
DIPLOMARBEIT

Development of a Phenotype
Algorithm for Particle Geometry

Optimization

Ausgeführt am Institut für

Theoretische Physik

der Technischen Universität Wien

unter der Anleitung von

Ao. Univ. Prof. Dipl.-Ing. Dr. Gerhard Kahl

durch

Günther Doppelbauer

Obere Bahngasse 20/6, 1030 Wien

23. März 2009

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Abstract

We implemented a search algorithm capable of finding the energetically most favor-

able and thus stable spatial configurations of particles interacting pairwise via po-

tential functions, considering two different types of phenomena, namely cluster and

lattice formation. This problem was successfully solved using concepts of genetic al-

gorithms, in particular so-called phenotype algorithms introduced in the late 1990s.

With the help of our algorithm, we gained results on well-known benchmark systems

(including Lennard-Jones Clusters) as well as on a newly proposed two-dimensional

system.

iv

Contents

1 Introduction 1

2 Genetic Algorithms 5

2.1 Standard Genetic Algorithms . 5

2.1.1 Basic concepts . 5

2.1.2 Algorithm . 7

2.1.3 Schemata and Building Block Hypothesis 15

2.1.4 GAs and the No Free Lunch Theorems 17

2.2 Phenotype Algorithms . 18

2.2.1 Transformation of the rating hypersurface through local opti-

mization . 19

2.2.2 Phenotypical operators . 20

3 Problems Investigated 27

3.1 Cluster geometry optimization . 27

3.1.1 Lennard-Jones Clusters . 28

3.1.2 Dzugutov Clusters . 31

3.2 2D-System . 33

4 Implementation of the GA 37

4.1 Cluster geometry optimization . 37

4.1.1 Repeatedly used routines . 38

4.1.2 Initialization . 41

4.1.3 First Generation . 43

4.1.4 Reproduction . 43

4.1.5 Termination . 45

4.2 2D-System . 46

5 Results 51

5.1 Lennard-Jones Clusters . 51

v

5.1.1 Standard Lennard-Jones (α = 6) 51

5.1.2 α = 18 . 56

5.2 Dzugutov Clusters . 60

5.3 2D-System . 62

5.4 Visualizations . 66

6 Summary 75

vi

1 Introduction

In soft matter physics, the search for ordered equilibrium structures of systems inter-

acting via potentials of different functional shape is an important task. We illustrate

this for a particular class of systems, the colloidal dispersions - systems consisting

of mesoscopic particles (colloids) in a microscopic solvent. The behavior of such

systems can be described via effective interactions between the colloids, where the

influence of the microscopic solvent particles on the colloids is incorporated through

suitable coarse graining methods in an effective potential [1]. By varying parameters

like temperature, salt concentration in the solvent or the chemical composition of

the mesoscopic particles, the effective potential can be influenced in different ways,

leading to the possibility of custom-made potentials. On solidification, these systems

show a surprisingly wide variety of stable ordered structures. In contrast to hard

matter (i.e. atomic) systems, these structures can be very complex and difficult to

predict.

According to statistical mechanics, an equilibrium state of a system corresponds

to an extremum of the appropriate thermodynamic potential. At constant volume,

this potential is the free energy, which reduces at zero temperature to the internal

energy of the system. On a microscopic level, the internal energy is a function of

the coordinates of the interacting particles. Therefore, the search for equilibrium

structures becomes an optimization problem: the global minimum of a cost function

(in our case the internal energy) depending on a set of parameters (in our case

the spatial coordinates of the particles) is to be found. All possible combinations

of parameter values x (called candidate solutions) make up the search space and

every point in search space corresponds to a cost value f(x), for which the minimum

f(x∗) = min
x

f(x) (or maximum) should be found.

In practice, the solution of such optimization problems turns out to be extremely

difficult for sufficiently large systems, even when one is searching for ordered struc-

tures. This due to the high dimensionality of the search space and the complicated

functional dependence of the cost values on the parameters.

1

There is a wide variety of techniques to cope with optimization problems. Local op-

timization methods start from a certain point in search space and iteratively move

to better neighboring points. These techniques usually find the local optimum of the

cost function next to the starting point. Newtonian methods, utilizing the gradient

of the cost function at hand, ∇xf(x), are a well known example for local optimiza-

tion. Global optimization methods, on the other hand, are devoted to the generally

much more difficult task of finding the overall optimum of the cost function, i.e. the

candidate solution with the single best cost value possible.

Global optimization techniques can be divided in the following categories:

• Deterministic approaches explore the search space in a systematic way.

Here, previously tested candidates determine in an unambiguous way the next

candidate solutions.

• Stochastic approaches explore the search space in a random way. A very

important example for these approaches are Monte Carlo methods [2].

• Heuristic approaches incorporate aspects of both aforementioned strategies:

A heuristic search algorithm tries to explore the search space in a randomized,

but (hopefully) intelligent way. This is achieved by taking both the information

currently available (by previously evaluated candidate solutions) as well as

random decisions into account when determining which point in search space

should be tested next.

The search strategy this work is based on, namely genetic algorithms, belongs to

the third category. Genetic algorithms explore multi-dimensional parameter spaces

using several concepts inspired by natural (Darwinian) evolution processes [3], such

as survival of the fittest, selection, recombination, inheritance and mutation.

Evolution itself can also be viewed as an optimization strategy: Individuals that

are well adjusted to their environment have a high probability to survive and pass

their genetic information (and thus their characteristic features) on to subsequent,

probably even better adapted generations. However, it is important to note that this

analogy is limited, since the cost function of problems we are investigating is generally

fixed, whereas in natural evolution, there is an interaction between individuals and

their environment, i.e. the “cost function” (viability of an individual or species) is

influenced by the other “candidate solutions” (other individuals or species) that are

present.

2

This thesis is organized in the following way:

• Chapter 2 presents the concepts of the search strategy we use. In the first

part, the standard approach of genetic algorithms is presented alongside some

remarks on the theory behind them. The second part of this chapter introduces

phenotype algorithms and tries to point out what makes them more suitable

than standard genetic algorithms for problems like the ones we investigated.

• Chapter 3 provides an overview of the characteristic features of the different

model systems we studied.

• Chapter 4 describes the technical details of our implementation of a phenotype

algorithm as a FORTRAN 90 program.

• Chapter 5 presents the results we obtained. Energy values of the most favor-

able configurations we found are provided and compared to previously published

data if possible. Visualizations of some example structures are given at the end

of this chapter.

• Chapter 6 consists of a short overview of the work we did and points out

possible future improvements for our algorithm.

3

4

2 Genetic Algorithms

Genetic algorithms (GAs) as computer simulations were probably first introduced

by J.H. Holland [4] in 1975 and have ever since been further developed [5, 6, 7]

and used on a wide variety of fields. These include, but are not limited to, physics,

chemistry and material science (e.g. crystal structure prediction [8, 9], molecular

structure optimization and cluster geometry optimization [10]), biology (e.g. protein

and DNA structure prediction) [11], automated design (e.g. electronic circuits [12]),

and economics (e.g. [13], [14]).

In our group, genetic algorithms have successfully been used for research on con-

densed matter theory [15, 16], 3D soft matter systems [17, 18, 19], 2D soft matter

systems [20, 21, 22], and 2D soft matter layered systems [23].

Although Holland’s schema theorem [4] and the building block hypothesis (see below)

are widely considered an explanation for the power of genetic algorithms, there is still

a debate over the mechanisms of the adaptive capacity (i.e. the average convergence

towards better results) of GAs.

2.1 Standard Genetic Algorithms

2.1.1 Basic concepts

The basic idea of GAs is to have a population consisting of candidate solutions (i.e. in-

dividuals Ij), which evolves in time. Genetic operations, like selection, crossover and

mutation, are applied on these individuals. The attributes of the individuals (i.e. phe-

notype) are coded into genes. A cost function determines the fitness of each individ-

ual. The chance of an individual to survive and to inherit its genetic information to

subsequent generations depends on its fitness.

Here is a more detailed explanation of these concepts.

5

• Genotype: In GAs all information about an individual is encoded into and

decoded from a string of genes. Every single gene can assume any value of a cer-

tain alphabet, A = {a1, . . . , an}. The string of genes, in which all parameters

of one candidate solution are encoded is called the individual’s genotype (syn-

onyms are chromosome and genome). All parameters correspond to substrings

of the genotype. Such a substring, which can be decoded into one parameter

xj , could be called a word wj or genetic division.

Schematic representation of a genotype encoded in a binary alphabet:

. . . 1 1 0

gene gi
︷︸︸︷

1 0 1 0 0 1
︸ ︷︷ ︸

word wj =̂ parameter xj

1 0 1 . . . genotype

In nature, the genotype is encoded as a DNA sequence, where the bases adenine,

cytosine, guanine, and thymine are the letters of the corresponding alphabet

ADNA = {A, C, G, T}.

Note that the use of the term “gene” in GAs differs from the meaning it has in

(classical) biological genetics, where it rather stands for “unit of inheritance”,

which has more in common with the substrings termed “words” above. A more

consistent denomination for what we call gene here would be “allele”.

• Phenotype: The phenotype stands for all properties (or parameters) of one

individual and therefore represents one point in search space.

• Coding: For encoding and decoding a chromosome, one has to choose a

genotype-phenotype map which of course has to be invertible. If it is not

possible to encode variables with arbitrary numerical precision (e.g. real num-

bers as a finite string of binary numbers), the genetic search space represents

a grid in real parameter space.

• Fitness function: The fitness of an individual is a function of its quality.

While the quality (or rating) of a candidate solution is a well-defined value, the

way in which its fitness depends on this value can be chosen. For example, if we

search for configurations of particles with low energy, we will define fitness as

some function of the energy. By modulating the fitness function, the chances for

survival and mating of candidate solutions of different quality can be adjusted.

• Representation: The chosen genotype-phenotype map combined with the

fitness function is called the representation of the optimization problem. By

6

choosing a certain representation, the distribution of fitness values over all

possible genotypes and therefore the way the search space of the problem at

hand is represented in the algorithm1 are implicitly determined.

• Population and generation: The set of individuals present at a certain time

is termed the (current) population P = {I1, . . . , In}. The number of individ-

uals is in general constant, although it is possible to use GAs with variable

population size. As the population propagates in time, new individuals are

introduced into the population and old individuals are removed from it. The

population at step i is called i th generation Gi.

• Selection: Before constructing new individuals by recombination, “parent”-

individuals have to be selected from the population. In most cases an individ-

ual’s chance of being selected increases with its fitness.

• Crossover: The mechanism of creating new individuals based on the genetic

information of a number of parent individuals (usually two like in the natural

analogon) is called crossover process.

• Mutation: Another way of creating new candidate solutions is by mutation

of previously created individuals. The mutation-operator works directly on

the genes. In typical implementations with a binary alphabet, one or several

arbitrarily chosen genes are flipped by the mutation operator.

2.1.2 Algorithm

A pseudo-code of a generic genetic algorithm can be represented as follows (variables

are typed in in roman, operations in italic letters):

program GA

initialize (population)

evaluate (population)

while (not(termination condition)) do

parents=select parents (population)

new generation=recombine (parents)

new generation=mutate (new generation)

1This is often called representation space. The search space consists of all possible parameter

configurations and their rating values, while the representation space consists of all possible

genotypes and their fitness values.

7

evaluate (new generation)

population=build population (population,new generation)

end do

end program

Now I will describe the most important subroutines of a standard genetic algorithm

in detail:

Initialization

In a first step, the starting population has to be initialized, i.e. all parameters of

all individuals have to be assigned a value. Usually random values are chosen for

those parameters, but it is also possible to use biased starting values, this is the

case when some prior knowledge about the optimization problem is employed. When

using uniformly distributed random starting values, the individuals can be directly

initialized via their genes, i.e. every allele is assigned a random letter from the chosen

alphabet. On the other hand, biased starting values are easier to incorporate via a

phenotype-based initialization.

Encoding

As mentioned above, a bijective (i.e. revertible) genotype-phenotype mapping for

the particular problem has to be found. Usually a binary alphabet Abinary = {0, 1}
is used, because this allows efficient use of computational time and memory. The pro-

cess of encoding a decimal integer number i into its binary representation bnbn−1 . . . b1b0

works as follows
b0 = (i mod 2) i1 =int (i/2)

b1 = (i1 mod 2) i2 =int (i1/2)

b2 = (i2 mod 2) i3 =int (i2/2)
...

...

bn = (in mod 2) 0

The reverse operation is

i = bn ∗ 2n + bn−1 ∗ 2n−1 + . . . + b1 ∗ 2 + b0

A disadvantage of using the binary alphabet is that “neighboring values” in param-

eter space are not necessarily “neighbors” in their encoded representations. As an

8

Table 2.1: Decimal numbers 0-8 with their binary and Gray code representation

decimal binary Gray code

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

example, consider the integer numbers 3, and 4 with their binary representations

011 and 100. Another problem related to this encoding technique is that the “im-

portance” of bit bn increases exponentially with n. Thus the impact of a bit-flip on

the phenotype differs strongly with the gene position. The first drawback mentioned

above can be overcome by using Gray code [25] (also known as reflected binary code),

which uses the binary alphabet Abinary = {0, 1}, but different encoding rules. Two

neighboring decimal numbers only differ in one bit in their Gray code representation.

See table 2.1 for examples.

The schemata theorem (see below) suggest that “small” alphabets (i.e. alphabets

with a small number of letters) are more suitable for GAs, since they maximize the

number of schemata available, but there are also good arguments for using larger

alphabets or even real numbers [28].

Evaluation

In the evaluation step the “quality” of each individual is determined. In a typical

GA, two quantities are computed at this step: The first one is the rating g(Ij) = gj,

an observable for which the global optimum should be found. An example for a rating

value is the energy of a configuration of particles. Secondly, the fitness f(gj) = fj

of each candidate solution is assessed. As mentioned above, by choosing a fitness

function, the “penalty” that is attributed to an individual in the “survival-of-the-

fittest-game” for having a worse rating than others can be adjusted. There is no

general rule for selecting an appropriate fitness function for an optimization problem.

9

Some common choices are listed below.

• Proportional fitness: fprop(gi) = agi/
n∑

j=1

gj , where a is a parameter and n is

the number of individuals in the population.

• Linear fitness: flin(gi) = L(gi), where L is a linear function on R. An example

is flin1(gi) = 1/(
n∑

j=1

gj − gi)

• Exponential fitness: fexp(gi) = exp
(

−a(gi−gmin)
gmax−gmin

)

, where a is a positive pa-

rameter and gmax, gmin are the highest and lowest rating values in the current

population. With this dynamically scaled fitness function, the individual with

the lowest rating value is alway assigned fitness 1, while the individual with

the highest rating value always has a fitness close to 0 (depending on a). This

choice is suitable when positive as well as negative rating values are expected.

In the p-dimensional space spanned by the p parameters of the optimization

problem, the fitness values of all possible parameter configurations are called

the fitness-hypersurface.

Selection

In this subroutine, “parent”-individuals, which are allowed to recombine and create

offspring are selected. Since individuals with high fitness values have better chances

to be selected, the average fitness of subsequent generations should increase. There

are different schemes for calculating an individual’s mating probability:

• Linear ranking: All candidate solutions are sorted in terms of their fitness

values. A constant reproduction probability, which decreases with lower posi-

tion, is assigned to each individual. As this method does not depend on the

magnitude of the difference of fitness values, it is suitable to prevent “domina-

tion” of individuals with very high fitness values.

• Tournament: A number n of candidate solutions are randomly chosen from

the population and the individual with the highest fitness value within this

subset is allowed for reproduction. With higher n values (selection pressure),

candidates with low fitness have a smaller chance to be selected. This procedure

is repeated until the required number of parents is found.

• Roulette wheel: In this scheme, the reproduction probability pi of an in-

10

dividual Ii is proportional to its fitness value. It is one of the most popular

selection methods. The following formula is used:

pi =
fi

nind∑

j=1

fj

,

where nind is the number of individuals in the population. One could imagine

this as a roulette wheel with variable slot width (see figure 2.1).

Figure 2.1: Schematic visualization of roulette wheel selection

Crossover

After determining which individuals are allowed to reproduce, a method for con-

structing the genes of the children based on the parental genetic information has

to be defined. Although it would be possible to create a child from an arbitrary

number of parents, we limit our considerations to two parents, similar to the natural

analogon.

• One-point crossover: The gene-strings of each of the parents (P1, P2) are cut

at the same, randomly chosen position. Then, two child chromosomes (C1, C2)

are created, C1 consisting of the genes of P1 located left of the cutting position

and the genes of P2 located right of the cutting position. C2 is created from

the remaining segments. For a schematic illustration, see figure 2.2.

• Two-point crossover: Similar, but with two cutting positions - C1 is com-

posed of the genes of P1 located left and right of the cutting positions and the

11

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

01100 0 1 0 1 1 111 0

1 0 1 0 0 0 0 1 01 0 1 1 1 1 0

0 0P1 P2

C1 C2

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

01100 0 1 0 1 1 11 0

0 1 1 0 0 0 0 1 01 0 1 1 1 1 0

0 01P1 P2

C1 C2

Figure 2.2: Schematic representations of one-point (top) and two-point (bottom)

crossover operations with parent individuals at the upper and children

at the lower part of each illustration. The crossover positions are marked

by thick vertical lines. Images used by courtesy of Julia Fornleitner [20].

genes of P2 located in between these positions. For C2, the remaining segments

are used. An illustration can be found in figure 2.2.

• Random crossover: This generalized method employs the so-called assembly

vector X , which is of the same length as the chromosomes. At first, each entry

of X is chosen as a random bit. Then C1 is created bit-by-bit by copying allele

i from P1 if the ith entry of X is 0 and copying allele i from P2 if the ith entry

of X is 1. C2 is created in the opposite way, or alternatively by a bit inversion

of C1. Sometimes this technique is called uniform crossover. This scheme is

illustrated in figure 2.3.

Mutation

Mutation techniques are used to introduce new genetic sequences and to avoid “in-

breeding” in analogy to mutation in evolutionary biology. Thus, mutation should

12

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

1110 0 1 01

1 0 1 10 00 10110011 0

1 0 1 10 00 1 1010001 1

X

P1

P2

C1

C2

Figure 2.3: Schematic representation of a random crossover operation with inversion.

Assembly vector X on top, parents on the left and children on the right

side. C2 is the inversion of C1. Image used by courtesy of Julia Fornleitner

[20].

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

1 0 1 1 0 1 0 1

1 0 1 0 0 1 0 1

I

Imut

Figure 2.4: Schematic view of a single gene mutation. Image used by courtesy of

Julia Fornleitner [20].

avoid that the GA becomes trapped in local minima.

In a typical mutation step, each gene of an individual has a chance pmut to be changed

to a random letter from the chosen encoding alphabet A. Usually pmut is rather small,

ranging from 0.001 to 0.1. It can either be set as an external, fixed parameter or to

increase with the number of generations.

Construction of new generations (Replacement)

The replacement scheme determines which individuals are used for building up the

new generation Gi+1. Possible candidates are the individuals of the previous gener-

ation Gi and their offspring, either mutated or not.

13

• Generational replacement: A widely used replacement scheme is to dis-

card the whole previous generation and construct the new population only out

of (mutated) offspring. The advantage of this technique is that it can avoid

premature convergence to a local minimum as it prevents a small number of

individuals with very high fitness values from dominating the entire population.

On the other hand, very good candidates are often lost from one generation

to the next, thus the maximum and average rating within the population can

decrease, leading to a slowdown in convergence.

• Elitism: Using this scheme, a number of “elite” individuals from the previous

generation Gi survive and are included in the next generation. For example,

Gi+1 can be built up by a fixed number k of the highest rated individuals from

Gi plus the (nind−k) highest rated children. This makes sure that the maximum

rating increases monotonically from generation to generation. Alternatively,

all individuals from Gi and their offspring may be sorted with respect to their

rating and the nind highest rated individuals are taken into the next generation,

irrespective if they are parent or child individuals. With this approach, the

average rating also increases monotonically, however, domination by candidate

solutions in local minima can be a severe problem.

• Niches: Another concept that can improve convergence to the global minimum

are niching methods, which allow the GA to maintain a population of diverse

individuals (i.e. individuals with different features). A simple implementation

of this concept is to permit only one individual within a certain interval of rating

values in each generation. More sophisticated characteristics of the individuals

could also be assessed and the number of individuals with certain features

might be restricted in order to avoid getting stuck in local minima. When we

consider crystal structure predictions as an example, the number of individuals

belonging to the same symmetry class could be limited. This, of course, is

highly problem specific and one has to have good knowledge of the system they

are investigating before implementing such a scheme. For a deep investigation

of this idea, see [29].

There are no general guidelines of how to choose the most appropriate replacement

scheme for a given problem.

14

Termination condition and final refinement

The GA typically runs for a fixed number of generations, which has to be set as

an external parameter. The experimenter has to set this value, usually relying on

experience values of how many generations are needed until convergence. GAs are

also sometimes set to terminate after a certain (acceptable) rating value is found. A

convergence time limit can be used as a termination condition as well.

As stated earlier, the procedure to encode parameters as finite strings of a certain

alphabet (i.e. with limited numerical precision) causes the GA to work on a finite grid

in parameter space. Hence, the parameters of the fittest candidate solution found

by the GA have to be further refined, typically using a steepest descent or conjugate

gradient search.

Of course, one has to make sure that encoding precision is sufficient, so that the

global minimum on the grid corresponds to the global minimum in real parameter

space.

2.1.3 Schemata and Building Block Hypothesis

Although GAs are easy to implement and perform well on a large number of problems,

the exact mechanism of their convergence is unknown. An attempt to explain this

fact is the so-called building block hypothesis (BBH) [4, 5].

To formulate this hypothesis, we first need the concept of schemata, introduced by

Holland [4]: A schema is class of strings with equal values at certain positions. For

example, consider all strings of length six, consisting of letters of the binary alphabet.

Then, both strings 100100 and 101110 would be part of the schema 10*1*0 (i.e. the

subset of all strings with 1 in the first, 0 in the second, 1 in the fourth and 0 in the

sixth position), where the symbol * represents the “wild-card” character and stands

for an arbitrary letter. Schemata have certain characteristic features: A character,

which is not a wild-card is called defining position, the order of a schema is the

number of its defining positions and the defining length is the difference between the

indices of the last and the first defining position of a schema. The schema in the

example above has defining length six and order four. A schema with low defining

length (and therefore low order) is considered “short”. When the average fitness

of all strings which belong to one schema is higher than the average fitness of all

possible strings, the schema is said to be of “high fitness”.

15

Holland argues that a GA implicitly tests large numbers of schemata while test-

ing a relatively small number of points in parameter space. He calls that implicit

parallelism of GAs.

In short, the BBH states that a GA recombines short, low-order and highly-fit

schemata (which are called building blocks) to construct even fitter schemata of

higher order and therefore converges to minima on the fitness-hypersurface by im-

plicitly recognizing these schemata and propagating them to future generations.

Criticism

The BBH has been subject to sometimes heavy criticism for different reasons. On

one hand, there have been empirical examinations, which suggest that GAs do not

perform as well as expected on certain problems (see [26]). In some cases, a GA con-

verged slower than a simple hill climbing algorithm on problems which were thought

to be ideal for GAs. On the other hand the theoretical foundation of the BBH has

been attacked (several such arguments are summed up in [27], section 3.3). A rather

furious assault on the building block hypothesis can be found in [24], where the

main argument is that the BBH makes far too strong commonplace fitness structure

assumptions, namely

• Abundant Basic Building Blocks: A large number of basic building blocks2

exists in the initial population.

• Hierarchical Synergism: Antagonistic3 intersections between the building

blocks of any level are rare, whereas synergistic4 intersections between small

collections of lower level building blocks are common.

The author of the aforementioned paper claims that the number of cases where these

assumptions can be fulfilled is vastly outnumbered by the number of cases where

they cannot be satisfied. Thus, in his opinion, the building block hypothesis cannot

be an explanation for the convergence of GAs.

2Short schemata with high fitness are termed basic building blocks.
3An antagonistic intersection occurs when two schemata are recombined and the resulting schema

(of higher order) has lower fitness than the initial schemata.
4Similarly, in a synergistic intersection the resulting schema has higher fitness than the constituent

recombined schemata.

16

2.1.4 GAs and the No Free Lunch Theorems

The No Free Lunch (NFL) Theorems for Search were derived by Wolpert and Macready

in 1995 [30] and expanded to optimization problems in 1997 [31]. Broadly speaking,

these theorems state that if an algorithm A outperforms (i.e. finds the desired result

faster than) an algorithm B on a certain number of problems (i.e. cost functions), B

has to outperform A in exactly as many other problems (as long as certain conditions

hold). This implies that, on average, no algorithm can outperform a random search

when a sufficiently large number of problems is considered.

The Theorem

NFL can be stated in the following way (cf. [27], section 4.2): Let X be a discrete

search space with points x ∈ X and f be a cost function (or rating function) with

f : X 7→ Y ⊂ R

The general objective is to find an optimal point (called solution) x∗ ∈ X , for which

f(x∗) is the global extremum. A search algorithm A generates a set of distinct points

{dx
m(i)} with cost values {dy

m(i)}, where y = f(x) and i = 1, . . . , m is an index. The

ensemble of points and cost values that have already been visited is noted as dm. A

starts from some point dx
1(1) = x1 with cost dy

1(1) = y1 and creates subsequent points

depending on the previously visited points dm in the following way

A : d 7→ x, with x ∈ X \ {dx
m(i)};

i.e. A does not revisit points. The information contained in the sequence of points

generated by A can be represented by a frequency table (histogram) c of the cost

values {dy
m(i)}. Some characteristics of c, like its minimum, maximum, or mean

value, can be used as measure of the quality of the algorithm’s performance. For

a given rating function, f , number of algorithm steps, m, and algorithm, A, the

conditional probability P [c|f, m, A] for obtaining a certain frequency table c is the

quantity measuring how well the algorithm works on this particular problem. Wolpert

and Macready prove the following [31]:

For any pair of algorithms A1 and A2,
∑

f

P [c|f, m, A1] =
∑

f

P [c|f, m, A2],

where the sum is over all possible functions f.

17

In this original formulation it is assumed that A is deterministic, which is not true

for heuristic search algorithms like GAs. Nevertheless, the theorem can be restated

so that it also holds for stochastic algorithms.

Implications

Since the NFL theorems are universal, they also apply to GAs, especially as Wolpert

and Macready have extended their results to algorithms, which, like GAs, revisit

points5. Although some researchers claim that the NFL theorems have virtually no

significance for practical problems6, hopes that one could construct something like a

“universal GA”, which performs extraordinarily well on a large number of problems

without sacrificing performance on other problems cannot be fulfilled.

A more detailed introduction of these concepts and a discussion of their significance

for practical applications can for example be found in [27], chapter 4 and [32].

2.2 Phenotype Algorithms

There are problems, (e.g. cluster geometry optimization, which will be the main topic

in the following section), to which standard GAs are a suitable approach, but lead to

unsatisfying results. It was suggested that for these problems string representations

of the parameters are not ideal [33].

An important step forward was accomplished, when a GA, that operated directly

on real-valued Cartesian coordinates, without any encoding and decoding, was in-

troduced [34]. Although algorithms using this technique are still called genetic algo-

rithms in most scientific contributions, this term is somewhat misleading, since the

information processed by the algorithm is no longer represented in the form of gene

strings. The algorithm’s operators are rather applied on the phenotype-variables

(see below). Therefore, Hartke introduced the denomination phenotype algorithm

[35], which is more appropriate in my opinion.

5The authors do this by merely redefining a point-revisiting algorithm A → A
′, so that A

′ skips

(i.e. does not evaluate) points previously visited.
6It is argued that, while NFL holds on average, cost functions encountered in real life have structure

(which, itself, is a rather vague concept) and therefore sophisticated search algorithms are more

suitable to find solutions than random search.

18

The next and probably most crucial step in applying modified GAs on cluster ge-

ometry optimization was first implemented by Deaven and Ho [7]. They executed

a gradient-driven local optimization (in parameter space) on each individual after it

was created (either initially, by recombination or by mutation). The fitness of the

individuals was calculated as a function of their rating value after the optimization

step. If the locally optimized individuals were encoded and (standard) crossover and

mutation operators worked on them, the local optimization of the phenotype vari-

ables could be ruined due to these operations. Phenotypical crossover and mutation

operators can quite easily be constructed in such a way that a large part of the opti-

mized variables are preserved. These operators perturb comparatively small regions

of the phenotype and leave large parts of it intact. Hence, the local optimization

remains valid for the unchanged regions.

Phenotype algorithms with local optimization can be seen as corresponding to Lamar-

ckian7, rather than Darwinian evolution. In this picture, the local optimization can

be seen as a “learning process” of individuals.

Since local optimization is quite “expensive” concerning computer time, Deaven and

Ho [7] decided to radically reduce the number of individuals within a generation,

from around 1000 in standard GA implementations to values ranging between 4 and

20.

Note that the concept of local optimization steps between the GA steps has a lot

in common with the very successful basin hopping method introduced by Wales and

Doye [36]. This was pointed out, for example, by Wales in [37]. Basin Hopping

performs local optimization in between Monte Carlo steps (typically constant tem-

perature Metropolis), where the acceptance criterion for a Monte Carlo step depends

on the energy of the new configuration after optimization. More on this similarity -

both approaches effectively transform the potential energy surface - will follow below.

2.2.1 Transformation of the rating hypersurface through local

optimization

Some global optimization techniques use the concept of hypersurface deformation (for

example, see [38]). These approaches attempt to simplify optimization problems by

7In this concept stated by J.B. Lamarck, individuals can inherit characteristics their parents

acquired during their lifetime. This is often called soft inheritance.

19

transforming the rating hypersurface (or, more specifically, the potential energy sur-

face, PES). The according transformations should smoothen the PES and reduce its

number of local minima. The global minimum of the simplified PES is then mapped

back to the original problem, hoping that it corresponds to its global minimum. The

problem related to these techniques is that one can never be sure that the global

minimum of the deformed hypersurface will map back onto the correct minimum of

the original hypersurface.

The local optimization used in the phenotype algorithm described here (and, in a

similar way, in the basin hopping technique) also simplifies the potential energy

hypersurface, but in such a way, that a minimum on the transformed PES always

corresponds to the according minimum on the original PES. As pointed out by Wales

and Doye [36], the original hypersurface is effectively transformed on a step shaped

surface, where each step corresponds to a basin of attraction (hence basin hopping)

of a local minimum of the original hypersurface (for a schematic illustration, see

figure 2.5). As neighboring parameter configurations lead to the same rating after the

optimization step, values on the transformed hypersurface are visited more frequently.

This effect can easily be avoided by including an energy-niche mechanism, i.e. only

one candidate solution is allowed in a certain energy interval. Thus, the search-space

the GA is working on is substantially reduced by this approach.

2.2.2 Phenotypical operators

As mentioned above, the operators of a phenotype algorithm work directly in the

parameter space of the investigated problem. In our problem, they work on the

Cartesian coordinates. Therefore, new mechanisms of crossover and mutation have

to be introduced alongside a local optimization method. All other operators (e.g. eval-

uation and selection) can be defined as described in the section on standard genetic

algorithms.

In early work by Zeiri [34], operators that averaged over coordinates of two parents

or simply cut and pasted coordinates in array representation were used. Deaven

and Ho [7] were the first to propose operators for a cluster geometry optimizing

GA, that could preserve information gained by local optimization. Their approach,

alongside possible modifications and refinements, will be presented here, after a short

explanation of the notation used.

An individual I (i.e. an N -particle candidate cluster) is represented by a list of the

20

E(x)

x

Figure 2.5: Schematic illustration of a potential energy surface (red) and its effective

transformation to a step function (black).

Cartesian coordinates xi of the particles the cluster consists of:

I = {x1,x2, . . . ,xN}

Crossover

Deaven and Ho’s crossover operator C : C(Ip1, Ip2) → Ic works on two parent

individuals Ip1, Ip2 and produces a child individual Ic the following way: First, a

random plane passing through the center of mass of both parent clusters is chosen.

Then, the parent clusters are cut along this plane and the child Ic is assembled from

those particles of Ip1, which lie above the plane and those particles of Ip2, which

lie below the plane. It is possible that Ic does not contain exactly N particles after

this procedure. In this case, the parent clusters are shifted to an equal amount in

opposite directions perpendicular to the cutting plane and the operation is repeated

until the child contains precisely N particles. Deaven and Ho call this mechanism

cut and splice crossover. For an illustration see figure 2.6. With this approach, a

second child consisting of the complementary particles could in principle be created

(in accordance with the crossover operations described in the section on standard

genetic algorithms), however these authors did not incorporate this possibility.

21

Figure 2.6: Cut and splice crossover. The parent individuals (left) are cut by a plane

and the fragments are newly assembled to form the offspring (right).

As previously mentioned, the cut and splice-operator only disturbs the local opti-

mization of a rather small part of a configuration, namely the region around the

cut.

A variation of the cut and splice method has been proposed by Johnston in [39].

At first, random rotations around two perpendicular axes are applied on the parent

clusters. Then, both parents are cut parallel to the xy-plane (this is an arbitrary

choice, in principle any cutting plane could be used) and complementary fragments

are spliced together. The cut plane can either be located at a random z-value,

pass through the center of the clusters or can be chosen, depending on the fitness

ratio of the parents (i.e. a large part of the parent cluster with higher fitness and

a small part of the parent cluster with lower fitness are combined). A version of

this mechanism which introduces two cutting planes (corresponding to a two-point

crossover operator) is possible as well. This method can also be utilized to overcome

the problem of producing children with a number of particles different from N : The

cut plane is implicitly chosen by assembling the child of the j particles with the

highest z-values from Ip1 and the (N − j) particles with the lowest z-values from

Ip2. j can again be either N
2
, a random number, or biased by the fitness ratio of the

22

parents.

For systems with periodic boundary conditions, a periodic cutting technique has been

introduced [41].

Mutation

The mutation operator M : M(I) → Imut of Deaven and Ho performs one of two

actions with equal probability. The first changes the coordinates xi of I by a ran-

dom distance a random number of times (unphysically close particles are separated

between the steps). The second mutation mechanism performs a search for an adja-

cent watershed in the potential energy surface. After such a step, Imut usually has a

higher energy, but should lie in a neighboring watershed of the PES.

There is a large number of possible other mutation operators and only a few should

be addressed here. A straight-forward mutation is to assign a random number of

particles new, random coordinates. These coordinates should of course be located

within the expected extension of the cluster and very close particles have to be de-

tached from each other. Alternatively, individuals can be cut in parts and these

parts can be rotated against each other about an axis perpendicular to the cutting

plane. Wolf and Landmann [40] introduced “twinning” and “etching” mutations.

The twinning operation pastes half a cluster to its rotated image, while the etching

operation adds some k particles to the candidate cluster, then performs energy min-

imization and finally removes the k most weakly bound particles, so that the cluster

contains the desired number of particles again. The latter technique is similar to

“directed mutation” operations (proposed by Hartke [35]), where the particle with

the lowest binding energy is moved to the most favorable alternative position. Wolf

and Landmann [40] also linked the occurrence of mutation to a possible stagnation

of the population: Whenever the standard deviation of the parental cluster energies

drops below a certain threshold value or there is no change in the energy distribution

of the population for a given number of generations, individuals are mutated.

Local Optimization

In principle, any local search algorithm (i.e. an algorithm that starts from a candidate

solution and iteratively moves to better neighbor solutions) could be applied on the

individuals the GA produces. The most common choices will be described below,

23

using the following notation: An optimal value of a rating function f(x) depending

on p parameters x = (x1, x2, . . . , xp) is to be found.

• Hill climbing: The concept of a hill climbing search is rather simple: As a

first step, parameter x1 of the given candidate solution is increased by a certain

value δ (x1 → x1 + δ). Next, the rating function f is evaluated. If the resulting

value is better than the rating of the original individual, this step and its rating

value are stored as a “best solution”, otherwise the original individual remains

as the best solution. For the second step, x1 is decreased by δ (x1 → x1 − δ)

and if the resulting rating is better than the one of the current best solution,

the step and the corresponding rating are stored. Then steps for the second

parameter x2 in positive and negative direction are executed and evaluated.

This is iterated for all possible 2p steps.

After all these operations, the original individual is replaced by the one that has

been stored as the best solution and the process starts anew. This procedure

is iterated until the rating cannot be enhanced anymore. Then, δ is decreased,

typically by δ → δ/3, and the whole iteration is repeated.

The termination condition of a hill climbing search is usually met when δ

reaches a (very small) given value δterm (i.e. the search converges). If the algo-

rithm does not converge after a given number of steps, it is also terminated.

If we combine all parameters xi of the original solution into one vector x, so

that xi = x · ei , the whole method can be written in a very compact way:

Compute all values f(xj) with xj ∈ {x ± δei}. If f(x*) = min
xj

{f(xj)} is lower

than f(x), replace x with x* and repeat, otherwise decrease δ and repeat.

The hill climbing approach is a very basic method that can be implemented

rather easily. It works quite well on some problems, but its convergence speed is

usually not very satisfactory, especially since the routine for local optimization

is called extremely often in a phenotype algorithm like ours.

• Gradient descent search: This method, also known as “steepest descent” is

quite similar to hill climbing, but it utilizes the gradient ∇xf(x) of the rating

function. In this approach, the steps in parameter space are not constrained

to go in the direction ei of a particular parameter xi, as each step goes in the

direction of the steepest descent or ascent on the rating hypersurface, depending

on whether one wants to reach a minimum or maximum. Additionally, a “line

search” is applied, to determine the ideal step length, rather than having a

24

fixed step length like in the hill climbing method.

In short, this algorithm works as follows: Compute the gradient ∆x = −∇xf(x).

Determine the ideal step length α* as

f(x + α*∆x) = min
α

{f(x + α∆x)}.

Replace x → x + α*∆x. Repeat until convergence (i.e. | ~∇xf(x)| ≤ δ) or a

certain number of steps is reached.

• Conjugate gradient search: The weakness of the gradient descent search is

related to the fact that it converges slowly on a number of problems, because the

directions of consecutive steps often differ considerably, so that the algorithm

follows a zig-zag pattern. The idea behind conjugate gradient search is to

improve this by incorporating previous search directions when calculating the

direction of the subsequent step.

The first search step is computed just like in a steepest descent algorithm

x1 = x0 + α*
0∆x0.

The following steps are determined as follows: Compute the gradient ∆xn =

−∇xf(xn), then calculate the step direction as Λxn = ∆xn + βnΛxn−1. βn can

be obtained employing one of the the following expressions:

– Fletcher-Reeves: βFR
n = ∆xn·∆xn

∆xn−1·∆xn−1
[43]

– Polak-Ribière: βPR
n = ∆xn·(∆xn−∆xn−1)

∆xn−1·∆xn−1
[44]

– Hestenes-Stiefel: βHS
n = ∆xn·(∆xn−∆xn−1)

Λxn·(∆xn−∆xn−1)
[45]

Determine the ideal steplength α*
n by a line search

f(xn + α*
nΛxn) = min

αn

{f(xn + αnΛxn)}.

Determine the new solution vector xn+1 = xn+α*
nΛxn, increment n (n → n+1)

and repeat until convergence or a certain number of steps is reached.

• (L-)BFGS method: The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

[46, 47, 48, 49] can be considered as a quasi-Newton method for solving un-

constrained non-linear optimization problems. The notation “quasi-Newton”

refers to the fact that the Hessian (i.e. matrix of second derivatives of the rat-

ing function with respect to the parameters) does not have to be explicitly

25

computed, as it is approximated by analyzing successive gradient vectors. The

BFGS method can be seen as an extension of the conjugate gradient method,

which uses not only the last, but more of the previous steps to compute the

subsequent one. Therefore it expends more memory than a conjugate gradient

optimization, but usually converges faster.

The L-BFGS algorithm is an implementation of the BFGS method, that re-

quires a fixed amount of memory, which can be externally assigned [50, 51].

This improvement is achieved by storing a certain number of previous steps

and when all available memory is used up, the oldest steps are overwritten by

newer ones. L-BFGS-B is a further development of this software, that allows

bounds (i.e. minimum and maximum values, but no general constraints) on

the variables [52, 53]. The user is required to provide function values f(x), first

derivatives ∇xf(x), possible bounds on the variables xmin,xmax and a number

of parameters like desired convergence criteria and allowed memory (i.e. how

many previous steps should be stored).

Deaven and Ho used a conjugate gradient search as local optimization method in their

investigations [7]. Wales and Doye employed this technique in their first implementa-

tions of the basin-hopping algorithm as well [36], but later changed to L-BFGS [42],

which is the standard method for cluster-geometry optimizing phenotype algorithms

today [35, 39].

26

3 Problems Investigated

In this work, two different problems were examined. The first, namely 3D cluster

geometry optimization, lead us to phenotype methods. For the second one, a two-

dimensional system for which we tried to find quasicrystal-properties, we initially

used a standard GA approach (i.e. with binary encoding). Later, with the insight

gained from investigating the former system, we changed to a phenotype algorithm

as well.

3.1 Cluster geometry optimization

Ensembles of N particles, where N ranges from a few tens to a few millions, are called

clusters. Such entities are often seen as intermediate structures between molecules,

consisting of a small number of atoms, and bulk solids, consisting of an extremely

large number of atoms. A very popular example for clusters are fullerenes, which are

made of a certain number of carbon atoms, where the “buckyball” structure C60 was

the first to be discovered [54]. This was also the first test problem Deaven and Ho

used their phenotype algorithm on [7].

Given the properties of the constituent particles in terms of their (pair-)interactions

and their number N , their geometric arrangement is a priori unknown. In a 3N -

dimensional space (spanned by the coordinates of the N particles) the energy values

of all possible particle configurations form the potential energy (hyper)surface (PES).

The global minimum of this surface is called the ground state. Although the corre-

sponding particle arrangement is not necessarily the structure that will be formed at

finite temperature, it represents a good candidate for the most favorable configura-

tion and thus is of central interest when investigating clusters. The number of local

minima on the PES rises exponentially with the number of particles N (for example,

see [55]), which renders the search for global minima very difficult as N increases. In

27

fact, it has been shown that the problem is NP-hard1 [56].

Because of the vast number of local minima on the PES and the difficulty of pre-

dicting the structural features of global minima for this particular problem, ab-initio

(i.e. unbiased) search strategies are a valuable tool for such investigations. During

the last 15 years, there has been considerable interest in this field of science and

methods capable of efficiently locating global minima on the PES have been intro-

duced. Among the most successful ones are basin hopping and genetic (phenotype)

algorithms, which are both ab-initio approaches. A large number of results for clus-

ters formed by different types of particles have been made available online at the

“Cambridge cluster database” [58].

3.1.1 Lennard-Jones Clusters

Here we introduce clusters that are built up by particles interacting pairwise via the

Lennard-Jones (LJ) potential :

VLJ(rij) = 4ǫ
[(σ

rij

)12

−
(σ

rij

)6]

.

This interaction (see figure 3.1) is a mathematical model potential, which represents

short-range repulsive and long-range attractive forces. rij is the interparticle distance,

at rij = σ the potential vanishes and ǫ is the depth of the potential well attained

at r = 6
√

2σ. The term (σ/r)12 is responsible for the repulsive part and the term

−(σ/r)6 for the attractive part of the interaction.

The model has been suggested by John Lennard-Jones [59] as an attempt to image the

behavior of neutral atoms or molecules, which repel each other at very small distances

due to the Pauli exclusion principle2 and attract each other at larger distances due

1In theoretical computer science, NP-hard means that the problem is “at least as hard as the hard-

est problems in NP”, where NP represents the complexity class “nondeterministic polynomial-

time”. This nomenclature refers to the fact that the computation time of such problems is not

greater than a polynomial function of the problem size on a nondeterministic Turing machine.

Loosely speaking, problems in NP are yes-or-no-questions, whose answers can be verified (but

not necessarily computed) in polynomial time. Popular examples for NP-hard problems are the

Traveling Salesman problem and the halting problem [57].

In our case, the problem size corresponds to the number of particles N . Since our problem is

at least as hard as the hardest problems in NP, it is implied that the time for finding the (exact)

solution - on a deterministic computer - scales exponentially with N .
2This principle states that two identical fermions cannot occupy the same quantum state at the

28

-ε

 0

σ 2σ

V(r)

r

Figure 3.1: Lennard-Jones potential

to van der Waals forces3. The 1
r12 dependence of the first term is not justified by

theory and is chosen for ease of computation, while the 1
r6 behavior of the attractive

term is derived from models describing interactions between induced dipoles.

Clusters of Lennard-Jones particles have been investigated for many years (for ex-

ample, see [55, 61, 62, 36]). Initially they were studied out of an interest for nucle-

ation rates of noble gases, which are modeled particularly well by the LJ potential.

Therefore, a large amount of data is available [58] and LJ clusters represent an ideal

benchmark test for optimization algorithms.

For a majority of particle numbers, the energetically most favorable structure known

today is based on so-called Mackay icosahedra (see figure 3.2 and [63]). These ar-

rangements can be divided into 20 tetrahedral face-centered-cubic (fcc) units and

therefore are sometimes called polytetrahedral structures. Complete icosahedral clus-

ters are possible at 13, 55, 147,. . . particles. For other cluster sizes, a growth pattern

can be formulated, where a growing layer of particles is successively added to a core

same time. Loosely speaking, if two atoms get so close that their electronic orbitals overlap,

electrons (which are fermions) with equal spin effectively repel each other. This is due to the

fact that they cannot occupy the same orbital (i.e. quantum state) and hence cannot be located

at the same spatial position.
3Interactions between permanent or, as in this case, induced dipoles.

29

Figure 3.2: Mackay icosahedron consisting of 13 particles from different perspectives.

(i.e. a perfect icosahedral packing) until this process is completed at the next possible

perfect Mackay icosahedron. Therefore, one can speak of icosahedral shells. These

structures are believed to be dominant for particle numbers up to N ∼ 1600 [64].

However, there are a few notable exceptions from this pattern in the range 2 ≤
N ≤ 150. For N = 38, an fcc truncated octahedron is energetically more favorable

than any known icosahedral structure [65]. For 75 ≤ N ≤ 77 the optimal (known)

configurations are based on the Marks decahedron [66]. For N = 98, the energetically

most favorable structure published is a tetrahedral structure [67], and finally for

102 ≤ N ≤ 104, there are again minimum energy clusters of decahedral shape [68].

Investigations [69] of the potential energy surface for N = 38 and N = 75 have

shown that for these numbers of particles, the PES is also dominated by icosahedral

local minima, despite having non-icosahedral global minima. This property makes it

difficult for optimization methods to locate the global minima.

To model attractions of variable range, the LJ potential can be generalized to the

so-called 2α-α potential :

V2α−α(rij) = 4ǫ
[(σ

rij

)2α

−
(σ

rij

)α]

,

as proposed in [60].

Clusters of particles interacting via this potential (with α = 18 - shown in figure 3.3

- and α = 100) have been investigated in [72]. It was found that cluster geometries

differ from the Lennard-Jones case for α = 18 for particle numbers larger than ten.

However, a further increase in α does not introduce additional cluster shapes.

30

-ε

 0

σ 2σ

V(r)

r

Figure 3.3: 2α-α potential with α = 18 (red) compared to the standard Lennard-

Jones potential (black, dashed)

3.1.2 Dzugutov Clusters

The Dzugutov potential (see figure 3.4)

VDz(rij) = A(r−m
ij − B) exp

(c

rij − a

)

Θ(a − rij) + B exp
(d

rij − b

)

Θ(b − rij),

where Θ(x) is the Heaviside step function and A, B, a, b, c, d and m are numerical

parameters, was proposed by Mikhail Dzugutov [70], originally in order to study

glass transitions in monoatomic systems. It has a local maximum approximately at√
2 times the equilibrium pair distance rmin, which should suppress the formation of

close-packed configurations. This makes the Dzugutov potential a typical example for

interaction potentials with short-ranged attractive and long-ranged repulsive forces.

Clusters of Dzugutov particles have been examined in [71]. As the authors point out,

the curvature of the potential at its minimum, which is slightly different from the

Lennard-Jones potential’s curvature, and the disfavoring of distances near
√

2rmin

influence the shape of the energetically most favorable structures of such clusters.

From theoretical considerations and results based on a basin-hopping investigation,

the authors conclude that non-compact polytetrahedral configurations should be the

global minimum for most cluster sizes up to N ∼ 10000.

31

-ε1

0

ε2

rmin rmax

V(r)

r

-ε

 0

σ 2σ

V(r)

r

Figure 3.4: Top: Dzugutov potential with parameters A = 5.82, B = 1.28, a = 1.87,

b = 1.94, c = 1.10, d = 0.27, m = 16; rmin = 1.13, rmax = 1.44rmin,

ǫ1 = 0.581, ǫ2 = 0.791ǫ1. Bottom: Dzugutov potential (red) compared to

the standard Lennard-Jones potential (black, dashed).

32

3.2 2D-System

The second system we investigated is inspired by quasicrystals [73, 74]. These struc-

tures have quasiperiodic order, which means they show perfect long-range order, but

(unlike crystals) no periodicity. Long-range order corresponds to a finite number of

sharp peaks in the Fourier transform of a structure and therefore to sharp peaks in

diffraction experiments.

A one-dimensional example for a non-periodic, long-range ordered structure is the

so-called Fibonacci chain. It is a sequence of long (L) and short (S) intervals. The

Fibonacci chain can be constructed by starting with one interval and iteratively

executing the rules S → L and L → LS, thereby building strings with increasing

length. If we choose L as starting sequence, the first few strings are

L

LS

LSL

LSLLS

LSLLSLSL
...

When the construction rule is iterated to infinity, the resulting sequence has no

repetition distance (i.e. no periodicity) if the ratio of L and S is an irrational number.

For the canonical Fibonacci chain, the ratio of the interval lengths is the so-called

golden mean τ = (1 +
√

5)/2.

We have constructed a two-dimensional system confined in a quadratic box, where

particles are forced to occupy a limited number of infinitely deep potential wells

in horizontal direction. These wells are located at positions given by the first w

segments of the canonical Fibonacci chain (see figure 3.6, top). In vertical direction,

the particles can freely move within the bounds given by the box. The system has

periodic boundary conditions in both x- and y-direction (for an illustration of this

concept, see figure 3.6, bottom).

For the particle interaction, we use the Gaussian core model (GCM), introduced by

Stillinger [75]. The GCM represents a good approximation for the effective interaction

of certain mesoscopic macromolecules (e.g. interpenetrating polymer chains [76]).

The functional form of the GCM-interaction is given by

VG(r) = ǫ exp
(

− r2

σ2

)

,

33

ε/e

 0 σ

V(r)

r

Figure 3.5: Gauss potential VG(r) = ǫ exp
(
− r2

σ2

)
.

with ǫ as a parameter defining the energy scale and σ as a parameter defining the

length scale. This potential is purely repulsive and bounded (i.e. remains finite even

at full particle overlap). A visualization of the Gauss function can be found in figure

3.5.

Of course, this system does not have true quasi-periodic structural properties, because

the wells within the box represent only a finite portion of the Fibonacci chain, which

is periodically continued by the boundary conditions.

34

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.00 0.15 0.24 0.38 0.53 0.62 0.76 0.85 1.00

L S L L S L S L

Figure 3.6: Top: Our 2D-system with eight wells, appearing as vertical dashed lines

(arbitrary units). Bottom: Periodic boundary conditions; particles in the

primary cell appear in dark, their periodic images in light colors.

35

36

4 Implementation of the GA

In this chapter, I describe our implementation of the modules required in a GA-

program; for details I refer to chapter 2. Our GA was programmed in FORTRAN

90 and uses two external packages, namely RANLUX, a pseudo-random number

generator proposed by M. Lüscher [77, 78] and TOMS778 [79], a FORTRAN 90

implementation of L-BFGS-B for local optimization purposes (see end of subsection

2.2.2).

We used ifort (Intel Fortran Compiler) to compile our program and all simulations

were run on our local “liquid” computer cluster.

The (standard) GA source code written by Dieter Gottwald [15] and improved by

Julia Fornleitner and Gernot Pauschenwein [20, 17] was of great help for developing

our own code.

The program is controlled via an input file. Here, the user can define the desired

parameters (i.e. number of particles, number of individuals per generation, number

of generations, interaction potential, etc.) at the beginning of each run. The pro-

gram reads all entries from inputfile as part of the initialization routine. The output

of the program consists of four files: the interaction potential is written to the file

potential.dat ; the energies of all individuals of all generations and details about the

mating process are written to analysis.dat ; whenever the up to that time most fa-

vorable candidate solution is found, its generation number and energy are written

to log.dat ; finally, at the end of a run, the Cartesian coordinates of the particles

representing the best individual found are written to plot.dat.

4.1 Cluster geometry optimization

The following pseudo-code should provide an overview of our program. An in-depth

explanation of these proceedings is given in the next sections.

37

program MY GA

INITIALIZATION

define variables

initialize ranlux

read parameters from inputfile

allocate memory

check and plot potential

FIRST GENERATION

set coordinates (generation)

optimize (generation)

evaluate (generation)

write output

REPRODUCTION

do i=1,number of generations

do j=1,(number of individuals − elitism parameter)

parents=select parents (generation)

child generation(j)=recombine (parents)

end do

mutate (child generation)

optimize (child generation)

apply niche condition (child generation)

create new population (generation,child generation)

evaluate (generation)

write output

end do

TERMINATION

plot best individual

deallocate memory

end program

4.1.1 Repeatedly used routines

Some routines are used on several occasions within the algorithm. Therefore I want

to describe them at first, later I will refer to this section whenever these routines are

employed.

38

Evaluation

• Energy: The energy E of a finite number of particles interacting via a pair

potential V (r) is calculated as

E(x1,x2, . . . ,xn) =

N∑

i=1

N∑

j=i+1

V (rij),

with the number of particles N , particle coordinates xi = (xi, yi, zi) and inter-

particle distances

rij =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2.

• Forces: The forces f acting on each particle due to the interparticle interaction

(i.e. the gradient of the potential energy of every particle) have to be calculated

for the local optimization procedure. The force acting on particle i is the sum

over all forces originating from the interaction of this particle with all other

particles j.

fi(x1,x2, . . . ,xn) =
N∑

j=1

∂V (rij)

∂r

xj − xi

rij
, j 6= i

Since the potentials we have used have an analytic shape, ∂V
∂r

can be directly

defined as a function.

• Fitness: Throughout we use an exponential fitness function

fexp(Ii) = exp
[−a(E(Ii) − Emin)

Emax − Emin

]

,

where the parameter a is read from the inputfile and Emin, Emax are the min-

imum and maximum energy values within the population. Since we employ

the roulette wheel selection in all our calculations, a quantity called modified

fitness

fmod(Ii) =

i∑

j=1

fexp(Ij)

nind∑

j=1

fexp(Ii)

,

where nind is the number of individuals, also needs to be calculated for all

individuals Ii every time the fitness-subroutine is called. fmod lies in the interval

[0, 1] for all candidate solutions. We define the space di one individual Ii

occupies within the interval [0, 1] as di = fmod(Ii)− fmod(Ii−1). The larger the

absolute fitness value fexp(Ii) of an individual, the larger is di. This quantity

will be useful in the selection subroutine.

39

Optimization

• L-BFGS-B: As already mentioned, we use a FORTRAN 90 version of L-BFGS-

B available online [79]. We have to provide the following data to the subroutine:

parameter description

n number of variables; when we are working in d dimensions,

this parameter is given by the number of particles times d

nbd(i) we have to specify if there are bounds on any variables; we set

nbd=2 for all variables (upper and lower bounds)

u(i), l(i) values of upper/lower bounds for all variables; we confine the

particles in a cubic box, hence the values for u(i) and l(i) are

±b (see below)

factr value for termination condition on function values E: when the

change of E from one optimization step to the subsequent step

drops below (factr times the machine precision), the iteration

is stopped; we chose factr=107 (machine precision=10−16)

pgtol value for termination condition on the gradients −fi: when the

maximum gradient component drops below pgtol, the iteration

is stopped; we chose pgtol=10−5

m the number of previous steps stored in memory (3 ≤ m ≤ 7 is

recommended)

Once the optimization is started, the routine will update the coordinates and

ask for function values (i.e. energy) and gradients (i.e. negative forces) repeat-

edly, so that the corresponding evaluation subroutines described above have to

be called each time L-BFGS-B asks for them.

• Hill climbing: For testing purposes, we also included a hill climbing search,

which became obsolete in later runs because of a much slower convergence than

the L-BFGS optimization.

40

4.1.2 Initialization

• Define variables: First we define a class1 t generation, in which all informa-

tion on a generation of individuals can be stored. This includes coordinates of

all individuals, forces acting on each individual, energy, fitness and modified

fitness of all individuals as well as minimum, maximum and average energy

within the generation. We also define a class t global, where all parameters

from the input file are stored.

• Initialize RANLUX : At this step, the random number generator RANLUX

is initialized with seed values depending on the system time in order to return

different pseudo-random numbers at each run.

• Read parameters from inputfile: As mentioned above, the user sets the pa-

rameters for a GA run in an input file. The variables described in the following

table are imported at this step.

Then, the size of the box b in which the particles are confined is computed.

The maximum and minimum values of all Cartesian coordinates x, y, z are set

as a function of the number of particles N (b ∼ N
1

3).

1In object oriented programming languages, patterns (or blueprints) for objects (which are in our

context variables) are called classes. All objects created from such a blueprint share the same

structure. In our case, the classes are used to unify all parameters of the population in one

variable for more convenient access. Actual variables created from a certain class will later be

called instances of this class.

41

parameter typ. values description

PARTICLES (N) 10 - 100 number of particles the system

should contain

INDIVIDUALS (nind) 8 - 12 number of individuals making

up a generation

GENERATIONS (ngen) 102 - 105 maximum number of generat-

ions until program termination

MUTATIONRATE (pmut1) 0.01 - 0.1 chance of an individual to be

mutated

MUTATIONRATE2 (pmut2) 0.1 - 0.33 chance of a particle to be shif-

ted if an individual is mutated

FITNESSPARAMETER (a) 3 coefficient of the exponent

of the fitness function

ELITISM (e) 2 - 4 determines how many individ-

uals from the prev. gen. survive

POTENTIAL TYPE specifies interaction potential

(Lennard-Jones, Dzugutov, etc.)

POTENTIAL x different parameters of the

potential function

COORDS FROM FILE -3 - 3 determines if coordinates of

initial individuals are seeded

• Allocate memory: Based on the values from inputfile (number of particles,

individuals and generations), memory is allocated to instances of the class

t generation.

• Check and plot potential: The potential functions and their first deriva-

tives are included in the source code as analytic functions. We are working in

natural units of the Lennard-Jones potential, i.e. ǫ and σ are set to one. Since

Lennard-Jones and Dzugutov potentials attain extremely high values for low

interparticle distances r, we apply a cutoff at low distance to avoid numerical

problems (particularly concerning the local optimization routine). This is done

by checking the first derivative of the potential for small r-values and as soon

as its value exceeds a certain limit at r = rc, the first derivative is set to a

constant value, so that the potential itself increases only in a linear way for

r < rc.

Then, the interaction potential V (r) is written to a file in tabulated form.

42

4.1.3 First Generation

• Set coordinates: If the user chooses unbiased starting values (COORDS

FROM FILE=0), all particles of all individuals are appointed random values

within the bounds determined earlier. If COORDS FROM FILE is set to a

negative value −m, the initial values will be determined from a cluster config-

uration with (N − m) particles. The user has to provide a file startcoords.dat

which contains Cartesian coordinates of (N − m) particles in tabulated form

(i.e. a table with x, y and z-values in rows). The particle arrangement of each

individual will then be composed of these coordinates plus m randomly located

particles. The random particles are set to be situated outside the original

(N − m)-cluster. The coordinates of these particles are separately determined

for each starting individual. If COORDS FROM FILE is a positive value m,

the coordinates are seeded from a larger cluster. The user has to provide a file

containing coordinates of N +m particles. The algorithm will randomly choose

N particles from this file for every starting individual.

• Optimize: Directly after creation of the first generation, a local optimization

is performed on each individual as described in section 4.1.1.

• Evaluate: The individuals are sorted by their energy (which is already known

after the optimization step) in ascending order. Then, their fitness and modified

fitness are computed. The whole generation is copied to another instance of

the t generation-class called best generation.

• Write output: The energy of the best candidate solution is written to the

logfile and the energies and fitness values of all solutions are stored in the

analytics-file.

4.1.4 Reproduction

Now, the algorithm enters the reproduction-loop, where it remains until the desired

number of generations ngen has been created. The first task is represented by a

further loop, which selects a number 2c of parent individuals and recombines them

to form c children. c = nind − e is the number of individuals within a generation nind

less the number of individuals which survive from the previous generation (specified

by the elitism parameter e).

43

Figure 4.1: Selection: fmod(I1) < r < fmod(I2), therefore I2 is selected for recombi-

nation.

• Select parents: The roulette wheel selection is implemented as follows: A

random real number r between zero and one is determined. The modified fitness

values of all candidate solutions fmod are compared to this random number. If

the random number lies between fmod(Ii−1) and fmod(Ii), Ii is chosen as a

parent P1. An illustration of this process is depicted in figure 4.1. Then the

process is repeated to select a second parent P2 under the constraint P1 6= P2.

• Recombine parents: In a first step, both parent individuals are rotated via

randomly chosen angles about two arbitrary axes passing through the origin.

This is achieved by applying multiple matrix multiplications on the coordinate

vectors of the particles (the matrices represent rotations about the coordinate

axes). Then, the parent individuals are shifted so that their centers of mass lie

in the origin of the coordinate system and all particles within each cluster are

sorted with respect to their z-coordinates (this makes a simple implementation

of the cut-and-splice crossover possible; any coordinate could have been chosen

since the clusters have been rotated about random axes). Next, a random

integer number nz between zero and N (number of particles) is determined

and the child individual is composed of the first nz particles of P1 and the last

(N − nz) particles of P2.

After the selection-and-recombination-loop, the following steps are performed.

44

• Mutate: For all children a random real number between zero and one is cho-

sen. If this number is smaller than pmut1, the individual enters the mutation

subroutine, where another random real number within the same interval is de-

termined for every particle. If this number is smaller than pmut2, the particle is

shifted to a random position within the allowed bounds.

• Optimize: All children are locally optimized.

• Apply niche condition: We want to have only one candidate solution within

a certain energy interval 2|δE| (we chose an interval of length |δE| = 5 ·10−5 in

natural units). Therefore, the algorithm checks for all individuals Ii if there is

another candidate solution Ij with E(Ii) − δE < E(Ij) < E(Ii) + δE. If this

is the case, Ij is discarded. Two new parents are selected from the previous

generation and recombined to form a new child, which is then optimized and

replaces Ij.

• Create new population: The first (i.e. energetically best) e individuals of the

old generation are kept, while the remaining nind−e individuals are overwritten

by the children created in the steps described above.

• Evaluate: The candidate solutions are again sorted by ascending energy and

the corresponding fitness values are calculated. If the energy of the best in-

dividual is lower than the lowest energy stored in best generation, the current

generation replaces best generation.

• Write output: The index numbers of the individuals selected for recombina-

tion are written as pairs to the analytics file. In addition, energies and fitness

values of all individuals are stored there as well. If a new best solution was

found, the generation number and energy value are written to the logfile.

Then, the reproduction-loop returns to its start.

4.1.5 Termination

After ngen generations, the following steps are taken:

• Plot best individual: The coordinates of particles of the energetically most

favorable individual found in the whole process are written to the file plot.dat

45

in the form
xparticle 1 yparticle 1 zparticle 1

xparticle 2 yparticle 2 zparticle 2

...
...

...

xparticle N yparticle N zparticle N

for later visualization or seeding new runs.

• Deallocate memory: The memory reserved for the instances generation and

best generation is deallocated and the program is closed.

4.2 2D-System

For our 2D system introduced in chapter 3.2 we had to modify a few routines. These

changes are listed below.

Evaluation

Since our system has periodic boundary conditions, the calculation of the energy has

to incorporate the periodic images of the unit cell.

• Energy: Using periodic boundary conditions with the minimum-image con-

vention, the total energy of the particles in the unit cell is the sum over all

potential energies originating from the interactions of every particle with the

closest image of each other particle.

E(x1,x2, . . . ,xn) =

N∑

i=1

N∑

j=i+1

V (rij),

where rij is given by

rij = min
k

[rijk
] = min

k

[√

(xjk
− xi)2 + (yjk

− yi)2
]

,

with xjk
∈ {xj − b, xj , xj + b}, yjk

∈ {yj − b, yj, yj + b}. b is the sidelength of

the (quadratic) unit cell.

• Forces: The force fi on particle i is calculated similarly:

fi(x1,x2, . . . ,xn) =
N∑

j=1

∂V (rij)

∂r

xj − xi

rij

, rij = min
k

[rijk
], j 6= i.

46

All these calculations can be speeded up by first checking if particles are within

cutoff-distance before calling the potential function.

• Fitness: With the purely repulsive Gauss potential

VG = ǫ exp
(

− r2

σ2

)

,

only positive contributions to the potential energy are possible. Therefore, we

could use an exponential fitness function without normalization:

fexp(Ii) = exp (−aE(Ii)).

Optimization

For this system, the local optimization can only be applied to the y-coordinates, since

the possible x-values are fixed (see section 3.2). Only the genetic operations have to

find the most favorable number of particles for each well.

Unfortunately, the convergence to local minima of L-BFGS-B was as not as good as

the convergence of our self-implemented hill climbing algorithm in the 2D system.

Therefore, a GA run employing L-BFGS-B as local optimization method needed a

distinctly larger number of generations to converge to the global minimum than a

run with hill climbing. Nevertheless it was still favorable to make use of the L-BFGS

method, because of its higher speed (i.e. an L-BFGS run with more generations was

still much faster than a hill-climbing run with less generations).

To minimize the risk of missing global minima due to a not very reliable local min-

imization algorithm, we double-checked a few of our results with the slower hill-

climbing runs.

Initialization

The following parameters are read from the input file:

47

parameter typ. values description

PARTICLES (N) 24 - 40 number of particles the system

should contain

INDIVIDUALS (nind) 8 - 20 number of individuals making up

a generation

GENERATIONS (ngen) 102 - 105 maximum number of generations

until program termination

MUTATIONRATE (pmut) 0.01 - 0.1 chance of a particle to be

shifted to a random position

FITNESSPARAMETER (a) 1 coefficient of the exponent

of the fitness function

ELITISM (e) 2 - 6 determines how many individuals

from the previous generation survive

X WELLS (w) 8 specifies the number of possible part-

icle locations on the x-axis

SPACEFILLING (ρ∗) 0.1 - 2.0 specifies the desired covering density

POT EPSILON (ǫ) 10/
√

2π parameter of the potential energy

function

POT SIGMA SQ (σ2) 0.01 parameter of the potential energy

function

• Boxsize: For the 2D system, we use a variable particle-size/boxsize ratio

rpart/b. For the Gauss potential VG = ǫ exp
(
− r2

σ2

)
, rpart can be defined as

VG(rpart) =
1

e
VG(r = 0) → rpart = σ.

The covering density ρ∗ = Nσ2/A, where A is the area of the unit cell, deter-

mines the edgelength b =
√

A of the quadratic box the particles are confined

in. All particles can occupy w predetermined positions in x-direction and any

possible position between zero and b in y-direction.

• X-wells: The position of the wells pw along the x-axis is calculated as follows:

fib(i) = i +
1

τ
int

[i + 1

τ

]

pw(i) = b
fib(i)

fib(w)
,

where w is the number of wells, 0 ≤ i < w, τ = (1 +
√

5)/2 is the golden ratio

and fib(i) produces a Fibonacci chain.

48

• Potential cutoff : The cutoff radius rcut is calculated with respect to the

following condition:

VG(rcut) = 10−4VG(r = 0).

For r > rcut, VG(r) is set zero.

Crossover

Our system obviously has no (continuous) rotational symmetry and hence we could

not employ a 2D version of the recombination process described in the prior section.

Instead, we implemented a crossover mechanism more reminiscent of Deaven and

Ho’s [7] original cut and splice operator.

First, the centers of mass c1, c2 of the parent individuals p1, p2 are computed. A

straight line y = kx + d passing through both of these points cuts each individual

in two parts. The child individual is composed of the particles of p1 lying above

this line (y1,i ≥ kx1,i + d) and the particles of p2 that lie below it (y2,i < kx2,i + d).

Next, it has to be checked if the child contains the correct number of particles. If

not, the straight line is shifted by a small distance (d → d + δ, usually δ = 0.1 × b,

with boxsize b) and the process is repeated until a child with the correct number of

particles is created.

Mutation

Here we used a mutation mechanism that differs slightly from the one used for cluster

geometry optimization. There is only one mutation rate pmut. For all particles of all

individuals, a random number c between zero and one is chosen. If c < pmut, the

particle is moved to a randomly determined x-well.

49

50

5 Results

In this chapter I will present the results of our simulations, along with information

on the performance of the algorithm and, in the last subsection, visualizations of

selected geometries of the systems discussed in this thesis.

5.1 Lennard-Jones Clusters

As pointed out earlier, small clusters of particles interacting via a standard Lennard-

Jones potential are well studied ([36, 58]) and therefore act as a benchmark for

groundstate predictions. We also investigated the case of a generalized L-J potential

(2α-α potential) with α = 18, which we compared to results published in [72].

5.1.1 Standard Lennard-Jones (α = 6)

We did simulations for cluster particle numbers ranging from N = 2 to N = 100.

For very low particle numbers, the energetic minimum was found after a simple local

optimization, without any reproduction steps. For most of the higher particle num-

bers, our algorithm could reproduce the previously published ground states without

any further problems (i.e., in a large percentage of runs and within a few hundred

generations). Particle numbers around those of possible perfect Mackay icosahe-

dra (N = 13, 55) needed comparatively small computation time, while clusters with

N = 38, 75, 76, 77, 98 are particularly difficult because of anomalous structures (see

section 3.1.1 and [37]). The cluster with N = 38 still did not pose any particular

problems to our algorithm, the truncated octahedron ground state was found in two

out of three runs within less than 1000 generations. However, the cases of N = 75−77

were much more difficult to treat. We found that for these clusters, our algorithm

became “trapped” in icosahedral structures very easily; we point out that this also

happened for basin hopping simulations [36]. Hence we tried an approach with a large

51

number of simulations with relatively low generation numbers, which finally yielded

the minimum energy structures (based on the Marks decahedron) for N = 75, 76 in

a low percentage (∼ 1%) of these runs. The ground state of the N = 77 cluster

could only be found in a seeded run, where all starting geometries consisted of the

coordinates of the previously found N = 76 minimum plus an additional, randomly

positioned particle. For N = 98 an approach similar to N = 75, 76 was used. Here, it

was easier to find the tetrahedral ground state than in the decahedral cases (success

rate ∼ 4%).

Note that for the results shown in the following table, the parameters of the GA

have not been optimized for each particular particle number. Putting more emphasis

on an appropriate choice of these parameters, the number of successful runs and

probably also the number of generations needed for successful convergence could be

improved.

Table 5.1: Ground state energies of Lennard-Jones clusters

parameters results

particles nind e pmut1/pmut2 ngen energy ng min successful runs

2 8 3 0.01/0.33 10 -1.00000 0 3 out of 3

3 8 3 0.01/0.33 10 -3.00000 0 3 out of 3

4 8 3 0.01/0.33 10 -6.00000 0 3 out of 3

5 8 3 0.01/0.33 10 -9.10385 0 3 out of 3

6 8 3 0.01/0.33 10 -12.71206 0 3 out of 3

7 8 3 0.01/0.33 10 -16.50538 0 3 out of 3

8 8 3 0.01/0.33 10 -19.82149 0 3 out of 3

9 8 3 0.01/0.33 10 -24.11336 0 3 out of 3

10 8 3 0.01/0.33 10 -28.42253 0 3 out of 3

11 8 3 0.01/0.33 10 -32.75597 0 3 out of 3

12 8 3 0.01/0.33 10 -37.96760 0 3 out of 3

13 8 3 0.01/0.33 10 -44.32680 0 3 out of 3

14 8 3 0.01/0.33 10 -47.84516 0 3 out of 3

15 8 3 0.01/0.33 10 -52.32263 0 3 out of 3

16 8 3 0.01/0.33 10 -56.81574 0 3 out of 3

17 8 3 0.01/0.33 10 -61.31799 0 3 out of 3

18 8 3 0.01/0.33 10 -66.53095 9 3 out of 3

19 8 3 0.01/0.33 10 -72.65978 8 3 out of 3

Continued on next page

52

Table 5.1 – continued from previous page

parameters results

particles nind e pmut1/pmut2 ngen energy ng min successful runs

20 8 3 0.01/0.33 10 -77.17704 0 3 out of 3

21 8 3 0.01/0.33 50 -81.68457 1 3 out of 3

22 8 3 0.01/0.33 50 -86.80978 3 3 out of 3

23 8 3 0.01/0.33 50 -92.84447 8 3 out of 3

24 8 3 0.01/0.33 50 -97.34881 7 3 out of 3

25 8 3 0.01/0.33 50 -102.37266 5 3 out of 3

26 8 3 0.01/0.33 100 -108.31562 8 3 out of 3

27 8 3 0.01/0.33 100 -112.87358 47 3 out of 3

28 8 3 0.01/0.33 100 -117.82240 1 3 out of 3

29 8 3 0.01/0.33 100 -123.58737 6 3 out of 3

30 8 3 0.01/0.33 100 -128.28657 2 3 out of 3

31 8 3 0.01/0.33 200 -133.58642 47 3 out of 3

32 8 3 0.01/0.33 200 -139.63552 26 3 out of 3

33 8 3 0.01/0.33 200 -144.84272 33 3 out of 3

34 8 3 0.01/0.33 200 -150.04452 57 3 out of 3

35 8 3 0.01/0.33 200 -155.75664 33 3 out of 3

36 8 3 0.01/0.33 200 -161.82536 21 3 out of 3

37 8 3 0.01/0.33 200 -167.03367 18 3 out of 3

38 8 3 0.01/0.33 1000 -173.92842 262 2 out of 3

39 8 3 0.01/0.33 500 -180.03319 21 3 out of 3

40 8 3 0.01/0.33 500 -185.24984 17 3 out of 3

41 8 3 0.01/0.33 500 -190.53628 16 3 out of 3

42 8 3 0.01/0.33 500 -196.27753 18 3 out of 3

43 8 3 0.01/0.33 500 -202.36466 52 3 out of 3

44 8 3 0.01/0.33 500 -207.68873 118 3 out of 3

45 8 3 0.01/0.33 500 -213.78486 31 3 out of 3

46 8 3 0.01/0.33 500 -220.68033 32 3 out of 3

47 8 3 0.01/0.33 500 -226.01226 25 3 out of 3

48 8 3 0.01/0.33 500 -232.19953 10 3 out of 3

49 8 3 0.01/0.33 500 -239.09186 35 3 out of 3

50 8 3 0.01/0.33 500 -244.54993 31 3 out of 3

51 8 3 0.01/0.33 500 -251.25396 15 3 out of 3

Continued on next page

53

Table 5.1 – continued from previous page

parameters results

particles nind e pmut1/pmut2 ngen energy ng min successful runs

52 8 3 0.01/0.33 500 -258.22999 19 3 out of 3

53 8 3 0.01/0.33 500 -265.20302 17 3 out of 3

54 8 3 0.01/0.33 500 -272.20863 20 3 out of 3

55 8 3 0.01/0.33 500 -279.24847 8 3 out of 3

56 8 3 0.01/0.33 500 -283.64311 20 3 out of 3

57 8 3 0.01/0.33 500 -288.34262 15 3 out of 3

58 8 3 0.01/0.33 500 -294.37815 56 3 out of 3

59 8 3 0.01/0.33 500 -299.73807 113 3 out of 3

60 8 3 0.01/0.33 500 -305.87548 38 3 out of 3

61 8 3 0.01/0.33 500 -312.00890 44 1 out of 3

62 8 3 0.01/0.33 500 -317.35390 205 3 out of 3

63 8 3 0.01/0.33 500 -323.48973 126 2 out of 3

64 8 3 0.01/0.33 500 -329.62015 151 3 out of 3

65 8 3 0.01/0.33 500 -334.97153 65 1 out of 3

66 8 3 0.01/0.33 500 -341.11060 438 1 out of 3

67 8 3 0.01/0.33 500 -347.25201 311 1 out of 3

68 8 3 0.01/0.33 500 -353.39454 384 2 out of 3

69 8 3 0.01/0.33 1500 -359.88257 189 3 out of 3

70 8 3 0.01/0.33 1500 -366.89225 58 3 out of 3

71 8 3 0.01/0.33 1500 -373.34966 227 3 out of 3

72 8 3 0.01/0.33 1500 -378.63725 373 3 out of 3

73 8 3 0.01/0.33 1500 -384.78938 64 3 out of 3

74 8 3 0.01/0.33 1500 -390.90850 94 3 out of 3

75 8 3 0.15/0.33 600 -397.49233 192 2 out of 200

76 8 3 0.15/0.33 600 -402.89487 428 1 out of 200
∗77 12 5 0.02/0.33 10 -409.08352 0 2 out of 10

78 8 3 0.01/0.33 2000 -414.79440 255 3 out of 3

79 8 3 0.01/0.33 2000 -421.81090 420 3 out of 3

80 8 3 0.01/0.33 2000 -428.08356 149 2 out of 3

81 8 3 0.01/0.33 2000 -434.34364 408 2 out of 3

82 8 3 0.01/0.33 2000 -440.55042 1402 1 out of 3

83 8 3 0.01/0.33 2000 -446.92409 1904 1 out of 3

Continued on next page

54

Table 5.1 – continued from previous page

parameters results

particles nind e pmut1/pmut2 ngen energy ng min successful runs

84 8 3 0.01/0.33 2000 -452.65721 570 2 out of 3

85 8 3 0.01/0.33 2000 -459.05580 131 2 out of 3

86 8 3 0.01/0.33 2000 -465.38449 1484 1 out of 3

87 8 3 0.01/0.33 2000 -472.09816 809 1 out of 3

88 8 3 0.01/0.33 2000 -479.03263 203 3 out of 3

89 8 3 0.01/0.33 2000 -486.05391 441 2 out of 3

90 8 3 0.01/0.33 2000 -492.43391 185 3 out of 3

91 8 3 0.01/0.33 2000 -498.81106 88 3 out of 3

92 8 3 0.01/0.33 2000 -505.18531 987 3 out of 3

93 8 3 0.01/0.33 2000 -510.87769 93 2 out of 3

94 8 3 0.01/0.33 2000 -517.26413 997 3 out of 3

95 8 3 0.01/0.33 2000 -523.64021 488 2 out of 3

96 8 3 0.01/0.33 2000 -529.87915 663 2 out of 3

97 8 3 0.01/0.33 2000 -536.68138 257 2 out of 3

98 12 5 0.02/0.33 600 -543.66536 237 2 out of 50

99 8 3 0.01/0.33 2000 -550.66653 763 2 out of 3

100 8 3 0.1/0.33 10000 -557.03982 520 4 out of 5
∗ seeded runs

Table 5.1: In this table all ground state energies in natural units of the Lennard-

Jones potential (rounded to five decimal places) are listed. The number of

individuals nind, the elitism parameter e, the mutation parameters pmut1

and pmut2, the maximum number of generations for each run ngen, the

minimum number of generations until the corresponding structure was

found over all runs ng min and the contingent of successful runs are given

as well.

Figure 5.1 shows the binding energies per particle, E/N , of these clusters as a function

of particle number N . Since the cluster energy can be expressed as a sum of a bulk

term and a surface term, i.e. E = c0N+c1N
2/3, for sufficiently large particle numbers,

we fitted a curve

E/N = a0 + a1N
−1/3, (5.1)

55

with a0 = −7.97422, a1 = 11.3074 to data points with N ≥ 15.

Some part of the growth pattern for Lennard-Jones clusters is shown in the visual-

ization section at the end of this chapter (figure 5.4). It is noted that with increasing

N , a growing layer of particles is added to the 13-particle Mackay icosahedron at the

core.

-6

-5

-4

-3

-2

-1

 0

 1

 2

 0 10 20 30 40 50 60 70 80 90 100

E
/N

N

Figure 5.1: Binding energies per particle, E/N , as a function of N , 2 ≤ N ≤ 100,

for Lennard-Jones clusters; the dashed line represents a fit to the data

(with N ≥ 15) using the functional form of equation 5.1, with parameters

a0 = −7.97422, a1 = 11.3074.

5.1.2 α = 18

For this potential, we ran simulations for particle numbers 2 ≤ N ≤ 60. As pointed

out in [72], for very small clusters N < 10, the resulting geometries are the same as

those encountered using the standard Lennard-Jones potential. However, for larger

N values, the shorter range of the (α = 18)-potential induces a significant change in

the structures. For example, at N = 13, the in the Lennard-Jones case particularly

stable perfect Mackay icosahedron is not the ground state for this potential.

The shorter range of the potential causes the potential energy hypersurface to be

more rugged and therefore calculations tend to be significantly more time consuming

56

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 10 20 30 40 50 60

E
/N

N

Figure 5.2: Binding energies per particle, E/N , as a function of N , 2 ≤ N ≤ 60, for

α = 18 clusters; the dashed line represents a fit to the data (with N ≥ 15)

using the functional form of equation 5.1, with parameters a0 = −5.95226,

a1 = 7.38958.

than in the standard Lennard-Jones case.

As shown in the following table, our algorithm could reproduce most of the particle

configurations reported in [72]. In addition, for several cases the algorithm produced

configurations with even lower ground state energy than the ones reported in in [72].

Table 5.2: Ground state energies of α = 18 clusters

parameters results

particles nind e pmut1/pmut2 ngen energy ng min successful runs

2 8 3 0.01/0.33 10 -1.00000 0 3 out of 3

3 8 3 0.01/0.33 10 -3.00000 0 3 out of 3

4 8 3 0.01/0.33 10 -6.00000 1 3 out of 3

5 8 3 0.01/0.33 10 -9.00029 1 3 out of 3

6 8 3 0.01/0.33 100 -12.01171 11 3 out of 3

7 8 3 0.01/0.33 100 -15.81238 4 3 out of 3

8 8 3 0.01/0.33 100 -18.81303 3 3 out of 3

Continued on next page

57

Table 5.2 – continued from previous page

parameters results

particles nind e pmut1/pmut2 ngen energy ng min successful runs

9 8 3 0.01/0.33 100 -22.42715 2 3 out of 3

10 8 3 0.01/0.33 100 -25.74640 16 3 out of 3

11 8 3 0.01/0.33 100 -29.23267 2 3 out of 3

12 8 3 0.01/0.33 200 -33.02595 23 3 out of 3

13 8 3 0.01/0.33 200 -36.60489 30 1 out of 3

14 8 3 0.01/0.33 500 -40.61001 91 2 out of 3

15 8 3 0.01/0.33 500 -44.61539 82 3 out of 3

16 8 3 0.01/0.33 500 -48.62077 63 3 out of 3

17 8 3 0.01/0.33 500 -52.62615 47 3 out of 3

18 8 3 0.01/0.33 500 -56.63179 85 3 out of 3

19 8 3 0.01/0.33 500 -60.60114 128 3 out of 3

20 8 3 0.01/0.33 500 -64.56643 113 2 out of 3

21 8 3 0.01/0.33 1500 -68.55246 458 2 out of 3

22 8 3 0.01/0.33 1500 -72.55790 166 2 out of 3

23 8 3 0.01/0.33 1500 -76.76435 43 2 out of 3

24 8 3 0.01/0.33 1500 -81.11050 850 1 out of 3

25 8 3 0.01/0.33 5000 -85.11895 513 2 out of 3

26 8 3 0.01/0.33 5000 -90.12737 3100 1 out of 3

27 8 3 0.01/0.33 20000 -94.13163 231 2 out of 3

28 8 3 0.01/0.33 20000 -98.13618 7929 2 out of 3

29 8 3 0.01/0.33 20000 -102.44906 560 1 out of 3
−30 8 3 0.01/0.33 20000 -106.53802 4212 1 out of 3

31 8 3 0.01/0.33 20000 -111.40195 356 3 out of 3

32 8 3 0.01/0.33 20000 -115.40657 819 3 out of 3

33 8 3 0.01/0.33 20000 -120.34364 61 3 out of 3
−34 8 3 0.01/0.33 20000 -124.34829 2594 2 out of 3

35 8 3 0.01/0.33 20000 -129.32885 7902 2 out of 3

36 8 3 0.01/0.33 20000 -133.33383 1072 3 out of 3

37 8 3 0.01/0.33 20000 -138.25002 2209 2 out of 3

38 8 3 0.01/0.33 20000 -144.21675 528 1 out of 3

39 8 3 0.01/0.33 20000 -148.22109 6199 1 out of 3
−40 8 3 0.01/0.33 20000 -152.22544 726 3 out of 3

Continued on next page

58

Table 5.2 – continued from previous page

parameters results

particles nind e pmut1/pmut2 ngen energy ng min successful runs

41 8 3 0.01/0.33 20000 -156.24226 2987 2 out of 3
−42 8 3 0.01/0.33 20000 -160.25023 1798 3 out of 3

43 8 3 0.01/0.33 20000 -165.25180 7600 2 out of 3

44 8 3 0.01/0.33 20000 -169.26026 535 2 out of 3
−45 8 3 0.01/0.33 20000 -174.26870 5987 2 out of 3

46 8 3 0.01/0.33 20000 -178.28141 10391 1 out of 3

47 8 3 0.01/0.33 20000 -183.27824 12711 1 out of 3
−48 8 3 0.01/0.33 20000 -187.86271 10609 1 out of 3
−49 8 3 0.01/0.33 20000 -192.30747 2459 2 out of 3

50 8 3 0.01/0.33 30000 -198.30838 3529 4 out of 10
−51 8 3 0.01/0.33 30000 -202.31685 4497 2 out of 3

52 8 3 0.01/0.33 30000 -207.32530 1866 1 out of 3

53 8 3 0.01/0.33 30000 -211.33377 358 2 out of 3
−54 8 3 0.01/0.33 30000 -216.34221 24880 2 out of 3
−55 8 3 0.01/0.33 30000 -219.95547 20690 1 out of 3

56 12 5 0.01/0.33 1000 -225.35122 575 1 out of 20

57 8 3 0.01/0.33 30000 -229.37686 27424 3 out of 3
−58 12 5 0.01/0.33 100000 -234.38534 433 2 out of 8

59 8 3 0.01/0.33 30000 -240.38800 28806 1 out of 3

60 12 5 0.01/0.33 100000 -244.39258 629 6 out of 8
− minimum energetically lower than in [72]

Table 5.2: Ground state energies and GA parameters for α = 18 clusters.

The binding energies per particle as a function of the particle number are shown in

figure 5.2.

Figure 5.6 shows some of the computed cluster structures. For N = 13−20, a growth

pattern (indicated by different colors) can be observed. The cluster geometries for

N = 30, 42 and 48 particles are different from those presented in [72] and have lower

energies.

59

5.2 Dzugutov Clusters

Since the Dzugutov potential [70] has attractive and repulsive components, the po-

tential energy hypersurface for these clusters is even more complicated than in the

cases described before. We have investigated Dzugutov clusters for particle numbers

N = 2 to N = 50 and have compared our results to the ones published in [71],

which are also available online [58]. Our algorithm managed to reproduce all minima

except the one at N = 45, which corresponds to a very elongated geometry with

energy -92.91414, while the local minimum our algorithm found has an energy value

of -92.88544 (for a comparison of the corresponding structures, see figure 5.7).

Table 5.3: Ground state energies of Dzugutov clusters

parameters results

particles nind e pmut1/pmut2 ngen energy ng min successful runs

2 8 3 0.01/0.33 10 -0.58144 0 3 out of 3

3 8 3 0.01/0.33 10 -1.74431 1 3 out of 3

4 8 3 0.01/0.33 10 -3.48862 2 3 out of 3

5 8 3 0.01/0.33 100 -5.19500 9 3 out of 3

6 8 3 0.01/0.33 100 -6.89547 6 3 out of 3

7 8 3 0.01/0.33 100 -9.11048 12 3 out of 3

8 8 3 0.01/0.33 100 -10.80097 13 3 out of 3

9 8 3 0.01/0.33 100 -13.00434 16 3 out of 3

10 8 3 0.01/0.33 500 -15.18230 22 3 out of 3

11 8 3 0.01/0.33 500 -17.35419 28 3 out of 3

12 8 3 0.01/0.33 500 -19.97396 14 3 out of 3

13 8 3 0.01/0.33 500 -23.20683 37 3 out of 3

14 8 3 0.01/0.33 500 -24.80015 43 3 out of 3

15 8 3 0.01/0.33 500 -26.89233 35 3 out of 3

16 8 3 0.01/0.33 500 -28.93500 24 3 out of 3

17 8 3 0.01/0.33 500 -31.07137 30 3 out of 3

18 8 3 0.01/0.33 500 -33.38890 33 3 out of 3

19 8 3 0.01/0.33 500 -36.38730 100 3 out of 3

20 8 3 0.01/0.33 500 -38.18598 52 3 out of 3

21 8 3 0.01/0.33 500 -40.16478 23 3 out of 3

22 8 3 0.01/0.33 500 -42.23248 56 3 out of 3

Continued on next page

60

Table 5.3 – continued from previous page

parameters results

particles nind e pmut1/pmut2 ngen energy ng min successful runs

23 8 3 0.01/0.33 500 -45.09705 353 1 out of 3

24 8 3 0.01/0.33 500 -46.96753 384 1 out of 3

25 8 3 0.01/0.33 500 -49.35195 71 2 out of 3

26 8 3 0.01/0.33 1500 -51.16203 217 3 out of 3

27 8 3 0.01/0.33 1500 -53.32167 147 3 out of 3

28 8 3 0.01/0.33 5000 -55.48276 288 3 out of 3

29 8 3 0.01/0.33 5000 -58.09194 4616 1 out of 3

30 8 3 0.01/0.33 5000 -59.90790 1798 2 out of 3

31 8 3 0.01/0.33 5000 -62.38719 5491 2 out of 3

32 8 3 0.01/0.33 5000 -64.06448 3208 2 out of 3

33 8 3 0.01/0.33 20000 -66.89364 11301 2 out of 3

34 8 3 0.01/0.33 20000 -68.69681 2290 3 out of 3

35 8 3 0.01/0.33 20000 -71.13407 9151 1 out of 3

36 8 3 0.01/0.33 20000 -73.05979 7646 2 out of 3

37 8 3 0.01/0.33 30000 -75.47329 12195 1 out of 10

38 8 3 0.01/0.33 20000 -78.21269 655 2 out of 3

39 8 3 0.01/0.33 20000 -80.02804 746 3 out of 3

40 8 3 0.01/0.33 20000 -82.00776 2543 2 out of 3

41 8 3 0.01/0.33 30000 -84.19359 2689 4 out of 6

42 8 3 0.01/0.33 30000 -86.88835 562 2 out of 6

43 8 3 0.01/0.33 30000 -88.70720 1429 4 out of 6

44 8 3 0.1/0.33 50000 -91.02178 4861 2 out of 6
+45 8 3 0.01/0.33 50000 -92.88544 - 0 out of 20

46 10 3 0.01/0.1 100000 -95.60089 50584 2 out of 10

47 10 3 0.01/0.1 100000 -97.42453 2486 1 out of 10

48 8 3 0.01/0.33 30000 -99.87780 1982 3 out of 6

49 10 3 0.1/0.33 100000 -101.99289 1958 2 out of 5

50 8 3 0.01/0.33 30000 -104.36619 6388 2 out of 6
+ minimum energetically higher than in [58]

Table 5.3: Ground state energies and GA parameters for Dzugutov clusters.

61

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0 5 10 15 20 25 30 35 40 45 50

E
/N

N

Figure 5.3: Binding energies per particle, E/N , as a function of N , 2 ≤ N ≤ 50,

for Dzugutov clusters; the dashed line represents a fit to the data (with

N ≥ 15) using the functional form of equation 5.1, with parameters

a0 = −2.66114, a1 = 2.07367.

The structures of small Dzugutov clusters with up to 21 particles are based on Mackay

icosahedra, just like for Lennard-Jones clusters. For larger cluster sizes, the structures

are still based on 13-atom icosahedra, but do not follow an overlayer growth pattern.

They rather tend to form non-compact elongated structures, a few examples of these

are shown in figure 5.7. The geometry for N = 38 is typical for cluster sizes around

40 particles. The global minimum for N = 45 [58], which has not yet been identified

by our algorithm can be seen as an expansion the 33 particle structure. The structure

with 50 particles represents the configurations consisting of face sharing icosahedra

and a cavity, which are dominant in this cluster size region.

5.3 2D-System

For our 2D-system we ran calculations for a fixed number w = 8 of potential wells

in x-direction. As particle numbers, we chose integer multiples of w, namely N =

24, 32, 40. For each number of particles N , we searched for the energetically most

favorable configurations at 20 density points ρ∗ = Nσ2/A in the interval [0.1, 2]. The

62

results are presented in the following tables (energies for equivalent structures where

reproducible up to at least two digits).

24 Particles

Table 5.4: Ground state energies and GA parameters for our 2D system - 24 particles

parameters results

ρ∗ nind e pmut ngen energy ng min successful runs

0.1 20 3 0.01 10000 0.01347 1815 1 out of 10

0.2 20 3 0.01 10000 1.38706 43 10 out of 10

0.3 20 3 0.01 10000 7.29447 37 10 out of 10

0.4 20 3 0.01 10000 17.43944 152 9 out of 10

0.5 20 3 0.01 10000 30.10736 115 5 out of 10

0.6 20 3 0.01 10000 44.01761 54 3 out of 10

0.7 20 3 0.01 10000 58.49851 9464 1 out of 10

0.8 20 3 0.01 10000 73.24191 78 8 out of 10

0.9 20 3 0.01 10000 88.03630 339 10 out of 10

1.0 20 3 0.01 10000 102.92844 11 10 out of 10

1.1 20 3 0.01 10000 117.86571 200 9 out of 10

1.2 20 3 0.01 10000 132.82668 683 8 out of 10

1.3 20 3 0.01 10000 147.81078 38 10 out of 10

1.4 20 3 0.01 10000 162.81442 72 9 out of 10

1.5 20 3 0.01 10000 177.82092 103 10 out of 10

1.6 20 3 0.01 10000 192.84476 2447 5 out of 10

1.7 20 3 0.01 10000 207.87000 1652 4 out of 10

1.8 20 3 0.01 10000 222.89690 225 9 out of 10

1.9 20 3 0.01 10000 237.91910 1591 3 out of 10

2.0 20 3 0.01 10000 252.95082 704 5 out of 10

For N = 24 particles and low densities up to ρ∗ = 0.7, the energetically most favorable

structure we found is a rather regular one. Each well contains three particles and

the interparticle distances in y-direction are equal. For densities between ρ∗ = 0.8

and ρ∗ = 1.0, the wells contain [4 | 2 | 3 | 4 | 3 | 2 | 4 | 2] particles and the particles

seem to arrange around a central hexagon. For 1.1 ≤ ρ∗ ≤ 1.5, a structure with

63

[5 | 2 | 3 | 4 | 2 | 3 | 4 | 1] particles in the wells is dominant. At even higher densities

1.6 ≤ ρ∗ ≤ 1.8 the particle distribution over the wells remains the same, but the

configuration in y-direction changes to a structure characterized by a central three-

particle alignment. For the highest densities ρ∗ = 1.9, 2.0 that we considered, a

[3 | 3 | 3 | 3 | 4 | 2 | 2 | 4] structure seems to be the most favorable one. Examples for

all these particle alignments can be found in figure 5.8.

32 Particles

Table 5.5: Ground state energies and GA parameters for our 2D system - 32 particles

parameters results

ρ∗ nind e pmut ngen energy ng min successful runs

0.1 20 3 0.01 10000 0.02988 1921 1 out of 10

0.2 20 3 0.01 10000 2.55851 154 10 out of 10

0.3 20 3 0.01 10000 11.12631 93 10 out of 10

0.4 20 3 0.01 10000 24.64652 13 10 out of 10

0.5 20 3 0.01 10000 41.25811 27 10 out of 10

0.6 20 3 0.01 10000 59.57621 23 10 out of 10

0.7 20 3 0.01 10000 78.70509 16 10 out of 10

0.8 20 3 0.01 10000 98.05634 18 10 out of 10

0.9 20 3 0.01 10000 117.67909 18 10 out of 10

1.0 20 7 0.01 20000 137.46087 990 9 out of 10

1.1 20 7 0.01 20000 157.29585 298 10 out of 10

1.2 20 7 0.01 20000 177.19281 179 10 out of 10

1.3 20 7 0.01 20000 197.13286 920 10 out of 10

1.4 20 7 0.01 20000 217.11848 403 10 out of 10

1.5 20 7 0.01 20000 237.12577 319 10 out of 10

1.6 20 7 0.01 20000 257.14706 18 10 out of 10

1.7 20 7 0.01 20000 277.17422 234 10 out of 10

1.8 20 7 0.01 20000 297.21241 803 6 out of 10

1.9 20 7 0.01 20000 317.25406 4513 3 out of 10

2.0 20 7 0.01 20000 337.29056 280 10 out of 10

64

In the N = 32 case, we found even more different structures to be energetically

most favorable in different density domains. For ρ∗ = 0.1, an alignment with

[6 | 3 | 3 | 6 | 3 | 4 | 3 | 4] particles in the wells had the lowest energy value, while for

ρ∗ = 0.2 this was the case for a more symmetric [5 | 4 | 3 | 6 | 3 | 4 | 3 | 4] - structure.

In the regime of 0.3 ≤ ρ∗ ≤ 0.6, a regular structure with four particles in every well

and equal distances in y-direction seems to be dominant. For 0.7 ≤ ρ∗ ≤ 0.9, the ener-

getically most favorable configuration we found contains [5 | 4 | 3 | 6 | 3 | 4 | 3 | 4] par-

ticles in the wells, similar to the ρ∗ = 0.2 case, but with a slightly different alignment

in y-direction. At ρ∗ = 1.0 we observe a change to a [5 | 4 | 3 | 6 | 3 | 4 | 4 | 3] struc-

ture. In the rather large density range of 1.1 ≤ ρ∗ ≤ 1.7 a [5 | 4 | 3 | 6 | 2 | 5 | 3 | 4]

alignment, which can be characterized by a central six-particle rhombus, seems to

be dominant. For higher densities, the particle numbers per well stay the same, but

the configuration in y-direction changes: at ρ∗ = 1.8 and ρ∗ = 2.0 a structure with a

central two-particle alignment and columns in y-direction is energetically most favor-

able. For ρ∗ = 1.9 a structure with yet another particle configuration in y-direction

was found. For visualizations of these structures, see figures 5.9 and 5.10.

40 Particles

Table 5.6: Ground state energies and GA parameters for our 2D system - 40 particles

parameters results

ρ∗ nind e pmut ngen energy ng min successful runs

0.1 20 3 0.01 10000 0.04885 18791 1 out of 10

0.2 20 3 0.01 10000 3.40908 649 10 out of 10

0.3 20 3 0.01 10000 14.45650 24 10 out of 10

0.4 20 3 0.01 10000 31.61355 36 10 out of 10

0.5 20 3 0.01 10000 52.37797 40 10 out of 10

0.6 20 3 0.01 10000 75.08839 10 10 out of 10

0.7 20 3 0.01 10000 98.65277 12 10 out of 10

0.8 20 3 0.01 10000 122.70257 9 10 out of 10

0.9 20 3 0.01 10000 147.12781 8 10 out of 10

1.0 20 3 0.01 10000 171.79135 7 10 out of 10

1.1 20 3 0.01 10000 196.59867 18 10 out of 10

1.2 20 3 0.01 10000 221.50024 6 10 out of 10

1.3 20 3 0.01 10000 246.42798 165 10 out of 10

Continued on next page

65

Table 5.6 – continued from previous page

parameters results

ρ∗ nind e pmut ngen energy ng min successful runs

1.4 20 3 0.01 10000 271.39071 18 10 out of 10

1.5 20 3 0.01 10000 296.37869 14 10 out of 10

1.6 20 3 0.01 10000 321.38917 9 10 out of 10

1.7 20 3 0.01 10000 346.41903 28 10 out of 10

1.8 20 3 0.01 10000 371.46391 13 10 out of 10

1.9 20 3 0.01 10000 396.51368 24 10 out of 10

2.0 20 7 0.01 10000 421.56449 9 10 out of 10

For N = 40 particles only four different structures were found to be energetically

most favorable in the investigated density regime: For ρ∗ = 0.1 an alignment with

[7 | 5 | 4 | 7 | 5 | 4 | 4 | 4] particles per well was found to have the lowest energy value.

Between ρ∗ = 0.2 and ρ∗ = 0.6 a [6 | 4 | 4 | 6 | 5 | 5 | 5 | 5]-configuration was iden-

tified, where the particles arrange in zig-zag patterns. For 0.7 ≤ ρ∗ ≤ 1.2, a

[7 | 4 | 5 | 6 | 5 | 4 | 5 | 4]-structure characterized by a central two-particle alignment

was found to have the lowest energy value. For higher densities 1.3 ≤ ρ∗ ≤ 2.0 the

distribution of particles over the wells changes to [7 | 4 | 5 | 6 | 5 | 5 | 6 | 3] and two

two-particle alignments can be identified. For visualizations of these structures, see

figure 5.11.

5.4 Visualizations

On the following pages, 3D images of some of the structures computed by our cluster

geometry optimizing algorithm are presented. All of these were generated using the

program PyMOL [80] and employ a perspective camera (i.e. there is a vanishing

point).

For all images showing our 2D system (also created with PyMOL), particles within

the unit cell are shown as red spheres, while their periodic images appear in gray.

Please note that mirror symmetries are possible.

66

18 19

16 17

14 15

12 13

Figure 5.4: Growth pattern for Lennard-Jones clusters with N = 12−19. Notice the

variant structure at N = 17.

67

75(1) 75(2)

38 55

30 34

22 25

Figure 5.5: Lennard-Jones clusters with 22, 25, 30, 34, 38 (octahedral), 55 (perfect

Mackay icosahedron) and 75 (decahedral, two different perspectives) par-

ticles.

68

42 48

23 30

18 20

13 14

Figure 5.6: Clusters of particle interacting via the (α = 18)-potential with 13, 14, 18,

20, 23, 30, 42 and 48 particles. Different colors indicate an observable

growth pattern. See text for comments.

69

47 50

45(1) 45(2)

33 38

19 25

Figure 5.7: Dzugutov clusters with 19, 25, 33, 38, 45 (left: minimum found by our

algorithm, right: global minimum [58]), 47, and 50 particles. See text for

comments.

70

1.9

1.1 1.6

0.7 0.8

Figure 5.8: 2D System with 24 particles: energetically most favorable structures for

ρ∗ = 0.7, 0.8, 1.1, 1.6, 1.9. Particles in the unit cell are represented by red

spheres, their periodic images appear as gray spheres.

71

0.6 0.8

0.1 0.2

Figure 5.9: 2D System with 32 particles: energetically most favorable structures for

ρ∗ = 0.1, 0.2, 0.6, 0.8. For better visibility, the particles at ρ∗ = 0.1 and

0.2 are enlarged by factor two.

72

1.9 2.0

1.0 1.5

Figure 5.10: 2D System with 32 particles: energetically most favorable structures for

ρ∗ = 1.0, 1.5, 1.9, 2.0.

73

1.1 1.6

0.1 0.5

Figure 5.11: 2D System with 40 particles: energetically most favorable structures for

ρ∗ = 0.1, 0.5, 1.1, 1.6. For better visibility, the particles at ρ∗ = 0.1 are

enlarged by factor two.

74

6 Summary

In this work we used a genetic (phenotype) algorithm as a search strategy for ener-

getically favorable geometrical configurations of (finite numbers of) particles. The

pairwise interaction of the particles in the investigated systems is given via potential

functions depending on the interparticle distance. Our implementation of such an

algorithm is mainly based on the ideas introduced in [7, 35, 39].

The first problem we studied was cluster geometry optimization. As a benchmark

for our algorithm, we tried to reproduce the global energy minima published in

[58] for Lennard-Jones clusters with particle numbers up to 100 and for Dzugutov

clusters with particle numbers up to 50. Therein, we succeeded in all but one case.

Furthermore, we were able to reproduce, and in eleven cases improve, the global

minima for 2α-α clusters with α = 18 published in [72] for particle numbers up to

60.

As our second problem, we investigated a two-dimensional system inspired by certain

properties of quasicrystalline materials [73]. This was done using a slightly altered

version of the cluster geometry optimizing algorithm. For this system, we obtained

tentative global minimum energy configurations for different particle numbers and

densities.

We are optimistic that the algorithm we developed (and further improved versions

of it) will be useful in future investigations, especially in my planned PhD studies.

Possible improvements of our program are directed mutation operations and espe-

cially a more powerful niching method based on the techniques pointed out in [35].

75

76

Bibliography

[1] C.N. Likos, Effective Interactions in Soft Condensed Matter Physics,

Phys. Rep. 348, 267-439 (2001).

[2] N. Metropolis and S. Ulam, The Monte Carlo Method, J. Am. Statistical Asso-

ciation 44, 335-341 (1949).

[3] C. Darwin, The Origin of Species by Means of Natural Selection (John Murray,

Albemarle Street, London, 1859).

[4] J.H. Holland, Adaption in Natural and Artificial Systems (The University of

Michigan Press, Ann Arbor, 1975).

[5] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learn-

ing (Addison-Wesley, MA, 1989).

[6] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs

(Springer, New York, 1992).

[7] D.M. Deaven and K.M. Ho, Molecular Geometry Optimization with a Genetic

Algorithm, Phys. Rev. Lett. 75, 288 (1995).

[8] A.R. Oganov and C.W. Glass, Crystal structure prediction using ab initio evo-

lutionary techniques: Principles and applications, J. Chem. Phys. 124, 244704

(2006).

[9] S.M. Woodley and R. Catlow, Crystal structure prediction from first principles,

Nature Materials 7, 937-946 (2008).

[10] B. Hartke, Application of Evolutionary Algorithms to Global Cluster Geometry

Optimization, Struct. Bond. 110, 33-53 (2004).

[11] D.E. Clark (ed.), Evolutionary Algorithms in Molecular Design (Wiley-VCH,

Weinheim, 2000).

77

[12] G.W. Greenwood and A.M. Tyrell, Introduction to Evolvable Hardware (Wiley-

IEEE Press, 2006).

[13] J. Arifovic, Genetic algorithm learning and the cobweb model,

J. Econ. Dyn. Contr. 18, 3 (1994).

[14] T. Riechmann, Genetic algorithm learning and evolutionary games,

J. Econ. Dyn. Contr. 25, 1019 (2001).

[15] D. Gottwald, Genetic Algorithms in Condensed Matter Theory, Ph. D. thesis,

TU Vienna (2005).

[16] D. Gottwald, G. Kahl and C.N. Likos, Predicting equilibrium structures in freez-

ing processes, J. Chem. Phys. 122, 204503 (2005).

[17] G.J. Pauschenwein, Phase behavior of colloidal systems, Ph. D. thesis, TU Vi-

enna (2008).

[18] G.J. Pauschenwein and G. Kahl, Clusters, columns, and lamellae - minimum

energy configurations in core softened potentials, Soft Matter 4, 1396 (2008).

[19] G.J. Pauschenwein and G. Kahl, Zero temperature phase diagram of the square-

shoulder system, J. Chem. Phys. 129, 174107 (2008).

[20] J. Fornleitner, Ordered Equilibrium Structures of Two-Dimensional Soft Matter

Systems, Ph. D. thesis, TU Vienna (2008).

[21] J. Fornleitner, F. Lo Verso, G. Kahl and C.N. Likos, Genetic algorithms predict

formation of exotic ordered configurations for two-component dipolar monolay-

ers, Soft Matter 4, 480 (2008).

[22] J. Fornleitner and G. Kahl, Lane formation vs. cluster formation in two-

dimensional square-shoulder systems - A genetic algorithm approach, Euro-

phys. Lett. 82, 18001 (2008).

[23] M. Kahn, Ordered equilibrium structures of soft particles in layered systems,

Diploma thesis, TU Vienna (2008).

[24] K. Burjorjee, The Fundamental Problem with the Building Block Hypothesis,

http://arxiv.org/pdf/0810.3356 (2008).

[25] F. Gray, Pulse code communications, U.S. Patent 2632058 (1953).

[26] S. Forrest and M. Mitchell, in D. Whitley (ed.), Foundations of Genetic Algo-

rithms 2 (Morgan Kaufmann, San Mateo, CA, 1993).

78

[27] C.R. Reeves and J.E. Rowe, Genetic Algorithms: Principles and Perspectives:

a Guide to GA Theory (Kluwer Academic Publishers, 2003).

[28] D.E. Goldberg, Real-coded genetic algorithms, virtual alphabets, and blocking,

Complex Systems 5, 139-167 (1991).

[29] S.W. Mahfoud, Niching Methods for Genetic Algorithms, Ph.D. dissertation Ur-

bana Champaign: Univ. Illinois (1995).

[30] D.H. Wolpert and W.G. Macready, No Free Lunch Theorems for Search, Santa

Fe, NM: Santa Fe Institute, Tech. Rep. SFI-TR-05-010 (1995).

[31] D.H. Wolpert and W.G. Macready, No Free Lunch Theorems for Optimization,

IEEE Trans. Evolutionary Computation 1, 67-82 (1997).

[32] J.C. Culberson, On the Futility of Blind Search, Evolutionary Computation 6,

109-127 (1998).

[33] B. Hartke, Global geometry optimization of clusters using genetic algorithms,

J. Phys. Chem. 97, 9973 (1993).

[34] Y. Zeiri, Prediction of the lowest energy structure of clusters using a genetic

algorithm, Phys. Rev. E 51, 2769-2772 (1995).

[35] B. Hartke, Global Cluster Geometry Optimization by a Phenotype Algorithm

with Niches: Location of Elusive Minima, and Low-Order Scaling with Cluster

Size, J. Comp. Chem. 20, 1752-1759 (1999).

[36] D.J. Wales and J.P.K. Doye, Global Optimization by Basin-Hopping and

the Lowest Energy of Lennard-Jones Clusters Containing up to 110 Atoms,

J. Phys. Chem. A 101, 5111 (1997).

[37] D.J. Wales, Energy Landscapes (Cambridge University Press, Cambridge, 2003).

[38] F.H. Stillinger and T.A. Weber, Nonlinear optimization simplified by hypersur-

face deformation, J. Stat. Phys. 52, 1429-1445 (1988).

[39] R.L. Johnston, Evolving better nanoparticles: Genetic algorithms for optimising

cluster geometries, Dalton Trans. 2003, 4193-4207 (2003).

[40] M.D. Wolf and U. Landmann, Genetic Algorithms for Structural Cluster Opti-

mization, Jour. Phys. Chem. A 102, 6129 (1998).

[41] N.L. Abraham and M.I.J. Probert, A Periodic Genetic Algorithm with

79

Real-Space Representation for Crystal Structure and Polymorph Prediction,

Phys. Rev. B 73, 224104 (2006).

[42] D.J. Wales and T.V. Bogdan, GMIN: A program for finding global minima and

calculating thermodynamic properties from basin-sampling., Source code and

documentation available online, http://www-wales.ch.cam.ac.uk/GMIN/.

[43] R. Fletcher and C.M. Reeves, Function minimization by conjugate gradients,

Comp. J. 7, 149-154 (1964).

[44] E. Polak and G. Ribière, Note sur la Convergence de Methods de Directions Con-

juguès, Revue Francàise Informat. Recherche Operationnelle 16, 35-43 (1969).

[45] M.R. Hestenes and E. Stiefel, Methods of Conjugate Gradients for Solving Linear

Systems, J. Res. Nat. Bur. Stand. 49 409-436 (1952).

[46] C.G. Broyden, The Convergence of a Class of Double-Rank Minimization Algo-

rithms, J. Inst. Math. Appl. 6, 76-90 (1970).

[47] R. Fletcher, A New Approach to Variable Metric Algorithms, Comp. J. 13, 317-

322 (1970).

[48] D. Goldfarb, A Family of Variable Metric Updates Derived by Variational Means,

Math. Comp. 24, 23-26 (1970).

[49] D.F. Shanno, Conditioning of Quasi-Newton Methods for Function Minimiza-

tion, Math. Comp. 24, 647-656 (1970).

[50] J. Nocedal, Updating Quasi-Newton Matrices with Limited Storage,

Math. Comp. 35, 773-782 (1980).

[51] D.C. Liu and J. Nocedal, On the Limited Memory Method for Large Scale Op-

timization, Math. Progr. B 45, 503-528 (1989).

[52] R.H. Byrd, P. Lu and J. Nocedal A Limited Memory Algorithm for Bound Con-

strained Optimization, SIAM J. Sci. Stat. Comp. 16, 1190-1208 (1995).

[53] C. Zhu, R.H. Byrd and J. Nocedal, L-BFGS-B: Algorithm 778: L-BFGS-

B, FORTRAN routines for large scale bound constrained optimization, ACM

Trans. Math. Software 23, 550-560 (1997).

[54] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl and R.E. Smalley, C60: Buck-

minsterfullerene, Nature 318, 162-163 (1985).

80

[55] M.R. Hoare, Structure and dynamics of simple microclusters,

Adv. Chem. Phys. 40, 49 (1979).

[56] L.T. Wille and J. Vennik, Electrostatic energy minimisation by simulated an-

nealing, J. Phys. A: Math. Gen. 18, L419 (1985).

[57] A.M. Turing On computable numbers, with an application to the Entschei-

dungsproblem, Proc. London Math. Soc. 42, 230-265 (1936).

[58] Cambridge Cluster Database, http://www-wales.ch.cam.ac.uk/CCD.html.

[59] J. E. Lennard-Jones, Cohesion, Proc. Phys. Soc. 43, 461-482 (1931).

[60] G.A. Vliegenthart, J.F.M. Lodge and H.N.W. Lekkerkerker, Strong and Weak

Metastable Liquids Structural and Dynamical Aspects of the Liquid State, Phys-

ica A, 263, 378 (1999).

[61] J.A. Northby, Structure and binding of Lennard Jones clusters: 13≤N≤147,

J. Chem. Phys. 87, 6166 (1987).

[62] D.M. Deaven, N. Tit, J.R. Morris and K.M. Ho Structural optimization of

Lennard-Jones clusters by a genetic algorithm, Chem. Phys. Lett. 256, 195

(1995).

[63] A.L. Mackay, A dense non-crystallographic packing of equal spheres Acta Crys-

tallogr. 15, 916 (1962).

[64] B. Raoult, J. Farges, M.F. de Feraudy and G. Torchet, Comparison between

icosahedral, decahedral and crystalline Lennard-Jones models containing 500 to

6000 atoms, Philos. Mag. B 60, 881 (1989).

[65] J. Pillardy and L. Piela, Molecular Dynamics on Deformed Potential Energy

Hypersurfaces, J. Phys. Chem. 99, 11805 (1995).

[66] J.P.K. Doye, D.J. Wales and R.S. Berry, The effect of the range of the potential

on the structures of clusters, J. Chem. Phys. 103, 4234-4249 (1995).

[67] R.H. Leary and J.P.K. Doye, New Tetrahedral Global Minimum for the 98-atom

Lennard-Jones Cluster, Phys. Rev. E 60, R6320-R6322 (1999).

[68] J.P.K. Doye and D.J. Wales Magic numbers and growth sequences of small face-

centred-cubic and decahedral clusters, Chem. Phys. Lett. 247, 339-347 (1995).

[69] J.P.K. Doye, M.A. Miller and D.J. Wales, The double-funnel energy landscape

of the 38-atom Lennard-Jones cluster, J. Chem. Phys. 110, 6896 (1999).

81

[70] M. Dzugutov and U. Dahlborg, Molecular dynamics study of the coherent den-

sity correlation function in a supercooled simple one-component liquid, J. Non-

Cryst. Solids 131-133, 62-65 (1991).

[71] J.P.K. Doye, D.J. Wales and S.I. Simdyankin, Global Optimization and the En-

ergy Landscapes of Dzugutov Clusters, Faraday Discuss. 118, 159-170 (2001).

[72] S. Mossa, F. Sciortino, P. Tartaglia and E. Zaccarelli, Ground-State Clusters

for Short-Range Attractive and Long-Range Repulsive Potentials, Langmuir 20,

10756-10763 (2004).

[73] C. Janot, Quasicrystals: A Primer (Oxford Univ. Press, New York, 1992).

[74] J. Mikhael, J. Roth, L. Helden and C. Bechinger, Archimedean-like tiling on

decagonal quasicrystalline surfaces, Nature 454, 501-504 (2008).

[75] F.H. Stillinger, Phase transitions in the Gaussian core system,

J. Chem. Phys. 65, 3968 (1976).

[76] B. Krüger, L. Schäfer and A. Baumgärtner, Correlations among interpenetrating

polymer coils: the probing of a fractal, J. Phys. France 50, 3191-3222 (1989).

[77] M. Luescher, A portable high-quality random number generator for lattice field

theory simulations, Comput. Phys. Commun. 79, 100 (1994).

[78] F. James, RANLUX: a Fortran implementation of the high-quality pseudoran-

dom number generator of Lüscher, Comput. Phys. Commun. 79, 100 (1994).

[79] A. Miller, TOMS778, http://users.bigpond.net.au/amiller/toms/

toms778.zip (1999).

[80] PyMOL Molecular Viewer, http://www.pymol.org.

82

Acknowledgements

During the years of my studies and the time I spent working on this thesis, a lot of

people have supported me. I would like to thank

My supervisor Gerhard Kahl, both scientifically and personally.

The members of the soft matter theory group at TU Wien Julia Fornleitner, Gernot

Pauschenwein, Dieter Schwanzer, Daniele Coslovich, Jan Kurzidim, Lukas Strauss

and Emanuela Bianchi for providing good company and help whenever it was needed.

Bernhard Zauner, Raphael Angerer, Johannes Strobl, Georg Wachter, Christoph We-

ber, Daniela Klotz, Julia Urschler, Dominik Seebacher, Martina Lechner, Alexander

Gutmann, Robert Frick, Simone Angerer, Daniel Steiner, Karl Rühringer, Klaus

Pramberger, Thomas Brandner and Sebastian Salhofer for being friends for all these

years.

My parents Maria and Franz for their support and trust in my decisions, my sister

Eva-Maria, my grandparents, my uncle Josef and my whole family.

All these walls were never

really there.

Mike Skinner

