
Design and Development of a
Standards-Based Authoring Framework for
Software Requirements Specifications

Kariem Hussein

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Design and Development of a Standards-Based Authoring Framework for
Software Requirements Specifications
Kariem Hussein

Abstract

In the constantly evolving software industry it is of vital importance for a company to document their inten-
tions in the form of requirements documentation, and to communicate these requirements internally and
together with their customers. In order to put down the requirements, authors currently mostly use word
processors and a small set of tools to generate graphics. This combination provides very few features that
are important to effectively create, review, and maintain a software requirements specification, such as
transparent versioning, automateddocument sharing, andextensible integrationpointswith external systems.

The authoring framework presented in this thesis provides improvements at all these levels, and, due to the
standards-based concept, integration points for existing tools. This thesis shows how the different parts of
the framework's components — the documentation format, the authoring tool, and the repository — can
play together to create an environment for efficient document authoring.

Existing solutions (i.e. implementations) for the documentation format and authoring tool are analyzed and
compared with one another. For both components, this thesis collects a set of criteria that can be used to
assess how useful the solution may be for authoring processes. The results are taken into consideration for
the eventually presented architecture and implementation of the authoring framework.

Keywords:
Document Authoring, Documentation Maintenance, Knowledge Sharing, Requirements Analysis, Software En-
gineering, Software Requirements Specification, Standards-based Documentation, Versioning

Kurzfassung

Da sich die Softwareindustrie immer noch ständig weiter entwickelt, ist es für Firmen nötig, ihre Absichten
in der Form von Anforderungsdokumentation niederzuschreiben und diese Anforderungen sowohl intern,
als auchmit ihren Kunden zu kommunizieren. Beim Verfassen der Anforderungsdokumentation verwenden
Autoren heutzutage hauptsächlich Textverarbeitungsprogramme, sowie zusätzliche Software zur Erstellung
von Grafiken. Diese Kombination von Werkzeugen bietet nur sehr wenige der Eigenschaften, die für die Er-
stellung, Prüfung, oderWartung von solcher Dokumentation nötig ist, wie etwa transparente Versionierung,
automatisierte Publizierung und erweiterbare Schnittstellen zur Verbindung von externen Systemen.

Das in dieser Arbeit vorgestelltle Authoring Framework bietet Verbesserungen auf all den angesprochenen
Ebenenund, aufgrunddes Standars-basiertenKonzeptes, Integrationspunkte für bestehende Software. Diese
Arbeit zeigt wie die einzelnen Teile der Komponenten des Frameworks — das Dokumentenformat, das Au-
torensystem, sowie das Repository — zusammen wirken, um eine Umgebung für die effiziente Erstellung
von Dokumenten zu schaffen.

Bereits bestehende Lösungen für das Dokumentenformat und das Autorensystem werden analysiert und
gegenübergestellt. Für beide Komponenten beschreibt diese Arbeit Kriterien, die dafür verwendet werden
können, Lösungen für den Einsatz zur Dokumentationserstellung zu bewerten. Die daraus resultierenden
Ergebnisse werden bei der Architektur und beim design des Authoring Frameworks eingesetzt.

Schlüsselwörter:
Anforderungsanalyse,Dokumentationserstellung,Dokumentationswartung, SoftwareAnforderungsspezifikation,
Softwaretechnik, Standards-basierte Dokumentation, Versionierung,Wissensweitergabe

Dedication
I have to thankmyparentswhoalways supportedmeandhelpedwhere they foundaneed. Special
thanks go to my brother who not only has been escorting and watched over me my whole life,
but also keeps asking discerning questions that always bring a better view into all of my work.

i

ii

Contents
Introduction . xi

1 Motivation . xi
2 Importance . xi
3 Today's Reality . xii
4 Outline . xii

I Requirements Documentation Authoring . 1
1 Requirements – Terminology and Definitions . 3

1.1 Software Product Lifecycle . 3
1.2 Basic Definitions . 4
1.3 Requirements Specifications . 7
1.4 Requirements Documentation . 11
1.5 Documentation Types . 14
1.6 Software Development Models . 16

2 Goals and Evaluation of Requirements Authoring . 23
2.1 Goals of Document Authoring for Requirements Documentation 23
2.2 Evaluation with Maturity Models . 27
2.3 Exemplary Industrial Processes . 30

II Documentation Formats and Authoring Tools . 35
3 Analysis of Documentation Formats . 37

3.1 Restrictions . 37
3.2 Traditional Document Formats . 44
3.3 Current Document Formats and Standards . 47

4 Analysis of XML-Based Authoring Tools . 57
4.1 Capabilities of an Authoring Tool for Requirements Documentation 57
4.2 Commercial Authoring Tools . 59
4.3 Independent Projects . 60
4.4 Summary . 63

III Modular Integration Concept . 65
5 Concept of an Authoring Framework . 67

5.1 Goals of the Authoring Framework . 67
5.2 Component Overview . 67
5.3 Component Architecture . 68
5.4 Design Discussion . 77

6 Developing the Authoring Framework . 81
6.1 Focus . 81
6.2 Documentation Format . 82
6.3 Document Viewer . 87
6.4 Repository . 91

7 Validation and Conclusion . 95
7.1 Validation . 95
7.2 Related Work . 98
7.3 Conclusion . 99

References . 101

iii

iv

List of Figures
1.1 Product Lifecycle with UCD Process Incorporated . 4
1.2 Sources Of Software Requirements . 7
1.3 Evolution of a Behavior Specification . 8
1.4 Application Description as Input for the Synchronized Refinement Method 12
1.5 Stakeholder Documentation . 15
1.6 Scrum Skeleton . 20
2.1 Levels of the System Documentation Process Maturity Model . 28
2.2 Transformation of Requirements . 32
2.3 Documentation Handover . 33
3.1 Simple WordML document displayed in Microsoft Word . 45
3.2 DocBook Publishing Model with XSLT . 50
4.1 Vex displaying DocBook Meta-Information. 62
4.2 Etna displaying Information from a Tinydoc File . 63
5.1 Components of the Authoring Framework . 68
5.2 Content Handlers . 73
5.3 Components of the Authoring Tool . 74
5.4 Annotations from Comparison or Meta-Information . 76
5.5 Annotated View . 76
5.6 Meta-Format as Wrapper around Document Structure . 79
6.1 Document Viewer Providing an Interface for Lightweight Clients . 87
6.2 Create Change Annotations from Comparison . 89
6.3 Integration Scenario for Repository . 93
7.1 Use Case Creation Process with Transformation Designer . 100

v

vi

List of Tables
1.1 Documentation Types for the Authoring Tool . 16
1.2 Home Ground for Agile and Plan-driven Methods . 17
2.1 Documentation Maturity Levels associated with KPAs . 29
3.1 Useful Documentation Technologies . 37
3.2 Exemplary Requirements and Dependencies of a Word Processor . 40
3.3 Overview of Current Documentation Formats . 56
4.1 Requirements for the Authoring Tool . 58
4.2 Comparison of Supported Requirements in Authoring Tools . 63
5.1 Documentation Maturity for the Authoring Tool . 69
5.2 Stored Information per Documentation Type . 69
7.1 Validation Scenarios . 95

vii

viii

List of Examples
3.1 Word Processor Version Incompatibility . 40
3.2 Simple WordML document . 45
3.3 Minimal LaTeX Input File . 46
3.4 Meta-Information on a Book in DocBook Syntax . 49
3.5 Simple Paragraph using the DocBook Syntax . 51
3.6 Stylesheet using CSS . 51
3.7 Stylesheet using XSL . 52
3.8 Relationships for an Excel Worksheet . 55
4.1 CSS Snippet To Render Book Meta-Information in Vex . 61
6.1 Complex Type for Text . 83
6.2 Complex Type for Precondition . 83
6.3 Formatted Postcondition . 84
6.4 Primary Scenario in Two Steps . 84
6.5 Description with Two Alternatives . 84
6.6 Definition of Scenario with Alternatives . 85
6.7 Structure of a Use Case Document . 86
6.8 Use Case xml:id Attribute . 86
6.9 Spring Configuration for XmlUnitDiffer . 90
6.10 Single Entry for Revision 10 in the 'Source Changes' Feed . 91

ix

x

Introduction
This thesis presents current documentation practices and tools that are used to build software
requirements documentation. It iswritten in the context of an industrywhere good requirements
documentation is essential and changing requirements are standard. A presentation of modern
document formats and tools for technical documentation yields the characteristics for an optimal
authoring framework, which is conceptualized and partly implemented towards the end of this
thesis.

1. Motivation
I will start with a review of my motivations to choose this specific topic. The following areas of
application showrealistic problems I had to facewhileworkingwith requirements documentation

Documentation Maintenance. During my work at the department as a student advisor for
the course softwaremaintenanceandevolution I had toprepare anexisting requirementsdocument
for a class. The document, written using Microsoft Word (more on this format in Section 3.2.1,
“Word Document Format”), described 30 to 40 use cases. At the end of the first class assignment,
I incorporated changes from 15 different student groups into this document. This task showed
how inflexible and error-prone requirements documents are.

EvolvingDocumentation. Myworkas anengineer at a large international telecommunications
company involved highly technical solutions to business critical requirements. Together withmy
team,we had to permanently communicate ever-changing requirements and associatedmanage-
ment decisions. This only aside from implementing the requirements in a disciplined manner
into a product used internally in 7 different european countries. The process of validating the
current implementation, or even finding a reason for some design decisions is at least lengthy,
but most of the time a discouraging task.

Documentation Effort. Currently, I work as independent consultant for different customers
in IT-related projects. I have seen many cumbersome environments that are held together by
hard-working individuals. A lot of energy is wasted just because the choice of tools is bad, and
often based on general features instead of requirements in regard to day-to-day work. Generic
tools, such as word processors, are licensed in bulk, although only a very limited set of features
is actually used. For the tasks at hands, the employed solutions only provide little support.

Without scientific argumentation it is not easy to convince people that are satisfied with their
often operose environments to rethink their existing solutions.

2. Importance
Good documentation is important to different phases of the software process, and an important
software product. However, not everyone is aware of how important documentation is.

Visconti and Cook [Visc93] present a number of figures that show the importance of good docu-
mentation in software maintenance:

• Probably being most crucial to the maintenance phase, which accounts for 60-75 percent of
the total cost of the software, documentation accounts for more than 60 percent of mainte-
nance costs. It is involved in about one third of the maintenance tasks.

• A quick understanding of existing software is a key activity in the maintenance process.
People in this process spend 40 percent of their time dealing with documentation.

• When making a program modification, 47 percent of a maintenance programer's time is
spent studying the program source code and associated documentation. When errors are
corrected, this time increases to 62 percent.

xi

3. Today's Reality
It is not my intention to explain anyone the reality1 he/she faces all day long in the industry.
However, I want to emphasize that people know what they should do, but consciously act differ-
ently because they are forced to do so. Even if a person knows that quick fixes, dirty hacks or
undocumented changes should be avoided, it is sometimes necessary to ignore this, because
project plans, test schedules and delivery timelines demand for a fast solution. The problem is
usually that a fast solution might not be a good solution.

In [Ruga00] the following possible reasons are mentioned to explain the situation:

• A program typically solves a specific problem, but the model it assumes is much broader. A
transactional workflow program can find its application in a wide variety of environments
and solution domains. If the programprovides transaction based serviceswith good support
for transactions, high customizability and a good level of abstraction, it is reasonable to
leverage these advantages in a wide array of domains.

• Programs often donot exist in isolation. A set of programs jointly solves a collection of related
programs. For example, to enable the telephony service for a single customer, application A
has to dealwith creating a line on the switch,while applicationB creates a voicemail account.
Application C is responsible for creating a special file with information for the telephone
device at the customer's premises. Billing-relevant operations have been ignored.

There were several occasions where the programwas changed without appropriate adaptations
of the documentation. All the changes were business relevant and either missed prior documen-
tationor a subsequentupdate of thedocumentation. The essential documentationwasnotwritten,
because itwouldhave taken toomuch time. The lack of documentation resulted in additional effort
needed to explain changes to the user, or to find reasons for changes some weeks thereafter.
Undocumented behavior is even more dangerous when solutions are handed over between dif-
ferent developers, teams or companies.

If it had been easy to add the appropriate paragraph to the documentation, it would have been
done, but the documentationprocess and the technologieswould havemade the udpate a lengthy
task. Additional lines in diagrams and tables would have had to be updated to document the
current implementation. Marsh [Mars99] says that for engineers “it is no longer enough to write
clearly and succinctly; theymust also be able to lay out documents to spec in the formats required
by the contract, the professional society, or in-house guidelines”.

4. Outline
The result of this thesis is a concept for an authoring framework which can be used in the the
documentationof requirements. It focuses specifically on thedocumentationof software require-
ments targeted tomultiple customers, as opposed to targeted for a verticalmarket: requirements
change often, are very specific, and mostly externally driven.

I will start with a general definition of terms and goals for document authoring. After observing
current documentation formats and authoring tools, this documentwill concentrate on the archi-
tecture and the design of the framework. The remainder is organized as follows:

Chapter 1, Requirements – Terminology and Definitions
presents requirements and their documentation in the context of a product's lifecycle. It
introduces the reader to the common vocabulary of this document and highlights the posi-
tion of software requirements in software design and engineering methods.

1I took the liberty of using the title of the introduction of [Mars99] for this section.

xii

Introduction

Chapter 2, Goals and Evaluation of Requirements Authoring
shows the main goals of document authoring and lays out the reference terminology for
the remainder of this thesis. The second part of this chapter describes formal ways to
evaluate documentation on the basis of a maturity model. The chapter closes with a pre-
sentation of documentation processes employed in the industry.

Chapter 3, Analysis of Documentation Formats
presents traditional and current documentation formats and compares structured and
loose authoring. With a focus on technological aspects, this chapter provides basic infor-
mation on different alternatives.

Chapter 4, Analysis of XML-Based Authoring Tools
defines technical requirements for authoring software in the requirements context. It
continues with a technical presentation of general authoring software for XML-based
documents and compares their features and capabilities according to the requirements.

Chapter 5, Concept of an Authoring Framework
summarizes findings of this thesis and presents an architecture for the requirements au-
thoring framework consisting of three components: documentation format, authoring tool,
repository. The relationof these three components anddesigndecisions that are necessary
to understand the concept are discussed.

Chapter 6, Developing the Authoring Framework
contains the results of an implementationof the concepts described in theprevious chapter.
Based on aminimalmodel assumption, all components are implemented in a very reduced
manner to showcase standards-based possibilities for integration. This chapter also goes
into details on some of the decisions taken during implementation.

Chapter 7, Validation and Conclusion
concludes the thesisbyputting current scenariosand the standards-basedscenario resulting
from this thesis into a comparison, which shows how different tasks could be solved in
each scenario. This chapter also contains steps to validate the findings of this thesis.

xiii

Outline

xiv

Part I. Requirements Documentation
Authoring

In this first part of the thesis, software requirements and their specification are defined, their relation to
software development in general, and their role in a set of selected software development models.

After that, the requirements specific to document authoring and related processes are observed. These goals
are used later in this thesis to identify the requirements of the authoring framework. After looking at docu-
mentation approaches used in the industry, maturity models for document authoring are presented on the
level of the involved process and the resulting documentation.

• Chapter 1, Requirements – Terminology and Definitions

• Chapter 2, Goals and Evaluation of Requirements Authoring

Chapter 1. Requirements – Terminology and
Definitions

At first sight, it seems to be a simple task to define what a certain software has to do. For most
obvious needs, a small sentence describing the required result may be sufficient. On the other
side, it is easy to underestimate the complexity of larger systems and their implementation.

I will start with a view on the product's lifecycle and try to find out what requirements are and
where they come from. As soon as requirements have materialized, they have to be documented
and can then be used by different stakeholders for further reference or elaboration. For a more
practical view on how requirements affect product development, this chapter closes with a pre-
sentation of concrete software development models and their alignment with requirements en-
gineering.

1.1. Software Product Lifecycle
Software products are developed after a certain amount of time. Maciaszek [Maci05] says that
“software development follows a lifecycle”, which is “an orderly set of activities”. He identifies
the following elements that are defined by a software lifecycle

Elements of of a Software Lifecycle

• The applied modelling approach

• The exact phases along which the software product is transformed

• The methodology and associated development process

According to Maciaszek, a typical product lifecycle starts with a business analysis of the current
situation and the proposed solution. The analysis is subjected to a more detailed designwhich is
followedby the implementation. After integration anddeployment at the customer's site, the system
is operational and undergoesmaintenance tasks. These phases are usually sequentially ordered,
as shown in Typical Phases in a Software Lifecycle.

Typical Phases in a Software Lifecycle

1. Business Analysis

2. System Design

3. Implementation

4. Integration and Deployment

5. Operation and Maintenance

I will discuss different software development models and their methodologies and phases in
Section 1.6, “Software Development Models”.

For now, I will use a very general software product lifecycle presented by Courage and Baxter
[Cour04], depicted in Figure 1.1, “Product LifecyclewithUCDProcess Incorporated”. This lifecycle
follows a user-centered design (UCD) philosophy, and gives extensive attention to the end users'
needs, wants and limitations. It is incremental and iterative, and I will use it as an example imple-
mentation of Maciaszek's typical lifecycle and have a look at the results of each phase.

3

Figure 1.1. Product Lifecycle with UCD Process Incorporated

Concept

Design

Develop

Release 4

1

2

3

An incremental and iterative product lifecycle by Courage and Baxter [Cour04]

During the concept (analysis) phase, the current situation analyzed and, based on a competitive
analysis requirements and a functional specification of the product are defined. In addition, this
phase usually results in a UI development plan and develops persona (roles) which are used in
the solution. Courage and Baxter call this phase the “idea phase of the product”.

The concept phase is followed by the design, where the “information collected in [the concept
phase is used] to create iterative designs.” During this phase, detailed information architecture
and user interface prototypes are developed. In addition, the taskflows (use cases) are created.

During the develop (implementation) phase, “developers or engineers […] create the product”.
According to Maciaszek, this involves installation/adaptation of already available software and
creation (coding) of newsoftware. It also implicates loadingof databases, testing anduser training.
He distinguishes analysis, design and implementation in the following manner:

Business analysis is about what to do, system design is how to do it using the
available technology, and implementation is doing it.

Courage and Baxter's incremental product lifecycle concludes with the release phase, in which
the “product is released to the public or customer”. This phase comprises final tests and the op-
erational rollout. Because this lifecycle is not only incremental (phases are sequential), but also
iterative, the requirements collection for the next iteration may start already during this phase.
After the release phase, the next iteration is started with analysis.

1.2. Basic Definitions
I will start with basic definitions used throughout this document.

• Problem and Solution Domain

• Software Requirements

4

Chapter 1. Requirements – Terminology and Definitions

• Roles in the Requirements Process

1.2.1. Domains

Leffingwell [Leff03] distinguishes the problem and the solution domain:

Problem Domain
In the problem domain there are business or technical problems that have to be solved. In
this space there are real users and other stakeholders whose needs must be addressed.

Solution Domain
In this domain the focus lies in defining solutions to the problems. A feature is a service
provided by the system that fulfills customer needs. After agreement on the features,more
specific software requirements can be defined. Software requirements drive the system's
design and implementation.

1.2.2. Software Requirements

Throughout this document the term requirement is used as a synonym for software requirement.
Leffingwell [Leff03] defines a software requirement as:

1. A software capability needed by the user to solve a problem or achieve an objective

2. A software capability that must be met or possessed by a system (component) to satisfy a
contract, standard, specification or other formally imposed documentaton.

Item 1 corresponds to user requirements in a narrow sense. Courage and Baxter [Cour04] distin-
guish between business, marketing/sales, and user requirements in the following manner:

Business requirements tend to be high-level and/or technical, and are typically expressed by cor-
porate professionals or executives. These requirements often reflect the current business practices
of their company or practices that are being adopted by the company.

Marketingand sales requirements reflect the goals of their properdepartmentwhowant to ensure
that the product sells. They contain requests for features that customers may want or features
that mean an advantage over competition. A marketers requirement tends to be at a higher level
rather than detailed and tries to address potential customers, while requirements of a sales de-
partment may be very customer-specific.

User requirements often overlap with the requirements from sales and marketing, but they not
necessarily have to. In order to collect user requirements, it is necessary to gain an understanding
of their perspective and needs, including their tasks, goals, context of use and skills. Courage and
Baxter claim that the number one mistake is to “think you understand what the end users want
and need because other sources have told you on their behalf”. In [Cour04] they describe in detail
many practical methods to identify user requirements.

Leffingwell's second type of software capability (item 2) refers to formally documented abilities
of the resulting software system. The two types of capabilities are not mutually exclusive. It is
often the case, that formally documented reuqirements accrue from user requirements.

1.2.3. Roles in the Requirements Process

In this thesis, I distinguish between active and passive parts or roles that are assigned to or taken
by individuals or groups during the requirements process.

Passive Roles

The following roles are defined in the context of software requirements specifications [Stan98].
As they comprise more responsibilities than activities they will be classified as passive roles.

5

Domains

Customer
The person, or persons, who pay for the product and usually (but not necessarily) make
decisionsabout the requirements. In the context of this recommendedpractice the customer
and the supplier may be members of the same organization.

Supplier
The person, or persons, who produce a product for a customer. In the context of this rec-
ommended practice, the customer and the supplier may be members of the same organi-
zation.

User
The person, or persons, who operate or interact directly with the product. The user(s) and
the customer(s) are often not the same person(s).

For a complete picture, the term contract denotes a legally binding document agreed upon by the
customer and supplier. This includes the technical and organizational requirements, cost, and
schedule for a product. A contract may also contain informal but useful information such as the
commitments or expectations of the parties involved.

Active Roles

In the context of this thesis, a person or group that is an active part of the product development,
does one or more of the following items:

• Transform needs from the problem domain into requirements in the solution domain.

• Fulfill requirements by introducing solutions (on a technical, organisational, or process level)

Courage andBaxter [Cour04] use the termproduct development team (refer to Figure 1.2, “Sources
Of Software Requirements” for a depiction). This team consists of a number of people, usually
with complementary skills, who are committed to the common purpose of delivering software
that fulfills specific requirements. The team is usually a heterogeneous group with different
background that drives product development from the concept to the release phase.

6

Chapter 1. Requirements – Terminology and Definitions

Figure 1.2. Sources Of Software Requirements

Product
Development

Team

Marketing

Technical
Support

Hardware
Engineering

Business
Analyst

Legal
Department Users

Management

Systems
Engineering

handles licensing of
tools and components

provides business
requirements and

project parameters;
requests changes

specifies high-level
requirements;
requests changes

assists users; provides
input from customer
bug reports and
enhancement requests

describe user
requirements and
quality attributes;

review requirements

specifies hardware
interfaces the software
must respect

allocates system
requirements to
software; requests
changes

specifies business,
functional and

performance needs;
requests changes

Requirements of a software product usually come from different sources (image based on
[Wieg04] and [Cour04])

In this thesis, the role author refers to the writer of the software requirements. For this thesis,
the author denotes the central role of the product development team, and may be affiliated with
either customer or supplier. This personwrites the requirements and is responsible for the initial
distribution of the assembled information. It is often the case that authors also incorporate results
of reviews or additional information into the requirements and are responsible for the require-
ments even after the software has been delivered.

Even if the person that updates requirements is different from the initial author, both persons
are called authors of the resulting requirements document.

1.3. Requirements Specifications
According to IEEE Std 830-1998 [Stan98], in an ideal model the results of the software require-
ments specification (SRS) process is an unambiguous and complete specification document. The
recommended practice describes the two groups that benefit from a SRS:

• Software customers to accurately describe what they wish to obtain.

• Software suppliers to understand exactly what the customer wants.

Software requirements are a behavioral specification of the target system (see Section 1.3.3,
“Classification” for a more structured classification). The specification defines what the software
system should be capable of and is based on previously defined project requirements. Require-
ments specified therein contain the objectives of the project around the software. These objectives
accrue from specific needs. See Figure 1.3, “Evolution of a Behavior Specification” for a visual hi-
erarchy

7

Requirements Specifications

Figure 1.3. Evolution of a Behavior Specification

Project objectives (requirements) arise from certain needs. Formally they are the basis for
the behavior specification.

A requirements specification consists of [Wier95]

1. a specification of product objectives,

2. a specification of required product behavior.

Bell and Thayer [Bell76] discuss two different definitions (“schools of thoughts”) for software
requirements. The first definition (A) is being extendedby amoredetailed version (B) that accrues
from the findings in that paper:

Definition A
Software requirements arise naturally and are correct by definition. If these requirements
state a basic need, then that's all that is needed. On the other hand, if the requirements
state each subroutine's detailed characteristics, then those are the required characteristics,
and the implementer should not question them.

Definition B
The requirements describe functions that the software must perform, but not how they
must be implemented. Not all the various levels of requirements are needed, but “only a
single one, one that can usually be identified in large software development projects […]”

1.3.1. Characteristics

A good SRS [Stan98] has the following characteristics:

Correct
An SRS is correct, if every requirement stated therein is one that the software shall meet.

Unambiguous
Every requirement stated therein has only one interpretation. Requirement specification
languages, such as Z used in [Crox05], avoid the ambiguity inherent in natural languages,
but the length of time required to learn such a language and possible influences on the re-
quirements are strong disadvantages.

Complete
An SRS is complete, if it includes the following elements:

1. all significant requirements

2. definitions of the responses of the software all realizable classes of input data (valid
and invalid)

3. references to all figures, tables and diagrams in the SRS and definition of all terms and
units of measure

Consistent
The specification shows internal consistency, if no subset of individual requirements de-
scribed in it conflict.

8

Chapter 1. Requirements – Terminology and Definitions

Ranked for importance and/or stability
As requirements are not equally important or stable, each requirement should have an
identifier to indicate the importance or stability of that particular requirement.

Verifiable
If every requirement in an SRS is verifiable, the SRS is verifiable. A requirement is only
verifiable, if there exists a process to check that the resulting software product meets the
requirement.

Modifiable
Changes to requirements can be made easily, completely and consistently while retaining
the structure and style. In literature this characteristic is also referred to as maintainable.

Traceable
The origin of each of its requirements is clear and facilitates the referencing of each require-
ment in future development or secondary documentation.

Other sources (e.g. [Kovi98] [Laue02]) provide similar classifications for requirements.

Weak Characteristics

Other characteristics are often described as being very important to users of the requirements
documentation, although they are not easily measurable. These characteristics are more related
to the goals of a good SRS that are described in Section 2.1, “Goals of Document Authoring for
Requirements Documentation”. They are called weak characteristics. Despite the name, these
characteristics are important for the development of the authoring framework, because user re-
ception is essential for a process or framework to be deployed.

According to Wieringa [Wier95], the most important property of a requirements specification is
Communicability. It is necessary that the specification is understandable, because it “should serve
as a channel of communication about the product”.

1.3.2. Content

Although providing a lot of important information, there are many aspects that a SRS should not
contain.Wieringa [Wier95] is very clear on this subject, and says that the specification should be
implementation independent and should “describe the requirements andnothing else”. Leffingwell
[Leff03] explicitly excludes informationnecessary formanaging the project (e.g. schedule, budget,
test or acceptance procedures), and says that this information should not be included in the
software requirements.

Design-Related Information

Croxford and Chapman [Crox05] claim that, in order to avoid the introduction of defects, and to
improve error detection, it is important to produce “a software specification that says what the
software will do and a design that says how it will be structured. The design does not repeat any
information in the specification […]”.

Depending on the type of system to be developed, design constraints should be part of the SRS.
In IEEE Std 830-1998 [Stan98], specification writers are encouraged to “distinguish between
identifying required design constraints and projecting a specific design. […] The SRS should
specifywhat functions are to be performed onwhat data to producewhat results atwhat location
for whom”. In detail, the following design information should not be a part of the requirements
:

• Partition of the software into modules

• Allocation of functions to the modules

• Description of the flow of information or control between modules

9

Content

• Choice of data structure

Recommendations

Rupp [Rupp06]presents a list of different recommendations for contents of software requirements
specifications. He refers, among others, to the following and compares their field of application.

• V-Model

• IEEE 830-1998, which were already referenced previously

V Model

The V Model, in the current version called V Model XT (Extreme Tailoring), has evolved from the
first versiondeveloped in 1986. According toRupp, theVModel has foundwidespread application
as standard in the public sector, especially in military organisations.

It contains requirements and information related to the context (life cycle andoverall architecture)
and benefits from a modular structure that can easily be tailored to specific project needs. It has
a steep learning curve and needs high effort in order to be successfully integrated.

IEEE 830-1998

According to Rupp, the standard (provided in [Stan98]) has a high detail on the description of
the target system. It does not contain information related to the project itself and concentrates
more on the product than on the system compared to other recommendations.

Thenotation-independent standard is used internationally andprovides sectionsnext to software-
centric requirements that focus onother aspects of the product (e.g. hardware or communication).

1.3.3. Classification

Leffingwell [Leff03] distinguishes three different types of requirements, which I will use as clas-
sification.

1. Functional software requirements

2. Non-functional software requirements

3. Design constraints

Maciaszek [Maci05] refers to the expected services of the system as service statements (corre-
sponding to functional software requirements) and to constraints the system must obey as con-
straint statementsor supplementary requirements (corresponding tonon-functional requirements).

The term design constraints is not used by Maciaszek, because he follows the ideal model where
“the specification models should be independent of the hardware/software platform on which
the system is to be deployed. Hardware/software considerations impose heavy restrictions on
the vocabulary (and therefore expressiveness) of themodelling language.” According toMaciaszek,
the design constraints have to be considered at the time of system design.

Because both sources have a similar understanding of the different types of requirements, I will
use their findings in the detailed description of this classifications.

Functional Software Requirements. The functional requirements express how the system
behaves. If the system should behave in a strict pattern that must be obeyed at all times, this
service statement defines a business rule. Functional requirements can be grouped into

• description of the system's scope

• business functions

10

Chapter 1. Requirements – Terminology and Definitions

• required data structures

Non-functional Software Requirements. The non-functional requirements refer to aspects
such as usability, performance, andoften security. Non-functional requirements are not behavioral
in nature, but are constraints on the development and implementation of the system. It depends
on the phrasing of the requirement whether it can be considered as functional or non-functional.
Security aspects are oftendescribed in abehavioralmanner and thusbecomepart of the functional
requirements. Maciaszek further divides non-functional requirements into requirements that
relate to

• usability and re-usability

• reliability

• performance and efficiency

• supportability

• other constraints

Design Constraints. Design constraints impose limits on the design of the system. They do
not affect the external behavior of the system but model needs that must be fulfilled to meet
technical, business or contractual obligations.

1.4. Requirements Documentation
Thirty years ago computer illiteracy was an issue for the evolving new technologies. One of the
main problemswas “howbest to provide information to the non-expert”[Salt75]. Nowadaysmost
people know what they can do with computers, and “operating systems are required for any
computer to be usable by a non-specialist.”[Fagi99]. This also applies to application software.

Every software product has requirements that define what the software is expected to do when
it is completed. Requirements documentation is an essential part of the software requirements
process [Powe03], and refers to both the process of documenting the requirements and the re-
sulting work product, the software requirements specification (SRS). Other parts of the require-
ments process include:

• elicitation and discovery

• analysis and modeling

• management

• validation and agreement

Documentation is crucial in the fieldof softwareengineering.Adherence to functional requirements
is one of the typical quality attributes of software [Zuse05].Without the documentationof require-
ments it would not be possible to measure this quality attribute. “Software engineers rely on
program documentation as an aid in understanding the functional nature, high-level design, and
implementation details of complex applications.”[Thom01]

This section takes a deeper look at how software documentation is used to

• Improve Program Understanding

• Measure the Quality of Software

1.4.1. Program Understanding

Rugaber [Ruga00] explains that a domain description or domain model can “give the reader a set
of expected constructs to look for in a program”. This information is provided by the set of docu-
ments comprising the requirements documentation.

11

Requirements Documentation

But the software engineer is not the only role interested in good documentation for program
understanding. During the study of an industrial maintenance environment, 20 percent of the
maintenance problems were found to be due to bad documentation [Visc93]. The most frequent
problems were documentation faults and documentation clarifications.

The Synchronized Refinement (SR) method, described by Rugaber [Ruga00], takes as input the
source code of a software (Original source code) and a description of the application domain
(Original applicationdescription). Other sources of programmingknowledge, labelledArchitectural
style library and Design decision library may also be available. The diagram for SR is depicted in
Figure 1.4, “ApplicationDescription as Input for the SynchronizedRefinementMethod”,with input
sources highlighted.

Figure1.4.ApplicationDescriptionas Input for theSynchronizedRefinement
Method

Original
application description

Design
decision library

Architectural
style library

Original
source code

Expectation
generation

Detection Abstraction

Elaboration

Refined
application description

Abstract
program description

ExpectationsReverse
Engineer Annotations

Themethod Synchronized Refinement [Ruga00] needs the original application description
(top) as input, in order to reverse engineer software for program understanding

During the study of a production environment [Visc93] to evaluate the effectiveness of different
technologies and their impact onproductivity and reliability, documentation showedan important
factor: high use of documentation improves productivity by 11 percent and reliability by 27
percent compared to low use. To improve quality, effective documentation of each phase of de-
velopment is necessary. Quality inspections are as important as program inspections when the
goal is to increase productivity and final software quality.

12

Chapter 1. Requirements – Terminology and Definitions

1.4.2. Measure the Quality of Software

If software documentation is used to measure the quality of software, it is important that the
documentation itself is of high quality. Iwill distinguish two classes of lowquality documentation:

• Missing documentation

• Incorrect documentation

Lack of Documentation

According to Visconti and Cook [Visc93], maintenance programmers report that for most main-
tenance tasks the source code is the only available documentation. In a survey of 487 data pro-
cessing organizations, documentation quality ranked 3rd in the list of 26 maintenance problem
items. In this survey quality and adequacy of design specificationswere accounted for 70 percent
of product quality.

Errors in Documentation

Bell and Thayer [Bell76] claim that the search for requirements problems should be a continual
one. Software changes, and so do the requirements. Visconti and Cook [Visc93] found out that 85
percent of all software development errors are introduced during the phases requirements,
analysis and design. 80 percent of software errors in large real-time systems are requirements
and design errors due to ambiguity, incompleteness, or faulty assumptions.

Stamey and Roth [John99] describe fivemajor problems that can arise in the delivery of technical
documentation: incompleteness, incorrectness, vagueness, unusability, and nondelivery. In their
work, they refer to the twomajor roles in technical documentation: the writer and the developer.
As there are similarities to the area of this thesis, I will adapt the first four classes of problems to
errors in requirements documentation. Nondelivery is similar to the lack of documentation dec-
sribed in the previous section. Instead of referring towriter and developer, the roles as described
in Section 1.2.3, “Roles in the Requirements Process” are used.

Incompleteness
The author fails to capture all information necessary for the documentation to explain the
needed functionality, or the customer fails to convey all of the required information.

Incorrectness
The result of either the customer not properly conveying information to the author, or
misunderstanding on the part of the author.

Unusability
Refers to problematic issues relating to the hardware and/or software platform; parts of
the documentation that are not applicable to effective target environment.

Vagueness
This is the opposite of one of the main characteristics of a good SRS: unambiguity (see
Unambiguous). This issue, also referred to as incompatible granularity, is typically the fault
of the customer who determines the requirements.

The above classes of errors may be reported during test (unit, integration test), or arise during
software evolution. Volatility also takes amajor role in creating errors, as user needs change over
time, and so do their expectations in terms of functionality or time scale.

In most cases, software maintainers discover that the available documentation is not current
[Visc93]. This is a result of a combination of the two previous classifications: changes that are
introduced in software over timehave not found theirway into the documentation. Consequently,
the (a posteriori) outdated documentation does not contain fully correct information.

13

Measure the Quality of Software

1.5. Documentation Types
Different elements of the documentation are important for different stakeholders. A customer
with no technical background, which is only interested in a single product with very limited fea-
tures, will not have a business related interest in internal documentation on interfaces or source
code. On the other side, technically involved customers with a high level of integration of an ap-
plication in their environments may even be involved in technological decisions concerning the
application.

The types of documentation are inferred from two sides, based on one of the following

• The requirements situation or context.

• The documentation needs of different stakeholders.

While the first perspective distinguishes requirements documentation according to their context
(e.g. requirements for a vertical market situation, target customer market or in-house solution),
the second perspective uses the stakeholders' role in the project and interests following from
this to compile the types of requirements documentation needed.

1.5.1. Requirements Context

Power and Moynihan [Powe03] compiled a list of seven types of requirements situations based
on the sources of requirements. In their research, the requirements sources are not directly re-
lated to roles or teams as presented in Section 1.2.3, “Roles in the Requirements Process”, but
instead their analysis looked for dependencies between requirements, building a precedence
network which resulted in 8 root requirement sources.

From the resulting categories of situation types, the target customer market resembles most the
environment the authoring framework should support. According to Power and Moynihan's re-
search the following documentation types are significant for this situation:

Statements of the required effects
Are often organized around featureswith dependencies and other attributes. An emphasis
is placed on features that are unique to the product.

Recorded issues and changes
Relate to specific features or lower-level requirements.

Defined goals and objectives
System goals, such as non-functional requirements, are important.

Specified constraints
Application constraints, such as behavioral constraints, are significant.

Recorded agreement
Takes place at two levels: informal agreement with the target customer(s), and formal in-
ternal agreement

1.5.2. Stakeholder Documentation

Numerous people are involved in delivering and maintaining a solution. The set of stakeholders
will vary, depending on the organization and the project. Based on [Clem02], and focusing on
requirements and test documentation, the view is reduced to three main groups:

• Customers

• Analysts

• Developers

14

Chapter 1. Requirements – Terminology and Definitions

Figure 1.5, “Stakeholder Documentation” shows a compressed view of the stakeholders and their
relationship to different documentation artifacts. The SRS is a central documentation artifact for
all stakeholders.

Figure 1.5. Stakeholder Documentation

Developer

Customer,
Operations

Analyst,
Architect

Requirements

LibrariesReleases

Changes

Features

Interfaces

Documented requirements are relevant for all three groups of stakeholders

Customer and Operations

Being the stakeholder who pays for the projects, customers are interested in costs, progress and
convincing arguments that the architecture and resulting system will meet the functional and
quality requirements. Depending on the service level agreements, customers will usually have
to support the environment operatively. Theywillwant to knowhow the systemwill interoperate
with other systems in the production environment.

A customer likely wants to see

• Work assignments

• Integration view of the system, in terms of deployment and stability/availability.

• Top-level overview of the system.

• Results of different analysis (certifications, performance, unit tests ...).

Architect and Analyst

In general, an analyst is interested in the ability of the design to meet the system's quality objec-
tives. The architecture is the basis for architectural evaluation methods and must provide the
information necessary to evaluate quality attributes such as security, performance, usability,
availability and modifiability.

An architect or analyst of the system is likely to be interested in the following documentation,
depending on the type of analysis and the level of detail for the person's task

• Information on the modules.

• A view of the deployment and the different components.

• Descriptions of internal and external interfaces and communication between processes and
components.

15

Stakeholder Documentation

Developer

Responsible for implementing a solution, this group has to be aware of the solution design and
architectural documentation. Additional restrictions come from internal directives (based on
maintenance, legal, QA), and external processes.

A developer is given responsibility for an element (component, module, application ...) in order
to have a certain degree of accountability. This element could also be a commercial off-the-shelf
product. For each element there has to be a person that makes sure that the element performs
as specified/advertised. This person will want to know

• The general idea behind the system.

• Which element the developer has been assigned, that is, where functionality should be im-
plemented, and the details of the assigned element.

• The elements with which the assigned part interfaces and what those interfaces are.

• The assets the developer can make use of (libraries, frameworks, code ...).

• The constraints, such as quality attributes, legacy systems interfaces, and budget, that must
be met.

1.5.3. Summary

For further reference, the documentation types for the creation of an authoring framework for
requirements documentation is described. The description is based on Section 1.3.2, “Content”
and Section 1.3.3, “Classification”.

Table 1.1. Documentation Types for the Authoring Tool

DescriptionDocumentation Type

Business rules capture the business functions in this type
of documentation

Statements of the required effects

Lists information from issue or change management sys-
tems relevant for the documentation

Recorded issues and changes

Description of the system's scope and intention.Defined goals and objectives

Non-functional requirements not already specified in re-
quired effects, or goals and objectives are captured in this
documentation type.

Specified constraints

References to the decisions from which certain require-
ments are derived. This facilitates the traceability of re-
quirements.

Recorded agreement

This documentation type contains a description of the dif-
ferent parts of the system, and how they interact with one
another.

Top-level overview of the system

Captures required data structures and rules for external
interfaces andmay also cover a descriptionof the expected
internal behavior.

Interface documentation

Itmay be necessary that software developed to integratewith other existing systems uses certain
libraries, or is built with specific requirements on a design level. For clarity, this design-related
information is omitted from the table.

1.6. Software Development Models
The development of a software product is a complex process. Software development models are
structures imposedon thedevelopment of a software productwhichhave emerged from theneed

16

Chapter 1. Requirements – Terminology and Definitions

to streamline development and raise the quality of the resulting artifacts in order to make devel-
opment anefficient andpredictable activity. This sectiongives an introduction to themain concepts
and terminology. Subsequently this section focuseson the creationof requirementsdocumentation
in different development models.

1.6.1. Terminology

The terms developmentmodel, development process, processmodel, and software lifecycle are used
interchangeably in the literature. Primarily, a process model determines the order of the stages
involved in software development and establishes transition criteria for progressing from one
stage to the next [Boeh88]. The following transition criteria are distinguished: completion criteria
for the current stage and choice criteria and entrance criteria for the next stage.

At a lower point of view, the term software development methods (or methodology) refers to the
definition of rules and guidelines on how to navigate through each stage or phase and how to
represent artifacts (products of the stage or phase).

BarryBoehmdistinguishesbetween twomajor classesof softwaredevelopmentmethods [Boeh02],
which is used in this section: plan-driven and agile. The main difference between these two
classes lies in the integration of requirements and their changes into the development process.
As canbe seen inTable1.2, “HomeGround forAgile andPlan-drivenMethods” (basedon [Boeh02]),
each class of development method is very effective in a different type of project environment.
Boehm calls this the home ground.

Table 1.2. Home Ground for Agile and Plan-driven Methods

Agile methodsPlan-driven methodsArea

Dedicated, knowledgeable, collocated,
collaborative, representative, and em-
powered

Access to knowledgeable, collaborative,
representative, and empowered cus-
tomers

Customers

Largely emergent; rapid changeLargely stable; knowable earlyRequirements

Designed for current requirementsDesigned for current and foreseeable
requirements

Architecture

In the remainder of this section I will start with a short introduction on each of these classes in
general and subsequently focus on a single representative process model. For the representative
models, we will try to describe the evolution and documentation of requirements in order to
show the application of the different approaches. This section shows that requirements are an
integral part of a structured process, both in plan-driven and agile software developmentmodels.

1.6.2. Plan-Driven

According to Williams [Will04], designing software with a plan-driven approach can be divided
into waterfall (strictly incremental) and a combination of iterative and incremental methods.
Before comparing these different approaches, the evolution of software process models has to
be followed.

History

The model used in the earliest days of software development is the code-and-fix model. Boehm
describes the approach with the following two steps [Boeh88]:

1. Write some code

2. Fix problems in the code

Boehm further notes the difficulties:

17

Terminology

• The poor structure imposed high costs on subsequent fixes and showed the need of a design
phase prior to coding.

• The resulting software did not correspond well to the users' needs because of the missing
requirements phase.

• The code was not prepared for testing or modification.

Waterfall

Out of the recognition of the above problems and experience in large software systems stagewise
or incrementalmodels were developed, thewaterfallmodel being the most widely known.

Waterfall models are a classical, sequential approach to designing software. Royce [Royc87] is
often credited with doing early work on waterfall methods [Zuse01].

According to Bell and Thayer [Bell76], each of the documents in the early phases of the waterfall
can be considered as stating a set of requirements. At each level a set of requirements serve as
the input and a design is produced as output. This design then becomes the requirements set for
the designer at the next level.

The difficulty with strictly incremental models is the “emphasis on fully elaborated documents
as completion criteria for early requirements and design phases”[Boeh88]. This approach was
not an effective way for many classes of software, especially dynamic end-user applications, or
areas supported by fourth generation languages.

The concerns led to the evolutionary development model where the results are perceived as ex-
panding increments to an operational software product. The direction of evolution is determined
by operational experience.

Spiral

Building on experience with refinements of the waterfall model as applied to large government
software projects, Barry Boehm describes the spiral model [Boeh86] by combining features of
waterfall methods with software prototyping as found in the evolutionary development model
described above.

The spiral consists of several cycles which involve a progressionwith the same sequence of steps
“for each portion of the product and for each of its levels of elaboration, from an overall concept
of operation document down to the coding of each individual program”[Boeh88]:

1. Identificationof the current objectives, alternativemeansof implementationof theobjectives,
and the constraints imposed on the application of the alternatives

2. Evaluate the alternatives relative to the objectives and constraints to identify significant
sources of project risks. If risks have emerged, formulate a strategy for resolving the sources
of the risk.

3. Engage in the remaining risks by either following evolutionary development, in case a pro-
totype could reduce these risks (e.g. dominating performance or user-interface risks), or
pursuing the basic waterfall approach (e.g. if the major part of the risks stem from program
development or interface-control).

4. Validate the products developed in this cycle by conducting a review involving the primary
people or organizations concerned with the product.

5. Prepare plans for the next cycle. This plan and the involved resources are also validated
during a review.

18

Chapter 1. Requirements – Terminology and Definitions

Rational Unified Process

The Rational Unified Process (RUP) is an example of an incremental and iterative development
model. It is at the same time a software development process framework and a software process
product developed by the company Rational and distributed commercially as a product1. It is a
concrete implementation of the Unified Process [Zuse04]

Concepts

It provides a set of recommended best practices for software development. There are four basic
concepts [Prie00]: worker, activity, artifact, workflow.

Worker
This role defines a set of behaviors and responsibilities that an individual may perform.

Activity
Is performed by a worker and provides a meaningful result.

Artifact
The result of an activity is called artifact.

Workflow
Is a logical group of activities.

Workflows

The RUP defines the following core workflows, which classify the work required to develop a
software product within this process:

• Business modeling

• Requirements

• Analysis and design

• Implementation

• Test

• Deployment

I will focus on the first three work flows and identify the documentation artifacts of particular
interest from a documentation perspective as outlined in [Prie00]

Businessmodeling. This is the firstworkflow tobeginwork in a softwaredevelopmentprocess.
It defines the workers business process analyst and business designer. These workers produce the
following artifacts on a documentation level:

• Glossary, defining the language of the business domain

• Business use case model

• Business workers, entities, and organization units

• Business use cases

• Business use case realizations

Requirements. In this workflow, the RUP defines the main workers system analyst, architect,
and UI designer. They produce the following artifacts:

• Glossary and business use case model are also extended in this workflow

• Use case model, created from the business use case model

1IBM acquired Rational in 2002, and provides product information and related services at the Rational website
[http://www.ibm.com/software/rational/].

19

Plan-Driven

http://www.ibm.com/software/rational/
http://www.ibm.com/software/rational/

• Requirements attributes

• Change requests

• Actors

• UI prototype

• Use case storyboard

Analysis and Design. The workflow for analysis and design defines the workers architect,
designer, and database designer. The following artifacts are of particular interest:

• Analysis model, inferred from the use case analysis

• Design model

• Analysis and design classes

• Use case realizations

• Data model

1.6.3. Agile

While traditional development models advocate extensive planning, codified processes, and rig-
orous reuse, followers of newermodels call for “an approach to development that dispenseswith
all but the essentials”[Boeh02]. These models are subsumed under the term agile and center
around “satisfying the customer through early and continuous delivery of valuable software”2.

In the literature Scrum and Extreme Programming (XP) are often referred to as examples for agile
methodologies [Vanh03][Bart07][Judy08]. In this thesis, only Scrum is presented.

Scrum

Scrum is a project management method for agile software development. It was developed by
Schwaber and Sutherland in the early 1990s [Schw04]. One of themain differences to plan-driven
methods is that the iterations start with a team review of what has to be done. The team has to
decide what can be turned “into an increment of potentially shippable functionality by the end
of the iteration”.

Figure 1.6. Scrum Skeleton

Product
Backlog

Increment of
Functionality

Iteration

Inspection

At the start of the iteration, the team selects what has to be done. The result at the end of
the iteration is an increment of functionality (based on [Schw04]).

2Refer to Agile Alliance [http://www.agilealliance.org/] and the Manifesto for Agile Software Development
[http://www.agilemanifesto.org/] for detailed information on the criticism of non-agile development models.

20

Chapter 1. Requirements – Terminology and Definitions

http://www.agilealliance.org/
http://www.agilealliance.org/
http://www.agilemanifesto.org/
http://www.agilemanifesto.org/

Roles in Scrum

All management responsibilities in Scrum are divided among the three roles [Schw04]:

Product Owner
Represents the interests of everyone with a stake in the project and its resulting system.
He or she achieves initial and ongoing funding for the project by creating the project's initial
overall requirements, return on investment objectives, and release plans.

Team
Teams are self-managing, self-organizing, and cross-functional and are responsible to turn
requirements into an increment of functionality within an iteration. Members of the team
are collectively responsible for the success of each iteration and the project as a whole.

ScrumMaster
The person responsible for the Scrum process. He or she teaches Scrum to everyone in the
project and implements Scrum so that it fits within an organization while delivering the
expected benefits.

These are the active roles of the people committed to the project (refer to active and passive roles
in Section 1.2.3, “Roles in the Requirements Process”).

Flow in Scrum

A project in Scrum starts with a vision of the system to be developed, which becomes clearer as
the project evolves. The product owner formulates a plan that includes a product backlog, i.e. a
list of functional and non-functional requirements according to the vision. The elements of the
product backlog are prioritized and divided into proposed releases.

Work is done in sprints, “an iteration of 30 consecutive calendar days”, initiated with a planning
meetingwhere the product owner and the team decide what will be done for the next sprint. The
product owner provides the information on what is desired (based on the product backlog and
its priorities and groupings), while the team provides the information on how much of what is
desired it believes can be turned into functionality during the next sprint.

During the sprint, the teamgets together for 15minutesduring adaily scrum intended to synchro-
nize the work of all teammembers and to schedule meetings needed to advance the project.

At the end of the sprint, during a sprint review, the team presents to the product owner (and
other interested stakeholders who want to attend) what was developed during the sprint. This
is followed by a sprint retrospectivemeeting held by the scrummaster, where the team is encour-
aged to revise its process to improve it for the next sprint.

Requirements in Scrum

The requirements in the Scrum methodology are stored in the product backlog. The product
owner is responsible for the contents, prioritization and availability of the product backlog,which
is never complete during an active project. The product backlog is under constant change and
exists as long as its product exists. Items for future sprints that have not been started by the team
are not analyzed or estimated.

21

Agile

22

Chapter 2. Goals and Evaluation of
Requirements Authoring

I will present a general view on the goals of document authoring and ways to measure maturity
of this authoring process in the context of software requirements. This chapter shows howmatu-
rity of document authoring can be evaluated on a process and on a document level. Themain part
of this chapter focuses on presenting documentation approaches effectively used in the industry.
With common terminology and main deficiencies to address, the basis for the remainder of this
thesis is layed out.

2.1. Goals of Document Authoring for Requirements
Documentation

Content-related characteristics of documentation are clear and usually directly determined by
the author's education, knowledge, experience and other traits which will not be covered in this
thesis. This section concentrates on more easily measurable characteristics. Some of these may
overlap with the author's traits, but most of them can be leveraged through well-designed pro-
cesses and the right tools.

Hard characteristics for good requirements specification, as shown in Section 1.3.1, “Characteris-
tics”, are based on the need to achieve certain goals. A good SRS is in character with the items
described and aids in attaining the goals. In [Kylm03] the following goals for document authoring
in general are listed:

• Gain understanding

• Share information

• Keep track of information shared

During a survey, Forward and Lethbridge [Forw02] have received similar results regarding the
goals of the documentation, the four most important aspects were the document's information,
timeliness, availability, and the use of examples. These characteristics are similar to the first two
goals in the above list.

These goals are not restricted to the resulting documentation itself (i.e. the specification, design
document or diagram), but can be applied to the set of information associatedwith the authoring
of the documentation. In this thesis, these goals are applied to theprocess of documenting require-
ments.

2.1.1. Gain Understanding

It is only possible to gain understanding, if the information is shared and the sharing is done in
a correct an unambigousway. It does notmatter what has beenwritten, but how it is interpreted.
More often than not, there are better ways to gain understanding than reading a document. Ac-
cording to [Ruga00], in order to effectivelyunderstandsoftwarewemust appreciate its architecture
and other design choices; it is important to take advantage of as much of the reasoning that went
into the existing solution.

With sufficient knowledge about a software system it can evolve in a disciplined manner. “The
essenceof programunderstanding is identifyingartifacts, discovering relationships andgenerating
abstractions”[Huan03].

The characteristics for this goal will be described in more detail:

23

• Quality of perception

• Learnability

Quality of Perception

This characteristic is supported by main attributes of a good SRS as described in Section 1.3.1,
“Characteristics”: unambiguous and consistent. These determine how easily information can be
absorbed.

In order to evaluate a process, it is essential to observe whether instruments are in place that
assure that documentation is unabiguous and consistent. These instruments can be very diverse:

Measure Quality of Perception

• Specially trained technical writer

• Editor for software documentation in the QA department

• Generally accepted, company-wide agreement on authoring

• Template-based documents that adhere to a previously defined structure

• Review on an ambiguity and consistency level

Learnability

According to Dan Tamir et al. [Tami08], learnability in the context of software quality (ISO/IEC
9126) can be measured by evaluating the performance of a user in multiple executions of a
repetitive task. In their research, the group also explained the term understandability in the same
context. In the context of document authoring, wemerge both terms and define them as a charac-
teristic that measures how much effort is needed to read and understand a document without
direct guidance of the document's authors or people involved in the document's creation.

In abusiness-drivenenvironment it is often impossible to talkdirectly to the authorsof adocument,
or consult people involved in creating the documentation. In this case, it is important that the
available documentation suffices to obtain an understanding of the domain. It should not be
necessary to extensively demand other people's resources to gain a better understanding.

Another attribute from Section 1.3.1, “Characteristics” that affects the degree of learnability is
traceability. If the origin of a requirement is clear and can be referenced, the process of under-
standing without additional resources is facilitated. A document that aids autodidacts should
clearly indicate authors and source of information for further reference.

Measure Learnability

• Contributions of an author are marked as such

• Origins of requirements are indicated

• Review on self-directed understanding (e.g. hallway testing1, logical structure2).

2.1.2. Share Information

It is expected that people read the authored documents or are able to access the necessary infor-
mation otherwise. For this to work, people have to know what information is available, what to
read and where to find it. According to Chris Rupp [Rupp06], the major part of communication

1Not only a methodology of usability testing, hallway testing can be used to find issues that are not clear to people too deeply involved
in a work stream. During hallway testing, random people, indicative of the end users and not involved in the creation of the artifact,
perform a test or review.
2Barbara Minto [Mint01] explains that written information has to be presented at different layers of abstraction and distinctively
grouped in order to be comprehended by the reader. She describes three simple rules to achieve a recommended pyramidial grouping.

24

Chapter 2. Goals and Evaluation of Requirements Authoring

is concernedwith the distribution and exchange of information. He further notes that for a group
of people working together, it is important that their conduct is based on the same information
(revision of a document), or otherwise they miss a common understanding which is important
for their communication.

Modern information or document management tools (DMS) can support this process goal on a
technical level. Still, it is necessecary that the process spans around these tools and leverages
them, in order to reduce complexity and manual work for all participants. For widely dispersed
product development teams, it is difficult to communicate or exchange informationwithout digital
transfer. At the same time, the deployed tools should not impose a high overhead or demand a
high amount of direct manual intervention.

This goal is divided into the following characterstics, which are explained in more detail below

• Availability

• Distribution

• Retrieval

Availability

The term availabilty refers to receiving information after submitting an informed request. Bill
Albing [Albi96] claims that “technical documentation involves not a chain of discrete projects […]
but a network of interrelated documents”. The technological progress nowadays allows the leap
“from individual writing and reading to group creation and enterprise-wide […] consumption.”

Requirements from different sources (see Figure 1.2, “Sources Of Software Requirements”) influ-
ence the problem solving process. These requirements and their proper specifications have to
be accessible when designing a solution. Otherwise, it is possible that the final product does not
fullymeet expectations, or is disproportionally expensive to adapt compared to a change at design
time.

Measure Availability

• Short roundtrip between asking for and receiving information

• Low technical effort to access information

• Link directly to documents or other sources of information

Distribution

Members of the product development team have different perspectives on the domain. They talk
to stakeholders outside of the team at different levels of abstraction. Maciaszek [Maci05] says
that “requirements elicited from customersmay overlap or conflict” and that these requirements
need to be negotiated and validated. This is associated with the process of writing up a require-
ments document.

Maciaszek continues:while “requirements negotiation is typically basedon thedraft of a document
[…], requirements validation requires a more complete version of the requirements document”.
Initially, the results of negotiation and validation (duringworkshops, reviews, inspections…) are
only visible to a small group of participating individuals, but have to be effectively communicated
to other members of the product development team.

Measure Distribution

• Process actively supports knowledge sharing

• Low effort to communicate requirements

25

Share Information

Retrieval

This third characteristic refers more to the deployed DMS than to the process itself. Every docu-
ment managed by the system provides metadata that can range from basic dates as timestamp
or content type to information on the author or the context. This data can be used to distinguish
a piece of information from others, and hence find it using a query that can be broadened and
narrowed (searched and browsed).

This thesis will not go into details of automatically retrieving this information from a structured
piece of information. The information provided by the author or the tools employed during au-
thoring can be used by the DMS to put the piece of information into the right context (i.e. project,
work stream, status of information, department…). It is essential that the requirements documen-
tationprocess defineswhat types of information are essential. This information can thenbe added
directly to thedocumentbefore storing it in theDMS, or to themetadata attached to thedocument
in the DMS (after being stored).

Measure Searching and Browsing

• Central DMS (or similar system) is enforced to be used

• Identification of the metadata that has to be stored in DMS

• Categories, labels, hierarchy of metadata are defined

2.1.3. Track Information

Successful programs not only evolve to fix problems, but also tomeet new requirements, improve
efficiency and refine existing solutions to adapt the original approximation to the requirements
of the real-world context of the program [Ruga00]. Often documentation does not change accord-
ingly. Among the most efficient solutions for a better understanding are documents that keep
track of information history [Kylm03].

For this goal, two characteristics are classified

• Versioning

• Transparent changes

Versioning

For this definition, I reuse previous work by Stuckenholz [Stuc05]. He writes about software
component evolution and versioning, but selected assumptions and definition also apply to soft-
ware documentation and software requirements documentation.

A version of a [document] is a specific instance on the time axis, which came into
existence due to a revision or change. The way how a version is identified by a
version identifier […] is defined in a specific version model.

If multiple authorswork on a single document, author Amay not know about the changes author
Bhas put in the newversionof a document. Even in a single-author situation, itmight be necessary
to roll-back to a previous version of a document. A well integrated versioning process makes it
clear for participating parties what changes have been applied to a document. The version iden-
tifier is used to distinguish different versions of the same document during discussion or in doc-
ument references.

As already indicated in Section 2.1.1, “Gain Understanding”, it is important to take advantage of
as much of the reasoning that went into the existing solution. Changes to previous version of a
document (revision history) and metadata associated with these changes are valuable sources

26

Chapter 2. Goals and Evaluation of Requirements Authoring

of information. In popular version control systems3, themeta-information contains at least: date,
author, and a free-text comment describing the change.

Measure Versioning

• A version model is in place

• Changes are detected by using meta-information (e.g. timestamp)

• Changes are detected by comparing content

• Ability to attach meta-information to a change for subsequent reference

• Differences between arbitrary revisions of a document can be retrieved

Transparent Changes

Changes applied to a running systemor test environmenthave tobedocumented. The sameapplies
to a document or single requirement. It is possible that person Awho implemented a change did
not fully understand the requirements or introduced unexpected behavior. If A is not available
at the time a problem concerning this change is raised, someone else will have to address the
problem. For this person it will be necessary to know about the changes introduced by A.

It may be necessary to restrict changes from being applied to a system: changes can then only be
introduced in a controlled manner and have to go through different stages of acceptance. This
raises the awareness of and knowledge about changes introduced to the system.

Karl Wiegers claims [Wieg04] that a well-defined change control process provides:

• Formal mechanism for proposing changes in requirements

• Basis for well-informed business decisions

• The possibility to track proposed changes

Maciaszek [Maci05] uses the term change management process, which “involves tracking large
amounts of interlinked information over long periods of time”, being supported by a software
configuration management tool.

Measure Transparent Changes

• Changes to requirements are documented

• Relation of changes in requirements and the product is clear

• A change management/control policy is in place

2.2. Evaluation with Maturity Models
Huang and Tilley [Huan03] describe two dimensions to measure documentation quality: the
process, i.e. themanner inwhich thedocumentation is produced, and theproduct, i.e. the attributes
of the final product. The following two models define different levels of maturity on the process
and the product level.

3This is based on open source project hosting sites, such as SourceForge.net, GitHub, java.net, Google Code and similar sites (refer to
the comparative Wikipedia page [http://en.wikipedia.org/wiki/Comparison_of_open_source_software_hosting_facilities]). The most
popular version control systems provided by these sites are (in this order at the time of writing) are Subversion, CVS, git, andMercurial.
Realtime version control statistics provided by Cia.vc [http://cia.vc/stats/vcs] show similar numbers.

27

Evaluation with Maturity Models

http://en.wikipedia.org/wiki/Comparison_of_open_source_software_hosting_facilities
http://en.wikipedia.org/wiki/Comparison_of_open_source_software_hosting_facilities
http://cia.vc/stats/vcs
http://cia.vc/stats/vcs

2.2.1. Process Maturity Model

This 4-level documentation process maturity model, developed by Visconti and Cook [Visc93]
tries to address the problem of low quality and missing documentation. The authors define four
levels ofmaturity (see Figure 2.1, “Levels of the SystemDocumentation ProcessMaturityModel”)
together with their process areas, practices, indicators, challenges and significance to software
development and maintenance. The following levels are presented.

Figure 2.1. Levels of the System Documentation Process Maturity Model

Ad-hoc

Inconsistent

Defined

Controlled

Chaos; Variability

Standards; Check-off
list; Inconsistency

Product assessment;
Process definition

Process assessment;
Measurement; Control
Feedback; Improvement

Visconti and Cook [Visc93] distinguish four cascading levels in this maturity model

Levels in the Process Maturity Model

Ad-hoc
Documentation does not receive a high priority and is usually missing or out of date. In
order to improve the situation, the organizationhas to establish documentation standards.

Inconsistent
At this level, documentation is considered important and must be done. The problem lies
in inconsistent application of standards. The organization has to exercise quality control
where the documentation artifacts are assessed in terms of quality and utility.

Defined
It is agreed that the documentation must be done well and documentation tools are used
consistently. Documentation is updatedafter each changeandquality assessmentmethods
are in place. Measures of documentation process qualities have to be established.

Controlled
Documentationprocess quality canbe assessedandan improvement feedbackmechanism
is in place. Documentation tools are integrated with software CASE tools. For this level, it
is important tomaintain a continual optimization of the documentation process and auto-
mate the collection and analysis of the process' data.

The levels represent a structured spectrumof documentationmaturity levels for an organization,
and can be used to identify problem areas.

2.2.2. Documentation Maturity Model

Huang and Tilley [Huan03] focus more on the product than on the process components. The
Documentation Maturity Model (DMM) is a five-staged model based on the Software Capability
Maturity Model (CMM) created by Carnegie Mellon University's Software Engineering Institute.

Theproduct quality component of theDMMisbasedon thenotionof key product attributes (KPA).
As depicted in Table 2.1, “Documentation Maturity Levels associated with KPAs”. Its product-
quality KPAs are efficiency, format (textual and graphical), and granularity.

28

Chapter 2. Goals and Evaluation of Requirements Authoring

Table 2.1. Documentation Maturity Levels associated with KPAs

Maturity Level
KPA

54321

PersonalizedContextualHyperlinkedInline&Standard-
izedInline & InformalText

Fo
rm

at

EditableInteractiveAnimatedStatic&Standard-
izedStatic & InformalGraphics

Automatic & Dy-
namic

Automatic&Stat-
ic

Semi-automatic
& Dynamic

Semi-automatic
& StaticManualEfficiency

Product linesRequirementsSoftwarearchitec-
tureDesign patternsSource codeGranularity

The DMM with its associated KPAs is focused on documentation for the developer. Because it is
important for the following chapters, the characteristics are put in the context of a product devel-
opment team.

Efficiency

This attribute refers to the “level of direct support the documentation provides to the software
engineer engaged in a program understanding”. Huang and Tilley list the following aspects for
the definition of efficiency:

• accuracy between the documentation and the source code (the implementation in this thesis'
broader context)

• ease with which the documentation can be generated

• completeness of the documentation with respect to the information required by the devel-
oper (the author in this thesis' broader context)

At the lowest level,manual, the documentation is generatedmanually. At the next two levels, semi-
automatic & static/dynamic, documentation is generated using tool support. In the case of static
documentation, it reflects the systemonly at the timeof generation.With adynamicdocumentation,
changesmade to the system can be reflected in the documentation. Themost advanced two levels
remove the need of the author's involvement.

Format

For the format attribute, Huang and Tilley distinguish between textual and graphical. Only one
part of this attribute is directly applicable to quality assessment.

Textual documentation ranges from “inline prose written in an informal manner” at the lowest
level, to “personalized views dynamically composed from a […] database”. Adhering to documen-
tation standards, hyperlinking, and context-specific documentation, each lead to a higher level
(in this sequence from level 2 to 4).

On the other side, graphical documentation ranges from static imageswith “non-standard repre-
sentation of software artifacts and relationships” to graphical documents that are editable by the
user. The levels in between these extremes are static & standardized (level 2), animated (level
3), interactive (level 4).

Granularity

ForHuang andTilley, the granularityproduct attribute refers to the “level of abstraction described
by thedocumentation”. Lowgranularitymeansadocumentation that is close to the implementation
of the system, while high granularity levels are closer to the business functionality of the system.

29

Documentation Maturity Model

Source code documentation (lowest level) provides information that supports in “understanding
the algorithms and data structures”. From my experience, information at the level of design pat-
terns (level 2) can be provided in good source code documentation at module, class or package
level. This aids in understanding the “higher-level rationale behind implementation decisisons”
and helps the engineer's work in constructing more abstract mental models.

High-level design (software architecture, level 3) “captures […] aspects of a system's structural
characteristics”. Huang andTilley, explain the difference to requirements (level 4) in the following
manner:

Software architecture captures the engineer’s view of the system’s high-level
design. Requirements represent the system’s intended purpose from the point
of view of the user.

In their descriptionof this level, they also take into account that requirements-level documentation
can greatly aid in mapping maintenance requests through multiple levels of abstractions.

The highest granularity (level 5) and highest level of abstraction is product line documentation.
It contains information on “commonalities and variablities in the product [and] how a specific
product is related to similar products”.

2.3. Exemplary Industrial Processes
Software development models, such as those presented in Section 1.6, “Software Development
Models”, are taught to studentsduring their computer science studies. They represent an important
part of the basic educationof a software engineering student, and are presentedduring theoretical
courses and confirmed in hands-on labs on real-world projects.

Eventually, the main aspects of these models have found their way into the industry, where the
concepts are adapted and applied to the culture and working environment of the product devel-
opment team responsible for the delivery of the software product (see Section 1.2.3, “Roles in
the Requirements Process”). In this section, I will present the documentation aspects from two
selected processes as they are used in the industry.

2.3.1. RaPiD 7

The method called Rapid Production of Documentation, 7 steps (RaPiD7) presented by Roope
Kylmäkoski [Kylm03] was developed in Nokia between 1999 and 2000 for efficient document
authoring in software development projects.

It tries to address the following problems, presented as the most typical problems found using
traditional authoring approaches:

• A lot of calendar time is allocated for authoring the documentation.

• The contents of the document are mostly based on the opinion of the writer.

• A common theme on the contents of a document on hand cannot be defined.

• A common agreement cannot be reached, because defects are found too late.

• No proper commitment.

• No efficient information sharing, and therefore an inadequate level of understanding.

In RaPiD7, the document on hand is authored in a team during consecutive workshops. In these
workshops, which have to be well prepared, brainstorming and problem solving methods are
used. The documents are mostly written during the workshops, or immediately after each issue
has been resolved and a decision has been made. Each workshop has the following structure:

30

Chapter 2. Goals and Evaluation of Requirements Authoring

Steps of RaPiD7

1. Preparation

2. Kick-Off

3. Gather Ideas

4. Analyze Ideas

5. Detailed Design

6. Decisions

7. Closing

A workshop can be considered an iteration in an iterative-incremental process. An iteration ad-
dresses a common theme, which means that a fair amount of information has to be obtained
during the preparation. The theme and goal of an iteration is defined during the kick-off. Each
concrete issue is handled in a loopof gathering and analyzing ideas to the resultingdetaileddesign,
where the document is actually written. After deciding on the results, the closing step assures
that the desired outcome has been reached and whether a following workshop is scheduled or
needs to be scheduled.

It is important to make sure the right people participate in the workshop, and that these people
only attend as long as their input is needed. According to Kylmäkoski, the workshops in Nokia
are usually scheduled for three to five hours, and should not be longer to remain efficient.

2.3.2. Process T

At the time of writing, the process presented in this section is used by an international company
in the telecommunications business. The company that implemented this process operates in
several countries and provides a variety of different services to business and private customers.
It ownsnetworking infrastructure and continually strives to incorporate other telecommunication
companies.Whilenewbusinesses are acquired, the companyhas to adapt to technological changes,
at the same time providing their products at a high standard of quality. Internal requirements
documentation is essential to the company's core business.

I will call the process Process T (for telecommunication). This process is used for software design
and development and tries to document all changes introduced to a system. Process T evolved
over the years and is supported by professionally trained staff and process infrastructure, i.e. a
sophisticated incident and change management system.

In termsof requirements, the process focusses ondocumenting functional software requirements
and, on a lower level, design constraints.(see Section 1.3.3, “Classification”). A supplementary
ambition is to document changes to productive systems.

Process Flow

At a first stage only the evolution of requirements is observed, up to the pointwhere the informa-
tion has sufficiently developed into a technical description of the software that can be used as a
basis for the implementation. From the previously defined stakeholders (see Section 1.5.2,
“Stakeholder Documentation”) the following are selected for simplicity:

Business
A combination of the people responsible for the corporate strategy and the customers

Architecture
People in this group have a broad view of the solution and strategy. They correspond to
Architects and Analysts in the description of stakeholders.

31

Process T

Design
This heterogeneousgroup is comprisedof experts fromdevelopment andoperation teams,
the customer and software architects. The result of theirwork is the basis for implementa-
tion efforts.

Together, these parties try to assess the needs and transform them into a behavior specification
as depicted in Figure 1.3, “Evolution of a Behavior Specification”. Teams participate cooperatively
in twowork streams in order to eventually obtain softwaredesigndocumentation, i.e. the behavior
specification for the resulting software.

Figure 2.2. Transformation of Requirements

Business requirementsgo throughseveral changesbefore the softwaredesign is completed
and ready to be implemented.

The result of the requirements analysis, conducted by business and architecture group is called
the Solution Definition (SD). The SD is the basis for detailed design documentation. During the
technical analysis the design group transforms this information into a specific software design
for a specific component or module. During the Technical Analysis the SD is transformed into
functional design (FD) and technical design (TD).

In parallel to the analysis work streams, an additional Change Management process has been es-
tablished. This supportive process is necessary to orchestrate all changes in order to prevent or
reducenegative impact. This process is described inmore detail in the section called “Introduction
of Changes” (p.33).

Reviews

Each documentation phase concludes with a handover review between the two groups involved.
During these reviews, possible ambiguities orunclear itemshave tobe identifiedbeforeproceeding
to the next step. See Figure 2.3, “Documentation Handover” for a graphical representation.

32

Chapter 2. Goals and Evaluation of Requirements Authoring

Figure 2.3. Documentation Handover

Before the final documentation has evolved, it has to pass four phases and three different
participants have to agree on different levels of abstraction.

After the review, the participating groups prepare official sign off from their respective manage-
ment. As soon as both parties agree on the amount of work, the documents are used as a basis
for the commercial contract for the specific work stream.

Introduction of Changes

It is quite common that defects are found after an agreement has been signed and theparticipating
parties have already agreed on a commercial contract. In Process T, a signed document can only
be adapted after raising an appropriate change request.

Information in a Change Request

A change request holds information at different levels of abstraction and for different roles in a
project.

Description
A short, concisedescriptionhelps tounderstand thebusiness-related reasonwhy this defect
really is a defect. Usually an example describes a problem that appears at a certain stage
of implementation or during operations.

Owner
The owner of the change request is responsible for the changes to be implemented. The
owner does not need to have the capabilities or expertise, but knows the person or group
in charge to bring about the needed changes or a decision on the further proceeding. It is
possible to forward the request to a different person or group, which, upon acceptance,
becomes the new owner.

Log
This information field contains notes from users involved in the change request. Their
comments are saved, along with their user name and timestamp.

Linked Incidents
It is possible to link one or more incident descriptions to the change request. An incident
describes a single issue or symptom and can be compared to a bug report or ticket.

Solution
One ore more change requests can be associated with a solution. A solution is a container
that tracks information to solve the problem throughout its delivery/deployment. A single
solution can solve one ormore change requests. If the solution is implemented, the associ-
ated change requests are marked as implemented.

Meta-Information
The change request can adopt different states. State changes, from its inception to its
completion are tracked, together with the information which user triggered the state
change. Some state changes require a short description and special privileges. The time of
ownership for the different people or groups in charge can be tracked too.

33

Process T

Attained Goals and Maturity

In order to assess Process T, it is necessary to apply the previously defined goals (see Section 2.1,
“Goals of Document Authoring for Requirements Documentation”) and maturity models (see
Section 2.2, “Evaluation with Maturity Models”). This helps us to see where the implementation
of the process can be improved.

Goals

The extent to which the previously defined goals for document authoring in the implementation
of Process T are met can be assessed using a survey among participants involved in the process.
For each of the detailed characteristics of the goals, it is possible to assign one to three points
with the following meaning:

• One point: nothing or very little has been implemented,

• Two points: something has been implemented,

• Three points: most of the measures to reach the goal are in place.

With the results of the survey and the above simple rating mechanism, it is possible to obtain a
very subjective assessment of the process basedon the involvedparticipants. I have not conducted
such a survey, but further research in this area might be interesting to prioritize capabilities of
the authoring framework.

Maturity Models Applied

The level of processmaturity (see Listing “Levels in the ProcessMaturityModel”, p.28) forProcess
T is located between inconsistent and defined (levels two and three of four levels total). Documen-
tation is written using standard word processing tools. Structured information from CASE tools
are inserted manually into these documents and updated infrequently.

Quality assessmentmethods are in place, but they do not cover the full process and are not coor-
dinated throughout the participating groups. Documentation reviews are mandatory and occur
more frequently before handover than during the time the documentation is being developed.
Although the formally structured character of the reviews is understood, it is difficult to review
archived changes to the documentation in one central place.

The change management toolset helps in identifying changes to a work stream's overall solution
but its nature does not allow a structured query for specific changes on a component or module
basis.

34

Chapter 2. Goals and Evaluation of Requirements Authoring

Part II. Documentation Formats and
Authoring Tools

The previous chapter observes the goals of document authoring for software requirements documentation
and how the process of authoring and the resulting artifacts are evaluated.

The two following chapters create a basic understandingof themain components of the authoring framework:
the documentation format and the authoring tool. For both components traditional and current implementa-
tions are analyzed, assessment criteria created, and a selected subset compare.

• Chapter 3, Analysis of Documentation Formats

• Chapter 4, Analysis of XML-Based Authoring Tools

Chapter 3. Analysis of Documentation
Formats

I have previously outlined the goals of document authoring in the context of requirements docu-
mentation and how the process itself and the resulting documents can be evaluated. This chapter
shows an overview of existing, widely employed document formats for requirements documen-
tation. Subsequently, this chapter continueswith current document formats and open standards,
all of which are XML-based [XML1.0(e4)]. Then the formats are compare and their features,
drawbacks and fields of application are summarized.

The term format is used throughout this document to narrow the idea of documentation systems
and environments – or other synonyms used in the same context – to the underlying data format.
A selectionof specializeddocumentation tools for authoringdocuments arepresented inChapter4,
Analysis of XML-Based Authoring Tools. Those authoring tools have been selected to author docu-
ments presented in Section 3.3, “Current Document Formats and Standards”.

3.1. Restrictions
The field of documentation formats is large, even if the application is constrained to requirements
documentation. I have narrowed the selection of documentation formats in this chapter, in order
to keep within the scope of this thesis. Before going into details, the basis for the argumentation
and the decisions being made is layed out. The following restrictions will be explained in more
detail in this section:

• Document-centric

• Standardized

• Structured

• XML-based

3.1.1. Document-Centric

In a document-centric authoringmodel, the assembled information is put into one ormore docu-
ments. In the context of web applications, Boyer [Boye08] describes several advantages of a
document-centric approach of which two are applicable in the context of this thesis:

• Ability to digitally sign documents for legally binding agreements.

• Support for document-centric business processes, workflows, and activity-centric systems.

Toolset

In a survey conducted by Forward and Lethbridge [Forw02], 41 participants answered to a
question regarding which software tools are most/least helpful to create, edit, browse and/or
generate software documentation (see Table 3.1, “Useful Documentation Technologies”). Word
and text processors emerged as the most helpful for software documentation, because these
processors are flexible and in general easy to use.

Table 3.1. Useful Documentation Technologies

Least HelpfulUsefulDocumentation Technology

15%54%Word processors

12%51%Javadoc and similar tools (Doxygen, Doc++)

37

Least HelpfulUsefulDocumentation Technology

7%22%Text Editors

2%12%Rational Rose

-7%Together (Control Centre, IDE)

During the same survey, a question regarding themost important document attributes on a scale
from 1 to 5, 5 being most important, the characteristic “Content – the document's information”
received a mean rating of 4.85. Runner-ups in that category were “Up-to-date” with a mean of
4.35, and “Availability” and “Use of examples” with a mean of 4.19 each.

Wiki as an Alternative to Document-Centric

I do not cover wiki-based technologies or documentation approaches until the end of this docu-
ment. Because they arewidely used in corporate environments, this section should provide some
pointers on how wikis may be used in the context of requirements authoring.

According to Xu's research on wikis in computer science course project management [XuLi07],
wikis are considered “the latest web innovation on content management and sharing”, and a
prime example of fulfilling the goal of Sharing in documentation authoring (refer to Section 2.1.2,
“Share Information”). Xu further notes their application in teaching activities, being used for col-
lective learning, online teaching, knowledge sharing andother elementsof thepreviously identified
goalGainunderstanding (refer to Section2.1.1, “GainUnderstanding”). Theadvantageof employing
wikis to support project management as documented by Xu matches my personal experience.

Developed as a plugin for the commercial wiki Confluence, the Scroll Wiki Exporter1 combines
features from joint authoring in a wiki environment and document-based export of selected
content. It uses DocBook (see Section 3.3.1, “DocBook”) as backend to its exporter, and from this
several other formats. The export involves: selection of the pages and hierarchy to be exported,
addition of supplemental document data, transformation using the reusable docbook publishing
process (refer to the section called “Toolchain” (p.49)).

In Section 7.1, “Validation” one of described the scenarios uses a wiki as primary documentation
format.

3.1.2. Standardized and Open

There are many definitions of open standards2, but I will use only one of them as an example:
TheEuropean Commissiondefines open standards in version 1.0 of the European Interoperability
Framework [IDABC04] as a specification including attending documents with the following
minimal characteristics:

• The standard is adopted and will be maintained by a not-for-profit organisation, and its on-
going development occurs on the basis of an open decision-making procedure available to
all interested parties (consensus or majority decision etc.).

• The standardhasbeenpublishedand the standard specificationdocument is available either
freely or at a nominal charge. It must be permissible to all to copy, distribute and use it for
no fee or at a nominal fee.

• The intellectual property - i.e. patents possibly present - of (parts of) the standard is made
irrevocably available on a royalty-free basis.

1At the time of writing, Scroll Wiki Exporter is in beta and available at its website [http://scrollyourwiki.com].
2Refer to Wikipedia's Definitions of Open Standards
[http://en.wikipedia.org/wiki/Open_Standard#Specific_definitions_of_an_open_standard].

38

Chapter 3. Analysis of Documentation Formats

http://scrollyourwiki.com
http://scrollyourwiki.com
http://en.wikipedia.org/wiki/Open_Standard#Specific_definitions_of_an_open_standard
http://en.wikipedia.org/wiki/Open_Standard#Specific_definitions_of_an_open_standard

Drawbacks Through Lacking Standardization

There are several disadvantages to non-open formats. For example, in the world of office suites
and applications “all documents are stored in a proprietary (often binary) format”[Eise05]. This
might lead to one of the problems, explained in more detail below:

• Difficult information extraction

• Reduced Availability

Information Extraction

If the user wants transfer information from a document (e.g. into another format, export to a
database) in a way not intended by the authors, the process will become difficult. It is necessary
to “convert that data to some neutral […] format”. Conversion mechanisms have to be provided,
and potential information loss due to different structure of the formats poses additional require-
ments.

Perpetual Availability

This kind of availability is orthogonal to the availability described in the section called “Availabil-
ity” (p.25). It is about the possibility of technically accessing the information of the document at
all: If the underlying documentation format evolves to that extent that the vendor develops a new
format and stops supporting the old version, data can become inaccessible. In [Stuc05] reasons
for this kind of decision are discussed. As there is no other party involved, the user depends on
the vendor to deliver a new version with import filters for the old format.

The following example should visualize this problem

39

Standardized and Open

Example 3.1. Word Processor Version Incompatibility

A user writes a series of books in format F1 in the word processor W (version W1) on operating
system O (version O1). While the user is writing the books, software company that created W
adopts innovations and integrates them into new versions: W2, W3, W4. For different foremen-
tioned reasons, features are removed (W3 comes bundled with filters for F1 instead of native
support, W4 does not support F1 at all) and additional requirements are imposed (W3 only runs
on O2 or O3, W3 only runs on O3).

InTable3.2, “ExemplaryRequirementsandDependenciesof aWordProcessor” theaforementioned
dependencies and requirements are depicted. If the user intends to upgrade to a newer version
of his operating system (e.g. O3), he/she is forced to use a new version of W, supported by this
operating system. Format compatibilities have to be taken into account too: the user cannot up-
grade directly to version W4, as it does not support the original format F1 at all.

Table 3.2. ExemplaryRequirements andDependencies of aWordProcessor

Word Processor Version

W4W3W2W1

-FiiSiSiF1

Da
ta

Fo
rm

at

FiiSiSi-F2

SiSi--F3

Si---F4

--SiiiSiiiO1

Op
er
at
in
g

Sy
st
em -SiiiSiii-O2

SiiiSiii--O3
iThe word processor can read/write natively from/to this format.
iiThe word processor can use special filters to import/export from/to this format.
iiiThe word processor can run on this operating system.

Examples of Standards Support

In recent history, a strong trend towards supporting open standards has developed. This section
shows some examples from the public sector and the industry.

European Union. In order to evaluate recommendations for document formats that allow
flexible interchange between EUmember's administrations, the European Commission has con-
ducted the Valoris Report [Valo03]. After receiving responses from the industry, the Telematics
between Adminstrations Committee approved conclusions and recommendations on the open
document formats. The European eGovernment Services have consolidated all the related infor-
mation on a single aggregation page [IDABC05].

USStateofMassachusetts. TheUSState ofMassachusettsbacksODFas the standard for office
applications [Mass05] and planned to migrate until January 2007: “Agencies should begin to
evaluate office applications that support the OpenDocument specification to migrate from appli-
cations that use proprietary document formats.” This adoption of ODF spurred a lot of discussion
in the legal and political domain3. Shah et al. [Shah08] analyze the policy shift towards open
standards and observe lessons learned from this change.

Sun Grid Service. In November 2005 Sun Microsystems announced [Sunw05] that the com-
pany has added new services to the service. One of them, the Sun Grid Utility service is intended
to “help simplify the process of converting documents from Microsoft Office to free and open al-

3Groklawhas setupanaggregationpage [http://www.groklaw.net/article.php?story=20050330133833843]withpointers andcomments
on this subject.

40

Chapter 3. Analysis of Documentation Formats

http://www.groklaw.net/article.php?story=20050330133833843
http://www.groklaw.net/article.php?story=20050330133833843

ternatives that radically lower cost, promote cross-platformcommunications andhelp userswith
older versions ofMicrosoftWindows avoid the costs and risks associatedwith deploying a newer
release of Windows.”

3.1.3. Structured

Walsh and Muellner [Wals05] say that structured authoring has significant shortcomings:

• The authoring process for structured documents is very different from writing with a word
processor. Authors do not have direct control over the appearance of their content.

• Authoring tools for structured documents can be more expensive than word processors.
They are less popular and have a smaller user base.

However, the research in the field of structured document authoring4has foundmany advantages
over (traditional) context-free authoring.Dymetman [Dyme04] claims that, byusing chart-parsing
techniques, the author may “state knowledge about the document in a flexible way” and can mix
top-down and bottom-up authoring, while “the system automatically detects the consequences
of the choices already made [and proposes] live choices for the next authoring step.”

3.1.4. XML-Based Solutions

AnXMLdocument combines thepreviouslymentioned restrictions into a compound requirement:

Centered around a document
From theW3C recommendation [XML1.0]: “[XML] describes a class of data objects stored
on computers andpartially describes thebehavior of programswhichprocess theseobjects.
Such objects are called XML documents.”

Based on standards
XML itself is being developed as a standard and recommended by the W3C since 1998
[XML1.0] (version 1.0). The specification builds on several other standards: Unicode and
ISO/IEC 10646 for character strings, and Internet RFC 3066, ISO 639, and ISO 3166 for
language and identification and country name codes.

With the addition of semantic constraints, application and domain-specific languages can
be implemented. Many of today's important communication standards are built on XML5.

Structured
XML provides awell-definedmarkupwith tags, references, comments, processing instruc-
tions, and special declarations (e.g. for document types, character data, and XML declara-
tion). According toNormanWalsh [Wals05] “XML is anatural system for storing structured
documentation”.

With a first draft in November 1996 [XML-WD], and the 1.0 release in 1998 [XML1.0], at the time
of writing, the standard is in the fourth edition [XML1.0(e4)]. There are many stable XML-based
standards powerful enough to deliver to the expectations of a document format or document
standard. This section outlines the general characteristics of an XML-based format. Each XML-
based document format can benefit from these characteristics, and most implement the one or
the other standard way to achieve certain goals.

After a short digression into alternatives to XML. the remainder of this section will cover the fol-
lowing advantages of XML:

• Standardized inclusion methods

• Human readable markup

4In the literature, structured document authoring is sometimes referred to as controlled document authoring.
5Refer to the Wikipedia category XML-based standards [http://en.wikipedia.org/wiki/Category:XML-based_standards]

41

Structured

http://en.wikipedia.org/wiki/Category:XML-based_standards
http://en.wikipedia.org/wiki/Category:XML-based_standards

• Separation of content and style

• Extensibility

• Wide acceptance

Alternatives to XML-Based Formats

Most of the advantages outlined in this section, also apply to alternative structured and human
readable formats. Two alternatives for certain fields of application of XML are JSON6and YAML7.
These two languages are primarily used for serialization and data-interchange. Because these
alternatives are not document markup languages, their use for requirements documentation au-
thoring is very limited.

Standardized Inclusion Methods

There are many different, standardized possibilities to include external information in an XML
document: XLink [XLink], XInclude [XIncl] External Entities. They have different advantages and
expectations in terms of implementation. With standard ways of inclusion, document format de-
signers can leverage the same technologies and choose whatever they want.

For example, when using XSL stylesheets in order to style a DocBook document, for Bob Stayton
[Stay03] “the best tools are XIncludes and olinks”. XInclude is a standard inclusion mechanism
for XML documents. The olink element is the “equivalent for linking outside the current docu-
ment”. The DocBook XSL stylesheets provide different options for resolving olinks, depending
on the content type of the linked element.

Iacob and Dekhtyar [Iaco05] distinguish between document-centric and data-centric XML docu-
ments. Although in a different context, this distinction is essential to categorize the different
document formats thatwewill present in Section3.3, “CurrentDocument Formats andStandards”.
These two types are defined as follows, quoting from Jacob and Dekhtyar for their definition:

Data-centric
“Characterized by fairly a regular structure”, this type of document format provides one
main document that links to or includes all other elements to provide the information in-
tended by the author.

• DocBook (Section 3.3.1, “DocBook”)

• DITA (the paragraph called “DITA” (p.55))

Document-centric
Document formats in this category have a “muchmore irregular structure”. These formats
need meta-information to combine the different elements into a single document.

• OpenDocument (Section 3.3.2, “OpenDocument”)

• Office Open XML (Section 3.3.3, “Office Open XML”)

Human Readable Markup

TheXMLmarkup is at its base very simple. The contents canbe readwith any text editor, provided
that the fonts for the document's locale are installed. Limitations at the level of hard disk space
or memory consumptions are not as driving as they were some years ago. This is supported by
the following quote from the Office Open whitepaper [OOXML-WP]:

The original binary formats […]were created in an erawhen spacewas precious
and parsing time severely impacted user experience. […] Modern hardware,
network, and standards infrastructure (especially XML) permit a new design

6Refer to the JSON website [http://www.json.org]
7Refer to the YAML website [http://yaml.org]

42

Chapter 3. Analysis of Documentation Formats

http://www.json.org
http://www.json.org
http://yaml.org
http://yaml.org

that favors implementationbymultiple vendorsonmultipleplatformsandallows
for evolution.

Content that need not be presented as text to the author (e.g. images, interactive elements …)
does not have to be converted or encoded in order to be serialized with the XML document. The
document formats covered in Section 3.3, “Current Document Formats and Standards” allow for
extensible linking and embedding mechanisms.

Separation of Content and Style

The underlying basis of XML is at the separation of document structure and presentation style
[Bae02]. The document structure and the content are directly visible through the tree structure
of anXMLdocument, but in order topresent the contents of anXMLdocument, stylingmechanisms
are employed.

For documents in XML's predecessor SGML, style was an important issue, but due to the high
number of solutions, “not even the standard ones were widely deployed [, thus] style was an un-
solved issue”[Quin04]. In XML, “only two style languages are widely accepted and deployed”: the
Extensible Stylesheet Language (XSL) [XSL] and Cascading Stylesheets (CSS)8.

Designers can use stylesheets to express their intentions about how the content of an XML docu-
ment should be presented. A stylesheet processor accepts the document in XML and uses a
stylesheet to produce a specific presentation of this document. There are to aspects to stylesheet
processing [XSL]:

Tree transformation
is the construction of a result tree from the XML source document.

Formatting
is the interpretation of the result tree to produce formatted results suitable for presentation
(on whatever media).

For a documentation format, the style can be used to adapt the presentation of the content for
different purposes. Some examples:

• Comply with interface guidelines to support a wide variety of readers.

• Adhere to the corporate identity of a company, group, or team.

• Prepare the content for accessibility, e.g. special reading interfaces, text-to-speechapplications
…

Extensibility

As Quint and Vatton note [Quin04], XML added not only a simplification to its predecessor SGML,
but also introduced new concepts and languages specifically developedwith XML.With the intro-
duction of namespaces [XMLNS], according to Quint and Vatton, an XML document can “mix
several markup languages that represent different parts of the document [which] can be nested
within each other” providing a modular approach for structured documents.

With the extensibility provided by namespaces, XML languages can be developed for different
types of structured data and combined to compound structured documents.

Wide Acceptance

It is important to notice that many applications, frameworks and standards currently build on
XML as a “de facto standard for structured documents”[Chid03] and information exchange in IT
applications and systems. Other sources also acknowledge the wide use of the format [Ande02].

8Refer to Cascading Style Sheets Specifications [http://www.w3.org/Style/CSS/#specs] at w3.org.

43

XML-Based Solutions

http://www.w3.org/Style/CSS/#specs
http://www.w3.org/Style/CSS/#specs

The website XML Coverpages provides a9 provide a comprehensive list of XML applications and
initiatives. Currently the website references 594 different XML languages.

Summary

There are several advantages through the use of XML-based formats, as this section has shown.
The following list is a set of advantages that all the formats in Section 3.3, “Current Document
Formats and Standards” have in common. Some document formats leverage these feature differ-
ently, but they are provided by the choice of data format - XML.

Modularity
The document can be broken up into multiple sections. The combination into a single
document is performed by the parser or during transformation at the publication stage.

Version control
As a content-specific format, differences between two revisions of a document or a section
are not more than a diff output. The version control system does not have to "know" about
thedocument format, but only store the textual differences. Thedifferences areonly content-
related, as formatting information is stored in style sheets.

Consistent formatting
With the separation of content and style, formatting changes are applied to the entire
document. A style sheet can be used across different documents and evolves with more
specific applications.

Publish to multiple formats
It is possible to apply different (standardized) style sheets to the same source. Each style
sheet may produce a different output presentation. Terms often used in this context are:
Single-Source Publishing and Documentation Reuse.

3.2. Traditional Document Formats
The following formats are being used to create software documentation. The descriptions follow
a common structure, in order to present the formats: After a short introduction, common fields
of application and an overview of the format's structure or technology is shown.

3.2.1. Word Document Format

MicrosoftWord10uses this format to save its information. As the authoring tool and the file format
share the same name, I will use the termWord Doc for the document format andMicrosoft Word
for the authoring tool throughout this document.

Format using Word Doc

With the evolution ofMicrosoftWord, the file format changed aswell. TheHWPF project11, a port
of the Microsoft Word file format to pure Java, supports versions 97 to 2007 (no OOXML). See
Example 3.2, “Simple WordML document” for version 2003.

9list of XML applications [http://xml.coverpages.org/xmlApplications.html]
10Microsoft Word website [http://www.microsoft.com/office/word/]
11The project website [http://jakarta.apache.org/poi/hwpf]

44

Chapter 3. Analysis of Documentation Formats

http://xml.coverpages.org/xmlApplications.html
http://xml.coverpages.org/xmlApplications.html
http://www.microsoft.com/office/word/
http://www.microsoft.com/office/word/
http://jakarta.apache.org/poi/hwpf
http://jakarta.apache.org/poi/hwpf

Example 3.2. SimpleWordML document

1 <?xml version="1.0"?>
2 <?mso-application progid="Word.Document"?> ❶

3 <wordDocument> ❷
4 <body>
5 <p>
6 <r>
7 <t>Hello, World.</t>
8 </r>
9 </p>
10 </body>
11 </wordDocument>
12

❶ The mso-application processing instruction specifies Word as the preferred application
for processing the file. Even if savedwith the extension .xmlWindows' shell will try to open
the file with Word when it is double-clicked.

❷ The namespace is: http://schemas.microsoft.com/office/word/2003/wordml

Figure 3.1. SimpleWordML document displayed in Microsoft Word

Rendering Example 3.2, “SimpleWordML document” in Microsoft Office Word (© by Mi-
crosoft12).

Recent History for Microsoft Word

At the timeofwriting,MicrosoftWord2007 is themost current version. Its predecessorMicrosoft
Word 2003 introduced an XML-based format with attached license terms for the schemas13,
which were publically criticized and adapted shortly thereafter. They are no longer available,
because the format has been replaced.

ForMicrosoftWord 2007 a new file formatwas announced in 2005 [Shah08]: Office Open XML14.
It is intended to replace its predecessor's formats (the newly introducedXML format forMicrosoft
Word 2003 andWord Doc). Refer to Section 3.3.3, “Office Open XML” for more information.

Additional Information on the Word Document Format

Adoption ofWordDoc. Although no non-biased numbers could be found, it is common belief
that Microsoft Word is currently the most widely used word processor and has a very large

12Found inanarticleonMSDN[http://msdn.microsoft.com/library/en-US/wordxmlcdk/html/cdkPrimerPlaceholder_HV01113631.asp]
13Provided at a dedicated web page [http://www.microsoft.com/mscorp/ip/format/xmlpatentlicense.asp]
14Refer to the OOXML overview page [http://www.microsoft.com/office/xml] and navigate to Open XML policy briefing for more infor-
mation on the licensing changes.

45

Word Document Format

http://msdn.microsoft.com/library/en-US/wordxmlcdk/html/cdkPrimerPlaceholder_HV01113631.asp
http://msdn.microsoft.com/library/en-US/wordxmlcdk/html/cdkPrimerPlaceholder_HV01113631.asp
http://www.microsoft.com/mscorp/ip/format/xmlpatentlicense.asp
http://www.microsoft.com/mscorp/ip/format/xmlpatentlicense.asp
http://www.microsoft.com/office/xml
http://www.microsoft.com/office/xml

market share. Based on my personal experience, I can say that most companies (i.e. more than
90%) write their requirements documentation in Word Doc, especially, if they want others to
add notes or author separate parts of the document.

Authoring inWord. The application supports the ad-hoc corrections pattern [Copl04], which
suggests that amaster copyof thedocumentationbekept and that teammemberswrite corrections
in the margin. One team member is assigned to periodically update the online copies to reflect
the corrections. The same pattern is also followed in current versions of Word.

Rich Text Format. The Rich Text Format (RTF) is a document markup language15 developed
by Microsoft for cross-platform document interchange16. RTF has been updated to support im-
provements in the evolution of Microsoft Office, the most recent update was in 2004 [RTF-1.8]
and introduced changes for Microsoft Office Word 2003. The format was intended to provide a
format for text and graphics interchange that can be used with different output devices.

3.2.2. TeX

According to Walsh [Wals94] TeX17 is a typesetting system, a “collection of programs, files, and
procedures for producing professional quality documents with minimum effort”. Compared to
word processors, its strengths are useful for large documentswhichmust be formatted similarily
[Salz05].LaTeX is a “macropackage [that] uses theTeX formatter as its typesetting engine”[Otei08].

Format using LaTeX

The input file to LaTeX is a plain text file that contains the text of the document and commands
used to typeset the text. Special characters have a meaning in the system and may be escaped by
being prefixedwith the backslash character. Thebackslash character also starts LaTeX commands.

Theprocessor expects a certain structure [Otei08] andorder of commands toproduce adocument.
Refer to Example 3.3, “Minimal LaTeX Input File” for a very short example.

Example 3.3. Minimal LaTeX Input File

1 \documentclass{article} ❶

2 \begin{document} ❷

3 Hello, World. ❸

4 \end{document} ❷

❶ Thedocument class specifieswhat sort of document is used.Usually this command is followed
by others that influence the style of the whole document.

❷ The document is divided into blocks, the document itself being the top block. Blocks start
and end with appropriate commands.

❸ This is the actual content of the document. It contains text and other LaTeX commands.

Existing commandsmaybe extended, or new commands created, and bundled into packages. The
packages can then be used to allow for consistent formatting across multiple documents.

Styling is “implementedbydefininga specific commandorenvironment for eachdocumentelement
that has to be treated specially”[Mitt04].

15Refer to the Wikipedia entry on comparison of document markup languages
[http://en.wikipedia.org/wiki/Comparison_of_document_markup_languages].
16Further information on RTF can be found at the corresponding Wikipedia page [http://en.wikipedia.org/wiki/RTF].
17Traditionally the name is written with a subscript capital E: TEX, but I follow the accepted notation with a lowercase e.

46

Chapter 3. Analysis of Documentation Formats

http://en.wikipedia.org/wiki/Comparison_of_document_markup_languages
http://en.wikipedia.org/wiki/Comparison_of_document_markup_languages
http://en.wikipedia.org/wiki/RTF
http://en.wikipedia.org/wiki/RTF

Additional Information about TeX

Adoption of TeX. According to Salzberg andMurphy [Salz05], TeX is “the standard format for
some academic disciplines [and] required for a variety of journals”. According to my experience,
although providing many advantages (multi-platform, programmable, free) compared to other
authoring systems, it did not find wide acceptance in the industry.

3.3. Current Document Formats and Standards
This section provides a selection of current standards based on XML that can be used for docu-
mentation purposes. The selection follows Tim Bray's claim18:

The value of a markup language is proportional approximately to the square of
the number of different software implementations that can process it.

Thus, this section focuses on document formats that already exist and are already in use or have
a high probability of being used in the near future. The document formats have to conform to the
restrictions explained in Section 3.1, “Restrictions”.

3.3.1. DocBook

DocBook is a collection of open standards and tools originally developed for technical documen-
tation [Stay03][Baye03]. TheDocBook schema ismaintainedby theDocBookTechnical Committee
in OASIS19 and exists since 1992. It is available in the following formats [Wals05]:

• SGML

• XML DTD

• RELAX NG Grammar

• W3C XML Schema

DocBook Versions

The versioning syntax in DocBook is alwaysDocBook VX.Y(.z), where X is the full version number,
andY is themajor versionnumber. Theminor versionnumberz is optional in the versionnotation.
Backwards incompatible changes can only occur at full version revisions (4.0, 5.0, 6.0), while
minor revisions are always backwards compatible.

Historically DocBookwas an SGMLDTD. The explosion ofmarkup languages after 1998 [Rene02]
affected the format's development and resulted in a the first DocBook XMLDTD in version V4.1.2.
The DocBook DTD for V4.2 was released for both SGML and XML [Wals05]. While DocBook V4.x
is an XML or SGML DTD, it has an unofficial RELAX NG Grammar and an unofficial W3C XML
Schema. DocBook V5.0 is a RELAX NG Grammar and has a non-normative XML DTD and a non-
normative W3C XML Schema [Wals05].

DocBook V3.0 marked the beginning of a parametrized, highly customizable DTD. DocBook V4.0
introduced case-sensitive element and attribute names, and DTD was introduced as an official,
normative format. As DocBook predates XML and namespaces, the DocBook versions prior to
V5.0 did not have any associated namespace. DocBook V5.0 is in the namespace http://doc-
book.org/ns/docbook. The usage of RELAX NG now enforces many constraints that could not
previously be enforced by DTDs.

18Article Don't Invent XML Languages [http://www.tbray.org/ongoing/When/200x/2006/01/08/No-New-XML-Languages], Bray
2006
19Website of the TC [http://www.oasis-open.org/docbook/]

47

Current Document Formats and Standards

http://www.tbray.org/ongoing/When/200x/2006/01/08/No-New-XML-Languages
http://www.tbray.org/ongoing/When/200x/2006/01/08/No-New-XML-Languages
http://www.oasis-open.org/docbook/
http://www.oasis-open.org/docbook/

Structure

DocBook elements can be divided into the following categories [Wals05]:

Sets
A set comprises two or more books. It is the hierarchical top of DocBook and can be used
for a series of books on a single subject.

Books
The DocBook definition of a book is very loose and general.

Divisions
Divisions are the first hierarchical level belowbook. They are usuallyparts orreferences.

Components
Components are the chapter-like elements of books. They are used to further subdivide
books or divisions: preface, chapter, appendix, glossary, bibliography…

Sections
There are several possibilitiesof sectioningelements inDocBook.The simplesect1…sect5
orsection elements canbeused inmost component-level elements. They support nesting.
Sections used for divisioning of special components (glossdiv, bibliodiv, indexdiv)
do not nest.

Meta-Information
All elements at the section level and above include a wrapper for meta-information (see
Example 3.4, “Meta-Information on a Book in DocBook Syntax” for a bookinfo example).

Block Elements
These elements occur directly below the component and sectioning elements and are
usually presented with a break before and after them. They can be divided into several
categories: lists, admonitions, synopses, tables, figures, examples etc.

Inline Elements
Inline elements are generally representedwithout any obvious breaks. They never contain
blockelements andareused tomarkupdata suchas cross references, filenames, commands,
etc.

InExample3.4, “Meta-InformationonaBook inDocBookSyntax” you can see themeta-information
associated with a book.

48

Chapter 3. Analysis of Documentation Formats

Example 3.4. Meta-Information on a Book in DocBook Syntax

<bookinfo>
<title>Macbeth</title>
<author>
<personname>
<firstname>William</firstname>
<surname>Shakespeare</surname>

</personname>
</author>
<abstract>
<para>
Promised a golden future as ruler of Scotland by three sinister
witches, Macbeth murders the king to ensure his ambitions come
true. But he soon learns the meaning of terror — killing once,
he must kill again and again, and the dead return to haunt him.
A story of war, witchcraft and bloodshed, 'Macbeth' also depicts
the relationship between husbands and wives, and the risks they
are prepared to take to achieve their desires.

</para>
</abstract>

</bookinfo>

Information inDocBook on the playMacbeth byWilliam Shakespeare formatted as a book

Toolchain

The term toolchain is frequently used in the DocBook domain, because in the long history, a large
set of different interchangeable tools has evolved. The following steps will be explained in more
detail below.

• Parse

• Transform

• Publish

The process is similar for other XML-based formats, but in the case of DocBook the involved steps
are always transparent for the user.

Norman Walsh has put together a description of the XML publishing model for DocBook20. It
shows popular and widely used tools in their context. With minor visual adaptions of the model,
I have reduced the set to only the relevant parts for publishingusingXSLT: see Figure3.2, “DocBook
Publishing Model with XSLT”

20Available in different formats at the dedicated webpage [http://nwalsh.com/docbook/procdiagram/]

49

DocBook

http://nwalsh.com/docbook/procdiagram/
http://nwalsh.com/docbook/procdiagram/

Figure 3.2. DocBook Publishing Model with XSLT

XSLT

links ‐dump ...isilo ...

XSL FO

FOP
RenderX

XEP

PassiveTeX

TeX

XSLT Stylesheets XML DTD

XML Catalog(s)

HTML

PostScriptPDF

PDB Plain Text

Chunked
HTML

XSLT Customization
Layer (Optional)

DTD Customization
Layer (Optional)

DocBook

(XML)

Saxon
Xalan

xsltproc
etc.

DocBook is designed to publish to different media from a single source (based on the
DocBook Publishing Model20 by NormanWalsh)

Elements of the DocBook Toolchain

Parse. There aremanydifferentparsers forXMLdocuments. It is recommended that a validating
parser in the toolchain supports the normative DocBook syntax format [Wals05] (SGML or XML
DTD for V4.x and RELAX NG [RELAX] for V5.x). During parsing, it is possible to combinemodular
elements to a single document by using different XML-related technologies (see the section called
“Standardized InclusionMethods” (p.42) formore information).DocBookV5.0bundles alternative
schemas for explicit use with XInclude.

Transform. The tranformation process applies style sheets to the content and results in a
certain presentational output. It is possible that several transformation routines have to be pro-
cessed subsequently in order to receive the anticipated result. As you can see in Figure 3.2,
“DocBook Publishing Model with XSLT”, HTML is an output format that can be used to create
plain text,which itself is another output format. TheDocBookXSL stylesheets are a large collection
of files that can be downloaded from the project's website21, where they are maintained. They
have awide acceptance and supportmany different output formats. They also provide extensions
for XSL and FO processors.

Publish. By using different tools and stylesheets DocBook has a high diversity of possible
output formats. The official DocBookdocumentation [Wals05] shows examples for three different
languages used for publishing: CSS, XSL, and XQuery. These are described in more details in the
next section.

21DocBook page at SourceForge [http://docbook.sourceforge.net/]

50

Chapter 3. Analysis of Documentation Formats

http://docbook.sourceforge.net/
http://docbook.sourceforge.net/

Styling in DocBook

The style and publish steps generate the output of a DocBook document. This section presents
two examples of stylesheets to format the DocBook snippet in Example 3.5, “Simple Paragraph
using the DocBook Syntax”.

Example 3.5. Simple Paragraph using the DocBook Syntax

1 <para>
2 This is an example paragraph. It should be presented in a reasonable body font.
3 <emphasis>Emphasized</emphasis> words should be printed in italics. A single
4 level of <emphasis>Nested <emphasis>emphasis</emphasis> should also be
5 supported.</emphasis>
6 </para>
7

The stylesheet using CSS in Example 3.6, “Stylesheet using CSS” sets formatting properties, while
the XSL stylesheet in Example 3.7, “Stylesheet using XSL” produces an XML snippet using XSL FO.

Example 3.6. Stylesheet using CSS

1 para ❶ {
2 ❸ display: block
3 }
4 emphasis ❶ {
5 ❸ display: inline;
6 ❸ font-style: italic;
7 }
8 emphasis emphasis ❷ {
9 ❸ display: inline;
10 ❸ font-style: upright;
11 }
12

❶ Simple selectors for para and emphasis.
❷ Selects only emphasis nested in emphasis.
❸ Formatting properties, setting values for display and font-style.

51

DocBook

Example 3.7. Stylesheet using XSL

1 <?xml version='1.0'?>
2 <xsl:stylesheet> ❶

3 <xsl:template match="para"> ❷

4 <fo:block> ❶
5 <xsl:apply-templates/>
6 </fo:block>
7 </xsl:template>
8
9 <xsl:template match="emphasis"> ❷
10 <fo:sequence font-style="italic">
11 <xsl:apply-templates/>
12 </fo:sequence>
13 </xsl:template>
14
15 <xsl:template match="emphasis/emphasis"> ❷
16 <fo:sequence font-style="upright">
17 <xsl:apply-templates/>
18 </fo:sequence>
19 </xsl:template>
20 </xsl:stylesheet>
21

❶ The namespaces used in this example are http://www.w3.org/XSL/Transform/1.0 for
xsl and http://www.w3.org/XSL/Format/1.0 for fo.

❷ The XSL stylesheet uses XPath [XPath] to select the nodes. The last example of this selects
emphasis nested in emphasis, just as the CSS counterpart.

3.3.2. OpenDocument

The term OpenDocument refers to the Open Document Format for Office Applications (ODF), and
defines an XML schema for office applications and its semantics [ODF]. It is intended to provide
an open alternative to proprietary document formats.

The format is based on the development efforts by OpenOffice.org (OOo), an open source project
that created an office suite with the same name (refer to the paragraph called “OpenOffice.org
Writer” (p.59) for more details).

Standardization

For the designers of the ODF it was essential to reuse existing open XML standards whenever
they are available. At the time of writing there are many office applications, search engines and
document management applications that support OpenDocument22.

The OpenDocument 1.0 specificationwas approved as an OASIS standard inMay 2005 [Open05].
Tim Bray commented on the approval and said about the ODF that it is “the only XML office doc-
ument format that is standardized, and it is also the only one that is complete”23. In that same
comment, the co-author of the XML specificationwrites the following: “OpenDocument is almost
exactly what we had in mind when we built XML, starting back in 1996.”

22Refer to a current list of applications that support the ODF at the Wikipedia page on OpenDocument
[http://en.wikipedia.org/wiki/OpenDocument_software]. In May 2008 Microsoft announced support for ODF 1.1 in Microsoft Office
2007 SP2 [http://www.microsoft.com/Presspass/press/2008/may08/05-21ExpandedFormatsPR.mspx].
23Article OpenDocument! [http://www.tbray.org/ongoing/When/200x/2005/05/26/OpenDocument], Bray 2005.

52

Chapter 3. Analysis of Documentation Formats

http://en.wikipedia.org/wiki/OpenDocument_software
http://en.wikipedia.org/wiki/OpenDocument_software
http://www.microsoft.com/Presspass/press/2008/may08/05-21ExpandedFormatsPR.mspx
http://www.microsoft.com/Presspass/press/2008/may08/05-21ExpandedFormatsPR.mspx
http://www.microsoft.com/Presspass/press/2008/may08/05-21ExpandedFormatsPR.mspx
http://www.tbray.org/ongoing/When/200x/2005/05/26/OpenDocument
http://www.tbray.org/ongoing/When/200x/2005/05/26/OpenDocument

Structure

Themisson for OOowas to create “the leading international office suite that will run on all major
platforms and provide access to all functionality and data through open-component based APIs
and an XML-based file format”. The format represents an “idealized” representation of the docu-
ment's structure24which is human-readable.

Package

Artifacts inODFare packaged in a compounddocument (refer to the paragraph called “Compound
Document” (p.55)). Themanifest is located atMETA-INF/manifest.xmlandholds the following
pieces of information [ODF]:

• Listing of all files inside the package

• Media type of each file in the package

• Encryption information for encrypted files inside the package

3.3.3. Office Open XML

The release of Microsoft Office 2007 introduced an open XML-based format: Office Open XML File
Formats (OOXML, in the literature sometimes referred to as OpenXML). The whitepaper available
prior to the release25 said: “Microsoft® Office 12 will introduce new default XML file formats for
Microsoft Office Word word processing, Excel® spreadsheet, and PowerPoint® presentation
graphics programs […]”.

The formatwas officially announced inMay2005as thedefault file format for these applications26.
It was developed to support every feature in the Microsoft Office 97-2003 binary formats.

Standardization

OOXML was submitted to the standards body Ecma International in November 2006, which
commissioned the Technical Committee TC45 to work on the standard. TC45 published the
standard as Ecma 376 [OOXML] in December 2006. In parallel to working on the standard, the
authors provided a whitepaper [OOXML-WP] which states the following purposes for the task of
creating this format as an open standard:

• extremely broad adoption of the binary formats

• technological advances

• market forces that demand diverse applications

• increasing difficulty of long-term preservation

Advantages over Previous Office Formats

The official announcement outlines advantages of OOXML over the traditional office formats.

Open and Royalty-Free
The Office XML Formats are based on XML and ZIP technologies, thereby making them
universally accessible. The specification for the formats and schemas will be published
andmade available under the same royalty-free license that exists today for the Microsoft

24Details of the design decisions are available at the dedicated webpage [http://xml.openoffice.org/xml_advocacy.html].
25Published at the Office preview page [http://www.microsoft.com/office/preview/], June 2005.
26Refer to History of office XML formats (1998-2006)
[http://blogs.msdn.com/brian_jones/archive/2007/01/25/office-xml-formats-1998-2006.aspx]onBrian Jones' blog fora comprehensive
overview on the history. Brian Jones is programmanager in Microsoft Office and has been working on OOXML.

53

Office Open XML

http://xml.openoffice.org/xml_advocacy.html
http://xml.openoffice.org/xml_advocacy.html
http://www.microsoft.com/office/preview/
http://www.microsoft.com/office/preview/
http://blogs.msdn.com/brian_jones/archive/2007/01/25/office-xml-formats-1998-2006.aspx
http://blogs.msdn.com/brian_jones/archive/2007/01/25/office-xml-formats-1998-2006.aspx

Office2003Reference Schemas andwhich is openly offered andavailable for broad industry
use.

Interoperable
With industry standardXMLat the coreof theOfficeXMLFormats, exchangingdatabetween
Microsoft Office applications and enterprise business systems is greatly simplified.Without
requiring access to the Office applications, solutions can alter information inside an Office
document or create a document entirely fromscratch byusing standard tools and technolo-
gies capable of manipulating XML.

Robust
The Office XML Formats have been designed to be more robust than the binary formats,
and, therefore, will reduce the risk of lost information due to damaged or corrupted files.
Even documents created or altered outside of Office are less likely to corrupt, as Office
programs have been designed to recover documents with improved reliability by using
the new format.

Efficient
The Office XML Formats use ZIP and compression technologies to store documents. This
type of file compression offers potential cost savings as it reduces the disk space required
to store files and decreases the bandwidth needed to transport files by way of e-mail, over
networks, and across the Web.

Secure
The openness of the Office XML Formats translates to more secure and transparent files.
Documents can be shared confidently because personally identifiable information and
business sensitive information, such as user names, comments and file paths, can be easily
identified and removed. Similarly, files containing content, such as OLE objects or Visual
Basic® for Applications (VBA) code can be identified for special processing.

The above list of advantages highlights the need for open, flexible, and accessible formats. All
these advantages are applicable to all open xml-based formats described in this chapter. To de-
scribe the point interoperable, the whitepapers give the following example:

With previous Office versions, developers looking to manipulate the content of
an Office document had to know how to read and write data according to the
structured storage defined within the binary file. This process is known to be
complex and challenging, notably because the Office binary file formats were
designed to be primarily accessed through the Office programs. The formats
were structured to mirror the in-memory structures of the applications and to
run on lowmemorymachineswith slow, hard drives. Altering Office binary files
programmatically without the Office applications has also been identified as a
leading cause of file corruption, and has deterred some developers from even
attempting to try to make alterations to the files.

With the introduction of this format, it is technically possible to create and edit Microsoft Office
documents without Microsoft Office applications.

Structure

The Open XML format consists of several individual parts inside a compound document (refer
to the paragraph called “Compound Document” (p.55)). The files have an additional x at the end
of their file name to indicate the different file format: doc becomes docx, and xls becomes xlsx.
The parts can be extracted using traditional unzip methods.

Modular parts can be of different content types. Traditional office document content is stored in
an XML format conforming to a certain XSD. Different worksheets for an Excel workbook are lo-
cated in different XML parts, where every part conforms to the XSD for worksheets. Other infor-
mation, e.g. images, are stored in their native binary format. This reduces processing time and
space compared to encoding the data in XML.

54

Chapter 3. Analysis of Documentation Formats

The semantics of a document aremanagedby relationshipswhich specify the connectionbetween
a part and a target resource. The following program listing shows relationships for an Excel
worksheet:

Example 3.8. Relationships for an Excel Worksheet

1 <Relationships> ❶
2 <Relationship ID="rId3"
3 Type="#prefix#/xlStyles" ❷
4 Target="styles.xml"/>
5 <Relationship ID="rId2"
6 Type="#prefix#/xlWorksheet" ❷
7 Target="worksheets/Sheet2.xml"/>
8 <Relationship ID="rId1"
9 Type="#prefix#/xlWorksheet" ❷
10 Target="worksheets/Sheet1.xml"/>
11 <Relationship ID="rId5"
12 Type="#prefix#/xlMetadata" ❷
13 Target="metadata.xml"/>
14 <Relationship ID="rId4"
15 Type="#prefix#/xlSharedStrings" ❷
16 Target="strings.xml"/>
17 </Relationships>
18

❶ The namespace for Relationships and its children is: http://schemas.mi-
crosoft.com/package/2005/06/relationships

❷ The #prefix# used in the Type attribute resolves to the following URL
http://schemas.microsoft.com/office/2005/8/relationships

References are not only limited to resources internal to the document. A relationship can point
to an external resource. Themeta-information defines the type of the resource. This information
can be used to identify potential security issues and take appropriate steps without knowing the
actual content. Most current email clients provide a setting to block external images. Instead of
stripping potentially dangerous files from email (which is done by many corporate mail filters),
this same approach could be taken for office documents

Thewhitepaperspresentmore informationonmacro-enabled files, contentmanipulation, styling
and other topics. The material presented in this section should cover the basic concepts.

3.3.4. Other Structured Formats

DITA. The Darwin Information Typing Architecture (DITA) is an XML-based framework for
the production and publication of technical documentation [Krav05]. It defines document types
for authoring and organizing topic-oriented information andmechanisms for combining and ex-
tending document types [DITA].

3.3.5. Common Documentation Format Concepts

The current documentation formats presented in this chapter share somedesign concepts,which
are presented for further reference in this section.

Compound Document. Because XML has no native support for non-character based media
types, and because uncompressed XML files can become very large, a package file is used to store
the XML content and the associated binary data in the document-centric formats presented in this
chapter. This approach is called a compound document. The packaging relies on gzip compression
and adds to a reduction in space used by the document. Depending on the format, a manifest file
manages the relationships and is provided at a certain location inside the archive.

55

Other Structured Formats

Inline Versioning. Another characteristic of document-centric formats is that the documents
are designed towork in isolation from any infrastructure except the document processor (i.e. the
editing component or authoring tool). Changes to the document can thus be managed inside the
document. This is referred to as inline versioning27. The versioning information is directly added
to the changed content of the document. Common types of changes are insertions, deletions, and
format changes.

3.3.6. Summary of Current Documentation Formats

Based on the previously defined restrictions, the current documentation formats presented in
this chapter are summarized in Table 3.3, “Overview of Current Documentation Formats”.

Table 3.3. Overview of Current Documentation Formats

StandardizationStylingDocument TypeFormat

Version 4.1: OASIS (2001), Version 4.5: OASIS
(2006)ExternalData-centricDocBook

Version 1.0: OASIS [ODF] (2005), ISO/IEC 26300
(2006); Version 1.1: OASIS 2007 [ODF-1.1]IntegratedDocument-centricODF

Ecma-376(2006), ISO/IEC29500(2008, registered
for formal approval)IntegratedDocument-centricOOXML

Version 1.0: OASIS (2005), Version 1.1: OASIS
(2007) [DITA]ExternalData-centricDITA

27In OOXML this is called Revisions (section 2.14.7 of [OOXML] part 3), and in ODF this is called Change Marks (section 4.6 of [ODF] and
[ODF-1.1]).

56

Chapter 3. Analysis of Documentation Formats

Chapter 4. Analysis of XML-Based Authoring
Tools

There are already different efficient approaches for editing XML-based, structural information.
As first step, I will analyzewhat an authoring tool for requirements documentation in the context
of this thesis has to provide. In the field of authoring tools for structured XML documents, there
are already several existing solutions fromwhich a number of commercial and open source tools
are selected based on their design, and presented in this section. The conclusion of this chapter
provides a comparison for further reference.

4.1. Capabilities of anAuthoring Tool for Requirements
Documentation

All of the requirements of the authoring tool are based on previous research. First, the sources
of the requirements are identified and then summarized to be used in the comparison at the end
of the chapter. The literature often refers to the authoring tool as editor or documentation tool.

4.1.1. Sources of Requirements for the Authoring Tool

The identified requirements used to assess the authoring tools come from two different areas:
documentation engineering with its general goals for document authoring, and authoring in the
field of structured documents.

Documentation Engineering

In a survey conductedbyForwardandLethbridge [Forw02]ondocumentationengineering, results
suggest that technologies should

• allow the author to easily create and maintain content rich documents,

• provide comprehensive publishing capabilities,

• facilitate the integration of examples within a document.

From the elaboration in Section 2.1, “Goals of Document Authoring for Requirements Documen-
tation” several requirements are selected which have to be provided by the authoring tool:

• Provide transparent versioning.

• Allow for collaborative authoring.

• Facilitate linking between and inside documents.

Authoring of Complex Structured Documents

Quint and Vatton [Quin04] reviewed the innovations of XML and their impact on the editing
techniques for structured documents and present features they have implemented in editors (in
this thesis' context: authoring tools):

• Support multiple document types and XML languages.

• Edit documents according to the semantics of the XML language involved.

• Simple means for inline structuring (e.g. Enter and Tab keys).

• Structure transformations comparable to editing in a word processor.

• Transclusion of external resources.

57

The second item implies additional expectations not previously mentioned. Quint and Vatton
present two features implemented in editors to achieve this requirement: viewsdisplay “the same
structure from different perspectives”, while editing modes “allow users to work efficiently on all
parts of a document”. This leads to the following additional requirement, which renders item one
more precisely:

• Provide extension mechanisms to introduce viewers and editors for additional languages.

In the context of structurededitors,Walker [Walk81] claims that “addinganewdocument language
to [the] editor's repertoire consists primarily ofwriting theparser andunparser for that language.”
For the authoring tool, the introduction of a new language has to be accompanied by means to
provide appropriate viewing and editing functionality to the application.

4.1.2. Consolidated Requirements for the Authoring Tool

The assessment of the authoring tools presented in this chapter is based on a list of requirements.
Some requirements have to be classified in order to provide a better overview at the end of this
chapter, where the presented authoring tools are evaluated.

I have replaced informal identifiers with classifications where applicable. The assessment exten-
sible, used in several of the requirements, refers to possibilities to extend the application in a
custom way, and is only used for features where I have personally seen appropriate need. Refer
to Table 4.1, “Requirements for the Authoring Tool” for the requirements

Table 4.1. Requirements for the Authoring Tool

DescriptionAssessmentRequirement

According to Quint and Vatton [Quin04], schema-driven editing allows the
manipulation of the document tree according to the imposed grammar.schema

semanticsEditing
Semantics-driven editing takes into account the “specific aspects of the […]
application.”

Inline structuring provides simple means to manipulate the structure of
the document, while advancedmeans comprise complex structure trans-inline

advanced
extensible

Structuring formations similar to formatting asprovided in awordprocessor.Extensible
refers to user-defined (e.g. macro) structure transformations.

Basic publishing provides output to at least one format intended for
printing, such as PDF, and one flowed format, such as HTML. Advancedbasic

advanced
extensible

Publishing publishing provides mechanisms to customize the publishing in format-
specific waysi, while extensible provides means to introduce additional
output formats to the set of formats that the authoring tool can publish to.

An editor supporting internal linking provides means to add identifiers
(anchors) to specific elements and a selectable list of targets, when theinternal

externalLinking authorwants to insert a link to such an anchor. Links to external documents
areprovidedbyaneditor supporting external linking, byoffering the author
means to select otherdocuments andbrowseanchors inside this document.

Independent from the publishing, a reference to an external resource or
document can be added to parts of the document and is indicated by areference

embeddedTransclusion placeholder. In order to provide a better understanding of the final pub-
lished document, the editor may embed the resource or document and
display the expected contents comparable to the published document.

This classification is on the level of standards support: a plug-in is specific
to the authoring tool and may be of little practical use in a different envi-plug-in

stylesheet
Extensible lan-
guage support ronment. A stylesheet is written in a standard language and can be used

by other applications supporting this standard.

In contrast to textual comparison, which does not need any additional
knowledge of the document, semantic comparison provides differencescomparison

integrationVersioning between two versions of a document (or two different documents) on a
content-level. Full integrationof versioning allows the user to select differ-

58

Chapter 4. Analysis of XML-Based Authoring Tools

DescriptionAssessmentRequirement

ent versionsii for comparison and apply changes to a document providing
additional meta-information.

Unrelated to versioning facilities, explicit collaboration is provided by the
editor, if it stores a reference to the author alongside the edited content.explicit

parallel
Collaborative Au-

thoring In a parallel collaborative authoring scenario, two (or more) authors may
simultaneously edit different parts of the same document.

iFor example, PDF documents could benefit from watermarks or the addition of digital signatures for use in legally
binding contracts, while HTML document could be customized via CSS.
iiThe editormayprovide versions frombackups stored regularily in the application'sworkspace, or fromaversion control
system.

4.2. Commercial Authoring Tools
First, this section looks at commercially backed authoring tools. I will not go into details about
these applications, except for elements that have to be explained for the comparison at the end
of this chapter.

AltovaAuthentic. Distributed at no charge byAltova1 the application is a visual XMLauthoring
tool. The Altova View is part of the XML editor XMLSpy by the same company. The software distri-
bution bundles support for the authoring of several document formats in the form of proprietary
stylesheets2 and minimal document templates.

Microsoft InfoPath. The application was first released as part of the Microsoft Office 2003
suite, and is, at the time of writing, distributed as part of Microsoft Office 20073. Depending on
the literature [Bern07], [Jaya08], the software is categorized as forms manager, form generation
tool, data translation tool, but it can effectively be used as authoring tool for small documents
based on structured XML languages. It provides simple mechanisms for extensibility (XML
namespaces, SOAP-basedweb-services)anduser input (XHTMLuser input, conditional formatting).
A major part of the application is the designer, which can be used to create a semantic editor and
the documentation format.

Microsoft Word 2007. Natively supports OOXML and, starting with SP24 also ODF. In order
to edit structured documents, Microsoft Word 2007 provides several facilities. Building blocks
are reusable parts of the document that can be inserted at different locations. They contain infor-
mation related to formatting, butmay also contain content controlswhichonly allowcertain types
of content or data. Because of the tight integration, the information stored in the content controls
may be mapped to SharePoint properties as a repository.

OpenOffice.orgWriter. OpenOffice.org (OOo)5 natively uses ODF, supports many formats via
filters and runs on a variety of different platforms. It internally uses an XML file format that facil-
itates transformation into other XML languages6 and provides an API for extension purposes7.

1Available from the product's website [http://www.altova.com/products/authentic/xml_db_form_editor.html].
2Altova Authentic uses StyleVision Power Stylesheet (SPS) files that are created using Altova StyleVision
[http://www.altova.com/whitepapers/stylevision.pdf], an XML stylesheet designer.
3Refer to the InfoPath Website [http://office.microsoft.com/infopath] for current information.
4Refer to the section called “Standardization” (p.52).
5Refer to the Wikipedia entry for OOo [http://en.wikipedia.org/wiki/OpenOffice.org] for a brief history of the project.
6Filters and templates for DocBook are provided at a dedicated page [http://xml.openoffice.org/xmerge/docbook/] and are part of the
OpenOffice.org XML project.
7The component model Universal Network Objects (UNO) provides bindings for several programming langueages and is the basis for
the API. More information can be found at the respective web pages for UNO development kit [http://udk.openoffice.org/] and the API
[http://api.openoffice.org/].

59

Commercial Authoring Tools

http://www.altova.com/products/authentic/xml_db_form_editor.html
http://www.altova.com/products/authentic/xml_db_form_editor.html
http://www.altova.com/whitepapers/stylevision.pdf
http://www.altova.com/whitepapers/stylevision.pdf
http://office.microsoft.com/infopath
http://office.microsoft.com/infopath
http://en.wikipedia.org/wiki/OpenOffice.org
http://en.wikipedia.org/wiki/OpenOffice.org
http://xml.openoffice.org/xmerge/docbook/
http://xml.openoffice.org/xmerge/docbook/
http://udk.openoffice.org/
http://udk.openoffice.org/
http://api.openoffice.org/
http://api.openoffice.org/

4.3. Independent Projects
The need for structured document editing with WYSIWYG features has encouraged individual
projects to fill the void. Because these projects are not part of a larger product or product suite
efforts, they are subsumed under the notion of independent projects.

4.3.1. General Project Activity

Between the time of research, where these projects were added to the list, and the final review
of this document, activity in these project has declined strongly.

For example, version 1.2.1 of the editor Vex was released in April 2005, which has stayed the
most current release until October 2008, although two additional developers joined the project
in he meantime. According to the download statistics8, Vex was downloaded about 45 times per
day in the 10months following the release. In 2008 the downloads have declined to about 25 per
day.

The following question on the Vex developer mailing list was asked in September 2007: “[Why
have] so many so alike wysiwyg xml editor project [been] started, were living and are dead or
not complete?Whyhaven'twe cooperated?”. In a response to the list9, JohnKrasnay tried to explain
his view on the reasons for the project (and other similar projects) not to be picked up by users
or the community in general:

Iwas trying to solve thewrongproblem. […T]heproblemwasnot somuchWord
as it was Word documents being stored on network shares. […T]he "itch" I had
was fordocumentmanagement, not for structureddocument editing […F]orme,
the sweet spot is nowWikis.

4.3.2. Vex — A Visual Editor for XML

Vex is an editor for XML documents and since release 1.0.0 based on the Eclipse platform. “The
"visual" part comes from the fact that Vex hides the rawXML tags from the user, providing instead
a wordprocessor-like interface”10. The editor widget can also be used outside of Eclipse, using
Swing and SWT.

Document Formats in Vex

The software supports several document types andbundles appropriate configuration itemsused
for editing. A document type can be assigned a stylesheet which is used to render the wordpro-
cessor interface in the editor view. Vex is designed to be extensible: it should be easy for users
to create new or extend existing document types. Developers with experience on the Eclipse
platformmay also contribute functionality

Document Styling in Vex

It is possible to extend Vex to edit different document types by adding a DTD and CSS files to the
Vex installation11. The process is facilitated by the Vex Plug-in Project Wizard which associates
DTD with CSS file(s) to be displayed when editing the document.

A Vex installation bundles DTDs their proper style sheets for the Vex editor for several popular
document types. In Example 3.4, “Meta-Informationon aBook inDocBookSyntax” theXML source

8As provided by SourceForge in the Project Download History for vex / 1.2.1 Statistics
[http://sourceforge.net/project/stats/detail.php?group_id=67542&ugn=vex&type=prdownload&mode=alltime&package_id=65870&release_id=319036].
9From the archives of the Vex developer mailing list: Re: [Vex-developer] The hard way, the big goal - Wysiwyg XML editor
[http://sourceforge.net/mailarchive/message.php?msg_name=20070915210756.GB21790%40effectivecommerce.com].
10Quoted from the Vex project website [http://vex.sourceforge.net/].
11From the Vex cookbook [http://integerservices.no-ip.info/VexCookbook.pdf].

60

Chapter 4. Analysis of XML-Based Authoring Tools

http://sourceforge.net/project/stats/detail.php?group_id=67542&ugn=vex&type=prdownload&mode=alltime&package_id=65870&release_id=319036
http://sourceforge.net/project/stats/detail.php?group_id=67542&ugn=vex&type=prdownload&mode=alltime&package_id=65870&release_id=319036
http://sourceforge.net/mailarchive/message.php?msg_name=20070915210756.GB21790%40effectivecommerce.com
http://sourceforge.net/mailarchive/message.php?msg_name=20070915210756.GB21790%40effectivecommerce.com
http://vex.sourceforge.net/
http://vex.sourceforge.net/
http://integerservices.no-ip.info/VexCookbook.pdf
http://integerservices.no-ip.info/VexCookbook.pdf

for a bookinfo element in DocBookmarkup (see Section 3.3.1, “DocBook”) is displayed. In version
1.2.1 of Vex, the style information to display this snippet in the editor is named docbook-
plain.css and comprises 1143 lines. In Example 4.1, “CSS Snippet To Render Book Meta-Infor-
mation in Vex” only the styles important for the snippet are shown, ordered by appearance.

Example 4.1. CSS Snippet To Render Book Meta-Information in Vex

1 bookinfo {
2 border: 1px solid #669;
3 color: #669;
4 display: block;
5 font: 10pt Verdana, sans-serif;
6 margin-bottom: .25in;
7 padding: 3px;
8 }
9 bookinfo:before {
10 background-color: #669;
11 color: white;
12 content: 'Book Info';
13 font-weight: bold;
14 display: block;
15 padding: 3px;
16 }
17 bookinfo > title:before { ❶
18 content: "Title: ";
19 font-weight: bold;
20 }
21
22 author {
23 display: block;
24 }
25 author:before { ❷
26 content: 'Author: ';
27 font-weight: bold;
28 }
29
30 firstname {
31 display: inline;
32 }
33 surname {
34 display: inline;
35 }
36
37 abstract {
38 font-style: italic;
39 margin-left: 0.5in;
40 margin-right: 0.5in;
41 display: block;
42 padding: 6px;
43 }
44
45 para {
46 display: block;
47 margin-bottom: 1em;
48 margin-top: 1em;
49 }
50

❶ For the title element in bookinfo, the style sheet declares an additional content before
showing the content of title. This is only to show which information is to be displayed.

❷ The same approach is taken for author.

61

Vex— A Visual Editor for XML

Thestyle sheet is applied to the content fromExample3.4, “Meta-InformationonaBook inDocBook
Syntax” and rendered in realtime in the editor. The resulting editable component is shown in
Figure 4.1, “Vex displaying DocBook Meta-Information.”.

Figure 4.1. Vex displaying DocBook Meta-Information.

The bookinfo element as it is displayed in the Vex editor

4.3.3. Etna XML Editor

Etna12 is developed by Laurent Jouanneau and uses RelaxNG schemas to edit and validate Docu-
ments. At the time of writing, the most current Etna release (version 0.3.1) is based on Firefox
1.0.7.

Document Formats in Etna

Etna provides support for documents defined by RELAX NG grammars. Support for additional
formats is available via extensions13. As the editor is based on Firefox, these extensions are
packaged, distributed, and installed via theMozilla-basedCross-Platform Install (XPI) technology.

The schema is used to generate the semantic editing capabilities and update the UI elements of
the editor accordingly. Themenu items used to insert siblings or children are generated from the
editing context and the schema.

Document Styling in Etna

In order for Etna to enable graphical XML editing while still being based on RELAX NG, it was
necessary to add some elements to the grammar14. The RNG schema is interspersed with exten-
sions from a different namespace and refers to a CSS file for styling. The style sheet defines how
the different parts of the document should be displayed, and, at a different level, howUI elements
specific to the currently edited schema are presented.

Refer to Figure 4.2, “Etna displaying Information from a Tinydoc File” for an example how Etna
by default renders a short document with one paragraph preceded by a heading. The document
title and author are stored in the document's meta-information, but only the author is displayed.

12Etna project website [http://rhaptos.org/downloads/editing/etna]
13Additional extensions are available from the Etna Extensions page [http://rhaptos.org/downloads/editing/etna/extensions/].
14Detailed information is available at Etna's RelaxNGpattern extensions [http://rhaptos.org/downloads/editing/etna/rng_extensions].

62

Chapter 4. Analysis of XML-Based Authoring Tools

http://rhaptos.org/downloads/editing/etna
http://rhaptos.org/downloads/editing/etna
http://rhaptos.org/downloads/editing/etna/extensions/
http://rhaptos.org/downloads/editing/etna/extensions/
http://rhaptos.org/downloads/editing/etna/rng_extensions
http://rhaptos.org/downloads/editing/etna/rng_extensions

Figure 4.2. Etna displaying Information from a Tinydoc File

Information on Macbeth as it is displayed in the Etna editor

4.4. Summary
For a comparison of the previously developed requirements for the authoring tool, refer to Table
4.2, “Comparison of Supported Requirements in Authoring Tools”. Because all of the authoring
tools provide semantics-driven editing, this column is removed in the comparison.

Table 4.2. Comparison of Supported Requirements in Authoring Tools

Collabora-
tion

Versioning
Language
Support

TranscludeLinkPublishStructure
Authoring

Tool

——plug-in——extensibleinlineAuthentic

—comparisonplug-in——extensibleinlineInfoPath

explicitcomparisonplug-inreferenceinternaladvancedadvancedWord

explicitcomparisonplug-inreferenceinternalextensibleadvancedOOo

——stylesheet————Vex

——stylesheet————Etna

As can be seen from the table, themodern applications primarily categorized asword processors
already provide a large set of the requirements developed for the authoring tool.

63

Summary

64

Part III. Modular Integration Concept
Togetherwith the previously defined threemain goals and their sub-characteristics as presented in Chapter 2,
Goals and Evaluation of Requirements Authoring, it is possible to draw a picture of what is needed for an au-
thoring framework for requirementsdocumentation.Themaingoals anddeficienciesof currentdocumentation
approaches are already identified. Chapter 3, Analysis of Documentation Formats and Chapter 4, Analysis of
XML-Based Authoring Tools presented a combination of technological approaches to remedy these problems.

The following sections will try to conclude the findings of this thesis with a working proof of concept. The
technical characteristics for a documentation authoring framework are defined and translated into require-
ments. Based on the resulting concept, I will go into details on how the differentmodules could be integrated
with one another. This part concludes in a chapter where the findings of this thesis are validated

• Chapter 5, Concept of an Authoring Framework

• Chapter 6, Developing the Authoring Framework

• Chapter 7, Validation and Conclusion

Chapter 5. Concept of an Authoring
Framework

Based on what was observed in the previous chapters, the findings are now used to sketch out
anauthoring framework for requirementsdocumentation.This framework shouldprovide support
to handle changes in the specifications.Most of the framework's characteristics are also applicable
outside of this context for very general document authoring frameworks, but the focus lies in
requirements documentation that tries to cover evolving product specifications.

I will first recapitulate on the goals for document authoring and draft specific purposes of the
framework, so that the components of the framework can then be analyzedwith these objectives
in mind.

5.1. Goals of the Authoring Framework
Sets of objectives for document authoring, the documentation format, and the authoring tools
have already been collected, andwill be summarized in this section as objectives of the authoring
framework.

In Chapter 2, Goals and Evaluation of Requirements Authoring I have declared three main goals
and specific characteristics for document authoring. Objectives for the documentation format are
taken from Chapter 3, Analysis of Documentation Formats, while requirements for the main envi-
ronment in which document authoring takes place are elaborated in more detail in Chapter 4,
Analysis of XML-Based Authoring Tools.

Document Authoring

1. Gain understanding: quality of perception, learnability

2. Share information: availability, distribution, retrieval

3. Track information: versioning, transparent changes

Documentation Format

4. Standards-based

5. Extensible: pluggable architecture, stylesheets

6. Versioning support

7. Inclusion in automated processes

Authoring Tool

8. Flexible document editing capabilities

9. Platform independent

10. Small memory foot print

11. Fast

5.2. Component Overview
The framework consists of three components, each providing a proper set of functionality:

• Documentation Format

• Authoring Tool

• Repository

67

I have already discussed existing implementations of the first two components, but until now the
Repository has not been mentioned, because it only makes sense when viewing all components
collectively. Refer to Figure 5.1, “Components of the Authoring Framework” for a graphical rep-
resentation.

Figure 5.1. Components of the Authoring Framework

Authoring
Tool

Document

Doc Format Repository

The authoring tool accesses documents conforming to a documentation format via the
repository.

DocumentationFormat. This is thebase component of the framework responsible for storing
the requirements. It defines how the information is structured (structure) inside the document
instance and implicitly constrains the presentation of the information (style).

AuthoringTool. This set ofmodulesdenotes the interface for human interaction. The authoring
tool is used to edit (editor) the document instance and compare (comparison) different versions
of a document.

Repository. This abstract component has the purpose of storing multiple versions (storage)
of a document andmake these uniquely accessible. Links between components and from systems
external to the framework are solved by this component (linking).

5.3. Component Architecture
The three main components of the authoring framework are primarily based on the analysis in
Part II, “Documentation Formats and Authoring Tools”. In this section, the components are ob-
served from a functional level to construct the framework's architecture.

5.3.1. Base Documentation Format

At the lowest level of the framework's document model, the documentation format defines how
information is stored within the document, the structure. The presentation or style of the infor-
mation depends on the document model and, in the concept of our architecture, is therefore also
located at the documentation format level (refer to the discussion in Section 5.4.2, “Versioning”).

The documentation format is based on one of the formats presented in Section 3.3, “Current
Document Formats and Standards” (refer to goal 4). The format should provide support related
to changes in different versions of the document (goal 3), although meta-information regarding
these changes will be stored in the repository.

Content

Primarily, thedocumentation format shouldprovidemeans to store thedocumented requirements.
For the authoring framework, the types of documentation as presented in Section 1.5, “Documen-
tation Types” are relevant. In order to know what to store for specific documentation types, it is

68

Chapter 5. Concept of an Authoring Framework

necessary to know what will be done with this information, either by a human user (author or
reader), or by automated processes (scripts, other applications …).

Requirements for the authoring tool are restricted to a certain combinationofkeyproduct attributes
(KPA) andmaturity levels (refer to Section 2.2.2, “DocumentationMaturityModel”) as presented
in Table 5.1, “Documentation Maturity for the Authoring Tool”.

Table 5.1. Documentation Maturity for the Authoring Tool

DescriptionMaturity LevelKPA

It should be possible to set anchors at arbitrary positions inside
the text. It should be possible to reference these anchors from
any part of the text.

Hyperlinked (3)Text

Graphics in a standardized format and representationaredirectly
embedded into the documentation. Alternatively they are linked
similar to hyperlinks in textual formats.

Static & Standardized (2)Graphics

Parts of the documentation representing the actual implementa-
tion shouldbebuilt automatically andbebasedon the implemen-

Semi-automatic & Static (2)Efficiency

tation. These parts should be built using tool support at the time
of documentation generation.

Although evidently, but part of thematuritymodel, the documen-
tation should capture the system's intended purpose.

Requirements (4)Granularity

That allows to summarize what information should be stored in the documentation format for
specificdocumentation types. Thedocumentation typesare explained inTable1.1, “Documentation
Types for the Authoring Tool”. In Table 5.2, “Stored Information per Documentation Type” the
type of documentation is mapped to the actually stored information for this type. In addition, the
last column shows in what kind of format this information could be represented.

Table 5.2. Stored Information per Documentation Type

Example ManifestationStored InformationDocumentation Type

Behavior diagramsor descrip-
tions

A well-structured sequence of input to and output of
the designed system, description of process flows.

Statementsof the required
effects

Structured change log, QA re-
ports, reports from the issue
orchangemanagementsystem

Issues and changes are listed and may be associated
with either features, lower-level requirements, or re-
visions of the document or application. The listingmay

Recorded issues and
changes

include the full context of the issue/change, but a
summary including a link to the item in the issue or
change management system is preferred.

Textual descriptionGeneral description of the intention of the application
and detailed description of the objectives of certain
features.

Defined goals and objec-
tives

Textual descriptionDescription of constraints for certain features or
business rules that cannot bedescribed in a structured
way.

Specified constraints

Links to other documents,
communication archives

References to the origins of the requirements which
caneitherbeexistingdocumentation,meetingminutes,

Recorded agreement

(meeting minutes, mail
archive), and search facilities

or other types of written communication. The refer-
ences may be attached to single feature descriptions
or business rules.

Deployment descriptionDescriptionof the system'sparts and their relationship.Top-level overview of the
system

Sequencediagram,Component
diagram

Summarized for architect and developer roles, this
type contains information on the employed technolo-
gies and interface-level requirements.

Interface documentation

69

Base Documentation Format

Structure

Now, after observing what is stored in the document model, it is possible to fdefine how this in-
formationwill be stored. Summarizing the representation formats from the previous section, the
following list can be compiled:

Types of Information Stored in the Requirements Specification

• Text in prose

• Structured and semi-structured text

• Images and diagrams

• Links to other information sources

• Aggregation of information regarding the system

• Aggregation of external information

This list does not claim to be comprehensive, but for the design of the authoring framework it
shouldbe sufficient. This sectionwill have a lookat howeachof thesedifferent information formats
can be integrated into the document structure.

The target document structure is based on one of the previously presented document formats
(refer to Section 3.3, “Current Document Formats and Standards”). That means eventually the
information will be stored in one of these formats. Before that a domain-specific language (DSL)
is employed, in order to store the information in a clearway. This follows themotivationsdescribed
by Heitmeyer et. al [Heit97] and Shani and Sela [Shan08] (refer to the discussion in Section 5.4.1,
“Domain-Specific Language”).

In addition, each semantic element (e.g. paragraph, section, table, image …) can be assigned an
id for further reference. The id is assigned via the attribute xml:id [XML-ID] as already used by
XML-based formats.

The design of the document structure is restricted in two ways:

• Characteristics as described in Section 3.1, “Restrictions”.

• Transformation into one of the previously presented document formats should be possible.

The following sections describe how each type of information representation from Table 5.2,
“Stored Information per Documentation Type” can be stored in the target document structure
and indicatewhether support for specific information is alreadypresent in the standarddocument
formats.

Text in Prose and Structured Text

Normal, textual content can be handled without additional design efforts. Semantic formatting
(emphasis, indentation, super- or subscript …) on character or paragraph level is also supported
by the documentation formats.

For the documentation purposes in the authoring tool, structured text is referred to as textual
representation of information with the following characteristics:

• The text is partitioned into one or more logical elements.

• Logical elements may be assigned an id for further reference from other elements.

• Structural elements may contain other structural elements, and form a hierarchy (part,
chapter, section …).

• Block-level elements contain the actual information (paragraph, list …).

70

Chapter 5. Concept of an Authoring Framework

• Inline elements wrap text within a block-level element and can provide special treatment to
the text (emphasis, hyperlinks, …).

With these characteristics the text does not have to contain presentation information, but instead
inline elements may indicate how the wrapped text should be formatted.

Structured text adhering to these criteria is supported by ODF and OOXML, and enforced by
DocBook. Through their extension mechanism, all formats allow for the introduction of custom
structures that model special types of requirements.

Images and Diagrams

Only two types of visual information representation are considered, depending on how they have
been generated. Both do not contain any animations or allow for interactivity:

Data-Independent
Is not directly generated from data and needs manual interaction for editing. Examples:
logo, photo, screenshot, high-level overview graphic …

Derived
Is directly based on data and may be updated by changing the underlying parameters. Ex-
amples: graph visualizing statistics, UML diagram generated in an editor and updated via
round-trip engineering, deployment diagram generated from deployment scripts, …

Another characteristic is how the visual representation is integrated into thedocument.Embedded
images are stored inside the document using either special encoding for binary data1, or direct
integration for text/XML-based image formats2. Linked visual representation inside the document
structure is composedof a non-ambigous link to the target image, and requiredmeta-information
(e.g. clipping, anchor for further reference inside thedocument). XMLprovides severalmechanisms
to implement this behavior, which are described in the section called “Standardized Inclusion
Methods” (p.42)

One special situation has to be noted: linked images may change without affecting the document
version. Thismaygenerate confusionand shouldbe avoided.Onepossible solution to this potential
problem are compound documents (refer to the paragraph called “CompoundDocument” (p.55).

Links to External Resources

On a document structure level, links to external resources are very similar to linked images. For
each linked external resource, the document itself contains the link to the resource and meta-in-
formation required for the correct handling.

Aggregated Information

Especially for the case where requirements for existing systems have to be extended, it is useful
to integrate current system information. For example: the implementation is the best source of
information to build a deployment diagram, or representation of the amount of different config-
uration options. The problem is that this information is usually not directly available, at least not
in the anticipated form. In order to aggregate this information and provide it in a way suitable
for a requirements specification, certain preparations have to be made on the implementation
and the aggregation side.

Iwill remainwith the example of a deployment diagram. The information required for thediagram
is implicitly contained in the dependency graph of the top-level components. In an environment

1Different algorithms have been developed to efficiently encode binary data in XML. Refer to [FI] or [EXI] for more information. More
current information on this subject is available at the Wikipedia page on Binary XML [http://en.wikipedia.org/wiki/Binary_XML].
2Examples: Computer Graphics Metafile (CGM, ISO 8632) or Scalable Vector Graphics [SVG].

71

Base Documentation Format

http://en.wikipedia.org/wiki/Binary_XML
http://en.wikipedia.org/wiki/Binary_XML

using a declarative dependency mechanism3, this specific information has to be made easily
available (by following naming conventions for certain components, or putting all relevant com-
ponents into a single logical container), and can then be aggregated into an appropriate list or
table inside the document structure.

Similar steps are necessary for information aggregated from external systems. If these systems
provide their information in a computer-readable, standards-based syndication format (Atom,
RSS …) and results can be parameterized, the aggregation component only has to declare what
information is relevant for that specific context.

Style

The last component of the documentation format covers the presentationor styling of the content.
The information inside the structure of the documentation format is transformed into a target
presentation format. This process involves processing the different types of content and resolving
information external to the specification.

Presentation Format

For this solution, only two types of static presentation formats are considered with the following
application:

HTML
Primarily intended for on-screen reading and as output for web applications.

PDF
Delivery format for final releases of specifications. Used for reviews and document-based
communication.

Both formats provide a sufficient set of mechanisms to integrate pieces of information presented
in Listing “Types of Information Stored in the Requirements Specification”, p.70.

Content Handler

For several elements presented in the section on the document format's structure only a reference
is stored. The styling component has to resolve the reference and appropriately display the re-
trieved information at the specified position in the document. As there are different types of ele-
ments that can be referenced, different means are necessary.

These content handlers are responsible for the correct representationof the referenced information.
In case of simple linked images, most of the information can be delegated to the presentation
format. Example: in case of HTML, an appropriate IMG element is used. Depending on the type of
referencedor embedded resources, the presentation format supports integration, andmay always
fall back to linking to the resource and delegating the handling to the user's environment via
standard URI schemes and protocols.

3Several platforms and programming languages provide frameworks with dependency injection (refer to a list of existing frameworks
onWikipedia [http://en.wikipedia.org/wiki/Dependency_Injection#Existing_frameworks]). Similar information canbe extracted from
the bundles deployed inside a container following the OSGI framework specification [http://www.osgi.org/Specifications].

72

Chapter 5. Concept of an Authoring Framework

http://en.wikipedia.org/wiki/Dependency_Injection#Existing_frameworks
http://en.wikipedia.org/wiki/Dependency_Injection#Existing_frameworks
http://en.wikipedia.org/wiki/Dependency_Injection#Existing_frameworks
http://www.osgi.org/Specifications
http://www.osgi.org/Specifications

Figure 5.2. Content Handlers

<section>

 <title>Intro</title>

 <para>…</para>

 <media ref=… />

 <para>…</para>

 <deploy … />

 <changes ref=… />

 <para>…</para>

</section>

Section

Text

Media

Changes

Deploy

Intro
Lorem ipsum dolor sit amet,
consectetur adipisicing elit, sed
do eiusmod tempor incididunt
ut labore et dolore magna
aliqua. Ut enim ad minim
veniam,
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur.

Lorem ipsum dolor sit amet,
consectetur adipisicing elit, sed
do eiusmod tempor incididunt
ut labore et dolore magna
aliqua. Ut enim ad minim
veniam, quis nostrud
exercitation ullamco laboris nisi
ut aliquip ex ea commodo
consequat.

Specification PresentationContent
Handlers

Different types of information are processed by different content handlers. References
with additionalmeta-information are resolved and rendered in the presentation format4.

In the example used in Figure 5.2, “Content Handlers” the content handlers Deploy and Changes
collect their information from systems external to the specification (dependency graph in the
source code, or change request system respectively), and aggregate this information for the pre-
sentation format.

A clean architectural approach for the style component assigns a default content handler for the
document and specific handlers formore complex information aggregation. Types of information
that only require trivial transformation into the presentation format are processed by the default
handler.

5.3.2. Authoring Tool

This tool is the main interface between the document author and the specification. It serves two
needs: editing of the specification and comparison of different versions of a document. The com-
ponents are depicted in Figure 5.3, “Components of the Authoring Tool”.

4The representation of changes is actually a screenshot from the bug tracker of the Chromium project
[http://code.google.com/p/chromium/issues/list].

73

Authoring Tool

http://code.google.com/p/chromium/issues/list
http://code.google.com/p/chromium/issues/list

Figure 5.3. Components of the Authoring Tool

User Interface

Transform Content
Model

Document Model

Resources

External
Resources Specification Content Rules

The UI is the entry point for the author. The document model is an abstraction of the
specification which is accessed through the resource layer.

Details on the different components are presented in the detailed design in the next chapter, but
for now the main functions have to be explained.

From an author's perspective, the user interface component is the entry point to the authoring
tool: the editor. The first layer below the UI is abstracted by the document model which itself is
divided into the transformation component and the content model. All access to resources —
which includes access to external images, rules for the documentation format, access to the
repository and the specification itself — is abstracted by the resources layer.

Editor

The editing component is the interface used to manipulate the specification's contents through
the document model. It uses the presentation format to render an up-to-date preview of the
document that corresponds to the final presentation. In the component diagram this responsibil-
ity is assigned to the transformation module.

As in the scenario described by Meyer [Meye02], the editor should directly create documents in
thebasedocumentation format. The author is expected to have amoderate knowledge in standard
word processing and does not need to have knowledge of the underlying format.

The preview does not have to exactly render the document according to the styling, and thusmay
use less complex mechanisms5 as long as the following requirements are met:

• Rendering of the preview should not require large amounts of resources (goal 10).

• Presentation of the document should update fast (goal 11)

In order to improve performance and usability, incremental updates to the presentation layer as
proposed by Onizuka et. al [Oniz05] could be employed. Especially for large specifications with
simplified transformation rules this approach could prove beneficial.

Through the content model, the editor stores the information in the documentation format. The
content model provides the editor with the type of information available at the current editing
position. This may be very different depending on the editing context.

5This paradigm is also called What You See IsWhat YouMean(WYSIWYM) and is used in applications such as Altova Authentic (the
paragraph called “Altova Authentic” (p.59)) or LYX, a document processor for TEX (Section 3.2.2, “TeX”).

74

Chapter 5. Concept of an Authoring Framework

Example Block-Level Element. Inside the block-level element (paragraph, list …) the author
may add content. As soon as the author hits enter, the block-level element is closed and a new
element is opened.

Example Selected Text. Selecting a part of the text inside a block element allows for changing
the character formatting or adding references.

Example Section. The section's position and level inside the document hierarchy can be
adapted. As soonas the authorhits enter, a newparagraph is started and the current editor position
switches to this element.

Comparison

Tracking information (goal 3) is an important aspect in document authoring. Its support in the
documentation format is largely providedby versioning capabilities (goal 6). These facilities have
to be provided by the editor in the form of comparison.

Primarily the framework allows for the comparison of different versions of the same document.
Conradi andWestfechtel [Conr98]defineaversion intended to supersede its predecessora revision,
while versions intended to coexist are called variants. Information on the relations between ver-
sions (as retrieved from the version graph) have to be made available to the user. It should be
possible to compare the document with previous versions of a revision or variants of the current
specification.

Differences

According toRönnau et. al [Rönn05], a structural diff algorithm is a prerequisite to version control
for XML documents. They define separate requirements on the level of version control and office
documents, concentrating on delta inference. The following list shows a subset applicable for the
problem domain of the authoring tool:

Version Control

• Equality with respect to the ordered tree model of XML

• Delta provides exact location of the change

• Delta should be invertible to provide forward and backward reconstruction

• Delta computation time and size must scale to large document sizes and large amounts of
changes

Document-level

• Support wide and flat trees

• Recognize move operations of nodes, also to deeper or upper hierarchy levels

The deltas generated from the comparison can be used to improve the user's understanding of
the document. Changes to different versions can be seen immediately.

Annotations

As previously discussed, information from the contents of the specification is presented using
the transformation component. On top of this presentation, the editor exposes additional data
generated from the differences. These pieces of information are stored in annotations which are
associated with specific nodes in the document.

For the editor component, annotations can be generated from the differences calculated during
comparison, or from the document'smeta-information. In Figure 5.4, “Annotations fromCompar-
ison or Meta-Information” the meta-information is provided by the repository.

75

Authoring Tool

Figure 5.4. Annotations from Comparison or Meta-Information

Version X

Annotations

Version YComparison

Differences

Document

Repository

Meta‐Info

Annotations canbegenerated fromthe comparisonof twodifferent versionsof adocument
or retrieved from the meta-information of a document instance.

Annotated View

The information provided by the annotations is displayed in an annotated view. The annotated
view's presentation is based on the standard transformation algorithms and enrichedwith anno-
tation information, as depicted in Figure 5.5, “Annotated View”

Figure 5.5. Annotated View

Document

Annotations

Tra
nsf

orm
atio

n

Title
Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat.
Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.
Lorem ipsum dolor sit
amet, consectetur
adipisicing elit, sed do
eiusmod tempor
incididunt ut labore et
dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur.
Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat.

Transformed
Document

Annotated
View

Standard document presentation is enriched with annotations to result in the Annotated
View.

5.3.3. Repository

The only component of the authoring framework that has not been yet covered in this thesis is
the repository. It provides a centralmean for the storage of documents, and a unique identification
of document versions used for linking.

76

Chapter 5. Concept of an Authoring Framework

Implementation of simple repositories are already provided by current versioning systems6.
More sophisticated repository implementations could provide indexing and search mechanisms
to improve user experience and reduce the time to find requested information7. These implemen-
tations are not covered.

Storage

The specification itself is stored at a central location that is accessible by authorized users. The
repository provides access to different versions of a document and stores the following meta-in-
formation for each change:

Author
The author of this document, i.e. the person who has stored this version of the document.

Date
Date and time of the change, i.e. when this version has been stored.

Change Comment
The authors comment related to the change, indicating a summary of the changes.

Parent Version
A reference to the previous version of the document.

Through the parent version meta-information changes to a document can be tracked (refer to
goal 3) and associatedwith a date and author. This helps to establish accountability and traceabil-
ity of the requirements. According to Conwell et. al [Conw00] traceablity “helps ensure that the
user'sneedsarebeingmet in the implementationandprovides theaccreditingauthority confidence
throughout thedevelopment”. Asmentioned in Section2.1.1, “GainUnderstanding”, this is essential
for understanding (goal 1).

Linking

All documents can be retrieved from the repository via a unique URI. Different versions of docu-
ments canalsobeaccessed through their ownURIs. This approachmakes all informationuniformly
available (goal 2), and also allows for relative inter-document links to improve understanding
(goal 1).

Versions of a document that are of special interest (e.g. most recent version, passed review …)
may be selected for further reference with a global identifier. If a different version attains the
special status, the global identifier may be assigned to this version. In revision control this iden-
tification is called tag or label.

5.4. Design Discussion
Some of the objectives of the framework can be solved in more than one component, but to keep
the architecture as clean as possible, responsibilities are not spread amongmultiple components.
These yet unclear responsibilities are discussed in this section.

5.4.1. Domain-Specific Language

Instead of directly using general purpose documentation formats as presented in Chapter 3,
Analysis of Documentation Formats, the base documentation format employs a limited language
that can be translated into the former formats. The literature uses the term general-purpose lan-
guage (GPL) for languagesof the former category anddomain-specific language (DSL) formembers
of the latter.

6Examples: Subversion [http://subversion.tigris.org/], Git [http://git.or.cz/], Mercurial [http://www.selenic.com/mercurial/]
7Examples for commercial applications:Microsoft Office SharePoint Server [http://www.microsoft.com/sharepoint/], Atlassian FishEye
[http://www.atlassian.com/software/fisheye/]

77

Design Discussion

http://subversion.tigris.org/
http://subversion.tigris.org/
http://git.or.cz/
http://git.or.cz/
http://www.selenic.com/mercurial/
http://www.selenic.com/mercurial/
http://www.microsoft.com/sharepoint/
http://www.microsoft.com/sharepoint/
http://www.atlassian.com/software/fisheye/
http://www.atlassian.com/software/fisheye/

In this section, the elements of a DSL are discussed, and how the DSL can be used in the context
of a requirements authoring tool.

Definition of a DSL

According to Martin Fowler [Fowl08] (his previous work is also referenced in [Shan08]), a DSL
is a “computer programming language of limited expressiveness focused on a particular domain”
with the following elements:

• Used by humans to instruct a computer to do something, as well as helping communication
between humans

• Its expressiveness does not just come from individual expression but also the way they can
be composed together

• Supports a bare minimum of features needed to support its domain.

• Has a clear focus on a limited domain.

Fowler distinguishes internal and external DSLs: internal DSLs use the same GPL that the wider
application uses, but in a particular and limited style. External DSLs use a different language to
the main language of the application that uses them.

DSLs in the Authoring Framework

In the context of the framework, the base documentation format uses an external DSL to store
itsmodel. According to Chidlovskii [Chid03] “many schemas [i.e. the grammar for documentation
formats] are too general”, they can be used for validation, but “allowmuchmore degree of gener-
ality than the real documents do expose.” Generic documents imply more complex requirements
to the framework building on the document structure. A DSL greatly reduces the complexity
compared to using a GPL for the model information and results in the following benefits:

Simple styling
Transformation into a GPL or directly into a presentation format is limited to the domain
and the features described in the DSL.

Selective expression support
Not all elements of the DSL have to be supported in the transformation to the presentation
format inorder toprovide ahumanviewerwith anunderstandable specification. For certain
fields of application (refer to the section called “Editor” (p.74)) a limited transformation
is even desirable.

Trivial Comparison
When comparing two documents, the differences are on a model level and can be easily
retrieved. This simplifies diff algorithms to that extent, that a human editor could even
find differences on a content/document-level by employing a textual diff.

Annotation
With a DSL, associations in annotations (reference to node + annotation data) receive ad-
ditional semantic information.The reference itself provides informationas towhathierarchy
or type of information is annotated.

5.4.2. Versioning

This responsibility is covered in goals 3 and 6 and primarily consists of storing different versions
of a document (see the section called “Versioning” (p.26)). Separate versions are referred to as
separate instances of the same document. For this discussion, differences between document in-
stances are only on a content level. Changes to the stylingmay be versioned separately depending
on the styling mechanism employed and are not covered.

ΔDn,m is defined as the difference between instance n andm of document D: ΔDn,m = Dm - Dn

78

Chapter 5. Concept of an Authoring Framework

This versioning information contains not only content changes, but at least the following informa-
tion in regard to the change:

• Date and time

• Author responsible for the change

• Comment summarizing the change and/or the reason for the change

It is possible to store this information inside the document (refer to the paragraph called “Inline
Versioning” (p.56)) or external to the document; each alternative providing its own set of advan-
tages.

In simple scenarios, only a single document instance is considered the current version of the
document. In this case, the document holds all ΔD and provides means to extract information
related to certain changes. All information is stored in a single compound object and may be ac-
cessed easily and independently from other resources.

Depending on the version model, it is possible that multiple instances exist at the same time and
are being concurrently developed. In a very simple case, a document instance is the basis for two
teams that need to incorporate two different requirements and merge the results back into a
single document upon completion. Especially for long durations of parallel development or ma-
nipulation of common regions inside the document this approach is difficult to implement with
the versioning information stored inside the document.

5.4.3. Meta-Format

In Section 5.3.1, “Base Documentation Format” the documentation format is presented as the
format's main document model. It is standards-based and its presentation is very dependent on
the underlying information structure. In amore generic approach, a single format could combine
features of different document formats.

The main advantage of using a single format as a wrapper around different document formats,
is the reduction of the implementation efforts for the framework's presentation component for
additional formats. The styling is only specific to this single combinedmeta-format, and does not
have to be adapted as different documentmodels are used or the framework supports additional
formats.

Figure 5.6. Meta-Format as Wrapper around Document Structure

Single
Doc Format

Structure

Style

Structure

Framework
Interfaces

Style

Structure Structure

Meta-Format

Meta Doc
Format and Style

Document
Interface

Froma framework perspective, awrappingmeta-format reduces the number of interfaces
for different document formats. Interfaces for everywrapped document structure have to

be developed.

79

Meta-Format

80

Chapter 6. Developing the Authoring
Framework

The concept and the requirements for the documentation authoring framework are covered in
the previous chapter. Now, the requirements are converted into a technical design for the Use
Case Creator. This section starts by focussing the design decisions and the field of application.
Based on the architectural overview, this section subsequently goes into details on how the
modules are designed for this specific implementation.

The results of the implementationhave beenmade available at http://usecases.googlecode.com/.

6.1. Focus
I have decided to reduce the implementation to a reasonable size, in order to be able to maintain
a full understanding of the solution, while remaining in the scope of this thesis. To achieve this,
I have focused the previous work at two dimensions: the framework design, and the field of ap-
plication.

6.1.1. Framework Design

A small change to the previously presented architecture is the separation the of authoring tool
into a document viewer, and the editor itself, providing the two different types of functionality. I
will also provide a more detailed view on the integration aspects of the repository component of
the application.

6.1.2. Field of Application

As seenpreviously, the information covered in requirements documentation is verydiverse (refer
to Table 5.2, “Stored Information per Documentation Type”), and document authors employ dif-
ferent techniques to create the documentation.

In this thesis, a single, simple, structured document format is used, and the remaining framework
is designed with this format in mind (refer to the discussion in Section 5.4.1, “Domain-Specific
Language”). This format does not cover all types of requirements documentation or authoring
processes. Instead, it will only deal with a single type of requirements document, the use case
analysis description. Thatmeans, initially two restrictions are accepted, the second being a conse-
quence of the first:

• Simple document format

• Restriction to a certain set of information

Beingpart of the design, the document format is explained in detail in Section6.2, “Documentation
Format”. For now, the focus lies on the type of information, the use case analysis description.

Use case analysis is a technique used to identify the requirements of a system. Use cases have an
important role in the requirements process and are used very commonly. In an article on the
history and future of use cases, Jacobson [Jaco03] states that “use cases are basically a simple
and obvious idea” and that they “work well with objects and object thinking.” They can be used
to manage requirements and bind together all the activities within a project.

According toAshleyWilliams [Will04], the “heart of the requirements of theuse cases are provided
[in the] scenario description”, which is referred to as the use case analysis description, or use case
description in short.

81

http://usecases.googlecode.com/

The implementation scope of this chapter only focuses on use case descriptions based on a very
simple document format for the framework's application design. I expect that a transformation
of the findings reported herein to other types of requirements documentation or even structured
documents in very different applications should not be too difficult.

6.2. Documentation Format
The documentation format covers most of the information necessary for use case descriptions. A
single document can contain one or more use cases that may be grouped and structured using a
logical hierarchy. In addition, means to store change annotations are provided directly in the
documentation format. Effectively changes are stored in the repository (refer to the discussion
in Section 5.4.2, “Versioning”), but for intermediate steps in the presentation it may be necessary
to persist such calculated information inside the document.

6.2.1. Content Description

Before going into details on how use case descriptions and change annotations are stored in the
document, the basic rules for the content have to be defined.

Validation

In addition to the textual descriptionof the content, a grammar in XSD is provided. The full schema
is available at the projectwebsite, and Iwill present the relevant sections throughout this chapter
where applicable. Documents will be validated according to this XSD.

Coverage

The employed DSL only covers a very narrow field. In this initial version, the primary intention
is to solve a small problem from end to end, rather than trying to detect all edge cases. Due to the
architecture it should be possible to extend the language, or replace it eitherwith a standard that
better fits the solutiondomain, or a standard already employed in the target toolchain or corporate
environment.

Namespaces

All content related to use case descriptions and their changes is stored in the same namespace:
urn:use-case:description, further referred to as home namespace. This namespace is a valid
URN [RFC2141], and as such designed with the goals of namespaces in mind [XMLNS]. Different
namespace specific strings (i.e. the sequence of characters after the last colon character) may be
employed to avoid collisions, in case more detailed pieces of information are used.

The document format allows for extensibility, primarily basic formatting, by allowing other
namespaces to be used inside the content description. In this implementation, XHTML is deemed
a reasonable choice for basic formatting and thus used inside textual elements1. Refer to Example
6.1, “Complex Type for Text”.

1This is based on the approach taken by Atom [RFC4287]

82

Chapter 6. Developing the Authoring Framework

Example 6.1. Complex Type for Text

1 <complexType name="text" abstract="true" mixed="true">
2 <sequence>
3 <any namespace="http://www.w3.org/1999/xhtml"
4 minOccurs="0" maxOccurs="unbounded"
5 processContents="lax"/>
6 …
7 </sequence>
8 </complexType>

I have decided to uselaxprocessing for elements outside the scope of the homenamespace. That
means that these nodes will only be validated, in case an appropriate schema is available.

6.2.2. Use Case Description

Thedescriptionof theuse cases denotes themodel of thedocumentation format. The information
for the use case description is divided into the following areas:

Single Use Case
At this level of abstraction, the information related to a single use case is discussed.

Logical Hierarchy
If there is more than one use case description inside a document, the use casesmay be put
into a logical hierarchy to improve the understanding of relation and order

Inclusion and Extension
According to Zuser [Zuse04], in use case diagrams two types of associations between use
cases can be distinguished: include and extend.

Single Use Case

The smallest unit in the semantic structure is composed of the following elementswith their XML
element name in parenthesis: The title (title) of the use case is used for human identification
and reference. A short description (description) provides a summary. The actor or actors
(actor) execute the use case. Pre- (pre) and postcondition (post) are the conditions prior to
and expected condition after the execution of the use case respectively. The flow (flow) denotes
the course of events or scenario description.

Formatting

Title and actor are very simple, and only allow basic text as content type. Description, pre- and
postcondition have mixed content and the included information may be formatted as shown in
Example 6.2, “Complex Type for Precondition” where the complex type for pre is defined.

Example 6.2. Complex Type for Precondition

1 <element name="pre">
2 <complexType>
3 <xs:complexContent>
4 <xs:extension base="uc:text"/>
5 </xs:complexContent>
6 </complexType>
7 </element>

In order to employ formatting in the final document, the xhtml namespace has to be used. For
content that uses more elements of a foreign namespace and fewer elements of the home
namespace, it is possible to declare the default namespace for the parent element. This is shown
in Example 6.3, “Formatted Postcondition” for the postcondition.

83

Use Case Description

Example 6.3. Formatted Postcondition

1 <uc:post xmlns="http://www.w3.org/1999/xhtml">
2 The document is displayed together with the following meta-information:
3
4 Revision of the document
5 Older revisions of this document
6
7 </uc:post>

Scenario Description

In order to model, and subsequently be able to easily format the primary scenario and several
alternatives, a special model design is employed for the scenario description: Primarily the flow
contains anon-empty list of steps that areordered sequentially according to the scenario execution.
This list conveys the primary scenario of the use case, as shown in Example 6.4, “Primary Scenario
in Two Steps”.

Example 6.4. Primary Scenario in Two Steps

1 <flow>
2 <step>User enters path of the location to view.</step>
3 <step>Contents of the location are displayed.</step>
4 </flow>

After the steps involved to describe the primary scenario, the flow element may contain an op-
tional list of alternatives, eachwith an appropriate description and a proper list of steps. A single
alternative may start at a specified step of the primary scenario and either end outside of the
primary scenario or route back into it at a later step. In order to correctly designate the starting
point of an alternative, or the point where the primary scenario is continued, the steps have to
be assigned optional names, as shown in Example 6.5, “Description with Two Alternatives”.

Example 6.5. Description with Two Alternatives

1 <flow>
2 <step name="select_path">User enters the path to view.</step>
3 <step name="display">The specified path is displayed.</step>
4 <step name="document">The path does not denote a document</step>
5 <step>The contents of path are displayed</step>
6 <alternatives>
7 <alternative start="select_path" continue="display">
8 <description>No path selected</description>
9 <step>The default path is the root path of the repository</step>
10 </alternative>
11 <alternative start="document">
12 <description>Document selected</description>
13 <step><include uc:ref="uc.view_document"/></step>
14 </alternative>
15 </alternatives>
16 </flow>

The steps of the primary scenario are assigned a key that can be referenced from the alternatives
as start and continuation. In the grammar, this is implemented using xsd:unique2, as can be
seen in the declaration of flow in Example 6.6, “Definition of Scenario with Alternatives”.

2Initially the design involved using xsd:key on the step level and keyref on the declaration of the alternative. Due to the name attribute
of step being optional, this could not be implemented using XSD.

84

Chapter 6. Developing the Authoring Framework

Example 6.6. Definition of Scenario with Alternatives

1 <element name="flow">
2 <complexType>
3 <sequence>
4 <element maxOccurs="unbounded" ref="uc:step"/>
5 <element minOccurs="0" ref="uc:alternatives"/>
6 </sequence>
7 </complexType>
8 <unique name="stepName" >
9 <selector xpath="uc:step"/>
10 <field xpath="@name"/>
11 </unique>
12 </element>
13 <element name="step">
14 <complexType mixed="true">
15 <complexContent>
16 <extension base="uc:text">
17 <sequence>
18 <element ref="uc:include" minOccurs="0"/>
19 </sequence>
20 <attribute name="name" type="NCName"/>
21 </extension>
22 </complexContent>
23 </complexType>
24 </element>
25 <element name="alternatives">
26 <complexType>
27 <sequence>
28 <element maxOccurs="unbounded" ref="uc:alternative"/>
29 </sequence>
30 </complexType>
31 </element>
32 <element name="alternative">
33 <complexType>
34 <sequence>
35 <element ref="uc:description"/>
36 <element ref="uc:step"/>
37 </sequence>
38 <attribute name="continue" type="NCName"/>
39 <attribute name="start" use="required" type="NCName"/>
40 </complexType>
41 </element>

Logical Hierarchy

In order to provide a minimal organizational structure, use cases may be grouped in sections. A
section element contains a title and a non-empty list of use cases, and may also contain other
sections. The root element is use-cases and has a title, description and a non-empty list of sec-
tions. Refer to Example 6.7, “Structure of a Use Case Document”.

85

Use Case Description

Example 6.7. Structure of a Use Case Document

1 <use-cases xmlns="urn:use-case:description">
2 <title>Collection of Use Cases</title>
3 <uc:desc xmlns="http://www.w3.org/1999/xhtml">
4 Use cases for the <i>Use Case Viewer</i> application.
5 </uc:desc>
6
7 <section>
8 <title>Main Use Cases</title>
9 <uc … />
10 <uc … />
11 <uc … />
12 </section>
13 <section>
14 <title>Other Use Cases</title>
15 <section>
16 <title>Short Use Cases</title>
17 <uc … />
18 <uc … />
19 </section>
20 <section>
21 <title>Long Use Cases</title>
22 <uc … />
23 <uc … />
24 <uc … />
25 </section>
26 </section>
27 </use-cases>

Inclusion and Extension

Corresponding to include or extend associations between use cases, as employed in use case dia-
grams [Zuse04], the references between use cases have to be supported. In addition to elements
for include and extend, a generic reference (ref) is provided that can be used inside textual
descriptions.

All three elements contain a required ref attribute that indicates the target of the reference. The
last step of the last alternative in Example 6.5, “Description with Two Alternatives” shows such
a reference.

In order for this to work, the use case itself has to provide an id that is unique for this document.
Employing XSD, the attribute xml:id is used, which is of type xs:ID. Refer to Example 6.8, “Use
Case xml:id Attribute”.

Example 6.8. Use Case xml:id Attribute

1 <element name="uc">
2 <complexType>
3 <sequence>
4 … <!-- elements of use case -->
5 </sequence>
6 <attribute ref="xml:id" use="required"/>
7 </complexType>
8 </element>

6.2.3. Change Annotation

In addition to the information to cover use case descriptions, it is necessary to place changemeta-
information into the document. The format distinguishes three types of changes, similar to those

86

Chapter 6. Developing the Authoring Framework

types of changes employed in current document-centric formats (refer to the paragraph called
“Inline Versioning” (p.56)):

• Additions

• Removals

• Content changes

Change annotations are applied during the comparison process and directly attached to the
changednodes inside thedocument. Dependingon the typeof change, nodes are either annotated
via an additional change attribute, or wrapped into a change element. Both, the attribute and
the element, indicate the type of change and trigger appropriate highlighting in the style layer.

Attribute-Level ChangeAnnotation. This is used for single elements that have been removed
or added. The attribute's value is used to indicate the type of change.

Element-Level Change Annotation. This "wrapper"-element is used, if the changes do not
have an enclosing parent element, which is often the case for textual changes, or deletions of text
nodes. The type attribute is used to indicate the type of change.

6.3. Document Viewer
Thedocument viewer provides a read-only presentationof the document. It is primarily intended
as a document browser with transparent versioning capabilities. Refer to Figure 6.1, “Document
Viewer Providing an Interface for Lightweight Clients” for a depiction of the viewer's architecture.

Figure 6.1. DocumentViewerProviding an Interface for Lightweight Clients

V
ie
w
e
r

In
te
rf
ac
e

Repository

Document
Viewer

View, Compare,
Browse Repository

Generic Repository
Interface

Lightweight
Client

(e.g. Browser)

Revisions 1..n
of one Document

<usecases>
 <section>
 <uc>
 <flow>
 …
 …
 </section>
</usecases>

Thedocumentsprovidedby the repository aremanaged inside thedocument viewer. Basic
functionality to access versioned documents is provided via the viewer interface.

This section describes the document viewer's functions and how they are implemented.

87

Document Viewer

6.3.1. Document Comparison

The primary functionality of the document viewer lies in providing means for the comparison of
documents. For a single document, the viewer has to retrieve the available versions (revisions
or variations) of interest and display a list for selection. The user may then select two different
versions for comparison.

Revision Streams

For a location in the repository, the viewer therefore retrieves a RepositoryEntrywhich holds
a reference to its name and location, and provides access to one ormore RevisionStreams. The
revision streams are based on version graphs as described by Conradi andWestfechtel [Conr98].
Revision streams are distinguished according to:

Branches
Calculated via successor relationships, the initial version of a document starts the main
branch.With eachoffspring, a newbranch is created andwill be treated as separate revision
stream.

Label
Thedifferent labelled versions of a document are put into a separate revision stream. Labels
pointing to the same version are merged in order to reduce false duplicates.

Diff and Annotation Inference

The computation of differences as a basis for the creation of change annotations is based on the
XML diffing library xmlunit and is split into twomain components encapsulated in the XmlDiff-
Comparator, as shown in Figure 6.2, “Create Change Annotations from Comparison”.

88

Chapter 6. Developing the Authoring Framework

Figure 6.2. Create Change Annotations from Comparison

Version X Version YComparison

Annotation
Diffs

Differ

Version Y
annotated

Annotator

Fromtheresultsof the comparison, thediffer createsa setof annotationdiffs. Theannotator
then applies these annotations to version Y in order to receive an annotated document.

The XmlUnitDiffer ignores attribute order and namespaces in order to produce difference an-
notations on an element level. The differ employs a configurable set of diff annotators depending
on the type of difference as indicated by xmlunit. Refer to Example 6.9, “Spring Configuration for
XmlUnitDiffer” for this part of the configuration.

89

Document Comparison

Example 6.9. Spring Configuration for XmlUnitDiffer

1 <bean id="xmlUnitDiffer" class="….XmlUnitDiffer">
2 <property name="xpathNodeExtractor" ref="xpathExtractor"/>
3 <property name="diffAnnotators"><map>
4 <entry>
5 <key>
6 <util:constant static-field="….CHILD_NODE_NOT_FOUND_ID"/>
7 </key>
8 <bean class="….AnnChildNotFound" parent="annTemplate"/>
9 </entry>
10 <entry>
11 <key>
12 <util:constant static-field="….TEXT_VALUE_ID"/>
13 </key>
14 <bean class="….AnnTextValue" parent="annTemplate"/>
15 </entry>
16 <entry>
17 <key>
18 <util:constant static-field="….NODE_TYPE_ID"/>
19 </key>
20 <bean class="….AnnNodeType" parent="annTemplate"/>
21 </entry>
22 <entry>
23 <key>
24 <util:constant static-field="….ELEMENT_NUM_ATTRIBUTES_ID"/>
25 </key>
26 <bean class="….AnnElementAttributes" parent="annTemplate"/>
27 </entry>
28 </map></property>
29 </bean>
30
31 <bean id="annTemplate" class="….AnnNodeType">
32 <property name="xpathNodeExtractor" ref="xpathExtractor"/>
33 </bean>

A single difference annotation as created by one of the diff annotators contains the following in-
formation:

• ChangeType: added, removed, adapted, content

• XPath pointing to the location of the change

• Reference to the changed node

These annotations are then ordered and consolidated. The XmlAnnotator reversely applies the
annotations to the content depending on the type of change and the location of the affected node.
The changed node is either replaced with an appropriate change element, or receives a new
change attributed.

6.3.2. Aggregation

At the downstream interface, the interface to the repository, the document viewer provides an
extensible design that can be used to attach to different repositories. The BackendCatalog
manages a list of handlers, each used to connect to a different type of repository. A handler imple-
ments two methods:

• canProcess(String url) indicates whether a certain URL is supported by this handler.

• process(String url) connects to the repository using the URL and returns a Use-
CaseRepository.

90

Chapter 6. Developing the Authoring Framework

The references to the repositories are cached, and connections may be reused. It is possible to
connect to different remote repositories which are only accessible from the physical location of
the document viewer. In case new repository types have to be integrated, this design only requires
the implementation of the handler interface.

6.4. Repository
In my choice of modules, the repository uses Subversion, a very popular version control system.
On top of this, the hosting facility Google Code3 that provides the infrastructure for the Use Case
Creator project, has implemented severalmechanisms that can be used by projectmembers. This
section shows how the combined system of Subversion concepts and hosting services can be
leveraged with the examples of feeds and integration.

6.4.1. Feeds

Every project hosted in the employed hosting facility publishes updates in the form of Atom
[RFC4287] feeds4. Commits to the version control system are published in a single feed, with one
entry per revision, as can be seen in Example 6.10, “Single Entry for Revision 10 in the 'Source
Changes' Feed”. Being in a standard feed format, this information can easily be reused for inte-
grating with other applications or services.

Example 6.10. Single Entry for Revision 10 in the 'Source Changes' Feed

1 <entry>
2 <updated>2008-05-30T10:06:36Z</updated> ❶

3 <id>…/svnchanges/basic/10</id> ❷

4 <link rel="alternate" type="text/html" href="…/detail?r=10" />❸

5 <title>Revision 10: use case: […]❹</title>
6 <author>
7 <name>kariem.hussein</name>
8 </author>
9 <content type="html">
10 Changed Paths: ❺
11 Modify /trunk/uc/style/preview.css
12 Modify /trunk/uc/style/uc2html.xsl
13 Modify /trunk/uc/uc-viewer.xml
14
15 ❹use case:
16 - id for first use case
17 - new section and use case for generic repository navigation
18 […]
19 </content>
20 </entry>

❶ The entry's updated element shows the commit date in UTC.
❷ id corresponds to the URL inside the feed and ends in the revision number.
❸ An alternative link points to a repository viewer of the hosting facility, showing the details

of the revision.
❹ Commit comments attached to the revision are displayed in the title with whitespace nor-

malized and at the end of the HTML-escaped content. Both were trimmed for better read-
ability.

❺ The first part of the content contains an HTML-escaped list of changed paths prefixed by
Add, Delete, andModify. This was converted to spaces and newlines for better readability.

3GoogleCode [http://code.google.com/hosting/] is a free softwarehosting facility for open sourceprojects, comparable to SourceForge.net
[http://sourceforge.net/]. Refer to the Wikipedia category on free software hosting facilities
[http://en.wikipedia.org/wiki/Category:Free_software_hosting_facilities] for an overview. Other hosting facilities provide similar in-
frastructure for the integration with other services.
4Refer to Feeds in the Google Code support project [http://code.google.com/p/support/wiki/Feeds].

91

Repository

http://code.google.com/hosting/
http://code.google.com/hosting/
http://sourceforge.net/
http://sourceforge.net/
http://en.wikipedia.org/wiki/Category:Free_software_hosting_facilities
http://en.wikipedia.org/wiki/Category:Free_software_hosting_facilities
http://code.google.com/p/support/wiki/Feeds
http://code.google.com/p/support/wiki/Feeds

Outside of the context of open source hosting facilities, there are applications that provide similar
information on top of an underlying version control system. Examples are Edgewall Trac5 and
Atlassian FishEye6, which both provide RSS feeds.

Trac. provides a Timeline view that incorporates several types of events that can occur inside
Trac. In addition, the Revision Log provides feeds on the basis of the repository path, allowing for
file-specific feeds.

Fisheye. has two main views which both provide feeds as alternative output format. The
Browse view allows for navigating to the source tree and provides feeds on a resource basis. The
Changelogprovides customizable feeds that can be restricted based onbranches, authors, or tags.

If the underlying version control system is, for example, Mercurial or Git, appropriate changelog
feeds (in both cases in Atom) are already provided by the respective web interfaces that are dis-
tributed with the systems.

6.4.2. Integration

Information that has been made accessible in a standard way through the use of feeds, can now
be integrated with other tools or applications. A sample scenario and implementation for the in-
tegration is provided.

Scenario: Observe Changes to Single Use Case. An interested stakeholder identifies the
specification and the use case that should be observed. Updates to the specification document
that do not touch the specified use case are ignored. Wong and Hong [Wong08] classify this as
Real-time Monitoring “intended to make the user aware of changes.”

As implementation for this integration example, I have selected twopublicly availableweb services
that will work together in the solution for the repository: Yahoo! Pipes7 is used to provide a user
interface for parameterization and for basic filtering. Itwill also provide the final feedURL. Google
App Engine8 will search through the filtered elements to see whether changes have affected the
selected use case and filter out entries in which the use case has not changed. The layout and re-
sponsibilities are depicted in Figure 6.3, “Integration Scenario for Repository”. I will refer to the
first application as Pipe and the second as App Engine.

5Trac [http://trac.edgewall.org/] is a web-based project management tool. It provides feeds as documented in TracRss
[http://trac.edgewall.org/wiki/TracRss].
6FishEye [http://www.atlassian.com/software/fisheye/] is a web application that tracks code changes and provides search facilities
and statistics. Update notifications are implemented through feeds or email.
7According to Riabov et. al [Riab08], Yahoo Pipes [http://pipes.yahoo.com] is a “configurable application for automated processing of
syndication feeds [that] offers hosted feed processing”.
8Google App Engine [http://code.google.com/appengine/] is a web platform and SDK provided by Google. At the time of writing, appli-
cations can be written using the Python programming language and are hosted at Google premises.

92

Chapter 6. Developing the Authoring Framework

http://trac.edgewall.org/
http://trac.edgewall.org/
http://trac.edgewall.org/wiki/TracRss
http://trac.edgewall.org/wiki/TracRss
http://www.atlassian.com/software/fisheye/
http://www.atlassian.com/software/fisheye/
http://pipes.yahoo.com
http://pipes.yahoo.com
http://code.google.com/appengine/
http://code.google.com/appengine/

Figure 6.3. Integration Scenario for Repository

Repository

Yahoo!
Pipes

Feed of changes
to the repository

Google
App Engine

Filtered feed with
augmented information

History for
all versions

Web service accepting
JSON encoded feed data

WS call: identify changes to
selected use case

1

5

2

3

4

Feed with changes
to selected use case
can be consumed by
interested stakeholders

The changes feed provided by the repository is processed by a Yahoo Pipe (selection, fil-
tering). In order to identify changes to specific use cases, a web service hosted on Google

App Engine is used.

Details on Pipe Implementation

The flow composed to implement the pipe requires two parameters:

path
This is the path of the specification relative to the repository root. By default, a value of
trunk/uc/uc-viewer.xml is assumed.

uc_id
Every use case has a required xml:id attribute. The value of this attribute is used to
identify the use case within the specification.

The path parameter is used to filter only relevant revisions from the feed of changes provided
by the repository. Only elements of the feed are considered in which the path was affected. After
filtering, the processing in the pipe consists of the following steps:

1. Assign the revision associatedwith a feed entry to a separate element of the entry. The revi-
sion is stored in item.uc.revision.

2. Construct a URL that can be used to view the parts of the specification that were affected
by the revision represented by the entry. The URL is stored in item.uc.diffurl.

3. Create a URL that points to the version of the specification at the revision represented by
the entry. This URL is stored in item.uc.location.

4. Call app engine with the current feed as payload and Use Case ID parameter in order to
block out entries that did not affect the given use case. This rather complex step could not
be modeled in the pipe, and thus was externalized.

5. The resulting feed isprovidedaspipeoutput, and canbe consumedby interested stakeholders
in different formats.

The pipe is published at http://pipes.yahoo.com/kariem/usecases.

93

Integration

http://pipes.yahoo.com/kariem/usecases

Details on App Engine Implementation

A pre-filtered feed is sent as JSON-encoded payload to the app engine web service. For further
filtering, the uc_id is passed as request parameter. Subsequently, the following steps are per-
formed:

1. Thepayload is un-marshalled into objects for further processing. Still the objects are referred
to as feed and its elements as entries.

2. The affected version of the document and its predecessor are retrieved from the repository

3. The range inside the affected version for the use case is calculated by using a SAX parser.

4. Differences between the affected version and its predecessor are transformed into a set of
ranges.

5. If the use case range and difference ranges for a certain revision overlap, the use case is
deemed to have been affected in this revision. Otherwise the entry representing the revision
is removed from the feed.

6. The feed is marshalled into a JSON-encoded string and returned as result of theweb service
call.

The app engine is published at http://uccreator.appspot.com/. The main page provides a form
to trigger the web service, while the effective web service is located at http://uccre-
ator.appspot.com/changes. The sources are published — alongside the sources for all other im-
plementation— at http://usecases.googlecode.com/.

94

Chapter 6. Developing the Authoring Framework

http://uccreator.appspot.com/
http://uccreator.appspot.com/changes
http://uccreator.appspot.com/changes
http://usecases.googlecode.com/

Chapter 7. Validation and Conclusion
Before concluding the thesis, this chapter presents a validation based on different scenarios and
tasks.

7.1. Validation
In order to validate the presented framework, it has to be put into the context of a scenario that
can be compared to similar scenarios without the framework. After presenting the different sce-
narios, they are compared on the basis of several tasks.

7.1.1. Scenarios

Two other scenarios are observed for comparison: the first being considered prevalent in many
IT companies (personal opinion based on my experience) will be called traditional, while the
second is a real-world scenario taken from a single IT company, and referred to as informed. The
framework presented in this section will be referred to as standards-based.

The classification of the scenarios is conducted at the following levels:

Documentation Format
This is the primary base format in which the SRS is stored. If a variety of derivative docu-
mentation is generated, theprimarybase format is the formatbeing considered themaster.
Changes to derivatives have to be included into the specification in the base format.

Communication
The primary means of communicating requirements in the form of full documents (SRS)
or single requirements and rules. Requirements that have only been transported by word
of mouth and have not found a way into written communication are not considered.

Versioning
Another assumption is that a reliable version model is in place, which is considered not
being a technical, but an organizational challenge. It is also assumed that a version control
system is an integral part of working professionally in an IT company. On this level the
following types are distinguished: implicit versioning that is triggered automatically upon
committing changes, and explicit versioning, which is the process of assigning identifiers
for further reference.

The description of the scenarios is shown in Table 7.1, “Validation Scenarios”.

Table 7.1. Validation Scenarios

Scenario C
Standards-based

Scenario B
Informed

Scenario A
Traditional

Classification

Most of the general documen-
tation iswritten in a data-cen-

All documents are authored
using a wiki. Derivatives are

The format natively provided
with the team/company-wide

Documentation
Format

tric documentation format,created from one or morewordprocessor beingused for
such as DocBook or DITA. Re-pages in the wiki, which are

selected during export.
all documentation. This could
be for example Word Doc, quirements documentation
OOXML, or ODF. The choice of uses a DSL that provides only
format is based on the word
processor being used.

features that are necessary for
the documentation.

Similar to B.Email is primarily used to
communicate changes or ma-

Email is the primarymeans of
communicating requirements.

Communication

jor updates. They contain aThe SRS is attached to the
email. link to the wiki page contain-

ing the requirements.

95

Scenario C
Standards-based

Scenario B
Informed

Scenario A
Traditional

Classification

Implicit, using a standard ver-
sion control system. Explicit

Implicit, on a per-resource
(wiki page) level, as provided

Implicit, using a standard ver-
sion control system. Explicit

Versioning

versioning is required uponby the system.Explicit version-
ing is not possiblei

versioning is technically possi-
ble. completion of certain mile-

stones or as preparation for
reviews.

iWikis used by projects in the open source project hosting facility Google Code [http://code.google.com/hosting] are
stored with a Subversion backend. Such an approach technically allows explicit versioning of a set of pages.

7.1.2. Tasks

The following tasks can be used to compare the processes involved in the different scenarios to
attain certain targets or solve a certain problem. The problem description is followed by an as-
sumed order of steps for each scenario. The following tasks are used:

• Distribute version as a reference

• Integration of feedback

• Inform interested stakeholders of an updated document

• Review changes that have been made to a document

For simplicity, the assumption is made that a single person is largely responsible for a single
document. I explicitly exclude simultaneous joint authoring asprovidedbypopular online services.

Distribute Version as a Reference

How does a person distribute a certain version as a reference, e.g. to a person in a developer or
tester role?

Traditional 1. The document is assigned a version for further reference.

2. A list of interested stakeholders is compiled.

3. The document is sent out to the interested stakeholdersi.

Informed 1. The most recent version of a single wiki page is used as a referenceii.

2. A list of interested stakeholders is compiled.

3. The link to the wiki page is sent out to the interested stakeholders. The version refers to
the version of the wiki page at the time of sending the mailiii.

It is very difficult to manage variations in parallel in a wiki. Frommy personal experience, the
most widely used approach is copying the contents of one wiki page to a new page and using
this page for one variation. Thus, this results in managing two separate wiki pages, one for
each variation.

Standards-based 1. A link to the requested version in the repository is distributed.

2. Additional stakeholders may subscribe to changes to the document.

Relevant links to other documents or resources are provided in the document.
iIn a best-case scenario, the most recent version, or requested version is stored in the version control system and, given
that the requestor has access to that part, does not need to be distributed as attachment.
iiDepending on the editors of the wiki page, the information contained therein is linked with other relevant information.
iiiInherently the page and associated (linked) wiki pages change over time.

Integration of Feedback

How is feedback received and integrated in order to create a successor?

96

Chapter 7. Validation and Conclusion

http://code.google.com/hosting
http://code.google.com/hosting

Traditional 1. Reviewers update documents they have received directlyi and send them back to the
author.

2. If necessary the author contacts one ormore of the reviewers for clarification via private
communication.

3. Feedback from each reviewer is merged into the document one by one.

Informed 1. The author may restrict access to certain sections (e.g. content not under review) and
assign privileges to users.

2. Users that can access the wiki may add comments to the wiki page, or edit directly.

3. The author (as editor) is responsible to clarify and structure the wiki page's content.

Standards-based 1. Reviewers may edit or annotate sections in the documentation and store their versions
as branches to the version under review.

2. The author then merges the changes into the base document: Merges can be performed
automatically (all changes of all authors are accepted), or stepwise with tool support.

iThis is usually facilitated by enabling features such as change tracking available in some word processors, or locking
regions which should not be edited.

Inform Interested Stakeholders of Updated Document

After receiving feedback, how does the author of the document inform a group of people about
the updates?

Traditional 1. The author decides whether to replace the predecessor of the document (revision) or
create a new version (variant).

2. Updates are stored in the documenti.

3. The updated document is sent to members of a recipient list.

Informed 1. Interested stakeholdersmaysubscribe to changes in themost recent versionof adocument
by subscribing to changes on the appropriate wiki page.

2. Updates to thewiki page are published to the subscriberswithout additional intervention
from the author.

Similar to Informed: stakeholdersmay subscribe to changes to adocument, or a certain variation
of a document. It is even possible to subscribe only to changes in single use cases, as shown
in Section 6.4.2, “Integration”.

Standards-based

iFrommyexperience, in this scenario it is very useful that the authormanages a list of revisions at the start of the document,
thus duplicating the information from the version control system in a less verbose manner.

Review Changes that have been made to a Document

How can an interested person review all changes that have been made to a specific document
over a certain period of time?

Traditional 1. Retrieve logs from the version control system via a client external to the authoring tool.

2. In order to see differences between revisions, the client has to be instructed to download
the two versions to show the differencesi.

Wiki pages provide a history, but this history is usually not in contextwith other changesmade
simultaneously. This revision informationmay not be sufficient for specifications spread over
more than one page.

Informed

1. Retrieve the history of the specific wiki page.

2. For each item in the history, refer to the history of linked pages to retrieve versions that
existed at the same time.

97

Tasks

The document is opened in the document viewer, which provides transparent versioning as
an integrated feature.

Standards-based

iWith two distinct versions available, authoring tools usually provide sufficiently sophisticated ways of comparison.

7.1.3. Further Steps required for Validation

In order to validate the proposed framework, a statistically relevant number of teams has to be
found which is in a working environment similar to either traditional or informed. These teams
have to be willing to participate in a migration process towards the framework.

In a first step, the presented tasks have to be assessed in the current environment of the teams.
After a migration to the proposed framework and appropriate time for accomodation, the same
assessment criteria are applied to theprocesses involved in solving these taskswith the framework.

The following criteria are proposed:

• Total time involved for the author to finish a task.

• Total number (manual) steps performed by the author to finish a task.

• Total time involved for all participants per task.

In addition to the more easily measurable criteria above, the user acceptance of the framework
should be assessed. The following questions are being asked before and after the migration. It is
expected that answers to these questions are not correct, but the results give an indication of
howmuch confidence users have in the framework and the surrounding processes.

• Is most of the important information covered in the requirements documentation?

• Does everybody have access to the information he/she needs?

• How long would a handover between authors of document X take?

Subjects of the questions have to be similar in old andnewscenario in order to providemeaningful
results.

7.2. Related Work
A lot of research has been done in the field of requirements authoring and structured documen-
tation. Even before the gaining popularity of XML, structured documents and authoring environ-
ments were positively affected by work in this area1. This section shows a selection of similar
work closely related to the topic of this thesis.

Liz Fraley— Single Sourcing [Fral03]. The intention of the project was to allowwriters and
editors to be more productive by introducing the concept of single-sourcing. The primary result
denotes the migration from a combination of Adobe FrameMaker and WebWorks Publisher as
authoring/publishing tools (with an implicit documentation format) and a network drive as
repository (augmented by FrameMakers locking mechanism) to an environment based on Doc-
Book/CALS as documentation format, Arbortext Epic Editor as authoring tool and Interwoven's
TeamSite as repository. Publishing to PDF uses Arbortext E3 with FOSI (comparable to XSL-FO)
while the HTML output is generated via XSLT.

Oliver Meyer — Validated XML Documents using Word Processor [Meye02]. In order to
improve the exchange of informationbetween authors and their publishers, the project supported
the move from a scenario where authors mainly submit Microsoft Word documents which are
then transformed into SGML for furtherprocessing to anauthoringenvironment inwhichauthors
can create valid documents themselves, which are then submitted to the publishing company,
thus reducing the misunderstandings between author and publisher. The described result aTool

1For examples refer to [Walk81], [Pres96], [Quin04].

98

Chapter 7. Validation and Conclusion

is an extension to Microsoft Word that can be parameterized with a DTD and used to create and
validate structured XML documents.

7.3. Conclusion
This section concludes the thesis. The summary is followed by an outlook to features and compo-
nents to improve the benefit of the presented authoring tool.

7.3.1. Summary

In this thesis, I have presented an authoring framework for software requirements specifications
(SRS) consistingof threemain components thatmaywork together on thebasis of open standards:
documentation format, authoring tool, and repository.

Tools that are currently widely employed provide very few features that are important to effi-
ciently create and review an SRS. The authoring framework presented in this thesis provides
several improvements and, due to the standards-based orientation, points for integration with
existing tools.

Requirements Documentation Authoring

The characteristics of an SRS are widely understood and its content may be structured according
to different standards. Elements and types of documentation used for different types of require-
ments are also very clear and mostly manageable. As shown, the role of requirements and their
maintenance and management is very important in different software development processes.

The processes around the authoring of requirements documentation, such as those found in
change management and quality assurance, provide a frame around what is expected from an
author and, in general, the team creating the requirements documentation. I have presented ex-
isting maturity models for the processes and the documentation created therein.

Documentation Formats and Authoring Tools

Subsequently the focus lies on the documentation format. After a presentation of currently em-
ployed and traditionally widely used documentation formats, standardized formats that already
found wide acceptance are introduced. For the selection of those formats, a set of restrictions is
defined that should help drawing a close frame around this selection, and what the formats all
have in common.

In the switch to the second component, the authoring tool, a set of tools that can be used to create
and maintain an SRS is analyzed. The requirements for these tools — i.e. what features these
tools should provide — are mostly taken from the previously mentioned sources and what was
found out during the analysis of the processes involved in documentation authoring. A small set
of criteria was created for the evaluation of such authoring tools, and compared the previously
presented tools according to these criteria.

Modular Integration Concept

The final component of the framework is introducedduring the architectural concept of thewhole
framework. The repository is a very generic component that is central to the authoring framework
and, as shown in the architecture, provides essentialmechanisms intended to facilitate document
authoring and the related processes. The concept of the framework explains the mechanisms
between the three components of the authoring framework.

For the first implementation of the framework, a domain-specific language (DSL) that covers the
aspects needed to model use case decriptions was created. This DSL is used as a documentation
format, and documents created with this language can be viewed using the document viewer,

99

Conclusion

which is a (feature-wise) small version of the authoring tool. As an integration example, a repos-
itory based on a version control system that publishes changes in a standardized format is used
to show how easy it can be to implement a subscription mechanism for specific use cases inside
documents, relying solely on open standards.

This chapter concludes with a descriptive validation based on a set of scenarios and tasks that
should show the different approaches. It provides instructions and questions that can be used in
an analysis to clearly validate the benefits of the framework presented in this thesis.

7.3.2. Outlook

As this thesis should have shown, the introduction of open standards allows for an extensible
and heterogeneous collection of technologies. There are still some elements that I believe would
complete the picture of the authoring framework.

Transformation Designer

Thestyling componentof thedocumentation format, eitherused inside theeditoror forpublication,
has been presented as being based on one of two stylesheet languages. It might be difficult for a
professional designer to handle the documentation format and a stylesheet language.

A dedicated tool to design and preview stylesheet languages could prove beneficial for the design
process, resulting in fewer errors andmore iterations. Theposition of the transformationdesigner
in the toolchain is depicted in Figure 7.1, “UseCaseCreationProcesswithTransformationDesign-
er”.

Figure 7.1. Use Case Creation Process with Transformation Designer

<usecases>
 <section>
 <uc>
 <flow>
 …
 …
 </section>
</usecases>

Use Case

Authoring
Tool

HTML PDF
ODF
DOC

<document>
 <section>
 …

 …
 </section>
 …
</document>

Document

<xi:include />

<section>
 <list>
 <item … />
 <item … />
 …
 </list>
 …
</section>

Fragment

Transformation
Designer

XML Transformation

XML Inclusion

The transformation designermay be used to develop different styles. In this diagram, the
custom XML transformation converts use cases into DocBook fragments which are then
included in larger documents, and subsequently transformed into the target format, de-

pending on the employed toolchain.

100

Chapter 7. Validation and Conclusion

References

Books
[Clem02] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little, Robert Nord, and

Judith Stafford. Documenting Software Architectures: Views and Beyond. Addison-Wesley Profes-
sional. 2002. 0-20170-372-6.

[Copl04] James O. Coplien and Neil B. Harrison. Organizational Patterns of Agile Software Development.
Prentice Hall PTR. 2004.

[Cour04] Catherine Courage and Kathy Baxter. Understanding Your Users: A Practical Guide to User Require-
ments Methods, Tools, and Techniques (Interactive Technologies). Morgan Kaufmann. 2004.

[Eise05] David J. Eisenberg. OASIS OpenDocument Essentials. O’Reilly & Associates, Inc.. December 2005.
http://books.evc-cit.info/.

[Fowl08] Martin Fowler. Domain Specific Languages (WIP). 2008. http://martinfowler.com/dslwip/.

[Kovi98] Benjamin L. Kovitz. Practical Software Requirements: A Manual of Content and Style. Manning
Publications. 1998.

[Laue02] Soren Lauesen. Software Requirements: Styles and Techniques. Addison-Wesley Professional.
2002.

[Leff03] Dean Leffingwell. Managing Software Requirements. Pearson Education. 2. 2003.

[Maci05] Leszek A. Maciaszek. Requirements Analysis and System Design. AddisonWesley Publishing Com-
pany. 2 Pap/Cdr. 2005.

[Mint01] Barbara Minto. The Pyramid Principle: Present Your Thinking So Clearly That the Ideas Jump Off the
Page and into the Reader's Mind. Financial Times / Prentice Hall. 2001.

[Mitt04] Frank Mittelbach, Michel Goossens, Johannes Braams, David Carlisle, and Chris Rowley. The LaTeX
Companion (Tools and Techniques for Computer Typesetting). Addison-Wesley Professional. 2004.

[Otei08] Tobias Oetiker, Hubert Partl, Irene Hyna, and Elisabeth Schlegl. The Not So Short Introduction to
LaTeX 2e. 4.26. September 2008.

[Rupp06] Chris Rupp. Requirements-Engineering und -Management. Professionelle, iterative Anforderungs-
analyse für die Praxis. Hanser Fachbuchverlag. 2006.

[Schw04] Ken Schwaber. Agile Project Management with Scrum. Microsoft Press. March 10, 2004. 0-73561-
993-X.

[Stay03] Bob Stayton. DocBook XSL: The Complete Guide. Sagehill Enterprises. 3. 2002, 2003.
http://www.sagehill.net/docbookxsl/.

[Wals05] Norman Walsh and Leonard Muellner. DocBook: The Definitive Guide. O’Reilly & Associates, Inc..
2. 1999-2003, 2005. http://docbook.org/tdg/. 1-56592-580-7.

[Wals94] Norman Walsh. Making TeX Work (A Nutshell Handbook). O’Reilly & Associates, Inc.. 1994.
http://makingtexwork.sourceforge.net/mtw/. 1-56592-051-1.

[Wieg04] Karl E. Wiegers. Software Requirements, Second Edition. Microsoft Press. 2003.

[Wier95] Roel J. Wieringa. Requirements Engineering: Frameworks for Understanding. John Wiley & Sons
Ltd.. 1995.

101

[Zuse01]Wolfgang Zuser, Stefan Biffl, Thomas Grechenig, and Monika Köhle. Software Engineering mit UML
und dem Unified Process. Pearson Studium. 2001.

[Zuse04] Wolfgang Zuser, Thomas Grechenig, and Monika Köhle. Software Engineering. Mit UML und dem
Unified Process. Pearson Studium. 2. 2004.

Papers
[Albi96] Bill Albing. “Process constraints in the management of technical documentation”. SIGDOC '96:

Proceedings of the 14th annual international conference on Systems documentation. ACM Press.
67–74. 1996. http://doi.acm.org/10.1145/238215.238257.

[Ande02]KennethM.Anderson, SusanneA. Sherba, andWilliamV. Lepthien. “Towards large-scale information
integration”. ICSE '02: Proceedings of the 24th International Conference on Software Engineering.
ACM Press. 524–534. 2002. http://doi.acm.org/10.1145/581339.581403.

[Bae02] Hyerim Bae and Yeongho Kim. “A document-process associationmodel for workflowmanagement”.
Comput. Ind.. Elsevier Science Publishers B. V.. 47. 139–154. 2002.
http://dx.doi.org/10.1016/S0166-3615(01)00150-6.

[Bart07] Brent Barton and Evan Campbell. “Implementing a Professional Services Organization Using Type
C Scrum”. System Sciences, 2007. HICSS 2007. 40th Annual Hawaii International Conference on. 275a-
275a. 2007.

[Baye03] Petra Saskia Bayerl, Harald Lüngen, Daniela Goecke, Andreas Witt, and Daniel Naber. “Methods
for the semantic analysis of documentmarkup”. DocEng '03: Proceedings of the 2003ACM symposium
onDocument engineering. ACMPress. 161–170. 2003. http://doi.acm.org/10.1145/958220.958250.

[Bell76] T. E. Bell andT. A. Thayer. “Software requirements: Are they really a problem?”. ICSE '76: Proceedings
of the 2nd international conference on Software engineering. IEEE Computer Society Press. 61–68.
1976.

[Berg01] Erik Berglund and Michael Priestley. “Open-source documentation: in search of user-driven, just-
in-time writing”. SIGDOC '01: Proceedings of the 19th annual international conference on Computer
documentation. ACM Press. 132–141. 2001. http://doi.acm.org/10.1145/501516.501543.

[Bern07] Philip A. Bernstein and Sergey Melnik. “Model management 2.0: manipulating richer mappings”.
SIGMOD '07: Proceedings of the 2007 ACM SIGMOD international conference on Management of data.
ACM. 1–12. 2007. http://doi.acm.org/10.1145/1247480.1247482. 978-1-59593-686-8.

[Boeh02] BarryW. Boehm. “Get Ready for AgileMethods, with Care”. IEEE Computer Society. 64–69. 2002.
http://doi.ieeecomputersociety.org/10.1109/2.976920.

[Boeh86] Barry W. Boehm. “A spiral model of software development and enhancement”. SIGSOFT Softw.
Eng. Notes. ACM. 14–24. 1986. http://doi.acm.org/10.1145/12944.12948. 0163-5948.

[Boeh88] Barry W. Boehm. “A Spiral Model of Software Development and Enhancement”. Computer. IEEE
Computer Society. 61–72. 1988. http://doi.ieeecomputersociety.org/10.1109/2.59. 0018-9162.

[Booc02] Grady Booch. “Growing the UML”. Software and Systems Modeling. 1. 157–160. December 2002.
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10270-002-0013-7.

[Bouk04] A. Boukottaya, C. Vanoirbeek, F. Paganelli, and O. Abou Khaled. “Automating XML documents
transformations: a conceptual modelling based approach”. CRPIT '31: Proceedings of the first Asian-
Pacific conference on Conceptual modelling. Australian Computer Society, Inc.. 81–90. 2004.

[Boye08] John M. Boyer. “Interactive office documents: a new face for web 2.0 applications”. DocEng '08:
Proceeding of the eighth ACM symposium on Document engineering. ACM. 8–17. 2008.
http://doi.acm.org/10.1145/1410140.1410145. 978-1-60558-081-4.

102

References

[Byer04] Simon Byers. “Information leakage caused by hidden data in published documents”. Security &
Privacy, IEEE. 2. 23–27. 2004.

[Chid03] Boris Chidlovskii. “A structural adviser for the XML document authoring”. ACM Press. 203–211.
2003.

[Conr98]ReidarConradi andBernhardWestfechtel. “Versionmodels for software configurationmanagement”.
ACM Comput. Surv.. ACM. 30. 232–282. 1998. http://doi.acm.org/10.1145/280277.280280.
0360-0300.

[Conw00] Candace L. Conwell, Rosemary Enright, and Marcia A. Stutzman. “Capability maturity models
support ofmodeling and simulationverification, validation, andaccreditation”. CRPIT '27: Proceedings
of the fifteenth conference on Australasian database. WSC '00: Proceedings of the 32nd conference
on Winter simulation. 819–828. 0-7803-6582-8. 2000.

[Dong04] CeDong and JamesBailey. “Static analysis of XSLTprograms”. CRPIT '27: Proceedings of the fifteenth
conference on Australasian database. Australian Computer Society, Inc.. 151–160. 2004.

[Dyme04]MarkDymetman. “Chart-parsing techniques and thepredictionof valid editingmoves in structured
document authoring”. DocEng '04: Proceedings of the 2004ACMsymposiumonDocument engineering.
ACM. 229–238. 2004. http://doi.acm.org/10.1145/1030397.1030440. 1-58113-938-1.

[Eber02] Christof Ebert and Josef De Man. “e-R&D – Effectively Managing Process Diversity”. Annals of
Software Engineering. 14. 73–91. December 2002. http://www.springer-
link.com/openurl.asp?genre=article&id=doi:10.1023/A:1020545406509.

[Fagi99] Barry Fagin. “Computers, science, and the microsoft case”. SIGCAS Comput. Soc.. ACM Press. 29.
15–22. 1999. http://doi.acm.org/10.1145/382018.382026.

[Forw02] Andrew Forward and Timothy C. Lethbridge. “The relevance of software documentation, tools
and technologies: a survey”. DocEng '02: Proceedings of the 2002 ACM symposium on Document en-
gineering. ACM Press. 26–33. 2002. http://doi.acm.org/10.1145/585058.585065.

[Fral03] Liz Fraley. “Beyond theory: making single-sourcing actually work”. SIGDOC '03: Proceedings of the
21st annual international conference on Documentation. ACM Press. 52–59. 2003.
http://doi.acm.org/10.1145/944868.944880.

[Heit97] Constance Heitmeyer, James Kirby, and Bruce Labaw. “The SCR method for formally specifying,
verifying, and validating requirements: tool support”. ICSE '97: Proceedings of the 19th international
conference on Software engineering . 610–611. 1997. ACM.
http://doi.acm.org/10.1145/253228.253498.

[Hopp03] Kenneth B. Hopper and Keith T. Rainey. “A pilot study of self-assessment of word processing and
presentation software skills in graduate students in technical communication”. Professional Commu-
nication Conference, 2003. IPCC 2003. Proceedings. IEEE International. 8 pp.. 2003.

[Huan03] ShihongHuang and Scott Tilley. “Towards a documentationmaturitymodel”. SIGDOC '03: Proceed-
ings of the 21st annual international conference on Documentation. ACM Press. 93–99. 2003.
http://doi.acm.org/10.1145/944868.944888.

[Iaco05] Ionut E. Iacob and Alex Dekhtyar. “xTagger: a new approach to authoring document-centric XML”.
JCDL '05: Proceedings of the 5th ACM/IEEE-CS joint conference on Digital libraries. ACM Press.
44–45. 2005. http://doi.acm.org/10.1145/1065385.1065395.

[Jaya08]Magesh A. Jayapandian andH. V. Jagadish. “Expressive query specification through form customiza-
tion”. EDBT '08: Proceedings of the 11th international conference on Extending database technology.
ACM. 416–427. 2008. http://doi.acm.org/10.1145/1353343.1353395. 978-1-59593-926-5.

103

[Jazz95] Abdulaziz Jazzar andWalt Scacchi. “Understanding the requirements for information system docu-
mentation: an empirical investigation”. COCS '95: Proceedings of conference on Organizational com-
puting systems. ACM Press. 268–279. 1995. http://doi.acm.org/10.1145/224019.224048.

[John99] JohnW. Stamey, Jr. and Thomas M. Roth, III. “Technical documentation and related contractual lia-
bility”. SIGDOC '99: Proceedings of the 17th annual international conference on Computer documen-
tation. ACM Press. 105–109. 1999. http://doi.acm.org/10.1145/318372.318566.

[Judy08] Ken H. Judy and Ilio Krumins-Beens. “Great Scrums Need Great Product Owners: Unbounded Col-
laboration and Collective Product Ownership”. Hawaii International Conference on System Sciences,
Proceedings of the 41st Annual. 462–462. 2008.

[Kirn97] TerezaG. Kirner and Janaina C. Abib. “Inspection of software requirements specificationdocuments:
a pilot study”. SIGDOC '97: Proceedings of the 15th annual international conference on Computer
documentation. ACM Press. 161–171. 1997. http://doi.acm.org/10.1145/263367.263389.

[Korg96] SusanKorgen. “Object-oriented, single-source, on-line documents that update themselves”. SIGDOC
'96: Proceedings of the 14th annual international conference on Systems documentation. ACM Press.
229–237. 1996. http://doi.acm.org/10.1145/238215.238301.

[Kylm03] Roope Kylmäkoski. “Efficient authoring of software documentation using RaPiD7”. ICSE '03: Pro-
ceedings of the 25th International Conference on Software Engineering. IEEE Computer Society.
255–261. 2003.

[Lee02] Beum-Seuk Lee and Barrett R. Bryant. “Automated conversion from requirements documentation
to anobject-oriented formal specification language”. SAC '02: Proceedings of the 2002ACMsymposium
on Applied computing. ACM Press. 932–936. 2002. http://doi.acm.org/10.1145/508791.508972.

[Lowr03] Paul Benjamin Lowry and Jay F. Nunamaker, Jr.. “Using Internet-Based, Distributed Collaborative
Writing Tools to Improve Coordination and Group Awareness inWriting Teams”. IEEE Transactions
on Professional Communication. 46. 277–297. 2003.

[MacK03] Neil MacKinnon and Steve Murphy. “Designing UML diagrams for technical documentation”.
SIGDOC '03: Proceedings of the 21st annual international conference on Documentation. ACM Press.
105–112. 2003. http://doi.acm.org/10.1145/944868.944891.

[MacK04] Neil MacKinnon and Steve Murphy. “Designing UML diagrams for technical documentation: con-
tinuing the collaborative approach to publishing class diagrams”. SIGDOC '04: Proceedings of the
22nd annual international conference on Design of communication. ACM Press. 120–127. 2004.
http://doi.acm.org/10.1145/1026533.1026565.

[Makr05] Kristis Makris and Kyung Dong Ryu. 2005 USENIX Annual Technical Conference, FREENIX/Open
Source Track. April 2005.

[Mars99] C. Hugh Marsh. “The engineer as technical writer and document designer: the new paradigm”.
SIGDOC Asterisk J. Comput. Doc. . ACM Press. 23. 57–61. 1999.
http://doi.acm.org/10.1145/311147.311159.

[Mern05] Marjan Mernik, Jan Heering, and Anthony M. Sloane. “When and how to develop domain-specific
languages”. ACM Comput . Surv. . ACM. 37. 316–344. 2005.
http://doi.acm.org/10.1145/1118890.1118892.

[Meye02] Oliver Meyer. “aTool: creating validated XML documents on the fly using MS word”. SIGDOC '02:
Proceedings of the 20th annual international conference on Computer documentation. ACM Press.
113–121. 2002. http://doi.acm.org/10.1145/584955.584973.

[Oniz05]MakotoOnizuka, FongYeeChan,RyusukeMichigami, andTakashiHonishi. “Incrementalmaintenance
for materialized XPath/XSLT views”. WWW '05: Proceedings of the 14th international conference on
World Wide Web. ACM Press. 671–681. 2005. http://doi.acm.org/10.1145/1060745.1060843.

104

References

[Powe03] Norah Power and TonyMoynihan. “A theory of requirements documentation situated in practice”.
SIGDOC '03: Proceedings of the 21st annual international conference on Documentation. ACM Press.
86–92. 2003. http://doi.acm.org/10.1145/944868.944887.

[Pres96] Paul Prescod. “Multiple media publishing in SGML”. SIGDOC '96: Proceedings of the 14th annual
international conference on Systems documentation. ACM Press. 3–9. 1996.
http://doi.acm.org/10.1145/238215.238241.

[Prie00] Michael Priestley and Mary Hunter Utt. “A unified process for software and documentation devel-
opment”. IPCC/SIGDOC '00: Proceedings of IEEE professional communication society international
professional communication conference and Proceedings of the 18th annual ACM international confer-
ence on Computer documentation. IEEE Educational Activities Department. 221–238. 2000.

[Quin04] Vincent Quint and Irène Vatton. “Techniques for authoring complex XML documents”. DocEng '04:
Proceedings of the 2004 ACM symposium on Document engineering. ACM. 115–123. 2004.
http://doi.acm.org/10.1145/1030397.1030422. 1-58113-938-1.

[Raja05]PrasadRajagopal, RogerLee, ThomasAhlswede, Chia-ChuChiang, andDaleKarolak. “Anewapproach
for software requirements elicitation”. Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, 2005 and First ACIS International Workshop on Self-Assembling
Wireless Networks. SNPD/SAWN 2005. Sixth International Conference on. 32–42. 2005.

[Reid80] Brian K. Reid. “A high-level approach to computer document formatting”. POPL '80: Proceedings
of the 7th ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM Press.
24–31. 1980. http://doi.acm.org/10.1145/567446.567449.

[Rene02] Allen Renear, David Dubin, and C. M. Sperberg-McQueen. “Towards a semantics for XML markup”.
DocEng '02: Proceedings of the 2002ACMsymposiumonDocument engineering. ACMPress. 119–126.
2002. http://doi.acm.org/10.1145/585058.585081.

[Riab08]AntonV. Riabov, EricBoillet,MarkD. Feblowitz, ZhenLiu, andAnandRanganathan. “Wishful search:
interactive compositionof datamashups”. WWW'08: Proceeding of the 17th international conference
on World Wide Web. 46. 775–784. 2008. ACM. http://doi.acm.org/10.1145/1367497.1367602.
978-1-60558-085-2.

[Rönn05] Sebastian Rönnau, Jan Scheffczyk, and Uwe M. Borghoff. “Towards XML version control of office
documents”. DocEng '05: Proceedings of the 2005 ACM symposium on Document engineering. ACM
Press. 10–19. 2005. http://doi.acm.org/10.1145/1096601.1096606.

[Ross88] JohnMinor Ross. “Documentation - the good, the bad and the ugly”. SIGDOC '88: Proceedings of the
6th annual international conference on Systems documentation. ACM Press. 41–46. 1988.
http://doi.acm.org/10.1145/358922.358930.

[Royc87] W. W. Royce. “Managing the development of large software systems: concepts and techniques”.
ICSE '87: Proceedings of the 9th international conference on Software Engineering. IEEE Computer
Society Press. 328–338. 1987.

[Rube00] Philip Rubens and Sherry Southard. “Using new technologies for communication and learning”.
IPCC/SIGDOC '00: Proceedings of IEEE professional communication society international professional
communication conference and Proceedings of the 18th annual ACM international conference on
Computer documentation. IEEE Educational Activities Department. 185–189. 2000.

[Ruga00] Spencer Rugaber. “The use of domain knowledge in program understanding”. Ann. Softw. Eng..
J. C. Baltzer AG, Science Publishers. 9. 143–192. 2000.

[Salt75] Rita Seplowitz Saltz. “The non-technical person as technical writer/editor and documentation for
the computer illiterate”. SIGUCCS '75: Proceedings of the 3rd annual ACM SIGUCCS conference on
User services. ACM Press. 88–89. 1975.

105

[Salz05] Ben Salzberg and Trevor Murphy. “LaTeX: when word fails you”. SIGUCCS '05: Proceedings of the
33rd annual ACM SIGUCCS conference on User services. ACM Press. 241–243. 2005.
http://doi.acm.org/10.1145/1099435.1099490.

[Sche88] BensonH. Scheff andTomGeorgon. “Letting software engineers do software engineering or freeing
software engineers from the shackles of documentation”. SIGDOC '88: Proceedings of the 6th annual
international conference on Systems documentation. ACM Press. 81–92. 1988.
http://doi.acm.org/10.1145/358922.358938.

[Schn92] G. Michael Schneider, Johnny Martin, and W. T. Tsai. “An experimental study of fault detection in
user requirements documents”. ACM Trans. Softw. Eng. Methodol.. ACM Press. 1. 188–204. 1992.
http://doi.acm.org/10.1145/128894.128897.

[Shah08] Rajiv Shah, Jay Kesan, and Andrew Kennis. “Implementing open standards: a case study of the
Massachusetts open formats policy”. dg.o '08: Proceedings of the 2008 international conference on
Digital government research. Digital Government Society of North America. 262–271. 2008. 978-
1-60558-099-9.

[Shan08] Uri Shani and Aviad Sela. “Software design using UML for empowering end-users with an external
domain specific language”. WEUSE '08: Proceedings of the 4th international workshop on End-user
software engineering. 52–55. 2008. ACM. http://doi.acm.org/10.1145/1370847.1370859.

[Shin05] Dong-Hoon Shin and Kyong-Ho Lee. “Generating XSLT scripts for the fast transformation of XML
documents”. WWW '05: Special interest tracks and posters of the 14th international conference on
WorldWideWeb. ACMPress. 1098–1099. 2005. http://doi.acm.org/10.1145/1062745.1062887.

[Stan98] IEEE Standards. “IEEE Recommended Practice for Software Requirements Specifications”. IEEE
Std 830-1998 (Revision of IEEE Std 830-1993). IEEE Std 830-1998 (Revision of IEEE Std 830-1993).
IEEE. 1. vi+31. October 1998.

[Stuc05] Alexander Stuckenholz. “Component evolution and versioning state of the art”. SIGSOFT Softw.
Eng. Notes. ACM Press. 30. 7. 2005. http://doi.acm.org/10.1145/1039174.1039197.

[Tami08] Jari Tamir, Oleg Komogortsev, and Carl Mueller. “An effort and time based measure of usability”.
WoSQ '08: Proceedings of the 6th international workshop on Software quality. 47–52. 2008. ACM.
http://doi.acm.org/10.1145/1370099.1370111.

[Tant97] Duke Tantiprasut, John Neil, and Craig Farrell. “ASN.1 protocol specification for use with arbitrary
encoding schemes”. IEEE/ACM Trans. Netw.. IEEE Press. 5. 502–513. 1997.
http://dx.doi.org/10.1109/90.649464.

[Thom01]Bill ThomasandScott Tilley. “Documentation for software engineers:what is needed to aid system
understanding?”. SIGDOC '01: Proceedings of the 19th annual international conference on Computer
documentation. ACM Press. 235–236. 2001. http://doi.acm.org/10.1145/501516.501570.

[Thom05] Peter L. Thomas and David F. Brailsford. “Enhancing composite digital documents using XML-
based standoffmarkup”. DocEng '05: Proceedings of the 2005ACMsymposiumonDocument engineer-
ing. ACM Press. 177–186. 2005. http://doi.acm.org/10.1145/1096601.1096647.

[Town88] George Towner. “Auto-updating as a technical documentation tool”. DOCPROCS '88: Proceedings
of the ACM conference on Document processing systems. ACM Press. 31–36. 1988.
http://doi.acm.org/10.1145/62506.62514.

[Vanh03] Jari Vanhanen, Juha Itkonen, and Petteri Sulonen. “Improving the interface between business and
product development using agile practices and the cycles of control framework”. Agile Development
Conference, 2003. ADC 2003. Proceedings of the. 71–80. 2003.

[Velo99] Lisa Veloz. “Implementing the Microsoft Office User Specialist program”. SIGUCCS '99: Proceedings
of the 27th annual ACM SIGUCCS conference on User services. ACM Press. 195–198. 1999.
http://doi.acm.org/10.1145/337043.337142.

106

References

[Vill02] Lionel Villard andNabil Layaïda. “An incremental XSLT transformation processor for XML document
manipulation”. WWW '02: Proceedings of the 11th international conference on World Wide Web.
ACM Press. 474–485. 2002. http://doi.acm.org/10.1145/511446.511508.

[Visc93] Marcello Visconti and Curtis Cook. “Software system documentation process maturity model”. CSC
'93: Proceedings of the 1993 ACM conference on Computer science. ACM Press. 352–357. 1993.
http://doi.acm.org/10.1145/170791.170869.

[Walk81] JanetH.Walker. “Thedocument editor: A support environment for preparing technical documents”.
Proceedings of the ACM SIGPLAN SIGOA symposium on Text manipulation. 44–50. 1981.

[Will04] AshleyWilliams. “The documentation of quality engineering: applying use cases to drive change in
software engineering models”. SIGDOC '04: Proceedings of the 22nd annual international conference
on De s i g n o f commun i ca t i o n . ACM Pre s s . 4 –13 . 2004 .
http://doi.acm.org/10.1145/1026533.1026538.

[Wils97]WilliamM.Wilson, LindaH. Rosenberg, and LawrenceE. Hyatt. “Automated analysis of requirement
specifications”. ICSE '97: Proceedings of the 19th international conference on Software engineering.
ACM Press. 161–171. 1997. http://doi.acm.org/10.1145/253228.253258.

[Wong08] Jeffrey Wong and Jason Hong. “What do we "mashup" when we make mashups?”. WEUSE '08:
Proceedings of the 4th international workshop on End-user software engineering. ACM. 22. 35–39.
2008. http://doi.acm.org/10.1145/1370847.1370855. 978-1-60558-034-0.

[XuLi07] Li Xu. “Project the wiki way: using wiki for computer science course project management”. J.
Comput. Small Coll.. Consortium for Computing Sciences in Colleges. 22. 109–116. 2007.

[Zuse05]Wolfgang Zuser, Stefan Heil, and Thomas Grechenig. “Software quality development and assurance
in RUP, MSF and XP: a comparative study”. 3-WoSQ: Proceedings of the third workshop on Software
quality. ACM Press. 1–6. 2005. http://doi.acm.org/10.1145/1083292.1083300.

Specifications
[DITA] Michael Priestley, Robert D. Anderson, and JoAnn Hackos. “DITA Version 1.1”. August 2007.

http://docs.oasis-open.org/dita/v1.1/OS/overview/overview.html. OASIS.

[EXI] John Schneider and Takuki Kamiya. “Efficient XML Interchange (EXI) Format 1.0”. July 2008.
http://www.w3.org/TR/2008/WD-exi-20080728/. World Wide Web Consortium. 4th Working
Draft.

[FI] ITU-T Study Group 17. “ITU-T Rec. X.891 (05/2005) Information technology - Generic applications of
ASN.1: Fast infoset”. May 2005. http://www.itu.int/rec/T-REC-X.891-200505-I. International
Telecommunication Union.

[ODF] Michael Brauer, Patrick Durusau, Gary Edwards, David Faure, Tom Magliery, and Daniel Vogelheim.
“Open Document Format for Office Applications (OpenDocument) v1.0”. May 2005.
http://www.oasis-open.org/committees/download.php/12572/OpenDocument-v1.0-os.pdf. OASIS.

[ODF-1.1] Patrick Durusau, Michael Brauer, and Lars Oppermann. “Open Document Format for Office Appli-
cations (OpenDocument) v1.1”. February 2007. http://docs.oasis-open.org/office/v1.1/OS/Open-
Document-v1.1.pdf. OASIS.

[OOXML] Ecma TC45. “Office Open XML File Formats”. December 2006. http://www.ecma-internation-
al.org/publications/standards/Ecma-376.htm. Ecma International.

[OOXML-WP] Ecma TC45. “Office Open XML Overview”. December 2006. http://www.ecma-internation-
al.org/news/TC45_current_work/OpenXML%20White%20Paper.pdf. Ecma International.

107

[RELAX] James Clark and Makoto Murata. “RELAX NG Specification”. December 2001. http://www.re-
laxng.org/spec-20011203.html.

[RFC2141] R. Moats. RFC 2141: URN Syntax. May 1997. http://tools.ietf.org/html/rfc2141. proposed
standard.

[RFC4287] M. Nottingham and R. Sayre. RFC 4287: The Atom Syndication Format. December 2005.
http://tools.ietf.org/html/rfc4287. proposed standard.

[RTF-1.6] Microsoft Corporation. “Rich Text Format Specification, version 1.6”. May 1999. http://msdn.mi-
crosoft.com/library/default.asp?url=/library/en-us/dnrtfspec/html/rtfspec.asp.

[RTF-1.8] Microsoft Corporation. “Rich Text Format Specification, version 1.8”. April 2004.
http://www.microsoft.com/downloads/details.aspx?familyid=ac57de32-17f0-4b46-9e4e-
467ef9bc5540.

[SVG] Jon Ferraiolo, ,and Dean Jackson. “Scalable Vector Graphics (SVG) 1.1 Specification”. January 2003.
http://www.w3.org/TR/SVG11/. World Wide Web Consortium. W3C Recommendation.

[XIncl] Jonathan Marsh and David Orchard. “XML Inclusions (XInclude) Version 1.0”. December 2004.
http://www.w3.org/TR/xinclude/.

[XLink] Steve DeRose, Eve Maler, and David Orchard. “XML Linking Language (XLink) Version 1.0”. June
2001. http://www.w3.org/TR/xlink/.

[XML-ID] Jonathan Marsh, Daniel Veillard, and Norman Walsh. “xml:id Version 1.0”. September 2005.
http://www.w3.org/TR/xml-id/.

[XML-WD] Tim Bray and C. M. Sperberg-McQueen. “Extensible Markup Language (XML)”. November 1996.
http://www.w3.org/TR/WD-xml-961114.

[XML1.0] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. “Extensible Markup Language (XML) 1.0”.
February 1998. http://www.w3.org/TR/1998/REC-xml-19980210.

[XML1.0(e4)] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau. “Extensible
MarkupLanguage (XML)1.0 (FourthEdition)”. September2006. http://www.w3.org/TR/2006/REC-
xml-20060816/.

[XMLNS] Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin. “Namespaces in XML 1.1 (Second
Edition)”. August 2006. 2. http://www.w3.org/TR/xml-names11/.

[XPath] James Clark and Steve DeRose. “XML Path Language (XPath)”. November 1999.
http://www.w3.org/TR/xpath.

[XSD-1] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn. “XML Schema Part 1:
Structures Second Edition”. October 2004. http://www.w3.org/TR/xmlschema-1/.

[XSD-2] Paul V. Biron and Ashok Malhotra. “XML Schema Part 2: Datatypes Second Edition”. October 2004.
http://www.w3.org/TR/xmlschema-2/.

[XSL] Sharon Adler, Anders Berglund, Jeff Caruso, Stephen Deach, Tony Graham, Paul Grosso, Eduardo
Gutentag, Alex Milowski, Scott Parnell, Jeremy Richman, and Steve Zilles. “Extensible Stylesheet
Language (XSL) Version 1.0”. October 2001. http://www.w3.org/TR/xsl.

[XSLT] JamesClark. “XSLTransformations (XSLT)Version1.0”. November1999. http://www.w3.org/TR/xslt.

Web references
[Anis05] Chris Aniszczyk and Lawrence Mandel. “Authoring with Eclipse”. December 2005.

http://www.eclipse.org/articles/Article-Authoring-With-Eclipse/AuthoringWithEclipse.pdf.

108

References

[Crox05]Martin Croxford andRoderick Chapman. Correctness by Construction: AManifesto forHigh-Integrity
So f tware . J ourna l o f De fense So f tware Eng ineerng . 2005 .
http://www.stsc.hill.af.mil/crosstalk/2005/12/0512CroxfordChapman.html.

[IDABC04] IDABC. “European Interoperability Framework for Pan-European eGovernment Services”. 2004.
http://europa.eu.int/idabc/document/3761.

[IDABC05] IDABC. Documentation on the Promotion of Open Document Exchange Format. 2005. http://eu-
ropa.eu.int/idabc/document/3439.

[Jaco03] Ivar Jacobson. Use Cases: Yesterday, Today, and Tomorrow. November 2003. http://www-
128.ibm.com/developerworks/rational/library/775.html.

[Krav05] ChristianKravogel andBorisHorner. DITA - Getting Started. 2005. http://idealliance.org/proceed-
ings/xtech05/papers/04-02-02/.

[Mass05] Commonwealth of Massachusetts. Enterprise Technical Reference Model. 2005.
http://www.mass.gov/Aitd/docs/policies_standards/etrm3dot5/ETRM_v3dot5draft_information.pdf.

[Open05] OASIS Open. Approval of OpenDocument v1.0 as OASIS Standard. 2005. http://lists.oasis-
open.org/archives/tc-announce/200505/msg00001.html.

[Orch03] David Orchard and Norman Walsh. Versioning XML Languages. October 2003.
http://www.w3.org/2001/tag/doc/versioning-20031003.

[Sunw05] Sun Microsystems. Sun Microsystems Adds Two New Services to Sun Grid Utility, Easing Transition
to Emerging Web 2.0. November 2005. http://www.sun.com/smi/Press/sunflash/2005-11/sun-
flash.20051101.2.html.

[Valo03] Valoris. “Comparative assessment of Open Documents Formats”. May 2003. ec.europa.eu/id-
abc/servlets/Doc?id=17982.

[Wals05] Norman Walsh. “DocBook: From Syntax to Publication”. November 2005.
http://nwalsh.com/docs/tutorials/xml2005/slides.pdf.

109

110

Colophon
This thesiswasproducedwithDocBookand theXSL stylesheets. The transformation fromXML toFOemployed
xmllint for preprocessing and Saxon for the final big step. The formatting processor used to create the final
PDF output is RenderX XEP. The bibliography was created with JabRef and a custom DocBook export layout,
with minor manual modifications. Most of the diagrams were created with Inkscape. The thesis was edited
in jEdit and Kate.

111

112

	Design and Development of a Standards-Based Authoring Framework for Software Requirements Specifications
	Contents
	Introduction
	1. Motivation
	2. Importance
	3. Today's Reality
	4. Outline

	Part I. Requirements Documentation Authoring
	Chapter 1. Requirements – Terminology and Definitions
	1.1. Software Product Lifecycle
	1.2. Basic Definitions
	1.2.1. Domains
	1.2.2. Software Requirements
	1.2.3. Roles in the Requirements Process
	Passive Roles
	Active Roles

	1.3. Requirements Specifications
	1.3.1. Characteristics
	Weak Characteristics

	1.3.2. Content
	Design-Related Information
	Recommendations
	V Model
	IEEE 830-1998

	1.3.3. Classification

	1.4. Requirements Documentation
	1.4.1. Program Understanding
	1.4.2. Measure the Quality of Software
	Lack of Documentation
	Errors in Documentation

	1.5. Documentation Types
	1.5.1. Requirements Context
	1.5.2. Stakeholder Documentation
	Customer and Operations
	Architect and Analyst
	Developer

	1.5.3. Summary

	1.6. Software Development Models
	1.6.1. Terminology
	1.6.2. Plan-Driven
	History
	Waterfall
	Spiral

	Rational Unified Process
	Concepts
	Workflows

	1.6.3. Agile
	Scrum
	Roles in Scrum
	Flow in Scrum
	Requirements in Scrum

	Chapter 2. Goals and Evaluation of Requirements Authoring
	2.1. Goals of Document Authoring for Requirements Documentation
	2.1.1. Gain Understanding
	Quality of Perception
	Learnability

	2.1.2. Share Information
	Availability
	Distribution
	Retrieval

	2.1.3. Track Information
	Versioning
	Transparent Changes

	2.2. Evaluation with Maturity Models
	2.2.1. Process Maturity Model
	2.2.2. Documentation Maturity Model
	Efficiency
	Format
	Granularity

	2.3. Exemplary Industrial Processes
	2.3.1. RaPiD 7
	2.3.2. Process T
	Process Flow
	Reviews
	Introduction of Changes
	Information in a Change Request

	Attained Goals and Maturity
	Goals
	Maturity Models Applied

	Part II. Documentation Formats and Authoring Tools
	Chapter 3. Analysis of Documentation Formats
	3.1. Restrictions
	3.1.1. Document-Centric
	Toolset
	Wiki as an Alternative to Document-Centric

	3.1.2. Standardized and Open
	Drawbacks Through Lacking Standardization
	Information Extraction
	Perpetual Availability

	Examples of Standards Support

	3.1.3. Structured
	3.1.4. XML-Based Solutions
	Alternatives to XML-Based Formats
	Standardized Inclusion Methods
	Human Readable Markup
	Separation of Content and Style
	Extensibility
	Wide Acceptance
	Summary

	3.2. Traditional Document Formats
	3.2.1. Word Document Format
	Format using Word Doc
	Recent History for Microsoft Word
	Additional Information on the Word Document Format

	3.2.2. TeX
	Format using LaTeX
	Additional Information about TeX

	3.3. Current Document Formats and Standards
	3.3.1. DocBook
	DocBook Versions
	Structure
	Toolchain
	Elements of the DocBook Toolchain
	Styling in DocBook

	3.3.2. OpenDocument
	Standardization
	Structure
	Package

	3.3.3. Office Open XML
	Standardization
	Advantages over Previous Office Formats
	Structure

	3.3.4. Other Structured Formats
	3.3.5. Common Documentation Format Concepts
	3.3.6. Summary of Current Documentation Formats

	Chapter 4. Analysis of XML-Based Authoring Tools
	4.1. Capabilities of an Authoring Tool for Requirements Documentation
	4.1.1. Sources of Requirements for the Authoring Tool
	Documentation Engineering
	Authoring of Complex Structured Documents

	4.1.2. Consolidated Requirements for the Authoring Tool

	4.2. Commercial Authoring Tools
	4.3. Independent Projects
	4.3.1. General Project Activity
	4.3.2. Vex — A Visual Editor for XML
	Document Formats in Vex
	Document Styling in Vex

	4.3.3. Etna XML Editor
	Document Formats in Etna
	Document Styling in Etna

	4.4. Summary

	Part III. Modular Integration Concept
	Chapter 5. Concept of an Authoring Framework
	5.1. Goals of the Authoring Framework
	5.2. Component Overview
	5.3. Component Architecture
	5.3.1. Base Documentation Format
	Content
	Structure
	Text in Prose and Structured Text
	Images and Diagrams
	Links to External Resources
	Aggregated Information

	Style
	Presentation Format
	Content Handler

	5.3.2. Authoring Tool
	Editor
	Comparison
	Differences
	Annotations
	Annotated View

	5.3.3. Repository
	Storage
	Linking

	5.4. Design Discussion
	5.4.1. Domain-Specific Language
	Definition of a DSL
	DSLs in the Authoring Framework

	5.4.2. Versioning
	5.4.3. Meta-Format

	Chapter 6. Developing the Authoring Framework
	6.1. Focus
	6.1.1. Framework Design
	6.1.2. Field of Application

	6.2. Documentation Format
	6.2.1. Content Description
	Validation
	Coverage
	Namespaces

	6.2.2. Use Case Description
	Single Use Case
	Formatting
	Scenario Description

	Logical Hierarchy
	Inclusion and Extension

	6.2.3. Change Annotation

	6.3. Document Viewer
	6.3.1. Document Comparison
	Revision Streams
	Diff and Annotation Inference

	6.3.2. Aggregation

	6.4. Repository
	6.4.1. Feeds
	6.4.2. Integration
	Details on Pipe Implementation
	Details on App Engine Implementation

	Chapter 7. Validation and Conclusion
	7.1. Validation
	7.1.1. Scenarios
	7.1.2. Tasks
	Distribute Version as a Reference
	Integration of Feedback
	Inform Interested Stakeholders of Updated Document
	Review Changes that have been made to a Document

	7.1.3. Further Steps required for Validation

	7.2. Related Work
	7.3. Conclusion
	7.3.1. Summary
	Requirements Documentation Authoring
	Documentation Formats and Authoring Tools
	

	7.3.2. Outlook
	Transformation Designer

	References

