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Abstract

This thesis consists of the implementation of an algorithm
(proposed by Tseng and Barz in [1]) for determining the ex-
pected payoff of a fossil fueled power plant in Matlab. Physi-
cal properties such as decision lead time, unit commitment con-
straints, output depending fuel to electricity conversion and ad-
ditional cost for applying controls are included into the plant
model. Hourly control of the plant with the goal of maximizing
its expected payoff is assumed.
The model is solved by a combination of Dynamic Programming
and Monte Carlo simulations.
In this work, the model and techniques necessary for its solution
are introduced.
The structure and performance of the generated Matlab pro-
gram are presented along the results from some numerical sim-
ulations.



Contents

1 Introduction 1
1.1 Generating power for electricity markets . . . . . . . . . . . . 2
1.2 Basic models for the value of a plant . . . . . . . . . . . . . . 2

1.2.1 Interpreting power generation as financial options . . . 3
1.3 The Tseng and Barz model . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Constraints on control and state variable . . . . . . . . 4
1.3.2 Cost function and optimal production . . . . . . . . . . 6
1.3.3 Model formulation . . . . . . . . . . . . . . . . . . . . 7

2 Deterministic and Stochastic Solution 9
2.1 The deterministic case . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Dynamic Programming . . . . . . . . . . . . . . . . . . 9
2.1.2 Non standard representation of the deterministic model 12

2.2 The stochastic model . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Deriving the stochastic model . . . . . . . . . . . . . . 13
2.2.2 A detailed view of the stochastic model . . . . . . . . . 15

2.3 Integration using Monte Carlo simulation . . . . . . . . . . . . 17
2.3.1 Monte Carlo integration . . . . . . . . . . . . . . . . . 17
2.3.2 Variance reduction: antithetic variates . . . . . . . . . 18

2.4 The iterative solution for the stochastic model . . . . . . . . . 19
2.4.1 Describing optimal control strategies . . . . . . . . . . 19
2.4.2 Describing d(·) with indifference loci (IL) . . . . . . . . 20
2.4.3 Solution of the model of Tseng and Barz . . . . . . . . 20

3 Implementation in MATLAB 24
3.1 The big picture . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Generating price scenarios for Monte Carlo
simulation . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.2 Approximating the IL . . . . . . . . . . . . . . . . . . 28
3.2 The program . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Data storage: The variable Experiment . . . . . . . . . 29

ii



CONTENTS iii

3.2.2 workbench.m . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 J difference.m . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.4 prices.m and pricesVred.m . . . . . . . . . . . . . . . . 33
3.2.5 Other functions . . . . . . . . . . . . . . . . . . . . . . 34

4 Deterministic Simulation 35
4.1 Deterministic simulation:

Testing the Program . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 The standard experiment . . . . . . . . . . . . . . . . . . . . . 36
4.3 Simulation of the standard experiment with deterministic prices 36

4.3.1 IL of the standard experiment with deterministic prices 37
4.3.2 Strange IL: Discontinuities and the problem of describ-

ing them as function of pEt . . . . . . . . . . . . . . . . 38
4.3.3 A showcase explanation for the reaction of the optimal

control on a change in fuel prices . . . . . . . . . . . . 39
4.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Empirical Results 44
5.1 The expected payoff over 168 hours

(standard experiment) . . . . . . . . . . . . . . . . . . . . . . 45
5.1.1 Plant value in dependence of observed prices and state 45
5.1.2 Unit commitment based on different degrees of infor-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Frequency counts of scenario payoffs

(standard experiment) . . . . . . . . . . . . . . . . . . . . . . 51
5.2.1 The distribution of J1(·) . . . . . . . . . . . . . . . . . 52
5.2.2 The distribution of d1(·) . . . . . . . . . . . . . . . . . 54

5.3 IL and computation time (standard experiment) . . . . . . . . 55
5.3.1 Indifference Loci . . . . . . . . . . . . . . . . . . . . . 55
5.3.2 Computation time . . . . . . . . . . . . . . . . . . . . 58

5.4 Changes in the system dynamics . . . . . . . . . . . . . . . . . 60
5.4.1 Short decision lead time, short unit commitment time . 61
5.4.2 The comparison of gas engine and standard experiment 63

6 Conclusion 66
6.1 Improvements of the present algorithm . . . . . . . . . . . . . 66

6.1.1 Indifference Loci . . . . . . . . . . . . . . . . . . . . . 66
6.1.2 Monte Carlo estimation . . . . . . . . . . . . . . . . . 67

6.2 The potential of the current program . . . . . . . . . . . . . . 67



Chapter 1

Introduction

The main task of this thesis is the implementation of an algorithm for
determining the value of a thermal power plant in Matlab.

The thermal generation of electric power is the conversion of fossil fuels
into electricity. Therefore the profit of this process is depending on the prices
of two volatile goods. In addition, physical restrictions on the conversion pro-
cess (arising from the properties of the plant) play a significant role as well,
since they influence the possibility of an operator to react on price peaks.
In 2000, Chung-Li Tseng and Graydon Barz proposed an algorithm for deter-
mining the value of a power generating unit as described above. They employ
forward moving Monte Carlo simulations to estimate the expected payoff of
a plant, conditional on observed prices and for a given control strategy. Us-
ing these expected payoffs in backward moving dynamic programming yields
the optimal control strategy of the plant. This approach has the benefit of
allowing the implementation of physical constraints to a certain extent. On
the other hand it is computationally very expensive.
The Tseng and Barz algorithm has been used in this work for plant evalua-
tion. Note that also assumptions like the structure of the energy market1 or
the class of the price processes have been made similar as in their article [1].
One prominent reason for the similar assumptions is the possibility of com-
paring results. Another reason is the main focus of the work, being modeling
and analyzing the effects of physical properties of a plant and not simulating
energy markets.
Naturally, the article of Operations Research where Tseng and Barz propose
this algorithm has been the main source for this text. As far as possible,
their notation was used in the model formulations and in the program code.

1hourly spot markets for electricity and natural gas

1
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1.1 Generating power for electricity markets

The last 20 years have seen the rise of markets for electrical energy in
many countries. For the producers of electricity, this has enormous conse-
quences, since their objective switched from satisfying the demand to com-
peting on a marketplace. One particularly interesting difference of electricity
to other trading goods is its lack of storage ability, which generally results
in high price volatility. However, hydro power plants appear to provide an
exception from the non - storage property of electricity, since they can ’pile
up’ kinetic energy of water in times of low energy demand and transform it
to electricity on very short notice. Therefore, the highly hydro-power sup-
plied Nordic market for example, appears to be much less subject to short
term fluctuations than markets for mainly fossil generated energy like in Ger-
many2.
This example illustrates the fundamental importance of operational proper-
ties of an electric power plant. The amount of time necessary to start power
generation may be vital to sell electricity at price peaks on short notice; the
effects of unit commitment constraints such as a minimum running time, lead
to additional cost of production and can be difficult to quantify.

1.2 Basic models for the value of a plant

A thermal power plant can basically be characterized as a device capa-
ble of converting fuel (natural gas, coal or oil) into electricity. The pivotal
element of this conversion process is given by the heat rate H. H measures
the amount of fuel needed to generate one unit of electricity. Following the
notation of Tseng and Barz, the units chosen for fuel and electricity are mea-
sured in MMBtu 3 and MWh respectively. Naturally the heat rate achieved
by a power plant can be dependent on the level of the output.

Taking the most simple approach, the conversion of fuel into electricity
yields a payoff of pE − H · pF (pE denoting the price of electricity in MWh,
pF the price of fuel in MMBtu) for one produced unit of power in one time
period. Extending the evaluation problem to a longer time period, where the
plant is assumed to be continuously producing 1 MWh electricity, leads to

Power plant value =
T∑
t=1

pEt −H · pFt (1.1)

2[2], p 15
3million British thermal units
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1.2.1 Interpreting power generation as financial op-
tions

Evaluating a plant by model (1.1) is a quite strong oversimplification since
it does not incorporate the stochastic nature of fuel and electricity prices. Be-
sides, any operator would be keen on avoiding losses in case of pE < H · pF
by simply turning off the plant.
In financial terms, this situation resembles the holding of European call op-
tions of spark spreads, defined as the difference of the electricity price and the
generation cost4. This option (or swap) enables to exchange one commodity
(fuel) for another (electricity) at expiry date. As a consequence, it provides
the holder with the difference of the current price of electricity and the strike
price of the option5. If the electricity price falls below the strike price, the
plant is to be shut down (i.e. the option is not exercised).

The value of the plant over a whole time period resembles a sequence
of spark spreads of this kind, each of them exercisable at different maturity
dates t. The expected value of these options is formulated by extending 1.1
to

Power plant value =
T∑
t=1

E1

(
max

(
pEt −H · pFt , 0

))
(1.2)

where E1 denotes the expected value conditional to the information avail-
able at time 1. As in equation (1.1), this evaluation uses a production ca-
pacity of 1 MWh.

The financial options model 1.2 has the benefits of being well researched
and capturing the stochastic nature of prices as well as the decision problem.
For some price processes (like geometric Brownian motion) there even exists
an analytical solution.

Nevertheless, this model lacks to incorporate some fundamental issues
mentioned above:

• The plant operator has the possibility to apply optimal power gener-
ation to observed prices. The plant can be started / shut down im-
mediately if favorable / unfavorable prices appear. This neglects the
possible time lag in controlling the plant (decision lead time).

• Turning the plant on or off does not imply additional expenses.

4[1], section 1
5[2] p114
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• There are no constraints on unit commitment, which means that the
plant can be turned on / off at every time.

• The heat rate H is independent of the level of the output.

Omitting those aspects results basically in exaggerating the operator’s
capabilities to control the plant. For example, the plant could be forced
to produce electricity in spite of electricity prices lower than fuel cost due
to previous unit commitment. This scenario is completely missing in the
financial options model above.

1.3 The Tseng and Barz model

Contrary to the financial options approach above, Tseng and Barz intro-
duce a model based on an optimal plant control problem. The operator will
influence the state of the plant in order to maximize its (expected) profit
over a given horizon. The feasible controls as well as the state dynamics are
subject to physical restrictions.
The plant model introduced in this section is largely taken from [1].

1.3.1 Constraints on control and state variable

The plant type considered here consists of a steam turbine fed by a boiler
heated by fossil fuel. Thus the main source of delay in controlling this unit
can be found in the dynamics of the heat level in the boiler. On a slightly
higher level of abstraction, the heat level corresponds to how long the plant
has been producing electricity or turned off in one row. This amount of time
is described by the state variable xt. A running plant will be represented by
a positive integer xt, denoting the amount of time6 since the plant has been
turned on. If the plant has been turned off, xt will be a negative integer and
its absolute value represents the time since production stopped.

The state of the plant influences its future value in two ways: First there
may be restrictions in turning off (on) the plant after a too short period of
production. For this purpose, ton and toff are chosen to represent the mini-
mum time (in hours) the plant has to stay on or off respectively. ton and toff

will be called minimum up- and minimum down time in the rest of the text.
The control variable will be described by ut = 1 (0) for turning on (off) or

6subsequently measured in hours
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continuing running (not running) the plant at time t.

This implies the following minimum up- and downtime constraints on the
control:

ut =


1, if 1 ≤ xt < ton

0, if − toff < xt ≤ −1
0 or 1 otherwise

(1.3)

Also the cost of starting a cold plant is assumed to depend on the time
the plant has already been shut down. It seems reasonable to assume a min-
imum temperature the boiler will cool towards when the plant is offline. As
a result, a variable tcold ≥ toff is introduced. The detailed cost functions will
be discussed later in this section.
Values of the state variable below −tcold and above ton do not influence fea-
sible decisions, state dynamics or the start up cost. Therefore they are of no
special interest and also represented by xt = −tcold and xt = ton respectively.

Since it takes time to increase the heat of a cold boiler to the point where
production is possible, τ is used for describing the amount of time necessary
for this. Similarly ν denotes the time used for shutting down the plant.
Note, that during this time no output is generated. This leads to the the
formulation of state transition constraints :

xt =


min(ton, xt−1 + 1), if 0 < xt−1 and ut−1 = 1,
−1, if xt−ν = ton and ut−ν = 0,
max(−tcold, xt−1 − 1), if xt−1 < 0 and ut−1 = 0,
1, if xt−τ ≤ −toff and ut−τ = 1

(1.4)

For short, the states in which controls can be applied are:

Φ = {xt|xt = ton or − tcold ≤ xt ≤ −toff} (1.5)

Figure 1.1 provides an example of how the state transition and control
constraints can be applied. The blue circles represent states where the plant
is running, red circles states where the plant is turned off. The arrows show
the possible state transformations. The background colors represent feasible
controls: Staying online or shutdown of the plant if light blue; staying offline
or possible startup if light red and no applicable control if white.
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x t=3=t
on

x t=2

x t=1

x t=−1

x t=−2

x t=−3=−t off

x t=−4

x t=−5=−t
cold

t t1 t2 t3 t4 t5

Figure 1.1: State transition (ton = toff = 3, tcold = 5; τ = 2, ν = 1)

1.3.2 Cost function and optimal production

For modeling the revenue of running a power plant, the cost and the
benefit of producing a unit of power has to be measured.

The benefit of a running plant is given by produced energy times price
at the period or pEt · q with q being the optimal amount to be generated.
The cost of production on the other hand uses the concept of the heat rate
mentioned above. The heat rate H, the conversion rate from fuel to power,
is assumed to be depending on the generated electricity:

H(q) = a0 + a1q + a2q
2 (1.6)

In addition to the production cost H · pF , the operator also has to bear the
cost of any control action taken in this period. Here, the shutdown of an
online plant is assumed to cost a constant amount of money Cshut. The
effort needed for starting the plant however depends on the remaining boiler
heat. Thus the startup cost, given by Cstart(xt) for −tcold ≤ xt ≤ −toff, is
state depending. Similar to Tseng and Barz, the cost of control actions is
modeled by
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C =


Cshut if xt = ton and ut = 0
b1(1− exp(xt/γ)) + b2 if − tcold ≤ xt ≤ −toff and ut = 1
0 else

(1.7)

Aggregating cost and benefit of the generated electricity amount q yields
a revenue of

f(pE, pF ) := pEq − (a0 + a1q + a2q
2) pF − C (1.8)

Finally, from this equation the optimal power output of the plant for
revealed prices can be deduced using standard calculus. At this point another
physical constraint relating power production is introduced: The variable
qmin describes the lower, qmax the upper bound of possible output.

q = argmax f(q) subject to qmin ≤ q ≤ qmax (1.9)

Assuming a2 6= 0, a unique solution satisfying the restrictions on q from
(1.9) can be obtained:

f ′(q) =pE − (a1 + 2 a2q) p
F !

= 0

q =

(
pE

pF
− a1

)
1

2a2

qopt = max

(
min

(
qmax,

(
pE

pF
− a1

)
1

2a2

)
, qmin

)

1.3.3 Model formulation

Expressing the optimal output as a function of prices concludes the model
deduction in this section. At this point it seems convenient to retrace the
most important steps of modeling the power generation procedure so far:
At first, the state variable of the simulation was chosen to be the time the
plant was already turned on or turned off. This choice gave way to the deter-
mination of the state dynamics (equation (1.4)) and the potential influence
to be taken on them (equation (1.3)). Then, cost and benefit of power pro-
duction at an arbitrary time instance were determined (equation (1.7)).
Finally, the merging of these aspects with the financial options approach
(model (1.2)) yields the model of Tseng and Barz ((1.10)) considering both,
price uncertainty and operational properties:
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J1(x1; pE1 , p
F
1 ) = max

u1,...,T

E1

(
T∑
t=1

(
f(xt; p

E
t , p

F
t )− C(xt, ut)

))
(1.10)

subject to state dynamics (equation (1.4))

xt =


min(ton, xt−1 + 1), if 0 < xt−1 and ut−1 = 1,
−1, if xt−ν = ton and ut−ν = 0,
max(−tcold, xt−1 − 1), if xt−1 < 0 and ut−1 = 0,
1, if xt−τ ≤ −toff and ut−τ = 1

Et(·) ( := E(·|Ft)) denotes the expectation conditional to the information
available at t. Also, the control strategies at a given state are functions of
the current price information only7 (see section 2.2.1 for a more detailed
treatment). Their values are subject to the following control constraints
(equation (1.3)):

ut =


1, if 1 ≤ xt < ton

0, if − toff < xt ≤ −1
0 or 1 otherwise

7i.e. ut(xt) are Ft measurable functions



Chapter 2

Deterministic and Stochastic
Solution

Tseng and Barz provide an algorithm for solving their model (equation
(1.10)) which uses a combination of ’forward moving Monte Carlo simula-
tions and backward moving dynamic programming’ as they describe it in
their paper [1].
It is instructive to solve the problem first without stochastics. Besides, the
deterministic approach was also implemented in Matlab for debugging the
more sophisticated Tseng and Barz algorithm.

This chapter provides solutions to both, a deterministic and a stochastic
version of the plant evaluation problem. Also, the mathematical tools used
such as Dynamic Programming and Monte Carlo simulation are introduced.

2.1 The deterministic case

Assuming perfect information about fuel and electricity prices (pE, pF )i,
i = 1 . . . T , an optimal solution to (1.10) can be obtained using Dynamic
Programming.

2.1.1 Dynamic Programming

Finding a solution for model (1.10) requires the knowledge of an optimal
control strategy u1,...,T . Basically this yields a T dimensional optimization
problem with additional constraints on control and state transition.

9
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For this class of time depending optimal control problems, the Dynamic
Programming algorithm provides a solution by transformation into a recur-
rence equation:

Assume the problem of maximizing a ’payoff’ function F (·) over a time
horizon T (inter temporary utility maximization problem). The actual con-
tribution to the payoff at time t is depending on the state xt and, in an
interdepending way, the control variable ut−1:

F1(x1) = max
u1,...,T

T∑
t=1

f t(xt, ut) (2.1)

subject to

xi+1 = hi(xi, ui) (state dynamics) (2.2)

xi ∈ X i (state space) (2.3)

ui ∈ U i(xi) (feasible decisions) (2.4)

In other words, the task is to find an optimal path x1, . . . , xT which
maximizes the ’payoff’. At each time step k, the direction to be taken for
the next step is determined by the control variable uk.
The key to the transformation of this problem into a recurrence equation is
the so called optimality principle1:
Each part of an optimal path has to be optimal.
Intuitively this follows from the possibility to increase the payoff by replacing
any non optimal part of a path.
Now consider problem (2.1) at an arbitrary time step s, 1 ≤ s < T . Assuming
an optimal payoff at s+1, Fs+1(xs+1) (and thus the optimal path, depending
on the state at s+ 1, x̃(xs+1)s+2, . . . , x̃(xs+1)T ) is already known, the payoff
maximization over s, . . . , T can be written as

Fs(xs) = max
us,...,T

T∑
t=s

f t(xt, ut) = max
us

f s(xs, us) + Fs+1(hs(xs, us)︸ ︷︷ ︸
xs+1

)

 (2.5)

FT+1(xT+1) = 0

The right equality results from the optimality principle:
It guarantees that the optimal path from s + 1 to T , starting at xs+1 has
to contain the states x̃(xs+1)s+2, . . . , x̃(xs+1)T . Equivalently, this means that

1see [5], p24
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the additional benefit at stages s+ 1 to T necessarily yields Fs+1(hs(xs, us)).
The contribution at step s is given by f s(xs, us). Obtaining the optimal
value (depending on the initial value at s, xs) of this problem is now just a
one stage optimization problem of one parameter (us). This can be solved
with standard analysis or, for discrete control as in the power plant operating
problem, by the mere comparison of the possible outcomes for the different
us.
Figure 2.1 illustrates a problem like this for f t(xt, ut) = max(0, xt). The
green arrows represent optimal paths, the red ones illustrate an example of
a suboptimal decision.

x t=3=t
on

x t=2

x t=1

x t=−1

x t=−2

x t=−3=−t off=−t cold

t t1 t2 t3 t4 t5=T

u t=0

u t=1
3691215?

1

001

1

1

Figure 2.1: The optimization problem at step t

Using this stage depending approach, the whole recursion (2.5) can be
solved by starting from the end of the horizon T . Obviously FT (xT ) = f(xT )
since no control will be applied at the end of the horizon and the boundary
condition. At any further time steps t (t < T ), the optimal payoff Ft(xt)
can be computed as a function of the current state xt by using the previously
computed payoff Ft+1(xt+1). The actual value of this inter temporary utility
maximization problem will be found by using the initial state x1 at t = 1.

Obviously, this presentation of Dynamic Programming has carefully avoided
any proofs or precise arguments. For a more detailed introduction to this
topic, see the seminal work of Richard Bellman [6] or the shorter book from
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Gessner and Wacker [5].

With given prices, equation (1.10) turns into a Dynamic Programming
problem as discussed above:

Ft(xt) = f(pEt , p
F
t , xt) + max

ut

[Ft+1(xt+1)− C(xt, ut)] (2.6)

FT+1(xT+1) = 0

subject to equation (1.3), equation (1.4) and cost (1.7). The actual payoff
from the power plant over the horizon T is given by F1(x1), using the initial
state of the plant as input.
With the Dynamic Programming algorithm sketched above, the deterministic
plant evaluation (equation (2.6)) can be solved without difficulty.

2.1.2 Non standard representation of the deterministic
model

Because of equation (1.3) it is only necessary to find an optimal control
at states xt ∈ Φ, states xt /∈ Φ are just influenced by the state dynamics.
This permits a different form of the recursions, which arranges the influence
of operational constraints more clearly.

Including the restrictions on ut and the state dynamics into the recurrence
equation leads to three different cases:

• xt = ton and t ≤ T − ν (online plant and control feasible)

Ft(xt) =f(pEt , p
F
t , xt)

+ max
ut

[ut Ft+1(ton) + (1− ut) (Ft+ν(−1)− Cshut)] (2.7)

• −tcold ≤ xt ≤ −toff and t ≤ T − τ (offline plant and control feasible)

Ft(xt) =f(pEt , p
F
t , xt)

+ max
ut

[ut(Ft+τ (1)− Cstart(xt))

+(1− ut)(Ft+1(max(xt − 1,−tcold))] (2.8)

• xt /∈ Φ or t > T − ν or t > T − τ (no control feasible)

Ft(xt) = f(pEt , p
F
t , xt) + Ft+1(xt + 1) if xt > 0 (2.9)

Ft(xt) = f(pEt , p
F
t , xt) + Ft+1(xt − 1) if xt < 0

FT+1(xT+1) = 0 (2.10)
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The influence of the decision lead time on the control and state dynamics
can be seen in the particular model formulation above. As well in (2.7) as
in (2.8), the term Ft+τ or Ft+ν appears. Obviously, when determining the
optimal unit control, one has not only to compare the plant values at different
states but also at different time instances.

2.2 The stochastic model

In the first chapter, the stochastic problem was introduced as model of
Tseng and Barz (model (1.10)). It was derived by the incorporation of phys-
ical restraints into an evaluation approach based on financial options.
However, for the solution of the Tseng and Barz model it is instructive to
interpret it as the generalization of the deterministic problem (section 2.1)
to stochastic prices.
In the following section, price pairs (pEi , p

F
i ) will be denoted as pi and se-

quences of variables like (ui)i=s,...,T as uTs for a more compact notation.

2.2.1 Deriving the stochastic model

Assuming a given control sequence uTs , the mere replacement of deter-
ministic prices by random variables in the deterministic model (2.6) turns
the future payoff into a random variable:

Ps(xs, u
T
s ; pTs ) =

T∑
t=s

[f(pt, xt)− C(xt, ut)] (2.11)

s.t. xt = h(xt−1, ut−1)

Obviously the future payoff is dependent on the current state, the se-
quence of future prices and the control strategy, since the future states xTs
are determined by xs and the controls uTs .
The value of the plant will be defined as the maximal expected payoff of
the plant (over the horizon 1, . . . , T ) conditional to the price information
currently available:

Js(xs; p
s
1) = max

uT
s

E

(
T∑
t=s

(f(xt; ps)− C(xt, ut))

∣∣∣∣ Fs
)

(2.12)

xi+1 = hi(xi, ui) (state dynamics) (2.13)
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The usage of conditional expectations has the benefit of utilizing the
memory of the electricity and fuel price processes for the evaluation. The ex-
pectation operator conditional to the information at time s is represented by
E(·|Fs), where Fs := σ(ps1) denotes the σ algebra generated by the observed
sequence of prices up to the current time step. The decision sequence max-
imizing the payoff at s is determined depending on observed prices and the
current state but not on future prices s + 1, . . . , T . Thus, for describing the
optimal control, it is necessary to define a control as Fs measurable mapping
from the space of observed prices into the feasible states, assigning a value
of the control variable to each price observation:

us(xs) : Rs×2 −→ U s(xs) (2.14)

ps1 7−→ 0 or 1

As in section 2.1, the key to the solution of the stochastic model is to
rewrite equation (2.12), to exchange the T − s+ 1 dimensional optimization
problem for a recurrence equation in T−s+1 steps. By virtue of the linearity
of E, equation (2.12) can be extended to

Js(xs; p
s
1) = (2.15)

max
uT

s

[
E
(
f(xs; ps)− C(xs, us)

∣∣∣∣ Fs)+ E
( T∑
t=s+1

(f(xt; pt)− C(xt, ut))︸ ︷︷ ︸
=Ps+1(xs+1,uT

s+1;pT
s+1)

∣∣∣∣ Fs)]

Since prices at time s are known and due to the tower property of the con-
ditional expectation, equation (2.15) can be rewritten as

Js(xs; p
s
1) = (2.16)

max
us

[
f(xs; ps)− C(xs, us) + max

uT
s+1

E
(

E
(
P (xs+1, u

T
s+1; pTs+1)|Fs+1

) ∣∣∣∣ Fs)
]

Switching E(·|Fs) with maxuT
s+1

in equation (2.16) leads to the recursive
form to be introduced:

Js(xs; p
s
1) = (2.17)

max
us

[
f(xs; ps)− C(xs, us) + E

(
max
uT

s+1

E
(
P (xs+1, u

T
s+1; pTs+1)

∣∣∣∣ Fs+1

)
︸ ︷︷ ︸

Js+1(xs+1)

∣∣∣∣ Fs)]
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2.2.2 A detailed view of the stochastic model

Equation (2.17) gives the compact recursive form similar to the deter-
ministic (2.6):

Js(xs; p
s
1) = max

us

[
f(xs; ps)− C(xs, us) + E

(
Js+1(xs+1)

∣∣∣∣ Fs)] (2.18)

xi+1 = hi(xi, ui) (2.19)

us(xs) : Rs×2 −→ U s(xs) ; ut(xt) . . . Fs measurable (2.20)

JT+1 = 0 (2.21)

Again, the recursion in some sense mirrors the optimality principle from the
dynamic programming approach: Assuming the optimal control sequence
for s+ 1, . . . , T was known, the payoff over this period would per definition2

yield Js+1(xs+1). Using this, the optimal one-step control can be determined.

The recursive form shows the appearance of two separate optimization
problems3:
Implicitly included in f(xs; ps), the optimal power output at the current state
of the plant is computed for revealed prices (equation 1.9). This represents
the automatic generator dispatch of an online plant, which reacts to the cur-
rent demand in real time.
The second optimization problem concerns long term unit commitment, de-
termining if it pays to keep the unit online at future states. Because of
the operational constraints of the plant, this decision process is governed by
volatile future prices.
Note that, since the optimal control strategy is defined as the control sequence
maximizing the expected future payoff conditional to current information, the
operator is assumed to be risk neutral. In other words, the operator is only
interested in maximizing the plant’s expected profit.

Introducing the Markov property of prices

Although fuel and electricity prices have been used since the very begin-
ning of this work, they have not been discussed yet at all. As a matter of fact,
the detailed properties of the price processes used in the actual model will
be described in the following section. The reason for this is the applicability
of model (2.18) to a variety of price models.
Previously in this section Ft = σ(pt1) was used to denote the information

2equation (2.12)
3see also section 1.3.2
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available at time t. As a result, E(·|Ft) as well as J(xt) and u(xt) were func-
tions of all prices pt1.
However, the solution to be presented will assume both fuel and electricity
price processes to have the Markov property4.
This means that the distribution of future prices pTt+1 conditional to the
current price observation pt equals their distribution conditional to the ob-
servations from pt1. In particular, for any function g(pTt+1), the expectation
conditional on Fs is equal to the expectation conditional on σ(pt), i.e.

E(g(pTt+1)|Ft) = E(g(pTt+1)|σ(pt)) =: Et(g(pTt+1)) (2.22)

This implies that Jt(xt, p
t
1) is a function of pt only, which therefore will be

written as Jt(xt, pt) subsequently. As another consequence, the optimal con-
trol ut only depends on current state xt and current prices pt.

Non standard representation of the stochastic model

Additional to these fundamental assumptions, section 1.3 provided a de-
tailed description of the physical properties modeled.
As in the deterministic model, it is possible to incorporate these physical
restrictions on ut and the state dynamics into the recurrence equation:

• xt = ton and t ≤ T − ν (running plant and control feasible)

Jt(xt; pt) =f(xt; pt)

+ max
ut

Et[ut Jt+1(ton; pt+1)

+(1− ut) (Jt+ν(−1; pt+ν)− Cshut)] (2.23)

• −tcold ≤ xt ≤ −toff and t ≤ T−τ (shut down plant and control feasible)

Jt(xt; pt) =f(xt; pt)

+ max
ut

Et[ut (Jt+τ (1; pt+τ )− Cstart(xt))

+(1− ut) (Jt+1(max (xt − 1,−tcold); pt+1))] (2.24)

• xt /∈ Φ or t > T − ν or t > T − τ (no control feasible)

Jt(xt; pt) = f(xt; pt) + Et Jt+1(xt + 1; pt+1) if xt > 0 (2.25)

Jt(xt; pt) = f(xt; pt) + Et Jt+1(xt − 1; pt+1) if xt < 0

JT+1(xT+1) = 0

4again resembling the approach of Tseng and Barz
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Following Tseng and Barz, Jt(xt; pt) denotes the value of the the plant
over the time period t to T , given observed prices pt = (pEt , p

F
t ) at time

t. Note, that this description of the model is consistent to the more gen-
eral model (2.18) when (2.19) and (2.20) are describing the physical plant
properties introduced in section 1.3.

2.3 Integration using Monte Carlo simulation

In the deterministic case, Dynamic Programming provided an excellent
algorithm for the optimal plant control. In the stochastic case, the usage of
conditional expectations in equations (2.23) to (2.25) urges to look for ways
to compute EtJt+1(xt+1; pEt+1, p

F
t+1).

Generally J(·) is not a ’nice’ function since it is not linear in prices and even
not necessarily continuous. Especially those aspects suggest the usage of non
- analytic methods such as Monte Carlo integration. The subsequent section
is based on chapter 5 of [4] and section 2.4 from [3].

2.3.1 Monte Carlo integration

Primarily, Monte Carlo simulation is a method for evaluating integrals
using (pseudo-) random numbers. The simplest problem of this kind is given
by determining the value of an integral

∫
f(x)dx over the domain [0, 1]. In

terms of Monte Carlo simulation, this is done by identifying this integral with
the expected value of the transformation f(X) of a uniformly distributed ran-
dom variable, X ∼ U([0, 1]). From the properties of the uniform distribution
follows

θ =

∫ 1

0

f(t)dt =

∫
f(x) I[0,1](x)︸ ︷︷ ︸

density of X

dx = E(f(X)) (2.26)

Therefore, evaluating the integrand f at N random samples xi from
U([0, 1]) and taking the mean of these values gives an estimate of θ. This
estimate converges towards the exact value of the integral, following the law
of large numbers. Moreover, the Monte Carlo estimator θ̂ is unbiased:

θ̂N :=
1

N

N∑
i=1

f(xi) (2.27)

E(θ̂N) =

∑N
i=1 E(f(Xi))

N
= E(f(X)) =

∫ 1

0

f(x)dx
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The variance of the Monte Carlo estimator θN is given by

V(θ̂N) =

∑N
i=1 V(f(X))

N2
=

1

N
· V(f(X)) (2.28)

From equation (2.28) some convergence properties of the Monte Carlo esti-
mate can be derived:
If V(f(X)) is bounded, the speed of convergence of V(θ̂N) is O( 1

n
). Moreover,

equation (2.29) shows that the precise speed is depending on the roughness5

of the integrand, to be seen at the very far right.

V(f(X)) = E(f(X)− E(f(X))2 =

∫ 1

0

(
f(x)−

∫ 1

0

f(x)dx

)2

dx (2.29)

2.3.2 Variance reduction: antithetic variates

Due to the nature of the method, the Monte Carlo estimate is blurred
by an inherent error. Especially for computationally intensive problems it
pays to reduce this variance by smart ways of using pseudo random numbers.
Those more or less subtle methods alter the variance of the Monte Carlo es-
timator without changing its expected value.
Here, the method of antithetic variates will be explained shortly since it is
referred to in subsequent parts.

Consider again the problem of finding the value of (2.26). The Monte
Carlo estimator for this is given by (2.27), its estimate is based on xi from
a uniform distribution on [0, 1]. An intuitive way of avoiding outliers among
those random values is to add for each drawn xi its mirrored value x′i :=
(1 − xi) to the sample. If f(x) is monotonous6, this reduces the variance of
the estimate because of the influence of the covariance term:

V

(∑N
2
i=1(f(xi) + f(x′i))

N

)
=

=
1

N2

N
2∑
i=1

[V(f(xi)) + V(f(x′i)) + 2Cov(f(xi), f(x′i))]

<

∑N
i=1 V(f(xi))

N2

5defined as the difference of a function from its integrated value, [4], p132
6f monotonous ⇒ Cov(f(xi), f(x′

i)) < 0
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As intended, equation (2.30) shows that the Monte Carlo estimator stays
unbiased.

E

(∑N
2
i=1(f(xi) + f(x′i))

N

)
= E(f(x)) (2.30)

Thus, this easily implemented method can result in a reduction of com-
puting time. Unfortunately, the degree of this depends very much on the
properties of the integral to be computed.

2.4 The iterative solution for the stochastic

model

2.4.1 Describing optimal control strategies

The fundamental difficulty at assessing the plant’s value is to determine
the optimal control decision of the operator. Using the recursive formulation
of the model, the optimal (one step) control at fixed state xt is the mapping
from R2

+ into {0, 1}, assigning to any observed price pair the feasible control
which maximizes the one-step optimization in (2.23) or (2.24). Clearly, the
optimal control value is ut = 1 (turning on) when Jt(xt; p

E
t , p

F
t |ut = 1) ex-

ceeds Jt(xt; p
E
t , p

F
t |ut = 0) and ut = 0 for the opposite case. This relation

can be utilized to describe the optimal control:
The difference of expected payoffs is introduced as function of current state
and prices:

dt(xt; p
E
t , p

F
t ) := Jt(xt; p

E
t , p

F
t |ut = 1)− Jt(xt; pEt , pFt |ut = 0) (2.31)

Then, for the optimal control strategy u∗, equation (2.32) holds:

u∗t =

{
1, if dt(xt; p

E
t , p

F
t ) > 0,

0, if dt(xt; p
E
t , p

F
t ) < 0

(2.32)

In other words, for each state xt the pEt × pFt plane of observed prices
at time t is divided in two parts determined by the sign of dt(·). For any
observed price pair, the optimal unit control variable ut can be found by
determining which of the sets it belongs to.
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2.4.2 Describing d(·) with indifference loci (IL)

Needing a smart (computationally cheap) way to determine the separation
of the pEt × pFt plane described by dt(·), Tseng and Barz used the following
approach: They looked for price pairs (pEt , p

F
t ) satisfying dt(xt; p

E
t , p

F
t ) = 0.

In terms of the operational value, these are the solutions of

Jt(xt; p
E
t , p

F
t |ut = 1) = Jt(xt; p

E
t , p

F
t |ut = 0) (2.33)

which represent observed prices, at which the operator is indifferent between
turning on and shutting down the plant in terms of profit. Those price pairs
are referred to as indifference loci (IL) in the rest of the text. The IL are
used as a barrier between prices implicating the turn on (u = 1) and the turn
off (u = 0) of the plant in the following way:
Let x̄t be a fixed state, p̄Et an arbitrary electricity price and pF∗t the fuel price
satisfying dt(x̄t; p̄

E
t , p

F∗
t ) = 0. Then it is assumed that d(x̄t; p̄

E
t , p

F ) > 0 if
pF < pF∗ and d(x̄t; p̄

E
t , p

F ) < 0 if pF > pF∗ respectively. In other words, in
the pEt × pFt plane, the observed prices implying u = 1 are located in the
lower right of the IL; the observations implying u = 0 are found in the upper
left.
This method is based on the fact that d(·) > 0 for small fuel prices (and vice
versa) and the assumption that d(·) is monotonous in pF 7.

Figure 2.2 illustrates the concept of indifference loci: The value of a plant at a
given time step t is computed at various price pairs for both possible controls;
Jt(xt; p

E
t , p

F
t |ut = 1) is represented by the red plane, Jt(xt; p

E
t , p

F
t |ut = 0)

by the blue one. Naturally the optimal control will be 1 for price pairs which
promise a greater profit than u = 0. This corresponds to the light red area in
the pEt × pFt plane, the other case to the light blue area. The border between
those areas is the indifference locus; for those price pairs, both controls are
expected to provide the same payoff.

2.4.3 Solution of the model of Tseng and Barz

Value at time s for known dt(·), t > s

The value of the plant at given state xt is determined by the recursions
(2.23) to (2.25). As in the deterministic case, the expected future payoff is
computed starting from the end of the horizon backwards in time.

7this does not apply in general, see section 4.3.2 for a counterexample
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Figure 2.2: IL as intersection between Jt(t
on; pEt , p

F
t |ut = 1) and

Jt(t
on; pEt , p

F
t |ut = 0)

Assume the functions (dt(·))t=s+1,...,T to be known at an arbitrary time
step s (1 ≤ s < T ). (This information corresponds to the optimal path in
the deterministic case.)
At any given state xs and current prices (pEs , p

F
s ), the expected future payoff

for fixed control ut, Es(Js+1(xs+1, us+1; pEs+1, p
F
s+1)) can be obtained using

Monte Carlo simulations. This is done by generating a number of price
scenarios starting with (pEs , p

F
s ) according to the underlying price model.

Since the sequence of controls is determined by the (dt(·))t>s, the future
payoff of the plant can be computed for each price scenario. The mean of
these values is a Monte Carlo estimate of the expected payoff over s+1, . . . , T
conditional on observed prices (pEs , p

F
s ).
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Estimating Es(Js+1(xs+1, us+1; pEs+1, p
F
s+1)) for known dt(·), t > s

A more instructive description of the Monte Carlo evaluation is the algo-
rithm form8:

0 : initial conditions : s, (pEs , p
F
s ), (dk(·))k>s and xs+1 are given;

N is determined, i = 0

1 : initialize: set t = s+ 1, i = i+ 1 and J (i) = 0

2 : generate scenario: if i ≤ N simulate price sequence (p
E(i)
k , p

F (i)
k ),

k = s, . . . , T , starting with initial (pEs , p
F
s );

else return (J (i))i=1,...,N .

3 : actuate control : determine ut by (2.32)

4 : actuate payoff : J (i) = J (i) + f(xt; p
E(i)
t , p

F (i)
t )− C(xt, ut)

5 : update system: determine time step depending on ut (either t = t+1,
t = t+ τ or t = t+ ν), then determine xt

6 : iterate: if t ≤ T go to 3, else go to 1

As indicated before, an estimate for the expected value of the plant is
given by the mean of simulated plant values

Es(Js+1(xs+1, us+1; pEs+1, p
F
s+1)) ≈ 1

N

N∑
i=1

J (i) (2.34)

For the actual value of the plant at time s, equation (2.23) or (2.24) can be
used, depending on the current state.

Determining IL

Having solved the evaluation problem for known future optimal decisions,
the idea of the further proceeding is similar to the deterministic case. Com-
bining equations (2.31) and (2.24) or (2.23) respectively, the IL at s can be
expressed as the price pairs solving (2.35) or (2.36):

• if xs = ton and s ≤ T − ν

EsJs+1(ton; pEs+1, p
F
s+1)− Es

[
Js+ν(−1; pEs+ν , p

F
s+ν)− Cshut

]
= 0 (2.35)

8see also [1], Simulation Algorithm for Jt0
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• −tcold ≤ xs ≤ −toff and s ≤ T − τ

Es

[
Js+τ (1; pEs+τ , p

F
s+τ )− Cstart(xs)

]
(2.36)

− EsJs+1(max (xs − 1,−tcold); pEs+1, p
F
s+1)) = 0

Therefore the IL at s can be estimated by the algorithm above using only
IL from s+ 1, . . . , T − τ (or T − ν). Starting at the end of the time horizon,
optimal decision rules expressed by IL can be computed iteratively.
An IL does not exist at each time step, since there is no control action
when the remaining evaluation time is shorter than decision lead time; that
is at t > T−τ for a cold plant or at t > T−ν for an online plant respectively.

Note that an indifference locus consists of an infinite number of price
pairs; therefore the computed IL will only be an approximation. Besides, the
finding of the price pairs will be very expensive in terms of computing time,
since at each evaluation of (2.31) the simulation of 2N scenarios is needed.



Chapter 3

Implementation in MATLAB

While the previous two chapters introduced the model and provided the
necessary mathematical tools for solution of the plant evaluation problem,
the remaining chapters will document the functionality of the created com-
puter programs and discuss the obtained empirical results.

This chapter is entirely dedicated to the explanation of basic properties
of the developed Matlab program code.
The first section will explain the concept behind the procedure and introduce
technical necessities such as simulation of price processes and the approach
to the solution of (2.33).
The second section will contain brief explanations of the procedures used.

3.1 The big picture

The idea behind the Tseng and Barz algorithm was already discussed in
section 2.4.3. Neglecting the details, its core task was the iterative compu-
tation of the IL, starting from the end of the evaluation period.
Looking deeper into the details, the proceeding gets more complicated: Ob-
taining the IL consists of finding the zeros of a function, which is evaluated
by Monte Carlo simulation, which use the indifference loci of previous stages.
This point of view suggests the division of the evaluation problem into fol-
lowing subproblems:

(P1) Administrating the search for, and the storage of IL

(P2) Evaluating the determining equation of IL (equation (2.33))

(P3) Approximating the IL

24
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(P4) Generating price scenarios for Monte Carlo simulation

(P5) Providing optimal control based on available IL

However, growing experience showed that the model is complex enough to
turn

(P6) Initializing simulation parameters and storing the obtained data

into an additional problem.
While (P1), (P2), (P5) and (P6) have already been explained or are of no
mathematical difficulty, methods for (P3) and (P4) have not been discussed
yet.

3.1.1 Generating price scenarios for Monte Carlo
simulation

Already in the previous chapters, fuel and electricity prices from hourly
spot markets have been included in the models and used at Monte Carlo
evaluation. However, beside the Markov property (and the existence of the
population mean at Monte Carlo simulation) no underlying properties of the
prices have been specified.
Indeed the solution method presented in section 2.4 can be used for many
price models.

The underlying processes for both fuel and electricity prices are modeled
as ’geometric’ processes:

Let pt denote the price and mt the hourly pattern of logarithmized prices
(see equation (3.2) for details). Then for zt := ln(pt)−mt the price model is
given by the AR(1) process

zt = α zt−1 + σ Bt (3.1)

where Bt ∼ N(0, 1) are independent and normally distributed.

This price model is equivalent to the one used by Tseng and Barz, who
generated the prices by a discrete version of a mean reverting geometric
process1.

1[1], Appendix A; [2], p42; [3], p36
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Estimating the model parameters for electricity

For fitting the parameters in (3.1) for the electricity model fromN historic
prices, following steps have been taken:

• Estimate the time depending pattern mt of the price logarithms ln(pt).
Patterns for different time periods are derived by simply taking separate
means of the concerned periods.
For an hourly pattern for example, this is done by

mh = 24/N

bN/24c∑
i=0

ln (ph+i·24) (3.2)

mt = mk for k = t modulo 24.

• Subtract the pattern from the logarithms of prices
zt := ln(pt)−mt.

• Maximum likelihood estimates for αE and σE are given by

α̂E =

∑N
i=2 zizi−1∑N
i=1 z

2
i

= 0.9086 (3.3)

σ̂2
E =

1

N

N∑
i=2

(zi − α̂Ezi−1)2 = 0.0190 (3.4)

Finally, random realizations of the estimated process can be simulated by
reverting the procedure:

• Generate zi following the AR(1) process in (3.1), with Bi ∼ N(0, 1)

• Add the seasonal pattern mt and derive prices by pt = exp(zt +mt)

The parameter values for the electricity price process used in the simu-
lations are derived from the hourly electricity spot prices from January to
September 2008. The data was taken from the webpage2 of the Austrian
Energy Exchange (EXAA).

Figure 3.1 compares some simulated price trajectories and the hourly
price pattern to the real prices from January 1st to January 7th 2008. Of
course it is inappropriate to judge the performance of the price simulation by
the comparison of three random realizations with real data at an arbitrary
time period. However, it is interesting to see the influence of holidays on
prices: hours 1 to 24 (January 1st) and hours 120 to 144 (Sunday January
6st) show particularly low prices.

2http://www.exaa.at/market/historical/austria germany/index.html
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Figure 3.1: Simulations of electricity price using price model (3.1)

Estimating the model parameters for natural gas

The price process for natural gas (the fuel assumed to be used) will also
be described by a geometric mean reverting process (3.1).
Unfortunately, contrary to the model assumption of an hourly market, nat-
ural gas is traded on a daily basis. This problem can be avoided by fitting
a price process with daily fluctuations. Hourly gas prices can be obtained
either by interpolation between the resulting values, or by keeping one price
for every 24 hours.
However, Tseng and Barz state to use a model based on hourly time steps3.
The parameters of this process are deduced from the parameters of the daily
process in a not specified way. One advantage of simulated hourly gas prices
is the possibility to incorporate a correlation between gas and electricity
prices as observed in reality.
Sticking to the strategy of following closely the approach of Tseng and Barz,
the values for α̂F = 0.9993 and σ̂F = 0.019, as well as a correlation of 0.4
between electricity and natural gas prices will be taken from [1].
The mean of the process m, will be estimated from real data provided by the

3[1], section 4.1
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European Energy Exchange4.
Using these parameters, the generation of fuel price trajectories happens in
the same way as the simulation of electricity prices above.

3.1.2 Approximating the IL

As previously discussed, an IL consists of an infinite number of price
pairs, satisfying equation (2.33). The practical determination consists of
obtaining a sufficient number of points on the IL, to determine a reasonable
approximation. Tseng and Barz propose to fix pEt at level p̂

E(i)
t and then

solve the equation

h(y(i)) = Jt(x̂t; p̂
E(i)
t , y(i)|ut = 1)− Jt(x̂t; p̂E(i)

t , y(i)|ut = 0) = 0 (3.5)

as function of one variable, y(i) (replacing pFt ). The resulting fuel electricity

pairs (y(i)), p̂
E(i)
t ) provide estimates of the IL.

Since evaluating h(y) is a separate problem (P4), the tasks left are to find
the zeros of this function and to approximate the IL from them.

The function fzero.m, already contained in Matlab provides the method
of choice to find the zeros of h(y).

The actual IL will be approximated by linear or cubic spine interpolation
between the zeros found by fzero.m.
The cubic spline interpolation is done by the Matlab routine interp1.m
where the property ’method’ is specified as ’cubic’. This procedure approx-
imates an one dimensional function by interpolating with a cubic polynome
between the function evaluations (Piecewise Cubic Hermite Interpolating
Polynomial) 5.
Especially for a large number of Monte Carlo simulations it saves time to fit
splines compared to computing a high amount of points on the IL.

3.2 The program

According to the problem division at the beginning of this chapter, the
subproblems (P1) to (P6) have been assigned to different functions. The in-
terdependences of those are depicted in figure 3.2. The blue boxes represent

4http://www.eex.com/de/Marktdaten/Handelsdaten/Erdgas/Natural%20Gas%20Day-
Ahead%20Chart%20—%20Spotmarkt/spot-gas-chart/B/2008-09-01

5see pchip in Matlab help for details
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data, the red ones functions. Note the dark blue and the dark red box: They
show the role of the high level data structure (Experiment dealing with (P6))
and the high level main function (workbench.m dealing with (P1)).

System

Price

Setting

Experiment (P6)

decisionData

workbench.m
(P1)

d.m (P5)

prices.m (P4)

J_difference.m (P2)

decision policy T, …, t+1

fzero.m (P3)

decision policy at t

time step (t),
function management

system
 param

eters

generates

optimal control

price scenarios

Figure 3.2: Structural properties of the program

3.2.1 Data storage: The variable Experiment

The task of the program is to generate the variable Experiment of the
type struct. It contains all information about the simulation conducted; as
well parameters for modeling the plant as the data determining the IL. This
variable is usually organized in the following way:

• General simulation parameters are contained in the subfield Setting :

– N ... integer number of Monte Carlo simulations

– T ... length of evaluation period (in hours)

– method for approximation of IL (linear or cubic spline)

– search range ... the interval in which a zero of (3.5) is looked for

– il partition ... the sequence of p̂
E(i)
t (see equation (3.5))

– model ... the price model used (’geometric’ for the model intro-
duced above, ’prognosis’ for the expected values of the ’geometric’
model; ’pattern’ and ’constant’ for deterministic price trajectories
with/without hourly pattern)
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– variance reduction ... variance reduction technique applied (’an-
tithetic’ or ’none’)

• Parameters describing the physical plant properties like unit decision
lead time, heat rate or startup cost. Values of this kind are filed under
System

• Parameters for price process like the seasonal pattern or error variances
can be found in the subfield Price

• The main objects of interest, the solutions of equation (2.33) are stored
in decisionData. If spline interpolation is applied, an additional subfield
decisionSpline is generated which contains the already estimated IL (i.e.
structures to be evaluated by ppval.m).

The data type of Experiment makes it possible to include additional infor-
mation in a very easy way. Therefore more subfields, for example concerning
data about program performance can be included.
The advantages of collecting all data concerning a simulation in one vari-
able are obvious: it is vital to store all simulation parameters since they are
needed for the interpretation of the results. Besides, all participating func-
tions rely on some of the model parameters. This need can be satisfied in the
least confusing way by arranging all parameters in one single data structure
and letting the functions get their information from there.
Note that parameters from the subfields Setting, System and Price describe
the underlying model assumptions and therefore should not be changed dur-
ing simulation. The functions ModPar, sysinit and priceinit are built solely
for the purpose of generating those fields at the beginning of a simulation.

3.2.2 workbench.m

As shown in figure 3.2, workbench.m plays the role of the main function,
orchestrating the specialized subfunctions and returning the Experiment vari-
able. Technically, workbench.m is not a function but a Matlab worksheet.
The idea behind using a worksheet for this task is to supply the user with
a basic framework for the calculation of the IL - and thus the power plant
value - but leaving room for experiments with the procedure.

As already indicated, workbench.m first generates the universal data stor-
age variable Experiment and then stores the (approximation of) IL in it. This
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Setting up the simulation:

(1) Generate the Experiment variable, using ModPar, sysinit and priceinit

Execute the backwards moving computation of IL:

(2) Determine time step t

(2.1) Determine states where control can be applied: xt ∈ Φ

(2.1.1) Determine p̂
E(i)
t in (3.5)

(2.1.2) make initial guess for zero in (3.5)
(usually extrapolation of previous values or the IL from t+24)

(2.1.3) solve equation (3.5) using fzero.m and J difference.m

(2.2) store IL - data in Experiment

(2.3) autosave Experiment

Table 3.1: The tasks of workbench.m

is done starting from the end of the time horizon. The main tasks of work-
bench.m are sketched in table 3.1.

3.2.3 J difference.m

il = J_difference(x,t,pEhat,pFhat,modus,Experiment)

The function J difference is the main workhorse of the procedure. Its
primary task is to evaluate

Jt(xt; p
E
t , p

F
t |ut = 1)− Jt(xt; pEt , pFt |ut = 0) (3.6)

for given xt, t and observed prices pEt , p
F
t (pEhat,pFhat). Implicitly, also

the optimal production for observed prices (see equation (1.9)) has to be
determined. Parameters of the cost and revenue function are taken from
Experiment.

As in all functions used by workbench.m, the current time step is specified
by an integer between 1(= start of unit control) , . . . , T (= end of horizon).
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The state variable xt is described by an integer between 1 representing
xt = ton and ton+tcold representing xt = −tcold. This is equivalent to assigning
increasing integer numbers to the states, starting from xt = ton. The reason
for using this notation in the programs is the simple storage and access of
data when the state can be used as index as well. Again, this convention is
used by all programs called by workbench.

The input parameter modus determines the output: the default modus
’difference’ returns the value of (3.6); ’value’ returns

max
ut

(
Jt(xt; p

E
t , p

F
t |ut = 1), Jt(xt; p

E
t , p

F
t |ut = 0)

)
(3.7)

which gives an estimate of the actual future payoff at time t and state xt.
For other specifications of modus, the outcomes of the different Monte Carlo
simulations are returned as a vector together with mean and variance of the
distribution of the value of (3.6).

The algorithm used in J difference corresponds to the algorithm for de-
termining EsJs+1, introduced in section 2.4.3. However, since the purpose of
J difference is to compute the difference of of two evaluations of EsJs+1, this
algorithm is extended to use each generated price scenario p(i) twice: once
for Jt(xt; p

E(i)
t , p

F (i)
t |ut = 1) and once for Jt(xt; p

E(i)
t , p

F (i)
t |ut = 0). If different

scenarios were generated for each value of the control variable, this could
lead to outliers in future prices unequally distributed between the different
ut. Thus, using the same price realizations for both possible states of control
apparently results in better comparability of the Monte Carlo estimates for
different controls.
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3.2.4 prices.m and pricesVred.m

[pE,pF] = prices(pEhat,pFhat,t,model,Experiment)

As the name suggests, prices.m generates price scenarios for both fuel
and electricity prices for Monte Carlo simulation in J difference.m. Neces-
sary inputs are initial prices, the current time step and a variable specifying
the underlying model. Beside the geometric price model from equation (3.1),
some deterministic models have been included mainly for testing purposes
(see also Experiment.Setting). Again, constant model parameters such as the
price pattern or parameters of the price process are provided by Experiment.
Note that the returned price scenarios are of length T − t+ 1: they are price
sequences starting with the observed values pEt , p

F
t and realizations of the

specified price process at t+ 1, . . . , T .

[pE,pF]=pricesVred(pEhat,pFhat,t,model,iteration,Experiment)

The function pricesVred.m is designed for generating the price scenarios
for J difference.m when the variance reduction technique of antithetic vari-
ates6 is used (to be enabled in Experiment.Setting).
The generation of price trajectories is based on the samples of stochastic in-
fluences, which are drawn from a N(0, 1) distribution7 by the random number
generator.
The parameter iteration (which is the only difference to prices.m) deter-
mines the number of the current Monte Carlo simulation for which the price
scenario generated will be used. When iteration = N/2 (i.e. after half
of the simulations), the seed of the random number generator will be set to
the same seed as in the first Monte Carlo simulation. Additionally, for the
subsequent iterations the samples will be multiplied by −1. This ensures
that for each random influence, its ’mirrored value’ will be in the sample.

6for details, see section 2.3.2
7see equation (3.1)
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3.2.5 Other functions

d.m

(usage: u = d(x,t,pE,pF,Experiment))

This function returns the optimal control for given state, time and current
price observations. This is done by translating8 the already stored informa-
tion about IL into the optimal control strategies needed for J difference.

JE0difference.m

(usage: je0 = JE0difference(x0,t0, pEhat, pFhat,modus,Experiment))

JE0difference.m is the deterministic equivalent of J difference.m. This
means that it computes the value of equation (3.6) assuming perfect infor-
mation. The algorithm uses standard Dynamic Programming as presented
in equation (2.5).
The main purpose of this function was to debug the Tseng and Barz algo-
rithm, since it yields the same values as J difference.m for a price model
with zero variance. Besides it was also used for computing the optimal con-
trol strategy based on a price prognosis from t = 1. For this purpose, when
modus is specified as ’decision’, the function returns a states × time steps
matrix, with entries being zero or one. Each value corresponds to the opti-
mal decision at the time and state specified by its position. Plant valuation
based on this strategy will be discussed in section 5.1.2.

ModPar.m, sysinit.m and priceinit.m

As mentioned above, those three functions are meant to create the sub-
fields of Experiment containing the underlying model parameters. As default
they contain the same parameters as used by Tseng and Barz to evaluate the
plant in section 4.1. For changing settings like the number of Monte Carlo
simulations, the approximation method of IL or simulation with different pa-
rameter values, it is recommended to edit these functions. Their content is
included into Experiment automatically at its generation by workbench.m.

8see section 2.4.2 for the connection of d() and IL
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Deterministic Simulation

4.1 Deterministic simulation:

Testing the Program

Including the possibility of validating the results obtained with the Tseng
and Barz algorithm has been one of the objectives at the development of the
program from the very beginning.
A quite convenient way to judge the program performance is to examine the
IL for deterministic prices. Because the IL determine the optimal unit com-
mitment strategy, they represent the pivotal result of the procedure.
Since the evaluation of the determining equation (2.33) has been implemented
with two different algorithms (JE0difference.m using dynamic program-
ming and J_difference.m using Monte Carlo simulations), the results of
both functions can be compared and verified when the same price trajecto-
ries are used. Besides, for deterministic prices the Monte Carlo estimator is
exact after only one simulation, which leads to a short computation time.

Deterministic prices were simulated as trajectories of a geometric price
model (3.1) with zero variance. As easily derived from the autoregressive
nature of the price logarithms, the resulting trajectories converge against the
price pattern. The speed of convergence depends on the correlation α of the
logarithmized observations. In the actual simulations, the gas price turns
out to stay nearly constant due to αF being very close to one (see figure 5.5).

35
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4.2 The standard experiment

The physical properties of the simulated plant are similar to the ones
used in the empirical study of Tseng and Barz1. In the subsequent parts, a
simulation with these settings will be referred to as the standard experiment :

Parameters of the standard experiment

τ : 2 startup time
ν: 2 shutdown time
ton: 10 minimum online time
toff: 10 minimum offline time
tcold: 10 time to cool entirely
qmin: 250 minimum generation capacity
qmax: 750 maximum generation capacity
b1: 2300 cold start fuel cost for startup
b2: 950 fixed and labor cost for startup
γ: 5 proportion of startup cost to cooling
shut: 1000 unit shutdown cost
a0: 600 constant coefficient of heat rate
a1: 9.1210 linear coefficient of heat rate
a2: 0.0013 quadratic coefficient of heat rate

For the price models, the parameters estimated in 3.1.1 are used if not
explicitly stated otherwise.

4.3 Simulation of the standard experiment

with deterministic prices

Additional to the physical properties, parameters concerning the simula-
tion procedure have to be specified:
The time period for which the payoff was computed was assumed to be T = 24
hours. The approximation of the IL was performed by linear interpolation
between solutions of the determining equation (2.33) at pEt = 0, 1, . . . , 170.
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Figure 4.1: Indifference Loci of the standard experiment for deterministic
prices: xt = 10

4.3.1 IL of the standard experiment with deterministic
prices

Figure 4.1 shows the IL for xt = 10, t = 1, . . . , 22, figure 4.2 the IL for
xt = −10, t = 1, . . . , 22.
The division of the fuel × electricity price plane corresponds to the zeros
of dt(xt; p

E
t , p

F
t ) at certain time and state. For an observed price pair right

below the corresponding IL, the optimal control action is u = 1; a price pair
at the upper left of the IL implies u = 0.
At the IL from xt = 10, a positive y intercept can be observed which may be
explained by the nonzero shutdown cost: it can be cheaper to sell electricity
with a small financial loss than to pay for the shutdown of the plant. Ob-
servation also shows, that for each period the IL of the online unit is above
the IL of the offline unit. Intuitively this makes sense since the startup of
a plant is connected with additional cost and thus it is of course cheaper to
keep the plant online than to start it from an offline state.

1[1], section 4
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IL at t=6, xt=−10

IL over 24 hours for xt = −10

Figure 4.2: Indifference Loci of the standard experiment for deterministic
prices: xt = −10

4.3.2 Strange IL: Discontinuities and the problem of
describing them as function of pE

t

While the observations above correspond to the results of Tseng and Barz
others seem to contradict them:
The shape of the IL differs significantly from the ones presented in [1], sec-
tion 4.2. Of course it is not possible to compare results of the deterministic
simulations with the stochastic case directly. However it is surprising that
some IL are not continuous in electricity prices, since one would expect a
marginal increase in fuel prices to have the same effect as a marginal reduc-
tion of electricity prices.

Figure 4.3 shows a more detailed view of the difference between the fu-
ture payoffs at t = 6. For this picture, d6(x6 = −10; pE6 , p

F
6 ) was computed

on a grid defined by 200× 200 price pairs. The contours resulting from this
method (red) give a more accurate description of the underlying IL. Figure
4.3 shows that it is apparently not possible to determine one unique fuel
price for every electricity price, at which the operator is indifferent between
the control actions. This observation contradicts a fundamental assumption
used for the computation of IL:
According to equation (3.5) the IL can be constructed by assigning to every
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Figure 4.3: Differences between the future payoffs for u = 1 and u = 0 at
t = 6 (the price range corresponds to the black frame in Figure 4.2)

electricity price p̂
E(i)
t the unique fuel price yi satisfying dt(x̂t; p̂

E(i)
t , y(i)) = 0.

4.3.3 A showcase explanation for the reaction of the
optimal control on a change in fuel prices

The shape of the IL seems to be influenced mainly by the hourly pattern
in electricity prices and the minimal unit commitment time.
As already discussed in section 1, the minimal unit commitment time de-
termines how long the plant has to stay running after going online (or vice
versa for going offline). After this period, there is no restriction on the con-
trol anymore.

The influence of the price pattern alone results in a shift of IL upwards
or downwards, corresponding to the behavior of the pattern. In other words,
the size of the area right below the IL is depending very much on the period
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of the day at which the IL applies. It pays for example for many price
combinations to turn on the plant in the morning to sell electricity during
the price peaks at noon. The opposite effect appears for night hours.
The minimal unit commitment time plays an important role in connection
with price patterns as illustrated for the optimal decision based on selected
price observations below:
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Payoff for different operation strategies of a cold plant (at pE6=50, pF
6=7.5)

(for t=6, x6=−10, τ=ν=2, ton=10)

 

 

one − period revenue
payoff for starting the plant at t=6 (36084.2)
payoff for starting the plant at t=7 (35781.6 )

Figure 4.4: Revenue of going online at t = 6 and t = 7 for
(pE6 , p

F
6 ) = (50, 7.5)

Figures 4.4 to 4.6 explain graphically the generation of the payoff of the
plant at x6 = −10 over t = 6, . . . , 24. The blue bars represent the payoff2

of production at the respective hour. The red step function represents the
development of the maximal payoff if the plant is turned on at t = 6; the
black step function shows the maximal payoff if the plant is turned on at
t = 7.
The initial prices are (pE6 , p

F
6 ) = (50, 7.5) in figure 4.4, (pE6 , p

F
6 ) = (50, 7) in

figure 4.5 and (pE6 , p
F
6 ) = (50, 6.5) in figure 4.6.

In figure 4.3 the optimal decision for all three price pairs can be seen:
(50, 7.5) lies in the area where J6(·|u = 1) − J6(·|u = 0) > 0 and thus
it is optimal to start the plant at t = 6. For (50, 7) on the other hand,
J6(·|u = 1) − J6(·|u = 0) < 0 which paradoxically suggests not to start the

2payoff = ft(xt; pE
t , pF

t ) for xt > 0
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payoff for starting the plant at t=6 (72402.8)
payoff for starting the plant at t=7 (73026.9 )

Figure 4.5: Revenue of going online at t = 6 and t = 7 for
(pE6 , p

F
6 ) = (50, 7.0)

plant at t = 6. Finally the optimal decision for (50, 6.5) is again to start the
plant.

From graphic treatment of the three cases, the reason for the different
optimal strategies can be retraced:

For prices (50, 7.5), the operator will try to profit from high revenues from
hour 9 to 14. The minimum unit commitment constraint however demands
production over 10 hours.
Thus, starting the plant at t = 6 results in production from hour 8 (decision
lead time = 2) to hour 17, at which the plant is turned off since there is no
more profit to be made. Although the power generation at four hours has
generated a negative payoff, this was compensated by the payoff at the other
six hours.
Starting the plant at t = 7 on the other hand results in avoiding the loss at
hour 8 (red bar in figure (4.4)) but producing at loss at hour 18 (black bar
in figure (4.4)). Since the black bar exceeds the red bar, it does not pay to
start at t = 7 compared to t = 6.

For prices (50, 7) (figure (4.5)), the situation has changed. Although the
production at t = 8 still results in a loss smaller than production at t = 18,
now hours 19 and 20 promise positive payoff for production. Since the profit
from hours 19 and 20 is greater than the loss at 18, a plant started at t = 6
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one − period revenue
payoff for starting the plant at t=6 (127389)
payoff for starting the plant at t=7 (124074 )

Figure 4.6: Revenue of going online at t = 6 and t = 7 for
(pE6 , p

F
6 ) = (50, 6.5)

will be shut off at t = 20. Therefore, now the optimal strategy is not to start
the plant at t = 6 (but at t = 7).

An additional small change in fuel prices results in the situation depicted
in 4.6. At prices (50, 6.5), production at every hour from 8 to 21 results
in a positive payoff. The obvious optimal production strategy is to use the
opportunity of starting the plant at t = 6 and producing until t = 21.

This example illustrates some aspects of the effects arising from the im-
plementation of price patterns and unit commitment constraints. Simula-
tions show that this particular behavior vanishes when either price pattern
or commitment constraints are excluded.

4.3.4 Conclusion

The results presented in this chapter show that defining the IL as a func-
tion of electricity prices leads to a bad approximation of the actual IL by the
algorithm used.
This approximation is especially inexact, when the IL is estimated by spline
interpolation between few points found to be on the indifference locus. As a
function of electricity prices only, the IL are not necessarily continuous; us-
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ing spline interpolation however, they are described by a continuous smooth
function of pE.
Note that all results in this chapter were obtained for deterministic price se-
quences. This makes the direct comparison with results based on stochastic
price models inappropriate.
Still, the deterministic results provide sufficient evidence to doubt the gen-
eral applicability of the IL approximation introduced by Tseng and Barz.
To obtain a generally applicable approximation, the IL would have to be
expressed as a function of both fuel and electricity prices. For computing the
actual IL at each time step, the difference between the expected payoff for
both controls would have to be determined on a grid of price pairs pEt × pFt .
The actual IL would be represented as the contour line of zero difference (as
done in figure 4.3). Although this method is simple and provides a better
approximation, the extreme computational effort needed creates a new prob-
lem. The high computational requirements arise since the grid has to be
chosen very narrow to catch phenomenons like the ones discussed above.
In the remainder of this work, the approximation of IL will stay unchanged
in spite of the observations of this chapter. Also the IL will be approximated
by cubic spline interpolation.
This is done simply to avoid an increase of the already uncomfortably high
computation time. As a result, suboptimal approximations of the IL are
obtained. However, as discussed in section 5.1.2, for stochastic prices still
a reasonable estimation of the expected future payoff can be obtained using
this suboptimal control.



Chapter 5

Empirical Results

The subsequent part is dedicated to the discussion of empirical results
obtained by the implemented algorithm.

In the first three sections of this chapter, the plant dynamics are de-
scribed by the parameters from the standard experiment introduced in chap-
ter 4. Those sections discuss the outcome of the numerical simulation of this
model. In the course of this, the results of two different stochastic electric-
ity price models will be compared: The deterministic pattern of one price
process is based on the mean price at the specific hour of the day (hourly pat-
tern, determined as in equation (3.2)) as already discussed in section 3.1.1.
To determine the impact of this pattern on the payoff, the same model is
also simulated for electricity prices with time independent pattern. In this
case, the time dependent pattern is replaced by the overall mean of observed
prices.
For both electricity price models, the same fuel price process as described in
section 3.1.1 is used.
In section 5.4, a plant with different physical characteristics as the standard
experiment will be simulated. The performance of this unit, designed for
production at price peaks (short decision lead time, short unit commitment
time and low production efficiency) will be compared to the standard unit.

The optimization horizon of all simulations in this chapter is one week
(T= 168 hours).

44
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5.1 The expected payoff over 168 hours

(standard experiment)

5.1.1 Plant value in dependence of observed prices and
state

Following the method introduced before, the expected future payoff is a
function of the current price observations and the state of the plant. Fig-
ures 5.1 and 5.2 depict the main result of the simulation: estimates of the
expected payoff of the power plant over 168 hours.
The evaluation period is assumed to start at midnight where the electricity
price is usually at a low level (∼ 50 e/ MWh). As mentioned before, the
fuel prices are independent of the hour of the day; they move around a mean
of 7.4 e/ MMBtu.
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Figure 5.2: Estimates of the expected payoffs for offline plant: electricity
price with (blue) and without hourly pattern (green)

The estimated expected payoff for a running plant is shown in figure
5.1; figure 5.2 depicts estimated expected payoffs of an offline plant. In
both figures, the payoffs based on simulated electricity prices with hourly
patterns are compared with the payoffs resulting from simulations without
time dependent pattern in electricity prices. The number of scenarios used
for the Monte Carlo estimate was N=250. For reasons of comparability, the
same random numbers were used for computing the expected payoff at each
initial price constellation. The following results can be observed for both
price models:

• Negative expected payoffs for online plant : If the plant is running at
the beginning of the evaluation period, it is quite obvious that negative
payoff can be expected for some price constellations. High fuel prices
for example can lead to a situation where production does not pay at
any instance of the evaluation period. Nevertheless an online plant has
to produce at t=1 at negative payoff and subsequently to be shut down
with additional cost arising.
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• Negative expected payoffs for offline plant : For an offline plant it is
clearly not realistic to expect negative payoffs, since a better value
can be achieved simply by not turning on the plant over the whole
evaluation period. However, at some price pairs the estimate of the
expected payoff turns out to be negative (for both electricity price
models).
The reason for this phenomenon is the lack of robustness of the Monte
Carlo estimator especially at small payoffs. As one would expect, it can
be observed that the vast majority1 of scenarios generated conditional
on fuel prices of about pF1 = 20 leads to zero payoff - corresponding to
an offline plant for the whole evaluation period. Naturally the emerging
of any outlier influences this value significantly.

• The payoff increases (piecewise) linearly with growing electricity / nearly
exponentially with falling fuel prices (figures 5.3 and 5.4):
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Figure 5.3: Estimated payoffs as function of electricity prices for online
plant (xt = 10)

This observation is a result of the fundamental difference between the
behavior of electricity and fuel prices: The impact of an electricity price
peak fades away much faster than a peak in fuel prices, which is modeled
by α̂E = 0.9086 < 0.9993 = α̂F

2. Figure 5.5 illustrates this effect for

1simulations at pE
1 = 60, pF

1 = 20 resulted in about 0.3% of the scenarios yielding a
payoff different from 0

2see equation (3.1)



CHAPTER 5. EMPIRICAL RESULTS 48

0 5 10 15
−1

0

1

2

3

4

5

6

7
x 10

6

fuel price

es
tim

at
ed

 p
ay

of
f o

ve
r 1

68
 h

ou
rs

payoff for fixed electricity price and different price models

 

 
at pE=49.48; price model with hourly patter
at pE = 59.4; price model without pattern

Figure 5.4: Estimated payoffs as function of fuel prices for online plant
(xt = 10)

the deterministic part of the price (the hourly pattern model without
stochastic influence which equals the ’deterministic’ price model from
section 4).
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Figure 5.5: Effects of innovations on the deterministic part of price dynamics

As a result, outliers among fuel prices can affect future fuel prices for
the whole evaluation period; the influence of electricity price peaks is
limited to about a day. Therefore the observation of low fuel prices
leads to a general tendency towards production over the whole time
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horizon which results in higher additional payoff from a ’beneficial’ fuel
price than from a favorable electricity price.
Note that a similar effect can be observed for the simulation without
hourly patterns for electricity prices.

The comparison of expected revenues in figures 5.1 and 5.2 shows a dif-
ference in expected profits for different price models: At the same price
constellations the estimated payoff is higher when prices have an hourly pat-
tern.
Note that it may be misleading to compare expected revenues for both price
models directly, since initial (observed) electricity prices have different mean-
ings according to each model. At the beginning of the evaluation period, the
mean electricity price level for an hourly pattern would be at pE1 = 49.48 com-
pared to pE1 = 59.4 for a model without time depending pattern. Therefore,
the same observation can mean a positive innovation and thus a tendency to
higher prices in terms of the one model and the opposite effect in terms of
the other.

Figure 5.4 shows the estimated payoffs for both price models as function
of fuel prices. The electricity price level is fixed to the mean price from the
corresponding price model. For each price model these estimates describe the
payoff at a situation where the current electricity price observation implies
no innovation for the price processes. At least in this special case, the direct
comparison of the payoffs from both models is possible. Obviously a positive
expected payoff is larger for the price model with hourly pattern. However
the scale of figure 5.4 hides the reverse effect 3 for the potential negative
payoffs of an online plant: The losses using prices with pattern exceed the
losses for prices without pattern.

5.1.2 Unit commitment based on different degrees of
information

Describing the actions of the operator plays a decisive role for the esti-
mated value of the plant. A key problem is to model the imperfect infor-
mation of the operator: Assuming unit commitment based on either perfect
price information or only on the expected price development at the beginning
of the evaluation period (t=1) would be oversimplifications. However, those
simpler models of the operator’s decisions should give an upper (perfect in-
formation) or a lower (forecast prices at t=1) boundary of the future payoff.

3this effect can be detected easier in figure 5.1
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Thus, to get an idea about the performance of the decision policy used, the
empirical results from the previous section are put in context with the results
of those simplifications.

For each of the control strategies, the value of the plant is given by the
mean future payoff over a number of N = 250 of price scenarios using the
respective control.

The results of the three methods for an online plant4 are depicted in
figures 5.6 and 5.7. Figure 5.6 shows the direct comparison of evaluation
based on the price prognosis and the Tseng and Barz algorithm; figure 5.7
depicts the comparison of the values using optimal control and the Tseng
and Barz algorithm.
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Figure 5.6: Expected payoffs: Tseng and Barz algorithm (blue) versus
optimal control based on perfect information (red)

Concerning the performance of the plant, both graphics provide a satis-
fying result: the Tseng and Barz algorithm never predicts a greater plant
value than the optimal control; the Tseng and Barz algorithm always esti-
mates a higher future payoff than the control based on forecast prices. Also,

4The performance turns out to be similar for an offline plant.
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Figure 5.7: Expected payoffs: Tseng and Barz algorithm (blue) versus
optimal control based on price forecasts (green)

the comparison between the strategies shows that the choice of the control
strategy does not really make a difference at extreme fuel price levels, where
the payoff-contours converge. Differences of significance emerge at fuel prices
from about 5 to 15. Note that those prices are of especial importance since
’reasonable’ observations are to be expected in this area.

5.2 Frequency counts of scenario payoffs

(standard experiment)

Beside the expected payoff, the procedure of Monte Carlo estimation also
provides the payoffs of single price scenarios. In this section, the relative
frequency of the revenues and their differences will be discussed at the ex-
emplary case of (pE1 , p

F
1 ) = (49.48, 7.37), which is the mean price observation

at t=1 5.

5for electricity prices with hourly pattern
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5.2.1 The distribution of J1(·)
The following summary statistics describe the distribution of payoffs for

N = 100000 price scenarios:

J(x1, p
E
1 , p

F
1 |u1 = 1) J(x1, p

E
1 , p

F
1 |u1 = 0)

Mean Std. Dev Skew. Mean Std. Dev Skew.
x1 = 10 455700 457990 1.2658 467340 454960 1.2815
x1 = −10 453500 467820 1.1880 518700 466070 1.2003

x∗1 = 10 455110 458070 1.2385 466860 455030 1.2518
x∗1 = −10 454010 470410 1.2099 519350 468800 1.2221

The columns marked with x∗1 concern the distribution of payoffs simulated
using antithetic variates. The positive skewness of all distributions seems
reasonable, since extreme financial losses can be avoided by the operator.

It turns out, that the method of antithetic variates affects the distribution
of the payoffs only insignificantly. The reason is probably the asymmetric
effect of outliers on payoffs: the payoff is increased by high electricity and/or
low fuel prices arbitrarily, whereas low electricity and/or high fuel prices lead
to a turnoff of the plant and thus to a bounded negative payoff. As a result,
generating symmetric price observations by extending the set of samples by
the mirrored6 values does not decrease the variance of payoffs: The symme-
try in the distribution of prices is not passed on to the distribution of payoffs.

Figure 5.8 depicts the histograms of payoffs for different control actions
and initial states.
The shape of all histograms reflects the impact of the turnoff of the plant

when future payoffs are expected to be negative. As already observed at the
summary statistics, the distribution of expected payoffs is right skewed for
all initial states and controls u1.
A more surprising observation are peaks in expected future payoffs, especially
in the top three histograms in figure 5.8.
In particular for u1 = 0 (first and third from the top), the peaks occur
at one single value and not at an interval. Those observations resemble
the scenarios, where the power plant is turned off and stays offline for the
rest of the evaluation period. As a consequence, the payoff only consists

6section 2.3.2
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Figure 5.8: Payoffs at x1 = 10 (first and second from the top) and x1 = −10
(below), (pE1 , p

F
1 ) = (49.48, 7.37); N=100000

of the production at observed prices from the first period which yields a
deterministic result.
The situation is slightly different for u1 = 1: For an online plant, this strategy
implies production in the following period (t=2) at unknown prices. Turning
off the plant at t=2 and keeping it offline for the rest of the optimization
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period however, yields a payoff affected by the price stochastics of only one
time period. Thus in this case, the scenarios where u1 = 1, ut = 0, t =
2, . . . , T are only subject to stochastic prices at one time period which causes
a cluster of payoffs in a small interval.
The comparatively smooth histogram for payoffs at x1 = −10 and u1 = 1 is a
consequence of the unit commitment time: If a cold unit is turned on, it has
to stay online for the subsequent 10 hours. As a consequence, every payoff
scenario with this initial setting is influenced by price stochastics significantly.
This prevents the strong clustering of payoffs observed above.

5.2.2 The distribution of d1(·)
The summary statistics of d1(·) = J1(·|u = 1)−J1(·|u = 0) for (pE1 , p

F
1 ) =

(49.48, 7.37), N=100000 assuming electricity prices with hourly pattern (the
same setting as above) are listed below:

d1(x1; 49.48, 7.37)
state Mean Std. Dev Skew.

x1 = 10 -11638 59275 1.9824
x1 = −10 -65196 41457 -0.0309

x∗1 = 10 -11756 59641 1.9181
x∗1 = −10 -65348 41256 -0.1180

Naturally the standard deviations have been decreased by the generation
of the differences of expected payoffs. Note that in addition to this numeri-
cal effect, the usage of the same random numbers for both, J1(·|u = 1) and
J1(·|u = 0) also contributes to decreasing the variance of the differences7.
Figure 5.9 consists of the histograms of the differences. The upper two
graphics show d1(x1 = 10; 49.48, 7.37) with different ranges, the lower de-
picts d1(x1 = −10; 49.48, 7.37).

Those histograms are shaped by the same effects as above: The addi-
tional loss of keeping the online plant running for one more hour is located
in the area of the extreme peak of the histogram 8. This indicates, that in
many cases it is optimal to shut down the plant as soon as possible; thus the
difference between the expected payoffs for u1 = 1 and u1 = 0 consists of the
loss at t=2 to a great extent.
The histogram at the very bottom, showing the situation for the offline plant,
lacks a similar cluster of payoff differences. Again as in the previous section,

7see Section 3.2.3
8the expected payoff of operating at t=2 is -11197
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Figure 5.9: Histograms of d1(·; 49.48, 7.37)

this is due to the unit commitment constraint, which makes the payoff for
u1 = 1 subject to stochastic influences.
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5.3 IL and computation time (standard ex-

periment)

5.3.1 Indifference Loci
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Figure 5.10: IL of 166 hours of the standard experiment for stochastic
prices: xt = 10 (top) and xt = −10 below

Figure 5.10 shows the IL for an online and an offline plant. Due to the
decision lead times (τ = ν = 2), there are 166 IL for the optimization period.

Note that the IL have been determined following section 3.1.2.
For fixed electricity prices pEt = 1, 10, 50, 100, 170 9, a fuel price pFt was com-

9the value for pE
t = 0 is an extrapolation from the approximated IL to guarantee

stability of the zero search, since sometimes there is no corresponding positive solution
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puted for which (pEt , p
F
t ) is on the IL. The actual IL were approximated

by cubic spline interpolation between those price pairs. This explains the
smooth shape of the IL for the stochastic case.
It is not uncommon that electricity prices above 170 appear among simulated
prices10. For this kind of prices, the IL is approximated by spline extrapola-
tion. This method provides nearly linear extensions of the IL for electricity
prices up to more than 200 e; however is not appropriate to use the extrap-
olation of IL at electricity prices above 250 e.

As already observed in the deterministic case, the IL for an online plant
at given time are always above the IL of the offline plant. Also a tendency
towards positive intercepts for IL at xt = 10 and the opposite for xt = −10
can be found again. This phenomenon also appears for prices without hourly
pattern; similar to the deterministic case its cause is likely to be found in the
nonzero startup / shutdown cost.
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Figure 5.11: IL of 166 hours for price processes without hourly pattern

The influence of the price pattern on the optimal decision strategy can
be assessed by comparison of figure 5.10 and 5.11.
For prices with pattern, the IL converge depending on their respective hour
of the day. This can be seen at the clusters of IL in figures 5.12 and 5.12,

10the maximal observation amongst historic data used for estimation of the model pa-
rameters was a price peak of 248.27 e/MWh
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which illustrate sequences of IL at corresponding hours of the day for an
online and an offline plant.
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Figure 5.12: IL (offline plant) at t = 1/6/18 for each day
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Figure 5.13: IL (online plant) at t = 1/6/18 for each day

In the figures above, the IL closest to the end of the optimization period
T are colored darker than the IL at different hours of the day. Apparently the
IL converge with increasing (time) distance from the end of the optimization
horizon. Note that this phenomenon can be observed for each hour of the day
and both offline and online plant, which is also reflected in the computation
time (figure 5.15). The example of the IL at t = 6 and t = 24 gives an
intuitive reason for this behavior: each day, the electricity price is assumed
to have a peak at noon and a low during the night. As a result, the expected
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future electricity price - and thus the expected revenue from power generation
- is higher before peaks in the hourly pattern.
For prices without hourly patterns, converging IL can also be observed (figure
5.11). The absence of the hourly pattern however leads to the convergence
against one optimal decision rule.

5.3.2 Computation time

The computation time for the simulation of the standard experiment with
electricity prices using hourly patterns over a horizon of 168 hours is given
in figure 5.14.
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Figure 5.14: Time needed to compute the IL of one step

The most obvious observation is the mere amount of the time needed for
simulation11. As a rule of thumb, the evaluation over a period of 168 hours
takes about one week.
The second observation of interest is the decrease of computation time needed
per step after 24 hours. The reason for this is to be found in a change in the
initial guess of the zero of equation (3.5): In the first 24 hours, an extrapola-
tion of already determined points on the IL was used; later, the result from
the corresponding time of the day before was taken as initial guess of the IL.

11The computations were performed using a Pentium 4 2.6 GHz with 512 MB RAM
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Figure 5.15: Evaluations needed for root finding of equation (3.5)

Figure 5.15 displays the number of evaluations necessary to find the zero
of equation (3.5). Indirectly, this gives an impression of the speed of con-
vergence of the IL: Since the initial guess of the zero search procedure is
the corresponding zero from 24 hours earlier, the number of iterations corre-
sponds to the distance of previous IL to the one currently determined. Figure
5.15 shows, that the number of iterations needed for root finding decreases
below 10 in less than 40 time steps and stays at this level for the remaining
periods. This behavior reflects the clustering of IL. The fact that a certain
number of iterations needed at every time step is due to clustered but not
identical IL.
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5.4 Changes in the system dynamics

The simulations conducted up to this point used different price models to
assess the validity of the algorithm (chapter 4) and to illustrate basic effects
(section 5.1.1). This section will compare simulations for different system
dynamics.
The parameters of the standard experiment (see section 4.2) correspond to a
thermal power plant, where electricity generation from steam plays at least
a certain role12. This can be seen in particular at the variable startup cost,
reflecting the heat in a boiler which cools down with increasing time since
shutdown. Of course other parameters (heat rate and startup / shutdown
time) also are supposed to differ for other plant types.
Note that the plant simulated in this section does not rely on parameter
values derived from a real plant. It represents a more or less realistic fictional
scenario by which the capabilities of the program should be demonstrated.

5.4.1 Short decision lead time, short unit commitment
time

A prototypic example of a plant type with these characteristics is the
gas engine. In a unit like this, a gas turbine (similar to a large jet turbine)
powering a generator, produces low amounts (< 100 MWh) of electricity at
a comparatively low efficiency. This kind of plant has a very short startup (a
matter of minutes) and virtually no unit commitment time; thus it is used
for generating power at peak loads.
Modeling the short startup and unit commitment time is achieved in two
ways: The variables for unit commitment and startup time can be set to one
(which is the lowest possible value for the simulation). The simulation of real
time production is done by re-modeling the minimum production capacity
to zero. This means that it is now possible to generate no electricity at an
online plant. Note that also the ’production of no electricity’ may generate
expenses for an online plant, if the heat rate has a positive intercept (as in
the standard experiment). This can be interpreted as the cost of keeping the
generator on standby.

Figure 5.16 compares the heat rates of the standard experiment and of
the gas engine. The heat rate of the gas engine is chosen to have a steeper

12Either steam is generated directly by burning natural gas (thermal power plant) or a
gas turbine generates electricity and the turbine’s emissions are used for a steam plant
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Figure 5.16: Heat Rates: Standard Experiment vs Gas Engine

ascent to model the lower efficiency of electricity generation.

The detailed parameters of the gas engine model are as follows:

Parameters for gas engine plant
τ : 1 startup time
ν: 1 shutdown time
ton: 1 minimum online time
toff: 1 minimum offline time
tcold: 1 time to cool entirely
qmin: 0 minimum generation capacity
qmax: 60 maximum generation capacity
b1: 0 no cold start fuel cost
b2: 500 fixed and labor cost for startup
shut: 500 unit shutdown cost
a0: 30 intercept of heat rate: standby cost
a1: 10 linear coefficient of heat rate
a2: 0.31 quadratic coefficient of heat rate

Beside the model parameters, the simulation of the gas engine provided
another novelty: The convergence of IL was utilized to save computation
time.
When the computation of point pt on an IL at time t (t < T −48) 13 took less
than 10 iterations, the subsequent IL at t − 24k 14 was assumed to contain
pt as well. This approach led to a total computation time of ’only’ 59 hours.

13this ensures that the corresponding previous IL has been taken as initial guess
14note that the computation of IL proceeds backwards in time
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5.4.2 The comparison of gas engine and standard ex-
periment

Naturally the expected payoff of this simulation cannot be compared to
the results of the standard experiment directly, because of the different ca-
pacities of the units.
One way of scaling the estimated payoff of the plants to make them compa-
rable15 is the determination of the payoff per output (e/ MWh) as shown in
figure 5.17:
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Figure 5.17: Payoff per MWh (N=250) for x1 = 1, t = 1

The payoff for generated electricity at the gas engine shows a big de-
pendency on the electricity price level. This reflects the concept of power
generation at price peaks only: a high electricity price can be utilized im-
mediately. Naturally the plant resembling the standard experiment shows a
different behavior. Similar as the overall payoffs, the payoffs per output are
mainly subject to the level of the fuel price (see section 5.1.1 for details).

The fundamental difference in the operation of the two plant types is illus-
trated in figure 5.18 which compares the amount16 of the plant’s production
capacity used over the evaluation period (average utilization). As expected,
the gas engine only uses a small part of its total capacity.

15the evaluations at each price pair and each unit rely on the same price scenarios
16mean output per overall capacity(= 168 · qmax)
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Figure 5.18: Output per capacity (N=250) for x1 = 1, t = 1

Note that also for the standard experiment, the average utilization does not
reach 70% for fuel prices above 4.5 eper MMBtu. Figure 5.19 uses the
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Figure 5.19: Payoff/qmax (N=250) for x1 = 1, t = 1

maximal production capacity per hour (qmax) to scale the payoffs of the two
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simulations. Again the graphic illustrates the greater importance of electric-
ity prices for the gas engine. Besides, it shows that price constellations exist
where it is still possible to generate profit with the standard plant, when
production with the gas engine powered plant does not pay any more.



Chapter 6

Conclusion

In the present work, the evaluation of a thermal power plant has been
realized according to the algorithm proposed by Tseng and Barz in [1]. This
final chapter provides an overview of the insights gained during the imple-
mentation and testing of the resulting program.

6.1 Improvements of the present algorithm

6.1.1 Indifference Loci

The most unpleasant observation at testing the algorithm was the bad
description of IL by a function of electricity prices only (section 4). Possibly
this problem can be avoided by using fuel prices instead of electricity prices
to describe the IL. A definitively better description of IL could be achieved
by using electricity and fuel prices to determine the IL (see section 4.3.4).
Another problem is the huge time consumption of the computations involved.
Saving computing time by estimating the IL from few points or choosing a
low number of Monte Carlo simulations may result in considerable inaccu-
racies. A promising way to reduce computation time would be the parallel
computation of price pairs on one IL.
It can also be possible to benefit from the convergence behavior of the IL (fig-
ure 5.15). Over a longer time period it can be of advantage to approximate
IL by their corresponding predecessor instead of computing them again. This
approach was used experimentally in section 5.4.2. Note that apparently the
convergence of the IL depends very much on the price processes used (section
5.3.1).

66
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6.1.2 Monte Carlo estimation

Another possibility to lower the computational burden could be provided
by variance reduction methods for the Monte Carlo estimator.
Apparently, the complexity of the distribution of payoffs requires the appli-
cation of more sophisticated methods than antithetic variates. The analysis
of the histograms of the payoffs for different scenarios in section 5.2.2 shows
that this method is not appropriate to improve the estimation.
Due to the limited computer resources available, all simulations have been
conducted with a quite small number of scenarios for the Monte Carlo simu-
lations (N=750). Of course it is debatable if this number would be sufficient
to generate results for a purpose beyond the mere demonstration of function-
ality as in this work. Beside the inaccuracy resulting from the low number
of scenarios used for the Monte Carlo estimator, its lack of robustness at
some price constellations can lead to inappropriate estimations of payoffs
(see figure 5.2).

6.2 The potential of the current program

Probably, the most interesting application of the program is not the de-
termination of the exact payoff of a plant but the comparison of the per-
formance of units with different physical characteristics and the impact of
different price developments on the power plant value. Since the algorithm
was used for artificial examples only, the empirical results are limited to
demonstrations of the performance of the evaluation method:
The comparison between the payoffs from the standard experiment resulting
from two price models was demonstrated in section 5.1.1. For the plant type
modeled, the confrontation of comparable initial price observations showed
that electricity prices with hourly pattern provide a higher profit than prices
without pattern.
Different types of plants were compared in section 5.4, illustrating the im-
pact of unit commitment time, decision lead time and the efficiency of power
generation on the production strategy.
The current settings for the simulations performed (especially the number of
Monte Carlo simulations) in connection with the problems discussed above
return results of a questionable precision. Nevertheless, the computed payoffs
turned out to be reasonable estimates compared to the results based on less
subtle control strategies (see section 5.1.2). The obvious difference between
the results of the three evaluation methods in this section shows that it may
pay indeed to use a complex evaluation approach.
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