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Abstract

Positioning and ranging systems working with the propagation delay from different sources
in order to derive the current position, often make use of direct spread spectrum modulation
techniques. In this thesis, the impact of noise, multipath propagation, and pulse shaping at
the transmitter onto the ranging accuracy of such systems is investigated.

For the purpose of comparing different pulse shapes regarding their robustness against noise
and multipath propagation, a MATLAB simulation system was set up. This system simulates
the influence of white gaussian noise and multipath propagation onto bandlimited rectangular
and root raised cosine shaped signals. The simulation for white gaussian noise showed that root
raised cosine pulses perform better than rectangular pulses. In the next step this behaviour of
the system was analytically proved by deriving the Cramer Rao lower bound for the impact
of white gaussian noise onto both kinds of pulses. The analytical result followed the simula-
tion outcome. The simulation run including multipath propagation showed too an additional
accuracy for the root raised cosine pulses.

A hardware testbed was set up for the purpose of measuring the influence of noise and other
interferers. In this system, which is fully controlled by MATLAB, arbitrary signals of up to
21 MHz bandwidth can be transmitted and the propagation time can be estimated with an
accuracy equal to a ranging error of approximately 1 mm. The noise floor of the receiver was
used to compare the simulated and calculated results with the measurements in the testbed.



Kurzfassung

Positioning Systeme, die Signallaufzeit von unterschiedlichen Stationen dazu benutzen die Posi-
tion eines Objekts zu bestimmen benutzen hauptsächlich Spread Spectrum Modulation. Diese
Diplomarbeit beschäftigt sich mit den Auswirkungen von Rauschen, Mehrwegeausbreitung und
den verwendeten Pulsformen auf die Genauigkeit der Laufzeitmessung solcher Systeme.

Um die einzelnen Pulse bezüglich ihrer Robustheit gegenüber Rauschen und Mehrwegeaus-
breitung vergleichen zu können, wurde eine MATLAB Simulationsumgebung geschaffen. Mit
diesem System wurde der Einfluss von weißem gausschen Rauschen und Mehrwegeausbreitung
auf Signale mit Root raised cosine und bandlimitierter Rechteck Filterung simuliert. Das
Ergebnis der Simulation für weißes gaussches Rauschen war ein deutlich geringerer Fehler bei
der Verwendung von Root raised cosine Pulsen als bei Rechteckpulsen. Weiters wurde mittels
der Cramer Rao lower bound der Einfluss von weissem gausschen Rauschen für beide Pulstypen
hergeleitet. Die Berechnungen untermauerten die Ergebnisse der Simulation. Die Simulation
für Mehrwegeausbreitung zeigte ebenfalls einen geringeren Fehler bei der Verwendung von Root
raised cosine Pulsen.

Weiters wurde ein Messsystem zur Bestimmung des Einflusses von Rauschen und anderer Störer
aufgebaut. Mit diesem komplett von MATLAB gesteuerten System lassen sich Laufzeiten von
beliebigen Signalen mit Bandbreiten bis zu 21 MHz mit einer Genauigkeit von umgerechnet
ca. 1 mm messen. Das Empfängerrauschen wurde dazu benutzt die Ergebnisse der Simulation
und der Berechnung für weisses gaussches Rauschen denen der Messungen gegenüberzustellen.
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Chapter 1

Introduction

1.1 Radio positioning

Radio positioning, radio navigation or radio locating is the process of finding the location of
objects through the use of radio waves. Radio locating usually denotes passive systems, where
the radio waves are transmitted by the object to be located or backscattered, as in radar. In
active systems, the location is determined by the object itself.

P1 P2

P3

Px

Figure 1.1: Locating a transmitter/receiver using a system of receivers/transmitters at
known positions.

Figure 1.1 shows a system with a reference network consisting of antennas at known positions
P1 - P3 and an antenna at the position Px that shall be determined. Depending on the
application, at Px may be a transmitter and the position Px is determined by the reference
network or a receiver at Px calculates its position using the signals that are transmitted by the
reference antennas at P1 - P3.

For a configuration of antennas as in Figure 1.1, there are two major techniques that use
propagation times of signals for the determination of a position:

• Time of arrival (TOA): The distances from the transmitter(s) to the receiver(s) are
determined by measuring the propagation times.

• Time difference of arrival (TDOA): The difference of the distances is determined
by measuring the differences of the propagation times from the transmitters(s) to the
receiver(s).

1



1.1.1 Time of arrival

The position of an object is calculated using the distances from the object to reference points,
whereas the distances are calculated by measuring the propagation time of a signal from the
transmitter to the receiver. The objects position is then given by the intersection of spheres (in
the three dimensional space) or by the intersection of circles (on a two dimensional plane). For
a unique determination of a position, four distances are needed (three on a two dimensional
plane).

t
0

t
t1

t
t2

t
t3

t1 P1

t2

P2

t3

P3

Px

Figure 1.2: Spherical positioning in time of arrival systems.

Figure 1.2 illustrates the spherical positioning using the distances to three different reference
points. Whereas it does not make a difference in which direction the propagation time is
measured. A device at Px may be a receiver for the signals transmitted by the reference
stations, or it may be a transmitter and the reference network measures the distances to the
unknown position Px.

In order to measure the propagation time of a signal, receivers and the transmitters have to
be synchronized. The common way of synchronization in TOA systems is to use synchronous
clocks in all transmitters an receivers.

1.1.2 Time difference of arrival

In TDOA systems, time differences between the arrival of signals are used to determine a posi-
tion. The common application of TDOA systems is to determine the position of a transmitter
using a system of several receivers at known positions. As in TOA, TDOA may also be used
the other way round, where a receiver calculates its position by measuring the time difference
of arrival of the signals from reference transmitters.

Figure 1.3 illustrates the calculation of a position using TDOA. The calculated position is
given by the intersection of hyperbolas (in 2D) or hyperboloids (in 3D). On these hyperbolas
(or hyperboloids), the difference of the distances from the unknown position to two reference
positions is constant. The number of receivers (or transmitters) needed for a unique solution
is the same as for TOA, three for two dimensions and four for three dimensions. In most

2



applications it is sufficient to use just three receivers (or transmitters). One of the two resulting
positions can then usually be excluded.

t

t

t

∆t21

∆t32

P1 P2

P3

∆t21

∆t32Px

Figure 1.3: Hyperbolic positioning in time difference of arrival systems.

Synchronization

Depending on whether a transmitter or a receiver is at the position to determine, different
kinds of synchronizations are needed:

• If the position of a transmitter is calculated in the reference system, the measurement of
the times the signal arrives at the different antennas has to be done synchronously.

• If the position is calculated in a receiver at the unknown position, the transmit signals
have to be send synchronously as well as the measurement in the receiver has to be done
synchronously.
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1.2 Direct sequence spread spectrum modulation

data
source

prn
generator

prn
generator

∫ TD

t = kTD

d(t)

c(t)

s(t)

c(t)

y(t) q(t) d̂

Figure 1.4: Spread spectrum system with a correlator receiver.

Direct sequence spread spectrum is a digital modulation technique that takes much more
transmit bandwidth than the information signal that is being modulated. The data symbols
are multiplied by a continuous sequence of chips, each of which has a much shorter duration
than a data symbol, resulting in a noise like transmit signal having the symbol energy spread
over a very large bandwidth. Because of this property, the spreading sequences are also called
pseudorandom noise or pseudo noise. In the receiver the correlation of the received signal with
a local copy of the spreading sequence is calculated. Therefore, the used spreading sequence
has to be known by the receiver.

The common criterion to compare the quality of direct sequence spread spectrum systems is
the process gain:

Gp =
SNRout

SNRin
(1.1)

where SNRout is the signal-to-noise ratio after the demodulation and SNRin is the signal-to-
noise ratio at the input of the receiver. For direct sequences spread spectrum, Gp equals the
ratio between the chiprate and the symbolrate, or equivalently the length L of the spreading
sequence in number of chips. For typical process gains of 10 to 30 dB, the system may also work
for negative signal-to-noise ratios at the input of the receiver and may tolerate jamming power
levels higher than the received signal power. Thus, direct sequence spread spectrum modulation
can be used for secure communication, where the transmit signal can be hid in noise and the
received signal can only be demodulated if the used spreading sequence is known.

Direct sequence spread spectrum modulation can be used for CDMA1 applications, where
several transmitters, that use different spreading sequences share the same channel, limited by
the cross-correlation properties of the spreading sequences (see Section 2.1).

Figure 1.5 illustrates a typical direct sequence spread spectrum transmission using a system
like the one in Figure 1.4:

• In the transmitter, the data symbols d(t) are multiplied by the periodic spreading se-
quence c(t), resulting in a transmit bandwidth that equals the bandwidth of the spread-

1Code division multiple access
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ing sequence. For a spreading sequence of length L, the transmit bandwidth is L times
the bandwidth of the unmodulated data (the chiprate is L times the symbolrate).

• The received signal s(t) is multiplied by the same spreading sequence that was used in
the modulator. Assuming synchronization between the receiver and the transmitter, the
result of the multiplication is the original data signal with the data bandwidth.

• Uncorrelated interferers, like the CW2 signal i(t) in Figure 1.5 are spread spectrum
modulated by the receiver, the interferers energy is spread over the bandwidth of the
spreading sequence.

• The integrator calculates the sum of the despreaded signal y(t) over one symbol period,
whereas the output of the integrator q(t) at t = k · TD is the autocorrelation of the
spreading sequence at τ = 0. For broadband noise, like spreaded interferers, the integrator
acts as a lowpass filter.

• In order to obtain the data symbols d[kTD], the signal at the output of the integrator is
sampled at the symbol rate.

t

c(t)
1
0

−1 Tc LTc 2LTc

t

d(t)
1
0

−1 TD 2TD

t

s(t), i(t)
1
0

−1 TD 2TD

t

y(t), i(t) · c(t)
1
0

−1 TD 2TD

t

∫
y(t),

∫
i(t) · c(t)

L

0

−L

TD 2TD

ω

C(jω)

ω

D(jω)

ω

S(jω)

ω

Y (jω)

ω

Q(jω)

Figure 1.5: Signals in a spread spectrum system with a correlator receiver.

2continuous wave

5



1.2.1 The matched filter approach

In telecommunications, a linear receive filter is called matched filter if its impulse response is
the time-reversed of the transmit filters impulse response. The output of the receive filter is
the auto-correlation of the transmit pulse and it can be shown that then the signal-to-noise
ratio after the receive filter is maximized. Such a matched filter can be used to demodulate a
direct sequence spread spectrum signal.

data
source

c(t) c(−t)
t = kTD

d(kTD) s(t) q(t) d̂

Figure 1.6: Matched filter spread spectrum system.

Figure 1.6 shows a spread spectrum system which uses a linear filter for modulation and the
corresponding matched filter for demodulation. While the transmit signal is exactly the same
as for the correlator system described before, the output of the demodulator is the complete
correlation function for all time differences τ :

q(τ) =

TD∫
0

s(t)c(t− τ) dt (1.2)

Figure 1.8 shows the signals in a matched filter system. For t = k · TD, the output of the
matched filter equals the output of the correlator receiver. Figure 1.7 illustrates the differences
between these two approaches. While a single correlator calculates the correlation for a single
code phase, the matched filter calculates the correlation function for all values of the codephase.

s(t) q(kTc)

c(t)

∫ TD

c(t− Tc)

∫ TD

c(t− 2Tc)

∫ TD

Figure 1.7: Parallel correlators as matched filter receiver.
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t
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1

0
−1

Tc LTc = TD

t

d(t)
1

0

−1
TD 2TD

t

s(t), i(t)
1

0
−1

TD 2TD

t

q(t), i(t) ∗ c(−t)

L

0

−L

TD

2TD

ω

C(jω)

ω

D(jω)

ω

S(jω)

ω

Q(jω)

Figure 1.8: Signals in a matched filter spread spectrum system.

1.2.2 Spread spectrum in positioning

For both techniques of radio positioning described in Chapter 1.1, the time of the arrival of
a signal is measured in the receiver. Using direct sequence spread spectrum modulation, the
estimation of the time a signal arrives equals the process of synchronizing the receiver to the
received signal. This is done by maximizing the correlation function of the received signal cr(t)
with the local reference signal cref (t):

τ̂ = arg max
τ

T∫
0

cr(t)cref (t− τ) dt (1.3)

whereas:

• in correlator receivers, the synchronization is a search for the correlation maximum by
shifting the codephase of the local copy of the spreading sequence until the maximum is
found.

• in matched filter receivers, the correlation function is calculated for all values of the code
phase in one step. Thus the synchronization equals the search for the maximum of the
output signal q(t) before the symbol rate sampler.

7



Chapter 2

Implementation

In this chapter, a simulation system for direct sequence spread spectrum modulation using
matched filters is introduced and the design and implementation in MATLAB is described.

c(t) g(t) f(t) c(−t)
d[kTD] s(t) q(t)

Figure 2.1: The matched filter spread spectrum system.

In the design of the system, the following aspects were considered:

• Receiver: For the simulation, as well as for the measurement system in Chapter 5,
a matched filter receiver was used. A very simple way to implement a matched filter
receiver is described in the last section.

• Spreading sequences: Two different types of spreading sequences were implemented:

– m-sequences, with their very good autocorrelation properties.

– gold codes, for use in CDMA systems.

• Filters: For the transmit filter, that limits the transmit bandwidth to a certain value
and the receive filter, that filters out all of the out-of-band interferers and noise, matched
filters were used. Whereas root raised cosine and bandlimited rectangular pulses were
implemented.

Figure 2.1 shows an overview of the used system, that consists of four filters, the spread spec-
trum modulation and demodulation matched filters c(t) and c(−t), and the matched transmit
and receive filters g(t) and f(t) = g(−t).

8



2.1 Spreading sequences

In spread spectrum receivers the correlation of the received sequence with the local copy of
the spreading sequence is calculated. Thus, the correlation function is used as criterion for the
comparison of different spreading sequences or families of spreading sequences [1].

• In order to compare single sequences, the periodic1 autocorrelation function of the se-
quences cn(t) is calculated.

acf(τ) =

TD∫
t=0

cn(t)cn(t + τ) dt 0 ≤ τ ≤ TD (2.1)

The criterions for a good autocorrelation function are:

– A high maximum of acf(τ) at τ = 0.

– A low number of maxima for τ 6= 0.

– Low maxima for τ 6= 0.

• For the comparison of different families of spreading sequences concerning their quali-
ties in CDMA applications, the crosscorrelation between different sequences of the same
family is calculated.

ccf(τ) =

TD∫
t=0

cn(t)cm(t + τ) dt 0 ≤ τ ≤ TD (2.2)

The crosscorrelation function of an ideal family of sequences is zero (the sequences are
orthogonal). For common families of spreading sequences, the value of the maximum of
the crosscorrelation function is used as criterion.

2.1.1 Maximum length sequences

Maximum length sequences (m-sequences) are having a nearly perfect autocorrelation function
and so they are often used in direct sequence spread spectrum systems. Their autocorrelation
function takes only two values:

acf [k] =

{
L k = 0
−1 1 ≤ k ≤ L− 1

(2.3)

The maximum of the autocorrelation function equals the length L of one period and the only
maximum for k 6= 0 is −1.

1The begin of the sequence is connected to its end resulting in a ring

9



T T T T T T
1 → +1
0 → −1

Figure 2.2: Generation of m sequences using a shift register.

Figure 2.2 shows the common way to generate m-sequences using a linear feedback shift register
where the input on the left is fed by the XOR sum calculated over certain bits of the current
internal state. The linear feedback shift register cycles through all possible binary words (with
exception of the zero word), whereas the initial word may be any binary number except the
zero word. The result is a periodic sequence of maximum length L = 2n − 1, with n being the
length of the shift register. The number of "1"s is one greater than the number of "0"s, thus,
after the mapper the sequence is approximately zero-mean resulting in a carrier suppression.

For the use in CDMA systems, different sequences of the same length are needed. The different
sequences are then generated by shift registers having different feedback taps, whereas not all
possible feedback configurations generate sequences of maximum length (See Table 2.1 for
the number of different m-sequences with a certain length). The values, the crosscorrelation
function takes depends on which specific pair of m-sequences was used. Figure 2.5 (a) shows a
typical crosscorrelation function of m-sequences.

2.1.2 Gold codes

Gold codes (Gold sequences) are very popular spreading sequences in CDMA applications.
They are generated by adding two different m-sequences of the same length, whereas not all
pairs of m-sequences result in Gold codes. Those pairs which yield Gold codes are called
preferred pairs. The length of the resulting Gold code is the same as of the used m-sequences
(L=2n − 1).

T T T T T T

T T T T T T

1 → +1
0 → −1

Figure 2.3: Generation of Gold sequences by adding two m sequences.

The generation of Gold codes is illustrated in Figure 2.3. For a fixed initial value of the first
m-sequence, every different initial value of the second m-sequence results in a different Gold
code. One set of Gold codes consists of the preferred pair of m-sequences plus all Gold codes

10



that can be generated by adding these two sequences. Thus, the number of gold codes in one
set is L + 2 = 2n + 1. The crosscorrelation function takes the same three values for any two
Gold codes in the same set (see Figure 2.5 (b)).

The autocorrelation functions of m and gold sequences are shown in Figure 2.4. While max-
imum length sequences have nearly perfect autocorrelation properties, the autocorrelation of
gold sequences has significant maxima for τ 6= 0.

τ

acf(τ)

0

63

(a)

τ

acf(τ)

0

63

(b)

Figure 2.4: Autocorrelation of (a) m sequences and (b) Gold sequences.

τ

ccf(τ)

0

15

(a)

τ

ccf(τ)

0

15

(b)

Figure 2.5: Crosscorrelation of (a) m sequences and (b) Gold sequences.

A comparison of both types of sequences is given by Table 2.1. The number of available
sequences for a certain sequence length is for Gold sequences much higher than for m-sequences.
The maximum value of the crosscorrelation function is much lower for Gold sequences as for
m sequences. The longer the sequences, the higher the differences between the two types of
sequences.
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m sequences Gold sequences

SR length seq. length seq. in set max. CCF seq. in set max CCF

3 7 2 5 9 3
4 15 2 9 17 7
5 31 6 11 33 7
6 63 6 23 65 15
7 127 18 41 129 15
8 255 16 95 257 31
9 511 48 113 513 31
10 1023 60 383 1025 63
11 2047 176 287 2049 63
12 4095 144 1407 4097 127

Table 2.1: Comparison of m and Gold - sequences.

2.2 Pulses

The shape of the output pulse of the spread spectrum system is given by the transmit and the
receive filter. For a matched filter system, where the impulse response of the receive filter is the
time inverted impulse response of the transmit filter, the overall pulse p(t) is the autocorrelation
of the impulse response of the transmit filter. In the following, the two different types of pulses
that were used are explained.

2.2.1 Bandlimited rectangular pulses

Ideal rectangular pulses, without any limitation of the bandwidth, have an infinite transmit
bandwidth. The Fourier transform for a chiprate Rc is given by Eq. (2.4).

S(jω) = 2
sin( ω

2Rc
)

ω
(2.4)

The autocorrelation is the triangular function:

p(t) =

{
1−

∣∣∣ t
Tc

∣∣∣ |t| ≤ Tc

0 |t| > Tc

(2.5)

For the use in radio communication, where the transmit bandwidth is limited, rectangular
pulses have to be low pass filtered before they can be used. Figure 2.6 (a) shows the autocor-
relation of rectangular pulses that were filtered using an ideal lowpass filter. The smaller the
transmit bandwidth, the more the lowpass filter becomes evident. For a given chiprate, the
shape of the pulse is determined by the bandlimitation.
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t

p(t)

0−Tc−2Tc Tc 2Tc

Ωp = π
Tc

Ωp = 2π
Tc

Ωp = ∞

(a)

ω

|P (jω)|

0− 6π
Tc

− 4π
Tc

− 2π
Tc

2π
Tc

4π
Tc

6π
Tc

(b)

Figure 2.6: Rectangular pulses for a fixed chiprate and different bandwidths:
(a) Autocorrelation and (b) Fourier transform for an infinite bandwidth.

Figure 2.7 shows a comparison of bandlimited rectangular pulses for a given bandwidth and
different values of the chiprate. The width of the pulse is given by the chiprate, the lower the
chiprate, the more the resulting pulse looks like the ideal rectangular pulse and the higher the
width of the pulse.

t

p(t)

0− 2π
Ωp

− 4π
Ωp

2π
Ωp

4π
Ωp

Ts = 4π
Ωp

Ts = 2π
Ωp

Ts = π
Ωp

(a)

ω

|P (jω)|

0−Ωp Ωp

(b)

Figure 2.7: Rectangular pulses with a fixed bandwitdh and different chiprates:
(a) Autocorrelation and (b) Fourier transform.

2.2.2 Root raised cosine pulses

Root raised cosine pulses [2] are very popular transmit pulses in telecommunications. In a
system that uses root raised cosine pulses in the transmitter and receiver (matched filters),
the overall pulse is a so called raised cosine pulse. If a raised cosine filtered signal is sampled
correctly in the receiver, no intersymbol interference occurs and the data sysmbols are perfectly
recovered. Pulses with this property are called Nyquist pulses.
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The impulse response of the raised cosine pulse (that equals the autocorrelation of the root
raised cosine pulse) is given by:

p(t) = ωα(t) · sinc(π
t

Tc
) with ωα(t) =

cos(απ t
Tc

)

1− (2α t
Tc

)2
(2.6)

with the roll-off factor α ∈ [0, 1]. The Fourier transform is given by

P (jω) =


Tc |ω| ≤ (1− α) π

Tc

Tc
2

[
1− sin( Tc

2α(|ω| − π
Tc

))
]

(1− α) π
Tc
≤ |ω| ≤ (1 + α) π

Tc

0 |ω| ≥ (1 + α) π
Tc

(2.7)

This shows that raised cosine pulses are bandlimited with bandwidth

Ωp = (1 + α)
π

Tc
(2.8)

t

p(t)

0−Tc−2Tc Tc 2Tc

α = 0
α = .5
α = 1

(a)

ω

|P (jω)|

0

Ts

− 2π
Tc

− π
Tc

π
Tc

2π
Tc

(b)

Figure 2.8: Raised cosine pulses as nyquist pulses: (a) Time-domain function,
(b) Fourier transform.

Figure 2.8 shows the autocorrelation and the Fourier transform of raised cosine pulses for three
different values of the roll-off factor α. A larger roll-off factor means slower spectral roll-off,
larger bandwidth and better temporal concentration of the pulse. For α = 0, the raised cosine
pulse degenerates to the sinc pulse2.

Figure 2.9 shows raised cosine pulses for a given bandwidth Ωp. The impulse response and the
Fourier transform can be derived by substituting the chip duration by:

Tc = (1 + α)
π

Ωp
(2.9)

2p(t) = sinc(π t
Tc

)
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This implementation of raised cosine pulses will be used in Chapter 3, where the influence of
noise is derived as a function of the bandwidth. Compared to the common implementation of
raised cosine pulses, the width of the pulse is the higher, the higher the roll-off factor.

t

p(t)

0− π
Ωp

− 2π
Ωp

π
Ωp

2π
Ωp

α = 0
α = .5
α = 1

(a)

ω

|P (jω)|

0−Ωp Ωp

(b)

Figure 2.9: Raised cosine pulses with a fixed bandwidth: (a) Time-domain function,
(b) Fourier transform.
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2.3 Implementation in MATLAB

In order to simulate the influence of white noise and multipath propagation, a simulation
system was implemented in MATLAB. The same system was also used in the measurement
system in Chapter 5.

The most important aspects are described in the following:

The sample rate

The simulation in MATLAB is done using discrete-time signals. Therefore a system sample
rate has to be chosen. Simulations showed that for typical signals errors caused by white
noise and multipath channels are much smaller than the length of one chip, so the sample
rate has to be much higher than the chiprate and much higher than the signal bandwidth.
Figure 2.10 illustrates the limited positioning resolution of discrete-time signals. For equally
likely distributed positions, the mean error for a sample rate of fs = 1/Ts is:

σ2
τ =

Ts
2∫

−Ts
2

t2
1
Ts

dt =
T 2

s

12
(2.10)

στ =
Ts√
12

(2.11)

In order to measure other errors, the error due to the discrete-time simulation should be smaller
than the error that shall be measured. Thus, the sampling rate has to be sufficiently high.

τ

∆τ

∆τ

P (∆τ)

Ts
2−Ts

2

1
Ts

τ

τ̂

Ts

τ

∆τ

Ts
2

−Ts
2

Figure 2.10: Positioning error due to sampling.
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Using the resample function

Instead of using extremely high system sample rates, MATLAB’s resample3 function may be
used. The signals are then generated and transmitted at lower sample rates. In the receiver,
the received signal, or equivalently the output of the modulator is resampled to a higher sample
rate. Simulations showed that the sample rate in the transmitter should be at least four times
the signal bandwidth. Otherwise, the distortion due to the reconstruction filter of the resample
function becomes evident.

Signal generation in the frequency domain

For the simulation of the estimation of the propagation time, a periodic transmit signal was
used, whereas its sufficient to generate, transmit, and process a single period.

• The spreading sequences are generated in MATLAB functions, whereas the length of the
shift register can be chosen from 2 to 12. In typical simulations, the sample rate is higher
than the chiprate. Thus, the sequence has to be upsampled using MATLAB’s upsample4

function. Whereas the sample rate has to be an integer multiple of the chiprate.

• The root raised cosine filters were implemented in a function that calculates the impulse
response for arbitrary values of the sample rate, the bandwidth, and the roll-off factor.
The same function is used for the bandlimitation of rectangular pulses where a root raised
cosine filter with α = 0 is used.

• The transmit signal is the spreading sequence filtered by the transmit filter, whereas the
filtering is done in the frequency domain using the FFT5. One period of the spreading se-
quence as well as the impulse response of the transmit filter is FFT transformed, whereas
the length of the FFT is for both signals the period of the spreading sequence. The
multiplication of both equals the cyclic convolution. The resulting signal, transformed
back to the time domain, is one period of the periodic spreading sequence filtered by the
transmit filter.

• The same technique can be used when the transmit signal shall be modulated with data.
The spreading sequence is first modulated with the data symbols, and is then filtered in
the frequency domain.

Signal processing in the frequency domain

Like the transmitter, the receiver can also be implemented in the frequency domain. The
receiver consist of two linear filters which are both the time inverted versions of one of the
filters in the transmitter. Thus, one period of the transmit signal can be used to demodulate
the received signal. The received signal is transformed to the frequency domain and multiplied
by the complex conjugate of the FFT transform of the transmit signal. Transformed back to
the time domain, the result is one period of the output of the matched filter receiver for a
periodic receive signal.

3The resample function inserts zeros between the samples and filters the resulting signal with a reconstruction
filter.

4The upsample function inserts zeros between the samples, but does not filter the resulting signal.
5Fast Fourier Transformation
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The final simulation system

The following code illustrates the generation and processing of direct sequence spread spectrum
signals in MATLAB.

pn_n=10; % Length of the shift register
fc=10; % Chiprate
fs=1000; % System sample rate
fg=5; % Signal bandwidth
a=1; % Roll off factor
d=50; % Length of the impulse response of the filters

After defining the signal parameters, the spreading sequence and the transmit filter are gener-
ated and transformed to the frequency domain using the FFT.

prn_seq=mfolgen(pn_n,1,1,1); % Spreading sequence
prn_seq=upsample(prn_seq,fs/fc); % Upsampling
PRN=fft(prn_seq,length(prn_seq)); % FFT

cos_filter=raisedcosine(fs,fg,a,d); % Calculation of the filter
RRC=fft(cos_filter.numr,length(prn_seq)); % FFT

One period of the transmit signal is calculated in the frequency domain

s=ifft(PRN.*RRC); % Transmit signal

and the receive filter is the conjugate complex of the Fourier transform of the transmit signal.

REC=conj(PRN.*RRC); % The (matched) receive filter

The received signal y is filtered and demodulated by calculating the correlation.

q=ifft(fft(y).*REC); % Demodulation

Finally, the delay of the received signal is estimated by finding the maximum of the demodulated
signal.

[m i]=max(q); % m...maximum, i...position of the maximum
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Chapter 3

White gaussian noise

In this chapter, the influence of white gaussian noise on the estimation of the signal position
will be inspected. The influence is simulated and a lower bound is derived. In the last section,
the influence of the signal parameters and the role of the observation time will be discussed.

3.1 The AWGN channel

g(t)

n(t)

f(t)

Figure 3.1: The AWGN channel.

An AWGN (Additive white Gaussian noise) channel adds zero-mean noise with a constant
spectral density and a gaussian distribution of amplitude to the transmitted signal. Whereas
the noise is at least white inside the used frequency band. White noise with a gaussian dis-
tribution may have many different natural sources, like the thermal vibrations of atoms. For
this thermal noise, the one-sided noise PSD1 is N0 = kϑ, where k is the Boltzmann’s constant
(1.380 · 10−23 J/K) and ϑ is the temperature in Kelvin. The total noise power of white noise
within a certain bandwidth B is N0B.

In order to compare different transmit signals regarding the influence of white noise, it is useful
to use the concept of the signal-to-noise ratio. In this work, two different definitions of the
signal-to-noise ratio were used:

• SNR = signal power
noise power

• C
N0

= symbol energy
one-sided noise PSD

While the first definition is a rather general definition, the second one is usually used in
telecommunications. To substitue one difinition by the other, Eq. (3.1) can be used:

C

N0
= SNR ·B · TD (3.1)

where TD is the symbol duration.

1Power spectral density
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3.2 Simulation

In order to see the influence of white gaussian noise on the estimated position τ̂ of the correlation
maximum, noise with a certain power was added to the transmit signal and the position of
the maximum of the correlation function was determined. This was repeated N times and the
standard deviation (Eq. (3.2)) over these N results was calculated.

στ =

√√√√ 1
N − 1

N∑
i=1

(τ̂i − τ)2 (3.2)

The following aspects had to be considered in the simulation:

• The mean error for quite large values of the signal-to-noise ratio is much smaller than
the width of the received pulse. In order to achieve a resolution higher than the errors,
a sample rate much higher than the signal bandwidth has to be used.

• Simulations showed that the sample duration should be at least four times smaller than
the expected error to obtain useful results.

• The generation of the noise was done by MATLAB’s randn function, which generates a
sequence of zero-mean random values with a gaussian distribution.

• Simulations showed that the standard deviation should be calculated over at least 500
results for every value of the signal-to-noise ratio to obtain useful results.

SNR [dB]

σx [m]

−15 0 15
0

0.5 9 dB

Rc=47.5 MHz
L=1023
α=0
B=10.5 MHz, 21 MHz

Figure 3.2: Simulation of the influence of white noise.

Figure 3.2 shows the result of a simulation using root raised cosine pulses with two different
transmit bandwidths. Independent of the shape of the pulse, the error is indirectly proportional
to the square-root of the signal-to-noise ratio. The characteristic for a certain signal is just
shifted to the left or the right when a signal paramter is changed.
As in Figure 3.2, the error characteristic is shifted to the left by 9 dB when the bandwidth is
doubled, or in other words, for a certain error, the SNR is up to 9 dB lower for a signal having
twice the bandwidth.
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The minimum signal-to-noise ratio

While the estimated positions for strong signals are located mostly within the pulsewidth (the
correlation maximum is much higher than the standard deviation of the noise), the higher
the noise power gets, the more noise peaks are higher than the correlation maximum and the
estimated positions become equally likely distributed over the whole signal period. In the
simulation, this becomes evident by an abrupt rise of the mean error. In Figure 3.2, the mean
error is only plotted for values of the SNR greater than this minimum SNR. The simulations
showed that this minimum SNR is reduced by ≈ 3dB when the bandwidth is doubled.

3.3 The Cramer Rao lower bound

Even though the simulation of the influence of white noise works quite fine, a lower bound for
the mean error was derived using the Cramer Rao lower bound, that expresses a lower bound
on the variance of estimators of a deterministic parameter.

For the used estimator:

τ̂ = arg max
τ

T∫
0

cr(t)cref (t− τ) dt (3.3)

a way to calculate the Cramer Rao lower bound was found in [3]:

σ2
τ ≥

1

8π2
(

C
N0

)
B∫
−B

f2|Sm(f)|2 df

B∫
−B

|Sm(f)|2 df


(3.4)

Where Sm(f) is the Fourier transform of the transmit waveform.

In the following, this lower bound is calculated for bandlimited rectangular pulses and for root
raised cosine pulses.

3.3.1 Bandlimited rectangular pulses

For unfiltered rectangular pulses, the Fourier transform is:

Sm(f) =
Rc

π

sin(πf
Rc

)
f

(3.5)

Since the two integrals are calculated in the frequency domain, the bandlimitation is done by
the limits of the integrals.

With φ = 2π f
Rc

, dφ
df = 2π

Rc
, and Φ = 2π B

Rc
, the solutions of the two integrals are:
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B∫
−B

f2 |Sm(f)|2 df =
R2

c

π2

B∫
−B

sin2

(
πf

Rc

)
df =

R3
c

2π3

Φ∫
−Φ

sin2

(
φ

2

)
dφ =

R3
c

2π3

(
φ

2
− 1

2
sin(φ)

) ∣∣∣∣∣
Φ

−Φ

=
R3

c

2π3
(Φ− sin(Φ)) =

R2
c

π2

(
B − Rc

2π
sin
(

2πB

Rc

))
(3.6)

B∫
−B

|Sm(f)|2 df =
2Rc

π

Φ∫
−Φ

sin2(φ
2 )

φ2
dx =

Rc

π

Φ∫
−Φ

1
φ2
− cos(φ)

φ2
dx =

Rc

π

(
cos(φ)− 1

φ
+ Si(φ)

) ∣∣∣∣∣
Φ

−Φ

=
2Rc

π

(
cos(Φ)− 1

Φ
+ Si(Φ)

)
=

Rc

π

(
Rc

π

cos(2πB
Rc

)− 1
B

+ 2Si
(

2πB

Rc

))
(3.7)

B∫
−B

f2 |Sm(f)|2 df

B∫
−B

|Sm(f)|2 df

=
R3

c
2π3 (Φ− sin(Φ))

2Rc
π

(
cos(Φ)−1

Φ + Si(Φ)
) =

ΦR2
c

4π2 (Φ− sin(Φ))
(cos(Φ)− 1 + ΦSi(Φ))

=
BRc

2π

(Φ− sin(Φ))
(cos(Φ)− 1 + ΦSi(Φ))

(3.8)

The Cramer Rao lower bound for bandlimited rectangular pulses finally is2:

στ ≥
√

cos(Φ)− 1 + ΦSi(Φ)
4π C

N0
BRc (Φ− sin(Φ))

with Φ = 2π
B

Rc
(3.9)

Approximations

In order to compare the lower bound for rectangular pulses to the lower bound for root raised
cosine pulses, approximations for the exact solution in (3.9) should be used.

For integer values of the ratio of the bandwidth B to the chiprate Rc, the lower bound is:

στ,n =

√
Si(2πn)

4π C
N0

BRc

for n =
B

Rc
= 1, 2, . . . (3.10)

2Si(x) =
x∫
0

sin(ξ)
ξ

dξ
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or equivalently, with the values listed in Figure 3.3 (b):

στ,n =
b√

C
N0

BRc

with b =

√
Si(2π B

Rc
)

4π
(3.11)

Considering a given chiprate, the approximation is always a lower bound for bandwidths higher
than the bandwidth used in the approximation (see the plot of the Si function in Figure 3.3 (a)).

For very large values of B
Rc

, the following approximation can be used:

στ,∞ =
1√

8 C
N0

BRc

for
B

Rc
→∞ (3.12)

Finally, a lower and an upper bound for the exact solution are given by the boundaries for n=1
and n→∞:

στ,1 ≤ στ ≤ στ,∞ (3.13)

0.3359√
C
N0

BRc

≤ στ ≤ 0.3536√
C
N0

BRc

(3.14)

B
Rc

Si(2π B
Rc

)

π
2

1 2 3 4 5
(a)

B
Rc

b =
√

Si(2π B
Rc

)

4π

1 0.3359
2 0.3446
3 0.3476
4 0.3491
5 0.3500
∞ 0.3536

(b)

B
Rc1 2 3 4 5 6

0.94

1

1.06

στ,∞
στ

στ,1

στ

(c)

Figure 3.3: Approximation for rectangular pulses: (a) The Si function, (b) the numerators
for integer values of B

Rc
, (c) the exact solution inside its two boundaries.
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In the GPS system, rectangular pulses are used in the C/A code with a chiprate Rc=1.023 MHz.
A comparison of my results of the Ramer Rao lower bound for rectangular pulses to the result
from [4] for the GPS C/A code in Eq. (3.15) proofs the derivation, whereas the numerator
differs by a small amount from my approximations.

στ ≥
3.444 · 10−4√

C
N0

B︸ ︷︷ ︸
[4]

=
0.3483√

C
N0

BRc

(3.15)

3.3.2 Root raised cosine pulses

For root raised cosine pulses, the square of the magnitude of the Fourier transform, that is
needed for the calculation of the Cramer Rao lower bound, is the Fourier transform of the
raised cosine pulse:

|Sm(f)|2 =


Tc |f | ≤ (1− α) 1

2Tc

Tc
2

[
1− sin( Tc

2α(2π|f | − π
Tc

))
]

(1− α) 1
2Tc

≤ |f | ≤ (1 + α) 1
2Tc

0 |f | ≥ (1 + α) 1
2Tc

(3.16)

For root raised cosine pulses with a common bandwidth B, the chip duration Tc is substituted:

Tc = (1 + α)
1

2B
(3.17)

and the limits are:

B1 = (1− α)
1

2Tc
= B

(1− α)
(1 + α)

and B2 = (1 + α)
1

2Tc
= B (3.18)

The Fourier transform of the raised cosine pulse as a function of the frequency f is then:

|Sm(f)|2 =


Tc |f | ≤ B1

Tc
2

[
1− sin( Tc

2α(2π|f | − π
Tc

))
]

B1 ≤ |f | ≤ B

0 |f | ≥ B

(3.19)

Since a normalized version of the raised cosine pulse is used, the pulse energy is:

B∫
−B

|Sm(f)|2 df = 2Tc

B1∫
0

df + Tc

B∫
B1

[
1− sin

(
Tc

2α
(2πf − π

Tc
)
)]

df

= 2Tcf

∣∣∣∣∣
B1

0

+ Tc

[
f +

α

πTc
cos
(

2fTcπ − π

2α

)] ∣∣∣∣∣
B

B1

= (1− α) +
1 + α

2
− 1− α

2
+

α

π
cos

(
(1 + α)π − π

2α

)
− α

π
cos

(
(1− α)π − π

2α

)
= 1 +

α

π
cos(

π

2
) +

α

π
cos(−π

2
) = 1

(3.20)
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and

B∫
−B

f2 |Sm(f)|2 df = 2Tc

B1∫
0

f2 df + Tc

B∫
B1

f2

[
1− sin

(
Tc

2α
(2πf − π

Tc
)
)]

df

=
2
3
Tcf

3

∣∣∣∣∣
B1

0

+
1
3
Tcf

3 +
α

T 2
c π3

(
(f2T 2

c π2 − 2α2) cos
(

2fTcπ − π

2α

))

− α

T 2
c π3

(
2fαTcπ sin

(
2fTcπ − π

2α

)) ∣∣∣∣∣
B

B1

=
2
3
TcB

3
1 +

1
3
TcB

3 − 1
3
TcB

3
1

+
α

T 2
c π3

(
(1 + α)2π2

4
− 2α2

)
cos
(

(1 + α)π − π

2α

)
− α

T 2
c π3

(
(1− α)2π2

4
− 2α2

)
cos
(

(1− α)π − π

2α

)
− α

T 2
c π3

(
(1 + α)2πα

2

)
sin
(

(1 + α)π − π
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(3.21)

The Cramer Rao lower bound for root raised cosine pulses finally is:

στ ≥
1√

8π2 C
N0

B2f(α)
with f(α) =

1 + 3α2

3 (1 + α)2
− 8α2

π2 (1 + α)2
(3.22)
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3.4 Discussion

The results from the last section showed that the influence of white noise depends on the signal-
to-noise ratio and on the shape of the transmit pulse. For both types of pulses, the shape is
determined by two parameters, whereas the bandwidth is the only common parameter.

Bandlimited rectangular pulses

An approximation for the mean error for bandlimited rectangular pulses is:

στ ≥
const.√

C
N0

BRc

(3.23)

The mean error depends on the bandwidth and the chiprate in the same way, increasing one
of the two parameters will reduce the mean error, whereas the ratio of the bandwidth to the
chiprate should always be greater than one to maintain the rectangular shape (see Figure 2.6
and Figure 2.7). Doubling any of the two parameters reduces the error by 3 dB.

Root raised cosine pulses

The exact solution of the lower bound for root raised cosine pulses is:

στ ≥
1√

8π2 C
N0

B2f(α)
with f(α) =

1 + 3α2

3 (1 + α)2
− 8α2

π2 (1 + α)2
(3.24)

The mean error depends on the bandwidth and the roll-off factor, whereas the smallest error
for a given bandwidth is achieved for a roll-off factor α = 0, where the pulse is shorter than for
α > 0. The difference to a roll-off factor of 1 is ≈ 4 dB. Doubling the bandwidth reduces the
error by 6 dB (9 dB if the other definition of the signal-to-noise ratio is used), the same result
as for rectangular pulses, if both, the bandwidth and the chiprate are doubled.
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Figure 3.4: Standard deviation for root raised cosine pulses.
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Comparison

Figure 3.5 shows the mean error of root raised cosine pulses and rectangular pulses with a fixed
chiprate as a function of the bandwidth. For bandwidths higher than the chiprate, a raised
cosine pulse is better than a rectangular pulse. The gain increases with higher values of the
bandwidth.
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Figure 3.5: Comparison of rectangular and root raised cosine pulses.

Even though for a given C
N0

the total noise power inside the
transmission bandwidth is proportional to the bandwidth, the

mean error decreases for an increasing bandwidth.

3.4.1 The observation time

In the last section, the mean error was calculated as a function of the signal-noise-ratio C
N0

,
the ratio of the symbol energy to the noise power spectral density, whereas the symbol energy
can be expressed as the mean signal power multiplied by the length of one symbol. Thus, the
Cramer Rao lower bound is also a function of the symbol length. In order to take account of
the symbol length, the other definition of the signal-to-noise ratio is used, where the Cramer
Rao lower bound is indirectly proportional to the square-root of the symbol length:

στ ∼ 1/
√

SNR · TD (3.25)

In common direct sequence spread spectrum systems, the symbol length TD is the length of one
period of the spreading sequence, TD = L

Rc
(the length of one period of the spreading sequence

in chips divided by the chiprate). Whereas in correlation receivers, TD equals the integration
time, in matched filter receivers, the length of the impulse response of the matched filter is TD,
thus, TD may also be termed "observation time".
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Increasing the observation time

In order to reduce the mean error, the symbol length should be as long as possible. This can
be achieved during the design of the system by using a longer spreading sequence or a lower
chiprate, which will both result in a lower symbol rate. For a given symbol length, the mean
error may also be reduced by increasing the observation time in the receiver.

To increase the observation time in the receiver, two techniques were found in [3]:

• Coherent summation: If the transmit signal is just a periodic sequence of the spreading
sequence (no data is transmitted), the phase of the received signal is constant and thus
the integration time of the receiver may be increased to any desired value.

• Noncoherent summation: If data is transmitted, the data symbols are usually not
known in advance, so the coherent summation would only work if the data symbols were
known. For this case, the mean error can be reduced by calculating the correlation over
one symbol length, saving the result of the correlation and adding the squared magnitudes
of N saved correlations:

c̃cf(τ) =
N∑

n=1

|ccfn(τ)|2 (3.26)

The estimation of the position is then done by maximizing c̃cf(τ).

Simulations showed that both techniques reduce the mean error in the same way. For every
doubling of the observation time, or doubling of N, the mean error is reduced by 3 dB. The only
difference is the minimum signal-to-noise ratio mentioned in Section 3.2, while the minimum
SNR for coherent summation is reduced by 3 dB for every doubling of the observation time, it
is only reduced by ≈ 2 dB for noncoherent summation.

Calculating the mean

The mean error may also be reduced by calculating the mean over a certain number of results:

τ̂ =
1
N

N∑
n=1

τ̂n (3.27)

Simulations showed, that the standard deviation of the mean position τ̂ is reduced in the
same way as the observation time was increased from T to N·T, with the difference, that the
minimum signal-to-noise ratio remains the same as for the single estimations τ̂n.
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Chapter 4

Multipath propagation

In wireless communication systems, the transmit signal reaches the antenna by more than one
path due to the reflection from objects such as buildings and cars, called multipath propagation.
According to the different propagation times along the different paths, the signals arrive with
different delays at the receiving antenna (see Figure 4.1).

s(t)

s(t− τ1)

s(t− τ0) y(t)

Figure 4.1: Multipath propagation.

For N paths, the impulse response of a static multipath channel is:

h(t) =
N−1∑
n=0

anejφnδ(t− τn) (4.1)

with the Fourier transform:

H(jω) =
∫ ∞

−∞
h(t)e−jωtdt =

N−1∑
n=0

anejφne−jωτn (4.2)

where τn is the propagation time, an the amplitude and φn the phase of the n-th path. This
very simple model of a multipath channel does not take account of the effect of doppler shift
due to moving receivers and transmitters.

4.1 Ranging errors due to multipath propagation

In all positioning and ranging applications, the line-of-sight path, the path where no recflections
occur is the desired path. Due to reflections, all other signals reach the receive antenna later
than the line-of-sight signal and cause errors in the estimation of the propagation time of the
desired line-of-sight signal. Figure 4.2 shows the received pulse for a simple model with one
secondary path and no phase difference:

h(t) = aδ(t− τ0) + a1δ(t− τ1) (4.3)
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Figure 4.2: Ranging errors due to multipath propagation.

The result is a distorted pulse having its maximum at a different time as the undistorted line-
of-sight pulse. The influence of the transmit pulse and the channel parameters onto this error
is simulated in the following.

4.2 Simulation

For the simulation of the influence of a multipath channel onto the estimation of the propagation
time, a very simple channel model consisting of the line-of-sight and one echo path was used.
With the normalization of the line-of-sight path to an attenuation of 1 and a phase of 0, the
impulse response of the channel filter is:

h(t) = δ(t) + aejφδ(t−∆τ) with a < 1 (4.4)

with a propagation time difference ∆τ between the line-of-sight and the echo path.

ω
0 ωc

original channel
transformed channel

Figure 4.3: Multipath propagation in the passband: For the simulation in the baseband, the
channel filter has to be transformed into the baseband.

An additional phase is introduced by the passband to baseband transformation of the received
signal. Since the transmit signal passes the channel filter in the passband, the simulation has to
be done in the passband or the channel filter has to be shifted to the baseband. For the second
option, the equivalent baseband impulse response of the channel filter for a carrier frequency
of ωc is:

h(t) = δ(t) + aejφe−jωc∆τδ(t−∆τ) (4.5)
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In the following simulations, the difference of the estimated signal delay τ̂ to the signal delay
τ for the undistorted line-of-sight path was determined for different pulses, whereas only the
worst case was simulated. This worst case is given by a total phase (φ − ωc∆τ) of 0 and π,
where the two received signals are in phase or in opposite phase. Figure 4.4 shows, that the
error for other values of the phase are all inside an envelope given by the error for φ = 0, π and
ωc = 0. The power of the echo was set to a = −3 dB in all simulations.

∆τ

τ̂ − τ φ = 0
φ = π

(a)

∆τ

τ̂ − τ ωc = 0, φ = 0
ωc = 0, φ = π
ωc 6= 0

(b)

Figure 4.4: Multipath error as a function of the phase: (a) for ωc = 0 and different
values of φ. (b) for different values of ωc.

4.2.1 Rectangular pulses

The shape of bandlimited rectangular pulses is given by the chiprate and the bandwidth. For a
certain chiprate the error is the smaller, the higher the bandwidth. While for bandwidths higher
than ≈ 4 times the chiprate, multipath errors are limited to time differences ∆τ smaller than
the chiplength Tc, for smaller bandwidths, there are evident errors for higher time differences
(see Figure 4.5 (a)).

∆τ

τ̂ − τ

Tc

B = .5Rc

B = Rc

B = 2Rc

B = 4Rc

B = 8Rc

(a)

∆τ

τ̂ − τ B = 1, Rc = 1
B = 2, Rc = 2
B = 4, Rc = 4

Tc,4 Tc,2 Tc,1

(b)

Figure 4.5: Multipath error for rectangular pulses: (a) for a given chiprate. (b) for constant
ratios of the bandwidth to the chiprate.

For constant ratios of the bandwidth to the chiprate, the multipath error reduces to the half
for every doubling of the chiprate and the bandwidth, as well as the maximum time difference
where errors occure is reduced to the half (see Figure 4.5 (b)).
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4.2.2 Root raised cosine pulses

The shape of root raised cosine pulses is determined by the bandwidth and the roll-off factor,
for a certain bandwidth the pulsewidth is the higher, the higher the roll-off factor. This higher
pulsewidth results in an higher maximum error and a shift of the maximum to higher time
differences ∆τ . On the other hand, the (effective) impulse response of root raised cosine pulses
is the shorter, the higher the roll-off factor. While the error for a roll-off factor of 1 is limited
to time differences lower than ≈ the pulsewidth, the influence for lower roll-off factors is still
evident for much higher time differences. (see Figure 4.6 (b)).

∆τ

τ̂ − τ

B = 1
B = 2
B = 4
B = 8

(a)

∆τ

τ̂ − τ

α = 0
α = .5
α = 1

(b)

Figure 4.6: Multipath error for root raised cosine pulses: (a) for different values of the
bandwidth. (b) for different roll-off factors.

Figure 4.6 (a) shows the error for different values of the bandwidth, independent of the roll-off
factor, a higher bandwidth results in lower errors and an compression of the error characteristic.

4.2.3 Comparison

In order to compare the different pulses, the results for the maximum bandwidth of the system
described in Chapter 5 were used. These results are shown in Figure 4.7 where a propagation
speed of c0 ≈ 3 · 108 m/s was assumed and both, the time differences as well as the errors,
were multiplied by c0. The length of one chip is then ≈ 6 m.
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x̂− x [m]
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1

2

3

α = 0
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rect

B = 21 MHz
Rc ≈ B/2
a = −3 dB

Figure 4.7: Multipath errors in comparison of different pulses.
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The largest errors occur for rectangular pulses and raised cosine pulses with a roll-off factor of
α = 1, while the lowest error is obtained for sinc pulses. On the other hand, the higher the
distance difference, the worse the sinc pulses compared to rectangular and raised cosine pulses
with higher roll-off factors are, where significant errors only occur for distance differences lower
than a certain bound (≈ 30 m in Figure 4.7).

In Figure 4.7, the used chiprate of ≈ B/2 is a tradeoff between a limitation of the error to quite
low distance differences and low errors for distance differences above this bound. Reducing the
chiprate would lower the error above the bound, while the bound is shifted to the right. Higher
chiprates would result in lower errors for small distance differences, but larger errors for higher
distance differences.
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Chapter 5

The measurement system

In this chapter the measurement system i set up at the institute is introduced. It consists of a
single transmitter and a single receiver hardware unit fully controlled by MATLAB.

MATLAB

transmitter receiver
s(t)

sync/trig

(a)

t

s(t)

t

trig(t)

t

y(t)
τ

(b)

Figure 5.1: Measurement system: (a) block diagram. (b) synchronization of transmitter and
receiver using a trigger.

A periodic transmit signal s(t) is send to the receiver, where the signal is demodulated and
the time difference between the arrival of the signal and the arrival of the trigger is estimated.
Therefore, a trigger signal trigg(t), that is generated in the transmitter, periodically initiates
the recording of data in the receiver. This periodic estimation of the propagation delay makes
it possible to repeat every measurement as often as needed to calculate the mean error caused
by interferers.

In the design of the system, the following requirements had to be implemented:

• The power and the frequency of the transmit signal can be set to an arbitrary value.

• The baseband signals can be complex valued. Therefore, both, the transmitter and the
receiver must be able to handle complex signals.

• The generation of the transmit signals as well as the processing of the received signals is
done in MATLAB in the same way as in the simulations.

• The transmit signal may optionally by modulated with data.

• The transmit signal is directly loaded via MATLAB to the transmitter, and the received
signal is directly copied from the receiver back to MATLAB.

• The configuration of all devices is done in MATLAB.
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5.1 Transmitter

Data DSSS
modulator

Transmit
filter DAC Lowpass

filter

ejωct

s(t)

MATLAB AMIQ SMIQ

Figure 5.2: Transmitter.

The transmitter consists of three parts:

• MATLAB: Generation of one period of the baseband signal.

• AMIQ: Periodic output of the baseband signal generated in MATLAB.

• SMIQ: Amplification and modulation onto the desired carrier frequency.

5.1.1 The AMIQ signal generator

The AMIQ signal generator [5] is a modulation source that uses two synchronous DACs to
generate complex valued baseband signals. The two output signals, the in-phase (real part)
and the quadrature (imaginary part) component, are usually connected to the two modulation
inputs of a modulator which modulates the signal onto the desired carrier frequency. Parallel to
the two signal outputs the AMIQ also provides four user programmable digital marker outputs
which operate synchronously to the signal outputs. A marker output can be used to trigger a
measurement.

Specifications

• 14 bit resolution

• 10 Hz . . . 100 MHz sample rate

• For the reconstruction filter a cut-off frequency of 2.5 Mhz, 25 MHz, or no filtering can
be chosen.

• The maximum output voltage is 0.5 Vp into a 50 Ω load.

• Markers are TTL

Sinc distortion

The outputs of the AMIQ’s DACs are "zero order hold" that hold the voltage constant for an
update period Ts = 1/fs. In the frequency domain, this zero order hold introduces sin(x)/x
distortion. Figure 5.3 shows the output signal spectrum is multiplied by the transfer function
given by Eq. (5.1). Thus, the sinc distortion acts like a low pass filter that attenuates image
frequencies, but also attenuates the desired in-band signals.

H(jω) = sinc(π
ω

ωs
) =

sin(π ω
ωs

)
π ω

ωs

(5.1)
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For an update rate of fs = 47.5 MHz (the external sample rate of the receiver) the attenuation
at the maximum signal frequency of 21 MHz (see Section 6.2 for the determination of the
maximum bandwidth) is ≈ 3 dB.

t

y(t)
desired signal
with distortion

(a)

ω

|H(jω)|

0 ωs 2ωs

(b)

Figure 5.3: Sinc distortion: (a) DAC output signal. (b) Attenuation in the frequency
domain.

Four techniques to reduce or eliminate this effect were found in [6]:

• Increasing the update rate (oversampling): Since the DAC’s output attenuation
depends on its update rate, the effect of sinc rolloff can be minimized by increasing the
update rate and keeping the signal bandwidth unchanged. Increasing the update rate
not only reduces the effect of non flat frequency response, it also lowers the quantization
noise floor and loosens requirements for the reconstruction filter.

• Interpolation in the DAC: Interpolation DACs include one or more digital filters,
which insert a sample after each existing data sample with a value interpolated between
each pair of consecutive data sample values. This technique increases the update rate
while keeping the data rate at lower frequency.

• Pre equalization: Increasing the update rate reduces but does not eliminate the effect
of sinc frequency rolloff. It is possible to design a digital filter whose frequency response
is the inverse of the sinc function. Such a pre-equalization filter filters the digital input
data to equalize the signal, and then sends the data to the DAC. It allows the original
signal to be reconstructed without attenuation, while the dynamic of the resulting output
signal is reduced due to the pre-amplification.

• Post equalization: As an alternative to the pre equalization, an analog (post equal-
ization) filter whose frequency response is approximately equal to the inverse of the sinc
function may used. This filter is inserted after the DACs reconstruction filter.

For the DACs in the AMIQ, only pre equalization and increasing the update rate are useful
techniques to reduce or eliminate the sinc distortion. When using given DACs, like the ones in
the AMIQ, an interpolation can only be achieved by increasing the data rate and the update
rate in the same way and keeping the bandwidth unchanged. Post equalization requires addi-
tional hardware that has to be changed whenever the update rate changes, while a digital pre
equalization filter is independent of the update rate.
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• The pre equalization filter was designed in MATLAB using the fir2 function that gen-
erates FIR filters with arbitrarily shaped frequency responses using a frequency sampling
based design.

f=(0:0.01:1);
m=1./sinc(f/2);
b=fir2(100,f,m);
x_equ=filter(b,1,x);

• Increasing the update rate from 47.5 MHz to an update rate of 95 MHz that is used
in Section 5.3, reduces the attenuation to ≈ 0.7 dB at 21 MHz

Communication with MATLAB

The remote configuration of AMIQ and the transmission of the signal waveforms to AMIQ is
done via the GPIB1 bus.

To load a new waveform into the AMIQ, the following has to be done:

1. Filter the signal with the pre equalization filter to eliminate the sinc distortion.

2. Scale the signal to the full scale of the DACs to achive the maximum dynamic of 14 bit.

3. Combine the two 14 bit signal samples and the four 1 bit marker samples to two 16 bit
words.

4. Open a connection to AMIQ.

5. Reset AMIQ.

6. Choose the sample rate.

7. Choose if AMIQ should synchronize to an external 10 MHz reference.

8. Choose the reconstruction filter (2.5 MHz, 25 MHz, external or off).

9. Copy the signal to AMIQ.

10. Activate the marker outputs.

11. Activate the in-phase and quadrature outputs and choose the mode. For an operation
with the SMIQ modulator the mode FIX should be used.

12. Choose the desired trigger. For a continous operation, a software trigger will start the
output.

13. Close the connection to AMIQ.

1General Purpose Instrumentation Bus, IEEE 488
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5.1.2 The SMIQ vector modulator

The SMIQ vector modulator [7] modulates the (complex valued) baseband signal generated by
AMIQ to the desired carrier frequency and amplifies it.

In the version of SMIQ that was used:

• a carrier frequency between 300 kHz and 6.4 GHz can be used.

• the (peak) transmit power can be between −140 . . . + 10 dBm.

To transmit with a certain RMS2 power instead of a certain peak power, the crest-factor3 of
the baseband signal can be send to SMIQ. It is then automatically added to the desired power.

The communication with MATLAB works the same way as with AMIQ. After sending a reset
and switching to the vector modulation mode, the desired carrier frequency, the transmit power
and optionally the crest factor can be send. The connection to SMIQ then can be closed. If any
of the paramteres needs to be changed during operation, a new connection can be established
without resetting the SMIQ.

5.2 Receiver

Bandpass
filter

t = kTs

e−jωIF

Receive
filter

DSSS de-
modulator

y(t)

70 MHz

q[k]

Sampler MATLAB

Figure 5.4: Receiver.

The receiver consists of two parts:

• Sampler: Ampflification, sampling, and digital downconversion to the baseband.

• MATLAB: Filtering, demodulation and all further processing.

While the transmitter described in the last section is ready for use at typical radio frequencies,
the receiver only works for signal at an intermediate frequency of 70 MHz. For measurements
at typical radio frequencies an additional downconverter is needed.

5.2.1 The 70 MHz IF sampler

The sampler that is used as receiver is the Agilent E1439 VXI 70 MHz IF sampler [8] with a
maximum sample rate of 95 MSa/s. In the IF mode, both, the in-phase and the quadrature

2Root-Mean-Square
3The baseband definition of the crest factor is the ratio of the peak to the average of a signal, cx =

|x|max√
Px
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component of the received signal are converted to the baseband (passband to equivalent base-
band transformation) using a single sampler, whereas the phase of the resulting baseband signal
varies from measurement to measurement, it can be estimated and corrected in MATLAB.

In common applications of the sampler, two modules are used, an input module and the sampler
module. While the sampler module and its remote control is well documented, no information
about the input module was found. Hence, the input module was not used and the input signal
was directly sent to the sampler module.

ω
−ωIF 0 ωIF

Figure 5.5: Passband to baseband transformation.

The remote control and the transmission of the sampled signals via the firewire4 bus to the
workstation is done using VISA5. Therefore, a software library (DLL), that provides all the
functions to communicate with the sampler, has to be loaded into MATLAB.

Configuration of the sampler

For the use in the measurement system, the following settings have to be considered:

• Input signal path: Whether to use the baseband or the 70 MHz IF path.

• Clock setup: Depending on the application, different sources for clocking and synchro-
nization can be used. The following predefined configurations were used (see Section 5.3):

– internal sample clock of 95 MHz and no synchronization.

– internal sample clock of 95 MHz and synchronization to an external 10 MHz refer-
ence.

– external sample clock.

• Data mode: Whether data shall be collected in continuous mode or in block mode.
For triggered measurements the block mode is used, where an external trigger starts the
collection of a block of data and the measurement is halted until the data is send to the
workstation.

• Blocksize: The size of one block of data.

• Resolution: The resolution of the sampler can be set to 12 or 24 bit. Because of the
broadband white noise present on the input of the ADC, the sampler is limited to 12 bit
resolution for input bandwidths greater than 10 MHz.

4IEEE 1394
5Virtual Instrument Software Architecture
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• Spectral order: The spectrum of the output data can be in the same spectral order as
the input signal or in the reverse order.

• Bandwidth: The 3 dB input bandwidth can be adjusted to B = 0.44fs/2sigBw, where
fs is the sample frequency and sigBw is (when using the IF path) an integer value > 0,
where for sigBw=1, the maximum (one-sided) bandwidth is 20.9 MHz.

• Decimation: The sampler automatically decimates every output signal to a data rate
of fs/2sigBw−1. Optionally, an extra decimation by a factor of two can be made. For
the highest input bandwidth of 20.9 MHz, the optional decimation has to be used, the
output data rate is then 47.5 MSa/s.

• Trigger: The start of collecting data can be triggered by different internal and external
trigger events. For the triggered measurements in combination with the transmitter
described in Section 5.1, external triggering with TTL level transition is used.

• Input range: In the IF mode, the input range of the sampler can be set in 1 dB steps
to values from –36 to +12 dBm. There is also an auto ranging mechanism that sets the
input range to the lowest value that does not cause an ADC overload.

The measurement procedure

After the initialization and configuration of the sampler, the collection of one block of data
is invoked by sending a command to arm the trigger. The sampler will start collecting data
when the next hardware trigger occurs. The block of data that was saved can then be copied
to MATLAB. For the next block of data, a new software trigger has to be send.

For every measurement, the sampler provides following additional information:

• The actual trigger delay: This is the delay, measured in periods of the ADCs sample
clock between the time the trigger occurred and the first sample was taken. The trigger
delay varies from block to block, so it needs to be taken in account. See Section 5.3 for
more information.

• The actual phase: This is the phase of the internal LO6 at the time the trigger occurred.

• The overload bit: This indicates if there was an overload at the input of the sampler
when the block of data was sampled.

6Local oscillator
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5.2.2 Equalization

The simulations in the previous chapters showed that the bandwidth is a very important signal
parameter for the precision of positioning systems. Hence, the signals in the measurement
system should be transmitted with the highest possible bandwidth. In the described measure-
ment system the bandlimiting device is rather the receiver than the transmitter. While the
sampler’s maximum 3 dB bandwidth is ≈ 21 MHz, the transmitter can generate signals with
a bandwidth of up to ≈ 25 MHz (if a reconstruction filter is used).

f [MHz]

|H(f)| [dB]

47.5 70 95

0

−10

(a)

t
Ts

|q(t)|

0 5

with equalizer
w/o equalizer

B = 21 MHz
α = 0

(b)

Figure 5.6: Sampler input characteristic: (a) Frequency response. (b) Response to a raised
cosine pulse.

Figure 5.6 illustrates the measured distortion that is introduced by the samplers input filters,
and even for bandwidths much smaller than 21 MHz, the samplers frequency response is not
flat. In order to transmit with the highest possible bandwidth and to obtain the desired output
pulses in the receiver, an equalizer was designed.

Zero forcing equalizer design

Zero forcing equalizers [2] remove all the distortion by multiplying the received signal with the
inverse of the channel transfer function. Therefore the channel transfer function H(jω) has to
be known.

DZF (jω) =
1

H(jω)
=

X(jω)
Y (jω)

(5.2)

While the influence of the channel completely vanishes, the great disadvantage of the zero
forcing equalizer is its effect on noise. Values of the channel transfer function H(jω) near
zero will result in a significant noise amplification. In case of the input filters of the sampler,
this is at frequencies higher than ≈ 21 MHz. See Section 6.2 for an illustration of the noise
amplification.

For the calculation of the sampler input equalizer, the FFT transform of one period of the
transmit signal is divided by the FFT transform of one period of the received signal.
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5.3 Synchronization

In unsychronized operation, where the transmitter and the receiver generate their own sample
clocks, the trigger arrives at the receiver with an unknown and varying time difference to
the next sample pulse. While the trigger delay in the receiver (see Section 5.2.1) can be
compensated by shifting the estimated signal position to the left, the time difference between
the arrival of the trigger and the next sample is unknown.

t

sample clock

first sample

t

trigger

unknown trigger delay

known trigger delay

Figure 5.7: Known and unknown trigger delay.

Figure 5.8 shows the results of a continuous measurement of the signal position, whereas ∆x is
the difference between the estimated position and the mean position. For the unsynchronized
case, the estimated position is equally likely distributed within one sample period7. This results
in a mean positioning error of ≈ 0.9 m, which is much too large for making useful measurements.
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Figure 5.8: Continuous estimation of the signal position: (a) No synchronization.
(b) Synchronization via the 10 MHz reference.

7For free space propagation and a sample frequency of 95 MHz one sample period equals ≈ 3 m.
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In order to reduce this error, two alternative configurations were tested:

10 MHz synchronization

The reference input of the sampler is connected to the AMIQs reference output. The error is
the same as for the unsychronized configuration, but the frequency difference between the two
sample clocks seems to be constant. The reason for that is AMIQ’s clock synthesizer that can’t
generate exactly 47.5 or 95 MHz.

Synchronization of the sample clocks

The receiver locks his sample clock to the AMIQs sample clock, where the common sample
rate is 95 MHz. In this configuration, the synchronization works quite fine, the mean error is
reduced to ≈ 1 mm. Figure 5.9 (b) shows the estimated signal position for the first eight hours
after power on. After about three hours of operation the drift of the position is ≈ –1 mm/h.

In this configuration, the attenuation due to the sinc distortion described in Section 5.1.1 is
≈ 0.7 dB at 21 MHz, so that the the pre equalization filter in the transmitter may be omitted.
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Figure 5.9: Synchronization of the sample clocks: The estimated signal delays (a) after
three hours of operation and (b) for the first eight hours after power on.

Even though the synchronization of the sample clocks works quite fine:

All measurements of distances and distance differences are based
on a known receiver sample frequency. In order to make exact
measurements, the exact sample frequency has to be known.
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Figure 5.10: Configurations for synchronization (a) using the 10 MHz reference (b) using
the transmitters sample clock.
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Chapter 6

Measurements

In this chapter, the measurements recorded with the measurement setup from Chapter 5 are
presented.

The influence of the receiver noise is investigated and compared to the results of the calculation.
The receiver noise is also used to show the function and the limits of the zero forcing equalizer
used in the receiver.

6.1 Aspects

In order to make useful measurements, a few aspects should be considered:

• In the used configuration of the system where both, the transmitter and the receiver use
a sample clock of 95 MHz, two different sample clocks have to be used in MATLAB.
While the transmit signal is calculated for the transmitters sample frequency of 95 MHz,
the received signal is decimated to 47.5 MHz before it is transmitted to MATLAB.

• For all measurements a sample frequency of exact 95 MHz is assumed.

• The time difference between the arrival of the trigger and the next sample pulse is approx-
imately constant, but remains unknown. Measuring distances can only be done based
upon the difference to a reference distance.

• When using other chiprates than 47.5 MHz, the length of one signal period should always
be an integer value of samples. For the sake of simplicity the sample rate should be an
integer multiple of the chiprate.

• The phase of the received signal varies from measurement to measurement. Since it
doesn’t matter if the real value of the phase corrected correlation function or the magni-
tude of the complex correlation function is maximized, no phase estimation and correction
has to be done. However, in case data is transmitted, the decoding needs a correct phase.

• The receiver noise is converted to the baseband the same way as the received signal, so
it is complex as well. In investigations about the influence of the receiver noise, only half
of the power of the complex noise has to be taken in account for real valued baseband
signals.

• In the passband to baseband transformation performed in the sampler, where the negative
frequency components of the transmit signal are discarded and the positive components
are shifted to the baseband, the power of the baseband signal equals the power of the
positive components. To obtain the received (passband) power, the power of the baseband
signal has to be multiplied by a factor of two.

• In order to calculate the correct receive power, the input equalizer has to be normalized.
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6.2 White gaussian noise

The noise at the receiver input is now assumed to be white and gaussian thermal noise. The
mean positioning error caused by this noise is measured and compared to the results of the
calculation in Chapter 3.

The mean error as a function of the SNR

In this measurement, the standard deviation of the position estimation was determined for
different values of the transmit power. The signal position was measured 500 times for every
value of the transmit power. The SNR was then calculated by dividing the transmit power by
the received power of the equalized input signal when the transmit signal was turned off. As
mentioned in Section 6.1, only half of the power of the complex valued receiver noise influences
the transmission.

SNR [dB]

στ [m]

−15 0 15
0

0.5

Rc=47.5 MHz
L=1023
α=0
B=10.5 MHz, 21 MHz
measured
calculated

Figure 6.1: Mean error as a function of the SNR: The higher the bandwidth, the higher the
difference between the measurement and the calculation.

Figure 6.1 shows the results for sinc pulses with different bandwidths. While the measured
and the simulated curves are nearly identical for a bandwidth of 10.5 MHz, the difference for
a bandwidth of 21 MHz (≈ the –3 dB bandwidth of the sampler) is ≈ 3 dB (the calculated
curve is shifted to the right by 3 dB). Without the equalizer, the difference to the calculation
is much higher.

The mean error as a function of the signal bandwidth

Following the Cramer Rao lower bound for the standard deviation derived in Section 3.3,
the standard deviation depends on the signal-to-noise ratio in the same way, independent of
any other signal parameter. Thus it is not necessary to measure the standard deviation for
more than one value of the received power to see the difference between the calculation and
the measurement. This fact was used to evaluate the influence of the input filters and the
equalizer.

In the measurement, a constant signal-to-noise ratio (as ratio of the signal power to the noise
PSD) was used. This was achieved by using a constant signal power of -43 dBm, and a
constant sampler input range of 10 dBm for all signals. To compare the measurement with the
calculation, the noise power at 10 MHz was measured and divided by 10 MHz, resulting in a
signal-to-noise ratio C

N0
of 82 dB–Hz.
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Figure 6.2: Influence of the equalizer for α = 0

Figure 6.2 shows the results for sinc pulses. For signal bandwidths higher than ≈ 11 MHz,
the influence of the equalizer becomes evident. While the mean error should decrease for an
increasing bandwidth, the mean error of the unequalized signal is increasing. The mean error of
the equalized signal is quite close to the calculation for bandwidths up to ≈ 21 MHz, while for
bandwidths above, the noise amplification due to the zero forcing equalizer becomes evident.
At a bandwidth of 21 MHz, the error of the unequalized signal is ≈ 6 dB higher than for the
equalized signal. This break may be used to define 21 MHz as the maximum useful bandwidth
for sinc pulses.
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Figure 6.3: Influence of the equalizer for α = 1

Now a root raised cosine pulse with α = 1 which has less high frequency components than the
sinc pulse is used. In contrast to the sinc pulse, the difference between the equalized and the
unequalized signals is not that high. The maximum bandwidth is ≈ 22 MHz, 1 MHz higher as
for sinc pulses.
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Chapter 7

Conclusion

Positioning and ranging systems, working with the propagation delay from different sources
in order to derive the current position, often make use of direct spread spectrum modulation
techniques. This work covered four major topics. First, the basics of the transmission signal
and direct sequence spread spectrum modulation were explained. Secondly, the influence of
white gaussian noise was analyzed by simulations and analytical calculations. Thirdly, the
impact of multipath propagation onto the ranging accuracy of the system was studied using
a MATLAB simulation setup. Finally, a hardware testbed for the purpose of measuring the
influence of noise and multipath propagation was set up. The following paragraphs describe
the four steps and the corresponding results in greater detail.

Direct sequence spread spectrum modulation

Direct sequence spread spectrum is a proper modulation technique for positioning and ranging
applications. The influence of noise and multipath propagation is the smaller the higher the
transmit bandwidth. Due to the CDMA capability of direct sequence spread spectrum mod-
ulation, different transmitters can share the same channel, each with the maximum available
bandwidth.

Using the matched filter approach to spread spectrum, simulations and measurements can be
done by transmitting and processing just a single period of the transmit signal. All signal
processing may then be done in the frequency domain using the FFT.

White gaussian noise

The influence of white gaussian noise on the estimation of the propagation time of a signal can
be simulated as well as derived using the Cramer Rao lower bound. For a given signal-to-noise
ratio, the accuracy is the higher, the higher the bandwidth of the transmit signal. For a given
bandwidth, root raised cosine pulses are more accurate than bandlimited rectangular pulses,
while the accuracy is the higher, the lower the roll-off factor of the root raised cosine pulses.
Another parameter the accuray depends on is the observation time. This parameter is usually
set in the transmitter by defining a certain symbol duration. In order to achieve a higher
accuracy, the observation time may be increased in the receiver.

Multipath propagation

The influence of multipath propagation was simulated for a very simple channel model, whereas
other, more complex models may also be simulated using the MATLAB simulation system. For
the simple model, the error caused by multipath propagation depends only on the shape of
the used pulse. The error is the higher, the lower the bandwidth of the pulse. For rectangular
and root raised cosine pulses with high roll-off factor, significant errors only occur for distance
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differences between different paths smaller than a certain bound. The lower the roll-off factor
of root raised cosine pulses, the higher this bound. However, the minimum error is obtained
for sinc pulses.

Measurements

A measurement system that is capable of measuring the time of arrival of a signal relative to
the arrival of a trigger with an equivalent accuracy of approximately 1 mm was set up and
tested. It may be used for signals with a bandwidth of up to 21 MHz. The influence of the
receiver noise was measured and compared to the result of the calculation for white gaussian
noise, whereas the results of the measurement come very close to the calculation.
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Appendix A

The Demonstration GUI

For the purpose of demonstrating the function of the measurement system, I programmed a
graphical user interface in MATLAB.

The major features of the GUI are:

• The signal parameters, such as the bandwidth and the roll-off factor are set before starting
the GUI.

• The received signal is continuously sampled in blocks of one signal period and is send to
the GUI where the signal is processed.

• An equalizer is automatically calculated and applied to the received signal. It can be
recalculated and switched on and off during operation.

• The received power is calculated and displayed.

• The estimated position of the maximum is saved in an array, whereas the mean value
and the standard deviation of the last N (an arbitrary number that can be set at startup)
estimated positions is displayed.

• The GUI’s upper figure (see Figure A.1 to A.4) shows the correlation function at the
output of the demodulator. The zoom button switches between the display of the entire
period and the range around the correlation maximum.

• The lower figure can display three different types of plots:

– Spectr: shows the power spectrum of the received signal.

– Hist: shows a histogram of the saved positions.

– Pos: shows the saved signal positions.

• Optionally, data that was defined at startup and is periodically transmitted can be de-
modulated by the GUI. The received data is demodulated and displayed as ASCII coded
string. The phase is estimated using the first symbol, that is always "1".

Figure A.1 shows the GUI for a quite strong signal, where a cable1 having a length of approx-
imately 6 m was inserted into the signal path. The lower figure shows the estimated signal
positions, whereas the standard deviation is approximately 3 mm. In Figure A.2, the demodu-
lation of data is illustrated. Figure A.3 shows the distortion caused by a short circuited cable
that was connected in parallel to the signal path. The last picture shows the histogram of the
estimated position for a signal-to-noise ratio of approximately 0 dB.

1A propagation speed of 0.66 · c0 was assumed.
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Figure A.1: Demonstration GUI.

Figure A.2: Demodulated data: The ascii representation of the string "SHFG" is
transmitted, demodulated and displayed.
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Figure A.3: Channel distortion in the time and frequency domain.

Figure A.4: Histogram of the estimated signal positions for a SNR of ≈ 0 dB.
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