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Abstract

The DECOS (Dependable Embedded COmponents and Systems) integrated
architecture allows the integration of different embedded application sub-
systems with different criticality into the same hardware infrastructure. In
the DECOS integrated architecture, computational resources (CPU time,
memory, I/O) and communication resources (network bandwidth) are shared
among multiple software components in order to reduce the number of de-
ployed embedded computer nodes, which implies the reduction of system cost.

The DECOS integrated architecture consists of four layers: the I/O layer, the
application layer, the middleware layer, and the core layer. Distributed soft-
ware applications run at the application layer. So called DECOS high-level
services (virtual network service, virtual gateway service, diagnostic service)
are executed in the middleware layer. The core layer provides services that
are in charge of predictable and fault-tolerant communication among differ-
ent DECOS integrated nodes.

In order to perform a seamless integration of different software modules that
may be developed by different vendors, the DECOS integrated architecture
services guarantee that different applications do not affect the operation of
each other in an undesired manner: An application job that is executed in one
of the DECOS components can not affect other application jobs or DECOS
services. A prototype implementation of the DECOS integrated architecture
was developed at the Vienna University of Technology.

The encapsulated execution environment is in charge of preventing non-
specified interaction among the application jobs (implemented as LXRT
tasks) executed in the DECOS components. The encapsulated execution
environment is implemented by using the Linux operating system with RTAI
and LXRT patches. The objective of this work is to validate whether Linux-
RTAI-LXRT fulfills the requirements to be used as an encapsulated execution
environment in the DECOS integrated architecture. Validation is performed
by means of software implemented fault injection (SWIFI).

SWIFI is usually deployed to emulate the occurrence of hardware faults.
In this work, SWIFI is used to perform the emulation of software faults in
order to observe, if a faulty application job that is executed in a DECOS
component can affect the operation of other application jobs or the DECOS
services.
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1 Introduction

Embedded systems are the core components in many automated systems.
They perform the control of operations in devices ranging from household
washing machines up to safety critical applications like flight coordination of
aircrafts. With the integration of more and more functions in such systems,
multiple networks were connected to distributed systems in order to segment
the workload.

Current applications are often realized by using components of different
characteristics and connect them by a communication system, e.g. a bus
system like the CAN bus, to distribute information among the various com-
ponents. This design principle is called a federated system design. Each
functionality in a system requires a separate embedded computer node. Each
node executes a software task, and a set of all tasks in such an embedded
computer network is denoted as a Distributed Application System (DAS).
The design which allows to reduce the number of DAS in a distributed system
and integrate several independent DASes in a single computer system is called
an Integrated architecture.
The move from a federated to an integrated architecture requires the proof
that applications integrated into a single node do not influence each other
under all conditions. One must be able to guarantee the logically and timely
correctness of the whole system by reproducible test cases. For the certifi-
cation process of safety critical systems, the validation of these claims is a
must.

One has to use a dedicated framework to provoke the several fault cases
stated in the design specification of integrated systems under the term fault
model. The framework to inject faults into the system shall introduce an
overhead as small as possible to not influence the default system behavior
unintentionally (the probe effect). Fault injection tools are required, because
faults of the fault hypotheses normally appear only in rare cases. Injection
by synthetic tools allows the accelerated occurrence of defined faults in a
computer system.

This thesis deals with the several already existing software implemented
fault injection (SWIFI) tools for real-time systems and introduces a cus-
tomized SWIFI framework for the real-time system under test.
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Eventually, test cases for the fault model of this specific system are pre-
sented and validated. The results derived from this validation pass can give
hints for further improvements of the current implementation.

1.1 Problem Definition

DECOS integrated architecture allows integration of different embedded ap-
plication subsystems with different criticality into the same hardware infras-
tructure. The encapsulated execution environment (EEE) and the DECOS
middleware services and core services are in charge of preventing non spec-
ified interaction among the application jobs and prohibit monopolization of
the communication medium by a faulty task or component. One possible
design is to implement the encapsulated execution environment by using the
encapsulation mechanism (allocation of memory and CPU resources to spe-
cific tasks) of operating systems. The Linux operating system was used in a
prototype implementation of the DECOS integrated architecture developed
at Vienna University of Technology. The Linux-extension RTAI allows the
execution of tasks in a real-time mode as kernel tasks. LXRT is an addition
to the RTAI framework that allows the execution of real-time tasks in the
userspace. RTAI and LXRT is deployed in the DECOS integrated architec-
ture.

In this thesis we want to validate whether the Linux-RTAI-LXRT fulfills
the requirements to be deployed as an EEE for the DECOS integrated archi-
tecture.
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1.2 Objectives

The main objective of this thesis is to validate the Encapsulated Execution
Environment (EEE) of the DECOS system under test. Based on the results
of the executed experiments, assumptions on the correctness can be made.

The diploma thesis objectives can be divided into four parts:

• Development of a tailored SWIFI framework for the validation of the
EEE
An existing SWIFI has to be extended to allow the injection of software
faults into a node under test. The SWIFI shall allow the defined,
repeatable execution of software fault injections.

• Validation of the DECOS fault hypothesis for SW faults
To accomplish this, a sound set of test cases for faults stated in the
DECOS fault model have to be developed. The test cases cover the as-
pects of temporal correctness with respect to the integrated application
tasks as well as the capability to isolate faulty jobs so they can not affect
the correct behavior of the other tasks integrated in the computational
subsystem (node).

• Validation of Linux-RTAI-LXRT as DECOS EEE
The validation whether the Linux-RTAI-LXRT implementation fulfills
the requirements to be deployed as an EEE for DECOS will be derived
from the performed test cases.

• Design considerations for further improvements of the EEE encapsulation
mechanisms of the Linux-RTA-LXRT
Based on the experiment results, it can be analysed if and where the
design of the integrated architecture can be improved or extended to
fulfill the requirements of the hypotheses about faults in the system.
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1.3 Organization of this thesis

Chapter 2 presents generic aspects of real-time and fault-tolerant systems
and requirements of such systems. The deterministic RTAI-LXRT frame-
work on top of a Linux operating system is presented in this chapter. It also
gives an overview of validation by means of software fault injection. Several
existing software fault injection systems are presented as well.

Chapter 3 describes the DECOS architecture, conceptually a distributed real-
time system extended for deployment in safety critical environments. The
core communication subsystem is handled by the Time-Triggered Ethernet
(TTE).

Chapter 4 presents the basic design concept of the Software Implemented
Fault Injection (SWIFI) framework. An existing framework is extended in
this thesis to cover the emulation of different software faults in the DE-
COS environment. Furthermore, specific DECOS implementation details of
the DECOS prototype implementation using the Linux-RTAI-LXRT are pre-
sented.

Chapter 5 gives the list of test cases for the validation of the fault hypothe-
sis of the DECOS integrated architecture. The results of the executed fault
injection experiments are presented as well.

Chapter 6 presents the analysis of the experiment results. Should any ex-
periments not show the correct behavior, proposals for design improvements
are given.

Chapter 7 closes with a summary on the results, the usability of the current
implementation, and whether it is ready for deployment.
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2 Review of the state of the art

In this section, an overview on real-time systems, real-time operating sys-
tems, and fault tolerance concepts is presented. Furthermore, the technique
of fault injection and existing fault injection tools are introduced.

2.1 Real-time systems

This diploma thesis is about the validation of a component of a real-time
(RT) computer system, so we will start with the definition of the term RT
computer system.

According to [1], a real-time computer system is a computer system, whose
correct system behavior not only depends on the correctness of a calcula-
tion. It is also required that the correct calculation is available at a specified
instant of time. This behavior of delivering the calculation at a specified in-
stant is called timeliness. The specified instant — the deadline — is derived
from the real-time system where the computer system is integrated.

The real-time system typically consists of a RT computer system, a con-
trolled object and an operator [1]. Each of these three subsystems is called a
cluster.

Figure 1: Real-time systems [1]

The following chapters shall present an overview of real-time computer sys-
tems aspects and limits with respect to non real-time systems.

2.1.1 Classification of real-time systems

A classification of real-time system can be made upon the specified deadline
importance. The deadline of a real-time system is derived from the controlled
object.
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There are three classes of deadlines we can distinguish. The classification
of those categories is made upon the outcome of the miss of the specified
deadlines [1].

Soft deadline - A deadline is classified as a soft deadline, if the result of
the calculation is of utility even after the miss of the specified deadline.

Firm deadline - For a firm deadline, the result of the calculation has no
utility after the deadline has passed.

Hard deadline - A hard deadline denotes a deadline, whose miss can result
in a catastrophic event.

Based on the classification of the deadlines, we can classify two types [1] of
real-time systems accordingly:

Soft real-time systems
A real-time system is called a soft real-time system, if no single hard dead-

line exists in the real-time environment [1]. In soft real-time systems, the
miss of the deadlines has only minor impact on the result, or the quality of
service of the application is only of minor quality [31]. Nowadays RT sys-
tems are integrated in a broad range of services and devices. Even consumer
multimedia devices are driven by such instead of the classic dedicated digital
control approach.
An example of such a soft real-time systems is a real-time video broadcast
systems, where the miss of a deadline — the timely transmission of a video
frame — causes only slight distortions in the resulting video.
In a digital VCR, the real-time part covers the recording of TV broadcasts
at a given time. Evidently, the miss of the deadline (i.e., the start of the TV
show) has no catastrophic result, because the only problem resulting would
be the miss of the first few seconds or minutes of the program.

Hard real-time systems
A real-time system is called hard, when at least a single hard deadline

exists. Hard real-time systems have to meet their deadlines under all specified
load and fault conditions [1].
For example, operating systems in nuclear power plants have to fulfill much
higher demands on the service they provide. The reaction in the case of
a problem in the reactor core requires a tight synchronized, timely correct
sequence of actions to move the control rods in a safe position in order to stop
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the nuclear reaction. A miss of the deadline dictated by the nuclear reaction
inside the core can result in a catastrophe costing the lives of many. This
leads to the necessity of a hard real-time operating system. Of course, besides
other measures such as redundant subsystems, secondary power supplies for
the control system, diversity, voting mechanisms, etc.

Figure 2: soft vs. hard real-time [31]

2.2 Real-time operating systems

Operating system required for RT systems are called real-time operating sys-
tem (RT-OS). They must ensure a predictable service to the application tasks
to be executed on the node. RT-OS have therefore to provide the following
services [1]:

• Task management

• Time management

• Interprocess communication

• Error detection

2.2.1 Task management

The Task management service ensures the correct initialization and timely
correct execution of tasks in a node. In real-time environments, it is required
to schedule multiple application tasks with respect to their defined timing
constraints on the available CPU time. Of course, it would be desirable to
have an exclusive CPU core for every application task, but economic consid-
erations circumvent such systems. It would simply be a waste of resources
as the utilization of the cores would in most cases tend toward zero.

To schedule the existing workload on the available CPU resources, a schedul-
ing plan has to be developed that each task meets its specified deadline, so
that the claim of timeliness in the system is achieved. It is a must for the
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validation process to adduce evidence for the timing constraints of the whole
system.

For the development of the proper scheduling mechanism, we have to dis-
tinguish whether a real-time operating system has to handle Time-Triggered
(TT) tasks or also Event-Triggered (ET) Tasks. ET tasks are triggered when
a certain event in a systems (i.e., the rise of an observed temperature above
a defined limit) occurs and can therefore not be predicted. This makes it
difficult to design a system with a guaranteed response time, because events
can occur very often and also simultaneous. In systems with a single CPU,
events have to be queued and processed in a well defined temporal order:
either based on a first-in-first-out strategy or based on a priori defined pri-
orities.
Time triggered tasks are easier to handle, when the occurrence of the task,
the schedule, is defined at design time. Each task gets a guaranteed exclu-
sive CPU time (i.e., a time slot) to process the workload according to a fixed
schedule configuration.

As the main concern of this thesis is about the DECOS environment, where
we have to fulfill the scheduling of TT tasks, the following shall give an
insight of mechanisms for such time triggered architectures.

Static scheduling
If a system is designed with static scheduling, the only source of events is

the periodic clock interrupt, which triggers the scheduler. The scheduler has
to be configured with a scheduling table which is free of conflicts (i.e., no
two (or more) tasks have to be executed at the same time slice). Scheduling
information in operating systems is stored in the OS’s dispatcher table [1].
If the conflict-free schedule is guaranteed, then the scheduler’s only function
at runtime is to pick the right task from the dispatcher table — a search
problem — and activate that task. The actual instant of time can be seen as
the input of the search-function. In order to achieve the correct scheduling of
dependent tasks in a distributed system, a tight synchronized understanding
of the current time among all participant nodes (i.e., the global time) is re-
quired. Adequate clock synchronization strategies will be presented later in
this chapter. It is also clear that to configure a design-time schedule, which
depends on the timing constraints of the scheduled tasks (the deadlines), it
must be possible to get the worst case execution time (WCET) of all sched-
uled tasks.
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According to [22], the static analysis of real-time programs is only possible,
if there are:

• no unbounded control statements at the beginning of a loop,

• no recursive function calls in the task code, and

• no dynamic data structures are used.

As the static analysis of the tasks runtime is required for static scheduling,
these three assumptions have to be taken into account when designing appli-
cation tasks.

To check the schedulability of all tasks in a real-time operating system, we
have to know the WCET ci of all tasks ti and their respective schedule period
Pi. On a single processor system, the schedulability of n tasks can be tested
if the following function succeeds [1]:

µ =
n∑

i=1

ci

pi

≤ 1; 1 ≤ i ≤ n

2.2.2 Time management

Time
To establish a temporal relationship of events in a real-time computer sys-

tem, a function to compare instants has to be provided. The metric for time
measurement is the physical second. Time is used to establish temporal and
causal order in a real-time system. Time can be modeled as directed timeline
with an infinite set {T} of instants [1].
Temporal order is meant to put two instants p and q of instants {T} in rela-
tionship, where either p precedes q, q precedes p, or p and q are simultaneous.
The ordering of instants on a timeline is called temporal order. Furthermore,
if {T} is a dense set, then there is always an instant q between the instants
p and r if p and r are different instances [44]. Causal order addresses the
causal dependencies among two or more events ej . Causal dependency is
given, if an event e1 occurs before the event e2, and a variation of e1 implies
a variation of e2 [45]. Delivery order addresses the ordering of the arrival of
events in a distributed system. If all nodes see the same ordering of events
in a distributed system, then delivery order is given [1].

Clock
Clocks are used to measure the progression of time. A clock consists of
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an incrementing counter and an oscillation mechanism generating a periodic
event — called microtick of the clock — that increases the counter value.
The time duration between two consecutive clock ticks is denoted as the
granularity. Clocks in embedded computer systems are usually triggered by
an crystal resonator. Crystal resonators are no perfect clocks, as they have
have a drift rate ρ. The drift rate is defined as the deviation of microticks
between a reference clock and a real clock per clock ticks of the reference
clock [1]. The drift rate of crystal resonators is varying depending on aging
and ambient temperature. To compensate the faults of real clocks introduced
by the drift rate or clock counter faults, synchronization to external reference
clocks is performed. Three characteristics of clocks are of special interest [1]:

• Offset - The offset at microtick i is calculated as the time difference be-
tween the microticks of two clocks and is measured in microticks of the
reference clock. The compared clocks must have the same granularity.

• Precision - The precision Πi is the maximum offset of any two clocks
in an ensemble of clocks at a specified instant i. The precision Π is the
maximum of Πi over a period of interesting microticks i.

• Accuracy - The accuracy at the instant i of a clock k is the offset
of a the clock k compared to the reference clock z at the instant i
(accuracyk

i ). The accuracy of a clock k is the maximum offset com-
pared to the reference clock z over a period of interesting microticks i
(accuracyk)

Global time
In a distributed system with a number of embedded computer systems

(nodes) it is required to establish a global time to allow statements on or-
dering of events. If in a system of n nodes, all nodes are synchronized with
a precision Π, then a subset of microticks of a clock k can be defined as a
tick of the global time (macrotick), and the global time is called reasonable.
The maximum synchronization error for a reasonable global time is bound
to ≤ 1. As clocks can not be synchronized perfectly, there is no way to get
a better result [1].

Dense time vs. sparse time
In distributed systems, events are often observed at different nodes. The

events are timestamped with the global time at the nodes where they are
observed. In Figure 3 we can see the problem that the global time can not
per se be used to reason on the temporal order and the exact time difference
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of events.

Figure 3: Events with difference of one macrotick [1]

The events e1 and e3 are observed at node j with the local clock cj, whereas
the events e2 and e4 are observed at node k with local clock ck. The clock cz

is the reference clock. Node j timestamps the event e1 with the global time 1,
and node k timestamps the event e2 with 2. Although the real time difference
is 22 microticks, the measured value w.r.t. the global timebase is 1 macrotick.

Regarding the events e3 and e4 we can see that although e3 occurs before e4,
the global timestamp denotes that e4 with a global timestamp of 4 occurs
before e3, whose global timestamp is 5.

According to [1], the temporal order can only be reconstructed if two events
differ by at least two ticks of the global time (macroticks), as the synchro-
nization and digitalization error is always less than 2 granules of the global
time (macrogranules).

The requirement on temporal ordering of events can be satisfied by a sparse
timebase. In a sparse timebase, events are restricted to occur at specific in-
tervals, called active intervals, whereas a timebase is called dense, if no such
restrictions are specified. During the interval between two consecutive active
intervals no events are allowed to occur. This implies that the events have
to be in the sphere of control of the system, i.e., the computer system [48].
The events generated on the participant nodes at the same global time will
occur within the interval π, whereas during the interval ∆ no events are to be
generated. A timebase with an active interval π of length ǫ and a duration of
silence ∆ is called ǫ/∆-sparse [1]. To allow the temporal ordering of events,
a global timebase must be at least 1/4 sparse [1].

Time management in RT-OS
The Time management in RT-OS shall provide time services to the appli-

cation tasks, i.e., clock synchronization and activation of tasks at a specified
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Figure 4: Sparse timebase [1]

instant of time [1].

Clock synchronization
Clock synchronization is the process of making different units in a com-

puter network to agree on a same timeline.
Clock synchronization algorithms aim at bringing a set of Distributed clocks
into agreement. Internal clock synchronization is the action of bringing all
clocks within a local network into a closer agreement to each other while
external clock synchronization aims at bringing a clock or a set of clocks into
agreement with an external reference time [1].

Internal clock synchronization
Internal clock synchronization tries to establish and maintain synchrony

among a set of clocks such that the maximum deviation between any two
clocks can be bounded by a constant value denoted as precision Π [1]. The
clock synchronization precision represents the maximum offset between any
two clocks in the system.
The clock synchronization depends on the jitter introduced by the network
(message transmission jitter), the drift rates of the oscillators, the clock syn-
chronization interval, the jitter of processing the clock synchronization, and
the clock synchronization strategy and mechanisms.
Internal clock synchronization is a periodic activity that is executed at the
nodes of a distributed system that perform the following three steps:

1. Read the values of the other clocks.

2. Calculate the clock state correction term based on a set of remote clock
readings.

3. Apply the clock correction term to the clock.

Based on the clock correction policy, clock synchronization algorithms can
be classified into
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• clock state correction,

• clock rate correction, and

• combined approaches.

External clock synchronization
External clock synchronization is the process of establishing a synchro-

nization between a set of clocks and an external time source (e.g., a GPS
receiver) [1]. It is the goal of external clock synchronization to synchronize
a set of local clocks to external reference time such that the maximum devi-
ation between any local clock and any reference time server can be bounded
by a known and constant value.

Time services
The Time Services in RT-OS are crucial for the temporal order of events

in a node. According to [1], the basic time services cover the provision of
temporal ordered sequences to activate the TT tasks, the ability to send
the messages on the communication medium at a specified instant in the
future, and the time stamping of events that arise at a arbitrary instant.
Furthermore, it shall provide a function to convert the local time to the wall
clock time (Gregorian calendar).

2.2.3 Interprocess communication

In RT-OS, tasks are not always independent from each other. For two or
more tasks to access a common region of data it is sometimes required to
use synchronization mechanisms to ensure consistent views on that data. In
commercial-off-the-shelf (COTS) operating systems this is mostly done by
using semaphores. Semaphores cause a processing overhead which introduces
additional delay by context switching of tasks due to blocking [1].

For TT tasks with a static schedule, the tasks can be ordered in a way that
tasks do not interfere each other, whereas for ET tasks a solution would be
to duplicate the common data and access the copy during execution. After
execution, the data can be written back to the common region [1]. This way
a blocking behavior can be avoided.

2.2.4 Error detection

RT-OS have to implement mechanisms to monitor the correct execution of
tasks and detect faults. Faults can encounter in the temporal or value do-
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main [1].

Faults in the temporal domain can be detected by monitoring the execu-
tion times of tasks and comparing the timing characteristics to the statically
analyzed WCET. When a task exceeds the WCET, the RT-OS has to termi-
nate the corresponding task and mark the task as faulty.

In the value domain, faults can be detected by mechanisms like the dou-
ble execution of tasks. For the double execution of tasks, the time required
for the two consecutive executions is the double of the WCET. This time slot
has to be provided by the RT-OS. After the execution of the two calculations,
the RT-OS can compare the results and decide whether the result is correct
or not. The decision whether a task shall be executed twice, or not, is to be
done at design-time by the developer of the application task [1].

2.2.5 Requirements on real-time operating system calls

A real-time operating system has to provide a time predictable service to
all the application tasks to allow an exact statement about the timing con-
straints to achieve the claim of timeliness. Therefore a RT-OS has to make a
compromise about the application programming interface (API) it provides
to the application designer, as not all API functions available (e.g., desktop
operating systems) have a definite, bound timing behavior [1].

Dynamic memory allocation
At a certain point of time after successive allocations and deallocations,

when memory gets more and more fragmented, the function has to perform
an indeterministic, unbound number of extra CPU cycles to find a memory
block of the requested size. In the worst case, the memory chunk of the
requested size can not be found, and the function will return an error.

Dynamic memory deallocation
The actual release of a memory block causes several consecutive functions

in the OS to be called. In security related OS, the freed memory block
gets zeroed [21] to prevent security holes before merged to the adjacent free
memory regions, which have to be found by a search function. A design
consideration on bound execution times on dynamic memory allocation at
runtime can be seen in [21].

Recursions
The use of recursions, which depend on variable input can have dramatic
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effects in term of stack usage. Each recursion allocates additional stack
space, which after a finite number of consecutive cycles will result in a stack
overflow. If recursions in real-time tasks are required, the designer of the task
has to achieve counter-measures like limiting the recursion depth, checking
the stack space left and ensure an upper bound for the execution time [22].

Infinite loop detection
Tasks executing infinite loops due to incorrect inputs or program faults

cause deadline violations. A mechanisms for detecting deadline violations
has to be provided by the RT-OS. Tasks suffering from such a fault shall not
affect the operation of other tasks.

2.2.6 RTAI - Real-Time Application Interface for Linux

RTAI is an extension to Linux for real-time scheduling of application tasks.
It was originally designed at the Politecnico di Milano for projects in the
aerospace domain [19].

Linux is per default not capable to fulfill the timely claims on real-time
systems. The scheduling mechanisms of plain Linux are not sufficient to
fulfill the required timeliness of hard real-time systems. To overcome this
limitation, RTAI patches the kernel and injects an additional subsystem, the
ADEOS nanokernel, into the hardware abstraction layer (HAL) to intercept
the default interrupt handling and replace this mechanism with RTAI kernel
code. The reason behind is to allow the ADEOS nanokernel full control over
the timers of the computer systems: The 8254 chip with the four timers
available to operating systems [20]. This small modification in the kernel
code allows to run the Linux tasks on top of the RTAI framework in the
userspace. In fact, it allows to run several OSs on top of RTAI, each within
a special, encapsulated domain. Each time an interrupt arises, the ADEOS
kernel as the now default interrupt handler of the timer intercepts the call
and routes it to the affected domain along the interrupt pipeline.

Figure 5: ADEOS interrupt pipeline [31]

RTAI modules
RTAI is a modular architecture, where all functions are encapsulated in
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specific modules. A system designer can choose among the existing function
blocks and tailor the system to his specific needs. By selecting just the
required modules, it is possible to design a real-time system with a very
small footprint of only several megabyte. RTAI [20] consists of the following
modules:

rtai: The rtai module is responsible for the instantiation and initialization
of all RTAI variables and objects required for proper functionality. As
RTAI replaces the default LINUX interrupt handlers, it has to make
a copy of the interrupt descriptor table, the assignments from the 256
different interrupts to the corresponding Linux-handler, and initializes
the computer’s underlying interrupt management.

rtai sched: Scheduling in RTAI is achieved by the RTAI scheduler module
rtai sched.The external trigger event to activate this module is cre-
ated by the computer’s 8254 (or equivalent) PC Timer IC. Tasks get
scheduled based on whether they are in the ready-queue and on their
priority in the system, whereas the Linux-OS has the lowest priority.

rtai fifos: This module is responsible for the communication with the
RTAI primitive FIFO. FIFO allows to build a communication path
among RTAI tasks, but also from an RTAI task to a Linux task. An
RTAI-FIFO is seen as a standard character device from the non real-
time Linux tasks and is implemented as non blocking.

rtai shm: Shared memory operations in RTAI are achieved by the rtai shm

module. The module presents functions for the creation, write, read
and destruction of the shared memory object. Shared memory regions
can simultaneously be used from RTAI tasks, from the kernel and from
Linux tasks in userspace.

Real-time tasks in kernel-space Standard RTAI tasks are modules run-
ning in the kernelspace. This allows quick task switching times, as no mode
switch from kernelspace to userspace is required. RTAI tasks have the same
structure as standard modules.

Tasks real-time behavior in RTAI can be ensured in two ways:

one-shot mode: The first possibility is to schedule a task at a fixed instant
in the future. To accomplish this, RTAI uses the timer function in one-
shot mode, so the timer interrupt fires once. This allows to define an
instant in the future, but no periodic tasks. After initialization of the
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timer, the task has to be put in suspended mode. The timer interrupt
wakes the job, so it executes at the defined instant [19].
To re-launch a task in the future, the timer function has to be re-
enabled, causing additional overhead.

periodic mode: The second option is the periodic event of the timer. This
mode is set up with a period between two occurrences of the timing
interrupt. Each occurrence of the timer de-blocks the former suspended
task and executes it. No additional initialization during runtime is
necessary.

Real-time tasks in userspace (LXRT)
The approach to run modules in kernelspace has several disadvantages,

like the problem of limited debugging mechanisms, or that a faulty RTAI
task can lead to a system crash. Another drawback of kernelspace modules
is that it is not possible to use dynamically linked libraries.

As a solution to these problems, the RTAI extension LXRT was added to
the framework. This extension allows RTAI tasks to be run in the userspace,
where the existing memory protection mechanisms reduce the possibility of
system crashes.
The mechanism is implemented by using a buddy-task in the kernelspace
for each LXRT-task in userspace. The buddy-task acts as a server for the
LXRT-task: each RTAI function called from the LXRT-task gets routed to
the buddy-task and performed there. LXRT tasks can be run as either hard
or soft real-time tasks. This behavior can be changed at runtime [20].

LXRT is mostly used to test new code. After successful tests in the userspace,
and if no dynamic linked libraries are required, they can easily be trans-
formed to kernelspace modules, where the additional overhead, introduced
by the communication with the buddy task, can be removed.

2.3 Fault tolerant systems

This section presents the aspects of fault tolerant systems. In safety critical
applications, systems must be able to tolerate the presence of faults. For
example, in the aerospace domain, a single fault in the computer system
may not affect the operation of the whole system. Even in the presence of
faults, the pilot depends on the services of the system to land the aircraft in
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critical situations. We will start with the definition of the terms fault, error
and failure.

2.3.1 Faults, errors and failures

In fault tolerant systems, it is of utmost importance to prevent a single fault
in a subsystem to affect the correct operation of the whole system. It has
to be a design goal to detect the abnormal operation of such subsystem at
the smallest level possible. To specify the mechanisms, this section will at
first give the definition of the terms fault, error and failure to understand
the dependencies among them.

Figure 6: Faults, Errors, Failures, taken from [24]

Faults
A fault is the cause of an error. An erroneous system state can lead to a

system failure. Failures are events, whereas faults and errors are states [1].
In computer systems, faults can originate in both hardware and software.
A fault can be the missing check for division by zero (software fault) or
incorrect sensor readings due to faulty connection (hardware). According to
[24], faults can be classified by five categories:

Fault nature - If the fault originates by intention, (i.e., someone short-
circuited a connection or injected a malicious code), we speak of an
intentional fault. If the fault occurs by coincidence like a loose connec-
tion, the fault is called a chance fault.

Fault perception - If the fault originates by design (i.e. the division by
zero in a code fragment), the fault is called a design fault. Should the
fault originate in the physical domain, for example a stuck memory cell
in the computer’s RAM, it is called a physical fault.

Fault boundaries - This categorization is based on whether the fault is
caused by an event inside the system, for example the previously stated
stuck memory cell, or the event is triggered by some external action like
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mechanical stress due to vibrations causing loose connections. Faults
can therefore be defined as internal or external faults.

Fault origin - Fault introduced during the development phase, like incor-
rect coding of algorithms are called development faults. In contrast
to development faults, faults originating in incorrect interaction during
the operation are called operation faults.

Fault persistence - Faults appearing occasional and disappearing without
repair or maintenance are called transient faults. A node periodically
reading and processing sensor values over a loose connection reads cor-
rect and incorrect values depending on whether the connection is good
or bad. Evidently, when the connection is good, the correct value pro-
cessed overwrites the faulty value, meaning the error disappears un-
til the connection breaks up again. If the connection is permanently
broken, the controller cannot read correct data and the node will per-
manently calculate invalid results. The fault can only be removed, if
maintenance is done on the connection. This type of fault is called a
permanent fault.

Classification of software faults
Software faults can be classified into the following typical categories due

to their fault behavior:

Bohrbugs - Bohrbugs are software faults that can be reproduced when re-
peating the operation on the testing components. This makes it simple
to deal with them by software fault detection mechanisms in the test
phase [25]. Due to their solidness, the name Bohrbug was derived from
the Bohr atom. Removing Bohrbugs in systems already deployed to
the field is simple, as the fault can be reproduced in the environment
at the developer’s site when the input parameters are known [26].

Heisenbugs - Heisenbugs are much more complicated to find, as they tend
to not always produce a fault when repeating the operation with the
same input data. Bruce Lindsay says about Heisenbugs: ”Heisenbugs
as originally defined [...] are bugs in which clearly the behavior of the
system is incorrect, and when you try to look to see why its incorrect, the
problem goes away [27].” Heisenbugs appear in rare cases and can be
pinned down to either strange hardware conditions (e.g., device fault),
limit conditions (e.g. lost interrupt) or race conditions. [28]
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Software aging - Software aging is a problem of certain software systems,
when running for a long time: the rate of fault-occurrence rises dur-
ing runtime. The solution to software aging in most cases is to restart
the component, called rejuvenating. The failed interception of a Scud
rocket in Dhahran during the Irak war in 1991 was due software aging:
The precision of the targeting system of the Patriot rocket decreased
with increasing runtime, and the suggested rebooting process to over-
come this problem was not performed [26].

Errors
As we can see in the Figure 6, an error is the result of a fault. In com-

puter systems, an error is an internal state. Errors can be classified into two
categories:

• Transient errors

• Permanent errors

If a fault on the input of a task arises, and the application task’s output is
directly calculated from the input, then the error is classified as a transient
error. As soon as the fault is repaired, the application task will calculate a
correct result and the error state disappears [1].

Should the application task’s result not only depend on the actual input, but
the calculation also depends on a past value of an input, then the error is per-
sistent [1]. A typical example is a temperature controller whose calculation
is also based on past temperature sensor readings. The past sensor readings
are stored in the tasks history state (h-state) and are used for future calcu-
lations. The incorrect h-state persists until a ”repair” action is performed
(i.e., a reset of the h-state) [1].

Failures
”A Failure is an event that denotes a deviation between the actual service

and the specified or intended service, occurring at a particular point in real
time [1].” Failures can be classified into the following 4 classes [1]:

Failure nature - Failures can occur in either the temporal or the value do-
main. Failures occurring in the time domain (i.e., results are presented
outside the specified timing window) are called timing failures. Value
failures are failures which manifest in an incorrect value at the system
interface.
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Failure Perception - If a failure presents itself to all connected interfaces
consistently, the failure is called consistent failure. If the failure is not
consistent at all interfaces, the failure is called inconsistent failures. A
Byzantine failure is a typical inconsistent failure.

Failure Effect - The effect a failure has on the system can either be benign
where the costs resulting are minor or malign, where the costs of the
failure are much higher than the system costs. Systems able to tolerate
malign failures are called safety-critical systems [1].

Failure Oftenness - A failure occurring only once in a specified time in-
terval is called a single failure. A permanent failure is a single failure
disappearing after a repair action. Failures occurring a repeated num-
ber of times in a specified interval are called intermittent failures.

2.3.2 Fault tolerant system characteristics

The requirement for the system behavior in the event of a failure can be de-
rived from the environment it is implemented into. When detecting abnormal
operation, it is required to put the system in a condition, where no harm is
possible to the system and its environment. If such state — the safe state
— can be identified, the system can be implemented as a so called fail-safe
system [1]. An example would be an elevator control logic: In case of a fire
in a building, a safe state for elevators is to direct all cabins to the ground
floor and open the doors. For a failure inside the elevator logic itself, this
state would be to simply stop all cabins at its current position, regardless if
they are between two levels, doors open or closed.

There are applications, where such safe state can not be reached (e.g., control
system of aircrafts). For such scenarios, advanced error handling is required
to provide a minimum level of service [1] to continue the flight and allow
the landing of the aircraft whether automatically, or manually by the pilots.
These systems are called fail-operational and must allow the presence of
faults during operation.

Fail-safe system - If in a system a safe state can be identified and reached
quickly upon the occurrence of a failure, the system is called fail-safe
[1].

Fail-operational system - If in a system a safe state can not be identified
but it provides a minimal level of service to avoid a catastrophe even
in the case of a failure, the system is called fail-operational [1].
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The ability to tolerate faults during the operation classifies systems as fault
tolerant systems [1]. In fault tolerant systems there are two levels where fault
tolerance can be implemented:

• systematic fault tolerance

• application-specific fault tolerance

A systematic fault tolerance is implemented at the architectural level. For the
system to detect faults, the system must produce the same calculation result
for the same set of input data. This behavior is called replica determinism
[1]. From this behavior the system can reason on faults in the temporal and
spatial domain by replication and detect the fault by comparing the results.

Application-specific fault tolerance is achieved by the application level of
the system [1]. The functions for detecting discrepancies of results is imple-
mented in the application code.

2.3.3 Fault tolerant units

The purpose of fault tolerant units (FTU) is to encapsulate a fault in a well
defined region to prevent a propagation of the fault in the system. There are
several methods to realize fault tolerant units, depending on the behavior of
a unit (node) on the occurrence of failures.

Fail-Silent nodes
If a node is implemented such that the result of a calculation in the presence

of a fault is either a correct result or no result at all, then a node is called
a fail-silent node. The mechanism to achieve fault tolerance is therefore
to duplicate the functionality of the node in another node. During normal
operation the nodes provide identical results. In the event of a failure, only
one node produces a result, the correct result [1]. To reestablish redundancy
in the event of a failing node, a shadow node can be implemented which has
the same functionality and activates itself only after the detection of a failing
node.

N-modular redundancy
Nodes which are not implemented as fail-silent nodes can exhibit a result

even in fault scenarios. It is therefore not possible to derive the correct
calculation from just two nodes, as both will generate a result. A voting
mechanism has to implemented which accepts the result from the majority
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of results as the correct one to gain a correct result. In order to tolerate
m failing node, n = 2 ∗ m + 1 nodes have to be implemented. The voting
mechanism can either be an exact voting, where the result must be exactly
the same on the majority of nodes, or an inexact voting, where the results
can be within an acceptable range, the application-specific interval [1].

Byzantine resilient fault tolerant unit
For nodes whose fault mode cannot be determined, a Byzantine resilient

protocol has to be established. To tolerate k byzantine faults, (3k +1) nodes
are required on executing a Byzantine resilient protocol [32]. Each node is
connected to each other node by separate communication paths, and (k + 1)
communication rounds must be performed.

2.3.4 Fault hypothesis

Tolerated faults in a fault-tolerant system are specified in the fault hypothe-
sis. A fault hypothesis specifies the type, number and frequency of faults that
should be tolerated. A Fault hypothesis of a fault-tolerant system contains
the following items:

• The smallest unit of failure in fault-tolerant systems is defined a Fault
Containment Region (FCR). A fault containment region is defined as a
set of components that is considered to fail as an atomic unit, and in a
statistically independent way with respect to other fault containment
regions [33].

Fault tolerance is usually achieved by using replicated FCR. In case
of one FCR has failed, the operation of the redundant FCR should
maintain the functionality, while the failed FCR can perform recovery
actions after the fault has disappeared.
Faults in one FCR of a distributed fault-tolerant system shall not be
able to propagate and to interfere with the operation of non-faulty
FCRs.

• Fault model - describes the type, the number, and the fault arrival rate
of FCR failures that should be tolerated.

– The type of faults in the fault hypothesis describes the type of
faults an FCR may suffer (permanent or transient). Failure types
can be classified into three modes of FCR failures based on the
effect they show in the interfaces of other FCRs: detectable, un-
detectable consistent, and inconsistent.
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An FCR delivers a detectable erroneous service, if it either delivers
no service, or delivers an incorrect service that can be consistently
detected by other FCRs.
An FCR suffers from an undetectable consistent failure, if the ser-
vice it delivers is incorrect, but the failure is not detected by other
FCRs and this service is consistently received by other FCRs. For
instance, fail silent violations in the value domain in a TTP/C
system are undetectable consistent failures.
An FCR is said to fail inconsistently, if it shows different fault
semantics to different FCRs (e.g., a Byzantine failure).

– The number of faults in the fault hypothesis describes the num-
ber of FCRs that may be faulty at a time without affecting the
functionality of the system. The number of tolerated faulty FCRs
depends on the level of the deployed redundancy. For example, to
tolerate x consistent faults of the communication channels, there
must be at least x + 1 communication channels [43].

– Fault arrival rate defines the temporal distance between the point
in time when one FCR becomes faulty and the point in time when
another or the same FCR becomes faulty (having in mind that
only transient faults are considered), without compromising the
functionality of the system. The fault arrival rate depends on the
duration of a fault that affects an FCR and the time that the FCR
needs to recover from that fault.

• The Never-give-up strategy (NGU) is a mechanisms that defines the be-
havior of the system in case that the system faults that are outside the
fault hypothesis. Such faults cannot be handled by the fault tolerance
mechanisms of a system and therefore, the system will fail. If faults
have a transient nature (e.g. transient EMI disturbances), the system
can recover by initiating a restart. The TTP/C protocol for example,
detects the violation of fault hypothesis by means of the membership
and the clique avoidance algorithm [46].

Any fault-tolerant system must be designed and evaluated against an explicit
fault hypothesis [42].

2.4 Fault injection

For safety-critical applications, fault tolerant computer systems must be im-
plemented. Such systems must be able to tolerate specific faults. The pres-
ence of these faults specified in the fault hypotheses must not affect the
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operation of the system. A fault hypotheses for fault tolerant computer sys-
tems specifies several fault classes, which can be divided in hardware faults
and software faults.

The validation of a fault tolerant computer system requires the evaluation
of the system’s operation under all faults specified in the fault hypotheses.
As faults are normally rare events, the validation procedure requires an ar-
tificial acceleration of the faults specified [39]. The activity to accelerate the
occurrence of faults is called fault injection [38].

2.4.1 Techniques

Faults injection can be accomplished at several architecture levels [38]. We
can distinguish among simulation based fault injection, hardware implemented
fault injection (HIFI) and software implemented fault injection (SWIFI).

Simulation based fault injection
Simulation based fault injection can be done at a very early stage of the

development of a system. It is performed on the simulation model of a chip
or system design. Depending on the simulation tool, it is either possible
to modify the circuitry of the system or force input data to faulty states
(electrical or logical). The advantage of simulation based fault injection
is that no damage of the system can occur [39]. This technique is widely
integrated in design tools of VHDL and FPGA devices.

Hardware implemented fault injection
Hardware implemented fault injection is done on a real systems. The test

cases of the fault hypothesis cases are applied to an operational system to
observe the results. The disadvantage in contrast to simulation based fault
injection is that the system under test can be damaged during the test runs.
Testing methods for HIFI are the stressing of systems with electronic, radia-
tion or thermal effects. According to [38], testing methods can be classified
in:

• Hardware fault injection with contact where direct physical contact
to the system under test occurs. Test scenarios of this class are e.g.
the applying of different logical and electrical levels at a pin of an
electronic chip. It is evident that experiments where the electric level
applied exceeds the specification of the device, irreversible damage to
the device can be caused.
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• Hardware fault injection without contact if no direct physical contact
to the system under test occurs. This includes the stressing of a sys-
tem with electromagnetic interferences — electromagnetic fault injec-
tion (EMFI) — or applying radiation to the system. A framework for
automated testing of a TTP/C cluster with EMI has been developed
by the author during a practical at the Realtime Systems Group at the
Technical University of Vienna.

Software implemented fault injection
Software implemented fault injection (SWIFI) is performed by implement-

ing a fault injection (FI) code into the target system. This FI code is used
to trigger the required faults at locations not accessible by other fault injec-
tion strategies. SWIFI allows the activation of the specified faults at defined
instants in a reproducible manner. The advantage of SWIFI is furthermore
that the implementation of the FI code is relatively simple, no additional
hardware is required, and usually no damage can occur on the system under
test. A challenge on SWIFI is to reduce the probe effect, which denotes the
deviation of the system under test (in presence of the FI code) to a sys-
tem without the modifications [1]. The injection of the faults in a computer
system can be accomplished by different methods [38]:

• Compile-time injection: The fault to be injected is applied by mod-
ification of the system’s program code prior to loading the program
image on to the system. This strategy covers hardware, software and
transient faults. The fault is activated at the instant when the system
executes the faulty code.

• Run-time injection: The trigger of the fault can be controlled by special
events. Mechanisms for triggering runtime-injected faults are:

– Timeout: The instant a fault gets activated is based upon the
interrupt of a timer. A computer timer gets preloaded with a
specified timeout, and when the timeout occurs the fault injection
code gets triggered.

– Exceptions/Traps: This methods provides more flexibility, as the
code injecting the fault can be triggered upon either a specified
execution of code or on events like external activation from a soft-
ware component (i.e., a SWIFI framework).

– Code insertion: The fault injection is performed as soon as the
execution reaches a defined instruction. Prior to the real instruc-
tion, the FI code performs additional instructions to change the
system state.
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2.5 SWIFI frameworks

This section presents three exemplary existing testbeds for software imple-
mented fault injection (SWIFI). These are the Fault Injection based Au-
tomated Testing environment (FIAT), DOCTOR, a SWIFI for distributed
real-time architectures on the HARTS platform, and Xception, a framework
for the injection of faults in modern processors.

2.5.1 FIAT

The Fault Injection based Automated Testing environment (FIAT) - was one
of the first methodic approaches to the field of automatic testbeds for fault
injection. Introduced in 1988 its goal was to provide an monolithic tool to
evaluate distribute real-time systems by testing the error detection/recovery
mechanism (EDRM) not only indirectly via fault injection but also directly
by activating the EDRM and providing statistical data about the experi-
ments [9].

FIAT provides a graphical user interface that supports the test personnel
at all stages like the profiling of source code, the definition of test cases,
automated test procedures and statistical data mining.
The experiment process relies on several base information that has to be
defined before starting the evaluation of the RT-system:

• Workload: The workload definition specifies the default application
carried out on the system and being tested. The workload gets pro-
filed by the attribute extractor that parses the source code of the tasks
and gathers some basic information like task-identifier and addresses
of code- and data-segment of all tasks. The automatically gained in-
formation from these profile runs are stored in special tables called
domains.

• Fault classes: Fault classes are abstract data types specifying all pos-
sible fault-injections for the FIAT system. Information stored per fault
class is a list of addressable nodes, affected tasks, memory type, size
of memory to be manipulated, memory addresses, data pattern and
memory manipulation method plus their functions per property how
to select values from the extracted domains. An example of [9] is given
below:

Mechanism: FaultClass1

Fire: Firelist Fire_Selection_Method
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Task: TaskTable Task_Selection_Method

Element: ElementTable Element_Selection_Method

FaultSize: ElementTable Size_Selection_Method

Position: PositionTable Position_Selection_Method

Mask: MaskTable Mask_Selection_Method

Behavior: BehaviorList Behavior_Selection_Method

The fault class definitions are processed by the Fault instance generator
which applies the methods of the fault classes on the domains created
by the attribute-extractor and generates a list of fault instances. These
fault instances can be selected for the experiments being executed by
the fault injection mechanism.

• experiment descriptions: Experiment descriptions follow an prede-
fined experiment description format and contain the experiment, the
database name where to store results, and a syntax how the exper-
iment has to be executed, i.e., a loop with the amount of iterations
which embodies the workload definition, a fault injection set consisting
of the fault class with the amount of injections and the data collection
command.

This description is transformed by the experiment description transla-
tor (EDT) to experiment scripts specifying the concrete experiments
being processed by the Fault injection manager (FIM). Experiments
are collections of test runs containing instances of the predefined test
classes. An experiment can contain fault class instances of either the
same or from different test classes. Multi-experiments combine several
experiments to one run.

The system can be divided into two parts, the node triggering the injections
with the FIM and the connected nodes where the faults get injected being
under the control of the fault injection receptacles (FIRE). The distinct soft-
ware parts depicted in Figure 7 and Figure 8 are connected by a local area
network to exchange commands.

Workload A workload is an observable set of real-time communicating
tasks [9].

Task A task is an observable scheduled unit of computation communicating
through observable communication media named channels [9].
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Figure 7: FIAT FIM overview diagram [9]

The interactive FIM has complete control over the test-phase as it starts the
experiments and collects test results sent by the nodes’ FIRE software layer.
Targeted nodes receive their commands from the network at the FIRE. This
software layer adds all the functionality at the nodes to start the experiments
and deliver test results back to the FIM node.

Figure 8: FIAT FIRE overview diagram [9]

The Command controller manages the incoming commands and forwards
FI-commands to the node’s fault dispatcher. The fault dispatcher has a
counterpart in each task involved where the actual injection is done. As the
operating system has several protection mechanisms that prevent corrupting
the tasks memory from outside the actual injection has to be done by the
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task itself. This is the most intrusive component in the system and had to
be designed very carefully as it adds a reasonable overhead in terms of pro-
cessing time (probe effect). The node’s data collector acts as a concentrator
for all tasks results and delivers the data back to the FIM where being stored
in the experiment database for further statistical analysis. All tasks running
in the node are under control of the workload manager that decides from the
experiment description which tasks to run, suspend, stop, resume or reset
after experiment end.

The faults injected shall represent these that have a high probability to ap-
pear in real-world use but are very rare to observe. The goal is to significantly
reduce the time it would normally take to observe a fault of a dedicated class.
FIAT supports this by giving the possibility to inject errors in user tasks at
code-level and data-level with manipulations like bit-clear, bit-set, bit-flip,
byte/multibyte set/clear and pattern injection within several tasks. The pro-
filing process at compile-time relieves the testing personnel from gathering
detailed information about the memory locations as all this information is
extracted automatically so the experiments can be defined at a higher level.
By giving just abstract definitions of the desired experiments, one can port
the FIAT SW-part also to other hardware/software platforms and repeat
tests of the same set of fault class instances on another system generation.

As the test results are stored in an relational database with structured query
language interface one can compare the uniform stored results among other
platform without prior adjustments in data format.

One major drawback in this design is the missing functionality of injecting
communication faults or corrupting message data.
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2.5.2 DOCTOR

DOCTOR [11] is a fault injection framework for the HARTS [12] distributed
real-time architecture. It provides an interactive user interface to plan and
define the testing procedure at a higher level. The possibilities of DOC-
TOR not only cover the evaluation of simple fault scenarios inside a node
like memory manipulation but also CPU faults and communication channel
faults which is makes it suitable for distributed computer systems [11].

DOCTOR specifies 4 attributes for fault injection tests, namely the:

• Faults: the fault classes

• Activations: the workload on the system under test

• Readouts: the results gained from the system under test, i.e. fault-
injection results

• Measures: quantitative statements derived from the readouts which
give information about the dependability of the system

Figure 9: DOCTOR overview diagram [11]

The experiment generation module (EGM) generates workloads for all nodes
under test and creates a set of experiments — the experiment parameter files
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— based on an experiment description file. The workloads are transferred
to the nodes for execution. The experiment control module (ECM) controls
the actual experiment, i.e., the fault injection, and sends the commands to
the nodes under test accordingly [11]. In a node under test, the fault injec-
tion agent (FIA) performs the injection, and detected errors in this node are
recorded by the data collection module (DCM) for later analysis.

The host computer, controlling the testing procedure, is connected to the
node under test by an ethernet connection. This reduces the adoption to
other system implementations to just rewrite the target nodes’ fault-injection
layer. The software injection mechanism in DOCTOR uses either software
traps for injection of transient faults, or compile-time injection for permanent
faults [11].

2.5.3 Xception

The SWIFI tool Xception [40] is a framework for injection of software faults
into modern processors like Motorola PowerPCs, Intel Pentium based proces-
sors, or the Alpha AXP architecture. It makes use of debugging hardware,
implemented in modern processor generations for the fault activations. These
debugging units in advanced processors support the activation of faults either
by trigger from an internal timer or upon specified load or fetch instructions.
Xception supports the injection of transient faults in a unit of interest inside
a processor (i.e., integer unit, floating point unit, data bus, address bus, reg-
isters) which can not be reached by many SWIFI frameworks [40].

Results of SWIFI experiments can be gathered by using the internal perfor-
mance monitoring mechanisms available on the supported processors. These
allow to collect data like number of memory read and write cycles, and per-
formed execution cycles after an fault injection [40]. The Xception architec-
ture is depicted in Figure 10.
The experiment manager module (EMM) on the host computer presents an
user interface to the operator. It allows to define experiments w.r.t. fault
location, fault triggers, and fault types (i.e., stuck-at-zero, stack-at-one, bit-
flip). Furthermore, the EMM performs the control and result collection.
Experiment commands are sent from the EMM to the fault setup module on
the target system, which routes the command to the kernel module. The
kernel module performs the actual fault injection. If the system detects an
error due to an injected software fault, the generated error is passed from
the kernel module to the EMM for analysis.
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Figure 10: Xception overview, taken from [40]

The architecture of Xception is such that porting of the framework to other
processor systems just requires the rewrite of the kernel module code, which
encapsulates the hardware information on the debugging and monitoring
mechanisms of the targeted processor [40].
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3 The DECOS Framework

The Dependable Embedded COmponents and Systems DECOS project is
a project under the umbrella of the Sixth EU Framework Programme for
Research and Technological Development (FP6). It is an integrated archi-
tecture for the automotive, aerospace, and control domain [7].

The DECOS integrated architecture makes use of a Time Triggered Protocol
for communication among the connected nodes. At present, there are two
implementation variants realized: one with Time Triggered Protocol Class C
(TTP/C) and the second one, implemented in the system under test of this
thesis, is based on the Time-Triggered Ethernet (TTE).

3.1 DECOS system design

Nowadays, implementations in the automotive domain mostly follow the de-
sign principle of federated architectures. In modern cars, a huge amount of
sensors, actors, and control units from various suppliers are installed. Com-
munication between those units is in most cases achieved by the Controller
Area Network (CAN) bus, a serial field bus invented by BOSCH in 1983 with
a maximum data rate of 1 MBit/s.
Having a look at current luxury cars we can count up to 90 nodes per vehicle
[47]. The disadvantage of such federated systems is the huge amount of wires
to connect all those nodes and the multitude of connectors, each of them a
source of faults, thus driving up the costs for wiring and testing higher and
higher for each additional integrated node.

DECOS takes a different approach to such scenarios. By design the DECOS
projects aims at an integrated platform for all intelligent properties inside
the domain. The DECOS hardware shall provide a well specified and pre-
validated platform to integrate all control units. In contrast to the federated
approach, where each application takes a separate computer or microproces-
sor hardware unit, DECOS nodes allow the integration of various dependable
or independent application tasks inside a single node without affecting each
other [49, 34].

The whole system with connected nodes, communication medium, and switch-
ing unit (TTE switch in the current implementation with TTE) is called the
DECOS cluster [49]. The framework provides strong encapsulation of sub-
systems containing dependable applications by the use of ”virtual” network
routes within the underlying redundant communication channels to circum-
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vent the considerable testing effort due the magnitude of integrated applica-
tions in a DECOS cluster.

3.1.1 DECOS architecture

In Figure 11 we can see the layered architecture of DECOS. The lowest
layer, the base architecture, hides all physical and software design issues
not necessary to the knowledge of the developer [49]. These are e.g. the
safety critical mechanisms, the used communication medium and the actual
implementation of the communication protocol used. This makes it possible
to exchange the communication infrastructure from TTP/C to TTE or any
other protocol that suffices the claims stated in the DECOS project paper
without affecting the layers above [6].

Figure 11: DECOS layered architecture [6]

The second layer contains the DECOS core services C1 to C4, therefore called
core services layer, which get discussed later. These services are implemented
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inside a unit called communication controller (CC) embodying the physical
network adapters to the time triggered network.

On top of the core services, the connector layer provides the DECOS high
level services like gateway services, virtual networks, encapsulated execution
environment and diagnosis. This is the interface for the application devel-
oper and provides the abstracted interface to the cluster hardware.

A typically DECOS implementation in the automotive domain can be seen
in Figure 12 on page 45, taken from [5].

3.1.2 DECOS core services

The core services [49, 6] are physically decoupled from the application hosts
by using different computer hardware for the CC. Specified core services are
categorized in classes C1-C4:

C1: Predictable message transport
Timely message passing is achieved by using a time triggered-protocol as

the cluster communication medium. By implementing an a priori defined,
free of conflicts TDMA bus access schedule, the temporal integrity is guar-
anteed. A temporal firewall between the application and the communication
medium is thereby established [50, 2]. Faults inside a CC get detected by the
bus guardian which guarantees that only temporally and semantically correct
messages arrive at any CC in the cluster. Communication between the CC
and the upper HL services is done by using message buffers in the CNI. No
control messages cross the boundaries (except when using the message push
mechanism). Message passing means transfer of messages from the CNI of
one node to the CNI of another node in the cluster.

C2: Fault tolerant clock synchronization
Clock synchronization is performed for synchrony of the global time in the

cluster. A primary and a secondary rate master send the synchronization
messages on a periodically basis. DECOS uses a sparse time base, where mes-
sages can only occur at a given time, which makes it possible to synchronize
at any given time a message arrives [2]. The CC detects whether the message
arrived in the expected timing window based on the preconfigured schedule
and either accepts or drops the message. The TTE rate master nodes are
implemented at the level of the CC, meaning a CC of the cluster contains
the primary rate master functionality and a second CC the secondary rate
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master. No additional dedicated nodes need to be introduced to provide the
clock synchronization service.

C3: Strong fault isolation
The CC performs basic syntax checking on the message format and error

checking in the temporal domain on the messages received and to be sent
to other CNIs. The CC builds an error containment region with the basic
connector unit housing the high level services, which means faults in the HL-
services (forming another fault containment region) causing incorrect data in
the CNI and vice versa are at least detected in the communication controller
[2].

C4: Consistent diagnosis of failing nodes
Information on the own current view on other connected nodes is done

by tracing a bit pattern in the membership vector. The membership vector
has an entry for each node in the system [2]. Information whether another
node is alive or has failed can easily be obtained by monitoring the messages
received from this particular node. As each node has the complete scheduling
table for the TT messages, it can distinguish if a message was missing, did
not arrive at the expected instant, received outside the reserved time slot or
has an incorrect CRC value, and mark this node as ”failed”.

3.1.3 DECOS high level services

DECOS high level services are the interface to the application jobs [6, 2].
Depending on whether the DAS is a safety-critical or a non-safety-critical
DAS, slightly different interfaces are exposed.

Virtual Network services
DASs exchange messages with other DASs over the network service. DE-

COS allows no direct access on the cluster communication bus due to en-
capsulation. The message passing among depending jobs is established by
building virtual networks inside the time-triggered cluster message exchange
[6]. This way the application jobs can be distributed among the cluster: No
matter in which node the code is executed the virtual network connection is
transparent to them. Virtual networks are invisible to unconnected nodes,
which means they have a different namespace, preventing interferences due
to duplicate names. The integration of additional applications into a clus-
ter is therefore much simplified, as no changes have to be made to existing
application namings. As information from virtual networks gets transported
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over the TT network, the information has to be passed over to the communi-
cation controller. This is established by allocating a buffer for the size of the
message inside the CNI and registering the message in the TDMA schedule.

DECOS provides two different classes of virtual networks:

• Time triggered virtual networks (TT VN)

• Event triggered virtual networks (ET VN)

Time-triggered virtual networks are used for safety critical application jobs
and transport state messages [2]. When reading state information, which is
actually the data in the CNI buffer, the application always gets the last value
(i.e., no queuing is implemented). TT virtual networks inherit the properties
from the time triggered protocol.

Event triggered virtual networks, the second class of networks in DECOS,
allow the transmission of event information to other application jobs. In-
formation sent from a job to the connected jobs of the respective ET VN
is queued inside their CNIs. The communication uses a producer-consumer
paradigm, which means the receiver-jobs have to actively remove the infor-
mation from their CNI buffer by reading the message to prevent a buffer
overflow after several consecutive transmissions.

Gateway services
Gateways in DECOS are responsible for the connection of two different

DAS [2, 49]. We can distinguish between 2 classes of gateways:

• Virtual gateways

• Physical gateways

Virtual gateways connect two different virtual networks inside a cluster.
There is no restriction on the type of the connected virtual networks - either
VN of the same type can be interconnected, or TT and ET networks can be
coupled, where the virtual gateway handles the temporal aspects to keep the
temporal integrity of the TT virtual network.

Physical gateways can attach networks of different physics, like TT virtual
networks and field-buses (e.g. CAN). The gateway service transforms the
messages into the required format, keeps the timing constraints and also
prevents error propagation among the connected buses.
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Fault tolerant service
The fault tolerant service allows the establishment of redundant applica-

tion jobs for safety-critical applications [2, 49]. To establish Triple Modular
Redundancy (TMR), three jobs of the same functionality can be grouped,
and a voting mechanism ensures the correct service in case of a failing job.

Diagnostic service
Diagnostic services can perform basic checks on the job input and output,

and give information on failing jobs [2, 49]. The diagnosis code of jobs has to
be implemented in close cooperation with the job implementation. Diagnosis
messages are transmitted via ET messages on the underlying communication
channel.

Encapsulation service
The Encapsulation service, realized by an Encapsulated Execution Environ-

ment (EEE), is responsible for the proper temporal and spatial partitioning
[34]. It shall assure that jobs running on the same node do not affect each
other. A fault in one jobs shall not cause interferences on other jobs.

If a TT job does not finish in its defined time slot, the partition window
time, the job shall be terminated and reported via diagnosis service. An
ET job does not have this constraint to finish its execution in the time slot.
ET jobs not finished execution at the end of the configured partition window
time shall be interrupted. On the next activation of the ET job, the job shall
continue to operate at the point it was suspended.

Furthermore access to memory and buffers of jobs must be protected from
the access from other jobs [34, 5].

3.1.4 DECOS fault hypothesis

A fault hypothesis contains specified fault containment regions (FCR) the
type of faults, the rate of occurrences and how components will fail [36]. For
the DECOS integrated architecture the fault hypothesis consists of a separate
hypothesis for hardware faults and for software faults. The following is a
summary of the fault hypothesis from [35].

Hardware fault hypothesis

• Fault containment regions
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1. Node computer: Each node computer forms a FCR. A single fail-
ure will affect the whole node computer. Hardware diversity is
used for redundant units.

2. Communication channel: Each communication channel forms a
FCR. For replicated channels, each channel forms a distinct FCR.

• Failure modes

– Node computer: Faults in node computers are arbitrary.

– Communication channel: No spontaneously created correct frames
and no arbitrary delays will occur.

• Failure rates

– Permanent hardware failures: 100 Failures in Thousands of mil-
lion hours (FIT) [37] which corresponds to at about 1000 years
between two consecutive failures

– Transient hardware failures: 10.000 - 100.000 FIT

• Maximum number of failures
Single Fault Hypothesis: A single hardware failure of a FCR is as-
sumed. After the recovery from a transient failure, another permanent
or transient failure can be tolerated, whereas permanent failures require
maintenance.

Software fault hypothesis
A distinction is made upon system software (middleware services, partition

services) and application software (DECOS jobs).

• Fault containment regions

– For software faults in the system software, the whole node com-
puter forms a FCR, as a fault in this component will most likely
affect the whole node.

– For faults in the application software, each job forms a separate
FCR.

• Failure modes

– Communication system:
An arbitrary timing failure is a failure where a message is sent
at an instant not defined in the interface specification on timing
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constraints. An arbitrary value failure is a failure where a mes-
sage value is not defined in the interface specification on value
constraints.

– Execution environment:
An arbitrary timing failure is a failure where an application job is
violating the deadline or executed at a non-specified instant. An
arbitrary value failure is a failure where an application job tries
to access a memory region outside of the own partition or tries to
access a port not specified for the job.

• Failure rates: according to Safety Integrity Level (SIL) levels 1,2,3,4.
SIL4: probability of failure per hour: ≥ 10−9 to < 10−8 [41]

• Maximum Number of failures according to SIL levels 1,2,3,4 [41], see
above

3.1.5 DECOS cluster implementation

The DECOS architecture laid out in the paper [5] specifies the core services
the framework shall provide and is not bound to the actual implementation
used for the validation process in this paper. Using a Linux-based set-up
gives the developer a high degree of flexibility in the development and de-
bugging process.

The OS kernel is compiled to give full access to the network mechanisms
like TCPIP networking, BSD like network sockets, mounting network shares
over NFS which is used to receive the application binaries, and serial console
output, used in the validation process to receive feedback about the executed
experiments.

In contrast to a VHDL centric design, it is much easier to reconfigure the
system and reload the complete cluster with a completely different applica-
tion. As all nodes receive their network set-up, scheduling parameters and
applications (the workload) from a network file server (DECOS server), it is a
simple task to share the cluster among different developer groups. To switch
from Application A to Application B it just requires to set the symbolic link
for the main application download location from development group Direc-
tory A to Directory B. After restart of the cluster, the node computers fetch
the new applications from the network share accordingly.
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DECOS cluster hardware
All participating network nodes are implemented by Soekris microcom-

puter boards [5]. The boards are i386 compatible systems using AMD Geode
processors with 64 MB RAM, a compact Flash slot for the storage medium
with the initial Linux kernel, and at least two ethernet network interface
cards (NIC).

According to their hardware requirements, the BCU/CC units are imple-
mented on Soekris net4802 boards, having two onboard NIC’s and an addi-
tional onboard mini-pci interface with three additional ethernet cards, so a
total of five network interface cards exists. The ethernet network interface
cards are used for the two TTE connections to the TTE switches, the two
connections to SCU and XCU node computers and the connection for the
diagnosis service.
The SCU and XCU node computers are implemented on separate Soekris
net4521 boards, having two onboard ethernet NIC’s for the connection to the
diagnosis service and an additional PCMCIA NIC for the connection to the
BCU/CC node computer.

3.1.6 DECOS scheduling

DECOS applications jobs in the current implementation of the Technical
University of Vienna are RTAI-LXRT tasks [5]. This ensures the claims on
timeliness in Linux operating systems. The scheduling of the three jobs per
SCU/XCU is realized by an extra RTAI task, the DECOS scheduler, im-
plementing a fixed scheduling strategy according to a design-time configured
schedule table. This DECOS scheduler acts as the trigger for all DECOS
application jobs. The trigger for the scheduler is a magic packet sent from
the BCU/CC unit to the SCU/XCU units.

Scheduling in the DECOS cluster of the TU-Wien is realized by a kind of
two-phase scheduling mechanism. The node scheduler gets triggered from
the clusters BCU/CC node by sending a magic packet on the real-time net-
work interface card. This interrupt gets intercepted by the RTAI layer and
is routed to the RTAI task scheduler. The scheduler in term gets resumed
and triggers the application jobs w.r.t. the design-time configuration and
suspends itself for the time the job is allowed to run. After the defined
partition time has elapsed, the scheduler gets reactivated by an RTAI timer
function. Due to the higher priority of the scheduler task, the scheduler is in
command of the CPU even if an application job has not finished its execution
yet. Immediately after activation of the scheduler, it forces the application
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job of the current partition time to suspend and activates the next appli-
cation job which is defined for scheduling. After the last job of the TDMA
round, the scheduler passes over control to the Linux operating system for
a configured amount of time (LINUX TIME). The scheduler is activated after
this LINUX TIME and blocks itself until the next activation by the network
interrupt.

3.1.7 Example of a DECOS implementation

Figure 12 shows a typical DECOS implementation, handling the functionality
of a car [5]. The car functionality comprises of a set of safety-critical (Drive
by wire) and non safety-critical (navigation, lights, comfort) DASes. Safety-
critical and non safety-critical jobs of the DASes are implemented side-by-side
on the same component (DECOS node). Actuators and sensors with CAN
or LIN interfaces can be attached via gateways in the DECOS nodes.
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Figure 12: Sample DECOS infrastructure [5]
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3.2 TTE - Time Triggered Ethernet

The implementation used throughout this thesis makes use of the Time Trig-
gered Ethernet (TTE) protocol, so the following chapters shall give a brief
overview about the services this protocol provides.

3.2.1 Aspects of TTE

The Time Triggered Ethernet makes use of the well established Ethernet pro-
tocol and infrastructure to guarantee deterministic message delivery among
connected nodes [3]. The basic architecture is depicted in Figure 13.

Figure 13: Time-Triggered Ethernet infrastructure [3]

TTE is a set of services and a dedicated TTE switching hardware to prior-
itize and control the medium access of the connected nodes. This approach
does not limit the standard Ethernet mechanism in any way. In a TTE
network standard desktop workstations can coexist with deterministic TTE
nodes and will not be limited in their network functionality in any way [3].
It is one of the main advantages of TTE in contrast to other approaches
reusing existent Ethernet infrastructures, where standard Ethernet traffic is
not allowed because it will break the aspired determinism.

TTE defines a set of two categories of network packets in order to achieve
the prioritization [3]:

• Event triggered (ET) messages
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• Time triggered (TT) messages

Event triggered (ET) messages incorporate the standard ethernet messages
and thus allow the existence of non real-time nodes in the network segment
with services like FTP, SMB, NFS.

Time triggered (TT) messages are used by real-time network nodes to es-
tablish a deterministic communication. The message handling for TT mes-
sages is presented in Section 3.2.2. Time-triggered messages have a specific
identifier in the ethernet frame type-field, which was defined by the IEEE
organization as identifier 0x88d7, to allow a distinguishment from standard
ethernet messages.

The whole infrastructure of the communication medium, the TTE switch
and connected nodes, whether real-time or non-real-time, is called the TTE
cluster [3].

3.2.2 TTE switch

The TTE switch is the core component in the TTE cluster communication,
as it is responsible to guarantee the timely delivery of these real-time network
packets among the participating nodes. Standard Ethernet switches are im-
plemented in a way that packets are delivered in the order as they arrive -
the First in First out mechanism. Opposing to that, TTE switch implemen-
tations detect real-time packets by their frame type field value of 0x88d7.
Once the switch detects such message, currently transmitted ET messages
get preempted to free the communication channel and get stored in the in-
ternal message buffer for subsequent retransmission [3]. The delay for TT
messages is thus a a priori known constant factor — the time necessary for
clearing the transmission path — and depends on the actual implementation
of the TTE switch.

3.2.3 TTE nodes

Real-time applications in the TT Ethernet Protocol are handled by TTE
nodes. According to [3], the TT Ethernet protocol defines four layers for the
implementation of a node. Proceeding top down, these are:

Host computer
This layer incorporated the application job(s) of the node and processes the

workload in the system. The applications can access the abstracted hardware
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and communicate with other nodes over a fixed API set described in [3].
Messages for sending to other nodes get written into the Communication
network interface (CNI) buffer by using the TTE API functions. Messages
of interest to the application also get read from the CNI’s buffer. The host
computer has no direct interface to the underlying network hardware [3, 51].

Hardware abstraction layer (HAL)
The hardware implementation of TTE nodes is not bound to specific archi-

tectures [51]. To hide those design varieties from the application developer,
the HAL provides a common interface to the application layer among all
possible hardware design variants and keeps the applications portable.

Communication network interface (CNI)
This layer is responsible for the data exchange between the host computer

and the TT Ethernet controller. The CNI keeps the configuration data for
all messages to be processed by the host computer. That are the message
size, the access type (push or pull) and the timing information. According to
this information the CNI allocates the required memory to buffer all message
types [51]. All required configuration data is defined before the compilation.
However, the configuration can be dynamically updated during the runtime.
Messages received either from the application tasks of the own node or from
the network are written to the reserved memory. A received message from the
TTE controller is updated in the buffer and checked for follow-up procedures:
If an application has defined message push for this message type, the CNI
generates an interrupt for the application.

Time Triggered Ethernet Controller
The Time Triggered Ethernet Controller is the interface to the communi-

cation medium and ensures the correct reception and timely transmission of
messages to and from the cluster. According to the configuration file stored
inside the CNI, the TTE sends the messages from the CNI buffer at the cor-
rect instant of time [3, 51]. All messages types in the configuration file must
be defined as such that no two or more messages have he same instant for
sending (i.e., it must be ensured that the sending schedule is free of conflicts).
This is vital for the correct function of the TT protocol, as the TTE switch
does no buffering of TT messages, which would violate the timeliness of the
messaging subsystem.
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3.2.4 Global time

Elementary for the claim of timeliness in the whole TTE cluster is the instal-
lation of a common and tight synchronized time base, the global time [3]. All
nodes must have a common understanding of the current instant, so that the
TT Ethernet controllers can deliver the network messages free of collisions in
the reserved time slot. The global time format of the TT Ethernet protocol
is expressed in the Universal Time format as shown in the following picture:

TT Ethernet  time format (8 bytes)

2-24 sec1 sec  bit 24

Time horizon 

about 30 000 years, 

elapsed  seconds since 

January 6, 1980 at 00:00(GPS base).

Time granularity 

about 60 nanoseconds 

determined by 

the precision of GPS

239 seconds

Figure 14: TTE time format [5, 51]

The granularity of the TTE time — the second fractions — are expressed
by a 24 bits wide value and the horizon is presented in a 40 bit field which
gives a total length of 8 bytes. Using a horizon of 40 bits gives a presentable
time range of over 30.000 years, which is far enough in the future for current
applications. 24 bits for the granularity in term means

1

224
seconds = 59.6 ns

A tick of the global time is called a macrotick. To express the dependency
from the cluster time ticks to local time ticks, the factor microtick macrotick
conversion factor (MMCF) is introduced. A MMCF of 100 means that 100
ticks of the local clock correspond to a single tick of the global time.

3.2.5 Clock synchronization

As we have learnt from the chapter on real-time operating systems, crystal
oscillators are no perfect clocks due to their drift. To ensure synchronized
clocks among all nodes in the TTE cluster, two special TTE nodes are in-
troduced, namely the primary rate master and the secondary rate master.
The primary rate master is the leading clock source within the whole cluster.
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All other nodes, called time keeping nodes, correct their clocks with respect
to this node as long as the correction value is within a well defined range,
the maximal external clock correction factor. To accomplish this, special TT
messages are sent to all participating nodes, the TT synchronization mes-
sages. The secondary rate master acts as a hot stand-by in case the primary
rate master fails. Synchronization messages get sent by both of the rate
masters, but at different instants. During normal running conditions, the
secondary rate master node also synchronizes its own clock with respect to
the TT sync messages of the primary rate master [3]. It is evident that the
clock generator of the primary and the secondary rate master should have
the highest precision in the system.

3.2.6 Safety critical TTE

Standard TTE relies on the fact that the transmission schedule of messages
is free of conflicts in the temporal domain, nodes are free of faults during the
whole runtime and the TTE switch is free of defects during the runtime. For
safety critical applications, one can not rely on these facts but has to intro-
duce special measures to ensure the correct operation of the system even in
failure cases, at least with possibly degraded system performance. TTE was
already designed with safety-critical aspects in mind, so the required modifi-
cations to upgrade existing applications can be classified as minor. Most of
the safety critical extensions are hidden from the host computers handling
the cluster workload [3, 51].

A look at a typical safety-critical TTE cluster infrastructure shows the dis-
tinct fault containment regions:

Failure inside a TTE node
Nodes, as we can see in Figure 15 are the components embodying the host

computer and the TTE controller. Failing application jobs can therefore be
one source of a failure. We already discussed critical functions in RTOS like
dynamic memory allocations, dynamic task creation, or infinite loops. These
issues are handled in the chapter of validation of the EEE later on. The
second subsystem in the node is the TTE controller. A failure in the TTE
controller, either timing failure or value failure, can be detected from the bus
guardian of the TTE switch.

Failure inside TTE switch
A failure in the TTE switch can either be failing hardware of the switch or a

failure in the bus guardian application. From the point of view of the cluster
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Figure 15: Safety critical TTE [3]

nodes, a failure in the TTE switch can not always be clearly distinguished
from a problem with the communication channel. To tolerate failures inside
a TTE switch, a redundant communication medium is required.

Failure of communication channel
A failure of the communication channel can be a broken connection. To

tolerate such failure, redundant communication channels are required.

TTE is designed so that faults not covered by the fault hypothesis at least
get detected and reported (never give up strategy) [3].

3.2.7 Enhanced SC TTE switch - Bus guardian

The TTE switch implementation from the basic TTE infrastructure (Figure
13) has no mechanisms to detect arbitrary TT messages sent from failing
nodes. A corrupt node flooding the TTE switch with temporal invalid TT
messages — called babbling idiot [1] — can affect the whole system. The
basic TTE just prioritizes TT messages over ET messages and handles TT
messages in the order as they arrive. In the event of a failure, where two TT
messages arrive at the same instant, it depends on the actual switch imple-
mentation which message gets transferred onto the communication medium
and which one gets dropped, and is therefore lost [51].
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This is not acceptable in safety-critical environment and can only be pre-
vented by an intelligent bus arbiter, a bus guardian inside the TTE switch
(Figure 15). The bus guardian has basic knowledge about the a priori de-
fined transmission schedule, the TDMA schedule, and can therefore decide,
whether a message received from a node is valid or not. Messages from
connected nodes received outside the defined time window can positively be
identified and refrained from affecting the cluster communication [3]. This
way a babbling idiot can be isolated from the cluster. The bus guardian lis-
tens to the TT messages and can perform basic analysis on the TT messages.
In case that an incorrect message was observed, the guardian can disable the
TTE switch port of the affected, possibly failed node and disconnect it from
the network. Additionally the guardian can check, if the TTE switch itself
behaves according to the timing specifics like the constant latency that is
introduced by the TT message forwarding mechanism.
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4 The SWIFI Framework

This section describes the SWIFI framework for the emulation of the software
faults required for the validation of the EEE. The SWIFI framework for the
validation of the DECOS integrated architecture shall allow the emulation
of software faults specified in the fault hypothesis of the DECOS integrated
architecture (see Section 3.1.4). The SWIFI framework described in this
section is an extension to an already existing framework [15], which allows
the injection of hardware faults into DECOS nodes.

4.1 DECOS infrastructure

The test setup infrastructure of the DECOS cluster implemented at the Tech-
nical University of Vienna contains five DECOS nodes, each consisting of the
units BCU/CC, SCU , and XCU . The Time-Triggered Ethernet (TTE) pro-
tocol is used as the core communication architecture. The schedule of the
TTE contains two TDMA rounds, each round 16 ms long. Each of the five
slots of a single TDMA has a duration of 3.2 ms. Each slot allows an indepen-
dent schedule of the three application jobs, denoted as jobs in the DECOS
terminology.

The Encapsulated Execution Environment (EEE) is run on the safety critical
connector units SCU [1−5] and on the complex connector units XCU [1−5].
Its purpose is to allow the execution of different application jobs on the hard-
ware units SCU and XCU . Furthermore, the EEE is responsible for the
resource sharing, according to the user specified configuration, and encapsu-
lation of the executed jobs. The transmission of messages is done according
to the fixed static schedule configured at design-time. On the occurrence of
faults inside the EEE, the mechanisms shall handle the faults specified in the
DECOS fault hypotheses.

Time-Triggered (TT) jobs shall be controlled in a way that no TT job ex-
ceeds its defined partition window time. If a fault inside a TT job, which
causes the job not to finish its execution within the partition window time,
the EEE shall terminate the faulty job and trigger the diagnosis service to
record the deadline violation. Should an ET job take longer to finish, the
EEE must not terminate the ET job at the end of the partition window time
(see Section 3.1.3), but suspend it.

The workload processed by the DECOS cluster is a Brake-By-Wire (BBW)
application. The BBW application is a Distributed Application System (DAS),
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distributed over five node computers. A distinct wheel function module for
each of the four wheels of a car, a brake pedal function and a main function
form the DAS.

Figure 16: BBW DAS structure

The main module calculates the vehicle speed upon the information of the
four wheel modules. The brake force applied on the brake pedal is emulated
by the brake job in the brake module. Each wheel module calculates the
braking force to be applied on its wheel’s brake based on information from
the

• vehicle speed,

• wheel speed, and the

• brake force applied on the brake pedal.

As the BBW system is considered as safety-critical, the wheel function is
replicated. Each wheel node houses the functionality of two other wheels as
shadow units.

The system under test is a DECOS cluster, consisting of five DECOS nodes
whereas each node is composed of a Safety-critical Connector Unit (SCU)
and a compleX Connector Unit (XCU), implemented on Soekris net4521
computers, and the Basic Connector Unit (BCU) and Communication Con-
troller (CC), integrated in a single Soekris net4521 computer.
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Figure 17: System under test

In the five DECOS nodes, each SCU and XCU unit has an ethernet connec-
tion to the respective BCU/CC unit. All BCU/CC units are connected via
a separate ethernet connection to the TTE switch. This connection handles
the time-triggered ethernet communication for the exchange of the messages
of the core services and the virtual networks.

For diagnosis purposes, the loading of application code into the SCU and
XCU units, and transmission of the fault injection commands, each unit
(SCU , XCU and BCU/CC) has an additional ethernet port connected to a
separate ethernet switch. This switch also connects the DECOS server and
the fault injector PC to the DECOS units. The DECOS server provides a
network share, where the application code of the SCU and XCU units is
supplied. On startup of the DECOS cluster, the SCU and XCU units fetch
their application from this share and start the execution of the application
jobs.

The initial DECOS cluster had distinct node computers for the BCU and
CC units. During development of the extended framework and experiment
application jobs, the cluster had undergone system changes, where the BCU
and CC were merged into a single device. Table 1 shows the cluster’s IP
addresses of the diagnosis ports.
For the injection of faults according the predefined fault cases, either SCU [1−
5] or XCU [1− 5] acts as the fault injector unit in the DECOS cluster. This
unit receives the injection command from a standard desktop PC running a
Linux operating system.
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index 0 1 2 3 4
node-IP: 192.168.0.

BCU+CC 100 104 108 112 116
SCU 102 106 110 114 118
XCU 103 107 111 115 119

Table 1: DECOS-cluster IP configuration

An additional unit in the cluster - SCU0 during the experiments - acts as
a reset unit. The reset unit can interrupt the power supply of the whole
DECOS cluster hardware to restart the system by switching a relay. This
is necessary to put the system in a consistent state after a fault injection
experiment is executed.

4.2 SWIFI software infrastructure

Figure 18 shows the architecture of the involved software components in the
SWIFI framework.

Figure 18: SWIFI infrastructure [15]

According to the specification [15], the software infrastructure contains the
following software components:

Fault Injection Commander (FIC)
The fault injection commander is the controller of all experiments. For

the experiments executed in this thesis, the fault injection commander is run
on a standard desktop PC with a Linux operating system. Experiments to
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be run by the FI commander are defined in a standard text file described in
Section 4.4 and [15]:

Fault Injection Helper (FIH)
The fault injection helper is an application task running on the unit under

test, the fault injection unit in the DECOS cluster, which can either be a SCU
or XCU. Its purpose is to communicate with the fault injection commander
and to distribute the commands in the DECOS cluster. The fault injection
helper runs in the user space, as it has to communicate over TCP/IP with
the fault injection commander, which is not trivial to perform in kernel space
[15]. As soon as the fault injection helper receives a command from the FIC,
the command is passed over to the defined fault injector subsystem, which
has to be executed in each unit where an experiment is scheduled. The unit
SCU or XCU , where an experiment shall be executed has to be defined in
a configuration file at compile time of the DECOS application in order to
include the fault injector and fault injection helper. These two components
are transferred to the unit along with the application jobs via download from
the DECOS server at startup of the cluster.

To perform the actual experiment, the FIH analyzes the command received
from the FIC over the network and passes it over to the fault injection helper
of the respective unit. The communication between FIH and fault injector is
done by the RTAI primitive mailbox. The transfer by RTAI mailbox is done
by the function rt mbx receive wp(), which allows a non-blocking message
passing. The call of the function allows the reception of a message without
blocking the calling task [20].

Fault Injector
From Figure 17 we can see that the fault injector receives the experiment

command from the fault injection helper by a RTAI mailbox-function. Ac-
cording to the intended injection it waits for the defined time instant when
the injection shall be executed and manipulates the addressed memory or
shared memory accordingly [15]. The fault injector also performs the calcu-
lation of the memory address where the injection shall be executed. It is also
possible to terminate the job after the experiment. The fault injector may
terminate the job execution after a specified timeout expires, relative to the
point in time where the fault injection restart command is received. For most
test cases this was not used, as the monitoring of the results was partially
observed on the serial console output of the DECOS SCU or XCU units. It
was observed that the reaction on an injection command of the experiments
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in several cases was observed even after the timeout time. A reset before
the result can be observed would render the experiment run useless. It was
also helpful to get some information after a crash of an application job via
console, like the memory usage, or the number and names of RTAI objects
instantiated when analyzing particular experiments.

Restarter Application
The restarter application shall be executed on a single SCU or XCU of

the DECOS node. Its purpose is to execute a reset command after the spec-
ified consecutive experiment commands in order to bring the cluster in a
defined state [15]. In the current implementation, it is possible to issue six
commands per experiment, although this can be extended. The restarter
application uses a single pin of the I/O interface to switch a relay, which
interrupts the power supply of the cluster. This can be used to run a batch
of experiments, read the results back and issue the reset of the application
computer before the next experiment run is started. To observe the results of
an experiment crashing the node computer, the reset command was not used.

The original framework mentioned described in [15] provides support for
memory faults in application jobs and global memory. Although adequate
for evaluating tests which shall emulate hardware faults inside of DECOS
nodes like bit-flip faults, it lacks the support for the fault scenarios men-
tioned in the fault hypothesis on software faults. As the goal of this thesis
is to test the functionality of the encapsulated execution environment for
correctness in the event of software faults, it was necessary to define a set of
test cases and implement this incorrect code in a DECOS job. To selectively
activate the intended fault set, the original fault trigger mechanism of the
existing framework was used.

The intended faults being injected like task deadline violation and illegal
memory access are dedicated software application faults. All faults are in
the scope of the the application jobs and no manipulation of the task’s code
segment, data segment or stack had to be triggered by the DECOS system
or the fault injection layer of the FI framework. The experiments could
comfortably be triggered by reusing the service to write into shared memory
areas of dedicated nodes.

4.3 Fault Injection Command

To start the experiments on specific units, the fault injection commander has
to send several parameters to the involved units. The basic approach from
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the existing framework to write a bit or a byte to an absolute location was
not sufficient for the experiment parameter transfer. The FI commander has
no knowledge of the absolute position of the control variable which in term
distinguishes among the intended experiment classes.

Although it would have been possible to get the memory address of the ex-
periment selection variable in the initialization sequence of the specific unit
and read that address when executing the experiment, it would introduce
an additional delay and require an enhanced fault injection commander for
generating dynamic test commands. The sequence for a dynamic generated
test could be:

1. SCU or XCU , init-function of job: get absolute address of variable
”var x” and write it into shared memory ”SHM x”

2. FI commander, experiment start: read value of shared memory ”SHM x”

3. FI commander, experiment start: form a command for ”absolute ad-
dress injection” by specifying the address as read value from ”SHM x”

Another option is to write to the shared memory provided by the RTAI
subsystem. This mechanism was used for the implementation of the extended
SWIFI framework. To manipulate the shared memory by the FI system one
can use a command in the form like:

SCU0, shm=FITEST, 3, ---, byteset, 1, ---, concrete, 0

This command writes the value ”1” to the shared memory named ”FITEST”
on the safety-critical unit 0 (SCU0) in the third TDMA slot. This shared
memory location can be mapped by using the RTAI-functions into the af-
fected application jobs. The application jobs can then react on invocation by
the scheduler on the value present in the shared memory address and trig-
ger the experiment run accordingly. The framework allows to transmit byte
values only. This means, a maximum value of 255 can be sent by the fault
injection commander via a command to the fault injector. For values greater
than 255, the value has to be split into its byte values, and the command has
to consist of several consecutive writes to different shared memory regions
for all required byte values. This limitation is by design of the fault injection
framework.

The transmission via shared memory is used either for signaling the type
of experiment to be run, and also for additional parameters, required to
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accomplish the experiment run. For example, tests of the temporal encap-
sulation require an parameter for the varying delay time the job shall wait
before finishing execution.

4.4 SWIFI Framework capabilities

Original framework
The original framework was implemented for the injection of hardware

faults into a DECOS node computer as specified in [15]. An experiment
is started by running the fault injection commander which reads the com-
mands from an experiment configuration file (ECF). The syntax of the ECF
is presented below. An experiment can include a maximum of six injection
commands. Each injection command is defined in a separate text line of the
ECF containing the full description about timing, destination and value.

The first parameter defines the DECOS unit where the injection shall be
executed. The framework allows to specify the targeted unit by the unit
name ranging from SCU[1..5] and XCU[1..5].

The destination of an injection can be defined in the second parameter. Sup-
ported destinations are:

• memory of an application job (job[n])

• absolute memory address in the unit’s memory (global)

• RTAI shared memory (shm =<RTAI object name>)

• memory of a kernel module (module =<module-name>)

Parameter three defines the injection timing. It’s value presents the time slot
in the communication schedule, when the injection shall occur. For a finer
granularity of the injection instant, the fourth parameter denotes a timing
offset relative to the task activation. The delay can be specified in nanosec-
onds. If an offset value t > 0 is given, the fault injector is started t ns after
task activation. If a time t=0 is given, the injection is performed prior to
task activation.

The fifth parameter of an injection command is the fault type, which can
either be bitflip or byteset. The ”bitflip” fault is a common fault model in
the aerospace domain, where due to the hit by an energetic particle a false
signal in an electronic circuit is generated, which causes a memory cell to
changes it’s value. The ”byteset” injection is used to emulate a memory
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fault, where a memory cell gets defective (stuck-at-0, stuck-at-1).

Parameter six defines the data to inject. If the fault type is ”bitflip”, a
value in the range [0..7] defines the bit position to flip, whereas a value of −1
is a random bit position. For the fault type ”byteset”, a value in the range of
[0x0..0xFF] defines the byte value to set, and −1 means a random byte value.

If a fault injection is to be performed into an application job’s memory,
parameter seven specifies whether the memory area targeted shall be the

• data space of application job

• code space of application job

• stack of application job or an

• absolute address of the application job

Parameter 8, 9 and 10 denote the address type (concrete or random address)
and the memory range (start and end address).

Extended framework
The extension of the SWIFI allows the injection of software faults. The

fault types to be injected are derived from the DECOS fault hypothesis. To
execute the experiments of the fault hypotheses, the DECOS application jobs
of the unit under test have to be modified to include the fault injection code.
The fault injection code is implemented as part of a DECOS job of the SCU
or XCU units.

For the experiments in this thesis, the application job job2 was altered to
receive the experiment command and the parameters required. The parame-
ters are transferred by the mechanism of the original framework to write into
a shared memory of a DECOS unit SCU or XCU .

The experiment parameters are written by the fault injector in the respec-
tive time slot as specified in the fault injection commander configuration file.
This allows the triggering of experiments on a definite schedule. A separate
DECOS job (monitoring job) is responsible for the feedback on the experi-
ment runs via console output. A serial port of the Soekris node computer
of the unit under test is used for serial console output. According to the
specified experiment, the output on the serial console gives feedback whether
the experiment run was successful or did not finish (i.e., crash).
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4.4.1 Temporal encapsulation

The framework provides two different classes of experiments in the temporal
domain (i.e., deadline violation of tasks):

Deadline violation of job by delay
In this experiment class, a task receives a parameter specifying the delay

time for execution before finishing. The actual delay is achieved by per-
forming a busy wait function. The delay time of the busy wait function was
measured over several consecutive runs.

Deadline violation of job by infinite loop
This experiment causes an application job to never finish its execution cy-

cle due to executing a infinite loop. Accordingly, the implementation uses a
loop with a busy wait function that will never finish.

As the injection code is in the application job, the experiments on deadline
violation can be executed on either safety critical connector units (SCU) or
complex connector units (XCU).

4.4.2 Spatial encapsulation

Illegal memory access by job
This experiment experiment class allows to attempt access to a memory

segment of another job. A dedicated DECOS job specifies a variable address,
whose value is periodically printed on the console output of the monitoring
node. A second job tries to access this memory location by a pointer function,
whose address is handed over via shared memory from one job to another
job. On successful change of the contents of the memory location, the value
can be observed from the monitoring job’s console output.

Illegal comm port access by job
The fault injection task contains a code fragment, which tries to access the

communication port of a job it is not specified for.

Stack overflow
This experiment covers the case, where an application job calls a recursive

function, whose call depth is not limited. The experiment simulates a faulty
recursive call, whose end can never be reached. This way a stack overflow is
issued. The recursive function (see below) is called once each TDMA round.
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On each invocation of the recursive function recursivefunction() a total of 1
kB is allocated.

long recursivefunction(long iteration){

volatile long garbage[1024];

garbage[1024-1]=rand();

rt_printk("i: %d\n",iteration++);

garbage[1024-2] = recursivefunction (iteration);

return 0;

}

Dynamic memory allocation
This experiment contains test cases executing the RTAI-functions rtai malloc

and rtai kmalloc to allocate memory address in user-space (rtai malloc) and
kernel space (rtai kmalloc). The test shall prove the reliability of the EEE
when performing the operations until no more memory is available for allo-
cation.
Furthermore the ANSI-C functions malloc, kmalloc and vmalloc get tested.
kmalloc allocates a contiguous memory area in kernel space, whereas vmalloc
allocates a virtually contiguous memory area in kernel space. Virtually con-
tiguous means, the RTAI-LXRT task sees the memory as contiguous, but the
physical layout in RAM is not contiguous. The function malloc allocates the
respective memory region in the heap of the task. This information can be
read in Chapter 8 of the document ”Understanding the Linux Virtual Mem-
ory Manager” [17]. For the experiment on all dynamic memory allocation
functions, in every TDMA round an invocation of the respective function is
executed.

Tampering the scheduling semaphore
The timing mechanism in the EEE is established by using a semaphore to

signal the start of the core cycle to the EEE scheduler. After each timing
slot, the scheduler executes the sem p() function to block itself. The block is
released on receiving a magic packet from the network driver. The network
driver executes the sem v() on the blocking semaphore and synchronizes the
scheduler. This experiment shall test the effect when the sem v() function is
called from inside an DECOS job.
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5 Experimental Results

This section presents the the experiments and results for the validation of
the DECOS Encapsulated Execution Environment (EEE). The executed ex-
periments cover the faults specified in the fault hypothesis (see Section 3.1.4).

The Encapsulated Execution Environment (EEE) supports the execution of
applications with different criticality on top of the same physical hardware.
The mechanisms of the EEE shall establish the encapsulation of the resources
in a physical node, with prior (static) assigned resources: CPU time, storage
space (memory) and I/O access. The EEE shall provide mechanisms for the
handling of software faults at the job level. The Encapsulated Execution
Environment allocates statically the CPU time to different jobs in an appli-
cation computer. The validation objective is to show that the allocated CPU
time of different jobs in an application computer are guaranteed by the EEE
even in the presence of the faulty jobs. The EEE allocates a time window
called the partition time window for each job in an application computer.
A given partition time window will be allocated periodically to a given job
with a period denoted as core cycle. In the DECOS integrated architecture
one job consists of one or more tasks. Time-triggered tasks are executed
periodically and each task has to finish before a certain deadline is reached.
All time-triggered tasks of one job have to finish within the given partition
time window. In case that a task of a job has not finished the execution
within the given partition time window the EEE shall interrupt the task and
report on the deadline violation of the job. In case of event-triggered tasks, a
task will be interrupted when the partition time window expires, but no error
handling shall be performed because by definition event-triggered tasks are
not supposed to have deadlines. The Encapsulated Execution Environment
statically allocates memory and I/O resources for different jobs in an appli-
cation computer and guarantees that no other job can access the memory
resources allocated to one job.

5.1 Validation goals

A software fault in one partition should be isolated, and the process of iso-
lation of a partition (task in that partition will be reset or restarted) should
not affect the operation of other partitions. The validation of EEE is divided
into two parts:

1. Validation of the temporal encapsulation
The goal of the validation is to show that no software fault in one
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job can affect the operation of the application computer such that the
CPU resources (time slot) of other jobs are affected. The validation
mechanism shall inject faults such that a time-triggered task misses its
deadline. This can be achieved with the software implemented fault
injection mechanism (SWIFI) that was developed in this thesis.

2. Validation of the spatial encapsulation
The goal of the validation is to show that no software fault in one
job can access the memory and I/O resources of different jobs, or can
affect the operation of the application computer. Furthermore, it must
be shown that a job does not access the input and output ports (used
to communicate with the DECOS high-level services) of other jobs in
an application computer. The validation mechanism will try to inject
faults that cause a faulty job to access the memory and I/O that are
allocated to other jobs.

5.2 Temporal encapsulation

”Time triggered tasks are executed periodically and each task
has to finish before a certain deadline is reached. In case that
a task of a job has not finished the execution within the given
partition time window the EEE (Encapsulated Execution envi-
ronment) shall interrupt the task and report on the deadline vi-
olation of the job [8].”

5.2.1 Deadline Violation - violation by x% for TT jobs

Experiments are executed in SCU0. The SCU0 executes three jobs:

• job1: emulation of the vehicle functions

• job2: a dummy job that contains the code to do the actual fault injec-
tion. It gets the delay time value from the fault injection framework
and issues the deadline violation, i.e. performs the fault injection ex-
periment.

• job3: the monitoring job to display the incrementing counter to observe
the experiment results

In this test run job2 shall try to execute longer than its allocated time in-
terval, and thus miss its deadline. The fault injection experiments affect the
execution of job2 such that it causes various execution time of the job. The
cluster is configured such that 320 µs are allocated for execution of each
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job. The job job2 is affected such that it will violate its deadline for i% of
the amount of time allocated for the job (where i is chosen to be 10, 50,
90, 130). That means that the execution time of periodic part of this job is
additionally extended for approximately 10% of 320 µs = 32 µs in the first
experiment run up to 130% of 320 µs = 416 µs in the last experiment run.

Expected result According to the DECOS claims on time triggered jobs
the EEE shall interrupt the faulty job and report the fault in the diagnosis
service. The partition window given for job2 is configured in the file ”/con-
fig/scheduler config.h”. The fault injecting job job2 is configured to run at
the beginning of every MEDL slot (see C listing below) with a fixed partition
window size of 320 µs which would mean the incrementing counter should
get reset every 3.2 ms.

struct schedule_type task_schedule[MAX_MEDL_POS] = {

{ { /* MEDL_POS 0 */

{2, 4*TIME_FACTOR},

{0, 0*TIME_FACTOR},

{0, 0*TIME_FACTOR},

{0, 0*TIME_FACTOR},

{0, 0*TIME_FACTOR},

{0, 0*TIME_FACTOR}

} },

...

{ { /* MEDL_POS 9 */

{2, 4*TIME_FACTOR},

{0, 0*TIME_FACTOR},

{0, 0*TIME_FACTOR},

{0, 0*TIME_FACTOR},

{0, 0*TIME_FACTOR},

{0, 0*TIME_FACTOR}

} },

}

Experiment result
Note that every experiment run is executed at least three times. The

results of the experiments are shown in Table 2.
The result table presents the experiment run (”run”), the delay introduced
to the job (”delay”), the effect on the job executing the experiment, either
terminated or running (”job2 terminated”) and the result of the experiment
run, whether it was successful or not (”exp. passed”). Furthermore the states
of the three jobs after the experiment runs are presented, whereas the state
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can be either ”run” if the job is still executing after the experiment, ”stuck”
in the event that a job is halted due to an error and stopped executing, or
”released”, if the RTAI-LXRT detected an error and terminated the job. The
system state can be either ”run” if this SCU or XCU continues to schedule
the unaffected jobs, ”stuck” if the scheduler of the SCU or XCU error was
affected and stopped or ”reboot”, if the unit performed a reboot due to the
fault injection.

job2 exp. Status
run# delay terminated passed job1 job2 job3 system

1.1 10% (32 µs) no no run run run run
1.2 10% (32 µs) no no run run run run
1.3 10% (32 µs) no no run run run run

2.1 50% (160 µs) no no run run run run
2.2 50% (160 µs) no no run run run run
2.3 50% (160 µs) no no run run run run

3.1 90% (288 µs) no no run run run run
3.2 90% (288 µs) no no run run run run
3.3 90% (288 µs) no no run run run run

3.1 130% (416 µs) no no run run run run
3.2 130% (416 µs) no no run run run run
3.3 130% (416 µs) no no run run run run

Table 2: TT deadline violation (delayed)

5.2.2 Deadline Violation - violation by infinite loop for TT jobs

Experiments are executed in SCU0. The SCU0 executes three jobs:

• job1: emulation of the vehicle functions

• job2: a dummy job that contains the code to do the actual fault injec-
tion. It gets the command to enter the infinite loop from fault injection
framework and issues the deadline violation, i.e. performs the fault in-
jection experiment.

• job3: the monitoring job to display of incrementing counter to observe
the experiment results

Expected result According to the DECOS claims on time triggered jobs
the EEE shall interrupt a faulty job and report the fault in the diagnosis
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service. The operation of the application computer or the SCU/XCU shall
not be affected.

Experiment result Note that every experiment run is executed at least
three times. The results of experiments are shown in Table 3.

job2 exp. Status
run# delay interrupted passed job1 job2 job3 system

1.1 ∞ no no run run run run
1.2 ∞ no no run run run run
1.3 ∞ no no run run run run

Table 3: TT deadline violation (infinite loop)

5.2.3 Execution time of an ET job longer than configured

”In case of event-triggered tasks, a task will be interrupted
when the partition time window expires, but no error handling
shall be performed because by definition event-triggered tasks are
not supposed to have deadlines [8].”

Experiments are executed in XCU0. The XCU0 executes three jobs:

• job1: emulation of the vehicle functions

• job2: a dummy job that contains the code to do the actual fault in-
jection. It gets the delaytime-value from fault injection framework and
issues the deadline violation, i.e. performs the fault injection experi-
ment.

• job3: the monitoring job to display of incrementing counter to observe
the experiment results

In this test run, job2 shall try to execute longer than it’s allocated time
interval. The fault injection experiments affect the execution of job two such
it causes various execution time of the job. The cluster is configured such
that 320 µs are allocated for execution of each job. The job2 is affected such
that it will execute longer than the allocated time by a factor of i% (where
i is chosen to be 10, 50, 90, 130). That means that the execution time of
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periodic part of this job is additionally extended for approximately 10% of
320 µs = 32 µs in the first experiment run up to 130% of 320 µs = 416 µs
in the last experiment run.

job2 exp. Status
run# delay interrupted passed job1 job2 job3 system

1.1 10% (32 µs) no no run run run run
1.2 10% (32 µs) no no run run run run
1.3 10% (32 µs) no no run run run run

2.1 50% (160 µs) no no run run run run
2.2 50% (160 µs) no no run run run run
2.3 50% (160 µs) no no run run run run

3.1 90% (288 µs) no no run run run run
3.2 90% (288 µs) no no run run run run
3.3 90% (288 µs) no no run run run run

3.1 130% (416 µs) no no run run run run
3.2 130% (416 µs) no no run run run run
3.3 130% (416 µs) no no run run run run

Table 4: ET execution time delay

Experiment remarks
As the scheduler has a higher priority than the priority of jobs, it preempts

the execution of the job2 after the execution of the first iteration. The sched-
uler correctly suspends job2

Let us analyze the first experiment run (Table 4, Exp. 1.1). Job2 is scheduled
in the next core cycle round, and it resumes the execution from the point in
time where it was suspended in the previous slot. This means that the job2

resumes its execution from the last interaction (the last 32 µs of the previous
iteration that are caused by the SWIFI) and suspend itself after 32 µs (note
that jobs suspend itself after each execution of the periodic part). In this
case the 2nd execution of the periodic part of job2 starts in the 3rd TDMA
round, the 3rd execution of the periodic part starts in the 5th TDMA, and so
on.
These experiments have shown that a faulty job does not affected the CPU
resources allocated to other jobs, and does not affect the correct execution
of the XCU0.
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From this analysis and from experiments results we conclude that the EEE
fulfills its requirements. An ET job whose execution time is longer than the
configured time will not affect the operation of other jobs.

5.3 Spatial partitioning

”A job that suffers from a software fault shall not be able to access the
memory areas allocated to other jobs [8].”

5.3.1 Case I: Memory access outside of own address space - code
segment

The experiments are executed in XCU0 which contains three TT jobs (job1,
job2 and job3). The cluster is configured such that 320 µs are allocated for
execution of each job. The goal was to modify the job2 by the software fault
injection framework such that it tries to write into the memory address of
job1. The fault injection framework shall find out the absolute code space
memory addresses of the jobs. A set of experiments will be executed where
job2 systematically tries to access memory areas starting from address 0x0
to the end of the code space.

Expected result
According to the DECOS validation claims, the EEE shall prevent a faulty

job (that suffers from a software fault) to access the memory of other jobs.
The operation of other jobs and the operation of SCU/XCU shall not be
affected.

Experiment result
The operation of other jobs and the operation of the XCU0 is not affected.

The injecting job - the job2 - overwrites his own code space and gets stuck.
Therefore, the spatial partitioning of the EEE is supported in this case.

access exp. Status
run# segment prevented passed job1 job2 job3 system

1.1 code yes yes run stuck run run
1.2 code yes yes run stuck run run
1.3 code yes yes run stuck run run

Table 5: Memory access - code segment
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5.3.2 Case II: Memory access outside of own address space - data
segment

The experiments are executed in XCU0 which contains three TT jobs (job1,
job2 and job3). The cluster is configured such that 320 µs are allocated for
execution of each job. The goal was to modify the job2 by the software fault
injection framework such that it tries to write into the memory address of
job1. The fault injection framework shall find out the absolute data space
memory addresses of the jobs. A set of experiments will be executed where
job2 systematically tries to access memory areas starting from address 0x0
to the address 0x100000.

Expected result
According to the DECOS validation claims, the EEE shall prevent a faulty

job (that suffers from a software fault) to access the memory of other jobs.
The operation of other jobs and the operation of SCU/XCU shall not be
affected.

Experiment result
The operation of other jobs and the operation of the XCU0 is not affected.

The injecting job job2 overwrites his own data space and continues to run.
Therefore, the spatial partitioning of the EEE is supported in this case.

access exp. Status
run# segment prevented passed job1 job2 job3 system

1.1 data n/a yes run run run run
1.2 data n/a yes run run run run
1.3 data n/a yes run run run run

Table 6: Memory access - data segment

5.3.3 Case III: Communication port access violation

”Jobs in the DECOS architecture communicate among each
other using input and output ports. Jobs of time-triggered (TT)
DASes access the ports in the predefined points in time. The EEE
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shall guarantee that TT jobs do not access their ports outside
their partitioned time window [8].”

This experiment can be omitted if it can be proven that the EEE in the
DECOS implementation of the Technical University of Vienna successfully
prevents the execution of jobs outside their defined partition window. It is
evident that if jobs can not run outside their time window, they can not vi-
olate the timing constraints on accessing their defined communication ports.
As the current Linux-RTAI-LXRT EEE implementation suspends the execu-
tion of jobs not finishing in their partition window time in all DASes, either
on SCU or XCU node computers, no fault can occur which makes a job of
an DAS accesses the I/O port outside their time slot.

5.3.4 Case IV: Memory allocation in user space (multiple)

The experiments are executed in SCU0 which contains three TT jobs (job1,
job2 and job3). Job2 is modified by the software fault injection (SWIFI)
framework such that it tries to allocate memory in the user space by using
the call to the RTAI function rtai malloc(keyname, size) with different key-
name in the parameters. This ensures that consecutive calls allocate distinct
portions of memory.

Expected result
The expected correct result of this test case would be that the function

rtai malloc(keyname, size) allocates the specified chunks of memory as long
as free chunks are available. The operation of other jobs and the operation
of the SCU shall not be affected.

Experiment result
The experiment results are presented in Table 7. Please note that each

experiment is executed at least three times.

run# keyname size succ. Status
allocs job1 job2 job3 system

1.1 varying 4 kByte 70 run run run run
1.2 varying 4 kByte 70 run run run run
1.3 varying 4 kByte 70 run run run run
2.1 varying 128 kByte 70 run run run run
2.2 varying 128 kByte 70 run run run run
2.2 varying 128 kByte 70 run run run run
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3.1 varying 256 kByte 70 run run run run
3.2 varying 256 kByte 70 run run run run
3.3 varying 256 kByte 70 run run run run
4.1 varying 550 kByte 70 run run run run
4.2 varying 550 kByte 70 run run run run
4.3 varying 550 kByte 70 run run run run
5.1 varying 560 kByte 70 run run run run
5.2 varying 560 kByte 70 run run run run
5.3 varying 560 kByte 70 run run run run
6.1 varying 600 kByte 69 released released released reboot
6.2 varying 600 kByte 69 released released released stuck
6.3 varying 600 kByte 69 released released released reboot
7.1 varying 610 kByte 68 released released released reboot
7.2 varying 610 kByte 68 released released released reboot
7.3 varying 610 kByte 68 released released released reboot
8.1 varying 900 kByte 46 released released released reboot
8.2 varying 900 kByte 46 released released released reboot
8.3 varying 900 kByte 46 released released released reboot
9.1 varying 1 MByte 40 released released released reboot
9.2 varying 1 MByte 40 released released released reboot
9.3 varying 1 MByte 40 released released released reboot

Table 7: Multiple allocations in user space by
rtai malloc(), different keynames

5.3.5 Case V: Memory allocation in user space (identical)

The experiments are executed in SCU0 which contains three TT jobs (job1,
job2 and job3). Job2 is modified by the software fault injection (SWIFI)
framework such that it tries to allocate memory in the user space by using
the call to the RTAI function rtai malloc(keyname, size) with different key-
name in the parameters. This ensures that consecutive calls allocate distinct
portions of memory.

Expected result
The expected correct result of this test case would be that the function

rtai malloc(name, size) allocates the specified chunk of memory at the first
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run and gets a reference to the address at all subsequent runs. The operation
of other jobs and the operation of the SCU shall not be affected.

Experiment result
The experiment results are presented in Table 8. Please note that each

experiment is executed at least three times.

run# keyname size succ. Status
[kBytes] allocs job1 job2 job3 system

1.1 equal 128 24567 run run run run
1.2 equal 128 24567 run run run run
1.3 equal 128 24567 run run run run

2.1 equal 256 12283 run run run run
2.2 equal 256 12283 run run run run
2.3 equal 256 12283 run run run run

3.1 equal 512 6140 run run run run
3.2 equal 512 6140 run run run run
3.3 equal 512 6140 run run run run

4.1 equal 1024 3069 run run run run
4.2 equal 1024 3069 run run run run
4.3 equal 1024 3069 run run run run

Table 8: Multiple allocations in user space by
rtai malloc(), constant keyname

Experiment remarks
The job allocates the chunk of memory one time but gets no reference after

a certain amount of calls (see Table 8 in column ”successful allocs”).

5.3.6 Case VI: Memory allocation in kernel space (multiple)

The experiments are executed in SCU0 which contains three TT jobs (job1,
job2 and job3). Job2 is modified by the software fault injection framework
such that it tries to allocate memory in the kernel space by using the call
to the RTAI function rtai kmalloc(name, size) with different names for the
parameters key. This ensures that consecutive calls allocate distinct portions
of memory.
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Expected result
The expected correct result of this test case would be that the function

rtai kmalloc(name, size) allocates the specified chunks of memory as long as
free chunks of memory are available. The operation of other jobs and the
operation of the SCU should not be affected.

Experiment result
Job2 in the SCU0 makes a call to the RTAI function rtai kmalloc(name,

size) with different keyname in the parameter. The experiment gets repeated
for increasing values for the parameter size to observe different behavior. The
result are presented in Table 9.

run key name size succc. Status
[kByte] allocs job1 job2 job3 system

1.1 varying 4 70 run run run run
1.2 varying 4 70 run run run run
1.3 varying 4 70 run run run run

2.1 varying 256 70 run run run run
2.2 varying 256 70 run run run run
2.3 varying 256 70 run run run run

2.1 varying 512 70 run run run run
2.2 varying 512 70 run run run run
2.3 varying 512 70 run run run run

3.1 varying 1024 40 released released released reboot
3.2 varying 1024 40 unknown released unknown stuck
3.3 varying 1024 40 released released released reboot

Table 9: Multiple allocations in kernel space by
rtai kmalloc(), different keynames

5.3.7 Case VII: Memory allocation in kernel space (identical)

The experiments are executed in SCU0 which contains three TT jobs (job1,
job2 and job3). Job2 is modified by the software fault injection framework
such that it tries to allocate memory in the kernel space by using the call to
the RTAI function rtai kmalloc(name, size) with a constant names for the
parameter key. This ensures that consecutive calls allocate the same portion
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of memory.

Expected result
The expected correct result of this test case would be that the function

rtai kmalloc(name, size) allocates the specified chunks of memory on the first
call and returns a reference to the former allocated memory for consecutive
calls. The operation of other jobs and the operation of the SCU should not
be affected.

Experiment result
Job2 in the SCU0 makes a call to the RTAI function rtai kmalloc(name,

size) with a constant keyname for the parameter key. The experiment gets
repeated for increasing values for the parameter size to observe different
behavior. The result are presented in Table 9.

run# keyname size succ. Status
[kBytes] allocs job1 job2 job3 system

1.1 equal 128 24567 run run run run
1.2 equal 128 24567 run run run run
1.3 equal 128 24567 run run run run

2.1 equal 256 12283 run run run run
2.2 equal 256 12283 run run run run
2.3 equal 256 12283 run run run run

3.1 equal 512 6140 run run run run
3.2 equal 512 6140 run run run run
3.3 equal 512 6140 run run run run

4.1 equal 1024 3069 run run run run
4.2 equal 1024 3069 run run run run
4.3 equal 1024 3069 run run run run

Table 10: Multiple allocations in kernel space by
rtai kmalloc(), constant keyname

5.3.8 Case VIII: Memory allocation in the heap

In this experiment, job2 tries to allocate a series of 1kB, 128kB, 256kB,
512kB, 1MB of memory in the heap space using the native C function mal-
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loc() once per task activation.

Expected result
The expected correct result of this test case would be that the function mal-

loc() allocates the specified chunks of memory as long as free chunks are avail-
able, and the operation of other jobs and the operation of the SCU/XCU
shall not be affected.

Experiment result
Job2 continues to execute until the whole free memory of the computer

is allocated, and afterwards is terminated by the operating system. In this
case the operation of other jobs is not affected, and the memory that was
allocated by the faulty job is released. This experiment run is repeated where
the faulty job tries to allocate the memory in chunks of 1kB, 128kB, 256kB,
512kB, 1MB. The results are presented in Table 11.

run# size succc. Status
[kByte] allocs job1 job2 job3 system

1.1 1 41704 running released running reboot
1.2 1 41704 running released running running
1.3 1 41704 running released running running

2.1 128 318 running released running running
2.2 128 318 running released running reboot
2.3 128 318 running released running running

3.1 256 161 running released running reboot
3.2 256 161 running released running running
3.3 256 161 running released running reboot

4.1 512 81 running released running stuck
4.2 512 81 running released running running
4.3 512 81 running released running reboot

5.1 1024 40 running released running stuck
5.2 1024 40 running released running reboot
5.3 1024 40 running released running reboot

Table 11: Memory allocation in the heap by malloc()
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The outcome of the experiments was in most of the cases the termination
of job2. However the behavior of the node computer was not deterministic,
as in some cases the node computer was still executing the jobs job1 and
job3, and in some experiment runs it either stuck or has caused that the
whole node rebooted. Therefore, in this case the EEE does not fulfill the
DECOS requirements, as a faulty job (job2) can affect the operation of the
SCU/XCU .

5.3.9 Case IX: Memory allocation in the heap

This experiment should test the allocation in the heap memory space by
executing the function rt malloc() a defined number of times. The test could
not be performed, as the required RTAI module rt mem mgr supporting this
type of memory allocation is not included in the DECOS implementation of
the Technical University of Vienna.

5.3.10 Case X: Stack overflow by recursive functions

The experiments are conducted with the same setup as in Case I (see Section
5.2.1). Job2 is modified by the software fault injection framework such that
it calls a recursive function. In this case the length of the stack grows with
every recursive call. The recursive function is listed below:

long recursivefunction(long iteration){

volatile long garbage[1024];

garbage[1024-1]=rand();

rt_printk("i: %d\n",iteration++);

garbage[1024-2] = recursivefunction (iteration);

return 0;

}

Expected result
According to the DECOS validation claims, a job which suffers from soft-

ware faults shall not be able to affect the operation of other jobs or the
operation of the SCU/XCU .

Experiment result
The experiment results are presented Table 12. Please note that each

experiment is executed at least three times. The experiments are executed
with the recursive function that declares different array sizes.
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run# size succc. Status
[kByte] recursions job1 job2 job3 system

1.1 4 503 run released run run
1.2 4 503 run released run run
1.3 4 503 run released run run

2.1 32 62 run released run run
2.2 32 62 run released run run
2.3 32 62 run released run run

3.1 64 30 run released run run
3.2 64 30 run released run run
3.3 64 30 run released run run

4.1 4096 0 run released run run
4.2 4096 0 run released run run
4.3 4096 0 run released run run

Table 12: Stack-overflow by recursive function call

The operation of other jobs was not affected and operation of the application
computer subsystem was not affected as well. In this case the EEE fulfills
the DECOS validation requirements.

5.3.11 Case XI: Manipulation of the scheduler semaphore

The synchronization of the scheduler is performed by the semaphore LOCK.
On each start of a core cycle, the network device driver performs a sem v()
operation to unblock the scheduler task which in term triggers the applica-
tion jobs to be run in the configured time slot.

The experiments are executed in XCU0 which contains three TT jobs. Job2

tries to access the schedulers semaphore LOCK and perform consecutive sem v()
operations.

Expected result
The EEE shall provide a mechanism robust enough to detect such access

and perform countermeasures to guarantee the timely correct behavior.

Experiment result
It is possible to access the semaphore from within an application job. Con-
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secutive sem v() operations from an application job cause the scheduler to
never block. This causes multiple executions of the jobs within the configured
partition window time. The possibility to access the scheduler’s semaphore
can cause to break the temporal behavior of a DECOS unit.
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6 Experiment analysis

In this section the analysis of the experiments executed in Section 5 in the
temporal and spatial domain are presented. Special system calls executed on
the experiment runs are described and how they are executed in the Linux-
RTAI-LXRT environment.

6.1 Temporal encapsulation

This section covers the experiments executed in Section 5.2 concerning dead-
line violations of TT jobs and delayed ET jobs.

6.1.1 Deadline Violation of TT jobs

Experiment analysis
The TT task job2 is scheduled at the beginning of the first TDMA round.

At the end of the partition window time, the TT task gets interrupted by the
scheduler. Let us analyze the first experiment run (Table 2, Exp. 1.1). Job2

is scheduled in the next TDMA round, and it resumes the execution from
the point in time where it was suspended in the previous slot. This means
that the job2 resumes its execution from the last interaction (the last 32 µs
of the delay of the previous iteration that are caused by the SWIFI) and
suspend itself after 32 µs (note that jobs suspend itself after each execution
of the periodic part). In this case the 2nd execution of the periodic part of
job2 starts in the 3rd TDMA round, the 3rd execution of the periodic part
starts in the 5th TDMA, and so on. Figure 19 and Figure 20 show the job
timings if a jobs execution time is delayed to > 100% and > 300% of its allo-
cated time slot. The activity of job2 is depicted as the 3rd signal from the top.

These experiments have shown that a faulty job does not affected the CPU
resources allocated to other jobs, and does not affect the correct execution
of the SCU . However, the faulty job was not terminated as it is required
from the EEE. Job1 and job3 are executed in their allocated time slot, and
its operation is not affected by the execution of the faulty job job2. From this
analysis and from experiments results we conclude that the EEE partially
fulfills its requirements. A fault job TT will not affect the operation of other
jobs, but the faulty TT job gets not terminated.

As the scheduler has a higher priority than the priority of application jobs, it
preempts the execution of the job2 after the execution of the first iteration.
The scheduler also suspends job2 during the execution of the infinite loop as
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shown in Section 5.2.2. However the scheduler cannot terminate the execu-
tion of this job, as the application jobs in the current DECOS framework are
implemented as LXRT task, and there is no reliable possibility to terminate
an LXRT task.

The current implementation of the scheduler makes no distinction whether a
task is a ET or TT task. The scheduler could be implemented in a way that
a TT task executing longer than the configured partition time window would
be terminated, but the problem is that all application jobs in the DECOS
implementation of the Technical University of Vienna are LXRT tasks [15].
LXRT tasks can not be terminated in a reliable way, if the tasks do not re-
spond. The problem is that real-time tasks in userspace (LXRT tasks) have
a ”buddy”-task in the kernel space, which in term executes RTAI-functions
if called. The termination of an LXRT implemented application job requires
the termination of the kernel module (”buddy”-task) and the LXRT task.
Should the LXRT task not respond to a request for termination, only the
kernel task can be killed, and a zombie LXRT task is left in the system. This
prevents a re-launch of the application job after termination as the RTAI
object, which is created for each task, each shared memory, and each FIFO
is already instantiated. In the case of an unresponsive LXRT task, only a
reset of the node computer can lead to an correct system state.

As the interruption of the job that violates its deadlines is not observed,
no information are sent to the diagnosis high-level service (symptom genera-
tion). However, a proper implemented diagnosis service will detect that the
output port was not updated, and such a situation can be correctly detected
by the diagnosis as a software fault.
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Figure 19: Job execution time > 100% of allocated time slot

Figure 20: Job execution time > 300% of allocated time slot
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6.2 Spatial partitioning

This section covers the experiments executed in Section 5.3 concerning the
spatial encapsulation in the DECOS implementation of the Technical Uni-
versity of Vienna.

6.2.1 Memory access outside of own address space violation

The experiment shall perform a write access of a DECOS job into a memory
partition of another job.

Experiment analysis
In this case two situations can be observed: the case when the job accesses

the data segment, and the case when the job accesses the code segment.
The results of experiments for the code segment are shown in Table 5. The
corresponding result set for the data segment are presented in Table 6.
An attempt of job2 to access the memory addresses to other jobs will fail,
because the concept of virtual memory and the memory protection mecha-
nisms of the Linux OS prevent a job running in the user mode to write in
the memory areas of other jobs.

In case that the job accesses its own data segment, the job will not be
interrupted. In case the job accesses the own code space, the job will be
interrupted by the EEE, however the operation of other jobs is not affected
and the operation of the XCU0 is not affected. Therefore, the spatial parti-
tioning of the EEE is supported in this case.

Remarks on memory manipulation of foreign jobs
The results showed that it is not possible to write to foreign data sec-

tions. As the jobs are independent RTAI tasks, and the scheduler can only
suspend and resume these, it is generally not possible to overwrite foreign
memory regions. The Linux OS has sufficient security checks on memory ac-
cess functions which makes it impossible. This had already been researched
and argumented in [15]. The SWIFI framework used kernel hacking and
duplicating of kernel source code into the DECOS framework to make it pos-
sible to inject a byte into code and data segments. The ”attacker” must be
able to load a kernel module into the OS and have detailed knowledge of the
Linux version used by the node.

As a short summary, one can say it is theoretically possible to corrupt an-
other job’s memory, but therefore the developer has to have the facility to
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load a kernel module and design his application job for that specific reason.
For further information about conditions a job has to fulfill, the reader is
advised to read [15, 16, 17]

6.3 System calls

This section covers the execution of RTAI and Linux system calls from within
a DECOS job. The effects on invocation of such system calls are presented.

6.3.1 Memory allocation in user space

In this experiment class, consecutive calls of the function rtai malloc are
performed on each activation of a DECOS job job2 in the unit SCU0 to
allocate memory in the user space (see Section 5.3.4 and 5.3.5).

Experiment remarks
Two observations could be done in this result:

• There is an upper limit of 70 iterations of successful allocation runs
before request for memory chunks get denied by the system

• The upper memory limit for allocations is 41 MB before the allocating
task gets stuck. This is due the limited amount of RAM available in
the DECOS units SCU and XCU

The first observation could be pinned down for the fact that in RTAI’s LXRT
mode each object, namely

• TSK - tasks

• SEM - named semaphores

• RWL - read write locks

• SPL - spin lock

• MBX - mailbox

• PRX - proxy

is stored in global RTAI object list. This list has a limited amount of en-
tries which is defined by the macro MAX SLOTS which in LXRT is a define to
CONFIG RTAI SCHED LXRT NUMSLOTS and is set to 100 in the current DECOS
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implementation. This value can only be changed at compile-time, not dy-
namically on run-time. As soon as the table is full, all requests for additional
objects are blocked by the RTAI framework.

At experiment runs 1.1 to 5.3 (see Table 7) job2 tries to allocate shared mem-
ory in the user space using rtai malloc() once in a TDMA round. Shared
memory can be allocated in junks of 4 kB, i.e., this is the minimum size for
one allocation. After the execution of 70 rounds job2 cannot allocate mem-
ory, as for each allocation a shared memory object is generated, as the limit
of maximum objects that can be allocated is reached. After the maximum
number of generated object is reached (i.e., after 70 allocations) the job fails
to allocate more memory. However, the function that performs allocation
(rtai malloc()) does not give an error return value when it fails to allocate
the shared memory in the user space. Job2 continues to operate, and neither
its operation nor the operation of other jobs is affected even if job2 tries to
further allocate shared memory blocks.

At experiment runs 6.1 to 9.3 (see Table 7) job2 tries to allocate shared
memory in the user space using rtai malloc once in a TDMA round. After
the execution of 69 TDMA rounds, for experiment run 6.1 and 40 TDMA
rounds for experiment run 9.3, job2 has allocated the maximum free mem-
ory. The operating system terminates the faulty job, however the operation
of other jobs is affected as well as the SCU performs a reboot, and in one
case gets stuck. Therefore in this case the EEE does not fulfill the require-
ment that it should protect other jobs by being affected by a job that suffers
from a software fault.

Similar experiments are repeated where the keyname (ID) of the requested
memory allocation remain the same. In this case, the attempt to allocate
memory with the same keyname, will result in the allocation of the same
memory. In case that the memory of different size is allocated with the same
keyname, the size of the allocated memory will results in the size of the last
allocation. In this case the operation of the job performing memory alloca-
tion is not affected, as it is not affected the operation of other jobs and of
the SCU/XCU .

6.3.2 Memory allocation in kernel space

In this experiment class, consecutive calls of the function rtai kmalloc() are
performed on each activation of a DECOS job job2 in the unit SCU0 to
allocate memory in the kernel space (see Section 5.3.6 and 5.3.7).
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Experiment analysis
The observation from this experiment is the same as from the experiment

allocating memory from the user space by using the rtai malloc() operation,
so one could assume the underlying system calls could be exactly the same.
Looking into rtai shm.h it gets clear that the call to rtai kmalloc() in LXRT-
mode is actually just a macro that allocates a chunk of the shared memory
like the call to rtai malloc(). The shared memory pool for RTAI gets pre-
reserved on the initialization of the RTAI subsystem, i.e. loading of the RTAI
kernel modules. Necessary increase of this memory pool gets done dynami-
cally at runtime when the control (the CPU) is handed over from the RTAI
to the Linux operating system, as the allocation is performed by Linux sys-
tem calls and these are blocking functions. For the dynamic increase of the
memory available, the RTAI module rt mem mgr is required to be loaded. In
the current DECOS implementation this module is not available, so dynamic
increase of the memory pool at runtime is not possible.

The following is the define macro in the file rtai shm.h for the function
rtai kmalloc().

#define rtai_kmalloc(name, size) \

rt_shm_alloc(name, size, USE_VMALLOC) // legacy

#define rt_shm_alloc(name, size, suprt) \

_rt_shm_alloc(0, name, size, suprt, 0)

#define rtai_malloc(name, size) \

_rt_shm_alloc(0, name, size, USE_VMALLOC, 0) // legacy

We can see, rtai kmalloc is actually just a call to the function rt shm alloc().
Comparing to the way on how rtai malloc() is called, we can see there is no
difference in the invocation scheme. The two functions can therefore be seen
as the same in the RTAI framework. The calling mechanism is described
in Figure 21 and shown in the listing below. Each call checks, whether the
RTAI-name given to the function already exists in the global RTAI object
list. If the RTAI-name is found, a reference to that memory location is
returned. If the name can not be found, a new memory section is allocated
and returned to the calling function. For the case of an LXRT task, the
memory is allocated in the user space, whereas a call from a kernel module
allocates the memory in the kernel space.

static inline void *_rt_shm_alloc(unsigned long name, int size, int suprt)

{
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Figure 21: RTAI memory allocation
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void *adr;

// suprt = USE_GFP_ATOMIC; // to force some testing

if (!(adr = rt_get_adr_cnt(name)) && size > 0 && suprt >= 0 \

&& RT_SHM_OP_PERM()) {

size = ((size - 1) & PAGE_MASK) + PAGE_SIZE;

if ((adr = suprt ? rkmalloc(&size, SUPRT[suprt]) : rvmalloc(size))) {

if (!rt_register(name, adr, suprt ? -size : size, 0)) {

if (suprt) {

rkfree(adr, size);

} else {

rvfree(adr, size);

}

return 0;

}

memset(ALIGN2PAGE(adr), 0, size);

}

}

return ALIGN2PAGE(adr);

}

Allocations limited by the global RTAI object list
The number of successful invocations of RTAI memory allocations is lim-

ited by the amount of available entries in the global object list. The number
of 70 available entries is due to the fact that tasks, FIFO’s and shared mem-
ory regions require an entry in the list, and the DECOS unit is configured for
a total number of 100 objects. 30 objects are already used after startup. The
total list of RTAI objects instantiated in the memory space can be derived
from the command ”tail -n 50 /proc/rtai/RTAI names" at the console
shell:

RTAI LXRT Information.

MAX_SLOTS = 100

Linux_Owner Parent PID

Slot Name ID Type RT_Handle Pointer Tsk_PID MEM_Sz USG Cnt

-------------------------------------------------------------------------------

1 RTGLBH 0x9ac6d9e5 SHMEM 0x00000000 0x00000000 0 131072 1

2 XCHNGE 0xb8b3f8f7 SHMEM 0xc4871000 0x00000000 0 4096 4

3 CONF 0x000c5c8c SHMEM 0xc4873000 0x00000000 0 4096 2

4 TKDATA 0xa4479cc1 SHMEM 0xc4875000 0x00000000 0 4096 3

5 LOCK 0x00148053 SEM 0xc48b2880 0x00000000 0 0 1

6 THLSVC 0xa3e55f18 MBX 0xc3760040 0x00000000 0 0 1

7 TJOB1 0x0435b309 MBX 0xc37600c0 0x00000000 0 0 1

8 TJOB2 0x0435b30a MBX 0xc3760140 0x00000000 0 0 1

9 TJOB3 0x0435b30b MBX 0xc37601c0 0x00000000 0 0 1

10 FIMBXF 0x58bf371e MBX 0xc3760240 0x00000000 0 0 1
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11 FIMBXS 0x58bf372b MBX 0xc37602c0 0x00000000 0 0 1

12 FIMBXC 0x58bf371b MBX 0xc3760340 0x00000000 0 0 1

13 SHMBUF 0x9e852b63 SHMEM 0xc4893000 0x00000000 0 12288 2

14 HLSVC 0x029002c6 TASK 0xc3763040 0x00000000 0 558 1

15 0BH 0x000007d7 SHMEM 0xc4857000 0x00000000 0 4096 1

16 0EA 0x00000845 SHMEM 0xc4880000 0x00000000 0 4096 2

17 0EB 0x00000846 SHMEM 0xc4897000 0x00000000 0 4096 2

18 0EC 0x00000847 SHMEM 0xc4899000 0x00000000 0 4096 2

19 JOB1 0x0012b0ab TASK 0xc3763840 0x00000000 0 560 1

20 FITEST 0x58c59e3d SHMEM 0xc489b000 0x00000000 0 4096 2

21 FITIME 0x58c5b508 SHMEM 0xc489d000 0x00000000 0 4096 2

22 SM_LOG 0x9f42924b SHMEM 0xc489f000 0x00000000 0 4096 3

23 T4_LNK 0xa227e09d SHMEM 0xc48b5000 0x00000000 0 4096 2

24 JOB2 0x0012b0ac TASK 0xc3764040 0x00000000 0 562 1

25 T_IVAR 0xa6816b55 SHMEM 0xc48b7000 0x00000000 0 4096 2

26 T_OVAR 0xa686d99f SHMEM 0xc48b9000 0x00000000 0 4096 2

27 T_EXCH 0xa67dd89f SHMEM 0xc48bb000 0x00000000 0 4096 2

28 JOB3 0x0012b0ad TASK 0xc3764840 0x00000000 0 564 1

29 FINJH 0x0246925b TASK 0xc3765040 0x00000000 0 572 1

30 FINJHT 0x58c04bfb TASK 0xc3765840 0x00000000 0 577 1

The following is the console output on startup of the node computer, where
we can see the name of the RTAI objects of the LXRT tasks and the job’s
addresses in memory:

This is node (00:00:24:C3:C1:94) ...

Component: 0

SCU (subsystem 0)

HLSVC: Task init, address = 0xc3763040.

VN at Component 0 and Subsystem 0

* comfort CAN

* AVDN_NSC

* PVDN_NSC

* PVDN_SC

* lights DAS

* navigation DAS

* by wire DAS

* Lights PCAN

* Comfort LIN

* BB4 Application

* VAL Application

GW at Component 0 and Subsystem 0

* GW "VGW:CAN0_to_TT" located at subsystem 0, component 0

Slot 0, task: c3763040, taskname: HLSVC

JOB1: Task init, address = 0xc3763840.

Slot 0, task: c3763040, taskname: HLSVC
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Slot 1, task: c3763840, taskname: JOB1

JOB2: Task init, address = 0xc3764040.

Slot 0, task: c3763040, taskname: HLSVC

Slot 1, task: c3763840, taskname: JOB1

Slot 2, task: c3764040, taskname: JOB2

JOB3: Task init, address = 0xc3764840.

Slot 0, task: c3763040, taskname: HLSVC

Slot 1, task: c3763840, taskname: JOB1

Slot 2, task: c3764040, taskname: JOB2

Slot 3, task: c3764840, taskname: JOB3

SCHED: All tasks registered

6.3.3 Manipulation of the scheduler semaphore

This experiment aims at the RTAI semaphore access from within jobs. Al-
lowing unprotected access to RTAI objects - shared memory or semaphores -
from application jobs may be very dangerous. This DECOS implementation
uses RTAI shared memory for the most critical sections, namely the

• configuration storage ("CONF"),

• scheduling ("LOCK") and

• cluster communication ("XCHNGE")

Manipulating those shared memory regions from within an application job
can lead to unpredictable results.

In the current DECOS implementation of the Technical University of Vienna,
the semaphore ”LOCK” is used to synchronize the scheduler task with the
RTnet network device driver.

The cluster starts up by initializing the scheduler task, which does the ini-
tialization with RTAI semaphore "LOCK" creation and then schedules itself
for the normal operation to schedule the jobs corresponding to their position
in the TDMA cycle. The actual schedule is an infinite loop which resumes
the tasks and waits for the semaphore as the last instruction in the loop.
The next iteration of the loop gets triggered on receiving an incoming mes-
sage at the network interface (see Figure 22). As soon as a message arrives
at the network interface, the interrupt handler of the device driver signals
the semaphore "LOCK" so that the scheduler is informed that the execution
instant has occurred.

If a malicious application job signals this semaphore, the scheduler would
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Figure 22: DECOS scheduling
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run instantly which could provoke an unpredictable state in the unit.

The same error state could occur if any task of a node deletes the semaphore:
The RTAI documentation describes on deletion of semaphores by calling
rt sem delete(SEM *sem):

”Any tasks blocked on this semaphore is returned in error and
allowed to run when the semaphore is destroyed [18].”

This would mean, the scheduler would continuously execute the infinite
scheduling loop with the high priority. A simplified version of the sched-
uler can be seen in the following source code fragment:

static int __init initialize(void) {

do_initialization_code();

/* initialize semaphore */

rt_sem_init(&sem, 0);

rt_register(nam2num("LOCK"), &sem, IS_SEM, 0);

do_further_initialization_code();

rt_set_oneshot_mode(); // set rt_timer to one_shot_mode

start_rt_timer(0); // start rt_timer

rt_task_resume(&sched_task);

return 0;

}

static void scheduler(int dummy) {

do_initialization_code();

while(1) {

execute_tasks_of_current_slot_and_goto_sleep();

/* wait for new slot --> semaphore is signaled

by device driver */

/* The following signal is generated in

rt_net-source/drivers/natsemi/rt_natsemi.c */

rt_sem_wait(&sem);

}

}

The device driver source code signaling the semaphore can be seen below:

static void intr_handler(unsigned int irq, void *dev_instance){

do_interrupt_code();

if (intr_status &

(IntrRxDone | IntrRxIntr | RxStatusFIFOOver |

IntrRxErr | IntrRxOverrun)) {

netdev_rx(dev, &time_stamp);

}

do_further_interrupt_code();
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}

static void netdev_rx(struct rtnet_device *dev, rtos_time_t *time_stamp){

do_interrupt_code();

if ((sem = rt_get_adr(nam2num("LOCK")))) {

rt_sem_signal(sem);

}

Experiment result
The following figures show the measurements with an oscilloscope. The

actual state of the different tasks scheduler and job2, whether running or
blocked have been put on output pins of the Soekris node. The oscilloscope
shows the actual timing of the unit after performing the fault injection with
the tampered semaphore. The upmost signal shows the alternating TDMA
round. The middle signal shows the activation of the scheduler task, and the
signal on the bottom of the picture shows the activation times of job2. It is
evident that the job2 is executed too often, as it normally should by activated
only six times per TDMA round. The manipulated semaphore never causes
the scheduler to block: immediately after finishing a scheduler loop, the next
iteration of the scheduling algorithm starts over.

Triggering of the semaphore from a job
The Figure 23 shows the effect on triggering the semaphore in the unit

SCU0 from the job job2. The scheduler is activated even if no network
packet for synchronization is received.

Deletion of the semaphore from a job
The Figure 24 (and Figure 25 in a more detailed resolution) show the

effect on deleting the semaphore in the DECOS unit SCU0. The scheduler
is constantly triggered when the semaphore is deleted.
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Figure 23: Scheduler operation with manipulated semaphore

Figure 24: Scheduler operation on deleted semaphore
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Figure 25: Scheduler operation on deleted semaphore, detailed
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7 Conclusion

The DECOS integrated architecture is developed in the course of the Euro-
pean IST-FP6 Integrated Project DECOS. It allows the integration of sev-
eral embedded application subsystems with different criticality into the same
hardware infrastructure. The DECOS Encapsulated Execution Environment
(EEE) implemented at the University of Technology Vienna was validated by
means of software implemented fault injection (SWIFI). This section presents
concluding remarks regarding the implementation of the SWIFI framework
for the validation of the DECOS EEE, the test results, and an analysis of
the test results.

7.1 Achievements

The work presented in this thesis was performed in the course of the DECOS
project. An existing framework for the emulation of hardware faults in the
DECOS integrated architecture was extended. A fault injection framework
capable to perform the injection of software faults into a DECOS unit was
developed. This framework was used to validate the DECOS encapsulated
execution environment (EEE) w.r.t. SW faults of the DECOS fault hypoth-
esis. The DECOS EEE is responsible for the partitioning of shared resources
(CPU, memory, and I/O) and the encapsulation of multiple DECOS jobs in
the temporal and the spatial domain. The extension provides a mechanism
to inject software faults by modifying the application jobs. Experiments for
the validation of the temporal and spatial encapsulation were executed.

The Linux-RTAI-LXRT real-time framework is used for temporal and spatial
encapsulation in the presented DECOS EEE implementation. RTAI-LXRT
can guarantee a correct temporal encapsulation of the DECOS jobs, although
the validation of the current scheduling mechanism implementation unveiled
two problems:

• The current scheduler implementation is not capable to detect deadline
violations of TT jobs. Furthermore, there are no mechanisms to detect
and terminate a faulty TT job that violates its deadline. At least, the
operation of other jobs executing on the same unit is not affected.

• It is possible to gain unprotected access to a core component of the
scheduler, the synchronization semaphore. This mechanism is used
to synchronize the application task activations with the DECOS core
communication subsystem time slots. A faulty application job can
tamper the semaphore and cause the scheduler to execute at instants
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outside the specified time slots. The development of a proper protection
mechanism for the semaphore is required to maintain the temporal
correctness.

Regarding the spatial encapsulation, the memory protection mechanisms of
the Linux operating system can guarantee a successful spatial encapsulation.
A job in a DECOS unit cannot gain access to a partition (assigned memory
region) of another job. Problems arose, when system calls of the RTAI-LXRT
real-time framework have been invoked from within a DECOS job:

• The dynamic memory allocation functions, available to RTAI-LXRT
jobs, cannot be classified as safe. Allocations in kernelspace or userspace
can affect the operation of the DECOS unit in a way that the unit fails
as a whole. According to the DECOS fault hypothesis on software
faults, each application job forms a fault containment region. A unit
failing as a whole would therefore not be detected as an application
fault by a proper implemented diagnosis service, but as a hardware
fault. A limitation of the API set regarding dynamic memory allo-
cation provided to DECOS jobs would be required to overcome this
problem.

• Regarding the protection of the input/output ports of DECOS jobs, the
same problem like with the synchronization semaphore arose. The CNI
in the current implementation is designed as an RTAI shared memory
region. A DECOS job getting hold of the respective RTAI object name
can gain full access to the communication network interface (CNI) with-
out invoking the functions of the DECOS interface, which shall provide
protection mechanisms.

At the current stage of the implementation, the Linux-RTAI-LXRT design
does not fulfill all requirements to be deployed as a DECOS EEE. Further
improvements with respect to the scheduler mechanism, the protection of the
CNI and the limitation of the available API set to static functions have to
be implemented to make the current implementation suitable for deployment.
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