n ∈ [Lz + 1, Lz + Lr]

1 n ∈ [Lz + Lr + 1, Lwin − Lr]
1− 1

2

(
1− cos

[
n−(Lw−Lr+1)

Lr−1 π
])

n ∈ [Lwin − Lr + 1, Lwin],

where Lwin is the length of the window in samples, Lr is the length of the

roll-on/roll-o�-phase and Lz is the length of zero-padding.

Zero-padding at the beginning of each window is important due to the

initial transient e�ect of the RLS algorithm: The �rst coe�cient estimates

of each window, A[i] with i small, have to be discarded � which is assured

by zero-padding.

Figure 4.4 on page 54 shows an example of the raised cosine window

function for Lz = 100, Lr = 200, Lwin = 1000.

Figure 4.4: Raised-cosine window function. The current window
is faded in and out in a smooth way; the initial samples are ignored due
to zero-padding.
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2. Then we sum up (overlapping) windows and normalize the result. A cru-

cial point hereby is that the overlapping windows themselves must be

designed in such a way that the result of the window functions added

up is constant: Whenever one window is faded in, another one has to be

faded out. Otherwise we would weight some parts of a window more than

others and prioritize them. Of course, the beginning and the end of the

�nal continuous coe�cient stream have to be discarded, as the described

method causes a transient e�ect at the beginning and the end.

Figure 4.5: Assembly of the continuous coe�cient stream. Due
to the design of the window functions, the overlapping windows can be
re-assembled to a continuous stream. Note the transient e�ect at the
beginning and the end of the stream.

The above �gure 4.5 illustrates the case of all coe�cients in all windows

constantly set to unity � we therefore see the pure addition of the win-

dow function in di�erent windows.31 Parameters are exemplarily set for

illustration purposes: design parameters Twin = 6s, Tol = 4s and win-

dow function design parameters Lwin = Twin · fs = 6s · 128Hz = 768 and

Lz = Lr = 1s · 128Hz = 128.
The raised cosine is hereby displayed as a combination of straight lines for

simplicity reasons; furthermore the resulting stream is not normalized32

for a better understanding. Note the mentioned transient e�ect.

31As we multiply the window function with coe�cients set to 1, we obtain the window
function itself in each window.

32In the illustrated case, we would obviously have to divide the resulting stream by 2.
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4.2.6 Stream dependency measures

Now that we have described how we obtain one continuous stream of coe�cients

â·;k,l[n], we have to ask ourselves how to calculate time-dependent variance terms

σ2
ẋk

[n] and σ2
~xk,l

[n] out of them.

Let us �rst assume we know how to do it: Once we have got them, we

can easily compute the EIPR measures ηk,l[n] as described in section 3.4. We

simply use equation (3.18) for calculating the EIPR � with the di�erence that

we do not do so for each window, but for each sample. We obtain an (obviously

time-dependent) stream of EIPR-measures:

ηk,l[n] =
σ2
~xk,l

[n]

σ2
ẋk

[n]
. (4.24)

We will see in section 5.5 that this stream is indeed physiologically meaningful,

changing its properties in a �smooth� way.

Let us go back to the initial problem of calculating time dependent variances of

the partial estimation contribution terms and mention two aspects:

• Unfortunately, the method developed in subsection 3.4.1 cannot be applied

here: If we wanted to use it, we would have to take the whole coe�cient

stream as input � which does not make any sense at all, as we would not

have any temporal resolution any more.

• Of course we could (more or less arbitrarily) choose windows and calculate

our variance terms within them. But by following this approach, we would

lose our increased temporal resolution whose elaboration has cost us so

much e�ort.

Therefore, we must ask ourselves: How can we calculate variances for each single

sample in a meaningful way without losing too much accuracy?

The approach proposed by us is simple and inspired by the weighted recursive

least squares:

1. First of all, we have to calculate intrinsic (ẋk[n]) and extrinsic estimation

contributions (~xk,l[n]) out of the (estimated) coe�cients â·;k,l[n] for each
sample n: According to model equations 3.10 and 3.12, we compute a

stream of contributions33

ẋk[n] =
p∑
s=1

âs;k,k[n]xk[n− s]

~xk,l[n] =
∑
l∈Lk

p∑
s=1

âs;k,l[n]xl[n− s]. (4.25)

33Note that in the case of RLS regression an estimated model coe�cient âs;k,l[n] is deter-
mined by four factors: lag s, sample index n and the two channels k, l.



4.2. RLS REGRESSION 57

2. Then we calculate weighted variances of the partial estimation contribu-

tion terms (4.25), which point out the present sample and extenuate the

in�uence of samples in the past. This follows the idea of the weighted RLS

algorithm: the farther in the past, the more these samples are �forgotten�.

We denote the weighted variances by the same symbols as the time-

independent ones (3.15) and (3.16), but add the sample index.

They are calculated within windows of length l (samples), which we typi-

cally set to l = 256 samples.34

The time-dependent intrinsic variance is therefore given by

σ2
ẋk

[n] ,
1∑n

i=n−l+1 λ
n−i

n∑
i=n−l+1

(
ẋk[i]− ẋk[n]

)2

λn−i (4.26)

and analogically the time-dependent partial extrinsic variance as

σ2
~xk,l

[n] ,
1∑n

i=n−l+1 λ
n−i

n∑
i=n−l+1

(
~xk,l[i]− ~xk,l[n]

)2

λn−i, (4.27)

with l being the length of the sliding window.

In both cases, λ is the forgetting factor used in the RLS algorithm and

ẋk[n] respectively ~xk,l[n] the weighted mean of partial estimation contri-

butions at sample n:

ẋk[n] ,
1∑n

i=n−l+1 λ
n−i

n∑
i=n−l+1

ẋk[i]λn−i

~xk,l[n] ,
1∑n

i=n−l+1 λ
n−i

n∑
i=n−l+1

~xk,l[i]λn−i. (4.28)

Note that means (4.28) do depend on the current sample n, as they are

calculated within the window (of length l) determined by the sample index

n. However, they are constant in the sums in expressions (4.26) and (4.27)

(for each n).

At the very end we want to state that the time-dependent total extrinsic variance

σ2
~xk

[n], which is needed for the computation of a time-dependent TEIPR35,

would not be that easy to calculate:

As we showed in section 3.4, the total extrinsic variance (3.17) is not the

sum of the corresponding partial extrinsic variances (3.16). Of course, this is

the case with the time-dependent extrinsic variance as well � therefore we are

not allowed to calculate it from time dependent partial extrinsic variance terms

(4.27) we know.

However, as we do not need TEIPR in this work, we do not further investigate

this topic.

34As table 4.1 indicates, a typical value of the weighting factor λ = 0.995 implies a forgetting
time of τλ = 2s, corresponding to 250 samples.

35TEIPR is de�ned in (3.19).
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Chapter 5

Results

In this chapter we are �nally going to present results obtained by the application

of the two methods mentioned in chapter 4, which are based on MMSE and RLS

regresssion.

We start with a short description of the data basis and then present results

of the initial method proposed by [HK07]. Afterward we question the hypoth-

esis of short-term stationarity and check the ECoG recordings for (short-term)

stationarity. Finally, after the illustration of a typical behavior of the RLS al-

gorithm thanks to test signals, we are going to present results of our advanced

regression method based on RLS.

5.1 Data basis

The ECoG recordings analyzed in this chapter come from a patient su�ering

from temporal lobe epilepsy. 28-channel ECoG signals were recorded at a sam-

pling frequency of 256Hz with reference to an electrode outside the seizure focus.

After removal of line interference by an appropriate notch �lter at 50Hz, they

were downsampled to 128Hz.

In this chapter, we evaluate ECoG data recorded on 17/10/2002 from 12:45:36

to 12:47:36 � seizure onset was 15 seconds after the start of recording time at

12:45:51.

Figure 5.1 indicates the electrode positions together with the channel num-

bers which we use in our calculations.1

According to the clinicians' visual inspection of the raw ECoG signals, the tem-

poral and spatial evolution of the seizure was as follows:

1. Seizure onset at 12:45:51 on the right hemisphere at electrodes D6, D7

(channels 26, 27).

2. Propagation to electrodes D4, D5 (channels 24, 25) and C1-C6 (channels

15-20).

1We showed a surgeon's draft of this electrode con�guration in �gure 1.5 in section 1.2.

59
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Figure 5.1: Channel numbers of implanted ECoG electrodes.
Channel number used in calculations is given next to the respective elec-
trode. Roman letters indicate the clinical identi�cation of the electrodes.

3. At 12:46:04 propagation to the left hemisphere to electrodes B4, B5 (chan-

nels 10, 11).

4. At 12:47:00 end of the seizure on the left hemisphere at electrodes B4, B5

(channels 10, 11).

We are going to use these diagnostic �ndings as a reference description for a

comparison with our results throughout the following section.

5.2 MMSE results

We start our seizure propagation analysis with the initial method proposed by

[HK07], based on MMSE in windows where the signal is assumed to be short-

time stationary.

5.2.1 Choice of model order

As mentioned in section 3.3, the channel selection algorithm does not optimize

the temporal lag order, but one constant model order has to be chosen manually.

Therefore we have to �nd the appropriate extrinsic and intrinsic lag sets S and

Q. For simplicity reasons, we set S = Q = [1..p].

In order to �nd the optimal p, we subsequently perform the channel selection

with increasing lags sets from S = Q = [1..1] up to S = Q = [1..10]. Per channel
and window, we determine the optimal lag order: As described in algorithm 3.1,

the channel selection algorithm adds channels until the information criterion is

minimized (for given lag sets). We therefore obtain such a minimum in each

step of our iterative lag set enlargement, and we choose the lag order which is

associated to the minimum of these minima.

For comparison reasons, we also used AIC as an information criterion in the

channel selection algorithm.

Figure 5.2 shows the distribution of optimal temporal lags for both AIC and

BIC. We obtain the same order of magnitude, but AIC indicates � as expected

� slightly higher lag orders than BIC.
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Figure 5.2: Distribution of optimal temporal lags (MMSE). His-
togram of optimal temporal lags for BIC in �gure 5.2 (a), for AIC in
�gure 5.2 (b).

The results of these simulations are in accordance with the ones shown in

literature: By application of the AIC criterion, [KKB04] chooses p = 4 for

multivariate autoregressive modeling of EEG data, [KDTB01] takes p = 5 and

[KMK+03] (at a higher sampling frequency of fs = 200Hz) p = {6, ...8}.
Anyway, as [FBK85] indicates, the results of autoregressive modeling of

EEG/ECoG data are rather insensitive to the exact model order: As the mini-

mum of the information criterion is broad and �at, we have a certain range of

acceptable values. Therefore we choose p = 4 for our calculations, resulting in

the temporal lag sets S = Q = [1..4]. According to the indications of BIC in

�gure 5.2 (a), we might slightly overestimate the model, but we prefer to do so

rather than underestimate it.2

5.2.2 Model veri�cation

Now that we have determined a realistic lag order, we want to examine results of

the MMSE regression. Parameters used in the computation are shown in table

5.1: Temporal lag sets were determined in the last subsection 5.2.1, window

parameters are manually chosen with respect to su�cient estimation quality of

the empiric covariance matrix.3

In the following, we are going to examine results in an exemplary way: We

study channel 1 (which is outside the seizure focus throughout the recording

time) and channel 11 (a�ected from 12:46:04 on) on the left hemisphere and

channel 16 (a�ected before 12:46:04) on the right hemisphere.4

2For a detailed discussion on the mathematical consequences of under- and over�tting
compare [BD91].

3Compare the discussion in subsection 4.1.5 on this topic.
4For the exact positions of the electrodes see �gure 5.1.
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Parameter Value

MMSE
regression

Extrinsic temporal lag set Q = [1..4]
Intrinsic temporal lag set S = [1..4]

Window design
Window length Twin = 6s

Time of window overlap Tol = 4s

Table 5.1: Parameters used in MMSE regression

5.2.2.1 Plot of residual errors

We consider plots of residual errors in window 20, which lies right in the middle

of the time of epileptic activity and contains recordings from seconds 38 to 44

(which is 23 to 29 seconds after seizure onset).

Figure 5.3 shows three exemplary channels in this 6s-lasting window: on top

channel 1, in the middle channel 11 and at the bottom channel 16. Channel 1 is

almost not a�ected by epileptic activity at this time, whereas channel 11 (being

in the seizure focus during these 6s) represents typical spikes indicating strong

epileptic activity. Channel 16 shows rhythmic activity.

The respective original signal is displayed in blue and the residual errors in

red in all three plots of �gure 5.3.
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Figure 5.3: Residual errors (MMSE). Residuals of channels 1, 11
and 16 (in red) in exemplary 6s-window 20.

As channels 1 and 16 are almost not a�ected by epileptic activity in this

window, the respective residual error is smaller than the one of channel 11

which is in the seizure focus at that time.
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5.2.2.2 Extrinsic channel set

Before studying the regression quality of our model, it might be interesting to

have a quick look at the number of extrinsic channels chosen by the channel

selection algorithm.

Figure 5.4 displays the evolution of the extrinsic channel set from one window

to another of channels 1, 11 and 16 for the whole recording period of 120s.
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Figure 5.4: Evolution of the extrinsic channel set Lk (MMSE).
Window-wise evolution for channels 1, 11 and 16 during the full 120
seconds. Begin and end of seizure indicated by dashed lines.

In the time of epileptic activity this number goes up to 5, whereas it is

reduced down to 0 in interictal periods. As table A.3 in annex A illustrates,

the algorithm selects approximately 2 extrinsic channels per intrinsic channel

on average.

If we ran the channel selection algorithm with the same parameters but with

AIC as information criterion instead of BIC, the average size of the extrinsic

channel set would be four to �ve times larger, as table A.3 indicates.

Therefore, BIC does not only indicate a smaller lag order (as shown in sub-

section 5.2.1), but also selects fewer channels. This leads to a low-dimensional

regression model justifying our preference for BIC.

5.2.2.3 Regression �t

The well-known coe�cient of correlation R2 is a measure of goodness of �t of a

regression model.5

As we are interested in the coe�cient of correlation explaining the model �t

5If needed, the reader �nds more details in [Hac05] or in any other book on econometrics.
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for each channel k, we de�ne R2
k channel-wise (for each window):

R2
k , 1− SSerrk

SStotk
. (5.1)

Hereby, SSerrk
is the residual sum of squares of channel k and SStotk the total

sum of squares of channel k. They are given by

SSerrk
,

Lwin∑
n=1

(xk[n]− x̂k[n])2

SStotk ,
Lwin∑
n=1

(xk[n]− xk)2

with xk being the mean of channel k and n the lag index within the given

window.

Figure 5.5 shows the temporal evolution of R2
k (5.1) for the three exemplary

channels (arranged as before).
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Figure 5.5: Evolution of R2
k (MMSE). Window-wise evolution for

channels 1, 11 and 16 during the full 120 seconds. Begin and end of
seizure indicated by dashed lines.

Explanatory power of the model is clearly given, but in times of epileptic

activity the arising instationarity apparently reduces the estimation quality (as

it is the case for channel 11).

Table A.1 in annex A shows the average coe�cient of correlation for all 28

channels.
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5.2.2.4 Autocorrelation of residual errors

Finally, we also want to analyze whether the model is well speci�ed meaning

that the residual terms are not autocorrelated.

Figure 5.6 illustrates the temporal evolution of the Durbin-Watson statistic

for the three exemplary channels: as before, channel 1 is placed on top, channel

11 in the middle and channel 16 at the bottom.
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Figure 5.6: Evolution of the Durbin-Watson-statistic (MMSE).
Window-wise evolution for channels 1, 11 and 16 during the full 120
seconds. Begin and end of seizure indicated by dashed lines.

The residual terms of all channels are autocorrelated of order 1, as the DW

statistic constantly stays below the value of 2. The situation for the other

channels is similar, as table B.2 in annex A indicates: It shows the average values

of the Durbin-Watson statistic for all 28 channels, which are all signi�cantly

below 2.

In order to check for autocorrelation of higher order, we apply the Box-Ljung
test to the residuals of the three channels 1, 11 and 16 in window 20, which

we plotted in �gure 5.3. Calculations were performed with the free statistical

software package R, rejection or acceptance of the null hypothesis is done by

interpretation of the p-value.

Table 5.2 on page 66 summarizes the results of the Box-Ljung test:6 The

residuals of all considered channels are autocorrelated up to lag order 4.7

Therefore, instead of going further into the results of this modeling approach,

we would rather have a look at our hypothesis of short-term stationarity.

6See [JB76] for statistical details of the Box-Ljung test.
7The similar Box-Pierce test (described in [BP70]) delivers exactly the same results.



66 CHAPTER 5. RESULTS

Channel 1 (window 20)

Lag order H0 p-value Interpretation Result

2 independence 2.7 · 10−6 H0 rejected autocorrelation
3 independence 1.1 · 10−8 H0 rejected autocorrelation
4 independence 1.3 · 10−12 H0 rejected autocorrelation

Channel 11 (window 20)

Lag order H0 p-value Interpretation Result

2 independence < 2.7 · 10−6 H0 rejected autocorrelation
3 independence < 2.2 · 10−6 H0 rejected autocorrelation
4 independence < 2.2 · 10−6 H0 rejected autocorrelation

Channel 16 (window 20)

Lag order H0 p-value Interpretation Result

2 independence 2.7 · 10−5 H0 rejected autocorrelation
3 independence 7.3 · 10−11 H0 rejected autocorrelation
4 independence 6.2 · 10−15 H0 rejected autocorrelation

Table 5.2: Box-Ljung test on higher-order residual autocorrelation
(MMSE)

5.3 Signal instationarity

Due to the results shown in section 5.2 the question arises: Do we really have

short-time-stationarity of the raw ECoG signals outside seizure periods? And

even if so, can we accept that this property is violated, more than ever, during

a seizure?

Therefore we want to see whether our hypothesis of short-time-stationarity

is su�ciently realistic.

5.3.1 Periodogram of the transfer function

In order to get a �rst impression on the �degree of stationarity�, we have a look

at the periodogram of the transfer function. As described in section 2.1, we �t an
AR model to the signal, calculate the transfer function and then plot frequency

over time.

The �tting of the AR model is automatically done by a Matlab software

package called ARFIT.8 The transfer function is then calculated by fast-Fourier-
transformation (FFT) window-wise (window design parameters: Twin = 2s and
Tol = 1s) and is plotted � frequency over time9 � in false color representation:

8This package is described in detail in [SN01]; the theoretical background for the optimized
algorithm developed by the authors themselves is explained in [NS01].

9The periodogram shows the frequency band up to 64Hz (half of the sampling frequency).
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Red indicates strong contribution at this frequency, dark blue low importance.

Figure 5.7 shows the periodogram of the transfer function of channel 11

of our raw ECoG recordings: recording time 17/10/2002 12:45:36 - 12:47:36,

seizure onset 15 seconds after the start.
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Figure 5.7: Periodogram of channel 11 of ECoG recording. Begin
and end of epileptic activity on channel 11 indicated by dash-dotted lines:
agitated structural changes in ictal period.

We observe ribbons of frequency areas; however, they are not continuous

over time, but abruptly changed or interrupted. These structural breaks (of

the red ribbon in the low-frequency band, for example) occur so often that we

cannot divide the signal into a small number of segments each representing a

constant regime. Furthermore, the �rst structural breaks occur before seizure

onset: They appear within the �rst 15 seconds.

5.3.2 Statistical tests

Although the periodogram of the transfer function has already given us a �rst

indication that the hypothesis of short-time-stationarity might be violated dur-

ing seizures as well as interictally, we want to consult a number of statistical

tests. We are not going to address the mathematical background of the tests in

detail, but only describe their aim: For the statistical background, we are going

to refer the reader to the respective papers.

We apply the following two tests to our preprocessed ECoG data:

Dickey-Fuller test is named after the statisticians Dickey and Fuller who de-

veloped this test in the 1970s. It tests whether a unit root is present in

an autoregressive model of order 1:

x[n] = ρx[n− 1] + ε[n],
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where ε[n] is normally distributed white noise: ε[n] ∼ NID(0, σ2).
If this was the case, we would have |ρ| = 1, and the model would be

instationary.10 Therefore, the null hypothesis of the Dickey-Fuller-test is

instationarity: H0 : |ρ| = 1.
Apart from this version of the AR-model, the Dickey-Fuller-test can also

check for stationarity of an AR-model with drift

x[n] = µ+ ρx[n− 1] + ε[n]

and of an AR-model with drift and trend

x[n] = µ+ βn+ ρx[n− 1] + ε[n].

These three versions of the basic Dickey-Fuller test are explained in detail

in [DF79].

Note that an extension for higher-order autoregressive models exists, which

is termed Augmented Dickey-Fuller test (ADF). It is described in [SD84].

KPSS test is named after the statisticians Kwiatkowski, Phillips, Schmidt and

Shin. As the Dickey-Fuller test fails to reject the null hypothesis of insta-

tionarity in certain cases, they developed an alternative test in the early

1990s. Although it also tests for a unit root in time series, its null hy-

pothesis is inverse to the one of the Dickey-Fuller test. It assumes that

the time series can be decomposed into the sum of a deterministic trend

ξn, a random walk r[n] and a stationary error ε[n]:

x[n] = ξn+ r[n] + ε[n].

The random walk is

r[n] = r[n− 1] + u[n]

with u[n] ∼ NID(0, σ2). Therefore, the null hypothesis of stationarity is

simply: H0 : σ2 = 0, ξ = 0.
For a detailed elaboration of the test see [KPSS92].

The following tables 5.3 and 5.4 show the results of the statistical tests men-

tioned above applied to 6s-lasting windows.

As in section 5.2, we exemplarily chose channels 1 and 11 on the left hemi-

sphere and channel 16 on the right.11 Calculations were done with the free

statistical software package R: Apart from the standard Dickey-Fuller test and

the KPSS test we also performed an Augmented Dickey-Fuller test with lag or-

der 9.12 Rejection or acceptance of the null hypothesis is done by interpretation

of the p-value.

10Of course, it would be �even more� instationary if |ρ| > 1.
11For their location see �gure 5.1.
12R suggests an optimal lag order: p = (Lwin − 1)1/3. As we have Lwin = Twin · fs =

6s · 128Hz = 768, R chooses p = 9.
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Table 5.3 summarizes the results of window 20, which lies right in the middle

of the time of epileptic activity:13 All three channels 1, 11 and 16 are concor-

dantly considered to be instationary. This is not surprising, because changes

of the epileptic seizure status cause instationarity, which we discussed at the

beginning of section 4.1.

Channel 1 (window 20)

Test H0 p-value Interpretation Result

DF instationarity 0.5064 H0 not rejected instationarity
ADF instationarity 0.3157 H0 not rejected instationarity
KPSS stationarity < 0.01 H0 rejected instationarity

Channel 11 (window 20)

Test H0 p-value Interpretation Result

DF instationarity 0.0900 H0 not rejected instationarity
ADF instationarity 0.3460 H0 not rejected instationarity
KPSS stationarity < 0.01 H0 rejected instationarity

Channel 16 (window 20)

Test H0 p-value Interpretation Result

DF instationarity 0.5696 H0 not rejected instationarity
ADF instationarity 0.3009 H0 not rejected instationarity
KPSS stationarity < 0.01 H0 rejected instationarity

Table 5.3: Stastical tests on stationarity � ictal ECoG recordings

For comparison reasons, we also want to have a look at preictal signal record-

ings and consider window 5.14

The results of the di�erent tests in table 5.4 on page 70 are alarming: Al-

though we examine preictal recordings (we could hope that at least they would

be stationary), only channel 11 is concordantly considered to be stationary,

whereas the Dickey-Fuller and KPSS test do not agree on the stationarity of

channels 1 and 16.

5.3.3 Conclusion

The results of these examinations are appallingly clear and lead to one single

conclusion: Our hypothesis of short-time-stationarity 2' from section 4.1 is sim-

ply not valid. As we do deal with instationary signals, we unfortunately cannot

use MMSE, but have to apply another, more appropriate method.

13It contains recordings from seconds 38 to 44 (which is 23 to 29 seconds after seizure onset).
14It contains recordings from seconds 8 to 14 (this is 7 to 1 seconds before seizure onset).
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Channel 1 (window 5)

Test H0 p-value Interpretation Result

DF instationarity < 0.01 H0 rejected stationarity
ADF instationarity < 0.01 H0 rejected stationarity
KPSS stationarity 0.0204 H0 rejected instationarity

Channel 11 (window 5)

Test H0 p-value Interpretation Result

DF instationarity < 0.01 H0 rejected stationarity
ADF instationarity < 0.01 H0 rejected stationarity
KPSS stationarity > 0.10 H0 not rejected stationarity

Channel 16 (window 5)

Test H0 p-value Interpretation Result

DF instationarity < 0.01 H0 rejected stationarity
ADF instationarity < 0.01 H0 rejected stationarity
KPSS stationarity < 0.01 H0 rejected instationarity

Table 5.4: Statistical test on stationarity � preictal ECoG recordings

5.4 RLS with test signals

In section 4.2 we presented such an appropriate method: exponential recursive
least-squares estimation. Before applying it to our ECoG data, we want to have

a look at the typical behavior of this adaptive algorithm.

First of all, we create an arti�cial test signal x[n] lasting for 120s consisting
of two channels. This is done with the help of the Matlab package ARFIT.15

For comparison reasons, we suppose a hypothetical sampling frequency of fs =
128Hz � therefore we have x[n] ∈ R15360×2.

We use two bivariate autoregressive models (5.2) and (5.3) of order 2 for the

construction of this test signal x[n]:

x[n] =

{
ẋ[n] n ∈ [1, ..., 7680]

ẍ[n] n ∈ [7681, ...15360]
.

• The �rst bivariate AR model is de�ned as

ẋ[n] , ẇ + Ȧ1ẋ[n− 1] + Ȧ2ẋ[n− 2] + ε̇[n] (5.2)

15We presented it in subsection 5.3.1. ARFIT can be used for both simulating an autore-
gressive process and for �tting a signal to an AR model.
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with coe�cients

ẇ ,

(
0.25

1

)
Ȧ1 ,

(
0.4 1.2
0.3 0.7

)
Ȧ2 ,

(
0.35 −0.3
−0.4 −0.5

)
and ε̇[n] being normally distributed, zero-mean white noise with its co-

variance matrix

Σ̇ε̇ ,

(
1 0.5

0.5 1.5

)
.

• In order to cause an instationarity, the second AR model is of the same

order

ẍ[n] , ẅ + Ä1ẍ[n− 1] + Ä2ẍ[n− 2] + ε̈[n], (5.3)

but the matricial coe�cients di�er:

ẅ , ẇ Ä1 ,

(
−0.1 0.3
0.5 0.9

)
Ä2 ,

(
−0.35 0.7
−0.4 −0.5

)
.

Again, ε̈[n] is normally distributed white noise with its covariance matrix

Σ̈ε̈ , Σ̇ε̇.

In the next step, we use the exponential RLS algorithm (with p = 3 for control

reasons) for �tting this instationary signal.16 By setting the forgetting factor

λ < 1, the RLS algorithm can adapt itself to the signal leading to a smaller one-

step prediction error. However, at the moment when the instationarity occurs,

the one-step prediction error explodes, because the RLS algorithm naturally

needs some time for re-adjusting itself to the new regime.

When choosing a value of λ < 1, we encounter two opposite tendencies:

• Smaller values of λ lead to a better adaptability of the algorithm, because

samples far in the past (belonging to another regime) are �forgotten� faster.

• On the other hand, the smaller the number of samples in memory, the

poorer the estimation quality of the second-order statistics used.

Therefore, the �nal estimation quality is a trade-o� between adaptability and

use of information contained in the signal. When plotting the variance of the

one-step prediction error over λ, the resulting graph is a parabola, attaining a

certain minimum which depends on data properties.

Figure 5.8 on page 72 illustrates this behavior for the test signal x[n] de-
�ned above: The minimum of the one-step prediction error � and therefore the

�optimal� estimation quality � is obtained for λ ≈ 0.995.
After these preliminaries, we �nally want to show some results of the RLS

algorithm. For illustration purposes, we performed the estimation of our test

16Hereby, the channel selection algorithm is disabled � we force the algorithm to use all
(two) channels.
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Figure 5.8: Forgetting factor λ vs. variance of one-step predic-
tion error. Minimum for λ ≈ 0.995.

signal x[n] with two characteristic values of the forgetting factor: λ = 1 and

λ = 0.995.

Figures 5.9 and 5.10 below show the coe�cient paths for the estimation of

channel 1. In each picture, the �rst row shows the extrinsic coe�cients ai;1,2
(a1;1,2 in the �rst column, a2;1,2 in the middle, a3;1,2 in the right column) and

the second depicts the intrinsic coe�cients ai;1,1 (lags as before).

• Figure 5.9 illustrates the case of λ = 1, where the RLS algorithm performs

in fact a simple OLS estimation.

The coe�cient paths shown re�ect this property: In the �rst regime, the

algorithm delivers a good approximation � the estimated coe�cients of

lags 1 and 2 converge to the imposed values. Furthermore, as we de�ned

an AR model of order 2, a3;i,j = 0, the respective estimated coe�cients

approach the value of zero correctly.

However, after the appearance of instationarity, the algorithm cannot

adapt itself to the new statistics. Coe�cient paths only change slowly

into the right direction, as more and more samples of the new regime are

loaded into memory and the statistics of this new regime gain more and

more in�uence.17

• Figure 5.10 illustrates the case of λ = 0.995, which is close to the optimal

forgetting factor shown in �gure 5.8 above.

The algorithm now progressively adapts itself to the test signal x[n]: In
the �rst regime, all estimated coe�cients oscillate around the imposed

values. Then, the algorithm immediately reacts to the instationarity, and

the estimated coe�cients converge � with di�erent speed and quality � to

their new values, where they oscillate again.

17Note that although we used two successive AR models of order two for the construction of
the test signal x[n], the coe�cients a3;i,j do not even slowly approach zero after instationarity.
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Figure 5.9: Test signal coe�cient paths for λ = 1. Only slow
adaptation of the estimated coe�cients after appearance of instationarity.
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Figure 5.10: Test signal coe�cient paths for λ = 0.995. Immediate
convergence of the estimated coe�cients to new regime after appearance
of instationarity.

We also want to compare the one-step-prediction errors resulting from the

estimations performed above. As �gure 5.11 on page 74 illustrates, the one-

step prediction error explodes in both cases at the moment of instationarity.

However, it immediately returns to its average value in case of λ = 0.995 (in

the left graph), whereas it does so only slowly in the case of λ = 1 (in the right

graph).
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Figure 5.11 (a)
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Figure 5.11: One-step estimation errors of test signal. After
instationarity, immediate return to the average value of the one-step pre-
diction error for λ = 0.995 in �gure 5.11 (a); compared to a slow return
in case of λ = 1.

5.5 RLS results

After this short introduction into the typical behavior of the RLS algorithm,

we want to examine our advanced RLS-based regression method and present

results of a potential epileptic seizure propagation analysis.

Throughout this section we are going to use a forgetting factor of λ = 0.995,
as optimal values of λ found by simulation are in this order of magnitude. This

value was obtained by minimizing the variance of the one-step estimation error:

We showed similar results for test signals in �gure 5.8.

5.5.1 Choice of model order

First of all, we have to determine a reasonable lag order for the RLS algorithm.

In order to �nd a su�ciently optimal p, we proceed as if we had the MMSE

regression in section 5.2: We subsequently perform the channel selection with

increasing lag order from p = 1 to p = 10. Per channel and window we de-

termine the optimal p: As described in algorithm 4.3, the channel selection

algorithm adds channels until � this is the only di�erence to section 5.2 � the

one-step prediction error is minimized. Nevertheless, the result is the same as

in section 5.2: We obtain such a minimum in each step of our iterative lag order

enlargement, and we choose the lag order which is associated to the minimum

of these minima.

Figure 5.12 shows the distribution of optimal temporal lags: Similarly to the

simulation using MMSE regression with BIC as information criterion,18 lags 3

and 4 are chosen most frequently.

18Compare �gure 5.2 on page 61.
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Figure 5.12: Distribution of optimal temporal lags (RLS).

We therefore set � in perfect accordance with the model based on MMSE

regression � the lag order to p = 4 for the following computations.19

5.5.2 Model veri�cation

Now that we have determined a realistic lag order, we want to examine results

of the RLS regression. Parameters used in the computation are shown in table

5.5: The lag order was determined in subsection 5.5.1, window parameters are

chosen accordingly to the ones for MMSE in table 5.1,20 and parameters for the

design of the window function (used in coe�cient stream assembly) are chosen

manually.21

Parameter Value

RLS algorithm
Forgetting factor λ = 0.995

Lag order p = 4

Window design
Window length Twin = 6s

Time of window overlap Tol = 4s
Window

function design
Time of roll-on/o� Tr = 1.5s

Time of zero-padding Tz = 0.5s

Table 5.5: Parameters used in RLS regression

As in section 5.2, we consider channels 1 (which is outside the seizure focus

throughout the recording time) and 11 (a�ected from 12:46:04 on) on the left

hemisphere and 16 (a�ected before 12:46:04) on the right hemisphere.22

19Again, we might risk overestimating the model, but we prefer to do so rather than under-
estimate it.

20We use windows for the channel set selection: compare algorithm 4.3 in subsection 4.2.4.
21Consult �gure 4.5 on page 55 for an illustration of the coe�cient stream assembly.
22Again, for the exact positions of the electrodes see �gure 5.1.
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5.5.2.1 Plot of residual errors

First of all we consider plots of residual errors during a 6s-lasting period corre-

sponding to the time covered by window 20.23 This allows comparison with the

residual errors obtained by MMSE (in �gure 5.3).

Figure 5.13 shows the original signal in blue and the residual error in red.

Following the convention of section 5.2, we put channel 1 on top, channel 11 in

the middle and channel 16 at the bottom.
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Figure 5.13: Residual errors during 6s-period (RLS). Residual
errors of channels 1, 11 and 16 in the exemplary 6s-lasting window 20.

Again, as channels 1 and 16 are almost not a�ected by epileptic activity

during these six seconds, the respective residual error is smaller than the one

of channel 11 (being in the seizure focus). However, thanks to the adaptive

capacity of the RLS algorithm, this di�erence is less evident than in the case of

MMSE regression in �gure 5.3.

As our method based on RLS delivers a stream of coe�cients, we are able

to plot the stream of residual errors of the three exemplary channels over the

whole recording period. Figure 5.14 on page 77 demonstrates that the residual

errors stay small throughout all di�erent regimes in these 120 seconds.

5.5.2.2 Extrinsic channel set

As in section 5.2, we study the evolution of the extrinsic channel sets of our

three exemplary channels before examining the regression quality of our model.

Figure 5.15 plots the number of selected (extrinsic) channels from one win-

dow to another.24

23In order to remind the reader: It contains recordings from seconds 38 to 44 (23 to 29
seconds after seizure onset).

24We do use windows for determining the channel set; compare subsection 4.2.4.
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Figure 5.14: Residual errors of full recording time (RLS). Resid-
ual errors of channels 1, 11 and 16 (in red) stay small throughout the full
120 seconds. Begin and end of seizure indicated by dashed lines.
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Figure 5.15: Evolution of extrinsic channel set Lk (RLS).
Sample-wise evolution for channels 1, 11 and 16 during 120s: increased
values in times of epileptic activity. Begin and end of seizure indicated
by dashed lines.

These results are in accordance with the ones obtained by the channel se-

lection algorithm based on MMSE using BIC as information criterion (shown

in �gure 5.4). Although on average fewer channels are selected now, we speak

about the same order of magnitude.

We obtain a �clearer� picture now, as the evolution of selected channels is

more distinct: In interictal periods, the algorithm chooses hardly any extrinsic
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channels � the respective intrinsic channel is only explained by its own past. In

ictal windows, however, a large number of extrinsic channels is selected leading

to an enhanced extrinsic explanation of the signal.

Consider, for instance, L11 from seconds 30 to 70 in �gure 5.15 above: We

have intensi�ed ictal channel selection.25

Table B.6 in annex B details the average (temporal) values of the extrinsic

channel set for all 28 channels.

5.5.2.3 Regression �t

For evaluating the RLS regression we consider two di�erent coe�cients of cor-

relation, both de�ned channel-wise for the whole data stream:

In-sample coe�cient of correlation is de�ned similarly to (5.1) in section

5.2:

R2
k[n] , 1− SSerrk

[n]
SStotk [n]

, (5.4)

where the residual sum of squares and the total sum of squares of channel

k are both calculated within exponentially weighted windows.26

Out-of-sample coe�cient of correlation is a better measure of the regres-

sion quality proposed in [DH05]. It is � in strict analogy to (5.4) � given

by

R̃2
k[n] , 1− S̃Serrk

[n]
SStotk [n]

, (5.5)

but uses the sum of squares of the one-step-prediction error of channel

k (which we intuitively denote by S̃Serrk
) instead of the residual sum of

squares of channel k SSerrk
.

Again, nominator and denominator are calculated within exponentially

weighted windows.

Figure 5.16 shows the temporal evolution of R2
k (in-sample) in red and of R̃2

k

(out-of-sample) in blue for the three exemplary channels (arranged as usual).

We see that the model has excellent explanatory power. Even in times of

epileptic activity, the rising instationarity degrades the estimation quality only

little � and especially to a lesser extent than in the case of the MMSE regression

(in �gure 5.5).

Note that (by de�nition) the in-sample coe�cient takes higher values in

instationary regimes than the out-of-sample version.

Table B.1 in annex B details the average values of the in-sample and out-of-

sample coe�cient of correlation for all 28 channels.

25Compare section 5.1: The seizure focus moves to channel 11 at 12:46:04, which is 28
seconds after the recording start.

26Compare the exponentially-weighted-windows-based computation of the variance terms
in subsection 4.2.6.
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Figure 5.16: Evolution of R2
k and R̃

2
k (RLS). Sample-wise evolution

of in-sample-R2 (red) and out-of-sample-R2 (blue) for channels 1, 11 and
16 during 120s: Tolerable quality fall-o� in times of epileptic activity.
Begin and end of seizure indicated by dashed lines.

5.5.2.4 Autocorrelation of residual errors

After these promising results, we �nally want to see whether the use of RLS

instead of MMSE in our regression method could correct the problem we were

facing in section 5.2: high autocorrelation of the residual terms.
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Figure 5.17: Evolution of Durbin-Watson statistic (RLS).
Sample-wise evolution for channels 1, 11 and 16 during 120s: no au-
tocorrelation even in times of epileptic activity. Begin and end of seizure
indicated by dashed lines.
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Figure 5.17 above shows the evolution of the Durbin-Watson statistic for the

three channels 1, 11 and 16 (plots on usual positions).

Thanks to the use of the adaptive RLS algorithm, the statistic of all three

channels now oscillates around the value of 2, indicating no or only weak resid-

ual autocorrelation of order 1. In other words: our model is su�ciently well

speci�ed.

As we did in section 5.2, we exemplarily examine the residuals on higher-

order autocorrelation. In order to be able to compare the results to the ones

from section 5.2 (given in table 5.2), we only consider the recording time covered

by window 20. Residuals of the RLS regression in this 6s-window are plotted in

�gure 5.13.

Table 5.6 summarizes the results of the Box-Ljung test applied to the residu-

als in this time interval. As usual, computations are done with the free statistical

software package R, and the obtained p-values are interpreted.

Channel 1 (time corresponding to window 20)

Lag order H0 p-value Interpretation Result

2 independence 0.2503 H0 accepted no autocorrelation
3 independence 0.4255 H0 accepted no autocorrelation
4 independence 0.3052 H0 accepted no autocorrelation

Channel 11 (time corresponding to window 20)

Lag order H0 p-value Interpretation Result

2 independence 0.3469 H0 accepted no autocorrelation
3 independence 0.4337 H0 accepted no autocorrelation
4 independence < 0.01 H0 rejected autocorrelation

Channel 16 (time corresponding to window 20)

Lag order H0 p-value Interpretation Result

2 independence 0.9118 H0 accepted no autocorrelation
3 independence 0.9370 H0 accepted no autocorrelation
4 independence 0.6695 H0 accepted no autocorrelation

Table 5.6: Box-Ljung test on higher-order residual autocorrelation
(RLS)

As we see, the Box-Ljung test con�rms � as the Durbin-Watson statistic did

before in �gure 5.17 � the amelioration of our model.27

27However, if we apply the Box-Ljung test to the whole 120s-lasting stream of residuals (of
channels 1, 11 and 16), it rejects the hypothesis of independence for the lag orders shown in
table 5.6.
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5.5.3 Interpretation of results

In this subsection we study results obtained by our model which we checked for

correctness in the last subsection: We consider the in�uence of epileptic activity

(increased synchronization e�ects) on the evolution of the coe�cient paths, the

one-step prediction error and the partial estimation contributions.

Afterward we �nally show the temporal evolution of our synchronization

measure EIPR.

We limit ourselves � for the sake of clarity and shortness � to the consider-

ation of channel 11, which shows epileptic activity from seconds 30 to 85.

5.5.3.1 Coe�cient paths

As already done in section 5.4 in the case of test signals, we now consider the

evolution of the coe�cient paths derived from ECoG recordings.

Figure 5.18 shows the assembled stream of coe�cients paths of our AR(4)

regression model (with di�erent channel sets in each window): In the �rst row,

one �nds all extrinsic coe�cients from lag 1 (on the left) up to lag 4 (on the

right) � and in the second the intrinsic coe�cients in the same order (from lag

1 on the left to lag 4 on the right).28
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Figure 5.18: Coe�cient paths of channel 11. Enforced extrinsic
contributions as well as higher intrinsic lag order in ictal periods. Begin
and end of epileptic activity on channel 11 indicated by dash-dotted lines.

We clearly see the in�uence of the increased instationarity in the ictal period

from seconds 30 to 85:

• The extrinsic contributions (of all lags) are enforced during this period:

more channels are selected, and the coe�cients of the respective channels

28The coe�cient stream was assembled as described in subsection 4.2.5 and then � for
obtaining a smoother picture � processed by a moving average �lter of 32 samples (0.25s).
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show larger values than pre- and postictally. Before and after the seizure,

they range around zero � the channel is therefore mainly described by its

own past.

• When considering the higher-order intrinsic coe�cients (particularly the

one of lag 4) in the second line of �gure 5.18, they take values signi�cantly

di�erent from zero during these 55 seconds, whereas they oscillate around

zero pre- and postictally.

Note that the peak at second 80, appearing in the path of the intrinsic coe�cient

of lag 1 as well as in the paths of two extrinsic coe�cients of lag 1, is a numerical

artefact.29

5.5.3.2 One-step prediction errors

The one-step prediction error of channel 11 is perfectly compatible with the

observations made. As �gure 5.19 illustrates, the error (in red) balloons during

the 55s-lasting ictal period.
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Figure 5.19: One-step prediction error of channel 11. Larger
values in ictal periods. Begin and end of epileptic activity on channel 11
indicated by dash-dotted lines.

5.5.3.3 Partial estimation contributions

When wanting to interpret the in�uence of synchronization e�ects on the model

behavior, the coe�cient paths can be a �rst indication. However, it is more

meaningful to consider the partial estimation contributions.

In our model equation 3.8, we de�ned the regressed signal as the of sum

of two contributions: an intrinsic and an extrinsic contribution, and the latter

being the sum of all partial extrinsic contributions

x̂k[n] , ẋk[n] +
∑
l∈Lk

~xk,l[n]. (5.6)

29This could result, for instance, from the eye motion of the patient.
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Comparing the values of the intrinsic and extrinsic contributions in 5.6 allows

us to directly see the importance of the respective term to explain the original

signal.

The conclusions drawn from the coe�cient paths are con�rmed by �gure

5.20 on page 83 showing the di�erent partial estimation contributions:

The intrinsic contribution ẋ11 is given in light blue in the background, the

di�erent extrinsic partial estimation contributions ~x11,l in the foreground. In

pre- and postictal periods the channel is only explained by its intrinsic contri-

butions, whereas in seconds 30 to 85 the extrinsic contributions get explanatory

power.

0 20 40 60 80 100 120
-1000

-800

-600

-400

-200

0

200

400

600

800

1000

t [s]

U
 [
µ

V
]

Partial estimation contributions: channel 11

Figure 5.20: Partial estimation contributions of channel 11. En-
forced extrinsic contributions in ictal periods. Begin and end of epileptic
activity on channel 11 indicated by dash-dotted lines.

5.5.3.4 EIPR analysis

We want to conclude this subsection with a view on the (time-dependent) EIPR,

the extrinsic-to-intrinsic power ratio de�ned in equation 4.24 in subsection 4.2.6.
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Figure 5.21: Evolution of EIPR η11,l (RLS). Continuous evolution
of EIPR, with small values pre- and postictally and large ones in ictal
periods. Begin and end of epileptic activity on channel 11 indicated by
dash-dotted lines.
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Figure 5.21 on page 83 shows the evolution of all η11,l measuring the syn-

chronization e�ects between channel 11 and all channels l, l ∈ [1..10, 12..28]. In
order to obtain a well arranged picture, we consider the logarithm of EIPR, and

values below -8 are truncated.

We observe an important property which con�rm the usefulness of the de�ni-

tion of this measure: Each η11,l takes small values pre- and postictally, whereas

we observe large values of certain channel pairs during the ictal period (seconds

30 to 85). This behavior is in perfect accordance with model results examined

before and reveals the physiologically appropriate character of EIPR.

Therefore, we approach our �nal goal of epileptic seizure propagation anal-

ysis: Plotting the temporal evolution of the ηk,l of all channel pairs (k, l) in

a spatio-temporal map30 and masking them below a common (manually set)

threshold allows us to track the propagation of the seizure focus.

5.5.4 Introduction of dead time

Before we plot this spatio-temporal map, we have to resolve one last problem:

the manual determination of the common threshold. When artefacts appear in

the raw ECoG signal, we obtain values of EIPR in the same order of magnitude

as in ictal periods. It is therefore di�cult to set a threshold which allows to

correctly �mask� the EIPR evolution: being high enough to truncate it pre- and

postictally, but low enough to display the EIPR in times of epileptic activity in

our intended spatio-temporal map.

As �gure 5.20 illustrates, the extrinsic estimation contributions rise in the

ictal period, but are still small in comparison to the intrinsic contribution. We

therefore penalize the intrinsic channel by introducing a dead time d: our in-

trinsic lag order now ranges in [d+ 1..p].31

This assures that the past of its own (intrinsic) channel becomes less and the

one of the extrinsic channels more important for the explanation of the signal.

Consequently, we obtain an evolution of EIPR, which is better shaped, allowing

to set an appropriate threshold.

A dead time of d = 2 turned out to be appropriate for showing the desired

e�ect, as systematic examinations showed.

5.5.4.1 Choice of model order

Realizing this dead time in the case of MMSE regression would be easy, as we

would simply have to set the lag sets accordingly. In the case of RLS, however,

this is not possible, as the design of the initial RLS algorithm does not allow a

dead time.

30It would show the electrode positions on the cortex; we will present a possible map in
subsection 5.5.4.3.

31This would correspond to the lag sets S = [d+ 1..p] and Q = [1..p] in the case of MMSE
regression.
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Instead of modifying the RLS algorithm, we simply decide to manipulate

the raw data stream: We create the desired dead time by shifting the raw data

of the intrinsic channel 2 samples forward in comparison to the position of the

extrinsic channels. Then we can apply our RLS algorithm to this new data

stream and correct the position of the estimated sample afterward.

The inconvenience of this method is that we obtain di�erent lag orders: If

the lag order of the intrinsic channel is given by p, we only have p − d for the

extrinsic channels.

It is obvious that the optimal lag order changes, if we modify the model by

omitting the last two samples of the intrinsic channel. As �gure 5.22 indicates,

we take p = 6 as lag order. This means that in fact we use � as described above

� lag order 4 for extrinsic channels and lag order 6 for the intrinsic ones.
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Figure 5.22: Distribution of optimal temporal lags (RLS with
dead time). Lags 1 and 2 are blocked due to the introduction of the dead
time (d=2).

Note that � surprisingly � this result is in good accordance with the optimal

lag order for RLS without dead time, indicated by �gure 5.12.

5.5.4.2 Residual autocorrelation

We do not give a detailed evaluation of this model, but refer the reader to tables

B.4, B.5 and B.6 in annex B.

Instead, we only want to show the evolution of the Durbin-Watson statistic of

the three exemplary channels 1, 11 and 16: As �gure 5.23 on page 86 illustrates,

the introduction of a dead time unfortunately causes strong autocorrelation of

the residual errors.

This behavior is not surprising, but a logical consequence of the introduction

of dead time: Information contained in the omitted samples is not taken into

consideration, but �remains� in the error terms.
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Figure 5.23: Evolution of the Durbin-Watson-statistic (RLS
with dead time). Sample-wise evolution for channels 1, 11 and 16
reveals residual autocorrelation. Begin and end of seizure indicated by
dashed lines.

The following theoretical re�ections formalize this fact:

Let us assume we had a (for simplicity reasons) stationary AR(p) process32

x[n] =
p∑
k=1

Akx[n− k] + ε[n],

with ε[n] being zero-mean white noise with covariance matrix Σε.

We estimate this process by an AR(p)-model with dead time d:

x̂[n] =
p∑

k′=d+1

Bkx[n− k].

In the following we show � by transforming into the frequency domain � that

the residual error x̂[n]− x[n] cannot be white for d > 0:

The signal itself is

X(f) =
p∑
k=1

AkX(f)e−2πifk + ε(f)

=
ε(f)

1−
∑p
k=1 Ake−2πifk

. (5.7)

32In our instationary case, the principle is the same.
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Therefore the estimated signal is given by

X̂(f) =
p∑

k′=d+1

Bk′X(f)e−2πifk′

=
p∑

k′=d+1

Bk′
ε(f)

1−
∑p
k=1 Ake−2πifk

e−2πifk′ . (5.8)

Expressions (5.7) and (5.8) deliver the residual error

X(f)− X̂(f) =
ε(f)

1−
∑p
k=1 Ake−2πifk

(
1−

p∑
k′=d+1

Bk′e
−2πifk′

)

= ε(f)︸︷︷︸ 1−
∑p
k′=d+1 Bk′e

−2πifk′

1−
∑p
k=1 Ake−2πifk

. (5.9)

const

Expression (5.9) can only be constant if the second factor is constant. This is

the case if the sums in nominator and denominator are identical.33 Therefore,

for d > 0, the residual error cannot be white, as its frequency-domain-expression

(5.9) is not constant.

However, further investigation is needed in order to understand the conse-

quences of the introduction of dead time better.

5.5.4.3 Seizure propagation

Let us ignore the residual autocorrelation for a moment and consider the evo-

lution of EIPR: For comparison reasons, �gure 5.24 shows the logarithm of all

η11,l again.

0 20 40 60 80 100 120
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-1
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2

3
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1

,l
)

Evolution of ·
11,l

Figure 5.24: Evolution of EIPR η11,l (RLS with dead time).
Analog results to regression without dead time, but better indication of
epileptic activity: EIPR attenuated pre- and postictally. Begin and end
of epileptic activity on channel 11 indicated by dash-dotted lines.

We observe a picture which is in accordance with the EIPR evolution ob-

tained by RLS without dead time in �gure 5.21: large values in times of epileptic

33The error ε(f) is constant in the frequency domain, as it is assumed to be white.
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activity, small ones pre- and postictally. Furthermore, due to the penalization

of the intrinsic channels, more extrinsic channels were selected, and the EIRP

ranges in a higher order of magnitude.

It is now easy to manually determine a common threshold which correctly

masks the EIPRs of all channels for the desired spatio-temporal representation.

Figure 5.24 indicates this threshold of 2.0 by a dotted line.

Figure 5.25 �nally shows the desired spatio-temporal map of the EIPR evo-

lution of all channels, allowing to track the seizure propagation. For the sake

of brevity, we limit ourselves to the period of 12:45:45 to 12:47:05 and choose a

temporal resolution of one second.

The representation in �gure 5.25 has to be read as follows:

• Synchronization e�ects between a pair of channels (k, l), which are mea-

sured by ηk,l, are represented by a �ash. Hereby, the �ash points from

channel l to channel k.

• The thickness of the arrow is an indicator for the magnitude of EIPR, and

values below the manually set threshold of 2.5 are not displayed.

• Clusters of �ashes can be interpreted as the focus of the epileptic seizure

at this moment. Hereby, the involved �ashes point to or from the center

of the focus.34

34The physiological signi�cation of the directed EIRP measure has to be investigated further
on.



5.5. RLS RESULTS 89

17−Oct−2002 12:45:45 17−Oct−2002 12:45:46 17−Oct−2002 12:45:47

17−Oct−2002 12:45:48 17−Oct−2002 12:45:49 17−Oct−2002 12:45:50

17−Oct−2002 12:45:51 17−Oct−2002 12:45:52 17−Oct−2002 12:45:53

17−Oct−2002 12:45:54 17−Oct−2002 12:45:55 17−Oct−2002 12:45:56

17−Oct−2002 12:45:57 17−Oct−2002 12:45:58 17−Oct−2002 12:45:59

17−Oct−2002 12:46:00 17−Oct−2002 12:46:01 17−Oct−2002 12:46:02

Figure 5.25 (a): 12:45:45 - 12:46:02
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17−Oct−2002 12:46:03 17−Oct−2002 12:46:04 17−Oct−2002 12:46:05

17−Oct−2002 12:46:06 17−Oct−2002 12:46:07 17−Oct−2002 12:46:08

17−Oct−2002 12:46:09 17−Oct−2002 12:46:10 17−Oct−2002 12:46:11

17−Oct−2002 12:46:12 17−Oct−2002 12:46:13 17−Oct−2002 12:46:14

17−Oct−2002 12:46:15 17−Oct−2002 12:46:16 17−Oct−2002 12:46:17

17−Oct−2002 12:46:18 17−Oct−2002 12:46:19 17−Oct−2002 12:46:20

Figure 5.25 (b): 12:46:03 - 12:46:20
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17−Oct−2002 12:46:21 17−Oct−2002 12:46:22 17−Oct−2002 12:46:23

17−Oct−2002 12:46:24 17−Oct−2002 12:46:25 17−Oct−2002 12:46:26

17−Oct−2002 12:46:27 17−Oct−2002 12:46:28 17−Oct−2002 12:46:29

17−Oct−2002 12:46:30 17−Oct−2002 12:46:31 17−Oct−2002 12:46:32

17−Oct−2002 12:46:33 17−Oct−2002 12:46:34 17−Oct−2002 12:46:35

17−Oct−2002 12:46:36 17−Oct−2002 12:46:37 17−Oct−2002 12:46:38

Figure 5.25 (c): 12:46:21 - 12:46:38
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17−Oct−2002 12:46:39 17−Oct−2002 12:46:40 17−Oct−2002 12:46:41

17−Oct−2002 12:46:42 17−Oct−2002 12:46:43 17−Oct−2002 12:46:44

17−Oct−2002 12:46:45 17−Oct−2002 12:46:46 17−Oct−2002 12:46:47

17−Oct−2002 12:46:48 17−Oct−2002 12:46:49 17−Oct−2002 12:46:50

17−Oct−2002 12:46:51 17−Oct−2002 12:46:52 17−Oct−2002 12:46:53

17−Oct−2002 12:46:54 17−Oct−2002 12:46:55 17−Oct−2002 12:46:56

Figure 5.25 (d): 12:46:39 - 12:46:56



5.5. RLS RESULTS 93

17−Oct−2002 12:46:57 17−Oct−2002 12:46:58 17−Oct−2002 12:46:59

17−Oct−2002 12:47:00 17−Oct−2002 12:47:01 17−Oct−2002 12:47:02

17−Oct−2002 12:47:03 17−Oct−2002 12:47:04 17−Oct−2002 12:47:05

Figure 5.25 (e): 12:46:57 - 12:47:05

Figure 5.25: Spatio-temporal map of seizure propagation. Fig-
ures 5.25 (a) - (e) track the spatio-temporal seizure propagation in steps
of one second: perfect accordance with �ndings of clinicians.

The propagation of the epileptic seizure presented in �gure 5.25 (a) - (e) is

in perfect accordance with the clinicians' �ndings, as given in section 5.1.

At the very end, we allow ourselves to add two �nal remarks:

1. As we have a temporal resolution of one second, we � of course � do not

show the continuous EIPR stream which he have at our disposition.35

In order to pro�t by the high temporal resolution obtained by means

of RLS, we replace the static (printed) spatio-temporal map by a dy-

namic representation. This �video� continuously shows the evolution of

the epileptic seizure focus on the screen.36

2. Despite the satisfying results note, however, that setting the threshold is

not obvious. Whatever threshold we choose, we have a trade-o� between

over- and under-interpretation of the indicated epileptic activity:

35As this stream has a sampling frequency of fs = 128Hz, we only represent every 128th
sample.

36See �gure B.1 in annex B for a screenshot.
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• A low threshold allows many EIPR-arrows to be plotted. On the one

hand this leads to a good visibility in even weakly developed periods

of the seizure, but might also indicate epileptic activity outside the

seizure focus on the other hand.

• A high threshold rejects lots of EIPR-arrows and only allows the

very strong ones to be plotted. Therefore we get a very concentrated

picture, but we might �miss� parts of the seizure evolution where

epileptic activity is not very distinct.

A consequence of setting the threshold to 2.5 in �gure 5.25 is that we �miss�

the end of the epileptic seizure (which is characterized by low epileptic

activity), which doctors see at 12:47:00 at electrodes B4 and B5. If we

decreased, for example, the threshold to 2.0, the algorithm would indicate

epileptic activity at 12:47:00, but also preictally.37

Further investigation is needed for elaborating a meaningful (and ideally

automatic) algorithm for threshold determination.

5.5.4.4 MMSE regression with dead time

Note that we could also perform the MMSE regression with a dead time of

d = 2. In this case, the optimal maximal lag order is determined to be p = 4,
yielding S = Q = [3, 4].38

Although mathematical properties of the MMSE model with dead time are

very poor,39 the resulting spatio-temporal map is extremely similar to the one

obtained by means of RLS in �gure 5.25. It is therefore in perfect accordance

with the clinicians' �ndings.

The interested reader is referred to annex A for details, where we present the

spatio-temporal map in �gure A.2 and mathematical properties of the model in

tables A.4, A.5 and A.6.

37We especially encounter this problem when plotting the EIPR obtained by regression
without dead time.

38Figure A.1 in annex A shows the histogram of optimal lag orders.
39Even without dead time we have high autocorrelation of the residual errors, as discussed

in section 5.2.



Chapter 6

Conclusion and Outlook

We want to use this last chapter for a short overview of the topics we have dealt

with in this diploma thesis: We sum up established results and address unre-

solved problems. Furthermore, we give an outlook on potential enhancements

in the future.

6.1 Conclusion

In this diploma thesis we presented a novel method for epileptic seizure propa-

gation analysis, which is based on linear spatio-temporal regression and allows

to track the spatio-temporal evolution of the seizure focus.

Using adaptive model coe�cient estimation by means of recursive-least-

squares (RLS), we were able to cope with the instationarity of the biosignals.

An important feature of our method was the use of a channel selection algorithm

which determines the optimal spatial neighborhood for each channel, before the

regression is performed. This approach reduces the complexity of the system

and helps to handle the highly correlated signals.

Based on these approaches we introduced a novel dependency measure in

the time-domain termed extrinsic-to-intrinsic-power ratio (EIPR). Its good cor-

relation with epileptic activity revealed its physiologically meaningful character.

Our experiments were performed with ECoG recordings consisting of 28

channels from patients su�ering from temporal lobe epilepsy. By applying our

method to these data, we obtained results which are in excellent agreement with

the �ndings of medical experts: The prediction of the propagation of epileptic

activity shows a good spatial and temporal resolution. Furthermore, our algo-

rithm can be e�ciently implemented, as it is based on autoregressive models

which bene�t from numerical simplicity.

Therefore we are convinced that our approach has potential for the computer-

assisted evaluation of ECoG recordings of epileptic seizures. This would be an

important step to support clinicians in the pre-surgical examination phase and

95
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to help to treat patients su�erings from epilepsy in a better and more e�cient

way.

6.2 Outlook

Despite the accordance of our indication of epileptic activity with clinicians' �nd-

ings, further investigation is needed to ameliorate this novel method of epileptic

seizure propagation analysis.

First of all, the consequences of the introduction of dead time have to be

analyzed exhaustively. It would be particularly important not to use any form

of dead time, as results obtained by means of RLS regression without dead time

have better statistical properties.

Secondly, at the moment the EIPR threshold for spatio-temporal maps has

to be determined manually. An automatic adaption of this threshold delivering

a clear and precise indication of epileptic activity is being strongly pursued. This

algorithm would probably have to take the density of �ashes into consideration

� that is what we are doing visually right now.

The exact physiological signi�cation of EIPR needs further investigation. As

it is a directed measure (explaining synchronization in�uence from one channel

to another), we display it in form of �ashes. However, the direction of these

�ashes has to be examined and linked to physiological processes.

Another important point is the de�nition of EIPR itself, which does not take

physiological properties of synchronization e�ects into consideration. One could

think of improving EIPR to operate in the frequency domain as well.

Furthermore, results based on EIPR would also have to be compared with

indications given by other measures de�ned in the frequency domain which are

commonly used in literature, like Direct Transfer Function (DTF).

We also want to mention that the channel selection algorithm of the autore-

gressive model currently works with a �xed temporal lag order. We consequently

over- or underestimate the order of the ECoG signal, depending on the sam-

pling position and the channel. A possible improvement would be an iterated

optimization choosing channels and lag orders. Furthermore, the selection al-

gorithm might use information about the anatomy (e.g. on which hemesphere

the speci�c electrode is located).

Last but not least we would like to state that work done in this diploma thesis

is a �proof of concept�. As we are speaking about future tasks, we consider

application of the proposed method to ECoG data of other patients to be of

highest priority. Some tests with recordings of two supplementary patients have

already been performed and showed promising results. However, exhaustive

examinations have to reveal the general aptitude of our method for epileptic

seizure propagation analysis.



Appendix A

Results of MMSE regression

A.1 MMSE regression without dead time

The following tables detail the results of the MMSE regression (without dead

time), which we described in section 5.2.

Note that channel 6 is always left out as it is the reference electrode.

A.1.1 Regression �t

Table A.1 details the average values of R2
k per channel.1

k R2
k

1 0.9684
2 0.9746
3 0.9710
4 0.9732
5 0.9747
6 -
7 0.9717

k R2
k

8 0.9787
9 0.9681
10 0.9159
11 0.9160
12 0.9645
13 0.9798
14 0.9925

k R2
k

15 0.9520
16 0.9636
17 0.9412
18 0.9585
19 0.9660
20 0.9748
21 0.9739

k R2
k

22 0.9660
23 0.9650
24 0.9529
25 0.9544
26 0.9447
27 0.9638
28 0.9737

Table A.1: Average values of R2
k (MMSE)

A.1.2 Autocorrelation

Table A.2 on the next page contains the average values of the Durbin-Watson

statistic DWk per channel.2

1See �gure 5.5 for the evolution of R2
k of channels 1, 11 and 16.

2See �gure 5.6 for the evolution of the Durbin-Watson statistic of channels 1, 11 and 16.

97



98 APPENDIX A. RESULTS OF MMSE REGRESSION

k DWk

1 1.6268
2 1.7048
3 1.6811
4 1.6664
5 1.5808
6 -
7 1.6845

k DWk

8 1.6667
9 1.6704
10 1.7022
11 1.5784
12 1.6040
13 1.5800
14 1.5226

k DWk

15 1.7518
16 1.7307
17 1.7547
18 1.7514
19 1.7320
20 1.7403
21 1.6659

k DWk

22 1.7300
23 1.7184
24 1.8036
25 1.6982
26 1.6377
27 1.6549
28 1.7013

Table A.2: Average values of DWk per channel (MMSE)

A.1.3 Extrinsic channel set

Table A.3 details the average size of each extrinsic channel set Lk. For compari-

son, the results of BIC and AIC as information criterion in the channel selection

algorithm are given.3

k #Lk

BIC AIC

1 2.2 9.2
2 1.6 8.7
3 1.8 8.4
4 1.4 7.5
5 1.3 7.5
6 - -
7 2.0 8.1

k #Lk

BIC AIC

8 2.0 9.3
9 2.1 10.2
10 2.5 9.9
11 2.5 9.8
12 2.4 10.0
13 2.1 9.0
14 2.0 8.6

k #Lk

BIC AIC

15 1.8 10.8
16 2.0 11.1
17 2.1 10.9
18 2.1 11.7
19 2.0 10.9
20 1.9 11.3
21 1.6 9.1

k #Lk

BIC AIC

22 1.7 10.3
23 2.3 11.0
24 2.2 11.7
25 2.4 11.8
26 2.5 10.7
27 2.0 10.2
28 1.9 10.4

Table A.3: Average size of extrinsic channel sets (MMSE)

3See �gure 5.4 for the evolution of the extrinsic channels sets of channels 1, 11 and 16.
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A.2 MMSE regression with dead time

The following section summarizes results MMSE regression with dead time,

which we shortly mentioned in subsection 5.5.4.

Note that channel 6 is always left out as it is the reference electrode.

A.2.1 Optimal lag order

Figure A.1 gives a histogram of the optimal lag order in the case of dead time.
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Histogram of optimal temporal lags (d=2)

Figure A.1: Optimal lag order (MMSE with dead time).

A.2.2 Regression �t

Table A.4 details the average values of R2
k per channel.

k R2
k

1 0.9242
2 0.9368
3 0.9577
4 0.9569
5 0.8343
6 -
7 0.8826

k R2
k

8 0.9147
9 0.9136
10 0.7089
11 0.6917
12 0.8562
13 0.9067
14 0.9265

k R2
k

15 0.8474
16 0.9250
17 0.8404
18 0.9023
19 0.9308
20 0.9478
21 0.8931

k R2
k

22 0.9321
23 0.9140
24 0.9063
25 0.8880
26 0.7956
27 0.8539
28 0.9339

Table A.4: Average values of R2
k (MMSE with dead time)
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A.2.3 Autocorrelation

Table A.5 contains the average values of the Durbin-Watson statistic DWk per

channel.

k DWk

1 1.0756
2 1.0048
3 1.2050
4 1.2045
5 0.5726
6 -
7 0.8132

k DWk

8 0.8463
9 1.0731
10 1.0013
11 0.7832
12 0.8935
13 0.7830
14 0.5778

k DWk

15 0.9350
16 1.2681
17 1.1120
18 1.1933
19 1.1596
20 1.1248
21 0.8791

k DWk

22 1.2092
23 1.2201
24 1.1264
25 1.0193
26 1.0109
27 0.9758
28 1.0134

Table A.5: Average values of DWk per channel (MMSE with dead time)

A.2.4 Extrinsic channel set

Table A.5 details the average size of each extrinsic channel set Lk.

k #Lk
1 4.8
2 4.4
3 3.8
4 3.3
5 4.2
6 -
7 4.3

k #Lk
8 4.4
9 4.9
10 5.5
11 5.7
12 5.8
13 4.7
14 3.2

k #Lk
15 5.3
16 5.6
17 5.0
18 5.3
19 4.4
20 4.0
21 4.1

k #Lk
22 4.3
23 5.2
24 5.2
25 6.1
26 4.5
27 4.4
28 5.0

Table A.6: Average size of extrinsic channel sets (MMSE with dead
time)

A.2.5 Spatio-temporal map

Figure A.2 on the next pages shows the spatio-temporal map of MMSE re-

gression with dead time. Note that due to the window design parameters the

temporal resolution is two seconds.4

4Compare subsection 4.1.1.
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17−Oct−2002 12:45:46 17−Oct−2002 12:45:48 17−Oct−2002 12:45:50

17−Oct−2002 12:45:52 17−Oct−2002 12:45:54 17−Oct−2002 12:45:56

17−Oct−2002 12:45:58 17−Oct−2002 12:46:00 17−Oct−2002 12:46:02

17−Oct−2002 12:46:04 17−Oct−2002 12:46:06 17−Oct−2002 12:46:08

17−Oct−2002 12:46:10 17−Oct−2002 12:46:12 17−Oct−2002 12:46:14

17−Oct−2002 12:46:16 17−Oct−2002 12:46:18 17−Oct−2002 12:46:20

Figure A.2 (a): 12:45:46 - 12:46:20
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17−Oct−2002 12:46:22 17−Oct−2002 12:46:24 17−Oct−2002 12:46:26

17−Oct−2002 12:46:28 17−Oct−2002 12:46:30 17−Oct−2002 12:46:32

17−Oct−2002 12:46:34 17−Oct−2002 12:46:36 17−Oct−2002 12:46:38

17−Oct−2002 12:46:40 17−Oct−2002 12:46:42 17−Oct−2002 12:46:44

17−Oct−2002 12:46:46 17−Oct−2002 12:46:48 17−Oct−2002 12:46:50

17−Oct−2002 12:46:52 17−Oct−2002 12:46:54 17−Oct−2002 12:46:56

Figure A.2 (b): 12:46:22 - 12:46:56
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17−Oct−2002 12:46:58 17−Oct−2002 12:47:00 17−Oct−2002 12:47:02

17−Oct−2002 12:47:04 17−Oct−2002 12:47:06 17−Oct−2002 12:47:08

Figure A.2 (c): 12:46:58 - 12:47:08

Figure A.2: Spatio-temporal map (MMSE with dead time). Fig-
ures A.2 (a) - (c) track the spatio-temporal seizure propagation in steps
of two seconds: perfect accordance with �ndings of clinicians.
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Appendix B

Results of RLS regression

B.1 RLS regression without dead time

The following tables detail the results of the RLS regression (without dead time),

which we described in section 5.5.

Note that channel 6 is always left out as it is the reference electrode.

B.1.1 Regression �t

Table B.1 details the average values of the coe�cient of determination per chan-

nel. Hereby, the in-sample correlation coe�cient is denoted by R2
k and the

out-of-sample correlation coe�cient by R̃2
k.
1

k R2
k R̃2

k

1 0.9708 0.9516
2 0.9763 0.9483
3 0.9714 0.9451
4 0.9763 0.9304
5 0.9737 0.9675
6 - -
7 0.9711 0.9395

k R2
k R̃2

k

8 0.9788 0.9612
9 0.9709 0.9485
10 0.9521 0.9207
11 0.9535 0.9373
12 0.9703 0.9317
13 0.9810 0.9352
14 0.9937 0.9885

k R2
k R̃2

k

15 0.9648 0.9566
16 0.9682 0.9360
17 0.9536 0.9105
18 0.9654 0.9204
19 0.9708 0.9593
20 0.9783 0.9699
21 0.9759 0.8791

k R2
k R̃2

k

22 0.9655 0.9238
23 0.9667 0.9460
24 0.9636 0.9502
25 0.9693 0.9535
26 0.9606 0.9529
27 0.9725 0.9674
28 0.9750 0.9690

Table B.1: Average values of R2
k and R̃2

k (RLS)

B.1.2 Autocorrelation

Table B.2 contains the average values of the Durbin-Watson statistic DWk per

channel.2

1See �gure 5.16 for the evolution of R2
k and R̃2

k of channels 1, 11 and 16.
2See �gure 5.17 for the evolution of the Durbin-Watson statistic of channels 1, 11 and 16.
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k DWk

1 1.9745
2 1.9869
3 2.0013
4 1.9913
5 2.0011
6 -
7 1.9811

k DWk

8 1.9943
9 1.9819
10 1.9503
11 1.9683
12 1.9657
13 1.9761
14 1.9985

k DWk

15 1.9881
16 1.9958
17 1.9730
18 1.9858
19 1.9853
20 1.9843
21 1.9639

k DWk

22 1.9783
23 1.9792
24 1.9913
25 1.9997
26 1.9866
27 1.9933
28 1.9993

Table B.2: Average values of DWk per channel (RLS)

B.1.3 Extrinsic channel set

Table B.3 details the average size of each extrinsic channel set Lk.3

k #Lk
1 0.9
2 1.2
3 0.9
4 0.9
5 0.8
6 -
7 0.9

k #Lk
8 1.0
9 1.0
10 1.8
11 1.7
12 1.2
13 0.9
14 0.7

k #Lk
15 1.4
16 1.1
17 1.3
18 1.3
19 1.3
20 1.4
21 1.1

k #Lk
22 1.0
23 0.9
24 1.6
25 1.3
26 1.2
27 1.4
28 1.1

Table B.3: Average size of extrinsic channel sets (RLS)

3See �gure 5.15 for the evolution of the extrinsic channels sets of channels 1, 11 and 16.



B.2. RLS REGRESSION WITH DEAD TIME 107

B.2 RLS regression with dead time

The following tables detail the results of the RLS regression with dead time,

which we quickly described in subsection 5.5.4.4.

Note that channel 6 is always left out as it is the reference electrode.

B.2.1 Regression �t

Table B.4 details the average values of the coe�cient of determination per chan-

nel. Hereby, the in-sample correlation coe�cient is denoted by R2
k and the

out-of-sample correlation coe�cient by R̃2
k.

k R2
k R̃2

k

1 0.940 0.9177
2 0.9536 0.9366
3 0.9555 0.9418
4 0.9546 0.9399
5 0.9168 0.8681
6 - -
7 0.9091 0.8722

k R2
k R̃2

k

8 0.9460 0.9036
9 0.9380 0.9116
10 0.9113 0.8293
11 0.9037 0.8235
12 0.9247 0.8842
13 0.9368 0.9080
14 0.9566 0.9282

k R2
k R̃2

k

15 0.9433 0.9068
16 0.9490 0.9297
17 0.9257 0.8922
18 0.9447 0.9235
19 0.9646 0.9316
20 0.9688 0.9407
21 0.9354 0.9057

k R2
k R̃2

k

22 0.9432 0.9187
23 0.9450 0.9250
24 0.9509 0.8954
25 0.9475 0.9017
26 0.9086 0.8751
27 0.9347 0.9025
28 0.9626 0.9389

Table B.4: Average values of R2
k and R̃2

k (RLS with dead time)

B.2.2 Autocorrelation

Table B.5 on the next page contains the average values of the Durbin-Watson

statistic DWk per channel.4

k DWk

1 1.3523
2 1.2669
3 1.5576
4 1.4798
5 0.8042
6 -
7 1.0065

k DWk

8 1.0953
9 1.2813
10 1.1830
11 0.9934
12 1.0799
13 0.9951
14 0.8193

k DWk

15 1.1817
16 1.5595
17 1.3167
18 1.4520
19 1.4317
20 1.4094
21 1.1145

k DWk

22 1.4109
23 1.5061
24 1.3627
25 1.3426
26 1.2962
27 1.2675
28 1.3021

Table B.5: Average values of DWk per channel (RLS with dead time)

4See �gure 5.23 for the evolution of the Durbin-Watson statistic of channels 1, 11 and 16.
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B.2.3 Extrinsic channel set

Table B.6 details the average size of each extrinsic channel set Lk.

k #Lk
1 4.3
2 4.9
3 3.4
4 3.4
5 6.5
6 -
7 5.5

k #Lk
8 6.6
9 4.9
10 6.1
11 6.3
12 6.7
13 5.9
14 5.4

k #Lk
15 6.1
16 4.9
17 4.7
18 4.9
19 5.0
20 4.8
21 5.2

k #Lk
22 4.3
23 4.1
24 4.8
25 5.0
26 4.0
27 4.7
28 4.7

Table B.6: Average size of extrinsic channel sets (RLS with dead time)

B.2.4 Screenshot

We �nally give a screenshot of the program which plays the evolution of the

epileptic seizure status in form of a �video�. Figure B.1 shows the graphical user

interface of this program at 12:46:04.

Figure B.1: Screenshot of the seizure focus propagation �video�.
Epileptic activity indicated on the left and right hemispheres at 12:46:04.
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