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Kurzfassung

Im folgenden befassen wir uns mit der robusten Spektraldichteschätzung und
ihrer Anwendung in der Herzratenvariabilitätsanalyse.

Da die klassischen Spektraldichteschätzer empfindlich auf Ausreißer rea-
gieren, sind robuste Verfahren von Bedeutung. Daher konzentrieren wir
uns auf die robuste Schätzung der Spektraldichtefunktion und stellen ver-
schiedene, bereits existierende, aber auch neue Methoden vor, die robust
gegenüber Ausreißern sind.

Wir betrachten Spektraldichteschätzer, die auf einer Robustifizierung der
Fourier-Transformation und auf der robusten Schätzung der Autokovarianz-
funktion basieren.

Um allerdings verlässliche Schätzwerte der Spektraldichtefunktion zu er-
halten, die unempfindlich gegenüber Ausreißern sind, ist es besser, zuerst die
Ausreißer mittels eines geeigneten robusten Verfahrens herauszufiltern und
anschließend die Spektraldichtefunktion der bereinigten Zeitreihe zu berech-
nen.

Diese Bereinigung der Daten leistet ein robustifizierter Kalman-Filter.
Wir schlagen dafür einen neuen multivariaten ACM-Typ Filter für Zustands-
raummodelle vor. Dieser neuen Filter verallgemeinert den ursprünglichen
ACM-Typ Filter, der auf eindimensionale Beobachtungen beschränkt ist.
Unser neuer Filter wird mit einem weiteren Ansatz, dem gegenwärtig ver-
wendeten rLS-Filter, verglichen.

Alle beschriebenden Methoden sind in der Programmiersprache R imple-
mentiert und werden mit Hilfe umfangreicher Simulationsstudien miteinan-
der verglichen. Das beste Verfahren wird zur Analyse der Herzratenvaria-
bilität bei Diabetikern mit unterschiedlich schwerer kardiovaskulärer autono-
mer Neuropathie herangezogen.
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Abstract

In the following we deal with robust spectral density estimation and its ap-
plication to the analysis of heart rate variability.

As classical spectral density estimators are sensitive to outlying observa-
tions, robustness is an issue. Hence, we focus on the problem of estimating
the spectral density function robustly and present different methods, existing
and new ones, that are resistant to outliers.

We consider spectral density estimators based on robustifying the Fourier
transformation and on robust autocovariance estimation.

However, in order to get a reliable estimate of the spectral density func-
tion, that is insensitive to outlying observations, it turned out that cleaning
the time series in a robust way first and calculating the spectral density
function afterwards leads to encouraging results.

The data-cleaning operation wherein the robustness is introduced, is ac-
complished by a robustified version of the Kalman filter. We propose a new
multivariate approximate conditional-mean (ACM) type filter for state-space
models. This new filtering method generalizes the original ACM-type filter
which is bound to the univariate setting. We compare our new filtering
method to a second approach, the currently used rLS filter, which is also
described.

All presented methods are implemented in the open source language R
and compared by extensive simulation studies. The most competitive method
is also applied to actual heart rate variability data of diabetic patients with
different degrees of cardiovascular autonomic neuropathy.
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Preface

The present research deals with robust spectral density estimation and its ap-
plication to the analysis of heart rate variability (HRV). The analysis of heart
rate variability as non-invasive method is increasingly used in medicine, es-
pecially when investigating cardiovascular autonomic neuropathy in diabetic
patients. This work was motivated by the following remark on the frequency
domain analysis of HRV in Pumprla et al. (2002):

“Before this type of analysis can be performed, extensive editing
and review of the electrocardiogram by an experienced operator
is required to remove/edit non-sinus ectopic beats, pauses, tape
artefact and non-periodic R-R interval changes.”

Classical spectral density estimators are sensitive to outlying observa-
tions, such as ectopic beats and other artifacts, yielding poor results. The
advantage of estimates obtained by robust methods is that they are not much
affected by outliers. Neither removing nor editing of the data needs to be
done.

All presented methods for estimating the spectral density function ro-
bustly are described and explained in detail. They are implemented in the
open source language R (R Development Core Team, 2005) and are avail-
able on request from the author in order to enable others to understand and
reproduce our work.

In a discussion with Dave Thomson, currently at Queen’s University,
Kingston, he mentioned that there exist many different robust methods for
the same research question and it is hard to decide which one should be used
in a certain practical application. As this happens in many areas of robust
statistics, we therefore put special emphasis on the comparison of methods
which is accomplished by extensive simulation studies.
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Chapter 1

Introduction

The spectral density function is a commonly used tool when analyzing time
series in the frequency domain. Areas of applications are signal processing
(cf. Thomson, 1994), geophysics (cf. Chave et al., 1987; Jones and Hollinger,
1997) and medicine (cf. Hartikainen et al., 1998).

However, it is well known that classical estimators of the spectral density
function are sensitive to outlying observations. In the presence of outliers
spectral density estimates may therefore be markedly affected in shape and
power.

Furthermore, in many applications the observed signal will be instation-
ary or its frequency content may change over time. In such situations the
standard Fourier analysis is quite inadequate because it summarizes the in-
formation in the series as a function of frequency and does not preserve any
information in time. Moreover, we have to assume stationarity of the data.
To overcome these limitations of standard Fourier analysis we need to repre-
sent the signal in time and frequency.

An example that this is worth considering is given in Figure 1.1. Three
synthetic signals are plotted in the first row of Figure 1.1. In the second row
the estimated spectral density functions of the signals are shown whereas in
the third row the time-frequency decompositions of the signals are displayed
in greyscales according to the magnitude of the corresponding decomposition
value (small values close to white, large values almost black).

The first two signals are composed of two sine waves with fixed frequen-
cies. On the first signal both frequencies occur during the whole observation
interval, i.e., the first signal was obtained by simply adding the two sine

1
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Figure 1.1: Standard and dynamic Fourier analysis of synthetic signals
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waves, whereas on the second they are temporally localized on the first and
second halves of the time interval. Although the two signals can hardly be
distinguished by only looking at their estimated spectral density functions,
the time-frequency decompositions clearly reveal the temporal discrepancy
of the two components. Two bands (dark color) are visible on the whole
interval for the first signal, whereas for the second signal we can clearly iden-
tify two temporally localized bands. However, the varying of the frequency
content of the third signal, a so called quadratic chirp, is only revealed by its
time-frequency decomposition.

In literature there exist several time-frequency representations. We will
only mention a few but this listing is by no means exhaustive. One is the
dynamic Fourier analysis, also known as windowed Fourier transform, short-
time Fourier transform, or Gabor transform (cf. Shumway and Stoffer, 2000;
Gençay et al., 2002). It is obtained by sliding a window of fixed width
across the time series and estimating the spectral density function in each
window. Another possibility of a more flexible time-frequency representa-
tion (or, to be exact, time-scale decomposition) are wavelets. Details about
wavelet analysis may be found in Ogden (1997) or Percival and Walden
(2000). A third is time-frequency analysis using Wigner distributions (cf.
Matz and Hlawatsch, 2003). Although these methods are not robust in the
presence of outliers, some attempts have been made to robustify wavelet anal-
ysis using median-interpolating refinement (cf. Donoho and Yu, 2000) and
time-frequency analysis using minimax robust time-varying Wiener filters (cf.
Matz and Hlawatsch, 2000).

We will however restrict our further research to dynamic Fourier analysis
which is sensitive to outlying observations unless we estimate the spectral
density function in each window robustly. Hence, we will focus in the follow-
ing on the problem of robust spectral density estimation and present different
methods, existing and new ones, that are resistant to outliers.

Each chapter is dedicated to a specific topic. To improve readability and
increase understanding the related simulation studies and results together
with a discussion are enclosed at the end of each chapter.

Part I containing Chapters 2 to 9 considers the theory of robust spec-
tral density estimation whereas in Part II, as a special practical application,
we focus on the frequency-domain analysis of actual heart rate variability
measurements.

Chapter 2 sums up the existing classical spectral density estimators, in-

3



troduces different kinds of time series outliers and points out the sensitivity
of classical methods to outlying observations. In Chapter 3 we consider
spectral density estimators based on robustifying the Fourier transforma-
tion. Chapter 4 presents several methods based on robust autocovariance
estimation. These include a highly robust autocovariance function and ro-
bust autocovariance estimation based on rank correlation coefficients and
partial autocorrelation coefficients. Here we also cope with the problem of
ensuring positive semidefiniteness.

Chapters 5 to 7 finally deal with robust filtering algorithms. Chapter 5
considers two different ways of estimating the hyper parameters relevant for
the robust filters in the subsequent chapters, namely bounded-influence au-
toregression and robust autoregressive parameter estimation via the MCD
estimator. In Chapter 6 we present different approaches for robustifying the
Kalman filter. We propose a new multivariate approximate conditional-mean
(ACM) type filter for state-space models. This new filtering method gener-
alizes the original ACM-type filter which is bound to the univariate setting.
We compare our new filtering method to a second approach, the currently
used rLS filter, which is also described. In Chapter 7 we consider prewhitened
spectral density estimation based on the robust filtering techniques described
in the previous chapter.

Chapter 8 gives an overview on further related methods that have also
been used in the context of spectral density estimation. In Chapter 9 con-
clusions and remarks to the methods described in Part I are given.

Part II discusses the analysis of heart rate variability data in the frequency
domain. The most competitive method is applied to short-term heart rate
variability measurements of diabetic patients with different degrees of cardio-
vascular autonomic neuropathy and the corresponding results are presented.

4



Part I

Robust Spectral Density
Estimation
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Chapter 2

Classical Spectral Density
Estimation

2.1 Nonparametric Estimation

The nonparametric estimation of the spectral density function is based on
smoothing the periodogram.

Let {xt, t = 1, . . . , n} denote the observed process which is assumed to
be second-order stationary and to have zero mean. We further suppose that
the time intervals between two consecutive observations are equally spaced
with duration ∆t. Then the periodogram is defined as follows:

Ŝ(p)(f) =
∆t

n

∣∣∣∣∣

n∑

t=1

xte
−i2πft∆t

∣∣∣∣∣

2

= ∆t

(n−1)∑

h=−(n−1)

γ̂x(h)e
−i2πfh∆t , (2.1)

where γ̂x(h) denotes the sample autocovariance function of the time series

xt. Ŝ(p)(f) is defined over the interval [−f(n), f(n)], where f(n) is called the
Nyquist frequency and is given by

f(n) =
1

2∆t
. (2.2)

If we restrict our attention to just the frequency f = fk = k/(n∆t),
where k is an integer such that |k| ≤ ⌊n/2⌋, we see that the periodogram
at that frequency fk is—except for a scaling factor—the squared modulus of
X(fk), the k-th component of the discrete Fourier transform of the sequence

6



x1, . . . , xn, which is given by

X(fk) = ∆t
n∑

t=1

xte
−i2πfkt∆t . (2.3)

Although Ŝ(p)(f) is an asymptotically unbiased estimator of the true spec-

tral density function S(f), it is well known that Ŝ(p)(f) may be badly biased
in some cases. There are two common techniques for reducing the bias in
the periodogram: tapering and prewhitening. The latter will be described in
Section 2.3.

Data tapering leads to the direct spectral estimator , which is defined by

Ŝ(d)(f) = ∆t

∣∣∣∣∣

n∑

t=1

htxte
−i2πft∆t

∣∣∣∣∣

2

, (2.4)

where {ht, t = 1, . . . , n} is called the data taper sequence with
∑n

t=1 h
2
t = 1.

The main idea behind tapering is to choose the ht’s so that the beginning
and the end of the observed series xt is downweighted toward 0 in a smooth
way. A particularly interesting class of data tapers among others (e.g. the
cosine or Hanning tapers) are those formed from 0th-order discrete prolate
spheroidal sequences. Because of their remarkable properties we will use
these data tapers. Details may be found in a series of papers by D. Slepian,
of which the most recent is Slepian (1978), and in Thomson (1977, 1982).

Because Ŝ(d)(f) is defined for all f ∈ [−f(n), f(n)], we can smooth it using
a continuous convolution over a continuous set of frequencies. Thus, we
consider an estimator of the form

Ŝ(lw)(f) =

∫ f(n)

−f(n)

Wm(f − ν)Ŝ(d)(ν)dν

= ∆t
n−1∑

h=−(n−1)

wh,mŝ
(d)
h e−i2πfh∆t , (2.5)

where wh,m and Wm(.) are a Fourier transform pair and wh,m = 0 for |h| ≥ n.

ŝ
(d)
h is the estimator of the autocovariance sequence corresponding to Ŝ(d)(f),

i.e., its inverse Fourier transform.
The function Wm(.) is a symmetric real-valued 2f(n) periodic function

for all choices of m, which is square integrable over [−f(n), f(n)], and m is a
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smoothing parameter that controls the degree of smoothing. Wm(.) is called a
smoothing window , its inverse Fourier transform wh,m is called a lag window .

Hence, we call Ŝ(lw)(f) a lag window spectral estimator of S(f).

On the other hand by smoothing the direct spectral estimator Ŝ(d)(f)
with a discrete convolution over a discrete set of frequencies we obtain a so
called discretely smoothed direct spectral estimator of S(f). However, any lag

window spectral estimator Ŝ(lw)(.) can be expressed at the Fourier frequencies
as a discretely smoothed direct spectral estimator.

We note that the definition of the lag window spectral estimator Ŝ(lw)(f)
in (2.5) is essentially a weighting applied to the autocovariance sequence

estimator ŝ
(d)
h corresponding to the direct spectral estimator Ŝ(d)(f).

Many different lag and smoothing windows, e.g., the Bartlett, the Daniell,
the Parzen or the Papoulis window, just to name a few of them, have
been proposed and discussed in literature (see, for example, Priestley, 1981).
Mainly two criteria should be taken into account for evaluating different lag
window spectral estimators: The smoothing window leakage should be small
and the smoothing window should have good smoothing properties, i.e., its
corresponding lag window should decay monotonically to 0.

In all simulation studies as well as for our real data examples we use the
Parzen window because it seems to accomplish the trade-off between small
smoothing window leakage and good smoothing properties best. The Parzen
lag window, Parzen (1961), is defined as follows:

wh,m =





1 − 6(h/m)2 + 6(|h|/m)3 if |h| ≤ m/2
2(1 − |h|/m)3 if m/2 < |h| ≤ m
0 if m < |h| .

(2.6)

However, more important than the choice of the smoothing window is the
choice of the smoothing parameter m. We will use an approach known as
window closing . The idea is to compute a sequence of different lag window
spectral estimates for the same set of data using different smoothing param-
eters which range from small to large. In the case of the Parzen window, the
estimates will look smooth for small values of m, but, as m increases, the
estimates will reveal more and more details. Based upon the examination of
all different estimates, we choose a value of m that is appropriate in the sense
that the resulting estimate is neither too smooth nor too erratic. Although
Ŝ(lw)(.) is a smoothed version of Ŝ(d)(.), the former should still capture the
important features of the latter. According to our experience, a value of m
between n/4 and n/2 seems to be appropriate.
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Further details about the above described nonparametric spectral density
estimators, their statistical properties and the different smoothing windows
may be found in Priestley (1981) or Percival and Walden (1993).

2.2 Parametric Estimation

The most widely used form of parametric spectral density estimation uses an
autoregressive model of order p as the underlying functional form for S(f).
A stationary AR(p) process {xt, t ∈ Z} with zero mean satisfies the equation

xt −
p∑

j=1

φjxt−j = εt , (2.7)

where εt is a white noise process with zero mean and variance σ2
ε . Thus, the

spectral density function satisfies the following equation

∣∣∣∣∣1 −
p∑

j=1

φje
−i2πfj∆t

∣∣∣∣∣

2

S(f) = ∆tσ2
ε . (2.8)

Substituting the maximum likelihood or least squares estimators of the
model parameters, denoted by φ̂1, . . . , φ̂p and σ̂2

ε , we obtain a parametric
spectral density estimator

Ŝ(AR)(f) =
∆tσ̂2

ε∣∣∣1 −∑p
j=1 φ̂je−i2πfj∆t

∣∣∣
2 , |f | ≤ f(n). (2.9)

2.3 Semi-parametric Estimation

The lag window spectral density estimator and the parametric spectral den-
sity estimator are the limiting versions of prewhitening the process before
estimating the spectral density function. The first approach leads to no
prewhitening and the latter corresponds to total prewhitening if we assume
that the process is a finite-order autoregressive process with known order p.

Let {yt, t = 1, . . . , n} denote the observed values of a second-order station-
ary process with zero mean. Then the prewhitened spectral density estimate
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originally suggested by Blackman and Tukey (1958) is defined as

Ŝ(f) =
Ŝ

(lw)
r (f)

|Ĥp(f)|2
, |f | ≤ f(n) , (2.10)

where Ŝ
(lw)
r (f) is a lag window spectral density estimate of the prediction

residuals rt = yt −
∑p

j=1 φ̂jyt−j, t = p + 1, . . . , n and Ĥp(f) is the transfer
function given as

Ĥp(f) = 1 −
p∑

j=1

φ̂je
−i2πfj∆t . (2.11)

2.4 Time Series Outliers

Generally, three types of outliers are considered (cf. Denby and Martin, 1979):
innovation outliers (IO), which affect all subsequent observations, additive
outliers (AO) and substitutive outliers (SO). The latter two have no effect
on subsequent observations. Innovation outliers and additive outliers were
first introduced by Fox (1972).

The second-order stationary ARMA(p, q) process {xt, t ∈ Z} is said to
have innovation outliers if the innovations εt have a heavy-tailed distribution,
for instance a γ-contaminated normal distribution

CN (γ, σ0, σ) = (1 − γ)N (0, σ2
0) + γN (0, σ2) (2.12)

where σ2
0 ≪ σ2 and γ is small. N (µ, σ2) denotes the normal distribution

with mean µ and variance σ2.
Another commonly used model for outliers in time series is the additive

outlier model (AO model). The AO model consists of a stationary core
process, xt, to which occasional outliers have been added. The observed
process {yt, t ∈ Z} is said to have additive outliers if it is defined by

yt = xt + vt (2.13)

where the contaminations vt are independent and identically distributed with
Fvt

. Fvt
is equal to a contaminated normal distribution with degenerate

central component, i.e.,

Fvt
= CN (γ, 0, σ2) = (1 − γ)N (0, 0) + γN (0, σ2) . (2.14)
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Hence, the core process xt is observed with probability 1 − γ whereas the
core process plus a disturbance vt is observed with probability γ. We shall
also assume that xt and vt are independent.

Of course, there is no reason that the mixing component should be the
normal distribution N (0, σ2). We could use any other suitably heavy-tailed
distribution H instead. However, for most theoretical results mentioned in
this work we will need the assumptions given above.

We remark that the AO model can be generalized in the following way.
Let Bt be a Bernoulli process with P (Bt = 1) = γ and P (Bt = 0) = 1 − γ,
and let the observed process be

yt = (1 −Bt)xt +Btṽt . (2.15)

This means that the core process xt is observed with probability 1 − γ and
replaced by a contaminating process ṽt with probability γ. Thus, the process
yt is said to have substitutive outliers . We note that when ṽt = xt + v′t with
v′t ∼ N (0, σ2) this is equivalent to model (2.13) with vt ∼ CN (γ, 0, σ2).

2.5 Non-robustness of Classical Spectral Den-

sity Estimation

It is well known that usual variance estimators are not robust in the presence
of outliers. Since classical spectral density estimation procedures can be
interpreted as estimators of variance on a frequency basis, they share this
lack of robustness.

Innovation outliers do not pose serious problems for spectral density es-
timation if we are primarily interested in the shape of the spectral density
function. We only have to estimate the scaling factor robustly.

The real problem for spectral density estimation are additive outliers. Let
us consider the special case of a single fixed additive outlier, i.e., vj = A, vt =
0, t = 1, . . . , n, t 6= j. Since |z1 + z2|2 = |z1|2 + |z2|2 + 2Re{z1z2}, z1, z2 ∈ C,

the periodogram Ŝ
(p)
yt (fk) of yt,

Ŝ(p)
yt

(fk) = Ŝ(p)
xt

(fk) + ∆t
A2

n
+ ∆t

A

n
2Re

{
X(fk)e

i2πfkj∆t
}
, (2.16)

is raised by ∆t(A2/n) and retains its shape only if the oscillatory term

∆t(A/n)2Re{X(fk)e
i2πfkj∆t} is considerably smaller than Ŝ

(p)
xt (fk) for all fre-

quencies fk.
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Since autoregressive parameter estimates obtained by classical estimation
procedures are not robust in situations where the time series is contaminated
by additive outliers, there is also a corresponding effect on parametric spectral
density estimates.

For further details see Kleiner et al. (1979) or Martin and Thomson
(1982).
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Chapter 3

Simple Robust Approaches

3.1 Robust Fourier Transformation

Let {xt, t = 1, . . . , n} denote the observed process which is assumed to be
second-order stationary and to have zero mean. Then, the periodogram is
defined as follows:

Ŝ(p)(f) =
∆t

n

∣∣∣∣∣

n∑

t=1

xte
−i2πft∆t

∣∣∣∣∣

2

. (3.1)

If we restrict our attention to just the frequency f = k/(n∆t), where k is
an integer such that |k| ≤ ⌊n/2⌋, we see that the periodogram at that fre-
quency is the squared modulus of the k-th component of the discrete Fourier
transform of the sequence x1, . . . , xn.

Transforming the above equation (3.1) we get

Ŝ(p)(f) = n∆t

∣∣∣∣∣
1

n

n∑

t=1

xte
−i2πft∆t

∣∣∣∣∣

2

. (3.2)

Hence, if we keep the frequency f fixed, n−1
∑n

t=1 xte
−i2πft∆t is just the arith-

metic mean of a complex variable, or, in other words, the multivariate loca-
tion estimate of 2-dimensional observations.

In order to obtain a robust estimate of the spectral density function we
simply replace the arithmetic mean by a robust measure of location. A
straightforward way would be to take the trimmed mean or the median, which
will be applied coordinate-wise. A more sophisticated alternative would be
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to replace the mean by a robust multivariate location estimator, e.g., the
L1-median, also called spatial median, or the center of the ellipsoid that
corresponds to the robustly estimated covariance matrix using Rousseeuw’s
MCD estimator.

3.2 Simulation Study

The outline of our simulation study is as follows: First we simulate a core
process xt of length n = 100. xt is chosen to be an autoregressive process of
order 2 given by

xt = xt−1 − 0.9xt−2 + εt , (3.3)

with εt ∼ N (0, 1). Additionally, the additive outliers vt are simulated from
a contaminated normal distribution with degenerate central component, i.e.,

CN (γ, 0, σ2) = (1 − γ)N (0, 0) + γN (0, σ2) , (3.4)

with σ2 = 102. The contamination γ is varied from 0% to 20% by steps of
5%. That means that with probability γ, vt is an additive outlier with vt 6= 0.
To obtain the contaminated process yt, the vt’s are added to the core process
xt. For each level of contamination this is done 400 times.

For each contaminated series we robustly estimate the spectral density
function using the methods based on the trimmed mean and Rousseeuw’s
MCD estimator.

Then, the deviation of each estimated spectral density function from the
true spectral density function is measured in the sense of the squared L2-
norm, i.e.,

err2bS(f)
:= ‖Ŝ(f) − S(f)‖2 =

∫
(Ŝ(f) − S(f))2df , (3.5)

where Ŝ(f) and S(f) denote the estimated and true spectral density func-
tions.

3.3 Results

Regarding the computation time the robust spectral density estimation based
on the trimmed mean is much faster than the method using Rousseeuw’s
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MCD estimator. This is due to the fact that the coordinate-wise application
of the trimmed mean can be calculated straightforward whereas for the MCD
estimator several iterations need to be computed.

Figure 3.1 tries to visualize the results of our simulation study. For both
methods and each level of contamination seven curves are plotted on a loga-
rithmic scale. The bold black line represents the true spectral density func-
tion, whereas the thin black line is the spectral density estimate of one re-
alization out of 400. Moreover, we calculate frequency by frequency the
minimum and maximum, the first and third quartile and median value of all
spectral density estimates. Connecting all median values we obtain the grey
line, to which we will refer hereafter as median spectral density function. In
the same sense we refer to all minimum values as minimum spectral density
function, and so on. Hence, the lower and upper dotted lines are the mini-
mum and maximum spectral density functions, whereas the lower and upper
dashed lines represent the first and third quartile spectral density functions.
This plot may be seen as generalization of the well-known boxplot. The re-
sults obtained by using the MCD estimator are plotted in the left column,
whereas the results based on the trimmed mean are displayed in the right
column.

Surprisingly, for both methods the dispersion of the spectral density es-
timates stays almost the same for all different levels of contamination. How-
ever, for both methods we obtain bad spectral density estimates even in the
case of no contamination, whereas the method based on the trimmed mean
performs better than the one using the MCD estimator, especially if no out-
liers are present. At its peak, i.e., at a frequency of about 0.16, the true
spectral density function is always underestimated but at all other frequen-
cies, especially at higher ones, we see that the spectral density function is all
the more overestimated the higher the contamination.

Next, we try to visualize the squared errors of the estimated spectral den-
sity functions. First, the logarithm of the squared errors is taken. For both
methods Figure 3.2 shows boxplots of the squared errors in eight equally-
sized frequency bands as well as the total squared errors (bottom right) for
all different levels of contamination. As expected by the results plotted in
Figure 3.1 the errors do not differ very much for both methods and, looking at
the different frequency bands separately, stay almost the same independently
of the amount of contamination. However, looking at the total squared er-
rors, we see that the method based on the trimmed mean performs better
than the one using the MCD estimator. The largest contribution to the total
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Figure 3.1: Robust spectral density estimates of the simulated data, left
column ‘MCD’, right ‘5%-trimmed mean’
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squared error is the amount of the frequency band where the spectral density
function has its peak. There the squared errors using the MCD estimator
are larger than the ones based on the trimmed mean. Moreover, we see that
all squared errors are in the same range for all contamination levels.

3.4 Discussion

In this chapter we tried to get robust spectral density estimates by directly us-
ing a robustified version of the Fourier transformation. The classical Fourier
transformation can be interpreted as taking the mean of 2-dimensional ob-
servations. In order to robustly estimate the spectral density function, we
simply replaced the mean by a robust multivariate measure of location. We
compared estimates obtained by two methods, one based on the trimmed
mean, applied coordinate-wise, and the other using Rousseeuw’s MCD esti-
mator.

The results of the simulation study suggest that the method based on the
trimmed mean performs better than the one using the MCD estimator for all
different levels of contamination, which is rather surprising. We would have
expected that the method based on the trimmed mean only performs best in
cases where the amount of trimming coincide with the amount of outliers.

We also used other robust multivariate location estimators, namely the
median, which was again applied coordinate-wise in the same way as the
trimmed mean, and the L1-median (or spatial median). The L1-median has
already been implemented in R based on the algorithm described in Hössjer
and Croux (1995) and is available in the R-package pcaPP. However, both
methods underestimate the true spectral density function even in the case of
no contamination and the results of the corresponding simulation studies are
therefore not published here.
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Chapter 4

Robust Autocovariance
Functions

4.1 Spectral Density Estimation via the Au-

tocovariance Function

Since the spectral density function is the Fourier transform of the autoco-
variance function, Blackman and Tukey (1958) suggest an estimator of the
form

Ŝ(p)(f) = ∆t

(n−1)∑

h=−(n−1)

γ̂x(h)e
−i2πfh∆t , (4.1)

where γ̂x(h) is just the sample autocovariance function of an observed process
{xt, t = 1, . . . , n}.

In order to get a robust version of the spectral density function we simply
replace γ̂x(h) by a robust autocovariance function. We will compare esti-
mates obtained by a highly robust autocovariance function (Ma and Genton,
2000) to others based on Spearman’s rank correlation coefficient (Ahdesmäki
et al., 2005) or on partial autocorrelation (Möttönen et al., 1999). Unfor-
tunately, most of these robust alternatives only yield robust autocorrelation
coefficients. Moreover, the maximum lag for which the autocovariance or
autocorrelation coefficients can be calculated using these methods is n− 2.

Anyway, setting C = γx(0) = var(xt) and estimating it by using a robust
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measure of scale, we propose the following estimate

Ŝ(rob)(f) = ∆tĈ

(n−2)∑

h=−(n−2)

ρ̂(rob)
x (h)e−i2πfh∆t , (4.2)

where ρ̂
(rob)
x (h) denotes one of the above mentioned robust autocorrelation

functions. These methods will be described in detail in the next sections.
Replacing the autocovariance function by a lag-weighted version obtained

by multiplying γ̂x(h) in (4.1) point by point by some weight function w(h)
can be used to improve the properties of the spectral estimator.

4.2 A Highly Robust Autocovariance Func-

tion

A highly robust autocovariance estimator was suggested by Ma and Genton
(2000). Their idea was that covariance estimation can be based on a scale
approach using the following identity (Huber, 1981):

cov(x, y) =
1

4αβ
(var(αx+ βy) − var(αx− βy)) , (4.3)

with α, β ∈ R. In general, the variables x and y may be measured in different
units. However, in time series analysis, x and y will represent the same
variable and we set α = β = 1.

Let {xt, t = 1, . . . , n} be a stationary time series. Then the highly robust
autocovariance function estimator is defined as follows. Extract the first n−h
observations of {xt, t = 1, . . . , n} to produce a vector u of length n− h and
the last n − h observations of {xt, t = 1, . . . , n} to produce a vector v of
length n− h. Then:

γ̂(Q)
x (h) =

1

4

(
Q2

n−h(u + v) −Q2
n−h(u − v)

)
. (4.4)

The function Qm(z) is a highly robust estimator of scale proposed by
Rousseeuw and Croux (1992, 1993) and is defined by

Qm(z) = c {|zi − zj| : i < j}(k) , (4.5)
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where z = (z1, . . . , zm)⊤ is the sample and

k =

(
l

2

)
, with l =

⌊m
2

⌋
+ 1 ,

where ⌊.⌋ denotes the integer part. The factor c = 2.2219 is for consistency
in case of normally distributed data. We note that Qm does not rely on any
location estimate and is therefore said to be location-free.

Moreover, Croux and Rousseeuw (1992) determined an appropriate cor-
rection factor for finite samples. Hence, they redefine Qm as

Qm(z) = dmc {|zi − zj| : i < j}(k) , (4.6)

where the correction factor dm is given by

m 2 3 4 5 6 7 8 9
dm 0.399 0.994 0.512 0.844 0.611 0.857 0.669 0.872

for m ≤ 9, and for m > 9 it is defined as

dm =
m

m+ 1.4
if m odd

dm =
m

m+ 3.8
if m even.

Finally, to obtain a highly robust estimator of the autocorrelation func-
tion, Ma and Genton (2000) propose the following estimator:

ρ̂(Q)
x (h) =

Q2
n−h(u + v) −Q2

n−h(u − v)

Q2
n−h(u + v) +Q2

n−h(u − v)
. (4.7)

The above definition ensures that ρ̂
(Q)
x is bounded between −1 and 1 as we

would expect from an autocorrelation function. We note that γ̂
(Q)
x depends

on the choices of the consistency constant c and the finite sample correction
factor dm in (4.6), whereas ρ̂

(Q)
x is independent of both.

Ma and Genton (2000) note that their proposed estimator of the auto-
covariance function is a robust alternative to the classical, not necessarily
positive semidefinite one, i.e., the one that is divided by n − h instead of n
(see also Appendix A.1). Hence, in order to be comparable with the classical
positive semidefinite sample autocovariance function, we suggest to modify
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the estimates in (4.4) and (4.7) by multiplying them with the factor n−h
n

at
lag h and, additionally, we also have to ensure positive semidefiniteness.

The highly robust estimatorQm has already been implemented in R based
on the fast algorithm described in Croux and Rousseeuw (1992) and is avail-
able in the R-package robustbase. In R the definition of Qm given in (4.6)
is used by default.

4.3 Robust Autocovariance Estimation Based

on Rank Correlation Coefficients

Ahdesmäki et al. (2005) consider a rank-based autocorrelation estimator orig-
inally introduced by Pearson et al. (2003) for the problem of robust, non-
parametric spectral density estimation.

Let {xt, t = 1, . . . , n} be a stationary time series. Then the proposed
estimator is an extension of Spearman’s rank correlation coefficient, quanti-
fying the association between xt+h and xt. More specifically, we consider the
correlation coefficient between the data ranks rx(i) and r′x(i), defined by

ρ
(S)
x (h) =

=
1

K

12

(n− h)2 − 1

n−h∑
i=1

(
rx(i) −

n− h+ 1

2

)(
r′x(i) −

n− h+ 1

2

)
,

(4.8)

where K is a normalisation factor, rx(i) denotes the rank of xi in the set
{xt, t = 1, . . . , n− h} and r′x(i) denotes the rank of xi+h in the set {xt+h, t =
1, . . . , n− h}.

By choosing either K = n− h or K = n in (4.8) we obtain the unbiased
estimate of the rank correlation coefficient or the biased one, respectively.
We shall in future use the biased estimator, i.e., K = n, in order to be
comparable with the classical sample autocovariance function. Moreover, we
note that n− 2 is the largest lag for which formula (4.8) can be computed.

Although this procedure has already been implemented in R and is avail-
able in the R-package GeneTS (cf. also Wichert et al., 2004) we slightly have
to modify it. This is because Ahdesmäki et al. (2005) originally intended to
detect periodicities in time series and not to obtain estimates of the spectral
density function. Therefore they only took the Fourier transform of the au-
tocorrelation function whereas for spectral density estimation rescaling with
a robust measure of scale is necessary.
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4.4 Robust Autocovariance Estimation Based

on Partial Autocorrelation Coefficients

Möttönen et al. (1999) proposed a robust autocorrelation estimation method
which is based on estimating the partial autocorrelation coefficients first.
(For details about partial autocorrelation coefficients the reader is referred
to Appendix A.2.) They suggested to robustly estimate the partial autocor-
relation coefficients by using transformations of Spearman’s rho.

Let {xt, t = 1, 2, . . . } be a stationary time series with zero mean and
φ11 = ρx(1) = corr(xt, xt−1), where ρx denotes the autocorrelation function
of xt. The partial autocorrelation coefficients φhh, h = 2, 3, . . . , can be
calculated recursively as follows. We first write

νht = xt −
h−1∑

i=1

φh−1,ixt−i (4.9)

and

ωh,t−h = xt−h −
h−1∑

i=1

φh−1,ixt−(h−i) (4.10)

for the prediction errors of xt and xt−h, respectively, with the linear effect of
{xt−(h−1), . . . , xt−1} on each removed. Then,

φhh = corr(νht, ωh,t−h) (4.11)

is the correlation between the prediction errors. The recursions for the next
coefficients are

φhi = φh−1,i − φhhφh−1,h−i , i = 1, . . . , h− 1 . (4.12)

The autocorrelations ρx(h), h = 2, 3, . . . , are then obtained by

ρx(h) =
h−1∑

i=1

φh−1,iρx(h− i) + φhh

(
1 −

h−1∑

i=1

φh−1,iρx(i)

)
. (4.13)

Estimates obtained by using formula (4.13) will be denoted by ρ̂
(pacf)
x (h)

where we use the biased version of Spearman’s rank correlation coefficient
(4.8) to obtain robust partial autocorrelation coefficients in (4.11).
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We note that formula (4.12) is just taken from the Durbin-Levinson al-
gorithm whereas (4.13) can be easily obtained from it by rearranging

φhh =
ρx(h) −

∑h−1
i=1 φh−1,iρx(h− i)

1 −∑h−1
i=1 φh−1,iρx(i)

. (4.14)

(Formulas (4.14) and (4.12) are referred to as the well-known Durbin-Levinson
algorithm.)

This approach was originally suggested by Masarotto (1987), who es-
timated the partial autocorrelation coefficients using an M-estimator of the
type considered for independent and identically distributed multivariate data
by Maronna (1976).

In both articles, in Möttönen et al. (1999) as well as in Masarotto (1987),
it is stated that if |φhh| < 1, the sequence ρx(1), ρx(2), . . . , obtained by
(4.13) is positive definite. Although the φhh’s satisfy |φhh| < 1 except when
the process xt is deterministic (cf. Maronna et al., 2006), because the φhh’s
are correlation coefficients, this is only true in theory, but definitely not for
a realisation of xt. We are able to give at least one counter-example that
yields a non-positive definite sequence although |φhh| < 1.

4.5 Ensuring Positive Semidefiniteness

We note that the classical estimators of the autocovariance function as well
as of the autocorrelation function usually used in time series analysis are
positive semidefinite. Unfortunately, all estimators described in the previous
sections are not necessarily positive semidefinite. Hence, using those estima-
tors, we should ensure non-negative definiteness of the sample autocovariance
function and the sample autocorrelation function, respectively.

In their article Ma and Genton (2000) state that this can be achieved
by shrinking (linear or nonlinear), the eigenvalue method or by the scaling
method which were proposed by Rousseeuw and Molenberghs (1993). How-
ever, of the three methods only shrinking is applicable in the time series
context. This is due to the fact that shrinking will always by definition
transform equal correlations to the same value. In order to obtain a positive
semidefinite autocorrelation function the proposed methods are applied to
the corresponding autocorrelation matrix which is a Toeplitz matrix. If we
now use the eigenvalue method or the scaling method we will obtain a positive
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semidefinite matrix but it will not necessarily be a Toeplitz matrix anymore
because equal correlations may be transformed to different values. If we fur-
ther estimate the sample autocorrelation function by, e.g., taking the first
row of this positive semidefinite matrix it may not be positive semidefinite
itself!

In the following we will briefly describe the nonlinear shrinking method
which was originally proposed by Devlin et al. (1975). If the correspond-
ing autocorrelation matrix of the robustly estimated sample autocorrelation
function is not positive semidefinite, then each off-diagonal element rij, i 6= j,
is replaced by r∗ij via the following transformation procedure

r∗ij =





f−1(f(rij) + δ) if rij < −f−1(δ)
0 if |rij| ≤ f−1(δ)
f−1(f(rij) − δ) if rij > f−1(δ)

. (4.15)

Here, δ is a small positive constant, e.g., δ = 0.05, and f is a monotone
increasing function with f : [−∞,∞] → [−1, 1]. This procedure is repeated
until the resulting matrix is positive semidefinite. Devlin et al. (1975) suggest
to define f as follows:

f(x) = ex−e−x

ex+e−x = tanh(x)

f−1(x) = 1
2
ln(1+x

1−x
) = tanh−1(x) .

(4.16)

The authors remark that f−1 in (4.16) is Fisher’s variance-stabilizing trans-
form for correlation coefficients.

The shrinking method has the advantage of being easy to implement,
because (4.15) operate on each correlation coefficient separately.

4.6 Simulation Study

The outline of our simulation study is as follows: In both cases we simulate
a core process xt of length n = 100. For the first example xt is chosen to be
a moving average process of order 1 given by

xt = εt − 0.5εt−1 , (4.17)
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with εt ∼ N (0, 1). We note that for moving average processes the true
autocorrelation function can be easily calculated. Here, it is given by

ρx(h) =





1 if h = 0
θ1

1+θ2
1

= −0.4 if |h| = 1

0 if |h| > 1

. (4.18)

For the second example xt is chosen to be an autoregressive process of
order 2 given by

xt = xt−1 − 0.9xt−2 + εt , (4.19)

again with εt ∼ N (0, 1). Additionally, for both models the additive outliers
vt are simulated from a contaminated normal distribution with degenerate
central component, i.e.,

CN (γ, 0, σ2) = (1 − γ)N (0, 0) + γN (0, σ2) , (4.20)

with σ2 = 102. The contamination γ is varied from 0% to 20% by steps of
5%. That means that with probability γ, vt is an additive outlier with vt 6= 0.
To obtain the contaminated process yt, the vt’s are added to the core process
xt. For both models as well as for each level of contamination 400 series are
simulated.

For each contaminated series we compute the sample autocorrelation
function using the three methods described above, i.e., the highly robust au-
tocorrelation function (Ma and Genton, 2000) and the ones based on Spear-
man’s rank correlation coefficient (Ahdesmäki et al., 2005) and on partial
autocorrelation (Möttönen et al., 1999). Additionally, the mean-squared er-
ror, denoted by MSE , between the true autocorrelation function and the
different estimates averaged over the lags h is computed, i.e.,

MSEbρy(h) := mean
h

((ρy(h) − ρ̂(rob)
y (h))2) (4.21)

where ρy(h) and ρ̂
(rob)
y (h) denote the true autocorrelation function and the

estimate, respectively, and rob ∈ {Q,S, pacf}.
Furthermore, we apply nonlinear shrinking to obtain positive semidefinite

sample autocorrelation functions. Again, the mean-squared error between
the true autocorrelation function and the different positive semidefinite esti-
mates averaged over the lags h is computed.
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These positive semidefinite sample autocorrelation functions of the two
most competitive methods are used to calculate spectral density estimates
of each process. The factor Ĉ in (4.2) is estimated by γ̂

(Q)
y (0). Last, the

deviation of each estimated spectral density function from the true spectral
density function is measured in the sense of the squared L2-norm, i.e.,

err2bS(f)
:= ‖Ŝ(f) − S(f)‖2 =

∫
(Ŝ(f) − S(f))2df , (4.22)

where Ŝ(f) and S(f) denote the estimated spectral density function and true
one.

4.7 Results

In Figure 4.1 the true autocorrelation functions together with typical robust
estimates of the above described methods for different levels of contamination
are presented. The autocorrelation functions of the moving average process
are plotted in the left column, whereas the ones of the autoregressive process
are displayed in the right column. Each plot contains four graphs. The thick
black line is the true autocorrelation function, whereas the light grey line
represents the estimate obtained by the highly robust autocorrelation func-
tion denoted by ‘Q’. The dashed grey line is the estimate using Spearman’s
rank correlation coefficient and the estimate based on partial autocorrelation
is plotted as a dotted dark grey line. The latter estimates are denoted by ‘S’
and ‘pacf ’, respectively.

In Figure 4.1 it is visible that the deviation between the true autocor-
relation function and the different estimates becomes larger the higher the
amount of contamination. Especially, this can be seen for the autoregressive
process at higher lags. The difference is largest for the estimates based on
partial autocorrelation.

This observation is also confirmed by Figure 4.2 which displays the mean-
squared errors between the true autocorrelation function and each estimate
for all levels of contamination. The estimator based on partial autocorrela-
tion performs worst yielding the largest errors. Depending on the simulated
time series model the estimates based on Spearman’s rank correlation coef-
ficient are slightly better or equal to the estimates obtained by the highly
robust autocorrelation function.
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Figure 4.1: Typical robust estimates of the autocorrelation function, left
column MA(1) process, right AR(2) process
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Figure 4.2: Boxplots of the errors, left MA(1) process, right AR(2) process

As mentioned before the sample autocorrelation functions are not nec-
essarily positive semidefinite. Hence, we apply nonlinear shrinking to get
positive semidefinite estimates. In Figure 4.3 typical results are plotted in
the same way as in Figure 4.1. Again, the true autocorrelation function and
the positive semidefinite estimates of the moving average process are plot-
ted in the left column, whereas the ones of the autoregressive process are
displayed in the right column.

In Figure 4.3 we see that due to nonlinear shrinking the estimated au-
tocorrelations are shrunken to zero at many lags. This is especially true for
estimates obtained by the highly robust autocorrelation function.

Again, in Figure 4.4 the mean-squared errors between the true auto-
correlation function and each positive semidefinite estimate for all levels of
contamination are displayed. We get the same result as before except for
the moving average process where the method based on Spearman’s rank
correlation coefficient now yields slightly larger errors than the one using the
highly robust autocorrelation function. We note that this is solely due to the
effect of nonlinear shrinking because, as already mentioned before, especially
the estimated autocorrelations obtained by the highly robust autocorrelation
function are shrunken to zero at most lags and due to the fact that the true
autocorrelation function of a moving average process of order q is zero at lags
h with h > q.

Based on the previous results we use the estimates obtained by the highly
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Figure 4.3: Typical robust positive semidefinite estimates of the autocorre-
lation function, left column MA(1) process, right AR(2) process
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Figure 4.4: Boxplots of the errors in the positive semidefinite case, left MA(1)
process, right AR(2) process

robust autocorrelation function and the ones based on Spearman’s rank cor-
relation coefficient to estimate the spectral density functions of both time
series models.

Figure 4.5 and 4.7 try to visualize the results of our simulation study. For
both methods and each level of contamination seven curves are plotted on
a logarithmic scale. The bold black line represents the true spectral density
function, whereas the thin black line is the spectral density estimate of one
realization out of 400. Moreover, we calculate frequency by frequency the
minimum and maximum, the first and third quartile and median value of all
spectral density estimates. Connecting all median values we obtain the grey
line, to which we will refer hereafter as median spectral density function. In
the same sense we refer to all minimum values as minimum spectral density
function, and so on. Hence, the lower and upper dotted lines are the mini-
mum and maximum spectral density functions, whereas the lower and upper
dashed lines represent the first and third quartile spectral density functions.
The results obtained by using the highly robust autocorrelation function are
plotted in the left column, whereas the results based on Spearman’s rank
correlation coefficient are displayed in the right column.

In Figure 4.5 the results for the moving average process are displayed. As
expected, for both methods the dispersion of the spectral density estimates
becomes larger the higher the amount of contamination. Additionally we see
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Figure 4.5: Robust spectral density estimates of the MA(1) process, left
column ‘Q’, right ‘S’
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Figure 4.6: Boxplots of the errors, MA(1) process
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that the spectral density function is all the more overestimated the higher
the contamination.

However, this effect is not visible for the autoregressive model in Figure
4.7. For both methods we get bad spectral density estimates even in the case
of no contamination, whereas the dispersion of the estimates stays almost
the same for all different levels of contamination.

Next, we try to visualize the squared errors of the estimated spectral
density functions. First, the logarithm of the squared errors is taken. For
both models Figure 4.6 and 4.8 show boxplots of the squared errors in eight
equally-sized frequency bands as well as the total squared errors (bottom
right) for all different levels of contamination.

As we can see for the moving average process in Figure 4.6, the squared
errors become larger the higher the contamination, especially at higher fre-
quencies. Moreover, the method based on Spearman’s rank correlation co-
efficient yields slightly larger errors than the one using the highly robust
autocorrelation function in almost all frequency bands for all levels of con-
tamination. We recall that the true autocorrelation function of an MA(q)
process is zero at lags h with h > q. This and the fact, that by nonlinear
shrinking especially the estimated autocorrelations obtained by the highly
robust autocorrelation function are shrunken to zero at most lags, are re-
sponsible for the better performance.

For the autoregressive process the squared errors are displayed in Fig-
ure 4.8. As expected by the results plotted in Figure 4.7 the errors do not
differ very much for both methods and, looking at the different frequency
bands separately, stay almost the same independently of the amount of con-
tamination. However, looking at the total squared errors, we see that the
method based on Spearman’s rank correlation coefficient performs slightly
better than the one using the highly robust autocorrelation function. The
largest contribution to the total squared error is the amount of the frequency
band where the spectral density function has its peak. There the squared
errors using the highly robust autocorrelation function are larger than the
ones based on Spearman’s rank correlation coefficient. Moreover, we see that
the total squared errors are in the same range for all contamination levels.
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Figure 4.7: Robust spectral density estimates of the AR(2) process, left
column ‘Q’, right ‘S’
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Figure 4.8: Boxplots of the errors, AR(2) process
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4.8 Discussion

In this chapter we used the spectral density estimator (4.1) originally pro-
posed by Blackman and Tukey (1958) which is based on the Fourier transform
of the autocovariance function. In order to robustly estimate the spectral
density function, we simply replaced the autocovariance function by a robust
estimate. We compared estimates obtained by a highly robust autocovari-
ance function (Ma and Genton, 2000) to others based on Spearman’s rank
correlation coefficient (Ahdesmäki et al., 2005) or on partial autocorrelation
(Möttönen et al., 1999).

Unfortunately, all these robust alternatives yield estimates that may not
necessarily be positive semidefinite. Hence, we applied nonlinear shrinking
to ensure non-negative definiteness.

The results of the simulation study suggest that the method based on
Spearman’s rank correlation coefficient performs better than the one using
the highly autocorrelation function and the method based on partial auto-
correlation performs worst. As already mentioned before, the slightly better
performance of the method using the highly robust autocorrelation function
in case of the moving average process is on one hand due to the effect of non-
linear shrinking because especially the estimated autocorrelations obtained
by this method are shrunken to zero at most lags and on the other hand due
to the fact that the true autocorrelation function of an MA(q) process is zero
at lags h with h > q.

We note that there exist many other alternatives to estimate correla-
tion robustly. However, Croux and Filzmoser (2003) already studied several
bivariate measures of association and found out that Spearman’s rank corre-
lation coefficient has good robustness properties. Hence, we limit our survey
to the above described methods.
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Chapter 5

Estimation of Hyper
Parameters

5.1 Generalized Maximum Likelihood Type

Estimation of Autoregressive Models

As autoregressive parameter estimates obtained by maximum likelihood type
estimation (M-estimation) are not robust toward situations where the given
time series is contaminated by additive outliers—the special case of first-order
autoregressive models was treated in Denby and Martin (1979) and Martin
and Jong (1976)—one might use other procedures, such as the generalized M-
estimation procedure (GM-estimation) described in this section, to compute
robust estimates.

5.1.1 Estimating the Location Parameter

We now concentrate on estimating an autoregressive model of order p (AR(p)
model). Let {yt, t = 1, . . . , n} denote the observed process. First, we cen-
ter the data robustly by using an ordinary location M-estimate µ̂ (Huber,
1964). This is analogous to the usual approach for estimating autoregression
parameters via least squares estimation where the sample mean is used to
center the data.

If the robustly centered observation is—for notational convenience—again
denoted by yt, then the AR(p) model can be written in the linear model form

y = Zφ + ε , (5.1)
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where y = (yp+1, . . . , yn)⊤, Z = [zp+1, . . . ,zn]⊤ with zt = (yt−1, . . . , yt−p)
⊤,

t = p+ 1, . . . , n, φ = (φ1, . . . , φp)
⊤ and ε = (εp+1, . . . , εn)⊤.

5.1.2 Stating the Problem

As the influence curve of the M-estimator of φ is bounded in y but unbounded
in z, which is an undesirable property if additive outliers occur, the basic idea
of GM-estimation is to modify the M-estimation problem so that the result-
ing influence curve is a bounded and continuous function of the data. The
GM-estimators φ̂ and σ̂ε are analogues of bounded-influence regression es-
timators and in context of autoregression, are also called bounded-influence
autoregression (BIAR) estimators. They are given as an extension of Hu-
ber’s proposal (Huber, 1973) for robust regression by the general minimum
problem

h(φ′, σ′
ε) =

n∑

t=p+1

utvtρ1

(
yt − z⊤

t φ′

utσ′
ε

)
σ′

ε + cσ′
ε = min ! , (5.2)

where the minimum in φ′ and σ′
ε has to be achieved and ρ1(.) is a symmetric

robustifying loss function. The constant c is chosen so that σ̂ε is a consistent
estimate of σε when the series is free of outliers with N (0, σ2

ε)-distributed
innovations. The role of the ut’s and vt’s is to downweight those summands
in (5.2) for which zt is a poor predictor because it is “large” due to an outlier
in one or more of its components.

Differentiating h(φ′, σ′
ε) with respect to φ′ and σ′

ε and equating the re-

sulting expressions to zero yields a system of equations defining φ̂ and σ̂ε

n∑

t=p+1

vtψ1

(
yt − z⊤

t φ̂

utσ̂ε

)
zt = 0 , (5.3)

where ψ1(s) = dρ1(s)/ds is odd and should be bounded and continuous, and

n∑

t=p+1

utvtχ1

(
yt − z⊤

t φ̂

utσ̂ε

)
= c , (5.4)

with χ1(s) = sψ1(s)−ρ1(s). If Huber’s monotone psi-function (Huber, 1964),
which is defined by

ψH(s) =

{
s if |s| ≤ cH
cH sgn(s) if |s| > cH ,

(5.5)
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is used, i.e., ψ1(s) = ψH(s), then χ1(s) = 1
2
ψ2

1(s) and (5.4) becomes

n∑

t=p+1

utvtψ
2
1

(
yt − z⊤

t φ̂

utσ̂ε

)
= 2c . (5.6)

Further, for computational convenience, we set B = 2c/
∑n

t=p+1 utvt, and get

n∑

t=p+1

utvt

(
ψ2

1

(
yt − z⊤

t φ̂

utσ̂ε

)
−B

)
= 0 . (5.7)

For a Mallows type GM-estimator (Mallows, 1976) every ut is equal to 1
and vt = ψ2(dt)/dt, where dt denotes the “largeness” of zt (distance in the
zt-space). A Schweppe type GM-estimator (Schweppe et al., 1975) uses ut =
vt = ψ2(dt)/dt. ψ2 again is odd, bounded and continuous, for example one
of the well-known psi-functions. We will use Tukey’s redescending bisquare
psi-function (Beaton and Tukey, 1974), which is given by

ψB(s) =

{
s(1 − (s/cB)2)2 if |s| ≤ cB
0 if |s| > cB .

(5.8)

5.1.3 Computational Details

The “largeness” dt of zt can be assessed by

dt = dt(zt) =
(
p−1z⊤

t Ĉ
−1

p zt

) 1
2
, (5.9)

where Ĉp is a robust estimate of the unknown p× p covariance matrix Cp of
the outlier-free AR(p) process. Martin (1980) estimates C−1

p in the following
way: Suppose that {xt} is a zero mean Gaussian process (not necessarily
an autoregression process of order p) with p × p covariance matrix Cp and
let φk1, . . . , φkk, k = 1, . . . , p − 1, be the coefficients of the minimum mean
squared error predictor of xt based on xt−1, . . . , xt−k. The corresponding
prediction error variance is denoted by σ2

ε,k. Then C−1
p has the factorization

(Akaike, 1969)

C−1
p = A⊤

p Ap , (5.10)
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where

(Ap)ij =





−φp−i,j−i

σε,p−i
if j > i

1
σε,p−i

if j = i

0 if j < i ,

with σε,0 denoting the scale of the xt’s. Thus C−1
p has a representation

in terms of prediction coefficients and prediction error variances. The zero
length predictor is just the mean value.

When, as in the present research, a location M-estimate µ̂ is used to esti-
mate the location parameter, a natural estimate of σε,0 is the scale estimate
of Huber’s Proposal 2 (Huber, 1964) obtained during the computation of µ̂.

When p > 1 we also need estimates of φp−i,1, . . . , φp−i,p−i and σε,p−i, i < p.

For φp−i,j we use the j-th element of the GM-estimate φ̂ from an AR(p− i)
fit. For σε,p−i we have the robust residual scale estimate σ̂ε from that fit.
Thus we successively fit autoregressive models of orders 1, . . . , p so that for

each autoregression Ĉ
−1

p can be obtained via (5.10) from the lower order
results.

Before estimating φ and σε the weights ut and vt, t = p+ 1, . . . , n, which
are constant for a fixed p and time series y1, . . . , yn, must be determined.

We note that (5.3) can be written as follows:

n∑

t=p+1

rt

σ̂ε

vt

ut

ψ1(rt/utσ̂ε)

rt/utσ̂ε

zt = 0 , (5.11)

where rt denotes the residual rt = yt − z⊤
t φ̂.

This reveals that GM-estimators can be regarded as weighted least squares
estimators with weights wt = vtψ1(rt/utσ̂ε)/(rt/σ̂ε) whose weights depend on

the residuals and therefore on φ̂. Hence, (5.11) is only an implicit equation.
However, the following iteratively reweighted least squares (IWLS) algorithm
could be used to estimate φ and σε simultaneously. Dutter (1983) uses a
similar algorithm to compute bounded-influence estimators for linear regres-
sion.

5.1.4 IWLS Algorithm

Let starting values φ̂
(0)

and σ̂
(0)
ε , and a tolerance level κ be given.

(i) Set the iteration counter m = 0.
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(ii) Denote r
(m)
t = yt − z⊤

t φ̂
(m)

, t = p+ 1, . . . , n.

(iii) Compute a new estimate for σε using (5.7):

(σ̂(m+1)
ε )2 =

(
B

n∑

t=p+1

utvt

)−1( n∑

t=p+1

utvtψ
2
1

(
r
(m)
t

utσ̂
(m)
ε

))
(σ̂(m)

ε )2 .

(iv) Calculate weights w
(m)
t considering that ut = 1 for a Mallows type

estimator and ut = vt for the Schweppe type estimator:

w
(m)
t =





vtψ1

(
r
(m)
t

utbσ(m+1)
ε

)/(
r
(m)
tbσ(m+1)

ε

)
if r

(m)
t 6= 0, ut 6= 0

vt/ut if r
(m)
t = 0, ut 6= 0

1 if r
(m)
t = ut = vt = 0

0 if r
(m)
t 6= 0, ut = vt = 0 ,

where t = p + 1, . . . , n. Define a diagonal matrix W (m) with w
(m)
t as

its (t− p)-th diagonal element.

(v) Solve
n∑

t=p+1

(r
(m)
t − z⊤

t τ̂
(m))2w

(m)
t = min ! ,

for τ̂
(m), which can be computed by

τ̂
(m) = (Z⊤W (m)Z)−1Z⊤W (m)y − φ̂

(m)
,

where Z and y are defined by (5.1).

(vi) Compute new estimates for φ by

φ̂
(m+1)

= φ̂
(m)

+ ωτ̂
(m) ,

where 0 < ω < 2 is an arbitrary relaxation factor.

(vii) Stop, if
|σ̂(m)

ε − σ̂(m+1)
ε | < κσ̂(m+1)

ε

and if the difference of all parameters from the m-th step to the (m+1)-
th is less than κ times their approximate standard deviation, i.e.,

|ωτ̂ (m)
k | < κσ̂(m+1)

ε

√
zkk , k = 1, . . . , p ,

where zkk is the k-th diagonal element in (Z⊤Z)−1.
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(viii) Augment m = m+ 1 and go to Step (ii).

As starting values φ̂
(0)

and σ̂
(0)
ε one can use the least squares estimates

of φ and σε (cf. Martin, 1980; Martin and Thomson, 1982; Stockinger and

Dutter, 1987). In our case we use the least squares estimate φ̂LS of φ and
the median absolute deviation (MAD) of the residuals given by

σ̂(0)
ε = med

t
|r(0)

t − med
s
r(0)
s |/.6745 ,

with r
(0)
t = yt − z⊤

t φ̂LS. This was proposed by Martin and Zeh (1978).
It can be shown that the estimating equations (5.3) and (5.7) have a

unique solution if ψ1 is non decreasing, e.g. ψ1 = ψH . However, there may
be many solutions if ψ1 is redescending.

Nevertheless, a redescending psi-function, e.g. Tukey’s ψB, shows bet-
ter performances at extremely heavy-tailed outlier distributions. Thus the
following overall computational strategy has been adopted.

First, to compute GM-estimates φ̂ and σ̂ε, several iterations are made
using a non decreasing ψ1 such as Huber’s ψH until there is relatively little
change in the estimates. The resulting GM-estimates are then used as start-
ing values for one or two iterations using a redescending ψ1 such as Tukey’s
ψB in place of ψH . Martin and Thomson (1982) report that in case of higher
order autoregression further iterations using ψB may lead to bad estimates
because of multiple roots.

The motivation for the above strategy is rather obvious. It is hoped that
the GM-estimates based on a non decreasing ψ1 are close to the “appropriate”
solution of the estimating equations based on a redescending ψ1.

Although the transformation from equation (5.4) to (5.7) only holds for
Huber’s monotone psi-function and Stockinger and Dutter (1987) proposed to
modify the IWLS algorithm by omitting Step (iii) when using a redescending
ψ1, we always keep this step and use equation (5.7) to update σ̂ε regardless
of the used psi-function as proposed by Martin and Zeh (1978). This method
works well in practice and simulation studies indicate that it is sometimes
crucial to obtain estimates based on ψB.

The equation for B which insures that the innovations’ scale estimate σ̂ε

of (5.3) and (5.7) is a consistent estimate of σε when the series is free of
outliers with N (0, σ2

ε)-distributed innovations is

B = E(ψ2
1(ζ)) , with ζ ∼ N (0, 1) . (5.12)
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For example, the use of cH = 1.5 for ψ1 = ψH and cB = 5.0 for ψ1 = ψB

yields BH = 0.7785 and BB = 0.6395 respectively. Note, if ψ1(s) = s which is
equivalent to cH = cB = ∞ then B = E(ζ2) = Var(ζ) = 1 with ζ ∼ N (0, 1).

5.1.5 Selection of Order p

Martin and Thomson (1982) propose the following procedure to select the
order p of the autoregressive approximation. For increasing orders p BIAR
estimates are computed and the estimated innovation scale estimates σ̂ε(p)
are examined for each order. The final order is selected as that value of p for
which σ̂ε(p + 1) is not much smaller than σ̂ε(p), e.g., less than a 10-percent
decrement as suggested by Martin and Thomson (1982).

Another robust order-selection rule based on BIAR estimates and mo-
tivated by Akaike’s minimization criterion Akaike (1974) was proposed by
Martin (1980).

5.2 Robust Autoregressive Parameter Esti-

mation via the MCD Estimator

Instead of applying GM-estimation to obtain robust autoregressive parame-
ter estimates another way would be to use the method of moments. Liu et al.
(2004) propose to estimate the autocorrelation coefficients by a robust mul-
tivariate location and scatter estimator separately. They suggest to use the
minimum covariance determinant (MCD) estimator developed by Rousseeuw
(1984) and Rousseeuw and Van Driessen (1999). Once all the p+ 1 autocor-
relation coefficients up to lag p are estimated the Yule-Walker equations are
solved to obtain the AR(p) model parameters.

Assuming that the observed process is denoted by {yt, t = 1, . . . , n}, the
proposed algorithm consists of the following steps:

(i) Estimate the mean µ and variance γy(0) of {yt, t = 1, . . . , n} using a
univariate robust estimator of location and scale, e.g., the M-estimator
of Huber’s Proposal 2 (Huber, 1964).

(ii) Form new bivariate datasets Y
(h)
t = {(yt, yt−h)

⊤, t = h + 1, . . . , n},
h = 1, . . . , p. For each bivariate dataset Y

(h)
t the covariance matrix,
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denoted by

Γ(h) =

(
γ

(h)
11 γ

(h)
12

γ
(h)
21 γ

(h)
22

)
,

can be estimated by any robust multivariate location and scatter esti-
mator, e.g., Rousseeuw’s MCD estimator. Then, the estimated au-
tocovariance coefficient at lag h is given by γ̂y(h) = γ

(h)
12 , whereas

the estimated autocorrelation coefficient at lag h can be calculated

by ρ̂y(h) = γ
(h)
12 /

√
γ

(h)
11 γ

(h)
22 .

(iii) Solve the Yule-Walker equations to obtain AR(p) model parameters

φ̂1, . . . , φ̂p and σ̂ε.

In order to avoid matrix inversion we suggest to use the Durbin-Levinson
algorithm to solve the Yule-Walker equations.

5.3 Simulation Study

The outline of our simulation study is as follows: First we simulate a core
process xt of length n = 100. xt is chosen to be an autoregressive process of
order 2 given by

xt = xt−1 − 0.9xt−2 + εt , (5.13)

with εt ∼ N (0, 1). Additionally, the additive outliers vt are simulated from
a contaminated normal distribution with degenerate central component, i.e.,

CN (γ, 0, σ2) = (1 − γ)N (0, 0) + γN (0, σ2) , (5.14)

with σ2 = 102. The contamination γ is varied from 0% to 20% by steps of
5%. That means that with probability γ, vt is an additive outlier with vt 6= 0.
To obtain the contaminated process yt, the vt’s are added to the core process
xt. For each level of contamination this is done 400 times.

For each contaminated series we compute estimates of the innovations
scale σ̂ε and the autoregressive parameters φ̂1, . . . , φ̂p using bounded-influence
autoregression as well as the method proposed by Liu et al. (2004). We then
compare them to the non-robust parameter estimates obtained by solving
the Yule-Walker equations based on the classically estimated autocorrelation
coefficients.
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The order p of the autoregressive model is chosen according to the order-
selection criterion proposed by Martin and Thomson (1982), which yields
values of p from 2 to 3 subject to the contamination level. In order to
be able to compare the results we choose an equal order p for all levels of
contamination and fix it equal to 3.

5.4 Results

In Figure 5.1 the results of the simulation study are presented. The parameter
estimates of the three compared methods and all contamination levels are
displayed in Figure 5.1 using grouped boxplots.

The difference between the classically estimated autoregressive parame-
ters and those obtained by the method proposed by Liu et al. (2004) labeled
’ACF’ and ’MCD’, respectively, is that for the first method the autocor-
relation coefficients are estimated using the classical autocorrelation func-
tion whereas for the second the autocorrelation coefficients are computed by
Rousseeuw’s MCD estimator. Once all autocorrelation coefficients up to lag
p are calculated the Yule-Walker equations are solved to obtain the AR(p)
model parameters. However, the method proposed by Liu et al. (2004) un-
fortunately yields negative estimates of the innovations variance in 5 to 10%
of the cases depending on the amount of contamination. The parameter esti-
mates obtained by bounded-influence autoregression are labeled by ‘arGM’.

The dotted horizontal lines, one in each plot, represent the true values of
the model parameters.

It is clearly visible in Figure 5.1 that the deviation between all estimated
model parameters and their true values becomes larger the higher the amount
of contamination. As expected, the difference is largest for the classical es-
timates. However, it is also larger for the estimates obtained by the method
proposed by Liu et al. (2004) than for those of the bounded-influence au-
toregression. Moreover, the method of Liu et al. (2004) that uses the MCD
estimator to obtain robust autocorrelation coefficients yields parameter esti-
mates with a larger variation than the other two methods.

Hence, for all contamination levels the bounded-influence autoregression
yields parameter estimates that are closest to their true values.

46



−
4

−
2

0
2

4

contamination in %

Parameter ar_1

ACF
MCD
arGM

0 5 10 15 20

−
4

−
2

0
2

4

contamination in %

Parameter ar_2

ACF
MCD
arGM

0 5 10 15 20

−
4

−
2

0
2

4

contamination in %

Parameter ar_3

ACF
MCD
arGM

0 5 10 15 20

0
2

4
6

8

contamination in %

Parameter s_innov

ACF
MCD
arGM

0 5 10 15 20

Figure 5.1: Boxplots of the autoregressive parameters and the innovations
scale
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5.5 Discussion

The results of our simulation experiments show that the bounded-influence
autoregression performs better compared to the method proposed by Liu
et al. (2004).

Further, there are two main disadvantages using the method of Liu et al.
(2004): First, the variation of the parameter estimates obtained by this
method is larger compared to the other two tested methods. Second, in
some cases the method yields negative estimates of the innovations variance
which cannot be used further on.

Moreover, the method proposed by Liu et al. (2004) yields estimates that
are worse compared to those using bounded-influence autoregression. They
suggest to estimate the autocorrelation coefficients separately, forming new
bivariate datasets first, and then computing all corresponding 2×2 covariance
matrices using the MCD estimator. Once all autocorrelation coefficients up
to lag p are calculated the Yule-Walker equations are solved to obtain the
AR(p) model parameters.

The proposed algorithm can be further improved by forming a new p+1-
dimensional dataset {(yt, . . . , yt−p)

⊤, t = p + 1, . . . , n} and computing the
(p+1)× (p+1) covariance matrix using the MCD estimator. The autocorre-
lation coefficients up to lag p can be calculated by averaging the diagonals of
the upper (or lower) triangular matrix of the previously obtained covariance
matrix using the trimmed mean or the median. Then again the Yule-Walker
equations are solved to obtain the AR(p) model parameters. This modifica-
tion yields better parameter estimates. However, the two above mentioned
disadvantages still remain: The variation of the obtained parameters are large
and there are still cases where we get negative estimates of the innovations
variance.

Additional simulation studies trying other autoregressive models with
different parameters have also been done yielding similar results and are
therefore not published here.
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Chapter 6

Robustifying the Kalman Filter

6.1 State-space Models

Let us assume we observe a q-dimensional, vector-valued process {yt, t =
1, . . . , n} which is only a linear transformation of an unobserved p-dimensional
signal xt with some noise added. Then the state-space model can be defined
as follows:

xt = Φxt−1 + εt

yt = Hxt + vt ,
(6.1)

where xt is the unobserved p-dimensional vector called state vector. The
first equation in (6.1) is named state equation and the second observation
equation. It is assumed that εt has dimension p, Φ is a p× p matrix and H

is a q× p matrix. We further assume that xt is independent of future values
of εt, and that εt and vt are zero mean independent and identically dis-
tributed (iid) sequences which also are independent of each other but could
be non-Gaussian. A more general definition of state-space models consid-
ering correlated errors as well as more complex models including exogenous
variables or selection matrices can be found in Shumway and Stoffer (2000)
or Durbin and Koopman (2001).

6.2 The Classical Kalman Filter

The primary aim of any analysis using state-space models as defined by (6.1)
is to find estimators of the underlying unobserved signal xt, given the data
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Y s = {y1,y2, . . . ,ys}, up to time s. If s < t, s = t or s > t, the problem is
called prediction, filtering or smoothing , respectively.

In addition, we want to get estimators Tt of xt given Y s which are best
in the sense of the minimum mean-squared error, i.e.,

E(‖xt − Tt(Y s)‖2) = min
Tt

! . (6.2)

The solution is the conditional mean of xt given Y s, i.e.,

Tt(Y s) = E(xt|Y s) , (6.3)

and will further on be denoted by xt|s.
However, in general the conditional mean is hard to calculate and there-

fore we restrict ourselves to the class of linear estimators. Then the solution
to these problems is accomplished via the Kalman filter and smoother (cf.
Kalman, 1960; Kalman and Bucy, 1961). The estimators we obtain are the
minimum mean-squared error estimators within the class of linear estimators.

In the following we will just focus on the Kalman filter. Its advantage is
that it specifies how to update the filter values from xt−1|t−1 to xt|t once a
new observation yt is obtained, without having to reprocess the entire data
set y1,y2, . . . ,yt. The Kalman filter recursions can be split into three steps:

(i) Initialization (t = 0):

x0|0 = µ0 , P 0 = Σ0 (6.4)

where µ0 and Σ0 are the unconditional mean and p × p covariance
matrix of x0.

(ii) Prediction (t ≥ 1):

xt|t−1 = Φxt−1|t−1

M t = ΦP t−1Φ
⊤ + Q

(6.5)

(iii) Correction (t ≥ 1):

xt|t = xt|t−1 + Kt(yt − Hxt|t−1)
P t = M t − KtHM t

with Kt = M tH
⊤(HM tH

⊤ + R)−1

(6.6)
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The p× q matrix Kt is called the Kalman gain. The p× p matrix M t is the
conditional prediction error covariance matrix,

M t = E
(
(xt − xt|t−1)(xt − xt|t−1)

⊤|Y t−1

)
, (6.7)

and the conditional filtering error covariance matrix P t is given by

P t = E
(
(xt − xt|t)(xt − xt|t)

⊤|Y t

)
. (6.8)

The p× p matrix Q and the q × q matrix R denote the covariance matrices
of εt and vt, respectively.

6.3 Approximate Conditional-mean Type Fil-

tering

The robust filter described in this section is an approximate conditional-mean
(ACM) type filter motivated by Masreliez’s result (Masreliez, 1975).

6.3.1 Masreliez’s Theorem

We will use the following notation: Y t = {y1,y2, . . . ,yt} denote the first
t observations. The conditional mean of xt given Y t is written as xt|t =
E(xt|Y t) whereas the conditional mean of xt given Y t−1 is denoted by
xt|t−1 = E(xt|Y t−1). The estimates x̂t|t and x̂t|t−1 are called filter esti-
mate and one-step-ahead prediction, respectively. It is easily verified that
xt|t−1 = Φxt−1|t−1 under the model assumptions of (6.1). The state pre-
diction density, i.e., the density of xt conditioned on prior observations
y1,y2, . . . ,yt−1, is denoted by fxt

(.|Y t−1). Similarly, fyt
(.|Y t−1) is the ob-

servation prediction density conditioned on the past observations. In the
following we will use the symbol “≃” to associate a density function with its
related distribution.

If εt and vt are Gaussian a straightforward calculation of xt|t = E(xt|Y t)
yields the Kalman filter recursion equations (see, for example, Jazwinski,
1970). For non-Gaussian vt the calculation of the exact xt|t is difficult.
However, Masreliez (1975) made the simplifying assumption that the state
prediction density fxt

(.|Y t−1) is Gaussian, i.e.,

xt|Y t−1 ∼ Np(xt|t−1,M t) , (6.9)
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where Np(µ,Σ) denotes the multivariate normal distribution with mean vec-
tor µ and covariance matrix Σ. The covariance matrix M t in (6.9) is the
conditional error covariance matrix for predicting xt

M t = E
(
(xt − xt|t−1)(xt − xt|t−1)

⊤|Y t−1

)
. (6.10)

For the definition of the ACM filter we also need the conditional filtering
error covariance matrix

P t = E
(
(xt − xt|t)(xt − xt|t)

⊤|Y t

)
. (6.11)

We note that in the pure Gaussian situation xt|t, M t and P t, t = 1, . . . , n,
are obtained by the Kalman filter recursions and M t and P t do not depend
upon Y t−1 and Y t respectively, which is a rather special feature of the Gaus-
sian case. One should not expect M t and P t to be independent of the data
in general, and in fact it turns out that both, M t and P t, depend upon the
data in an intuitively appealing manner in Masreliez’s result, which we now
state.

For the following ACM filter theorem we assume that the observations
are generated by (6.1) and that Φ, the covariance matrix Q of the εt and
the density fvt

of the vt are known in advance.
Theorem (Masreliez, 1975). If xt|Y t−1 ∼ Np(xt|t−1,M t), t ≥ 1, then

xt|t = E(xt|Y t), t ≥ 1, is generated by the recursions

xt|t = xt|t−1 + M tH
⊤Ψt(yt) (6.12)

P t = M t − M tH
⊤Ψ′

t(yt)HM t (6.13)

M t+1 = ΦP tΦ
⊤ + Q , (6.14)

where Ψt(yt) is a q-dimensional vector with components

(Ψt(y))i = −(∂/∂yi) log fyt
(y|Y t−1) (6.15)

and is usually called the score function for the observation prediction density
fyt

(.|Y t−1), and Ψ′
t(yt) is a q × q matrix with elements

(Ψ′
t(y))ij = (∂/∂yj)(Ψt(y))i . (6.16)

If fyt
(.|Y t−1) is Gaussian, it is easy to verify that Masreliez’s filter reduces

to the Kalman filter. In this case we have

Ψt(.) = (HM tH
⊤ + R)−1(.− Hxt|t−1) (6.17)

Ψ′
t(.) = (HM tH

⊤ + R)−1 . (6.18)

52



Although Masreliez (1975) did not specify initial conditions for the above
recursions, appropriate x0|0 and M 1 may be set to x0|0 = E(x0) = µ0 and
M 1 = E(x1x

⊤
1 ) = Σ0, i.e., the unconditional mean and covariance of x1 (cf.

Martin, 1981). However, in order to agree with the definition of the classical
Kalman filter recursions we will specify the initial conditions for the above
recursions by setting x0|0 = E(x0) = µ0 and P 0 = E(x0x

⊤
0 ) = Σ0 (see,

for example, Shumway and Stoffer, 2000; Durbin and Koopman, 2001). This
will lead to slightly different results only for the first few M t’s and P t’s.

6.3.2 Masreliez’s Filter for Autoregressive Models

Any zero mean p-th order autoregressive process

yt = φ1yt−1 + φ2yt−2 + · · · + φpyt−p + εt (6.19)

which is free of additive outliers can be written in state-space form (6.1) by
setting

Φ =




φ1 · · · φp−1 φp

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0


 , (6.20)

εt = (εt, 0, . . . , 0)⊤ and (6.21)

H = (1, 0, . . . , 0) . (6.22)

We note that the process yt of the observation equation is not vector-valued
any more but univariate.

For the state prediction density fxt
(.|Y t−1) we still assume that xt|Y t−1 ∼

Np(xt|t−1,M t). Then the observation prediction density fyt
(.|Y t−1) in Mas-

reliez’s theorem is obtained by convolving the prediction density fzt
(.|Y t−1)

of zt|Y t−1 ∼ N (Hxt|t−1,HM tH
⊤) for zt = Hxt with the observation

noise density fvt
. For autoregressive models H = (1, 0, . . . , 0), and therefore

fzt
(.|Y t−1) is just the marginal state prediction density fxt

(.|Y t−1) for the
first component xt = (xt)1 of xt, which is

fxt
(.|Y t−1) ≃ N (ξt,m11,t) , (6.23)

where

ξt = (xt|t−1)1 = (Φxt−1|t−1)1 =

p∑

j=1

φj(xt−1|t−1)j (6.24)
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is the first component of xt|t−1, (xt−1|t−1)j is the j-th component of xt−1|t−1,
1 ≤ j ≤ p, and m11,t = (M t)11 is the 1-1 element of M t.

We now suppose that the vt’s have a contaminated normal distribution

CN (γ, σ2
0, σ

2) = (1 − γ)N (0, σ2
0) + γN (0, σ2) , (6.25)

with γ, the amount of contamination, not too large. Then, since ηt =
E(yt|Y t−1) = E(xt|Y t−1) = ξt, convolution of fxt

with fvt
≃ CN (γ, σ2

0, σ
2)

gives

fyt
(.|Y t−1) ≃ (1 − γ)N (ηt, σ

2
0t) + γN (ηt, σ

2
t ) , (6.26)

with σ2
0t = m11,t +σ

2
0 and σ2

t = m11,t +σ
2. The observation prediction density

fyt
can also be written as

fyt
(.|Y t−1) = gt(.− ηt) , (6.27)

where the density gt is obtained by convolution:

gt ≃ N (0,m11,t) ∗ Fvt
, (6.28)

where Fvt
denotes the distribution of the observation noise vt. To ease nota-

tion we will further on set ∆yt = yt − ηt.
Thus, noting that H = (1, 0, . . . , 0) and denoting the first column of M t

by m.1,t = (M t).1, the versions of (6.12)–(6.14) for autoregressive models of
order p are

xt|t = Φxt−1|t−1 + m.1,tΨt(∆yt) (6.29)

P t = M t − Ψ′
t(∆yt)m.1,tm

⊤
.1,t (6.30)

M t+1 = ΦP tΦ
⊤ + Q , (6.31)

where the p× p covariance matrix

Q =




σ2
ε 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 (6.32)

of εt is singular and where Ψt(∆yt) = −(∂/∂∆yt) log gt(∆yt) with its first
derivative Ψ′

t .

54



−20 −10 0 10 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

∆yt

Ψ
t(∆

y t
)

pure Gaussian case
γ = 0.02, σOt = 2, σt = 20
γ = 0.1, σOt = 2, σt = 60

Figure 6.1: Shapes of scalar-valued score functions

It may be noted that both Ψt(∆yt) and Ψ′
t(∆yt) are scalar-valued. The

shapes of Ψt(∆yt) in the Gaussian situation and for two combinations of
values of γ, σ0t and σt are shown in Figure 6.1. If Fvt

is Gaussian, i.e., γ = 0,
the score function is linear with slope 1/σ2

0t. For heavy-tailed gt the shape of
Ψt is such that large prediction residuals are downweighted and P t

∼= M t.
More details may be found in Martin (1979).

We can proceed one step further and represent gt in the form

gt(∆yt) =
1

st

g(
∆yt

st

) , (6.33)

where

g ≃ N (0, a) ∗ Fvt,b , (6.34)

with

Fvt,b(r) = Fvt
(
r

b
) , (6.35)
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and st, a and b are appropriately specified. Equation (6.33) is valid if Fvt
is

Gaussian or a mixture of Gaussian distributions with zero mean and arbitrary
variances. Unfortunately, this is generally not true if Fvt

is non-Gaussian.
However, in the case of Fvt

being a contaminated normal distribution, it is
correct to set

s2
t = σ2

0t = m11,t + σ2
0 , (6.36)

a = m11,t/s
2
t , and b = 1/st , (6.37)

and use formula (6.33). If γ = 0, i.e., in the pure Gaussian situation, the
idea is simply to standardize ∆yt by st. In the case of γ not too large we
may still use the same Gaussian distribution as an approximation. Actually
the above approximation should work reasonably well for any heavy-tailed
distribution Fvt

which is nearly Gaussian in the middle.
The same considerations used above now give some kind of time-invariant

version of the score function Ψt:

Ψt(∆yt) ∼=
1

st

Ψ(
∆yt

st

) , (6.38)

and

Ψ′
t(∆yt) ∼=

1

s2
t

Ψ′(
∆yt

st

) , (6.39)

where

Ψ(r) = −(∂/∂r) log g(r) . (6.40)

This yields simplified versions of (6.29)–(6.31):

xt|t = Φxt−1|t−1 + m.1,t
1

st

Ψ(
∆yt

st

) (6.41)

P t = M t −
1

s2
t

Ψ′(
∆yt

st

)m.1,tm
⊤
.1,t (6.42)

M t+1 = ΦP tΦ
⊤ + Q , (6.43)

where the definition of Q remains the same.
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6.3.3 ACM-type Filters for Autoregressive Models

Since Fvt
will rarely be known in practice, we follow the usual M-estimate

route by replacing the score function Ψ by a good robustifying psi-function
ψ. Thus, the preceding observations suggest how to define an approximate
conditional-mean (ACM) type filter for autoregressive models of order p. Let
ψ be any bounded and continuous function chosen with robust considerations
in mind, and let

s2
t = m11,t + σ2

0 , (6.44)

where σ2
0 is the variance of the uncontaminated Gaussian distribution of the

observation noise vt. Then, noting that ∆yt = yt −
∑p

j=1 φj(xt−1|t−1)j, the
recursions (6.41)–(6.43) are

xt|t = Φxt−1|t−1 +
m.1,t

s2
t

stψ(
yt −

∑p
j=1 φj(xt−1|t−1)j

st

) (6.45)

P t = M t − ψ′(
yt −

∑p
j=1 φj(xt−1|t−1)j

st

)
m.1,tm

⊤
.1,t

s2
t

(6.46)

M t+1 = ΦP tΦ
⊤ + Q . (6.47)

The definition of Q remains the same and ψ′ again denotes the first derivative
of ψ.

Martin (1979) proposed to use a special form of Hampel’s three-part re-
descending psi-function (Hampel, 1968),

ψHA(s) =





s if |s| ≤ a
a sgn(s) if a < |s| ≤ b

a
b−c

(s− c sgn(s)) if b < |s| ≤ c

0 if c < |s| ,
(6.48)

for the above ψ, namely, Hampel’s two-part redescending psi-function, where
b = a.

If we do not omit the constant part that is unequal to zero in Hampel’s
psi-function or use Huber’s monotone psi-function for ψ instead, it will result
in ψ(s) 6= 0 but ψ′(s) = 0, if a < |s| < b, so that P t = M t, while at the
same time xt|t is not equal to Φxt−1|t−1 as one might expect if P t = M t.
On the other hand the ACM filter based on Hampel’s two-part redescending
psi-function has the appealing feature that xt|t = Φxt−1|t−1 and P t = M t

by virtue of ψ(s) = ψ′(s) = 0 if |s| > c. This appears to be the natural
embodiment of an outlier-rejection rule in the filtering context.

57



6.3.4 One-sided Outlier Interpolation

An important use of ACM filters is for time series situations where we assume
that the uncontaminated Gaussian distribution of vt has variance σ2

0 = 0,

i.e., in the case of additive outliers. Now x̂t|t = (x̂t|t)1 = (Ê(xt|Y t))1 =

Ê(xt|Y t) is the filtered value at time t based on the vector estimate x̂t|t, and
ŷt|t−1 =

∑p
j=1 φj(x̂t−1|t−1)j is the prediction of yt based on Y t−1. Suppose

ψ is Hampel’s two-part redescending psi-function. If the prediction residual
∆̂yt = yt − ŷt|t−1 satisfies |∆̂yt|/st > c then x̂t|t is just the predicted value

x̂t|t = ŷt|t−1, and if |∆̂yt|/st < a then x̂t|t = ŷt|t−1 +(yt − ŷt|t−1) = yt. When a
time series contains only a rather small fraction of outliers, and the constants
a and c are appropriately adjusted, we find that x̂t|t = yt a large fraction of
time and x̂t|t

∼= ŷt|t−1 a small fraction of time. Therefore Martin (1979)
refers to an ACM-type filter operating under such conditions as a one-sided
interpolator .

When considering autoregressive models of order p ≥ 2 there is the ques-
tion concerning which coordinate of x̂t|t should be used as filter output. For
the general ACM filter context as well as for the one-sided interpolator the
first coordinate x̂t|t = (x̂t|t)1 of x̂t|t gives an estimate of the conditional
mean xt|t = E(xt|Y t) for filtering. However we could also make the choice

x̂t−p+1|t = (x̂t|t)p, the last coordinate of x̂t|t. Since (x̂t|t)p = Ê(xt−p+1|Y t)
this results in a “fixed-lag” smoother of lag p− 1.

6.4 Approximate Conditional-mean Type Fil-

tering for Vector-valued Observations

6.4.1 Masreliez’s Filter for State-space Models

Proceeding from Masreliez’s Theorem (cf. Section 6.3.1) we still assume
for the state prediction density fxt

(.|Y t−1) that xt|Y t−1 ∼ Np(xt|t−1,M t).
Then the observation prediction density fyt

(.|Y t−1) in Masreliez’s theorem
is obtained by convolving the prediction density fzt

(.|Y t−1) of zt|Y t−1 ∼
Nq(Hxt|t−1,HM tH

⊤) for zt = Hxt with the observation noise density fvt
.

Now, if we further suppose that the vt’s have a contaminated multivariate
normal distribution

CN q(γ,R,Rc) = (1 − γ)Nq(0,R) + γNq(0,Rc) , (6.49)
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with γ, the amount of contamination, again not too large, convolution of fzt

with fvt
≃ CN q(γ,R,Rc) gives

fyt
(.|Y t−1) ≃ (1 − γ)Nq(Hxt|t−1,Rt) + γNq(Hxt|t−1,Rc,t) , (6.50)

with Rt = HM tH
⊤ + R and Rc,t = HM tH

⊤ + Rc. Then we can also
write the observation prediction density fyt

as

fyt
(.|Y t−1) = gt(.− Hxt|t−1) , (6.51)

where the density gt is obtained by convolution, i.e.,

gt ≃ Nq(0,HM tH
⊤) ∗ Fvt

, (6.52)

and Fvt
denotes the distribution of the observation noise vt. To ease notation

we will further on set ∆yt = yt − Hxt|t−1.
Thus, Masreliez’s filter recursions (6.12)–(6.14) become

xt|t = xt|t−1 + M tH
⊤Ψt(∆yt) (6.53)

P t = M t − M tH
⊤Ψ′

t(∆yt)HM t (6.54)

M t+1 = ΦP tΦ
⊤ + Q , (6.55)

where Ψt(∆yt) is a q-dimensional vector with components

(Ψt(y))i = −(∂/∂yi) log gt(y) (6.56)

and Ψ′
t(∆yt) is a q × q matrix with elements

(Ψ′
t(y))ij = (∂/∂yj)(Ψt(y))i . (6.57)

In Figures 6.2 and 6.3 the situations for two combinations of values of γ,
Rt and Rc,t are shown in the two-dimensional case, i.e., for q = 2. We only
vary Rt in Figures 6.2 and 6.3 and set

γ = 0.1 , Rc,t =

(
100 0
0 100

)
, and

Rt =

(
1 0
0 1

)
or Rt =

(
2 −0.2

−0.2 2

)
. (6.58)

In plot (a) the graph of the contaminated bivariate normal density function
is displayed. Plot (b) shows the logarithm of the contaminated bivariate
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Figure 6.2: Score function of contaminated bivariate normal distribution (I)
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Figure 6.3: Score function of contaminated bivariate normal distribution (II)
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normal density function as contour plot, where the ellipses connect points of
the same value, together with the corresponding score function, which is in
the case of q = 2 a two-dimensional vector field of gradients. The graphs of
the first and second coordinate of the corresponding score function are shown
in plots (c) and (d), respectively.

As in the univariate case we can proceed one step further and represent
gt in the form

gt(∆yt) = |St|g(St∆yt) , (6.59)

where

g ≃ Nq(0,A) ∗ Fvt,B , (6.60)

with

Fvt,B(r) = Fvt
(Br) , (6.61)

and St, A and B are appropriately specified. It is easily proven that Equa-
tion (6.59) is valid if Fvt

is Gaussian or a mixture of Gaussian distributions
with mean vector 0 and arbitrary covariance matrices. As in the univariate
case, this is generally not true if Fvt

is non-Gaussian. However, in the case
of Fvt

being a contaminated multivariate normal distribution, it is correct
to set

St = V D−1/2V ⊤ (6.62)

with Rt = V DV ⊤ = HM tH
⊤ + R, and further,

A = StHM tH
⊤St , and B = S−1

t , (6.63)

and use formula (6.59). The matrix D denotes the diagonal matrix contain-
ing the eigenvalues of Rt and V is the matrix of the corresponding eigenvec-
tors.

If γ = 0, i.e., in the pure Gaussian situation, the idea is simply to stan-
dardize ∆yt by St. In the case of γ not too large we may still approximate
gt by a multivariate Gaussian distribution with mean vector 0 and covari-
ance matrix Rt = HM tH

⊤ +R as before. Hence, the above approximation
should work reasonably well for any heavy-tailed distribution Fvt

which is
nearly Gaussian in the middle.
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We note that St is simply the square root of the inverse of Rt, i.e.,
StSt = R−1

t . We further note that St = V D−1/2V ⊤ is symmetric and is
just a distortion of the q-dimensional space without any rotation.

Based on the same considerations as before we obtain some kind of time-
invariant version of the score function Ψt:

Ψt(∆yt)
∼= StΨ(St∆yt) , (6.64)

and

Ψ′
t(∆yt)

∼= StΨ
′(St∆yt)St , (6.65)

where Ψ(St∆yt) is a q-dimensional vector with components

(Ψ(y))i = −(∂/∂yi) log g(y) (6.66)

and Ψ′(St∆yt) is a q × q matrix with elements

(Ψ′(y))ij = (∂/∂yj)(Ψ(y))i . (6.67)

This yields simplified versions of (6.53)–(6.55):

xt|t = xt|t−1 + M tH
⊤StΨ(St∆yt) (6.68)

P t = M t − M tH
⊤StΨ

′(St∆yt)StHM t (6.69)

M t+1 = ΦP tΦ
⊤ + Q . (6.70)

6.4.2 ACM-type Filters for State Space Models

Since Fvt
will rarely be known in practice, we follow on the same lines as pro-

posed by Martin (1979). Therein he suggests how to define an approximate
conditional-mean (ACM) type filter for autoregressive models of order p. We
now generalize his results and define a multivariate approximate conditional-
mean (ACM) type filter for state-space models with vector-valued observa-
tions.

Following the usual M-estimate route we replace the score function Ψ by
a good robustifying psi-function ψ, which is bounded and continuous and
leaves “small” vectors unchanged. Again, let

(StSt)
−1 = Rt = HM tH

⊤ + R , (6.71)
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where R is the covariance matrix of the uncontaminated multivariate Gaus-
sian distribution of the observation noise vt. Then, noting that ∆yt =
yt − Hxt|t−1, the recursions (6.68)–(6.70) are

xt|t = xt|t−1 + M tH
⊤Stψ(St(yt − Hxt|t−1)) (6.72)

P t = M t − M tH
⊤Stψ

′(St(yt − Hxt|t−1))StHM t (6.73)

M t+1 = ΦP tΦ
⊤ + Q , (6.74)

with xt|t−1 = Φxt−1|t−1. Further, ψ(St(yt − Hxt|t−1)) is a q-dimensional
vector and ψ′(St(yt − Hxt|t−1)) denotes a q × q matrix with elements

(ψ′(y))ij = (∂/∂yj)(ψ(y))i . (6.75)

At first glance it is not clear how to define a vector-valued psi-function in
the multivariate case. Ruckdeschel (2001) proposed a multivariate analogue
of Huber’s psi-function (cf. also Section 6.5). On the same lines we suggest
to define the multivariate analogue of Hampel’s three-part redescending psi-
function in the following way:

ψHA(s) =





s if ‖s‖ ≤ a
a

‖s‖
s if a < ‖s‖ ≤ b

a
c−b

(c− ‖s‖) s
‖s‖

if b < ‖s‖ ≤ c

0 if c < ‖s‖ .

(6.76)

Furthermore, as in the univariate case, we propose to use the multivariate
analogue of Hampel’s two-part redescending psi-function where we set a = b
for the robustifying psi-function ψ of the above filter recursions. The Figures
6.4 and 6.5 show the approximated score functions of Figures 6.2 and 6.3
using the approximation (6.64) and the multivariate analogue of Hampel’s
two-part redescending psi-function with parameters a = b = 2.5 and c = 5.0.
Plot (a) shows the graph of the first coordinate of the approximation of the
score function originally displayed in plot (c), whereas plot (b) corresponds
to the original plot (d).

Hence, the ACM filter for state-space models based on the multivariate
analogue of Hampel’s two-part redescending psi-function has the appealing
feature that xt|t = Φxt−1|t−1 and P t = M t by virtue of ψ(s) = ψ′(s) = 0
if ‖s‖ > c. This characteristic is exactly the one we would expect from an
outlier-rejection rule in the filtering context.
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Figure 6.4: Approximated score function of contaminated bivariate normal
distribution (I)
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Figure 6.5: Approximated score function of contaminated bivariate normal
distribution (II)
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6.5 The Robust Least Squares (rLS) Filter

Algorithm

In the following we describe a robustified version of the Kalman filter which
was proposed by Ruckdeschel (2001).

6.5.1 Robustified Optimization Problem

The idea is to reduce the influence of an observation yt, that is affected by
an additive outlier, in the correction step (6.6) of the classical Kalman filter.
Instead of Kt∆yt with ∆yt = yt −Hxt|t−1 we use a huberized version of it,
i.e.,

Hbt
(Kt∆yt) = Kt∆yt min{1, bt

‖Kt∆yt‖
} , (6.77)

so that the obtained result will be equal to the one of the classical Kalman
filter, if ‖Kt∆yt‖ is not too large. If on the other hand ‖Kt∆yt‖ is too
large, the direction will remain unchanged and it will be projected on the
q-dimensional ball with radius bt.

Additionally we can replace the Euclidean norm in (6.2) by the following
loss function ρc defined as

ρc(x) =

{
‖x‖2 if ‖x‖ ≤ c
2c‖x‖ − c2 if ‖x‖ > c .

(6.78)

We note that setting c = ∞ again yields the Euclidean norm. This leads to
a robustified optimization problem given by

E(ρc(∆xt −Hbt
(Kt∆yt)) = min

Kt

! , (6.79)

where ∆xt = xt − xt|t−1 denotes the prediction error. The above optimiza-
tion problem is equivalent to the optimization problem (6.2) of the classical
Kalman filter and its solution is named KrLS

t .

6.5.2 The rLS Filter

Hence, this gives us the following filter recursions, named robust least squares
(rLS) filter :
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(i) Initialization (t = 0):

xrLS

0|0 = µ0 (6.80)

(ii) Prediction (t ≥ 1):

xrLS

t|t−1 = ΦxrLS

t−1|t−1 (6.81)

(iii) Correction (t ≥ 1):

xrLS

t|t = xrLS

t|t−1 +Hbt
(KrLS

t (yt − HxrLS

t|t−1)) (6.82)

Because the calculation of KrLS

t is computationally extensive, Ruckdeschel
(2001) proposed to use KKK

t instead, where KKK

t denotes the Kalman gain
obtained by the classical Kalman filter recursions. Simulation studies therein
have shown that the worsening, in the sense of a larger mean-squared error,
is only small if using KKK

t instead of KrLS

t . Moreover, it does not make any
numerical difference using the Euclidean norm in the robustified optimization
problem (6.79), i.e., setting c = ∞, or using the modified loss function.
Hence, these simplifying modifications almost yield the classical Kalman filter
recursions with the only exception of replacing the first line of the correction
step in (6.6) by

xt|t = xt|t−1 +Hbt
(KKK

t (yt − Hxt|t−1)) . (6.83)

From now on, if speaking of the rLS filter, we will only consider this modified
version.

Moreover, Ruckdeschel (2001) proved that the rLS filter is SO-optimal
under certain side conditions. SO stands for substitutive outlier and means
that, instead of disturbing vt, contamination affects yt directly, replacing
it by an arbitrarily distributed variable y′

t with some low probability. For
further details we refer the reader to Ruckdeschel (2001).

Still, there remains the open problem of fixing the clipping value bt.

6.5.3 Fixing the Clipping Value bt

In order to properly choose bt, Ruckdeschel (2001) proposed an assurance
criterion: How much efficiency in the ideal model relative to the optimal
procedure, i.e., the Kalman filter, am I ready to pay in order to get robustness
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under deviations from the ideal model? This loss of efficiency, which we will
obtain if we use a robust version instead of the classical Kalman filter, is
quantified as the relative worsening of the mean-squared error in the ideal
model. Hence, for a given relative worsening δ > 0 we solve

E(‖∆xt −Hbt
(KrLS

t ∆yt)‖2)
!
= (1 + δ)E(‖∆xt − KKK

t ∆yt‖2) . (6.84)

(The symbol
!
= means that bt is chosen in a way to achieve equality.)

Again, we use the simplifying modifications just mentioned and replace
KrLS

t by KKK

t . Moreover, in most time-invariant situations, the sequence of
M t (and hence also of P t and KKK

t ) stabilizes due to asymptotic stationarity.
Thus, once M t does not change for more than a given tolerance level, we
can stop calibration and use the finally calculated bt for all subsequent times
s, s > t. The Kalman gain and filtering error covariance matrix used in this
previous calibration step will be denoted by KKK

∞ and P∞, respectively. For
details we refer to Anderson and Moore (1979) and Moore and Anderson
(1980). Further we make another simplifying modification and assume that
for all t

∆xt ∼ Np(0,M t) and vt ∼ Np(0,R) . (6.85)

Thus, we may solve

E(‖∆x −Hb(K
KK

∞ ∆y)‖2)
!
= (1 + δ)E(‖∆x − KKK

∞ ∆y‖2)
= (1 + δ) tr P∞ ,

(6.86)

in b, uniquely for a given loss of efficiency δ, where tr P∞ denotes the trace
of the conditional filtering error covariance matrix. We note that the rela-
tively time-consuming calibration, i.e., finding b to a given δ, can be done
beforehand. Additional details may be found in Ruckdeschel (2001) and
Ruckdeschel (2000).

6.6 Simulation Study

To test how well the multivariate ACM-type filter works we simulate two
different state-space models with different additive outlier situations and dif-
ferent amounts of contamination and compare the results to those of the rLS
filter.
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For the first state-space model we use the following hyper parameters:

µ0 =

(
0
0

)
, Σ0 =

(
0 0
0 0

)
,

Φ =

(
0.5 0.3
0.6 0.5

)
, H =

(
1 −1
0 1

)
,

Q =

(
3 2
2 3

)
, R =

(
2 −0.2

−0.2 0.5

)
.

(6.87)

For the second state-space model we further use the following hyper pa-
rameters:

µ0 =

(
20
0

)
, Σ0 =

(
0 0
0 0

)
,

Φ =

(
1 1
0 0

)
, H =

(
0.3 1
−0.3 1

)
,

Q =

(
0 0
0 9

)
, R =

(
9 0
0 9

)
.

(6.88)

We note that the first coordinate of the above state process is a random walk
and therefore non-stationary, whereas the second coordinate is just white
noise.

Additionally, for the first state-space model we simulate the vt’s of the
observation process from a contaminated bivariate normal distribution (6.49)
with

R =

(
2 −0.2

−0.2 0.5

)
and Rc =

(
100 0
0 100

)
, (6.89)

whereas for the second state-space model the vt’s are simulated from a con-
taminated bivariate normal distribution with a contaminating distribution
given by

N2(

(
25
30

)
,

(
0.9 0
0 0.9

)
) . (6.90)

We note that the mean of the contaminating normal distribution is now
unequal to zero. This case was not considered in Section 6.4 and therefore
is a slightly more generalized definition of the contaminated multivariate
normal distribution than the one originally given in (6.49).
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The contamination γ is varied from 0% to 20% by steps of 5%. For our
first and second state-space model that means that with probability γ, vt is
an additive outlier originating either from

N2(

(
0
0

)
,

(
100 0
0 100

)
) or N2(

(
25
30

)
,

(
0.9 0
0 0.9

)
) . (6.91)

For each level of contamination we simulate 400 realisations.
Then the bivariate state processes of each simulated state-space model are

computed using the multivariate ACM-type filter and the rLS filter proposed
in Section 6.4 and by Ruckdeschel (2001), respectively. For the ACM-type
filter we used the multivariate analogue of Hampel’s three-part redescending
psi-function with a = b = 2.5 and c = 5.0 for both state-space models. The
rLS filter was calibrated to a given loss of efficiency δ = 0.1 for both models
and the clipping value b was set to b = 3.7 and b = 2.4 for the first and
second state-space model, respectively. Moreover, also the classical Kalman
filter estimates were calculated.

Finally, the mean-squared error, denoted by MSE , between the true state
process and the different filter estimates averaged over time is computed, i.e.,

MSEbxt|t
:= mean

t
(‖xt − x̂t|t‖2) (6.92)

where xt and x̂t|t denote the true state vector and the filter estimate, respec-
tively.

6.7 Results

Regarding the computation time the rLS filter performs slightly better than
the ACM-type filter once the clipping value b is fixed. This is due to the fact
that additional computations have to be done within the correction step of
the ACM-type filter.

In Figure 6.6 the results of the first simulation study are presented. Typ-
ical realisations of the state process together with their filter estimates are
displayed for different levels of contamination. The first coordinate of the
state vector is plotted in the left column, whereas the second coordinate is
displayed in the right column. Each plot contains four graphs. The thick
black line is the true state process, whereas the light grey line represents the
filter estimate of the classical Kalman filter. The dotted dark grey line is
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Figure 6.6: Typical results of the first state-space model at different levels
of contamination, left column first coordinate of state process, right second
coordinate of state process
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the filter estimate obtained by the rLS filter and the filter estimate using the
ACM-type filter is plotted as a dashed grey line.

We note that the contamination by additive outliers cannot be seen di-
rectly in Figure 6.6 because only the observation equation is affected. How-
ever, the effect of additive outliers is indirectly observable: The spikes, espe-
cially visible for the filter estimate of the classical Kalman filter, are caused
by additive outliers.

In Figure 6.7 the same graphs as in Figure 6.6 are plotted for the second
state-space model. Again, the first coordinate of the state vector is displayed
in the left column and the second coordinate is plotted in the right column.

It is even more visible in Figure 6.7 than in Figure 6.6 that the deviation
between the true state process and the different filter estimates becomes
larger the higher the amount of contamination. As expected, this difference
is largest for the classical Kalman filter estimates. However, it is also larger
for the filter estimates obtained by the rLS filter than for those of the ACM-
type filter.

This observation is also confirmed by Figure 6.8. For our first simulation
experiment plot (a) displays the mean-squared errors between the true state
vector and each filter estimate for all levels of contamination. Similarly, the
mean squared errors for the second state-space model are seen in plot (b).

Moreover, because of the fact that the rLS filter was calibrated to a given
loss of efficiency δ = 0.1 it yields larger errors in the case of no contamination.
This has already been noted by Ruckdeschel (2001) and is especially visible
in plot (b) of Figure 6.8. Furthermore, we see that according to the mean-
squared errors the ACM-type filter performs best for all contamination levels.

6.8 Discussion

Based on the work of Masreliez (1975) and Martin (1979) we developed a new
multivariate approximate conditional-mean (ACM) type filter for state-space
models with vector-valued observations which generalizes Martin’s results
(Martin, 1979).

The results of our simulation experiments show that the multivariate
ACM-type filter performs very well compared to the rLS filter proposed by
Ruckdeschel (2001). Moreover, the ACM-type filter yields remarkably good
results not only in situations where the vt’s have a contaminated multivariate
normal distribution but also in outlier situations where the mean of the
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Figure 6.7: Typical results of the second state-space model at different levels
of contamination, left column first coordinate of state process, right second
coordinate of state process
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Figure 6.8: Boxplots of the errors, first (a) and second (b) state-space model

contaminating distribution is additionally unequal to zero.
We note that the weighting in the correction step of the univariate ACM-

type filter as well as of the multivariate one is a discontinuous function if
using Hampel’s two-part redescending psi-function or its multivariate ana-
logue. However, in the univariate case we have explicitly implemented the
first derivative of Hampel’s psi-function, whereas in the multivariate case the
calculation of the Jacobian matrix is accomplished via numerical differentia-
tion. Moreover, in the univariate case the first derivative of the psi-function
can be replaced by a continuous weight function as already proposed by
Martin and Thomson (1982).

Additional simulation studies using different state-space models have al-
ready been done yielding similar results and are therefore not published here.
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Chapter 7

Robust Prewhitened Spectral
Density Estimation

7.1 The Robust Filter-cleaner Algorithm

The procedure to obtain a robust spectral density estimate proposed by Mar-
tin and Thomson (1982) incorporates an important data-cleaning operation
wherein the robustness is introduced.

7.1.1 Robust Prewhitening

Let {yt, t = 1, . . . , n} again denote the observed process which is assumed to
be second-order stationary and to have zero mean. The cleaning operator C
maps the original data yt into the cleaned data Cyt. In the context of the
AO model (2.13), we want the Cyt to reconstruct the core process xt, and so
we will use the labeling Cyt = x̂t|t, where x̂t|t denotes an estimate of xt at
time t. The second index of x̂t|t should indicate that the kind of data cleaning
procedure we have in mind here is a robust filtering procedure which uses the
past and present data values y1, . . . , yt to produce a cleaned filter estimate
x̂t|t of xt, t = 1, . . . , n. For AO models with a fraction of contamination γ not
too large, it turns out that the data cleaner has the property that Cyt = yt

most of the time, that is about (1 − γ) × 100 percent of the time.
The filter-cleaner procedure involves a robust estimation of an autore-

gressive approximation to the core process xt of order p, with estimated

75



coefficients φ̂1, . . . , φ̂p. Now, the residual process

rt = Cyt −
p∑

j=1

φ̂jCyt−j , t = p+ 1, . . . , n , (7.1)

can easily be formed. Since cleaned data are used to obtain these residuals,
and the φ̂i are robust estimates, the transformation (7.1) is called a robust
prewhitening operation. The benefit in the use of prewhitening in the context
of spectral density estimation is to reduce the bias, i.e., the transfer of power
from one frequency region of the spectral density function to another, known
as leakage (cf. Blackman and Tukey, 1958).

The robust estimate of the spectral density function is based on the above
robust prewhitening as follows. Let

Ĥp(f) = 1 −
p∑

j=1

φ̂je
−i2πfj∆t (7.2)

be the transfer function of the prewhitening operator (7.1) at frequency f ,

and let Ŝ
(lw)
r (f) denote a lag window spectral density estimate based on the

residual process rt. Then the prewhitened spectral density estimate is defined
as

Ŝ(f) =
Ŝ

(lw)
r (f)

|Ĥp(f)|2
, (7.3)

where Ŝ(f) is evaluated at the Fourier frequencies fk = k/(n∆t), k =
1, . . . , ⌊n/2⌋.

7.1.2 The Robust Filter-cleaner

The filter-cleaner algorithm as presented in the paper of Martin and Thomson
(1982) relies on the p-th order autoregressive approximation of the underlying
process xt, which can be represented in state-space form (6.1) as follows.
Assuming that xt satisfies

xt = φ1xt−1 + φ2xt−2 + · · · + φpxt−p + εt

the state space model can be written as

xt = Φxt−1 + εt

yt = xt + vt ,
(7.4)
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with

xt = (xt, xt−1, . . . , xt−p+1)
⊤ , (7.5)

εt = (εt, 0, . . . , 0)⊤ and (7.6)

Φ =




φ1 · · · φp−1 φp

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0


 . (7.7)

Additionally, we set

cov(εt) = Q =




σ2
ε 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 and (7.8)

var(vt) = R = σ2
0 . (7.9)

The algorithm computes robust estimates x̂t|t of the unobservable xt ac-
cording to the following recursion:

x̂t|t = Φx̂t−1|t−1 +
m.1,t

s2
t

st ψ

(
yt − ŷt|t−1

st

)
(7.10)

with m.1,t being the first column of M t which is computed recursively as

M t+1 = ΦP tΦ
⊤ + Q (7.11)

P t = M t − w

(
yt − ŷt|t−1

st

)
m.1,tm

⊤
.1,t

s2
t

. (7.12)

The weight function w is defined by

w(r) =
ψ(r)

r
, (7.13)

where ψ stands for some robustifying psi-function. The scale st is set to

s2
t = m11,t (7.14)

and ŷt|t−1 denotes a robust one-step-ahead prediction of yt based on Y t−1 =
{y1, . . . , yt−1}, and is given by

ŷt|t−1 = (Φx̂t−1|t−1)1 . (7.15)
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Finally, the cleaned process at time t results in

x̂t|t = (x̂t|t)1 . (7.16)

It should be noted that if ψ is the identity function and w ≡ 1, and
(7.14) is replaced by s2

t = m11,t + σ2
0 with σ2

0 = var(vt) in the AO model, the
above recursions are those of the Kalman filter. The use of σ2

0 = 0 in (7.14)
corresponds to the assumptions that vt = 0 a large fraction of time and that
a contaminated normal distribution with degenerate central component, i.e.,

CN (γ, 0, σ2) = (1 − γ)N (0, 0) + γN (0, σ2) , (7.17)

provides a reasonable model. Correspondingly, M t and P t are the prediction
and filtering error-covariance matrices as described in the previous section
(Section 6.3). Again, in order to agree with the definition of the classical
Kalman filter recursions, we specify the initial conditions for the above re-
cursions by setting x̂0|0 = 0 and P 0 = Σ̂0 where Σ̂0 is an estimate of the
p× p covariance matrix of the state process. As mentioned before, there also
exists another way to specify those initial conditions (see Martin, 1981).

The psi-function ψ and the weight function w which are essential to ob-
tain robustness should be bounded and continuous. Additionally, it is highly
desirable that both have zero values outside a bounded, symmetric interval
around the origin. Furthermore, ψ(s) is odd and should look like the iden-
tity function for small values of s (see Martin, 1979). Boundedness assures
that no single observation has an arbitrarily large effect on the filter-cleaner.
Continuity assures that small variations, e.g., due to rounding, will not have
a major effect. Compact support results in the following behavior which is
desirable for a filter-cleaner: If an observation yt deviates from its prediction
ŷt|t−1 by a sufficiently large amount, then x̂t|t will be the pure prediction
x̂t|t = Φx̂t−1|t−1 and the filtering error covariance P t is set equal to the pre-
diction error covariance M t. Martin and Thomson (1982) proposed to use
for ψ a special form of Hampel’s three-part redescending psi-function (6.48),
namely, Hampel’s two-part redescending psi-function, with b = a, which has
all the desirable properties.

Moreover, the robust filter-cleaner just described differs from the sim-
ple robust filter of Kleiner et al. (1979) in two important aspects. First
(7.10)–(7.15) are vector and matrix recursions, and the structure of the fac-
tor m.1,t/s

2
t is such that good data points following an outlier can be used to

improve the estimate of xt at the outlier position. This can yield improved

78



estimates of xu at times u > t, as well. Secondly, the current filter incor-
porates the data-dependent scale st whose values satisfy st+1 > st if a gross
outlier occurs at time t. Particularly, this is an important feature when using
a redescending psi-function. If a fixed scale s were used, the filter could lose
track of the data and never regain them for the duration of a fixed length
data set y1, . . . , yn. Although this may also be possible if using st, the prop-
erties of st suggest that the filter will tend to regain track more quickly than
if a fixed scale is used.

7.1.3 An Approximate Optimality Result

There is an approximate optimality result for the filter described above if we
replace (7.14) by

s2
t = m11,t + σ2

0 , (7.18)

and w in (7.13) by

w(r) = ψ′(r) =
∂

∂r
ψ(r) . (7.19)

Namely, under the assumption that the state prediction density fxt
(.|Y t−1)

is Gaussian and that ψ(r) = −(∂/∂r) log g(r), where g is an approximation
of the observation prediction density fyt

(.|Y t−1), the filter is the conditional-
mean filter proposed by Masreliez (1975). Further details may be found in
Section 6.3. The preceding assumption will never hold exactly under an AO
model where vt is non-Gaussian (see Martin, 1979, Sec. 5). However, there
is some evidence that fxt

(.|Y t−1) is nearly Gaussian and that the filter is
a good approximation to the exact conditional-mean filter. Therefore the
filter is referred to as an approximate conditional-mean (ACM) filter. More
details can be found in Martin (1979). The results therein suggest that the
use of Hampel’s two-part redescending psi-function is reasonable when the
observation noise vt has a contaminated normal distribution. However, the
weight function w given by (7.19) is discontinuous if using Hampel’s two-part
redescending psi-function, and therefore Martin and Thomson (1982) prefer
to specify w by (7.13).

7.1.4 Fixed-lag Smoother-cleaners

As already mentioned in Section 6.3, if one uses the last coordinate of the
filter estimate x̂t|t to produce cleaned data, then one has that x̂t−p+1 = (x̂t|t)p
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is an estimate of xt−p+1 based on the observations Y t up to time t. Such an
estimate is usually called a fixed-lag smoother, with lag p− 1 in this case.

7.1.5 Estimation of Hyper Parameters and Order Se-
lection

To use the filter-cleaner algorithm we need robust estimates φ̂, σ̂ε and Σ̂0 of
the AR(p) parameter vector φ = (φ1, . . . , φp)

⊤, the innovations scale σε and
the p × p covariance matrix of the state process, respectively. Martin and
Thomson (1982) proposed to get initial estimates using bounded-influence
autoregression (BIAR) via the iteratively reweighted least squares (IWLS)
algorithm. Details about BIAR may be found in Section 5.1.

The order p of the autoregressive model is chosen according to Section
5.1.5.

7.2 Simulation Study

We use the same simulation setup as in Section 5.3: First we simulate a core
process xt of length n = 100. xt is chosen to be an autoregressive process of
order 2 given by

xt = xt−1 − 0.9xt−2 + εt , (7.20)

with εt ∼ N (0, 1). The variance of the core process xt, i.e., the value of the
autocovariance function at lag zero, can be calculated by numerical integra-
tion and is given approximately by var(xt) ≈ 7.27. Additionally, the additive
outliers are simulated from a contaminated normal distribution with degen-
erate central component (7.17) with σ2 = 102. We again vary the contami-
nation γ from 0% to 20% by steps of 5%. That means that with probability
γ, vt is an additive outlier with vt 6= 0. To obtain the contaminated process
yt, the vt’s are added to the core process xt. For each level of contamination
this is done 400 times.

For each contaminated series, estimates of the hyper parameter, i.e., the
innovations scale σ̂ε, the autoregressive parameters φ̂1, . . . , φ̂p and the p× p

covariance matrix Σ̂0 of the state process xt, are computed via bounded-
influence autoregression. The order p of the autoregressive approximation
is chosen according to the order-selection criterion proposed by Martin and
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Thomson (1982), which yields values of p from 2 to 3 subject to the con-
tamination level. In order to be able to compare the results we choose an
equal order p for all levels of contamination and fix it equal to 3. Using an
order p = 2 in cases of lower contamination levels, where this is appropriate,
we obtain almost perfect fits for both filtering algorithms. But, although
the simulated core process is of order 2, the estimated BIAR parameters we
obtain setting p equal to 3 are similar to those of the original core process,
i.e., the first two AR parameters are close to the original ones and the third
AR parameter is almost zero, as one would expect.

Then each process is cleaned using the ACM-type filter and the rLS filter
proposed by Martin and Thomson (1982) and Ruckdeschel (2001), respec-
tively. Afterwards, the hyper parameters of the filtered series are estimated
again.

Those re-estimated hyper parameters are used to calculate a prewhitened
spectral density estimate for each process. Last, the deviation of each es-
timated spectral density function from the true spectral density function is
measured in the sense of the squared L2-norm, i.e.,

err2bS(f)
:= ‖Ŝ(f) − S(f)‖2 =

∫
(Ŝ(f) − S(f))2df , (7.21)

where Ŝ(f) and S(f) denote the estimated and true spectral density func-
tions.

7.3 Results

Regarding the computation time the rLS filter performs better than the
ACM-type filter as we expected. This is due to the fact that additional
weights have to be computed within the correction step of the ACM-type
filter.

Figure 7.1 tries to visualize the results of our simulation study. For both
methods and each level of contamination seven curves are plotted on a loga-
rithmic scale. The bold black line represents the true spectral density func-
tion, whereas the thin black line is the spectral density estimate of one realiza-
tion out of 400. Moreover, we calculate frequency by frequency the minimum
and maximum, the first and third quartile and median value of all spectral
density estimates. Connecting all median values we obtain the grey line, to
which we will refer hereafter as median spectral density function. In the same
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sense we refer to all minimum values as minimum spectral density function,
and so on. Hence, the lower and upper dotted lines are the minimum and
maximum spectral density functions, whereas the lower and upper dashed
lines represent the first and third quartile spectral density functions. The
results obtained by using the ACM-type filter are plotted in the left column,
whereas the results of the rLS filter are displayed in the right column.

As expected, for both methods the dispersion of the spectral density
estimates becomes larger the higher the contamination. However, this effect
is more visible, especially at higher frequencies, when using the ACM-type
filter.

Next, we try to visualize the squared errors of the estimated spectral den-
sity functions. First, the logarithm of the squared errors is taken. For both
methods Figure 7.2 shows boxplots of the squared errors in eight equally-
sized frequency bands as well as the total squared errors (bottom right) for
all different levels of contamination. Again, the squared errors become larger
the higher the contamination, especially at higher frequencies. And, this ef-
fect again is larger, when using the ACM-type filter. However, these errors
are very small and, looking at the total squared errors, we see that the ACM-
type filter performs better than the rLS filter. The largest contribution to the
total squared error is the amount of the frequency band where the spectral
density function has its peak. There the squared errors using the rLS filter
are larger than the ones using the ACM-type filter. Moreover, we see that
all squared errors are in the same range for all contamination levels.

7.4 Discussion

In order to get a robust estimate of the spectral density function, it turns out
that cleaning the series in a robust way first and calculating a prewhitened
spectral density estimate afterwards leads to encouraging results. This data-
cleaning operation wherein the robustness is introduced is solved by two
different robustified versions of the Kalman filter. Although, as far as we
know, there exist no theoretical results on the statistical properties of both
proposed multi-step procedures, the empirical results based on simulations
and real data sets promise those procedures to be of high quality. The results
of the simulation study suggest that the ACM-type filter algorithm performs
slightly better than the rLS filter algorithm.

In Spangl and Dutter (2005) we compare the ACM-type filter approach
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Figure 7.1: Robust spectral density estimates of the simulated data, left
column ‘ACM’, right ‘rLS’
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Figure 7.2: Boxplots of the errors
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with another approach proposed by Tatum and Hurvich (1993a). This proce-
dure, called biweight filter-cleaner (cf. Section 8.2), also yields good results,
but tends to underestimate the core process slightly. Moreover it is compu-
tationally intensive.

The problem of estimating the hyper parameters was accomplished by
bounded-influence autoregression. An alternative way would be to use a
highly robust autocovariance function estimator (cf. Ma and Genton, 2000)
and calculate estimates of the hyper parameters via the Yule-Walker equa-
tions. Hyper parameters may also be obtained by computing a robust co-
variance matrix via the MCD algorithm (cf. Rousseeuw and Van Driessen,
1999) and estimate the parameters again using the Yule-Walker equations
(see Chapter 5). Recently, Maronna et al. (2006) propose to use τ -estimates.
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Chapter 8

Further Related Methods

8.1 Robustifying Welch’s Overlapped

Segment Averaging

Using conventional nonparametric methods we obtain a direct spectral es-
timator by using an appropriate data taper (in order to reduce the bias of
the periodogram estimator) and by then calculating the periodogram of the
tapered data series.

In order to get a smoother spectral estimator with better variance proper-
ties Welch (1967) suggested to split a time series into a number of overlapping
blocks, compute a direct spectral estimate based on the data in each block
and average the individual spectral estimates to form an overall one. This
method is known as Welch’s Overlapped Segment Averaging (WOSA).

Based on this approach Chave et al. (1987) proposed a method that is
both, robust and data-adaptive. The spectral density estimates are not just
averaged together but are combined in such a way that individual estimates
corresponding to blocks contaminated by outliers are downweighted.

In detail, let {yt, t = 1, . . . , n} be the observed process again.
The process is split into nB overlapping blocks of length nS.
Additionally, direct spectral estimates are calculated for different blocks

of nS contiguous data values

Ŝ
(d)
j (f) = ∆t

∣∣∣∣∣

nS∑

t=1

htyt+(j−1)Ne
−i2πft∆t

∣∣∣∣∣

2

, j = 1, . . . , nB , (8.1)
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where h1, . . . , hnS
is a data taper. N = (1 − λ)nS ≤ nS and λ < 1 is the

given percentage of overlapping.
Then the WOSA spectral estimator is defined by

Ŝ(WOSA)(f) =
1

nB

nB∑

j=1

Ŝ
(d)
j (f) . (8.2)

A robust spectral estimator can be obtained by replacing the sample mean
in (8.2) by an M-estimator, i.e.,

min
θ

∑

j

ρ

(
xj − θ

s

)
, or, equivalently,

∑

j

ψ

(
xj − θ

s

)
= 0 , (8.3)

where xj corresponds to Ŝ
(d)
j (f) and ψ(r) = ρ′(r). The solution θ̂ is called

M-estimate.
Because outlier contamination can only result in a spectrum that is biased

upwards (cf. Chave et al., 1987), a special asymmetric psi-function is used.
It is defined by

ψ(r) = r exp(− exp(β(r − β))) . (8.4)

The solution is then calculated using iteratively reweighted least squares
(IWLS) with proper initial values, e.g., the sample median and a corrected
version of the median absolute deviation (MAD).

8.2 The Biweight Filter-cleaner Algorithm

Tatum and Hurvich (1993a) propose a frequency domain approach to the
problem of cleaning outliers in time series. Their high breakdown method
assumes only that the core process is Gaussian and has a continuous spec-
trum. It is nonparametric in the sense that it does not assume a finite
parameter model, e.g. an ARMA model, for the core process. The approach
uses robust trigonometric regression to fit a sine and cosine coefficient at
each Fourier frequency and, hence, to obtain a robustified discrete Fourier
transform. These coefficients are then inverse Fourier transformed to get a
filtered version of the data. This procedure is termed biweight filter (BF). On
this basis, a cleaned version of the data is constructed in which observations
that appear to be outliers are replaced and most of the original series remain
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unchanged. The replacement values are found by a linear interpolation of all
“non-outlying” data points. The interpolation is based on an estimate of the
autocovariance function of the filtered series. This additional step is called
biweight filter-cleaner (BFC).

8.2.1 The Biweight Filter

Any time series {yt, t = 0, . . . , n−1} (note that we have changed the indexing
in this section for ease of notation) can be represented as the sum of n cosines
and sines at the Fourier frequencies ωk = 2πk/n, k = 0, 1, . . . , ⌊n/2⌋. The
representation is

yt = A0 +
∑

0<k<n/2

(Akcos(ωkt) +Bksin(ωkt)) + (−1)tAn/2 , (8.5)

where the last term is only included if n is even.
The Fourier coefficients, Ak, k = 0, . . . , ⌊n/2⌋, and Bk, k = 1, . . . , ⌊n/2⌋−

1, are identical to those that would be found by least squares regression of
yt on the Fourier sinusoids, cos(ωkt) and sin(ωkt). If a core process, xt,
is subjected to contamination, then the Fourier transform of the resulting
series yt will also reflect the contamination. Hence, inversion of the Fourier
transform will simply return the contaminated data.

Tatum and Hurvich (1993a) propose a robust Fourier transform whose
aim is to obtain estimates of the sine and cosine coefficients of the core
process xt that are insensitive to the contaminating series vt.

The robust regression is based on reducing the influence of large residuals
by using Tukey’s biweight psi-function,

ψ(u) =

{
u(1 − u2)2 |u| ≤ 1
0 |u| > 1 .

(8.6)

The cosine and sine coefficients at frequency ωk, A
′
k and B′

k, are minimizing
the function

n−1∑

t=0

ρ(uk,t) (8.7)

where ρ′(r) = ψ(r) and uk,t = (yt −A′
kcos(ωkt)−B′

ksin(ωkt))/(Csk). sk is a
scale parameter of uk,t, e.g. the median absolute deviation, and C is a tuning
constant.
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The regression can resist a high proportion of outliers as long as it is
supplied with good starting values. Tatum and Hurvich (1993a) used Siegel’s
repeated median (cf. Siegel, 1982) to supply high breakdown initial values.

When the series is of prime length, the repeated median has an asymptotic
breakdown point of 50%, as shown in Tatum and Hurvich (1993b). We will
only consider this case in the following. In the case n is not prime, details
can be found in Tatum and Hurvich (1993a).

The series is centered by removing a robust location estimate ỹ. At each
Fourier frequency, a sine and cosine coefficient is separately estimated by ro-
bust regression. The sum of the squared coefficients at each frequency gives
a robust periodogram. Since the core process is assumed to have a contin-
uous spectrum, the robust periodogram is smoothed using an appropriate
lag window to obtain a lag window spectral estimate. Tatum and Hurvich
(1993a) suggest to determine the amount of smoothing by the frequency do-
main version of the corrected AIC proposed by Hurvich and Beltrão (1990).

In the biweight filter the order in which the frequencies will be used is
determined by this smoothed periodogram, largest periodogram values first.
Using that order, a sinusoid is fitted at each Fourier frequency by robust
regression and then swept out of the residuals from the previous step.

The cosine and sine coefficients found by the biweight filter algorithm are
then inverse Fourier transformed to give a filtered series, yF

t , t = 0, . . . , n−1,
where

yF
t = ỹ +

∑

0<k<n/2

(A′
kcos(ωkt) +B′

ksin(ωkt)) . (8.8)

8.2.2 The Biweight Filter-cleaner

On the basis of the biweight filter, Tatum and Hurvich (1993a) develop a
biweight filter-cleaner which has output exactly equal to the input for most
values and interpolates the remaining values.

The biweight filter-cleaner initially compares the filtered series to the
original and flags discrepant points using the residuals relative to a robust
scale estimate of the residuals. The flagged values are replaced by linear in-
terpolation. Finally, the estimated interpolation variance is used to compare
the distance between the interpolated points and their original values. When
this distance is “relatively small”, the original observation is reintroduced.
“Relatively small” here means in respect to the estimation (or interpolation)
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error of the filter-cleaned value. This last step helps to counterbalance the
tendency of the first step to flag too many uncontaminated observations.

A data point yt is flagged, if |ut| > 1. The data ut, t = 0, . . . , n−1 denote
the scaled residuals, i.e.,

ut = (yt − yF
t )/(Ks) , (8.9)

where K is a tuning constant and s is a robust scale estimate of the residuals,
e.g., the median absolute deviation.

The linear interpolator is based on finding a vector of weights on the
basis of an estimate of the autocovariance function. A preliminary estimate
is directly obtained from the filtered data,

γ̂yF
t
(h) =

1

n

n−h−1∑

t=0

(yF
t − ȳF

t )(yF
t+h − ȳF

t ) . (8.10)

This autocovariance function is Fourier transformed and the resulting
periodogram is again smoothed using an appropriate lag window. The corre-
sponding autocovariance function, γ̃yF

t
(h), is a lag-weighted version of γ̂yF

t
(h).

Weights at,u are calculated by minimizing the interpolation error at time t,
i.e.,

min E

(
∑

u 6=t

(at,uzu) − zt

)2

, (8.11)

subject to the constraints at,u = 0 if observation yu has been flagged. zt is
assumed to be a zero mean stationary process with autocovariance function
γ̃yF

t
(h). The constraints ensure that flagged observations do not enter the

calculation. Adding the additional constraint at,t = −1 allows (8.11) to be
written as

min E

(
n−1∑

u=0

at,uzu

)2

, (8.12)

or, in vector notation,

min E(a⊤
t zz⊤at) = min (a⊤

t Cat) , (8.13)

where C = E(zz⊤), z = (z0, . . . , zn−1)
⊤, and at = (at,0, . . . , at,n−1)

⊤.
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If a total of m observations, say, {v1, . . . , vm}, have been flagged, the
constraints can be written as Mavj

= bvj
, where M is an m×n matrix and

bvj
= (bvj ,1, . . . , bvj ,m)⊤. If yvj

has been flagged, then the j-th row of M will
contain 1 in the vj-th entry and zero in the remaining entries. The vector
bvj

is defined bvj ,j = −1 and bvj ,i = 0 for i 6= j.
Minimizing a⊤

t Cat subject to Mavj
= bvj

has an explicit solution as
long as C is positive definite and M is of full rank. Using an appropriate
lag window guarantees that C is positive definite. The matrix M is clearly
of full rank. Hence, the solution is given by

at = C−1M⊤(MC−1M⊤)−1bt . (8.14)

The interpolated value at time t is

ŷt =
∑

u 6=t

at,u(yu − ȳF ) + ȳF (8.15)

with an estimated interpolation variance given by

σ̂2
t =

∑

u,v

at,uat,vγ̃yF
t
(|u− v|) = a⊤

t Cat . (8.16)

The studentized distance, dt, between the original and the interpolated
data point at time t, is dt = (yt − ŷt)/σ̂t. Now a cleaned data set, yC

t , is
constructed as follows,

yC
t =





yt : |dt| < a
αtyt + (1 − αt)ŷt : a ≤ |dt| < b
ŷt : |dt| ≥ b ,

(8.17)

where αt = (b− |dt|)/(b− a) with appropriate values a and b.
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Chapter 9

Conclusions

We presented several approaches to robustly estimate the spectral density
function.

It is well known that the periodogram is a naive estimator of the spectral
density function. Moreover, it is the basis of nonparametric spectral density
estimation. Namely, at a fixed frequency the periodogram is the squared
modulus of the discrete Fourier transform of the observed process.

Hence, we first tried to get robust spectral density estimates by di-
rectly using a robustified version of the Fourier transformation. The clas-
sical Fourier transformation can be interpreted as taking the mean of 2-
dimensional observations. In order to obtain a robust estimate of the spec-
tral density function, we simply replaced the mean by a robust multivariate
measure of location. We compared estimates obtained by two methods, one
based on the trimmed mean, applied coordinate-wise, and the other using
Rousseeuw’s MCD estimator.

It is also well known that the spectral density function is the Fourier
transform of the autocovariance function.

Therefore we next used a spectral density estimator originally proposed
by Blackman and Tukey (1958) which is exactly based on the Fourier trans-
form of the autocovariance function. In order to robustly estimate the spec-
tral density function, we replaced the autocovariance function by a robust
estimator. We compared estimates obtained by a highly robust autocovari-
ance function (Ma and Genton, 2000) to others based on Spearman’s rank
correlation coefficient (Ahdesmäki et al., 2005) or on partial autocorrelation
(Möttönen et al., 1999).
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The problem that all these robust alternatives yield estimates that may
not necessarily be positive semidefinite was solved by applying nonlinear
shrinking to ensure non-negative definiteness.

Unfortunately, all above mentioned procedures to robustly estimate the
spectral density function have not turned out to be satisfactory.

However, in order to get a robust estimate of the spectral density function,
that is insensitive to outlying observations, it turned out that cleaning the
time series in a robust way first and calculating the spectral density function
afterwards leads to encouraging results.

This procedure was proposed by Martin and Thomson (1982). The data-
cleaning operation wherein the robustness is introduced is accomplished by a
robustified version of the Kalman filter. We compared two different versions,
namely the ACM-type filter (Martin, 1979), which was originally used by
Martin and Thomson (1982), and a newer alternative, the rLS filter proposed
by Ruckdeschel (2001). Although both procedures yield good spectral density
estimates, the results of the simulation study suggest that the ACM-type
filter algorithm performs slightly better than the rLS filter algorithm.

The additional problem of estimating the hyper parameters is best solved
by bounded-influence autoregression.

Moreover, while the original ACM-type filter is bound to the univariate
setting, we proposed a generalized ACM-type filter for multivariate observa-
tions (cf. Spangl and Dutter, 2008).

However, there exist further robust filter and data-cleaning procedures.
In Spangl and Dutter (2005) we compared the ACM-type filter approach with
another approach proposed by Tatum and Hurvich (1993a). This procedure,
called biweight filter-cleaner also yields good results, but tends to underesti-
mate the core process slightly. Moreover it is computationally intensive.

Furthermore, a whole bundle of robust time series filters have already been
implemented in R and are available in the R-package robfilter (Fried and
Schettlinger, 2008). However, these filters are specialized to reveal trends,
trend changes or shifts of an underlying, possibly nonstationary signal in the
presence of outliers and, according to our experience, extremely smooth the
underlying core process. Hence, these filters are not applicable if one wants
to estimate the spectral density function.

A completely different approach is a robustified version of Welch’s Over-
lapped Segment Averaging (WOSA) proposed by Chave et al. (1987). Al-
though widely used in geophysical applications, it will only yield a good
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spectral density estimate if a small fraction of the data segments are con-
taminated by outliers. Even for a small portion of outlying observations, if
we assume that the outliers are randomly distributed within the series and
are not clustered, most of the segments will contain at least one contami-
nated data point, and therefore this method will yield an inflated and biased
estimate of the spectral density function. The same concerns have already
been made by Martin and Thomson (1982) discussing a similar procedure.

We note that cleaning the time series in a robust way first and calcu-
lating the spectral density function afterwards has the additional advantage
that outliers can be easily spotted. Moreover, the resulting spectral density
estimate based on the ACM-type filter, which is according to our simula-
tion studies the most competitive method, can even be improved by using
an ACM-type smoother instead (cf. Martin and Thomson, 1982). Once all
filter estimates have been calculated, computation of the smoother estimates
is easily done by some kind of backward prediction. For details see Martin
(1979) and Martin and Thomson (1982).

Although our application, the analysis of heart rate variability data, de-
scribed in the next chapter is solely retrospective, one may be interested
in online (bio)signal processing in future research projects. In Martin and
Thomson (1982) the authors made a proposal to compute robust spectral
density estimates in real time, which is based on filtering. To be able to
cover this important topic we therefore focused our research mainly on fil-
tering.
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Part II

Applications
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Chapter 10

Analysis of Heart Rate
Variability Data

10.1 Introduction

Our present work has been motivated by the frequency-domain analysis of
short-term heart rate variability (HRV) recordings. This is a non-invasive
method which has been increasingly used in medicine (cf. Task Force of The
European Society of Cardiology and The North American Society of Pacing
and Electrophysiology, 1996; Howorka et al., 1997, 1998; Hartikainen et al.,
1998; Pumprla et al., 2002).

To access the variability of heart rate in the frequency domain the spectral
density function of the tachogram is estimated. The tachogram is the series
of time intervals between consecutive heart beats. These time intervals are
also called R-R-intervals, i.e., the periods between an R-peak and the next
R-peak in an electrocardiogram (cf. Figure 10.1). The intervals normally
have a duration of about 750 ms corresponding to a heart rate of 80 beats
per minute.

In the tachogram (an example is displayed in Figure 10.2), outlying ob-
servations can be caused by ventricular ectopic beats and other artifacts (cf.
Hartikainen et al., 1998). Ectopic beats are usually premature and produce
a very short R-R-interval followed by a compensatory delay and therefore a
prolonged R-R-interval. Typical tachogram patterns caused by ectopic beats
can be seen in Figure 10.2 around heart beat number 90 and 1090. Corre-
spondingly, missed beats result in erroneously prolonged R-R-intervals (sum
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Figure 10.1: Ideal electrocardiogram signal

of two consecutive R-R-intervals). Typical patterns caused by missed beats
are visible in Figure 10.2 around beat number 730.

These outlying tachogram measurements affect the spectral analysis of
heart rate variability if we use classical spectral density estimators which are
sensitive to outliers (cf. also Section 2.5).

We therefore aim to access the heart rate variability by estimating the
spectral density function of the tachogram series using robust methods that
are insensitive to outlying tachogram values caused by ectopic beats or other
artifacts.

Furthermore, as ectopic or missing beats do not affect successive heart
beats, the additive outlier model (cf. Section 2.4) seems to be an appropriate
model when analyzing heart rate variability data.

We do not compute the spectral density function of the entire tachogram,
but calculate several estimates within overlapping windows (cf. Pumprla
et al., 2002). This is to ensure stationarity in each window and to deal
with signals whose frequency content changes over time. The result of the
so called dynamic Fourier analysis applied to the tachogram series plotted in
Figure 10.2 is displayed in Figure 10.3. Each slice parallel to the frequency-
spectrum plane in Figure 10.3 represents the spectral density estimate of the
corresponding time window.

A high variability in heart rate indicates good adaptability, implying a
healthy person with well functioning autonomic control mechanisms. Con-
versely, lower variability is often an indicator of abnormal and insufficient
adaptability of the autonomic nervous system.

Hence, we do not use the entire tachogram series but several overlapping
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Figure 10.2: Tachogram of 1321 consecutive heart beats

windows to access the heart rate variability and only focus on an analysis in
the frequency domain. We are neither interested in modeling the heart rate
in the time domain nor in forecasting as this is often the aim in the context
of online-monitoring.

In the following we consider the problem of robust spectral analysis of
short-term HRV data. To obtain a robust estimate of the spectral density
function we suggest to use the multi-step procedure described in Chapter 7.
This procedure was proposed by Martin and Thomson (1982) and incor-
porates an important robust filtering operation which is accomplished by an
approximate conditional-mean (ACM) type filter. According to our research,
this is the most competitive method for estimating the spectral density func-
tion robustly.
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Figure 10.3: Robust dynamic Fourier analysis of the original short-term HRV
data displayed in Figure 10.2

10.2 Methods

All analyzed tachogram series come from diabetic patients with different
degrees of cardiovascular autonomic neuropathy (CAN) and were provided
by J. Pumprla and K. Howorka, Department of Biomedical Engineering and
Physics, Medical University of Vienna.

HRV is composed of certain well-defined rhythms which contain informa-
tion about the contribution of different regulatory mechanisms of cardiovas-
cular control.

In short-term HRV recordings three spectral components can be nor-
mally distinguished: high frequency (HF, 0.15-0.4 Hz), low frequency (LF,
0.04-0.15 Hz), and very low frequency (VLF, 0-0.04 Hz) components. The
HF component represents parasympathetic activity whereas the sympathetic
nervous system is the main contributor of the LF component (cf. Hartikainen
et al., 1998). The physiological explanation of the VLF component has not
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been well defined. Additionally, it represents very low frequency oscillations
that need a relatively long recording (about 1 hour) to be assessed reliably.
Thus, the VLF component is recommended to be discarded when interpreting
short-term HRV measurements (cf. also Task Force of The European Society
of Cardiology and The North American Society of Pacing and Electrophysi-
ology, 1996).

The analysis of heart rate variability as proposed in the review article
by Pumprla et al. (2002) is in fact a combination of three short-term HRV
recordings. The duration of each recording lasts 5 min as recommended by
the Task Force of The European Society of Cardiology and The North Amer-
ican Society of Pacing and Electrophysiology (1996). Moreover, the proposed
modified orthostatic test where the individual lies supine for 5min, stands
for 5 min and lies supine again for another 5 min is also recommended when
investigating patients with cardiovascular autonomic neuropathy in order to
separate sympathetic from parasympathetic abnormalities.

An advantage of short-term HRV recordings is that due to the restricted
duration they can easily be performed in strictly standardized conditions to
ensure stationarity of the tachogram signal. It is therefore also essential, that
after a stimulus (e.g. standing) the HRV analysis should not be performed
from a period that includes the early change in heart rate in response to the
stimulus, but from the moment after the heart rate has stabilised to a new
level. In addition, when the patient assumes the supine position again the
heart rate starts to decline and results in a positive trend and nonstationarity
of the tachogram recording. This period should also be omitted and the
analysis should be started again as soon as the heart rate has stabilised (cf.
Hartikainen et al., 1998).

As the tachogram recording is a discrete event series it is an irregularly
time-sampled signal (cf. also Drews, 1983). To obtain a regularly sampled
series we interpolate the original tachogram recording using cubic splines
and re-sample at equidistant points in time. The re-sampling frequency has
to be sufficiently high so that the Nyquist frequency of the spectral density
function is not within the frequency range of interest. We therefore choose a
re-sampling period of 0.25 seconds.

As mentioned before, to ensure stationarity of the signal, the duration
of the recording should not be extended too much. On the other hand,
for frequency-domain analysis of HRV it is recommended that the signal is
sufficiently long. Hence, to assess the HF component a recording of approxi-
mately 1-minute duration is required. Correspondingly, a 4-minute recording
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is needed for the assessment of the LF component (cf. Hartikainen et al.,
1998).

The outline of our dynamic Fourier analysis is as follows: We calculate a
robust prewhitened spectral density estimate of the interpolated tachogram
recording every 5 seconds for a time window with a duration of 256 seconds
using the algorithm proposed by Martin and Thomson (1982) and described
in detail in Chapter 7. For each window the tachogram series is cleaned
in a robust way by using an approximate conditional-mean type filter first.
The hyper parameters of the approximating autoregressive process of order 5
are estimated robustly by bounded-influence autoregression (cf. Section 5.1).
According to the order-selection rule described in Section 5.1.5 an order of 5
seems to be sufficient.

Then, we calculate the spectral density function using a prewhitened spec-
tral density estimator. The lag window spectral estimate of the prediction
residuals therein is obtained by using a 0th-order discrete prolate spheroidal
sequence as data taper and a Parzen window for smoothing.

Finally we display the results three dimensionally where we only plot
the frequency range of interest, i.e., the LF and HF components. Moreover,
we note that it is recommended in medicine to display the spectral density
estimates on a metric and not, as usually, on a logarithmic scale.

10.3 Results

In Figure 10.4 we present intermediate results of our robust dynamic Fourier
analysis described in the previous section. To show how the suggested robust
multi-step procedure works applied to the HRV data, we take one single time
window of the data displayed in Figure 10.2. The chosen example is the first
256-second window of the 5-minute standing period indicated by the grey
frame. Each of the three 5-minute periods, that correspond to the supine
position, standing, and the supine position again, is indicated in Figure 10.2
by a vertical dashed line at the beginning and a dot-dashed one at the end.

Plot (a) of Figure 10.4 shows the original tachogram recording (black line)
along with the cubic spline interpolation (light grey line). As obviously seen
the two are almost identical.

In Plot (b) the interpolation result is displayed along with the robust filter
estimate obtained by the approximate conditional-mean type filter. The filter
estimate (dashed grey line) is equivalent to the interpolated tachogram series
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Figure 10.4: Intermediate results of the suggested robust spectral analysis
applied to the short-term HRV data displayed in Figure 10.2
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Figure 10.5: Dynamic Fourier analysis of the original short-term HRV data
displayed in Figure 10.2
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(light grey line) in cases where no outliers are present. Additionally, it is not
affected by outlying observations around 570 seconds that are caused by
missed heart beats.

Plot (c) shows several spectral density estimates of the HRV data. The
prewhitened spectral density estimate of the robustly filtered tachogram se-
ries (dashed grey line) is similar in shape and power to the lag window
spectral estimate of the tachogram series that was manually cleaned by the
physician and will be considered as benchmark in the following (dotted dark
grey line). This correspondence is extremely well within the frequency range
of interest, i.e., between 0.04 and 0.4 Hz, indicated by the two vertical dot-
dashed lines. Moreover, the lag window spectral estimate of the original
tachogram series (light grey line) is markedly affected by outlying obser-
vations. We further note that, as we have chosen a re-sampling period of
0.25 seconds, the Nyquist frequency in this case is equal to 2 Hz.

The final result of the dynamic Fourier analysis is displayed in Figure 10.5.
Plot (a) shows the classical non-robust lag window spectral estimates of the
original tachogram series. In Plot (b) the result of robust dynamic Fourier
analysis is displayed whereas the result in Plot (c) is obtained by using
the same estimator as in Plot (a) but now applied to the manually filter
tachogram series. As before (cf. Figure 10.4, Plot (c)), the results in Plot (b)
and (c) of Figure 10.5 are very similar. However, we see that the spec-
tral density estimates in Plot (a) are markedly affected in shape and power
by outlying observations. Moreover, we note that Figure 10.3 is equal to
Plot (b), but for the latter we use the same scaling on the vertical axis as in
Plot (a) to be able to compare them.

We now present the results of the spectral analysis of short-term HRV
data of diabetic patients with different degrees of cardiovascular autonomic
neuropathy (CAN).

In Figure 10.6 the original tachogram recordings of three diabetic patients
with (a) no CAN, (b) moderate CAN, and (c) severe CAN are displayed. In
each plot the three 5-minute periods of the modified orthostatic test are again
indicated by the dashed and dot-dashed vertical lines.

In Figure 10.7 the final results of the robust dynamic Fourier analysis are
plotted on the same vertical scale. Plot (a) (no CAN) shows a clear pre-
dominance of parasympathetic activity associated with higher values of the
spectral density function in the HF component (around 0.25 Hz) during both
supine positions. During standing mostly sympathetic autonomic activity
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Figure 10.6: Tachogram of diabetic patients with different degrees of CAN,
(a) no CAN, (b) moderate CAN, and (c) severe CAN
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Figure 10.7: Dynamic Fourier analysis of the short-term HRV data displayed
in Figure 10.6, (a) no CAN, (b) moderate CAN, and (c) severe CAN
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predominates associated with a decrease of power in the HF component and
an increase in the LF component (around 0.1 Hz).

In early stages of cardiovascular autonomic neuropathy (Figure 10.7, Plot
(b)) parasympathetic activity is reduced, whereas sympathetic autonomic
activity is preserved in the LF component.

In patients with severe cardiovascular autonomic neuropathy (Figure 10.7,
Plot (c)) activity is reduced throughout the whole frequency range (HF and
LF components) with only minimal reaction in heart rate variability to the
interventions of the orthostatic test.

In addition to the visual representation, the amount of heart rate variabil-
ity of each frequency component may also be numerically expressed as power,
i.e., the integral of the spectral density function within the frequency bounds
of the corresponding component (cf. Hartikainen et al., 1998; Pumprla et al.,
2002). To capture the amount of variablity in case of the above used spectral
analysis of short-term HRV measurements, additional averaging of the power
of consecutive spectral density functions is needed. In Howorka et al. (1998)
ranges for the spectral power of each frequency component have been estab-
lished to allow a rapid classification of the severity of cardiovasular autonomic
neuropathy.

We further note that similar results have already been published in Spangl
and Dutter (2005, 2007).

10.4 Discussion

The measurement of heart rate variability provides a useful tool for assessing
the status of the cardiac autonomic regulation. Usually, HRV analysis is
based on measuring the duration of R-R-intervals of consecutive heart beats.

In this chapter we focused on the spectral analysis of short-term HRV
data. As mentioned, to assess heart rate variability in the frequency domain,
the spectral density function of the corresponding tachogram series has to be
estimated. This generates a visual representation of the heart rate variability
that is easily understood. However, in literature, it is recommended that
the electrocardiogram is reviewed by a physician or experienced operator to
remove or edit outlying observations, such as ectopic beats or other artifacts,
in order not to introduce an error into the HRV analysis (cf., for example,
Hartikainen et al., 1998; Pumprla et al., 2002). This is due to the fact that
classical spectral density estimators are sensitive to outliers.

107



Hence, to obtain a robust estimate of the spectral density function we
suggest to use a multi-step procedure based on robust filtering instead. This
procedure is insensitive to outlying observations, and therefore provides fully
automated signal processing which will facilitate reliable and reproducible
HRV analysis with minimal operator input. Neither removing nor editing
of outliers needs to be done, as they are appropriately downweighted by the
proposed robust method. Furthermore, the suggested procedure, if slightly
adapted, may also be used for online data processing.

However, we want to remark that our proposed method should not replace
manual reviewing by an expert but may help to increase clinical accessibility.
Moreover, it can actually be used to identify and mark outlying observations.

Additionally, according to our previous research, the described multi-step
procedure seems to be the best method for estimating the spectral density
function robustly.
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Part III
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Appendix A

Time Series Analysis

A.1 Autocorrelation and Cross-correlation

Function

The mean value function of a univariate time series {xt, t = 1, . . . , n} is
defined as

µt = E(xt) . (A.1)

The lack of independence between two adjacent values xs and xt of the
same time series can be assessed numerically, as in classic statistics, using
the notion of covariance. Hence, the autocovariance function is defined as
the second moment product

γx(s, t) = E((xs − µs)(xt − µt)) , for all s and t. (A.2)

The autocovariance function measures the linear dependence between two
points of the same series observed at different times.

The preceding definitions of the mean and autocovariance functions are
completely general. However, in order to do some statistical inference, we
have to assume that a sort of regularity may exist over time in the behavior of
a time series. Therefore we introduce the concept of stationarity. A weakly
stationary time series has to fulfill the following properties: (i) the mean
value function µt in (A.1) is constant, i.e., it does not depend on time t, and
(ii) the autocovariance function γx(s, t) in (A.2) depends on s and t only by
their difference h = s − t, where h is called the lag . Now we are able to
define the mean value and autocovariance function of a weakly stationary
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time series as
E(xt) = µx (A.3)

and
γx(h) = E((xt+h − µx)(xt − µx)) , (A.4)

where, for convenience, we write γx(h) instead of γx(t + h, t). We note that
the autocovariance function satisfies γx(h) = γx(−h). The autocorrelation
function (ACF) of a stationary time series can be written as

ρx(h) =
γx(t+ h, t)√

γx(t+ h, t+ h)γx(t, t)
=
γx(h)

γx(0)
. (A.5)

When several stationary time series are available, say, xt and yt, we often
would like to measure the predictability of the series yt from the series xt,
leading to the notion of the cross-covariance function of stationary time
series,

γxy(h) = E((xt+h − µx)(yt − µy)) . (A.6)

We note that the cross-covariance function satisfies γxy(h) = γyx(−h). The
scaled version of the above, called cross-correlation function (CCF) of sta-
tionary time series, is defined as

ρxy(h) =
γxy(h)√
γx(0)γy(0)

. (A.7)

Estimation

Assuming stationarity we are able to estimate the mean value function (A.3)
if it is constant by replacing the average over the population, denoted by E,
with an average over the sample, say,

x̄ =
1

n

n∑

t=1

xt (A.8)

and the theoretical autocovariance (A.4) by the sample autocovariance func-
tion

γ̂x(h) =
1

n

n−h∑

t=1

(xt+h − x̄)(xt − x̄) , h = 0, . . . , n− 1 , (A.9)
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with γ̂x(−h) = γ̂x(h). The estimator in (A.9) is generally preferred to the
one that would be obtained by dividing by n − h because (A.9) is a non-
negative definite function. We note that neither dividing by n nor n − h in
(A.9) yields an unbiased estimator of γx(h) (cf. Shumway and Stoffer, 2000;
Deistler and Scherrer, 1994).

The sample autocorrelation function of a stationary time series is defined,
analogously to (A.5), as

ρ̂x(h) =
γ̂x(h)

γ̂x(0)
. (A.10)

The estimators for the cross-covariance function γxy(h) as given in (A.6)
and the cross-correlation function ρxy(h) in (A.7) are given by the sample
cross-covariance function of stationary time series

γ̂xy(h) =
1

n

n−h∑

t=1

(xt+h − x̄)(yt − ȳ) , h = 0, . . . , n− 1 , (A.11)

where γ̂xy(−h) = γ̂yx(h) determines the function for negative lags, and the
sample cross-correlation function

ρ̂xy(h) =
γ̂xy(h)√
γ̂x(0)γ̂y(0)

. (A.12)

A.2 Partial Autocorrelation Function

Formally, for a stationary time series {xt, t = 1, 2, . . . } we define the partial
autocorrelation function (PACF) φhh, h = 1, 2, . . . , by

φ00 = 1 = ρx(0)

φ11 = corr(xt, xt−1) = ρx(1) (A.13)

φhh = corr(xt − xt|t−(h−1):t−1, xt−h − xt−h|t−(h−1):t−1) , h ≥ 2,

where xs|m:n denotes the linear minimum mean squared error predictor of xs

based on {xm, . . . , xn}. To ease notation, we will just write xs|n if m = 1, e.g.,
xt|t−1 in the case of the one-step-ahead predictor of xt based on all previous
observations. Hence, xt|t−(h−1):t−1 can be thought of as the linear regression
of xt on the past, xt−1, . . . , xt−(h−1), and xt−h|t−(h−1):t−1 can be thought of
as the linear regression of xt−h on the future, xt−(h−1), . . . , xt−1. We will

112



go into detail later, for now we only note that both (xt − xt|t−(h−1):t−1) and
(xt−h − xt−h|t−(h−1):t−1) are uncorrelated with {xt−(h−1), . . . , xt−1}. Because
of stationarity, the PACF φhh is the correlation between xt and xt−h with the
linear effect of {xt−(h−1), . . . , xt−1} on each removed.

Moreover we can interpret the PACF in the following way. To ease nota-
tion we assume that xt is stationary with zero mean. Let

νht = xt −
h−1∑

j=1

ajxt−j (A.14)

and

ωh,t−h = xt−h −
h−1∑

k=1

bkxt−(h−k) (A.15)

be the two residuals where {a1, . . . , ah−1} and {b1, . . . , bh−1} are chosen so
that they minimize the mean squared errors

E(ν2
ht) and E(ω2

h,t−h) .

Then the PACF at lag h can be defined as the cross-correlation between νht

and ωh,t−h, i.e.,

φhh =
E(νhtωh,t−h)√
E(ν2

ht)E(ω2
h,t−h)

. (A.16)

We note that the coefficients in (A.14) and (A.15) are the same, i.e.,
ai = bi, which means that, for stationary processes, linear prediction forward
in time is equivalent to linear prediction backward in time.

Partial Autocorrelation Function and Best Linear Pre-
dictor

Let us suppose that xt is a stationary time series and we want to predict fu-
ture values xn+m, m = 1, 2, . . . , based on given data {xn−(h−1), . . . , xn}. Gen-
erally the minimum mean squared error predictor of xn+m is xn+m|n−(h−1):n =
E(xn+m|xn, . . . , xn−(h−1)) because the conditional expectation minimizes the
mean squared error

E(xn+m − g(xn−(h−1), . . . , xn))2 , (A.17)
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where g(xn−(h−1), . . . , xn) denotes a measurable function of the observations
xn−(h−1), . . . , xn. Linear predictors of the form

xn+m|n−(h−1):n = a0 +
h∑

k=1

akxn−(k−1) , (A.18)

that minimize the mean squared error (A.17) are called best linear predictors
(BLP).

For a stationary process we have the following property. Given data
xn−(h−1), . . . , xn, the BLP, xn+m|n−(h−1):n = a0 +

∑h
k=1 akxn−(k−1), of xn+m,

for m ≥ 1, is found by solving

E(xn+m − xn+m|n−(h−1):n) = 0

E((xn+m − xn+m|n−(h−1):n)xn−(k−1)) = 0 , k = 1, . . . , h . (A.19)

The equations specified in (A.19) are called the prediction equations .
Now we consider one-step-ahead prediction and assume, to ease nota-

tion, that E(xt) = 0, which means a0 = 0. The BLP of xn+1, given
xn−(h−1), . . . , xn, is

xn+1|n−(h−1):n = φh1xn + φh2xn−1 + · · · + φhhxn−(h−1) , (A.20)

where we have written ak in (A.18) as φhk in (A.20), for k = 1, . . . , h. Using
the prediction equations, the coefficients φh1, . . . , φhh satisfy

E((xn+1 −
h∑

j=1

φhjxn+1−j)xn+1−k) = 0 , k = 1, . . . , h ,

or
h∑

j=1

φhjγx(k − j) = γx(k) , k = 1, . . . , h . (A.21)

The prediction equation (A.21) can be written in matrix notation as

Γhφh = γh , (A.22)

where Γh = (γx(k − j))h
j,k=1 is an h × h matrix, φh = (φh1, . . . , φhh)

⊤ is an

h× 1 vector, and γh = (γx(1), . . . , γx(h))
⊤ is an h× 1 vector.
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Furthermore, it can be proved that the following equation holds:

φhh =
ρx(h) − ρ̃

⊤
h−1R

−1
h−1ρh−1

1 − ρ̃
⊤
h−1R

−1
h−1ρ̃h−1

= ah , (A.23)

where ρh−1 = (ρx(1), . . . , ρx(h−1))⊤, ρ̃h−1 = (ρx(h−1), . . . , ρx(1))⊤ and Rh

is the h×h matrix with elements ρx(i− j), i, j = 1, . . . , h (cf. also Shumway
and Stoffer, 2000).

A.3 Autoregressive Moving Average Models

Now we proceed with the general definition of autoregressive moving average
(ARMA) models for stationary time series. As before, to ease notation,
we assume that the time series xt has zero mean. A univariate time series
{xt, t = 0,±1,±2, . . . } is said to be ARMA(p, q) if xt is stationary and

xt = φ1xt−1 + · · · + φpxt−p + εt + θ1εt−1 + · · · + θqεt−q , (A.24)

with φp 6= 0 and θq 6= 0. In (A.24) εt denotes a white noise process with
σ2

w > 0. The parameters p and q are called the autoregressive and moving
average orders, respectively. If q = 0 the model is called an autoregressive
model of order p, AR(p), and if p = 0 the model is called a moving average
model of order q, MA(q).

Additionally we also require in (A.24) that φ(z) and θ(z) have no common
factors, where the AR and MA polynomials , φ(z) and θ(z), are defined as

φ(z) = 1 − φ1z − · · · − φpz
p , φp 6= 0 , (A.25)

and
θ(z) = 1 + θ1z + · · · + θqz

q , θq 6= 0 , (A.26)

respectively, where z is a complex number.
Using the backshift operator B, defined as

Bxt = xt−1 , (A.27)

we can write the ARMA(p, q) model in (A.24) as

φ(B)xt = θ(B)εt . (A.28)
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Further in order to obtain models that do not depend on the future and
are unique, we will require some additional restrictions on the model parame-
ters in (A.24). An ARMA(p, q) model, φ(B)xt = θ(B)εt, is said to be causal ,
if the time series {xt, t = 0,±1,±2, . . . } can be written as a one-sided linear
process:

xt =
∞∑

j=0

ψjεt−j = ψ(B)εt , (A.29)

where ψ(B) =
∑∞

j=0 ψjB
j and

∑∞
j=0 |ψj| <∞; we set ψ0 = 1.

Moreover an ARMA(p, q) model, φ(B)xt = θ(B)εt, is said to be invertible,
if the time series {xt, t = 0,±1,±2, . . . } can be written as

π(B)xt =
∞∑

j=0

πjxt−j = εt , (A.30)

where π(B) =
∑∞

j=0 πjB
j and

∑∞
j=0 |πj| <∞; π0 is set equal to one.

In general we have the following property. An ARMA(p, q) model is
causal only if the roots of φ(z) lie outside the unit circle, i.e., φ(z) = 0 only
if |z| > 1. Analogously an ARMA(p, q) model is invertible only if the roots
of θ(z) lie outside the unit circle.
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Appendix B

The Spectral Representation
Theorem

Every stationary process {xt} can be approximated with arbitrary accuracy
by an harmonic process, i.e., there is a sequence {xt,n : t ∈ Z}n∈N, of harmonic
processes {xt,n : t ∈ Z} such that

l.i.m
n→∞

xt,n = xt (B.1)

holds for every t, where the notation l.i.mn→∞ xt,n = xt means that the limit
is understood in the mean squares sense.

More precisely, a sequence of random variables {xk}k∈N is said to converge
to x0 in mean squares sense if

Ex∗0x0 <∞ (B.2)

and

lim
k→∞

E(xk − x0)
∗(xk − x0) = 0 (B.3)

holds.
A stochastic process {z(f) : f ∈ [−1/2, 1/2]} with random variables

z(f) : Ω → C
p is called a process of orthogonal increments if the following

conditions are satisfied:

(i) z(−1/2) = 0 a.e. and z(1/2) = x0 a.e.

(ii) l.i.mε↓0 z(f + ε) = z(f) for f ∈ [−1/2, 1/2) (right continuity)
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(iii) Ez(f)∗z(f) <∞ for all f ∈ [−1/2, 1/2]

(iv) E(z(f4) − z(f3))(z(f2) − z(f1))
∗ = 0 for all f1 < f2 ≤ f3 < f4 .

We note that {z(f) : f ∈ [−1/2, 1/2]} is a stochastic process with a contin-
uous index set [−1/2, 1/2] and we will interpret these indices f not as time
points but as frequencies.

Suppose we have given a deterministic, scalar function g : [−1/2, 1/2] →
C, f 7→ g(f) and a partition −1/2 = fn

0 < fn
1 < · · · < fn

n = 1/2 of the
interval [−1/2, 1/2]. We then define a finite sum

In(g) =
n−1∑

i=0

g(fn
i )(z(fn

i+1) − z(fn
i )) . (B.4)

If for all sequences of partitions with maxi(f
n
i+1 − fn

i ) → 0 for n → ∞ the
limit in mean squares sense of In(g) exists and is the same, then we define

I(g) =

∫ 1/2

−1/2

g(f)dz(f) = l.i.m
n→∞

In(g) . (B.5)

I(g) is called the stochastic integral of g(.) with respect to the process z(f).
We now state the Spectral Representation Theorem (cf. also Hannan,

1970; Brockwell and Davis, 1991, for details). For every second-order sta-
tionary process {xt} there exists a process {z(f) : f ∈ [−1/2, 1/2]} with
orthogonal increments such that

xt =

∫ 1/2

−1/2

ei2πft dz(f) (B.6)

holds. The process {z(f)} is a.e. uniquely determined by {xt}.
The process {z(f)} defines a function F : [−1/2, 1/2] → C

n×n by F (f) =
Ez(f)z(f)∗ where the following relations hold:

F (−1/2) = 0

F (1/2) ≥ 0 (B.7)

F (f2) − F (f1) = E(z(f2) − z(f1))(z(f2) − z(f1))
∗ for f1 ≤ f2 .

Thus F (.) is a non-decreasing right continuous function, where non-decreasing
means that the difference F (f2)−F (f1) is a non-negative definite matrix for
all f1 ≤ f2.
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If {z(f)} is the orthogonal increment process corresponding to {xt} the
function F (.) is called the spectral distribution function of {xt}. If there
exists a function S : [−1/2, 1/2] → C

n×n such that

F (f) =

∫ f

−1/2

S(ν) dν , (B.8)

where ν denotes the Lebesgue measure, then S(.) is called the spectral density
function of {xt}. Other commonly used terms for S(.) are spectral density ,
spectrum or power spectrum.

If we assume (to ease notation) that Ext = 0 we have

γ(h) = Exhx
∗
0

= E
1/2∫

−1/2

ei2πfh dz(f)

(
1/2∫

−1/2

ei2πf0 dz(f)

)∗

=
1/2∫

−1/2

ei2πfh dF (f) ,
(B.9)

which is the spectral representation of the autocovariance function. If S(.)
exists, we further get

γ(h) =

∫ 1/2

−1/2

ei2πfhS(f) df . (B.10)

One condition to ensure the existence of the spectral density function is
if the autocovariance function is absolutely summable, i.e.,

∞∑

h=−∞

||γ(h)|| <∞ . (B.11)

Then the spectral distribution function is absolutely continuous with dF (f) =
S(f) df .

Under this condition the autocovariance at lag h, γ(h), h ∈ Z, are the
Fourier coefficients of S(.) and thus we can represent S(f) as

S(f) =
∞∑

h=−∞

γ(h)e−i2πfh . (B.12)

We note that

γ(0) = var(xt) =

∫ 1/2

−1/2

S(f) df (B.13)

which follows from (B.10) and expresses the total variance as the integrated
spectral density over all the frequencies.
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ysis. Birkhäuser, Boston, 1997.

E. Parzen. Mathematical considerations in the estimation of spectra. Tech-
nometrics, 3:167–190, 1961.
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editors, XploRe. Application Guide, chapter 18, pages 483–516. Springer,
2000.

P. Ruckdeschel. Ansätze zur Robustifizierung des Kalman-Filters, volume 64
of Bayreuther Mathematische Schriften. Mathematisches Institut, Univer-
sität Bayreuth, Bayreuth, 2001. PhD thesis.

F. Schweppe, E. Handschin, J. Kohlas, and A. Friechter. Bad data analysis for
power system state estimation. In IEEE Transactions on Power Apparatur
and Systems. 94, 2, 329-337, 1975.

R.H. Shumway and D.S. Stoffer. Time Series Analysis and Its Applications.
Springer, New York, 2000.

A.F. Siegel. Robust regression using repeated medians. Biometrika, 69:242–
244, 1982.

125



D. Slepian. Prolate spheriodal wave functions, Fourier analysis, and
uncertainty-V: The discrete case. Bell System Techn. J., 57:1371–1430,
1978.

B. Spangl and R. Dutter. On robust estimation of power spectra. Austrian
Journal of Statistics, 34(2):199–210, 2005.

B. Spangl and R. Dutter. Estimating spectral density functions robustly.
REVSTAT - Statistical Journal, 5(1):41–61, 2007.

B. Spangl and R. Dutter. Approximate conditional-mean type filtering for
vector-valued observations. Technical Report TR-AS-08-1, Institut für
Angewandte Statistik und EDV, Universität für Bodenkultur, Wien, 2008.

N. Stockinger and R. Dutter. Robust time series analysis: A survey. Kyber-
netika, Supplement 23:1–90, 1987.

Task Force of The European Society of Cardiology and The North American
Society of Pacing and Electrophysiology. Heart rate variability. Circula-
tion, 93:1043–1065, 1996.

L.G. Tatum and C.M. Hurvich. A frequency domain approach to robust
time series analysis. In Morgenthaler, Ronchetti, and Stahel, editors, New
Directions in Statistical Data Analysis and Robustness. Birkhäuser-Verlag,
Basel, 1993a.

L.G. Tatum and C.M. Hurvich. High breakdown methods of time series
analysis. J. Royal Statist. Soc. B, 55(4):881–896, 1993b.

D.J. Thomson. Spectrum estimation techniques for characterization and
development of WT 4 Waveguide-I. Bell System Techn. J., 56(4):1769–
1815, 1977.

D.J. Thomson. Spectrum estimation and harmonic analysis. In Proceedings
of the IEEE, volume 70, pages 1055–1096. IEEE, 1982.

D.J. Thomson. An overview of multiple-window and quadratic-inverse spec-
trum estimation methods. In Proceedings of the IEEE ICASSP, volume 6,
pages 185–194. IEEE, 1994.

126



P.D. Welch. The use of fast fourier transform for the estimation of power
spectra: A method based on time averaging over short, modified peri-
odograms. IEEE Transactions on Audio and Electroacoustics, 15:70–73,
1967.

S. Wichert, K. Fokianos, and K. Strimmer. Identifying periodically expressed
transcripts in microarray time series data. Bioinformatics, 20(1):5–20,
2004.

127



Curriculum Vitae

June 22, 1975 born in Vienna, Austria
1981–1985 elementary school, Vienna
1985–1993 Bundesrealgymnasium XVI, Vienna
1993–1994 military service
1994–2003 Student at the Vienna University of Technology
2000–2003 Tutor at the Dept. of Statistics & Probability Theory,

Vienna University of Technolgy
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